xref: /linux/kernel/bpf/verifier.c (revision a674fefd17324fc467f043568e738b80ca22f2b4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 
32 #include "disasm.h"
33 
34 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
35 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
36 	[_id] = & _name ## _verifier_ops,
37 #define BPF_MAP_TYPE(_id, _ops)
38 #define BPF_LINK_TYPE(_id, _name)
39 #include <linux/bpf_types.h>
40 #undef BPF_PROG_TYPE
41 #undef BPF_MAP_TYPE
42 #undef BPF_LINK_TYPE
43 };
44 
45 struct bpf_mem_alloc bpf_global_percpu_ma;
46 static bool bpf_global_percpu_ma_set;
47 
48 /* bpf_check() is a static code analyzer that walks eBPF program
49  * instruction by instruction and updates register/stack state.
50  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
51  *
52  * The first pass is depth-first-search to check that the program is a DAG.
53  * It rejects the following programs:
54  * - larger than BPF_MAXINSNS insns
55  * - if loop is present (detected via back-edge)
56  * - unreachable insns exist (shouldn't be a forest. program = one function)
57  * - out of bounds or malformed jumps
58  * The second pass is all possible path descent from the 1st insn.
59  * Since it's analyzing all paths through the program, the length of the
60  * analysis is limited to 64k insn, which may be hit even if total number of
61  * insn is less then 4K, but there are too many branches that change stack/regs.
62  * Number of 'branches to be analyzed' is limited to 1k
63  *
64  * On entry to each instruction, each register has a type, and the instruction
65  * changes the types of the registers depending on instruction semantics.
66  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
67  * copied to R1.
68  *
69  * All registers are 64-bit.
70  * R0 - return register
71  * R1-R5 argument passing registers
72  * R6-R9 callee saved registers
73  * R10 - frame pointer read-only
74  *
75  * At the start of BPF program the register R1 contains a pointer to bpf_context
76  * and has type PTR_TO_CTX.
77  *
78  * Verifier tracks arithmetic operations on pointers in case:
79  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
80  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
81  * 1st insn copies R10 (which has FRAME_PTR) type into R1
82  * and 2nd arithmetic instruction is pattern matched to recognize
83  * that it wants to construct a pointer to some element within stack.
84  * So after 2nd insn, the register R1 has type PTR_TO_STACK
85  * (and -20 constant is saved for further stack bounds checking).
86  * Meaning that this reg is a pointer to stack plus known immediate constant.
87  *
88  * Most of the time the registers have SCALAR_VALUE type, which
89  * means the register has some value, but it's not a valid pointer.
90  * (like pointer plus pointer becomes SCALAR_VALUE type)
91  *
92  * When verifier sees load or store instructions the type of base register
93  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
94  * four pointer types recognized by check_mem_access() function.
95  *
96  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
97  * and the range of [ptr, ptr + map's value_size) is accessible.
98  *
99  * registers used to pass values to function calls are checked against
100  * function argument constraints.
101  *
102  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
103  * It means that the register type passed to this function must be
104  * PTR_TO_STACK and it will be used inside the function as
105  * 'pointer to map element key'
106  *
107  * For example the argument constraints for bpf_map_lookup_elem():
108  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
109  *   .arg1_type = ARG_CONST_MAP_PTR,
110  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
111  *
112  * ret_type says that this function returns 'pointer to map elem value or null'
113  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
114  * 2nd argument should be a pointer to stack, which will be used inside
115  * the helper function as a pointer to map element key.
116  *
117  * On the kernel side the helper function looks like:
118  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
119  * {
120  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
121  *    void *key = (void *) (unsigned long) r2;
122  *    void *value;
123  *
124  *    here kernel can access 'key' and 'map' pointers safely, knowing that
125  *    [key, key + map->key_size) bytes are valid and were initialized on
126  *    the stack of eBPF program.
127  * }
128  *
129  * Corresponding eBPF program may look like:
130  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
131  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
132  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
133  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
134  * here verifier looks at prototype of map_lookup_elem() and sees:
135  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
136  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
137  *
138  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
139  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
140  * and were initialized prior to this call.
141  * If it's ok, then verifier allows this BPF_CALL insn and looks at
142  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
143  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
144  * returns either pointer to map value or NULL.
145  *
146  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
147  * insn, the register holding that pointer in the true branch changes state to
148  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
149  * branch. See check_cond_jmp_op().
150  *
151  * After the call R0 is set to return type of the function and registers R1-R5
152  * are set to NOT_INIT to indicate that they are no longer readable.
153  *
154  * The following reference types represent a potential reference to a kernel
155  * resource which, after first being allocated, must be checked and freed by
156  * the BPF program:
157  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
158  *
159  * When the verifier sees a helper call return a reference type, it allocates a
160  * pointer id for the reference and stores it in the current function state.
161  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
162  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
163  * passes through a NULL-check conditional. For the branch wherein the state is
164  * changed to CONST_IMM, the verifier releases the reference.
165  *
166  * For each helper function that allocates a reference, such as
167  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
168  * bpf_sk_release(). When a reference type passes into the release function,
169  * the verifier also releases the reference. If any unchecked or unreleased
170  * reference remains at the end of the program, the verifier rejects it.
171  */
172 
173 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
174 struct bpf_verifier_stack_elem {
175 	/* verifier state is 'st'
176 	 * before processing instruction 'insn_idx'
177 	 * and after processing instruction 'prev_insn_idx'
178 	 */
179 	struct bpf_verifier_state st;
180 	int insn_idx;
181 	int prev_insn_idx;
182 	struct bpf_verifier_stack_elem *next;
183 	/* length of verifier log at the time this state was pushed on stack */
184 	u32 log_pos;
185 };
186 
187 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
188 #define BPF_COMPLEXITY_LIMIT_STATES	64
189 
190 #define BPF_MAP_KEY_POISON	(1ULL << 63)
191 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
192 
193 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE  512
194 
195 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
196 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
197 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
198 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
199 static int ref_set_non_owning(struct bpf_verifier_env *env,
200 			      struct bpf_reg_state *reg);
201 static void specialize_kfunc(struct bpf_verifier_env *env,
202 			     u32 func_id, u16 offset, unsigned long *addr);
203 static bool is_trusted_reg(const struct bpf_reg_state *reg);
204 
205 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
206 {
207 	return aux->map_ptr_state.poison;
208 }
209 
210 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
211 {
212 	return aux->map_ptr_state.unpriv;
213 }
214 
215 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
216 			      struct bpf_map *map,
217 			      bool unpriv, bool poison)
218 {
219 	unpriv |= bpf_map_ptr_unpriv(aux);
220 	aux->map_ptr_state.unpriv = unpriv;
221 	aux->map_ptr_state.poison = poison;
222 	aux->map_ptr_state.map_ptr = map;
223 }
224 
225 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
226 {
227 	return aux->map_key_state & BPF_MAP_KEY_POISON;
228 }
229 
230 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
231 {
232 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
233 }
234 
235 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
236 {
237 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
238 }
239 
240 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
241 {
242 	bool poisoned = bpf_map_key_poisoned(aux);
243 
244 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
245 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
246 }
247 
248 static bool bpf_helper_call(const struct bpf_insn *insn)
249 {
250 	return insn->code == (BPF_JMP | BPF_CALL) &&
251 	       insn->src_reg == 0;
252 }
253 
254 static bool bpf_pseudo_call(const struct bpf_insn *insn)
255 {
256 	return insn->code == (BPF_JMP | BPF_CALL) &&
257 	       insn->src_reg == BPF_PSEUDO_CALL;
258 }
259 
260 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
261 {
262 	return insn->code == (BPF_JMP | BPF_CALL) &&
263 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
264 }
265 
266 struct bpf_call_arg_meta {
267 	struct bpf_map *map_ptr;
268 	bool raw_mode;
269 	bool pkt_access;
270 	u8 release_regno;
271 	int regno;
272 	int access_size;
273 	int mem_size;
274 	u64 msize_max_value;
275 	int ref_obj_id;
276 	int dynptr_id;
277 	int map_uid;
278 	int func_id;
279 	struct btf *btf;
280 	u32 btf_id;
281 	struct btf *ret_btf;
282 	u32 ret_btf_id;
283 	u32 subprogno;
284 	struct btf_field *kptr_field;
285 };
286 
287 struct bpf_kfunc_call_arg_meta {
288 	/* In parameters */
289 	struct btf *btf;
290 	u32 func_id;
291 	u32 kfunc_flags;
292 	const struct btf_type *func_proto;
293 	const char *func_name;
294 	/* Out parameters */
295 	u32 ref_obj_id;
296 	u8 release_regno;
297 	bool r0_rdonly;
298 	u32 ret_btf_id;
299 	u64 r0_size;
300 	u32 subprogno;
301 	struct {
302 		u64 value;
303 		bool found;
304 	} arg_constant;
305 
306 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
307 	 * generally to pass info about user-defined local kptr types to later
308 	 * verification logic
309 	 *   bpf_obj_drop/bpf_percpu_obj_drop
310 	 *     Record the local kptr type to be drop'd
311 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
312 	 *     Record the local kptr type to be refcount_incr'd and use
313 	 *     arg_owning_ref to determine whether refcount_acquire should be
314 	 *     fallible
315 	 */
316 	struct btf *arg_btf;
317 	u32 arg_btf_id;
318 	bool arg_owning_ref;
319 
320 	struct {
321 		struct btf_field *field;
322 	} arg_list_head;
323 	struct {
324 		struct btf_field *field;
325 	} arg_rbtree_root;
326 	struct {
327 		enum bpf_dynptr_type type;
328 		u32 id;
329 		u32 ref_obj_id;
330 	} initialized_dynptr;
331 	struct {
332 		u8 spi;
333 		u8 frameno;
334 	} iter;
335 	struct {
336 		struct bpf_map *ptr;
337 		int uid;
338 	} map;
339 	u64 mem_size;
340 };
341 
342 struct btf *btf_vmlinux;
343 
344 static const char *btf_type_name(const struct btf *btf, u32 id)
345 {
346 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
347 }
348 
349 static DEFINE_MUTEX(bpf_verifier_lock);
350 static DEFINE_MUTEX(bpf_percpu_ma_lock);
351 
352 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
353 {
354 	struct bpf_verifier_env *env = private_data;
355 	va_list args;
356 
357 	if (!bpf_verifier_log_needed(&env->log))
358 		return;
359 
360 	va_start(args, fmt);
361 	bpf_verifier_vlog(&env->log, fmt, args);
362 	va_end(args);
363 }
364 
365 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
366 				   struct bpf_reg_state *reg,
367 				   struct bpf_retval_range range, const char *ctx,
368 				   const char *reg_name)
369 {
370 	bool unknown = true;
371 
372 	verbose(env, "%s the register %s has", ctx, reg_name);
373 	if (reg->smin_value > S64_MIN) {
374 		verbose(env, " smin=%lld", reg->smin_value);
375 		unknown = false;
376 	}
377 	if (reg->smax_value < S64_MAX) {
378 		verbose(env, " smax=%lld", reg->smax_value);
379 		unknown = false;
380 	}
381 	if (unknown)
382 		verbose(env, " unknown scalar value");
383 	verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
384 }
385 
386 static bool type_may_be_null(u32 type)
387 {
388 	return type & PTR_MAYBE_NULL;
389 }
390 
391 static bool reg_not_null(const struct bpf_reg_state *reg)
392 {
393 	enum bpf_reg_type type;
394 
395 	type = reg->type;
396 	if (type_may_be_null(type))
397 		return false;
398 
399 	type = base_type(type);
400 	return type == PTR_TO_SOCKET ||
401 		type == PTR_TO_TCP_SOCK ||
402 		type == PTR_TO_MAP_VALUE ||
403 		type == PTR_TO_MAP_KEY ||
404 		type == PTR_TO_SOCK_COMMON ||
405 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
406 		type == PTR_TO_MEM;
407 }
408 
409 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
410 {
411 	struct btf_record *rec = NULL;
412 	struct btf_struct_meta *meta;
413 
414 	if (reg->type == PTR_TO_MAP_VALUE) {
415 		rec = reg->map_ptr->record;
416 	} else if (type_is_ptr_alloc_obj(reg->type)) {
417 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
418 		if (meta)
419 			rec = meta->record;
420 	}
421 	return rec;
422 }
423 
424 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
425 {
426 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
427 
428 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
429 }
430 
431 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
432 {
433 	struct bpf_func_info *info;
434 
435 	if (!env->prog->aux->func_info)
436 		return "";
437 
438 	info = &env->prog->aux->func_info[subprog];
439 	return btf_type_name(env->prog->aux->btf, info->type_id);
440 }
441 
442 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
443 {
444 	struct bpf_subprog_info *info = subprog_info(env, subprog);
445 
446 	info->is_cb = true;
447 	info->is_async_cb = true;
448 	info->is_exception_cb = true;
449 }
450 
451 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
452 {
453 	return subprog_info(env, subprog)->is_exception_cb;
454 }
455 
456 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
457 {
458 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
459 }
460 
461 static bool type_is_rdonly_mem(u32 type)
462 {
463 	return type & MEM_RDONLY;
464 }
465 
466 static bool is_acquire_function(enum bpf_func_id func_id,
467 				const struct bpf_map *map)
468 {
469 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
470 
471 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
472 	    func_id == BPF_FUNC_sk_lookup_udp ||
473 	    func_id == BPF_FUNC_skc_lookup_tcp ||
474 	    func_id == BPF_FUNC_ringbuf_reserve ||
475 	    func_id == BPF_FUNC_kptr_xchg)
476 		return true;
477 
478 	if (func_id == BPF_FUNC_map_lookup_elem &&
479 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
480 	     map_type == BPF_MAP_TYPE_SOCKHASH))
481 		return true;
482 
483 	return false;
484 }
485 
486 static bool is_ptr_cast_function(enum bpf_func_id func_id)
487 {
488 	return func_id == BPF_FUNC_tcp_sock ||
489 		func_id == BPF_FUNC_sk_fullsock ||
490 		func_id == BPF_FUNC_skc_to_tcp_sock ||
491 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
492 		func_id == BPF_FUNC_skc_to_udp6_sock ||
493 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
494 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
495 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
496 }
497 
498 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
499 {
500 	return func_id == BPF_FUNC_dynptr_data;
501 }
502 
503 static bool is_sync_callback_calling_kfunc(u32 btf_id);
504 static bool is_async_callback_calling_kfunc(u32 btf_id);
505 static bool is_callback_calling_kfunc(u32 btf_id);
506 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
507 
508 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id);
509 
510 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
511 {
512 	return func_id == BPF_FUNC_for_each_map_elem ||
513 	       func_id == BPF_FUNC_find_vma ||
514 	       func_id == BPF_FUNC_loop ||
515 	       func_id == BPF_FUNC_user_ringbuf_drain;
516 }
517 
518 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
519 {
520 	return func_id == BPF_FUNC_timer_set_callback;
521 }
522 
523 static bool is_callback_calling_function(enum bpf_func_id func_id)
524 {
525 	return is_sync_callback_calling_function(func_id) ||
526 	       is_async_callback_calling_function(func_id);
527 }
528 
529 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
530 {
531 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
532 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
533 }
534 
535 static bool is_async_callback_calling_insn(struct bpf_insn *insn)
536 {
537 	return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) ||
538 	       (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm));
539 }
540 
541 static bool is_may_goto_insn(struct bpf_insn *insn)
542 {
543 	return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO;
544 }
545 
546 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx)
547 {
548 	return is_may_goto_insn(&env->prog->insnsi[insn_idx]);
549 }
550 
551 static bool is_storage_get_function(enum bpf_func_id func_id)
552 {
553 	return func_id == BPF_FUNC_sk_storage_get ||
554 	       func_id == BPF_FUNC_inode_storage_get ||
555 	       func_id == BPF_FUNC_task_storage_get ||
556 	       func_id == BPF_FUNC_cgrp_storage_get;
557 }
558 
559 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
560 					const struct bpf_map *map)
561 {
562 	int ref_obj_uses = 0;
563 
564 	if (is_ptr_cast_function(func_id))
565 		ref_obj_uses++;
566 	if (is_acquire_function(func_id, map))
567 		ref_obj_uses++;
568 	if (is_dynptr_ref_function(func_id))
569 		ref_obj_uses++;
570 
571 	return ref_obj_uses > 1;
572 }
573 
574 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
575 {
576 	return BPF_CLASS(insn->code) == BPF_STX &&
577 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
578 	       insn->imm == BPF_CMPXCHG;
579 }
580 
581 static int __get_spi(s32 off)
582 {
583 	return (-off - 1) / BPF_REG_SIZE;
584 }
585 
586 static struct bpf_func_state *func(struct bpf_verifier_env *env,
587 				   const struct bpf_reg_state *reg)
588 {
589 	struct bpf_verifier_state *cur = env->cur_state;
590 
591 	return cur->frame[reg->frameno];
592 }
593 
594 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
595 {
596        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
597 
598        /* We need to check that slots between [spi - nr_slots + 1, spi] are
599 	* within [0, allocated_stack).
600 	*
601 	* Please note that the spi grows downwards. For example, a dynptr
602 	* takes the size of two stack slots; the first slot will be at
603 	* spi and the second slot will be at spi - 1.
604 	*/
605        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
606 }
607 
608 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
609 			          const char *obj_kind, int nr_slots)
610 {
611 	int off, spi;
612 
613 	if (!tnum_is_const(reg->var_off)) {
614 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
615 		return -EINVAL;
616 	}
617 
618 	off = reg->off + reg->var_off.value;
619 	if (off % BPF_REG_SIZE) {
620 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
621 		return -EINVAL;
622 	}
623 
624 	spi = __get_spi(off);
625 	if (spi + 1 < nr_slots) {
626 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
627 		return -EINVAL;
628 	}
629 
630 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
631 		return -ERANGE;
632 	return spi;
633 }
634 
635 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
636 {
637 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
638 }
639 
640 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
641 {
642 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
643 }
644 
645 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
646 {
647 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
648 	case DYNPTR_TYPE_LOCAL:
649 		return BPF_DYNPTR_TYPE_LOCAL;
650 	case DYNPTR_TYPE_RINGBUF:
651 		return BPF_DYNPTR_TYPE_RINGBUF;
652 	case DYNPTR_TYPE_SKB:
653 		return BPF_DYNPTR_TYPE_SKB;
654 	case DYNPTR_TYPE_XDP:
655 		return BPF_DYNPTR_TYPE_XDP;
656 	default:
657 		return BPF_DYNPTR_TYPE_INVALID;
658 	}
659 }
660 
661 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
662 {
663 	switch (type) {
664 	case BPF_DYNPTR_TYPE_LOCAL:
665 		return DYNPTR_TYPE_LOCAL;
666 	case BPF_DYNPTR_TYPE_RINGBUF:
667 		return DYNPTR_TYPE_RINGBUF;
668 	case BPF_DYNPTR_TYPE_SKB:
669 		return DYNPTR_TYPE_SKB;
670 	case BPF_DYNPTR_TYPE_XDP:
671 		return DYNPTR_TYPE_XDP;
672 	default:
673 		return 0;
674 	}
675 }
676 
677 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
678 {
679 	return type == BPF_DYNPTR_TYPE_RINGBUF;
680 }
681 
682 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
683 			      enum bpf_dynptr_type type,
684 			      bool first_slot, int dynptr_id);
685 
686 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
687 				struct bpf_reg_state *reg);
688 
689 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
690 				   struct bpf_reg_state *sreg1,
691 				   struct bpf_reg_state *sreg2,
692 				   enum bpf_dynptr_type type)
693 {
694 	int id = ++env->id_gen;
695 
696 	__mark_dynptr_reg(sreg1, type, true, id);
697 	__mark_dynptr_reg(sreg2, type, false, id);
698 }
699 
700 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
701 			       struct bpf_reg_state *reg,
702 			       enum bpf_dynptr_type type)
703 {
704 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
705 }
706 
707 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
708 				        struct bpf_func_state *state, int spi);
709 
710 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
711 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
712 {
713 	struct bpf_func_state *state = func(env, reg);
714 	enum bpf_dynptr_type type;
715 	int spi, i, err;
716 
717 	spi = dynptr_get_spi(env, reg);
718 	if (spi < 0)
719 		return spi;
720 
721 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
722 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
723 	 * to ensure that for the following example:
724 	 *	[d1][d1][d2][d2]
725 	 * spi    3   2   1   0
726 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
727 	 * case they do belong to same dynptr, second call won't see slot_type
728 	 * as STACK_DYNPTR and will simply skip destruction.
729 	 */
730 	err = destroy_if_dynptr_stack_slot(env, state, spi);
731 	if (err)
732 		return err;
733 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
734 	if (err)
735 		return err;
736 
737 	for (i = 0; i < BPF_REG_SIZE; i++) {
738 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
739 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
740 	}
741 
742 	type = arg_to_dynptr_type(arg_type);
743 	if (type == BPF_DYNPTR_TYPE_INVALID)
744 		return -EINVAL;
745 
746 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
747 			       &state->stack[spi - 1].spilled_ptr, type);
748 
749 	if (dynptr_type_refcounted(type)) {
750 		/* The id is used to track proper releasing */
751 		int id;
752 
753 		if (clone_ref_obj_id)
754 			id = clone_ref_obj_id;
755 		else
756 			id = acquire_reference_state(env, insn_idx);
757 
758 		if (id < 0)
759 			return id;
760 
761 		state->stack[spi].spilled_ptr.ref_obj_id = id;
762 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
763 	}
764 
765 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
766 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
767 
768 	return 0;
769 }
770 
771 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
772 {
773 	int i;
774 
775 	for (i = 0; i < BPF_REG_SIZE; i++) {
776 		state->stack[spi].slot_type[i] = STACK_INVALID;
777 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
778 	}
779 
780 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
781 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
782 
783 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
784 	 *
785 	 * While we don't allow reading STACK_INVALID, it is still possible to
786 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
787 	 * helpers or insns can do partial read of that part without failing,
788 	 * but check_stack_range_initialized, check_stack_read_var_off, and
789 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
790 	 * the slot conservatively. Hence we need to prevent those liveness
791 	 * marking walks.
792 	 *
793 	 * This was not a problem before because STACK_INVALID is only set by
794 	 * default (where the default reg state has its reg->parent as NULL), or
795 	 * in clean_live_states after REG_LIVE_DONE (at which point
796 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
797 	 * verifier state exploration (like we did above). Hence, for our case
798 	 * parentage chain will still be live (i.e. reg->parent may be
799 	 * non-NULL), while earlier reg->parent was NULL, so we need
800 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
801 	 * done later on reads or by mark_dynptr_read as well to unnecessary
802 	 * mark registers in verifier state.
803 	 */
804 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
805 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
806 }
807 
808 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
809 {
810 	struct bpf_func_state *state = func(env, reg);
811 	int spi, ref_obj_id, i;
812 
813 	spi = dynptr_get_spi(env, reg);
814 	if (spi < 0)
815 		return spi;
816 
817 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
818 		invalidate_dynptr(env, state, spi);
819 		return 0;
820 	}
821 
822 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
823 
824 	/* If the dynptr has a ref_obj_id, then we need to invalidate
825 	 * two things:
826 	 *
827 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
828 	 * 2) Any slices derived from this dynptr.
829 	 */
830 
831 	/* Invalidate any slices associated with this dynptr */
832 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
833 
834 	/* Invalidate any dynptr clones */
835 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
836 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
837 			continue;
838 
839 		/* it should always be the case that if the ref obj id
840 		 * matches then the stack slot also belongs to a
841 		 * dynptr
842 		 */
843 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
844 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
845 			return -EFAULT;
846 		}
847 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
848 			invalidate_dynptr(env, state, i);
849 	}
850 
851 	return 0;
852 }
853 
854 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
855 			       struct bpf_reg_state *reg);
856 
857 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
858 {
859 	if (!env->allow_ptr_leaks)
860 		__mark_reg_not_init(env, reg);
861 	else
862 		__mark_reg_unknown(env, reg);
863 }
864 
865 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
866 				        struct bpf_func_state *state, int spi)
867 {
868 	struct bpf_func_state *fstate;
869 	struct bpf_reg_state *dreg;
870 	int i, dynptr_id;
871 
872 	/* We always ensure that STACK_DYNPTR is never set partially,
873 	 * hence just checking for slot_type[0] is enough. This is
874 	 * different for STACK_SPILL, where it may be only set for
875 	 * 1 byte, so code has to use is_spilled_reg.
876 	 */
877 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
878 		return 0;
879 
880 	/* Reposition spi to first slot */
881 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
882 		spi = spi + 1;
883 
884 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
885 		verbose(env, "cannot overwrite referenced dynptr\n");
886 		return -EINVAL;
887 	}
888 
889 	mark_stack_slot_scratched(env, spi);
890 	mark_stack_slot_scratched(env, spi - 1);
891 
892 	/* Writing partially to one dynptr stack slot destroys both. */
893 	for (i = 0; i < BPF_REG_SIZE; i++) {
894 		state->stack[spi].slot_type[i] = STACK_INVALID;
895 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
896 	}
897 
898 	dynptr_id = state->stack[spi].spilled_ptr.id;
899 	/* Invalidate any slices associated with this dynptr */
900 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
901 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
902 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
903 			continue;
904 		if (dreg->dynptr_id == dynptr_id)
905 			mark_reg_invalid(env, dreg);
906 	}));
907 
908 	/* Do not release reference state, we are destroying dynptr on stack,
909 	 * not using some helper to release it. Just reset register.
910 	 */
911 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
912 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
913 
914 	/* Same reason as unmark_stack_slots_dynptr above */
915 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
916 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
917 
918 	return 0;
919 }
920 
921 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
922 {
923 	int spi;
924 
925 	if (reg->type == CONST_PTR_TO_DYNPTR)
926 		return false;
927 
928 	spi = dynptr_get_spi(env, reg);
929 
930 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
931 	 * error because this just means the stack state hasn't been updated yet.
932 	 * We will do check_mem_access to check and update stack bounds later.
933 	 */
934 	if (spi < 0 && spi != -ERANGE)
935 		return false;
936 
937 	/* We don't need to check if the stack slots are marked by previous
938 	 * dynptr initializations because we allow overwriting existing unreferenced
939 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
940 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
941 	 * touching are completely destructed before we reinitialize them for a new
942 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
943 	 * instead of delaying it until the end where the user will get "Unreleased
944 	 * reference" error.
945 	 */
946 	return true;
947 }
948 
949 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
950 {
951 	struct bpf_func_state *state = func(env, reg);
952 	int i, spi;
953 
954 	/* This already represents first slot of initialized bpf_dynptr.
955 	 *
956 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
957 	 * check_func_arg_reg_off's logic, so we don't need to check its
958 	 * offset and alignment.
959 	 */
960 	if (reg->type == CONST_PTR_TO_DYNPTR)
961 		return true;
962 
963 	spi = dynptr_get_spi(env, reg);
964 	if (spi < 0)
965 		return false;
966 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
967 		return false;
968 
969 	for (i = 0; i < BPF_REG_SIZE; i++) {
970 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
971 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
972 			return false;
973 	}
974 
975 	return true;
976 }
977 
978 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
979 				    enum bpf_arg_type arg_type)
980 {
981 	struct bpf_func_state *state = func(env, reg);
982 	enum bpf_dynptr_type dynptr_type;
983 	int spi;
984 
985 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
986 	if (arg_type == ARG_PTR_TO_DYNPTR)
987 		return true;
988 
989 	dynptr_type = arg_to_dynptr_type(arg_type);
990 	if (reg->type == CONST_PTR_TO_DYNPTR) {
991 		return reg->dynptr.type == dynptr_type;
992 	} else {
993 		spi = dynptr_get_spi(env, reg);
994 		if (spi < 0)
995 			return false;
996 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
997 	}
998 }
999 
1000 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1001 
1002 static bool in_rcu_cs(struct bpf_verifier_env *env);
1003 
1004 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1005 
1006 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1007 				 struct bpf_kfunc_call_arg_meta *meta,
1008 				 struct bpf_reg_state *reg, int insn_idx,
1009 				 struct btf *btf, u32 btf_id, int nr_slots)
1010 {
1011 	struct bpf_func_state *state = func(env, reg);
1012 	int spi, i, j, id;
1013 
1014 	spi = iter_get_spi(env, reg, nr_slots);
1015 	if (spi < 0)
1016 		return spi;
1017 
1018 	id = acquire_reference_state(env, insn_idx);
1019 	if (id < 0)
1020 		return id;
1021 
1022 	for (i = 0; i < nr_slots; i++) {
1023 		struct bpf_stack_state *slot = &state->stack[spi - i];
1024 		struct bpf_reg_state *st = &slot->spilled_ptr;
1025 
1026 		__mark_reg_known_zero(st);
1027 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1028 		if (is_kfunc_rcu_protected(meta)) {
1029 			if (in_rcu_cs(env))
1030 				st->type |= MEM_RCU;
1031 			else
1032 				st->type |= PTR_UNTRUSTED;
1033 		}
1034 		st->live |= REG_LIVE_WRITTEN;
1035 		st->ref_obj_id = i == 0 ? id : 0;
1036 		st->iter.btf = btf;
1037 		st->iter.btf_id = btf_id;
1038 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1039 		st->iter.depth = 0;
1040 
1041 		for (j = 0; j < BPF_REG_SIZE; j++)
1042 			slot->slot_type[j] = STACK_ITER;
1043 
1044 		mark_stack_slot_scratched(env, spi - i);
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1051 				   struct bpf_reg_state *reg, int nr_slots)
1052 {
1053 	struct bpf_func_state *state = func(env, reg);
1054 	int spi, i, j;
1055 
1056 	spi = iter_get_spi(env, reg, nr_slots);
1057 	if (spi < 0)
1058 		return spi;
1059 
1060 	for (i = 0; i < nr_slots; i++) {
1061 		struct bpf_stack_state *slot = &state->stack[spi - i];
1062 		struct bpf_reg_state *st = &slot->spilled_ptr;
1063 
1064 		if (i == 0)
1065 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1066 
1067 		__mark_reg_not_init(env, st);
1068 
1069 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1070 		st->live |= REG_LIVE_WRITTEN;
1071 
1072 		for (j = 0; j < BPF_REG_SIZE; j++)
1073 			slot->slot_type[j] = STACK_INVALID;
1074 
1075 		mark_stack_slot_scratched(env, spi - i);
1076 	}
1077 
1078 	return 0;
1079 }
1080 
1081 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1082 				     struct bpf_reg_state *reg, int nr_slots)
1083 {
1084 	struct bpf_func_state *state = func(env, reg);
1085 	int spi, i, j;
1086 
1087 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1088 	 * will do check_mem_access to check and update stack bounds later, so
1089 	 * return true for that case.
1090 	 */
1091 	spi = iter_get_spi(env, reg, nr_slots);
1092 	if (spi == -ERANGE)
1093 		return true;
1094 	if (spi < 0)
1095 		return false;
1096 
1097 	for (i = 0; i < nr_slots; i++) {
1098 		struct bpf_stack_state *slot = &state->stack[spi - i];
1099 
1100 		for (j = 0; j < BPF_REG_SIZE; j++)
1101 			if (slot->slot_type[j] == STACK_ITER)
1102 				return false;
1103 	}
1104 
1105 	return true;
1106 }
1107 
1108 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1109 				   struct btf *btf, u32 btf_id, int nr_slots)
1110 {
1111 	struct bpf_func_state *state = func(env, reg);
1112 	int spi, i, j;
1113 
1114 	spi = iter_get_spi(env, reg, nr_slots);
1115 	if (spi < 0)
1116 		return -EINVAL;
1117 
1118 	for (i = 0; i < nr_slots; i++) {
1119 		struct bpf_stack_state *slot = &state->stack[spi - i];
1120 		struct bpf_reg_state *st = &slot->spilled_ptr;
1121 
1122 		if (st->type & PTR_UNTRUSTED)
1123 			return -EPROTO;
1124 		/* only main (first) slot has ref_obj_id set */
1125 		if (i == 0 && !st->ref_obj_id)
1126 			return -EINVAL;
1127 		if (i != 0 && st->ref_obj_id)
1128 			return -EINVAL;
1129 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1130 			return -EINVAL;
1131 
1132 		for (j = 0; j < BPF_REG_SIZE; j++)
1133 			if (slot->slot_type[j] != STACK_ITER)
1134 				return -EINVAL;
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 /* Check if given stack slot is "special":
1141  *   - spilled register state (STACK_SPILL);
1142  *   - dynptr state (STACK_DYNPTR);
1143  *   - iter state (STACK_ITER).
1144  */
1145 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1146 {
1147 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1148 
1149 	switch (type) {
1150 	case STACK_SPILL:
1151 	case STACK_DYNPTR:
1152 	case STACK_ITER:
1153 		return true;
1154 	case STACK_INVALID:
1155 	case STACK_MISC:
1156 	case STACK_ZERO:
1157 		return false;
1158 	default:
1159 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1160 		return true;
1161 	}
1162 }
1163 
1164 /* The reg state of a pointer or a bounded scalar was saved when
1165  * it was spilled to the stack.
1166  */
1167 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1168 {
1169 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1170 }
1171 
1172 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1173 {
1174 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1175 	       stack->spilled_ptr.type == SCALAR_VALUE;
1176 }
1177 
1178 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack)
1179 {
1180 	return stack->slot_type[0] == STACK_SPILL &&
1181 	       stack->spilled_ptr.type == SCALAR_VALUE;
1182 }
1183 
1184 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1185  * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1186  * more precise STACK_ZERO.
1187  * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take
1188  * env->allow_ptr_leaks into account and force STACK_MISC, if necessary.
1189  */
1190 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1191 {
1192 	if (*stype == STACK_ZERO)
1193 		return;
1194 	if (env->allow_ptr_leaks && *stype == STACK_INVALID)
1195 		return;
1196 	*stype = STACK_MISC;
1197 }
1198 
1199 static void scrub_spilled_slot(u8 *stype)
1200 {
1201 	if (*stype != STACK_INVALID)
1202 		*stype = STACK_MISC;
1203 }
1204 
1205 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1206  * small to hold src. This is different from krealloc since we don't want to preserve
1207  * the contents of dst.
1208  *
1209  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1210  * not be allocated.
1211  */
1212 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1213 {
1214 	size_t alloc_bytes;
1215 	void *orig = dst;
1216 	size_t bytes;
1217 
1218 	if (ZERO_OR_NULL_PTR(src))
1219 		goto out;
1220 
1221 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1222 		return NULL;
1223 
1224 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1225 	dst = krealloc(orig, alloc_bytes, flags);
1226 	if (!dst) {
1227 		kfree(orig);
1228 		return NULL;
1229 	}
1230 
1231 	memcpy(dst, src, bytes);
1232 out:
1233 	return dst ? dst : ZERO_SIZE_PTR;
1234 }
1235 
1236 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1237  * small to hold new_n items. new items are zeroed out if the array grows.
1238  *
1239  * Contrary to krealloc_array, does not free arr if new_n is zero.
1240  */
1241 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1242 {
1243 	size_t alloc_size;
1244 	void *new_arr;
1245 
1246 	if (!new_n || old_n == new_n)
1247 		goto out;
1248 
1249 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1250 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1251 	if (!new_arr) {
1252 		kfree(arr);
1253 		return NULL;
1254 	}
1255 	arr = new_arr;
1256 
1257 	if (new_n > old_n)
1258 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1259 
1260 out:
1261 	return arr ? arr : ZERO_SIZE_PTR;
1262 }
1263 
1264 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1265 {
1266 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1267 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1268 	if (!dst->refs)
1269 		return -ENOMEM;
1270 
1271 	dst->acquired_refs = src->acquired_refs;
1272 	return 0;
1273 }
1274 
1275 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1276 {
1277 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1278 
1279 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1280 				GFP_KERNEL);
1281 	if (!dst->stack)
1282 		return -ENOMEM;
1283 
1284 	dst->allocated_stack = src->allocated_stack;
1285 	return 0;
1286 }
1287 
1288 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1289 {
1290 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1291 				    sizeof(struct bpf_reference_state));
1292 	if (!state->refs)
1293 		return -ENOMEM;
1294 
1295 	state->acquired_refs = n;
1296 	return 0;
1297 }
1298 
1299 /* Possibly update state->allocated_stack to be at least size bytes. Also
1300  * possibly update the function's high-water mark in its bpf_subprog_info.
1301  */
1302 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1303 {
1304 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1305 
1306 	/* The stack size is always a multiple of BPF_REG_SIZE. */
1307 	size = round_up(size, BPF_REG_SIZE);
1308 	n = size / BPF_REG_SIZE;
1309 
1310 	if (old_n >= n)
1311 		return 0;
1312 
1313 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1314 	if (!state->stack)
1315 		return -ENOMEM;
1316 
1317 	state->allocated_stack = size;
1318 
1319 	/* update known max for given subprogram */
1320 	if (env->subprog_info[state->subprogno].stack_depth < size)
1321 		env->subprog_info[state->subprogno].stack_depth = size;
1322 
1323 	return 0;
1324 }
1325 
1326 /* Acquire a pointer id from the env and update the state->refs to include
1327  * this new pointer reference.
1328  * On success, returns a valid pointer id to associate with the register
1329  * On failure, returns a negative errno.
1330  */
1331 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1332 {
1333 	struct bpf_func_state *state = cur_func(env);
1334 	int new_ofs = state->acquired_refs;
1335 	int id, err;
1336 
1337 	err = resize_reference_state(state, state->acquired_refs + 1);
1338 	if (err)
1339 		return err;
1340 	id = ++env->id_gen;
1341 	state->refs[new_ofs].id = id;
1342 	state->refs[new_ofs].insn_idx = insn_idx;
1343 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1344 
1345 	return id;
1346 }
1347 
1348 /* release function corresponding to acquire_reference_state(). Idempotent. */
1349 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1350 {
1351 	int i, last_idx;
1352 
1353 	last_idx = state->acquired_refs - 1;
1354 	for (i = 0; i < state->acquired_refs; i++) {
1355 		if (state->refs[i].id == ptr_id) {
1356 			/* Cannot release caller references in callbacks */
1357 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1358 				return -EINVAL;
1359 			if (last_idx && i != last_idx)
1360 				memcpy(&state->refs[i], &state->refs[last_idx],
1361 				       sizeof(*state->refs));
1362 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1363 			state->acquired_refs--;
1364 			return 0;
1365 		}
1366 	}
1367 	return -EINVAL;
1368 }
1369 
1370 static void free_func_state(struct bpf_func_state *state)
1371 {
1372 	if (!state)
1373 		return;
1374 	kfree(state->refs);
1375 	kfree(state->stack);
1376 	kfree(state);
1377 }
1378 
1379 static void clear_jmp_history(struct bpf_verifier_state *state)
1380 {
1381 	kfree(state->jmp_history);
1382 	state->jmp_history = NULL;
1383 	state->jmp_history_cnt = 0;
1384 }
1385 
1386 static void free_verifier_state(struct bpf_verifier_state *state,
1387 				bool free_self)
1388 {
1389 	int i;
1390 
1391 	for (i = 0; i <= state->curframe; i++) {
1392 		free_func_state(state->frame[i]);
1393 		state->frame[i] = NULL;
1394 	}
1395 	clear_jmp_history(state);
1396 	if (free_self)
1397 		kfree(state);
1398 }
1399 
1400 /* copy verifier state from src to dst growing dst stack space
1401  * when necessary to accommodate larger src stack
1402  */
1403 static int copy_func_state(struct bpf_func_state *dst,
1404 			   const struct bpf_func_state *src)
1405 {
1406 	int err;
1407 
1408 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1409 	err = copy_reference_state(dst, src);
1410 	if (err)
1411 		return err;
1412 	return copy_stack_state(dst, src);
1413 }
1414 
1415 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1416 			       const struct bpf_verifier_state *src)
1417 {
1418 	struct bpf_func_state *dst;
1419 	int i, err;
1420 
1421 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1422 					  src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
1423 					  GFP_USER);
1424 	if (!dst_state->jmp_history)
1425 		return -ENOMEM;
1426 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1427 
1428 	/* if dst has more stack frames then src frame, free them, this is also
1429 	 * necessary in case of exceptional exits using bpf_throw.
1430 	 */
1431 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1432 		free_func_state(dst_state->frame[i]);
1433 		dst_state->frame[i] = NULL;
1434 	}
1435 	dst_state->speculative = src->speculative;
1436 	dst_state->active_rcu_lock = src->active_rcu_lock;
1437 	dst_state->active_preempt_lock = src->active_preempt_lock;
1438 	dst_state->in_sleepable = src->in_sleepable;
1439 	dst_state->curframe = src->curframe;
1440 	dst_state->active_lock.ptr = src->active_lock.ptr;
1441 	dst_state->active_lock.id = src->active_lock.id;
1442 	dst_state->branches = src->branches;
1443 	dst_state->parent = src->parent;
1444 	dst_state->first_insn_idx = src->first_insn_idx;
1445 	dst_state->last_insn_idx = src->last_insn_idx;
1446 	dst_state->dfs_depth = src->dfs_depth;
1447 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1448 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1449 	dst_state->may_goto_depth = src->may_goto_depth;
1450 	for (i = 0; i <= src->curframe; i++) {
1451 		dst = dst_state->frame[i];
1452 		if (!dst) {
1453 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1454 			if (!dst)
1455 				return -ENOMEM;
1456 			dst_state->frame[i] = dst;
1457 		}
1458 		err = copy_func_state(dst, src->frame[i]);
1459 		if (err)
1460 			return err;
1461 	}
1462 	return 0;
1463 }
1464 
1465 static u32 state_htab_size(struct bpf_verifier_env *env)
1466 {
1467 	return env->prog->len;
1468 }
1469 
1470 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1471 {
1472 	struct bpf_verifier_state *cur = env->cur_state;
1473 	struct bpf_func_state *state = cur->frame[cur->curframe];
1474 
1475 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1476 }
1477 
1478 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1479 {
1480 	int fr;
1481 
1482 	if (a->curframe != b->curframe)
1483 		return false;
1484 
1485 	for (fr = a->curframe; fr >= 0; fr--)
1486 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1487 			return false;
1488 
1489 	return true;
1490 }
1491 
1492 /* Open coded iterators allow back-edges in the state graph in order to
1493  * check unbounded loops that iterators.
1494  *
1495  * In is_state_visited() it is necessary to know if explored states are
1496  * part of some loops in order to decide whether non-exact states
1497  * comparison could be used:
1498  * - non-exact states comparison establishes sub-state relation and uses
1499  *   read and precision marks to do so, these marks are propagated from
1500  *   children states and thus are not guaranteed to be final in a loop;
1501  * - exact states comparison just checks if current and explored states
1502  *   are identical (and thus form a back-edge).
1503  *
1504  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1505  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1506  * algorithm for loop structure detection and gives an overview of
1507  * relevant terminology. It also has helpful illustrations.
1508  *
1509  * [1] https://api.semanticscholar.org/CorpusID:15784067
1510  *
1511  * We use a similar algorithm but because loop nested structure is
1512  * irrelevant for verifier ours is significantly simpler and resembles
1513  * strongly connected components algorithm from Sedgewick's textbook.
1514  *
1515  * Define topmost loop entry as a first node of the loop traversed in a
1516  * depth first search starting from initial state. The goal of the loop
1517  * tracking algorithm is to associate topmost loop entries with states
1518  * derived from these entries.
1519  *
1520  * For each step in the DFS states traversal algorithm needs to identify
1521  * the following situations:
1522  *
1523  *          initial                     initial                   initial
1524  *            |                           |                         |
1525  *            V                           V                         V
1526  *           ...                         ...           .---------> hdr
1527  *            |                           |            |            |
1528  *            V                           V            |            V
1529  *           cur                     .-> succ          |    .------...
1530  *            |                      |    |            |    |       |
1531  *            V                      |    V            |    V       V
1532  *           succ                    '-- cur           |   ...     ...
1533  *                                                     |    |       |
1534  *                                                     |    V       V
1535  *                                                     |   succ <- cur
1536  *                                                     |    |
1537  *                                                     |    V
1538  *                                                     |   ...
1539  *                                                     |    |
1540  *                                                     '----'
1541  *
1542  *  (A) successor state of cur   (B) successor state of cur or it's entry
1543  *      not yet traversed            are in current DFS path, thus cur and succ
1544  *                                   are members of the same outermost loop
1545  *
1546  *                      initial                  initial
1547  *                        |                        |
1548  *                        V                        V
1549  *                       ...                      ...
1550  *                        |                        |
1551  *                        V                        V
1552  *                .------...               .------...
1553  *                |       |                |       |
1554  *                V       V                V       V
1555  *           .-> hdr     ...              ...     ...
1556  *           |    |       |                |       |
1557  *           |    V       V                V       V
1558  *           |   succ <- cur              succ <- cur
1559  *           |    |                        |
1560  *           |    V                        V
1561  *           |   ...                      ...
1562  *           |    |                        |
1563  *           '----'                       exit
1564  *
1565  * (C) successor state of cur is a part of some loop but this loop
1566  *     does not include cur or successor state is not in a loop at all.
1567  *
1568  * Algorithm could be described as the following python code:
1569  *
1570  *     traversed = set()   # Set of traversed nodes
1571  *     entries = {}        # Mapping from node to loop entry
1572  *     depths = {}         # Depth level assigned to graph node
1573  *     path = set()        # Current DFS path
1574  *
1575  *     # Find outermost loop entry known for n
1576  *     def get_loop_entry(n):
1577  *         h = entries.get(n, None)
1578  *         while h in entries and entries[h] != h:
1579  *             h = entries[h]
1580  *         return h
1581  *
1582  *     # Update n's loop entry if h's outermost entry comes
1583  *     # before n's outermost entry in current DFS path.
1584  *     def update_loop_entry(n, h):
1585  *         n1 = get_loop_entry(n) or n
1586  *         h1 = get_loop_entry(h) or h
1587  *         if h1 in path and depths[h1] <= depths[n1]:
1588  *             entries[n] = h1
1589  *
1590  *     def dfs(n, depth):
1591  *         traversed.add(n)
1592  *         path.add(n)
1593  *         depths[n] = depth
1594  *         for succ in G.successors(n):
1595  *             if succ not in traversed:
1596  *                 # Case A: explore succ and update cur's loop entry
1597  *                 #         only if succ's entry is in current DFS path.
1598  *                 dfs(succ, depth + 1)
1599  *                 h = get_loop_entry(succ)
1600  *                 update_loop_entry(n, h)
1601  *             else:
1602  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1603  *                 update_loop_entry(n, succ)
1604  *         path.remove(n)
1605  *
1606  * To adapt this algorithm for use with verifier:
1607  * - use st->branch == 0 as a signal that DFS of succ had been finished
1608  *   and cur's loop entry has to be updated (case A), handle this in
1609  *   update_branch_counts();
1610  * - use st->branch > 0 as a signal that st is in the current DFS path;
1611  * - handle cases B and C in is_state_visited();
1612  * - update topmost loop entry for intermediate states in get_loop_entry().
1613  */
1614 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1615 {
1616 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1617 
1618 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1619 		topmost = topmost->loop_entry;
1620 	/* Update loop entries for intermediate states to avoid this
1621 	 * traversal in future get_loop_entry() calls.
1622 	 */
1623 	while (st && st->loop_entry != topmost) {
1624 		old = st->loop_entry;
1625 		st->loop_entry = topmost;
1626 		st = old;
1627 	}
1628 	return topmost;
1629 }
1630 
1631 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1632 {
1633 	struct bpf_verifier_state *cur1, *hdr1;
1634 
1635 	cur1 = get_loop_entry(cur) ?: cur;
1636 	hdr1 = get_loop_entry(hdr) ?: hdr;
1637 	/* The head1->branches check decides between cases B and C in
1638 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
1639 	 * head's topmost loop entry is not in current DFS path,
1640 	 * hence 'cur' and 'hdr' are not in the same loop and there is
1641 	 * no need to update cur->loop_entry.
1642 	 */
1643 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1644 		cur->loop_entry = hdr;
1645 		hdr->used_as_loop_entry = true;
1646 	}
1647 }
1648 
1649 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1650 {
1651 	while (st) {
1652 		u32 br = --st->branches;
1653 
1654 		/* br == 0 signals that DFS exploration for 'st' is finished,
1655 		 * thus it is necessary to update parent's loop entry if it
1656 		 * turned out that st is a part of some loop.
1657 		 * This is a part of 'case A' in get_loop_entry() comment.
1658 		 */
1659 		if (br == 0 && st->parent && st->loop_entry)
1660 			update_loop_entry(st->parent, st->loop_entry);
1661 
1662 		/* WARN_ON(br > 1) technically makes sense here,
1663 		 * but see comment in push_stack(), hence:
1664 		 */
1665 		WARN_ONCE((int)br < 0,
1666 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1667 			  br);
1668 		if (br)
1669 			break;
1670 		st = st->parent;
1671 	}
1672 }
1673 
1674 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1675 		     int *insn_idx, bool pop_log)
1676 {
1677 	struct bpf_verifier_state *cur = env->cur_state;
1678 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1679 	int err;
1680 
1681 	if (env->head == NULL)
1682 		return -ENOENT;
1683 
1684 	if (cur) {
1685 		err = copy_verifier_state(cur, &head->st);
1686 		if (err)
1687 			return err;
1688 	}
1689 	if (pop_log)
1690 		bpf_vlog_reset(&env->log, head->log_pos);
1691 	if (insn_idx)
1692 		*insn_idx = head->insn_idx;
1693 	if (prev_insn_idx)
1694 		*prev_insn_idx = head->prev_insn_idx;
1695 	elem = head->next;
1696 	free_verifier_state(&head->st, false);
1697 	kfree(head);
1698 	env->head = elem;
1699 	env->stack_size--;
1700 	return 0;
1701 }
1702 
1703 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1704 					     int insn_idx, int prev_insn_idx,
1705 					     bool speculative)
1706 {
1707 	struct bpf_verifier_state *cur = env->cur_state;
1708 	struct bpf_verifier_stack_elem *elem;
1709 	int err;
1710 
1711 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1712 	if (!elem)
1713 		goto err;
1714 
1715 	elem->insn_idx = insn_idx;
1716 	elem->prev_insn_idx = prev_insn_idx;
1717 	elem->next = env->head;
1718 	elem->log_pos = env->log.end_pos;
1719 	env->head = elem;
1720 	env->stack_size++;
1721 	err = copy_verifier_state(&elem->st, cur);
1722 	if (err)
1723 		goto err;
1724 	elem->st.speculative |= speculative;
1725 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1726 		verbose(env, "The sequence of %d jumps is too complex.\n",
1727 			env->stack_size);
1728 		goto err;
1729 	}
1730 	if (elem->st.parent) {
1731 		++elem->st.parent->branches;
1732 		/* WARN_ON(branches > 2) technically makes sense here,
1733 		 * but
1734 		 * 1. speculative states will bump 'branches' for non-branch
1735 		 * instructions
1736 		 * 2. is_state_visited() heuristics may decide not to create
1737 		 * a new state for a sequence of branches and all such current
1738 		 * and cloned states will be pointing to a single parent state
1739 		 * which might have large 'branches' count.
1740 		 */
1741 	}
1742 	return &elem->st;
1743 err:
1744 	free_verifier_state(env->cur_state, true);
1745 	env->cur_state = NULL;
1746 	/* pop all elements and return */
1747 	while (!pop_stack(env, NULL, NULL, false));
1748 	return NULL;
1749 }
1750 
1751 #define CALLER_SAVED_REGS 6
1752 static const int caller_saved[CALLER_SAVED_REGS] = {
1753 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1754 };
1755 
1756 /* This helper doesn't clear reg->id */
1757 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1758 {
1759 	reg->var_off = tnum_const(imm);
1760 	reg->smin_value = (s64)imm;
1761 	reg->smax_value = (s64)imm;
1762 	reg->umin_value = imm;
1763 	reg->umax_value = imm;
1764 
1765 	reg->s32_min_value = (s32)imm;
1766 	reg->s32_max_value = (s32)imm;
1767 	reg->u32_min_value = (u32)imm;
1768 	reg->u32_max_value = (u32)imm;
1769 }
1770 
1771 /* Mark the unknown part of a register (variable offset or scalar value) as
1772  * known to have the value @imm.
1773  */
1774 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1775 {
1776 	/* Clear off and union(map_ptr, range) */
1777 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1778 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1779 	reg->id = 0;
1780 	reg->ref_obj_id = 0;
1781 	___mark_reg_known(reg, imm);
1782 }
1783 
1784 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1785 {
1786 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1787 	reg->s32_min_value = (s32)imm;
1788 	reg->s32_max_value = (s32)imm;
1789 	reg->u32_min_value = (u32)imm;
1790 	reg->u32_max_value = (u32)imm;
1791 }
1792 
1793 /* Mark the 'variable offset' part of a register as zero.  This should be
1794  * used only on registers holding a pointer type.
1795  */
1796 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1797 {
1798 	__mark_reg_known(reg, 0);
1799 }
1800 
1801 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1802 {
1803 	__mark_reg_known(reg, 0);
1804 	reg->type = SCALAR_VALUE;
1805 	/* all scalars are assumed imprecise initially (unless unprivileged,
1806 	 * in which case everything is forced to be precise)
1807 	 */
1808 	reg->precise = !env->bpf_capable;
1809 }
1810 
1811 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1812 				struct bpf_reg_state *regs, u32 regno)
1813 {
1814 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1815 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1816 		/* Something bad happened, let's kill all regs */
1817 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1818 			__mark_reg_not_init(env, regs + regno);
1819 		return;
1820 	}
1821 	__mark_reg_known_zero(regs + regno);
1822 }
1823 
1824 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1825 			      bool first_slot, int dynptr_id)
1826 {
1827 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1828 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1829 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1830 	 */
1831 	__mark_reg_known_zero(reg);
1832 	reg->type = CONST_PTR_TO_DYNPTR;
1833 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1834 	reg->id = dynptr_id;
1835 	reg->dynptr.type = type;
1836 	reg->dynptr.first_slot = first_slot;
1837 }
1838 
1839 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1840 {
1841 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1842 		const struct bpf_map *map = reg->map_ptr;
1843 
1844 		if (map->inner_map_meta) {
1845 			reg->type = CONST_PTR_TO_MAP;
1846 			reg->map_ptr = map->inner_map_meta;
1847 			/* transfer reg's id which is unique for every map_lookup_elem
1848 			 * as UID of the inner map.
1849 			 */
1850 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1851 				reg->map_uid = reg->id;
1852 			if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE))
1853 				reg->map_uid = reg->id;
1854 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1855 			reg->type = PTR_TO_XDP_SOCK;
1856 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1857 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1858 			reg->type = PTR_TO_SOCKET;
1859 		} else {
1860 			reg->type = PTR_TO_MAP_VALUE;
1861 		}
1862 		return;
1863 	}
1864 
1865 	reg->type &= ~PTR_MAYBE_NULL;
1866 }
1867 
1868 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1869 				struct btf_field_graph_root *ds_head)
1870 {
1871 	__mark_reg_known_zero(&regs[regno]);
1872 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1873 	regs[regno].btf = ds_head->btf;
1874 	regs[regno].btf_id = ds_head->value_btf_id;
1875 	regs[regno].off = ds_head->node_offset;
1876 }
1877 
1878 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1879 {
1880 	return type_is_pkt_pointer(reg->type);
1881 }
1882 
1883 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1884 {
1885 	return reg_is_pkt_pointer(reg) ||
1886 	       reg->type == PTR_TO_PACKET_END;
1887 }
1888 
1889 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1890 {
1891 	return base_type(reg->type) == PTR_TO_MEM &&
1892 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1893 }
1894 
1895 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1896 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1897 				    enum bpf_reg_type which)
1898 {
1899 	/* The register can already have a range from prior markings.
1900 	 * This is fine as long as it hasn't been advanced from its
1901 	 * origin.
1902 	 */
1903 	return reg->type == which &&
1904 	       reg->id == 0 &&
1905 	       reg->off == 0 &&
1906 	       tnum_equals_const(reg->var_off, 0);
1907 }
1908 
1909 /* Reset the min/max bounds of a register */
1910 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1911 {
1912 	reg->smin_value = S64_MIN;
1913 	reg->smax_value = S64_MAX;
1914 	reg->umin_value = 0;
1915 	reg->umax_value = U64_MAX;
1916 
1917 	reg->s32_min_value = S32_MIN;
1918 	reg->s32_max_value = S32_MAX;
1919 	reg->u32_min_value = 0;
1920 	reg->u32_max_value = U32_MAX;
1921 }
1922 
1923 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1924 {
1925 	reg->smin_value = S64_MIN;
1926 	reg->smax_value = S64_MAX;
1927 	reg->umin_value = 0;
1928 	reg->umax_value = U64_MAX;
1929 }
1930 
1931 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1932 {
1933 	reg->s32_min_value = S32_MIN;
1934 	reg->s32_max_value = S32_MAX;
1935 	reg->u32_min_value = 0;
1936 	reg->u32_max_value = U32_MAX;
1937 }
1938 
1939 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1940 {
1941 	struct tnum var32_off = tnum_subreg(reg->var_off);
1942 
1943 	/* min signed is max(sign bit) | min(other bits) */
1944 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1945 			var32_off.value | (var32_off.mask & S32_MIN));
1946 	/* max signed is min(sign bit) | max(other bits) */
1947 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1948 			var32_off.value | (var32_off.mask & S32_MAX));
1949 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1950 	reg->u32_max_value = min(reg->u32_max_value,
1951 				 (u32)(var32_off.value | var32_off.mask));
1952 }
1953 
1954 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1955 {
1956 	/* min signed is max(sign bit) | min(other bits) */
1957 	reg->smin_value = max_t(s64, reg->smin_value,
1958 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1959 	/* max signed is min(sign bit) | max(other bits) */
1960 	reg->smax_value = min_t(s64, reg->smax_value,
1961 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1962 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1963 	reg->umax_value = min(reg->umax_value,
1964 			      reg->var_off.value | reg->var_off.mask);
1965 }
1966 
1967 static void __update_reg_bounds(struct bpf_reg_state *reg)
1968 {
1969 	__update_reg32_bounds(reg);
1970 	__update_reg64_bounds(reg);
1971 }
1972 
1973 /* Uses signed min/max values to inform unsigned, and vice-versa */
1974 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1975 {
1976 	/* If upper 32 bits of u64/s64 range don't change, we can use lower 32
1977 	 * bits to improve our u32/s32 boundaries.
1978 	 *
1979 	 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
1980 	 * u64) is pretty trivial, it's obvious that in u32 we'll also have
1981 	 * [10, 20] range. But this property holds for any 64-bit range as
1982 	 * long as upper 32 bits in that entire range of values stay the same.
1983 	 *
1984 	 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
1985 	 * in decimal) has the same upper 32 bits throughout all the values in
1986 	 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
1987 	 * range.
1988 	 *
1989 	 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
1990 	 * following the rules outlined below about u64/s64 correspondence
1991 	 * (which equally applies to u32 vs s32 correspondence). In general it
1992 	 * depends on actual hexadecimal values of 32-bit range. They can form
1993 	 * only valid u32, or only valid s32 ranges in some cases.
1994 	 *
1995 	 * So we use all these insights to derive bounds for subregisters here.
1996 	 */
1997 	if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
1998 		/* u64 to u32 casting preserves validity of low 32 bits as
1999 		 * a range, if upper 32 bits are the same
2000 		 */
2001 		reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
2002 		reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
2003 
2004 		if ((s32)reg->umin_value <= (s32)reg->umax_value) {
2005 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2006 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2007 		}
2008 	}
2009 	if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
2010 		/* low 32 bits should form a proper u32 range */
2011 		if ((u32)reg->smin_value <= (u32)reg->smax_value) {
2012 			reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
2013 			reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
2014 		}
2015 		/* low 32 bits should form a proper s32 range */
2016 		if ((s32)reg->smin_value <= (s32)reg->smax_value) {
2017 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2018 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2019 		}
2020 	}
2021 	/* Special case where upper bits form a small sequence of two
2022 	 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
2023 	 * 0x00000000 is also valid), while lower bits form a proper s32 range
2024 	 * going from negative numbers to positive numbers. E.g., let's say we
2025 	 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
2026 	 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
2027 	 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
2028 	 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
2029 	 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
2030 	 * upper 32 bits. As a random example, s64 range
2031 	 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2032 	 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2033 	 */
2034 	if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2035 	    (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2036 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2037 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2038 	}
2039 	if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2040 	    (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2041 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2042 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2043 	}
2044 	/* if u32 range forms a valid s32 range (due to matching sign bit),
2045 	 * try to learn from that
2046 	 */
2047 	if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2048 		reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2049 		reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2050 	}
2051 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2052 	 * are the same, so combine.  This works even in the negative case, e.g.
2053 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2054 	 */
2055 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2056 		reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2057 		reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2058 	}
2059 }
2060 
2061 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2062 {
2063 	/* If u64 range forms a valid s64 range (due to matching sign bit),
2064 	 * try to learn from that. Let's do a bit of ASCII art to see when
2065 	 * this is happening. Let's take u64 range first:
2066 	 *
2067 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2068 	 * |-------------------------------|--------------------------------|
2069 	 *
2070 	 * Valid u64 range is formed when umin and umax are anywhere in the
2071 	 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2072 	 * straightforward. Let's see how s64 range maps onto the same range
2073 	 * of values, annotated below the line for comparison:
2074 	 *
2075 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2076 	 * |-------------------------------|--------------------------------|
2077 	 * 0                        S64_MAX S64_MIN                        -1
2078 	 *
2079 	 * So s64 values basically start in the middle and they are logically
2080 	 * contiguous to the right of it, wrapping around from -1 to 0, and
2081 	 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2082 	 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2083 	 * more visually as mapped to sign-agnostic range of hex values.
2084 	 *
2085 	 *  u64 start                                               u64 end
2086 	 *  _______________________________________________________________
2087 	 * /                                                               \
2088 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2089 	 * |-------------------------------|--------------------------------|
2090 	 * 0                        S64_MAX S64_MIN                        -1
2091 	 *                                / \
2092 	 * >------------------------------   ------------------------------->
2093 	 * s64 continues...        s64 end   s64 start          s64 "midpoint"
2094 	 *
2095 	 * What this means is that, in general, we can't always derive
2096 	 * something new about u64 from any random s64 range, and vice versa.
2097 	 *
2098 	 * But we can do that in two particular cases. One is when entire
2099 	 * u64/s64 range is *entirely* contained within left half of the above
2100 	 * diagram or when it is *entirely* contained in the right half. I.e.:
2101 	 *
2102 	 * |-------------------------------|--------------------------------|
2103 	 *     ^                   ^            ^                 ^
2104 	 *     A                   B            C                 D
2105 	 *
2106 	 * [A, B] and [C, D] are contained entirely in their respective halves
2107 	 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2108 	 * will be non-negative both as u64 and s64 (and in fact it will be
2109 	 * identical ranges no matter the signedness). [C, D] treated as s64
2110 	 * will be a range of negative values, while in u64 it will be
2111 	 * non-negative range of values larger than 0x8000000000000000.
2112 	 *
2113 	 * Now, any other range here can't be represented in both u64 and s64
2114 	 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2115 	 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2116 	 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2117 	 * for example. Similarly, valid s64 range [D, A] (going from negative
2118 	 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2119 	 * ranges as u64. Currently reg_state can't represent two segments per
2120 	 * numeric domain, so in such situations we can only derive maximal
2121 	 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2122 	 *
2123 	 * So we use these facts to derive umin/umax from smin/smax and vice
2124 	 * versa only if they stay within the same "half". This is equivalent
2125 	 * to checking sign bit: lower half will have sign bit as zero, upper
2126 	 * half have sign bit 1. Below in code we simplify this by just
2127 	 * casting umin/umax as smin/smax and checking if they form valid
2128 	 * range, and vice versa. Those are equivalent checks.
2129 	 */
2130 	if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2131 		reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2132 		reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2133 	}
2134 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2135 	 * are the same, so combine.  This works even in the negative case, e.g.
2136 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2137 	 */
2138 	if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2139 		reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2140 		reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2141 	}
2142 }
2143 
2144 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2145 {
2146 	/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2147 	 * values on both sides of 64-bit range in hope to have tighter range.
2148 	 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2149 	 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2150 	 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2151 	 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2152 	 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2153 	 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2154 	 * We just need to make sure that derived bounds we are intersecting
2155 	 * with are well-formed ranges in respective s64 or u64 domain, just
2156 	 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2157 	 */
2158 	__u64 new_umin, new_umax;
2159 	__s64 new_smin, new_smax;
2160 
2161 	/* u32 -> u64 tightening, it's always well-formed */
2162 	new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2163 	new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2164 	reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2165 	reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2166 	/* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2167 	new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2168 	new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2169 	reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2170 	reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2171 
2172 	/* if s32 can be treated as valid u32 range, we can use it as well */
2173 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2174 		/* s32 -> u64 tightening */
2175 		new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2176 		new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2177 		reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2178 		reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2179 		/* s32 -> s64 tightening */
2180 		new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2181 		new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2182 		reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2183 		reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2184 	}
2185 }
2186 
2187 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2188 {
2189 	__reg32_deduce_bounds(reg);
2190 	__reg64_deduce_bounds(reg);
2191 	__reg_deduce_mixed_bounds(reg);
2192 }
2193 
2194 /* Attempts to improve var_off based on unsigned min/max information */
2195 static void __reg_bound_offset(struct bpf_reg_state *reg)
2196 {
2197 	struct tnum var64_off = tnum_intersect(reg->var_off,
2198 					       tnum_range(reg->umin_value,
2199 							  reg->umax_value));
2200 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2201 					       tnum_range(reg->u32_min_value,
2202 							  reg->u32_max_value));
2203 
2204 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2205 }
2206 
2207 static void reg_bounds_sync(struct bpf_reg_state *reg)
2208 {
2209 	/* We might have learned new bounds from the var_off. */
2210 	__update_reg_bounds(reg);
2211 	/* We might have learned something about the sign bit. */
2212 	__reg_deduce_bounds(reg);
2213 	__reg_deduce_bounds(reg);
2214 	/* We might have learned some bits from the bounds. */
2215 	__reg_bound_offset(reg);
2216 	/* Intersecting with the old var_off might have improved our bounds
2217 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2218 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2219 	 */
2220 	__update_reg_bounds(reg);
2221 }
2222 
2223 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2224 				   struct bpf_reg_state *reg, const char *ctx)
2225 {
2226 	const char *msg;
2227 
2228 	if (reg->umin_value > reg->umax_value ||
2229 	    reg->smin_value > reg->smax_value ||
2230 	    reg->u32_min_value > reg->u32_max_value ||
2231 	    reg->s32_min_value > reg->s32_max_value) {
2232 		    msg = "range bounds violation";
2233 		    goto out;
2234 	}
2235 
2236 	if (tnum_is_const(reg->var_off)) {
2237 		u64 uval = reg->var_off.value;
2238 		s64 sval = (s64)uval;
2239 
2240 		if (reg->umin_value != uval || reg->umax_value != uval ||
2241 		    reg->smin_value != sval || reg->smax_value != sval) {
2242 			msg = "const tnum out of sync with range bounds";
2243 			goto out;
2244 		}
2245 	}
2246 
2247 	if (tnum_subreg_is_const(reg->var_off)) {
2248 		u32 uval32 = tnum_subreg(reg->var_off).value;
2249 		s32 sval32 = (s32)uval32;
2250 
2251 		if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2252 		    reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2253 			msg = "const subreg tnum out of sync with range bounds";
2254 			goto out;
2255 		}
2256 	}
2257 
2258 	return 0;
2259 out:
2260 	verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2261 		"s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n",
2262 		ctx, msg, reg->umin_value, reg->umax_value,
2263 		reg->smin_value, reg->smax_value,
2264 		reg->u32_min_value, reg->u32_max_value,
2265 		reg->s32_min_value, reg->s32_max_value,
2266 		reg->var_off.value, reg->var_off.mask);
2267 	if (env->test_reg_invariants)
2268 		return -EFAULT;
2269 	__mark_reg_unbounded(reg);
2270 	return 0;
2271 }
2272 
2273 static bool __reg32_bound_s64(s32 a)
2274 {
2275 	return a >= 0 && a <= S32_MAX;
2276 }
2277 
2278 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2279 {
2280 	reg->umin_value = reg->u32_min_value;
2281 	reg->umax_value = reg->u32_max_value;
2282 
2283 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2284 	 * be positive otherwise set to worse case bounds and refine later
2285 	 * from tnum.
2286 	 */
2287 	if (__reg32_bound_s64(reg->s32_min_value) &&
2288 	    __reg32_bound_s64(reg->s32_max_value)) {
2289 		reg->smin_value = reg->s32_min_value;
2290 		reg->smax_value = reg->s32_max_value;
2291 	} else {
2292 		reg->smin_value = 0;
2293 		reg->smax_value = U32_MAX;
2294 	}
2295 }
2296 
2297 /* Mark a register as having a completely unknown (scalar) value. */
2298 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg)
2299 {
2300 	/*
2301 	 * Clear type, off, and union(map_ptr, range) and
2302 	 * padding between 'type' and union
2303 	 */
2304 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2305 	reg->type = SCALAR_VALUE;
2306 	reg->id = 0;
2307 	reg->ref_obj_id = 0;
2308 	reg->var_off = tnum_unknown;
2309 	reg->frameno = 0;
2310 	reg->precise = false;
2311 	__mark_reg_unbounded(reg);
2312 }
2313 
2314 /* Mark a register as having a completely unknown (scalar) value,
2315  * initialize .precise as true when not bpf capable.
2316  */
2317 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2318 			       struct bpf_reg_state *reg)
2319 {
2320 	__mark_reg_unknown_imprecise(reg);
2321 	reg->precise = !env->bpf_capable;
2322 }
2323 
2324 static void mark_reg_unknown(struct bpf_verifier_env *env,
2325 			     struct bpf_reg_state *regs, u32 regno)
2326 {
2327 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2328 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2329 		/* Something bad happened, let's kill all regs except FP */
2330 		for (regno = 0; regno < BPF_REG_FP; regno++)
2331 			__mark_reg_not_init(env, regs + regno);
2332 		return;
2333 	}
2334 	__mark_reg_unknown(env, regs + regno);
2335 }
2336 
2337 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2338 				struct bpf_reg_state *reg)
2339 {
2340 	__mark_reg_unknown(env, reg);
2341 	reg->type = NOT_INIT;
2342 }
2343 
2344 static void mark_reg_not_init(struct bpf_verifier_env *env,
2345 			      struct bpf_reg_state *regs, u32 regno)
2346 {
2347 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2348 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2349 		/* Something bad happened, let's kill all regs except FP */
2350 		for (regno = 0; regno < BPF_REG_FP; regno++)
2351 			__mark_reg_not_init(env, regs + regno);
2352 		return;
2353 	}
2354 	__mark_reg_not_init(env, regs + regno);
2355 }
2356 
2357 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2358 			    struct bpf_reg_state *regs, u32 regno,
2359 			    enum bpf_reg_type reg_type,
2360 			    struct btf *btf, u32 btf_id,
2361 			    enum bpf_type_flag flag)
2362 {
2363 	if (reg_type == SCALAR_VALUE) {
2364 		mark_reg_unknown(env, regs, regno);
2365 		return;
2366 	}
2367 	mark_reg_known_zero(env, regs, regno);
2368 	regs[regno].type = PTR_TO_BTF_ID | flag;
2369 	regs[regno].btf = btf;
2370 	regs[regno].btf_id = btf_id;
2371 	if (type_may_be_null(flag))
2372 		regs[regno].id = ++env->id_gen;
2373 }
2374 
2375 #define DEF_NOT_SUBREG	(0)
2376 static void init_reg_state(struct bpf_verifier_env *env,
2377 			   struct bpf_func_state *state)
2378 {
2379 	struct bpf_reg_state *regs = state->regs;
2380 	int i;
2381 
2382 	for (i = 0; i < MAX_BPF_REG; i++) {
2383 		mark_reg_not_init(env, regs, i);
2384 		regs[i].live = REG_LIVE_NONE;
2385 		regs[i].parent = NULL;
2386 		regs[i].subreg_def = DEF_NOT_SUBREG;
2387 	}
2388 
2389 	/* frame pointer */
2390 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2391 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2392 	regs[BPF_REG_FP].frameno = state->frameno;
2393 }
2394 
2395 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2396 {
2397 	return (struct bpf_retval_range){ minval, maxval };
2398 }
2399 
2400 #define BPF_MAIN_FUNC (-1)
2401 static void init_func_state(struct bpf_verifier_env *env,
2402 			    struct bpf_func_state *state,
2403 			    int callsite, int frameno, int subprogno)
2404 {
2405 	state->callsite = callsite;
2406 	state->frameno = frameno;
2407 	state->subprogno = subprogno;
2408 	state->callback_ret_range = retval_range(0, 0);
2409 	init_reg_state(env, state);
2410 	mark_verifier_state_scratched(env);
2411 }
2412 
2413 /* Similar to push_stack(), but for async callbacks */
2414 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2415 						int insn_idx, int prev_insn_idx,
2416 						int subprog, bool is_sleepable)
2417 {
2418 	struct bpf_verifier_stack_elem *elem;
2419 	struct bpf_func_state *frame;
2420 
2421 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2422 	if (!elem)
2423 		goto err;
2424 
2425 	elem->insn_idx = insn_idx;
2426 	elem->prev_insn_idx = prev_insn_idx;
2427 	elem->next = env->head;
2428 	elem->log_pos = env->log.end_pos;
2429 	env->head = elem;
2430 	env->stack_size++;
2431 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2432 		verbose(env,
2433 			"The sequence of %d jumps is too complex for async cb.\n",
2434 			env->stack_size);
2435 		goto err;
2436 	}
2437 	/* Unlike push_stack() do not copy_verifier_state().
2438 	 * The caller state doesn't matter.
2439 	 * This is async callback. It starts in a fresh stack.
2440 	 * Initialize it similar to do_check_common().
2441 	 */
2442 	elem->st.branches = 1;
2443 	elem->st.in_sleepable = is_sleepable;
2444 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2445 	if (!frame)
2446 		goto err;
2447 	init_func_state(env, frame,
2448 			BPF_MAIN_FUNC /* callsite */,
2449 			0 /* frameno within this callchain */,
2450 			subprog /* subprog number within this prog */);
2451 	elem->st.frame[0] = frame;
2452 	return &elem->st;
2453 err:
2454 	free_verifier_state(env->cur_state, true);
2455 	env->cur_state = NULL;
2456 	/* pop all elements and return */
2457 	while (!pop_stack(env, NULL, NULL, false));
2458 	return NULL;
2459 }
2460 
2461 
2462 enum reg_arg_type {
2463 	SRC_OP,		/* register is used as source operand */
2464 	DST_OP,		/* register is used as destination operand */
2465 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2466 };
2467 
2468 static int cmp_subprogs(const void *a, const void *b)
2469 {
2470 	return ((struct bpf_subprog_info *)a)->start -
2471 	       ((struct bpf_subprog_info *)b)->start;
2472 }
2473 
2474 static int find_subprog(struct bpf_verifier_env *env, int off)
2475 {
2476 	struct bpf_subprog_info *p;
2477 
2478 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2479 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2480 	if (!p)
2481 		return -ENOENT;
2482 	return p - env->subprog_info;
2483 
2484 }
2485 
2486 static int add_subprog(struct bpf_verifier_env *env, int off)
2487 {
2488 	int insn_cnt = env->prog->len;
2489 	int ret;
2490 
2491 	if (off >= insn_cnt || off < 0) {
2492 		verbose(env, "call to invalid destination\n");
2493 		return -EINVAL;
2494 	}
2495 	ret = find_subprog(env, off);
2496 	if (ret >= 0)
2497 		return ret;
2498 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2499 		verbose(env, "too many subprograms\n");
2500 		return -E2BIG;
2501 	}
2502 	/* determine subprog starts. The end is one before the next starts */
2503 	env->subprog_info[env->subprog_cnt++].start = off;
2504 	sort(env->subprog_info, env->subprog_cnt,
2505 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2506 	return env->subprog_cnt - 1;
2507 }
2508 
2509 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2510 {
2511 	struct bpf_prog_aux *aux = env->prog->aux;
2512 	struct btf *btf = aux->btf;
2513 	const struct btf_type *t;
2514 	u32 main_btf_id, id;
2515 	const char *name;
2516 	int ret, i;
2517 
2518 	/* Non-zero func_info_cnt implies valid btf */
2519 	if (!aux->func_info_cnt)
2520 		return 0;
2521 	main_btf_id = aux->func_info[0].type_id;
2522 
2523 	t = btf_type_by_id(btf, main_btf_id);
2524 	if (!t) {
2525 		verbose(env, "invalid btf id for main subprog in func_info\n");
2526 		return -EINVAL;
2527 	}
2528 
2529 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2530 	if (IS_ERR(name)) {
2531 		ret = PTR_ERR(name);
2532 		/* If there is no tag present, there is no exception callback */
2533 		if (ret == -ENOENT)
2534 			ret = 0;
2535 		else if (ret == -EEXIST)
2536 			verbose(env, "multiple exception callback tags for main subprog\n");
2537 		return ret;
2538 	}
2539 
2540 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2541 	if (ret < 0) {
2542 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2543 		return ret;
2544 	}
2545 	id = ret;
2546 	t = btf_type_by_id(btf, id);
2547 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2548 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2549 		return -EINVAL;
2550 	}
2551 	ret = 0;
2552 	for (i = 0; i < aux->func_info_cnt; i++) {
2553 		if (aux->func_info[i].type_id != id)
2554 			continue;
2555 		ret = aux->func_info[i].insn_off;
2556 		/* Further func_info and subprog checks will also happen
2557 		 * later, so assume this is the right insn_off for now.
2558 		 */
2559 		if (!ret) {
2560 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2561 			ret = -EINVAL;
2562 		}
2563 	}
2564 	if (!ret) {
2565 		verbose(env, "exception callback type id not found in func_info\n");
2566 		ret = -EINVAL;
2567 	}
2568 	return ret;
2569 }
2570 
2571 #define MAX_KFUNC_DESCS 256
2572 #define MAX_KFUNC_BTFS	256
2573 
2574 struct bpf_kfunc_desc {
2575 	struct btf_func_model func_model;
2576 	u32 func_id;
2577 	s32 imm;
2578 	u16 offset;
2579 	unsigned long addr;
2580 };
2581 
2582 struct bpf_kfunc_btf {
2583 	struct btf *btf;
2584 	struct module *module;
2585 	u16 offset;
2586 };
2587 
2588 struct bpf_kfunc_desc_tab {
2589 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2590 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2591 	 * available, therefore at the end of verification do_misc_fixups()
2592 	 * sorts this by imm and offset.
2593 	 */
2594 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2595 	u32 nr_descs;
2596 };
2597 
2598 struct bpf_kfunc_btf_tab {
2599 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2600 	u32 nr_descs;
2601 };
2602 
2603 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2604 {
2605 	const struct bpf_kfunc_desc *d0 = a;
2606 	const struct bpf_kfunc_desc *d1 = b;
2607 
2608 	/* func_id is not greater than BTF_MAX_TYPE */
2609 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2610 }
2611 
2612 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2613 {
2614 	const struct bpf_kfunc_btf *d0 = a;
2615 	const struct bpf_kfunc_btf *d1 = b;
2616 
2617 	return d0->offset - d1->offset;
2618 }
2619 
2620 static const struct bpf_kfunc_desc *
2621 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2622 {
2623 	struct bpf_kfunc_desc desc = {
2624 		.func_id = func_id,
2625 		.offset = offset,
2626 	};
2627 	struct bpf_kfunc_desc_tab *tab;
2628 
2629 	tab = prog->aux->kfunc_tab;
2630 	return bsearch(&desc, tab->descs, tab->nr_descs,
2631 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2632 }
2633 
2634 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2635 		       u16 btf_fd_idx, u8 **func_addr)
2636 {
2637 	const struct bpf_kfunc_desc *desc;
2638 
2639 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2640 	if (!desc)
2641 		return -EFAULT;
2642 
2643 	*func_addr = (u8 *)desc->addr;
2644 	return 0;
2645 }
2646 
2647 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2648 					 s16 offset)
2649 {
2650 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2651 	struct bpf_kfunc_btf_tab *tab;
2652 	struct bpf_kfunc_btf *b;
2653 	struct module *mod;
2654 	struct btf *btf;
2655 	int btf_fd;
2656 
2657 	tab = env->prog->aux->kfunc_btf_tab;
2658 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2659 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2660 	if (!b) {
2661 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2662 			verbose(env, "too many different module BTFs\n");
2663 			return ERR_PTR(-E2BIG);
2664 		}
2665 
2666 		if (bpfptr_is_null(env->fd_array)) {
2667 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2668 			return ERR_PTR(-EPROTO);
2669 		}
2670 
2671 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2672 					    offset * sizeof(btf_fd),
2673 					    sizeof(btf_fd)))
2674 			return ERR_PTR(-EFAULT);
2675 
2676 		btf = btf_get_by_fd(btf_fd);
2677 		if (IS_ERR(btf)) {
2678 			verbose(env, "invalid module BTF fd specified\n");
2679 			return btf;
2680 		}
2681 
2682 		if (!btf_is_module(btf)) {
2683 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2684 			btf_put(btf);
2685 			return ERR_PTR(-EINVAL);
2686 		}
2687 
2688 		mod = btf_try_get_module(btf);
2689 		if (!mod) {
2690 			btf_put(btf);
2691 			return ERR_PTR(-ENXIO);
2692 		}
2693 
2694 		b = &tab->descs[tab->nr_descs++];
2695 		b->btf = btf;
2696 		b->module = mod;
2697 		b->offset = offset;
2698 
2699 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2700 		     kfunc_btf_cmp_by_off, NULL);
2701 	}
2702 	return b->btf;
2703 }
2704 
2705 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2706 {
2707 	if (!tab)
2708 		return;
2709 
2710 	while (tab->nr_descs--) {
2711 		module_put(tab->descs[tab->nr_descs].module);
2712 		btf_put(tab->descs[tab->nr_descs].btf);
2713 	}
2714 	kfree(tab);
2715 }
2716 
2717 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2718 {
2719 	if (offset) {
2720 		if (offset < 0) {
2721 			/* In the future, this can be allowed to increase limit
2722 			 * of fd index into fd_array, interpreted as u16.
2723 			 */
2724 			verbose(env, "negative offset disallowed for kernel module function call\n");
2725 			return ERR_PTR(-EINVAL);
2726 		}
2727 
2728 		return __find_kfunc_desc_btf(env, offset);
2729 	}
2730 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2731 }
2732 
2733 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2734 {
2735 	const struct btf_type *func, *func_proto;
2736 	struct bpf_kfunc_btf_tab *btf_tab;
2737 	struct bpf_kfunc_desc_tab *tab;
2738 	struct bpf_prog_aux *prog_aux;
2739 	struct bpf_kfunc_desc *desc;
2740 	const char *func_name;
2741 	struct btf *desc_btf;
2742 	unsigned long call_imm;
2743 	unsigned long addr;
2744 	int err;
2745 
2746 	prog_aux = env->prog->aux;
2747 	tab = prog_aux->kfunc_tab;
2748 	btf_tab = prog_aux->kfunc_btf_tab;
2749 	if (!tab) {
2750 		if (!btf_vmlinux) {
2751 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2752 			return -ENOTSUPP;
2753 		}
2754 
2755 		if (!env->prog->jit_requested) {
2756 			verbose(env, "JIT is required for calling kernel function\n");
2757 			return -ENOTSUPP;
2758 		}
2759 
2760 		if (!bpf_jit_supports_kfunc_call()) {
2761 			verbose(env, "JIT does not support calling kernel function\n");
2762 			return -ENOTSUPP;
2763 		}
2764 
2765 		if (!env->prog->gpl_compatible) {
2766 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2767 			return -EINVAL;
2768 		}
2769 
2770 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2771 		if (!tab)
2772 			return -ENOMEM;
2773 		prog_aux->kfunc_tab = tab;
2774 	}
2775 
2776 	/* func_id == 0 is always invalid, but instead of returning an error, be
2777 	 * conservative and wait until the code elimination pass before returning
2778 	 * error, so that invalid calls that get pruned out can be in BPF programs
2779 	 * loaded from userspace.  It is also required that offset be untouched
2780 	 * for such calls.
2781 	 */
2782 	if (!func_id && !offset)
2783 		return 0;
2784 
2785 	if (!btf_tab && offset) {
2786 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2787 		if (!btf_tab)
2788 			return -ENOMEM;
2789 		prog_aux->kfunc_btf_tab = btf_tab;
2790 	}
2791 
2792 	desc_btf = find_kfunc_desc_btf(env, offset);
2793 	if (IS_ERR(desc_btf)) {
2794 		verbose(env, "failed to find BTF for kernel function\n");
2795 		return PTR_ERR(desc_btf);
2796 	}
2797 
2798 	if (find_kfunc_desc(env->prog, func_id, offset))
2799 		return 0;
2800 
2801 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2802 		verbose(env, "too many different kernel function calls\n");
2803 		return -E2BIG;
2804 	}
2805 
2806 	func = btf_type_by_id(desc_btf, func_id);
2807 	if (!func || !btf_type_is_func(func)) {
2808 		verbose(env, "kernel btf_id %u is not a function\n",
2809 			func_id);
2810 		return -EINVAL;
2811 	}
2812 	func_proto = btf_type_by_id(desc_btf, func->type);
2813 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2814 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2815 			func_id);
2816 		return -EINVAL;
2817 	}
2818 
2819 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2820 	addr = kallsyms_lookup_name(func_name);
2821 	if (!addr) {
2822 		verbose(env, "cannot find address for kernel function %s\n",
2823 			func_name);
2824 		return -EINVAL;
2825 	}
2826 	specialize_kfunc(env, func_id, offset, &addr);
2827 
2828 	if (bpf_jit_supports_far_kfunc_call()) {
2829 		call_imm = func_id;
2830 	} else {
2831 		call_imm = BPF_CALL_IMM(addr);
2832 		/* Check whether the relative offset overflows desc->imm */
2833 		if ((unsigned long)(s32)call_imm != call_imm) {
2834 			verbose(env, "address of kernel function %s is out of range\n",
2835 				func_name);
2836 			return -EINVAL;
2837 		}
2838 	}
2839 
2840 	if (bpf_dev_bound_kfunc_id(func_id)) {
2841 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2842 		if (err)
2843 			return err;
2844 	}
2845 
2846 	desc = &tab->descs[tab->nr_descs++];
2847 	desc->func_id = func_id;
2848 	desc->imm = call_imm;
2849 	desc->offset = offset;
2850 	desc->addr = addr;
2851 	err = btf_distill_func_proto(&env->log, desc_btf,
2852 				     func_proto, func_name,
2853 				     &desc->func_model);
2854 	if (!err)
2855 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2856 		     kfunc_desc_cmp_by_id_off, NULL);
2857 	return err;
2858 }
2859 
2860 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2861 {
2862 	const struct bpf_kfunc_desc *d0 = a;
2863 	const struct bpf_kfunc_desc *d1 = b;
2864 
2865 	if (d0->imm != d1->imm)
2866 		return d0->imm < d1->imm ? -1 : 1;
2867 	if (d0->offset != d1->offset)
2868 		return d0->offset < d1->offset ? -1 : 1;
2869 	return 0;
2870 }
2871 
2872 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2873 {
2874 	struct bpf_kfunc_desc_tab *tab;
2875 
2876 	tab = prog->aux->kfunc_tab;
2877 	if (!tab)
2878 		return;
2879 
2880 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2881 	     kfunc_desc_cmp_by_imm_off, NULL);
2882 }
2883 
2884 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2885 {
2886 	return !!prog->aux->kfunc_tab;
2887 }
2888 
2889 const struct btf_func_model *
2890 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2891 			 const struct bpf_insn *insn)
2892 {
2893 	const struct bpf_kfunc_desc desc = {
2894 		.imm = insn->imm,
2895 		.offset = insn->off,
2896 	};
2897 	const struct bpf_kfunc_desc *res;
2898 	struct bpf_kfunc_desc_tab *tab;
2899 
2900 	tab = prog->aux->kfunc_tab;
2901 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2902 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2903 
2904 	return res ? &res->func_model : NULL;
2905 }
2906 
2907 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2908 {
2909 	struct bpf_subprog_info *subprog = env->subprog_info;
2910 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
2911 	struct bpf_insn *insn = env->prog->insnsi;
2912 
2913 	/* Add entry function. */
2914 	ret = add_subprog(env, 0);
2915 	if (ret)
2916 		return ret;
2917 
2918 	for (i = 0; i < insn_cnt; i++, insn++) {
2919 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2920 		    !bpf_pseudo_kfunc_call(insn))
2921 			continue;
2922 
2923 		if (!env->bpf_capable) {
2924 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2925 			return -EPERM;
2926 		}
2927 
2928 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2929 			ret = add_subprog(env, i + insn->imm + 1);
2930 		else
2931 			ret = add_kfunc_call(env, insn->imm, insn->off);
2932 
2933 		if (ret < 0)
2934 			return ret;
2935 	}
2936 
2937 	ret = bpf_find_exception_callback_insn_off(env);
2938 	if (ret < 0)
2939 		return ret;
2940 	ex_cb_insn = ret;
2941 
2942 	/* If ex_cb_insn > 0, this means that the main program has a subprog
2943 	 * marked using BTF decl tag to serve as the exception callback.
