xref: /linux/kernel/bpf/verifier.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 
23 #include "disasm.h"
24 
25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
26 #define BPF_PROG_TYPE(_id, _name) \
27 	[_id] = & _name ## _verifier_ops,
28 #define BPF_MAP_TYPE(_id, _ops)
29 #include <linux/bpf_types.h>
30 #undef BPF_PROG_TYPE
31 #undef BPF_MAP_TYPE
32 };
33 
34 /* bpf_check() is a static code analyzer that walks eBPF program
35  * instruction by instruction and updates register/stack state.
36  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37  *
38  * The first pass is depth-first-search to check that the program is a DAG.
39  * It rejects the following programs:
40  * - larger than BPF_MAXINSNS insns
41  * - if loop is present (detected via back-edge)
42  * - unreachable insns exist (shouldn't be a forest. program = one function)
43  * - out of bounds or malformed jumps
44  * The second pass is all possible path descent from the 1st insn.
45  * Since it's analyzing all pathes through the program, the length of the
46  * analysis is limited to 64k insn, which may be hit even if total number of
47  * insn is less then 4K, but there are too many branches that change stack/regs.
48  * Number of 'branches to be analyzed' is limited to 1k
49  *
50  * On entry to each instruction, each register has a type, and the instruction
51  * changes the types of the registers depending on instruction semantics.
52  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53  * copied to R1.
54  *
55  * All registers are 64-bit.
56  * R0 - return register
57  * R1-R5 argument passing registers
58  * R6-R9 callee saved registers
59  * R10 - frame pointer read-only
60  *
61  * At the start of BPF program the register R1 contains a pointer to bpf_context
62  * and has type PTR_TO_CTX.
63  *
64  * Verifier tracks arithmetic operations on pointers in case:
65  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67  * 1st insn copies R10 (which has FRAME_PTR) type into R1
68  * and 2nd arithmetic instruction is pattern matched to recognize
69  * that it wants to construct a pointer to some element within stack.
70  * So after 2nd insn, the register R1 has type PTR_TO_STACK
71  * (and -20 constant is saved for further stack bounds checking).
72  * Meaning that this reg is a pointer to stack plus known immediate constant.
73  *
74  * Most of the time the registers have SCALAR_VALUE type, which
75  * means the register has some value, but it's not a valid pointer.
76  * (like pointer plus pointer becomes SCALAR_VALUE type)
77  *
78  * When verifier sees load or store instructions the type of base register
79  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80  * four pointer types recognized by check_mem_access() function.
81  *
82  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83  * and the range of [ptr, ptr + map's value_size) is accessible.
84  *
85  * registers used to pass values to function calls are checked against
86  * function argument constraints.
87  *
88  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89  * It means that the register type passed to this function must be
90  * PTR_TO_STACK and it will be used inside the function as
91  * 'pointer to map element key'
92  *
93  * For example the argument constraints for bpf_map_lookup_elem():
94  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95  *   .arg1_type = ARG_CONST_MAP_PTR,
96  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
97  *
98  * ret_type says that this function returns 'pointer to map elem value or null'
99  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100  * 2nd argument should be a pointer to stack, which will be used inside
101  * the helper function as a pointer to map element key.
102  *
103  * On the kernel side the helper function looks like:
104  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105  * {
106  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107  *    void *key = (void *) (unsigned long) r2;
108  *    void *value;
109  *
110  *    here kernel can access 'key' and 'map' pointers safely, knowing that
111  *    [key, key + map->key_size) bytes are valid and were initialized on
112  *    the stack of eBPF program.
113  * }
114  *
115  * Corresponding eBPF program may look like:
116  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
117  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
119  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120  * here verifier looks at prototype of map_lookup_elem() and sees:
121  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123  *
124  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126  * and were initialized prior to this call.
127  * If it's ok, then verifier allows this BPF_CALL insn and looks at
128  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130  * returns ether pointer to map value or NULL.
131  *
132  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133  * insn, the register holding that pointer in the true branch changes state to
134  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135  * branch. See check_cond_jmp_op().
136  *
137  * After the call R0 is set to return type of the function and registers R1-R5
138  * are set to NOT_INIT to indicate that they are no longer readable.
139  *
140  * The following reference types represent a potential reference to a kernel
141  * resource which, after first being allocated, must be checked and freed by
142  * the BPF program:
143  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144  *
145  * When the verifier sees a helper call return a reference type, it allocates a
146  * pointer id for the reference and stores it in the current function state.
147  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149  * passes through a NULL-check conditional. For the branch wherein the state is
150  * changed to CONST_IMM, the verifier releases the reference.
151  *
152  * For each helper function that allocates a reference, such as
153  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154  * bpf_sk_release(). When a reference type passes into the release function,
155  * the verifier also releases the reference. If any unchecked or unreleased
156  * reference remains at the end of the program, the verifier rejects it.
157  */
158 
159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
160 struct bpf_verifier_stack_elem {
161 	/* verifer state is 'st'
162 	 * before processing instruction 'insn_idx'
163 	 * and after processing instruction 'prev_insn_idx'
164 	 */
165 	struct bpf_verifier_state st;
166 	int insn_idx;
167 	int prev_insn_idx;
168 	struct bpf_verifier_stack_elem *next;
169 };
170 
171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
172 #define BPF_COMPLEXITY_LIMIT_STATES	64
173 
174 #define BPF_MAP_PTR_UNPRIV	1UL
175 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
176 					  POISON_POINTER_DELTA))
177 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
178 
179 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
180 {
181 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
182 }
183 
184 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
185 {
186 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
187 }
188 
189 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
190 			      const struct bpf_map *map, bool unpriv)
191 {
192 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
193 	unpriv |= bpf_map_ptr_unpriv(aux);
194 	aux->map_state = (unsigned long)map |
195 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
196 }
197 
198 struct bpf_call_arg_meta {
199 	struct bpf_map *map_ptr;
200 	bool raw_mode;
201 	bool pkt_access;
202 	int regno;
203 	int access_size;
204 	s64 msize_smax_value;
205 	u64 msize_umax_value;
206 	int ref_obj_id;
207 	int func_id;
208 };
209 
210 static DEFINE_MUTEX(bpf_verifier_lock);
211 
212 static const struct bpf_line_info *
213 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
214 {
215 	const struct bpf_line_info *linfo;
216 	const struct bpf_prog *prog;
217 	u32 i, nr_linfo;
218 
219 	prog = env->prog;
220 	nr_linfo = prog->aux->nr_linfo;
221 
222 	if (!nr_linfo || insn_off >= prog->len)
223 		return NULL;
224 
225 	linfo = prog->aux->linfo;
226 	for (i = 1; i < nr_linfo; i++)
227 		if (insn_off < linfo[i].insn_off)
228 			break;
229 
230 	return &linfo[i - 1];
231 }
232 
233 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
234 		       va_list args)
235 {
236 	unsigned int n;
237 
238 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
239 
240 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
241 		  "verifier log line truncated - local buffer too short\n");
242 
243 	n = min(log->len_total - log->len_used - 1, n);
244 	log->kbuf[n] = '\0';
245 
246 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
247 		log->len_used += n;
248 	else
249 		log->ubuf = NULL;
250 }
251 
252 /* log_level controls verbosity level of eBPF verifier.
253  * bpf_verifier_log_write() is used to dump the verification trace to the log,
254  * so the user can figure out what's wrong with the program
255  */
256 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
257 					   const char *fmt, ...)
258 {
259 	va_list args;
260 
261 	if (!bpf_verifier_log_needed(&env->log))
262 		return;
263 
264 	va_start(args, fmt);
265 	bpf_verifier_vlog(&env->log, fmt, args);
266 	va_end(args);
267 }
268 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
269 
270 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
271 {
272 	struct bpf_verifier_env *env = private_data;
273 	va_list args;
274 
275 	if (!bpf_verifier_log_needed(&env->log))
276 		return;
277 
278 	va_start(args, fmt);
279 	bpf_verifier_vlog(&env->log, fmt, args);
280 	va_end(args);
281 }
282 
283 static const char *ltrim(const char *s)
284 {
285 	while (isspace(*s))
286 		s++;
287 
288 	return s;
289 }
290 
291 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
292 					 u32 insn_off,
293 					 const char *prefix_fmt, ...)