2944 	 */
2945 	if (ex_cb_insn) {
2946 		ret = add_subprog(env, ex_cb_insn);
2947 		if (ret < 0)
2948 			return ret;
2949 		for (i = 1; i < env->subprog_cnt; i++) {
2950 			if (env->subprog_info[i].start != ex_cb_insn)
2951 				continue;
2952 			env->exception_callback_subprog = i;
2953 			mark_subprog_exc_cb(env, i);
2954 			break;
2955 		}
2956 	}
2957 
2958 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2959 	 * logic. 'subprog_cnt' should not be increased.
2960 	 */
2961 	subprog[env->subprog_cnt].start = insn_cnt;
2962 
2963 	if (env->log.level & BPF_LOG_LEVEL2)
2964 		for (i = 0; i < env->subprog_cnt; i++)
2965 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2966 
2967 	return 0;
2968 }
2969 
2970 static int check_subprogs(struct bpf_verifier_env *env)
2971 {
2972 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2973 	struct bpf_subprog_info *subprog = env->subprog_info;
2974 	struct bpf_insn *insn = env->prog->insnsi;
2975 	int insn_cnt = env->prog->len;
2976 
2977 	/* now check that all jumps are within the same subprog */
2978 	subprog_start = subprog[cur_subprog].start;
2979 	subprog_end = subprog[cur_subprog + 1].start;
2980 	for (i = 0; i < insn_cnt; i++) {
2981 		u8 code = insn[i].code;
2982 
2983 		if (code == (BPF_JMP | BPF_CALL) &&
2984 		    insn[i].src_reg == 0 &&
2985 		    insn[i].imm == BPF_FUNC_tail_call)
2986 			subprog[cur_subprog].has_tail_call = true;
2987 		if (BPF_CLASS(code) == BPF_LD &&
2988 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2989 			subprog[cur_subprog].has_ld_abs = true;
2990 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2991 			goto next;
2992 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2993 			goto next;
2994 		if (code == (BPF_JMP32 | BPF_JA))
2995 			off = i + insn[i].imm + 1;
2996 		else
2997 			off = i + insn[i].off + 1;
2998 		if (off < subprog_start || off >= subprog_end) {
2999 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
3000 			return -EINVAL;
3001 		}
3002 next:
3003 		if (i == subprog_end - 1) {
3004 			/* to avoid fall-through from one subprog into another
3005 			 * the last insn of the subprog should be either exit
3006 			 * or unconditional jump back or bpf_throw call
3007 			 */
3008 			if (code != (BPF_JMP | BPF_EXIT) &&
3009 			    code != (BPF_JMP32 | BPF_JA) &&
3010 			    code != (BPF_JMP | BPF_JA)) {
3011 				verbose(env, "last insn is not an exit or jmp\n");
3012 				return -EINVAL;
3013 			}
3014 			subprog_start = subprog_end;
3015 			cur_subprog++;
3016 			if (cur_subprog < env->subprog_cnt)
3017 				subprog_end = subprog[cur_subprog + 1].start;
3018 		}
3019 	}
3020 	return 0;
3021 }
3022 
3023 /* Parentage chain of this register (or stack slot) should take care of all
3024  * issues like callee-saved registers, stack slot allocation time, etc.
3025  */
3026 static int mark_reg_read(struct bpf_verifier_env *env,
3027 			 const struct bpf_reg_state *state,
3028 			 struct bpf_reg_state *parent, u8 flag)
3029 {
3030 	bool writes = parent == state->parent; /* Observe write marks */
3031 	int cnt = 0;
3032 
3033 	while (parent) {
3034 		/* if read wasn't screened by an earlier write ... */
3035 		if (writes && state->live & REG_LIVE_WRITTEN)
3036 			break;
3037 		if (parent->live & REG_LIVE_DONE) {
3038 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3039 				reg_type_str(env, parent->type),
3040 				parent->var_off.value, parent->off);
3041 			return -EFAULT;
3042 		}
3043 		/* The first condition is more likely to be true than the
3044 		 * second, checked it first.
3045 		 */
3046 		if ((parent->live & REG_LIVE_READ) == flag ||
3047 		    parent->live & REG_LIVE_READ64)
3048 			/* The parentage chain never changes and
3049 			 * this parent was already marked as LIVE_READ.
3050 			 * There is no need to keep walking the chain again and
3051 			 * keep re-marking all parents as LIVE_READ.
3052 			 * This case happens when the same register is read
3053 			 * multiple times without writes into it in-between.
3054 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3055 			 * then no need to set the weak REG_LIVE_READ32.
3056 			 */
3057 			break;
3058 		/* ... then we depend on parent's value */
3059 		parent->live |= flag;
3060 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3061 		if (flag == REG_LIVE_READ64)
3062 			parent->live &= ~REG_LIVE_READ32;
3063 		state = parent;
3064 		parent = state->parent;
3065 		writes = true;
3066 		cnt++;
3067 	}
3068 
3069 	if (env->longest_mark_read_walk < cnt)
3070 		env->longest_mark_read_walk = cnt;
3071 	return 0;
3072 }
3073 
3074 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3075 {
3076 	struct bpf_func_state *state = func(env, reg);
3077 	int spi, ret;
3078 
3079 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3080 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3081 	 * check_kfunc_call.
3082 	 */
3083 	if (reg->type == CONST_PTR_TO_DYNPTR)
3084 		return 0;
3085 	spi = dynptr_get_spi(env, reg);
3086 	if (spi < 0)
3087 		return spi;
3088 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3089 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3090 	 * read.
3091 	 */
3092 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3093 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3094 	if (ret)
3095 		return ret;
3096 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3097 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3098 }
3099 
3100 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3101 			  int spi, int nr_slots)
3102 {
3103 	struct bpf_func_state *state = func(env, reg);
3104 	int err, i;
3105 
3106 	for (i = 0; i < nr_slots; i++) {
3107 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3108 
3109 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3110 		if (err)
3111 			return err;
3112 
3113 		mark_stack_slot_scratched(env, spi - i);
3114 	}
3115 
3116 	return 0;
3117 }
3118 
3119 /* This function is supposed to be used by the following 32-bit optimization
3120  * code only. It returns TRUE if the source or destination register operates
3121  * on 64-bit, otherwise return FALSE.
3122  */
3123 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3124 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3125 {
3126 	u8 code, class, op;
3127 
3128 	code = insn->code;
3129 	class = BPF_CLASS(code);
3130 	op = BPF_OP(code);
3131 	if (class == BPF_JMP) {
3132 		/* BPF_EXIT for "main" will reach here. Return TRUE
3133 		 * conservatively.
3134 		 */
3135 		if (op == BPF_EXIT)
3136 			return true;
3137 		if (op == BPF_CALL) {
3138 			/* BPF to BPF call will reach here because of marking
3139 			 * caller saved clobber with DST_OP_NO_MARK for which we
3140 			 * don't care the register def because they are anyway
3141 			 * marked as NOT_INIT already.
3142 			 */
3143 			if (insn->src_reg == BPF_PSEUDO_CALL)
3144 				return false;
3145 			/* Helper call will reach here because of arg type
3146 			 * check, conservatively return TRUE.
3147 			 */
3148 			if (t == SRC_OP)
3149 				return true;
3150 
3151 			return false;
3152 		}
3153 	}
3154 
3155 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3156 		return false;
3157 
3158 	if (class == BPF_ALU64 || class == BPF_JMP ||
3159 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3160 		return true;
3161 
3162 	if (class == BPF_ALU || class == BPF_JMP32)
3163 		return false;
3164 
3165 	if (class == BPF_LDX) {
3166 		if (t != SRC_OP)
3167 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3168 		/* LDX source must be ptr. */
3169 		return true;
3170 	}
3171 
3172 	if (class == BPF_STX) {
3173 		/* BPF_STX (including atomic variants) has multiple source
3174 		 * operands, one of which is a ptr. Check whether the caller is
3175 		 * asking about it.
3176 		 */
3177 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3178 			return true;
3179 		return BPF_SIZE(code) == BPF_DW;
3180 	}
3181 
3182 	if (class == BPF_LD) {
3183 		u8 mode = BPF_MODE(code);
3184 
3185 		/* LD_IMM64 */
3186 		if (mode == BPF_IMM)
3187 			return true;
3188 
3189 		/* Both LD_IND and LD_ABS return 32-bit data. */
3190 		if (t != SRC_OP)
3191 			return  false;
3192 
3193 		/* Implicit ctx ptr. */
3194 		if (regno == BPF_REG_6)
3195 			return true;
3196 
3197 		/* Explicit source could be any width. */
3198 		return true;
3199 	}
3200 
3201 	if (class == BPF_ST)
3202 		/* The only source register for BPF_ST is a ptr. */
3203 		return true;
3204 
3205 	/* Conservatively return true at default. */
3206 	return true;
3207 }
3208 
3209 /* Return the regno defined by the insn, or -1. */
3210 static int insn_def_regno(const struct bpf_insn *insn)
3211 {
3212 	switch (BPF_CLASS(insn->code)) {
3213 	case BPF_JMP:
3214 	case BPF_JMP32:
3215 	case BPF_ST:
3216 		return -1;
3217 	case BPF_STX:
3218 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3219 		    (insn->imm & BPF_FETCH)) {
3220 			if (insn->imm == BPF_CMPXCHG)
3221 				return BPF_REG_0;
3222 			else
3223 				return insn->src_reg;
3224 		} else {
3225 			return -1;
3226 		}
3227 	default:
3228 		return insn->dst_reg;
3229 	}
3230 }
3231 
3232 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3233 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3234 {
3235 	int dst_reg = insn_def_regno(insn);
3236 
3237 	if (dst_reg == -1)
3238 		return false;
3239 
3240 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3241 }
3242 
3243 static void mark_insn_zext(struct bpf_verifier_env *env,
3244 			   struct bpf_reg_state *reg)
3245 {
3246 	s32 def_idx = reg->subreg_def;
3247 
3248 	if (def_idx == DEF_NOT_SUBREG)
3249 		return;
3250 
3251 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3252 	/* The dst will be zero extended, so won't be sub-register anymore. */
3253 	reg->subreg_def = DEF_NOT_SUBREG;
3254 }
3255 
3256 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3257 			   enum reg_arg_type t)
3258 {
3259 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3260 	struct bpf_reg_state *reg;
3261 	bool rw64;
3262 
3263 	if (regno >= MAX_BPF_REG) {
3264 		verbose(env, "R%d is invalid\n", regno);
3265 		return -EINVAL;
3266 	}
3267 
3268 	mark_reg_scratched(env, regno);
3269 
3270 	reg = &regs[regno];
3271 	rw64 = is_reg64(env, insn, regno, reg, t);
3272 	if (t == SRC_OP) {
3273 		/* check whether register used as source operand can be read */
3274 		if (reg->type == NOT_INIT) {
3275 			verbose(env, "R%d !read_ok\n", regno);
3276 			return -EACCES;
3277 		}
3278 		/* We don't need to worry about FP liveness because it's read-only */
3279 		if (regno == BPF_REG_FP)
3280 			return 0;
3281 
3282 		if (rw64)
3283 			mark_insn_zext(env, reg);
3284 
3285 		return mark_reg_read(env, reg, reg->parent,
3286 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3287 	} else {
3288 		/* check whether register used as dest operand can be written to */
3289 		if (regno == BPF_REG_FP) {
3290 			verbose(env, "frame pointer is read only\n");
3291 			return -EACCES;
3292 		}
3293 		reg->live |= REG_LIVE_WRITTEN;
3294 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3295 		if (t == DST_OP)
3296 			mark_reg_unknown(env, regs, regno);
3297 	}
3298 	return 0;
3299 }
3300 
3301 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3302 			 enum reg_arg_type t)
3303 {
3304 	struct bpf_verifier_state *vstate = env->cur_state;
3305 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3306 
3307 	return __check_reg_arg(env, state->regs, regno, t);
3308 }
3309 
3310 static int insn_stack_access_flags(int frameno, int spi)
3311 {
3312 	return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3313 }
3314 
3315 static int insn_stack_access_spi(int insn_flags)
3316 {
3317 	return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3318 }
3319 
3320 static int insn_stack_access_frameno(int insn_flags)
3321 {
3322 	return insn_flags & INSN_F_FRAMENO_MASK;
3323 }
3324 
3325 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3326 {
3327 	env->insn_aux_data[idx].jmp_point = true;
3328 }
3329 
3330 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3331 {
3332 	return env->insn_aux_data[insn_idx].jmp_point;
3333 }
3334 
3335 /* for any branch, call, exit record the history of jmps in the given state */
3336 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3337 			    int insn_flags)
3338 {
3339 	u32 cnt = cur->jmp_history_cnt;
3340 	struct bpf_jmp_history_entry *p;
3341 	size_t alloc_size;
3342 
3343 	/* combine instruction flags if we already recorded this instruction */
3344 	if (env->cur_hist_ent) {
3345 		/* atomic instructions push insn_flags twice, for READ and
3346 		 * WRITE sides, but they should agree on stack slot
3347 		 */
3348 		WARN_ONCE((env->cur_hist_ent->flags & insn_flags) &&
3349 			  (env->cur_hist_ent->flags & insn_flags) != insn_flags,
3350 			  "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n",
3351 			  env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3352 		env->cur_hist_ent->flags |= insn_flags;
3353 		return 0;
3354 	}
3355 
3356 	cnt++;
3357 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3358 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3359 	if (!p)
3360 		return -ENOMEM;
3361 	cur->jmp_history = p;
3362 
3363 	p = &cur->jmp_history[cnt - 1];
3364 	p->idx = env->insn_idx;
3365 	p->prev_idx = env->prev_insn_idx;
3366 	p->flags = insn_flags;
3367 	cur->jmp_history_cnt = cnt;
3368 	env->cur_hist_ent = p;
3369 
3370 	return 0;
3371 }
3372 
3373 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
3374 						        u32 hist_end, int insn_idx)
3375 {
3376 	if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
3377 		return &st->jmp_history[hist_end - 1];
3378 	return NULL;
3379 }
3380 
3381 /* Backtrack one insn at a time. If idx is not at the top of recorded
3382  * history then previous instruction came from straight line execution.
3383  * Return -ENOENT if we exhausted all instructions within given state.
3384  *
3385  * It's legal to have a bit of a looping with the same starting and ending
3386  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3387  * instruction index is the same as state's first_idx doesn't mean we are
3388  * done. If there is still some jump history left, we should keep going. We
3389  * need to take into account that we might have a jump history between given
3390  * state's parent and itself, due to checkpointing. In this case, we'll have
3391  * history entry recording a jump from last instruction of parent state and
3392  * first instruction of given state.
3393  */
3394 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3395 			     u32 *history)
3396 {
3397 	u32 cnt = *history;
3398 
3399 	if (i == st->first_insn_idx) {
3400 		if (cnt == 0)
3401 			return -ENOENT;
3402 		if (cnt == 1 && st->jmp_history[0].idx == i)
3403 			return -ENOENT;
3404 	}
3405 
3406 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3407 		i = st->jmp_history[cnt - 1].prev_idx;
3408 		(*history)--;
3409 	} else {
3410 		i--;
3411 	}
3412 	return i;
3413 }
3414 
3415 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3416 {
3417 	const struct btf_type *func;
3418 	struct btf *desc_btf;
3419 
3420 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3421 		return NULL;
3422 
3423 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3424 	if (IS_ERR(desc_btf))
3425 		return "<error>";
3426 
3427 	func = btf_type_by_id(desc_btf, insn->imm);
3428 	return btf_name_by_offset(desc_btf, func->name_off);
3429 }
3430 
3431 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3432 {
3433 	bt->frame = frame;
3434 }
3435 
3436 static inline void bt_reset(struct backtrack_state *bt)
3437 {
3438 	struct bpf_verifier_env *env = bt->env;
3439 
3440 	memset(bt, 0, sizeof(*bt));
3441 	bt->env = env;
3442 }
3443 
3444 static inline u32 bt_empty(struct backtrack_state *bt)
3445 {
3446 	u64 mask = 0;
3447 	int i;
3448 
3449 	for (i = 0; i <= bt->frame; i++)
3450 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3451 
3452 	return mask == 0;
3453 }
3454 
3455 static inline int bt_subprog_enter(struct backtrack_state *bt)
3456 {
3457 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3458 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3459 		WARN_ONCE(1, "verifier backtracking bug");
3460 		return -EFAULT;
3461 	}
3462 	bt->frame++;
3463 	return 0;
3464 }
3465 
3466 static inline int bt_subprog_exit(struct backtrack_state *bt)
3467 {
3468 	if (bt->frame == 0) {
3469 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3470 		WARN_ONCE(1, "verifier backtracking bug");
3471 		return -EFAULT;
3472 	}
3473 	bt->frame--;
3474 	return 0;
3475 }
3476 
3477 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3478 {
3479 	bt->reg_masks[frame] |= 1 << reg;
3480 }
3481 
3482 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3483 {
3484 	bt->reg_masks[frame] &= ~(1 << reg);
3485 }
3486 
3487 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3488 {
3489 	bt_set_frame_reg(bt, bt->frame, reg);
3490 }
3491 
3492 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3493 {
3494 	bt_clear_frame_reg(bt, bt->frame, reg);
3495 }
3496 
3497 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3498 {
3499 	bt->stack_masks[frame] |= 1ull << slot;
3500 }
3501 
3502 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3503 {
3504 	bt->stack_masks[frame] &= ~(1ull << slot);
3505 }
3506 
3507 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3508 {
3509 	return bt->reg_masks[frame];
3510 }
3511 
3512 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3513 {
3514 	return bt->reg_masks[bt->frame];
3515 }
3516 
3517 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3518 {
3519 	return bt->stack_masks[frame];
3520 }
3521 
3522 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3523 {
3524 	return bt->stack_masks[bt->frame];
3525 }
3526 
3527 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3528 {
3529 	return bt->reg_masks[bt->frame] & (1 << reg);
3530 }
3531 
3532 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
3533 {
3534 	return bt->stack_masks[frame] & (1ull << slot);
3535 }
3536 
3537 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3538 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3539 {
3540 	DECLARE_BITMAP(mask, 64);
3541 	bool first = true;
3542 	int i, n;
3543 
3544 	buf[0] = '\0';
3545 
3546 	bitmap_from_u64(mask, reg_mask);
3547 	for_each_set_bit(i, mask, 32) {
3548 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3549 		first = false;
3550 		buf += n;
3551 		buf_sz -= n;
3552 		if (buf_sz < 0)
3553 			break;
3554 	}
3555 }
3556 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3557 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3558 {
3559 	DECLARE_BITMAP(mask, 64);
3560 	bool first = true;
3561 	int i, n;
3562 
3563 	buf[0] = '\0';
3564 
3565 	bitmap_from_u64(mask, stack_mask);
3566 	for_each_set_bit(i, mask, 64) {
3567 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3568 		first = false;
3569 		buf += n;
3570 		buf_sz -= n;
3571 		if (buf_sz < 0)
3572 			break;
3573 	}
3574 }
3575 
3576 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3577 
3578 /* For given verifier state backtrack_insn() is called from the last insn to
3579  * the first insn. Its purpose is to compute a bitmask of registers and
3580  * stack slots that needs precision in the parent verifier state.
3581  *
3582  * @idx is an index of the instruction we are currently processing;
3583  * @subseq_idx is an index of the subsequent instruction that:
3584  *   - *would be* executed next, if jump history is viewed in forward order;
3585  *   - *was* processed previously during backtracking.
3586  */
3587 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3588 			  struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
3589 {
3590 	const struct bpf_insn_cbs cbs = {
3591 		.cb_call	= disasm_kfunc_name,
3592 		.cb_print	= verbose,
3593 		.private_data	= env,
3594 	};
3595 	struct bpf_insn *insn = env->prog->insnsi + idx;
3596 	u8 class = BPF_CLASS(insn->code);
3597 	u8 opcode = BPF_OP(insn->code);
3598 	u8 mode = BPF_MODE(insn->code);
3599 	u32 dreg = insn->dst_reg;
3600 	u32 sreg = insn->src_reg;
3601 	u32 spi, i, fr;
3602 
3603 	if (insn->code == 0)
3604 		return 0;
3605 	if (env->log.level & BPF_LOG_LEVEL2) {
3606 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3607 		verbose(env, "mark_precise: frame%d: regs=%s ",
3608 			bt->frame, env->tmp_str_buf);
3609 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3610 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3611 		verbose(env, "%d: ", idx);
3612 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3613 	}
3614 
3615 	if (class == BPF_ALU || class == BPF_ALU64) {
3616 		if (!bt_is_reg_set(bt, dreg))
3617 			return 0;
3618 		if (opcode == BPF_END || opcode == BPF_NEG) {
3619 			/* sreg is reserved and unused
3620 			 * dreg still need precision before this insn
3621 			 */
3622 			return 0;
3623 		} else if (opcode == BPF_MOV) {
3624 			if (BPF_SRC(insn->code) == BPF_X) {
3625 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3626 				 * dreg needs precision after this insn
3627 				 * sreg needs precision before this insn
3628 				 */
3629 				bt_clear_reg(bt, dreg);
3630 				if (sreg != BPF_REG_FP)
3631 					bt_set_reg(bt, sreg);
3632 			} else {
3633 				/* dreg = K
3634 				 * dreg needs precision after this insn.
3635 				 * Corresponding register is already marked
3636 				 * as precise=true in this verifier state.
3637 				 * No further markings in parent are necessary
3638 				 */
3639 				bt_clear_reg(bt, dreg);
3640 			}
3641 		} else {
3642 			if (BPF_SRC(insn->code) == BPF_X) {
3643 				/* dreg += sreg
3644 				 * both dreg and sreg need precision
3645 				 * before this insn
3646 				 */
3647 				if (sreg != BPF_REG_FP)
3648 					bt_set_reg(bt, sreg);
3649 			} /* else dreg += K
3650 			   * dreg still needs precision before this insn
3651 			   */
3652 		}
3653 	} else if (class == BPF_LDX) {
3654 		if (!bt_is_reg_set(bt, dreg))
3655 			return 0;
3656 		bt_clear_reg(bt, dreg);
3657 
3658 		/* scalars can only be spilled into stack w/o losing precision.
3659 		 * Load from any other memory can be zero extended.
3660 		 * The desire to keep that precision is already indicated
3661 		 * by 'precise' mark in corresponding register of this state.
3662 		 * No further tracking necessary.
3663 		 */
3664 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3665 			return 0;
3666 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3667 		 * that [fp - off] slot contains scalar that needs to be
3668 		 * tracked with precision
3669 		 */
3670 		spi = insn_stack_access_spi(hist->flags);
3671 		fr = insn_stack_access_frameno(hist->flags);
3672 		bt_set_frame_slot(bt, fr, spi);
3673 	} else if (class == BPF_STX || class == BPF_ST) {
3674 		if (bt_is_reg_set(bt, dreg))
3675 			/* stx & st shouldn't be using _scalar_ dst_reg
3676 			 * to access memory. It means backtracking
3677 			 * encountered a case of pointer subtraction.
3678 			 */
3679 			return -ENOTSUPP;
3680 		/* scalars can only be spilled into stack */
3681 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3682 			return 0;
3683 		spi = insn_stack_access_spi(hist->flags);
3684 		fr = insn_stack_access_frameno(hist->flags);
3685 		if (!bt_is_frame_slot_set(bt, fr, spi))
3686 			return 0;
3687 		bt_clear_frame_slot(bt, fr, spi);
3688 		if (class == BPF_STX)
3689 			bt_set_reg(bt, sreg);
3690 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3691 		if (bpf_pseudo_call(insn)) {
3692 			int subprog_insn_idx, subprog;
3693 
3694 			subprog_insn_idx = idx + insn->imm + 1;
3695 			subprog = find_subprog(env, subprog_insn_idx);
3696 			if (subprog < 0)
3697 				return -EFAULT;
3698 
3699 			if (subprog_is_global(env, subprog)) {
3700 				/* check that jump history doesn't have any
3701 				 * extra instructions from subprog; the next
3702 				 * instruction after call to global subprog
3703 				 * should be literally next instruction in
3704 				 * caller program
3705 				 */
3706 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3707 				/* r1-r5 are invalidated after subprog call,
3708 				 * so for global func call it shouldn't be set
3709 				 * anymore
3710 				 */
3711 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3712 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3713 					WARN_ONCE(1, "verifier backtracking bug");
3714 					return -EFAULT;
3715 				}
3716 				/* global subprog always sets R0 */
3717 				bt_clear_reg(bt, BPF_REG_0);
3718 				return 0;
3719 			} else {
3720 				/* static subprog call instruction, which
3721 				 * means that we are exiting current subprog,
3722 				 * so only r1-r5 could be still requested as
3723 				 * precise, r0 and r6-r10 or any stack slot in
3724 				 * the current frame should be zero by now
3725 				 */
3726 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3727 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3728 					WARN_ONCE(1, "verifier backtracking bug");
3729 					return -EFAULT;
3730 				}
3731 				/* we are now tracking register spills correctly,
3732 				 * so any instance of leftover slots is a bug
3733 				 */
3734 				if (bt_stack_mask(bt) != 0) {
3735 					verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3736 					WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)");
3737 					return -EFAULT;
3738 				}
3739 				/* propagate r1-r5 to the caller */
3740 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3741 					if (bt_is_reg_set(bt, i)) {
3742 						bt_clear_reg(bt, i);
3743 						bt_set_frame_reg(bt, bt->frame - 1, i);
3744 					}
3745 				}
3746 				if (bt_subprog_exit(bt))
3747 					return -EFAULT;
3748 				return 0;
3749 			}
3750 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3751 			/* exit from callback subprog to callback-calling helper or
3752 			 * kfunc call. Use idx/subseq_idx check to discern it from
3753 			 * straight line code backtracking.
3754 			 * Unlike the subprog call handling above, we shouldn't
3755 			 * propagate precision of r1-r5 (if any requested), as they are
3756 			 * not actually arguments passed directly to callback subprogs
3757 			 */
3758 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3759 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3760 				WARN_ONCE(1, "verifier backtracking bug");
3761 				return -EFAULT;
3762 			}
3763 			if (bt_stack_mask(bt) != 0) {
3764 				verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3765 				WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)");
3766 				return -EFAULT;
3767 			}
3768 			/* clear r1-r5 in callback subprog's mask */
3769 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3770 				bt_clear_reg(bt, i);
3771 			if (bt_subprog_exit(bt))
3772 				return -EFAULT;
3773 			return 0;
3774 		} else if (opcode == BPF_CALL) {
3775 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3776 			 * catch this error later. Make backtracking conservative
3777 			 * with ENOTSUPP.
3778 			 */
3779 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3780 				return -ENOTSUPP;
3781 			/* regular helper call sets R0 */
3782 			bt_clear_reg(bt, BPF_REG_0);
3783 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3784 				/* if backtracing was looking for registers R1-R5
3785 				 * they should have been found already.
3786 				 */
3787 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3788 				WARN_ONCE(1, "verifier backtracking bug");
3789 				return -EFAULT;
3790 			}
3791 		} else if (opcode == BPF_EXIT) {
3792 			bool r0_precise;
3793 
3794 			/* Backtracking to a nested function call, 'idx' is a part of
3795 			 * the inner frame 'subseq_idx' is a part of the outer frame.
3796 			 * In case of a regular function call, instructions giving
3797 			 * precision to registers R1-R5 should have been found already.
3798 			 * In case of a callback, it is ok to have R1-R5 marked for
3799 			 * backtracking, as these registers are set by the function
3800 			 * invoking callback.
3801 			 */
3802 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3803 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3804 					bt_clear_reg(bt, i);
3805 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3806 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3807 				WARN_ONCE(1, "verifier backtracking bug");
3808 				return -EFAULT;
3809 			}
3810 
3811 			/* BPF_EXIT in subprog or callback always returns
3812 			 * right after the call instruction, so by checking
3813 			 * whether the instruction at subseq_idx-1 is subprog
3814 			 * call or not we can distinguish actual exit from
3815 			 * *subprog* from exit from *callback*. In the former
3816 			 * case, we need to propagate r0 precision, if
3817 			 * necessary. In the former we never do that.
3818 			 */
3819 			r0_precise = subseq_idx - 1 >= 0 &&
3820 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3821 				     bt_is_reg_set(bt, BPF_REG_0);
3822 
3823 			bt_clear_reg(bt, BPF_REG_0);
3824 			if (bt_subprog_enter(bt))
3825 				return -EFAULT;
3826 
3827 			if (r0_precise)
3828 				bt_set_reg(bt, BPF_REG_0);
3829 			/* r6-r9 and stack slots will stay set in caller frame
3830 			 * bitmasks until we return back from callee(s)
3831 			 */
3832 			return 0;
3833 		} else if (BPF_SRC(insn->code) == BPF_X) {
3834 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3835 				return 0;
3836 			/* dreg <cond> sreg
3837 			 * Both dreg and sreg need precision before
3838 			 * this insn. If only sreg was marked precise
3839 			 * before it would be equally necessary to
3840 			 * propagate it to dreg.
3841 			 */
3842 			bt_set_reg(bt, dreg);
3843 			bt_set_reg(bt, sreg);
3844 			 /* else dreg <cond> K
3845 			  * Only dreg still needs precision before
3846 			  * this insn, so for the K-based conditional
3847 			  * there is nothing new to be marked.
3848 			  */
3849 		}
3850 	} else if (class == BPF_LD) {
3851 		if (!bt_is_reg_set(bt, dreg))
3852 			return 0;
3853 		bt_clear_reg(bt, dreg);
3854 		/* It's ld_imm64 or ld_abs or ld_ind.
3855 		 * For ld_imm64 no further tracking of precision
3856 		 * into parent is necessary
3857 		 */
3858 		if (mode == BPF_IND || mode == BPF_ABS)
3859 			/* to be analyzed */
3860 			return -ENOTSUPP;
3861 	}
3862 	return 0;
3863 }
3864 
3865 /* the scalar precision tracking algorithm:
3866  * . at the start all registers have precise=false.
3867  * . scalar ranges are tracked as normal through alu and jmp insns.
3868  * . once precise value of the scalar register is used in:
3869  *   .  ptr + scalar alu
3870  *   . if (scalar cond K|scalar)
3871  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3872  *   backtrack through the verifier states and mark all registers and
3873  *   stack slots with spilled constants that these scalar regisers
3874  *   should be precise.
3875  * . during state pruning two registers (or spilled stack slots)
3876  *   are equivalent if both are not precise.
3877  *
3878  * Note the verifier cannot simply walk register parentage chain,
3879  * since many different registers and stack slots could have been
3880  * used to compute single precise scalar.
3881  *
3882  * The approach of starting with precise=true for all registers and then
3883  * backtrack to mark a register as not precise when the verifier detects
3884  * that program doesn't care about specific value (e.g., when helper
3885  * takes register as ARG_ANYTHING parameter) is not safe.
3886  *
3887  * It's ok to walk single parentage chain of the verifier states.
3888  * It's possible that this backtracking will go all the way till 1st insn.
3889  * All other branches will be explored for needing precision later.
3890  *
3891  * The backtracking needs to deal with cases like:
3892  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3893  * r9 -= r8
3894  * r5 = r9
3895  * if r5 > 0x79f goto pc+7
3896  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3897  * r5 += 1
3898  * ...
3899  * call bpf_perf_event_output#25
3900  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3901  *
3902  * and this case:
3903  * r6 = 1
3904  * call foo // uses callee's r6 inside to compute r0
3905  * r0 += r6
3906  * if r0 == 0 goto
3907  *
3908  * to track above reg_mask/stack_mask needs to be independent for each frame.
3909  *
3910  * Also if parent's curframe > frame where backtracking started,
3911  * the verifier need to mark registers in both frames, otherwise callees
3912  * may incorrectly prune callers. This is similar to
3913  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3914  *
3915  * For now backtracking falls back into conservative marking.
3916  */
3917 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3918 				     struct bpf_verifier_state *st)
3919 {
3920 	struct bpf_func_state *func;
3921 	struct bpf_reg_state *reg;
3922 	int i, j;
3923 
3924 	if (env->log.level & BPF_LOG_LEVEL2) {
3925 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3926 			st->curframe);
3927 	}
3928 
3929 	/* big hammer: mark all scalars precise in this path.
3930 	 * pop_stack may still get !precise scalars.
3931 	 * We also skip current state and go straight to first parent state,
3932 	 * because precision markings in current non-checkpointed state are
3933 	 * not needed. See why in the comment in __mark_chain_precision below.
3934 	 */
3935 	for (st = st->parent; st; st = st->parent) {
3936 		for (i = 0; i <= st->curframe; i++) {
3937 			func = st->frame[i];
3938 			for (j = 0; j < BPF_REG_FP; j++) {
3939 				reg = &func->regs[j];
3940 				if (reg->type != SCALAR_VALUE || reg->precise)
3941 					continue;
3942 				reg->precise = true;
3943 				if (env->log.level & BPF_LOG_LEVEL2) {
3944 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3945 						i, j);
3946 				}
3947 			}
3948 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3949 				if (!is_spilled_reg(&func->stack[j]))
3950 					continue;
3951 				reg = &func->stack[j].spilled_ptr;
3952 				if (reg->type != SCALAR_VALUE || reg->precise)
3953 					continue;
3954 				reg->precise = true;
3955 				if (env->log.level & BPF_LOG_LEVEL2) {
3956 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3957 						i, -(j + 1) * 8);
3958 				}
3959 			}
3960 		}
3961 	}
3962 }
3963 
3964 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3965 {
3966 	struct bpf_func_state *func;
3967 	struct bpf_reg_state *reg;
3968 	int i, j;
3969 
3970 	for (i = 0; i <= st->curframe; i++) {
3971 		func = st->frame[i];
3972 		for (j = 0; j < BPF_REG_FP; j++) {
3973 			reg = &func->regs[j];
3974 			if (reg->type != SCALAR_VALUE)
3975 				continue;
3976 			reg->precise = false;
3977 		}
3978 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3979 			if (!is_spilled_reg(&func->stack[j]))
3980 				continue;
3981 			reg = &func->stack[j].spilled_ptr;
3982 			if (reg->type != SCALAR_VALUE)
3983 				continue;
3984 			reg->precise = false;
3985 		}
3986 	}
3987 }
3988 
3989 static bool idset_contains(struct bpf_idset *s, u32 id)
3990 {
3991 	u32 i;
3992 
3993 	for (i = 0; i < s->count; ++i)
3994 		if (s->ids[i] == id)
3995 			return true;
3996 
3997 	return false;
3998 }
3999 
4000 static int idset_push(struct bpf_idset *s, u32 id)
4001 {
4002 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
4003 		return -EFAULT;
4004 	s->ids[s->count++] = id;
4005 	return 0;
4006 }
4007 
4008 static void idset_reset(struct bpf_idset *s)
4009 {
4010 	s->count = 0;
4011 }
4012 
4013 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
4014  * Mark all registers with these IDs as precise.
4015  */
4016 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4017 {
4018 	struct bpf_idset *precise_ids = &env->idset_scratch;
4019 	struct backtrack_state *bt = &env->bt;
4020 	struct bpf_func_state *func;
4021 	struct bpf_reg_state *reg;
4022 	DECLARE_BITMAP(mask, 64);
4023 	int i, fr;
4024 
4025 	idset_reset(precise_ids);
4026 
4027 	for (fr = bt->frame; fr >= 0; fr--) {
4028 		func = st->frame[fr];
4029 
4030 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4031 		for_each_set_bit(i, mask, 32) {
4032 			reg = &func->regs[i];
4033 			if (!reg->id || reg->type != SCALAR_VALUE)
4034 				continue;
4035 			if (idset_push(precise_ids, reg->id))
4036 				return -EFAULT;
4037 		}
4038 
4039 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4040 		for_each_set_bit(i, mask, 64) {
4041 			if (i >= func->allocated_stack / BPF_REG_SIZE)
4042 				break;
4043 			if (!is_spilled_scalar_reg(&func->stack[i]))
4044 				continue;
4045 			reg = &func->stack[i].spilled_ptr;
4046 			if (!reg->id)
4047 				continue;
4048 			if (idset_push(precise_ids, reg->id))
4049 				return -EFAULT;
4050 		}
4051 	}
4052 
4053 	for (fr = 0; fr <= st->curframe; ++fr) {
4054 		func = st->frame[fr];
4055 
4056 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4057 			reg = &func->regs[i];
4058 			if (!reg->id)
4059 				continue;
4060 			if (!idset_contains(precise_ids, reg->id))
4061 				continue;
4062 			bt_set_frame_reg(bt, fr, i);
4063 		}
4064 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4065 			if (!is_spilled_scalar_reg(&func->stack[i]))
4066 				continue;
4067 			reg = &func->stack[i].spilled_ptr;
4068 			if (!reg->id)
4069 				continue;
4070 			if (!idset_contains(precise_ids, reg->id))
4071 				continue;
4072 			bt_set_frame_slot(bt, fr, i);
4073 		}
4074 	}
4075 
4076 	return 0;
4077 }
4078 
4079 /*
4080  * __mark_chain_precision() backtracks BPF program instruction sequence and
4081  * chain of verifier states making sure that register *regno* (if regno >= 0)
4082  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4083  * SCALARS, as well as any other registers and slots that contribute to
4084  * a tracked state of given registers/stack slots, depending on specific BPF
4085  * assembly instructions (see backtrack_insns() for exact instruction handling
4086  * logic). This backtracking relies on recorded jmp_history and is able to
4087  * traverse entire chain of parent states. This process ends only when all the
4088  * necessary registers/slots and their transitive dependencies are marked as
4089  * precise.
4090  *
4091  * One important and subtle aspect is that precise marks *do not matter* in
4092  * the currently verified state (current state). It is important to understand
4093  * why this is the case.
4094  *
4095  * First, note that current state is the state that is not yet "checkpointed",
4096  * i.e., it is not yet put into env->explored_states, and it has no children
4097  * states as well. It's ephemeral, and can end up either a) being discarded if
4098  * compatible explored state is found at some point or BPF_EXIT instruction is
4099  * reached or b) checkpointed and put into env->explored_states, branching out
4100  * into one or more children states.
4101  *
4102  * In the former case, precise markings in current state are completely
4103  * ignored by state comparison code (see regsafe() for details). Only
4104  * checkpointed ("old") state precise markings are important, and if old
4105  * state's register/slot is precise, regsafe() assumes current state's
4106  * register/slot as precise and checks value ranges exactly and precisely. If
4107  * states turn out to be compatible, current state's necessary precise
4108  * markings and any required parent states' precise markings are enforced
4109  * after the fact with propagate_precision() logic, after the fact. But it's
4110  * important to realize that in this case, even after marking current state
4111  * registers/slots as precise, we immediately discard current state. So what
4112  * actually matters is any of the precise markings propagated into current
4113  * state's parent states, which are always checkpointed (due to b) case above).
4114  * As such, for scenario a) it doesn't matter if current state has precise
4115  * markings set or not.
4116  *
4117  * Now, for the scenario b), checkpointing and forking into child(ren)
4118  * state(s). Note that before current state gets to checkpointing step, any
4119  * processed instruction always assumes precise SCALAR register/slot
4120  * knowledge: if precise value or range is useful to prune jump branch, BPF
4121  * verifier takes this opportunity enthusiastically. Similarly, when
4122  * register's value is used to calculate offset or memory address, exact
4123  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4124  * what we mentioned above about state comparison ignoring precise markings
4125  * during state comparison, BPF verifier ignores and also assumes precise
4126  * markings *at will* during instruction verification process. But as verifier
4127  * assumes precision, it also propagates any precision dependencies across
4128  * parent states, which are not yet finalized, so can be further restricted
4129  * based on new knowledge gained from restrictions enforced by their children
4130  * states. This is so that once those parent states are finalized, i.e., when
4131  * they have no more active children state, state comparison logic in
4132  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4133  * required for correctness.
4134  *
4135  * To build a bit more intuition, note also that once a state is checkpointed,
4136  * the path we took to get to that state is not important. This is crucial
4137  * property for state pruning. When state is checkpointed and finalized at
4138  * some instruction index, it can be correctly and safely used to "short
4139  * circuit" any *compatible* state that reaches exactly the same instruction
4140  * index. I.e., if we jumped to that instruction from a completely different
4141  * code path than original finalized state was derived from, it doesn't
4142  * matter, current state can be discarded because from that instruction
4143  * forward having a compatible state will ensure we will safely reach the
4144  * exit. States describe preconditions for further exploration, but completely
4145  * forget the history of how we got here.
4146  *
4147  * This also means that even if we needed precise SCALAR range to get to
4148  * finalized state, but from that point forward *that same* SCALAR register is
4149  * never used in a precise context (i.e., it's precise value is not needed for
4150  * correctness), it's correct and safe to mark such register as "imprecise"
4151  * (i.e., precise marking set to false). This is what we rely on when we do
4152  * not set precise marking in current state. If no child state requires
4153  * precision for any given SCALAR register, it's safe to dictate that it can
4154  * be imprecise. If any child state does require this register to be precise,
4155  * we'll mark it precise later retroactively during precise markings
4156  * propagation from child state to parent states.
4157  *
4158  * Skipping precise marking setting in current state is a mild version of
4159  * relying on the above observation. But we can utilize this property even
4160  * more aggressively by proactively forgetting any precise marking in the
4161  * current state (which we inherited from the parent state), right before we
4162  * checkpoint it and branch off into new child state. This is done by
4163  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4164  * finalized states which help in short circuiting more future states.
4165  */
4166 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4167 {
4168 	struct backtrack_state *bt = &env->bt;
4169 	struct bpf_verifier_state *st = env->cur_state;
4170 	int first_idx = st->first_insn_idx;
4171 	int last_idx = env->insn_idx;
4172 	int subseq_idx = -1;
4173 	struct bpf_func_state *func;
4174 	struct bpf_reg_state *reg;
4175 	bool skip_first = true;
4176 	int i, fr, err;
4177 
4178 	if (!env->bpf_capable)
4179 		return 0;
4180 
4181 	/* set frame number from which we are starting to backtrack */
4182 	bt_init(bt, env->cur_state->curframe);
4183 
4184 	/* Do sanity checks against current state of register and/or stack
4185 	 * slot, but don't set precise flag in current state, as precision
4186 	 * tracking in the current state is unnecessary.
4187 	 */
4188 	func = st->frame[bt->frame];
4189 	if (regno >= 0) {
4190 		reg = &func->regs[regno];
4191 		if (reg->type != SCALAR_VALUE) {
4192 			WARN_ONCE(1, "backtracing misuse");
4193 			return -EFAULT;
4194 		}
4195 		bt_set_reg(bt, regno);
4196 	}
4197 
4198 	if (bt_empty(bt))
4199 		return 0;
4200 
4201 	for (;;) {
4202 		DECLARE_BITMAP(mask, 64);
4203 		u32 history = st->jmp_history_cnt;
4204 		struct bpf_jmp_history_entry *hist;
4205 
4206 		if (env->log.level & BPF_LOG_LEVEL2) {
4207 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4208 				bt->frame, last_idx, first_idx, subseq_idx);
4209 		}
4210 
4211 		/* If some register with scalar ID is marked as precise,
4212 		 * make sure that all registers sharing this ID are also precise.
4213 		 * This is needed to estimate effect of find_equal_scalars().
4214 		 * Do this at the last instruction of each state,
4215 		 * bpf_reg_state::id fields are valid for these instructions.
4216 		 *
4217 		 * Allows to track precision in situation like below:
4218 		 *
4219 		 *     r2 = unknown value
4220 		 *     ...
4221 		 *   --- state #0 ---
4222 		 *     ...
4223 		 *     r1 = r2                 // r1 and r2 now share the same ID
4224 		 *     ...
4225 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4226 		 *     ...
4227 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4228 		 *     ...
4229 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4230 		 *     r3 = r10
4231 		 *     r3 += r1                // need to mark both r1 and r2
4232 		 */
4233 		if (mark_precise_scalar_ids(env, st))
4234 			return -EFAULT;
4235 
4236 		if (last_idx < 0) {
4237 			/* we are at the entry into subprog, which
4238 			 * is expected for global funcs, but only if
4239 			 * requested precise registers are R1-R5
4240 			 * (which are global func's input arguments)
4241 			 */
4242 			if (st->curframe == 0 &&
4243 			    st->frame[0]->subprogno > 0 &&
4244 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4245 			    bt_stack_mask(bt) == 0 &&
4246 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4247 				bitmap_from_u64(mask, bt_reg_mask(bt));
4248 				for_each_set_bit(i, mask, 32) {
4249 					reg = &st->frame[0]->regs[i];
4250 					bt_clear_reg(bt, i);
4251 					if (reg->type == SCALAR_VALUE)
4252 						reg->precise = true;
4253 				}
4254 				return 0;
4255 			}
4256 
4257 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4258 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4259 			WARN_ONCE(1, "verifier backtracking bug");
4260 			return -EFAULT;
4261 		}
4262 
4263 		for (i = last_idx;;) {
4264 			if (skip_first) {
4265 				err = 0;
4266 				skip_first = false;
4267 			} else {
4268 				hist = get_jmp_hist_entry(st, history, i);
4269 				err = backtrack_insn(env, i, subseq_idx, hist, bt);
4270 			}
4271 			if (err == -ENOTSUPP) {
4272 				mark_all_scalars_precise(env, env->cur_state);
4273 				bt_reset(bt);
4274 				return 0;
4275 			} else if (err) {
4276 				return err;
4277 			}
4278 			if (bt_empty(bt))
4279 				/* Found assignment(s) into tracked register in this state.
4280 				 * Since this state is already marked, just return.
4281 				 * Nothing to be tracked further in the parent state.
4282 				 */
4283 				return 0;
4284 			subseq_idx = i;
4285 			i = get_prev_insn_idx(st, i, &history);
4286 			if (i == -ENOENT)
4287 				break;
4288 			if (i >= env->prog->len) {
4289 				/* This can happen if backtracking reached insn 0
4290 				 * and there are still reg_mask or stack_mask
4291 				 * to backtrack.
4292 				 * It means the backtracking missed the spot where
4293 				 * particular register was initialized with a constant.
4294 				 */
4295 				verbose(env, "BUG backtracking idx %d\n", i);
4296 				WARN_ONCE(1, "verifier backtracking bug");
4297 				return -EFAULT;
4298 			}
4299 		}
4300 		st = st->parent;
4301 		if (!st)
4302 			break;
4303 
4304 		for (fr = bt->frame; fr >= 0; fr--) {
4305 			func = st->frame[fr];
4306 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4307 			for_each_set_bit(i, mask, 32) {
4308 				reg = &func->regs[i];
4309 				if (reg->type != SCALAR_VALUE) {
4310 					bt_clear_frame_reg(bt, fr, i);
4311 					continue;
4312 				}
4313 				if (reg->precise)
4314 					bt_clear_frame_reg(bt, fr, i);
4315 				else
4316 					reg->precise = true;
4317 			}
4318 
4319 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4320 			for_each_set_bit(i, mask, 64) {
4321 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4322 					verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n",
4323 						i, func->allocated_stack / BPF_REG_SIZE);
4324 					WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)");
4325 					return -EFAULT;
4326 				}
4327 
4328 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4329 					bt_clear_frame_slot(bt, fr, i);
4330 					continue;
4331 				}
4332 				reg = &func->stack[i].spilled_ptr;
4333 				if (reg->precise)
4334 					bt_clear_frame_slot(bt, fr, i);
4335 				else
4336 					reg->precise = true;
4337 			}
4338 			if (env->log.level & BPF_LOG_LEVEL2) {
4339 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4340 					     bt_frame_reg_mask(bt, fr));
4341 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4342 					fr, env->tmp_str_buf);
4343 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4344 					       bt_frame_stack_mask(bt, fr));
4345 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4346 				print_verifier_state(env, func, true);
4347 			}
4348 		}
4349 
4350 		if (bt_empty(bt))
4351 			return 0;
4352 
4353 		subseq_idx = first_idx;
4354 		last_idx = st->last_insn_idx;
4355 		first_idx = st->first_insn_idx;
4356 	}
4357 
4358 	/* if we still have requested precise regs or slots, we missed
4359 	 * something (e.g., stack access through non-r10 register), so
4360 	 * fallback to marking all precise
4361 	 */
4362 	if (!bt_empty(bt)) {
4363 		mark_all_scalars_precise(env, env->cur_state);
4364 		bt_reset(bt);
4365 	}
4366 
4367 	return 0;
4368 }
4369 
4370 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4371 {
4372 	return __mark_chain_precision(env, regno);
4373 }
4374 
4375 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4376  * desired reg and stack masks across all relevant frames
4377  */
4378 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4379 {
4380 	return __mark_chain_precision(env, -1);
4381 }
4382 
4383 static bool is_spillable_regtype(enum bpf_reg_type type)
4384 {
4385 	switch (base_type(type)) {
4386 	case PTR_TO_MAP_VALUE:
4387 	case PTR_TO_STACK:
4388 	case PTR_TO_CTX:
4389 	case PTR_TO_PACKET:
4390 	case PTR_TO_PACKET_META:
4391 	case PTR_TO_PACKET_END:
4392 	case PTR_TO_FLOW_KEYS:
4393 	case CONST_PTR_TO_MAP:
4394 	case PTR_TO_SOCKET:
4395 	case PTR_TO_SOCK_COMMON:
4396 	case PTR_TO_TCP_SOCK:
4397 	case PTR_TO_XDP_SOCK:
4398 	case PTR_TO_BTF_ID:
4399 	case PTR_TO_BUF:
4400 	case PTR_TO_MEM:
4401 	case PTR_TO_FUNC:
4402 	case PTR_TO_MAP_KEY:
4403 	case PTR_TO_ARENA:
4404 		return true;
4405 	default:
4406 		return false;
4407 	}
4408 }
4409 
4410 /* Does this register contain a constant zero? */
4411 static bool register_is_null(struct bpf_reg_state *reg)
4412 {
4413 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4414 }
4415 
4416 /* check if register is a constant scalar value */
4417 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
4418 {
4419 	return reg->type == SCALAR_VALUE &&
4420 	       tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
4421 }
4422 
4423 /* assuming is_reg_const() is true, return constant value of a register */
4424 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
4425 {
4426 	return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
4427 }
4428 
4429 static bool __is_pointer_value(bool allow_ptr_leaks,
4430 			       const struct bpf_reg_state *reg)
4431 {
4432 	if (allow_ptr_leaks)
4433 		return false;
4434 
4435 	return reg->type != SCALAR_VALUE;
4436 }
4437 
4438 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
4439 					struct bpf_reg_state *src_reg)
4440 {
4441 	if (src_reg->type == SCALAR_VALUE && !src_reg->id &&
4442 	    !tnum_is_const(src_reg->var_off))
4443 		/* Ensure that src_reg has a valid ID that will be copied to
4444 		 * dst_reg and then will be used by find_equal_scalars() to
4445 		 * propagate min/max range.
4446 		 */
4447 		src_reg->id = ++env->id_gen;
4448 }
4449 
4450 /* Copy src state preserving dst->parent and dst->live fields */
4451 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4452 {
4453 	struct bpf_reg_state *parent = dst->parent;
4454 	enum bpf_reg_liveness live = dst->live;
4455 
4456 	*dst = *src;
4457 	dst->parent = parent;
4458 	dst->live = live;
4459 }
4460 
4461 static void save_register_state(struct bpf_verifier_env *env,
4462 				struct bpf_func_state *state,
4463 				int spi, struct bpf_reg_state *reg,
4464 				int size)
4465 {
4466 	int i;
4467 
4468 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4469 	if (size == BPF_REG_SIZE)
4470 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4471 
4472 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4473 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4474 
4475 	/* size < 8 bytes spill */
4476 	for (; i; i--)
4477 		mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
4478 }
4479 
4480 static bool is_bpf_st_mem(struct bpf_insn *insn)
4481 {
4482 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4483 }
4484 
4485 static int get_reg_width(struct bpf_reg_state *reg)
4486 {
4487 	return fls64(reg->umax_value);
4488 }
4489 
4490 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4491  * stack boundary and alignment are checked in check_mem_access()
4492  */
4493 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4494 				       /* stack frame we're writing to */
4495 				       struct bpf_func_state *state,
4496 				       int off, int size, int value_regno,
4497 				       int insn_idx)
4498 {
4499 	struct bpf_func_state *cur; /* state of the current function */
4500 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4501 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4502 	struct bpf_reg_state *reg = NULL;
4503 	int insn_flags = insn_stack_access_flags(state->frameno, spi);
4504 
4505 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4506 	 * so it's aligned access and [off, off + size) are within stack limits
4507 	 */
4508 	if (!env->allow_ptr_leaks &&
4509 	    is_spilled_reg(&state->stack[spi]) &&
4510 	    size != BPF_REG_SIZE) {
4511 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4512 		return -EACCES;
4513 	}
4514 
4515 	cur = env->cur_state->frame[env->cur_state->curframe];
4516 	if (value_regno >= 0)
4517 		reg = &cur->regs[value_regno];
4518 	if (!env->bypass_spec_v4) {
4519 		bool sanitize = reg && is_spillable_regtype(reg->type);
4520 
4521 		for (i = 0; i < size; i++) {
4522 			u8 type = state->stack[spi].slot_type[i];
4523 
4524 			if (type != STACK_MISC && type != STACK_ZERO) {
4525 				sanitize = true;
4526 				break;
4527 			}
4528 		}
4529 
4530 		if (sanitize)
4531 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4532 	}
4533 
4534 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4535 	if (err)
4536 		return err;
4537 
4538 	mark_stack_slot_scratched(env, spi);
4539 	if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) {
4540 		bool reg_value_fits;
4541 
4542 		reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size;
4543 		/* Make sure that reg had an ID to build a relation on spill. */
4544 		if (reg_value_fits)
4545 			assign_scalar_id_before_mov(env, reg);
4546 		save_register_state(env, state, spi, reg, size);
4547 		/* Break the relation on a narrowing spill. */
4548 		if (!reg_value_fits)
4549 			state->stack[spi].spilled_ptr.id = 0;
4550 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4551 		   env->bpf_capable) {
4552 		struct bpf_reg_state fake_reg = {};
4553 
4554 		__mark_reg_known(&fake_reg, insn->imm);
4555 		fake_reg.type = SCALAR_VALUE;
4556 		save_register_state(env, state, spi, &fake_reg, size);
4557 	} else if (reg && is_spillable_regtype(reg->type)) {
4558 		/* register containing pointer is being spilled into stack */
4559 		if (size != BPF_REG_SIZE) {
4560 			verbose_linfo(env, insn_idx, "; ");
4561 			verbose(env, "invalid size of register spill\n");
4562 			return -EACCES;
4563 		}
4564 		if (state != cur && reg->type == PTR_TO_STACK) {
4565 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4566 			return -EINVAL;
4567 		}
4568 		save_register_state(env, state, spi, reg, size);
4569 	} else {
4570 		u8 type = STACK_MISC;
4571 
4572 		/* regular write of data into stack destroys any spilled ptr */
4573 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4574 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4575 		if (is_stack_slot_special(&state->stack[spi]))
4576 			for (i = 0; i < BPF_REG_SIZE; i++)
4577 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4578 
4579 		/* only mark the slot as written if all 8 bytes were written
4580 		 * otherwise read propagation may incorrectly stop too soon
4581 		 * when stack slots are partially written.
4582 		 * This heuristic means that read propagation will be
4583 		 * conservative, since it will add reg_live_read marks
4584 		 * to stack slots all the way to first state when programs
4585 		 * writes+reads less than 8 bytes
4586 		 */
4587 		if (size == BPF_REG_SIZE)
4588 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4589 
4590 		/* when we zero initialize stack slots mark them as such */
4591 		if ((reg && register_is_null(reg)) ||
4592 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4593 			/* STACK_ZERO case happened because register spill
4594 			 * wasn't properly aligned at the stack slot boundary,
4595 			 * so it's not a register spill anymore; force
4596 			 * originating register to be precise to make
4597 			 * STACK_ZERO correct for subsequent states
4598 			 */
4599 			err = mark_chain_precision(env, value_regno);
4600 			if (err)
4601 				return err;
4602 			type = STACK_ZERO;
4603 		}
4604 
4605 		/* Mark slots affected by this stack write. */
4606 		for (i = 0; i < size; i++)
4607 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
4608 		insn_flags = 0; /* not a register spill */
4609 	}
4610 
4611 	if (insn_flags)
4612 		return push_jmp_history(env, env->cur_state, insn_flags);
4613 	return 0;
4614 }
4615 
4616 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4617  * known to contain a variable offset.
4618  * This function checks whether the write is permitted and conservatively
4619  * tracks the effects of the write, considering that each stack slot in the
4620  * dynamic range is potentially written to.
4621  *
4622  * 'off' includes 'regno->off'.
4623  * 'value_regno' can be -1, meaning that an unknown value is being written to
4624  * the stack.
4625  *
4626  * Spilled pointers in range are not marked as written because we don't know
4627  * what's going to be actually written. This means that read propagation for
4628  * future reads cannot be terminated by this write.
4629  *
4630  * For privileged programs, uninitialized stack slots are considered
4631  * initialized by this write (even though we don't know exactly what offsets
4632  * are going to be written to). The idea is that we don't want the verifier to
4633  * reject future reads that access slots written to through variable offsets.
4634  */
4635 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4636 				     /* func where register points to */
4637 				     struct bpf_func_state *state,
4638 				     int ptr_regno, int off, int size,
4639 				     int value_regno, int insn_idx)
4640 {
4641 	struct bpf_func_state *cur; /* state of the current function */
4642 	int min_off, max_off;
4643 	int i, err;
4644 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4645 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4646 	bool writing_zero = false;
4647 	/* set if the fact that we're writing a zero is used to let any
4648 	 * stack slots remain STACK_ZERO
4649 	 */
4650 	bool zero_used = false;
4651 
4652 	cur = env->cur_state->frame[env->cur_state->curframe];
4653 	ptr_reg = &cur->regs[ptr_regno];
4654 	min_off = ptr_reg->smin_value + off;
4655 	max_off = ptr_reg->smax_value + off + size;
4656 	if (value_regno >= 0)
4657 		value_reg = &cur->regs[value_regno];
4658 	if ((value_reg && register_is_null(value_reg)) ||
4659 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4660 		writing_zero = true;
4661 
4662 	for (i = min_off; i < max_off; i++) {
4663 		int spi;
4664 
4665 		spi = __get_spi(i);
4666 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4667 		if (err)
4668 			return err;
4669 	}
4670 
4671 	/* Variable offset writes destroy any spilled pointers in range. */
4672 	for (i = min_off; i < max_off; i++) {
4673 		u8 new_type, *stype;
4674 		int slot, spi;
4675 
4676 		slot = -i - 1;
4677 		spi = slot / BPF_REG_SIZE;
4678 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4679 		mark_stack_slot_scratched(env, spi);
4680 
4681 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4682 			/* Reject the write if range we may write to has not
4683 			 * been initialized beforehand. If we didn't reject
4684 			 * here, the ptr status would be erased below (even
4685 			 * though not all slots are actually overwritten),
4686 			 * possibly opening the door to leaks.
4687 			 *
4688 			 * We do however catch STACK_INVALID case below, and
4689 			 * only allow reading possibly uninitialized memory
4690 			 * later for CAP_PERFMON, as the write may not happen to
4691 			 * that slot.
4692 			 */
4693 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4694 				insn_idx, i);
4695 			return -EINVAL;
4696 		}
4697 
4698 		/* If writing_zero and the spi slot contains a spill of value 0,
4699 		 * maintain the spill type.
4700 		 */
4701 		if (writing_zero && *stype == STACK_SPILL &&
4702 		    is_spilled_scalar_reg(&state->stack[spi])) {
4703 			struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr;
4704 
4705 			if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) {
4706 				zero_used = true;
4707 				continue;
4708 			}
4709 		}
4710 
4711 		/* Erase all other spilled pointers. */
4712 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4713 
4714 		/* Update the slot type. */
4715 		new_type = STACK_MISC;
4716 		if (writing_zero && *stype == STACK_ZERO) {
4717 			new_type = STACK_ZERO;
4718 			zero_used = true;
4719 		}
4720 		/* If the slot is STACK_INVALID, we check whether it's OK to
4721 		 * pretend that it will be initialized by this write. The slot
4722 		 * might not actually be written to, and so if we mark it as
4723 		 * initialized future reads might leak uninitialized memory.
4724 		 * For privileged programs, we will accept such reads to slots
4725 		 * that may or may not be written because, if we're reject
4726 		 * them, the error would be too confusing.
4727 		 */
4728 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4729 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4730 					insn_idx, i);
4731 			return -EINVAL;
4732 		}
4733 		*stype = new_type;
4734 	}
4735 	if (zero_used) {
4736 		/* backtracking doesn't work for STACK_ZERO yet. */
4737 		err = mark_chain_precision(env, value_regno);
4738 		if (err)
4739 			return err;
4740 	}
4741 	return 0;
4742 }
4743 
4744 /* When register 'dst_regno' is assigned some values from stack[min_off,
4745  * max_off), we set the register's type according to the types of the
4746  * respective stack slots. If all the stack values are known to be zeros, then
4747  * so is the destination reg. Otherwise, the register is considered to be
4748  * SCALAR. This function does not deal with register filling; the caller must
4749  * ensure that all spilled registers in the stack range have been marked as
4750  * read.
4751  */
4752 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4753 				/* func where src register points to */
4754 				struct bpf_func_state *ptr_state,
4755 				int min_off, int max_off, int dst_regno)
4756 {
4757 	struct bpf_verifier_state *vstate = env->cur_state;
4758 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4759 	int i, slot, spi;
4760 	u8 *stype;
4761 	int zeros = 0;
4762 
4763 	for (i = min_off; i < max_off; i++) {
4764 		slot = -i - 1;
4765 		spi = slot / BPF_REG_SIZE;
4766 		mark_stack_slot_scratched(env, spi);
4767 		stype = ptr_state->stack[spi].slot_type;
4768 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4769 			break;
4770 		zeros++;
4771 	}
4772 	if (zeros == max_off - min_off) {
4773 		/* Any access_size read into register is zero extended,
4774 		 * so the whole register == const_zero.
4775 		 */
4776 		__mark_reg_const_zero(env, &state->regs[dst_regno]);
4777 	} else {
4778 		/* have read misc data from the stack */
4779 		mark_reg_unknown(env, state->regs, dst_regno);
4780 	}
4781 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4782 }
4783 
4784 /* Read the stack at 'off' and put the results into the register indicated by
4785  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4786  * spilled reg.
4787  *
4788  * 'dst_regno' can be -1, meaning that the read value is not going to a
4789  * register.
4790  *
4791  * The access is assumed to be within the current stack bounds.
4792  */
4793 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4794 				      /* func where src register points to */
4795 				      struct bpf_func_state *reg_state,
4796 				      int off, int size, int dst_regno)
4797 {
4798 	struct bpf_verifier_state *vstate = env->cur_state;
4799 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4800 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4801 	struct bpf_reg_state *reg;
4802 	u8 *stype, type;
4803 	int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
4804 
4805 	stype = reg_state->stack[spi].slot_type;
4806 	reg = &reg_state->stack[spi].spilled_ptr;
4807 
4808 	mark_stack_slot_scratched(env, spi);
4809 
4810 	if (is_spilled_reg(&reg_state->stack[spi])) {
4811 		u8 spill_size = 1;
4812 
4813 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4814 			spill_size++;
4815 
4816 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4817 			if (reg->type != SCALAR_VALUE) {
4818 				verbose_linfo(env, env->insn_idx, "; ");
4819 				verbose(env, "invalid size of register fill\n");
4820 				return -EACCES;
4821 			}
4822 
4823 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4824 			if (dst_regno < 0)
4825 				return 0;
4826 
4827 			if (size <= spill_size &&
4828 			    bpf_stack_narrow_access_ok(off, size, spill_size)) {
4829 				/* The earlier check_reg_arg() has decided the
4830 				 * subreg_def for this insn.  Save it first.
4831 				 */
4832 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4833 
4834 				copy_register_state(&state->regs[dst_regno], reg);
4835 				state->regs[dst_regno].subreg_def = subreg_def;
4836 
4837 				/* Break the relation on a narrowing fill.
4838 				 * coerce_reg_to_size will adjust the boundaries.
4839 				 */
4840 				if (get_reg_width(reg) > size * BITS_PER_BYTE)
4841 					state->regs[dst_regno].id = 0;
4842 			} else {
4843 				int spill_cnt = 0, zero_cnt = 0;
4844 
4845 				for (i = 0; i < size; i++) {
4846 					type = stype[(slot - i) % BPF_REG_SIZE];
4847 					if (type == STACK_SPILL) {
4848 						spill_cnt++;
4849 						continue;
4850 					}
4851 					if (type == STACK_MISC)
4852 						continue;
4853 					if (type == STACK_ZERO) {
4854 						zero_cnt++;
4855 						continue;
4856 					}
4857 					if (type == STACK_INVALID && env->allow_uninit_stack)
4858 						continue;
4859 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4860 						off, i, size);
4861 					return -EACCES;
4862 				}
4863 
4864 				if (spill_cnt == size &&
4865 				    tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
4866 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
4867 					/* this IS register fill, so keep insn_flags */
4868 				} else if (zero_cnt == size) {
4869 					/* similarly to mark_reg_stack_read(), preserve zeroes */
4870 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
4871 					insn_flags = 0; /* not restoring original register state */
4872 				} else {
4873 					mark_reg_unknown(env, state->regs, dst_regno);
4874 					insn_flags = 0; /* not restoring original register state */
4875 				}
4876 			}
4877 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4878 		} else if (dst_regno >= 0) {
4879 			/* restore register state from stack */
4880 			copy_register_state(&state->regs[dst_regno], reg);
4881 			/* mark reg as written since spilled pointer state likely
4882 			 * has its liveness marks cleared by is_state_visited()
4883 			 * which resets stack/reg liveness for state transitions
4884 			 */
4885 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4886 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4887 			/* If dst_regno==-1, the caller is asking us whether
4888 			 * it is acceptable to use this value as a SCALAR_VALUE
4889 			 * (e.g. for XADD).
4890 			 * We must not allow unprivileged callers to do that
4891 			 * with spilled pointers.
4892 			 */
4893 			verbose(env, "leaking pointer from stack off %d\n",
4894 				off);
4895 			return -EACCES;
4896 		}
4897 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4898 	} else {
4899 		for (i = 0; i < size; i++) {
4900 			type = stype[(slot - i) % BPF_REG_SIZE];
4901 			if (type == STACK_MISC)
4902 				continue;
4903 			if (type == STACK_ZERO)
4904 				continue;
4905 			if (type == STACK_INVALID && env->allow_uninit_stack)
4906 				continue;
4907 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4908 				off, i, size);
4909 			return -EACCES;
4910 		}
4911 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4912 		if (dst_regno >= 0)
4913 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4914 		insn_flags = 0; /* we are not restoring spilled register */
4915 	}
4916 	if (insn_flags)
4917 		return push_jmp_history(env, env->cur_state, insn_flags);
4918 	return 0;
4919 }
4920 
4921 enum bpf_access_src {
4922 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4923 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4924 };
4925 
4926 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4927 					 int regno, int off, int access_size,
4928 					 bool zero_size_allowed,
4929 					 enum bpf_access_src type,
4930 					 struct bpf_call_arg_meta *meta);
4931 
4932 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4933 {
4934 	return cur_regs(env) + regno;
4935 }
4936 
4937 /* Read the stack at 'ptr_regno + off' and put the result into the register
4938  * 'dst_regno'.
4939  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4940  * but not its variable offset.
4941  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4942  *
4943  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4944  * filling registers (i.e. reads of spilled register cannot be detected when
4945  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4946  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4947  * offset; for a fixed offset check_stack_read_fixed_off should be used
4948  * instead.
4949  */
4950 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4951 				    int ptr_regno, int off, int size, int dst_regno)
4952 {
4953 	/* The state of the source register. */
4954 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4955 	struct bpf_func_state *ptr_state = func(env, reg);
4956 	int err;
4957 	int min_off, max_off;
4958 
4959 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4960 	 */
4961 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4962 					    false, ACCESS_DIRECT, NULL);
4963 	if (err)
4964 		return err;
4965 
4966 	min_off = reg->smin_value + off;
4967 	max_off = reg->smax_value + off;
4968 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4969 	return 0;
4970 }
4971 
4972 /* check_stack_read dispatches to check_stack_read_fixed_off or
4973  * check_stack_read_var_off.
4974  *
4975  * The caller must ensure that the offset falls within the allocated stack
4976  * bounds.
4977  *
4978  * 'dst_regno' is a register which will receive the value from the stack. It
4979  * can be -1, meaning that the read value is not going to a register.
4980  */
4981 static int check_stack_read(struct bpf_verifier_env *env,
4982 			    int ptr_regno, int off, int size,
4983 			    int dst_regno)
4984 {
4985 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4986 	struct bpf_func_state *state = func(env, reg);
4987 	int err;
4988 	/* Some accesses are only permitted with a static offset. */
4989 	bool var_off = !tnum_is_const(reg->var_off);
4990 
4991 	/* The offset is required to be static when reads don't go to a
4992 	 * register, in order to not leak pointers (see
4993 	 * check_stack_read_fixed_off).
4994 	 */
4995 	if (dst_regno < 0 && var_off) {
4996 		char tn_buf[48];
4997 
4998 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4999 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5000 			tn_buf, off, size);
5001 		return -EACCES;
5002 	}
5003 	/* Variable offset is prohibited for unprivileged mode for simplicity
5004 	 * since it requires corresponding support in Spectre masking for stack
5005 	 * ALU. See also retrieve_ptr_limit(). The check in
5006 	 * check_stack_access_for_ptr_arithmetic() called by
5007 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5008 	 * with variable offsets, therefore no check is required here. Further,
5009 	 * just checking it here would be insufficient as speculative stack
5010 	 * writes could still lead to unsafe speculative behaviour.
5011 	 */
5012 	if (!var_off) {
5013 		off += reg->var_off.value;
5014 		err = check_stack_read_fixed_off(env, state, off, size,
5015 						 dst_regno);
5016 	} else {
5017 		/* Variable offset stack reads need more conservative handling
5018 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5019 		 * branch.
5020 		 */
5021 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5022 					       dst_regno);
5023 	}
5024 	return err;
5025 }
5026 
5027 
5028 /* check_stack_write dispatches to check_stack_write_fixed_off or
5029  * check_stack_write_var_off.
5030  *
5031  * 'ptr_regno' is the register used as a pointer into the stack.
5032  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5033  * 'value_regno' is the register whose value we're writing to the stack. It can
5034  * be -1, meaning that we're not writing from a register.
5035  *
5036  * The caller must ensure that the offset falls within the maximum stack size.
5037  */
5038 static int check_stack_write(struct bpf_verifier_env *env,
5039 			     int ptr_regno, int off, int size,
5040 			     int value_regno, int insn_idx)
5041 {
5042 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5043 	struct bpf_func_state *state = func(env, reg);
5044 	int err;
5045 
5046 	if (tnum_is_const(reg->var_off)) {
5047 		off += reg->var_off.value;
5048 		err = check_stack_write_fixed_off(env, state, off, size,
5049 						  value_regno, insn_idx);
5050 	} else {
5051 		/* Variable offset stack reads need more conservative handling
5052 		 * than fixed offset ones.
5053 		 */
5054 		err = check_stack_write_var_off(env, state,
5055 						ptr_regno, off, size,
5056 						value_regno, insn_idx);
5057 	}
5058 	return err;
5059 }
5060 
5061 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5062 				 int off, int size, enum bpf_access_type type)
5063 {
5064 	struct bpf_reg_state *regs = cur_regs(env);
5065 	struct bpf_map *map = regs[regno].map_ptr;
5066 	u32 cap = bpf_map_flags_to_cap(map);
5067 
5068 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5069 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5070 			map->value_size, off, size);
5071 		return -EACCES;
5072 	}
5073 
5074 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5075 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5076 			map->value_size, off, size);
5077 		return -EACCES;
5078 	}
5079 
5080 	return 0;
5081 }
5082 
5083 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5084 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5085 			      int off, int size, u32 mem_size,
5086 			      bool zero_size_allowed)
5087 {
5088 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5089 	struct bpf_reg_state *reg;
5090 
5091 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5092 		return 0;
5093 
5094 	reg = &cur_regs(env)[regno];
5095 	switch (reg->type) {
5096 	case PTR_TO_MAP_KEY:
5097 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5098 			mem_size, off, size);
5099 		break;
5100 	case PTR_TO_MAP_VALUE:
5101 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5102 			mem_size, off, size);
5103 		break;
5104 	case PTR_TO_PACKET:
5105 	case PTR_TO_PACKET_META:
5106 	case PTR_TO_PACKET_END:
5107 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5108 			off, size, regno, reg->id, off, mem_size);
5109 		break;
5110 	case PTR_TO_MEM:
5111 	default:
5112 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5113 			mem_size, off, size);
5114 	}
5115 
5116 	return -EACCES;
5117 }
5118 
5119 /* check read/write into a memory region with possible variable offset */
5120 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5121 				   int off, int size, u32 mem_size,
5122 				   bool zero_size_allowed)
5123 {
5124 	struct bpf_verifier_state *vstate = env->cur_state;
5125 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5126 	struct bpf_reg_state *reg = &state->regs[regno];
5127 	int err;
5128 
5129 	/* We may have adjusted the register pointing to memory region, so we
5130 	 * need to try adding each of min_value and max_value to off
5131 	 * to make sure our theoretical access will be safe.
5132 	 *
5133 	 * The minimum value is only important with signed
5134 	 * comparisons where we can't assume the floor of a
5135 	 * value is 0.  If we are using signed variables for our
5136 	 * index'es we need to make sure that whatever we use
5137 	 * will have a set floor within our range.
5138 	 */
5139 	if (reg->smin_value < 0 &&
5140 	    (reg->smin_value == S64_MIN ||
5141 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5142 	      reg->smin_value + off < 0)) {
5143 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5144 			regno);
5145 		return -EACCES;
5146 	}
5147 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5148 				 mem_size, zero_size_allowed);
5149 	if (err) {
5150 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5151 			regno);
5152 		return err;
5153 	}
5154 
5155 	/* If we haven't set a max value then we need to bail since we can't be
5156 	 * sure we won't do bad things.
5157 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5158 	 */
5159 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5160 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5161 			regno);
5162 		return -EACCES;
5163 	}
5164 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5165 				 mem_size, zero_size_allowed);
5166 	if (err) {
5167 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5168 			regno);
5169 		return err;
5170 	}
5171 
5172 	return 0;
5173 }
5174 
5175 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5176 			       const struct bpf_reg_state *reg, int regno,
5177 			       bool fixed_off_ok)
5178 {
5179 	/* Access to this pointer-typed register or passing it to a helper
5180 	 * is only allowed in its original, unmodified form.
5181 	 */
5182 
5183 	if (reg->off < 0) {
5184 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5185 			reg_type_str(env, reg->type), regno, reg->off);
5186 		return -EACCES;
5187 	}
5188 
5189 	if (!fixed_off_ok && reg->off) {
5190 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5191 			reg_type_str(env, reg->type), regno, reg->off);
5192 		return -EACCES;
5193 	}
5194 
5195 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5196 		char tn_buf[48];
5197 
5198 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5199 		verbose(env, "variable %s access var_off=%s disallowed\n",
5200 			reg_type_str(env, reg->type), tn_buf);
5201 		return -EACCES;
5202 	}
5203 
5204 	return 0;
5205 }
5206 
5207 static int check_ptr_off_reg(struct bpf_verifier_env *env,
5208 		             const struct bpf_reg_state *reg, int regno)
5209 {
5210 	return __check_ptr_off_reg(env, reg, regno, false);
5211 }
5212 
5213 static int map_kptr_match_type(struct bpf_verifier_env *env,
5214 			       struct btf_field *kptr_field,
5215 			       struct bpf_reg_state *reg, u32 regno)
5216 {
5217 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5218 	int perm_flags;
5219 	const char *reg_name = "";
5220 
5221 	if (btf_is_kernel(reg->btf)) {
5222 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5223 
5224 		/* Only unreferenced case accepts untrusted pointers */
5225 		if (kptr_field->type == BPF_KPTR_UNREF)
5226 			perm_flags |= PTR_UNTRUSTED;
5227 	} else {
5228 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5229 		if (kptr_field->type == BPF_KPTR_PERCPU)
5230 			perm_flags |= MEM_PERCPU;
5231 	}
5232 
5233 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5234 		goto bad_type;
5235 
5236 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5237 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5238 
5239 	/* For ref_ptr case, release function check should ensure we get one
5240 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5241 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5242 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5243 	 * reg->off and reg->ref_obj_id are not needed here.
5244 	 */
5245 	if (__check_ptr_off_reg(env, reg, regno, true))
5246 		return -EACCES;
5247 
5248 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5249 	 * we also need to take into account the reg->off.
5250 	 *
5251 	 * We want to support cases like:
5252 	 *
5253 	 * struct foo {
5254 	 *         struct bar br;
5255 	 *         struct baz bz;
5256 	 * };
5257 	 *
5258 	 * struct foo *v;
5259 	 * v = func();	      // PTR_TO_BTF_ID
5260 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5261 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5262 	 *                    // first member type of struct after comparison fails
5263 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5264 	 *                    // to match type
5265 	 *
5266 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5267 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5268 	 * the struct to match type against first member of struct, i.e. reject
5269 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5270 	 * strict mode to true for type match.
5271 	 */
5272 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5273 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5274 				  kptr_field->type != BPF_KPTR_UNREF))
5275 		goto bad_type;
5276 	return 0;
5277 bad_type:
5278 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5279 		reg_type_str(env, reg->type), reg_name);
5280 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5281 	if (kptr_field->type == BPF_KPTR_UNREF)
5282 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5283 			targ_name);
5284 	else
5285 		verbose(env, "\n");
5286 	return -EINVAL;
5287 }
5288 
5289 static bool in_sleepable(struct bpf_verifier_env *env)
5290 {
5291 	return env->prog->sleepable ||
5292 	       (env->cur_state && env->cur_state->in_sleepable);
5293 }
5294 
5295 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5296  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5297  */
5298 static bool in_rcu_cs(struct bpf_verifier_env *env)
5299 {
5300 	return env->cur_state->active_rcu_lock ||
5301 	       env->cur_state->active_lock.ptr ||
5302 	       !in_sleepable(env);
5303 }
5304 
5305 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5306 BTF_SET_START(rcu_protected_types)
5307 BTF_ID(struct, prog_test_ref_kfunc)
5308 #ifdef CONFIG_CGROUPS
5309 BTF_ID(struct, cgroup)
5310 #endif
5311 #ifdef CONFIG_BPF_JIT
5312 BTF_ID(struct, bpf_cpumask)
5313 #endif
5314 BTF_ID(struct, task_struct)
5315 BTF_ID(struct, bpf_crypto_ctx)
5316 BTF_SET_END(rcu_protected_types)
5317 
5318 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5319 {
5320 	if (!btf_is_kernel(btf))
5321 		return true;
5322 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5323 }
5324 
5325 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5326 {
5327 	struct btf_struct_meta *meta;
5328 
5329 	if (btf_is_kernel(kptr_field->kptr.btf))
5330 		return NULL;
5331 
5332 	meta = btf_find_struct_meta(kptr_field->kptr.btf,
5333 				    kptr_field->kptr.btf_id);
5334 
5335 	return meta ? meta->record : NULL;
5336 }
5337 
5338 static bool rcu_safe_kptr(const struct btf_field *field)
5339 {
5340 	const struct btf_field_kptr *kptr = &field->kptr;
5341 
5342 	return field->type == BPF_KPTR_PERCPU ||
5343 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5344 }
5345 
5346 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5347 {
5348 	struct btf_record *rec;
5349 	u32 ret;
5350 
5351 	ret = PTR_MAYBE_NULL;
5352 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5353 		ret |= MEM_RCU;
5354 		if (kptr_field->type == BPF_KPTR_PERCPU)
5355 			ret |= MEM_PERCPU;
5356 		else if (!btf_is_kernel(kptr_field->kptr.btf))
5357 			ret |= MEM_ALLOC;
5358 
5359 		rec = kptr_pointee_btf_record(kptr_field);
5360 		if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5361 			ret |= NON_OWN_REF;
5362 	} else {
5363 		ret |= PTR_UNTRUSTED;
5364 	}
5365 
5366 	return ret;
5367 }
5368 
5369 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5370 				 int value_regno, int insn_idx,
5371 				 struct btf_field *kptr_field)
5372 {
5373 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5374 	int class = BPF_CLASS(insn->code);
5375 	struct bpf_reg_state *val_reg;
5376 
5377 	/* Things we already checked for in check_map_access and caller:
5378 	 *  - Reject cases where variable offset may touch kptr
5379 	 *  - size of access (must be BPF_DW)
5380 	 *  - tnum_is_const(reg->var_off)
5381 	 *  - kptr_field->offset == off + reg->var_off.value
5382 	 */
5383 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5384 	if (BPF_MODE(insn->code) != BPF_MEM) {
5385 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5386 		return -EACCES;
5387 	}
5388 
5389 	/* We only allow loading referenced kptr, since it will be marked as
5390 	 * untrusted, similar to unreferenced kptr.
5391 	 */
5392 	if (class != BPF_LDX &&
5393 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5394 		verbose(env, "store to referenced kptr disallowed\n");
5395 		return -EACCES;
5396 	}
5397 
5398 	if (class == BPF_LDX) {
5399 		val_reg = reg_state(env, value_regno);
5400 		/* We can simply mark the value_regno receiving the pointer
5401 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5402 		 */
5403 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5404 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5405 	} else if (class == BPF_STX) {
5406 		val_reg = reg_state(env, value_regno);
5407 		if (!register_is_null(val_reg) &&
5408 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5409 			return -EACCES;
5410 	} else if (class == BPF_ST) {
5411 		if (insn->imm) {
5412 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5413 				kptr_field->offset);
5414 			return -EACCES;
5415 		}
5416 	} else {
5417 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5418 		return -EACCES;
5419 	}
5420 	return 0;
5421 }
5422 
5423 /* check read/write into a map element with possible variable offset */
5424 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5425 			    int off, int size, bool zero_size_allowed,
5426 			    enum bpf_access_src src)
5427 {
5428 	struct bpf_verifier_state *vstate = env->cur_state;
5429 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5430 	struct bpf_reg_state *reg = &state->regs[regno];
5431 	struct bpf_map *map = reg->map_ptr;
5432 	struct btf_record *rec;
5433 	int err, i;
5434 
5435 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5436 				      zero_size_allowed);
5437 	if (err)
5438 		return err;
5439 
5440 	if (IS_ERR_OR_NULL(map->record))
5441 		return 0;
5442 	rec = map->record;
5443 	for (i = 0; i < rec->cnt; i++) {
5444 		struct btf_field *field = &rec->fields[i];
5445 		u32 p = field->offset;
5446 
5447 		/* If any part of a field  can be touched by load/store, reject
5448 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5449 		 * it is sufficient to check x1 < y2 && y1 < x2.
5450 		 */
5451 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5452 		    p < reg->umax_value + off + size) {
5453 			switch (field->type) {
5454 			case BPF_KPTR_UNREF:
5455 			case BPF_KPTR_REF:
5456 			case BPF_KPTR_PERCPU:
5457 				if (src != ACCESS_DIRECT) {
5458 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5459 					return -EACCES;
5460 				}
5461 				if (!tnum_is_const(reg->var_off)) {
5462 					verbose(env, "kptr access cannot have variable offset\n");
5463 					return -EACCES;
5464 				}
5465 				if (p != off + reg->var_off.value) {
5466 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5467 						p, off + reg->var_off.value);
5468 					return -EACCES;
5469 				}
5470 				if (size != bpf_size_to_bytes(BPF_DW)) {
5471 					verbose(env, "kptr access size must be BPF_DW\n");
5472 					return -EACCES;
5473 				}
5474 				break;
5475 			default:
5476 				verbose(env, "%s cannot be accessed directly by load/store\n",
5477 					btf_field_type_name(field->type));
5478 				return -EACCES;
5479 			}
5480 		}
5481 	}
5482 	return 0;
5483 }
5484 
5485 #define MAX_PACKET_OFF 0xffff
5486 
5487 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5488 				       const struct bpf_call_arg_meta *meta,
5489 				       enum bpf_access_type t)
5490 {
5491 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5492 
5493 	switch (prog_type) {
5494 	/* Program types only with direct read access go here! */
5495 	case BPF_PROG_TYPE_LWT_IN:
5496 	case BPF_PROG_TYPE_LWT_OUT:
5497 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5498 	case BPF_PROG_TYPE_SK_REUSEPORT:
5499 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5500 	case BPF_PROG_TYPE_CGROUP_SKB:
5501 		if (t == BPF_WRITE)
5502 			return false;
5503 		fallthrough;
5504 
5505 	/* Program types with direct read + write access go here! */
5506 	case BPF_PROG_TYPE_SCHED_CLS:
5507 	case BPF_PROG_TYPE_SCHED_ACT:
5508 	case BPF_PROG_TYPE_XDP:
5509 	case BPF_PROG_TYPE_LWT_XMIT:
5510 	case BPF_PROG_TYPE_SK_SKB:
5511 	case BPF_PROG_TYPE_SK_MSG:
5512 		if (meta)
5513 			return meta->pkt_access;
5514 
5515 		env->seen_direct_write = true;
5516 		return true;
5517 
5518 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5519 		if (t == BPF_WRITE)
5520 			env->seen_direct_write = true;
5521 
5522 		return true;
5523 
5524 	default:
5525 		return false;
5526 	}
5527 }
5528 
5529 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5530 			       int size, bool zero_size_allowed)
5531 {
5532 	struct bpf_reg_state *regs = cur_regs(env);
5533 	struct bpf_reg_state *reg = &regs[regno];
5534 	int err;
5535 
5536 	/* We may have added a variable offset to the packet pointer; but any
5537 	 * reg->range we have comes after that.  We are only checking the fixed
5538 	 * offset.
5539 	 */
5540 
5541 	/* We don't allow negative numbers, because we aren't tracking enough
5542 	 * detail to prove they're safe.