294 {
295 	const struct bpf_line_info *linfo;
296 
297 	if (!bpf_verifier_log_needed(&env->log))
298 		return;
299 
300 	linfo = find_linfo(env, insn_off);
301 	if (!linfo || linfo == env->prev_linfo)
302 		return;
303 
304 	if (prefix_fmt) {
305 		va_list args;
306 
307 		va_start(args, prefix_fmt);
308 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
309 		va_end(args);
310 	}
311 
312 	verbose(env, "%s\n",
313 		ltrim(btf_name_by_offset(env->prog->aux->btf,
314 					 linfo->line_off)));
315 
316 	env->prev_linfo = linfo;
317 }
318 
319 static bool type_is_pkt_pointer(enum bpf_reg_type type)
320 {
321 	return type == PTR_TO_PACKET ||
322 	       type == PTR_TO_PACKET_META;
323 }
324 
325 static bool type_is_sk_pointer(enum bpf_reg_type type)
326 {
327 	return type == PTR_TO_SOCKET ||
328 		type == PTR_TO_SOCK_COMMON ||
329 		type == PTR_TO_TCP_SOCK ||
330 		type == PTR_TO_XDP_SOCK;
331 }
332 
333 static bool reg_type_may_be_null(enum bpf_reg_type type)
334 {
335 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
336 	       type == PTR_TO_SOCKET_OR_NULL ||
337 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
338 	       type == PTR_TO_TCP_SOCK_OR_NULL;
339 }
340 
341 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
342 {
343 	return reg->type == PTR_TO_MAP_VALUE &&
344 		map_value_has_spin_lock(reg->map_ptr);
345 }
346 
347 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
348 {
349 	return type == PTR_TO_SOCKET ||
350 		type == PTR_TO_SOCKET_OR_NULL ||
351 		type == PTR_TO_TCP_SOCK ||
352 		type == PTR_TO_TCP_SOCK_OR_NULL;
353 }
354 
355 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
356 {
357 	return type == ARG_PTR_TO_SOCK_COMMON;
358 }
359 
360 /* Determine whether the function releases some resources allocated by another
361  * function call. The first reference type argument will be assumed to be
362  * released by release_reference().
363  */
364 static bool is_release_function(enum bpf_func_id func_id)
365 {
366 	return func_id == BPF_FUNC_sk_release;
367 }
368 
369 static bool is_acquire_function(enum bpf_func_id func_id)
370 {
371 	return func_id == BPF_FUNC_sk_lookup_tcp ||
372 		func_id == BPF_FUNC_sk_lookup_udp ||
373 		func_id == BPF_FUNC_skc_lookup_tcp;
374 }
375 
376 static bool is_ptr_cast_function(enum bpf_func_id func_id)
377 {
378 	return func_id == BPF_FUNC_tcp_sock ||
379 		func_id == BPF_FUNC_sk_fullsock;
380 }
381 
382 /* string representation of 'enum bpf_reg_type' */
383 static const char * const reg_type_str[] = {
384 	[NOT_INIT]		= "?",
385 	[SCALAR_VALUE]		= "inv",
386 	[PTR_TO_CTX]		= "ctx",
387 	[CONST_PTR_TO_MAP]	= "map_ptr",
388 	[PTR_TO_MAP_VALUE]	= "map_value",
389 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
390 	[PTR_TO_STACK]		= "fp",
391 	[PTR_TO_PACKET]		= "pkt",
392 	[PTR_TO_PACKET_META]	= "pkt_meta",
393 	[PTR_TO_PACKET_END]	= "pkt_end",
394 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
395 	[PTR_TO_SOCKET]		= "sock",
396 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
397 	[PTR_TO_SOCK_COMMON]	= "sock_common",
398 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
399 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
400 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
401 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
402 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
403 };
404 
405 static char slot_type_char[] = {
406 	[STACK_INVALID]	= '?',
407 	[STACK_SPILL]	= 'r',
408 	[STACK_MISC]	= 'm',
409 	[STACK_ZERO]	= '0',
410 };
411 
412 static void print_liveness(struct bpf_verifier_env *env,
413 			   enum bpf_reg_liveness live)
414 {
415 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
416 	    verbose(env, "_");
417 	if (live & REG_LIVE_READ)
418 		verbose(env, "r");
419 	if (live & REG_LIVE_WRITTEN)
420 		verbose(env, "w");
421 	if (live & REG_LIVE_DONE)
422 		verbose(env, "D");
423 }
424 
425 static struct bpf_func_state *func(struct bpf_verifier_env *env,
426 				   const struct bpf_reg_state *reg)
427 {
428 	struct bpf_verifier_state *cur = env->cur_state;
429 
430 	return cur->frame[reg->frameno];
431 }
432 
433 static void print_verifier_state(struct bpf_verifier_env *env,
434 				 const struct bpf_func_state *state)
435 {
436 	const struct bpf_reg_state *reg;
437 	enum bpf_reg_type t;
438 	int i;
439 
440 	if (state->frameno)
441 		verbose(env, " frame%d:", state->frameno);
442 	for (i = 0; i < MAX_BPF_REG; i++) {
443 		reg = &state->regs[i];
444 		t = reg->type;
445 		if (t == NOT_INIT)
446 			continue;
447 		verbose(env, " R%d", i);
448 		print_liveness(env, reg->live);
449 		verbose(env, "=%s", reg_type_str[t]);
450 		if (t == SCALAR_VALUE && reg->precise)
451 			verbose(env, "P");
452 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
453 		    tnum_is_const(reg->var_off)) {
454 			/* reg->off should be 0 for SCALAR_VALUE */
455 			verbose(env, "%lld", reg->var_off.value + reg->off);
456 		} else {
457 			verbose(env, "(id=%d", reg->id);
458 			if (reg_type_may_be_refcounted_or_null(t))
459 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
460 			if (t != SCALAR_VALUE)
461 				verbose(env, ",off=%d", reg->off);
462 			if (type_is_pkt_pointer(t))
463 				verbose(env, ",r=%d", reg->range);
464 			else if (t == CONST_PTR_TO_MAP ||
465 				 t == PTR_TO_MAP_VALUE ||
466 				 t == PTR_TO_MAP_VALUE_OR_NULL)
467 				verbose(env, ",ks=%d,vs=%d",
468 					reg->map_ptr->key_size,
469 					reg->map_ptr->value_size);
470 			if (tnum_is_const(reg->var_off)) {
471 				/* Typically an immediate SCALAR_VALUE, but
472 				 * could be a pointer whose offset is too big
473 				 * for reg->off
474 				 */
475 				verbose(env, ",imm=%llx", reg->var_off.value);
476 			} else {
477 				if (reg->smin_value != reg->umin_value &&
478 				    reg->smin_value != S64_MIN)
479 					verbose(env, ",smin_value=%lld",
480 						(long long)reg->smin_value);
481 				if (reg->smax_value != reg->umax_value &&
482 				    reg->smax_value != S64_MAX)
483 					verbose(env, ",smax_value=%lld",
484 						(long long)reg->smax_value);
485 				if (reg->umin_value != 0)
486 					verbose(env, ",umin_value=%llu",
487 						(unsigned long long)reg->umin_value);
488 				if (reg->umax_value != U64_MAX)
489 					verbose(env, ",umax_value=%llu",
490 						(unsigned long long)reg->umax_value);
491 				if (!tnum_is_unknown(reg->var_off)) {
492 					char tn_buf[48];
493 
494 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
495 					verbose(env, ",var_off=%s", tn_buf);
496 				}
497 			}
498 			verbose(env, ")");
499 		}
500 	}
501 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
502 		char types_buf[BPF_REG_SIZE + 1];
503 		bool valid = false;
504 		int j;
505 
506 		for (j = 0; j < BPF_REG_SIZE; j++) {
507 			if (state->stack[i].slot_type[j] != STACK_INVALID)
508 				valid = true;
509 			types_buf[j] = slot_type_char[
510 					state->stack[i].slot_type[j]];
511 		}
512 		types_buf[BPF_REG_SIZE] = 0;
513 		if (!valid)
514 			continue;
515 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
516 		print_liveness(env, state->stack[i].spilled_ptr.live);
517 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
518 			reg = &state->stack[i].spilled_ptr;
519 			t = reg->type;
520 			verbose(env, "=%s", reg_type_str[t]);
521 			if (t == SCALAR_VALUE && reg->precise)
522 				verbose(env, "P");
523 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
524 				verbose(env, "%lld", reg->var_off.value + reg->off);
525 		} else {
526 			verbose(env, "=%s", types_buf);
527 		}
528 	}
529 	if (state->acquired_refs && state->refs[0].id) {
530 		verbose(env, " refs=%d", state->refs[0].id);
531 		for (i = 1; i < state->acquired_refs; i++)
532 			if (state->refs[i].id)
533 				verbose(env, ",%d", state->refs[i].id);
534 	}
535 	verbose(env, "\n");
536 }
537 
538 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
539 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
540 			       const struct bpf_func_state *src)	\
541 {									\
542 	if (!src->FIELD)						\
543 		return 0;						\
544 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
545 		/* internal bug, make state invalid to reject the program */ \
546 		memset(dst, 0, sizeof(*dst));				\
547 		return -EFAULT;						\
548 	}								\
549 	memcpy(dst->FIELD, src->FIELD,					\
550 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
551 	return 0;							\
552 }
553 /* copy_reference_state() */
554 COPY_STATE_FN(reference, acquired_refs, refs, 1)
555 /* copy_stack_state() */
556 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
557 #undef COPY_STATE_FN
558 
559 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
560 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
561 				  bool copy_old)			\
562 {									\
563 	u32 old_size = state->COUNT;					\
564 	struct bpf_##NAME##_state *new_##FIELD;				\
565 	int slot = size / SIZE;						\
566 									\
567 	if (size <= old_size || !size) {				\
568 		if (copy_old)						\
569 			return 0;					\
570 		state->COUNT = slot * SIZE;				\
571 		if (!size && old_size) {				\
572 			kfree(state->FIELD);				\
573 			state->FIELD = NULL;				\
574 		}							\
575 		return 0;						\
576 	}								\
577 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
578 				    GFP_KERNEL);			\
579 	if (!new_##FIELD)						\
580 		return -ENOMEM;						\
581 	if (copy_old) {							\
582 		if (state->FIELD)					\
583 			memcpy(new_##FIELD, state->FIELD,		\
584 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
585 		memset(new_##FIELD + old_size / SIZE, 0,		\
586 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
587 	}								\
588 	state->COUNT = slot * SIZE;					\
589 	kfree(state->FIELD);						\
590 	state->FIELD = new_##FIELD;					\
591 	return 0;							\
592 }
593 /* realloc_reference_state() */
594 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
595 /* realloc_stack_state() */
596 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
597 #undef REALLOC_STATE_FN
598 
599 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
600  * make it consume minimal amount of memory. check_stack_write() access from
601  * the program calls into realloc_func_state() to grow the stack size.
602  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
603  * which realloc_stack_state() copies over. It points to previous
604  * bpf_verifier_state which is never reallocated.
605  */
606 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
607 			      int refs_size, bool copy_old)
608 {
609 	int err = realloc_reference_state(state, refs_size, copy_old);
610 	if (err)
611 		return err;
612 	return realloc_stack_state(state, stack_size, copy_old);
613 }
614 
615 /* Acquire a pointer id from the env and update the state->refs to include
616  * this new pointer reference.
617  * On success, returns a valid pointer id to associate with the register
618  * On failure, returns a negative errno.
619  */
620 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
621 {
622 	struct bpf_func_state *state = cur_func(env);
623 	int new_ofs = state->acquired_refs;
624 	int id, err;
625 
626 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
627 	if (err)
628 		return err;
629 	id = ++env->id_gen;
630 	state->refs[new_ofs].id = id;
631 	state->refs[new_ofs].insn_idx = insn_idx;
632 
633 	return id;
634 }
635 
636 /* release function corresponding to acquire_reference_state(). Idempotent. */
637 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
638 {
639 	int i, last_idx;
640 
641 	last_idx = state->acquired_refs - 1;
642 	for (i = 0; i < state->acquired_refs; i++) {
643 		if (state->refs[i].id == ptr_id) {
644 			if (last_idx && i != last_idx)
645 				memcpy(&state->refs[i], &state->refs[last_idx],
646 				       sizeof(*state->refs));
647 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
648 			state->acquired_refs--;
649 			return 0;
650 		}
651 	}
652 	return -EINVAL;
653 }
654 
655 static int transfer_reference_state(struct bpf_func_state *dst,
656 				    struct bpf_func_state *src)
657 {
658 	int err = realloc_reference_state(dst, src->acquired_refs, false);
659 	if (err)
660 		return err;
661 	err = copy_reference_state(dst, src);
662 	if (err)
663 		return err;
664 	return 0;
665 }
666 
667 static void free_func_state(struct bpf_func_state *state)
668 {
669 	if (!state)
670 		return;
671 	kfree(state->refs);
672 	kfree(state->stack);
673 	kfree(state);
674 }
675 
676 static void clear_jmp_history(struct bpf_verifier_state *state)
677 {
678 	kfree(state->jmp_history);
679 	state->jmp_history = NULL;
680 	state->jmp_history_cnt = 0;
681 }
682 
683 static void free_verifier_state(struct bpf_verifier_state *state,
684 				bool free_self)
685 {
686 	int i;
687 
688 	for (i = 0; i <= state->curframe; i++) {
689 		free_func_state(state->frame[i]);
690 		state->frame[i] = NULL;
691 	}
692 	clear_jmp_history(state);
693 	if (free_self)
694 		kfree(state);
695 }
696 
697 /* copy verifier state from src to dst growing dst stack space
698  * when necessary to accommodate larger src stack
699  */
700 static int copy_func_state(struct bpf_func_state *dst,
701 			   const struct bpf_func_state *src)
702 {
703 	int err;
704 
705 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
706 				 false);
707 	if (err)
708 		return err;
709 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
710 	err = copy_reference_state(dst, src);
711 	if (err)
712 		return err;
713 	return copy_stack_state(dst, src);
714 }
715 
716 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
717 			       const struct bpf_verifier_state *src)
718 {
719 	struct bpf_func_state *dst;
720 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
721 	int i, err;
722 
723 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
724 		kfree(dst_state->jmp_history);
725 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
726 		if (!dst_state->jmp_history)
727 			return -ENOMEM;
728 	}
729 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
730 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
731 
732 	/* if dst has more stack frames then src frame, free them */
733 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
734 		free_func_state(dst_state->frame[i]);
735 		dst_state->frame[i] = NULL;
736 	}
737 	dst_state->speculative = src->speculative;
738 	dst_state->curframe = src->curframe;
739 	dst_state->active_spin_lock = src->active_spin_lock;
740 	dst_state->branches = src->branches;
741 	dst_state->parent = src->parent;
742 	dst_state->first_insn_idx = src->first_insn_idx;
743 	dst_state->last_insn_idx = src->last_insn_idx;
744 	for (i = 0; i <= src->curframe; i++) {
745 		dst = dst_state->frame[i];
746 		if (!dst) {
747 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
748 			if (!dst)
749 				return -ENOMEM;
750 			dst_state->frame[i] = dst;
751 		}
752 		err = copy_func_state(dst, src->frame[i]);
753 		if (err)
754 			return err;
755 	}
756 	return 0;
757 }
758 
759 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
760 {
761 	while (st) {
762 		u32 br = --st->branches;
763 
764 		/* WARN_ON(br > 1) technically makes sense here,
765 		 * but see comment in push_stack(), hence:
766 		 */
767 		WARN_ONCE((int)br < 0,
768 			  "BUG update_branch_counts:branches_to_explore=%d\n",
769 			  br);
770 		if (br)
771 			break;
772 		st = st->parent;
773 	}
774 }
775 
776 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
777 		     int *insn_idx)
778 {
779 	struct bpf_verifier_state *cur = env->cur_state;
780 	struct bpf_verifier_stack_elem *elem, *head = env->head;
781 	int err;
782 
783 	if (env->head == NULL)
784 		return -ENOENT;