5543 	 */
5544 	if (reg->smin_value < 0) {
5545 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5546 			regno);
5547 		return -EACCES;
5548 	}
5549 
5550 	err = reg->range < 0 ? -EINVAL :
5551 	      __check_mem_access(env, regno, off, size, reg->range,
5552 				 zero_size_allowed);
5553 	if (err) {
5554 		verbose(env, "R%d offset is outside of the packet\n", regno);
5555 		return err;
5556 	}
5557 
5558 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5559 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5560 	 * otherwise find_good_pkt_pointers would have refused to set range info
5561 	 * that __check_mem_access would have rejected this pkt access.
5562 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5563 	 */
5564 	env->prog->aux->max_pkt_offset =
5565 		max_t(u32, env->prog->aux->max_pkt_offset,
5566 		      off + reg->umax_value + size - 1);
5567 
5568 	return err;
5569 }
5570 
5571 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5572 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5573 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5574 			    struct btf **btf, u32 *btf_id)
5575 {
5576 	struct bpf_insn_access_aux info = {
5577 		.reg_type = *reg_type,
5578 		.log = &env->log,
5579 	};
5580 
5581 	if (env->ops->is_valid_access &&
5582 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5583 		/* A non zero info.ctx_field_size indicates that this field is a
5584 		 * candidate for later verifier transformation to load the whole
5585 		 * field and then apply a mask when accessed with a narrower
5586 		 * access than actual ctx access size. A zero info.ctx_field_size
5587 		 * will only allow for whole field access and rejects any other
5588 		 * type of narrower access.
5589 		 */
5590 		*reg_type = info.reg_type;
5591 
5592 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5593 			*btf = info.btf;
5594 			*btf_id = info.btf_id;
5595 		} else {
5596 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5597 		}
5598 		/* remember the offset of last byte accessed in ctx */
5599 		if (env->prog->aux->max_ctx_offset < off + size)
5600 			env->prog->aux->max_ctx_offset = off + size;
5601 		return 0;
5602 	}
5603 
5604 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5605 	return -EACCES;
5606 }
5607 
5608 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5609 				  int size)
5610 {
5611 	if (size < 0 || off < 0 ||
5612 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5613 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5614 			off, size);
5615 		return -EACCES;
5616 	}
5617 	return 0;
5618 }
5619 
5620 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5621 			     u32 regno, int off, int size,
5622 			     enum bpf_access_type t)
5623 {
5624 	struct bpf_reg_state *regs = cur_regs(env);
5625 	struct bpf_reg_state *reg = &regs[regno];
5626 	struct bpf_insn_access_aux info = {};
5627 	bool valid;
5628 
5629 	if (reg->smin_value < 0) {
5630 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5631 			regno);
5632 		return -EACCES;
5633 	}
5634 
5635 	switch (reg->type) {
5636 	case PTR_TO_SOCK_COMMON:
5637 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5638 		break;
5639 	case PTR_TO_SOCKET:
5640 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5641 		break;
5642 	case PTR_TO_TCP_SOCK:
5643 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5644 		break;
5645 	case PTR_TO_XDP_SOCK:
5646 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5647 		break;
5648 	default:
5649 		valid = false;
5650 	}
5651 
5652 
5653 	if (valid) {
5654 		env->insn_aux_data[insn_idx].ctx_field_size =
5655 			info.ctx_field_size;
5656 		return 0;
5657 	}
5658 
5659 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5660 		regno, reg_type_str(env, reg->type), off, size);
5661 
5662 	return -EACCES;
5663 }
5664 
5665 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5666 {
5667 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5668 }
5669 
5670 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5671 {
5672 	const struct bpf_reg_state *reg = reg_state(env, regno);
5673 
5674 	return reg->type == PTR_TO_CTX;
5675 }
5676 
5677 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5678 {
5679 	const struct bpf_reg_state *reg = reg_state(env, regno);
5680 
5681 	return type_is_sk_pointer(reg->type);
5682 }
5683 
5684 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5685 {
5686 	const struct bpf_reg_state *reg = reg_state(env, regno);
5687 
5688 	return type_is_pkt_pointer(reg->type);
5689 }
5690 
5691 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5692 {
5693 	const struct bpf_reg_state *reg = reg_state(env, regno);
5694 
5695 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5696 	return reg->type == PTR_TO_FLOW_KEYS;
5697 }
5698 
5699 static bool is_arena_reg(struct bpf_verifier_env *env, int regno)
5700 {
5701 	const struct bpf_reg_state *reg = reg_state(env, regno);
5702 
5703 	return reg->type == PTR_TO_ARENA;
5704 }
5705 
5706 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5707 #ifdef CONFIG_NET
5708 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5709 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5710 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5711 #endif
5712 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5713 };
5714 
5715 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5716 {
5717 	/* A referenced register is always trusted. */
5718 	if (reg->ref_obj_id)
5719 		return true;
5720 
5721 	/* Types listed in the reg2btf_ids are always trusted */
5722 	if (reg2btf_ids[base_type(reg->type)] &&
5723 	    !bpf_type_has_unsafe_modifiers(reg->type))
5724 		return true;
5725 
5726 	/* If a register is not referenced, it is trusted if it has the
5727 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5728 	 * other type modifiers may be safe, but we elect to take an opt-in
5729 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5730 	 * not.
5731 	 *
5732 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5733 	 * for whether a register is trusted.
5734 	 */
5735 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5736 	       !bpf_type_has_unsafe_modifiers(reg->type);
5737 }
5738 
5739 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5740 {
5741 	return reg->type & MEM_RCU;
5742 }
5743 
5744 static void clear_trusted_flags(enum bpf_type_flag *flag)
5745 {
5746 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5747 }
5748 
5749 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5750 				   const struct bpf_reg_state *reg,
5751 				   int off, int size, bool strict)
5752 {
5753 	struct tnum reg_off;
5754 	int ip_align;
5755 
5756 	/* Byte size accesses are always allowed. */
5757 	if (!strict || size == 1)
5758 		return 0;
5759 
5760 	/* For platforms that do not have a Kconfig enabling
5761 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5762 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5763 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5764 	 * to this code only in strict mode where we want to emulate
5765 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5766 	 * unconditional IP align value of '2'.
5767 	 */
5768 	ip_align = 2;
5769 
5770 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5771 	if (!tnum_is_aligned(reg_off, size)) {
5772 		char tn_buf[48];
5773 
5774 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5775 		verbose(env,
5776 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5777 			ip_align, tn_buf, reg->off, off, size);
5778 		return -EACCES;
5779 	}
5780 
5781 	return 0;
5782 }
5783 
5784 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5785 				       const struct bpf_reg_state *reg,
5786 				       const char *pointer_desc,
5787 				       int off, int size, bool strict)
5788 {
5789 	struct tnum reg_off;
5790 
5791 	/* Byte size accesses are always allowed. */
5792 	if (!strict || size == 1)
5793 		return 0;
5794 
5795 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5796 	if (!tnum_is_aligned(reg_off, size)) {
5797 		char tn_buf[48];
5798 
5799 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5800 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5801 			pointer_desc, tn_buf, reg->off, off, size);
5802 		return -EACCES;
5803 	}
5804 
5805 	return 0;
5806 }
5807 
5808 static int check_ptr_alignment(struct bpf_verifier_env *env,
5809 			       const struct bpf_reg_state *reg, int off,
5810 			       int size, bool strict_alignment_once)
5811 {
5812 	bool strict = env->strict_alignment || strict_alignment_once;
5813 	const char *pointer_desc = "";
5814 
5815 	switch (reg->type) {
5816 	case PTR_TO_PACKET:
5817 	case PTR_TO_PACKET_META:
5818 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5819 		 * right in front, treat it the very same way.
5820 		 */
5821 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5822 	case PTR_TO_FLOW_KEYS:
5823 		pointer_desc = "flow keys ";
5824 		break;
5825 	case PTR_TO_MAP_KEY:
5826 		pointer_desc = "key ";
5827 		break;
5828 	case PTR_TO_MAP_VALUE:
5829 		pointer_desc = "value ";
5830 		break;
5831 	case PTR_TO_CTX:
5832 		pointer_desc = "context ";
5833 		break;
5834 	case PTR_TO_STACK:
5835 		pointer_desc = "stack ";
5836 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5837 		 * and check_stack_read_fixed_off() relies on stack accesses being
5838 		 * aligned.
5839 		 */
5840 		strict = true;
5841 		break;
5842 	case PTR_TO_SOCKET:
5843 		pointer_desc = "sock ";
5844 		break;
5845 	case PTR_TO_SOCK_COMMON:
5846 		pointer_desc = "sock_common ";
5847 		break;
5848 	case PTR_TO_TCP_SOCK:
5849 		pointer_desc = "tcp_sock ";
5850 		break;
5851 	case PTR_TO_XDP_SOCK:
5852 		pointer_desc = "xdp_sock ";
5853 		break;
5854 	case PTR_TO_ARENA:
5855 		return 0;
5856 	default:
5857 		break;
5858 	}
5859 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5860 					   strict);
5861 }
5862 
5863 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth)
5864 {
5865 	if (env->prog->jit_requested)
5866 		return round_up(stack_depth, 16);
5867 
5868 	/* round up to 32-bytes, since this is granularity
5869 	 * of interpreter stack size
5870 	 */
5871 	return round_up(max_t(u32, stack_depth, 1), 32);
5872 }
5873 
5874 /* starting from main bpf function walk all instructions of the function
5875  * and recursively walk all callees that given function can call.
5876  * Ignore jump and exit insns.
5877  * Since recursion is prevented by check_cfg() this algorithm
5878  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5879  */
5880 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5881 {
5882 	struct bpf_subprog_info *subprog = env->subprog_info;
5883 	struct bpf_insn *insn = env->prog->insnsi;
5884 	int depth = 0, frame = 0, i, subprog_end;
5885 	bool tail_call_reachable = false;
5886 	int ret_insn[MAX_CALL_FRAMES];
5887 	int ret_prog[MAX_CALL_FRAMES];
5888 	int j;
5889 
5890 	i = subprog[idx].start;
5891 process_func:
5892 	/* protect against potential stack overflow that might happen when
5893 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5894 	 * depth for such case down to 256 so that the worst case scenario
5895 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5896 	 * 8k).
5897 	 *
5898 	 * To get the idea what might happen, see an example:
5899 	 * func1 -> sub rsp, 128
5900 	 *  subfunc1 -> sub rsp, 256
5901 	 *  tailcall1 -> add rsp, 256
5902 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5903 	 *   subfunc2 -> sub rsp, 64
5904 	 *   subfunc22 -> sub rsp, 128
5905 	 *   tailcall2 -> add rsp, 128
5906 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5907 	 *
5908 	 * tailcall will unwind the current stack frame but it will not get rid
5909 	 * of caller's stack as shown on the example above.
5910 	 */
5911 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5912 		verbose(env,
5913 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5914 			depth);
5915 		return -EACCES;
5916 	}
5917 	depth += round_up_stack_depth(env, subprog[idx].stack_depth);
5918 	if (depth > MAX_BPF_STACK) {
5919 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5920 			frame + 1, depth);
5921 		return -EACCES;
5922 	}
5923 continue_func:
5924 	subprog_end = subprog[idx + 1].start;
5925 	for (; i < subprog_end; i++) {
5926 		int next_insn, sidx;
5927 
5928 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
5929 			bool err = false;
5930 
5931 			if (!is_bpf_throw_kfunc(insn + i))
5932 				continue;
5933 			if (subprog[idx].is_cb)
5934 				err = true;
5935 			for (int c = 0; c < frame && !err; c++) {
5936 				if (subprog[ret_prog[c]].is_cb) {
5937 					err = true;
5938 					break;
5939 				}
5940 			}
5941 			if (!err)
5942 				continue;
5943 			verbose(env,
5944 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
5945 				i, idx);
5946 			return -EINVAL;
5947 		}
5948 
5949 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5950 			continue;
5951 		/* remember insn and function to return to */
5952 		ret_insn[frame] = i + 1;
5953 		ret_prog[frame] = idx;
5954 
5955 		/* find the callee */
5956 		next_insn = i + insn[i].imm + 1;
5957 		sidx = find_subprog(env, next_insn);
5958 		if (sidx < 0) {
5959 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5960 				  next_insn);
5961 			return -EFAULT;
5962 		}
5963 		if (subprog[sidx].is_async_cb) {
5964 			if (subprog[sidx].has_tail_call) {
5965 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5966 				return -EFAULT;
5967 			}
5968 			/* async callbacks don't increase bpf prog stack size unless called directly */
5969 			if (!bpf_pseudo_call(insn + i))
5970 				continue;
5971 			if (subprog[sidx].is_exception_cb) {
5972 				verbose(env, "insn %d cannot call exception cb directly\n", i);
5973 				return -EINVAL;
5974 			}
5975 		}
5976 		i = next_insn;
5977 		idx = sidx;
5978 
5979 		if (subprog[idx].has_tail_call)
5980 			tail_call_reachable = true;
5981 
5982 		frame++;
5983 		if (frame >= MAX_CALL_FRAMES) {
5984 			verbose(env, "the call stack of %d frames is too deep !\n",
5985 				frame);
5986 			return -E2BIG;
5987 		}
5988 		goto process_func;
5989 	}
5990 	/* if tail call got detected across bpf2bpf calls then mark each of the
5991 	 * currently present subprog frames as tail call reachable subprogs;
5992 	 * this info will be utilized by JIT so that we will be preserving the
5993 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5994 	 */
5995 	if (tail_call_reachable)
5996 		for (j = 0; j < frame; j++) {
5997 			if (subprog[ret_prog[j]].is_exception_cb) {
5998 				verbose(env, "cannot tail call within exception cb\n");
5999 				return -EINVAL;
6000 			}
6001 			subprog[ret_prog[j]].tail_call_reachable = true;
6002 		}
6003 	if (subprog[0].tail_call_reachable)
6004 		env->prog->aux->tail_call_reachable = true;
6005 
6006 	/* end of for() loop means the last insn of the 'subprog'
6007 	 * was reached. Doesn't matter whether it was JA or EXIT
6008 	 */
6009 	if (frame == 0)
6010 		return 0;
6011 	depth -= round_up_stack_depth(env, subprog[idx].stack_depth);
6012 	frame--;
6013 	i = ret_insn[frame];
6014 	idx = ret_prog[frame];
6015 	goto continue_func;
6016 }
6017 
6018 static int check_max_stack_depth(struct bpf_verifier_env *env)
6019 {
6020 	struct bpf_subprog_info *si = env->subprog_info;
6021 	int ret;
6022 
6023 	for (int i = 0; i < env->subprog_cnt; i++) {
6024 		if (!i || si[i].is_async_cb) {
6025 			ret = check_max_stack_depth_subprog(env, i);
6026 			if (ret < 0)
6027 				return ret;
6028 		}
6029 		continue;
6030 	}
6031 	return 0;
6032 }
6033 
6034 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6035 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6036 				  const struct bpf_insn *insn, int idx)
6037 {
6038 	int start = idx + insn->imm + 1, subprog;
6039 
6040 	subprog = find_subprog(env, start);
6041 	if (subprog < 0) {
6042 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6043 			  start);
6044 		return -EFAULT;
6045 	}
6046 	return env->subprog_info[subprog].stack_depth;
6047 }
6048 #endif
6049 
6050 static int __check_buffer_access(struct bpf_verifier_env *env,
6051 				 const char *buf_info,
6052 				 const struct bpf_reg_state *reg,
6053 				 int regno, int off, int size)
6054 {
6055 	if (off < 0) {
6056 		verbose(env,
6057 			"R%d invalid %s buffer access: off=%d, size=%d\n",
6058 			regno, buf_info, off, size);
6059 		return -EACCES;
6060 	}
6061 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6062 		char tn_buf[48];
6063 
6064 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6065 		verbose(env,
6066 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6067 			regno, off, tn_buf);
6068 		return -EACCES;
6069 	}
6070 
6071 	return 0;
6072 }
6073 
6074 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6075 				  const struct bpf_reg_state *reg,
6076 				  int regno, int off, int size)
6077 {
6078 	int err;
6079 
6080 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6081 	if (err)
6082 		return err;
6083 
6084 	if (off + size > env->prog->aux->max_tp_access)
6085 		env->prog->aux->max_tp_access = off + size;
6086 
6087 	return 0;
6088 }
6089 
6090 static int check_buffer_access(struct bpf_verifier_env *env,
6091 			       const struct bpf_reg_state *reg,
6092 			       int regno, int off, int size,
6093 			       bool zero_size_allowed,
6094 			       u32 *max_access)
6095 {
6096 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6097 	int err;
6098 
6099 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6100 	if (err)
6101 		return err;
6102 
6103 	if (off + size > *max_access)
6104 		*max_access = off + size;
6105 
6106 	return 0;
6107 }
6108 
6109 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6110 static void zext_32_to_64(struct bpf_reg_state *reg)
6111 {
6112 	reg->var_off = tnum_subreg(reg->var_off);
6113 	__reg_assign_32_into_64(reg);
6114 }
6115 
6116 /* truncate register to smaller size (in bytes)
6117  * must be called with size < BPF_REG_SIZE
6118  */
6119 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6120 {
6121 	u64 mask;
6122 
6123 	/* clear high bits in bit representation */
6124 	reg->var_off = tnum_cast(reg->var_off, size);
6125 
6126 	/* fix arithmetic bounds */
6127 	mask = ((u64)1 << (size * 8)) - 1;
6128 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6129 		reg->umin_value &= mask;
6130 		reg->umax_value &= mask;
6131 	} else {
6132 		reg->umin_value = 0;
6133 		reg->umax_value = mask;
6134 	}
6135 	reg->smin_value = reg->umin_value;
6136 	reg->smax_value = reg->umax_value;
6137 
6138 	/* If size is smaller than 32bit register the 32bit register
6139 	 * values are also truncated so we push 64-bit bounds into
6140 	 * 32-bit bounds. Above were truncated < 32-bits already.
6141 	 */
6142 	if (size < 4)
6143 		__mark_reg32_unbounded(reg);
6144 
6145 	reg_bounds_sync(reg);
6146 }
6147 
6148 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6149 {
6150 	if (size == 1) {
6151 		reg->smin_value = reg->s32_min_value = S8_MIN;
6152 		reg->smax_value = reg->s32_max_value = S8_MAX;
6153 	} else if (size == 2) {
6154 		reg->smin_value = reg->s32_min_value = S16_MIN;
6155 		reg->smax_value = reg->s32_max_value = S16_MAX;
6156 	} else {
6157 		/* size == 4 */
6158 		reg->smin_value = reg->s32_min_value = S32_MIN;
6159 		reg->smax_value = reg->s32_max_value = S32_MAX;
6160 	}
6161 	reg->umin_value = reg->u32_min_value = 0;
6162 	reg->umax_value = U64_MAX;
6163 	reg->u32_max_value = U32_MAX;
6164 	reg->var_off = tnum_unknown;
6165 }
6166 
6167 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6168 {
6169 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6170 	u64 top_smax_value, top_smin_value;
6171 	u64 num_bits = size * 8;
6172 
6173 	if (tnum_is_const(reg->var_off)) {
6174 		u64_cval = reg->var_off.value;
6175 		if (size == 1)
6176 			reg->var_off = tnum_const((s8)u64_cval);
6177 		else if (size == 2)
6178 			reg->var_off = tnum_const((s16)u64_cval);
6179 		else
6180 			/* size == 4 */
6181 			reg->var_off = tnum_const((s32)u64_cval);
6182 
6183 		u64_cval = reg->var_off.value;
6184 		reg->smax_value = reg->smin_value = u64_cval;
6185 		reg->umax_value = reg->umin_value = u64_cval;
6186 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6187 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6188 		return;
6189 	}
6190 
6191 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6192 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6193 
6194 	if (top_smax_value != top_smin_value)
6195 		goto out;
6196 
6197 	/* find the s64_min and s64_min after sign extension */
6198 	if (size == 1) {
6199 		init_s64_max = (s8)reg->smax_value;
6200 		init_s64_min = (s8)reg->smin_value;
6201 	} else if (size == 2) {
6202 		init_s64_max = (s16)reg->smax_value;
6203 		init_s64_min = (s16)reg->smin_value;
6204 	} else {
6205 		init_s64_max = (s32)reg->smax_value;
6206 		init_s64_min = (s32)reg->smin_value;
6207 	}
6208 
6209 	s64_max = max(init_s64_max, init_s64_min);
6210 	s64_min = min(init_s64_max, init_s64_min);
6211 
6212 	/* both of s64_max/s64_min positive or negative */
6213 	if ((s64_max >= 0) == (s64_min >= 0)) {
6214 		reg->smin_value = reg->s32_min_value = s64_min;
6215 		reg->smax_value = reg->s32_max_value = s64_max;
6216 		reg->umin_value = reg->u32_min_value = s64_min;
6217 		reg->umax_value = reg->u32_max_value = s64_max;
6218 		reg->var_off = tnum_range(s64_min, s64_max);
6219 		return;
6220 	}
6221 
6222 out:
6223 	set_sext64_default_val(reg, size);
6224 }
6225 
6226 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6227 {
6228 	if (size == 1) {
6229 		reg->s32_min_value = S8_MIN;
6230 		reg->s32_max_value = S8_MAX;
6231 	} else {
6232 		/* size == 2 */
6233 		reg->s32_min_value = S16_MIN;
6234 		reg->s32_max_value = S16_MAX;
6235 	}
6236 	reg->u32_min_value = 0;
6237 	reg->u32_max_value = U32_MAX;
6238 }
6239 
6240 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6241 {
6242 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6243 	u32 top_smax_value, top_smin_value;
6244 	u32 num_bits = size * 8;
6245 
6246 	if (tnum_is_const(reg->var_off)) {
6247 		u32_val = reg->var_off.value;
6248 		if (size == 1)
6249 			reg->var_off = tnum_const((s8)u32_val);
6250 		else
6251 			reg->var_off = tnum_const((s16)u32_val);
6252 
6253 		u32_val = reg->var_off.value;
6254 		reg->s32_min_value = reg->s32_max_value = u32_val;
6255 		reg->u32_min_value = reg->u32_max_value = u32_val;
6256 		return;
6257 	}
6258 
6259 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6260 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6261 
6262 	if (top_smax_value != top_smin_value)
6263 		goto out;
6264 
6265 	/* find the s32_min and s32_min after sign extension */
6266 	if (size == 1) {
6267 		init_s32_max = (s8)reg->s32_max_value;
6268 		init_s32_min = (s8)reg->s32_min_value;
6269 	} else {
6270 		/* size == 2 */
6271 		init_s32_max = (s16)reg->s32_max_value;
6272 		init_s32_min = (s16)reg->s32_min_value;
6273 	}
6274 	s32_max = max(init_s32_max, init_s32_min);
6275 	s32_min = min(init_s32_max, init_s32_min);
6276 
6277 	if ((s32_min >= 0) == (s32_max >= 0)) {
6278 		reg->s32_min_value = s32_min;
6279 		reg->s32_max_value = s32_max;
6280 		reg->u32_min_value = (u32)s32_min;
6281 		reg->u32_max_value = (u32)s32_max;
6282 		return;
6283 	}
6284 
6285 out:
6286 	set_sext32_default_val(reg, size);
6287 }
6288 
6289 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6290 {
6291 	/* A map is considered read-only if the following condition are true:
6292 	 *
6293 	 * 1) BPF program side cannot change any of the map content. The
6294 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6295 	 *    and was set at map creation time.
6296 	 * 2) The map value(s) have been initialized from user space by a
6297 	 *    loader and then "frozen", such that no new map update/delete
6298 	 *    operations from syscall side are possible for the rest of
6299 	 *    the map's lifetime from that point onwards.
6300 	 * 3) Any parallel/pending map update/delete operations from syscall
6301 	 *    side have been completed. Only after that point, it's safe to
6302 	 *    assume that map value(s) are immutable.
6303 	 */
6304 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6305 	       READ_ONCE(map->frozen) &&
6306 	       !bpf_map_write_active(map);
6307 }
6308 
6309 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6310 			       bool is_ldsx)
6311 {
6312 	void *ptr;
6313 	u64 addr;
6314 	int err;
6315 
6316 	err = map->ops->map_direct_value_addr(map, &addr, off);
6317 	if (err)
6318 		return err;
6319 	ptr = (void *)(long)addr + off;
6320 
6321 	switch (size) {
6322 	case sizeof(u8):
6323 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6324 		break;
6325 	case sizeof(u16):
6326 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6327 		break;
6328 	case sizeof(u32):
6329 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6330 		break;
6331 	case sizeof(u64):
6332 		*val = *(u64 *)ptr;
6333 		break;
6334 	default:
6335 		return -EINVAL;
6336 	}
6337 	return 0;
6338 }
6339 
6340 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6341 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6342 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6343 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type)  __PASTE(__type, __safe_trusted_or_null)
6344 
6345 /*
6346  * Allow list few fields as RCU trusted or full trusted.
6347  * This logic doesn't allow mix tagging and will be removed once GCC supports
6348  * btf_type_tag.
6349  */
6350 
6351 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6352 BTF_TYPE_SAFE_RCU(struct task_struct) {
6353 	const cpumask_t *cpus_ptr;
6354 	struct css_set __rcu *cgroups;
6355 	struct task_struct __rcu *real_parent;
6356 	struct task_struct *group_leader;
6357 };
6358 
6359 BTF_TYPE_SAFE_RCU(struct cgroup) {
6360 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6361 	struct kernfs_node *kn;
6362 };
6363 
6364 BTF_TYPE_SAFE_RCU(struct css_set) {
6365 	struct cgroup *dfl_cgrp;
6366 };
6367 
6368 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6369 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6370 	struct file __rcu *exe_file;
6371 };
6372 
6373 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6374  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6375  */
6376 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6377 	struct sock *sk;
6378 };
6379 
6380 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6381 	struct sock *sk;
6382 };
6383 
6384 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6385 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6386 	struct seq_file *seq;
6387 };
6388 
6389 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6390 	struct bpf_iter_meta *meta;
6391 	struct task_struct *task;
6392 };
6393 
6394 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6395 	struct file *file;
6396 };
6397 
6398 BTF_TYPE_SAFE_TRUSTED(struct file) {
6399 	struct inode *f_inode;
6400 };
6401 
6402 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6403 	/* no negative dentry-s in places where bpf can see it */
6404 	struct inode *d_inode;
6405 };
6406 
6407 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
6408 	struct sock *sk;
6409 };
6410 
6411 static bool type_is_rcu(struct bpf_verifier_env *env,
6412 			struct bpf_reg_state *reg,
6413 			const char *field_name, u32 btf_id)
6414 {
6415 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6416 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6417 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6418 
6419 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6420 }
6421 
6422 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6423 				struct bpf_reg_state *reg,
6424 				const char *field_name, u32 btf_id)
6425 {
6426 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6427 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6428 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6429 
6430 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6431 }
6432 
6433 static bool type_is_trusted(struct bpf_verifier_env *env,
6434 			    struct bpf_reg_state *reg,
6435 			    const char *field_name, u32 btf_id)
6436 {
6437 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6438 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6439 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6440 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6441 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6442 
6443 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6444 }
6445 
6446 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
6447 				    struct bpf_reg_state *reg,
6448 				    const char *field_name, u32 btf_id)
6449 {
6450 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
6451 
6452 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
6453 					  "__safe_trusted_or_null");
6454 }
6455 
6456 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6457 				   struct bpf_reg_state *regs,
6458 				   int regno, int off, int size,
6459 				   enum bpf_access_type atype,
6460 				   int value_regno)
6461 {
6462 	struct bpf_reg_state *reg = regs + regno;
6463 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6464 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6465 	const char *field_name = NULL;
6466 	enum bpf_type_flag flag = 0;
6467 	u32 btf_id = 0;
6468 	int ret;
6469 
6470 	if (!env->allow_ptr_leaks) {
6471 		verbose(env,
6472 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6473 			tname);
6474 		return -EPERM;
6475 	}
6476 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6477 		verbose(env,
6478 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6479 			tname);
6480 		return -EINVAL;
6481 	}
6482 	if (off < 0) {
6483 		verbose(env,
6484 			"R%d is ptr_%s invalid negative access: off=%d\n",
6485 			regno, tname, off);
6486 		return -EACCES;
6487 	}
6488 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6489 		char tn_buf[48];
6490 
6491 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6492 		verbose(env,
6493 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6494 			regno, tname, off, tn_buf);
6495 		return -EACCES;
6496 	}
6497 
6498 	if (reg->type & MEM_USER) {
6499 		verbose(env,
6500 			"R%d is ptr_%s access user memory: off=%d\n",
6501 			regno, tname, off);
6502 		return -EACCES;
6503 	}
6504 
6505 	if (reg->type & MEM_PERCPU) {
6506 		verbose(env,
6507 			"R%d is ptr_%s access percpu memory: off=%d\n",
6508 			regno, tname, off);
6509 		return -EACCES;
6510 	}
6511 
6512 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6513 		if (!btf_is_kernel(reg->btf)) {
6514 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6515 			return -EFAULT;
6516 		}
6517 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6518 	} else {
6519 		/* Writes are permitted with default btf_struct_access for
6520 		 * program allocated objects (which always have ref_obj_id > 0),
6521 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6522 		 */
6523 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6524 			verbose(env, "only read is supported\n");
6525 			return -EACCES;
6526 		}
6527 
6528 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6529 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6530 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6531 			return -EFAULT;
6532 		}
6533 
6534 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6535 	}
6536 
6537 	if (ret < 0)
6538 		return ret;
6539 
6540 	if (ret != PTR_TO_BTF_ID) {
6541 		/* just mark; */
6542 
6543 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6544 		/* If this is an untrusted pointer, all pointers formed by walking it
6545 		 * also inherit the untrusted flag.
6546 		 */
6547 		flag = PTR_UNTRUSTED;
6548 
6549 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6550 		/* By default any pointer obtained from walking a trusted pointer is no
6551 		 * longer trusted, unless the field being accessed has explicitly been
6552 		 * marked as inheriting its parent's state of trust (either full or RCU).
6553 		 * For example:
6554 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6555 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6556 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6557 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6558 		 *
6559 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6560 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6561 		 */
6562 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6563 			flag |= PTR_TRUSTED;
6564 		} else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
6565 			flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
6566 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6567 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6568 				/* ignore __rcu tag and mark it MEM_RCU */
6569 				flag |= MEM_RCU;
6570 			} else if (flag & MEM_RCU ||
6571 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6572 				/* __rcu tagged pointers can be NULL */
6573 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6574 
6575 				/* We always trust them */
6576 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6577 				    flag & PTR_UNTRUSTED)
6578 					flag &= ~PTR_UNTRUSTED;
6579 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6580 				/* keep as-is */
6581 			} else {
6582 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6583 				clear_trusted_flags(&flag);
6584 			}
6585 		} else {
6586 			/*
6587 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6588 			 * aggressively mark as untrusted otherwise such
6589 			 * pointers will be plain PTR_TO_BTF_ID without flags
6590 			 * and will be allowed to be passed into helpers for
6591 			 * compat reasons.
6592 			 */
6593 			flag = PTR_UNTRUSTED;
6594 		}
6595 	} else {
6596 		/* Old compat. Deprecated */
6597 		clear_trusted_flags(&flag);
6598 	}
6599 
6600 	if (atype == BPF_READ && value_regno >= 0)
6601 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6602 
6603 	return 0;
6604 }
6605 
6606 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6607 				   struct bpf_reg_state *regs,
6608 				   int regno, int off, int size,
6609 				   enum bpf_access_type atype,
6610 				   int value_regno)
6611 {
6612 	struct bpf_reg_state *reg = regs + regno;
6613 	struct bpf_map *map = reg->map_ptr;
6614 	struct bpf_reg_state map_reg;
6615 	enum bpf_type_flag flag = 0;
6616 	const struct btf_type *t;
6617 	const char *tname;
6618 	u32 btf_id;
6619 	int ret;
6620 
6621 	if (!btf_vmlinux) {
6622 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6623 		return -ENOTSUPP;
6624 	}
6625 
6626 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6627 		verbose(env, "map_ptr access not supported for map type %d\n",
6628 			map->map_type);
6629 		return -ENOTSUPP;
6630 	}
6631 
6632 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6633 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6634 
6635 	if (!env->allow_ptr_leaks) {
6636 		verbose(env,
6637 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6638 			tname);
6639 		return -EPERM;
6640 	}
6641 
6642 	if (off < 0) {
6643 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6644 			regno, tname, off);
6645 		return -EACCES;
6646 	}
6647 
6648 	if (atype != BPF_READ) {
6649 		verbose(env, "only read from %s is supported\n", tname);
6650 		return -EACCES;
6651 	}
6652 
6653 	/* Simulate access to a PTR_TO_BTF_ID */
6654 	memset(&map_reg, 0, sizeof(map_reg));
6655 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6656 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6657 	if (ret < 0)
6658 		return ret;
6659 
6660 	if (value_regno >= 0)
6661 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6662 
6663 	return 0;
6664 }
6665 
6666 /* Check that the stack access at the given offset is within bounds. The
6667  * maximum valid offset is -1.
6668  *
6669  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6670  * -state->allocated_stack for reads.
6671  */
6672 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6673                                           s64 off,
6674                                           struct bpf_func_state *state,
6675                                           enum bpf_access_type t)
6676 {
6677 	int min_valid_off;
6678 
6679 	if (t == BPF_WRITE || env->allow_uninit_stack)
6680 		min_valid_off = -MAX_BPF_STACK;
6681 	else
6682 		min_valid_off = -state->allocated_stack;
6683 
6684 	if (off < min_valid_off || off > -1)
6685 		return -EACCES;
6686 	return 0;
6687 }
6688 
6689 /* Check that the stack access at 'regno + off' falls within the maximum stack
6690  * bounds.
6691  *
6692  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6693  */
6694 static int check_stack_access_within_bounds(
6695 		struct bpf_verifier_env *env,
6696 		int regno, int off, int access_size,
6697 		enum bpf_access_src src, enum bpf_access_type type)
6698 {
6699 	struct bpf_reg_state *regs = cur_regs(env);
6700 	struct bpf_reg_state *reg = regs + regno;
6701 	struct bpf_func_state *state = func(env, reg);
6702 	s64 min_off, max_off;
6703 	int err;
6704 	char *err_extra;
6705 
6706 	if (src == ACCESS_HELPER)
6707 		/* We don't know if helpers are reading or writing (or both). */
6708 		err_extra = " indirect access to";
6709 	else if (type == BPF_READ)
6710 		err_extra = " read from";
6711 	else
6712 		err_extra = " write to";
6713 
6714 	if (tnum_is_const(reg->var_off)) {
6715 		min_off = (s64)reg->var_off.value + off;
6716 		max_off = min_off + access_size;
6717 	} else {
6718 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6719 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6720 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6721 				err_extra, regno);
6722 			return -EACCES;
6723 		}
6724 		min_off = reg->smin_value + off;
6725 		max_off = reg->smax_value + off + access_size;
6726 	}
6727 
6728 	err = check_stack_slot_within_bounds(env, min_off, state, type);
6729 	if (!err && max_off > 0)
6730 		err = -EINVAL; /* out of stack access into non-negative offsets */
6731 	if (!err && access_size < 0)
6732 		/* access_size should not be negative (or overflow an int); others checks
6733 		 * along the way should have prevented such an access.
6734 		 */
6735 		err = -EFAULT; /* invalid negative access size; integer overflow? */
6736 
6737 	if (err) {
6738 		if (tnum_is_const(reg->var_off)) {
6739 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6740 				err_extra, regno, off, access_size);
6741 		} else {
6742 			char tn_buf[48];
6743 
6744 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6745 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
6746 				err_extra, regno, tn_buf, off, access_size);
6747 		}
6748 		return err;
6749 	}
6750 
6751 	/* Note that there is no stack access with offset zero, so the needed stack
6752 	 * size is -min_off, not -min_off+1.
6753 	 */
6754 	return grow_stack_state(env, state, -min_off /* size */);
6755 }
6756 
6757 /* check whether memory at (regno + off) is accessible for t = (read | write)
6758  * if t==write, value_regno is a register which value is stored into memory
6759  * if t==read, value_regno is a register which will receive the value from memory
6760  * if t==write && value_regno==-1, some unknown value is stored into memory
6761  * if t==read && value_regno==-1, don't care what we read from memory
6762  */
6763 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6764 			    int off, int bpf_size, enum bpf_access_type t,
6765 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6766 {
6767 	struct bpf_reg_state *regs = cur_regs(env);
6768 	struct bpf_reg_state *reg = regs + regno;
6769 	int size, err = 0;
6770 
6771 	size = bpf_size_to_bytes(bpf_size);
6772 	if (size < 0)
6773 		return size;
6774 
6775 	/* alignment checks will add in reg->off themselves */
6776 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6777 	if (err)
6778 		return err;
6779 
6780 	/* for access checks, reg->off is just part of off */
6781 	off += reg->off;
6782 
6783 	if (reg->type == PTR_TO_MAP_KEY) {
6784 		if (t == BPF_WRITE) {
6785 			verbose(env, "write to change key R%d not allowed\n", regno);
6786 			return -EACCES;
6787 		}
6788 
6789 		err = check_mem_region_access(env, regno, off, size,
6790 					      reg->map_ptr->key_size, false);
6791 		if (err)
6792 			return err;
6793 		if (value_regno >= 0)
6794 			mark_reg_unknown(env, regs, value_regno);
6795 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6796 		struct btf_field *kptr_field = NULL;
6797 
6798 		if (t == BPF_WRITE && value_regno >= 0 &&
6799 		    is_pointer_value(env, value_regno)) {
6800 			verbose(env, "R%d leaks addr into map\n", value_regno);
6801 			return -EACCES;
6802 		}
6803 		err = check_map_access_type(env, regno, off, size, t);
6804 		if (err)
6805 			return err;
6806 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6807 		if (err)
6808 			return err;
6809 		if (tnum_is_const(reg->var_off))
6810 			kptr_field = btf_record_find(reg->map_ptr->record,
6811 						     off + reg->var_off.value, BPF_KPTR);
6812 		if (kptr_field) {
6813 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6814 		} else if (t == BPF_READ && value_regno >= 0) {
6815 			struct bpf_map *map = reg->map_ptr;
6816 
6817 			/* if map is read-only, track its contents as scalars */
6818 			if (tnum_is_const(reg->var_off) &&
6819 			    bpf_map_is_rdonly(map) &&
6820 			    map->ops->map_direct_value_addr) {
6821 				int map_off = off + reg->var_off.value;
6822 				u64 val = 0;
6823 
6824 				err = bpf_map_direct_read(map, map_off, size,
6825 							  &val, is_ldsx);
6826 				if (err)
6827 					return err;
6828 
6829 				regs[value_regno].type = SCALAR_VALUE;
6830 				__mark_reg_known(&regs[value_regno], val);
6831 			} else {
6832 				mark_reg_unknown(env, regs, value_regno);
6833 			}
6834 		}
6835 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6836 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6837 
6838 		if (type_may_be_null(reg->type)) {
6839 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6840 				reg_type_str(env, reg->type));
6841 			return -EACCES;
6842 		}
6843 
6844 		if (t == BPF_WRITE && rdonly_mem) {
6845 			verbose(env, "R%d cannot write into %s\n",
6846 				regno, reg_type_str(env, reg->type));
6847 			return -EACCES;
6848 		}
6849 
6850 		if (t == BPF_WRITE && value_regno >= 0 &&
6851 		    is_pointer_value(env, value_regno)) {
6852 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6853 			return -EACCES;
6854 		}
6855 
6856 		err = check_mem_region_access(env, regno, off, size,
6857 					      reg->mem_size, false);
6858 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6859 			mark_reg_unknown(env, regs, value_regno);
6860 	} else if (reg->type == PTR_TO_CTX) {
6861 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6862 		struct btf *btf = NULL;
6863 		u32 btf_id = 0;
6864 
6865 		if (t == BPF_WRITE && value_regno >= 0 &&
6866 		    is_pointer_value(env, value_regno)) {
6867 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6868 			return -EACCES;
6869 		}
6870 
6871 		err = check_ptr_off_reg(env, reg, regno);
6872 		if (err < 0)
6873 			return err;
6874 
6875 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6876 				       &btf_id);
6877 		if (err)
6878 			verbose_linfo(env, insn_idx, "; ");
6879 		if (!err && t == BPF_READ && value_regno >= 0) {
6880 			/* ctx access returns either a scalar, or a
6881 			 * PTR_TO_PACKET[_META,_END]. In the latter
6882 			 * case, we know the offset is zero.
6883 			 */
6884 			if (reg_type == SCALAR_VALUE) {
6885 				mark_reg_unknown(env, regs, value_regno);
6886 			} else {
6887 				mark_reg_known_zero(env, regs,
6888 						    value_regno);
6889 				if (type_may_be_null(reg_type))
6890 					regs[value_regno].id = ++env->id_gen;
6891 				/* A load of ctx field could have different
6892 				 * actual load size with the one encoded in the
6893 				 * insn. When the dst is PTR, it is for sure not
6894 				 * a sub-register.
6895 				 */
6896 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6897 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6898 					regs[value_regno].btf = btf;
6899 					regs[value_regno].btf_id = btf_id;
6900 				}
6901 			}
6902 			regs[value_regno].type = reg_type;
6903 		}
6904 
6905 	} else if (reg->type == PTR_TO_STACK) {
6906 		/* Basic bounds checks. */
6907 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6908 		if (err)
6909 			return err;
6910 
6911 		if (t == BPF_READ)
6912 			err = check_stack_read(env, regno, off, size,
6913 					       value_regno);
6914 		else
6915 			err = check_stack_write(env, regno, off, size,
6916 						value_regno, insn_idx);
6917 	} else if (reg_is_pkt_pointer(reg)) {
6918 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6919 			verbose(env, "cannot write into packet\n");
6920 			return -EACCES;
6921 		}
6922 		if (t == BPF_WRITE && value_regno >= 0 &&
6923 		    is_pointer_value(env, value_regno)) {
6924 			verbose(env, "R%d leaks addr into packet\n",
6925 				value_regno);
6926 			return -EACCES;
6927 		}
6928 		err = check_packet_access(env, regno, off, size, false);
6929 		if (!err && t == BPF_READ && value_regno >= 0)
6930 			mark_reg_unknown(env, regs, value_regno);
6931 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6932 		if (t == BPF_WRITE && value_regno >= 0 &&
6933 		    is_pointer_value(env, value_regno)) {
6934 			verbose(env, "R%d leaks addr into flow keys\n",
6935 				value_regno);
6936 			return -EACCES;
6937 		}
6938 
6939 		err = check_flow_keys_access(env, off, size);
6940 		if (!err && t == BPF_READ && value_regno >= 0)
6941 			mark_reg_unknown(env, regs, value_regno);
6942 	} else if (type_is_sk_pointer(reg->type)) {
6943 		if (t == BPF_WRITE) {
6944 			verbose(env, "R%d cannot write into %s\n",
6945 				regno, reg_type_str(env, reg->type));
6946 			return -EACCES;
6947 		}
6948 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6949 		if (!err && value_regno >= 0)
6950 			mark_reg_unknown(env, regs, value_regno);
6951 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6952 		err = check_tp_buffer_access(env, reg, regno, off, size);
6953 		if (!err && t == BPF_READ && value_regno >= 0)
6954 			mark_reg_unknown(env, regs, value_regno);
6955 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6956 		   !type_may_be_null(reg->type)) {
6957 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6958 					      value_regno);
6959 	} else if (reg->type == CONST_PTR_TO_MAP) {
6960 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6961 					      value_regno);
6962 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6963 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6964 		u32 *max_access;
6965 
6966 		if (rdonly_mem) {
6967 			if (t == BPF_WRITE) {
6968 				verbose(env, "R%d cannot write into %s\n",
6969 					regno, reg_type_str(env, reg->type));
6970 				return -EACCES;
6971 			}
6972 			max_access = &env->prog->aux->max_rdonly_access;
6973 		} else {
6974 			max_access = &env->prog->aux->max_rdwr_access;
6975 		}
6976 
6977 		err = check_buffer_access(env, reg, regno, off, size, false,
6978 					  max_access);
6979 
6980 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6981 			mark_reg_unknown(env, regs, value_regno);
6982 	} else if (reg->type == PTR_TO_ARENA) {
6983 		if (t == BPF_READ && value_regno >= 0)
6984 			mark_reg_unknown(env, regs, value_regno);
6985 	} else {
6986 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6987 			reg_type_str(env, reg->type));
6988 		return -EACCES;
6989 	}
6990 
6991 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6992 	    regs[value_regno].type == SCALAR_VALUE) {
6993 		if (!is_ldsx)
6994 			/* b/h/w load zero-extends, mark upper bits as known 0 */
6995 			coerce_reg_to_size(&regs[value_regno], size);
6996 		else
6997 			coerce_reg_to_size_sx(&regs[value_regno], size);
6998 	}
6999 	return err;
7000 }
7001 
7002 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
7003 			     bool allow_trust_mismatch);
7004 
7005 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
7006 {
7007 	int load_reg;
7008 	int err;
7009 
7010 	switch (insn->imm) {
7011 	case BPF_ADD:
7012 	case BPF_ADD | BPF_FETCH:
7013 	case BPF_AND:
7014 	case BPF_AND | BPF_FETCH:
7015 	case BPF_OR:
7016 	case BPF_OR | BPF_FETCH:
7017 	case BPF_XOR:
7018 	case BPF_XOR | BPF_FETCH:
7019 	case BPF_XCHG:
7020 	case BPF_CMPXCHG:
7021 		break;
7022 	default:
7023 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
7024 		return -EINVAL;
7025 	}
7026 
7027 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7028 		verbose(env, "invalid atomic operand size\n");
7029 		return -EINVAL;
7030 	}
7031 
7032 	/* check src1 operand */
7033 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7034 	if (err)
7035 		return err;
7036 
7037 	/* check src2 operand */
7038 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7039 	if (err)
7040 		return err;
7041 
7042 	if (insn->imm == BPF_CMPXCHG) {
7043 		/* Check comparison of R0 with memory location */
7044 		const u32 aux_reg = BPF_REG_0;
7045 
7046 		err = check_reg_arg(env, aux_reg, SRC_OP);
7047 		if (err)
7048 			return err;
7049 
7050 		if (is_pointer_value(env, aux_reg)) {
7051 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
7052 			return -EACCES;
7053 		}
7054 	}
7055 
7056 	if (is_pointer_value(env, insn->src_reg)) {
7057 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7058 		return -EACCES;
7059 	}
7060 
7061 	if (is_ctx_reg(env, insn->dst_reg) ||
7062 	    is_pkt_reg(env, insn->dst_reg) ||
7063 	    is_flow_key_reg(env, insn->dst_reg) ||
7064 	    is_sk_reg(env, insn->dst_reg) ||
7065 	    (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) {
7066 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7067 			insn->dst_reg,
7068 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7069 		return -EACCES;
7070 	}
7071 
7072 	if (insn->imm & BPF_FETCH) {
7073 		if (insn->imm == BPF_CMPXCHG)
7074 			load_reg = BPF_REG_0;
7075 		else
7076 			load_reg = insn->src_reg;
7077 
7078 		/* check and record load of old value */
7079 		err = check_reg_arg(env, load_reg, DST_OP);
7080 		if (err)
7081 			return err;
7082 	} else {
7083 		/* This instruction accesses a memory location but doesn't
7084 		 * actually load it into a register.
7085 		 */
7086 		load_reg = -1;
7087 	}
7088 
7089 	/* Check whether we can read the memory, with second call for fetch
7090 	 * case to simulate the register fill.
7091 	 */
7092 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7093 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7094 	if (!err && load_reg >= 0)
7095 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7096 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
7097 				       true, false);
7098 	if (err)
7099 		return err;
7100 
7101 	if (is_arena_reg(env, insn->dst_reg)) {
7102 		err = save_aux_ptr_type(env, PTR_TO_ARENA, false);
7103 		if (err)
7104 			return err;
7105 	}
7106 	/* Check whether we can write into the same memory. */
7107 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7108 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7109 	if (err)
7110 		return err;
7111 	return 0;
7112 }
7113 
7114 /* When register 'regno' is used to read the stack (either directly or through
7115  * a helper function) make sure that it's within stack boundary and, depending
7116  * on the access type and privileges, that all elements of the stack are
7117  * initialized.
7118  *
7119  * 'off' includes 'regno->off', but not its dynamic part (if any).
7120  *
7121  * All registers that have been spilled on the stack in the slots within the
7122  * read offsets are marked as read.
7123  */
7124 static int check_stack_range_initialized(
7125 		struct bpf_verifier_env *env, int regno, int off,
7126 		int access_size, bool zero_size_allowed,
7127 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7128 {
7129 	struct bpf_reg_state *reg = reg_state(env, regno);
7130 	struct bpf_func_state *state = func(env, reg);
7131 	int err, min_off, max_off, i, j, slot, spi;
7132 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7133 	enum bpf_access_type bounds_check_type;
7134 	/* Some accesses can write anything into the stack, others are
7135 	 * read-only.
7136 	 */
7137 	bool clobber = false;
7138 
7139 	if (access_size == 0 && !zero_size_allowed) {
7140 		verbose(env, "invalid zero-sized read\n");
7141 		return -EACCES;
7142 	}
7143 
7144 	if (type == ACCESS_HELPER) {
7145 		/* The bounds checks for writes are more permissive than for
7146 		 * reads. However, if raw_mode is not set, we'll do extra
7147 		 * checks below.
7148 		 */
7149 		bounds_check_type = BPF_WRITE;
7150 		clobber = true;
7151 	} else {
7152 		bounds_check_type = BPF_READ;
7153 	}
7154 	err = check_stack_access_within_bounds(env, regno, off, access_size,
7155 					       type, bounds_check_type);
7156 	if (err)
7157 		return err;
7158 
7159 
7160 	if (tnum_is_const(reg->var_off)) {
7161 		min_off = max_off = reg->var_off.value + off;
7162 	} else {
7163 		/* Variable offset is prohibited for unprivileged mode for
7164 		 * simplicity since it requires corresponding support in
7165 		 * Spectre masking for stack ALU.
7166 		 * See also retrieve_ptr_limit().
7167 		 */
7168 		if (!env->bypass_spec_v1) {
7169 			char tn_buf[48];
7170 
7171 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7172 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7173 				regno, err_extra, tn_buf);
7174 			return -EACCES;
7175 		}
7176 		/* Only initialized buffer on stack is allowed to be accessed
7177 		 * with variable offset. With uninitialized buffer it's hard to
7178 		 * guarantee that whole memory is marked as initialized on
7179 		 * helper return since specific bounds are unknown what may
7180 		 * cause uninitialized stack leaking.
7181 		 */
7182 		if (meta && meta->raw_mode)
7183 			meta = NULL;
7184 
7185 		min_off = reg->smin_value + off;
7186 		max_off = reg->smax_value + off;
7187 	}
7188 
7189 	if (meta && meta->raw_mode) {
7190 		/* Ensure we won't be overwriting dynptrs when simulating byte
7191 		 * by byte access in check_helper_call using meta.access_size.
7192 		 * This would be a problem if we have a helper in the future
7193 		 * which takes:
7194 		 *
7195 		 *	helper(uninit_mem, len, dynptr)
7196 		 *
7197 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7198 		 * may end up writing to dynptr itself when touching memory from
7199 		 * arg 1. This can be relaxed on a case by case basis for known
7200 		 * safe cases, but reject due to the possibilitiy of aliasing by
7201 		 * default.
7202 		 */
7203 		for (i = min_off; i < max_off + access_size; i++) {
7204 			int stack_off = -i - 1;
7205 
7206 			spi = __get_spi(i);
7207 			/* raw_mode may write past allocated_stack */
7208 			if (state->allocated_stack <= stack_off)
7209 				continue;
7210 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7211 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7212 				return -EACCES;
7213 			}
7214 		}
7215 		meta->access_size = access_size;
7216 		meta->regno = regno;
7217 		return 0;
7218 	}
7219 
7220 	for (i = min_off; i < max_off + access_size; i++) {
7221 		u8 *stype;
7222 
7223 		slot = -i - 1;
7224 		spi = slot / BPF_REG_SIZE;
7225 		if (state->allocated_stack <= slot) {
7226 			verbose(env, "verifier bug: allocated_stack too small");
7227 			return -EFAULT;
7228 		}
7229 
7230 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7231 		if (*stype == STACK_MISC)
7232 			goto mark;
7233 		if ((*stype == STACK_ZERO) ||
7234 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7235 			if (clobber) {
7236 				/* helper can write anything into the stack */
7237 				*stype = STACK_MISC;
7238 			}
7239 			goto mark;
7240 		}
7241 
7242 		if (is_spilled_reg(&state->stack[spi]) &&
7243 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7244 		     env->allow_ptr_leaks)) {
7245 			if (clobber) {
7246 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7247 				for (j = 0; j < BPF_REG_SIZE; j++)
7248 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7249 			}
7250 			goto mark;
7251 		}
7252 
7253 		if (tnum_is_const(reg->var_off)) {
7254 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7255 				err_extra, regno, min_off, i - min_off, access_size);
7256 		} else {
7257 			char tn_buf[48];
7258 
7259 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7260 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7261 				err_extra, regno, tn_buf, i - min_off, access_size);
7262 		}
7263 		return -EACCES;
7264 mark:
7265 		/* reading any byte out of 8-byte 'spill_slot' will cause
7266 		 * the whole slot to be marked as 'read'
7267 		 */
7268 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7269 			      state->stack[spi].spilled_ptr.parent,
7270 			      REG_LIVE_READ64);
7271 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7272 		 * be sure that whether stack slot is written to or not. Hence,
7273 		 * we must still conservatively propagate reads upwards even if
7274 		 * helper may write to the entire memory range.
7275 		 */
7276 	}
7277 	return 0;
7278 }
7279 
7280 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7281 				   int access_size, bool zero_size_allowed,
7282 				   struct bpf_call_arg_meta *meta)
7283 {
7284 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7285 	u32 *max_access;
7286 
7287 	switch (base_type(reg->type)) {
7288 	case PTR_TO_PACKET:
7289 	case PTR_TO_PACKET_META:
7290 		return check_packet_access(env, regno, reg->off, access_size,
7291 					   zero_size_allowed);
7292 	case PTR_TO_MAP_KEY:
7293 		if (meta && meta->raw_mode) {
7294 			verbose(env, "R%d cannot write into %s\n", regno,
7295 				reg_type_str(env, reg->type));
7296 			return -EACCES;
7297 		}
7298 		return check_mem_region_access(env, regno, reg->off, access_size,
7299 					       reg->map_ptr->key_size, false);
7300 	case PTR_TO_MAP_VALUE:
7301 		if (check_map_access_type(env, regno, reg->off, access_size,
7302 					  meta && meta->raw_mode ? BPF_WRITE :
7303 					  BPF_READ))
7304 			return -EACCES;
7305 		return check_map_access(env, regno, reg->off, access_size,
7306 					zero_size_allowed, ACCESS_HELPER);
7307 	case PTR_TO_MEM:
7308 		if (type_is_rdonly_mem(reg->type)) {
7309 			if (meta && meta->raw_mode) {
7310 				verbose(env, "R%d cannot write into %s\n", regno,
7311 					reg_type_str(env, reg->type));
7312 				return -EACCES;
7313 			}
7314 		}
7315 		return check_mem_region_access(env, regno, reg->off,
7316 					       access_size, reg->mem_size,
7317 					       zero_size_allowed);
7318 	case PTR_TO_BUF:
7319 		if (type_is_rdonly_mem(reg->type)) {
7320 			if (meta && meta->raw_mode) {
7321 				verbose(env, "R%d cannot write into %s\n", regno,
7322 					reg_type_str(env, reg->type));
7323 				return -EACCES;
7324 			}
7325 
7326 			max_access = &env->prog->aux->max_rdonly_access;
7327 		} else {
7328 			max_access = &env->prog->aux->max_rdwr_access;
7329 		}
7330 		return check_buffer_access(env, reg, regno, reg->off,
7331 					   access_size, zero_size_allowed,
7332 					   max_access);
7333 	case PTR_TO_STACK:
7334 		return check_stack_range_initialized(
7335 				env,
7336 				regno, reg->off, access_size,
7337 				zero_size_allowed, ACCESS_HELPER, meta);
7338 	case PTR_TO_BTF_ID:
7339 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7340 					       access_size, BPF_READ, -1);
7341 	case PTR_TO_CTX:
7342 		/* in case the function doesn't know how to access the context,
7343 		 * (because we are in a program of type SYSCALL for example), we
7344 		 * can not statically check its size.
7345 		 * Dynamically check it now.
7346 		 */
7347 		if (!env->ops->convert_ctx_access) {
7348 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7349 			int offset = access_size - 1;
7350 
7351 			/* Allow zero-byte read from PTR_TO_CTX */
7352 			if (access_size == 0)
7353 				return zero_size_allowed ? 0 : -EACCES;
7354 
7355 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7356 						atype, -1, false, false);
7357 		}
7358 
7359 		fallthrough;
7360 	default: /* scalar_value or invalid ptr */
7361 		/* Allow zero-byte read from NULL, regardless of pointer type */
7362 		if (zero_size_allowed && access_size == 0 &&
7363 		    register_is_null(reg))
7364 			return 0;
7365 
7366 		verbose(env, "R%d type=%s ", regno,
7367 			reg_type_str(env, reg->type));
7368 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7369 		return -EACCES;
7370 	}
7371 }
7372 
7373 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
7374  * size.
7375  *
7376  * @regno is the register containing the access size. regno-1 is the register
7377  * containing the pointer.
7378  */
7379 static int check_mem_size_reg(struct bpf_verifier_env *env,
7380 			      struct bpf_reg_state *reg, u32 regno,
7381 			      bool zero_size_allowed,
7382 			      struct bpf_call_arg_meta *meta)
7383 {
7384 	int err;
7385 
7386 	/* This is used to refine r0 return value bounds for helpers
7387 	 * that enforce this value as an upper bound on return values.
7388 	 * See do_refine_retval_range() for helpers that can refine
7389 	 * the return value. C type of helper is u32 so we pull register
7390 	 * bound from umax_value however, if negative verifier errors
7391 	 * out. Only upper bounds can be learned because retval is an
7392 	 * int type and negative retvals are allowed.
7393 	 */
7394 	meta->msize_max_value = reg->umax_value;
7395 
7396 	/* The register is SCALAR_VALUE; the access check
7397 	 * happens using its boundaries.
7398 	 */
7399 	if (!tnum_is_const(reg->var_off))
7400 		/* For unprivileged variable accesses, disable raw
7401 		 * mode so that the program is required to
7402 		 * initialize all the memory that the helper could
7403 		 * just partially fill up.
7404 		 */
7405 		meta = NULL;
7406 
7407 	if (reg->smin_value < 0) {
7408 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7409 			regno);
7410 		return -EACCES;
7411 	}
7412 
7413 	if (reg->umin_value == 0 && !zero_size_allowed) {
7414 		verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
7415 			regno, reg->umin_value, reg->umax_value);
7416 		return -EACCES;
7417 	}
7418 
7419 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7420 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7421 			regno);
7422 		return -EACCES;
7423 	}
7424 	err = check_helper_mem_access(env, regno - 1,
7425 				      reg->umax_value,
7426 				      zero_size_allowed, meta);
7427 	if (!err)
7428 		err = mark_chain_precision(env, regno);
7429 	return err;
7430 }
7431 
7432 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7433 			 u32 regno, u32 mem_size)
7434 {
7435 	bool may_be_null = type_may_be_null(reg->type);
7436 	struct bpf_reg_state saved_reg;
7437 	struct bpf_call_arg_meta meta;
7438 	int err;
7439 
7440 	if (register_is_null(reg))
7441 		return 0;
7442 
7443 	memset(&meta, 0, sizeof(meta));
7444 	/* Assuming that the register contains a value check if the memory
7445 	 * access is safe. Temporarily save and restore the register's state as
7446 	 * the conversion shouldn't be visible to a caller.
7447 	 */
7448 	if (may_be_null) {
7449 		saved_reg = *reg;
7450 		mark_ptr_not_null_reg(reg);
7451 	}
7452 
7453 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7454 	/* Check access for BPF_WRITE */
7455 	meta.raw_mode = true;
7456 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7457 
7458 	if (may_be_null)
7459 		*reg = saved_reg;
7460 
7461 	return err;
7462 }
7463 
7464 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7465 				    u32 regno)
7466 {
7467 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7468 	bool may_be_null = type_may_be_null(mem_reg->type);
7469 	struct bpf_reg_state saved_reg;
7470 	struct bpf_call_arg_meta meta;
7471 	int err;
7472 
7473 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7474 
7475 	memset(&meta, 0, sizeof(meta));
7476 
7477 	if (may_be_null) {
7478 		saved_reg = *mem_reg;
7479 		mark_ptr_not_null_reg(mem_reg);
7480 	}
7481 
7482 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7483 	/* Check access for BPF_WRITE */
7484 	meta.raw_mode = true;
7485 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7486 
7487 	if (may_be_null)
7488 		*mem_reg = saved_reg;
7489 	return err;
7490 }
7491 
7492 /* Implementation details:
7493  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7494  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7495  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7496  * Two separate bpf_obj_new will also have different reg->id.
7497  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7498  * clears reg->id after value_or_null->value transition, since the verifier only
7499  * cares about the range of access to valid map value pointer and doesn't care
7500  * about actual address of the map element.
7501  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7502  * reg->id > 0 after value_or_null->value transition. By doing so
7503  * two bpf_map_lookups will be considered two different pointers that
7504  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7505  * returned from bpf_obj_new.
7506  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7507  * dead-locks.
7508  * Since only one bpf_spin_lock is allowed the checks are simpler than
7509  * reg_is_refcounted() logic. The verifier needs to remember only
7510  * one spin_lock instead of array of acquired_refs.
7511  * cur_state->active_lock remembers which map value element or allocated
7512  * object got locked and clears it after bpf_spin_unlock.
7513  */
7514 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7515 			     bool is_lock)
7516 {
7517 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7518 	struct bpf_verifier_state *cur = env->cur_state;
7519 	bool is_const = tnum_is_const(reg->var_off);
7520 	u64 val = reg->var_off.value;
7521 	struct bpf_map *map = NULL;
7522 	struct btf *btf = NULL;
7523 	struct btf_record *rec;
7524 
7525 	if (!is_const) {
7526 		verbose(env,
7527 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7528 			regno);
7529 		return -EINVAL;
7530 	}
7531 	if (reg->type == PTR_TO_MAP_VALUE) {
7532 		map = reg->map_ptr;
7533 		if (!map->btf) {
7534 			verbose(env,
7535 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7536 				map->name);
7537 			return -EINVAL;
7538 		}
7539 	} else {
7540 		btf = reg->btf;
7541 	}
7542 
7543 	rec = reg_btf_record(reg);
7544 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7545 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7546 			map ? map->name : "kptr");
7547 		return -EINVAL;
7548 	}
7549 	if (rec->spin_lock_off != val + reg->off) {
7550 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7551 			val + reg->off, rec->spin_lock_off);
7552 		return -EINVAL;
7553 	}
7554 	if (is_lock) {
7555 		if (cur->active_lock.ptr) {
7556 			verbose(env,
7557 				"Locking two bpf_spin_locks are not allowed\n");
7558 			return -EINVAL;
7559 		}
7560 		if (map)
7561 			cur->active_lock.ptr = map;
7562 		else
7563 			cur->active_lock.ptr = btf;
7564 		cur->active_lock.id = reg->id;
7565 	} else {
7566 		void *ptr;
7567 
7568 		if (map)
7569 			ptr = map;
7570 		else
7571 			ptr = btf;
7572 
7573 		if (!cur->active_lock.ptr) {
7574 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7575 			return -EINVAL;
7576 		}
7577 		if (cur->active_lock.ptr != ptr ||
7578 		    cur->active_lock.id != reg->id) {
7579 			verbose(env, "bpf_spin_unlock of different lock\n");
7580 			return -EINVAL;
7581 		}
7582 
7583 		invalidate_non_owning_refs(env);
7584 
7585 		cur->active_lock.ptr = NULL;
7586 		cur->active_lock.id = 0;
7587 	}
7588 	return 0;
7589 }
7590 
7591 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7592 			      struct bpf_call_arg_meta *meta)
7593 {
7594 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7595 	bool is_const = tnum_is_const(reg->var_off);
7596 	struct bpf_map *map = reg->map_ptr;
7597 	u64 val = reg->var_off.value;
7598 
7599 	if (!is_const) {
7600 		verbose(env,
7601 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7602 			regno);
7603 		return -EINVAL;
7604 	}
7605 	if (!map->btf) {
7606 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7607 			map->name);
7608 		return -EINVAL;
7609 	}
7610 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7611 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7612 		return -EINVAL;
7613 	}
7614 	if (map->record->timer_off != val + reg->off) {
7615 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7616 			val + reg->off, map->record->timer_off);
7617 		return -EINVAL;
7618 	}
7619 	if (meta->map_ptr) {
7620 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7621 		return -EFAULT;
7622 	}
7623 	meta->map_uid = reg->map_uid;
7624 	meta->map_ptr = map;
7625 	return 0;
7626 }
7627 
7628 static int process_wq_func(struct bpf_verifier_env *env, int regno,
7629 			   struct bpf_kfunc_call_arg_meta *meta)
7630 {
7631 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7632 	struct bpf_map *map = reg->map_ptr;
7633 	u64 val = reg->var_off.value;
7634 
7635 	if (map->record->wq_off != val + reg->off) {
7636 		verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n",
7637 			val + reg->off, map->record->wq_off);
7638 		return -EINVAL;
7639 	}
7640 	meta->map.uid = reg->map_uid;
7641 	meta->map.ptr = map;
7642 	return 0;
7643 }
7644 
7645 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7646 			     struct bpf_call_arg_meta *meta)
7647 {
7648 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7649 	struct bpf_map *map_ptr = reg->map_ptr;
7650 	struct btf_field *kptr_field;
7651 	u32 kptr_off;
7652 
7653 	if (!tnum_is_const(reg->var_off)) {
7654 		verbose(env,
7655 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7656 			regno);
7657 		return -EINVAL;
7658 	}
7659 	if (!map_ptr->btf) {
7660 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7661 			map_ptr->name);
7662 		return -EINVAL;
7663 	}
7664 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7665 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7666 		return -EINVAL;
7667 	}
7668 
7669 	meta->map_ptr = map_ptr;
7670 	kptr_off = reg->off + reg->var_off.value;
7671 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7672 	if (!kptr_field) {
7673 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7674 		return -EACCES;
7675 	}
7676 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
7677 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7678 		return -EACCES;
7679 	}
7680 	meta->kptr_field = kptr_field;
7681 	return 0;
7682 }
7683 
7684 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7685  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7686  *
7687  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7688  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7689  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7690  *
7691  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7692  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7693  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7694  * mutate the view of the dynptr and also possibly destroy it. In the latter
7695  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7696  * memory that dynptr points to.
7697  *
7698  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7699  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7700  * readonly dynptr view yet, hence only the first case is tracked and checked.
7701  *
7702  * This is consistent with how C applies the const modifier to a struct object,
7703  * where the pointer itself inside bpf_dynptr becomes const but not what it
7704  * points to.
7705  *
7706  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7707  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7708  */
7709 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7710 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7711 {
7712 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7713 	int err;
7714 
7715 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7716 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7717 	 */
7718 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7719 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7720 		return -EFAULT;
7721 	}
7722 
7723 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7724 	 *		 constructing a mutable bpf_dynptr object.
7725 	 *
7726 	 *		 Currently, this is only possible with PTR_TO_STACK
7727 	 *		 pointing to a region of at least 16 bytes which doesn't
7728 	 *		 contain an existing bpf_dynptr.
7729 	 *
7730 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7731 	 *		 mutated or destroyed. However, the memory it points to
7732 	 *		 may be mutated.
7733 	 *
7734 	 *  None       - Points to a initialized dynptr that can be mutated and
7735 	 *		 destroyed, including mutation of the memory it points
7736 	 *		 to.
7737 	 */
7738 	if (arg_type & MEM_UNINIT) {
7739 		int i;
7740 
7741 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7742 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7743 			return -EINVAL;
7744 		}
7745 
7746 		/* we write BPF_DW bits (8 bytes) at a time */
7747 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7748 			err = check_mem_access(env, insn_idx, regno,
7749 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7750 			if (err)
7751 				return err;
7752 		}
7753 
7754 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7755 	} else /* MEM_RDONLY and None case from above */ {
7756 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7757 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7758 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7759 			return -EINVAL;
7760 		}
7761 
7762 		if (!is_dynptr_reg_valid_init(env, reg)) {
7763 			verbose(env,
7764 				"Expected an initialized dynptr as arg #%d\n",
7765 				regno);
7766 			return -EINVAL;
7767 		}
7768 
7769 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7770 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7771 			verbose(env,
7772 				"Expected a dynptr of type %s as arg #%d\n",
7773 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7774 			return -EINVAL;
7775 		}
7776 
7777 		err = mark_dynptr_read(env, reg);
7778 	}
7779 	return err;
7780 }
7781 
7782 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7783 {
7784 	struct bpf_func_state *state = func(env, reg);
7785 
7786 	return state->stack[spi].spilled_ptr.ref_obj_id;
7787 }
7788 
7789 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7790 {
7791 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7792 }
7793 
7794 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7795 {
7796 	return meta->kfunc_flags & KF_ITER_NEW;
7797 }
7798 
7799 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7800 {
7801 	return meta->kfunc_flags & KF_ITER_NEXT;
7802 }
7803 
7804 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7805 {
7806 	return meta->kfunc_flags & KF_ITER_DESTROY;
7807 }
7808 
7809 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7810 {
7811 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7812 	 * kfunc is iter state pointer
7813 	 */
7814 	return arg == 0 && is_iter_kfunc(meta);
7815 }
7816 
7817 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7818 			    struct bpf_kfunc_call_arg_meta *meta)
7819 {
7820 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7821 	const struct btf_type *t;
7822 	const struct btf_param *arg;
7823 	int spi, err, i, nr_slots;
7824 	u32 btf_id;
7825 
7826 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7827 	arg = &btf_params(meta->func_proto)[0];
7828 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7829 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7830 	nr_slots = t->size / BPF_REG_SIZE;
7831 
7832 	if (is_iter_new_kfunc(meta)) {
7833 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7834 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7835 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7836 				iter_type_str(meta->btf, btf_id), regno);
7837 			return -EINVAL;
7838 		}
7839 
7840 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7841 			err = check_mem_access(env, insn_idx, regno,
7842 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7843 			if (err)
7844 				return err;
7845 		}
7846 
7847 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
7848 		if (err)
7849 			return err;
7850 	} else {
7851 		/* iter_next() or iter_destroy() expect initialized iter state*/
7852 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
7853 		switch (err) {
7854 		case 0:
7855 			break;
7856 		case -EINVAL:
7857 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7858 				iter_type_str(meta->btf, btf_id), regno);
7859 			return err;
7860 		case -EPROTO:
7861 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
7862 			return err;
7863 		default:
7864 			return err;
7865 		}
7866 
7867 		spi = iter_get_spi(env, reg, nr_slots);
7868 		if (spi < 0)
7869 			return spi;
7870 
7871 		err = mark_iter_read(env, reg, spi, nr_slots);
7872 		if (err)
7873 			return err;
7874 
7875 		/* remember meta->iter info for process_iter_next_call() */
7876 		meta->iter.spi = spi;
7877 		meta->iter.frameno = reg->frameno;
7878 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7879 
7880 		if (is_iter_destroy_kfunc(meta)) {
7881 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7882 			if (err)
7883 				return err;
7884 		}
7885 	}
7886 
7887 	return 0;
7888 }
7889 
7890 /* Look for a previous loop entry at insn_idx: nearest parent state
7891  * stopped at insn_idx with callsites matching those in cur->frame.
7892  */
7893 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7894 						  struct bpf_verifier_state *cur,
7895 						  int insn_idx)
7896 {
7897 	struct bpf_verifier_state_list *sl;
7898 	struct bpf_verifier_state *st;
7899 
7900 	/* Explored states are pushed in stack order, most recent states come first */
7901 	sl = *explored_state(env, insn_idx);
7902 	for (; sl; sl = sl->next) {
7903 		/* If st->branches != 0 state is a part of current DFS verification path,
7904 		 * hence cur & st for a loop.
7905 		 */
7906 		st = &sl->state;
7907 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7908 		    st->dfs_depth < cur->dfs_depth)
7909 			return st;
7910 	}
7911 
7912 	return NULL;
7913 }
7914 
7915 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7916 static bool regs_exact(const struct bpf_reg_state *rold,
7917 		       const struct bpf_reg_state *rcur,
7918 		       struct bpf_idmap *idmap);
7919 
7920 static void maybe_widen_reg(struct bpf_verifier_env *env,
7921 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7922 			    struct bpf_idmap *idmap)
7923 {
7924 	if (rold->type != SCALAR_VALUE)
7925 		return;
7926 	if (rold->type != rcur->type)
7927 		return;
7928 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7929 		return;
7930 	__mark_reg_unknown(env, rcur);
7931 }
7932 
7933 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7934 				   struct bpf_verifier_state *old,
7935 				   struct bpf_verifier_state *cur)
7936 {
7937 	struct bpf_func_state *fold, *fcur;
7938 	int i, fr;
7939 
7940 	reset_idmap_scratch(env);
7941 	for (fr = old->curframe; fr >= 0; fr--) {
7942 		fold = old->frame[fr];
7943 		fcur = cur->frame[fr];
7944 
7945 		for (i = 0; i < MAX_BPF_REG; i++)
7946 			maybe_widen_reg(env,
7947 					&fold->regs[i],
7948 					&fcur->regs[i],
7949 					&env->idmap_scratch);
7950 
7951 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7952 			if (!is_spilled_reg(&fold->stack[i]) ||
7953 			    !is_spilled_reg(&fcur->stack[i]))
7954 				continue;
7955 
7956 			maybe_widen_reg(env,
7957 					&fold->stack[i].spilled_ptr,
7958 					&fcur->stack[i].spilled_ptr,
7959 					&env->idmap_scratch);
7960 		}
7961 	}
7962 	return 0;
7963 }
7964 
7965 /* process_iter_next_call() is called when verifier gets to iterator's next
7966  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7967  * to it as just "iter_next()" in comments below.
7968  *
7969  * BPF verifier relies on a crucial contract for any iter_next()
7970  * implementation: it should *eventually* return NULL, and once that happens
7971  * it should keep returning NULL. That is, once iterator exhausts elements to
7972  * iterate, it should never reset or spuriously return new elements.
7973  *
7974  * With the assumption of such contract, process_iter_next_call() simulates
7975  * a fork in the verifier state to validate loop logic correctness and safety
7976  * without having to simulate infinite amount of iterations.
7977  *
7978  * In current state, we first assume that iter_next() returned NULL and
7979  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7980  * conditions we should not form an infinite loop and should eventually reach
7981  * exit.
7982  *
7983  * Besides that, we also fork current state and enqueue it for later
7984  * verification. In a forked state we keep iterator state as ACTIVE
7985  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7986  * also bump iteration depth to prevent erroneous infinite loop detection
7987  * later on (see iter_active_depths_differ() comment for details). In this
7988  * state we assume that we'll eventually loop back to another iter_next()
7989  * calls (it could be in exactly same location or in some other instruction,
7990  * it doesn't matter, we don't make any unnecessary assumptions about this,
7991  * everything revolves around iterator state in a stack slot, not which
7992  * instruction is calling iter_next()). When that happens, we either will come
7993  * to iter_next() with equivalent state and can conclude that next iteration
7994  * will proceed in exactly the same way as we just verified, so it's safe to
7995  * assume that loop converges. If not, we'll go on another iteration
7996  * simulation with a different input state, until all possible starting states
7997  * are validated or we reach maximum number of instructions limit.
7998  *
7999  * This way, we will either exhaustively discover all possible input states
8000  * that iterator loop can start with and eventually will converge, or we'll
8001  * effectively regress into bounded loop simulation logic and either reach
8002  * maximum number of instructions if loop is not provably convergent, or there
8003  * is some statically known limit on number of iterations (e.g., if there is
8004  * an explicit `if n > 100 then break;` statement somewhere in the loop).
8005  *
8006  * Iteration convergence logic in is_state_visited() relies on exact
8007  * states comparison, which ignores read and precision marks.
8008  * This is necessary because read and precision marks are not finalized
8009  * while in the loop. Exact comparison might preclude convergence for
8010  * simple programs like below:
8011  *
8012  *     i = 0;
8013  *     while(iter_next(&it))
8014  *       i++;
8015  *
8016  * At each iteration step i++ would produce a new distinct state and
8017  * eventually instruction processing limit would be reached.
8018  *
8019  * To avoid such behavior speculatively forget (widen) range for
8020  * imprecise scalar registers, if those registers were not precise at the
8021  * end of the previous iteration and do not match exactly.
8022  *
8023  * This is a conservative heuristic that allows to verify wide range of programs,
8024  * however it precludes verification of programs that conjure an
8025  * imprecise value on the first loop iteration and use it as precise on a second.
8026  * For example, the following safe program would fail to verify:
8027  *
8028  *     struct bpf_num_iter it;
8029  *     int arr[10];
8030  *     int i = 0, a = 0;
8031  *     bpf_iter_num_new(&it, 0, 10);
8032  *     while (bpf_iter_num_next(&it)) {
8033  *       if (a == 0) {
8034  *         a = 1;
8035  *         i = 7; // Because i changed verifier would forget
8036  *                // it's range on second loop entry.
8037  *       } else {
8038  *         arr[i] = 42; // This would fail to verify.
8039  *       }
8040  *     }
8041  *     bpf_iter_num_destroy(&it);
8042  */
8043 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
8044 				  struct bpf_kfunc_call_arg_meta *meta)
8045 {
8046 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
8047 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
8048 	struct bpf_reg_state *cur_iter, *queued_iter;
8049 	int iter_frameno = meta->iter.frameno;
8050 	int iter_spi = meta->iter.spi;
8051 
8052 	BTF_TYPE_EMIT(struct bpf_iter);
8053 
8054 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8055 
8056 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
8057 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
8058 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
8059 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
8060 		return -EFAULT;
8061 	}
8062 
8063 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
8064 		/* Because iter_next() call is a checkpoint is_state_visitied()
8065 		 * should guarantee parent state with same call sites and insn_idx.
8066 		 */
8067 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
8068 		    !same_callsites(cur_st->parent, cur_st)) {
8069 			verbose(env, "bug: bad parent state for iter next call");
8070 			return -EFAULT;
8071 		}
8072 		/* Note cur_st->parent in the call below, it is necessary to skip
8073 		 * checkpoint created for cur_st by is_state_visited()
8074 		 * right at this instruction.
8075 		 */
8076 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
8077 		/* branch out active iter state */
8078 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
8079 		if (!queued_st)
8080 			return -ENOMEM;
8081 
8082 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8083 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
8084 		queued_iter->iter.depth++;
8085 		if (prev_st)
8086 			widen_imprecise_scalars(env, prev_st, queued_st);
8087 
8088 		queued_fr = queued_st->frame[queued_st->curframe];
8089 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8090 	}
8091 
8092 	/* switch to DRAINED state, but keep the depth unchanged */
8093 	/* mark current iter state as drained and assume returned NULL */
8094 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8095 	__mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
8096 
8097 	return 0;
8098 }
8099 
8100 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8101 {
8102 	return type == ARG_CONST_SIZE ||
8103 	       type == ARG_CONST_SIZE_OR_ZERO;
8104 }
8105 
8106 static bool arg_type_is_release(enum bpf_arg_type type)
8107 {
8108 	return type & OBJ_RELEASE;
8109 }
8110 
8111 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8112 {
8113 	return base_type(type) == ARG_PTR_TO_DYNPTR;
8114 }
8115 
8116 static int int_ptr_type_to_size(enum bpf_arg_type type)
8117 {
8118 	if (type == ARG_PTR_TO_INT)
8119 		return sizeof(u32);
8120 	else if (type == ARG_PTR_TO_LONG)
8121 		return sizeof(u64);
8122 
8123 	return -EINVAL;
8124 }
8125 
8126 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8127 				 const struct bpf_call_arg_meta *meta,
8128 				 enum bpf_arg_type *arg_type)
8129 {
8130 	if (!meta->map_ptr) {
8131 		/* kernel subsystem misconfigured verifier */
8132 		verbose(env, "invalid map_ptr to access map->type\n");
8133 		return -EACCES;
8134 	}
8135 
8136 	switch (meta->map_ptr->map_type) {
8137 	case BPF_MAP_TYPE_SOCKMAP:
8138 	case BPF_MAP_TYPE_SOCKHASH:
8139 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8140 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8141 		} else {
8142 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
8143 			return -EINVAL;
8144 		}
8145 		break;
8146 	case BPF_MAP_TYPE_BLOOM_FILTER:
8147 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8148 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8149 		break;
8150 	default:
8151 		break;
8152 	}
8153 	return 0;
8154 }
8155 
8156 struct bpf_reg_types {
8157 	const enum bpf_reg_type types[10];
8158 	u32 *btf_id;
8159 };
8160 
8161 static const struct bpf_reg_types sock_types = {
8162 	.types = {
8163 		PTR_TO_SOCK_COMMON,
8164 		PTR_TO_SOCKET,
8165 		PTR_TO_TCP_SOCK,
8166 		PTR_TO_XDP_SOCK,
8167 	},
8168 };
8169 
8170 #ifdef CONFIG_NET
8171 static const struct bpf_reg_types btf_id_sock_common_types = {
8172 	.types = {
8173 		PTR_TO_SOCK_COMMON,
8174 		PTR_TO_SOCKET,
8175 		PTR_TO_TCP_SOCK,
8176 		PTR_TO_XDP_SOCK,
8177 		PTR_TO_BTF_ID,
8178 		PTR_TO_BTF_ID | PTR_TRUSTED,
8179 	},
8180 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8181 };
8182 #endif
8183 
8184 static const struct bpf_reg_types mem_types = {
8185 	.types = {
8186 		PTR_TO_STACK,
8187 		PTR_TO_PACKET,
8188 		PTR_TO_PACKET_META,
8189 		PTR_TO_MAP_KEY,
8190 		PTR_TO_MAP_VALUE,
8191 		PTR_TO_MEM,
8192 		PTR_TO_MEM | MEM_RINGBUF,
8193 		PTR_TO_BUF,
8194 		PTR_TO_BTF_ID | PTR_TRUSTED,
8195 	},
8196 };
8197 
8198 static const struct bpf_reg_types int_ptr_types = {
8199 	.types = {
8200 		PTR_TO_STACK,
8201 		PTR_TO_PACKET,
8202 		PTR_TO_PACKET_META,
8203 		PTR_TO_MAP_KEY,
8204 		PTR_TO_MAP_VALUE,
8205 	},
8206 };
8207 
8208 static const struct bpf_reg_types spin_lock_types = {
8209 	.types = {
8210 		PTR_TO_MAP_VALUE,
8211 		PTR_TO_BTF_ID | MEM_ALLOC,
8212 	}
8213 };
8214 
8215 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8216 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8217 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8218 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8219 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8220 static const struct bpf_reg_types btf_ptr_types = {
8221 	.types = {
8222 		PTR_TO_BTF_ID,
8223 		PTR_TO_BTF_ID | PTR_TRUSTED,
8224 		PTR_TO_BTF_ID | MEM_RCU,
8225 	},
8226 };
8227 static const struct bpf_reg_types percpu_btf_ptr_types = {
8228 	.types = {
8229 		PTR_TO_BTF_ID | MEM_PERCPU,
8230 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8231 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8232 	}
8233 };
8234 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8235 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8236 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8237 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8238 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8239 static const struct bpf_reg_types dynptr_types = {
8240 	.types = {
8241 		PTR_TO_STACK,
8242 		CONST_PTR_TO_DYNPTR,
8243 	}
8244 };
8245 
8246 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8247 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8248 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8249 	[ARG_CONST_SIZE]		= &scalar_types,
8250 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8251 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8252 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8253 	[ARG_PTR_TO_CTX]		= &context_types,
8254 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8255 #ifdef CONFIG_NET
8256 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8257 #endif
8258 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8259 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8260 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8261 	[ARG_PTR_TO_MEM]		= &mem_types,
8262 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8263 	[ARG_PTR_TO_INT]		= &int_ptr_types,
8264 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
8265 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8266 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8267 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8268 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8269 	[ARG_PTR_TO_TIMER]		= &timer_types,
8270 	[ARG_PTR_TO_KPTR]		= &kptr_types,
8271 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8272 };
8273 
8274 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8275 			  enum bpf_arg_type arg_type,
8276 			  const u32 *arg_btf_id,
8277 			  struct bpf_call_arg_meta *meta)
8278 {
8279 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8280 	enum bpf_reg_type expected, type = reg->type;
8281 	const struct bpf_reg_types *compatible;
8282 	int i, j;
8283 
8284 	compatible = compatible_reg_types[base_type(arg_type)];
8285 	if (!compatible) {
8286 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8287 		return -EFAULT;
8288 	}
8289 
8290 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8291 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8292 	 *
8293 	 * Same for MAYBE_NULL:
8294 	 *
8295 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8296 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8297 	 *
8298 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8299 	 *
8300 	 * Therefore we fold these flags depending on the arg_type before comparison.
8301 	 */
8302 	if (arg_type & MEM_RDONLY)
8303 		type &= ~MEM_RDONLY;
8304 	if (arg_type & PTR_MAYBE_NULL)
8305 		type &= ~PTR_MAYBE_NULL;
8306 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8307 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8308 
8309 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) {
8310 		type &= ~MEM_ALLOC;
8311 		type &= ~MEM_PERCPU;
8312 	}
8313 
8314 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8315 		expected = compatible->types[i];
8316 		if (expected == NOT_INIT)
8317 			break;
8318 
8319 		if (type == expected)
8320 			goto found;
8321 	}
8322 
8323 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8324 	for (j = 0; j + 1 < i; j++)
8325 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8326 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8327 	return -EACCES;
8328 
8329 found:
8330 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8331 		return 0;
8332 
8333 	if (compatible == &mem_types) {
8334 		if (!(arg_type & MEM_RDONLY)) {
8335 			verbose(env,
8336 				"%s() may write into memory pointed by R%d type=%s\n",
8337 				func_id_name(meta->func_id),
8338 				regno, reg_type_str(env, reg->type));
8339 			return -EACCES;
8340 		}
8341 		return 0;
8342 	}
8343 
8344 	switch ((int)reg->type) {
8345 	case PTR_TO_BTF_ID:
8346 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8347 	case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
8348 	case PTR_TO_BTF_ID | MEM_RCU:
8349 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8350 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8351 	{
8352 		/* For bpf_sk_release, it needs to match against first member
8353 		 * 'struct sock_common', hence make an exception for it. This
8354 		 * allows bpf_sk_release to work for multiple socket types.
8355 		 */
8356 		bool strict_type_match = arg_type_is_release(arg_type) &&
8357 					 meta->func_id != BPF_FUNC_sk_release;
8358 
8359 		if (type_may_be_null(reg->type) &&
8360 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8361 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8362 			return -EACCES;
8363 		}
8364 
8365 		if (!arg_btf_id) {
8366 			if (!compatible->btf_id) {
8367 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8368 				return -EFAULT;
8369 			}
8370 			arg_btf_id = compatible->btf_id;
8371 		}
8372 
8373 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8374 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8375 				return -EACCES;
8376 		} else {
8377 			if (arg_btf_id == BPF_PTR_POISON) {
8378 				verbose(env, "verifier internal error:");
8379 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8380 					regno);
8381 				return -EACCES;
8382 			}
8383 
8384 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8385 						  btf_vmlinux, *arg_btf_id,
8386 						  strict_type_match)) {
8387 				verbose(env, "R%d is of type %s but %s is expected\n",
8388 					regno, btf_type_name(reg->btf, reg->btf_id),
8389 					btf_type_name(btf_vmlinux, *arg_btf_id));
8390 				return -EACCES;
8391 			}
8392 		}
8393 		break;
8394 	}
8395 	case PTR_TO_BTF_ID | MEM_ALLOC:
8396 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8397 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8398 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8399 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8400 			return -EFAULT;
8401 		}
8402 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8403 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8404 				return -EACCES;
8405 		}
8406 		break;
8407 	case PTR_TO_BTF_ID | MEM_PERCPU:
8408 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8409 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8410 		/* Handled by helper specific checks */
8411 		break;
8412 	default:
8413 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8414 		return -EFAULT;
8415 	}
8416 	return 0;
8417 }
8418 
8419 static struct btf_field *
8420 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8421 {
8422 	struct btf_field *field;
8423 	struct btf_record *rec;
8424 
8425 	rec = reg_btf_record(reg);
8426 	if (!rec)
8427 		return NULL;
8428 
8429 	field = btf_record_find(rec, off, fields);
8430 	if (!field)
8431 		return NULL;
8432 
8433 	return field;
8434 }
8435 
8436 static int check_func_arg_reg_off(struct bpf_verifier_env *env,
8437 				  const struct bpf_reg_state *reg, int regno,
8438 				  enum bpf_arg_type arg_type)
8439 {
8440 	u32 type = reg->type;
8441 
8442 	/* When referenced register is passed to release function, its fixed
8443 	 * offset must be 0.
8444 	 *
8445 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8446 	 * meta->release_regno.
8447 	 */
8448 	if (arg_type_is_release(arg_type)) {
8449 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8450 		 * may not directly point to the object being released, but to
8451 		 * dynptr pointing to such object, which might be at some offset
8452 		 * on the stack. In that case, we simply to fallback to the
8453 		 * default handling.
8454 		 */
8455 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8456 			return 0;
8457 
8458 		/* Doing check_ptr_off_reg check for the offset will catch this
8459 		 * because fixed_off_ok is false, but checking here allows us
8460 		 * to give the user a better error message.
8461 		 */
8462 		if (reg->off) {
8463 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8464 				regno);
8465 			return -EINVAL;
8466 		}
8467 		return __check_ptr_off_reg(env, reg, regno, false);
8468 	}
8469 
8470 	switch (type) {
8471 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8472 	case PTR_TO_STACK:
8473 	case PTR_TO_PACKET:
8474 	case PTR_TO_PACKET_META:
8475 	case PTR_TO_MAP_KEY:
8476 	case PTR_TO_MAP_VALUE:
8477 	case PTR_TO_MEM:
8478 	case PTR_TO_MEM | MEM_RDONLY:
8479 	case PTR_TO_MEM | MEM_RINGBUF:
8480 	case PTR_TO_BUF:
8481 	case PTR_TO_BUF | MEM_RDONLY:
8482 	case PTR_TO_ARENA:
8483 	case SCALAR_VALUE:
8484 		return 0;
8485 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8486 	 * fixed offset.
8487 	 */
8488 	case PTR_TO_BTF_ID:
8489 	case PTR_TO_BTF_ID | MEM_ALLOC:
8490 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8491 	case PTR_TO_BTF_ID | MEM_RCU:
8492 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8493 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8494 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8495 		 * its fixed offset must be 0. In the other cases, fixed offset
8496 		 * can be non-zero. This was already checked above. So pass
8497 		 * fixed_off_ok as true to allow fixed offset for all other
8498 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8499 		 * still need to do checks instead of returning.
8500 		 */
8501 		return __check_ptr_off_reg(env, reg, regno, true);
8502 	default:
8503 		return __check_ptr_off_reg(env, reg, regno, false);
8504 	}
8505 }
8506 
8507 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8508 						const struct bpf_func_proto *fn,
8509 						struct bpf_reg_state *regs)
8510 {
8511 	struct bpf_reg_state *state = NULL;
8512 	int i;
8513 
8514 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8515 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8516 			if (state) {
8517 				verbose(env, "verifier internal error: multiple dynptr args\n");
8518 				return NULL;
8519 			}
8520 			state = &regs[BPF_REG_1 + i];
8521 		}
8522 
8523 	if (!state)
8524 		verbose(env, "verifier internal error: no dynptr arg found\n");
8525 
8526 	return state;
8527 }
8528 
8529 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8530 {
8531 	struct bpf_func_state *state = func(env, reg);
8532 	int spi;
8533 
8534 	if (reg->type == CONST_PTR_TO_DYNPTR)
8535 		return reg->id;
8536 	spi = dynptr_get_spi(env, reg);
8537 	if (spi < 0)
8538 		return spi;
8539 	return state->stack[spi].spilled_ptr.id;
8540 }
8541 
8542 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8543 {
8544 	struct bpf_func_state *state = func(env, reg);
8545 	int spi;
8546 
8547 	if (reg->type == CONST_PTR_TO_DYNPTR)
8548 		return reg->ref_obj_id;
8549 	spi = dynptr_get_spi(env, reg);
8550 	if (spi < 0)
8551 		return spi;
8552 	return state->stack[spi].spilled_ptr.ref_obj_id;
8553 }
8554 
8555 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8556 					    struct bpf_reg_state *reg)
8557 {
8558 	struct bpf_func_state *state = func(env, reg);
8559 	int spi;
8560 
8561 	if (reg->type == CONST_PTR_TO_DYNPTR)
8562 		return reg->dynptr.type;
8563 
8564 	spi = __get_spi(reg->off);
8565 	if (spi < 0) {
8566 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8567 		return BPF_DYNPTR_TYPE_INVALID;
8568 	}
8569 
8570 	return state->stack[spi].spilled_ptr.dynptr.type;
8571 }
8572 
8573 static int check_reg_const_str(struct bpf_verifier_env *env,
8574 			       struct bpf_reg_state *reg, u32 regno)
8575 {
8576 	struct bpf_map *map = reg->map_ptr;
8577 	int err;
8578 	int map_off;
8579 	u64 map_addr;
8580 	char *str_ptr;
8581 
8582 	if (reg->type != PTR_TO_MAP_VALUE)
8583 		return -EINVAL;
8584 
8585 	if (!bpf_map_is_rdonly(map)) {
8586 		verbose(env, "R%d does not point to a readonly map'\n", regno);
8587 		return -EACCES;
8588 	}
8589 
8590 	if (!tnum_is_const(reg->var_off)) {
8591 		verbose(env, "R%d is not a constant address'\n", regno);
8592 		return -EACCES;
8593 	}
8594 
8595 	if (!map->ops->map_direct_value_addr) {
8596 		verbose(env, "no direct value access support for this map type\n");
8597 		return -EACCES;
8598 	}
8599 
8600 	err = check_map_access(env, regno, reg->off,
8601 			       map->value_size - reg->off, false,
8602 			       ACCESS_HELPER);
8603 	if (err)
8604 		return err;
8605 
8606 	map_off = reg->off + reg->var_off.value;
8607 	err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8608 	if (err) {
8609 		verbose(env, "direct value access on string failed\n");
8610 		return err;
8611 	}
8612 
8613 	str_ptr = (char *)(long)(map_addr);
8614 	if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8615 		verbose(env, "string is not zero-terminated\n");
8616 		return -EINVAL;
8617 	}
8618 	return 0;
8619 }
8620 
8621 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8622 			  struct bpf_call_arg_meta *meta,
8623 			  const struct bpf_func_proto *fn,
8624 			  int insn_idx)
8625 {
8626 	u32 regno = BPF_REG_1 + arg;
8627 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8628 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8629 	enum bpf_reg_type type = reg->type;
8630 	u32 *arg_btf_id = NULL;
8631 	int err = 0;
8632 
8633 	if (arg_type == ARG_DONTCARE)
8634 		return 0;
8635 
8636 	err = check_reg_arg(env, regno, SRC_OP);
8637 	if (err)
8638 		return err;
8639 
8640 	if (arg_type == ARG_ANYTHING) {
8641 		if (is_pointer_value(env, regno)) {
8642 			verbose(env, "R%d leaks addr into helper function\n",
8643 				regno);
8644 			return -EACCES;
8645 		}
8646 		return 0;
8647 	}
8648 
8649 	if (type_is_pkt_pointer(type) &&
8650 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8651 		verbose(env, "helper access to the packet is not allowed\n");
8652 		return -EACCES;
8653 	}
8654 
8655 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8656 		err = resolve_map_arg_type(env, meta, &arg_type);
8657 		if (err)
8658 			return err;
8659 	}
8660 
8661 	if (register_is_null(reg) && type_may_be_null(arg_type))
8662 		/* A NULL register has a SCALAR_VALUE type, so skip
8663 		 * type checking.
8664 		 */
8665 		goto skip_type_check;
8666 
8667 	/* arg_btf_id and arg_size are in a union. */
8668 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8669 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8670 		arg_btf_id = fn->arg_btf_id[arg];
8671 
8672 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8673 	if (err)
8674 		return err;
8675 
8676 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8677 	if (err)
8678 		return err;
8679 
8680 skip_type_check:
8681 	if (arg_type_is_release(arg_type)) {
8682 		if (arg_type_is_dynptr(arg_type)) {
8683 			struct bpf_func_state *state = func(env, reg);
8684 			int spi;
8685 
8686 			/* Only dynptr created on stack can be released, thus
8687 			 * the get_spi and stack state checks for spilled_ptr
8688 			 * should only be done before process_dynptr_func for
8689 			 * PTR_TO_STACK.
8690 			 */
8691 			if (reg->type == PTR_TO_STACK) {
8692 				spi = dynptr_get_spi(env, reg);
8693 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8694 					verbose(env, "arg %d is an unacquired reference\n", regno);
8695 					return -EINVAL;
8696 				}
8697 			} else {
8698 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8699 				return -EINVAL;
8700 			}
8701 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8702 			verbose(env, "R%d must be referenced when passed to release function\n",
8703 				regno);
8704 			return -EINVAL;
8705 		}
8706 		if (meta->release_regno) {
8707 			verbose(env, "verifier internal error: more than one release argument\n");
8708 			return -EFAULT;
8709 		}
8710 		meta->release_regno = regno;
8711 	}
8712 
8713 	if (reg->ref_obj_id) {
8714 		if (meta->ref_obj_id) {
8715 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8716 				regno, reg->ref_obj_id,
8717 				meta->ref_obj_id);
8718 			return -EFAULT;
8719 		}
8720 		meta->ref_obj_id = reg->ref_obj_id;
8721 	}
8722 
8723 	switch (base_type(arg_type)) {
8724 	case ARG_CONST_MAP_PTR:
8725 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8726 		if (meta->map_ptr) {
8727 			/* Use map_uid (which is unique id of inner map) to reject:
8728 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8729 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8730 			 * if (inner_map1 && inner_map2) {
8731 			 *     timer = bpf_map_lookup_elem(inner_map1);
8732 			 *     if (timer)
8733 			 *         // mismatch would have been allowed
8734 			 *         bpf_timer_init(timer, inner_map2);
8735 			 * }
8736 			 *
8737 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8738 			 */
8739 			if (meta->map_ptr != reg->map_ptr ||
8740 			    meta->map_uid != reg->map_uid) {
8741 				verbose(env,
8742 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8743 					meta->map_uid, reg->map_uid);
8744 				return -EINVAL;
8745 			}
8746 		}
8747 		meta->map_ptr = reg->map_ptr;
8748 		meta->map_uid = reg->map_uid;
8749 		break;
8750 	case ARG_PTR_TO_MAP_KEY:
8751 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8752 		 * check that [key, key + map->key_size) are within
8753 		 * stack limits and initialized
8754 		 */
8755 		if (!meta->map_ptr) {
8756 			/* in function declaration map_ptr must come before
8757 			 * map_key, so that it's verified and known before
8758 			 * we have to check map_key here. Otherwise it means
8759 			 * that kernel subsystem misconfigured verifier
8760 			 */
8761 			verbose(env, "invalid map_ptr to access map->key\n");
8762 			return -EACCES;
8763 		}
8764 		err = check_helper_mem_access(env, regno,
8765 					      meta->map_ptr->key_size, false,
8766 					      NULL);
8767 		break;
8768 	case ARG_PTR_TO_MAP_VALUE:
8769 		if (type_may_be_null(arg_type) && register_is_null(reg))
8770 			return 0;
8771 
8772 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8773 		 * check [value, value + map->value_size) validity
8774 		 */
8775 		if (!meta->map_ptr) {
8776 			/* kernel subsystem misconfigured verifier */
8777 			verbose(env, "invalid map_ptr to access map->value\n");
8778 			return -EACCES;
8779 		}
8780 		meta->raw_mode = arg_type & MEM_UNINIT;
8781 		err = check_helper_mem_access(env, regno,
8782 					      meta->map_ptr->value_size, false,
8783 					      meta);
8784 		break;
8785 	case ARG_PTR_TO_PERCPU_BTF_ID:
8786 		if (!reg->btf_id) {
8787 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8788 			return -EACCES;
8789 		}
8790 		meta->ret_btf = reg->btf;
8791 		meta->ret_btf_id = reg->btf_id;
8792 		break;
8793 	case ARG_PTR_TO_SPIN_LOCK:
8794 		if (in_rbtree_lock_required_cb(env)) {
8795 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8796 			return -EACCES;
8797 		}
8798 		if (meta->func_id == BPF_FUNC_spin_lock) {
8799 			err = process_spin_lock(env, regno, true);
8800 			if (err)
8801 				return err;
8802 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8803 			err = process_spin_lock(env, regno, false);
8804 			if (err)
8805 				return err;
8806 		} else {
8807 			verbose(env, "verifier internal error\n");
8808 			return -EFAULT;
8809 		}
8810 		break;
8811 	case ARG_PTR_TO_TIMER:
8812 		err = process_timer_func(env, regno, meta);
8813 		if (err)
8814 			return err;
8815 		break;
8816 	case ARG_PTR_TO_FUNC:
8817 		meta->subprogno = reg->subprogno;
8818 		break;
8819 	case ARG_PTR_TO_MEM:
8820 		/* The access to this pointer is only checked when we hit the
8821 		 * next is_mem_size argument below.
8822 		 */
8823 		meta->raw_mode = arg_type & MEM_UNINIT;
8824 		if (arg_type & MEM_FIXED_SIZE) {
8825 			err = check_helper_mem_access(env, regno,
8826 						      fn->arg_size[arg], false,
8827 						      meta);
8828 		}
8829 		break;
8830 	case ARG_CONST_SIZE:
8831 		err = check_mem_size_reg(env, reg, regno, false, meta);
8832 		break;
8833 	case ARG_CONST_SIZE_OR_ZERO:
8834 		err = check_mem_size_reg(env, reg, regno, true, meta);
8835 		break;
8836 	case ARG_PTR_TO_DYNPTR:
8837 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8838 		if (err)
8839 			return err;
8840 		break;
8841 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8842 		if (!tnum_is_const(reg->var_off)) {
8843 			verbose(env, "R%d is not a known constant'\n",
8844 				regno);
8845 			return -EACCES;
8846 		}
8847 		meta->mem_size = reg->var_off.value;
8848 		err = mark_chain_precision(env, regno);
8849 		if (err)
8850 			return err;
8851 		break;
8852 	case ARG_PTR_TO_INT:
8853 	case ARG_PTR_TO_LONG:
8854 	{
8855 		int size = int_ptr_type_to_size(arg_type);
8856 
8857 		err = check_helper_mem_access(env, regno, size, false, meta);
8858 		if (err)
8859 			return err;
8860 		err = check_ptr_alignment(env, reg, 0, size, true);
8861 		break;
8862 	}
8863 	case ARG_PTR_TO_CONST_STR:
8864 	{
8865 		err = check_reg_const_str(env, reg, regno);
8866 		if (err)
8867 			return err;
8868 		break;
8869 	}
8870 	case ARG_PTR_TO_KPTR:
8871 		err = process_kptr_func(env, regno, meta);
8872 		if (err)
8873 			return err;
8874 		break;
8875 	}
8876 
8877 	return err;
8878 }
8879 
8880 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8881 {
8882 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8883 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8884 
8885 	if (func_id != BPF_FUNC_map_update_elem &&
8886 	    func_id != BPF_FUNC_map_delete_elem)
8887 		return false;
8888 
8889 	/* It's not possible to get access to a locked struct sock in these
8890 	 * contexts, so updating is safe.
8891 	 */
8892 	switch (type) {
8893 	case BPF_PROG_TYPE_TRACING:
8894 		if (eatype == BPF_TRACE_ITER)
8895 			return true;
8896 		break;
8897 	case BPF_PROG_TYPE_SOCK_OPS:
8898 		/* map_update allowed only via dedicated helpers with event type checks */
8899 		if (func_id == BPF_FUNC_map_delete_elem)
8900 			return true;
8901 		break;
8902 	case BPF_PROG_TYPE_SOCKET_FILTER:
8903 	case BPF_PROG_TYPE_SCHED_CLS:
8904 	case BPF_PROG_TYPE_SCHED_ACT:
8905 	case BPF_PROG_TYPE_XDP:
8906 	case BPF_PROG_TYPE_SK_REUSEPORT:
8907 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8908 	case BPF_PROG_TYPE_SK_LOOKUP:
8909 		return true;
8910 	default:
8911 		break;
8912 	}
8913 
8914 	verbose(env, "cannot update sockmap in this context\n");
8915 	return false;
8916 }
8917 
8918 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8919 {
8920 	return env->prog->jit_requested &&
8921 	       bpf_jit_supports_subprog_tailcalls();
8922 }
8923 
8924 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8925 					struct bpf_map *map, int func_id)
8926 {
8927 	if (!map)
8928 		return 0;
8929 
8930 	/* We need a two way check, first is from map perspective ... */
8931 	switch (map->map_type) {
8932 	case BPF_MAP_TYPE_PROG_ARRAY:
8933 		if (func_id != BPF_FUNC_tail_call)
8934 			goto error;
8935 		break;
8936 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8937 		if (func_id != BPF_FUNC_perf_event_read &&
8938 		    func_id != BPF_FUNC_perf_event_output &&
8939 		    func_id != BPF_FUNC_skb_output &&
8940 		    func_id != BPF_FUNC_perf_event_read_value &&
8941 		    func_id != BPF_FUNC_xdp_output)
8942 			goto error;
8943 		break;
8944 	case BPF_MAP_TYPE_RINGBUF:
8945 		if (func_id != BPF_FUNC_ringbuf_output &&
8946 		    func_id != BPF_FUNC_ringbuf_reserve &&
8947 		    func_id != BPF_FUNC_ringbuf_query &&
8948 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8949 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8950 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8951 			goto error;
8952 		break;
8953 	case BPF_MAP_TYPE_USER_RINGBUF:
8954 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8955 			goto error;
8956 		break;
8957 	case BPF_MAP_TYPE_STACK_TRACE:
8958 		if (func_id != BPF_FUNC_get_stackid)
8959 			goto error;
8960 		break;
8961 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8962 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8963 		    func_id != BPF_FUNC_current_task_under_cgroup)
8964 			goto error;
8965 		break;
8966 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8967 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8968 		if (func_id != BPF_FUNC_get_local_storage)
8969 			goto error;
8970 		break;
8971 	case BPF_MAP_TYPE_DEVMAP:
8972 	case BPF_MAP_TYPE_DEVMAP_HASH:
8973 		if (func_id != BPF_FUNC_redirect_map &&
8974 		    func_id != BPF_FUNC_map_lookup_elem)
8975 			goto error;
8976 		break;
8977 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8978 	 * appear.
8979 	 */
8980 	case BPF_MAP_TYPE_CPUMAP:
8981 		if (func_id != BPF_FUNC_redirect_map)
8982 			goto error;
8983 		break;
8984 	case BPF_MAP_TYPE_XSKMAP:
8985 		if (func_id != BPF_FUNC_redirect_map &&
8986 		    func_id != BPF_FUNC_map_lookup_elem)
8987 			goto error;
8988 		break;
8989 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8990 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8991 		if (func_id != BPF_FUNC_map_lookup_elem)
8992 			goto error;
8993 		break;
8994 	case BPF_MAP_TYPE_SOCKMAP:
8995 		if (func_id != BPF_FUNC_sk_redirect_map &&
8996 		    func_id != BPF_FUNC_sock_map_update &&
8997 		    func_id != BPF_FUNC_msg_redirect_map &&
8998 		    func_id != BPF_FUNC_sk_select_reuseport &&
8999 		    func_id != BPF_FUNC_map_lookup_elem &&
9000 		    !may_update_sockmap(env, func_id))
9001 			goto error;
9002 		break;
9003 	case BPF_MAP_TYPE_SOCKHASH:
9004 		if (func_id != BPF_FUNC_sk_redirect_hash &&
9005 		    func_id != BPF_FUNC_sock_hash_update &&
9006 		    func_id != BPF_FUNC_msg_redirect_hash &&
9007 		    func_id != BPF_FUNC_sk_select_reuseport &&
9008 		    func_id != BPF_FUNC_map_lookup_elem &&
9009 		    !may_update_sockmap(env, func_id))
9010 			goto error;
9011 		break;
9012 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
9013 		if (func_id != BPF_FUNC_sk_select_reuseport)
9014 			goto error;
9015 		break;
9016 	case BPF_MAP_TYPE_QUEUE:
9017 	case BPF_MAP_TYPE_STACK:
9018 		if (func_id != BPF_FUNC_map_peek_elem &&
9019 		    func_id != BPF_FUNC_map_pop_elem &&
9020 		    func_id != BPF_FUNC_map_push_elem)
9021 			goto error;
9022 		break;
9023 	case BPF_MAP_TYPE_SK_STORAGE:
9024 		if (func_id != BPF_FUNC_sk_storage_get &&
9025 		    func_id != BPF_FUNC_sk_storage_delete &&
9026 		    func_id != BPF_FUNC_kptr_xchg)
9027 			goto error;
9028 		break;
9029 	case BPF_MAP_TYPE_INODE_STORAGE:
9030 		if (func_id != BPF_FUNC_inode_storage_get &&
9031 		    func_id != BPF_FUNC_inode_storage_delete &&
9032 		    func_id != BPF_FUNC_kptr_xchg)
9033 			goto error;
9034 		break;
9035 	case BPF_MAP_TYPE_TASK_STORAGE:
9036 		if (func_id != BPF_FUNC_task_storage_get &&
9037 		    func_id != BPF_FUNC_task_storage_delete &&
9038 		    func_id != BPF_FUNC_kptr_xchg)
9039 			goto error;
9040 		break;
9041 	case BPF_MAP_TYPE_CGRP_STORAGE:
9042 		if (func_id != BPF_FUNC_cgrp_storage_get &&
9043 		    func_id != BPF_FUNC_cgrp_storage_delete &&
9044 		    func_id != BPF_FUNC_kptr_xchg)
9045 			goto error;
9046 		break;
9047 	case BPF_MAP_TYPE_BLOOM_FILTER:
9048 		if (func_id != BPF_FUNC_map_peek_elem &&
9049 		    func_id != BPF_FUNC_map_push_elem)
9050 			goto error;
9051 		break;
9052 	default:
9053 		break;
9054 	}
9055 
9056 	/* ... and second from the function itself. */
9057 	switch (func_id) {
9058 	case BPF_FUNC_tail_call:
9059 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
9060 			goto error;
9061 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
9062 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
9063 			return -EINVAL;
9064 		}
9065 		break;
9066 	case BPF_FUNC_perf_event_read:
9067 	case BPF_FUNC_perf_event_output:
9068 	case BPF_FUNC_perf_event_read_value:
9069 	case BPF_FUNC_skb_output:
9070 	case BPF_FUNC_xdp_output:
9071 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
9072 			goto error;
9073 		break;
9074 	case BPF_FUNC_ringbuf_output:
9075 	case BPF_FUNC_ringbuf_reserve:
9076 	case BPF_FUNC_ringbuf_query:
9077 	case BPF_FUNC_ringbuf_reserve_dynptr:
9078 	case BPF_FUNC_ringbuf_submit_dynptr:
9079 	case BPF_FUNC_ringbuf_discard_dynptr:
9080 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
9081 			goto error;
9082 		break;
9083 	case BPF_FUNC_user_ringbuf_drain:
9084 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
9085 			goto error;
9086 		break;
9087 	case BPF_FUNC_get_stackid:
9088 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
9089 			goto error;
9090 		break;
9091 	case BPF_FUNC_current_task_under_cgroup:
9092 	case BPF_FUNC_skb_under_cgroup:
9093 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
9094 			goto error;
9095 		break;
9096 	case BPF_FUNC_redirect_map:
9097 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
9098 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
9099 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
9100 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
9101 			goto error;
9102 		break;
9103 	case BPF_FUNC_sk_redirect_map:
9104 	case BPF_FUNC_msg_redirect_map:
9105 	case BPF_FUNC_sock_map_update:
9106 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
9107 			goto error;
9108 		break;
9109 	case BPF_FUNC_sk_redirect_hash:
9110 	case BPF_FUNC_msg_redirect_hash:
9111 	case BPF_FUNC_sock_hash_update:
9112 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
9113 			goto error;
9114 		break;
9115 	case BPF_FUNC_get_local_storage:
9116 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
9117 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
9118 			goto error;
9119 		break;
9120 	case BPF_FUNC_sk_select_reuseport:
9121 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
9122 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
9123 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
9124 			goto error;
9125 		break;
9126 	case BPF_FUNC_map_pop_elem:
9127 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9128 		    map->map_type != BPF_MAP_TYPE_STACK)
9129 			goto error;
9130 		break;
9131 	case BPF_FUNC_map_peek_elem:
9132 	case BPF_FUNC_map_push_elem:
9133 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9134 		    map->map_type != BPF_MAP_TYPE_STACK &&
9135 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9136 			goto error;
9137 		break;
9138 	case BPF_FUNC_map_lookup_percpu_elem:
9139 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9140 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9141 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9142 			goto error;
9143 		break;
9144 	case BPF_FUNC_sk_storage_get:
9145 	case BPF_FUNC_sk_storage_delete:
9146 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9147 			goto error;
9148 		break;
9149 	case BPF_FUNC_inode_storage_get:
9150 	case BPF_FUNC_inode_storage_delete:
9151 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9152 			goto error;
9153 		break;
9154 	case BPF_FUNC_task_storage_get:
9155 	case BPF_FUNC_task_storage_delete:
9156 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9157 			goto error;
9158 		break;
9159 	case BPF_FUNC_cgrp_storage_get:
9160 	case BPF_FUNC_cgrp_storage_delete:
9161 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9162 			goto error;
9163 		break;
9164 	default:
9165 		break;
9166 	}
9167 
9168 	return 0;
9169 error:
9170 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
9171 		map->map_type, func_id_name(func_id), func_id);
9172 	return -EINVAL;
9173 }
9174 
9175 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9176 {
9177 	int count = 0;
9178 
9179 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
9180 		count++;
9181 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
9182 		count++;
9183 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
9184 		count++;
9185 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
9186 		count++;
9187 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
9188 		count++;
9189 
9190 	/* We only support one arg being in raw mode at the moment,
9191 	 * which is sufficient for the helper functions we have
9192 	 * right now.
9193 	 */
9194 	return count <= 1;
9195 }
9196 
9197 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9198 {
9199 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9200 	bool has_size = fn->arg_size[arg] != 0;
9201 	bool is_next_size = false;
9202 
9203 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9204 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9205 
9206 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9207 		return is_next_size;
9208 
9209 	return has_size == is_next_size || is_next_size == is_fixed;
9210 }
9211 
9212 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9213 {
9214 	/* bpf_xxx(..., buf, len) call will access 'len'
9215 	 * bytes from memory 'buf'. Both arg types need
9216 	 * to be paired, so make sure there's no buggy
9217 	 * helper function specification.
9218 	 */
9219 	if (arg_type_is_mem_size(fn->arg1_type) ||
9220 	    check_args_pair_invalid(fn, 0) ||
9221 	    check_args_pair_invalid(fn, 1) ||
9222 	    check_args_pair_invalid(fn, 2) ||
9223 	    check_args_pair_invalid(fn, 3) ||
9224 	    check_args_pair_invalid(fn, 4))
9225 		return false;
9226 
9227 	return true;
9228 }
9229 
9230 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9231 {
9232 	int i;
9233 
9234 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9235 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9236 			return !!fn->arg_btf_id[i];
9237 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9238 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9239 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9240 		    /* arg_btf_id and arg_size are in a union. */
9241 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9242 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9243 			return false;
9244 	}
9245 
9246 	return true;
9247 }
9248 
9249 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9250 {
9251 	return check_raw_mode_ok(fn) &&
9252 	       check_arg_pair_ok(fn) &&
9253 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9254 }
9255 
9256 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9257  * are now invalid, so turn them into unknown SCALAR_VALUE.
9258  *
9259  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9260  * since these slices point to packet data.
9261  */
9262 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9263 {
9264 	struct bpf_func_state *state;
9265 	struct bpf_reg_state *reg;
9266 
9267 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9268 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9269 			mark_reg_invalid(env, reg);
9270 	}));
9271 }
9272 
9273 enum {
9274 	AT_PKT_END = -1,
9275 	BEYOND_PKT_END = -2,
9276 };
9277 
9278 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9279 {
9280 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9281 	struct bpf_reg_state *reg = &state->regs[regn];
9282 
9283 	if (reg->type != PTR_TO_PACKET)
9284 		/* PTR_TO_PACKET_META is not supported yet */
9285 		return;
9286 
9287 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9288 	 * How far beyond pkt_end it goes is unknown.
9289 	 * if (!range_open) it's the case of pkt >= pkt_end
9290 	 * if (range_open) it's the case of pkt > pkt_end
9291 	 * hence this pointer is at least 1 byte bigger than pkt_end
9292 	 */
9293 	if (range_open)
9294 		reg->range = BEYOND_PKT_END;
9295 	else
9296 		reg->range = AT_PKT_END;
9297 }
9298 
9299 /* The pointer with the specified id has released its reference to kernel
9300  * resources. Identify all copies of the same pointer and clear the reference.
9301  */
9302 static int release_reference(struct bpf_verifier_env *env,
9303 			     int ref_obj_id)
9304 {
9305 	struct bpf_func_state *state;
9306 	struct bpf_reg_state *reg;
9307 	int err;
9308 
9309 	err = release_reference_state(cur_func(env), ref_obj_id);
9310 	if (err)
9311 		return err;
9312 
9313 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9314 		if (reg->ref_obj_id == ref_obj_id)
9315 			mark_reg_invalid(env, reg);
9316 	}));
9317 
9318 	return 0;
9319 }
9320 
9321 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9322 {
9323 	struct bpf_func_state *unused;
9324 	struct bpf_reg_state *reg;
9325 
9326 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9327 		if (type_is_non_owning_ref(reg->type))
9328 			mark_reg_invalid(env, reg);
9329 	}));
9330 }
9331 
9332 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9333 				    struct bpf_reg_state *regs)
9334 {
9335 	int i;
9336 
9337 	/* after the call registers r0 - r5 were scratched */
9338 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9339 		mark_reg_not_init(env, regs, caller_saved[i]);
9340 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9341 	}
9342 }
9343 
9344 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9345 				   struct bpf_func_state *caller,
9346 				   struct bpf_func_state *callee,
9347 				   int insn_idx);
9348 
9349 static int set_callee_state(struct bpf_verifier_env *env,
9350 			    struct bpf_func_state *caller,
9351 			    struct bpf_func_state *callee, int insn_idx);
9352 
9353 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9354 			    set_callee_state_fn set_callee_state_cb,
9355 			    struct bpf_verifier_state *state)
9356 {
9357 	struct bpf_func_state *caller, *callee;
9358 	int err;
9359 
9360 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9361 		verbose(env, "the call stack of %d frames is too deep\n",
9362 			state->curframe + 2);
9363 		return -E2BIG;
9364 	}
9365 
9366 	if (state->frame[state->curframe + 1]) {
9367 		verbose(env, "verifier bug. Frame %d already allocated\n",
9368 			state->curframe + 1);
9369 		return -EFAULT;
9370 	}
9371 
9372 	caller = state->frame[state->curframe];
9373 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9374 	if (!callee)
9375 		return -ENOMEM;
9376 	state->frame[state->curframe + 1] = callee;
9377 
9378 	/* callee cannot access r0, r6 - r9 for reading and has to write
9379 	 * into its own stack before reading from it.
9380 	 * callee can read/write into caller's stack
9381 	 */
9382 	init_func_state(env, callee,
9383 			/* remember the callsite, it will be used by bpf_exit */
9384 			callsite,
9385 			state->curframe + 1 /* frameno within this callchain */,
9386 			subprog /* subprog number within this prog */);
9387 	/* Transfer references to the callee */
9388 	err = copy_reference_state(callee, caller);
9389 	err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9390 	if (err)
9391 		goto err_out;
9392 
9393 	/* only increment it after check_reg_arg() finished */
9394 	state->curframe++;
9395 
9396 	return 0;
9397 
9398 err_out:
9399 	free_func_state(callee);
9400 	state->frame[state->curframe + 1] = NULL;
9401 	return err;
9402 }
9403 
9404 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
9405 				    const struct btf *btf,
9406 				    struct bpf_reg_state *regs)
9407 {
9408 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
9409 	struct bpf_verifier_log *log = &env->log;
9410 	u32 i;
9411 	int ret;
9412 
9413 	ret = btf_prepare_func_args(env, subprog);
9414 	if (ret)
9415 		return ret;
9416 
9417 	/* check that BTF function arguments match actual types that the
9418 	 * verifier sees.
9419 	 */
9420 	for (i = 0; i < sub->arg_cnt; i++) {
9421 		u32 regno = i + 1;
9422 		struct bpf_reg_state *reg = &regs[regno];
9423 		struct bpf_subprog_arg_info *arg = &sub->args[i];
9424 
9425 		if (arg->arg_type == ARG_ANYTHING) {
9426 			if (reg->type != SCALAR_VALUE) {
9427 				bpf_log(log, "R%d is not a scalar\n", regno);
9428 				return -EINVAL;
9429 			}
9430 		} else if (arg->arg_type == ARG_PTR_TO_CTX) {
9431 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9432 			if (ret < 0)
9433 				return ret;
9434 			/* If function expects ctx type in BTF check that caller
9435 			 * is passing PTR_TO_CTX.
9436 			 */
9437 			if (reg->type != PTR_TO_CTX) {
9438 				bpf_log(log, "arg#%d expects pointer to ctx\n", i);
9439 				return -EINVAL;
9440 			}
9441 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
9442 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9443 			if (ret < 0)
9444 				return ret;
9445 			if (check_mem_reg(env, reg, regno, arg->mem_size))
9446 				return -EINVAL;
9447 			if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) {
9448 				bpf_log(log, "arg#%d is expected to be non-NULL\n", i);
9449 				return -EINVAL;
9450 			}
9451 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
9452 			/*
9453 			 * Can pass any value and the kernel won't crash, but
9454 			 * only PTR_TO_ARENA or SCALAR make sense. Everything
9455 			 * else is a bug in the bpf program. Point it out to
9456 			 * the user at the verification time instead of
9457 			 * run-time debug nightmare.
9458 			 */
9459 			if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) {
9460 				bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno);
9461 				return -EINVAL;
9462 			}
9463 		} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
9464 			ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0);
9465 			if (ret)
9466 				return ret;
9467 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
9468 			struct bpf_call_arg_meta meta;
9469 			int err;
9470 
9471 			if (register_is_null(reg) && type_may_be_null(arg->arg_type))
9472 				continue;
9473 
9474 			memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */
9475 			err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta);
9476 			err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type);
9477 			if (err)
9478 				return err;
9479 		} else {
9480 			bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n",
9481 				i, arg->arg_type);
9482 			return -EFAULT;
9483 		}
9484 	}
9485 
9486 	return 0;
9487 }
9488 
9489 /* Compare BTF of a function call with given bpf_reg_state.
9490  * Returns:
9491  * EFAULT - there is a verifier bug. Abort verification.
9492  * EINVAL - there is a type mismatch or BTF is not available.
9493  * 0 - BTF matches with what bpf_reg_state expects.
9494  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
9495  */
9496 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
9497 				  struct bpf_reg_state *regs)
9498 {
9499 	struct bpf_prog *prog = env->prog;
9500 	struct btf *btf = prog->aux->btf;
9501 	u32 btf_id;
9502 	int err;
9503 
9504 	if (!prog->aux->func_info)
9505 		return -EINVAL;
9506 
9507 	btf_id = prog->aux->func_info[subprog].type_id;
9508 	if (!btf_id)
9509 		return -EFAULT;
9510 
9511 	if (prog->aux->func_info_aux[subprog].unreliable)
9512 		return -EINVAL;
9513 
9514 	err = btf_check_func_arg_match(env, subprog, btf, regs);
9515 	/* Compiler optimizations can remove arguments from static functions
9516 	 * or mismatched type can be passed into a global function.
9517 	 * In such cases mark the function as unreliable from BTF point of view.
9518 	 */
9519 	if (err)
9520 		prog->aux->func_info_aux[subprog].unreliable = true;
9521 	return err;
9522 }
9523 
9524 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9525 			      int insn_idx, int subprog,
9526 			      set_callee_state_fn set_callee_state_cb)
9527 {
9528 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
9529 	struct bpf_func_state *caller, *callee;
9530 	int err;
9531 
9532 	caller = state->frame[state->curframe];
9533 	err = btf_check_subprog_call(env, subprog, caller->regs);
9534 	if (err == -EFAULT)
9535 		return err;
9536 
9537 	/* set_callee_state is used for direct subprog calls, but we are
9538 	 * interested in validating only BPF helpers that can call subprogs as
9539 	 * callbacks
9540 	 */
9541 	env->subprog_info[subprog].is_cb = true;
9542 	if (bpf_pseudo_kfunc_call(insn) &&
9543 	    !is_callback_calling_kfunc(insn->imm)) {
9544 		verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9545 			func_id_name(insn->imm), insn->imm);
9546 		return -EFAULT;
9547 	} else if (!bpf_pseudo_kfunc_call(insn) &&
9548 		   !is_callback_calling_function(insn->imm)) { /* helper */
9549 		verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9550 			func_id_name(insn->imm), insn->imm);
9551 		return -EFAULT;
9552 	}
9553 
9554 	if (is_async_callback_calling_insn(insn)) {
9555 		struct bpf_verifier_state *async_cb;
9556 
9557 		/* there is no real recursion here. timer and workqueue callbacks are async */
9558 		env->subprog_info[subprog].is_async_cb = true;
9559 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9560 					 insn_idx, subprog,
9561 					 is_bpf_wq_set_callback_impl_kfunc(insn->imm));
9562 		if (!async_cb)
9563 			return -EFAULT;
9564 		callee = async_cb->frame[0];
9565 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9566 
9567 		/* Convert bpf_timer_set_callback() args into timer callback args */
9568 		err = set_callee_state_cb(env, caller, callee, insn_idx);
9569 		if (err)
9570 			return err;
9571 
9572 		return 0;
9573 	}
9574 
9575 	/* for callback functions enqueue entry to callback and
9576 	 * proceed with next instruction within current frame.
9577 	 */
9578 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9579 	if (!callback_state)
9580 		return -ENOMEM;
9581 
9582 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9583 			       callback_state);
9584 	if (err)
9585 		return err;
9586 
9587 	callback_state->callback_unroll_depth++;
9588 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9589 	caller->callback_depth = 0;
9590 	return 0;
9591 }
9592 
9593 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9594 			   int *insn_idx)
9595 {
9596 	struct bpf_verifier_state *state = env->cur_state;
9597 	struct bpf_func_state *caller;
9598 	int err, subprog, target_insn;
9599 
9600 	target_insn = *insn_idx + insn->imm + 1;
9601 	subprog = find_subprog(env, target_insn);
9602 	if (subprog < 0) {
9603 		verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9604 		return -EFAULT;
9605 	}
9606 
9607 	caller = state->frame[state->curframe];
9608 	err = btf_check_subprog_call(env, subprog, caller->regs);
9609 	if (err == -EFAULT)
9610 		return err;
9611 	if (subprog_is_global(env, subprog)) {
9612 		const char *sub_name = subprog_name(env, subprog);
9613 
9614 		/* Only global subprogs cannot be called with a lock held. */
9615 		if (env->cur_state->active_lock.ptr) {
9616 			verbose(env, "global function calls are not allowed while holding a lock,\n"
9617 				     "use static function instead\n");
9618 			return -EINVAL;
9619 		}
9620 
9621 		/* Only global subprogs cannot be called with preemption disabled. */
9622 		if (env->cur_state->active_preempt_lock) {
9623 			verbose(env, "global function calls are not allowed with preemption disabled,\n"
9624 				     "use static function instead\n");
9625 			return -EINVAL;
9626 		}
9627 
9628 		if (err) {
9629 			verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
9630 				subprog, sub_name);
9631 			return err;
9632 		}
9633 
9634 		verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
9635 			subprog, sub_name);
9636 		/* mark global subprog for verifying after main prog */
9637 		subprog_aux(env, subprog)->called = true;
9638 		clear_caller_saved_regs(env, caller->regs);
9639 
9640 		/* All global functions return a 64-bit SCALAR_VALUE */
9641 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9642 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9643 
9644 		/* continue with next insn after call */
9645 		return 0;
9646 	}
9647 
9648 	/* for regular function entry setup new frame and continue
9649 	 * from that frame.
9650 	 */
9651 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9652 	if (err)
9653 		return err;
9654 
9655 	clear_caller_saved_regs(env, caller->regs);
9656 
9657 	/* and go analyze first insn of the callee */
9658 	*insn_idx = env->subprog_info[subprog].start - 1;
9659 
9660 	if (env->log.level & BPF_LOG_LEVEL) {
9661 		verbose(env, "caller:\n");
9662 		print_verifier_state(env, caller, true);
9663 		verbose(env, "callee:\n");
9664 		print_verifier_state(env, state->frame[state->curframe], true);
9665 	}
9666 
9667 	return 0;
9668 }
9669 
9670 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9671 				   struct bpf_func_state *caller,
9672 				   struct bpf_func_state *callee)
9673 {
9674 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9675 	 *      void *callback_ctx, u64 flags);
9676 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9677 	 *      void *callback_ctx);
9678 	 */
9679 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9680 
9681 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9682 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9683 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9684 
9685 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9686 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9687 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9688 
9689 	/* pointer to stack or null */
9690 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9691 
9692 	/* unused */
9693 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9694 	return 0;
9695 }
9696 
9697 static int set_callee_state(struct bpf_verifier_env *env,
9698 			    struct bpf_func_state *caller,
9699 			    struct bpf_func_state *callee, int insn_idx)
9700 {
9701 	int i;
9702 
9703 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9704 	 * pointers, which connects us up to the liveness chain
9705 	 */
9706 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9707 		callee->regs[i] = caller->regs[i];
9708 	return 0;
9709 }
9710 
9711 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9712 				       struct bpf_func_state *caller,
9713 				       struct bpf_func_state *callee,
9714 				       int insn_idx)
9715 {
9716 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9717 	struct bpf_map *map;
9718 	int err;
9719 
9720 	/* valid map_ptr and poison value does not matter */
9721 	map = insn_aux->map_ptr_state.map_ptr;
9722 	if (!map->ops->map_set_for_each_callback_args ||
9723 	    !map->ops->map_for_each_callback) {
9724 		verbose(env, "callback function not allowed for map\n");
9725 		return -ENOTSUPP;
9726 	}
9727 
9728 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9729 	if (err)
9730 		return err;
9731 
9732 	callee->in_callback_fn = true;
9733 	callee->callback_ret_range = retval_range(0, 1);
9734 	return 0;
9735 }
9736 
9737 static int set_loop_callback_state(struct bpf_verifier_env *env,
9738 				   struct bpf_func_state *caller,
9739 				   struct bpf_func_state *callee,
9740 				   int insn_idx)
9741 {
9742 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9743 	 *	    u64 flags);
9744 	 * callback_fn(u32 index, void *callback_ctx);
9745 	 */
9746 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9747 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9748 
9749 	/* unused */
9750 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9751 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9752 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9753 
9754 	callee->in_callback_fn = true;
9755 	callee->callback_ret_range = retval_range(0, 1);
9756 	return 0;
9757 }
9758 
9759 static int set_timer_callback_state(struct bpf_verifier_env *env,
9760 				    struct bpf_func_state *caller,
9761 				    struct bpf_func_state *callee,
9762 				    int insn_idx)
9763 {
9764 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9765 
9766 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9767 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9768 	 */
9769 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9770 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9771 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9772 
9773 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9774 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9775 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9776 
9777 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9778 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9779 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9780 
9781 	/* unused */
9782 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9783 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9784 	callee->in_async_callback_fn = true;
9785 	callee->callback_ret_range = retval_range(0, 1);
9786 	return 0;
9787 }
9788 
9789 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9790 				       struct bpf_func_state *caller,
9791 				       struct bpf_func_state *callee,
9792 				       int insn_idx)
9793 {
9794 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9795 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9796 	 * (callback_fn)(struct task_struct *task,
9797 	 *               struct vm_area_struct *vma, void *callback_ctx);
9798 	 */
9799 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9800 
9801 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9802 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9803 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9804 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
9805 
9806 	/* pointer to stack or null */
9807 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9808 
9809 	/* unused */
9810 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9811 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9812 	callee->in_callback_fn = true;
9813 	callee->callback_ret_range = retval_range(0, 1);
9814 	return 0;
9815 }
9816 
9817 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9818 					   struct bpf_func_state *caller,
9819 					   struct bpf_func_state *callee,
9820 					   int insn_idx)
9821 {
9822 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9823 	 *			  callback_ctx, u64 flags);
9824 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9825 	 */
9826 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9827 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9828 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9829 
9830 	/* unused */
9831 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9832 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9833 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9834 
9835 	callee->in_callback_fn = true;
9836 	callee->callback_ret_range = retval_range(0, 1);
9837 	return 0;
9838 }
9839 
9840 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9841 					 struct bpf_func_state *caller,
9842 					 struct bpf_func_state *callee,
9843 					 int insn_idx)
9844 {
9845 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9846 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9847 	 *
9848 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9849 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9850 	 * by this point, so look at 'root'
9851 	 */
9852 	struct btf_field *field;
9853 
9854 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9855 				      BPF_RB_ROOT);
9856 	if (!field || !field->graph_root.value_btf_id)
9857 		return -EFAULT;
9858 
9859 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9860 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9861 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9862 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9863 
9864 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9865 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9866 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9867 	callee->in_callback_fn = true;
9868 	callee->callback_ret_range = retval_range(0, 1);
9869 	return 0;
9870 }
9871 
9872 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9873 
9874 /* Are we currently verifying the callback for a rbtree helper that must
9875  * be called with lock held? If so, no need to complain about unreleased
9876  * lock
9877  */
9878 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9879 {
9880 	struct bpf_verifier_state *state = env->cur_state;
9881 	struct bpf_insn *insn = env->prog->insnsi;
9882 	struct bpf_func_state *callee;
9883 	int kfunc_btf_id;
9884 
9885 	if (!state->curframe)
9886 		return false;
9887 
9888 	callee = state->frame[state->curframe];
9889 
9890 	if (!callee->in_callback_fn)
9891 		return false;
9892 
9893 	kfunc_btf_id = insn[callee->callsite].imm;
9894 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9895 }
9896 
9897 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg)
9898 {
9899 	return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
9900 }
9901 
9902 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9903 {
9904 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
9905 	struct bpf_func_state *caller, *callee;
9906 	struct bpf_reg_state *r0;
9907 	bool in_callback_fn;
9908 	int err;
9909 
9910 	callee = state->frame[state->curframe];
9911 	r0 = &callee->regs[BPF_REG_0];
9912 	if (r0->type == PTR_TO_STACK) {
9913 		/* technically it's ok to return caller's stack pointer
9914 		 * (or caller's caller's pointer) back to the caller,
9915 		 * since these pointers are valid. Only current stack
9916 		 * pointer will be invalid as soon as function exits,
9917 		 * but let's be conservative
9918 		 */
9919 		verbose(env, "cannot return stack pointer to the caller\n");
9920 		return -EINVAL;
9921 	}
9922 
9923 	caller = state->frame[state->curframe - 1];
9924 	if (callee->in_callback_fn) {
9925 		if (r0->type != SCALAR_VALUE) {
9926 			verbose(env, "R0 not a scalar value\n");
9927 			return -EACCES;
9928 		}
9929 
9930 		/* we are going to rely on register's precise value */
9931 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
9932 		err = err ?: mark_chain_precision(env, BPF_REG_0);
9933 		if (err)
9934 			return err;
9935 
9936 		/* enforce R0 return value range */
9937 		if (!retval_range_within(callee->callback_ret_range, r0)) {
9938 			verbose_invalid_scalar(env, r0, callee->callback_ret_range,
9939 					       "At callback return", "R0");
9940 			return -EINVAL;
9941 		}
9942 		if (!calls_callback(env, callee->callsite)) {
9943 			verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
9944 				*insn_idx, callee->callsite);
9945 			return -EFAULT;
9946 		}
9947 	} else {
9948 		/* return to the caller whatever r0 had in the callee */
9949 		caller->regs[BPF_REG_0] = *r0;
9950 	}
9951 
9952 	/* callback_fn frame should have released its own additions to parent's
9953 	 * reference state at this point, or check_reference_leak would
9954 	 * complain, hence it must be the same as the caller. There is no need
9955 	 * to copy it back.
9956 	 */
9957 	if (!callee->in_callback_fn) {
9958 		/* Transfer references to the caller */
9959 		err = copy_reference_state(caller, callee);
9960 		if (err)
9961 			return err;
9962 	}
9963 
9964 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
9965 	 * there function call logic would reschedule callback visit. If iteration
9966 	 * converges is_state_visited() would prune that visit eventually.
9967 	 */
9968 	in_callback_fn = callee->in_callback_fn;
9969 	if (in_callback_fn)
9970 		*insn_idx = callee->callsite;
9971 	else
9972 		*insn_idx = callee->callsite + 1;
9973 
9974 	if (env->log.level & BPF_LOG_LEVEL) {
9975 		verbose(env, "returning from callee:\n");
9976 		print_verifier_state(env, callee, true);
9977 		verbose(env, "to caller at %d:\n", *insn_idx);
9978 		print_verifier_state(env, caller, true);
9979 	}
9980 	/* clear everything in the callee. In case of exceptional exits using
9981 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
9982 	free_func_state(callee);
9983 	state->frame[state->curframe--] = NULL;
9984 
9985 	/* for callbacks widen imprecise scalars to make programs like below verify:
9986 	 *
9987 	 *   struct ctx { int i; }
9988 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
9989 	 *   ...
9990 	 *   struct ctx = { .i = 0; }
9991 	 *   bpf_loop(100, cb, &ctx, 0);
9992 	 *
9993 	 * This is similar to what is done in process_iter_next_call() for open
9994 	 * coded iterators.
9995 	 */
9996 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
9997 	if (prev_st) {
9998 		err = widen_imprecise_scalars(env, prev_st, state);
9999 		if (err)
10000 			return err;
10001 	}
10002 	return 0;
10003 }
10004 
10005 static int do_refine_retval_range(struct bpf_verifier_env *env,
10006 				  struct bpf_reg_state *regs, int ret_type,
10007 				  int func_id,
10008 				  struct bpf_call_arg_meta *meta)
10009 {
10010 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
10011 
10012 	if (ret_type != RET_INTEGER)
10013 		return 0;
10014 
10015 	switch (func_id) {
10016 	case BPF_FUNC_get_stack:
10017 	case BPF_FUNC_get_task_stack:
10018 	case BPF_FUNC_probe_read_str:
10019 	case BPF_FUNC_probe_read_kernel_str:
10020 	case BPF_FUNC_probe_read_user_str:
10021 		ret_reg->smax_value = meta->msize_max_value;
10022 		ret_reg->s32_max_value = meta->msize_max_value;
10023 		ret_reg->smin_value = -MAX_ERRNO;
10024 		ret_reg->s32_min_value = -MAX_ERRNO;
10025 		reg_bounds_sync(ret_reg);
10026 		break;
10027 	case BPF_FUNC_get_smp_processor_id:
10028 		ret_reg->umax_value = nr_cpu_ids - 1;
10029 		ret_reg->u32_max_value = nr_cpu_ids - 1;
10030 		ret_reg->smax_value = nr_cpu_ids - 1;
10031 		ret_reg->s32_max_value = nr_cpu_ids - 1;
10032 		ret_reg->umin_value = 0;
10033 		ret_reg->u32_min_value = 0;
10034 		ret_reg->smin_value = 0;
10035 		ret_reg->s32_min_value = 0;
10036 		reg_bounds_sync(ret_reg);
10037 		break;
10038 	}
10039 
10040 	return reg_bounds_sanity_check(env, ret_reg, "retval");
10041 }
10042 
10043 static int
10044 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10045 		int func_id, int insn_idx)
10046 {
10047 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10048 	struct bpf_map *map = meta->map_ptr;
10049 
10050 	if (func_id != BPF_FUNC_tail_call &&
10051 	    func_id != BPF_FUNC_map_lookup_elem &&
10052 	    func_id != BPF_FUNC_map_update_elem &&
10053 	    func_id != BPF_FUNC_map_delete_elem &&
10054 	    func_id != BPF_FUNC_map_push_elem &&
10055 	    func_id != BPF_FUNC_map_pop_elem &&
10056 	    func_id != BPF_FUNC_map_peek_elem &&
10057 	    func_id != BPF_FUNC_for_each_map_elem &&
10058 	    func_id != BPF_FUNC_redirect_map &&
10059 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
10060 		return 0;
10061 
10062 	if (map == NULL) {
10063 		verbose(env, "kernel subsystem misconfigured verifier\n");
10064 		return -EINVAL;
10065 	}
10066 
10067 	/* In case of read-only, some additional restrictions
10068 	 * need to be applied in order to prevent altering the
10069 	 * state of the map from program side.
10070 	 */
10071 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
10072 	    (func_id == BPF_FUNC_map_delete_elem ||
10073 	     func_id == BPF_FUNC_map_update_elem ||
10074 	     func_id == BPF_FUNC_map_push_elem ||
10075 	     func_id == BPF_FUNC_map_pop_elem)) {
10076 		verbose(env, "write into map forbidden\n");
10077 		return -EACCES;
10078 	}
10079 
10080 	if (!aux->map_ptr_state.map_ptr)
10081 		bpf_map_ptr_store(aux, meta->map_ptr,
10082 				  !meta->map_ptr->bypass_spec_v1, false);
10083 	else if (aux->map_ptr_state.map_ptr != meta->map_ptr)
10084 		bpf_map_ptr_store(aux, meta->map_ptr,
10085 				  !meta->map_ptr->bypass_spec_v1, true);
10086 	return 0;
10087 }
10088 
10089 static int
10090 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10091 		int func_id, int insn_idx)
10092 {
10093 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10094 	struct bpf_reg_state *regs = cur_regs(env), *reg;
10095 	struct bpf_map *map = meta->map_ptr;
10096 	u64 val, max;
10097 	int err;
10098 
10099 	if (func_id != BPF_FUNC_tail_call)
10100 		return 0;
10101 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
10102 		verbose(env, "kernel subsystem misconfigured verifier\n");
10103 		return -EINVAL;
10104 	}
10105 
10106 	reg = &regs[BPF_REG_3];
10107 	val = reg->var_off.value;
10108 	max = map->max_entries;
10109 
10110 	if (!(is_reg_const(reg, false) && val < max)) {
10111 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10112 		return 0;
10113 	}
10114 
10115 	err = mark_chain_precision(env, BPF_REG_3);
10116 	if (err)
10117 		return err;
10118 	if (bpf_map_key_unseen(aux))
10119 		bpf_map_key_store(aux, val);
10120 	else if (!bpf_map_key_poisoned(aux) &&
10121 		  bpf_map_key_immediate(aux) != val)
10122 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10123 	return 0;
10124 }
10125 
10126 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
10127 {
10128 	struct bpf_func_state *state = cur_func(env);
10129 	bool refs_lingering = false;
10130 	int i;
10131 
10132 	if (!exception_exit && state->frameno && !state->in_callback_fn)
10133 		return 0;
10134 
10135 	for (i = 0; i < state->acquired_refs; i++) {
10136 		if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
10137 			continue;
10138 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
10139 			state->refs[i].id, state->refs[i].insn_idx);
10140 		refs_lingering = true;
10141 	}
10142 	return refs_lingering ? -EINVAL : 0;
10143 }
10144 
10145 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
10146 				   struct bpf_reg_state *regs)
10147 {
10148 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
10149 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
10150 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
10151 	struct bpf_bprintf_data data = {};
10152 	int err, fmt_map_off, num_args;
10153 	u64 fmt_addr;
10154 	char *fmt;
10155 
10156 	/* data must be an array of u64 */
10157 	if (data_len_reg->var_off.value % 8)
10158 		return -EINVAL;
10159 	num_args = data_len_reg->var_off.value / 8;
10160 
10161 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
10162 	 * and map_direct_value_addr is set.
10163 	 */
10164 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
10165 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
10166 						  fmt_map_off);
10167 	if (err) {
10168 		verbose(env, "verifier bug\n");
10169 		return -EFAULT;
10170 	}
10171 	fmt = (char *)(long)fmt_addr + fmt_map_off;
10172 
10173 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
10174 	 * can focus on validating the format specifiers.
10175 	 */
10176 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
10177 	if (err < 0)
10178 		verbose(env, "Invalid format string\n");
10179 
10180 	return err;
10181 }
10182 
10183 static int check_get_func_ip(struct bpf_verifier_env *env)
10184 {
10185 	enum bpf_prog_type type = resolve_prog_type(env->prog);
10186 	int func_id = BPF_FUNC_get_func_ip;
10187 
10188 	if (type == BPF_PROG_TYPE_TRACING) {
10189 		if (!bpf_prog_has_trampoline(env->prog)) {
10190 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
10191 				func_id_name(func_id), func_id);
10192 			return -ENOTSUPP;
10193 		}
10194 		return 0;
10195 	} else if (type == BPF_PROG_TYPE_KPROBE) {
10196 		return 0;
10197 	}
10198 
10199 	verbose(env, "func %s#%d not supported for program type %d\n",
10200 		func_id_name(func_id), func_id, type);
10201 	return -ENOTSUPP;
10202 }
10203 
10204 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
10205 {
10206 	return &env->insn_aux_data[env->insn_idx];
10207 }
10208 
10209 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
10210 {
10211 	struct bpf_reg_state *regs = cur_regs(env);
10212 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
10213 	bool reg_is_null = register_is_null(reg);
10214 
10215 	if (reg_is_null)
10216 		mark_chain_precision(env, BPF_REG_4);
10217 
10218 	return reg_is_null;
10219 }
10220 
10221 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
10222 {
10223 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
10224 
10225 	if (!state->initialized) {
10226 		state->initialized = 1;
10227 		state->fit_for_inline = loop_flag_is_zero(env);
10228 		state->callback_subprogno = subprogno;
10229 		return;
10230 	}
10231 
10232 	if (!state->fit_for_inline)
10233 		return;
10234 
10235 	state->fit_for_inline = (loop_flag_is_zero(env) &&
10236 				 state->callback_subprogno == subprogno);
10237 }
10238 
10239 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10240 			     int *insn_idx_p)
10241 {
10242 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10243 	bool returns_cpu_specific_alloc_ptr = false;
10244 	const struct bpf_func_proto *fn = NULL;
10245 	enum bpf_return_type ret_type;
10246 	enum bpf_type_flag ret_flag;
10247 	struct bpf_reg_state *regs;
10248 	struct bpf_call_arg_meta meta;
10249 	int insn_idx = *insn_idx_p;
10250 	bool changes_data;
10251 	int i, err, func_id;
10252 
10253 	/* find function prototype */
10254 	func_id = insn->imm;
10255 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
10256 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
10257 			func_id);
10258 		return -EINVAL;
10259 	}
10260 
10261 	if (env->ops->get_func_proto)
10262 		fn = env->ops->get_func_proto(func_id, env->prog);
10263 	if (!fn) {
10264 		verbose(env, "program of this type cannot use helper %s#%d\n",
10265 			func_id_name(func_id), func_id);
10266 		return -EINVAL;
10267 	}
10268 
10269 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
10270 	if (!env->prog->gpl_compatible && fn->gpl_only) {
10271 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10272 		return -EINVAL;
10273 	}
10274 
10275 	if (fn->allowed && !fn->allowed(env->prog)) {
10276 		verbose(env, "helper call is not allowed in probe\n");
10277 		return -EINVAL;
10278 	}
10279 
10280 	if (!in_sleepable(env) && fn->might_sleep) {
10281 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
10282 		return -EINVAL;
10283 	}
10284 
10285 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
10286 	changes_data = bpf_helper_changes_pkt_data(fn->func);
10287 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10288 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10289 			func_id_name(func_id), func_id);
10290 		return -EINVAL;
10291 	}
10292 
10293 	memset(&meta, 0, sizeof(meta));
10294 	meta.pkt_access = fn->pkt_access;
10295 
10296 	err = check_func_proto(fn, func_id);
10297 	if (err) {
10298 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10299 			func_id_name(func_id), func_id);
10300 		return err;
10301 	}
10302 
10303 	if (env->cur_state->active_rcu_lock) {
10304 		if (fn->might_sleep) {
10305 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10306 				func_id_name(func_id), func_id);
10307 			return -EINVAL;
10308 		}
10309 
10310 		if (in_sleepable(env) && is_storage_get_function(func_id))
10311 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10312 	}
10313 
10314 	if (env->cur_state->active_preempt_lock) {
10315 		if (fn->might_sleep) {
10316 			verbose(env, "sleepable helper %s#%d in non-preemptible region\n",
10317 				func_id_name(func_id), func_id);
10318 			return -EINVAL;
10319 		}
10320 
10321 		if (in_sleepable(env) && is_storage_get_function(func_id))
10322 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10323 	}
10324 
10325 	meta.func_id = func_id;
10326 	/* check args */
10327 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10328 		err = check_func_arg(env, i, &meta, fn, insn_idx);
10329 		if (err)
10330 			return err;
10331 	}
10332 
10333 	err = record_func_map(env, &meta, func_id, insn_idx);
10334 	if (err)
10335 		return err;
10336 
10337 	err = record_func_key(env, &meta, func_id, insn_idx);
10338 	if (err)
10339 		return err;
10340 
10341 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
10342 	 * is inferred from register state.
10343 	 */
10344 	for (i = 0; i < meta.access_size; i++) {
10345 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10346 				       BPF_WRITE, -1, false, false);
10347 		if (err)
10348 			return err;
10349 	}
10350 
10351 	regs = cur_regs(env);
10352 
10353 	if (meta.release_regno) {
10354 		err = -EINVAL;
10355 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10356 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10357 		 * is safe to do directly.
10358 		 */
10359 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10360 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10361 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10362 				return -EFAULT;
10363 			}
10364 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10365 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
10366 			u32 ref_obj_id = meta.ref_obj_id;
10367 			bool in_rcu = in_rcu_cs(env);
10368 			struct bpf_func_state *state;
10369 			struct bpf_reg_state *reg;
10370 
10371 			err = release_reference_state(cur_func(env), ref_obj_id);
10372 			if (!err) {
10373 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10374 					if (reg->ref_obj_id == ref_obj_id) {
10375 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
10376 							reg->ref_obj_id = 0;
10377 							reg->type &= ~MEM_ALLOC;
10378 							reg->type |= MEM_RCU;
10379 						} else {
10380 							mark_reg_invalid(env, reg);
10381 						}
10382 					}
10383 				}));
10384 			}
10385 		} else if (meta.ref_obj_id) {
10386 			err = release_reference(env, meta.ref_obj_id);
10387 		} else if (register_is_null(&regs[meta.release_regno])) {
10388 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10389 			 * released is NULL, which must be > R0.
10390 			 */
10391 			err = 0;
10392 		}
10393 		if (err) {
10394 			verbose(env, "func %s#%d reference has not been acquired before\n",
10395 				func_id_name(func_id), func_id);
10396 			return err;
10397 		}
10398 	}
10399 
10400 	switch (func_id) {
10401 	case BPF_FUNC_tail_call:
10402 		err = check_reference_leak(env, false);
10403 		if (err) {
10404 			verbose(env, "tail_call would lead to reference leak\n");
10405 			return err;
10406 		}
10407 		break;
10408 	case BPF_FUNC_get_local_storage:
10409 		/* check that flags argument in get_local_storage(map, flags) is 0,
10410 		 * this is required because get_local_storage() can't return an error.
10411 		 */
10412 		if (!register_is_null(&regs[BPF_REG_2])) {
10413 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10414 			return -EINVAL;
10415 		}
10416 		break;
10417 	case BPF_FUNC_for_each_map_elem:
10418 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10419 					 set_map_elem_callback_state);
10420 		break;
10421 	case BPF_FUNC_timer_set_callback:
10422 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10423 					 set_timer_callback_state);
10424 		break;
10425 	case BPF_FUNC_find_vma:
10426 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10427 					 set_find_vma_callback_state);
10428 		break;
10429 	case BPF_FUNC_snprintf:
10430 		err = check_bpf_snprintf_call(env, regs);
10431 		break;
10432 	case BPF_FUNC_loop:
10433 		update_loop_inline_state(env, meta.subprogno);
10434 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
10435 		 * is finished, thus mark it precise.
10436 		 */
10437 		err = mark_chain_precision(env, BPF_REG_1);
10438 		if (err)
10439 			return err;
10440 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10441 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10442 						 set_loop_callback_state);
10443 		} else {
10444 			cur_func(env)->callback_depth = 0;
10445 			if (env->log.level & BPF_LOG_LEVEL2)
10446 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
10447 					env->cur_state->curframe);
10448 		}
10449 		break;
10450 	case BPF_FUNC_dynptr_from_mem:
10451 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10452 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10453 				reg_type_str(env, regs[BPF_REG_1].type));
10454 			return -EACCES;
10455 		}
10456 		break;
10457 	case BPF_FUNC_set_retval:
10458 		if (prog_type == BPF_PROG_TYPE_LSM &&
10459 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10460 			if (!env->prog->aux->attach_func_proto->type) {
10461 				/* Make sure programs that attach to void
10462 				 * hooks don't try to modify return value.
10463 				 */
10464 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10465 				return -EINVAL;
10466 			}
10467 		}
10468 		break;
10469 	case BPF_FUNC_dynptr_data:
10470 	{
10471 		struct bpf_reg_state *reg;
10472 		int id, ref_obj_id;
10473 
10474 		reg = get_dynptr_arg_reg(env, fn, regs);
10475 		if (!reg)
10476 			return -EFAULT;
10477 
10478 
10479 		if (meta.dynptr_id) {
10480 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10481 			return -EFAULT;
10482 		}
10483 		if (meta.ref_obj_id) {
10484 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10485 			return -EFAULT;
10486 		}
10487 
10488 		id = dynptr_id(env, reg);
10489 		if (id < 0) {
10490 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10491 			return id;
10492 		}
10493 
10494 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10495 		if (ref_obj_id < 0) {
10496 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10497 			return ref_obj_id;
10498 		}
10499 
10500 		meta.dynptr_id = id;
10501 		meta.ref_obj_id = ref_obj_id;
10502 
10503 		break;
10504 	}
10505 	case BPF_FUNC_dynptr_write:
10506 	{
10507 		enum bpf_dynptr_type dynptr_type;
10508 		struct bpf_reg_state *reg;
10509 
10510 		reg = get_dynptr_arg_reg(env, fn, regs);
10511 		if (!reg)
10512 			return -EFAULT;
10513 
10514 		dynptr_type = dynptr_get_type(env, reg);
10515 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10516 			return -EFAULT;
10517 
10518 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10519 			/* this will trigger clear_all_pkt_pointers(), which will
10520 			 * invalidate all dynptr slices associated with the skb
10521 			 */
10522 			changes_data = true;
10523 
10524 		break;
10525 	}
10526 	case BPF_FUNC_per_cpu_ptr:
10527 	case BPF_FUNC_this_cpu_ptr:
10528 	{
10529 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
10530 		const struct btf_type *type;
10531 
10532 		if (reg->type & MEM_RCU) {
10533 			type = btf_type_by_id(reg->btf, reg->btf_id);
10534 			if (!type || !btf_type_is_struct(type)) {
10535 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
10536 				return -EFAULT;
10537 			}
10538 			returns_cpu_specific_alloc_ptr = true;
10539 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10540 		}
10541 		break;
10542 	}
10543 	case BPF_FUNC_user_ringbuf_drain:
10544 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10545 					 set_user_ringbuf_callback_state);
10546 		break;
10547 	}
10548 
10549 	if (err)
10550 		return err;
10551 
10552 	/* reset caller saved regs */
10553 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10554 		mark_reg_not_init(env, regs, caller_saved[i]);
10555 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10556 	}
10557 
10558 	/* helper call returns 64-bit value. */
10559 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10560 
10561 	/* update return register (already marked as written above) */
10562 	ret_type = fn->ret_type;
10563 	ret_flag = type_flag(ret_type);
10564 
10565 	switch (base_type(ret_type)) {
10566 	case RET_INTEGER:
10567 		/* sets type to SCALAR_VALUE */
10568 		mark_reg_unknown(env, regs, BPF_REG_0);
10569 		break;
10570 	case RET_VOID:
10571 		regs[BPF_REG_0].type = NOT_INIT;
10572 		break;
10573 	case RET_PTR_TO_MAP_VALUE:
10574 		/* There is no offset yet applied, variable or fixed */
10575 		mark_reg_known_zero(env, regs, BPF_REG_0);
10576 		/* remember map_ptr, so that check_map_access()
10577 		 * can check 'value_size' boundary of memory access
10578 		 * to map element returned from bpf_map_lookup_elem()
10579 		 */
10580 		if (meta.map_ptr == NULL) {
10581 			verbose(env,
10582 				"kernel subsystem misconfigured verifier\n");
10583 			return -EINVAL;
10584 		}
10585 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10586 		regs[BPF_REG_0].map_uid = meta.map_uid;
10587 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10588 		if (!type_may_be_null(ret_type) &&
10589 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10590 			regs[BPF_REG_0].id = ++env->id_gen;
10591 		}
10592 		break;
10593 	case RET_PTR_TO_SOCKET:
10594 		mark_reg_known_zero(env, regs, BPF_REG_0);
10595 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10596 		break;
10597 	case RET_PTR_TO_SOCK_COMMON:
10598 		mark_reg_known_zero(env, regs, BPF_REG_0);
10599 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10600 		break;
10601 	case RET_PTR_TO_TCP_SOCK:
10602 		mark_reg_known_zero(env, regs, BPF_REG_0);
10603 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10604 		break;
10605 	case RET_PTR_TO_MEM:
10606 		mark_reg_known_zero(env, regs, BPF_REG_0);
10607 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10608 		regs[BPF_REG_0].mem_size = meta.mem_size;
10609 		break;
10610 	case RET_PTR_TO_MEM_OR_BTF_ID:
10611 	{
10612 		const struct btf_type *t;
10613 
10614 		mark_reg_known_zero(env, regs, BPF_REG_0);
10615 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10616 		if (!btf_type_is_struct(t)) {
10617 			u32 tsize;
10618 			const struct btf_type *ret;
10619 			const char *tname;
10620 
10621 			/* resolve the type size of ksym. */
10622 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10623 			if (IS_ERR(ret)) {
10624 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10625 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10626 					tname, PTR_ERR(ret));
10627 				return -EINVAL;
10628 			}
10629 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10630 			regs[BPF_REG_0].mem_size = tsize;
10631 		} else {
10632 			if (returns_cpu_specific_alloc_ptr) {
10633 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
10634 			} else {
10635 				/* MEM_RDONLY may be carried from ret_flag, but it
10636 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10637 				 * it will confuse the check of PTR_TO_BTF_ID in
10638 				 * check_mem_access().
10639 				 */
10640 				ret_flag &= ~MEM_RDONLY;
10641 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10642 			}
10643 
10644 			regs[BPF_REG_0].btf = meta.ret_btf;
10645 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10646 		}
10647 		break;
10648 	}
10649 	case RET_PTR_TO_BTF_ID:
10650 	{
10651 		struct btf *ret_btf;
10652 		int ret_btf_id;
10653 
10654 		mark_reg_known_zero(env, regs, BPF_REG_0);
10655 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10656 		if (func_id == BPF_FUNC_kptr_xchg) {
10657 			ret_btf = meta.kptr_field->kptr.btf;
10658 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10659 			if (!btf_is_kernel(ret_btf)) {
10660 				regs[BPF_REG_0].type |= MEM_ALLOC;
10661 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
10662 					regs[BPF_REG_0].type |= MEM_PERCPU;
10663 			}
10664 		} else {
10665 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10666 				verbose(env, "verifier internal error:");
10667 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10668 					func_id_name(func_id));
10669 				return -EINVAL;
10670 			}
10671 			ret_btf = btf_vmlinux;
10672 			ret_btf_id = *fn->ret_btf_id;
10673 		}
10674 		if (ret_btf_id == 0) {
10675 			verbose(env, "invalid return type %u of func %s#%d\n",
10676 				base_type(ret_type), func_id_name(func_id),
10677 				func_id);
10678 			return -EINVAL;
10679 		}
10680 		regs[BPF_REG_0].btf = ret_btf;
10681 		regs[BPF_REG_0].btf_id = ret_btf_id;
10682 		break;
10683 	}
10684 	default:
10685 		verbose(env, "unknown return type %u of func %s#%d\n",
10686 			base_type(ret_type), func_id_name(func_id), func_id);
10687 		return -EINVAL;
10688 	}
10689 
10690 	if (type_may_be_null(regs[BPF_REG_0].type))
10691 		regs[BPF_REG_0].id = ++env->id_gen;
10692 
10693 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10694 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10695 			func_id_name(func_id), func_id);
10696 		return -EFAULT;
10697 	}
10698 
10699 	if (is_dynptr_ref_function(func_id))
10700 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10701 
10702 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10703 		/* For release_reference() */
10704 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10705 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10706 		int id = acquire_reference_state(env, insn_idx);
10707 
10708 		if (id < 0)
10709 			return id;
10710 		/* For mark_ptr_or_null_reg() */
10711 		regs[BPF_REG_0].id = id;
10712 		/* For release_reference() */
10713 		regs[BPF_REG_0].ref_obj_id = id;
10714 	}
10715 
10716 	err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
10717 	if (err)
10718 		return err;
10719 
10720 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10721 	if (err)
10722 		return err;
10723 
10724 	if ((func_id == BPF_FUNC_get_stack ||
10725 	     func_id == BPF_FUNC_get_task_stack) &&
10726 	    !env->prog->has_callchain_buf) {
10727 		const char *err_str;
10728 
10729 #ifdef CONFIG_PERF_EVENTS
10730 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10731 		err_str = "cannot get callchain buffer for func %s#%d\n";
10732 #else
10733 		err = -ENOTSUPP;
10734 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10735 #endif
10736 		if (err) {
10737 			verbose(env, err_str, func_id_name(func_id), func_id);
10738 			return err;
10739 		}
10740 
10741 		env->prog->has_callchain_buf = true;
10742 	}
10743 
10744 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10745 		env->prog->call_get_stack = true;
10746 
10747 	if (func_id == BPF_FUNC_get_func_ip) {
10748 		if (check_get_func_ip(env))
10749 			return -ENOTSUPP;
10750 		env->prog->call_get_func_ip = true;
10751 	}
10752 
10753 	if (changes_data)
10754 		clear_all_pkt_pointers(env);
10755 	return 0;
10756 }
10757 
10758 /* mark_btf_func_reg_size() is used when the reg size is determined by
10759  * the BTF func_proto's return value size and argument.
10760  */
10761 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10762 				   size_t reg_size)
10763 {
10764 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10765 
10766 	if (regno == BPF_REG_0) {
10767 		/* Function return value */
10768 		reg->live |= REG_LIVE_WRITTEN;
10769 		reg->subreg_def = reg_size == sizeof(u64) ?
10770 			DEF_NOT_SUBREG : env->insn_idx + 1;
10771 	} else {
10772 		/* Function argument */
10773 		if (reg_size == sizeof(u64)) {
10774 			mark_insn_zext(env, reg);
10775 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10776 		} else {
10777 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10778 		}
10779 	}
10780 }
10781 
10782 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10783 {
10784 	return meta->kfunc_flags & KF_ACQUIRE;
10785 }
10786 
10787 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10788 {
10789 	return meta->kfunc_flags & KF_RELEASE;
10790 }
10791 
10792 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10793 {
10794 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10795 }
10796 
10797 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10798 {
10799 	return meta->kfunc_flags & KF_SLEEPABLE;
10800 }
10801 
10802 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10803 {
10804 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10805 }
10806 
10807 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10808 {
10809 	return meta->kfunc_flags & KF_RCU;
10810 }
10811 
10812 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
10813 {
10814 	return meta->kfunc_flags & KF_RCU_PROTECTED;
10815 }
10816 
10817 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10818 				  const struct btf_param *arg,
10819 				  const struct bpf_reg_state *reg)
10820 {
10821 	const struct btf_type *t;
10822 
10823 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10824 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10825 		return false;
10826 
10827 	return btf_param_match_suffix(btf, arg, "__sz");
10828 }
10829 
10830 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10831 					const struct btf_param *arg,
10832 					const struct bpf_reg_state *reg)
10833 {
10834 	const struct btf_type *t;
10835 
10836 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10837 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10838 		return false;
10839 
10840 	return btf_param_match_suffix(btf, arg, "__szk");
10841 }
10842 
10843 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10844 {
10845 	return btf_param_match_suffix(btf, arg, "__opt");
10846 }
10847 
10848 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10849 {
10850 	return btf_param_match_suffix(btf, arg, "__k");
10851 }
10852 
10853 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10854 {
10855 	return btf_param_match_suffix(btf, arg, "__ign");
10856 }
10857 
10858 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg)
10859 {
10860 	return btf_param_match_suffix(btf, arg, "__map");
10861 }
10862 
10863 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10864 {
10865 	return btf_param_match_suffix(btf, arg, "__alloc");
10866 }
10867 
10868 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10869 {
10870 	return btf_param_match_suffix(btf, arg, "__uninit");
10871 }
10872 
10873 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10874 {
10875 	return btf_param_match_suffix(btf, arg, "__refcounted_kptr");
10876 }
10877 
10878 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
10879 {
10880 	return btf_param_match_suffix(btf, arg, "__nullable");
10881 }
10882 
10883 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
10884 {
10885 	return btf_param_match_suffix(btf, arg, "__str");
10886 }
10887 
10888 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10889 					  const struct btf_param *arg,
10890 					  const char *name)
10891 {
10892 	int len, target_len = strlen(name);
10893 	const char *param_name;
10894 
10895 	param_name = btf_name_by_offset(btf, arg->name_off);
10896 	if (str_is_empty(param_name))
10897 		return false;
10898 	len = strlen(param_name);
10899 	if (len != target_len)
10900 		return false;
10901 	if (strcmp(param_name, name))
10902 		return false;
10903 
10904 	return true;
10905 }
10906 
10907 enum {
10908 	KF_ARG_DYNPTR_ID,
10909 	KF_ARG_LIST_HEAD_ID,
10910 	KF_ARG_LIST_NODE_ID,
10911 	KF_ARG_RB_ROOT_ID,
10912 	KF_ARG_RB_NODE_ID,
10913 	KF_ARG_WORKQUEUE_ID,
10914 };
10915 
10916 BTF_ID_LIST(kf_arg_btf_ids)
10917 BTF_ID(struct, bpf_dynptr_kern)
10918 BTF_ID(struct, bpf_list_head)
10919 BTF_ID(struct, bpf_list_node)
10920 BTF_ID(struct, bpf_rb_root)
10921 BTF_ID(struct, bpf_rb_node)
10922 BTF_ID(struct, bpf_wq)
10923 
10924 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10925 				    const struct btf_param *arg, int type)
10926 {
10927 	const struct btf_type *t;
10928 	u32 res_id;
10929 
10930 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10931 	if (!t)
10932 		return false;
10933 	if (!btf_type_is_ptr(t))
10934 		return false;
10935 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10936 	if (!t)
10937 		return false;
10938 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10939 }
10940 
10941 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10942 {
10943 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10944 }
10945 
10946 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10947 {
10948 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10949 }
10950 
10951 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10952 {
10953 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10954 }
10955 
10956 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10957 {
10958 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10959 }
10960 
10961 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10962 {
10963 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10964 }
10965 
10966 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg)
10967 {
10968 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID);
10969 }
10970 
10971 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10972 				  const struct btf_param *arg)
10973 {
10974 	const struct btf_type *t;
10975 
10976 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10977 	if (!t)
10978 		return false;
10979 
10980 	return true;
10981 }
10982 
10983 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10984 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10985 					const struct btf *btf,
10986 					const struct btf_type *t, int rec)
10987 {
10988 	const struct btf_type *member_type;
10989 	const struct btf_member *member;
10990 	u32 i;
10991 
10992 	if (!btf_type_is_struct(t))
10993 		return false;
10994 
10995 	for_each_member(i, t, member) {
10996 		const struct btf_array *array;
10997 
10998 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10999 		if (btf_type_is_struct(member_type)) {
11000 			if (rec >= 3) {
11001 				verbose(env, "max struct nesting depth exceeded\n");
11002 				return false;
11003 			}
11004 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
11005 				return false;
11006 			continue;
11007 		}
11008 		if (btf_type_is_array(member_type)) {
11009 			array = btf_array(member_type);
11010 			if (!array->nelems)
11011 				return false;
11012 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
11013 			if (!btf_type_is_scalar(member_type))
11014 				return false;
11015 			continue;
11016 		}
11017 		if (!btf_type_is_scalar(member_type))
11018 			return false;
11019 	}
11020 	return true;
11021 }
11022 
11023 enum kfunc_ptr_arg_type {
11024 	KF_ARG_PTR_TO_CTX,
11025 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
11026 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
11027 	KF_ARG_PTR_TO_DYNPTR,
11028 	KF_ARG_PTR_TO_ITER,
11029 	KF_ARG_PTR_TO_LIST_HEAD,
11030 	KF_ARG_PTR_TO_LIST_NODE,
11031 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
11032 	KF_ARG_PTR_TO_MEM,
11033 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
11034 	KF_ARG_PTR_TO_CALLBACK,
11035 	KF_ARG_PTR_TO_RB_ROOT,
11036 	KF_ARG_PTR_TO_RB_NODE,
11037 	KF_ARG_PTR_TO_NULL,
11038 	KF_ARG_PTR_TO_CONST_STR,
11039 	KF_ARG_PTR_TO_MAP,
11040 	KF_ARG_PTR_TO_WORKQUEUE,
11041 };
11042 
11043 enum special_kfunc_type {
11044 	KF_bpf_obj_new_impl,
11045 	KF_bpf_obj_drop_impl,
11046 	KF_bpf_refcount_acquire_impl,
11047 	KF_bpf_list_push_front_impl,
11048 	KF_bpf_list_push_back_impl,
11049 	KF_bpf_list_pop_front,
11050 	KF_bpf_list_pop_back,
11051 	KF_bpf_cast_to_kern_ctx,
11052 	KF_bpf_rdonly_cast,
11053 	KF_bpf_rcu_read_lock,
11054 	KF_bpf_rcu_read_unlock,
11055 	KF_bpf_rbtree_remove,
11056 	KF_bpf_rbtree_add_impl,
11057 	KF_bpf_rbtree_first,
11058 	KF_bpf_dynptr_from_skb,
11059 	KF_bpf_dynptr_from_xdp,
11060 	KF_bpf_dynptr_slice,
11061 	KF_bpf_dynptr_slice_rdwr,
11062 	KF_bpf_dynptr_clone,
11063 	KF_bpf_percpu_obj_new_impl,
11064 	KF_bpf_percpu_obj_drop_impl,
11065 	KF_bpf_throw,
11066 	KF_bpf_wq_set_callback_impl,
11067 	KF_bpf_preempt_disable,
11068 	KF_bpf_preempt_enable,
11069 	KF_bpf_iter_css_task_new,
11070 	KF_bpf_session_cookie,
11071 };
11072 
11073 BTF_SET_START(special_kfunc_set)
11074 BTF_ID(func, bpf_obj_new_impl)
11075 BTF_ID(func, bpf_obj_drop_impl)
11076 BTF_ID(func, bpf_refcount_acquire_impl)
11077 BTF_ID(func, bpf_list_push_front_impl)
11078 BTF_ID(func, bpf_list_push_back_impl)
11079 BTF_ID(func, bpf_list_pop_front)
11080 BTF_ID(func, bpf_list_pop_back)
11081 BTF_ID(func, bpf_cast_to_kern_ctx)
11082 BTF_ID(func, bpf_rdonly_cast)
11083 BTF_ID(func, bpf_rbtree_remove)
11084 BTF_ID(func, bpf_rbtree_add_impl)
11085 BTF_ID(func, bpf_rbtree_first)
11086 BTF_ID(func, bpf_dynptr_from_skb)
11087 BTF_ID(func, bpf_dynptr_from_xdp)
11088 BTF_ID(func, bpf_dynptr_slice)
11089 BTF_ID(func, bpf_dynptr_slice_rdwr)
11090 BTF_ID(func, bpf_dynptr_clone)
11091 BTF_ID(func, bpf_percpu_obj_new_impl)
11092 BTF_ID(func, bpf_percpu_obj_drop_impl)
11093 BTF_ID(func, bpf_throw)
11094 BTF_ID(func, bpf_wq_set_callback_impl)
11095 #ifdef CONFIG_CGROUPS
11096 BTF_ID(func, bpf_iter_css_task_new)
11097 #endif
11098 BTF_SET_END(special_kfunc_set)
11099 
11100 BTF_ID_LIST(special_kfunc_list)
11101 BTF_ID(func, bpf_obj_new_impl)
11102 BTF_ID(func, bpf_obj_drop_impl)
11103 BTF_ID(func, bpf_refcount_acquire_impl)
11104 BTF_ID(func, bpf_list_push_front_impl)
11105 BTF_ID(func, bpf_list_push_back_impl)
11106 BTF_ID(func, bpf_list_pop_front)
11107 BTF_ID(func, bpf_list_pop_back)
11108 BTF_ID(func, bpf_cast_to_kern_ctx)
11109 BTF_ID(func, bpf_rdonly_cast)
11110 BTF_ID(func, bpf_rcu_read_lock)
11111 BTF_ID(func, bpf_rcu_read_unlock)
11112 BTF_ID(func, bpf_rbtree_remove)
11113 BTF_ID(func, bpf_rbtree_add_impl)
11114 BTF_ID(func, bpf_rbtree_first)
11115 BTF_ID(func, bpf_dynptr_from_skb)
11116 BTF_ID(func, bpf_dynptr_from_xdp)
11117 BTF_ID(func, bpf_dynptr_slice)
11118 BTF_ID(func, bpf_dynptr_slice_rdwr)
11119 BTF_ID(func, bpf_dynptr_clone)
11120 BTF_ID(func, bpf_percpu_obj_new_impl)
11121 BTF_ID(func, bpf_percpu_obj_drop_impl)
11122 BTF_ID(func, bpf_throw)
11123 BTF_ID(func, bpf_wq_set_callback_impl)
11124 BTF_ID(func, bpf_preempt_disable)
11125 BTF_ID(func, bpf_preempt_enable)
11126 #ifdef CONFIG_CGROUPS
11127 BTF_ID(func, bpf_iter_css_task_new)
11128 #else
11129 BTF_ID_UNUSED
11130 #endif
11131 #ifdef CONFIG_BPF_EVENTS
11132 BTF_ID(func, bpf_session_cookie)
11133 #else
11134 BTF_ID_UNUSED
11135 #endif
11136 
11137 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
11138 {
11139 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
11140 	    meta->arg_owning_ref) {
11141 		return false;
11142 	}
11143 
11144 	return meta->kfunc_flags & KF_RET_NULL;
11145 }
11146 
11147 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
11148 {
11149 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
11150 }
11151 
11152 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
11153 {
11154 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
11155 }
11156 
11157 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta)
11158 {
11159 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable];
11160 }
11161 
11162 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta)
11163 {
11164 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable];
11165 }
11166 
11167 static enum kfunc_ptr_arg_type
11168 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
11169 		       struct bpf_kfunc_call_arg_meta *meta,
11170 		       const struct btf_type *t, const struct btf_type *ref_t,
11171 		       const char *ref_tname, const struct btf_param *args,
11172 		       int argno, int nargs)
11173 {
11174 	u32 regno = argno + 1;
11175 	struct bpf_reg_state *regs = cur_regs(env);
11176 	struct bpf_reg_state *reg = &regs[regno];
11177 	bool arg_mem_size = false;
11178 
11179 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
11180 		return KF_ARG_PTR_TO_CTX;
11181 
11182 	/* In this function, we verify the kfunc's BTF as per the argument type,
11183 	 * leaving the rest of the verification with respect to the register
11184 	 * type to our caller. When a set of conditions hold in the BTF type of
11185 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
11186 	 */
11187 	if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
11188 		return KF_ARG_PTR_TO_CTX;
11189 
11190 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
11191 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
11192 
11193 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
11194 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
11195 
11196 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
11197 		return KF_ARG_PTR_TO_DYNPTR;
11198 
11199 	if (is_kfunc_arg_iter(meta, argno))
11200 		return KF_ARG_PTR_TO_ITER;
11201 
11202 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
11203 		return KF_ARG_PTR_TO_LIST_HEAD;
11204 
11205 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
11206 		return KF_ARG_PTR_TO_LIST_NODE;
11207 
11208 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
11209 		return KF_ARG_PTR_TO_RB_ROOT;
11210 
11211 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
11212 		return KF_ARG_PTR_TO_RB_NODE;
11213 
11214 	if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
11215 		return KF_ARG_PTR_TO_CONST_STR;
11216 
11217 	if (is_kfunc_arg_map(meta->btf, &args[argno]))
11218 		return KF_ARG_PTR_TO_MAP;
11219 
11220 	if (is_kfunc_arg_wq(meta->btf, &args[argno]))
11221 		return KF_ARG_PTR_TO_WORKQUEUE;
11222 
11223 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
11224 		if (!btf_type_is_struct(ref_t)) {
11225 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
11226 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
11227 			return -EINVAL;
11228 		}
11229 		return KF_ARG_PTR_TO_BTF_ID;
11230 	}
11231 
11232 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
11233 		return KF_ARG_PTR_TO_CALLBACK;
11234 
11235 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
11236 		return KF_ARG_PTR_TO_NULL;
11237 
11238 	if (argno + 1 < nargs &&
11239 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
11240 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
11241 		arg_mem_size = true;
11242 
11243 	/* This is the catch all argument type of register types supported by
11244 	 * check_helper_mem_access. However, we only allow when argument type is
11245 	 * pointer to scalar, or struct composed (recursively) of scalars. When
11246 	 * arg_mem_size is true, the pointer can be void *.