785 
786 	if (cur) {
787 		err = copy_verifier_state(cur, &head->st);
788 		if (err)
789 			return err;
790 	}
791 	if (insn_idx)
792 		*insn_idx = head->insn_idx;
793 	if (prev_insn_idx)
794 		*prev_insn_idx = head->prev_insn_idx;
795 	elem = head->next;
796 	free_verifier_state(&head->st, false);
797 	kfree(head);
798 	env->head = elem;
799 	env->stack_size--;
800 	return 0;
801 }
802 
803 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
804 					     int insn_idx, int prev_insn_idx,
805 					     bool speculative)
806 {
807 	struct bpf_verifier_state *cur = env->cur_state;
808 	struct bpf_verifier_stack_elem *elem;
809 	int err;
810 
811 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
812 	if (!elem)
813 		goto err;
814 
815 	elem->insn_idx = insn_idx;
816 	elem->prev_insn_idx = prev_insn_idx;
817 	elem->next = env->head;
818 	env->head = elem;
819 	env->stack_size++;
820 	err = copy_verifier_state(&elem->st, cur);
821 	if (err)
822 		goto err;
823 	elem->st.speculative |= speculative;
824 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
825 		verbose(env, "The sequence of %d jumps is too complex.\n",
826 			env->stack_size);
827 		goto err;
828 	}
829 	if (elem->st.parent) {
830 		++elem->st.parent->branches;
831 		/* WARN_ON(branches > 2) technically makes sense here,
832 		 * but
833 		 * 1. speculative states will bump 'branches' for non-branch
834 		 * instructions
835 		 * 2. is_state_visited() heuristics may decide not to create
836 		 * a new state for a sequence of branches and all such current
837 		 * and cloned states will be pointing to a single parent state
838 		 * which might have large 'branches' count.
839 		 */
840 	}
841 	return &elem->st;
842 err:
843 	free_verifier_state(env->cur_state, true);
844 	env->cur_state = NULL;
845 	/* pop all elements and return */
846 	while (!pop_stack(env, NULL, NULL));
847 	return NULL;
848 }
849 
850 #define CALLER_SAVED_REGS 6
851 static const int caller_saved[CALLER_SAVED_REGS] = {
852 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
853 };
854 
855 static void __mark_reg_not_init(struct bpf_reg_state *reg);
856 
857 /* Mark the unknown part of a register (variable offset or scalar value) as
858  * known to have the value @imm.
859  */
860 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
861 {
862 	/* Clear id, off, and union(map_ptr, range) */
863 	memset(((u8 *)reg) + sizeof(reg->type), 0,
864 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
865 	reg->var_off = tnum_const(imm);
866 	reg->smin_value = (s64)imm;
867 	reg->smax_value = (s64)imm;
868 	reg->umin_value = imm;
869 	reg->umax_value = imm;
870 }
871 
872 /* Mark the 'variable offset' part of a register as zero.  This should be
873  * used only on registers holding a pointer type.
874  */
875 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
876 {
877 	__mark_reg_known(reg, 0);
878 }
879 
880 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
881 {
882 	__mark_reg_known(reg, 0);
883 	reg->type = SCALAR_VALUE;
884 }
885 
886 static void mark_reg_known_zero(struct bpf_verifier_env *env,
887 				struct bpf_reg_state *regs, u32 regno)
888 {
889 	if (WARN_ON(regno >= MAX_BPF_REG)) {
890 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
891 		/* Something bad happened, let's kill all regs */
892 		for (regno = 0; regno < MAX_BPF_REG; regno++)
893 			__mark_reg_not_init(regs + regno);
894 		return;
895 	}
896 	__mark_reg_known_zero(regs + regno);
897 }
898 
899 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
900 {
901 	return type_is_pkt_pointer(reg->type);
902 }
903 
904 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
905 {
906 	return reg_is_pkt_pointer(reg) ||
907 	       reg->type == PTR_TO_PACKET_END;
908 }
909 
910 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
911 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
912 				    enum bpf_reg_type which)
913 {
914 	/* The register can already have a range from prior markings.
915 	 * This is fine as long as it hasn't been advanced from its
916 	 * origin.
917 	 */
918 	return reg->type == which &&
919 	       reg->id == 0 &&
920 	       reg->off == 0 &&
921 	       tnum_equals_const(reg->var_off, 0);
922 }
923 
924 /* Attempts to improve min/max values based on var_off information */
925 static void __update_reg_bounds(struct bpf_reg_state *reg)
926 {
927 	/* min signed is max(sign bit) | min(other bits) */
928 	reg->smin_value = max_t(s64, reg->smin_value,
929 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
930 	/* max signed is min(sign bit) | max(other bits) */
931 	reg->smax_value = min_t(s64, reg->smax_value,
932 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
933 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
934 	reg->umax_value = min(reg->umax_value,
935 			      reg->var_off.value | reg->var_off.mask);
936 }
937 
938 /* Uses signed min/max values to inform unsigned, and vice-versa */
939 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
940 {
941 	/* Learn sign from signed bounds.
942 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
943 	 * are the same, so combine.  This works even in the negative case, e.g.
944 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
945 	 */
946 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
947 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
948 							  reg->umin_value);
949 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
950 							  reg->umax_value);
951 		return;
952 	}
953 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
954 	 * boundary, so we must be careful.
955 	 */
956 	if ((s64)reg->umax_value >= 0) {
957 		/* Positive.  We can't learn anything from the smin, but smax
958 		 * is positive, hence safe.
959 		 */
960 		reg->smin_value = reg->umin_value;
961 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
962 							  reg->umax_value);
963 	} else if ((s64)reg->umin_value < 0) {
964 		/* Negative.  We can't learn anything from the smax, but smin
965 		 * is negative, hence safe.
966 		 */
967 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
968 							  reg->umin_value);
969 		reg->smax_value = reg->umax_value;
970 	}
971 }
972 
973 /* Attempts to improve var_off based on unsigned min/max information */
974 static void __reg_bound_offset(struct bpf_reg_state *reg)
975 {
976 	reg->var_off = tnum_intersect(reg->var_off,
977 				      tnum_range(reg->umin_value,
978 						 reg->umax_value));
979 }
980 
981 /* Reset the min/max bounds of a register */
982 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
983 {
984 	reg->smin_value = S64_MIN;
985 	reg->smax_value = S64_MAX;
986 	reg->umin_value = 0;
987 	reg->umax_value = U64_MAX;
988 }
989 
990 /* Mark a register as having a completely unknown (scalar) value. */
991 static void __mark_reg_unknown(struct bpf_reg_state *reg)
992 {
993 	/*
994 	 * Clear type, id, off, and union(map_ptr, range) and
995 	 * padding between 'type' and union
996 	 */
997 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
998 	reg->type = SCALAR_VALUE;
999 	reg->var_off = tnum_unknown;
1000 	reg->frameno = 0;
1001 	__mark_reg_unbounded(reg);
1002 }
1003 
1004 static void mark_reg_unknown(struct bpf_verifier_env *env,
1005 			     struct bpf_reg_state *regs, u32 regno)
1006 {
1007 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1008 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1009 		/* Something bad happened, let's kill all regs except FP */
1010 		for (regno = 0; regno < BPF_REG_FP; regno++)
1011 			__mark_reg_not_init(regs + regno);
1012 		return;
1013 	}
1014 	regs += regno;
1015 	__mark_reg_unknown(regs);
1016 	/* constant backtracking is enabled for root without bpf2bpf calls */
1017 	regs->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ?