11247 	 */
11248 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
11249 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
11250 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
11251 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
11252 		return -EINVAL;
11253 	}
11254 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
11255 }
11256 
11257 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
11258 					struct bpf_reg_state *reg,
11259 					const struct btf_type *ref_t,
11260 					const char *ref_tname, u32 ref_id,
11261 					struct bpf_kfunc_call_arg_meta *meta,
11262 					int argno)
11263 {
11264 	const struct btf_type *reg_ref_t;
11265 	bool strict_type_match = false;
11266 	const struct btf *reg_btf;
11267 	const char *reg_ref_tname;
11268 	u32 reg_ref_id;
11269 
11270 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
11271 		reg_btf = reg->btf;
11272 		reg_ref_id = reg->btf_id;
11273 	} else {
11274 		reg_btf = btf_vmlinux;
11275 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
11276 	}
11277 
11278 	/* Enforce strict type matching for calls to kfuncs that are acquiring
11279 	 * or releasing a reference, or are no-cast aliases. We do _not_
11280 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
11281 	 * as we want to enable BPF programs to pass types that are bitwise
11282 	 * equivalent without forcing them to explicitly cast with something
11283 	 * like bpf_cast_to_kern_ctx().
11284 	 *
11285 	 * For example, say we had a type like the following:
11286 	 *
11287 	 * struct bpf_cpumask {
11288 	 *	cpumask_t cpumask;
11289 	 *	refcount_t usage;
11290 	 * };
11291 	 *
11292 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
11293 	 * to a struct cpumask, so it would be safe to pass a struct
11294 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
11295 	 *
11296 	 * The philosophy here is similar to how we allow scalars of different
11297 	 * types to be passed to kfuncs as long as the size is the same. The
11298 	 * only difference here is that we're simply allowing
11299 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
11300 	 * resolve types.
11301 	 */
11302 	if (is_kfunc_acquire(meta) ||
11303 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
11304 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
11305 		strict_type_match = true;
11306 
11307 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
11308 
11309 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
11310 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
11311 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
11312 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
11313 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
11314 			btf_type_str(reg_ref_t), reg_ref_tname);
11315 		return -EINVAL;
11316 	}
11317 	return 0;
11318 }
11319 
11320 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11321 {
11322 	struct bpf_verifier_state *state = env->cur_state;
11323 	struct btf_record *rec = reg_btf_record(reg);
11324 
11325 	if (!state->active_lock.ptr) {
11326 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
11327 		return -EFAULT;
11328 	}
11329 
11330 	if (type_flag(reg->type) & NON_OWN_REF) {
11331 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
11332 		return -EFAULT;
11333 	}
11334 
11335 	reg->type |= NON_OWN_REF;
11336 	if (rec->refcount_off >= 0)
11337 		reg->type |= MEM_RCU;
11338 
11339 	return 0;
11340 }
11341 
11342 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
11343 {
11344 	struct bpf_func_state *state, *unused;
11345 	struct bpf_reg_state *reg;
11346 	int i;
11347 
11348 	state = cur_func(env);
11349 
11350 	if (!ref_obj_id) {
11351 		verbose(env, "verifier internal error: ref_obj_id is zero for "
11352 			     "owning -> non-owning conversion\n");
11353 		return -EFAULT;
11354 	}
11355 
11356 	for (i = 0; i < state->acquired_refs; i++) {
11357 		if (state->refs[i].id != ref_obj_id)
11358 			continue;
11359 
11360 		/* Clear ref_obj_id here so release_reference doesn't clobber
11361 		 * the whole reg
11362 		 */
11363 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
11364 			if (reg->ref_obj_id == ref_obj_id) {
11365 				reg->ref_obj_id = 0;
11366 				ref_set_non_owning(env, reg);
11367 			}
11368 		}));
11369 		return 0;
11370 	}
11371 
11372 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
11373 	return -EFAULT;
11374 }
11375 
11376 /* Implementation details:
11377  *
11378  * Each register points to some region of memory, which we define as an
11379  * allocation. Each allocation may embed a bpf_spin_lock which protects any
11380  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
11381  * allocation. The lock and the data it protects are colocated in the same
11382  * memory region.
11383  *
11384  * Hence, everytime a register holds a pointer value pointing to such
11385  * allocation, the verifier preserves a unique reg->id for it.
11386  *
11387  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
11388  * bpf_spin_lock is called.
11389  *
11390  * To enable this, lock state in the verifier captures two values:
11391  *	active_lock.ptr = Register's type specific pointer
11392  *	active_lock.id  = A unique ID for each register pointer value
11393  *
11394  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11395  * supported register types.
11396  *
11397  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11398  * allocated objects is the reg->btf pointer.
11399  *
11400  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11401  * can establish the provenance of the map value statically for each distinct
11402  * lookup into such maps. They always contain a single map value hence unique
11403  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11404  *
11405  * So, in case of global variables, they use array maps with max_entries = 1,
11406  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11407  * into the same map value as max_entries is 1, as described above).
11408  *
11409  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11410  * outer map pointer (in verifier context), but each lookup into an inner map
11411  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11412  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11413  * will get different reg->id assigned to each lookup, hence different
11414  * active_lock.id.
11415  *
11416  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11417  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11418  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11419  */
11420 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11421 {
11422 	void *ptr;
11423 	u32 id;
11424 
11425 	switch ((int)reg->type) {
11426 	case PTR_TO_MAP_VALUE:
11427 		ptr = reg->map_ptr;
11428 		break;
11429 	case PTR_TO_BTF_ID | MEM_ALLOC:
11430 		ptr = reg->btf;
11431 		break;
11432 	default:
11433 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11434 		return -EFAULT;
11435 	}
11436 	id = reg->id;
11437 
11438 	if (!env->cur_state->active_lock.ptr)
11439 		return -EINVAL;
11440 	if (env->cur_state->active_lock.ptr != ptr ||
11441 	    env->cur_state->active_lock.id != id) {
11442 		verbose(env, "held lock and object are not in the same allocation\n");
11443 		return -EINVAL;
11444 	}
11445 	return 0;
11446 }
11447 
11448 static bool is_bpf_list_api_kfunc(u32 btf_id)
11449 {
11450 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11451 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11452 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11453 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11454 }
11455 
11456 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11457 {
11458 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11459 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11460 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11461 }
11462 
11463 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11464 {
11465 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11466 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11467 }
11468 
11469 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11470 {
11471 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11472 }
11473 
11474 static bool is_async_callback_calling_kfunc(u32 btf_id)
11475 {
11476 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
11477 }
11478 
11479 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11480 {
11481 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11482 	       insn->imm == special_kfunc_list[KF_bpf_throw];
11483 }
11484 
11485 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)
11486 {
11487 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
11488 }
11489 
11490 static bool is_callback_calling_kfunc(u32 btf_id)
11491 {
11492 	return is_sync_callback_calling_kfunc(btf_id) ||
11493 	       is_async_callback_calling_kfunc(btf_id);
11494 }
11495 
11496 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11497 {
11498 	return is_bpf_rbtree_api_kfunc(btf_id);
11499 }
11500 
11501 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11502 					  enum btf_field_type head_field_type,
11503 					  u32 kfunc_btf_id)
11504 {
11505 	bool ret;
11506 
11507 	switch (head_field_type) {
11508 	case BPF_LIST_HEAD:
11509 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11510 		break;
11511 	case BPF_RB_ROOT:
11512 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11513 		break;
11514 	default:
11515 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11516 			btf_field_type_name(head_field_type));
11517 		return false;
11518 	}
11519 
11520 	if (!ret)
11521 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11522 			btf_field_type_name(head_field_type));
11523 	return ret;
11524 }
11525 
11526 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11527 					  enum btf_field_type node_field_type,
11528 					  u32 kfunc_btf_id)
11529 {
11530 	bool ret;
11531 
11532 	switch (node_field_type) {
11533 	case BPF_LIST_NODE:
11534 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11535 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11536 		break;
11537 	case BPF_RB_NODE:
11538 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11539 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11540 		break;
11541 	default:
11542 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11543 			btf_field_type_name(node_field_type));
11544 		return false;
11545 	}
11546 
11547 	if (!ret)
11548 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11549 			btf_field_type_name(node_field_type));
11550 	return ret;
11551 }
11552 
11553 static int
11554 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11555 				   struct bpf_reg_state *reg, u32 regno,
11556 				   struct bpf_kfunc_call_arg_meta *meta,
11557 				   enum btf_field_type head_field_type,
11558 				   struct btf_field **head_field)
11559 {
11560 	const char *head_type_name;
11561 	struct btf_field *field;
11562 	struct btf_record *rec;
11563 	u32 head_off;
11564 
11565 	if (meta->btf != btf_vmlinux) {
11566 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11567 		return -EFAULT;
11568 	}
11569 
11570 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11571 		return -EFAULT;
11572 
11573 	head_type_name = btf_field_type_name(head_field_type);
11574 	if (!tnum_is_const(reg->var_off)) {
11575 		verbose(env,
11576 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11577 			regno, head_type_name);
11578 		return -EINVAL;
11579 	}
11580 
11581 	rec = reg_btf_record(reg);
11582 	head_off = reg->off + reg->var_off.value;
11583 	field = btf_record_find(rec, head_off, head_field_type);
11584 	if (!field) {
11585 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11586 		return -EINVAL;
11587 	}
11588 
11589 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11590 	if (check_reg_allocation_locked(env, reg)) {
11591 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11592 			rec->spin_lock_off, head_type_name);
11593 		return -EINVAL;
11594 	}
11595 
11596 	if (*head_field) {
11597 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11598 		return -EFAULT;
11599 	}
11600 	*head_field = field;
11601 	return 0;
11602 }
11603 
11604 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11605 					   struct bpf_reg_state *reg, u32 regno,
11606 					   struct bpf_kfunc_call_arg_meta *meta)
11607 {
11608 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11609 							  &meta->arg_list_head.field);
11610 }
11611 
11612 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11613 					     struct bpf_reg_state *reg, u32 regno,
11614 					     struct bpf_kfunc_call_arg_meta *meta)
11615 {
11616 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11617 							  &meta->arg_rbtree_root.field);
11618 }
11619 
11620 static int
11621 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11622 				   struct bpf_reg_state *reg, u32 regno,
11623 				   struct bpf_kfunc_call_arg_meta *meta,
11624 				   enum btf_field_type head_field_type,
11625 				   enum btf_field_type node_field_type,
11626 				   struct btf_field **node_field)
11627 {
11628 	const char *node_type_name;
11629 	const struct btf_type *et, *t;
11630 	struct btf_field *field;
11631 	u32 node_off;
11632 
11633 	if (meta->btf != btf_vmlinux) {
11634 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11635 		return -EFAULT;
11636 	}
11637 
11638 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11639 		return -EFAULT;
11640 
11641 	node_type_name = btf_field_type_name(node_field_type);
11642 	if (!tnum_is_const(reg->var_off)) {
11643 		verbose(env,
11644 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11645 			regno, node_type_name);
11646 		return -EINVAL;
11647 	}
11648 
11649 	node_off = reg->off + reg->var_off.value;
11650 	field = reg_find_field_offset(reg, node_off, node_field_type);
11651 	if (!field || field->offset != node_off) {
11652 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11653 		return -EINVAL;
11654 	}
11655 
11656 	field = *node_field;
11657 
11658 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11659 	t = btf_type_by_id(reg->btf, reg->btf_id);
11660 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11661 				  field->graph_root.value_btf_id, true)) {
11662 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11663 			"in struct %s, but arg is at offset=%d in struct %s\n",
11664 			btf_field_type_name(head_field_type),
11665 			btf_field_type_name(node_field_type),
11666 			field->graph_root.node_offset,
11667 			btf_name_by_offset(field->graph_root.btf, et->name_off),
11668 			node_off, btf_name_by_offset(reg->btf, t->name_off));
11669 		return -EINVAL;
11670 	}
11671 	meta->arg_btf = reg->btf;
11672 	meta->arg_btf_id = reg->btf_id;
11673 
11674 	if (node_off != field->graph_root.node_offset) {
11675 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11676 			node_off, btf_field_type_name(node_field_type),
11677 			field->graph_root.node_offset,
11678 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11679 		return -EINVAL;
11680 	}
11681 
11682 	return 0;
11683 }
11684 
11685 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11686 					   struct bpf_reg_state *reg, u32 regno,
11687 					   struct bpf_kfunc_call_arg_meta *meta)
11688 {
11689 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11690 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11691 						  &meta->arg_list_head.field);
11692 }
11693 
11694 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11695 					     struct bpf_reg_state *reg, u32 regno,
11696 					     struct bpf_kfunc_call_arg_meta *meta)
11697 {
11698 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11699 						  BPF_RB_ROOT, BPF_RB_NODE,
11700 						  &meta->arg_rbtree_root.field);
11701 }
11702 
11703 /*
11704  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
11705  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
11706  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
11707  * them can only be attached to some specific hook points.
11708  */
11709 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
11710 {
11711 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11712 
11713 	switch (prog_type) {
11714 	case BPF_PROG_TYPE_LSM:
11715 		return true;
11716 	case BPF_PROG_TYPE_TRACING:
11717 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
11718 			return true;
11719 		fallthrough;
11720 	default:
11721 		return in_sleepable(env);
11722 	}
11723 }
11724 
11725 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11726 			    int insn_idx)
11727 {
11728 	const char *func_name = meta->func_name, *ref_tname;
11729 	const struct btf *btf = meta->btf;
11730 	const struct btf_param *args;
11731 	struct btf_record *rec;
11732 	u32 i, nargs;
11733 	int ret;
11734 
11735 	args = (const struct btf_param *)(meta->func_proto + 1);
11736 	nargs = btf_type_vlen(meta->func_proto);
11737 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11738 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11739 			MAX_BPF_FUNC_REG_ARGS);
11740 		return -EINVAL;
11741 	}
11742 
11743 	/* Check that BTF function arguments match actual types that the
11744 	 * verifier sees.
11745 	 */
11746 	for (i = 0; i < nargs; i++) {
11747 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11748 		const struct btf_type *t, *ref_t, *resolve_ret;
11749 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11750 		u32 regno = i + 1, ref_id, type_size;
11751 		bool is_ret_buf_sz = false;
11752 		int kf_arg_type;
11753 
11754 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11755 
11756 		if (is_kfunc_arg_ignore(btf, &args[i]))
11757 			continue;
11758 
11759 		if (btf_type_is_scalar(t)) {
11760 			if (reg->type != SCALAR_VALUE) {
11761 				verbose(env, "R%d is not a scalar\n", regno);
11762 				return -EINVAL;
11763 			}
11764 
11765 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11766 				if (meta->arg_constant.found) {
11767 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11768 					return -EFAULT;
11769 				}
11770 				if (!tnum_is_const(reg->var_off)) {
11771 					verbose(env, "R%d must be a known constant\n", regno);
11772 					return -EINVAL;
11773 				}
11774 				ret = mark_chain_precision(env, regno);
11775 				if (ret < 0)
11776 					return ret;
11777 				meta->arg_constant.found = true;
11778 				meta->arg_constant.value = reg->var_off.value;
11779 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11780 				meta->r0_rdonly = true;
11781 				is_ret_buf_sz = true;
11782 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11783 				is_ret_buf_sz = true;
11784 			}
11785 
11786 			if (is_ret_buf_sz) {
11787 				if (meta->r0_size) {
11788 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11789 					return -EINVAL;
11790 				}
11791 
11792 				if (!tnum_is_const(reg->var_off)) {
11793 					verbose(env, "R%d is not a const\n", regno);
11794 					return -EINVAL;
11795 				}
11796 
11797 				meta->r0_size = reg->var_off.value;
11798 				ret = mark_chain_precision(env, regno);
11799 				if (ret)
11800 					return ret;
11801 			}
11802 			continue;
11803 		}
11804 
11805 		if (!btf_type_is_ptr(t)) {
11806 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11807 			return -EINVAL;
11808 		}
11809 
11810 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11811 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
11812 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
11813 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11814 			return -EACCES;
11815 		}
11816 
11817 		if (reg->ref_obj_id) {
11818 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
11819 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11820 					regno, reg->ref_obj_id,
11821 					meta->ref_obj_id);
11822 				return -EFAULT;
11823 			}
11824 			meta->ref_obj_id = reg->ref_obj_id;
11825 			if (is_kfunc_release(meta))
11826 				meta->release_regno = regno;
11827 		}
11828 
11829 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11830 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11831 
11832 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11833 		if (kf_arg_type < 0)
11834 			return kf_arg_type;
11835 
11836 		switch (kf_arg_type) {
11837 		case KF_ARG_PTR_TO_NULL:
11838 			continue;
11839 		case KF_ARG_PTR_TO_MAP:
11840 			if (!reg->map_ptr) {
11841 				verbose(env, "pointer in R%d isn't map pointer\n", regno);
11842 				return -EINVAL;
11843 			}
11844 			if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) {
11845 				/* Use map_uid (which is unique id of inner map) to reject:
11846 				 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
11847 				 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
11848 				 * if (inner_map1 && inner_map2) {
11849 				 *     wq = bpf_map_lookup_elem(inner_map1);
11850 				 *     if (wq)
11851 				 *         // mismatch would have been allowed
11852 				 *         bpf_wq_init(wq, inner_map2);
11853 				 * }
11854 				 *
11855 				 * Comparing map_ptr is enough to distinguish normal and outer maps.
11856 				 */
11857 				if (meta->map.ptr != reg->map_ptr ||
11858 				    meta->map.uid != reg->map_uid) {
11859 					verbose(env,
11860 						"workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
11861 						meta->map.uid, reg->map_uid);
11862 					return -EINVAL;
11863 				}
11864 			}
11865 			meta->map.ptr = reg->map_ptr;
11866 			meta->map.uid = reg->map_uid;
11867 			fallthrough;
11868 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11869 		case KF_ARG_PTR_TO_BTF_ID:
11870 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11871 				break;
11872 
11873 			if (!is_trusted_reg(reg)) {
11874 				if (!is_kfunc_rcu(meta)) {
11875 					verbose(env, "R%d must be referenced or trusted\n", regno);
11876 					return -EINVAL;
11877 				}
11878 				if (!is_rcu_reg(reg)) {
11879 					verbose(env, "R%d must be a rcu pointer\n", regno);
11880 					return -EINVAL;
11881 				}
11882 			}
11883 
11884 			fallthrough;
11885 		case KF_ARG_PTR_TO_CTX:
11886 			/* Trusted arguments have the same offset checks as release arguments */
11887 			arg_type |= OBJ_RELEASE;
11888 			break;
11889 		case KF_ARG_PTR_TO_DYNPTR:
11890 		case KF_ARG_PTR_TO_ITER:
11891 		case KF_ARG_PTR_TO_LIST_HEAD:
11892 		case KF_ARG_PTR_TO_LIST_NODE:
11893 		case KF_ARG_PTR_TO_RB_ROOT:
11894 		case KF_ARG_PTR_TO_RB_NODE:
11895 		case KF_ARG_PTR_TO_MEM:
11896 		case KF_ARG_PTR_TO_MEM_SIZE:
11897 		case KF_ARG_PTR_TO_CALLBACK:
11898 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11899 		case KF_ARG_PTR_TO_CONST_STR:
11900 		case KF_ARG_PTR_TO_WORKQUEUE:
11901 			/* Trusted by default */
11902 			break;
11903 		default:
11904 			WARN_ON_ONCE(1);
11905 			return -EFAULT;
11906 		}
11907 
11908 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11909 			arg_type |= OBJ_RELEASE;
11910 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11911 		if (ret < 0)
11912 			return ret;
11913 
11914 		switch (kf_arg_type) {
11915 		case KF_ARG_PTR_TO_CTX:
11916 			if (reg->type != PTR_TO_CTX) {
11917 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11918 				return -EINVAL;
11919 			}
11920 
11921 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11922 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11923 				if (ret < 0)
11924 					return -EINVAL;
11925 				meta->ret_btf_id  = ret;
11926 			}
11927 			break;
11928 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11929 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
11930 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
11931 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
11932 					return -EINVAL;
11933 				}
11934 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
11935 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
11936 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
11937 					return -EINVAL;
11938 				}
11939 			} else {
11940 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11941 				return -EINVAL;
11942 			}
11943 			if (!reg->ref_obj_id) {
11944 				verbose(env, "allocated object must be referenced\n");
11945 				return -EINVAL;
11946 			}
11947 			if (meta->btf == btf_vmlinux) {
11948 				meta->arg_btf = reg->btf;
11949 				meta->arg_btf_id = reg->btf_id;
11950 			}
11951 			break;
11952 		case KF_ARG_PTR_TO_DYNPTR:
11953 		{
11954 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11955 			int clone_ref_obj_id = 0;
11956 
11957 			if (reg->type != PTR_TO_STACK &&
11958 			    reg->type != CONST_PTR_TO_DYNPTR) {
11959 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11960 				return -EINVAL;
11961 			}
11962 
11963 			if (reg->type == CONST_PTR_TO_DYNPTR)
11964 				dynptr_arg_type |= MEM_RDONLY;
11965 
11966 			if (is_kfunc_arg_uninit(btf, &args[i]))
11967 				dynptr_arg_type |= MEM_UNINIT;
11968 
11969 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11970 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11971 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11972 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11973 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11974 				   (dynptr_arg_type & MEM_UNINIT)) {
11975 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11976 
11977 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11978 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11979 					return -EFAULT;
11980 				}
11981 
11982 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11983 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11984 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11985 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11986 					return -EFAULT;
11987 				}
11988 			}
11989 
11990 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11991 			if (ret < 0)
11992 				return ret;
11993 
11994 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11995 				int id = dynptr_id(env, reg);
11996 
11997 				if (id < 0) {
11998 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11999 					return id;
12000 				}
12001 				meta->initialized_dynptr.id = id;
12002 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
12003 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
12004 			}
12005 
12006 			break;
12007 		}
12008 		case KF_ARG_PTR_TO_ITER:
12009 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
12010 				if (!check_css_task_iter_allowlist(env)) {
12011 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
12012 					return -EINVAL;
12013 				}
12014 			}
12015 			ret = process_iter_arg(env, regno, insn_idx, meta);
12016 			if (ret < 0)
12017 				return ret;
12018 			break;
12019 		case KF_ARG_PTR_TO_LIST_HEAD:
12020 			if (reg->type != PTR_TO_MAP_VALUE &&
12021 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12022 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
12023 				return -EINVAL;
12024 			}
12025 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
12026 				verbose(env, "allocated object must be referenced\n");
12027 				return -EINVAL;
12028 			}
12029 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
12030 			if (ret < 0)
12031 				return ret;
12032 			break;
12033 		case KF_ARG_PTR_TO_RB_ROOT:
12034 			if (reg->type != PTR_TO_MAP_VALUE &&
12035 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12036 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
12037 				return -EINVAL;
12038 			}
12039 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
12040 				verbose(env, "allocated object must be referenced\n");
12041 				return -EINVAL;
12042 			}
12043 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
12044 			if (ret < 0)
12045 				return ret;
12046 			break;
12047 		case KF_ARG_PTR_TO_LIST_NODE:
12048 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12049 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
12050 				return -EINVAL;
12051 			}
12052 			if (!reg->ref_obj_id) {
12053 				verbose(env, "allocated object must be referenced\n");
12054 				return -EINVAL;
12055 			}
12056 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
12057 			if (ret < 0)
12058 				return ret;
12059 			break;
12060 		case KF_ARG_PTR_TO_RB_NODE:
12061 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
12062 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
12063 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
12064 					return -EINVAL;
12065 				}
12066 				if (in_rbtree_lock_required_cb(env)) {
12067 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
12068 					return -EINVAL;
12069 				}
12070 			} else {
12071 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12072 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
12073 					return -EINVAL;
12074 				}
12075 				if (!reg->ref_obj_id) {
12076 					verbose(env, "allocated object must be referenced\n");
12077 					return -EINVAL;
12078 				}
12079 			}
12080 
12081 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
12082 			if (ret < 0)
12083 				return ret;
12084 			break;
12085 		case KF_ARG_PTR_TO_MAP:
12086 			/* If argument has '__map' suffix expect 'struct bpf_map *' */
12087 			ref_id = *reg2btf_ids[CONST_PTR_TO_MAP];
12088 			ref_t = btf_type_by_id(btf_vmlinux, ref_id);
12089 			ref_tname = btf_name_by_offset(btf, ref_t->name_off);
12090 			fallthrough;
12091 		case KF_ARG_PTR_TO_BTF_ID:
12092 			/* Only base_type is checked, further checks are done here */
12093 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
12094 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
12095 			    !reg2btf_ids[base_type(reg->type)]) {
12096 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
12097 				verbose(env, "expected %s or socket\n",
12098 					reg_type_str(env, base_type(reg->type) |
12099 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
12100 				return -EINVAL;
12101 			}
12102 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
12103 			if (ret < 0)
12104 				return ret;
12105 			break;
12106 		case KF_ARG_PTR_TO_MEM:
12107 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
12108 			if (IS_ERR(resolve_ret)) {
12109 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
12110 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
12111 				return -EINVAL;
12112 			}
12113 			ret = check_mem_reg(env, reg, regno, type_size);
12114 			if (ret < 0)
12115 				return ret;
12116 			break;
12117 		case KF_ARG_PTR_TO_MEM_SIZE:
12118 		{
12119 			struct bpf_reg_state *buff_reg = &regs[regno];
12120 			const struct btf_param *buff_arg = &args[i];
12121 			struct bpf_reg_state *size_reg = &regs[regno + 1];
12122 			const struct btf_param *size_arg = &args[i + 1];
12123 
12124 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
12125 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
12126 				if (ret < 0) {
12127 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
12128 					return ret;
12129 				}
12130 			}
12131 
12132 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
12133 				if (meta->arg_constant.found) {
12134 					verbose(env, "verifier internal error: only one constant argument permitted\n");
12135 					return -EFAULT;
12136 				}
12137 				if (!tnum_is_const(size_reg->var_off)) {
12138 					verbose(env, "R%d must be a known constant\n", regno + 1);
12139 					return -EINVAL;
12140 				}
12141 				meta->arg_constant.found = true;
12142 				meta->arg_constant.value = size_reg->var_off.value;
12143 			}
12144 
12145 			/* Skip next '__sz' or '__szk' argument */
12146 			i++;
12147 			break;
12148 		}
12149 		case KF_ARG_PTR_TO_CALLBACK:
12150 			if (reg->type != PTR_TO_FUNC) {
12151 				verbose(env, "arg%d expected pointer to func\n", i);
12152 				return -EINVAL;
12153 			}
12154 			meta->subprogno = reg->subprogno;
12155 			break;
12156 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
12157 			if (!type_is_ptr_alloc_obj(reg->type)) {
12158 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
12159 				return -EINVAL;
12160 			}
12161 			if (!type_is_non_owning_ref(reg->type))
12162 				meta->arg_owning_ref = true;
12163 
12164 			rec = reg_btf_record(reg);
12165 			if (!rec) {
12166 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
12167 				return -EFAULT;
12168 			}
12169 
12170 			if (rec->refcount_off < 0) {
12171 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
12172 				return -EINVAL;
12173 			}
12174 
12175 			meta->arg_btf = reg->btf;
12176 			meta->arg_btf_id = reg->btf_id;
12177 			break;
12178 		case KF_ARG_PTR_TO_CONST_STR:
12179 			if (reg->type != PTR_TO_MAP_VALUE) {
12180 				verbose(env, "arg#%d doesn't point to a const string\n", i);
12181 				return -EINVAL;
12182 			}
12183 			ret = check_reg_const_str(env, reg, regno);
12184 			if (ret)
12185 				return ret;
12186 			break;
12187 		case KF_ARG_PTR_TO_WORKQUEUE:
12188 			if (reg->type != PTR_TO_MAP_VALUE) {
12189 				verbose(env, "arg#%d doesn't point to a map value\n", i);
12190 				return -EINVAL;
12191 			}
12192 			ret = process_wq_func(env, regno, meta);
12193 			if (ret < 0)
12194 				return ret;
12195 			break;
12196 		}
12197 	}
12198 
12199 	if (is_kfunc_release(meta) && !meta->release_regno) {
12200 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
12201 			func_name);
12202 		return -EINVAL;
12203 	}
12204 
12205 	return 0;
12206 }
12207 
12208 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
12209 			    struct bpf_insn *insn,
12210 			    struct bpf_kfunc_call_arg_meta *meta,
12211 			    const char **kfunc_name)
12212 {
12213 	const struct btf_type *func, *func_proto;
12214 	u32 func_id, *kfunc_flags;
12215 	const char *func_name;
12216 	struct btf *desc_btf;
12217 
12218 	if (kfunc_name)
12219 		*kfunc_name = NULL;
12220 
12221 	if (!insn->imm)
12222 		return -EINVAL;
12223 
12224 	desc_btf = find_kfunc_desc_btf(env, insn->off);
12225 	if (IS_ERR(desc_btf))
12226 		return PTR_ERR(desc_btf);
12227 
12228 	func_id = insn->imm;
12229 	func = btf_type_by_id(desc_btf, func_id);
12230 	func_name = btf_name_by_offset(desc_btf, func->name_off);
12231 	if (kfunc_name)
12232 		*kfunc_name = func_name;
12233 	func_proto = btf_type_by_id(desc_btf, func->type);
12234 
12235 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
12236 	if (!kfunc_flags) {
12237 		return -EACCES;
12238 	}
12239 
12240 	memset(meta, 0, sizeof(*meta));
12241 	meta->btf = desc_btf;
12242 	meta->func_id = func_id;
12243 	meta->kfunc_flags = *kfunc_flags;
12244 	meta->func_proto = func_proto;
12245 	meta->func_name = func_name;
12246 
12247 	return 0;
12248 }
12249 
12250 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
12251 
12252 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
12253 			    int *insn_idx_p)
12254 {
12255 	bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable;
12256 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
12257 	struct bpf_reg_state *regs = cur_regs(env);
12258 	const char *func_name, *ptr_type_name;
12259 	const struct btf_type *t, *ptr_type;
12260 	struct bpf_kfunc_call_arg_meta meta;
12261 	struct bpf_insn_aux_data *insn_aux;
12262 	int err, insn_idx = *insn_idx_p;
12263 	const struct btf_param *args;
12264 	const struct btf_type *ret_t;
12265 	struct btf *desc_btf;
12266 
12267 	/* skip for now, but return error when we find this in fixup_kfunc_call */
12268 	if (!insn->imm)
12269 		return 0;
12270 
12271 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
12272 	if (err == -EACCES && func_name)
12273 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
12274 	if (err)
12275 		return err;
12276 	desc_btf = meta.btf;
12277 	insn_aux = &env->insn_aux_data[insn_idx];
12278 
12279 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
12280 
12281 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
12282 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
12283 		return -EACCES;
12284 	}
12285 
12286 	sleepable = is_kfunc_sleepable(&meta);
12287 	if (sleepable && !in_sleepable(env)) {
12288 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
12289 		return -EACCES;
12290 	}
12291 
12292 	/* Check the arguments */
12293 	err = check_kfunc_args(env, &meta, insn_idx);
12294 	if (err < 0)
12295 		return err;
12296 
12297 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12298 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12299 					 set_rbtree_add_callback_state);
12300 		if (err) {
12301 			verbose(env, "kfunc %s#%d failed callback verification\n",
12302 				func_name, meta.func_id);
12303 			return err;
12304 		}
12305 	}
12306 
12307 	if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) {
12308 		meta.r0_size = sizeof(u64);
12309 		meta.r0_rdonly = false;
12310 	}
12311 
12312 	if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) {
12313 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12314 					 set_timer_callback_state);
12315 		if (err) {
12316 			verbose(env, "kfunc %s#%d failed callback verification\n",
12317 				func_name, meta.func_id);
12318 			return err;
12319 		}
12320 	}
12321 
12322 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
12323 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
12324 
12325 	preempt_disable = is_kfunc_bpf_preempt_disable(&meta);
12326 	preempt_enable = is_kfunc_bpf_preempt_enable(&meta);
12327 
12328 	if (env->cur_state->active_rcu_lock) {
12329 		struct bpf_func_state *state;
12330 		struct bpf_reg_state *reg;
12331 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
12332 
12333 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
12334 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
12335 			return -EACCES;
12336 		}
12337 
12338 		if (rcu_lock) {
12339 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
12340 			return -EINVAL;
12341 		} else if (rcu_unlock) {
12342 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
12343 				if (reg->type & MEM_RCU) {
12344 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
12345 					reg->type |= PTR_UNTRUSTED;
12346 				}
12347 			}));
12348 			env->cur_state->active_rcu_lock = false;
12349 		} else if (sleepable) {
12350 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
12351 			return -EACCES;
12352 		}
12353 	} else if (rcu_lock) {
12354 		env->cur_state->active_rcu_lock = true;
12355 	} else if (rcu_unlock) {
12356 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
12357 		return -EINVAL;
12358 	}
12359 
12360 	if (env->cur_state->active_preempt_lock) {
12361 		if (preempt_disable) {
12362 			env->cur_state->active_preempt_lock++;
12363 		} else if (preempt_enable) {
12364 			env->cur_state->active_preempt_lock--;
12365 		} else if (sleepable) {
12366 			verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name);
12367 			return -EACCES;
12368 		}
12369 	} else if (preempt_disable) {
12370 		env->cur_state->active_preempt_lock++;
12371 	} else if (preempt_enable) {
12372 		verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name);
12373 		return -EINVAL;
12374 	}
12375 
12376 	/* In case of release function, we get register number of refcounted
12377 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
12378 	 */
12379 	if (meta.release_regno) {
12380 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
12381 		if (err) {
12382 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12383 				func_name, meta.func_id);
12384 			return err;
12385 		}
12386 	}
12387 
12388 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12389 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12390 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12391 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
12392 		insn_aux->insert_off = regs[BPF_REG_2].off;
12393 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
12394 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
12395 		if (err) {
12396 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
12397 				func_name, meta.func_id);
12398 			return err;
12399 		}
12400 
12401 		err = release_reference(env, release_ref_obj_id);
12402 		if (err) {
12403 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12404 				func_name, meta.func_id);
12405 			return err;
12406 		}
12407 	}
12408 
12409 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
12410 		if (!bpf_jit_supports_exceptions()) {
12411 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
12412 				func_name, meta.func_id);
12413 			return -ENOTSUPP;
12414 		}
12415 		env->seen_exception = true;
12416 
12417 		/* In the case of the default callback, the cookie value passed
12418 		 * to bpf_throw becomes the return value of the program.
12419 		 */
12420 		if (!env->exception_callback_subprog) {
12421 			err = check_return_code(env, BPF_REG_1, "R1");
12422 			if (err < 0)
12423 				return err;
12424 		}
12425 	}
12426 
12427 	for (i = 0; i < CALLER_SAVED_REGS; i++)
12428 		mark_reg_not_init(env, regs, caller_saved[i]);
12429 
12430 	/* Check return type */
12431 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
12432 
12433 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
12434 		/* Only exception is bpf_obj_new_impl */
12435 		if (meta.btf != btf_vmlinux ||
12436 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
12437 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
12438 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
12439 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
12440 			return -EINVAL;
12441 		}
12442 	}
12443 
12444 	if (btf_type_is_scalar(t)) {
12445 		mark_reg_unknown(env, regs, BPF_REG_0);
12446 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
12447 	} else if (btf_type_is_ptr(t)) {
12448 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
12449 
12450 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12451 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
12452 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12453 				struct btf_struct_meta *struct_meta;
12454 				struct btf *ret_btf;
12455 				u32 ret_btf_id;
12456 
12457 				if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
12458 					return -ENOMEM;
12459 
12460 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
12461 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
12462 					return -EINVAL;
12463 				}
12464 
12465 				ret_btf = env->prog->aux->btf;
12466 				ret_btf_id = meta.arg_constant.value;
12467 
12468 				/* This may be NULL due to user not supplying a BTF */
12469 				if (!ret_btf) {
12470 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
12471 					return -EINVAL;
12472 				}
12473 
12474 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
12475 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
12476 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
12477 					return -EINVAL;
12478 				}
12479 
12480 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12481 					if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
12482 						verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
12483 							ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
12484 						return -EINVAL;
12485 					}
12486 
12487 					if (!bpf_global_percpu_ma_set) {
12488 						mutex_lock(&bpf_percpu_ma_lock);
12489 						if (!bpf_global_percpu_ma_set) {
12490 							/* Charge memory allocated with bpf_global_percpu_ma to
12491 							 * root memcg. The obj_cgroup for root memcg is NULL.
12492 							 */
12493 							err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
12494 							if (!err)
12495 								bpf_global_percpu_ma_set = true;
12496 						}
12497 						mutex_unlock(&bpf_percpu_ma_lock);
12498 						if (err)
12499 							return err;
12500 					}
12501 
12502 					mutex_lock(&bpf_percpu_ma_lock);
12503 					err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
12504 					mutex_unlock(&bpf_percpu_ma_lock);
12505 					if (err)
12506 						return err;
12507 				}
12508 
12509 				struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
12510 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12511 					if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12512 						verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12513 						return -EINVAL;
12514 					}
12515 
12516 					if (struct_meta) {
12517 						verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12518 						return -EINVAL;
12519 					}
12520 				}
12521 
12522 				mark_reg_known_zero(env, regs, BPF_REG_0);
12523 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12524 				regs[BPF_REG_0].btf = ret_btf;
12525 				regs[BPF_REG_0].btf_id = ret_btf_id;
12526 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12527 					regs[BPF_REG_0].type |= MEM_PERCPU;
12528 
12529 				insn_aux->obj_new_size = ret_t->size;
12530 				insn_aux->kptr_struct_meta = struct_meta;
12531 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12532 				mark_reg_known_zero(env, regs, BPF_REG_0);
12533 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12534 				regs[BPF_REG_0].btf = meta.arg_btf;
12535 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12536 
12537 				insn_aux->kptr_struct_meta =
12538 					btf_find_struct_meta(meta.arg_btf,
12539 							     meta.arg_btf_id);
12540 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12541 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12542 				struct btf_field *field = meta.arg_list_head.field;
12543 
12544 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12545 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12546 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12547 				struct btf_field *field = meta.arg_rbtree_root.field;
12548 
12549 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12550 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12551 				mark_reg_known_zero(env, regs, BPF_REG_0);
12552 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12553 				regs[BPF_REG_0].btf = desc_btf;
12554 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12555 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12556 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12557 				if (!ret_t || !btf_type_is_struct(ret_t)) {
12558 					verbose(env,
12559 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12560 					return -EINVAL;
12561 				}
12562 
12563 				mark_reg_known_zero(env, regs, BPF_REG_0);
12564 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12565 				regs[BPF_REG_0].btf = desc_btf;
12566 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12567 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
12568 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
12569 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
12570 
12571 				mark_reg_known_zero(env, regs, BPF_REG_0);
12572 
12573 				if (!meta.arg_constant.found) {
12574 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
12575 					return -EFAULT;
12576 				}
12577 
12578 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
12579 
12580 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
12581 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
12582 
12583 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
12584 					regs[BPF_REG_0].type |= MEM_RDONLY;
12585 				} else {
12586 					/* this will set env->seen_direct_write to true */
12587 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
12588 						verbose(env, "the prog does not allow writes to packet data\n");
12589 						return -EINVAL;
12590 					}
12591 				}
12592 
12593 				if (!meta.initialized_dynptr.id) {
12594 					verbose(env, "verifier internal error: no dynptr id\n");
12595 					return -EFAULT;
12596 				}
12597 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
12598 
12599 				/* we don't need to set BPF_REG_0's ref obj id
12600 				 * because packet slices are not refcounted (see
12601 				 * dynptr_type_refcounted)
12602 				 */
12603 			} else {
12604 				verbose(env, "kernel function %s unhandled dynamic return type\n",
12605 					meta.func_name);
12606 				return -EFAULT;
12607 			}
12608 		} else if (btf_type_is_void(ptr_type)) {
12609 			/* kfunc returning 'void *' is equivalent to returning scalar */
12610 			mark_reg_unknown(env, regs, BPF_REG_0);
12611 		} else if (!__btf_type_is_struct(ptr_type)) {
12612 			if (!meta.r0_size) {
12613 				__u32 sz;
12614 
12615 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12616 					meta.r0_size = sz;
12617 					meta.r0_rdonly = true;
12618 				}
12619 			}
12620 			if (!meta.r0_size) {
12621 				ptr_type_name = btf_name_by_offset(desc_btf,
12622 								   ptr_type->name_off);
12623 				verbose(env,
12624 					"kernel function %s returns pointer type %s %s is not supported\n",
12625 					func_name,
12626 					btf_type_str(ptr_type),
12627 					ptr_type_name);
12628 				return -EINVAL;
12629 			}
12630 
12631 			mark_reg_known_zero(env, regs, BPF_REG_0);
12632 			regs[BPF_REG_0].type = PTR_TO_MEM;
12633 			regs[BPF_REG_0].mem_size = meta.r0_size;
12634 
12635 			if (meta.r0_rdonly)
12636 				regs[BPF_REG_0].type |= MEM_RDONLY;
12637 
12638 			/* Ensures we don't access the memory after a release_reference() */
12639 			if (meta.ref_obj_id)
12640 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12641 		} else {
12642 			mark_reg_known_zero(env, regs, BPF_REG_0);
12643 			regs[BPF_REG_0].btf = desc_btf;
12644 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12645 			regs[BPF_REG_0].btf_id = ptr_type_id;
12646 		}
12647 
12648 		if (is_kfunc_ret_null(&meta)) {
12649 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12650 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12651 			regs[BPF_REG_0].id = ++env->id_gen;
12652 		}
12653 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12654 		if (is_kfunc_acquire(&meta)) {
12655 			int id = acquire_reference_state(env, insn_idx);
12656 
12657 			if (id < 0)
12658 				return id;
12659 			if (is_kfunc_ret_null(&meta))
12660 				regs[BPF_REG_0].id = id;
12661 			regs[BPF_REG_0].ref_obj_id = id;
12662 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12663 			ref_set_non_owning(env, &regs[BPF_REG_0]);
12664 		}
12665 
12666 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
12667 			regs[BPF_REG_0].id = ++env->id_gen;
12668 	} else if (btf_type_is_void(t)) {
12669 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12670 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
12671 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12672 				insn_aux->kptr_struct_meta =
12673 					btf_find_struct_meta(meta.arg_btf,
12674 							     meta.arg_btf_id);
12675 			}
12676 		}
12677 	}
12678 
12679 	nargs = btf_type_vlen(meta.func_proto);
12680 	args = (const struct btf_param *)(meta.func_proto + 1);
12681 	for (i = 0; i < nargs; i++) {
12682 		u32 regno = i + 1;
12683 
12684 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12685 		if (btf_type_is_ptr(t))
12686 			mark_btf_func_reg_size(env, regno, sizeof(void *));
12687 		else
12688 			/* scalar. ensured by btf_check_kfunc_arg_match() */
12689 			mark_btf_func_reg_size(env, regno, t->size);
12690 	}
12691 
12692 	if (is_iter_next_kfunc(&meta)) {
12693 		err = process_iter_next_call(env, insn_idx, &meta);
12694 		if (err)
12695 			return err;
12696 	}
12697 
12698 	return 0;
12699 }
12700 
12701 static bool signed_add_overflows(s64 a, s64 b)
12702 {
12703 	/* Do the add in u64, where overflow is well-defined */
12704 	s64 res = (s64)((u64)a + (u64)b);
12705 
12706 	if (b < 0)
12707 		return res > a;
12708 	return res < a;
12709 }
12710 
12711 static bool signed_add32_overflows(s32 a, s32 b)
12712 {
12713 	/* Do the add in u32, where overflow is well-defined */
12714 	s32 res = (s32)((u32)a + (u32)b);
12715 
12716 	if (b < 0)
12717 		return res > a;
12718 	return res < a;
12719 }
12720 
12721 static bool signed_sub_overflows(s64 a, s64 b)
12722 {
12723 	/* Do the sub in u64, where overflow is well-defined */
12724 	s64 res = (s64)((u64)a - (u64)b);
12725 
12726 	if (b < 0)
12727 		return res < a;
12728 	return res > a;
12729 }
12730 
12731 static bool signed_sub32_overflows(s32 a, s32 b)
12732 {
12733 	/* Do the sub in u32, where overflow is well-defined */
12734 	s32 res = (s32)((u32)a - (u32)b);
12735 
12736 	if (b < 0)
12737 		return res < a;
12738 	return res > a;
12739 }
12740 
12741 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12742 				  const struct bpf_reg_state *reg,
12743 				  enum bpf_reg_type type)
12744 {
12745 	bool known = tnum_is_const(reg->var_off);
12746 	s64 val = reg->var_off.value;
12747 	s64 smin = reg->smin_value;
12748 
12749 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12750 		verbose(env, "math between %s pointer and %lld is not allowed\n",
12751 			reg_type_str(env, type), val);
12752 		return false;
12753 	}
12754 
12755 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12756 		verbose(env, "%s pointer offset %d is not allowed\n",
12757 			reg_type_str(env, type), reg->off);
12758 		return false;
12759 	}
12760 
12761 	if (smin == S64_MIN) {
12762 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12763 			reg_type_str(env, type));
12764 		return false;
12765 	}
12766 
12767 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12768 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
12769 			smin, reg_type_str(env, type));
12770 		return false;
12771 	}
12772 
12773 	return true;
12774 }
12775 
12776 enum {
12777 	REASON_BOUNDS	= -1,
12778 	REASON_TYPE	= -2,
12779 	REASON_PATHS	= -3,
12780 	REASON_LIMIT	= -4,
12781 	REASON_STACK	= -5,
12782 };
12783 
12784 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12785 			      u32 *alu_limit, bool mask_to_left)
12786 {
12787 	u32 max = 0, ptr_limit = 0;
12788 
12789 	switch (ptr_reg->type) {
12790 	case PTR_TO_STACK:
12791 		/* Offset 0 is out-of-bounds, but acceptable start for the
12792 		 * left direction, see BPF_REG_FP. Also, unknown scalar
12793 		 * offset where we would need to deal with min/max bounds is
12794 		 * currently prohibited for unprivileged.
12795 		 */
12796 		max = MAX_BPF_STACK + mask_to_left;
12797 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12798 		break;
12799 	case PTR_TO_MAP_VALUE:
12800 		max = ptr_reg->map_ptr->value_size;
12801 		ptr_limit = (mask_to_left ?
12802 			     ptr_reg->smin_value :
12803 			     ptr_reg->umax_value) + ptr_reg->off;
12804 		break;
12805 	default:
12806 		return REASON_TYPE;
12807 	}
12808 
12809 	if (ptr_limit >= max)
12810 		return REASON_LIMIT;
12811 	*alu_limit = ptr_limit;
12812 	return 0;
12813 }
12814 
12815 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12816 				    const struct bpf_insn *insn)
12817 {
12818 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12819 }
12820 
12821 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12822 				       u32 alu_state, u32 alu_limit)
12823 {
12824 	/* If we arrived here from different branches with different
12825 	 * state or limits to sanitize, then this won't work.
12826 	 */
12827 	if (aux->alu_state &&
12828 	    (aux->alu_state != alu_state ||
12829 	     aux->alu_limit != alu_limit))
12830 		return REASON_PATHS;
12831 
12832 	/* Corresponding fixup done in do_misc_fixups(). */
12833 	aux->alu_state = alu_state;
12834 	aux->alu_limit = alu_limit;
12835 	return 0;
12836 }
12837 
12838 static int sanitize_val_alu(struct bpf_verifier_env *env,
12839 			    struct bpf_insn *insn)
12840 {
12841 	struct bpf_insn_aux_data *aux = cur_aux(env);
12842 
12843 	if (can_skip_alu_sanitation(env, insn))
12844 		return 0;
12845 
12846 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12847 }
12848 
12849 static bool sanitize_needed(u8 opcode)
12850 {
12851 	return opcode == BPF_ADD || opcode == BPF_SUB;
12852 }
12853 
12854 struct bpf_sanitize_info {
12855 	struct bpf_insn_aux_data aux;
12856 	bool mask_to_left;
12857 };
12858 
12859 static struct bpf_verifier_state *
12860 sanitize_speculative_path(struct bpf_verifier_env *env,
12861 			  const struct bpf_insn *insn,
12862 			  u32 next_idx, u32 curr_idx)
12863 {
12864 	struct bpf_verifier_state *branch;
12865 	struct bpf_reg_state *regs;
12866 
12867 	branch = push_stack(env, next_idx, curr_idx, true);
12868 	if (branch && insn) {
12869 		regs = branch->frame[branch->curframe]->regs;
12870 		if (BPF_SRC(insn->code) == BPF_K) {
12871 			mark_reg_unknown(env, regs, insn->dst_reg);
12872 		} else if (BPF_SRC(insn->code) == BPF_X) {
12873 			mark_reg_unknown(env, regs, insn->dst_reg);
12874 			mark_reg_unknown(env, regs, insn->src_reg);
12875 		}
12876 	}
12877 	return branch;
12878 }
12879 
12880 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12881 			    struct bpf_insn *insn,
12882 			    const struct bpf_reg_state *ptr_reg,
12883 			    const struct bpf_reg_state *off_reg,
12884 			    struct bpf_reg_state *dst_reg,
12885 			    struct bpf_sanitize_info *info,
12886 			    const bool commit_window)
12887 {
12888 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12889 	struct bpf_verifier_state *vstate = env->cur_state;
12890 	bool off_is_imm = tnum_is_const(off_reg->var_off);
12891 	bool off_is_neg = off_reg->smin_value < 0;
12892 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
12893 	u8 opcode = BPF_OP(insn->code);
12894 	u32 alu_state, alu_limit;
12895 	struct bpf_reg_state tmp;
12896 	bool ret;
12897 	int err;
12898 
12899 	if (can_skip_alu_sanitation(env, insn))
12900 		return 0;
12901 
12902 	/* We already marked aux for masking from non-speculative
12903 	 * paths, thus we got here in the first place. We only care
12904 	 * to explore bad access from here.
12905 	 */
12906 	if (vstate->speculative)
12907 		goto do_sim;
12908 
12909 	if (!commit_window) {
12910 		if (!tnum_is_const(off_reg->var_off) &&
12911 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12912 			return REASON_BOUNDS;
12913 
12914 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
12915 				     (opcode == BPF_SUB && !off_is_neg);
12916 	}
12917 
12918 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12919 	if (err < 0)
12920 		return err;
12921 
12922 	if (commit_window) {
12923 		/* In commit phase we narrow the masking window based on
12924 		 * the observed pointer move after the simulated operation.
12925 		 */
12926 		alu_state = info->aux.alu_state;
12927 		alu_limit = abs(info->aux.alu_limit - alu_limit);
12928 	} else {
12929 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12930 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12931 		alu_state |= ptr_is_dst_reg ?
12932 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12933 
12934 		/* Limit pruning on unknown scalars to enable deep search for
12935 		 * potential masking differences from other program paths.
12936 		 */
12937 		if (!off_is_imm)
12938 			env->explore_alu_limits = true;
12939 	}
12940 
12941 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12942 	if (err < 0)
12943 		return err;
12944 do_sim:
12945 	/* If we're in commit phase, we're done here given we already
12946 	 * pushed the truncated dst_reg into the speculative verification
12947 	 * stack.
12948 	 *
12949 	 * Also, when register is a known constant, we rewrite register-based
12950 	 * operation to immediate-based, and thus do not need masking (and as
12951 	 * a consequence, do not need to simulate the zero-truncation either).
12952 	 */
12953 	if (commit_window || off_is_imm)
12954 		return 0;
12955 
12956 	/* Simulate and find potential out-of-bounds access under
12957 	 * speculative execution from truncation as a result of
12958 	 * masking when off was not within expected range. If off
12959 	 * sits in dst, then we temporarily need to move ptr there
12960 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12961 	 * for cases where we use K-based arithmetic in one direction
12962 	 * and truncated reg-based in the other in order to explore
12963 	 * bad access.
12964 	 */
12965 	if (!ptr_is_dst_reg) {
12966 		tmp = *dst_reg;
12967 		copy_register_state(dst_reg, ptr_reg);
12968 	}
12969 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12970 					env->insn_idx);
12971 	if (!ptr_is_dst_reg && ret)
12972 		*dst_reg = tmp;
12973 	return !ret ? REASON_STACK : 0;
12974 }
12975 
12976 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12977 {
12978 	struct bpf_verifier_state *vstate = env->cur_state;
12979 
12980 	/* If we simulate paths under speculation, we don't update the
12981 	 * insn as 'seen' such that when we verify unreachable paths in
12982 	 * the non-speculative domain, sanitize_dead_code() can still
12983 	 * rewrite/sanitize them.
12984 	 */
12985 	if (!vstate->speculative)
12986 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12987 }
12988 
12989 static int sanitize_err(struct bpf_verifier_env *env,
12990 			const struct bpf_insn *insn, int reason,
12991 			const struct bpf_reg_state *off_reg,
12992 			const struct bpf_reg_state *dst_reg)
12993 {
12994 	static const char *err = "pointer arithmetic with it prohibited for !root";
12995 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12996 	u32 dst = insn->dst_reg, src = insn->src_reg;
12997 
12998 	switch (reason) {
12999 	case REASON_BOUNDS:
13000 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
13001 			off_reg == dst_reg ? dst : src, err);
13002 		break;
13003 	case REASON_TYPE:
13004 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
13005 			off_reg == dst_reg ? src : dst, err);
13006 		break;
13007 	case REASON_PATHS:
13008 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
13009 			dst, op, err);
13010 		break;
13011 	case REASON_LIMIT:
13012 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
13013 			dst, op, err);
13014 		break;
13015 	case REASON_STACK:
13016 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
13017 			dst, err);
13018 		break;
13019 	default:
13020 		verbose(env, "verifier internal error: unknown reason (%d)\n",
13021 			reason);
13022 		break;
13023 	}
13024 
13025 	return -EACCES;
13026 }
13027 
13028 /* check that stack access falls within stack limits and that 'reg' doesn't
13029  * have a variable offset.
13030  *
13031  * Variable offset is prohibited for unprivileged mode for simplicity since it
13032  * requires corresponding support in Spectre masking for stack ALU.  See also
13033  * retrieve_ptr_limit().
13034  *
13035  *
13036  * 'off' includes 'reg->off'.
13037  */
13038 static int check_stack_access_for_ptr_arithmetic(
13039 				struct bpf_verifier_env *env,
13040 				int regno,
13041 				const struct bpf_reg_state *reg,
13042 				int off)
13043 {
13044 	if (!tnum_is_const(reg->var_off)) {
13045 		char tn_buf[48];
13046 
13047 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
13048 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
13049 			regno, tn_buf, off);
13050 		return -EACCES;
13051 	}
13052 
13053 	if (off >= 0 || off < -MAX_BPF_STACK) {
13054 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
13055 			"prohibited for !root; off=%d\n", regno, off);
13056 		return -EACCES;
13057 	}
13058 
13059 	return 0;
13060 }
13061 
13062 static int sanitize_check_bounds(struct bpf_verifier_env *env,
13063 				 const struct bpf_insn *insn,
13064 				 const struct bpf_reg_state *dst_reg)
13065 {
13066 	u32 dst = insn->dst_reg;
13067 
13068 	/* For unprivileged we require that resulting offset must be in bounds
13069 	 * in order to be able to sanitize access later on.
13070 	 */
13071 	if (env->bypass_spec_v1)
13072 		return 0;
13073 
13074 	switch (dst_reg->type) {
13075 	case PTR_TO_STACK:
13076 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
13077 					dst_reg->off + dst_reg->var_off.value))
13078 			return -EACCES;
13079 		break;
13080 	case PTR_TO_MAP_VALUE:
13081 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
13082 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
13083 				"prohibited for !root\n", dst);
13084 			return -EACCES;
13085 		}
13086 		break;
13087 	default:
13088 		break;
13089 	}
13090 
13091 	return 0;
13092 }
13093 
13094 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
13095  * Caller should also handle BPF_MOV case separately.
13096  * If we return -EACCES, caller may want to try again treating pointer as a
13097  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
13098  */
13099 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
13100 				   struct bpf_insn *insn,
13101 				   const struct bpf_reg_state *ptr_reg,
13102 				   const struct bpf_reg_state *off_reg)
13103 {
13104 	struct bpf_verifier_state *vstate = env->cur_state;
13105 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13106 	struct bpf_reg_state *regs = state->regs, *dst_reg;
13107 	bool known = tnum_is_const(off_reg->var_off);
13108 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
13109 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
13110 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
13111 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
13112 	struct bpf_sanitize_info info = {};
13113 	u8 opcode = BPF_OP(insn->code);
13114 	u32 dst = insn->dst_reg;
13115 	int ret;
13116 
13117 	dst_reg = &regs[dst];
13118 
13119 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
13120 	    smin_val > smax_val || umin_val > umax_val) {
13121 		/* Taint dst register if offset had invalid bounds derived from
13122 		 * e.g. dead branches.
13123 		 */
13124 		__mark_reg_unknown(env, dst_reg);
13125 		return 0;
13126 	}
13127 
13128 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
13129 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
13130 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13131 			__mark_reg_unknown(env, dst_reg);
13132 			return 0;
13133 		}
13134 
13135 		verbose(env,
13136 			"R%d 32-bit pointer arithmetic prohibited\n",
13137 			dst);
13138 		return -EACCES;
13139 	}
13140 
13141 	if (ptr_reg->type & PTR_MAYBE_NULL) {
13142 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
13143 			dst, reg_type_str(env, ptr_reg->type));
13144 		return -EACCES;
13145 	}
13146 
13147 	switch (base_type(ptr_reg->type)) {
13148 	case PTR_TO_CTX:
13149 	case PTR_TO_MAP_VALUE:
13150 	case PTR_TO_MAP_KEY:
13151 	case PTR_TO_STACK:
13152 	case PTR_TO_PACKET_META:
13153 	case PTR_TO_PACKET:
13154 	case PTR_TO_TP_BUFFER:
13155 	case PTR_TO_BTF_ID:
13156 	case PTR_TO_MEM:
13157 	case PTR_TO_BUF:
13158 	case PTR_TO_FUNC:
13159 	case CONST_PTR_TO_DYNPTR:
13160 		break;
13161 	case PTR_TO_FLOW_KEYS:
13162 		if (known)
13163 			break;
13164 		fallthrough;
13165 	case CONST_PTR_TO_MAP:
13166 		/* smin_val represents the known value */
13167 		if (known && smin_val == 0 && opcode == BPF_ADD)
13168 			break;
13169 		fallthrough;
13170 	default:
13171 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
13172 			dst, reg_type_str(env, ptr_reg->type));
13173 		return -EACCES;
13174 	}
13175 
13176 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
13177 	 * The id may be overwritten later if we create a new variable offset.
13178 	 */
13179 	dst_reg->type = ptr_reg->type;
13180 	dst_reg->id = ptr_reg->id;
13181 
13182 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
13183 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
13184 		return -EINVAL;
13185 
13186 	/* pointer types do not carry 32-bit bounds at the moment. */
13187 	__mark_reg32_unbounded(dst_reg);
13188 
13189 	if (sanitize_needed(opcode)) {
13190 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
13191 				       &info, false);
13192 		if (ret < 0)
13193 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
13194 	}
13195 
13196 	switch (opcode) {
13197 	case BPF_ADD:
13198 		/* We can take a fixed offset as long as it doesn't overflow
13199 		 * the s32 'off' field
13200 		 */
13201 		if (known && (ptr_reg->off + smin_val ==
13202 			      (s64)(s32)(ptr_reg->off + smin_val))) {
13203 			/* pointer += K.  Accumulate it into fixed offset */
13204 			dst_reg->smin_value = smin_ptr;
13205 			dst_reg->smax_value = smax_ptr;
13206 			dst_reg->umin_value = umin_ptr;
13207 			dst_reg->umax_value = umax_ptr;
13208 			dst_reg->var_off = ptr_reg->var_off;
13209 			dst_reg->off = ptr_reg->off + smin_val;
13210 			dst_reg->raw = ptr_reg->raw;
13211 			break;
13212 		}
13213 		/* A new variable offset is created.  Note that off_reg->off
13214 		 * == 0, since it's a scalar.
13215 		 * dst_reg gets the pointer type and since some positive
13216 		 * integer value was added to the pointer, give it a new 'id'
13217 		 * if it's a PTR_TO_PACKET.
13218 		 * this creates a new 'base' pointer, off_reg (variable) gets
13219 		 * added into the variable offset, and we copy the fixed offset
13220 		 * from ptr_reg.
13221 		 */
13222 		if (signed_add_overflows(smin_ptr, smin_val) ||
13223 		    signed_add_overflows(smax_ptr, smax_val)) {
13224 			dst_reg->smin_value = S64_MIN;
13225 			dst_reg->smax_value = S64_MAX;
13226 		} else {
13227 			dst_reg->smin_value = smin_ptr + smin_val;
13228 			dst_reg->smax_value = smax_ptr + smax_val;
13229 		}
13230 		if (umin_ptr + umin_val < umin_ptr ||
13231 		    umax_ptr + umax_val < umax_ptr) {
13232 			dst_reg->umin_value = 0;
13233 			dst_reg->umax_value = U64_MAX;
13234 		} else {
13235 			dst_reg->umin_value = umin_ptr + umin_val;
13236 			dst_reg->umax_value = umax_ptr + umax_val;
13237 		}
13238 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
13239 		dst_reg->off = ptr_reg->off;
13240 		dst_reg->raw = ptr_reg->raw;
13241 		if (reg_is_pkt_pointer(ptr_reg)) {
13242 			dst_reg->id = ++env->id_gen;
13243 			/* something was added to pkt_ptr, set range to zero */
13244 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13245 		}
13246 		break;
13247 	case BPF_SUB:
13248 		if (dst_reg == off_reg) {
13249 			/* scalar -= pointer.  Creates an unknown scalar */
13250 			verbose(env, "R%d tried to subtract pointer from scalar\n",
13251 				dst);
13252 			return -EACCES;
13253 		}
13254 		/* We don't allow subtraction from FP, because (according to
13255 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
13256 		 * be able to deal with it.
13257 		 */
13258 		if (ptr_reg->type == PTR_TO_STACK) {
13259 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
13260 				dst);
13261 			return -EACCES;
13262 		}
13263 		if (known && (ptr_reg->off - smin_val ==
13264 			      (s64)(s32)(ptr_reg->off - smin_val))) {
13265 			/* pointer -= K.  Subtract it from fixed offset */
13266 			dst_reg->smin_value = smin_ptr;
13267 			dst_reg->smax_value = smax_ptr;
13268 			dst_reg->umin_value = umin_ptr;
13269 			dst_reg->umax_value = umax_ptr;
13270 			dst_reg->var_off = ptr_reg->var_off;
13271 			dst_reg->id = ptr_reg->id;
13272 			dst_reg->off = ptr_reg->off - smin_val;
13273 			dst_reg->raw = ptr_reg->raw;
13274 			break;
13275 		}
13276 		/* A new variable offset is created.  If the subtrahend is known
13277 		 * nonnegative, then any reg->range we had before is still good.
13278 		 */
13279 		if (signed_sub_overflows(smin_ptr, smax_val) ||
13280 		    signed_sub_overflows(smax_ptr, smin_val)) {
13281 			/* Overflow possible, we know nothing */
13282 			dst_reg->smin_value = S64_MIN;
13283 			dst_reg->smax_value = S64_MAX;
13284 		} else {
13285 			dst_reg->smin_value = smin_ptr - smax_val;
13286 			dst_reg->smax_value = smax_ptr - smin_val;
13287 		}
13288 		if (umin_ptr < umax_val) {
13289 			/* Overflow possible, we know nothing */
13290 			dst_reg->umin_value = 0;
13291 			dst_reg->umax_value = U64_MAX;
13292 		} else {
13293 			/* Cannot overflow (as long as bounds are consistent) */
13294 			dst_reg->umin_value = umin_ptr - umax_val;
13295 			dst_reg->umax_value = umax_ptr - umin_val;
13296 		}
13297 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
13298 		dst_reg->off = ptr_reg->off;
13299 		dst_reg->raw = ptr_reg->raw;
13300 		if (reg_is_pkt_pointer(ptr_reg)) {
13301 			dst_reg->id = ++env->id_gen;
13302 			/* something was added to pkt_ptr, set range to zero */
13303 			if (smin_val < 0)
13304 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13305 		}
13306 		break;
13307 	case BPF_AND:
13308 	case BPF_OR:
13309 	case BPF_XOR:
13310 		/* bitwise ops on pointers are troublesome, prohibit. */
13311 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
13312 			dst, bpf_alu_string[opcode >> 4]);
13313 		return -EACCES;
13314 	default:
13315 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
13316 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
13317 			dst, bpf_alu_string[opcode >> 4]);
13318 		return -EACCES;
13319 	}
13320 
13321 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
13322 		return -EINVAL;
13323 	reg_bounds_sync(dst_reg);
13324 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
13325 		return -EACCES;
13326 	if (sanitize_needed(opcode)) {
13327 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
13328 				       &info, true);
13329 		if (ret < 0)
13330 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
13331 	}
13332 
13333 	return 0;
13334 }
13335 
13336 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
13337 				 struct bpf_reg_state *src_reg)
13338 {
13339 	s32 smin_val = src_reg->s32_min_value;
13340 	s32 smax_val = src_reg->s32_max_value;
13341 	u32 umin_val = src_reg->u32_min_value;
13342 	u32 umax_val = src_reg->u32_max_value;
13343 
13344 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
13345 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
13346 		dst_reg->s32_min_value = S32_MIN;
13347 		dst_reg->s32_max_value = S32_MAX;
13348 	} else {
13349 		dst_reg->s32_min_value += smin_val;
13350 		dst_reg->s32_max_value += smax_val;
13351 	}
13352 	if (dst_reg->u32_min_value + umin_val < umin_val ||
13353 	    dst_reg->u32_max_value + umax_val < umax_val) {
13354 		dst_reg->u32_min_value = 0;
13355 		dst_reg->u32_max_value = U32_MAX;
13356 	} else {
13357 		dst_reg->u32_min_value += umin_val;
13358 		dst_reg->u32_max_value += umax_val;
13359 	}
13360 }
13361 
13362 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
13363 			       struct bpf_reg_state *src_reg)
13364 {
13365 	s64 smin_val = src_reg->smin_value;
13366 	s64 smax_val = src_reg->smax_value;
13367 	u64 umin_val = src_reg->umin_value;
13368 	u64 umax_val = src_reg->umax_value;
13369 
13370 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
13371 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
13372 		dst_reg->smin_value = S64_MIN;
13373 		dst_reg->smax_value = S64_MAX;
13374 	} else {
13375 		dst_reg->smin_value += smin_val;
13376 		dst_reg->smax_value += smax_val;
13377 	}
13378 	if (dst_reg->umin_value + umin_val < umin_val ||
13379 	    dst_reg->umax_value + umax_val < umax_val) {
13380 		dst_reg->umin_value = 0;
13381 		dst_reg->umax_value = U64_MAX;
13382 	} else {
13383 		dst_reg->umin_value += umin_val;
13384 		dst_reg->umax_value += umax_val;
13385 	}
13386 }
13387 
13388 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
13389 				 struct bpf_reg_state *src_reg)
13390 {
13391 	s32 smin_val = src_reg->s32_min_value;
13392 	s32 smax_val = src_reg->s32_max_value;
13393 	u32 umin_val = src_reg->u32_min_value;
13394 	u32 umax_val = src_reg->u32_max_value;
13395 
13396 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
13397 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
13398 		/* Overflow possible, we know nothing */
13399 		dst_reg->s32_min_value = S32_MIN;
13400 		dst_reg->s32_max_value = S32_MAX;
13401 	} else {
13402 		dst_reg->s32_min_value -= smax_val;
13403 		dst_reg->s32_max_value -= smin_val;
13404 	}
13405 	if (dst_reg->u32_min_value < umax_val) {
13406 		/* Overflow possible, we know nothing */
13407 		dst_reg->u32_min_value = 0;
13408 		dst_reg->u32_max_value = U32_MAX;
13409 	} else {
13410 		/* Cannot overflow (as long as bounds are consistent) */
13411 		dst_reg->u32_min_value -= umax_val;
13412 		dst_reg->u32_max_value -= umin_val;
13413 	}
13414 }
13415 
13416 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
13417 			       struct bpf_reg_state *src_reg)
13418 {
13419 	s64 smin_val = src_reg->smin_value;
13420 	s64 smax_val = src_reg->smax_value;
13421 	u64 umin_val = src_reg->umin_value;
13422 	u64 umax_val = src_reg->umax_value;
13423 
13424 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
13425 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
13426 		/* Overflow possible, we know nothing */
13427 		dst_reg->smin_value = S64_MIN;
13428 		dst_reg->smax_value = S64_MAX;
13429 	} else {
13430 		dst_reg->smin_value -= smax_val;
13431 		dst_reg->smax_value -= smin_val;
13432 	}
13433 	if (dst_reg->umin_value < umax_val) {
13434 		/* Overflow possible, we know nothing */
13435 		dst_reg->umin_value = 0;
13436 		dst_reg->umax_value = U64_MAX;
13437 	} else {
13438 		/* Cannot overflow (as long as bounds are consistent) */
13439 		dst_reg->umin_value -= umax_val;
13440 		dst_reg->umax_value -= umin_val;
13441 	}
13442 }
13443 
13444 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
13445 				 struct bpf_reg_state *src_reg)
13446 {
13447 	s32 smin_val = src_reg->s32_min_value;
13448 	u32 umin_val = src_reg->u32_min_value;
13449 	u32 umax_val = src_reg->u32_max_value;
13450 
13451 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
13452 		/* Ain't nobody got time to multiply that sign */
13453 		__mark_reg32_unbounded(dst_reg);
13454 		return;
13455 	}
13456 	/* Both values are positive, so we can work with unsigned and
13457 	 * copy the result to signed (unless it exceeds S32_MAX).
13458 	 */
13459 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
13460 		/* Potential overflow, we know nothing */
13461 		__mark_reg32_unbounded(dst_reg);
13462 		return;
13463 	}
13464 	dst_reg->u32_min_value *= umin_val;
13465 	dst_reg->u32_max_value *= umax_val;
13466 	if (dst_reg->u32_max_value > S32_MAX) {
13467 		/* Overflow possible, we know nothing */
13468 		dst_reg->s32_min_value = S32_MIN;
13469 		dst_reg->s32_max_value = S32_MAX;
13470 	} else {
13471 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13472 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13473 	}
13474 }
13475 
13476 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
13477 			       struct bpf_reg_state *src_reg)
13478 {
13479 	s64 smin_val = src_reg->smin_value;
13480 	u64 umin_val = src_reg->umin_value;
13481 	u64 umax_val = src_reg->umax_value;
13482 
13483 	if (smin_val < 0 || dst_reg->smin_value < 0) {
13484 		/* Ain't nobody got time to multiply that sign */
13485 		__mark_reg64_unbounded(dst_reg);
13486 		return;
13487 	}
13488 	/* Both values are positive, so we can work with unsigned and
13489 	 * copy the result to signed (unless it exceeds S64_MAX).
13490 	 */
13491 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
13492 		/* Potential overflow, we know nothing */
13493 		__mark_reg64_unbounded(dst_reg);
13494 		return;
13495 	}
13496 	dst_reg->umin_value *= umin_val;
13497 	dst_reg->umax_value *= umax_val;
13498 	if (dst_reg->umax_value > S64_MAX) {
13499 		/* Overflow possible, we know nothing */
13500 		dst_reg->smin_value = S64_MIN;
13501 		dst_reg->smax_value = S64_MAX;
13502 	} else {
13503 		dst_reg->smin_value = dst_reg->umin_value;
13504 		dst_reg->smax_value = dst_reg->umax_value;
13505 	}
13506 }
13507 
13508 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
13509 				 struct bpf_reg_state *src_reg)
13510 {
13511 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13512 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13513 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13514 	u32 umax_val = src_reg->u32_max_value;
13515 
13516 	if (src_known && dst_known) {
13517 		__mark_reg32_known(dst_reg, var32_off.value);
13518 		return;
13519 	}
13520 
13521 	/* We get our minimum from the var_off, since that's inherently
13522 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13523 	 */
13524 	dst_reg->u32_min_value = var32_off.value;
13525 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13526 
13527 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
13528 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13529 	 */
13530 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13531 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13532 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13533 	} else {
13534 		dst_reg->s32_min_value = S32_MIN;
13535 		dst_reg->s32_max_value = S32_MAX;
13536 	}
13537 }
13538 
13539 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13540 			       struct bpf_reg_state *src_reg)
13541 {
13542 	bool src_known = tnum_is_const(src_reg->var_off);
13543 	bool dst_known = tnum_is_const(dst_reg->var_off);
13544 	u64 umax_val = src_reg->umax_value;
13545 
13546 	if (src_known && dst_known) {
13547 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13548 		return;
13549 	}
13550 
13551 	/* We get our minimum from the var_off, since that's inherently
13552 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13553 	 */
13554 	dst_reg->umin_value = dst_reg->var_off.value;
13555 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13556 
13557 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
13558 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13559 	 */
13560 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13561 		dst_reg->smin_value = dst_reg->umin_value;
13562 		dst_reg->smax_value = dst_reg->umax_value;
13563 	} else {
13564 		dst_reg->smin_value = S64_MIN;
13565 		dst_reg->smax_value = S64_MAX;
13566 	}
13567 	/* We may learn something more from the var_off */
13568 	__update_reg_bounds(dst_reg);
13569 }
13570 
13571 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13572 				struct bpf_reg_state *src_reg)
13573 {
13574 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13575 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13576 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13577 	u32 umin_val = src_reg->u32_min_value;
13578 
13579 	if (src_known && dst_known) {
13580 		__mark_reg32_known(dst_reg, var32_off.value);
13581 		return;
13582 	}
13583 
13584 	/* We get our maximum from the var_off, and our minimum is the
13585 	 * maximum of the operands' minima
13586 	 */
13587 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13588 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13589 
13590 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
13591 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13592 	 */
13593 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13594 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13595 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13596 	} else {
13597 		dst_reg->s32_min_value = S32_MIN;
13598 		dst_reg->s32_max_value = S32_MAX;
13599 	}
13600 }
13601 
13602 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13603 			      struct bpf_reg_state *src_reg)
13604 {
13605 	bool src_known = tnum_is_const(src_reg->var_off);
13606 	bool dst_known = tnum_is_const(dst_reg->var_off);
13607 	u64 umin_val = src_reg->umin_value;
13608 
13609 	if (src_known && dst_known) {
13610 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13611 		return;
13612 	}
13613 
13614 	/* We get our maximum from the var_off, and our minimum is the
13615 	 * maximum of the operands' minima
13616 	 */
13617 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13618 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13619 
13620 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
13621 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13622 	 */
13623 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13624 		dst_reg->smin_value = dst_reg->umin_value;
13625 		dst_reg->smax_value = dst_reg->umax_value;
13626 	} else {
13627 		dst_reg->smin_value = S64_MIN;
13628 		dst_reg->smax_value = S64_MAX;
13629 	}
13630 	/* We may learn something more from the var_off */
13631 	__update_reg_bounds(dst_reg);
13632 }
13633 
13634 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13635 				 struct bpf_reg_state *src_reg)
13636 {
13637 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13638 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13639 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13640 
13641 	if (src_known && dst_known) {
13642 		__mark_reg32_known(dst_reg, var32_off.value);
13643 		return;
13644 	}
13645 
13646 	/* We get both minimum and maximum from the var32_off. */
13647 	dst_reg->u32_min_value = var32_off.value;
13648 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13649 
13650 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
13651 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13652 	 */
13653 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13654 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13655 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13656 	} else {
13657 		dst_reg->s32_min_value = S32_MIN;
13658 		dst_reg->s32_max_value = S32_MAX;
13659 	}
13660 }
13661 
13662 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13663 			       struct bpf_reg_state *src_reg)
13664 {
13665 	bool src_known = tnum_is_const(src_reg->var_off);
13666 	bool dst_known = tnum_is_const(dst_reg->var_off);
13667 
13668 	if (src_known && dst_known) {
13669 		/* dst_reg->var_off.value has been updated earlier */
13670 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13671 		return;
13672 	}
13673 
13674 	/* We get both minimum and maximum from the var_off. */
13675 	dst_reg->umin_value = dst_reg->var_off.value;
13676 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13677 
13678 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
13679 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13680 	 */
13681 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13682 		dst_reg->smin_value = dst_reg->umin_value;
13683 		dst_reg->smax_value = dst_reg->umax_value;
13684 	} else {
13685 		dst_reg->smin_value = S64_MIN;
13686 		dst_reg->smax_value = S64_MAX;
13687 	}
13688 
13689 	__update_reg_bounds(dst_reg);
13690 }
13691 
13692 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13693 				   u64 umin_val, u64 umax_val)
13694 {
13695 	/* We lose all sign bit information (except what we can pick
13696 	 * up from var_off)
13697 	 */
13698 	dst_reg->s32_min_value = S32_MIN;
13699 	dst_reg->s32_max_value = S32_MAX;
13700 	/* If we might shift our top bit out, then we know nothing */
13701 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13702 		dst_reg->u32_min_value = 0;
13703 		dst_reg->u32_max_value = U32_MAX;
13704 	} else {
13705 		dst_reg->u32_min_value <<= umin_val;
13706 		dst_reg->u32_max_value <<= umax_val;
13707 	}
13708 }
13709 
13710 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13711 				 struct bpf_reg_state *src_reg)
13712 {
13713 	u32 umax_val = src_reg->u32_max_value;
13714 	u32 umin_val = src_reg->u32_min_value;
13715 	/* u32 alu operation will zext upper bits */
13716 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13717 
13718 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13719 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13720 	/* Not required but being careful mark reg64 bounds as unknown so
13721 	 * that we are forced to pick them up from tnum and zext later and
13722 	 * if some path skips this step we are still safe.
13723 	 */
13724 	__mark_reg64_unbounded(dst_reg);
13725 	__update_reg32_bounds(dst_reg);
13726 }
13727 
13728 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13729 				   u64 umin_val, u64 umax_val)
13730 {
13731 	/* Special case <<32 because it is a common compiler pattern to sign
13732 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13733 	 * positive we know this shift will also be positive so we can track
13734 	 * bounds correctly. Otherwise we lose all sign bit information except
13735 	 * what we can pick up from var_off. Perhaps we can generalize this
13736 	 * later to shifts of any length.
13737 	 */
13738 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13739 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13740 	else
13741 		dst_reg->smax_value = S64_MAX;
13742 
13743 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13744 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13745 	else
13746 		dst_reg->smin_value = S64_MIN;
13747 
13748 	/* If we might shift our top bit out, then we know nothing */
13749 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13750 		dst_reg->umin_value = 0;
13751 		dst_reg->umax_value = U64_MAX;
13752 	} else {
13753 		dst_reg->umin_value <<= umin_val;
13754 		dst_reg->umax_value <<= umax_val;
13755 	}
13756 }
13757 
13758 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13759 			       struct bpf_reg_state *src_reg)
13760 {
13761 	u64 umax_val = src_reg->umax_value;
13762 	u64 umin_val = src_reg->umin_value;
13763 
13764 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
13765 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13766 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13767 
13768 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13769 	/* We may learn something more from the var_off */
13770 	__update_reg_bounds(dst_reg);
13771 }
13772 
13773 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13774 				 struct bpf_reg_state *src_reg)
13775 {
13776 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13777 	u32 umax_val = src_reg->u32_max_value;
13778 	u32 umin_val = src_reg->u32_min_value;
13779 
13780 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13781 	 * be negative, then either:
13782 	 * 1) src_reg might be zero, so the sign bit of the result is
13783 	 *    unknown, so we lose our signed bounds
13784 	 * 2) it's known negative, thus the unsigned bounds capture the
13785 	 *    signed bounds
13786 	 * 3) the signed bounds cross zero, so they tell us nothing
13787 	 *    about the result
13788 	 * If the value in dst_reg is known nonnegative, then again the
13789 	 * unsigned bounds capture the signed bounds.
13790 	 * Thus, in all cases it suffices to blow away our signed bounds
13791 	 * and rely on inferring new ones from the unsigned bounds and
13792 	 * var_off of the result.
13793 	 */
13794 	dst_reg->s32_min_value = S32_MIN;
13795 	dst_reg->s32_max_value = S32_MAX;
13796 
13797 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
13798 	dst_reg->u32_min_value >>= umax_val;
13799 	dst_reg->u32_max_value >>= umin_val;
13800 
13801 	__mark_reg64_unbounded(dst_reg);
13802 	__update_reg32_bounds(dst_reg);
13803 }
13804 
13805 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13806 			       struct bpf_reg_state *src_reg)
13807 {
13808 	u64 umax_val = src_reg->umax_value;
13809 	u64 umin_val = src_reg->umin_value;
13810 
13811 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13812 	 * be negative, then either:
13813 	 * 1) src_reg might be zero, so the sign bit of the result is
13814 	 *    unknown, so we lose our signed bounds
13815 	 * 2) it's known negative, thus the unsigned bounds capture the
13816 	 *    signed bounds
13817 	 * 3) the signed bounds cross zero, so they tell us nothing
13818 	 *    about the result
13819 	 * If the value in dst_reg is known nonnegative, then again the
13820 	 * unsigned bounds capture the signed bounds.
13821 	 * Thus, in all cases it suffices to blow away our signed bounds
13822 	 * and rely on inferring new ones from the unsigned bounds and
13823 	 * var_off of the result.
13824 	 */
13825 	dst_reg->smin_value = S64_MIN;
13826 	dst_reg->smax_value = S64_MAX;
13827 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13828 	dst_reg->umin_value >>= umax_val;
13829 	dst_reg->umax_value >>= umin_val;
13830 
13831 	/* Its not easy to operate on alu32 bounds here because it depends
13832 	 * on bits being shifted in. Take easy way out and mark unbounded
13833 	 * so we can recalculate later from tnum.
13834 	 */
13835 	__mark_reg32_unbounded(dst_reg);
13836 	__update_reg_bounds(dst_reg);
13837 }
13838 
13839 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13840 				  struct bpf_reg_state *src_reg)
13841 {
13842 	u64 umin_val = src_reg->u32_min_value;
13843 
13844 	/* Upon reaching here, src_known is true and
13845 	 * umax_val is equal to umin_val.
13846 	 */
13847 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13848 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13849 
13850 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13851 
13852 	/* blow away the dst_reg umin_value/umax_value and rely on
13853 	 * dst_reg var_off to refine the result.
13854 	 */
13855 	dst_reg->u32_min_value = 0;
13856 	dst_reg->u32_max_value = U32_MAX;
13857 
13858 	__mark_reg64_unbounded(dst_reg);
13859 	__update_reg32_bounds(dst_reg);
13860 }
13861 
13862 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13863 				struct bpf_reg_state *src_reg)
13864 {
13865 	u64 umin_val = src_reg->umin_value;
13866 
13867 	/* Upon reaching here, src_known is true and umax_val is equal
13868 	 * to umin_val.
13869 	 */
13870 	dst_reg->smin_value >>= umin_val;
13871 	dst_reg->smax_value >>= umin_val;
13872 
13873 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13874 
13875 	/* blow away the dst_reg umin_value/umax_value and rely on
13876 	 * dst_reg var_off to refine the result.
13877 	 */
13878 	dst_reg->umin_value = 0;
13879 	dst_reg->umax_value = U64_MAX;
13880 
13881 	/* Its not easy to operate on alu32 bounds here because it depends
13882 	 * on bits being shifted in from upper 32-bits. Take easy way out
13883 	 * and mark unbounded so we can recalculate later from tnum.
13884 	 */
13885 	__mark_reg32_unbounded(dst_reg);
13886 	__update_reg_bounds(dst_reg);
13887 }
13888 
13889 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn,
13890 					     const struct bpf_reg_state *src_reg)
13891 {
13892 	bool src_is_const = false;
13893 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13894 
13895 	if (insn_bitness == 32) {
13896 		if (tnum_subreg_is_const(src_reg->var_off)
13897 		    && src_reg->s32_min_value == src_reg->s32_max_value
13898 		    && src_reg->u32_min_value == src_reg->u32_max_value)
13899 			src_is_const = true;
13900 	} else {
13901 		if (tnum_is_const(src_reg->var_off)
13902 		    && src_reg->smin_value == src_reg->smax_value
13903 		    && src_reg->umin_value == src_reg->umax_value)
13904 			src_is_const = true;
13905 	}
13906 
13907 	switch (BPF_OP(insn->code)) {
13908 	case BPF_ADD:
13909 	case BPF_SUB:
13910 	case BPF_AND:
13911 	case BPF_XOR:
13912 	case BPF_OR:
13913 	case BPF_MUL:
13914 		return true;
13915 
13916 	/* Shift operators range is only computable if shift dimension operand
13917 	 * is a constant. Shifts greater than 31 or 63 are undefined. This
13918 	 * includes shifts by a negative number.