1018 			true : false;
1019 }
1020 
1021 static void __mark_reg_not_init(struct bpf_reg_state *reg)
1022 {
1023 	__mark_reg_unknown(reg);
1024 	reg->type = NOT_INIT;
1025 }
1026 
1027 static void mark_reg_not_init(struct bpf_verifier_env *env,
1028 			      struct bpf_reg_state *regs, u32 regno)
1029 {
1030 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1031 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1032 		/* Something bad happened, let's kill all regs except FP */
1033 		for (regno = 0; regno < BPF_REG_FP; regno++)
1034 			__mark_reg_not_init(regs + regno);
1035 		return;
1036 	}
1037 	__mark_reg_not_init(regs + regno);
1038 }
1039 
1040 #define DEF_NOT_SUBREG	(0)
1041 static void init_reg_state(struct bpf_verifier_env *env,
1042 			   struct bpf_func_state *state)
1043 {
1044 	struct bpf_reg_state *regs = state->regs;
1045 	int i;
1046 
1047 	for (i = 0; i < MAX_BPF_REG; i++) {
1048 		mark_reg_not_init(env, regs, i);
1049 		regs[i].live = REG_LIVE_NONE;
1050 		regs[i].parent = NULL;
1051 		regs[i].subreg_def = DEF_NOT_SUBREG;
1052 	}
1053 
1054 	/* frame pointer */
1055 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1056 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1057 	regs[BPF_REG_FP].frameno = state->frameno;
1058 
1059 	/* 1st arg to a function */
1060 	regs[BPF_REG_1].type = PTR_TO_CTX;
1061 	mark_reg_known_zero(env, regs, BPF_REG_1);
1062 }
1063 
1064 #define BPF_MAIN_FUNC (-1)
1065 static void init_func_state(struct bpf_verifier_env *env,
1066 			    struct bpf_func_state *state,
1067 			    int callsite, int frameno, int subprogno)
1068 {
1069 	state->callsite = callsite;
1070 	state->frameno = frameno;
1071 	state->subprogno = subprogno;
1072 	init_reg_state(env, state);
1073 }
1074 
1075 enum reg_arg_type {
1076 	SRC_OP,		/* register is used as source operand */
1077 	DST_OP,		/* register is used as destination operand */
1078 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1079 };
1080 
1081 static int cmp_subprogs(const void *a, const void *b)
1082 {
1083 	return ((struct bpf_subprog_info *)a)->start -
1084 	       ((struct bpf_subprog_info *)b)->start;
1085 }
1086 
1087 static int find_subprog(struct bpf_verifier_env *env, int off)
1088 {
1089 	struct bpf_subprog_info *p;
1090 
1091 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1092 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1093 	if (!p)
1094 		return -ENOENT;
1095 	return p - env->subprog_info;
1096 
1097 }
1098 
1099 static int add_subprog(struct bpf_verifier_env *env, int off)
1100 {
1101 	int insn_cnt = env->prog->len;
1102 	int ret;
1103 
1104 	if (off >= insn_cnt || off < 0) {
1105 		verbose(env, "call to invalid destination\n");
1106 		return -EINVAL;
1107 	}
1108 	ret = find_subprog(env, off);
1109 	if (ret >= 0)
1110 		return 0;
1111 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1112 		verbose(env, "too many subprograms\n");
1113 		return -E2BIG;
1114 	}
1115 	env->subprog_info[env->subprog_cnt++].start = off;
1116 	sort(env->subprog_info, env->subprog_cnt,
1117 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1118 	return 0;
1119 }
1120 
1121 static int check_subprogs(struct bpf_verifier_env *env)
1122 {
1123 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1124 	struct bpf_subprog_info *subprog = env->subprog_info;
1125 	struct bpf_insn *insn = env->prog->insnsi;
1126 	int insn_cnt = env->prog->len;
1127 
1128 	/* Add entry function. */
1129 	ret = add_subprog(env, 0);
1130 	if (ret < 0)
1131 		return ret;
1132 
1133 	/* determine subprog starts. The end is one before the next starts */
1134 	for (i = 0; i < insn_cnt; i++) {
1135 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1136 			continue;
1137 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1138 			continue;
1139 		if (!env->allow_ptr_leaks) {
1140 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1141 			return -EPERM;
1142 		}
1143 		ret = add_subprog(env, i + insn[i].imm + 1);
1144 		if (ret < 0)
1145 			return ret;
1146 	}
1147 
1148 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1149 	 * logic. 'subprog_cnt' should not be increased.
1150 	 */
1151 	subprog[env->subprog_cnt].start = insn_cnt;
1152 
1153 	if (env->log.level & BPF_LOG_LEVEL2)
1154 		for (i = 0; i < env->subprog_cnt; i++)
1155 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1156 
1157 	/* now check that all jumps are within the same subprog */
1158 	subprog_start = subprog[cur_subprog].start;
1159 	subprog_end = subprog[cur_subprog + 1].start;
1160 	for (i = 0; i < insn_cnt; i++) {
1161 		u8 code = insn[i].code;
1162 
1163 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1164 			goto next;
1165 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1166 			goto next;
1167 		off = i + insn[i].off + 1;
1168 		if (off < subprog_start || off >= subprog_end) {
1169 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1170 			return -EINVAL;
1171 		}
1172 next:
1173 		if (i == subprog_end - 1) {
1174 			/* to avoid fall-through from one subprog into another
1175 			 * the last insn of the subprog should be either exit
1176 			 * or unconditional jump back
1177 			 */
1178 			if (code != (BPF_JMP | BPF_EXIT) &&
1179 			    code != (BPF_JMP | BPF_JA)) {
1180 				verbose(env, "last insn is not an exit or jmp\n");
1181 				return -EINVAL;
1182 			}
1183 			subprog_start = subprog_end;
1184 			cur_subprog++;
1185 			if (cur_subprog < env->subprog_cnt)
1186 				subprog_end = subprog[cur_subprog + 1].start;
1187 		}
1188 	}
1189 	return 0;
1190 }
1191 
1192 /* Parentage chain of this register (or stack slot) should take care of all
1193  * issues like callee-saved registers, stack slot allocation time, etc.
1194  */
1195 static int mark_reg_read(struct bpf_verifier_env *env,
1196 			 const struct bpf_reg_state *state,
1197 			 struct bpf_reg_state *parent, u8 flag)
1198 {
1199 	bool writes = parent == state->parent; /* Observe write marks */
1200 	int cnt = 0;
1201 
1202 	while (parent) {
1203 		/* if read wasn't screened by an earlier write ... */
1204 		if (writes && state->live & REG_LIVE_WRITTEN)
1205 			break;
1206 		if (parent->live & REG_LIVE_DONE) {
1207 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1208 				reg_type_str[parent->type],
1209 				parent->var_off.value, parent->off);
1210 			return -EFAULT;
1211 		}
1212 		/* The first condition is more likely to be true than the
1213 		 * second, checked it first.
1214 		 */
1215 		if ((parent->live & REG_LIVE_READ) == flag ||
1216 		    parent->live & REG_LIVE_READ64)
1217 			/* The parentage chain never changes and
1218 			 * this parent was already marked as LIVE_READ.
1219 			 * There is no need to keep walking the chain again and
1220 			 * keep re-marking all parents as LIVE_READ.
1221 			 * This case happens when the same register is read
1222 			 * multiple times without writes into it in-between.