13919 	 */
13920 	case BPF_LSH:
13921 	case BPF_RSH:
13922 	case BPF_ARSH:
13923 		return (src_is_const && src_reg->umax_value < insn_bitness);
13924 	default:
13925 		return false;
13926 	}
13927 }
13928 
13929 /* WARNING: This function does calculations on 64-bit values, but the actual
13930  * execution may occur on 32-bit values. Therefore, things like bitshifts
13931  * need extra checks in the 32-bit case.
13932  */
13933 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13934 				      struct bpf_insn *insn,
13935 				      struct bpf_reg_state *dst_reg,
13936 				      struct bpf_reg_state src_reg)
13937 {
13938 	u8 opcode = BPF_OP(insn->code);
13939 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13940 	int ret;
13941 
13942 	if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) {
13943 		__mark_reg_unknown(env, dst_reg);
13944 		return 0;
13945 	}
13946 
13947 	if (sanitize_needed(opcode)) {
13948 		ret = sanitize_val_alu(env, insn);
13949 		if (ret < 0)
13950 			return sanitize_err(env, insn, ret, NULL, NULL);
13951 	}
13952 
13953 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13954 	 * There are two classes of instructions: The first class we track both
13955 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
13956 	 * greatest amount of precision when alu operations are mixed with jmp32
13957 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13958 	 * and BPF_OR. This is possible because these ops have fairly easy to
13959 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13960 	 * See alu32 verifier tests for examples. The second class of
13961 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13962 	 * with regards to tracking sign/unsigned bounds because the bits may
13963 	 * cross subreg boundaries in the alu64 case. When this happens we mark
13964 	 * the reg unbounded in the subreg bound space and use the resulting
13965 	 * tnum to calculate an approximation of the sign/unsigned bounds.
13966 	 */
13967 	switch (opcode) {
13968 	case BPF_ADD:
13969 		scalar32_min_max_add(dst_reg, &src_reg);
13970 		scalar_min_max_add(dst_reg, &src_reg);
13971 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13972 		break;
13973 	case BPF_SUB:
13974 		scalar32_min_max_sub(dst_reg, &src_reg);
13975 		scalar_min_max_sub(dst_reg, &src_reg);
13976 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13977 		break;
13978 	case BPF_MUL:
13979 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13980 		scalar32_min_max_mul(dst_reg, &src_reg);
13981 		scalar_min_max_mul(dst_reg, &src_reg);
13982 		break;
13983 	case BPF_AND:
13984 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13985 		scalar32_min_max_and(dst_reg, &src_reg);
13986 		scalar_min_max_and(dst_reg, &src_reg);
13987 		break;
13988 	case BPF_OR:
13989 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13990 		scalar32_min_max_or(dst_reg, &src_reg);
13991 		scalar_min_max_or(dst_reg, &src_reg);
13992 		break;
13993 	case BPF_XOR:
13994 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13995 		scalar32_min_max_xor(dst_reg, &src_reg);
13996 		scalar_min_max_xor(dst_reg, &src_reg);
13997 		break;
13998 	case BPF_LSH:
13999 		if (alu32)
14000 			scalar32_min_max_lsh(dst_reg, &src_reg);
14001 		else
14002 			scalar_min_max_lsh(dst_reg, &src_reg);
14003 		break;
14004 	case BPF_RSH:
14005 		if (alu32)
14006 			scalar32_min_max_rsh(dst_reg, &src_reg);
14007 		else
14008 			scalar_min_max_rsh(dst_reg, &src_reg);
14009 		break;
14010 	case BPF_ARSH:
14011 		if (alu32)
14012 			scalar32_min_max_arsh(dst_reg, &src_reg);
14013 		else
14014 			scalar_min_max_arsh(dst_reg, &src_reg);
14015 		break;
14016 	default:
14017 		break;
14018 	}
14019 
14020 	/* ALU32 ops are zero extended into 64bit register */
14021 	if (alu32)
14022 		zext_32_to_64(dst_reg);
14023 	reg_bounds_sync(dst_reg);
14024 	return 0;
14025 }
14026 
14027 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
14028  * and var_off.
14029  */
14030 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
14031 				   struct bpf_insn *insn)
14032 {
14033 	struct bpf_verifier_state *vstate = env->cur_state;
14034 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14035 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
14036 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
14037 	u8 opcode = BPF_OP(insn->code);
14038 	int err;
14039 
14040 	dst_reg = &regs[insn->dst_reg];
14041 	src_reg = NULL;
14042 
14043 	if (dst_reg->type == PTR_TO_ARENA) {
14044 		struct bpf_insn_aux_data *aux = cur_aux(env);
14045 
14046 		if (BPF_CLASS(insn->code) == BPF_ALU64)
14047 			/*
14048 			 * 32-bit operations zero upper bits automatically.
14049 			 * 64-bit operations need to be converted to 32.
14050 			 */
14051 			aux->needs_zext = true;
14052 
14053 		/* Any arithmetic operations are allowed on arena pointers */
14054 		return 0;
14055 	}
14056 
14057 	if (dst_reg->type != SCALAR_VALUE)
14058 		ptr_reg = dst_reg;
14059 	else
14060 		/* Make sure ID is cleared otherwise dst_reg min/max could be
14061 		 * incorrectly propagated into other registers by find_equal_scalars()
14062 		 */
14063 		dst_reg->id = 0;
14064 	if (BPF_SRC(insn->code) == BPF_X) {
14065 		src_reg = &regs[insn->src_reg];
14066 		if (src_reg->type != SCALAR_VALUE) {
14067 			if (dst_reg->type != SCALAR_VALUE) {
14068 				/* Combining two pointers by any ALU op yields
14069 				 * an arbitrary scalar. Disallow all math except
14070 				 * pointer subtraction
14071 				 */
14072 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
14073 					mark_reg_unknown(env, regs, insn->dst_reg);
14074 					return 0;
14075 				}
14076 				verbose(env, "R%d pointer %s pointer prohibited\n",
14077 					insn->dst_reg,
14078 					bpf_alu_string[opcode >> 4]);
14079 				return -EACCES;
14080 			} else {
14081 				/* scalar += pointer
14082 				 * This is legal, but we have to reverse our
14083 				 * src/dest handling in computing the range
14084 				 */
14085 				err = mark_chain_precision(env, insn->dst_reg);
14086 				if (err)
14087 					return err;
14088 				return adjust_ptr_min_max_vals(env, insn,
14089 							       src_reg, dst_reg);
14090 			}
14091 		} else if (ptr_reg) {
14092 			/* pointer += scalar */
14093 			err = mark_chain_precision(env, insn->src_reg);
14094 			if (err)
14095 				return err;
14096 			return adjust_ptr_min_max_vals(env, insn,
14097 						       dst_reg, src_reg);
14098 		} else if (dst_reg->precise) {
14099 			/* if dst_reg is precise, src_reg should be precise as well */
14100 			err = mark_chain_precision(env, insn->src_reg);
14101 			if (err)
14102 				return err;
14103 		}
14104 	} else {
14105 		/* Pretend the src is a reg with a known value, since we only
14106 		 * need to be able to read from this state.
14107 		 */
14108 		off_reg.type = SCALAR_VALUE;
14109 		__mark_reg_known(&off_reg, insn->imm);
14110 		src_reg = &off_reg;
14111 		if (ptr_reg) /* pointer += K */
14112 			return adjust_ptr_min_max_vals(env, insn,
14113 						       ptr_reg, src_reg);
14114 	}
14115 
14116 	/* Got here implies adding two SCALAR_VALUEs */
14117 	if (WARN_ON_ONCE(ptr_reg)) {
14118 		print_verifier_state(env, state, true);
14119 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
14120 		return -EINVAL;
14121 	}
14122 	if (WARN_ON(!src_reg)) {
14123 		print_verifier_state(env, state, true);
14124 		verbose(env, "verifier internal error: no src_reg\n");
14125 		return -EINVAL;
14126 	}
14127 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
14128 }
14129 
14130 /* check validity of 32-bit and 64-bit arithmetic operations */
14131 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
14132 {
14133 	struct bpf_reg_state *regs = cur_regs(env);
14134 	u8 opcode = BPF_OP(insn->code);
14135 	int err;
14136 
14137 	if (opcode == BPF_END || opcode == BPF_NEG) {
14138 		if (opcode == BPF_NEG) {
14139 			if (BPF_SRC(insn->code) != BPF_K ||
14140 			    insn->src_reg != BPF_REG_0 ||
14141 			    insn->off != 0 || insn->imm != 0) {
14142 				verbose(env, "BPF_NEG uses reserved fields\n");
14143 				return -EINVAL;
14144 			}
14145 		} else {
14146 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
14147 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
14148 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
14149 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
14150 				verbose(env, "BPF_END uses reserved fields\n");
14151 				return -EINVAL;
14152 			}
14153 		}
14154 
14155 		/* check src operand */
14156 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14157 		if (err)
14158 			return err;
14159 
14160 		if (is_pointer_value(env, insn->dst_reg)) {
14161 			verbose(env, "R%d pointer arithmetic prohibited\n",
14162 				insn->dst_reg);
14163 			return -EACCES;
14164 		}
14165 
14166 		/* check dest operand */
14167 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
14168 		if (err)
14169 			return err;
14170 
14171 	} else if (opcode == BPF_MOV) {
14172 
14173 		if (BPF_SRC(insn->code) == BPF_X) {
14174 			if (BPF_CLASS(insn->code) == BPF_ALU) {
14175 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16) ||
14176 				    insn->imm) {
14177 					verbose(env, "BPF_MOV uses reserved fields\n");
14178 					return -EINVAL;
14179 				}
14180 			} else if (insn->off == BPF_ADDR_SPACE_CAST) {
14181 				if (insn->imm != 1 && insn->imm != 1u << 16) {
14182 					verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n");
14183 					return -EINVAL;
14184 				}
14185 				if (!env->prog->aux->arena) {
14186 					verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n");
14187 					return -EINVAL;
14188 				}
14189 			} else {
14190 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16 &&
14191 				     insn->off != 32) || insn->imm) {
14192 					verbose(env, "BPF_MOV uses reserved fields\n");
14193 					return -EINVAL;
14194 				}
14195 			}
14196 
14197 			/* check src operand */
14198 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14199 			if (err)
14200 				return err;
14201 		} else {
14202 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
14203 				verbose(env, "BPF_MOV uses reserved fields\n");
14204 				return -EINVAL;
14205 			}
14206 		}
14207 
14208 		/* check dest operand, mark as required later */
14209 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14210 		if (err)
14211 			return err;
14212 
14213 		if (BPF_SRC(insn->code) == BPF_X) {
14214 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
14215 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
14216 
14217 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
14218 				if (insn->imm) {
14219 					/* off == BPF_ADDR_SPACE_CAST */
14220 					mark_reg_unknown(env, regs, insn->dst_reg);
14221 					if (insn->imm == 1) { /* cast from as(1) to as(0) */
14222 						dst_reg->type = PTR_TO_ARENA;
14223 						/* PTR_TO_ARENA is 32-bit */
14224 						dst_reg->subreg_def = env->insn_idx + 1;
14225 					}
14226 				} else if (insn->off == 0) {
14227 					/* case: R1 = R2
14228 					 * copy register state to dest reg
14229 					 */
14230 					assign_scalar_id_before_mov(env, src_reg);
14231 					copy_register_state(dst_reg, src_reg);
14232 					dst_reg->live |= REG_LIVE_WRITTEN;
14233 					dst_reg->subreg_def = DEF_NOT_SUBREG;
14234 				} else {
14235 					/* case: R1 = (s8, s16 s32)R2 */
14236 					if (is_pointer_value(env, insn->src_reg)) {
14237 						verbose(env,
14238 							"R%d sign-extension part of pointer\n",
14239 							insn->src_reg);
14240 						return -EACCES;
14241 					} else if (src_reg->type == SCALAR_VALUE) {
14242 						bool no_sext;
14243 
14244 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14245 						if (no_sext)
14246 							assign_scalar_id_before_mov(env, src_reg);
14247 						copy_register_state(dst_reg, src_reg);
14248 						if (!no_sext)
14249 							dst_reg->id = 0;
14250 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
14251 						dst_reg->live |= REG_LIVE_WRITTEN;
14252 						dst_reg->subreg_def = DEF_NOT_SUBREG;
14253 					} else {
14254 						mark_reg_unknown(env, regs, insn->dst_reg);
14255 					}
14256 				}
14257 			} else {
14258 				/* R1 = (u32) R2 */
14259 				if (is_pointer_value(env, insn->src_reg)) {
14260 					verbose(env,
14261 						"R%d partial copy of pointer\n",
14262 						insn->src_reg);
14263 					return -EACCES;
14264 				} else if (src_reg->type == SCALAR_VALUE) {
14265 					if (insn->off == 0) {
14266 						bool is_src_reg_u32 = get_reg_width(src_reg) <= 32;
14267 
14268 						if (is_src_reg_u32)
14269 							assign_scalar_id_before_mov(env, src_reg);
14270 						copy_register_state(dst_reg, src_reg);
14271 						/* Make sure ID is cleared if src_reg is not in u32
14272 						 * range otherwise dst_reg min/max could be incorrectly
14273 						 * propagated into src_reg by find_equal_scalars()
14274 						 */
14275 						if (!is_src_reg_u32)
14276 							dst_reg->id = 0;
14277 						dst_reg->live |= REG_LIVE_WRITTEN;
14278 						dst_reg->subreg_def = env->insn_idx + 1;
14279 					} else {
14280 						/* case: W1 = (s8, s16)W2 */
14281 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14282 
14283 						if (no_sext)
14284 							assign_scalar_id_before_mov(env, src_reg);
14285 						copy_register_state(dst_reg, src_reg);
14286 						if (!no_sext)
14287 							dst_reg->id = 0;
14288 						dst_reg->live |= REG_LIVE_WRITTEN;
14289 						dst_reg->subreg_def = env->insn_idx + 1;
14290 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
14291 					}
14292 				} else {
14293 					mark_reg_unknown(env, regs,
14294 							 insn->dst_reg);
14295 				}
14296 				zext_32_to_64(dst_reg);
14297 				reg_bounds_sync(dst_reg);
14298 			}
14299 		} else {
14300 			/* case: R = imm
14301 			 * remember the value we stored into this reg
14302 			 */
14303 			/* clear any state __mark_reg_known doesn't set */
14304 			mark_reg_unknown(env, regs, insn->dst_reg);
14305 			regs[insn->dst_reg].type = SCALAR_VALUE;
14306 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
14307 				__mark_reg_known(regs + insn->dst_reg,
14308 						 insn->imm);
14309 			} else {
14310 				__mark_reg_known(regs + insn->dst_reg,
14311 						 (u32)insn->imm);
14312 			}
14313 		}
14314 
14315 	} else if (opcode > BPF_END) {
14316 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
14317 		return -EINVAL;
14318 
14319 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
14320 
14321 		if (BPF_SRC(insn->code) == BPF_X) {
14322 			if (insn->imm != 0 || insn->off > 1 ||
14323 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14324 				verbose(env, "BPF_ALU uses reserved fields\n");
14325 				return -EINVAL;
14326 			}
14327 			/* check src1 operand */
14328 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14329 			if (err)
14330 				return err;
14331 		} else {
14332 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
14333 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14334 				verbose(env, "BPF_ALU uses reserved fields\n");
14335 				return -EINVAL;
14336 			}
14337 		}
14338 
14339 		/* check src2 operand */
14340 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14341 		if (err)
14342 			return err;
14343 
14344 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
14345 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
14346 			verbose(env, "div by zero\n");
14347 			return -EINVAL;
14348 		}
14349 
14350 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
14351 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
14352 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
14353 
14354 			if (insn->imm < 0 || insn->imm >= size) {
14355 				verbose(env, "invalid shift %d\n", insn->imm);
14356 				return -EINVAL;
14357 			}
14358 		}
14359 
14360 		/* check dest operand */
14361 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14362 		err = err ?: adjust_reg_min_max_vals(env, insn);
14363 		if (err)
14364 			return err;
14365 	}
14366 
14367 	return reg_bounds_sanity_check(env, &regs[insn->dst_reg], "alu");
14368 }
14369 
14370 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
14371 				   struct bpf_reg_state *dst_reg,
14372 				   enum bpf_reg_type type,
14373 				   bool range_right_open)
14374 {
14375 	struct bpf_func_state *state;
14376 	struct bpf_reg_state *reg;
14377 	int new_range;
14378 
14379 	if (dst_reg->off < 0 ||
14380 	    (dst_reg->off == 0 && range_right_open))
14381 		/* This doesn't give us any range */
14382 		return;
14383 
14384 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
14385 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
14386 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
14387 		 * than pkt_end, but that's because it's also less than pkt.
14388 		 */
14389 		return;
14390 
14391 	new_range = dst_reg->off;
14392 	if (range_right_open)
14393 		new_range++;
14394 
14395 	/* Examples for register markings:
14396 	 *
14397 	 * pkt_data in dst register:
14398 	 *
14399 	 *   r2 = r3;
14400 	 *   r2 += 8;
14401 	 *   if (r2 > pkt_end) goto <handle exception>
14402 	 *   <access okay>
14403 	 *
14404 	 *   r2 = r3;
14405 	 *   r2 += 8;
14406 	 *   if (r2 < pkt_end) goto <access okay>
14407 	 *   <handle exception>
14408 	 *
14409 	 *   Where:
14410 	 *     r2 == dst_reg, pkt_end == src_reg
14411 	 *     r2=pkt(id=n,off=8,r=0)
14412 	 *     r3=pkt(id=n,off=0,r=0)
14413 	 *
14414 	 * pkt_data in src register:
14415 	 *
14416 	 *   r2 = r3;
14417 	 *   r2 += 8;
14418 	 *   if (pkt_end >= r2) goto <access okay>
14419 	 *   <handle exception>
14420 	 *
14421 	 *   r2 = r3;
14422 	 *   r2 += 8;
14423 	 *   if (pkt_end <= r2) goto <handle exception>
14424 	 *   <access okay>
14425 	 *
14426 	 *   Where:
14427 	 *     pkt_end == dst_reg, r2 == src_reg
14428 	 *     r2=pkt(id=n,off=8,r=0)
14429 	 *     r3=pkt(id=n,off=0,r=0)
14430 	 *
14431 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
14432 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
14433 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
14434 	 * the check.
14435 	 */
14436 
14437 	/* If our ids match, then we must have the same max_value.  And we
14438 	 * don't care about the other reg's fixed offset, since if it's too big
14439 	 * the range won't allow anything.
14440 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
14441 	 */
14442 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14443 		if (reg->type == type && reg->id == dst_reg->id)
14444 			/* keep the maximum range already checked */
14445 			reg->range = max(reg->range, new_range);
14446 	}));
14447 }
14448 
14449 /*
14450  * <reg1> <op> <reg2>, currently assuming reg2 is a constant
14451  */
14452 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14453 				  u8 opcode, bool is_jmp32)
14454 {
14455 	struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
14456 	struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
14457 	u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
14458 	u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
14459 	s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
14460 	s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
14461 	u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
14462 	u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
14463 	s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
14464 	s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
14465 
14466 	switch (opcode) {
14467 	case BPF_JEQ:
14468 		/* constants, umin/umax and smin/smax checks would be
14469 		 * redundant in this case because they all should match
14470 		 */
14471 		if (tnum_is_const(t1) && tnum_is_const(t2))
14472 			return t1.value == t2.value;
14473 		/* non-overlapping ranges */
14474 		if (umin1 > umax2 || umax1 < umin2)
14475 			return 0;
14476 		if (smin1 > smax2 || smax1 < smin2)
14477 			return 0;
14478 		if (!is_jmp32) {
14479 			/* if 64-bit ranges are inconclusive, see if we can
14480 			 * utilize 32-bit subrange knowledge to eliminate
14481 			 * branches that can't be taken a priori
14482 			 */
14483 			if (reg1->u32_min_value > reg2->u32_max_value ||
14484 			    reg1->u32_max_value < reg2->u32_min_value)
14485 				return 0;
14486 			if (reg1->s32_min_value > reg2->s32_max_value ||
14487 			    reg1->s32_max_value < reg2->s32_min_value)
14488 				return 0;
14489 		}
14490 		break;
14491 	case BPF_JNE:
14492 		/* constants, umin/umax and smin/smax checks would be
14493 		 * redundant in this case because they all should match
14494 		 */
14495 		if (tnum_is_const(t1) && tnum_is_const(t2))
14496 			return t1.value != t2.value;
14497 		/* non-overlapping ranges */
14498 		if (umin1 > umax2 || umax1 < umin2)
14499 			return 1;
14500 		if (smin1 > smax2 || smax1 < smin2)
14501 			return 1;
14502 		if (!is_jmp32) {
14503 			/* if 64-bit ranges are inconclusive, see if we can
14504 			 * utilize 32-bit subrange knowledge to eliminate
14505 			 * branches that can't be taken a priori
14506 			 */
14507 			if (reg1->u32_min_value > reg2->u32_max_value ||
14508 			    reg1->u32_max_value < reg2->u32_min_value)
14509 				return 1;
14510 			if (reg1->s32_min_value > reg2->s32_max_value ||
14511 			    reg1->s32_max_value < reg2->s32_min_value)
14512 				return 1;
14513 		}
14514 		break;
14515 	case BPF_JSET:
14516 		if (!is_reg_const(reg2, is_jmp32)) {
14517 			swap(reg1, reg2);
14518 			swap(t1, t2);
14519 		}
14520 		if (!is_reg_const(reg2, is_jmp32))
14521 			return -1;
14522 		if ((~t1.mask & t1.value) & t2.value)
14523 			return 1;
14524 		if (!((t1.mask | t1.value) & t2.value))
14525 			return 0;
14526 		break;
14527 	case BPF_JGT:
14528 		if (umin1 > umax2)
14529 			return 1;
14530 		else if (umax1 <= umin2)
14531 			return 0;
14532 		break;
14533 	case BPF_JSGT:
14534 		if (smin1 > smax2)
14535 			return 1;
14536 		else if (smax1 <= smin2)
14537 			return 0;
14538 		break;
14539 	case BPF_JLT:
14540 		if (umax1 < umin2)
14541 			return 1;
14542 		else if (umin1 >= umax2)
14543 			return 0;
14544 		break;
14545 	case BPF_JSLT:
14546 		if (smax1 < smin2)
14547 			return 1;
14548 		else if (smin1 >= smax2)
14549 			return 0;
14550 		break;
14551 	case BPF_JGE:
14552 		if (umin1 >= umax2)
14553 			return 1;
14554 		else if (umax1 < umin2)
14555 			return 0;
14556 		break;
14557 	case BPF_JSGE:
14558 		if (smin1 >= smax2)
14559 			return 1;
14560 		else if (smax1 < smin2)
14561 			return 0;
14562 		break;
14563 	case BPF_JLE:
14564 		if (umax1 <= umin2)
14565 			return 1;
14566 		else if (umin1 > umax2)
14567 			return 0;
14568 		break;
14569 	case BPF_JSLE:
14570 		if (smax1 <= smin2)
14571 			return 1;
14572 		else if (smin1 > smax2)
14573 			return 0;
14574 		break;
14575 	}
14576 
14577 	return -1;
14578 }
14579 
14580 static int flip_opcode(u32 opcode)
14581 {
14582 	/* How can we transform "a <op> b" into "b <op> a"? */
14583 	static const u8 opcode_flip[16] = {
14584 		/* these stay the same */
14585 		[BPF_JEQ  >> 4] = BPF_JEQ,
14586 		[BPF_JNE  >> 4] = BPF_JNE,
14587 		[BPF_JSET >> 4] = BPF_JSET,
14588 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
14589 		[BPF_JGE  >> 4] = BPF_JLE,
14590 		[BPF_JGT  >> 4] = BPF_JLT,
14591 		[BPF_JLE  >> 4] = BPF_JGE,
14592 		[BPF_JLT  >> 4] = BPF_JGT,
14593 		[BPF_JSGE >> 4] = BPF_JSLE,
14594 		[BPF_JSGT >> 4] = BPF_JSLT,
14595 		[BPF_JSLE >> 4] = BPF_JSGE,
14596 		[BPF_JSLT >> 4] = BPF_JSGT
14597 	};
14598 	return opcode_flip[opcode >> 4];
14599 }
14600 
14601 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14602 				   struct bpf_reg_state *src_reg,
14603 				   u8 opcode)
14604 {
14605 	struct bpf_reg_state *pkt;
14606 
14607 	if (src_reg->type == PTR_TO_PACKET_END) {
14608 		pkt = dst_reg;
14609 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
14610 		pkt = src_reg;
14611 		opcode = flip_opcode(opcode);
14612 	} else {
14613 		return -1;
14614 	}
14615 
14616 	if (pkt->range >= 0)
14617 		return -1;
14618 
14619 	switch (opcode) {
14620 	case BPF_JLE:
14621 		/* pkt <= pkt_end */
14622 		fallthrough;
14623 	case BPF_JGT:
14624 		/* pkt > pkt_end */
14625 		if (pkt->range == BEYOND_PKT_END)
14626 			/* pkt has at last one extra byte beyond pkt_end */
14627 			return opcode == BPF_JGT;
14628 		break;
14629 	case BPF_JLT:
14630 		/* pkt < pkt_end */
14631 		fallthrough;
14632 	case BPF_JGE:
14633 		/* pkt >= pkt_end */
14634 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14635 			return opcode == BPF_JGE;
14636 		break;
14637 	}
14638 	return -1;
14639 }
14640 
14641 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
14642  * and return:
14643  *  1 - branch will be taken and "goto target" will be executed
14644  *  0 - branch will not be taken and fall-through to next insn
14645  * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
14646  *      range [0,10]
14647  */
14648 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14649 			   u8 opcode, bool is_jmp32)
14650 {
14651 	if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
14652 		return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
14653 
14654 	if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
14655 		u64 val;
14656 
14657 		/* arrange that reg2 is a scalar, and reg1 is a pointer */
14658 		if (!is_reg_const(reg2, is_jmp32)) {
14659 			opcode = flip_opcode(opcode);
14660 			swap(reg1, reg2);
14661 		}
14662 		/* and ensure that reg2 is a constant */
14663 		if (!is_reg_const(reg2, is_jmp32))
14664 			return -1;
14665 
14666 		if (!reg_not_null(reg1))
14667 			return -1;
14668 
14669 		/* If pointer is valid tests against zero will fail so we can
14670 		 * use this to direct branch taken.
14671 		 */
14672 		val = reg_const_value(reg2, is_jmp32);
14673 		if (val != 0)
14674 			return -1;
14675 
14676 		switch (opcode) {
14677 		case BPF_JEQ:
14678 			return 0;
14679 		case BPF_JNE:
14680 			return 1;
14681 		default:
14682 			return -1;
14683 		}
14684 	}
14685 
14686 	/* now deal with two scalars, but not necessarily constants */
14687 	return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
14688 }
14689 
14690 /* Opcode that corresponds to a *false* branch condition.
14691  * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
14692  */
14693 static u8 rev_opcode(u8 opcode)
14694 {
14695 	switch (opcode) {
14696 	case BPF_JEQ:		return BPF_JNE;
14697 	case BPF_JNE:		return BPF_JEQ;
14698 	/* JSET doesn't have it's reverse opcode in BPF, so add
14699 	 * BPF_X flag to denote the reverse of that operation
14700 	 */
14701 	case BPF_JSET:		return BPF_JSET | BPF_X;
14702 	case BPF_JSET | BPF_X:	return BPF_JSET;
14703 	case BPF_JGE:		return BPF_JLT;
14704 	case BPF_JGT:		return BPF_JLE;
14705 	case BPF_JLE:		return BPF_JGT;
14706 	case BPF_JLT:		return BPF_JGE;
14707 	case BPF_JSGE:		return BPF_JSLT;
14708 	case BPF_JSGT:		return BPF_JSLE;
14709 	case BPF_JSLE:		return BPF_JSGT;
14710 	case BPF_JSLT:		return BPF_JSGE;
14711 	default:		return 0;
14712 	}
14713 }
14714 
14715 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
14716 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14717 				u8 opcode, bool is_jmp32)
14718 {
14719 	struct tnum t;
14720 	u64 val;
14721 
14722 	/* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */
14723 	switch (opcode) {
14724 	case BPF_JGE:
14725 	case BPF_JGT:
14726 	case BPF_JSGE:
14727 	case BPF_JSGT:
14728 		opcode = flip_opcode(opcode);
14729 		swap(reg1, reg2);
14730 		break;
14731 	default:
14732 		break;
14733 	}
14734 
14735 	switch (opcode) {
14736 	case BPF_JEQ:
14737 		if (is_jmp32) {
14738 			reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
14739 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
14740 			reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
14741 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
14742 			reg2->u32_min_value = reg1->u32_min_value;
14743 			reg2->u32_max_value = reg1->u32_max_value;
14744 			reg2->s32_min_value = reg1->s32_min_value;
14745 			reg2->s32_max_value = reg1->s32_max_value;
14746 
14747 			t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
14748 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14749 			reg2->var_off = tnum_with_subreg(reg2->var_off, t);
14750 		} else {
14751 			reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
14752 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
14753 			reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
14754 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
14755 			reg2->umin_value = reg1->umin_value;
14756 			reg2->umax_value = reg1->umax_value;
14757 			reg2->smin_value = reg1->smin_value;
14758 			reg2->smax_value = reg1->smax_value;
14759 
14760 			reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
14761 			reg2->var_off = reg1->var_off;
14762 		}
14763 		break;
14764 	case BPF_JNE:
14765 		if (!is_reg_const(reg2, is_jmp32))
14766 			swap(reg1, reg2);
14767 		if (!is_reg_const(reg2, is_jmp32))
14768 			break;
14769 
14770 		/* try to recompute the bound of reg1 if reg2 is a const and
14771 		 * is exactly the edge of reg1.
14772 		 */
14773 		val = reg_const_value(reg2, is_jmp32);
14774 		if (is_jmp32) {
14775 			/* u32_min_value is not equal to 0xffffffff at this point,
14776 			 * because otherwise u32_max_value is 0xffffffff as well,
14777 			 * in such a case both reg1 and reg2 would be constants,
14778 			 * jump would be predicted and reg_set_min_max() won't
14779 			 * be called.
14780 			 *
14781 			 * Same reasoning works for all {u,s}{min,max}{32,64} cases
14782 			 * below.
14783 			 */
14784 			if (reg1->u32_min_value == (u32)val)
14785 				reg1->u32_min_value++;
14786 			if (reg1->u32_max_value == (u32)val)
14787 				reg1->u32_max_value--;
14788 			if (reg1->s32_min_value == (s32)val)
14789 				reg1->s32_min_value++;
14790 			if (reg1->s32_max_value == (s32)val)
14791 				reg1->s32_max_value--;
14792 		} else {
14793 			if (reg1->umin_value == (u64)val)
14794 				reg1->umin_value++;
14795 			if (reg1->umax_value == (u64)val)
14796 				reg1->umax_value--;
14797 			if (reg1->smin_value == (s64)val)
14798 				reg1->smin_value++;
14799 			if (reg1->smax_value == (s64)val)
14800 				reg1->smax_value--;
14801 		}
14802 		break;
14803 	case BPF_JSET:
14804 		if (!is_reg_const(reg2, is_jmp32))
14805 			swap(reg1, reg2);
14806 		if (!is_reg_const(reg2, is_jmp32))
14807 			break;
14808 		val = reg_const_value(reg2, is_jmp32);
14809 		/* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
14810 		 * requires single bit to learn something useful. E.g., if we
14811 		 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
14812 		 * are actually set? We can learn something definite only if
14813 		 * it's a single-bit value to begin with.
14814 		 *
14815 		 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
14816 		 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
14817 		 * bit 1 is set, which we can readily use in adjustments.
14818 		 */
14819 		if (!is_power_of_2(val))
14820 			break;
14821 		if (is_jmp32) {
14822 			t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
14823 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14824 		} else {
14825 			reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
14826 		}
14827 		break;
14828 	case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
14829 		if (!is_reg_const(reg2, is_jmp32))
14830 			swap(reg1, reg2);
14831 		if (!is_reg_const(reg2, is_jmp32))
14832 			break;
14833 		val = reg_const_value(reg2, is_jmp32);
14834 		if (is_jmp32) {
14835 			t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
14836 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14837 		} else {
14838 			reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
14839 		}
14840 		break;
14841 	case BPF_JLE:
14842 		if (is_jmp32) {
14843 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
14844 			reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
14845 		} else {
14846 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
14847 			reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
14848 		}
14849 		break;
14850 	case BPF_JLT:
14851 		if (is_jmp32) {
14852 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
14853 			reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
14854 		} else {
14855 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
14856 			reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
14857 		}
14858 		break;
14859 	case BPF_JSLE:
14860 		if (is_jmp32) {
14861 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
14862 			reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
14863 		} else {
14864 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
14865 			reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
14866 		}
14867 		break;
14868 	case BPF_JSLT:
14869 		if (is_jmp32) {
14870 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
14871 			reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
14872 		} else {
14873 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
14874 			reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
14875 		}
14876 		break;
14877 	default:
14878 		return;
14879 	}
14880 }
14881 
14882 /* Adjusts the register min/max values in the case that the dst_reg and
14883  * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
14884  * check, in which case we have a fake SCALAR_VALUE representing insn->imm).
14885  * Technically we can do similar adjustments for pointers to the same object,
14886  * but we don't support that right now.
14887  */
14888 static int reg_set_min_max(struct bpf_verifier_env *env,
14889 			   struct bpf_reg_state *true_reg1,
14890 			   struct bpf_reg_state *true_reg2,
14891 			   struct bpf_reg_state *false_reg1,
14892 			   struct bpf_reg_state *false_reg2,
14893 			   u8 opcode, bool is_jmp32)
14894 {
14895 	int err;
14896 
14897 	/* If either register is a pointer, we can't learn anything about its
14898 	 * variable offset from the compare (unless they were a pointer into
14899 	 * the same object, but we don't bother with that).
14900 	 */
14901 	if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
14902 		return 0;
14903 
14904 	/* fallthrough (FALSE) branch */
14905 	regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
14906 	reg_bounds_sync(false_reg1);
14907 	reg_bounds_sync(false_reg2);
14908 
14909 	/* jump (TRUE) branch */
14910 	regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
14911 	reg_bounds_sync(true_reg1);
14912 	reg_bounds_sync(true_reg2);
14913 
14914 	err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
14915 	err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
14916 	err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
14917 	err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
14918 	return err;
14919 }
14920 
14921 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14922 				 struct bpf_reg_state *reg, u32 id,
14923 				 bool is_null)
14924 {
14925 	if (type_may_be_null(reg->type) && reg->id == id &&
14926 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14927 		/* Old offset (both fixed and variable parts) should have been
14928 		 * known-zero, because we don't allow pointer arithmetic on
14929 		 * pointers that might be NULL. If we see this happening, don't
14930 		 * convert the register.
14931 		 *
14932 		 * But in some cases, some helpers that return local kptrs
14933 		 * advance offset for the returned pointer. In those cases, it
14934 		 * is fine to expect to see reg->off.
14935 		 */
14936 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14937 			return;
14938 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14939 		    WARN_ON_ONCE(reg->off))
14940 			return;
14941 
14942 		if (is_null) {
14943 			reg->type = SCALAR_VALUE;
14944 			/* We don't need id and ref_obj_id from this point
14945 			 * onwards anymore, thus we should better reset it,
14946 			 * so that state pruning has chances to take effect.
14947 			 */
14948 			reg->id = 0;
14949 			reg->ref_obj_id = 0;
14950 
14951 			return;
14952 		}
14953 
14954 		mark_ptr_not_null_reg(reg);
14955 
14956 		if (!reg_may_point_to_spin_lock(reg)) {
14957 			/* For not-NULL ptr, reg->ref_obj_id will be reset
14958 			 * in release_reference().
14959 			 *
14960 			 * reg->id is still used by spin_lock ptr. Other
14961 			 * than spin_lock ptr type, reg->id can be reset.
14962 			 */
14963 			reg->id = 0;
14964 		}
14965 	}
14966 }
14967 
14968 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14969  * be folded together at some point.
14970  */
14971 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14972 				  bool is_null)
14973 {
14974 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14975 	struct bpf_reg_state *regs = state->regs, *reg;
14976 	u32 ref_obj_id = regs[regno].ref_obj_id;
14977 	u32 id = regs[regno].id;
14978 
14979 	if (ref_obj_id && ref_obj_id == id && is_null)
14980 		/* regs[regno] is in the " == NULL" branch.
14981 		 * No one could have freed the reference state before
14982 		 * doing the NULL check.
14983 		 */
14984 		WARN_ON_ONCE(release_reference_state(state, id));
14985 
14986 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14987 		mark_ptr_or_null_reg(state, reg, id, is_null);
14988 	}));
14989 }
14990 
14991 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14992 				   struct bpf_reg_state *dst_reg,
14993 				   struct bpf_reg_state *src_reg,
14994 				   struct bpf_verifier_state *this_branch,
14995 				   struct bpf_verifier_state *other_branch)
14996 {
14997 	if (BPF_SRC(insn->code) != BPF_X)
14998 		return false;
14999 
15000 	/* Pointers are always 64-bit. */
15001 	if (BPF_CLASS(insn->code) == BPF_JMP32)
15002 		return false;
15003 
15004 	switch (BPF_OP(insn->code)) {
15005 	case BPF_JGT:
15006 		if ((dst_reg->type == PTR_TO_PACKET &&
15007 		     src_reg->type == PTR_TO_PACKET_END) ||
15008 		    (dst_reg->type == PTR_TO_PACKET_META &&
15009 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15010 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
15011 			find_good_pkt_pointers(this_branch, dst_reg,
15012 					       dst_reg->type, false);
15013 			mark_pkt_end(other_branch, insn->dst_reg, true);
15014 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15015 			    src_reg->type == PTR_TO_PACKET) ||
15016 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15017 			    src_reg->type == PTR_TO_PACKET_META)) {
15018 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
15019 			find_good_pkt_pointers(other_branch, src_reg,
15020 					       src_reg->type, true);
15021 			mark_pkt_end(this_branch, insn->src_reg, false);
15022 		} else {
15023 			return false;
15024 		}
15025 		break;
15026 	case BPF_JLT:
15027 		if ((dst_reg->type == PTR_TO_PACKET &&
15028 		     src_reg->type == PTR_TO_PACKET_END) ||
15029 		    (dst_reg->type == PTR_TO_PACKET_META &&
15030 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15031 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
15032 			find_good_pkt_pointers(other_branch, dst_reg,
15033 					       dst_reg->type, true);
15034 			mark_pkt_end(this_branch, insn->dst_reg, false);
15035 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15036 			    src_reg->type == PTR_TO_PACKET) ||
15037 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15038 			    src_reg->type == PTR_TO_PACKET_META)) {
15039 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
15040 			find_good_pkt_pointers(this_branch, src_reg,
15041 					       src_reg->type, false);
15042 			mark_pkt_end(other_branch, insn->src_reg, true);
15043 		} else {
15044 			return false;
15045 		}
15046 		break;
15047 	case BPF_JGE:
15048 		if ((dst_reg->type == PTR_TO_PACKET &&
15049 		     src_reg->type == PTR_TO_PACKET_END) ||
15050 		    (dst_reg->type == PTR_TO_PACKET_META &&
15051 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15052 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
15053 			find_good_pkt_pointers(this_branch, dst_reg,
15054 					       dst_reg->type, true);
15055 			mark_pkt_end(other_branch, insn->dst_reg, false);
15056 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15057 			    src_reg->type == PTR_TO_PACKET) ||
15058 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15059 			    src_reg->type == PTR_TO_PACKET_META)) {
15060 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
15061 			find_good_pkt_pointers(other_branch, src_reg,
15062 					       src_reg->type, false);
15063 			mark_pkt_end(this_branch, insn->src_reg, true);
15064 		} else {
15065 			return false;
15066 		}
15067 		break;
15068 	case BPF_JLE:
15069 		if ((dst_reg->type == PTR_TO_PACKET &&
15070 		     src_reg->type == PTR_TO_PACKET_END) ||
15071 		    (dst_reg->type == PTR_TO_PACKET_META &&
15072 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15073 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
15074 			find_good_pkt_pointers(other_branch, dst_reg,
15075 					       dst_reg->type, false);
15076 			mark_pkt_end(this_branch, insn->dst_reg, true);
15077 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15078 			    src_reg->type == PTR_TO_PACKET) ||
15079 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15080 			    src_reg->type == PTR_TO_PACKET_META)) {
15081 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
15082 			find_good_pkt_pointers(this_branch, src_reg,
15083 					       src_reg->type, true);
15084 			mark_pkt_end(other_branch, insn->src_reg, false);
15085 		} else {
15086 			return false;
15087 		}
15088 		break;
15089 	default:
15090 		return false;
15091 	}
15092 
15093 	return true;
15094 }
15095 
15096 static void find_equal_scalars(struct bpf_verifier_state *vstate,
15097 			       struct bpf_reg_state *known_reg)
15098 {
15099 	struct bpf_func_state *state;
15100 	struct bpf_reg_state *reg;
15101 
15102 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
15103 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
15104 			copy_register_state(reg, known_reg);
15105 	}));
15106 }
15107 
15108 static int check_cond_jmp_op(struct bpf_verifier_env *env,
15109 			     struct bpf_insn *insn, int *insn_idx)
15110 {
15111 	struct bpf_verifier_state *this_branch = env->cur_state;
15112 	struct bpf_verifier_state *other_branch;
15113 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
15114 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
15115 	struct bpf_reg_state *eq_branch_regs;
15116 	struct bpf_reg_state fake_reg = {};
15117 	u8 opcode = BPF_OP(insn->code);
15118 	bool is_jmp32;
15119 	int pred = -1;
15120 	int err;
15121 
15122 	/* Only conditional jumps are expected to reach here. */
15123 	if (opcode == BPF_JA || opcode > BPF_JCOND) {
15124 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
15125 		return -EINVAL;
15126 	}
15127 
15128 	if (opcode == BPF_JCOND) {
15129 		struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
15130 		int idx = *insn_idx;
15131 
15132 		if (insn->code != (BPF_JMP | BPF_JCOND) ||
15133 		    insn->src_reg != BPF_MAY_GOTO ||
15134 		    insn->dst_reg || insn->imm || insn->off == 0) {
15135 			verbose(env, "invalid may_goto off %d imm %d\n",
15136 				insn->off, insn->imm);
15137 			return -EINVAL;
15138 		}
15139 		prev_st = find_prev_entry(env, cur_st->parent, idx);
15140 
15141 		/* branch out 'fallthrough' insn as a new state to explore */
15142 		queued_st = push_stack(env, idx + 1, idx, false);
15143 		if (!queued_st)
15144 			return -ENOMEM;
15145 
15146 		queued_st->may_goto_depth++;
15147 		if (prev_st)
15148 			widen_imprecise_scalars(env, prev_st, queued_st);
15149 		*insn_idx += insn->off;
15150 		return 0;
15151 	}
15152 
15153 	/* check src2 operand */
15154 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15155 	if (err)
15156 		return err;
15157 
15158 	dst_reg = &regs[insn->dst_reg];
15159 	if (BPF_SRC(insn->code) == BPF_X) {
15160 		if (insn->imm != 0) {
15161 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15162 			return -EINVAL;
15163 		}
15164 
15165 		/* check src1 operand */
15166 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15167 		if (err)
15168 			return err;
15169 
15170 		src_reg = &regs[insn->src_reg];
15171 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
15172 		    is_pointer_value(env, insn->src_reg)) {
15173 			verbose(env, "R%d pointer comparison prohibited\n",
15174 				insn->src_reg);
15175 			return -EACCES;
15176 		}
15177 	} else {
15178 		if (insn->src_reg != BPF_REG_0) {
15179 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15180 			return -EINVAL;
15181 		}
15182 		src_reg = &fake_reg;
15183 		src_reg->type = SCALAR_VALUE;
15184 		__mark_reg_known(src_reg, insn->imm);
15185 	}
15186 
15187 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
15188 	pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
15189 	if (pred >= 0) {
15190 		/* If we get here with a dst_reg pointer type it is because
15191 		 * above is_branch_taken() special cased the 0 comparison.
15192 		 */
15193 		if (!__is_pointer_value(false, dst_reg))
15194 			err = mark_chain_precision(env, insn->dst_reg);
15195 		if (BPF_SRC(insn->code) == BPF_X && !err &&
15196 		    !__is_pointer_value(false, src_reg))
15197 			err = mark_chain_precision(env, insn->src_reg);
15198 		if (err)
15199 			return err;
15200 	}
15201 
15202 	if (pred == 1) {
15203 		/* Only follow the goto, ignore fall-through. If needed, push
15204 		 * the fall-through branch for simulation under speculative
15205 		 * execution.
15206 		 */
15207 		if (!env->bypass_spec_v1 &&
15208 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
15209 					       *insn_idx))
15210 			return -EFAULT;
15211 		if (env->log.level & BPF_LOG_LEVEL)
15212 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
15213 		*insn_idx += insn->off;
15214 		return 0;
15215 	} else if (pred == 0) {
15216 		/* Only follow the fall-through branch, since that's where the
15217 		 * program will go. If needed, push the goto branch for
15218 		 * simulation under speculative execution.
15219 		 */
15220 		if (!env->bypass_spec_v1 &&
15221 		    !sanitize_speculative_path(env, insn,
15222 					       *insn_idx + insn->off + 1,
15223 					       *insn_idx))
15224 			return -EFAULT;
15225 		if (env->log.level & BPF_LOG_LEVEL)
15226 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
15227 		return 0;
15228 	}
15229 
15230 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
15231 				  false);
15232 	if (!other_branch)
15233 		return -EFAULT;
15234 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
15235 
15236 	if (BPF_SRC(insn->code) == BPF_X) {
15237 		err = reg_set_min_max(env,
15238 				      &other_branch_regs[insn->dst_reg],
15239 				      &other_branch_regs[insn->src_reg],
15240 				      dst_reg, src_reg, opcode, is_jmp32);
15241 	} else /* BPF_SRC(insn->code) == BPF_K */ {
15242 		err = reg_set_min_max(env,
15243 				      &other_branch_regs[insn->dst_reg],
15244 				      src_reg /* fake one */,
15245 				      dst_reg, src_reg /* same fake one */,
15246 				      opcode, is_jmp32);
15247 	}
15248 	if (err)
15249 		return err;
15250 
15251 	if (BPF_SRC(insn->code) == BPF_X &&
15252 	    src_reg->type == SCALAR_VALUE && src_reg->id &&
15253 	    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
15254 		find_equal_scalars(this_branch, src_reg);
15255 		find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
15256 	}
15257 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
15258 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
15259 		find_equal_scalars(this_branch, dst_reg);
15260 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
15261 	}
15262 
15263 	/* if one pointer register is compared to another pointer
15264 	 * register check if PTR_MAYBE_NULL could be lifted.
15265 	 * E.g. register A - maybe null
15266 	 *      register B - not null
15267 	 * for JNE A, B, ... - A is not null in the false branch;
15268 	 * for JEQ A, B, ... - A is not null in the true branch.
15269 	 *
15270 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
15271 	 * not need to be null checked by the BPF program, i.e.,
15272 	 * could be null even without PTR_MAYBE_NULL marking, so
15273 	 * only propagate nullness when neither reg is that type.
15274 	 */
15275 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
15276 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
15277 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
15278 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
15279 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
15280 		eq_branch_regs = NULL;
15281 		switch (opcode) {
15282 		case BPF_JEQ:
15283 			eq_branch_regs = other_branch_regs;
15284 			break;
15285 		case BPF_JNE:
15286 			eq_branch_regs = regs;
15287 			break;
15288 		default:
15289 			/* do nothing */
15290 			break;
15291 		}
15292 		if (eq_branch_regs) {
15293 			if (type_may_be_null(src_reg->type))
15294 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
15295 			else
15296 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
15297 		}
15298 	}
15299 
15300 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
15301 	 * NOTE: these optimizations below are related with pointer comparison
15302 	 *       which will never be JMP32.
15303 	 */
15304 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
15305 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
15306 	    type_may_be_null(dst_reg->type)) {
15307 		/* Mark all identical registers in each branch as either
15308 		 * safe or unknown depending R == 0 or R != 0 conditional.
15309 		 */
15310 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
15311 				      opcode == BPF_JNE);
15312 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
15313 				      opcode == BPF_JEQ);
15314 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
15315 					   this_branch, other_branch) &&
15316 		   is_pointer_value(env, insn->dst_reg)) {
15317 		verbose(env, "R%d pointer comparison prohibited\n",
15318 			insn->dst_reg);
15319 		return -EACCES;
15320 	}
15321 	if (env->log.level & BPF_LOG_LEVEL)
15322 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
15323 	return 0;
15324 }
15325 
15326 /* verify BPF_LD_IMM64 instruction */
15327 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
15328 {
15329 	struct bpf_insn_aux_data *aux = cur_aux(env);
15330 	struct bpf_reg_state *regs = cur_regs(env);
15331 	struct bpf_reg_state *dst_reg;
15332 	struct bpf_map *map;
15333 	int err;
15334 
15335 	if (BPF_SIZE(insn->code) != BPF_DW) {
15336 		verbose(env, "invalid BPF_LD_IMM insn\n");
15337 		return -EINVAL;
15338 	}
15339 	if (insn->off != 0) {
15340 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
15341 		return -EINVAL;
15342 	}
15343 
15344 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
15345 	if (err)
15346 		return err;
15347 
15348 	dst_reg = &regs[insn->dst_reg];
15349 	if (insn->src_reg == 0) {
15350 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
15351 
15352 		dst_reg->type = SCALAR_VALUE;
15353 		__mark_reg_known(&regs[insn->dst_reg], imm);
15354 		return 0;
15355 	}
15356 
15357 	/* All special src_reg cases are listed below. From this point onwards
15358 	 * we either succeed and assign a corresponding dst_reg->type after
15359 	 * zeroing the offset, or fail and reject the program.
15360 	 */
15361 	mark_reg_known_zero(env, regs, insn->dst_reg);
15362 
15363 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
15364 		dst_reg->type = aux->btf_var.reg_type;
15365 		switch (base_type(dst_reg->type)) {
15366 		case PTR_TO_MEM:
15367 			dst_reg->mem_size = aux->btf_var.mem_size;
15368 			break;
15369 		case PTR_TO_BTF_ID:
15370 			dst_reg->btf = aux->btf_var.btf;
15371 			dst_reg->btf_id = aux->btf_var.btf_id;
15372 			break;
15373 		default:
15374 			verbose(env, "bpf verifier is misconfigured\n");
15375 			return -EFAULT;
15376 		}
15377 		return 0;
15378 	}
15379 
15380 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
15381 		struct bpf_prog_aux *aux = env->prog->aux;
15382 		u32 subprogno = find_subprog(env,
15383 					     env->insn_idx + insn->imm + 1);
15384 
15385 		if (!aux->func_info) {
15386 			verbose(env, "missing btf func_info\n");
15387 			return -EINVAL;
15388 		}
15389 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
15390 			verbose(env, "callback function not static\n");
15391 			return -EINVAL;
15392 		}
15393 
15394 		dst_reg->type = PTR_TO_FUNC;
15395 		dst_reg->subprogno = subprogno;
15396 		return 0;
15397 	}
15398 
15399 	map = env->used_maps[aux->map_index];
15400 	dst_reg->map_ptr = map;
15401 
15402 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
15403 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
15404 		if (map->map_type == BPF_MAP_TYPE_ARENA) {
15405 			__mark_reg_unknown(env, dst_reg);
15406 			return 0;
15407 		}
15408 		dst_reg->type = PTR_TO_MAP_VALUE;
15409 		dst_reg->off = aux->map_off;
15410 		WARN_ON_ONCE(map->max_entries != 1);
15411 		/* We want reg->id to be same (0) as map_value is not distinct */
15412 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
15413 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
15414 		dst_reg->type = CONST_PTR_TO_MAP;
15415 	} else {
15416 		verbose(env, "bpf verifier is misconfigured\n");
15417 		return -EINVAL;
15418 	}
15419 
15420 	return 0;
15421 }
15422 
15423 static bool may_access_skb(enum bpf_prog_type type)
15424 {
15425 	switch (type) {
15426 	case BPF_PROG_TYPE_SOCKET_FILTER:
15427 	case BPF_PROG_TYPE_SCHED_CLS:
15428 	case BPF_PROG_TYPE_SCHED_ACT:
15429 		return true;
15430 	default:
15431 		return false;
15432 	}
15433 }
15434 
15435 /* verify safety of LD_ABS|LD_IND instructions:
15436  * - they can only appear in the programs where ctx == skb
15437  * - since they are wrappers of function calls, they scratch R1-R5 registers,
15438  *   preserve R6-R9, and store return value into R0
15439  *
15440  * Implicit input:
15441  *   ctx == skb == R6 == CTX
15442  *
15443  * Explicit input:
15444  *   SRC == any register
15445  *   IMM == 32-bit immediate
15446  *
15447  * Output:
15448  *   R0 - 8/16/32-bit skb data converted to cpu endianness
15449  */
15450 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
15451 {
15452 	struct bpf_reg_state *regs = cur_regs(env);
15453 	static const int ctx_reg = BPF_REG_6;
15454 	u8 mode = BPF_MODE(insn->code);
15455 	int i, err;
15456 
15457 	if (!may_access_skb(resolve_prog_type(env->prog))) {
15458 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
15459 		return -EINVAL;
15460 	}
15461 
15462 	if (!env->ops->gen_ld_abs) {
15463 		verbose(env, "bpf verifier is misconfigured\n");
15464 		return -EINVAL;
15465 	}
15466 
15467 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
15468 	    BPF_SIZE(insn->code) == BPF_DW ||
15469 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
15470 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
15471 		return -EINVAL;
15472 	}
15473 
15474 	/* check whether implicit source operand (register R6) is readable */
15475 	err = check_reg_arg(env, ctx_reg, SRC_OP);
15476 	if (err)
15477 		return err;
15478 
15479 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
15480 	 * gen_ld_abs() may terminate the program at runtime, leading to
15481 	 * reference leak.
15482 	 */
15483 	err = check_reference_leak(env, false);
15484 	if (err) {
15485 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
15486 		return err;
15487 	}
15488 
15489 	if (env->cur_state->active_lock.ptr) {
15490 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
15491 		return -EINVAL;
15492 	}
15493 
15494 	if (env->cur_state->active_rcu_lock) {
15495 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
15496 		return -EINVAL;
15497 	}
15498 
15499 	if (env->cur_state->active_preempt_lock) {
15500 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_preempt_disable-ed region\n");
15501 		return -EINVAL;
15502 	}
15503 
15504 	if (regs[ctx_reg].type != PTR_TO_CTX) {
15505 		verbose(env,
15506 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
15507 		return -EINVAL;
15508 	}
15509 
15510 	if (mode == BPF_IND) {
15511 		/* check explicit source operand */
15512 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15513 		if (err)
15514 			return err;
15515 	}
15516 
15517 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
15518 	if (err < 0)
15519 		return err;
15520 
15521 	/* reset caller saved regs to unreadable */
15522 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
15523 		mark_reg_not_init(env, regs, caller_saved[i]);
15524 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
15525 	}
15526 
15527 	/* mark destination R0 register as readable, since it contains
15528 	 * the value fetched from the packet.
15529 	 * Already marked as written above.
15530 	 */
15531 	mark_reg_unknown(env, regs, BPF_REG_0);
15532 	/* ld_abs load up to 32-bit skb data. */
15533 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
15534 	return 0;
15535 }
15536 
15537 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
15538 {
15539 	const char *exit_ctx = "At program exit";
15540 	struct tnum enforce_attach_type_range = tnum_unknown;
15541 	const struct bpf_prog *prog = env->prog;
15542 	struct bpf_reg_state *reg;
15543 	struct bpf_retval_range range = retval_range(0, 1);
15544 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
15545 	int err;
15546 	struct bpf_func_state *frame = env->cur_state->frame[0];
15547 	const bool is_subprog = frame->subprogno;
15548 
15549 	/* LSM and struct_ops func-ptr's return type could be "void" */
15550 	if (!is_subprog || frame->in_exception_callback_fn) {
15551 		switch (prog_type) {
15552 		case BPF_PROG_TYPE_LSM:
15553 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
15554 				/* See below, can be 0 or 0-1 depending on hook. */
15555 				break;
15556 			fallthrough;
15557 		case BPF_PROG_TYPE_STRUCT_OPS:
15558 			if (!prog->aux->attach_func_proto->type)
15559 				return 0;
15560 			break;
15561 		default:
15562 			break;
15563 		}
15564 	}
15565 
15566 	/* eBPF calling convention is such that R0 is used
15567 	 * to return the value from eBPF program.
15568 	 * Make sure that it's readable at this time
15569 	 * of bpf_exit, which means that program wrote
15570 	 * something into it earlier
15571 	 */
15572 	err = check_reg_arg(env, regno, SRC_OP);
15573 	if (err)
15574 		return err;
15575 
15576 	if (is_pointer_value(env, regno)) {
15577 		verbose(env, "R%d leaks addr as return value\n", regno);
15578 		return -EACCES;
15579 	}
15580 
15581 	reg = cur_regs(env) + regno;
15582 
15583 	if (frame->in_async_callback_fn) {
15584 		/* enforce return zero from async callbacks like timer */
15585 		exit_ctx = "At async callback return";
15586 		range = retval_range(0, 0);
15587 		goto enforce_retval;
15588 	}
15589 
15590 	if (is_subprog && !frame->in_exception_callback_fn) {
15591 		if (reg->type != SCALAR_VALUE) {
15592 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
15593 				regno, reg_type_str(env, reg->type));
15594 			return -EINVAL;
15595 		}
15596 		return 0;
15597 	}
15598 
15599 	switch (prog_type) {
15600 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15601 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15602 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15603 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
15604 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15605 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15606 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
15607 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15608 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
15609 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
15610 			range = retval_range(1, 1);
15611 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15612 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15613 			range = retval_range(0, 3);
15614 		break;
15615 	case BPF_PROG_TYPE_CGROUP_SKB:
15616 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15617 			range = retval_range(0, 3);
15618 			enforce_attach_type_range = tnum_range(2, 3);
15619 		}
15620 		break;
15621 	case BPF_PROG_TYPE_CGROUP_SOCK:
15622 	case BPF_PROG_TYPE_SOCK_OPS:
15623 	case BPF_PROG_TYPE_CGROUP_DEVICE:
15624 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
15625 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15626 		break;
15627 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
15628 		if (!env->prog->aux->attach_btf_id)
15629 			return 0;
15630 		range = retval_range(0, 0);
15631 		break;
15632 	case BPF_PROG_TYPE_TRACING:
15633 		switch (env->prog->expected_attach_type) {
15634 		case BPF_TRACE_FENTRY:
15635 		case BPF_TRACE_FEXIT:
15636 			range = retval_range(0, 0);
15637 			break;
15638 		case BPF_TRACE_RAW_TP:
15639 		case BPF_MODIFY_RETURN:
15640 			return 0;
15641 		case BPF_TRACE_ITER:
15642 			break;
15643 		default:
15644 			return -ENOTSUPP;
15645 		}
15646 		break;
15647 	case BPF_PROG_TYPE_SK_LOOKUP:
15648 		range = retval_range(SK_DROP, SK_PASS);
15649 		break;
15650 
15651 	case BPF_PROG_TYPE_LSM:
15652 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15653 			/* Regular BPF_PROG_TYPE_LSM programs can return
15654 			 * any value.
15655 			 */
15656 			return 0;
15657 		}
15658 		if (!env->prog->aux->attach_func_proto->type) {
15659 			/* Make sure programs that attach to void
15660 			 * hooks don't try to modify return value.
15661 			 */
15662 			range = retval_range(1, 1);
15663 		}
15664 		break;
15665 
15666 	case BPF_PROG_TYPE_NETFILTER:
15667 		range = retval_range(NF_DROP, NF_ACCEPT);
15668 		break;
15669 	case BPF_PROG_TYPE_EXT:
15670 		/* freplace program can return anything as its return value
15671 		 * depends on the to-be-replaced kernel func or bpf program.
15672 		 */
15673 	default:
15674 		return 0;
15675 	}
15676 
15677 enforce_retval:
15678 	if (reg->type != SCALAR_VALUE) {
15679 		verbose(env, "%s the register R%d is not a known value (%s)\n",
15680 			exit_ctx, regno, reg_type_str(env, reg->type));
15681 		return -EINVAL;
15682 	}
15683 
15684 	err = mark_chain_precision(env, regno);
15685 	if (err)
15686 		return err;
15687 
15688 	if (!retval_range_within(range, reg)) {
15689 		verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
15690 		if (!is_subprog &&
15691 		    prog->expected_attach_type == BPF_LSM_CGROUP &&
15692 		    prog_type == BPF_PROG_TYPE_LSM &&
15693 		    !prog->aux->attach_func_proto->type)
15694 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15695 		return -EINVAL;
15696 	}
15697 
15698 	if (!tnum_is_unknown(enforce_attach_type_range) &&
15699 	    tnum_in(enforce_attach_type_range, reg->var_off))
15700 		env->prog->enforce_expected_attach_type = 1;
15701 	return 0;
15702 }
15703 
15704 /* non-recursive DFS pseudo code
15705  * 1  procedure DFS-iterative(G,v):
15706  * 2      label v as discovered
15707  * 3      let S be a stack
15708  * 4      S.push(v)
15709  * 5      while S is not empty
15710  * 6            t <- S.peek()
15711  * 7            if t is what we're looking for:
15712  * 8                return t
15713  * 9            for all edges e in G.adjacentEdges(t) do
15714  * 10               if edge e is already labelled
15715  * 11                   continue with the next edge
15716  * 12               w <- G.adjacentVertex(t,e)
15717  * 13               if vertex w is not discovered and not explored
15718  * 14                   label e as tree-edge
15719  * 15                   label w as discovered
15720  * 16                   S.push(w)
15721  * 17                   continue at 5
15722  * 18               else if vertex w is discovered
15723  * 19                   label e as back-edge
15724  * 20               else
15725  * 21                   // vertex w is explored
15726  * 22                   label e as forward- or cross-edge
15727  * 23           label t as explored
15728  * 24           S.pop()
15729  *
15730  * convention:
15731  * 0x10 - discovered
15732  * 0x11 - discovered and fall-through edge labelled
15733  * 0x12 - discovered and fall-through and branch edges labelled
15734  * 0x20 - explored
15735  */
15736 
15737 enum {
15738 	DISCOVERED = 0x10,
15739 	EXPLORED = 0x20,
15740 	FALLTHROUGH = 1,
15741 	BRANCH = 2,
15742 };
15743 
15744 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15745 {
15746 	env->insn_aux_data[idx].prune_point = true;
15747 }
15748 
15749 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15750 {
15751 	return env->insn_aux_data[insn_idx].prune_point;
15752 }
15753 
15754 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15755 {
15756 	env->insn_aux_data[idx].force_checkpoint = true;
15757 }
15758 
15759 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15760 {
15761 	return env->insn_aux_data[insn_idx].force_checkpoint;
15762 }
15763 
15764 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
15765 {
15766 	env->insn_aux_data[idx].calls_callback = true;
15767 }
15768 
15769 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
15770 {
15771 	return env->insn_aux_data[insn_idx].calls_callback;
15772 }
15773 
15774 enum {
15775 	DONE_EXPLORING = 0,
15776 	KEEP_EXPLORING = 1,
15777 };
15778 
15779 /* t, w, e - match pseudo-code above:
15780  * t - index of current instruction
15781  * w - next instruction
15782  * e - edge
15783  */
15784 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
15785 {
15786 	int *insn_stack = env->cfg.insn_stack;
15787 	int *insn_state = env->cfg.insn_state;
15788 
15789 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15790 		return DONE_EXPLORING;
15791 
15792 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15793 		return DONE_EXPLORING;
15794 
15795 	if (w < 0 || w >= env->prog->len) {
15796 		verbose_linfo(env, t, "%d: ", t);
15797 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
15798 		return -EINVAL;
15799 	}
15800 
15801 	if (e == BRANCH) {
15802 		/* mark branch target for state pruning */
15803 		mark_prune_point(env, w);
15804 		mark_jmp_point(env, w);
15805 	}
15806 
15807 	if (insn_state[w] == 0) {
15808 		/* tree-edge */
15809 		insn_state[t] = DISCOVERED | e;
15810 		insn_state[w] = DISCOVERED;
15811 		if (env->cfg.cur_stack >= env->prog->len)
15812 			return -E2BIG;
15813 		insn_stack[env->cfg.cur_stack++] = w;
15814 		return KEEP_EXPLORING;
15815 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15816 		if (env->bpf_capable)
15817 			return DONE_EXPLORING;
15818 		verbose_linfo(env, t, "%d: ", t);
15819 		verbose_linfo(env, w, "%d: ", w);
15820 		verbose(env, "back-edge from insn %d to %d\n", t, w);
15821 		return -EINVAL;
15822 	} else if (insn_state[w] == EXPLORED) {
15823 		/* forward- or cross-edge */
15824 		insn_state[t] = DISCOVERED | e;
15825 	} else {
15826 		verbose(env, "insn state internal bug\n");
15827 		return -EFAULT;
15828 	}
15829 	return DONE_EXPLORING;
15830 }
15831 
15832 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15833 				struct bpf_verifier_env *env,
15834 				bool visit_callee)
15835 {
15836 	int ret, insn_sz;
15837 
15838 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
15839 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
15840 	if (ret)
15841 		return ret;
15842 
15843 	mark_prune_point(env, t + insn_sz);
15844 	/* when we exit from subprog, we need to record non-linear history */
15845 	mark_jmp_point(env, t + insn_sz);
15846 
15847 	if (visit_callee) {
15848 		mark_prune_point(env, t);
15849 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
15850 	}
15851 	return ret;
15852 }
15853 
15854 /* Visits the instruction at index t and returns one of the following:
15855  *  < 0 - an error occurred
15856  *  DONE_EXPLORING - the instruction was fully explored
15857  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
15858  */
15859 static int visit_insn(int t, struct bpf_verifier_env *env)
15860 {
15861 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15862 	int ret, off, insn_sz;
15863 
15864 	if (bpf_pseudo_func(insn))
15865 		return visit_func_call_insn(t, insns, env, true);
15866 
15867 	/* All non-branch instructions have a single fall-through edge. */
15868 	if (BPF_CLASS(insn->code) != BPF_JMP &&
15869 	    BPF_CLASS(insn->code) != BPF_JMP32) {
15870 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
15871 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
15872 	}
15873 
15874 	switch (BPF_OP(insn->code)) {
15875 	case BPF_EXIT:
15876 		return DONE_EXPLORING;
15877 
15878 	case BPF_CALL:
15879 		if (is_async_callback_calling_insn(insn))
15880 			/* Mark this call insn as a prune point to trigger
15881 			 * is_state_visited() check before call itself is
15882 			 * processed by __check_func_call(). Otherwise new
15883 			 * async state will be pushed for further exploration.
15884 			 */
15885 			mark_prune_point(env, t);
15886 		/* For functions that invoke callbacks it is not known how many times
15887 		 * callback would be called. Verifier models callback calling functions
15888 		 * by repeatedly visiting callback bodies and returning to origin call
15889 		 * instruction.
15890 		 * In order to stop such iteration verifier needs to identify when a
15891 		 * state identical some state from a previous iteration is reached.
15892 		 * Check below forces creation of checkpoint before callback calling
15893 		 * instruction to allow search for such identical states.
15894 		 */
15895 		if (is_sync_callback_calling_insn(insn)) {
15896 			mark_calls_callback(env, t);
15897 			mark_force_checkpoint(env, t);
15898 			mark_prune_point(env, t);
15899 			mark_jmp_point(env, t);
15900 		}
15901 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15902 			struct bpf_kfunc_call_arg_meta meta;
15903 
15904 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15905 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
15906 				mark_prune_point(env, t);
15907 				/* Checking and saving state checkpoints at iter_next() call
15908 				 * is crucial for fast convergence of open-coded iterator loop
15909 				 * logic, so we need to force it. If we don't do that,
15910 				 * is_state_visited() might skip saving a checkpoint, causing
15911 				 * unnecessarily long sequence of not checkpointed
15912 				 * instructions and jumps, leading to exhaustion of jump
15913 				 * history buffer, and potentially other undesired outcomes.
15914 				 * It is expected that with correct open-coded iterators
15915 				 * convergence will happen quickly, so we don't run a risk of
15916 				 * exhausting memory.
15917 				 */
15918 				mark_force_checkpoint(env, t);
15919 			}
15920 		}
15921 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15922 
15923 	case BPF_JA:
15924 		if (BPF_SRC(insn->code) != BPF_K)
15925 			return -EINVAL;
15926 
15927 		if (BPF_CLASS(insn->code) == BPF_JMP)
15928 			off = insn->off;
15929 		else
15930 			off = insn->imm;
15931 
15932 		/* unconditional jump with single edge */
15933 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
15934 		if (ret)
15935 			return ret;
15936 
15937 		mark_prune_point(env, t + off + 1);
15938 		mark_jmp_point(env, t + off + 1);
15939 
15940 		return ret;
15941 
15942 	default:
15943 		/* conditional jump with two edges */
15944 		mark_prune_point(env, t);
15945 		if (is_may_goto_insn(insn))
15946 			mark_force_checkpoint(env, t);
15947 
15948 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
15949 		if (ret)
15950 			return ret;
15951 
15952 		return push_insn(t, t + insn->off + 1, BRANCH, env);
15953 	}
15954 }
15955 
15956 /* non-recursive depth-first-search to detect loops in BPF program
15957  * loop == back-edge in directed graph
15958  */
15959 static int check_cfg(struct bpf_verifier_env *env)
15960 {
15961 	int insn_cnt = env->prog->len;
15962 	int *insn_stack, *insn_state;
15963 	int ex_insn_beg, i, ret = 0;
15964 	bool ex_done = false;
15965 
15966 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15967 	if (!insn_state)
15968 		return -ENOMEM;
15969 
15970 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15971 	if (!insn_stack) {
15972 		kvfree(insn_state);
15973 		return -ENOMEM;
15974 	}
15975 
15976 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15977 	insn_stack[0] = 0; /* 0 is the first instruction */
15978 	env->cfg.cur_stack = 1;
15979 
15980 walk_cfg:
15981 	while (env->cfg.cur_stack > 0) {
15982 		int t = insn_stack[env->cfg.cur_stack - 1];
15983 
15984 		ret = visit_insn(t, env);
15985 		switch (ret) {
15986 		case DONE_EXPLORING:
15987 			insn_state[t] = EXPLORED;
15988 			env->cfg.cur_stack--;
15989 			break;
15990 		case KEEP_EXPLORING:
15991 			break;
15992 		default:
15993 			if (ret > 0) {
15994 				verbose(env, "visit_insn internal bug\n");
15995 				ret = -EFAULT;
15996 			}
15997 			goto err_free;
15998 		}
15999 	}
16000 
16001 	if (env->cfg.cur_stack < 0) {
16002 		verbose(env, "pop stack internal bug\n");
16003 		ret = -EFAULT;
16004 		goto err_free;
16005 	}
16006 
16007 	if (env->exception_callback_subprog && !ex_done) {
16008 		ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
16009 
16010 		insn_state[ex_insn_beg] = DISCOVERED;
16011 		insn_stack[0] = ex_insn_beg;
16012 		env->cfg.cur_stack = 1;
16013 		ex_done = true;
16014 		goto walk_cfg;
16015 	}
16016 
16017 	for (i = 0; i < insn_cnt; i++) {
16018 		struct bpf_insn *insn = &env->prog->insnsi[i];
16019 
16020 		if (insn_state[i] != EXPLORED) {
16021 			verbose(env, "unreachable insn %d\n", i);
16022 			ret = -EINVAL;
16023 			goto err_free;
16024 		}
16025 		if (bpf_is_ldimm64(insn)) {
16026 			if (insn_state[i + 1] != 0) {
16027 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
16028 				ret = -EINVAL;
16029 				goto err_free;
16030 			}
16031 			i++; /* skip second half of ldimm64 */
16032 		}
16033 	}
16034 	ret = 0; /* cfg looks good */
16035 
16036 err_free:
16037 	kvfree(insn_state);
16038 	kvfree(insn_stack);
16039 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
16040 	return ret;
16041 }
16042 
16043 static int check_abnormal_return(struct bpf_verifier_env *env)
16044 {
16045 	int i;
16046 
16047 	for (i = 1; i < env->subprog_cnt; i++) {
16048 		if (env->subprog_info[i].has_ld_abs) {
16049 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
16050 			return -EINVAL;
16051 		}
16052 		if (env->subprog_info[i].has_tail_call) {
16053 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
16054 			return -EINVAL;
16055 		}
16056 	}
16057 	return 0;
16058 }
16059 
16060 /* The minimum supported BTF func info size */
16061 #define MIN_BPF_FUNCINFO_SIZE	8
16062 #define MAX_FUNCINFO_REC_SIZE	252
16063 
16064 static int check_btf_func_early(struct bpf_verifier_env *env,
16065 				const union bpf_attr *attr,
16066 				bpfptr_t uattr)
16067 {
16068 	u32 krec_size = sizeof(struct bpf_func_info);
16069 	const struct btf_type *type, *func_proto;
16070 	u32 i, nfuncs, urec_size, min_size;
16071 	struct bpf_func_info *krecord;
16072 	struct bpf_prog *prog;
16073 	const struct btf *btf;
16074 	u32 prev_offset = 0;
16075 	bpfptr_t urecord;
16076 	int ret = -ENOMEM;
16077 
16078 	nfuncs = attr->func_info_cnt;
16079 	if (!nfuncs) {
16080 		if (check_abnormal_return(env))
16081 			return -EINVAL;
16082 		return 0;
16083 	}
16084 
16085 	urec_size = attr->func_info_rec_size;
16086 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
16087 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
16088 	    urec_size % sizeof(u32)) {
16089 		verbose(env, "invalid func info rec size %u\n", urec_size);
16090 		return -EINVAL;
16091 	}
16092 
16093 	prog = env->prog;
16094 	btf = prog->aux->btf;
16095 
16096 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
16097 	min_size = min_t(u32, krec_size, urec_size);
16098 
16099 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
16100 	if (!krecord)
16101 		return -ENOMEM;
16102 
16103 	for (i = 0; i < nfuncs; i++) {
16104 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
16105 		if (ret) {
16106 			if (ret == -E2BIG) {
16107 				verbose(env, "nonzero tailing record in func info");
16108 				/* set the size kernel expects so loader can zero
16109 				 * out the rest of the record.
16110 				 */
16111 				if (copy_to_bpfptr_offset(uattr,
16112 							  offsetof(union bpf_attr, func_info_rec_size),
16113 							  &min_size, sizeof(min_size)))
16114 					ret = -EFAULT;
16115 			}
16116 			goto err_free;
16117 		}
16118 
16119 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
16120 			ret = -EFAULT;
16121 			goto err_free;
16122 		}
16123 
16124 		/* check insn_off */
16125 		ret = -EINVAL;
16126 		if (i == 0) {
16127 			if (krecord[i].insn_off) {
16128 				verbose(env,
16129 					"nonzero insn_off %u for the first func info record",
16130 					krecord[i].insn_off);
16131 				goto err_free;
16132 			}
16133 		} else if (krecord[i].insn_off <= prev_offset) {
16134 			verbose(env,
16135 				"same or smaller insn offset (%u) than previous func info record (%u)",
16136 				krecord[i].insn_off, prev_offset);
16137 			goto err_free;
16138 		}
16139 
16140 		/* check type_id */
16141 		type = btf_type_by_id(btf, krecord[i].type_id);
16142 		if (!type || !btf_type_is_func(type)) {
16143 			verbose(env, "invalid type id %d in func info",
16144 				krecord[i].type_id);
16145 			goto err_free;
16146 		}
16147 
16148 		func_proto = btf_type_by_id(btf, type->type);
16149 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
16150 			/* btf_func_check() already verified it during BTF load */
16151 			goto err_free;
16152 
16153 		prev_offset = krecord[i].insn_off;
16154 		bpfptr_add(&urecord, urec_size);
16155 	}
16156 
16157 	prog->aux->func_info = krecord;
16158 	prog->aux->func_info_cnt = nfuncs;
16159 	return 0;
16160 
16161 err_free:
16162 	kvfree(krecord);
16163 	return ret;
16164 }
16165 
16166 static int check_btf_func(struct bpf_verifier_env *env,
16167 			  const union bpf_attr *attr,
16168 			  bpfptr_t uattr)
16169 {
16170 	const struct btf_type *type, *func_proto, *ret_type;
16171 	u32 i, nfuncs, urec_size;
16172 	struct bpf_func_info *krecord;
16173 	struct bpf_func_info_aux *info_aux = NULL;
16174 	struct bpf_prog *prog;
16175 	const struct btf *btf;
16176 	bpfptr_t urecord;
16177 	bool scalar_return;
16178 	int ret = -ENOMEM;
16179 
16180 	nfuncs = attr->func_info_cnt;
16181 	if (!nfuncs) {
16182 		if (check_abnormal_return(env))
16183 			return -EINVAL;
16184 		return 0;
16185 	}
16186 	if (nfuncs != env->subprog_cnt) {
16187 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
16188 		return -EINVAL;
16189 	}
16190 
16191 	urec_size = attr->func_info_rec_size;
16192 
16193 	prog = env->prog;
16194 	btf = prog->aux->btf;
16195 
16196 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
16197 
16198 	krecord = prog->aux->func_info;
16199 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
16200 	if (!info_aux)
16201 		return -ENOMEM;
16202 
16203 	for (i = 0; i < nfuncs; i++) {
16204 		/* check insn_off */
16205 		ret = -EINVAL;
16206 
16207 		if (env->subprog_info[i].start != krecord[i].insn_off) {
16208 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
16209 			goto err_free;
16210 		}
16211 
16212 		/* Already checked type_id */
16213 		type = btf_type_by_id(btf, krecord[i].type_id);
16214 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
16215 		/* Already checked func_proto */
16216 		func_proto = btf_type_by_id(btf, type->type);
16217 
16218 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
16219 		scalar_return =
16220 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
16221 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
16222 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
16223 			goto err_free;
16224 		}
16225 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
16226 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
16227 			goto err_free;
16228 		}
16229 
16230 		bpfptr_add(&urecord, urec_size);
16231 	}
16232 
16233 	prog->aux->func_info_aux = info_aux;
16234 	return 0;
16235 
16236 err_free:
16237 	kfree(info_aux);
16238 	return ret;
16239 }
16240 
16241 static void adjust_btf_func(struct bpf_verifier_env *env)
16242 {
16243 	struct bpf_prog_aux *aux = env->prog->aux;
16244 	int i;
16245 
16246 	if (!aux->func_info)
16247 		return;
16248 
16249 	/* func_info is not available for hidden subprogs */
16250 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
16251 		aux->func_info[i].insn_off = env->subprog_info[i].start;
16252 }
16253 
16254 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
16255 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
16256 
16257 static int check_btf_line(struct bpf_verifier_env *env,
16258 			  const union bpf_attr *attr,
16259 			  bpfptr_t uattr)
16260 {
16261 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
16262 	struct bpf_subprog_info *sub;
16263 	struct bpf_line_info *linfo;
16264 	struct bpf_prog *prog;
16265 	const struct btf *btf;
16266 	bpfptr_t ulinfo;
16267 	int err;
16268 
16269 	nr_linfo = attr->line_info_cnt;
16270 	if (!nr_linfo)
16271 		return 0;
16272 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
16273 		return -EINVAL;
16274 
16275 	rec_size = attr->line_info_rec_size;
16276 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
16277 	    rec_size > MAX_LINEINFO_REC_SIZE ||
16278 	    rec_size & (sizeof(u32) - 1))
16279 		return -EINVAL;
16280 
16281 	/* Need to zero it in case the userspace may
16282 	 * pass in a smaller bpf_line_info object.
16283 	 */
16284 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
16285 			 GFP_KERNEL | __GFP_NOWARN);
16286 	if (!linfo)
16287 		return -ENOMEM;
16288 
16289 	prog = env->prog;
16290 	btf = prog->aux->btf;
16291 
16292 	s = 0;
16293 	sub = env->subprog_info;
16294 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
16295 	expected_size = sizeof(struct bpf_line_info);
16296 	ncopy = min_t(u32, expected_size, rec_size);
16297 	for (i = 0; i < nr_linfo; i++) {
16298 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
16299 		if (err) {
16300 			if (err == -E2BIG) {
16301 				verbose(env, "nonzero tailing record in line_info");
16302 				if (copy_to_bpfptr_offset(uattr,
16303 							  offsetof(union bpf_attr, line_info_rec_size),
16304 							  &expected_size, sizeof(expected_size)))
16305 					err = -EFAULT;
16306 			}
16307 			goto err_free;
16308 		}
16309 
16310 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
16311 			err = -EFAULT;
16312 			goto err_free;
16313 		}
16314 
16315 		/*
16316 		 * Check insn_off to ensure
16317 		 * 1) strictly increasing AND
16318 		 * 2) bounded by prog->len
16319 		 *
16320 		 * The linfo[0].insn_off == 0 check logically falls into
16321 		 * the later "missing bpf_line_info for func..." case
16322 		 * because the first linfo[0].insn_off must be the
16323 		 * first sub also and the first sub must have
16324 		 * subprog_info[0].start == 0.
16325 		 */
16326 		if ((i && linfo[i].insn_off <= prev_offset) ||
16327 		    linfo[i].insn_off >= prog->len) {
16328 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
16329 				i, linfo[i].insn_off, prev_offset,
16330 				prog->len);
16331 			err = -EINVAL;
16332 			goto err_free;
16333 		}
16334 
16335 		if (!prog->insnsi[linfo[i].insn_off].code) {
16336 			verbose(env,
16337 				"Invalid insn code at line_info[%u].insn_off\n",
16338 				i);
16339 			err = -EINVAL;
16340 			goto err_free;
16341 		}
16342 
16343 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
16344 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
16345 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
16346 			err = -EINVAL;
16347 			goto err_free;
16348 		}
16349 
16350 		if (s != env->subprog_cnt) {
16351 			if (linfo[i].insn_off == sub[s].start) {
16352 				sub[s].linfo_idx = i;
16353 				s++;
16354 			} else if (sub[s].start < linfo[i].insn_off) {
16355 				verbose(env, "missing bpf_line_info for func#%u\n", s);
16356 				err = -EINVAL;
16357 				goto err_free;
16358 			}
16359 		}
16360 
16361 		prev_offset = linfo[i].insn_off;
16362 		bpfptr_add(&ulinfo, rec_size);
16363 	}
16364 
16365 	if (s != env->subprog_cnt) {
16366 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
16367 			env->subprog_cnt - s, s);
16368 		err = -EINVAL;
16369 		goto err_free;
16370 	}
16371 
16372 	prog->aux->linfo = linfo;
16373 	prog->aux->nr_linfo = nr_linfo;
16374 
16375 	return 0;
16376 
16377 err_free:
16378 	kvfree(linfo);
16379 	return err;
16380 }
16381 
16382 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
16383 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
16384 
16385 static int check_core_relo(struct bpf_verifier_env *env,
16386 			   const union bpf_attr *attr,
16387 			   bpfptr_t uattr)
16388 {
16389 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
16390 	struct bpf_core_relo core_relo = {};
16391 	struct bpf_prog *prog = env->prog;
16392 	const struct btf *btf = prog->aux->btf;
16393 	struct bpf_core_ctx ctx = {
16394 		.log = &env->log,
16395 		.btf = btf,
16396 	};
16397 	bpfptr_t u_core_relo;
16398 	int err;
16399 
16400 	nr_core_relo = attr->core_relo_cnt;
16401 	if (!nr_core_relo)
16402 		return 0;
16403 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
16404 		return -EINVAL;
16405 
16406 	rec_size = attr->core_relo_rec_size;
16407 	if (rec_size < MIN_CORE_RELO_SIZE ||
16408 	    rec_size > MAX_CORE_RELO_SIZE ||
16409 	    rec_size % sizeof(u32))
16410 		return -EINVAL;
16411 
16412 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
16413 	expected_size = sizeof(struct bpf_core_relo);
16414 	ncopy = min_t(u32, expected_size, rec_size);
16415 
16416 	/* Unlike func_info and line_info, copy and apply each CO-RE
16417 	 * relocation record one at a time.
16418 	 */
16419 	for (i = 0; i < nr_core_relo; i++) {
16420 		/* future proofing when sizeof(bpf_core_relo) changes */
16421 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
16422 		if (err) {
16423 			if (err == -E2BIG) {
16424 				verbose(env, "nonzero tailing record in core_relo");
16425 				if (copy_to_bpfptr_offset(uattr,
16426 							  offsetof(union bpf_attr, core_relo_rec_size),
16427 							  &expected_size, sizeof(expected_size)))
16428 					err = -EFAULT;
16429 			}
16430 			break;
16431 		}
16432 
16433 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
16434 			err = -EFAULT;
16435 			break;
16436 		}
16437 
16438 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
16439 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
16440 				i, core_relo.insn_off, prog->len);
16441 			err = -EINVAL;
16442 			break;
16443 		}
16444 
16445 		err = bpf_core_apply(&ctx, &core_relo, i,
16446 				     &prog->insnsi[core_relo.insn_off / 8]);
16447 		if (err)
16448 			break;
16449 		bpfptr_add(&u_core_relo, rec_size);
16450 	}
16451 	return err;
16452 }
16453 
16454 static int check_btf_info_early(struct bpf_verifier_env *env,
16455 				const union bpf_attr *attr,
16456 				bpfptr_t uattr)
16457 {
16458 	struct btf *btf;
16459 	int err;
16460 
16461 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16462 		if (check_abnormal_return(env))
16463 			return -EINVAL;
16464 		return 0;
16465 	}
16466 
16467 	btf = btf_get_by_fd(attr->prog_btf_fd);
16468 	if (IS_ERR(btf))
16469 		return PTR_ERR(btf);
16470 	if (btf_is_kernel(btf)) {
16471 		btf_put(btf);
16472 		return -EACCES;
16473 	}
16474 	env->prog->aux->btf = btf;
16475 
16476 	err = check_btf_func_early(env, attr, uattr);
16477 	if (err)
16478 		return err;
16479 	return 0;
16480 }
16481 
16482 static int check_btf_info(struct bpf_verifier_env *env,
16483 			  const union bpf_attr *attr,
16484 			  bpfptr_t uattr)
16485 {
16486 	int err;
16487 
16488 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16489 		if (check_abnormal_return(env))
16490 			return -EINVAL;
16491 		return 0;
16492 	}
16493 
16494 	err = check_btf_func(env, attr, uattr);
16495 	if (err)
16496 		return err;
16497 
16498 	err = check_btf_line(env, attr, uattr);
16499 	if (err)
16500 		return err;
16501 
16502 	err = check_core_relo(env, attr, uattr);
16503 	if (err)
16504 		return err;
16505 
16506 	return 0;
16507 }
16508 
16509 /* check %cur's range satisfies %old's */
16510 static bool range_within(const struct bpf_reg_state *old,
16511 			 const struct bpf_reg_state *cur)
16512 {
16513 	return old->umin_value <= cur->umin_value &&
16514 	       old->umax_value >= cur->umax_value &&
16515 	       old->smin_value <= cur->smin_value &&
16516 	       old->smax_value >= cur->smax_value &&
16517 	       old->u32_min_value <= cur->u32_min_value &&
16518 	       old->u32_max_value >= cur->u32_max_value &&
16519 	       old->s32_min_value <= cur->s32_min_value &&
16520 	       old->s32_max_value >= cur->s32_max_value;
16521 }
16522 
16523 /* If in the old state two registers had the same id, then they need to have
16524  * the same id in the new state as well.  But that id could be different from
16525  * the old state, so we need to track the mapping from old to new ids.
16526  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
16527  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
16528  * regs with a different old id could still have new id 9, we don't care about
16529  * that.