1223 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1224 			 * then no need to set the weak REG_LIVE_READ32.
1225 			 */
1226 			break;
1227 		/* ... then we depend on parent's value */
1228 		parent->live |= flag;
1229 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1230 		if (flag == REG_LIVE_READ64)
1231 			parent->live &= ~REG_LIVE_READ32;
1232 		state = parent;
1233 		parent = state->parent;
1234 		writes = true;
1235 		cnt++;
1236 	}
1237 
1238 	if (env->longest_mark_read_walk < cnt)
1239 		env->longest_mark_read_walk = cnt;
1240 	return 0;
1241 }
1242 
1243 /* This function is supposed to be used by the following 32-bit optimization
1244  * code only. It returns TRUE if the source or destination register operates
1245  * on 64-bit, otherwise return FALSE.
1246  */
1247 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1248 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1249 {
1250 	u8 code, class, op;
1251 
1252 	code = insn->code;
1253 	class = BPF_CLASS(code);
1254 	op = BPF_OP(code);
1255 	if (class == BPF_JMP) {
1256 		/* BPF_EXIT for "main" will reach here. Return TRUE
1257 		 * conservatively.
1258 		 */
1259 		if (op == BPF_EXIT)
1260 			return true;
1261 		if (op == BPF_CALL) {
1262 			/* BPF to BPF call will reach here because of marking
1263 			 * caller saved clobber with DST_OP_NO_MARK for which we
1264 			 * don't care the register def because they are anyway
1265 			 * marked as NOT_INIT already.
1266 			 */
1267 			if (insn->src_reg == BPF_PSEUDO_CALL)
1268 				return false;
1269 			/* Helper call will reach here because of arg type
1270 			 * check, conservatively return TRUE.
1271 			 */
1272 			if (t == SRC_OP)
1273 				return true;
1274 
1275 			return false;
1276 		}
1277 	}
1278 
1279 	if (class == BPF_ALU64 || class == BPF_JMP ||
1280 	    /* BPF_END always use BPF_ALU class. */
1281 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1282 		return true;
1283 
1284 	if (class == BPF_ALU || class == BPF_JMP32)
1285 		return false;
1286 
1287 	if (class == BPF_LDX) {
1288 		if (t != SRC_OP)
1289 			return BPF_SIZE(code) == BPF_DW;
1290 		/* LDX source must be ptr. */
1291 		return true;
1292 	}
1293 
1294 	if (class == BPF_STX) {
1295 		if (reg->type != SCALAR_VALUE)
1296 			return true;
1297 		return BPF_SIZE(code) == BPF_DW;
1298 	}
1299 
1300 	if (class == BPF_LD) {
1301 		u8 mode = BPF_MODE(code);
1302 
1303 		/* LD_IMM64 */
1304 		if (mode == BPF_IMM)
1305 			return true;
1306 
1307 		/* Both LD_IND and LD_ABS return 32-bit data. */
1308 		if (t != SRC_OP)
1309 			return  false;
1310 
1311 		/* Implicit ctx ptr. */
1312 		if (regno == BPF_REG_6)
1313 			return true;
1314 
1315 		/* Explicit source could be any width. */
1316 		return true;
1317 	}
1318 
1319 	if (class == BPF_ST)
1320 		/* The only source register for BPF_ST is a ptr. */
1321 		return true;
1322 
1323 	/* Conservatively return true at default. */
1324 	return true;
1325 }
1326 
1327 /* Return TRUE if INSN doesn't have explicit value define. */
1328 static bool insn_no_def(struct bpf_insn *insn)
1329 {
1330 	u8 class = BPF_CLASS(insn->code);
1331 
1332 	return (class == BPF_JMP || class == BPF_JMP32 ||
1333 		class == BPF_STX || class == BPF_ST);
1334 }
1335 
1336 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1337 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1338 {
1339 	if (insn_no_def(insn))
1340 		return false;
1341 
1342 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1343 }
1344 
1345 static void mark_insn_zext(struct bpf_verifier_env *env,
1346 			   struct bpf_reg_state *reg)
1347 {
1348 	s32 def_idx = reg->subreg_def;
1349 
1350 	if (def_idx == DEF_NOT_SUBREG)
1351 		return;
1352 
1353 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1354 	/* The dst will be zero extended, so won't be sub-register anymore. */
1355 	reg->subreg_def = DEF_NOT_SUBREG;
1356 }
1357 
1358 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1359 			 enum reg_arg_type t)
1360 {
1361 	struct bpf_verifier_state *vstate = env->cur_state;
1362 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1363 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1364 	struct bpf_reg_state *reg, *regs = state->regs;
1365 	bool rw64;
1366 
1367 	if (regno >= MAX_BPF_REG) {
1368 		verbose(env, "R%d is invalid\n", regno);
1369 		return -EINVAL;
1370 	}
1371 
1372 	reg = &regs[regno];
1373 	rw64 = is_reg64(env, insn, regno, reg, t);
1374 	if (t == SRC_OP) {
1375 		/* check whether register used as source operand can be read */
1376 		if (reg->type == NOT_INIT) {
1377 			verbose(env, "R%d !read_ok\n", regno);
1378 			return -EACCES;
1379 		}
1380 		/* We don't need to worry about FP liveness because it's read-only */
1381 		if (regno == BPF_REG_FP)
1382 			return 0;
1383 
1384 		if (rw64)
1385 			mark_insn_zext(env, reg);
1386 
1387 		return mark_reg_read(env, reg, reg->parent,
1388 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1389 	} else {
1390 		/* check whether register used as dest operand can be written to */
1391 		if (regno == BPF_REG_FP) {
1392 			verbose(env, "frame pointer is read only\n");
1393 			return -EACCES;
1394 		}
1395 		reg->live |= REG_LIVE_WRITTEN;
1396 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1397 		if (t == DST_OP)
1398 			mark_reg_unknown(env, regs, regno);
1399 	}
1400 	return 0;
1401 }
1402 
1403 /* for any branch, call, exit record the history of jmps in the given state */
1404 static int push_jmp_history(struct bpf_verifier_env *env,
1405 			    struct bpf_verifier_state *cur)
1406 {
1407 	u32 cnt = cur->jmp_history_cnt;
1408 	struct bpf_idx_pair *p;
1409 
1410 	cnt++;
1411 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1412 	if (!p)
1413 		return -ENOMEM;
1414 	p[cnt - 1].idx = env->insn_idx;
1415 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1416 	cur->jmp_history = p;
1417 	cur->jmp_history_cnt = cnt;
1418 	return 0;
1419 }
1420 
1421 /* Backtrack one insn at a time. If idx is not at the top of recorded
1422  * history then previous instruction came from straight line execution.
1423  */
1424 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1425 			     u32 *history)
1426 {
1427 	u32 cnt = *history;
1428 
1429 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1430 		i = st->jmp_history[cnt - 1].prev_idx;
1431 		(*history)--;
1432 	} else {
1433 		i--;
1434 	}
1435 	return i;
1436 }
1437 
1438 /* For given verifier state backtrack_insn() is called from the last insn to
1439  * the first insn. Its purpose is to compute a bitmask of registers and
1440  * stack slots that needs precision in the parent verifier state.