16530  * So we look through our idmap to see if this old id has been seen before.  If
16531  * so, we require the new id to match; otherwise, we add the id pair to the map.
16532  */
16533 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16534 {
16535 	struct bpf_id_pair *map = idmap->map;
16536 	unsigned int i;
16537 
16538 	/* either both IDs should be set or both should be zero */
16539 	if (!!old_id != !!cur_id)
16540 		return false;
16541 
16542 	if (old_id == 0) /* cur_id == 0 as well */
16543 		return true;
16544 
16545 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
16546 		if (!map[i].old) {
16547 			/* Reached an empty slot; haven't seen this id before */
16548 			map[i].old = old_id;
16549 			map[i].cur = cur_id;
16550 			return true;
16551 		}
16552 		if (map[i].old == old_id)
16553 			return map[i].cur == cur_id;
16554 		if (map[i].cur == cur_id)
16555 			return false;
16556 	}
16557 	/* We ran out of idmap slots, which should be impossible */
16558 	WARN_ON_ONCE(1);
16559 	return false;
16560 }
16561 
16562 /* Similar to check_ids(), but allocate a unique temporary ID
16563  * for 'old_id' or 'cur_id' of zero.
16564  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
16565  */
16566 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16567 {
16568 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
16569 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
16570 
16571 	return check_ids(old_id, cur_id, idmap);
16572 }
16573 
16574 static void clean_func_state(struct bpf_verifier_env *env,
16575 			     struct bpf_func_state *st)
16576 {
16577 	enum bpf_reg_liveness live;
16578 	int i, j;
16579 
16580 	for (i = 0; i < BPF_REG_FP; i++) {
16581 		live = st->regs[i].live;
16582 		/* liveness must not touch this register anymore */
16583 		st->regs[i].live |= REG_LIVE_DONE;
16584 		if (!(live & REG_LIVE_READ))
16585 			/* since the register is unused, clear its state
16586 			 * to make further comparison simpler
16587 			 */
16588 			__mark_reg_not_init(env, &st->regs[i]);
16589 	}
16590 
16591 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
16592 		live = st->stack[i].spilled_ptr.live;
16593 		/* liveness must not touch this stack slot anymore */
16594 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
16595 		if (!(live & REG_LIVE_READ)) {
16596 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
16597 			for (j = 0; j < BPF_REG_SIZE; j++)
16598 				st->stack[i].slot_type[j] = STACK_INVALID;
16599 		}
16600 	}
16601 }
16602 
16603 static void clean_verifier_state(struct bpf_verifier_env *env,
16604 				 struct bpf_verifier_state *st)
16605 {
16606 	int i;
16607 
16608 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
16609 		/* all regs in this state in all frames were already marked */
16610 		return;
16611 
16612 	for (i = 0; i <= st->curframe; i++)
16613 		clean_func_state(env, st->frame[i]);
16614 }
16615 
16616 /* the parentage chains form a tree.
16617  * the verifier states are added to state lists at given insn and
16618  * pushed into state stack for future exploration.
16619  * when the verifier reaches bpf_exit insn some of the verifer states
16620  * stored in the state lists have their final liveness state already,
16621  * but a lot of states will get revised from liveness point of view when
16622  * the verifier explores other branches.
16623  * Example:
16624  * 1: r0 = 1
16625  * 2: if r1 == 100 goto pc+1
16626  * 3: r0 = 2
16627  * 4: exit
16628  * when the verifier reaches exit insn the register r0 in the state list of
16629  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
16630  * of insn 2 and goes exploring further. At the insn 4 it will walk the
16631  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
16632  *
16633  * Since the verifier pushes the branch states as it sees them while exploring
16634  * the program the condition of walking the branch instruction for the second
16635  * time means that all states below this branch were already explored and
16636  * their final liveness marks are already propagated.
16637  * Hence when the verifier completes the search of state list in is_state_visited()
16638  * we can call this clean_live_states() function to mark all liveness states
16639  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
16640  * will not be used.
16641  * This function also clears the registers and stack for states that !READ
16642  * to simplify state merging.
16643  *
16644  * Important note here that walking the same branch instruction in the callee
16645  * doesn't meant that the states are DONE. The verifier has to compare
16646  * the callsites
16647  */
16648 static void clean_live_states(struct bpf_verifier_env *env, int insn,
16649 			      struct bpf_verifier_state *cur)
16650 {
16651 	struct bpf_verifier_state_list *sl;
16652 
16653 	sl = *explored_state(env, insn);
16654 	while (sl) {
16655 		if (sl->state.branches)
16656 			goto next;
16657 		if (sl->state.insn_idx != insn ||
16658 		    !same_callsites(&sl->state, cur))
16659 			goto next;
16660 		clean_verifier_state(env, &sl->state);
16661 next:
16662 		sl = sl->next;
16663 	}
16664 }
16665 
16666 static bool regs_exact(const struct bpf_reg_state *rold,
16667 		       const struct bpf_reg_state *rcur,
16668 		       struct bpf_idmap *idmap)
16669 {
16670 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16671 	       check_ids(rold->id, rcur->id, idmap) &&
16672 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16673 }
16674 
16675 enum exact_level {
16676 	NOT_EXACT,
16677 	EXACT,
16678 	RANGE_WITHIN
16679 };
16680 
16681 /* Returns true if (rold safe implies rcur safe) */
16682 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
16683 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap,
16684 		    enum exact_level exact)
16685 {
16686 	if (exact == EXACT)
16687 		return regs_exact(rold, rcur, idmap);
16688 
16689 	if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT)
16690 		/* explored state didn't use this */
16691 		return true;
16692 	if (rold->type == NOT_INIT) {
16693 		if (exact == NOT_EXACT || rcur->type == NOT_INIT)
16694 			/* explored state can't have used this */
16695 			return true;
16696 	}
16697 
16698 	/* Enforce that register types have to match exactly, including their
16699 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16700 	 * rule.
16701 	 *
16702 	 * One can make a point that using a pointer register as unbounded
16703 	 * SCALAR would be technically acceptable, but this could lead to
16704 	 * pointer leaks because scalars are allowed to leak while pointers
16705 	 * are not. We could make this safe in special cases if root is
16706 	 * calling us, but it's probably not worth the hassle.
16707 	 *
16708 	 * Also, register types that are *not* MAYBE_NULL could technically be
16709 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16710 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16711 	 * to the same map).
16712 	 * However, if the old MAYBE_NULL register then got NULL checked,
16713 	 * doing so could have affected others with the same id, and we can't
16714 	 * check for that because we lost the id when we converted to
16715 	 * a non-MAYBE_NULL variant.
16716 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
16717 	 * non-MAYBE_NULL registers as well.
16718 	 */
16719 	if (rold->type != rcur->type)
16720 		return false;
16721 
16722 	switch (base_type(rold->type)) {
16723 	case SCALAR_VALUE:
16724 		if (env->explore_alu_limits) {
16725 			/* explore_alu_limits disables tnum_in() and range_within()
16726 			 * logic and requires everything to be strict
16727 			 */
16728 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16729 			       check_scalar_ids(rold->id, rcur->id, idmap);
16730 		}
16731 		if (!rold->precise && exact == NOT_EXACT)
16732 			return true;
16733 		/* Why check_ids() for scalar registers?
16734 		 *
16735 		 * Consider the following BPF code:
16736 		 *   1: r6 = ... unbound scalar, ID=a ...
16737 		 *   2: r7 = ... unbound scalar, ID=b ...
16738 		 *   3: if (r6 > r7) goto +1
16739 		 *   4: r6 = r7
16740 		 *   5: if (r6 > X) goto ...
16741 		 *   6: ... memory operation using r7 ...
16742 		 *
16743 		 * First verification path is [1-6]:
16744 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16745 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16746 		 *   r7 <= X, because r6 and r7 share same id.
16747 		 * Next verification path is [1-4, 6].
16748 		 *
16749 		 * Instruction (6) would be reached in two states:
16750 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
16751 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16752 		 *
16753 		 * Use check_ids() to distinguish these states.
16754 		 * ---
16755 		 * Also verify that new value satisfies old value range knowledge.
16756 		 */
16757 		return range_within(rold, rcur) &&
16758 		       tnum_in(rold->var_off, rcur->var_off) &&
16759 		       check_scalar_ids(rold->id, rcur->id, idmap);
16760 	case PTR_TO_MAP_KEY:
16761 	case PTR_TO_MAP_VALUE:
16762 	case PTR_TO_MEM:
16763 	case PTR_TO_BUF:
16764 	case PTR_TO_TP_BUFFER:
16765 		/* If the new min/max/var_off satisfy the old ones and
16766 		 * everything else matches, we are OK.
16767 		 */
16768 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16769 		       range_within(rold, rcur) &&
16770 		       tnum_in(rold->var_off, rcur->var_off) &&
16771 		       check_ids(rold->id, rcur->id, idmap) &&
16772 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16773 	case PTR_TO_PACKET_META:
16774 	case PTR_TO_PACKET:
16775 		/* We must have at least as much range as the old ptr
16776 		 * did, so that any accesses which were safe before are
16777 		 * still safe.  This is true even if old range < old off,
16778 		 * since someone could have accessed through (ptr - k), or
16779 		 * even done ptr -= k in a register, to get a safe access.
16780 		 */
16781 		if (rold->range > rcur->range)
16782 			return false;
16783 		/* If the offsets don't match, we can't trust our alignment;
16784 		 * nor can we be sure that we won't fall out of range.
16785 		 */
16786 		if (rold->off != rcur->off)
16787 			return false;
16788 		/* id relations must be preserved */
16789 		if (!check_ids(rold->id, rcur->id, idmap))
16790 			return false;
16791 		/* new val must satisfy old val knowledge */
16792 		return range_within(rold, rcur) &&
16793 		       tnum_in(rold->var_off, rcur->var_off);
16794 	case PTR_TO_STACK:
16795 		/* two stack pointers are equal only if they're pointing to
16796 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
16797 		 */
16798 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16799 	case PTR_TO_ARENA:
16800 		return true;
16801 	default:
16802 		return regs_exact(rold, rcur, idmap);
16803 	}
16804 }
16805 
16806 static struct bpf_reg_state unbound_reg;
16807 
16808 static __init int unbound_reg_init(void)
16809 {
16810 	__mark_reg_unknown_imprecise(&unbound_reg);
16811 	unbound_reg.live |= REG_LIVE_READ;
16812 	return 0;
16813 }
16814 late_initcall(unbound_reg_init);
16815 
16816 static bool is_stack_all_misc(struct bpf_verifier_env *env,
16817 			      struct bpf_stack_state *stack)
16818 {
16819 	u32 i;
16820 
16821 	for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) {
16822 		if ((stack->slot_type[i] == STACK_MISC) ||
16823 		    (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack))
16824 			continue;
16825 		return false;
16826 	}
16827 
16828 	return true;
16829 }
16830 
16831 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env,
16832 						  struct bpf_stack_state *stack)
16833 {
16834 	if (is_spilled_scalar_reg64(stack))
16835 		return &stack->spilled_ptr;
16836 
16837 	if (is_stack_all_misc(env, stack))
16838 		return &unbound_reg;
16839 
16840 	return NULL;
16841 }
16842 
16843 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16844 		      struct bpf_func_state *cur, struct bpf_idmap *idmap,
16845 		      enum exact_level exact)
16846 {
16847 	int i, spi;
16848 
16849 	/* walk slots of the explored stack and ignore any additional
16850 	 * slots in the current stack, since explored(safe) state
16851 	 * didn't use them
16852 	 */
16853 	for (i = 0; i < old->allocated_stack; i++) {
16854 		struct bpf_reg_state *old_reg, *cur_reg;
16855 
16856 		spi = i / BPF_REG_SIZE;
16857 
16858 		if (exact != NOT_EXACT &&
16859 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16860 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16861 			return false;
16862 
16863 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)
16864 		    && exact == NOT_EXACT) {
16865 			i += BPF_REG_SIZE - 1;
16866 			/* explored state didn't use this */
16867 			continue;
16868 		}
16869 
16870 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16871 			continue;
16872 
16873 		if (env->allow_uninit_stack &&
16874 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16875 			continue;
16876 
16877 		/* explored stack has more populated slots than current stack
16878 		 * and these slots were used
16879 		 */
16880 		if (i >= cur->allocated_stack)
16881 			return false;
16882 
16883 		/* 64-bit scalar spill vs all slots MISC and vice versa.
16884 		 * Load from all slots MISC produces unbound scalar.
16885 		 * Construct a fake register for such stack and call
16886 		 * regsafe() to ensure scalar ids are compared.
16887 		 */
16888 		old_reg = scalar_reg_for_stack(env, &old->stack[spi]);
16889 		cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]);
16890 		if (old_reg && cur_reg) {
16891 			if (!regsafe(env, old_reg, cur_reg, idmap, exact))
16892 				return false;
16893 			i += BPF_REG_SIZE - 1;
16894 			continue;
16895 		}
16896 
16897 		/* if old state was safe with misc data in the stack
16898 		 * it will be safe with zero-initialized stack.
16899 		 * The opposite is not true
16900 		 */
16901 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16902 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16903 			continue;
16904 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16905 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16906 			/* Ex: old explored (safe) state has STACK_SPILL in
16907 			 * this stack slot, but current has STACK_MISC ->
16908 			 * this verifier states are not equivalent,
16909 			 * return false to continue verification of this path
16910 			 */
16911 			return false;
16912 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16913 			continue;
16914 		/* Both old and cur are having same slot_type */
16915 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16916 		case STACK_SPILL:
16917 			/* when explored and current stack slot are both storing
16918 			 * spilled registers, check that stored pointers types
16919 			 * are the same as well.
16920 			 * Ex: explored safe path could have stored
16921 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16922 			 * but current path has stored:
16923 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16924 			 * such verifier states are not equivalent.
16925 			 * return false to continue verification of this path
16926 			 */
16927 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
16928 				     &cur->stack[spi].spilled_ptr, idmap, exact))
16929 				return false;
16930 			break;
16931 		case STACK_DYNPTR:
16932 			old_reg = &old->stack[spi].spilled_ptr;
16933 			cur_reg = &cur->stack[spi].spilled_ptr;
16934 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16935 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16936 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16937 				return false;
16938 			break;
16939 		case STACK_ITER:
16940 			old_reg = &old->stack[spi].spilled_ptr;
16941 			cur_reg = &cur->stack[spi].spilled_ptr;
16942 			/* iter.depth is not compared between states as it
16943 			 * doesn't matter for correctness and would otherwise
16944 			 * prevent convergence; we maintain it only to prevent
16945 			 * infinite loop check triggering, see
16946 			 * iter_active_depths_differ()
16947 			 */
16948 			if (old_reg->iter.btf != cur_reg->iter.btf ||
16949 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16950 			    old_reg->iter.state != cur_reg->iter.state ||
16951 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
16952 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16953 				return false;
16954 			break;
16955 		case STACK_MISC:
16956 		case STACK_ZERO:
16957 		case STACK_INVALID:
16958 			continue;
16959 		/* Ensure that new unhandled slot types return false by default */
16960 		default:
16961 			return false;
16962 		}
16963 	}
16964 	return true;
16965 }
16966 
16967 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16968 		    struct bpf_idmap *idmap)
16969 {
16970 	int i;
16971 
16972 	if (old->acquired_refs != cur->acquired_refs)
16973 		return false;
16974 
16975 	for (i = 0; i < old->acquired_refs; i++) {
16976 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16977 			return false;
16978 	}
16979 
16980 	return true;
16981 }
16982 
16983 /* compare two verifier states
16984  *
16985  * all states stored in state_list are known to be valid, since
16986  * verifier reached 'bpf_exit' instruction through them
16987  *
16988  * this function is called when verifier exploring different branches of
16989  * execution popped from the state stack. If it sees an old state that has
16990  * more strict register state and more strict stack state then this execution
16991  * branch doesn't need to be explored further, since verifier already
16992  * concluded that more strict state leads to valid finish.
16993  *
16994  * Therefore two states are equivalent if register state is more conservative
16995  * and explored stack state is more conservative than the current one.
16996  * Example:
16997  *       explored                   current
16998  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16999  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
17000  *
17001  * In other words if current stack state (one being explored) has more
17002  * valid slots than old one that already passed validation, it means
17003  * the verifier can stop exploring and conclude that current state is valid too
17004  *
17005  * Similarly with registers. If explored state has register type as invalid
17006  * whereas register type in current state is meaningful, it means that
17007  * the current state will reach 'bpf_exit' instruction safely
17008  */
17009 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
17010 			      struct bpf_func_state *cur, enum exact_level exact)
17011 {
17012 	int i;
17013 
17014 	if (old->callback_depth > cur->callback_depth)
17015 		return false;
17016 
17017 	for (i = 0; i < MAX_BPF_REG; i++)
17018 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
17019 			     &env->idmap_scratch, exact))
17020 			return false;
17021 
17022 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
17023 		return false;
17024 
17025 	if (!refsafe(old, cur, &env->idmap_scratch))
17026 		return false;
17027 
17028 	return true;
17029 }
17030 
17031 static void reset_idmap_scratch(struct bpf_verifier_env *env)
17032 {
17033 	env->idmap_scratch.tmp_id_gen = env->id_gen;
17034 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
17035 }
17036 
17037 static bool states_equal(struct bpf_verifier_env *env,
17038 			 struct bpf_verifier_state *old,
17039 			 struct bpf_verifier_state *cur,
17040 			 enum exact_level exact)
17041 {
17042 	int i;
17043 
17044 	if (old->curframe != cur->curframe)
17045 		return false;
17046 
17047 	reset_idmap_scratch(env);
17048 
17049 	/* Verification state from speculative execution simulation
17050 	 * must never prune a non-speculative execution one.
17051 	 */
17052 	if (old->speculative && !cur->speculative)
17053 		return false;
17054 
17055 	if (old->active_lock.ptr != cur->active_lock.ptr)
17056 		return false;
17057 
17058 	/* Old and cur active_lock's have to be either both present
17059 	 * or both absent.
17060 	 */
17061 	if (!!old->active_lock.id != !!cur->active_lock.id)
17062 		return false;
17063 
17064 	if (old->active_lock.id &&
17065 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
17066 		return false;
17067 
17068 	if (old->active_rcu_lock != cur->active_rcu_lock)
17069 		return false;
17070 
17071 	if (old->active_preempt_lock != cur->active_preempt_lock)
17072 		return false;
17073 
17074 	if (old->in_sleepable != cur->in_sleepable)
17075 		return false;
17076 
17077 	/* for states to be equal callsites have to be the same
17078 	 * and all frame states need to be equivalent
17079 	 */
17080 	for (i = 0; i <= old->curframe; i++) {
17081 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
17082 			return false;
17083 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
17084 			return false;
17085 	}
17086 	return true;
17087 }
17088 
17089 /* Return 0 if no propagation happened. Return negative error code if error
17090  * happened. Otherwise, return the propagated bit.
17091  */
17092 static int propagate_liveness_reg(struct bpf_verifier_env *env,
17093 				  struct bpf_reg_state *reg,
17094 				  struct bpf_reg_state *parent_reg)
17095 {
17096 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
17097 	u8 flag = reg->live & REG_LIVE_READ;
17098 	int err;
17099 
17100 	/* When comes here, read flags of PARENT_REG or REG could be any of
17101 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
17102 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
17103 	 */
17104 	if (parent_flag == REG_LIVE_READ64 ||
17105 	    /* Or if there is no read flag from REG. */
17106 	    !flag ||
17107 	    /* Or if the read flag from REG is the same as PARENT_REG. */
17108 	    parent_flag == flag)
17109 		return 0;
17110 
17111 	err = mark_reg_read(env, reg, parent_reg, flag);
17112 	if (err)
17113 		return err;
17114 
17115 	return flag;
17116 }
17117 
17118 /* A write screens off any subsequent reads; but write marks come from the
17119  * straight-line code between a state and its parent.  When we arrive at an
17120  * equivalent state (jump target or such) we didn't arrive by the straight-line
17121  * code, so read marks in the state must propagate to the parent regardless
17122  * of the state's write marks. That's what 'parent == state->parent' comparison
17123  * in mark_reg_read() is for.
17124  */
17125 static int propagate_liveness(struct bpf_verifier_env *env,
17126 			      const struct bpf_verifier_state *vstate,
17127 			      struct bpf_verifier_state *vparent)
17128 {
17129 	struct bpf_reg_state *state_reg, *parent_reg;
17130 	struct bpf_func_state *state, *parent;
17131 	int i, frame, err = 0;
17132 
17133 	if (vparent->curframe != vstate->curframe) {
17134 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
17135 		     vparent->curframe, vstate->curframe);
17136 		return -EFAULT;
17137 	}
17138 	/* Propagate read liveness of registers... */
17139 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
17140 	for (frame = 0; frame <= vstate->curframe; frame++) {
17141 		parent = vparent->frame[frame];
17142 		state = vstate->frame[frame];
17143 		parent_reg = parent->regs;
17144 		state_reg = state->regs;
17145 		/* We don't need to worry about FP liveness, it's read-only */
17146 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
17147 			err = propagate_liveness_reg(env, &state_reg[i],
17148 						     &parent_reg[i]);
17149 			if (err < 0)
17150 				return err;
17151 			if (err == REG_LIVE_READ64)
17152 				mark_insn_zext(env, &parent_reg[i]);
17153 		}
17154 
17155 		/* Propagate stack slots. */
17156 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
17157 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
17158 			parent_reg = &parent->stack[i].spilled_ptr;
17159 			state_reg = &state->stack[i].spilled_ptr;
17160 			err = propagate_liveness_reg(env, state_reg,
17161 						     parent_reg);
17162 			if (err < 0)
17163 				return err;
17164 		}
17165 	}
17166 	return 0;
17167 }
17168 
17169 /* find precise scalars in the previous equivalent state and
17170  * propagate them into the current state
17171  */
17172 static int propagate_precision(struct bpf_verifier_env *env,
17173 			       const struct bpf_verifier_state *old)
17174 {
17175 	struct bpf_reg_state *state_reg;
17176 	struct bpf_func_state *state;
17177 	int i, err = 0, fr;
17178 	bool first;
17179 
17180 	for (fr = old->curframe; fr >= 0; fr--) {
17181 		state = old->frame[fr];
17182 		state_reg = state->regs;
17183 		first = true;
17184 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
17185 			if (state_reg->type != SCALAR_VALUE ||
17186 			    !state_reg->precise ||
17187 			    !(state_reg->live & REG_LIVE_READ))
17188 				continue;
17189 			if (env->log.level & BPF_LOG_LEVEL2) {
17190 				if (first)
17191 					verbose(env, "frame %d: propagating r%d", fr, i);
17192 				else
17193 					verbose(env, ",r%d", i);
17194 			}
17195 			bt_set_frame_reg(&env->bt, fr, i);
17196 			first = false;
17197 		}
17198 
17199 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
17200 			if (!is_spilled_reg(&state->stack[i]))
17201 				continue;
17202 			state_reg = &state->stack[i].spilled_ptr;
17203 			if (state_reg->type != SCALAR_VALUE ||
17204 			    !state_reg->precise ||
17205 			    !(state_reg->live & REG_LIVE_READ))
17206 				continue;
17207 			if (env->log.level & BPF_LOG_LEVEL2) {
17208 				if (first)
17209 					verbose(env, "frame %d: propagating fp%d",
17210 						fr, (-i - 1) * BPF_REG_SIZE);
17211 				else
17212 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
17213 			}
17214 			bt_set_frame_slot(&env->bt, fr, i);
17215 			first = false;
17216 		}
17217 		if (!first)
17218 			verbose(env, "\n");
17219 	}
17220 
17221 	err = mark_chain_precision_batch(env);
17222 	if (err < 0)
17223 		return err;
17224 
17225 	return 0;
17226 }
17227 
17228 static bool states_maybe_looping(struct bpf_verifier_state *old,
17229 				 struct bpf_verifier_state *cur)
17230 {
17231 	struct bpf_func_state *fold, *fcur;
17232 	int i, fr = cur->curframe;
17233 
17234 	if (old->curframe != fr)
17235 		return false;
17236 
17237 	fold = old->frame[fr];
17238 	fcur = cur->frame[fr];
17239 	for (i = 0; i < MAX_BPF_REG; i++)
17240 		if (memcmp(&fold->regs[i], &fcur->regs[i],
17241 			   offsetof(struct bpf_reg_state, parent)))
17242 			return false;
17243 	return true;
17244 }
17245 
17246 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
17247 {
17248 	return env->insn_aux_data[insn_idx].is_iter_next;
17249 }
17250 
17251 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
17252  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
17253  * states to match, which otherwise would look like an infinite loop. So while
17254  * iter_next() calls are taken care of, we still need to be careful and
17255  * prevent erroneous and too eager declaration of "ininite loop", when
17256  * iterators are involved.
17257  *
17258  * Here's a situation in pseudo-BPF assembly form:
17259  *
17260  *   0: again:                          ; set up iter_next() call args
17261  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
17262  *   2:   call bpf_iter_num_next        ; this is iter_next() call
17263  *   3:   if r0 == 0 goto done
17264  *   4:   ... something useful here ...
17265  *   5:   goto again                    ; another iteration
17266  *   6: done:
17267  *   7:   r1 = &it
17268  *   8:   call bpf_iter_num_destroy     ; clean up iter state
17269  *   9:   exit
17270  *
17271  * This is a typical loop. Let's assume that we have a prune point at 1:,
17272  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
17273  * again`, assuming other heuristics don't get in a way).
17274  *
17275  * When we first time come to 1:, let's say we have some state X. We proceed
17276  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
17277  * Now we come back to validate that forked ACTIVE state. We proceed through
17278  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
17279  * are converging. But the problem is that we don't know that yet, as this
17280  * convergence has to happen at iter_next() call site only. So if nothing is
17281  * done, at 1: verifier will use bounded loop logic and declare infinite
17282  * looping (and would be *technically* correct, if not for iterator's
17283  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
17284  * don't want that. So what we do in process_iter_next_call() when we go on
17285  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
17286  * a different iteration. So when we suspect an infinite loop, we additionally
17287  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
17288  * pretend we are not looping and wait for next iter_next() call.
17289  *
17290  * This only applies to ACTIVE state. In DRAINED state we don't expect to
17291  * loop, because that would actually mean infinite loop, as DRAINED state is
17292  * "sticky", and so we'll keep returning into the same instruction with the
17293  * same state (at least in one of possible code paths).
17294  *
17295  * This approach allows to keep infinite loop heuristic even in the face of
17296  * active iterator. E.g., C snippet below is and will be detected as
17297  * inifintely looping:
17298  *
17299  *   struct bpf_iter_num it;
17300  *   int *p, x;
17301  *
17302  *   bpf_iter_num_new(&it, 0, 10);
17303  *   while ((p = bpf_iter_num_next(&t))) {
17304  *       x = p;
17305  *       while (x--) {} // <<-- infinite loop here
17306  *   }
17307  *
17308  */
17309 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
17310 {
17311 	struct bpf_reg_state *slot, *cur_slot;
17312 	struct bpf_func_state *state;
17313 	int i, fr;
17314 
17315 	for (fr = old->curframe; fr >= 0; fr--) {
17316 		state = old->frame[fr];
17317 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
17318 			if (state->stack[i].slot_type[0] != STACK_ITER)
17319 				continue;
17320 
17321 			slot = &state->stack[i].spilled_ptr;
17322 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
17323 				continue;
17324 
17325 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
17326 			if (cur_slot->iter.depth != slot->iter.depth)
17327 				return true;
17328 		}
17329 	}
17330 	return false;
17331 }
17332 
17333 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
17334 {
17335 	struct bpf_verifier_state_list *new_sl;
17336 	struct bpf_verifier_state_list *sl, **pprev;
17337 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
17338 	int i, j, n, err, states_cnt = 0;
17339 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
17340 	bool add_new_state = force_new_state;
17341 	bool force_exact;
17342 
17343 	/* bpf progs typically have pruning point every 4 instructions
17344 	 * http://vger.kernel.org/bpfconf2019.html#session-1
17345 	 * Do not add new state for future pruning if the verifier hasn't seen
17346 	 * at least 2 jumps and at least 8 instructions.
17347 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
17348 	 * In tests that amounts to up to 50% reduction into total verifier
17349 	 * memory consumption and 20% verifier time speedup.
17350 	 */
17351 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
17352 	    env->insn_processed - env->prev_insn_processed >= 8)
17353 		add_new_state = true;
17354 
17355 	pprev = explored_state(env, insn_idx);
17356 	sl = *pprev;
17357 
17358 	clean_live_states(env, insn_idx, cur);
17359 
17360 	while (sl) {
17361 		states_cnt++;
17362 		if (sl->state.insn_idx != insn_idx)
17363 			goto next;
17364 
17365 		if (sl->state.branches) {
17366 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
17367 
17368 			if (frame->in_async_callback_fn &&
17369 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
17370 				/* Different async_entry_cnt means that the verifier is
17371 				 * processing another entry into async callback.
17372 				 * Seeing the same state is not an indication of infinite
17373 				 * loop or infinite recursion.
17374 				 * But finding the same state doesn't mean that it's safe
17375 				 * to stop processing the current state. The previous state
17376 				 * hasn't yet reached bpf_exit, since state.branches > 0.
17377 				 * Checking in_async_callback_fn alone is not enough either.
17378 				 * Since the verifier still needs to catch infinite loops
17379 				 * inside async callbacks.
17380 				 */
17381 				goto skip_inf_loop_check;
17382 			}
17383 			/* BPF open-coded iterators loop detection is special.
17384 			 * states_maybe_looping() logic is too simplistic in detecting
17385 			 * states that *might* be equivalent, because it doesn't know
17386 			 * about ID remapping, so don't even perform it.
17387 			 * See process_iter_next_call() and iter_active_depths_differ()
17388 			 * for overview of the logic. When current and one of parent
17389 			 * states are detected as equivalent, it's a good thing: we prove
17390 			 * convergence and can stop simulating further iterations.
17391 			 * It's safe to assume that iterator loop will finish, taking into
17392 			 * account iter_next() contract of eventually returning
17393 			 * sticky NULL result.
17394 			 *
17395 			 * Note, that states have to be compared exactly in this case because
17396 			 * read and precision marks might not be finalized inside the loop.
17397 			 * E.g. as in the program below:
17398 			 *
17399 			 *     1. r7 = -16
17400 			 *     2. r6 = bpf_get_prandom_u32()
17401 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
17402 			 *     4.   if (r6 != 42) {
17403 			 *     5.     r7 = -32
17404 			 *     6.     r6 = bpf_get_prandom_u32()
17405 			 *     7.     continue
17406 			 *     8.   }
17407 			 *     9.   r0 = r10
17408 			 *    10.   r0 += r7
17409 			 *    11.   r8 = *(u64 *)(r0 + 0)
17410 			 *    12.   r6 = bpf_get_prandom_u32()
17411 			 *    13. }
17412 			 *
17413 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
17414 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
17415 			 * not have read or precision mark for r7 yet, thus inexact states
17416 			 * comparison would discard current state with r7=-32
17417 			 * => unsafe memory access at 11 would not be caught.
17418 			 */
17419 			if (is_iter_next_insn(env, insn_idx)) {
17420 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
17421 					struct bpf_func_state *cur_frame;
17422 					struct bpf_reg_state *iter_state, *iter_reg;
17423 					int spi;
17424 
17425 					cur_frame = cur->frame[cur->curframe];
17426 					/* btf_check_iter_kfuncs() enforces that
17427 					 * iter state pointer is always the first arg
17428 					 */
17429 					iter_reg = &cur_frame->regs[BPF_REG_1];
17430 					/* current state is valid due to states_equal(),
17431 					 * so we can assume valid iter and reg state,
17432 					 * no need for extra (re-)validations
17433 					 */
17434 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
17435 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
17436 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
17437 						update_loop_entry(cur, &sl->state);
17438 						goto hit;
17439 					}
17440 				}
17441 				goto skip_inf_loop_check;
17442 			}
17443 			if (is_may_goto_insn_at(env, insn_idx)) {
17444 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
17445 					update_loop_entry(cur, &sl->state);
17446 					goto hit;
17447 				}
17448 				goto skip_inf_loop_check;
17449 			}
17450 			if (calls_callback(env, insn_idx)) {
17451 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN))
17452 					goto hit;
17453 				goto skip_inf_loop_check;
17454 			}
17455 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
17456 			if (states_maybe_looping(&sl->state, cur) &&
17457 			    states_equal(env, &sl->state, cur, EXACT) &&
17458 			    !iter_active_depths_differ(&sl->state, cur) &&
17459 			    sl->state.may_goto_depth == cur->may_goto_depth &&
17460 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
17461 				verbose_linfo(env, insn_idx, "; ");
17462 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
17463 				verbose(env, "cur state:");
17464 				print_verifier_state(env, cur->frame[cur->curframe], true);
17465 				verbose(env, "old state:");
17466 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
17467 				return -EINVAL;
17468 			}
17469 			/* if the verifier is processing a loop, avoid adding new state
17470 			 * too often, since different loop iterations have distinct
17471 			 * states and may not help future pruning.
17472 			 * This threshold shouldn't be too low to make sure that
17473 			 * a loop with large bound will be rejected quickly.
17474 			 * The most abusive loop will be:
17475 			 * r1 += 1
17476 			 * if r1 < 1000000 goto pc-2
17477 			 * 1M insn_procssed limit / 100 == 10k peak states.
17478 			 * This threshold shouldn't be too high either, since states
17479 			 * at the end of the loop are likely to be useful in pruning.
17480 			 */
17481 skip_inf_loop_check:
17482 			if (!force_new_state &&
17483 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
17484 			    env->insn_processed - env->prev_insn_processed < 100)
17485 				add_new_state = false;
17486 			goto miss;
17487 		}
17488 		/* If sl->state is a part of a loop and this loop's entry is a part of
17489 		 * current verification path then states have to be compared exactly.
17490 		 * 'force_exact' is needed to catch the following case:
17491 		 *
17492 		 *                initial     Here state 'succ' was processed first,
17493 		 *                  |         it was eventually tracked to produce a
17494 		 *                  V         state identical to 'hdr'.
17495 		 *     .---------> hdr        All branches from 'succ' had been explored
17496 		 *     |            |         and thus 'succ' has its .branches == 0.
17497 		 *     |            V
17498 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
17499 		 *     |    |       |         to the same instruction + callsites.
17500 		 *     |    V       V         In such case it is necessary to check
17501 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
17502 		 *     |    |       |         If 'succ' and 'cur' are a part of the
17503 		 *     |    V       V         same loop exact flag has to be set.
17504 		 *     |   succ <- cur        To check if that is the case, verify
17505 		 *     |    |                 if loop entry of 'succ' is in current
17506 		 *     |    V                 DFS path.
17507 		 *     |   ...
17508 		 *     |    |
17509 		 *     '----'
17510 		 *
17511 		 * Additional details are in the comment before get_loop_entry().
17512 		 */
17513 		loop_entry = get_loop_entry(&sl->state);
17514 		force_exact = loop_entry && loop_entry->branches > 0;
17515 		if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) {
17516 			if (force_exact)
17517 				update_loop_entry(cur, loop_entry);
17518 hit:
17519 			sl->hit_cnt++;
17520 			/* reached equivalent register/stack state,
17521 			 * prune the search.
17522 			 * Registers read by the continuation are read by us.
17523 			 * If we have any write marks in env->cur_state, they
17524 			 * will prevent corresponding reads in the continuation
17525 			 * from reaching our parent (an explored_state).  Our
17526 			 * own state will get the read marks recorded, but
17527 			 * they'll be immediately forgotten as we're pruning
17528 			 * this state and will pop a new one.
17529 			 */
17530 			err = propagate_liveness(env, &sl->state, cur);
17531 
17532 			/* if previous state reached the exit with precision and
17533 			 * current state is equivalent to it (except precision marks)
17534 			 * the precision needs to be propagated back in
17535 			 * the current state.
17536 			 */
17537 			if (is_jmp_point(env, env->insn_idx))
17538 				err = err ? : push_jmp_history(env, cur, 0);
17539 			err = err ? : propagate_precision(env, &sl->state);
17540 			if (err)
17541 				return err;
17542 			return 1;
17543 		}
17544 miss:
17545 		/* when new state is not going to be added do not increase miss count.
17546 		 * Otherwise several loop iterations will remove the state
17547 		 * recorded earlier. The goal of these heuristics is to have
17548 		 * states from some iterations of the loop (some in the beginning
17549 		 * and some at the end) to help pruning.
17550 		 */
17551 		if (add_new_state)
17552 			sl->miss_cnt++;
17553 		/* heuristic to determine whether this state is beneficial
17554 		 * to keep checking from state equivalence point of view.
17555 		 * Higher numbers increase max_states_per_insn and verification time,
17556 		 * but do not meaningfully decrease insn_processed.
17557 		 * 'n' controls how many times state could miss before eviction.
17558 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
17559 		 * too early would hinder iterator convergence.
17560 		 */
17561 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
17562 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
17563 			/* the state is unlikely to be useful. Remove it to
17564 			 * speed up verification
17565 			 */
17566 			*pprev = sl->next;
17567 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
17568 			    !sl->state.used_as_loop_entry) {
17569 				u32 br = sl->state.branches;
17570 
17571 				WARN_ONCE(br,
17572 					  "BUG live_done but branches_to_explore %d\n",
17573 					  br);
17574 				free_verifier_state(&sl->state, false);
17575 				kfree(sl);
17576 				env->peak_states--;
17577 			} else {
17578 				/* cannot free this state, since parentage chain may
17579 				 * walk it later. Add it for free_list instead to
17580 				 * be freed at the end of verification
17581 				 */
17582 				sl->next = env->free_list;
17583 				env->free_list = sl;
17584 			}
17585 			sl = *pprev;
17586 			continue;
17587 		}
17588 next:
17589 		pprev = &sl->next;
17590 		sl = *pprev;
17591 	}
17592 
17593 	if (env->max_states_per_insn < states_cnt)
17594 		env->max_states_per_insn = states_cnt;
17595 
17596 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
17597 		return 0;
17598 
17599 	if (!add_new_state)
17600 		return 0;
17601 
17602 	/* There were no equivalent states, remember the current one.
17603 	 * Technically the current state is not proven to be safe yet,
17604 	 * but it will either reach outer most bpf_exit (which means it's safe)
17605 	 * or it will be rejected. When there are no loops the verifier won't be
17606 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
17607 	 * again on the way to bpf_exit.
17608 	 * When looping the sl->state.branches will be > 0 and this state
17609 	 * will not be considered for equivalence until branches == 0.
17610 	 */
17611 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
17612 	if (!new_sl)
17613 		return -ENOMEM;
17614 	env->total_states++;
17615 	env->peak_states++;
17616 	env->prev_jmps_processed = env->jmps_processed;
17617 	env->prev_insn_processed = env->insn_processed;
17618 
17619 	/* forget precise markings we inherited, see __mark_chain_precision */
17620 	if (env->bpf_capable)
17621 		mark_all_scalars_imprecise(env, cur);
17622 
17623 	/* add new state to the head of linked list */
17624 	new = &new_sl->state;
17625 	err = copy_verifier_state(new, cur);
17626 	if (err) {
17627 		free_verifier_state(new, false);
17628 		kfree(new_sl);
17629 		return err;
17630 	}
17631 	new->insn_idx = insn_idx;
17632 	WARN_ONCE(new->branches != 1,
17633 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
17634 
17635 	cur->parent = new;
17636 	cur->first_insn_idx = insn_idx;
17637 	cur->dfs_depth = new->dfs_depth + 1;
17638 	clear_jmp_history(cur);
17639 	new_sl->next = *explored_state(env, insn_idx);
17640 	*explored_state(env, insn_idx) = new_sl;
17641 	/* connect new state to parentage chain. Current frame needs all
17642 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
17643 	 * to the stack implicitly by JITs) so in callers' frames connect just
17644 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
17645 	 * the state of the call instruction (with WRITTEN set), and r0 comes
17646 	 * from callee with its full parentage chain, anyway.
17647 	 */
17648 	/* clear write marks in current state: the writes we did are not writes
17649 	 * our child did, so they don't screen off its reads from us.
17650 	 * (There are no read marks in current state, because reads always mark
17651 	 * their parent and current state never has children yet.  Only
17652 	 * explored_states can get read marks.)
17653 	 */
17654 	for (j = 0; j <= cur->curframe; j++) {
17655 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
17656 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
17657 		for (i = 0; i < BPF_REG_FP; i++)
17658 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
17659 	}
17660 
17661 	/* all stack frames are accessible from callee, clear them all */
17662 	for (j = 0; j <= cur->curframe; j++) {
17663 		struct bpf_func_state *frame = cur->frame[j];
17664 		struct bpf_func_state *newframe = new->frame[j];
17665 
17666 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
17667 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
17668 			frame->stack[i].spilled_ptr.parent =
17669 						&newframe->stack[i].spilled_ptr;
17670 		}
17671 	}
17672 	return 0;
17673 }
17674 
17675 /* Return true if it's OK to have the same insn return a different type. */
17676 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
17677 {
17678 	switch (base_type(type)) {
17679 	case PTR_TO_CTX:
17680 	case PTR_TO_SOCKET:
17681 	case PTR_TO_SOCK_COMMON:
17682 	case PTR_TO_TCP_SOCK:
17683 	case PTR_TO_XDP_SOCK:
17684 	case PTR_TO_BTF_ID:
17685 	case PTR_TO_ARENA:
17686 		return false;
17687 	default:
17688 		return true;
17689 	}
17690 }
17691 
17692 /* If an instruction was previously used with particular pointer types, then we
17693  * need to be careful to avoid cases such as the below, where it may be ok
17694  * for one branch accessing the pointer, but not ok for the other branch:
17695  *
17696  * R1 = sock_ptr
17697  * goto X;
17698  * ...
17699  * R1 = some_other_valid_ptr;
17700  * goto X;
17701  * ...
17702  * R2 = *(u32 *)(R1 + 0);
17703  */
17704 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
17705 {
17706 	return src != prev && (!reg_type_mismatch_ok(src) ||
17707 			       !reg_type_mismatch_ok(prev));
17708 }
17709 
17710 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
17711 			     bool allow_trust_mismatch)
17712 {
17713 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
17714 
17715 	if (*prev_type == NOT_INIT) {
17716 		/* Saw a valid insn
17717 		 * dst_reg = *(u32 *)(src_reg + off)
17718 		 * save type to validate intersecting paths
17719 		 */
17720 		*prev_type = type;
17721 	} else if (reg_type_mismatch(type, *prev_type)) {
17722 		/* Abuser program is trying to use the same insn
17723 		 * dst_reg = *(u32*) (src_reg + off)
17724 		 * with different pointer types:
17725 		 * src_reg == ctx in one branch and
17726 		 * src_reg == stack|map in some other branch.
17727 		 * Reject it.
17728 		 */
17729 		if (allow_trust_mismatch &&
17730 		    base_type(type) == PTR_TO_BTF_ID &&
17731 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
17732 			/*
17733 			 * Have to support a use case when one path through
17734 			 * the program yields TRUSTED pointer while another
17735 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
17736 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
17737 			 */
17738 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
17739 		} else {
17740 			verbose(env, "same insn cannot be used with different pointers\n");
17741 			return -EINVAL;
17742 		}
17743 	}
17744 
17745 	return 0;
17746 }
17747 
17748 static int do_check(struct bpf_verifier_env *env)
17749 {
17750 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
17751 	struct bpf_verifier_state *state = env->cur_state;
17752 	struct bpf_insn *insns = env->prog->insnsi;
17753 	struct bpf_reg_state *regs;
17754 	int insn_cnt = env->prog->len;
17755 	bool do_print_state = false;
17756 	int prev_insn_idx = -1;
17757 
17758 	for (;;) {
17759 		bool exception_exit = false;
17760 		struct bpf_insn *insn;
17761 		u8 class;
17762 		int err;
17763 
17764 		/* reset current history entry on each new instruction */
17765 		env->cur_hist_ent = NULL;
17766 
17767 		env->prev_insn_idx = prev_insn_idx;
17768 		if (env->insn_idx >= insn_cnt) {
17769 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
17770 				env->insn_idx, insn_cnt);
17771 			return -EFAULT;
17772 		}
17773 
17774 		insn = &insns[env->insn_idx];
17775 		class = BPF_CLASS(insn->code);
17776 
17777 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17778 			verbose(env,
17779 				"BPF program is too large. Processed %d insn\n",
17780 				env->insn_processed);
17781 			return -E2BIG;
17782 		}
17783 
17784 		state->last_insn_idx = env->prev_insn_idx;
17785 
17786 		if (is_prune_point(env, env->insn_idx)) {
17787 			err = is_state_visited(env, env->insn_idx);
17788 			if (err < 0)
17789 				return err;
17790 			if (err == 1) {
17791 				/* found equivalent state, can prune the search */
17792 				if (env->log.level & BPF_LOG_LEVEL) {
17793 					if (do_print_state)
17794 						verbose(env, "\nfrom %d to %d%s: safe\n",
17795 							env->prev_insn_idx, env->insn_idx,
17796 							env->cur_state->speculative ?
17797 							" (speculative execution)" : "");
17798 					else
17799 						verbose(env, "%d: safe\n", env->insn_idx);
17800 				}
17801 				goto process_bpf_exit;
17802 			}
17803 		}
17804 
17805 		if (is_jmp_point(env, env->insn_idx)) {
17806 			err = push_jmp_history(env, state, 0);
17807 			if (err)
17808 				return err;
17809 		}
17810 
17811 		if (signal_pending(current))
17812 			return -EAGAIN;
17813 
17814 		if (need_resched())
17815 			cond_resched();
17816 
17817 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17818 			verbose(env, "\nfrom %d to %d%s:",
17819 				env->prev_insn_idx, env->insn_idx,
17820 				env->cur_state->speculative ?
17821 				" (speculative execution)" : "");
17822 			print_verifier_state(env, state->frame[state->curframe], true);
17823 			do_print_state = false;
17824 		}
17825 
17826 		if (env->log.level & BPF_LOG_LEVEL) {
17827 			const struct bpf_insn_cbs cbs = {
17828 				.cb_call	= disasm_kfunc_name,
17829 				.cb_print	= verbose,
17830 				.private_data	= env,
17831 			};
17832 
17833 			if (verifier_state_scratched(env))
17834 				print_insn_state(env, state->frame[state->curframe]);
17835 
17836 			verbose_linfo(env, env->insn_idx, "; ");
17837 			env->prev_log_pos = env->log.end_pos;
17838 			verbose(env, "%d: ", env->insn_idx);
17839 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17840 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17841 			env->prev_log_pos = env->log.end_pos;
17842 		}
17843 
17844 		if (bpf_prog_is_offloaded(env->prog->aux)) {
17845 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17846 							   env->prev_insn_idx);
17847 			if (err)
17848 				return err;
17849 		}
17850 
17851 		regs = cur_regs(env);
17852 		sanitize_mark_insn_seen(env);
17853 		prev_insn_idx = env->insn_idx;
17854 
17855 		if (class == BPF_ALU || class == BPF_ALU64) {
17856 			err = check_alu_op(env, insn);
17857 			if (err)
17858 				return err;
17859 
17860 		} else if (class == BPF_LDX) {
17861 			enum bpf_reg_type src_reg_type;
17862 
17863 			/* check for reserved fields is already done */
17864 
17865 			/* check src operand */
17866 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17867 			if (err)
17868 				return err;
17869 
17870 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17871 			if (err)
17872 				return err;
17873 
17874 			src_reg_type = regs[insn->src_reg].type;
17875 
17876 			/* check that memory (src_reg + off) is readable,
17877 			 * the state of dst_reg will be updated by this func
17878 			 */
17879 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
17880 					       insn->off, BPF_SIZE(insn->code),
17881 					       BPF_READ, insn->dst_reg, false,
17882 					       BPF_MODE(insn->code) == BPF_MEMSX);
17883 			err = err ?: save_aux_ptr_type(env, src_reg_type, true);
17884 			err = err ?: reg_bounds_sanity_check(env, &regs[insn->dst_reg], "ldx");
17885 			if (err)
17886 				return err;
17887 		} else if (class == BPF_STX) {
17888 			enum bpf_reg_type dst_reg_type;
17889 
17890 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17891 				err = check_atomic(env, env->insn_idx, insn);
17892 				if (err)
17893 					return err;
17894 				env->insn_idx++;
17895 				continue;
17896 			}
17897 
17898 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17899 				verbose(env, "BPF_STX uses reserved fields\n");
17900 				return -EINVAL;
17901 			}
17902 
17903 			/* check src1 operand */
17904 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17905 			if (err)
17906 				return err;
17907 			/* check src2 operand */
17908 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17909 			if (err)
17910 				return err;
17911 
17912 			dst_reg_type = regs[insn->dst_reg].type;
17913 
17914 			/* check that memory (dst_reg + off) is writeable */
17915 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17916 					       insn->off, BPF_SIZE(insn->code),
17917 					       BPF_WRITE, insn->src_reg, false, false);
17918 			if (err)
17919 				return err;
17920 
17921 			err = save_aux_ptr_type(env, dst_reg_type, false);
17922 			if (err)
17923 				return err;
17924 		} else if (class == BPF_ST) {
17925 			enum bpf_reg_type dst_reg_type;
17926 
17927 			if (BPF_MODE(insn->code) != BPF_MEM ||
17928 			    insn->src_reg != BPF_REG_0) {
17929 				verbose(env, "BPF_ST uses reserved fields\n");
17930 				return -EINVAL;
17931 			}
17932 			/* check src operand */
17933 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17934 			if (err)
17935 				return err;
17936 
17937 			dst_reg_type = regs[insn->dst_reg].type;
17938 
17939 			/* check that memory (dst_reg + off) is writeable */
17940 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17941 					       insn->off, BPF_SIZE(insn->code),
17942 					       BPF_WRITE, -1, false, false);
17943 			if (err)
17944 				return err;
17945 
17946 			err = save_aux_ptr_type(env, dst_reg_type, false);
17947 			if (err)
17948 				return err;
17949 		} else if (class == BPF_JMP || class == BPF_JMP32) {
17950 			u8 opcode = BPF_OP(insn->code);
17951 
17952 			env->jmps_processed++;
17953 			if (opcode == BPF_CALL) {
17954 				if (BPF_SRC(insn->code) != BPF_K ||
17955 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17956 				     && insn->off != 0) ||
17957 				    (insn->src_reg != BPF_REG_0 &&
17958 				     insn->src_reg != BPF_PSEUDO_CALL &&
17959 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17960 				    insn->dst_reg != BPF_REG_0 ||
17961 				    class == BPF_JMP32) {
17962 					verbose(env, "BPF_CALL uses reserved fields\n");
17963 					return -EINVAL;
17964 				}
17965 
17966 				if (env->cur_state->active_lock.ptr) {
17967 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17968 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17969 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17970 						verbose(env, "function calls are not allowed while holding a lock\n");
17971 						return -EINVAL;
17972 					}
17973 				}
17974 				if (insn->src_reg == BPF_PSEUDO_CALL) {
17975 					err = check_func_call(env, insn, &env->insn_idx);
17976 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17977 					err = check_kfunc_call(env, insn, &env->insn_idx);
17978 					if (!err && is_bpf_throw_kfunc(insn)) {
17979 						exception_exit = true;
17980 						goto process_bpf_exit_full;
17981 					}
17982 				} else {
17983 					err = check_helper_call(env, insn, &env->insn_idx);
17984 				}
17985 				if (err)
17986 					return err;
17987 
17988 				mark_reg_scratched(env, BPF_REG_0);
17989 			} else if (opcode == BPF_JA) {
17990 				if (BPF_SRC(insn->code) != BPF_K ||
17991 				    insn->src_reg != BPF_REG_0 ||
17992 				    insn->dst_reg != BPF_REG_0 ||
17993 				    (class == BPF_JMP && insn->imm != 0) ||
17994 				    (class == BPF_JMP32 && insn->off != 0)) {
17995 					verbose(env, "BPF_JA uses reserved fields\n");
17996 					return -EINVAL;
17997 				}
17998 
17999 				if (class == BPF_JMP)
18000 					env->insn_idx += insn->off + 1;
18001 				else
18002 					env->insn_idx += insn->imm + 1;
18003 				continue;
18004 
18005 			} else if (opcode == BPF_EXIT) {
18006 				if (BPF_SRC(insn->code) != BPF_K ||
18007 				    insn->imm != 0 ||
18008 				    insn->src_reg != BPF_REG_0 ||
18009 				    insn->dst_reg != BPF_REG_0 ||
18010 				    class == BPF_JMP32) {
18011 					verbose(env, "BPF_EXIT uses reserved fields\n");
18012 					return -EINVAL;
18013 				}
18014 process_bpf_exit_full:
18015 				if (env->cur_state->active_lock.ptr && !env->cur_state->curframe) {
18016 					verbose(env, "bpf_spin_unlock is missing\n");
18017 					return -EINVAL;
18018 				}
18019 
18020 				if (env->cur_state->active_rcu_lock && !env->cur_state->curframe) {
18021 					verbose(env, "bpf_rcu_read_unlock is missing\n");
18022 					return -EINVAL;
18023 				}
18024 
18025 				if (env->cur_state->active_preempt_lock && !env->cur_state->curframe) {
18026 					verbose(env, "%d bpf_preempt_enable%s missing\n",
18027 						env->cur_state->active_preempt_lock,
18028 						env->cur_state->active_preempt_lock == 1 ? " is" : "(s) are");
18029 					return -EINVAL;
18030 				}
18031 
18032 				/* We must do check_reference_leak here before
18033 				 * prepare_func_exit to handle the case when
18034 				 * state->curframe > 0, it may be a callback
18035 				 * function, for which reference_state must
18036 				 * match caller reference state when it exits.
18037 				 */
18038 				err = check_reference_leak(env, exception_exit);
18039 				if (err)
18040 					return err;
18041 
18042 				/* The side effect of the prepare_func_exit
18043 				 * which is being skipped is that it frees
18044 				 * bpf_func_state. Typically, process_bpf_exit
18045 				 * will only be hit with outermost exit.
18046 				 * copy_verifier_state in pop_stack will handle
18047 				 * freeing of any extra bpf_func_state left over
18048 				 * from not processing all nested function
18049 				 * exits. We also skip return code checks as
18050 				 * they are not needed for exceptional exits.
18051 				 */
18052 				if (exception_exit)
18053 					goto process_bpf_exit;
18054 
18055 				if (state->curframe) {
18056 					/* exit from nested function */
18057 					err = prepare_func_exit(env, &env->insn_idx);
18058 					if (err)
18059 						return err;
18060 					do_print_state = true;
18061 					continue;
18062 				}
18063 
18064 				err = check_return_code(env, BPF_REG_0, "R0");
18065 				if (err)
18066 					return err;
18067 process_bpf_exit:
18068 				mark_verifier_state_scratched(env);
18069 				update_branch_counts(env, env->cur_state);
18070 				err = pop_stack(env, &prev_insn_idx,
18071 						&env->insn_idx, pop_log);
18072 				if (err < 0) {
18073 					if (err != -ENOENT)
18074 						return err;
18075 					break;
18076 				} else {
18077 					do_print_state = true;
18078 					continue;
18079 				}
18080 			} else {
18081 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
18082 				if (err)
18083 					return err;
18084 			}
18085 		} else if (class == BPF_LD) {
18086 			u8 mode = BPF_MODE(insn->code);
18087 
18088 			if (mode == BPF_ABS || mode == BPF_IND) {
18089 				err = check_ld_abs(env, insn);
18090 				if (err)
18091 					return err;
18092 
18093 			} else if (mode == BPF_IMM) {
18094 				err = check_ld_imm(env, insn);
18095 				if (err)
18096 					return err;
18097 
18098 				env->insn_idx++;
18099 				sanitize_mark_insn_seen(env);
18100 			} else {
18101 				verbose(env, "invalid BPF_LD mode\n");
18102 				return -EINVAL;
18103 			}
18104 		} else {
18105 			verbose(env, "unknown insn class %d\n", class);
18106 			return -EINVAL;
18107 		}
18108 
18109 		env->insn_idx++;
18110 	}
18111 
18112 	return 0;
18113 }
18114 
18115 static int find_btf_percpu_datasec(struct btf *btf)
18116 {
18117 	const struct btf_type *t;
18118 	const char *tname;
18119 	int i, n;
18120 
18121 	/*
18122 	 * Both vmlinux and module each have their own ".data..percpu"
18123 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
18124 	 * types to look at only module's own BTF types.
18125 	 */
18126 	n = btf_nr_types(btf);
18127 	if (btf_is_module(btf))
18128 		i = btf_nr_types(btf_vmlinux);
18129 	else
18130 		i = 1;
18131 
18132 	for(; i < n; i++) {
18133 		t = btf_type_by_id(btf, i);
18134 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
18135 			continue;
18136 
18137 		tname = btf_name_by_offset(btf, t->name_off);
18138 		if (!strcmp(tname, ".data..percpu"))
18139 			return i;
18140 	}
18141 
18142 	return -ENOENT;
18143 }
18144 
18145 /* replace pseudo btf_id with kernel symbol address */
18146 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
18147 			       struct bpf_insn *insn,
18148 			       struct bpf_insn_aux_data *aux)
18149 {
18150 	const struct btf_var_secinfo *vsi;
18151 	const struct btf_type *datasec;
18152 	struct btf_mod_pair *btf_mod;
18153 	const struct btf_type *t;
18154 	const char *sym_name;
18155 	bool percpu = false;
18156 	u32 type, id = insn->imm;
18157 	struct btf *btf;
18158 	s32 datasec_id;
18159 	u64 addr;
18160 	int i, btf_fd, err;
18161 
18162 	btf_fd = insn[1].imm;
18163 	if (btf_fd) {
18164 		btf = btf_get_by_fd(btf_fd);
18165 		if (IS_ERR(btf)) {
18166 			verbose(env, "invalid module BTF object FD specified.\n");
18167 			return -EINVAL;
18168 		}
18169 	} else {
18170 		if (!btf_vmlinux) {
18171 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
18172 			return -EINVAL;
18173 		}
18174 		btf = btf_vmlinux;
18175 		btf_get(btf);
18176 	}
18177 
18178 	t = btf_type_by_id(btf, id);
18179 	if (!t) {
18180 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
18181 		err = -ENOENT;
18182 		goto err_put;
18183 	}
18184 
18185 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
18186 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
18187 		err = -EINVAL;
18188 		goto err_put;
18189 	}
18190 
18191 	sym_name = btf_name_by_offset(btf, t->name_off);
18192 	addr = kallsyms_lookup_name(sym_name);
18193 	if (!addr) {
18194 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
18195 			sym_name);
18196 		err = -ENOENT;
18197 		goto err_put;
18198 	}
18199 	insn[0].imm = (u32)addr;
18200 	insn[1].imm = addr >> 32;
18201 
18202 	if (btf_type_is_func(t)) {
18203 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
18204 		aux->btf_var.mem_size = 0;
18205 		goto check_btf;
18206 	}
18207 
18208 	datasec_id = find_btf_percpu_datasec(btf);
18209 	if (datasec_id > 0) {
18210 		datasec = btf_type_by_id(btf, datasec_id);
18211 		for_each_vsi(i, datasec, vsi) {
18212 			if (vsi->type == id) {
18213 				percpu = true;
18214 				break;
18215 			}
18216 		}
18217 	}
18218 
18219 	type = t->type;
18220 	t = btf_type_skip_modifiers(btf, type, NULL);
18221 	if (percpu) {
18222 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
18223 		aux->btf_var.btf = btf;
18224 		aux->btf_var.btf_id = type;
18225 	} else if (!btf_type_is_struct(t)) {
18226 		const struct btf_type *ret;
18227 		const char *tname;
18228 		u32 tsize;
18229 
18230 		/* resolve the type size of ksym. */
18231 		ret = btf_resolve_size(btf, t, &tsize);
18232 		if (IS_ERR(ret)) {
18233 			tname = btf_name_by_offset(btf, t->name_off);
18234 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
18235 				tname, PTR_ERR(ret));
18236 			err = -EINVAL;
18237 			goto err_put;
18238 		}
18239 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
18240 		aux->btf_var.mem_size = tsize;
18241 	} else {
18242 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
18243 		aux->btf_var.btf = btf;
18244 		aux->btf_var.btf_id = type;
18245 	}
18246 check_btf:
18247 	/* check whether we recorded this BTF (and maybe module) already */
18248 	for (i = 0; i < env->used_btf_cnt; i++) {
18249 		if (env->used_btfs[i].btf == btf) {
18250 			btf_put(btf);
18251 			return 0;
18252 		}
18253 	}
18254 
18255 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
18256 		err = -E2BIG;
18257 		goto err_put;
18258 	}
18259 
18260 	btf_mod = &env->used_btfs[env->used_btf_cnt];
18261 	btf_mod->btf = btf;
18262 	btf_mod->module = NULL;
18263 
18264 	/* if we reference variables from kernel module, bump its refcount */
18265 	if (btf_is_module(btf)) {
18266 		btf_mod->module = btf_try_get_module(btf);
18267 		if (!btf_mod->module) {
18268 			err = -ENXIO;
18269 			goto err_put;
18270 		}
18271 	}
18272 
18273 	env->used_btf_cnt++;
18274 
18275 	return 0;
18276 err_put:
18277 	btf_put(btf);
18278 	return err;
18279 }
18280 
18281 static bool is_tracing_prog_type(enum bpf_prog_type type)
18282 {
18283 	switch (type) {
18284 	case BPF_PROG_TYPE_KPROBE:
18285 	case BPF_PROG_TYPE_TRACEPOINT:
18286 	case BPF_PROG_TYPE_PERF_EVENT:
18287 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
18288 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
18289 		return true;
18290 	default:
18291 		return false;
18292 	}
18293 }
18294 
18295 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
18296 					struct bpf_map *map,
18297 					struct bpf_prog *prog)
18298 
18299 {
18300 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
18301 
18302 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
18303 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
18304 		if (is_tracing_prog_type(prog_type)) {
18305 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
18306 			return -EINVAL;
18307 		}
18308 	}
18309 
18310 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
18311 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
18312 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
18313 			return -EINVAL;
18314 		}
18315 
18316 		if (is_tracing_prog_type(prog_type)) {
18317 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
18318 			return -EINVAL;
18319 		}
18320 	}
18321 
18322 	if (btf_record_has_field(map->record, BPF_TIMER)) {
18323 		if (is_tracing_prog_type(prog_type)) {
18324 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
18325 			return -EINVAL;
18326 		}
18327 	}
18328 
18329 	if (btf_record_has_field(map->record, BPF_WORKQUEUE)) {
18330 		if (is_tracing_prog_type(prog_type)) {
18331 			verbose(env, "tracing progs cannot use bpf_wq yet\n");
18332 			return -EINVAL;
18333 		}
18334 	}
18335 
18336 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
18337 	    !bpf_offload_prog_map_match(prog, map)) {
18338 		verbose(env, "offload device mismatch between prog and map\n");
18339 		return -EINVAL;
18340 	}
18341 
18342 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
18343 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
18344 		return -EINVAL;
18345 	}
18346 
18347 	if (prog->sleepable)
18348 		switch (map->map_type) {
18349 		case BPF_MAP_TYPE_HASH:
18350 		case BPF_MAP_TYPE_LRU_HASH:
18351 		case BPF_MAP_TYPE_ARRAY:
18352 		case BPF_MAP_TYPE_PERCPU_HASH:
18353 		case BPF_MAP_TYPE_PERCPU_ARRAY:
18354 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
18355 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
18356 		case BPF_MAP_TYPE_HASH_OF_MAPS:
18357 		case BPF_MAP_TYPE_RINGBUF:
18358 		case BPF_MAP_TYPE_USER_RINGBUF:
18359 		case BPF_MAP_TYPE_INODE_STORAGE:
18360 		case BPF_MAP_TYPE_SK_STORAGE:
18361 		case BPF_MAP_TYPE_TASK_STORAGE:
18362 		case BPF_MAP_TYPE_CGRP_STORAGE:
18363 		case BPF_MAP_TYPE_QUEUE:
18364 		case BPF_MAP_TYPE_STACK:
18365 		case BPF_MAP_TYPE_ARENA:
18366 			break;
18367 		default:
18368 			verbose(env,
18369 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
18370 			return -EINVAL;
18371 		}
18372 
18373 	return 0;
18374 }
18375 
18376 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
18377 {
18378 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
18379 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
18380 }
18381 
18382 /* find and rewrite pseudo imm in ld_imm64 instructions:
18383  *
18384  * 1. if it accesses map FD, replace it with actual map pointer.
18385  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
18386  *
18387  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
18388  */
18389 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
18390 {
18391 	struct bpf_insn *insn = env->prog->insnsi;
18392 	int insn_cnt = env->prog->len;
18393 	int i, j, err;
18394 
18395 	err = bpf_prog_calc_tag(env->prog);
18396 	if (err)
18397 		return err;
18398 
18399 	for (i = 0; i < insn_cnt; i++, insn++) {
18400 		if (BPF_CLASS(insn->code) == BPF_LDX &&
18401 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
18402 		    insn->imm != 0)) {
18403 			verbose(env, "BPF_LDX uses reserved fields\n");
18404 			return -EINVAL;
18405 		}
18406 
18407 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
18408 			struct bpf_insn_aux_data *aux;
18409 			struct bpf_map *map;
18410 			struct fd f;
18411 			u64 addr;
18412 			u32 fd;
18413 
18414 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
18415 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
18416 			    insn[1].off != 0) {
18417 				verbose(env, "invalid bpf_ld_imm64 insn\n");
18418 				return -EINVAL;
18419 			}
18420 
18421 			if (insn[0].src_reg == 0)
18422 				/* valid generic load 64-bit imm */
18423 				goto next_insn;
18424 
18425 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
18426 				aux = &env->insn_aux_data[i];
18427 				err = check_pseudo_btf_id(env, insn, aux);
18428 				if (err)
18429 					return err;
18430 				goto next_insn;
18431 			}
18432 
18433 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
18434 				aux = &env->insn_aux_data[i];
18435 				aux->ptr_type = PTR_TO_FUNC;
18436 				goto next_insn;
18437 			}
18438 
18439 			/* In final convert_pseudo_ld_imm64() step, this is
18440 			 * converted into regular 64-bit imm load insn.
18441 			 */
18442 			switch (insn[0].src_reg) {
18443 			case BPF_PSEUDO_MAP_VALUE:
18444 			case BPF_PSEUDO_MAP_IDX_VALUE:
18445 				break;
18446 			case BPF_PSEUDO_MAP_FD:
18447 			case BPF_PSEUDO_MAP_IDX:
18448 				if (insn[1].imm == 0)
18449 					break;
18450 				fallthrough;
18451 			default:
18452 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
18453 				return -EINVAL;
18454 			}
18455 
18456 			switch (insn[0].src_reg) {
18457 			case BPF_PSEUDO_MAP_IDX_VALUE:
18458 			case BPF_PSEUDO_MAP_IDX:
18459 				if (bpfptr_is_null(env->fd_array)) {
18460 					verbose(env, "fd_idx without fd_array is invalid\n");
18461 					return -EPROTO;
18462 				}
18463 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
18464 							    insn[0].imm * sizeof(fd),
18465 							    sizeof(fd)))
18466 					return -EFAULT;
18467 				break;
18468 			default:
18469 				fd = insn[0].imm;
18470 				break;
18471 			}
18472 
18473 			f = fdget(fd);
18474 			map = __bpf_map_get(f);
18475 			if (IS_ERR(map)) {
18476 				verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
18477 				return PTR_ERR(map);
18478 			}
18479 
18480 			err = check_map_prog_compatibility(env, map, env->prog);
18481 			if (err) {
18482 				fdput(f);
18483 				return err;
18484 			}
18485 
18486 			aux = &env->insn_aux_data[i];
18487 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
18488 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
18489 				addr = (unsigned long)map;
18490 			} else {
18491 				u32 off = insn[1].imm;
18492 
18493 				if (off >= BPF_MAX_VAR_OFF) {
18494 					verbose(env, "direct value offset of %u is not allowed\n", off);
18495 					fdput(f);
18496 					return -EINVAL;
18497 				}
18498 
18499 				if (!map->ops->map_direct_value_addr) {
18500 					verbose(env, "no direct value access support for this map type\n");
18501 					fdput(f);
18502 					return -EINVAL;
18503 				}
18504 
18505 				err = map->ops->map_direct_value_addr(map, &addr, off);
18506 				if (err) {
18507 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
18508 						map->value_size, off);
18509 					fdput(f);
18510 					return err;
18511 				}
18512 
18513 				aux->map_off = off;
18514 				addr += off;
18515 			}
18516 
18517 			insn[0].imm = (u32)addr;
18518 			insn[1].imm = addr >> 32;
18519 
18520 			/* check whether we recorded this map already */
18521 			for (j = 0; j < env->used_map_cnt; j++) {
18522 				if (env->used_maps[j] == map) {
18523 					aux->map_index = j;
18524 					fdput(f);
18525 					goto next_insn;
18526 				}
18527 			}
18528 
18529 			if (env->used_map_cnt >= MAX_USED_MAPS) {
18530 				verbose(env, "The total number of maps per program has reached the limit of %u\n",
18531 					MAX_USED_MAPS);
18532 				fdput(f);
18533 				return -E2BIG;
18534 			}
18535 
18536 			if (env->prog->sleepable)
18537 				atomic64_inc(&map->sleepable_refcnt);
18538 			/* hold the map. If the program is rejected by verifier,
18539 			 * the map will be released by release_maps() or it
18540 			 * will be used by the valid program until it's unloaded
18541 			 * and all maps are released in bpf_free_used_maps()
18542 			 */
18543 			bpf_map_inc(map);
18544 
18545 			aux->map_index = env->used_map_cnt;
18546 			env->used_maps[env->used_map_cnt++] = map;
18547 
18548 			if (bpf_map_is_cgroup_storage(map) &&
18549 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
18550 				verbose(env, "only one cgroup storage of each type is allowed\n");
18551 				fdput(f);
18552 				return -EBUSY;
18553 			}
18554 			if (map->map_type == BPF_MAP_TYPE_ARENA) {
18555 				if (env->prog->aux->arena) {
18556 					verbose(env, "Only one arena per program\n");
18557 					fdput(f);
18558 					return -EBUSY;
18559 				}
18560 				if (!env->allow_ptr_leaks || !env->bpf_capable) {
18561 					verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n");
18562 					fdput(f);
18563 					return -EPERM;
18564 				}
18565 				if (!env->prog->jit_requested) {
18566 					verbose(env, "JIT is required to use arena\n");
18567 					fdput(f);
18568 					return -EOPNOTSUPP;
18569 				}
18570 				if (!bpf_jit_supports_arena()) {
18571 					verbose(env, "JIT doesn't support arena\n");
18572 					fdput(f);
18573 					return -EOPNOTSUPP;
18574 				}
18575 				env->prog->aux->arena = (void *)map;
18576 				if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) {
18577 					verbose(env, "arena's user address must be set via map_extra or mmap()\n");
18578 					fdput(f);
18579 					return -EINVAL;
18580 				}
18581 			}
18582 
18583 			fdput(f);
18584 next_insn:
18585 			insn++;
18586 			i++;
18587 			continue;
18588 		}
18589 
18590 		/* Basic sanity check before we invest more work here. */
18591 		if (!bpf_opcode_in_insntable(insn->code)) {
18592 			verbose(env, "unknown opcode %02x\n", insn->code);
18593 			return -EINVAL;
18594 		}
18595 	}
18596 
18597 	/* now all pseudo BPF_LD_IMM64 instructions load valid
18598 	 * 'struct bpf_map *' into a register instead of user map_fd.
18599 	 * These pointers will be used later by verifier to validate map access.
18600 	 */
18601 	return 0;
18602 }
18603 
18604 /* drop refcnt of maps used by the rejected program */
18605 static void release_maps(struct bpf_verifier_env *env)
18606 {
18607 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
18608 			     env->used_map_cnt);
18609 }
18610 
18611 /* drop refcnt of maps used by the rejected program */
18612 static void release_btfs(struct bpf_verifier_env *env)
18613 {
18614 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
18615 			     env->used_btf_cnt);
18616 }
18617 
18618 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
18619 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
18620 {
18621 	struct bpf_insn *insn = env->prog->insnsi;
18622 	int insn_cnt = env->prog->len;
18623 	int i;
18624 
18625 	for (i = 0; i < insn_cnt; i++, insn++) {
18626 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
18627 			continue;
18628 		if (insn->src_reg == BPF_PSEUDO_FUNC)
18629 			continue;
18630 		insn->src_reg = 0;
18631 	}
18632 }
18633 
18634 /* single env->prog->insni[off] instruction was replaced with the range
18635  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
18636  * [0, off) and [off, end) to new locations, so the patched range stays zero
18637  */
18638 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
18639 				 struct bpf_insn_aux_data *new_data,
18640 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
18641 {
18642 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
18643 	struct bpf_insn *insn = new_prog->insnsi;
18644 	u32 old_seen = old_data[off].seen;
18645 	u32 prog_len;
18646 	int i;
18647 
18648 	/* aux info at OFF always needs adjustment, no matter fast path
18649 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
18650 	 * original insn at old prog.
18651 	 */
18652 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
18653 
18654 	if (cnt == 1)
18655 		return;
18656 	prog_len = new_prog->len;
18657 
18658 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
18659 	memcpy(new_data + off + cnt - 1, old_data + off,
18660 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
18661 	for (i = off; i < off + cnt - 1; i++) {
18662 		/* Expand insni[off]'s seen count to the patched range. */
18663 		new_data[i].seen = old_seen;
18664 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
18665 	}
18666 	env->insn_aux_data = new_data;
18667 	vfree(old_data);
18668 }
18669 
18670 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
18671 {
18672 	int i;
18673 
18674 	if (len == 1)
18675 		return;
18676 	/* NOTE: fake 'exit' subprog should be updated as well. */
18677 	for (i = 0; i <= env->subprog_cnt; i++) {
18678 		if (env->subprog_info[i].start <= off)
18679 			continue;
18680 		env->subprog_info[i].start += len - 1;
18681 	}
18682 }
18683 
18684 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
18685 {
18686 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
18687 	int i, sz = prog->aux->size_poke_tab;
18688 	struct bpf_jit_poke_descriptor *desc;
18689 
18690 	for (i = 0; i < sz; i++) {
18691 		desc = &tab[i];
18692 		if (desc->insn_idx <= off)
18693 			continue;
18694 		desc->insn_idx += len - 1;
18695 	}
18696 }
18697 
18698 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
18699 					    const struct bpf_insn *patch, u32 len)
18700 {
18701 	struct bpf_prog *new_prog;
18702 	struct bpf_insn_aux_data *new_data = NULL;
18703 
18704 	if (len > 1) {
18705 		new_data = vzalloc(array_size(env->prog->len + len - 1,
18706 					      sizeof(struct bpf_insn_aux_data)));
18707 		if (!new_data)
18708 			return NULL;
18709 	}
18710 
18711 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
18712 	if (IS_ERR(new_prog)) {
18713 		if (PTR_ERR(new_prog) == -ERANGE)
18714 			verbose(env,
18715 				"insn %d cannot be patched due to 16-bit range\n",
18716 				env->insn_aux_data[off].orig_idx);
18717 		vfree(new_data);
18718 		return NULL;
18719 	}
18720 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
18721 	adjust_subprog_starts(env, off, len);
18722 	adjust_poke_descs(new_prog, off, len);
18723 	return new_prog;
18724 }
18725 
18726 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
18727 					      u32 off, u32 cnt)
18728 {
18729 	int i, j;
18730 
18731 	/* find first prog starting at or after off (first to remove) */
18732 	for (i = 0; i < env->subprog_cnt; i++)
18733 		if (env->subprog_info[i].start >= off)
18734 			break;
18735 	/* find first prog starting at or after off + cnt (first to stay) */
18736 	for (j = i; j < env->subprog_cnt; j++)
18737 		if (env->subprog_info[j].start >= off + cnt)
18738 			break;
18739 	/* if j doesn't start exactly at off + cnt, we are just removing
18740 	 * the front of previous prog
18741 	 */
18742 	if (env->subprog_info[j].start != off + cnt)
18743 		j--;
18744 
18745 	if (j > i) {
18746 		struct bpf_prog_aux *aux = env->prog->aux;
18747 		int move;
18748 
18749 		/* move fake 'exit' subprog as well */
18750 		move = env->subprog_cnt + 1 - j;
18751 
18752 		memmove(env->subprog_info + i,
18753 			env->subprog_info + j,
18754 			sizeof(*env->subprog_info) * move);
18755 		env->subprog_cnt -= j - i;
18756 
18757 		/* remove func_info */
18758 		if (aux->func_info) {
18759 			move = aux->func_info_cnt - j;
18760 
18761 			memmove(aux->func_info + i,
18762 				aux->func_info + j,
18763 				sizeof(*aux->func_info) * move);
18764 			aux->func_info_cnt -= j - i;
18765 			/* func_info->insn_off is set after all code rewrites,
18766 			 * in adjust_btf_func() - no need to adjust
18767 			 */
18768 		}
18769 	} else {
18770 		/* convert i from "first prog to remove" to "first to adjust" */
18771 		if (env->subprog_info[i].start == off)
18772 			i++;
18773 	}
18774 
18775 	/* update fake 'exit' subprog as well */
18776 	for (; i <= env->subprog_cnt; i++)
18777 		env->subprog_info[i].start -= cnt;
18778 
18779 	return 0;
18780 }
18781 
18782 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
18783 				      u32 cnt)
18784 {
18785 	struct bpf_prog *prog = env->prog;
18786 	u32 i, l_off, l_cnt, nr_linfo;
18787 	struct bpf_line_info *linfo;
18788 
18789 	nr_linfo = prog->aux->nr_linfo;
18790 	if (!nr_linfo)
18791 		return 0;
18792 
18793 	linfo = prog->aux->linfo;
18794 
18795 	/* find first line info to remove, count lines to be removed */
18796 	for (i = 0; i < nr_linfo; i++)
18797 		if (linfo[i].insn_off >= off)
18798 			break;
18799 
18800 	l_off = i;
18801 	l_cnt = 0;
18802 	for (; i < nr_linfo; i++)
18803 		if (linfo[i].insn_off < off + cnt)
18804 			l_cnt++;
18805 		else
18806 			break;
18807 
18808 	/* First live insn doesn't match first live linfo, it needs to "inherit"
18809 	 * last removed linfo.  prog is already modified, so prog->len == off
18810 	 * means no live instructions after (tail of the program was removed).
18811 	 */
18812 	if (prog->len != off && l_cnt &&
18813 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
18814 		l_cnt--;
18815 		linfo[--i].insn_off = off + cnt;
18816 	}
18817 
18818 	/* remove the line info which refer to the removed instructions */
18819 	if (l_cnt) {
18820 		memmove(linfo + l_off, linfo + i,
18821 			sizeof(*linfo) * (nr_linfo - i));
18822 
18823 		prog->aux->nr_linfo -= l_cnt;
18824 		nr_linfo = prog->aux->nr_linfo;
18825 	}
18826 
18827 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
18828 	for (i = l_off; i < nr_linfo; i++)
18829 		linfo[i].insn_off -= cnt;
18830 
18831 	/* fix up all subprogs (incl. 'exit') which start >= off */
18832 	for (i = 0; i <= env->subprog_cnt; i++)
18833 		if (env->subprog_info[i].linfo_idx > l_off) {
18834 			/* program may have started in the removed region but
18835 			 * may not be fully removed
18836 			 */
18837 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18838 				env->subprog_info[i].linfo_idx -= l_cnt;
18839 			else
18840 				env->subprog_info[i].linfo_idx = l_off;
18841 		}
18842 
18843 	return 0;
18844 }
18845 
18846 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18847 {
18848 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18849 	unsigned int orig_prog_len = env->prog->len;
18850 	int err;
18851 
18852 	if (bpf_prog_is_offloaded(env->prog->aux))
18853 		bpf_prog_offload_remove_insns(env, off, cnt);
18854 
18855 	err = bpf_remove_insns(env->prog, off, cnt);
18856 	if (err)
18857 		return err;
18858 
18859 	err = adjust_subprog_starts_after_remove(env, off, cnt);
18860 	if (err)
18861 		return err;
18862 
18863 	err = bpf_adj_linfo_after_remove(env, off, cnt);
18864 	if (err)
18865 		return err;
18866 
18867 	memmove(aux_data + off,	aux_data + off + cnt,
18868 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
18869 
18870 	return 0;
18871 }
18872 
18873 /* The verifier does more data flow analysis than llvm and will not
18874  * explore branches that are dead at run time. Malicious programs can
18875  * have dead code too. Therefore replace all dead at-run-time code
18876  * with 'ja -1'.
18877  *
18878  * Just nops are not optimal, e.g. if they would sit at the end of the
18879  * program and through another bug we would manage to jump there, then
18880  * we'd execute beyond program memory otherwise. Returning exception
18881  * code also wouldn't work since we can have subprogs where the dead
18882  * code could be located.
18883  */
18884 static void sanitize_dead_code(struct bpf_verifier_env *env)
18885 {
18886 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18887 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18888 	struct bpf_insn *insn = env->prog->insnsi;
18889 	const int insn_cnt = env->prog->len;
18890 	int i;
18891 
18892 	for (i = 0; i < insn_cnt; i++) {
18893 		if (aux_data[i].seen)
18894 			continue;
18895 		memcpy(insn + i, &trap, sizeof(trap));
18896 		aux_data[i].zext_dst = false;
18897 	}
18898 }
18899 
18900 static bool insn_is_cond_jump(u8 code)
18901 {
18902 	u8 op;
18903 
18904 	op = BPF_OP(code);
18905 	if (BPF_CLASS(code) == BPF_JMP32)
18906 		return op != BPF_JA;
18907 
18908 	if (BPF_CLASS(code) != BPF_JMP)
18909 		return false;
18910 
18911 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18912 }
18913 
18914 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18915 {
18916 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18917 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18918 	struct bpf_insn *insn = env->prog->insnsi;
18919 	const int insn_cnt = env->prog->len;
18920 	int i;
18921 
18922 	for (i = 0; i < insn_cnt; i++, insn++) {
18923 		if (!insn_is_cond_jump(insn->code))
18924 			continue;
18925 
18926 		if (!aux_data[i + 1].seen)
18927 			ja.off = insn->off;
18928 		else if (!aux_data[i + 1 + insn->off].seen)
18929 			ja.off = 0;
18930 		else
18931 			continue;
18932 
18933 		if (bpf_prog_is_offloaded(env->prog->aux))
18934 			bpf_prog_offload_replace_insn(env, i, &ja);
18935 
18936 		memcpy(insn, &ja, sizeof(ja));
18937 	}
18938 }
18939 
18940 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18941 {
18942 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18943 	int insn_cnt = env->prog->len;
18944 	int i, err;
18945 
18946 	for (i = 0; i < insn_cnt; i++) {
18947 		int j;
18948 
18949 		j = 0;
18950 		while (i + j < insn_cnt && !aux_data[i + j].seen)
18951 			j++;
18952 		if (!j)
18953 			continue;
18954 
18955 		err = verifier_remove_insns(env, i, j);
18956 		if (err)
18957 			return err;
18958 		insn_cnt = env->prog->len;
18959 	}
18960 
18961 	return 0;
18962 }
18963 
18964 static int opt_remove_nops(struct bpf_verifier_env *env)
18965 {
18966 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18967 	struct bpf_insn *insn = env->prog->insnsi;
18968 	int insn_cnt = env->prog->len;
18969 	int i, err;
18970 
18971 	for (i = 0; i < insn_cnt; i++) {
18972 		if (memcmp(&insn[i], &ja, sizeof(ja)))
18973 			continue;
18974 
18975 		err = verifier_remove_insns(env, i, 1);
18976 		if (err)
18977 			return err;
18978 		insn_cnt--;
18979 		i--;
18980 	}
18981 
18982 	return 0;
18983 }
18984 
18985 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18986 					 const union bpf_attr *attr)
18987 {
18988 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18989 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
18990 	int i, patch_len, delta = 0, len = env->prog->len;
18991 	struct bpf_insn *insns = env->prog->insnsi;
18992 	struct bpf_prog *new_prog;
18993 	bool rnd_hi32;
18994 
18995 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18996 	zext_patch[1] = BPF_ZEXT_REG(0);
18997 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18998 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18999 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
19000 	for (i = 0; i < len; i++) {
19001 		int adj_idx = i + delta;
19002 		struct bpf_insn insn;
19003 		int load_reg;
19004 
19005 		insn = insns[adj_idx];
19006 		load_reg = insn_def_regno(&insn);
19007 		if (!aux[adj_idx].zext_dst) {
19008 			u8 code, class;
19009 			u32 imm_rnd;
19010 
19011 			if (!rnd_hi32)
19012 				continue;
19013 
19014 			code = insn.code;
19015 			class = BPF_CLASS(code);
19016 			if (load_reg == -1)
19017 				continue;
19018 
19019 			/* NOTE: arg "reg" (the fourth one) is only used for
19020 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
19021 			 *       here.
19022 			 */
19023 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
19024 				if (class == BPF_LD &&
19025 				    BPF_MODE(code) == BPF_IMM)
19026 					i++;
19027 				continue;
19028 			}
19029 
19030 			/* ctx load could be transformed into wider load. */
19031 			if (class == BPF_LDX &&
19032 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
19033 				continue;
19034 
19035 			imm_rnd = get_random_u32();
19036 			rnd_hi32_patch[0] = insn;
19037 			rnd_hi32_patch[1].imm = imm_rnd;
19038 			rnd_hi32_patch[3].dst_reg = load_reg;
19039 			patch = rnd_hi32_patch;
19040 			patch_len = 4;
19041 			goto apply_patch_buffer;
19042 		}
19043 
19044 		/* Add in an zero-extend instruction if a) the JIT has requested
19045 		 * it or b) it's a CMPXCHG.