1441  */
1442 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1443 			  u32 *reg_mask, u64 *stack_mask)
1444 {
1445 	const struct bpf_insn_cbs cbs = {
1446 		.cb_print	= verbose,
1447 		.private_data	= env,
1448 	};
1449 	struct bpf_insn *insn = env->prog->insnsi + idx;
1450 	u8 class = BPF_CLASS(insn->code);
1451 	u8 opcode = BPF_OP(insn->code);
1452 	u8 mode = BPF_MODE(insn->code);
1453 	u32 dreg = 1u << insn->dst_reg;
1454 	u32 sreg = 1u << insn->src_reg;
1455 	u32 spi;
1456 
1457 	if (insn->code == 0)
1458 		return 0;
1459 	if (env->log.level & BPF_LOG_LEVEL) {
1460 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1461 		verbose(env, "%d: ", idx);
1462 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1463 	}
1464 
1465 	if (class == BPF_ALU || class == BPF_ALU64) {
1466 		if (!(*reg_mask & dreg))
1467 			return 0;
1468 		if (opcode == BPF_MOV) {
1469 			if (BPF_SRC(insn->code) == BPF_X) {
1470 				/* dreg = sreg
1471 				 * dreg needs precision after this insn
1472 				 * sreg needs precision before this insn
1473 				 */
1474 				*reg_mask &= ~dreg;
1475 				*reg_mask |= sreg;
1476 			} else {
1477 				/* dreg = K
1478 				 * dreg needs precision after this insn.
1479 				 * Corresponding register is already marked
1480 				 * as precise=true in this verifier state.
1481 				 * No further markings in parent are necessary
1482 				 */
1483 				*reg_mask &= ~dreg;
1484 			}
1485 		} else {
1486 			if (BPF_SRC(insn->code) == BPF_X) {
1487 				/* dreg += sreg
1488 				 * both dreg and sreg need precision
1489 				 * before this insn
1490 				 */
1491 				*reg_mask |= sreg;
1492 			} /* else dreg += K
1493 			   * dreg still needs precision before this insn
1494 			   */
1495 		}
1496 	} else if (class == BPF_LDX) {
1497 		if (!(*reg_mask & dreg))
1498 			return 0;
1499 		*reg_mask &= ~dreg;
1500 
1501 		/* scalars can only be spilled into stack w/o losing precision.
1502 		 * Load from any other memory can be zero extended.
1503 		 * The desire to keep that precision is already indicated
1504 		 * by 'precise' mark in corresponding register of this state.
1505 		 * No further tracking necessary.
1506 		 */
1507 		if (insn->src_reg != BPF_REG_FP)
1508 			return 0;
1509 		if (BPF_SIZE(insn->code) != BPF_DW)
1510 			return 0;
1511 
1512 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1513 		 * that [fp - off] slot contains scalar that needs to be
1514 		 * tracked with precision
1515 		 */
1516 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1517 		if (spi >= 64) {
1518 			verbose(env, "BUG spi %d\n", spi);
1519 			WARN_ONCE(1, "verifier backtracking bug");
1520 			return -EFAULT;
1521 		}
1522 		*stack_mask |= 1ull << spi;
1523 	} else if (class == BPF_STX || class == BPF_ST) {
1524 		if (*reg_mask & dreg)
1525 			/* stx & st shouldn't be using _scalar_ dst_reg
1526 			 * to access memory. It means backtracking
1527 			 * encountered a case of pointer subtraction.
1528 			 */
1529 			return -ENOTSUPP;
1530 		/* scalars can only be spilled into stack */
1531 		if (insn->dst_reg != BPF_REG_FP)
1532 			return 0;
1533 		if (BPF_SIZE(insn->code) != BPF_DW)
1534 			return 0;
1535 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1536 		if (spi >= 64) {
1537 			verbose(env, "BUG spi %d\n", spi);
1538 			WARN_ONCE(1, "verifier backtracking bug");
1539 			return -EFAULT;
1540 		}
1541 		if (!(*stack_mask & (1ull << spi)))
1542 			return 0;
1543 		*stack_mask &= ~(1ull << spi);
1544 		if (class == BPF_STX)
1545 			*reg_mask |= sreg;
1546 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1547 		if (opcode == BPF_CALL) {
1548 			if (insn->src_reg == BPF_PSEUDO_CALL)
1549 				return -ENOTSUPP;
1550 			/* regular helper call sets R0 */
1551 			*reg_mask &= ~1;
1552 			if (*reg_mask & 0x3f) {
1553 				/* if backtracing was looking for registers R1-R5
1554 				 * they should have been found already.
1555 				 */
1556 				verbose(env, "BUG regs %x\n", *reg_mask);
1557 				WARN_ONCE(1, "verifier backtracking bug");
1558 				return -EFAULT;
1559 			}
1560 		} else if (opcode == BPF_EXIT) {
1561 			return -ENOTSUPP;
1562 		}
1563 	} else if (class == BPF_LD) {
1564 		if (!(*reg_mask & dreg))
1565 			return 0;
1566 		*reg_mask &= ~dreg;
1567 		/* It's ld_imm64 or ld_abs or ld_ind.
1568 		 * For ld_imm64 no further tracking of precision
1569 		 * into parent is necessary
1570 		 */
1571 		if (mode == BPF_IND || mode == BPF_ABS)
1572 			/* to be analyzed */
1573 			return -ENOTSUPP;
1574 	}
1575 	return 0;
1576 }
1577 
1578 /* the scalar precision tracking algorithm:
1579  * . at the start all registers have precise=false.
1580  * . scalar ranges are tracked as normal through alu and jmp insns.
1581  * . once precise value of the scalar register is used in:
1582  *   .  ptr + scalar alu
1583  *   . if (scalar cond K|scalar)
1584  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1585  *   backtrack through the verifier states and mark all registers and
1586  *   stack slots with spilled constants that these scalar regisers
1587  *   should be precise.
1588  * . during state pruning two registers (or spilled stack slots)
1589  *   are equivalent if both are not precise.
1590  *
1591  * Note the verifier cannot simply walk register parentage chain,
1592  * since many different registers and stack slots could have been
1593  * used to compute single precise scalar.
1594  *
1595  * The approach of starting with precise=true for all registers and then
1596  * backtrack to mark a register as not precise when the verifier detects
1597  * that program doesn't care about specific value (e.g., when helper
1598  * takes register as ARG_ANYTHING parameter) is not safe.
1599  *
1600  * It's ok to walk single parentage chain of the verifier states.
1601  * It's possible that this backtracking will go all the way till 1st insn.
1602  * All other branches will be explored for needing precision later.
1603  *
1604  * The backtracking needs to deal with cases like:
1605  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1606  * r9 -= r8
1607  * r5 = r9
1608  * if r5 > 0x79f goto pc+7
1609  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1610  * r5 += 1
1611  * ...
1612  * call bpf_perf_event_output#25
1613  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1614  *
1615  * and this case:
1616  * r6 = 1
1617  * call foo // uses callee's r6 inside to compute r0
1618  * r0 += r6
1619  * if r0 == 0 goto
1620  *
1621  * to track above reg_mask/stack_mask needs to be independent for each frame.
1622  *
1623  * Also if parent's curframe > frame where backtracking started,
1624  * the verifier need to mark registers in both frames, otherwise callees
1625  * may incorrectly prune callers. This is similar to
1626  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1627  *
1628  * For now backtracking falls back into conservative marking.
1629  */
1630 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1631 				     struct bpf_verifier_state *st)
1632 {
1633 	struct bpf_func_state *func;
1634 	struct bpf_reg_state *reg;
1635 	int i, j;
1636 
1637 	/* big hammer: mark all scalars precise in this path.
1638 	 * pop_stack may still get !precise scalars.