19046 		 *
19047 		 * The latter is because: BPF_CMPXCHG always loads a value into
19048 		 * R0, therefore always zero-extends. However some archs'
19049 		 * equivalent instruction only does this load when the
19050 		 * comparison is successful. This detail of CMPXCHG is
19051 		 * orthogonal to the general zero-extension behaviour of the
19052 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
19053 		 */
19054 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
19055 			continue;
19056 
19057 		/* Zero-extension is done by the caller. */
19058 		if (bpf_pseudo_kfunc_call(&insn))
19059 			continue;
19060 
19061 		if (WARN_ON(load_reg == -1)) {
19062 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
19063 			return -EFAULT;
19064 		}
19065 
19066 		zext_patch[0] = insn;
19067 		zext_patch[1].dst_reg = load_reg;
19068 		zext_patch[1].src_reg = load_reg;
19069 		patch = zext_patch;
19070 		patch_len = 2;
19071 apply_patch_buffer:
19072 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
19073 		if (!new_prog)
19074 			return -ENOMEM;
19075 		env->prog = new_prog;
19076 		insns = new_prog->insnsi;
19077 		aux = env->insn_aux_data;
19078 		delta += patch_len - 1;
19079 	}
19080 
19081 	return 0;
19082 }
19083 
19084 /* convert load instructions that access fields of a context type into a
19085  * sequence of instructions that access fields of the underlying structure:
19086  *     struct __sk_buff    -> struct sk_buff
19087  *     struct bpf_sock_ops -> struct sock
19088  */
19089 static int convert_ctx_accesses(struct bpf_verifier_env *env)
19090 {
19091 	const struct bpf_verifier_ops *ops = env->ops;
19092 	int i, cnt, size, ctx_field_size, delta = 0;
19093 	const int insn_cnt = env->prog->len;
19094 	struct bpf_insn insn_buf[16], *insn;
19095 	u32 target_size, size_default, off;
19096 	struct bpf_prog *new_prog;
19097 	enum bpf_access_type type;
19098 	bool is_narrower_load;
19099 
19100 	if (ops->gen_prologue || env->seen_direct_write) {
19101 		if (!ops->gen_prologue) {
19102 			verbose(env, "bpf verifier is misconfigured\n");
19103 			return -EINVAL;
19104 		}
19105 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
19106 					env->prog);
19107 		if (cnt >= ARRAY_SIZE(insn_buf)) {
19108 			verbose(env, "bpf verifier is misconfigured\n");
19109 			return -EINVAL;
19110 		} else if (cnt) {
19111 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
19112 			if (!new_prog)
19113 				return -ENOMEM;
19114 
19115 			env->prog = new_prog;
19116 			delta += cnt - 1;
19117 		}
19118 	}
19119 
19120 	if (bpf_prog_is_offloaded(env->prog->aux))
19121 		return 0;
19122 
19123 	insn = env->prog->insnsi + delta;
19124 
19125 	for (i = 0; i < insn_cnt; i++, insn++) {
19126 		bpf_convert_ctx_access_t convert_ctx_access;
19127 		u8 mode;
19128 
19129 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
19130 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
19131 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
19132 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
19133 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
19134 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
19135 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
19136 			type = BPF_READ;
19137 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
19138 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
19139 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
19140 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
19141 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
19142 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
19143 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
19144 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
19145 			type = BPF_WRITE;
19146 		} else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
19147 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) &&
19148 			   env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) {
19149 			insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code);
19150 			env->prog->aux->num_exentries++;
19151 			continue;
19152 		} else {
19153 			continue;
19154 		}
19155 
19156 		if (type == BPF_WRITE &&
19157 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
19158 			struct bpf_insn patch[] = {
19159 				*insn,
19160 				BPF_ST_NOSPEC(),
19161 			};
19162 
19163 			cnt = ARRAY_SIZE(patch);
19164 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
19165 			if (!new_prog)
19166 				return -ENOMEM;
19167 
19168 			delta    += cnt - 1;
19169 			env->prog = new_prog;
19170 			insn      = new_prog->insnsi + i + delta;
19171 			continue;
19172 		}
19173 
19174 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
19175 		case PTR_TO_CTX:
19176 			if (!ops->convert_ctx_access)
19177 				continue;
19178 			convert_ctx_access = ops->convert_ctx_access;
19179 			break;
19180 		case PTR_TO_SOCKET:
19181 		case PTR_TO_SOCK_COMMON:
19182 			convert_ctx_access = bpf_sock_convert_ctx_access;
19183 			break;
19184 		case PTR_TO_TCP_SOCK:
19185 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
19186 			break;
19187 		case PTR_TO_XDP_SOCK:
19188 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
19189 			break;
19190 		case PTR_TO_BTF_ID:
19191 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
19192 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
19193 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
19194 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
19195 		 * any faults for loads into such types. BPF_WRITE is disallowed
19196 		 * for this case.
19197 		 */
19198 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
19199 			if (type == BPF_READ) {
19200 				if (BPF_MODE(insn->code) == BPF_MEM)
19201 					insn->code = BPF_LDX | BPF_PROBE_MEM |
19202 						     BPF_SIZE((insn)->code);
19203 				else
19204 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
19205 						     BPF_SIZE((insn)->code);
19206 				env->prog->aux->num_exentries++;
19207 			}
19208 			continue;
19209 		case PTR_TO_ARENA:
19210 			if (BPF_MODE(insn->code) == BPF_MEMSX) {
19211 				verbose(env, "sign extending loads from arena are not supported yet\n");
19212 				return -EOPNOTSUPP;
19213 			}
19214 			insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code);
19215 			env->prog->aux->num_exentries++;
19216 			continue;
19217 		default:
19218 			continue;
19219 		}
19220 
19221 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
19222 		size = BPF_LDST_BYTES(insn);
19223 		mode = BPF_MODE(insn->code);
19224 
19225 		/* If the read access is a narrower load of the field,
19226 		 * convert to a 4/8-byte load, to minimum program type specific
19227 		 * convert_ctx_access changes. If conversion is successful,
19228 		 * we will apply proper mask to the result.
19229 		 */
19230 		is_narrower_load = size < ctx_field_size;
19231 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
19232 		off = insn->off;
19233 		if (is_narrower_load) {
19234 			u8 size_code;
19235 
19236 			if (type == BPF_WRITE) {
19237 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
19238 				return -EINVAL;
19239 			}
19240 
19241 			size_code = BPF_H;
19242 			if (ctx_field_size == 4)
19243 				size_code = BPF_W;
19244 			else if (ctx_field_size == 8)
19245 				size_code = BPF_DW;
19246 
19247 			insn->off = off & ~(size_default - 1);
19248 			insn->code = BPF_LDX | BPF_MEM | size_code;
19249 		}
19250 
19251 		target_size = 0;
19252 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
19253 					 &target_size);
19254 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
19255 		    (ctx_field_size && !target_size)) {
19256 			verbose(env, "bpf verifier is misconfigured\n");
19257 			return -EINVAL;
19258 		}
19259 
19260 		if (is_narrower_load && size < target_size) {
19261 			u8 shift = bpf_ctx_narrow_access_offset(
19262 				off, size, size_default) * 8;
19263 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
19264 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
19265 				return -EINVAL;
19266 			}
19267 			if (ctx_field_size <= 4) {
19268 				if (shift)
19269 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
19270 									insn->dst_reg,
19271 									shift);
19272 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
19273 								(1 << size * 8) - 1);
19274 			} else {
19275 				if (shift)
19276 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
19277 									insn->dst_reg,
19278 									shift);
19279 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
19280 								(1ULL << size * 8) - 1);
19281 			}
19282 		}
19283 		if (mode == BPF_MEMSX)
19284 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
19285 						       insn->dst_reg, insn->dst_reg,
19286 						       size * 8, 0);
19287 
19288 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19289 		if (!new_prog)
19290 			return -ENOMEM;
19291 
19292 		delta += cnt - 1;
19293 
19294 		/* keep walking new program and skip insns we just inserted */
19295 		env->prog = new_prog;
19296 		insn      = new_prog->insnsi + i + delta;
19297 	}
19298 
19299 	return 0;
19300 }
19301 
19302 static int jit_subprogs(struct bpf_verifier_env *env)
19303 {
19304 	struct bpf_prog *prog = env->prog, **func, *tmp;
19305 	int i, j, subprog_start, subprog_end = 0, len, subprog;
19306 	struct bpf_map *map_ptr;
19307 	struct bpf_insn *insn;
19308 	void *old_bpf_func;
19309 	int err, num_exentries;
19310 
19311 	if (env->subprog_cnt <= 1)
19312 		return 0;
19313 
19314 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19315 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
19316 			continue;
19317 
19318 		/* Upon error here we cannot fall back to interpreter but
19319 		 * need a hard reject of the program. Thus -EFAULT is
19320 		 * propagated in any case.
19321 		 */
19322 		subprog = find_subprog(env, i + insn->imm + 1);
19323 		if (subprog < 0) {
19324 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
19325 				  i + insn->imm + 1);
19326 			return -EFAULT;
19327 		}
19328 		/* temporarily remember subprog id inside insn instead of
19329 		 * aux_data, since next loop will split up all insns into funcs
19330 		 */
19331 		insn->off = subprog;
19332 		/* remember original imm in case JIT fails and fallback
19333 		 * to interpreter will be needed
19334 		 */
19335 		env->insn_aux_data[i].call_imm = insn->imm;
19336 		/* point imm to __bpf_call_base+1 from JITs point of view */
19337 		insn->imm = 1;
19338 		if (bpf_pseudo_func(insn)) {
19339 #if defined(MODULES_VADDR)
19340 			u64 addr = MODULES_VADDR;
19341 #else
19342 			u64 addr = VMALLOC_START;
19343 #endif
19344 			/* jit (e.g. x86_64) may emit fewer instructions
19345 			 * if it learns a u32 imm is the same as a u64 imm.
19346 			 * Set close enough to possible prog address.
19347 			 */
19348 			insn[0].imm = (u32)addr;
19349 			insn[1].imm = addr >> 32;
19350 		}
19351 	}
19352 
19353 	err = bpf_prog_alloc_jited_linfo(prog);
19354 	if (err)
19355 		goto out_undo_insn;
19356 
19357 	err = -ENOMEM;
19358 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
19359 	if (!func)
19360 		goto out_undo_insn;
19361 
19362 	for (i = 0; i < env->subprog_cnt; i++) {
19363 		subprog_start = subprog_end;
19364 		subprog_end = env->subprog_info[i + 1].start;
19365 
19366 		len = subprog_end - subprog_start;
19367 		/* bpf_prog_run() doesn't call subprogs directly,
19368 		 * hence main prog stats include the runtime of subprogs.
19369 		 * subprogs don't have IDs and not reachable via prog_get_next_id
19370 		 * func[i]->stats will never be accessed and stays NULL
19371 		 */
19372 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
19373 		if (!func[i])
19374 			goto out_free;
19375 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
19376 		       len * sizeof(struct bpf_insn));
19377 		func[i]->type = prog->type;
19378 		func[i]->len = len;
19379 		if (bpf_prog_calc_tag(func[i]))
19380 			goto out_free;
19381 		func[i]->is_func = 1;
19382 		func[i]->sleepable = prog->sleepable;
19383 		func[i]->aux->func_idx = i;
19384 		/* Below members will be freed only at prog->aux */
19385 		func[i]->aux->btf = prog->aux->btf;
19386 		func[i]->aux->func_info = prog->aux->func_info;
19387 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
19388 		func[i]->aux->poke_tab = prog->aux->poke_tab;
19389 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
19390 
19391 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
19392 			struct bpf_jit_poke_descriptor *poke;
19393 
19394 			poke = &prog->aux->poke_tab[j];
19395 			if (poke->insn_idx < subprog_end &&
19396 			    poke->insn_idx >= subprog_start)
19397 				poke->aux = func[i]->aux;
19398 		}
19399 
19400 		func[i]->aux->name[0] = 'F';
19401 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
19402 		func[i]->jit_requested = 1;
19403 		func[i]->blinding_requested = prog->blinding_requested;
19404 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
19405 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
19406 		func[i]->aux->linfo = prog->aux->linfo;
19407 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
19408 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
19409 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
19410 		func[i]->aux->arena = prog->aux->arena;
19411 		num_exentries = 0;
19412 		insn = func[i]->insnsi;
19413 		for (j = 0; j < func[i]->len; j++, insn++) {
19414 			if (BPF_CLASS(insn->code) == BPF_LDX &&
19415 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
19416 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
19417 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
19418 				num_exentries++;
19419 			if ((BPF_CLASS(insn->code) == BPF_STX ||
19420 			     BPF_CLASS(insn->code) == BPF_ST) &&
19421 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32)
19422 				num_exentries++;
19423 			if (BPF_CLASS(insn->code) == BPF_STX &&
19424 			     BPF_MODE(insn->code) == BPF_PROBE_ATOMIC)
19425 				num_exentries++;
19426 		}
19427 		func[i]->aux->num_exentries = num_exentries;
19428 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
19429 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
19430 		if (!i)
19431 			func[i]->aux->exception_boundary = env->seen_exception;
19432 		func[i] = bpf_int_jit_compile(func[i]);
19433 		if (!func[i]->jited) {
19434 			err = -ENOTSUPP;
19435 			goto out_free;
19436 		}
19437 		cond_resched();
19438 	}
19439 
19440 	/* at this point all bpf functions were successfully JITed
19441 	 * now populate all bpf_calls with correct addresses and
19442 	 * run last pass of JIT
19443 	 */
19444 	for (i = 0; i < env->subprog_cnt; i++) {
19445 		insn = func[i]->insnsi;
19446 		for (j = 0; j < func[i]->len; j++, insn++) {
19447 			if (bpf_pseudo_func(insn)) {
19448 				subprog = insn->off;
19449 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
19450 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
19451 				continue;
19452 			}
19453 			if (!bpf_pseudo_call(insn))
19454 				continue;
19455 			subprog = insn->off;
19456 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
19457 		}
19458 
19459 		/* we use the aux data to keep a list of the start addresses
19460 		 * of the JITed images for each function in the program
19461 		 *
19462 		 * for some architectures, such as powerpc64, the imm field
19463 		 * might not be large enough to hold the offset of the start
19464 		 * address of the callee's JITed image from __bpf_call_base
19465 		 *
19466 		 * in such cases, we can lookup the start address of a callee
19467 		 * by using its subprog id, available from the off field of
19468 		 * the call instruction, as an index for this list
19469 		 */
19470 		func[i]->aux->func = func;
19471 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
19472 		func[i]->aux->real_func_cnt = env->subprog_cnt;
19473 	}
19474 	for (i = 0; i < env->subprog_cnt; i++) {
19475 		old_bpf_func = func[i]->bpf_func;
19476 		tmp = bpf_int_jit_compile(func[i]);
19477 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
19478 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
19479 			err = -ENOTSUPP;
19480 			goto out_free;
19481 		}
19482 		cond_resched();
19483 	}
19484 
19485 	/* finally lock prog and jit images for all functions and
19486 	 * populate kallsysm. Begin at the first subprogram, since
19487 	 * bpf_prog_load will add the kallsyms for the main program.
19488 	 */
19489 	for (i = 1; i < env->subprog_cnt; i++) {
19490 		err = bpf_prog_lock_ro(func[i]);
19491 		if (err)
19492 			goto out_free;
19493 	}
19494 
19495 	for (i = 1; i < env->subprog_cnt; i++)
19496 		bpf_prog_kallsyms_add(func[i]);
19497 
19498 	/* Last step: make now unused interpreter insns from main
19499 	 * prog consistent for later dump requests, so they can
19500 	 * later look the same as if they were interpreted only.
19501 	 */
19502 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19503 		if (bpf_pseudo_func(insn)) {
19504 			insn[0].imm = env->insn_aux_data[i].call_imm;
19505 			insn[1].imm = insn->off;
19506 			insn->off = 0;
19507 			continue;
19508 		}
19509 		if (!bpf_pseudo_call(insn))
19510 			continue;
19511 		insn->off = env->insn_aux_data[i].call_imm;
19512 		subprog = find_subprog(env, i + insn->off + 1);
19513 		insn->imm = subprog;
19514 	}
19515 
19516 	prog->jited = 1;
19517 	prog->bpf_func = func[0]->bpf_func;
19518 	prog->jited_len = func[0]->jited_len;
19519 	prog->aux->extable = func[0]->aux->extable;
19520 	prog->aux->num_exentries = func[0]->aux->num_exentries;
19521 	prog->aux->func = func;
19522 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
19523 	prog->aux->real_func_cnt = env->subprog_cnt;
19524 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
19525 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
19526 	bpf_prog_jit_attempt_done(prog);
19527 	return 0;
19528 out_free:
19529 	/* We failed JIT'ing, so at this point we need to unregister poke
19530 	 * descriptors from subprogs, so that kernel is not attempting to
19531 	 * patch it anymore as we're freeing the subprog JIT memory.
19532 	 */
19533 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19534 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19535 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
19536 	}
19537 	/* At this point we're guaranteed that poke descriptors are not
19538 	 * live anymore. We can just unlink its descriptor table as it's
19539 	 * released with the main prog.
19540 	 */
19541 	for (i = 0; i < env->subprog_cnt; i++) {
19542 		if (!func[i])
19543 			continue;
19544 		func[i]->aux->poke_tab = NULL;
19545 		bpf_jit_free(func[i]);
19546 	}
19547 	kfree(func);
19548 out_undo_insn:
19549 	/* cleanup main prog to be interpreted */
19550 	prog->jit_requested = 0;
19551 	prog->blinding_requested = 0;
19552 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19553 		if (!bpf_pseudo_call(insn))
19554 			continue;
19555 		insn->off = 0;
19556 		insn->imm = env->insn_aux_data[i].call_imm;
19557 	}
19558 	bpf_prog_jit_attempt_done(prog);
19559 	return err;
19560 }
19561 
19562 static int fixup_call_args(struct bpf_verifier_env *env)
19563 {
19564 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
19565 	struct bpf_prog *prog = env->prog;
19566 	struct bpf_insn *insn = prog->insnsi;
19567 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
19568 	int i, depth;
19569 #endif
19570 	int err = 0;
19571 
19572 	if (env->prog->jit_requested &&
19573 	    !bpf_prog_is_offloaded(env->prog->aux)) {
19574 		err = jit_subprogs(env);
19575 		if (err == 0)
19576 			return 0;
19577 		if (err == -EFAULT)
19578 			return err;
19579 	}
19580 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
19581 	if (has_kfunc_call) {
19582 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
19583 		return -EINVAL;
19584 	}
19585 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
19586 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
19587 		 * have to be rejected, since interpreter doesn't support them yet.
19588 		 */
19589 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
19590 		return -EINVAL;
19591 	}
19592 	for (i = 0; i < prog->len; i++, insn++) {
19593 		if (bpf_pseudo_func(insn)) {
19594 			/* When JIT fails the progs with callback calls
19595 			 * have to be rejected, since interpreter doesn't support them yet.
19596 			 */
19597 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
19598 			return -EINVAL;
19599 		}
19600 
19601 		if (!bpf_pseudo_call(insn))
19602 			continue;
19603 		depth = get_callee_stack_depth(env, insn, i);
19604 		if (depth < 0)
19605 			return depth;
19606 		bpf_patch_call_args(insn, depth);
19607 	}
19608 	err = 0;
19609 #endif
19610 	return err;
19611 }
19612 
19613 /* replace a generic kfunc with a specialized version if necessary */
19614 static void specialize_kfunc(struct bpf_verifier_env *env,
19615 			     u32 func_id, u16 offset, unsigned long *addr)
19616 {
19617 	struct bpf_prog *prog = env->prog;
19618 	bool seen_direct_write;
19619 	void *xdp_kfunc;
19620 	bool is_rdonly;
19621 
19622 	if (bpf_dev_bound_kfunc_id(func_id)) {
19623 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
19624 		if (xdp_kfunc) {
19625 			*addr = (unsigned long)xdp_kfunc;
19626 			return;
19627 		}
19628 		/* fallback to default kfunc when not supported by netdev */
19629 	}
19630 
19631 	if (offset)
19632 		return;
19633 
19634 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
19635 		seen_direct_write = env->seen_direct_write;
19636 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
19637 
19638 		if (is_rdonly)
19639 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
19640 
19641 		/* restore env->seen_direct_write to its original value, since
19642 		 * may_access_direct_pkt_data mutates it
19643 		 */
19644 		env->seen_direct_write = seen_direct_write;
19645 	}
19646 }
19647 
19648 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
19649 					    u16 struct_meta_reg,
19650 					    u16 node_offset_reg,
19651 					    struct bpf_insn *insn,
19652 					    struct bpf_insn *insn_buf,
19653 					    int *cnt)
19654 {
19655 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
19656 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
19657 
19658 	insn_buf[0] = addr[0];
19659 	insn_buf[1] = addr[1];
19660 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
19661 	insn_buf[3] = *insn;
19662 	*cnt = 4;
19663 }
19664 
19665 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
19666 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
19667 {
19668 	const struct bpf_kfunc_desc *desc;
19669 
19670 	if (!insn->imm) {
19671 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
19672 		return -EINVAL;
19673 	}
19674 
19675 	*cnt = 0;
19676 
19677 	/* insn->imm has the btf func_id. Replace it with an offset relative to
19678 	 * __bpf_call_base, unless the JIT needs to call functions that are
19679 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
19680 	 */
19681 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
19682 	if (!desc) {
19683 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
19684 			insn->imm);
19685 		return -EFAULT;
19686 	}
19687 
19688 	if (!bpf_jit_supports_far_kfunc_call())
19689 		insn->imm = BPF_CALL_IMM(desc->addr);
19690 	if (insn->off)
19691 		return 0;
19692 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
19693 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
19694 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19695 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19696 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
19697 
19698 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
19699 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19700 				insn_idx);
19701 			return -EFAULT;
19702 		}
19703 
19704 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
19705 		insn_buf[1] = addr[0];
19706 		insn_buf[2] = addr[1];
19707 		insn_buf[3] = *insn;
19708 		*cnt = 4;
19709 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
19710 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
19711 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
19712 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19713 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19714 
19715 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
19716 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19717 				insn_idx);
19718 			return -EFAULT;
19719 		}
19720 
19721 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
19722 		    !kptr_struct_meta) {
19723 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19724 				insn_idx);
19725 			return -EFAULT;
19726 		}
19727 
19728 		insn_buf[0] = addr[0];
19729 		insn_buf[1] = addr[1];
19730 		insn_buf[2] = *insn;
19731 		*cnt = 3;
19732 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
19733 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
19734 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19735 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19736 		int struct_meta_reg = BPF_REG_3;
19737 		int node_offset_reg = BPF_REG_4;
19738 
19739 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
19740 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19741 			struct_meta_reg = BPF_REG_4;
19742 			node_offset_reg = BPF_REG_5;
19743 		}
19744 
19745 		if (!kptr_struct_meta) {
19746 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19747 				insn_idx);
19748 			return -EFAULT;
19749 		}
19750 
19751 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
19752 						node_offset_reg, insn, insn_buf, cnt);
19753 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
19754 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
19755 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
19756 		*cnt = 1;
19757 	} else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) {
19758 		struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) };
19759 
19760 		insn_buf[0] = ld_addrs[0];
19761 		insn_buf[1] = ld_addrs[1];
19762 		insn_buf[2] = *insn;
19763 		*cnt = 3;
19764 	}
19765 	return 0;
19766 }
19767 
19768 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
19769 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
19770 {
19771 	struct bpf_subprog_info *info = env->subprog_info;
19772 	int cnt = env->subprog_cnt;
19773 	struct bpf_prog *prog;
19774 
19775 	/* We only reserve one slot for hidden subprogs in subprog_info. */
19776 	if (env->hidden_subprog_cnt) {
19777 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
19778 		return -EFAULT;
19779 	}
19780 	/* We're not patching any existing instruction, just appending the new
19781 	 * ones for the hidden subprog. Hence all of the adjustment operations
19782 	 * in bpf_patch_insn_data are no-ops.
19783 	 */
19784 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
19785 	if (!prog)
19786 		return -ENOMEM;
19787 	env->prog = prog;
19788 	info[cnt + 1].start = info[cnt].start;
19789 	info[cnt].start = prog->len - len + 1;
19790 	env->subprog_cnt++;
19791 	env->hidden_subprog_cnt++;
19792 	return 0;
19793 }
19794 
19795 /* Do various post-verification rewrites in a single program pass.
19796  * These rewrites simplify JIT and interpreter implementations.
19797  */
19798 static int do_misc_fixups(struct bpf_verifier_env *env)
19799 {
19800 	struct bpf_prog *prog = env->prog;
19801 	enum bpf_attach_type eatype = prog->expected_attach_type;
19802 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
19803 	struct bpf_insn *insn = prog->insnsi;
19804 	const struct bpf_func_proto *fn;
19805 	const int insn_cnt = prog->len;
19806 	const struct bpf_map_ops *ops;
19807 	struct bpf_insn_aux_data *aux;
19808 	struct bpf_insn insn_buf[16];
19809 	struct bpf_prog *new_prog;
19810 	struct bpf_map *map_ptr;
19811 	int i, ret, cnt, delta = 0, cur_subprog = 0;
19812 	struct bpf_subprog_info *subprogs = env->subprog_info;
19813 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
19814 	u16 stack_depth_extra = 0;
19815 
19816 	if (env->seen_exception && !env->exception_callback_subprog) {
19817 		struct bpf_insn patch[] = {
19818 			env->prog->insnsi[insn_cnt - 1],
19819 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
19820 			BPF_EXIT_INSN(),
19821 		};
19822 
19823 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
19824 		if (ret < 0)
19825 			return ret;
19826 		prog = env->prog;
19827 		insn = prog->insnsi;
19828 
19829 		env->exception_callback_subprog = env->subprog_cnt - 1;
19830 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
19831 		mark_subprog_exc_cb(env, env->exception_callback_subprog);
19832 	}
19833 
19834 	for (i = 0; i < insn_cnt;) {
19835 		if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) {
19836 			if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) ||
19837 			    (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) {
19838 				/* convert to 32-bit mov that clears upper 32-bit */
19839 				insn->code = BPF_ALU | BPF_MOV | BPF_X;
19840 				/* clear off and imm, so it's a normal 'wX = wY' from JIT pov */
19841 				insn->off = 0;
19842 				insn->imm = 0;
19843 			} /* cast from as(0) to as(1) should be handled by JIT */
19844 			goto next_insn;
19845 		}
19846 
19847 		if (env->insn_aux_data[i + delta].needs_zext)
19848 			/* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */
19849 			insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code);
19850 
19851 		/* Make divide-by-zero exceptions impossible. */
19852 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
19853 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
19854 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
19855 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
19856 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
19857 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
19858 			struct bpf_insn *patchlet;
19859 			struct bpf_insn chk_and_div[] = {
19860 				/* [R,W]x div 0 -> 0 */
19861 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19862 					     BPF_JNE | BPF_K, insn->src_reg,
19863 					     0, 2, 0),
19864 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
19865 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19866 				*insn,
19867 			};
19868 			struct bpf_insn chk_and_mod[] = {
19869 				/* [R,W]x mod 0 -> [R,W]x */
19870 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19871 					     BPF_JEQ | BPF_K, insn->src_reg,
19872 					     0, 1 + (is64 ? 0 : 1), 0),
19873 				*insn,
19874 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19875 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
19876 			};
19877 
19878 			patchlet = isdiv ? chk_and_div : chk_and_mod;
19879 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
19880 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
19881 
19882 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
19883 			if (!new_prog)
19884 				return -ENOMEM;
19885 
19886 			delta    += cnt - 1;
19887 			env->prog = prog = new_prog;
19888 			insn      = new_prog->insnsi + i + delta;
19889 			goto next_insn;
19890 		}
19891 
19892 		/* Make it impossible to de-reference a userspace address */
19893 		if (BPF_CLASS(insn->code) == BPF_LDX &&
19894 		    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
19895 		     BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) {
19896 			struct bpf_insn *patch = &insn_buf[0];
19897 			u64 uaddress_limit = bpf_arch_uaddress_limit();
19898 
19899 			if (!uaddress_limit)
19900 				goto next_insn;
19901 
19902 			*patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
19903 			if (insn->off)
19904 				*patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off);
19905 			*patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32);
19906 			*patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2);
19907 			*patch++ = *insn;
19908 			*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
19909 			*patch++ = BPF_MOV64_IMM(insn->dst_reg, 0);
19910 
19911 			cnt = patch - insn_buf;
19912 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19913 			if (!new_prog)
19914 				return -ENOMEM;
19915 
19916 			delta    += cnt - 1;
19917 			env->prog = prog = new_prog;
19918 			insn      = new_prog->insnsi + i + delta;
19919 			goto next_insn;
19920 		}
19921 
19922 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
19923 		if (BPF_CLASS(insn->code) == BPF_LD &&
19924 		    (BPF_MODE(insn->code) == BPF_ABS ||
19925 		     BPF_MODE(insn->code) == BPF_IND)) {
19926 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
19927 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19928 				verbose(env, "bpf verifier is misconfigured\n");
19929 				return -EINVAL;
19930 			}
19931 
19932 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19933 			if (!new_prog)
19934 				return -ENOMEM;
19935 
19936 			delta    += cnt - 1;
19937 			env->prog = prog = new_prog;
19938 			insn      = new_prog->insnsi + i + delta;
19939 			goto next_insn;
19940 		}
19941 
19942 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
19943 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
19944 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
19945 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
19946 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
19947 			struct bpf_insn *patch = &insn_buf[0];
19948 			bool issrc, isneg, isimm;
19949 			u32 off_reg;
19950 
19951 			aux = &env->insn_aux_data[i + delta];
19952 			if (!aux->alu_state ||
19953 			    aux->alu_state == BPF_ALU_NON_POINTER)
19954 				goto next_insn;
19955 
19956 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
19957 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
19958 				BPF_ALU_SANITIZE_SRC;
19959 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
19960 
19961 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
19962 			if (isimm) {
19963 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19964 			} else {
19965 				if (isneg)
19966 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19967 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19968 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
19969 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
19970 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
19971 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
19972 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
19973 			}
19974 			if (!issrc)
19975 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
19976 			insn->src_reg = BPF_REG_AX;
19977 			if (isneg)
19978 				insn->code = insn->code == code_add ?
19979 					     code_sub : code_add;
19980 			*patch++ = *insn;
19981 			if (issrc && isneg && !isimm)
19982 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19983 			cnt = patch - insn_buf;
19984 
19985 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19986 			if (!new_prog)
19987 				return -ENOMEM;
19988 
19989 			delta    += cnt - 1;
19990 			env->prog = prog = new_prog;
19991 			insn      = new_prog->insnsi + i + delta;
19992 			goto next_insn;
19993 		}
19994 
19995 		if (is_may_goto_insn(insn)) {
19996 			int stack_off = -stack_depth - 8;
19997 
19998 			stack_depth_extra = 8;
19999 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off);
20000 			insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2);
20001 			insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
20002 			insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off);
20003 			cnt = 4;
20004 
20005 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20006 			if (!new_prog)
20007 				return -ENOMEM;
20008 
20009 			delta += cnt - 1;
20010 			env->prog = prog = new_prog;
20011 			insn = new_prog->insnsi + i + delta;
20012 			goto next_insn;
20013 		}
20014 
20015 		if (insn->code != (BPF_JMP | BPF_CALL))
20016 			goto next_insn;
20017 		if (insn->src_reg == BPF_PSEUDO_CALL)
20018 			goto next_insn;
20019 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
20020 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
20021 			if (ret)
20022 				return ret;
20023 			if (cnt == 0)
20024 				goto next_insn;
20025 
20026 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20027 			if (!new_prog)
20028 				return -ENOMEM;
20029 
20030 			delta	 += cnt - 1;
20031 			env->prog = prog = new_prog;
20032 			insn	  = new_prog->insnsi + i + delta;
20033 			goto next_insn;
20034 		}
20035 
20036 		/* Skip inlining the helper call if the JIT does it. */
20037 		if (bpf_jit_inlines_helper_call(insn->imm))
20038 			goto next_insn;
20039 
20040 		if (insn->imm == BPF_FUNC_get_route_realm)
20041 			prog->dst_needed = 1;
20042 		if (insn->imm == BPF_FUNC_get_prandom_u32)
20043 			bpf_user_rnd_init_once();
20044 		if (insn->imm == BPF_FUNC_override_return)
20045 			prog->kprobe_override = 1;
20046 		if (insn->imm == BPF_FUNC_tail_call) {
20047 			/* If we tail call into other programs, we
20048 			 * cannot make any assumptions since they can
20049 			 * be replaced dynamically during runtime in
20050 			 * the program array.
20051 			 */
20052 			prog->cb_access = 1;
20053 			if (!allow_tail_call_in_subprogs(env))
20054 				prog->aux->stack_depth = MAX_BPF_STACK;
20055 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
20056 
20057 			/* mark bpf_tail_call as different opcode to avoid
20058 			 * conditional branch in the interpreter for every normal
20059 			 * call and to prevent accidental JITing by JIT compiler
20060 			 * that doesn't support bpf_tail_call yet
20061 			 */
20062 			insn->imm = 0;
20063 			insn->code = BPF_JMP | BPF_TAIL_CALL;
20064 
20065 			aux = &env->insn_aux_data[i + delta];
20066 			if (env->bpf_capable && !prog->blinding_requested &&
20067 			    prog->jit_requested &&
20068 			    !bpf_map_key_poisoned(aux) &&
20069 			    !bpf_map_ptr_poisoned(aux) &&
20070 			    !bpf_map_ptr_unpriv(aux)) {
20071 				struct bpf_jit_poke_descriptor desc = {
20072 					.reason = BPF_POKE_REASON_TAIL_CALL,
20073 					.tail_call.map = aux->map_ptr_state.map_ptr,
20074 					.tail_call.key = bpf_map_key_immediate(aux),
20075 					.insn_idx = i + delta,
20076 				};
20077 
20078 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
20079 				if (ret < 0) {
20080 					verbose(env, "adding tail call poke descriptor failed\n");
20081 					return ret;
20082 				}
20083 
20084 				insn->imm = ret + 1;
20085 				goto next_insn;
20086 			}
20087 
20088 			if (!bpf_map_ptr_unpriv(aux))
20089 				goto next_insn;
20090 
20091 			/* instead of changing every JIT dealing with tail_call
20092 			 * emit two extra insns:
20093 			 * if (index >= max_entries) goto out;
20094 			 * index &= array->index_mask;
20095 			 * to avoid out-of-bounds cpu speculation
20096 			 */
20097 			if (bpf_map_ptr_poisoned(aux)) {
20098 				verbose(env, "tail_call abusing map_ptr\n");
20099 				return -EINVAL;
20100 			}
20101 
20102 			map_ptr = aux->map_ptr_state.map_ptr;
20103 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
20104 						  map_ptr->max_entries, 2);
20105 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
20106 						    container_of(map_ptr,
20107 								 struct bpf_array,
20108 								 map)->index_mask);
20109 			insn_buf[2] = *insn;
20110 			cnt = 3;
20111 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20112 			if (!new_prog)
20113 				return -ENOMEM;
20114 
20115 			delta    += cnt - 1;
20116 			env->prog = prog = new_prog;
20117 			insn      = new_prog->insnsi + i + delta;
20118 			goto next_insn;
20119 		}
20120 
20121 		if (insn->imm == BPF_FUNC_timer_set_callback) {
20122 			/* The verifier will process callback_fn as many times as necessary
20123 			 * with different maps and the register states prepared by
20124 			 * set_timer_callback_state will be accurate.
20125 			 *
20126 			 * The following use case is valid:
20127 			 *   map1 is shared by prog1, prog2, prog3.
20128 			 *   prog1 calls bpf_timer_init for some map1 elements
20129 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
20130 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
20131 			 *   prog3 calls bpf_timer_start for some map1 elements.
20132 			 *     Those that were not both bpf_timer_init-ed and
20133 			 *     bpf_timer_set_callback-ed will return -EINVAL.
20134 			 */
20135 			struct bpf_insn ld_addrs[2] = {
20136 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
20137 			};
20138 
20139 			insn_buf[0] = ld_addrs[0];
20140 			insn_buf[1] = ld_addrs[1];
20141 			insn_buf[2] = *insn;
20142 			cnt = 3;
20143 
20144 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20145 			if (!new_prog)
20146 				return -ENOMEM;
20147 
20148 			delta    += cnt - 1;
20149 			env->prog = prog = new_prog;
20150 			insn      = new_prog->insnsi + i + delta;
20151 			goto patch_call_imm;
20152 		}
20153 
20154 		if (is_storage_get_function(insn->imm)) {
20155 			if (!in_sleepable(env) ||
20156 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
20157 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
20158 			else
20159 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
20160 			insn_buf[1] = *insn;
20161 			cnt = 2;
20162 
20163 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20164 			if (!new_prog)
20165 				return -ENOMEM;
20166 
20167 			delta += cnt - 1;
20168 			env->prog = prog = new_prog;
20169 			insn = new_prog->insnsi + i + delta;
20170 			goto patch_call_imm;
20171 		}
20172 
20173 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
20174 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
20175 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
20176 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
20177 			 */
20178 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
20179 			insn_buf[1] = *insn;
20180 			cnt = 2;
20181 
20182 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20183 			if (!new_prog)
20184 				return -ENOMEM;
20185 
20186 			delta += cnt - 1;
20187 			env->prog = prog = new_prog;
20188 			insn = new_prog->insnsi + i + delta;
20189 			goto patch_call_imm;
20190 		}
20191 
20192 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
20193 		 * and other inlining handlers are currently limited to 64 bit
20194 		 * only.
20195 		 */
20196 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
20197 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
20198 		     insn->imm == BPF_FUNC_map_update_elem ||
20199 		     insn->imm == BPF_FUNC_map_delete_elem ||
20200 		     insn->imm == BPF_FUNC_map_push_elem   ||
20201 		     insn->imm == BPF_FUNC_map_pop_elem    ||
20202 		     insn->imm == BPF_FUNC_map_peek_elem   ||
20203 		     insn->imm == BPF_FUNC_redirect_map    ||
20204 		     insn->imm == BPF_FUNC_for_each_map_elem ||
20205 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
20206 			aux = &env->insn_aux_data[i + delta];
20207 			if (bpf_map_ptr_poisoned(aux))
20208 				goto patch_call_imm;
20209 
20210 			map_ptr = aux->map_ptr_state.map_ptr;
20211 			ops = map_ptr->ops;
20212 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
20213 			    ops->map_gen_lookup) {
20214 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
20215 				if (cnt == -EOPNOTSUPP)
20216 					goto patch_map_ops_generic;
20217 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
20218 					verbose(env, "bpf verifier is misconfigured\n");
20219 					return -EINVAL;
20220 				}
20221 
20222 				new_prog = bpf_patch_insn_data(env, i + delta,
20223 							       insn_buf, cnt);
20224 				if (!new_prog)
20225 					return -ENOMEM;
20226 
20227 				delta    += cnt - 1;
20228 				env->prog = prog = new_prog;
20229 				insn      = new_prog->insnsi + i + delta;
20230 				goto next_insn;
20231 			}
20232 
20233 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
20234 				     (void *(*)(struct bpf_map *map, void *key))NULL));
20235 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
20236 				     (long (*)(struct bpf_map *map, void *key))NULL));
20237 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
20238 				     (long (*)(struct bpf_map *map, void *key, void *value,
20239 					      u64 flags))NULL));
20240 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
20241 				     (long (*)(struct bpf_map *map, void *value,
20242 					      u64 flags))NULL));
20243 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
20244 				     (long (*)(struct bpf_map *map, void *value))NULL));
20245 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
20246 				     (long (*)(struct bpf_map *map, void *value))NULL));
20247 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
20248 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
20249 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
20250 				     (long (*)(struct bpf_map *map,
20251 					      bpf_callback_t callback_fn,
20252 					      void *callback_ctx,
20253 					      u64 flags))NULL));
20254 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
20255 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
20256 
20257 patch_map_ops_generic:
20258 			switch (insn->imm) {
20259 			case BPF_FUNC_map_lookup_elem:
20260 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
20261 				goto next_insn;
20262 			case BPF_FUNC_map_update_elem:
20263 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
20264 				goto next_insn;
20265 			case BPF_FUNC_map_delete_elem:
20266 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
20267 				goto next_insn;
20268 			case BPF_FUNC_map_push_elem:
20269 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
20270 				goto next_insn;
20271 			case BPF_FUNC_map_pop_elem:
20272 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
20273 				goto next_insn;
20274 			case BPF_FUNC_map_peek_elem:
20275 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
20276 				goto next_insn;
20277 			case BPF_FUNC_redirect_map:
20278 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
20279 				goto next_insn;
20280 			case BPF_FUNC_for_each_map_elem:
20281 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
20282 				goto next_insn;
20283 			case BPF_FUNC_map_lookup_percpu_elem:
20284 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
20285 				goto next_insn;
20286 			}
20287 
20288 			goto patch_call_imm;
20289 		}
20290 
20291 		/* Implement bpf_jiffies64 inline. */
20292 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
20293 		    insn->imm == BPF_FUNC_jiffies64) {
20294 			struct bpf_insn ld_jiffies_addr[2] = {
20295 				BPF_LD_IMM64(BPF_REG_0,
20296 					     (unsigned long)&jiffies),
20297 			};
20298 
20299 			insn_buf[0] = ld_jiffies_addr[0];
20300 			insn_buf[1] = ld_jiffies_addr[1];
20301 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
20302 						  BPF_REG_0, 0);
20303 			cnt = 3;
20304 
20305 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
20306 						       cnt);
20307 			if (!new_prog)
20308 				return -ENOMEM;
20309 
20310 			delta    += cnt - 1;
20311 			env->prog = prog = new_prog;
20312 			insn      = new_prog->insnsi + i + delta;
20313 			goto next_insn;
20314 		}
20315 
20316 #ifdef CONFIG_X86_64
20317 		/* Implement bpf_get_smp_processor_id() inline. */
20318 		if (insn->imm == BPF_FUNC_get_smp_processor_id &&
20319 		    prog->jit_requested && bpf_jit_supports_percpu_insn()) {
20320 			/* BPF_FUNC_get_smp_processor_id inlining is an
20321 			 * optimization, so if pcpu_hot.cpu_number is ever
20322 			 * changed in some incompatible and hard to support
20323 			 * way, it's fine to back out this inlining logic
20324 			 */
20325 			insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number);
20326 			insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
20327 			insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0);
20328 			cnt = 3;
20329 
20330 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20331 			if (!new_prog)
20332 				return -ENOMEM;
20333 
20334 			delta    += cnt - 1;
20335 			env->prog = prog = new_prog;
20336 			insn      = new_prog->insnsi + i + delta;
20337 			goto next_insn;
20338 		}
20339 #endif
20340 		/* Implement bpf_get_func_arg inline. */
20341 		if (prog_type == BPF_PROG_TYPE_TRACING &&
20342 		    insn->imm == BPF_FUNC_get_func_arg) {
20343 			/* Load nr_args from ctx - 8 */
20344 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
20345 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
20346 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
20347 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
20348 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
20349 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
20350 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
20351 			insn_buf[7] = BPF_JMP_A(1);
20352 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
20353 			cnt = 9;
20354 
20355 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20356 			if (!new_prog)
20357 				return -ENOMEM;
20358 
20359 			delta    += cnt - 1;
20360 			env->prog = prog = new_prog;
20361 			insn      = new_prog->insnsi + i + delta;
20362 			goto next_insn;
20363 		}
20364 
20365 		/* Implement bpf_get_func_ret inline. */
20366 		if (prog_type == BPF_PROG_TYPE_TRACING &&
20367 		    insn->imm == BPF_FUNC_get_func_ret) {
20368 			if (eatype == BPF_TRACE_FEXIT ||
20369 			    eatype == BPF_MODIFY_RETURN) {
20370 				/* Load nr_args from ctx - 8 */
20371 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
20372 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
20373 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
20374 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
20375 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
20376 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
20377 				cnt = 6;
20378 			} else {
20379 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
20380 				cnt = 1;
20381 			}
20382 
20383 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20384 			if (!new_prog)
20385 				return -ENOMEM;
20386 
20387 			delta    += cnt - 1;
20388 			env->prog = prog = new_prog;
20389 			insn      = new_prog->insnsi + i + delta;
20390 			goto next_insn;
20391 		}
20392 
20393 		/* Implement get_func_arg_cnt inline. */
20394 		if (prog_type == BPF_PROG_TYPE_TRACING &&
20395 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
20396 			/* Load nr_args from ctx - 8 */
20397 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
20398 
20399 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
20400 			if (!new_prog)
20401 				return -ENOMEM;
20402 
20403 			env->prog = prog = new_prog;
20404 			insn      = new_prog->insnsi + i + delta;
20405 			goto next_insn;
20406 		}
20407 
20408 		/* Implement bpf_get_func_ip inline. */
20409 		if (prog_type == BPF_PROG_TYPE_TRACING &&
20410 		    insn->imm == BPF_FUNC_get_func_ip) {
20411 			/* Load IP address from ctx - 16 */
20412 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
20413 
20414 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
20415 			if (!new_prog)
20416 				return -ENOMEM;
20417 
20418 			env->prog = prog = new_prog;
20419 			insn      = new_prog->insnsi + i + delta;
20420 			goto next_insn;
20421 		}
20422 
20423 		/* Implement bpf_get_branch_snapshot inline. */
20424 		if (IS_ENABLED(CONFIG_PERF_EVENTS) &&
20425 		    prog->jit_requested && BITS_PER_LONG == 64 &&
20426 		    insn->imm == BPF_FUNC_get_branch_snapshot) {
20427 			/* We are dealing with the following func protos:
20428 			 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags);
20429 			 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt);
20430 			 */
20431 			const u32 br_entry_size = sizeof(struct perf_branch_entry);
20432 
20433 			/* struct perf_branch_entry is part of UAPI and is
20434 			 * used as an array element, so extremely unlikely to
20435 			 * ever grow or shrink
20436 			 */
20437 			BUILD_BUG_ON(br_entry_size != 24);
20438 
20439 			/* if (unlikely(flags)) return -EINVAL */
20440 			insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7);
20441 
20442 			/* Transform size (bytes) into number of entries (cnt = size / 24).
20443 			 * But to avoid expensive division instruction, we implement
20444 			 * divide-by-3 through multiplication, followed by further
20445 			 * division by 8 through 3-bit right shift.
20446 			 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr.,
20447 			 * p. 227, chapter "Unsigned Division by 3" for details and proofs.
20448 			 *
20449 			 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab.
20450 			 */
20451 			insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab);
20452 			insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0);
20453 			insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36);
20454 
20455 			/* call perf_snapshot_branch_stack implementation */
20456 			insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack));
20457 			/* if (entry_cnt == 0) return -ENOENT */
20458 			insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4);
20459 			/* return entry_cnt * sizeof(struct perf_branch_entry) */
20460 			insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size);
20461 			insn_buf[7] = BPF_JMP_A(3);
20462 			/* return -EINVAL; */
20463 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
20464 			insn_buf[9] = BPF_JMP_A(1);
20465 			/* return -ENOENT; */
20466 			insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT);
20467 			cnt = 11;
20468 
20469 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20470 			if (!new_prog)
20471 				return -ENOMEM;
20472 
20473 			delta    += cnt - 1;
20474 			env->prog = prog = new_prog;
20475 			insn      = new_prog->insnsi + i + delta;
20476 			continue;
20477 		}
20478 
20479 		/* Implement bpf_kptr_xchg inline */
20480 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
20481 		    insn->imm == BPF_FUNC_kptr_xchg &&
20482 		    bpf_jit_supports_ptr_xchg()) {
20483 			insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2);
20484 			insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0);
20485 			cnt = 2;
20486 
20487 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20488 			if (!new_prog)
20489 				return -ENOMEM;
20490 
20491 			delta    += cnt - 1;
20492 			env->prog = prog = new_prog;
20493 			insn      = new_prog->insnsi + i + delta;
20494 			goto next_insn;
20495 		}
20496 patch_call_imm:
20497 		fn = env->ops->get_func_proto(insn->imm, env->prog);
20498 		/* all functions that have prototype and verifier allowed
20499 		 * programs to call them, must be real in-kernel functions
20500 		 */
20501 		if (!fn->func) {
20502 			verbose(env,
20503 				"kernel subsystem misconfigured func %s#%d\n",
20504 				func_id_name(insn->imm), insn->imm);
20505 			return -EFAULT;
20506 		}
20507 		insn->imm = fn->func - __bpf_call_base;
20508 next_insn:
20509 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
20510 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
20511 			subprogs[cur_subprog].stack_extra = stack_depth_extra;
20512 			cur_subprog++;
20513 			stack_depth = subprogs[cur_subprog].stack_depth;
20514 			stack_depth_extra = 0;
20515 		}
20516 		i++;
20517 		insn++;
20518 	}
20519 
20520 	env->prog->aux->stack_depth = subprogs[0].stack_depth;
20521 	for (i = 0; i < env->subprog_cnt; i++) {
20522 		int subprog_start = subprogs[i].start;
20523 		int stack_slots = subprogs[i].stack_extra / 8;
20524 
20525 		if (!stack_slots)
20526 			continue;
20527 		if (stack_slots > 1) {
20528 			verbose(env, "verifier bug: stack_slots supports may_goto only\n");
20529 			return -EFAULT;
20530 		}
20531 
20532 		/* Add ST insn to subprog prologue to init extra stack */
20533 		insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP,
20534 					 -subprogs[i].stack_depth, BPF_MAX_LOOPS);
20535 		/* Copy first actual insn to preserve it */
20536 		insn_buf[1] = env->prog->insnsi[subprog_start];
20537 
20538 		new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2);
20539 		if (!new_prog)
20540 			return -ENOMEM;
20541 		env->prog = prog = new_prog;
20542 	}
20543 
20544 	/* Since poke tab is now finalized, publish aux to tracker. */
20545 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
20546 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
20547 		if (!map_ptr->ops->map_poke_track ||
20548 		    !map_ptr->ops->map_poke_untrack ||
20549 		    !map_ptr->ops->map_poke_run) {
20550 			verbose(env, "bpf verifier is misconfigured\n");
20551 			return -EINVAL;
20552 		}
20553 
20554 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
20555 		if (ret < 0) {
20556 			verbose(env, "tracking tail call prog failed\n");
20557 			return ret;
20558 		}
20559 	}
20560 
20561 	sort_kfunc_descs_by_imm_off(env->prog);
20562 
20563 	return 0;
20564 }
20565 
20566 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
20567 					int position,
20568 					s32 stack_base,
20569 					u32 callback_subprogno,
20570 					u32 *cnt)
20571 {
20572 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
20573 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
20574 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
20575 	int reg_loop_max = BPF_REG_6;
20576 	int reg_loop_cnt = BPF_REG_7;
20577 	int reg_loop_ctx = BPF_REG_8;
20578 
20579 	struct bpf_prog *new_prog;
20580 	u32 callback_start;
20581 	u32 call_insn_offset;
20582 	s32 callback_offset;
20583 
20584 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
20585 	 * be careful to modify this code in sync.
20586 	 */
20587 	struct bpf_insn insn_buf[] = {
20588 		/* Return error and jump to the end of the patch if
20589 		 * expected number of iterations is too big.
20590 		 */
20591 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
20592 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
20593 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
20594 		/* spill R6, R7, R8 to use these as loop vars */
20595 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
20596 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
20597 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
20598 		/* initialize loop vars */
20599 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
20600 		BPF_MOV32_IMM(reg_loop_cnt, 0),
20601 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
20602 		/* loop header,
20603 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
20604 		 */
20605 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
20606 		/* callback call,
20607 		 * correct callback offset would be set after patching
20608 		 */
20609 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
20610 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
20611 		BPF_CALL_REL(0),
20612 		/* increment loop counter */
20613 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
20614 		/* jump to loop header if callback returned 0 */
20615 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
20616 		/* return value of bpf_loop,
20617 		 * set R0 to the number of iterations
20618 		 */
20619 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
20620 		/* restore original values of R6, R7, R8 */
20621 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
20622 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
20623 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
20624 	};
20625 
20626 	*cnt = ARRAY_SIZE(insn_buf);
20627 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
20628 	if (!new_prog)
20629 		return new_prog;
20630 
20631 	/* callback start is known only after patching */
20632 	callback_start = env->subprog_info[callback_subprogno].start;
20633 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
20634 	call_insn_offset = position + 12;
20635 	callback_offset = callback_start - call_insn_offset - 1;
20636 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
20637 
20638 	return new_prog;
20639 }
20640 
20641 static bool is_bpf_loop_call(struct bpf_insn *insn)
20642 {
20643 	return insn->code == (BPF_JMP | BPF_CALL) &&
20644 		insn->src_reg == 0 &&
20645 		insn->imm == BPF_FUNC_loop;
20646 }
20647 
20648 /* For all sub-programs in the program (including main) check
20649  * insn_aux_data to see if there are bpf_loop calls that require
20650  * inlining. If such calls are found the calls are replaced with a
20651  * sequence of instructions produced by `inline_bpf_loop` function and
20652  * subprog stack_depth is increased by the size of 3 registers.
20653  * This stack space is used to spill values of the R6, R7, R8.  These
20654  * registers are used to store the loop bound, counter and context
20655  * variables.
20656  */
20657 static int optimize_bpf_loop(struct bpf_verifier_env *env)
20658 {
20659 	struct bpf_subprog_info *subprogs = env->subprog_info;
20660 	int i, cur_subprog = 0, cnt, delta = 0;
20661 	struct bpf_insn *insn = env->prog->insnsi;
20662 	int insn_cnt = env->prog->len;
20663 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
20664 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
20665 	u16 stack_depth_extra = 0;
20666 
20667 	for (i = 0; i < insn_cnt; i++, insn++) {
20668 		struct bpf_loop_inline_state *inline_state =
20669 			&env->insn_aux_data[i + delta].loop_inline_state;
20670 
20671 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
20672 			struct bpf_prog *new_prog;
20673 
20674 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
20675 			new_prog = inline_bpf_loop(env,
20676 						   i + delta,
20677 						   -(stack_depth + stack_depth_extra),
20678 						   inline_state->callback_subprogno,
20679 						   &cnt);
20680 			if (!new_prog)
20681 				return -ENOMEM;
20682 
20683 			delta     += cnt - 1;
20684 			env->prog  = new_prog;
20685 			insn       = new_prog->insnsi + i + delta;
20686 		}
20687 
20688 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
20689 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
20690 			cur_subprog++;
20691 			stack_depth = subprogs[cur_subprog].stack_depth;
20692 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
20693 			stack_depth_extra = 0;
20694 		}
20695 	}
20696 
20697 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
20698 
20699 	return 0;
20700 }
20701 
20702 static void free_states(struct bpf_verifier_env *env)
20703 {
20704 	struct bpf_verifier_state_list *sl, *sln;
20705 	int i;
20706 
20707 	sl = env->free_list;
20708 	while (sl) {
20709 		sln = sl->next;
20710 		free_verifier_state(&sl->state, false);
20711 		kfree(sl);
20712 		sl = sln;
20713 	}
20714 	env->free_list = NULL;
20715 
20716 	if (!env->explored_states)
20717 		return;
20718 
20719 	for (i = 0; i < state_htab_size(env); i++) {
20720 		sl = env->explored_states[i];
20721 
20722 		while (sl) {
20723 			sln = sl->next;
20724 			free_verifier_state(&sl->state, false);
20725 			kfree(sl);
20726 			sl = sln;
20727 		}
20728 		env->explored_states[i] = NULL;
20729 	}
20730 }
20731 
20732 static int do_check_common(struct bpf_verifier_env *env, int subprog)
20733 {
20734 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
20735 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
20736 	struct bpf_verifier_state *state;
20737 	struct bpf_reg_state *regs;
20738 	int ret, i;
20739 
20740 	env->prev_linfo = NULL;
20741 	env->pass_cnt++;
20742 
20743 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
20744 	if (!state)
20745 		return -ENOMEM;
20746 	state->curframe = 0;
20747 	state->speculative = false;
20748 	state->branches = 1;
20749 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
20750 	if (!state->frame[0]) {
20751 		kfree(state);
20752 		return -ENOMEM;
20753 	}
20754 	env->cur_state = state;
20755 	init_func_state(env, state->frame[0],
20756 			BPF_MAIN_FUNC /* callsite */,
20757 			0 /* frameno */,
20758 			subprog);
20759 	state->first_insn_idx = env->subprog_info[subprog].start;
20760 	state->last_insn_idx = -1;
20761 
20762 	regs = state->frame[state->curframe]->regs;
20763 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
20764 		const char *sub_name = subprog_name(env, subprog);
20765 		struct bpf_subprog_arg_info *arg;
20766 		struct bpf_reg_state *reg;
20767 
20768 		verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
20769 		ret = btf_prepare_func_args(env, subprog);
20770 		if (ret)
20771 			goto out;
20772 
20773 		if (subprog_is_exc_cb(env, subprog)) {
20774 			state->frame[0]->in_exception_callback_fn = true;
20775 			/* We have already ensured that the callback returns an integer, just
20776 			 * like all global subprogs. We need to determine it only has a single
20777 			 * scalar argument.
20778 			 */
20779 			if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) {
20780 				verbose(env, "exception cb only supports single integer argument\n");
20781 				ret = -EINVAL;
20782 				goto out;
20783 			}
20784 		}
20785 		for (i = BPF_REG_1; i <= sub->arg_cnt; i++) {
20786 			arg = &sub->args[i - BPF_REG_1];
20787 			reg = &regs[i];
20788 
20789 			if (arg->arg_type == ARG_PTR_TO_CTX) {
20790 				reg->type = PTR_TO_CTX;
20791 				mark_reg_known_zero(env, regs, i);
20792 			} else if (arg->arg_type == ARG_ANYTHING) {
20793 				reg->type = SCALAR_VALUE;
20794 				mark_reg_unknown(env, regs, i);
20795 			} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
20796 				/* assume unspecial LOCAL dynptr type */
20797 				__mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
20798 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
20799 				reg->type = PTR_TO_MEM;
20800 				if (arg->arg_type & PTR_MAYBE_NULL)
20801 					reg->type |= PTR_MAYBE_NULL;
20802 				mark_reg_known_zero(env, regs, i);
20803 				reg->mem_size = arg->mem_size;
20804 				reg->id = ++env->id_gen;
20805 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
20806 				reg->type = PTR_TO_BTF_ID;
20807 				if (arg->arg_type & PTR_MAYBE_NULL)
20808 					reg->type |= PTR_MAYBE_NULL;
20809 				if (arg->arg_type & PTR_UNTRUSTED)
20810 					reg->type |= PTR_UNTRUSTED;
20811 				if (arg->arg_type & PTR_TRUSTED)
20812 					reg->type |= PTR_TRUSTED;
20813 				mark_reg_known_zero(env, regs, i);
20814 				reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */
20815 				reg->btf_id = arg->btf_id;
20816 				reg->id = ++env->id_gen;
20817 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
20818 				/* caller can pass either PTR_TO_ARENA or SCALAR */
20819 				mark_reg_unknown(env, regs, i);
20820 			} else {
20821 				WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n",
20822 					  i - BPF_REG_1, arg->arg_type);
20823 				ret = -EFAULT;
20824 				goto out;
20825 			}
20826 		}
20827 	} else {
20828 		/* if main BPF program has associated BTF info, validate that
20829 		 * it's matching expected signature, and otherwise mark BTF
20830 		 * info for main program as unreliable
20831 		 */
20832 		if (env->prog->aux->func_info_aux) {
20833 			ret = btf_prepare_func_args(env, 0);
20834 			if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX)
20835 				env->prog->aux->func_info_aux[0].unreliable = true;
20836 		}
20837 
20838 		/* 1st arg to a function */
20839 		regs[BPF_REG_1].type = PTR_TO_CTX;
20840 		mark_reg_known_zero(env, regs, BPF_REG_1);
20841 	}
20842 
20843 	ret = do_check(env);
20844 out:
20845 	/* check for NULL is necessary, since cur_state can be freed inside
20846 	 * do_check() under memory pressure.
20847 	 */
20848 	if (env->cur_state) {
20849 		free_verifier_state(env->cur_state, true);
20850 		env->cur_state = NULL;
20851 	}
20852 	while (!pop_stack(env, NULL, NULL, false));
20853 	if (!ret && pop_log)
20854 		bpf_vlog_reset(&env->log, 0);
20855 	free_states(env);
20856 	return ret;
20857 }
20858 
20859 /* Lazily verify all global functions based on their BTF, if they are called
20860  * from main BPF program or any of subprograms transitively.
20861  * BPF global subprogs called from dead code are not validated.
20862  * All callable global functions must pass verification.
20863  * Otherwise the whole program is rejected.
20864  * Consider:
20865  * int bar(int);
20866  * int foo(int f)
20867  * {
20868  *    return bar(f);
20869  * }
20870  * int bar(int b)
20871  * {
20872  *    ...
20873  * }
20874  * foo() will be verified first for R1=any_scalar_value. During verification it
20875  * will be assumed that bar() already verified successfully and call to bar()
20876  * from foo() will be checked for type match only. Later bar() will be verified
20877  * independently to check that it's safe for R1=any_scalar_value.
20878  */
20879 static int do_check_subprogs(struct bpf_verifier_env *env)
20880 {
20881 	struct bpf_prog_aux *aux = env->prog->aux;
20882 	struct bpf_func_info_aux *sub_aux;
20883 	int i, ret, new_cnt;
20884 
20885 	if (!aux->func_info)
20886 		return 0;
20887 
20888 	/* exception callback is presumed to be always called */
20889 	if (env->exception_callback_subprog)
20890 		subprog_aux(env, env->exception_callback_subprog)->called = true;
20891 
20892 again:
20893 	new_cnt = 0;
20894 	for (i = 1; i < env->subprog_cnt; i++) {
20895 		if (!subprog_is_global(env, i))
20896 			continue;
20897 
20898 		sub_aux = subprog_aux(env, i);
20899 		if (!sub_aux->called || sub_aux->verified)
20900 			continue;
20901 
20902 		env->insn_idx = env->subprog_info[i].start;
20903 		WARN_ON_ONCE(env->insn_idx == 0);
20904 		ret = do_check_common(env, i);
20905 		if (ret) {
20906 			return ret;
20907 		} else if (env->log.level & BPF_LOG_LEVEL) {
20908 			verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
20909 				i, subprog_name(env, i));
20910 		}
20911 
20912 		/* We verified new global subprog, it might have called some
20913 		 * more global subprogs that we haven't verified yet, so we
20914 		 * need to do another pass over subprogs to verify those.
20915 		 */
20916 		sub_aux->verified = true;
20917 		new_cnt++;
20918 	}
20919 
20920 	/* We can't loop forever as we verify at least one global subprog on
20921 	 * each pass.
20922 	 */
20923 	if (new_cnt)
20924 		goto again;
20925 
20926 	return 0;
20927 }
20928 
20929 static int do_check_main(struct bpf_verifier_env *env)
20930 {
20931 	int ret;
20932 
20933 	env->insn_idx = 0;
20934 	ret = do_check_common(env, 0);
20935 	if (!ret)
20936 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
20937 	return ret;
20938 }
20939 
20940 
20941 static void print_verification_stats(struct bpf_verifier_env *env)
20942 {
20943 	int i;
20944 
20945 	if (env->log.level & BPF_LOG_STATS) {
20946 		verbose(env, "verification time %lld usec\n",
20947 			div_u64(env->verification_time, 1000));
20948 		verbose(env, "stack depth ");
20949 		for (i = 0; i < env->subprog_cnt; i++) {
20950 			u32 depth = env->subprog_info[i].stack_depth;
20951 
20952 			verbose(env, "%d", depth);
20953 			if (i + 1 < env->subprog_cnt)
20954 				verbose(env, "+");
20955 		}
20956 		verbose(env, "\n");
20957 	}
20958 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
20959 		"total_states %d peak_states %d mark_read %d\n",
20960 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
20961 		env->max_states_per_insn, env->total_states,
20962 		env->peak_states, env->longest_mark_read_walk);
20963 }
20964 
20965 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
20966 {
20967 	const struct btf_type *t, *func_proto;
20968 	const struct bpf_struct_ops_desc *st_ops_desc;
20969 	const struct bpf_struct_ops *st_ops;
20970 	const struct btf_member *member;
20971 	struct bpf_prog *prog = env->prog;
20972 	u32 btf_id, member_idx;
20973 	struct btf *btf;
20974 	const char *mname;
20975 
20976 	if (!prog->gpl_compatible) {
20977 		verbose(env, "struct ops programs must have a GPL compatible license\n");
20978 		return -EINVAL;
20979 	}
20980 
20981 	if (!prog->aux->attach_btf_id)
20982 		return -ENOTSUPP;
20983 
20984 	btf = prog->aux->attach_btf;
20985 	if (btf_is_module(btf)) {
20986 		/* Make sure st_ops is valid through the lifetime of env */
20987 		env->attach_btf_mod = btf_try_get_module(btf);
20988 		if (!env->attach_btf_mod) {
20989 			verbose(env, "struct_ops module %s is not found\n",
20990 				btf_get_name(btf));
20991 			return -ENOTSUPP;
20992 		}
20993 	}
20994 
20995 	btf_id = prog->aux->attach_btf_id;
20996 	st_ops_desc = bpf_struct_ops_find(btf, btf_id);
20997 	if (!st_ops_desc) {
20998 		verbose(env, "attach_btf_id %u is not a supported struct\n",
20999 			btf_id);
21000 		return -ENOTSUPP;
21001 	}
21002 	st_ops = st_ops_desc->st_ops;
21003 
21004 	t = st_ops_desc->type;
21005 	member_idx = prog->expected_attach_type;
21006 	if (member_idx >= btf_type_vlen(t)) {
21007 		verbose(env, "attach to invalid member idx %u of struct %s\n",
21008 			member_idx, st_ops->name);
21009 		return -EINVAL;
21010 	}
21011 
21012 	member = &btf_type_member(t)[member_idx];
21013 	mname = btf_name_by_offset(btf, member->name_off);
21014 	func_proto = btf_type_resolve_func_ptr(btf, member->type,
21015 					       NULL);
21016 	if (!func_proto) {
21017 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
21018 			mname, member_idx, st_ops->name);
21019 		return -EINVAL;
21020 	}
21021 
21022 	if (st_ops->check_member) {
21023 		int err = st_ops->check_member(t, member, prog);
21024 
21025 		if (err) {
21026 			verbose(env, "attach to unsupported member %s of struct %s\n",
21027 				mname, st_ops->name);
21028 			return err;
21029 		}
21030 	}
21031 
21032 	/* btf_ctx_access() used this to provide argument type info */
21033 	prog->aux->ctx_arg_info =
21034 		st_ops_desc->arg_info[member_idx].info;
21035 	prog->aux->ctx_arg_info_size =
21036 		st_ops_desc->arg_info[member_idx].cnt;
21037 
21038 	prog->aux->attach_func_proto = func_proto;
21039 	prog->aux->attach_func_name = mname;
21040 	env->ops = st_ops->verifier_ops;
21041 
21042 	return 0;
21043 }
21044 #define SECURITY_PREFIX "security_"
21045 
21046 static int check_attach_modify_return(unsigned long addr, const char *func_name)
21047 {
21048 	if (within_error_injection_list(addr) ||
21049 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
21050 		return 0;
21051 
21052 	return -EINVAL;
21053 }
21054 
21055 /* list of non-sleepable functions that are otherwise on
21056  * ALLOW_ERROR_INJECTION list
21057  */
21058 BTF_SET_START(btf_non_sleepable_error_inject)
21059 /* Three functions below can be called from sleepable and non-sleepable context.
21060  * Assume non-sleepable from bpf safety point of view.
21061  */
21062 BTF_ID(func, __filemap_add_folio)
21063 BTF_ID(func, should_fail_alloc_page)
21064 BTF_ID(func, should_failslab)
21065 BTF_SET_END(btf_non_sleepable_error_inject)
21066 
21067 static int check_non_sleepable_error_inject(u32 btf_id)
21068 {
21069 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
21070 }
21071 
21072 int bpf_check_attach_target(struct bpf_verifier_log *log,
21073 			    const struct bpf_prog *prog,
21074 			    const struct bpf_prog *tgt_prog,
21075 			    u32 btf_id,
21076 			    struct bpf_attach_target_info *tgt_info)
21077 {
21078 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
21079 	bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING;
21080 	const char prefix[] = "btf_trace_";
21081 	int ret = 0, subprog = -1, i;
21082 	const struct btf_type *t;
21083 	bool conservative = true;
21084 	const char *tname;
21085 	struct btf *btf;
21086 	long addr = 0;
21087 	struct module *mod = NULL;
21088 
21089 	if (!btf_id) {
21090 		bpf_log(log, "Tracing programs must provide btf_id\n");
21091 		return -EINVAL;
21092 	}
21093 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
21094 	if (!btf) {
21095 		bpf_log(log,
21096 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
21097 		return -EINVAL;
21098 	}
21099 	t = btf_type_by_id(btf, btf_id);
21100 	if (!t) {
21101 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
21102 		return -EINVAL;
21103 	}
21104 	tname = btf_name_by_offset(btf, t->name_off);
21105 	if (!tname) {
21106 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
21107 		return -EINVAL;
21108 	}
21109 	if (tgt_prog) {
21110 		struct bpf_prog_aux *aux = tgt_prog->aux;
21111 
21112 		if (bpf_prog_is_dev_bound(prog->aux) &&
21113 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
21114 			bpf_log(log, "Target program bound device mismatch");
21115 			return -EINVAL;
21116 		}
21117 
21118 		for (i = 0; i < aux->func_info_cnt; i++)
21119 			if (aux->func_info[i].type_id == btf_id) {
21120 				subprog = i;
21121 				break;
21122 			}
21123 		if (subprog == -1) {
21124 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
21125 			return -EINVAL;
21126 		}
21127 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
21128 			bpf_log(log,
21129 				"%s programs cannot attach to exception callback\n",
21130 				prog_extension ? "Extension" : "FENTRY/FEXIT");
21131 			return -EINVAL;
21132 		}
21133 		conservative = aux->func_info_aux[subprog].unreliable;
21134 		if (prog_extension) {
21135 			if (conservative) {
21136 				bpf_log(log,
21137 					"Cannot replace static functions\n");
21138 				return -EINVAL;
21139 			}
21140 			if (!prog->jit_requested) {
21141 				bpf_log(log,
21142 					"Extension programs should be JITed\n");
21143 				return -EINVAL;
21144 			}
21145 		}
21146 		if (!tgt_prog->jited) {
21147 			bpf_log(log, "Can attach to only JITed progs\n");
21148 			return -EINVAL;
21149 		}
21150 		if (prog_tracing) {
21151 			if (aux->attach_tracing_prog) {
21152 				/*
21153 				 * Target program is an fentry/fexit which is already attached
21154 				 * to another tracing program. More levels of nesting
21155 				 * attachment are not allowed.
21156 				 */
21157 				bpf_log(log, "Cannot nest tracing program attach more than once\n");
21158 				return -EINVAL;
21159 			}
21160 		} else if (tgt_prog->type == prog->type) {
21161 			/*
21162 			 * To avoid potential call chain cycles, prevent attaching of a
21163 			 * program extension to another extension. It's ok to attach
21164 			 * fentry/fexit to extension program.
21165 			 */
21166 			bpf_log(log, "Cannot recursively attach\n");
21167 			return -EINVAL;
21168 		}
21169 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
21170 		    prog_extension &&
21171 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
21172 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
21173 			/* Program extensions can extend all program types
21174 			 * except fentry/fexit. The reason is the following.
21175 			 * The fentry/fexit programs are used for performance
21176 			 * analysis, stats and can be attached to any program
21177 			 * type. When extension program is replacing XDP function
21178 			 * it is necessary to allow performance analysis of all
21179 			 * functions. Both original XDP program and its program
21180 			 * extension. Hence attaching fentry/fexit to
21181 			 * BPF_PROG_TYPE_EXT is allowed. If extending of
21182 			 * fentry/fexit was allowed it would be possible to create
21183 			 * long call chain fentry->extension->fentry->extension
21184 			 * beyond reasonable stack size. Hence extending fentry
21185 			 * is not allowed.
21186 			 */
21187 			bpf_log(log, "Cannot extend fentry/fexit\n");
21188 			return -EINVAL;
21189 		}
21190 	} else {
21191 		if (prog_extension) {
21192 			bpf_log(log, "Cannot replace kernel functions\n");
21193 			return -EINVAL;
21194 		}
21195 	}
21196 
21197 	switch (prog->expected_attach_type) {
21198 	case BPF_TRACE_RAW_TP:
21199 		if (tgt_prog) {
21200 			bpf_log(log,
21201 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
21202 			return -EINVAL;
21203 		}
21204 		if (!btf_type_is_typedef(t)) {
21205 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
21206 				btf_id);
21207 			return -EINVAL;
21208 		}
21209 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
21210 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
21211 				btf_id, tname);
21212 			return -EINVAL;
21213 		}
21214 		tname += sizeof(prefix) - 1;
21215 		t = btf_type_by_id(btf, t->type);
21216 		if (!btf_type_is_ptr(t))
21217 			/* should never happen in valid vmlinux build */
21218 			return -EINVAL;
21219 		t = btf_type_by_id(btf, t->type);
21220 		if (!btf_type_is_func_proto(t))
21221 			/* should never happen in valid vmlinux build */
21222 			return -EINVAL;
21223 
21224 		break;
21225 	case BPF_TRACE_ITER:
21226 		if (!btf_type_is_func(t)) {
21227 			bpf_log(log, "attach_btf_id %u is not a function\n",
21228 				btf_id);
21229 			return -EINVAL;
21230 		}
21231 		t = btf_type_by_id(btf, t->type);
21232 		if (!btf_type_is_func_proto(t))
21233 			return -EINVAL;
21234 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
21235 		if (ret)
21236 			return ret;
21237 		break;
21238 	default:
21239 		if (!prog_extension)
21240 			return -EINVAL;
21241 		fallthrough;
21242 	case BPF_MODIFY_RETURN:
21243 	case BPF_LSM_MAC:
21244 	case BPF_LSM_CGROUP:
21245 	case BPF_TRACE_FENTRY:
21246 	case BPF_TRACE_FEXIT:
21247 		if (!btf_type_is_func(t)) {
21248 			bpf_log(log, "attach_btf_id %u is not a function\n",
21249 				btf_id);
21250 			return -EINVAL;
21251 		}
21252 		if (prog_extension &&
21253 		    btf_check_type_match(log, prog, btf, t))
21254 			return -EINVAL;
21255 		t = btf_type_by_id(btf, t->type);
21256 		if (!btf_type_is_func_proto(t))
21257 			return -EINVAL;
21258 
21259 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
21260 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
21261 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
21262 			return -EINVAL;
21263 
21264 		if (tgt_prog && conservative)
21265 			t = NULL;
21266 
21267 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
21268 		if (ret < 0)
21269 			return ret;
21270 
21271 		if (tgt_prog) {
21272 			if (subprog == 0)
21273 				addr = (long) tgt_prog->bpf_func;
21274 			else
21275 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
21276 		} else {
21277 			if (btf_is_module(btf)) {
21278 				mod = btf_try_get_module(btf);
21279 				if (mod)
21280 					addr = find_kallsyms_symbol_value(mod, tname);
21281 				else
21282 					addr = 0;
21283 			} else {
21284 				addr = kallsyms_lookup_name(tname);
21285 			}
21286 			if (!addr) {
21287 				module_put(mod);
21288 				bpf_log(log,
21289 					"The address of function %s cannot be found\n",
21290 					tname);
21291 				return -ENOENT;
21292 			}
21293 		}
21294 
21295 		if (prog->sleepable) {
21296 			ret = -EINVAL;
21297 			switch (prog->type) {
21298 			case BPF_PROG_TYPE_TRACING:
21299 
21300 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
21301 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
21302 				 */
21303 				if (!check_non_sleepable_error_inject(btf_id) &&
21304 				    within_error_injection_list(addr))
21305 					ret = 0;
21306 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
21307 				 * in the fmodret id set with the KF_SLEEPABLE flag.
21308 				 */
21309 				else {
21310 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
21311 										prog);
21312 
21313 					if (flags && (*flags & KF_SLEEPABLE))
21314 						ret = 0;
21315 				}
21316 				break;
21317 			case BPF_PROG_TYPE_LSM:
21318 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
21319 				 * Only some of them are sleepable.
21320 				 */
21321 				if (bpf_lsm_is_sleepable_hook(btf_id))
21322 					ret = 0;
21323 				break;
21324 			default:
21325 				break;
21326 			}
21327 			if (ret) {
21328 				module_put(mod);
21329 				bpf_log(log, "%s is not sleepable\n", tname);
21330 				return ret;
21331 			}
21332 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
21333 			if (tgt_prog) {
21334 				module_put(mod);
21335 				bpf_log(log, "can't modify return codes of BPF programs\n");
21336 				return -EINVAL;
21337 			}
21338 			ret = -EINVAL;
21339 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
21340 			    !check_attach_modify_return(addr, tname))
21341 				ret = 0;
21342 			if (ret) {
21343 				module_put(mod);
21344 				bpf_log(log, "%s() is not modifiable\n", tname);
21345 				return ret;
21346 			}
21347 		}
21348 
21349 		break;
21350 	}
21351 	tgt_info->tgt_addr = addr;
21352 	tgt_info->tgt_name = tname;
21353 	tgt_info->tgt_type = t;
21354 	tgt_info->tgt_mod = mod;
21355 	return 0;
21356 }
21357 
21358 BTF_SET_START(btf_id_deny)
21359 BTF_ID_UNUSED
21360 #ifdef CONFIG_SMP
21361 BTF_ID(func, migrate_disable)
21362 BTF_ID(func, migrate_enable)
21363 #endif
21364 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
21365 BTF_ID(func, rcu_read_unlock_strict)
21366 #endif
21367 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
21368 BTF_ID(func, preempt_count_add)
21369 BTF_ID(func, preempt_count_sub)
21370 #endif
21371 #ifdef CONFIG_PREEMPT_RCU
21372 BTF_ID(func, __rcu_read_lock)
21373 BTF_ID(func, __rcu_read_unlock)
21374 #endif
21375 BTF_SET_END(btf_id_deny)
21376 
21377 static bool can_be_sleepable(struct bpf_prog *prog)
21378 {
21379 	if (prog->type == BPF_PROG_TYPE_TRACING) {
21380 		switch (prog->expected_attach_type) {
21381 		case BPF_TRACE_FENTRY:
21382 		case BPF_TRACE_FEXIT:
21383 		case BPF_MODIFY_RETURN:
21384 		case BPF_TRACE_ITER:
21385 			return true;
21386 		default:
21387 			return false;
21388 		}
21389 	}
21390 	return prog->type == BPF_PROG_TYPE_LSM ||
21391 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
21392 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
21393 }
21394 
21395 static int check_attach_btf_id(struct bpf_verifier_env *env)
21396 {
21397 	struct bpf_prog *prog = env->prog;
21398 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
21399 	struct bpf_attach_target_info tgt_info = {};
21400 	u32 btf_id = prog->aux->attach_btf_id;
21401 	struct bpf_trampoline *tr;
21402 	int ret;
21403 	u64 key;
21404 
21405 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
21406 		if (prog->sleepable)
21407 			/* attach_btf_id checked to be zero already */
21408 			return 0;
21409 		verbose(env, "Syscall programs can only be sleepable\n");
21410 		return -EINVAL;
21411 	}
21412 
21413 	if (prog->sleepable && !can_be_sleepable(prog)) {
21414 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
21415 		return -EINVAL;
21416 	}
21417 
21418 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
21419 		return check_struct_ops_btf_id(env);
21420 
21421 	if (prog->type != BPF_PROG_TYPE_TRACING &&
21422 	    prog->type != BPF_PROG_TYPE_LSM &&
21423 	    prog->type != BPF_PROG_TYPE_EXT)
21424 		return 0;
21425 
21426 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
21427 	if (ret)
21428 		return ret;
21429 
21430 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
21431 		/* to make freplace equivalent to their targets, they need to
21432 		 * inherit env->ops and expected_attach_type for the rest of the
21433 		 * verification
21434 		 */
21435 		env->ops = bpf_verifier_ops[tgt_prog->type];
21436 		prog->expected_attach_type = tgt_prog->expected_attach_type;
21437 	}
21438 
21439 	/* store info about the attachment target that will be used later */
21440 	prog->aux->attach_func_proto = tgt_info.tgt_type;
21441 	prog->aux->attach_func_name = tgt_info.tgt_name;
21442 	prog->aux->mod = tgt_info.tgt_mod;
21443 
21444 	if (tgt_prog) {
21445 		prog->aux->saved_dst_prog_type = tgt_prog->type;
21446 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
21447 	}
21448 
21449 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
21450 		prog->aux->attach_btf_trace = true;
21451 		return 0;
21452 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
21453 		if (!bpf_iter_prog_supported(prog))
21454 			return -EINVAL;
21455 		return 0;
21456 	}
21457 
21458 	if (prog->type == BPF_PROG_TYPE_LSM) {
21459 		ret = bpf_lsm_verify_prog(&env->log, prog);
21460 		if (ret < 0)
21461 			return ret;
21462 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
21463 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
21464 		return -EINVAL;
21465 	}
21466 
21467 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
21468 	tr = bpf_trampoline_get(key, &tgt_info);
21469 	if (!tr)
21470 		return -ENOMEM;
21471 
21472 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
21473 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
21474 
21475 	prog->aux->dst_trampoline = tr;
21476 	return 0;
21477 }
21478 
21479 struct btf *bpf_get_btf_vmlinux(void)
21480 {
21481 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
21482 		mutex_lock(&bpf_verifier_lock);
21483 		if (!btf_vmlinux)
21484 			btf_vmlinux = btf_parse_vmlinux();
21485 		mutex_unlock(&bpf_verifier_lock);
21486 	}
21487 	return btf_vmlinux;
21488 }
21489 
21490 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
21491 {
21492 	u64 start_time = ktime_get_ns();
21493 	struct bpf_verifier_env *env;
21494 	int i, len, ret = -EINVAL, err;
21495 	u32 log_true_size;
21496 	bool is_priv;
21497 
21498 	/* no program is valid */
21499 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
21500 		return -EINVAL;
21501 
21502 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
21503 	 * allocate/free it every time bpf_check() is called
21504 	 */
21505 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
21506 	if (!env)
21507 		return -ENOMEM;
21508 
21509 	env->bt.env = env;
21510 
21511 	len = (*prog)->len;
21512 	env->insn_aux_data =
21513 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
21514 	ret = -ENOMEM;
21515 	if (!env->insn_aux_data)
21516 		goto err_free_env;
21517 	for (i = 0; i < len; i++)
21518 		env->insn_aux_data[i].orig_idx = i;
21519 	env->prog = *prog;
21520 	env->ops = bpf_verifier_ops[env->prog->type];
21521 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
21522 
21523 	env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
21524 	env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
21525 	env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token);
21526 	env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token);
21527 	env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF);
21528 
21529 	bpf_get_btf_vmlinux();
21530 
21531 	/* grab the mutex to protect few globals used by verifier */
21532 	if (!is_priv)
21533 		mutex_lock(&bpf_verifier_lock);
21534 
21535 	/* user could have requested verbose verifier output
21536 	 * and supplied buffer to store the verification trace
21537 	 */
21538 	ret = bpf_vlog_init(&env->log, attr->log_level,
21539 			    (char __user *) (unsigned long) attr->log_buf,
21540 			    attr->log_size);
21541 	if (ret)
21542 		goto err_unlock;
21543 
21544 	mark_verifier_state_clean(env);
21545 
21546 	if (IS_ERR(btf_vmlinux)) {
21547 		/* Either gcc or pahole or kernel are broken. */
21548 		verbose(env, "in-kernel BTF is malformed\n");
21549 		ret = PTR_ERR(btf_vmlinux);
21550 		goto skip_full_check;
21551 	}
21552 
21553 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
21554 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
21555 		env->strict_alignment = true;
21556 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
21557 		env->strict_alignment = false;
21558 
21559 	if (is_priv)
21560 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
21561 	env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
21562 
21563 	env->explored_states = kvcalloc(state_htab_size(env),
21564 				       sizeof(struct bpf_verifier_state_list *),
21565 				       GFP_USER);
21566 	ret = -ENOMEM;
21567 	if (!env->explored_states)
21568 		goto skip_full_check;
21569 
21570 	ret = check_btf_info_early(env, attr, uattr);
21571 	if (ret < 0)
21572 		goto skip_full_check;
21573 
21574 	ret = add_subprog_and_kfunc(env);
21575 	if (ret < 0)
21576 		goto skip_full_check;
21577 
21578 	ret = check_subprogs(env);
21579 	if (ret < 0)
21580 		goto skip_full_check;
21581 
21582 	ret = check_btf_info(env, attr, uattr);
21583 	if (ret < 0)
21584 		goto skip_full_check;
21585 
21586 	ret = check_attach_btf_id(env);
21587 	if (ret)
21588 		goto skip_full_check;
21589 
21590 	ret = resolve_pseudo_ldimm64(env);
21591 	if (ret < 0)
21592 		goto skip_full_check;
21593 
21594 	if (bpf_prog_is_offloaded(env->prog->aux)) {
21595 		ret = bpf_prog_offload_verifier_prep(env->prog);
21596 		if (ret)
21597 			goto skip_full_check;
21598 	}
21599 
21600 	ret = check_cfg(env);
21601 	if (ret < 0)
21602 		goto skip_full_check;
21603 
21604 	ret = do_check_main(env);
21605 	ret = ret ?: do_check_subprogs(env);
21606 
21607 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
21608 		ret = bpf_prog_offload_finalize(env);
21609 
21610 skip_full_check:
21611 	kvfree(env->explored_states);
21612 
21613 	if (ret == 0)
21614 		ret = check_max_stack_depth(env);
21615 
21616 	/* instruction rewrites happen after this point */
21617 	if (ret == 0)
21618 		ret = optimize_bpf_loop(env);
21619 
21620 	if (is_priv) {
21621 		if (ret == 0)
21622 			opt_hard_wire_dead_code_branches(env);
21623 		if (ret == 0)
21624 			ret = opt_remove_dead_code(env);
21625 		if (ret == 0)
21626 			ret = opt_remove_nops(env);
21627 	} else {
21628 		if (ret == 0)
21629 			sanitize_dead_code(env);
21630 	}
21631 
21632 	if (ret == 0)
21633 		/* program is valid, convert *(u32*)(ctx + off) accesses */
21634 		ret = convert_ctx_accesses(env);
21635 
21636 	if (ret == 0)
21637 		ret = do_misc_fixups(env);
21638 
21639 	/* do 32-bit optimization after insn patching has done so those patched
21640 	 * insns could be handled correctly.
21641 	 */
21642 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
21643 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
21644 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
21645 								     : false;
21646 	}
21647 
21648 	if (ret == 0)
21649 		ret = fixup_call_args(env);
21650 
21651 	env->verification_time = ktime_get_ns() - start_time;
21652 	print_verification_stats(env);
21653 	env->prog->aux->verified_insns = env->insn_processed;
21654 
21655 	/* preserve original error even if log finalization is successful */
21656 	err = bpf_vlog_finalize(&env->log, &log_true_size);
21657 	if (err)
21658 		ret = err;
21659 
21660 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
21661 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
21662 				  &log_true_size, sizeof(log_true_size))) {
21663 		ret = -EFAULT;
21664 		goto err_release_maps;
21665 	}
21666 
21667 	if (ret)
21668 		goto err_release_maps;
21669 
21670 	if (env->used_map_cnt) {
21671 		/* if program passed verifier, update used_maps in bpf_prog_info */
21672 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
21673 							  sizeof(env->used_maps[0]),
21674 							  GFP_KERNEL);
21675 
21676 		if (!env->prog->aux->used_maps) {
21677 			ret = -ENOMEM;
21678 			goto err_release_maps;
21679 		}
21680 
21681 		memcpy(env->prog->aux->used_maps, env->used_maps,
21682 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
21683 		env->prog->aux->used_map_cnt = env->used_map_cnt;
21684 	}
21685 	if (env->used_btf_cnt) {
21686 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
21687 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
21688 							  sizeof(env->used_btfs[0]),
21689 							  GFP_KERNEL);
21690 		if (!env->prog->aux->used_btfs) {
21691 			ret = -ENOMEM;
21692 			goto err_release_maps;
21693 		}
21694 
21695 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
21696 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
21697 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
21698 	}
21699 	if (env->used_map_cnt || env->used_btf_cnt) {
21700 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
21701 		 * bpf_ld_imm64 instructions
21702 		 */
21703 		convert_pseudo_ld_imm64(env);
21704 	}
21705 
21706 	adjust_btf_func(env);
21707 
21708 err_release_maps:
21709 	if (!env->prog->aux->used_maps)
21710 		/* if we didn't copy map pointers into bpf_prog_info, release
21711 		 * them now. Otherwise free_used_maps() will release them.
21712 		 */
21713 		release_maps(env);
21714 	if (!env->prog->aux->used_btfs)
21715 		release_btfs(env);
21716 
21717 	/* extension progs temporarily inherit the attach_type of their targets
21718 	   for verification purposes, so set it back to zero before returning
21719 	 */
21720 	if (env->prog->type == BPF_PROG_TYPE_EXT)
21721 		env->prog->expected_attach_type = 0;
21722 
21723 	*prog = env->prog;
21724 
21725 	module_put(env->attach_btf_mod);
21726 err_unlock:
21727 	if (!is_priv)
21728 		mutex_unlock(&bpf_verifier_lock);
21729 	vfree(env->insn_aux_data);
21730 err_free_env:
21731 	kfree(env);
21732 	return ret;
21733 }
21734