1639 	 */
1640 	for (; st; st = st->parent)
1641 		for (i = 0; i <= st->curframe; i++) {
1642 			func = st->frame[i];
1643 			for (j = 0; j < BPF_REG_FP; j++) {
1644 				reg = &func->regs[j];
1645 				if (reg->type != SCALAR_VALUE)
1646 					continue;
1647 				reg->precise = true;
1648 			}
1649 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1650 				if (func->stack[j].slot_type[0] != STACK_SPILL)
1651 					continue;
1652 				reg = &func->stack[j].spilled_ptr;
1653 				if (reg->type != SCALAR_VALUE)
1654 					continue;
1655 				reg->precise = true;
1656 			}
1657 		}
1658 }
1659 
1660 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1661 				  int spi)
1662 {
1663 	struct bpf_verifier_state *st = env->cur_state;
1664 	int first_idx = st->first_insn_idx;
1665 	int last_idx = env->insn_idx;
1666 	struct bpf_func_state *func;
1667 	struct bpf_reg_state *reg;
1668 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1669 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1670 	bool skip_first = true;
1671 	bool new_marks = false;
1672 	int i, err;
1673 
1674 	if (!env->allow_ptr_leaks)
1675 		/* backtracking is root only for now */
1676 		return 0;
1677 
1678 	func = st->frame[st->curframe];
1679 	if (regno >= 0) {
1680 		reg = &func->regs[regno];
1681 		if (reg->type != SCALAR_VALUE) {
1682 			WARN_ONCE(1, "backtracing misuse");
1683 			return -EFAULT;
1684 		}
1685 		if (!reg->precise)
1686 			new_marks = true;
1687 		else
1688 			reg_mask = 0;
1689 		reg->precise = true;
1690 	}
1691 
1692 	while (spi >= 0) {
1693 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1694 			stack_mask = 0;
1695 			break;
1696 		}
1697 		reg = &func->stack[spi].spilled_ptr;
1698 		if (reg->type != SCALAR_VALUE) {
1699 			stack_mask = 0;
1700 			break;
1701 		}
1702 		if (!reg->precise)
1703 			new_marks = true;
1704 		else
1705 			stack_mask = 0;
1706 		reg->precise = true;
1707 		break;
1708 	}
1709 
1710 	if (!new_marks)
1711 		return 0;
1712 	if (!reg_mask && !stack_mask)
1713 		return 0;
1714 	for (;;) {
1715 		DECLARE_BITMAP(mask, 64);
1716 		u32 history = st->jmp_history_cnt;
1717 
1718 		if (env->log.level & BPF_LOG_LEVEL)
1719 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1720 		for (i = last_idx;;) {
1721 			if (skip_first) {
1722 				err = 0;
1723 				skip_first = false;
1724 			} else {
1725 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1726 			}
1727 			if (err == -ENOTSUPP) {
1728 				mark_all_scalars_precise(env, st);
1729 				return 0;
1730 			} else if (err) {
1731 				return err;
1732 			}
1733 			if (!reg_mask && !stack_mask)
1734 				/* Found assignment(s) into tracked register in this state.
1735 				 * Since this state is already marked, just return.
1736 				 * Nothing to be tracked further in the parent state.
1737 				 */
1738 				return 0;
1739 			if (i == first_idx)
1740 				break;
1741 			i = get_prev_insn_idx(st, i, &history);
1742 			if (i >= env->prog->len) {
1743 				/* This can happen if backtracking reached insn 0
1744 				 * and there are still reg_mask or stack_mask
1745 				 * to backtrack.
1746 				 * It means the backtracking missed the spot where
1747 				 * particular register was initialized with a constant.
1748 				 */
1749 				verbose(env, "BUG backtracking idx %d\n", i);
1750 				WARN_ONCE(1, "verifier backtracking bug");
1751 				return -EFAULT;
1752 			}
1753 		}
1754 		st = st->parent;
1755 		if (!st)
1756 			break;
1757 
1758 		new_marks = false;
1759 		func = st->frame[st->curframe];
1760 		bitmap_from_u64(mask, reg_mask);
1761 		for_each_set_bit(i, mask, 32) {
1762 			reg = &func->regs[i];
1763 			if (reg->type != SCALAR_VALUE) {
1764 				reg_mask &= ~(1u << i);
1765 				continue;
1766 			}
1767 			if (!reg->precise)
1768 				new_marks = true;
1769 			reg->precise = true;
1770 		}
1771 
1772 		bitmap_from_u64(mask, stack_mask);
1773 		for_each_set_bit(i, mask, 64) {
1774 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
1775 				/* the sequence of instructions:
1776 				 * 2: (bf) r3 = r10
1777 				 * 3: (7b) *(u64 *)(r3 -8) = r0
1778 				 * 4: (79) r4 = *(u64 *)(r10 -8)
1779 				 * doesn't contain jmps. It's backtracked
1780 				 * as a single block.
1781 				 * During backtracking insn 3 is not recognized as
1782 				 * stack access, so at the end of backtracking
1783 				 * stack slot fp-8 is still marked in stack_mask.
1784 				 * However the parent state may not have accessed
1785 				 * fp-8 and it's "unallocated" stack space.
1786 				 * In such case fallback to conservative.
1787 				 */
1788 				mark_all_scalars_precise(env, st);
1789 				return 0;
1790 			}
1791 
1792 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
1793 				stack_mask &= ~(1ull << i);
1794 				continue;
1795 			}
1796 			reg = &func->stack[i].spilled_ptr;
1797 			if (reg->type != SCALAR_VALUE) {
1798 				stack_mask &= ~(1ull << i);
1799 				continue;
1800 			}
1801 			if (!reg->precise)
1802 				new_marks = true;
1803 			reg->precise = true;
1804 		}
1805 		if (env->log.level & BPF_LOG_LEVEL) {
1806 			print_verifier_state(env, func);
1807 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
1808 				new_marks ? "didn't have" : "already had",
1809 				reg_mask, stack_mask);
1810 		}
1811 
1812 		if (!reg_mask && !stack_mask)
1813 			break;
1814 		if (!new_marks)
1815 			break;
1816 
1817 		last_idx = st->last_insn_idx;
1818 		first_idx = st->first_insn_idx;
1819 	}
1820 	return 0;
1821 }
1822 
1823 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1824 {
1825 	return __mark_chain_precision(env, regno, -1);
1826 }
1827 
1828 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
1829 {
1830 	return __mark_chain_precision(env, -1, spi);
1831 }
1832 
1833 static bool is_spillable_regtype(enum bpf_reg_type type)
1834 {
1835 	switch (type) {
1836 	case PTR_TO_MAP_VALUE:
1837 	case PTR_TO_MAP_VALUE_OR_NULL:
1838 	case PTR_TO_STACK:
1839 	case PTR_TO_CTX:
1840 	case PTR_TO_PACKET:
1841 	case PTR_TO_PACKET_META:
1842 	case PTR_TO_PACKET_END:
1843 	case PTR_TO_FLOW_KEYS:
1844 	case CONST_PTR_TO_MAP:
1845 	case PTR_TO_SOCKET:
1846 	case PTR_TO_SOCKET_OR_NULL:
1847 	case PTR_TO_SOCK_COMMON:
1848 	case PTR_TO_SOCK_COMMON_OR_NULL:
1849 	case PTR_TO_TCP_SOCK:
1850 	case PTR_TO_TCP_SOCK_OR_NULL:
1851 	case PTR_TO_XDP_SOCK:
1852 		return true;
1853 	default:
1854 		return false;
1855 	}
1856 }
1857 
1858 /* Does this register contain a constant zero? */
1859 static bool register_is_null(struct bpf_reg_state *reg)
1860 {
1861 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1862 }
1863 
1864 static bool register_is_const(struct bpf_reg_state *reg)
1865 {
1866 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1867 }
1868 
1869 static void save_register_state(struct bpf_func_state *state,
1870 				int spi, struct bpf_reg_state *reg)
1871 {
1872 	int i;
1873 
1874 	state->stack[spi].spilled_ptr = *reg;
1875 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1876 
1877 	for (i = 0; i < BPF_REG_SIZE; i++)
1878 		state->stack[spi].slot_type[i] = STACK_SPILL;
1879 }
1880 
1881 /* check_stack_read/write functions track spill/fill of registers,
1882  * stack boundary and alignment are checked in check_mem_access()
1883  */
1884 static int check_stack_write(struct bpf_verifier_env *env,
1885 			     struct bpf_func_state *state, /* func where register points to */
1886 			     int off, int size, int value_regno, int insn_idx)
1887 {
1888 	struct bpf_func_state *cur; /* state of the current function */
1889 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1890 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
1891 	struct bpf_reg_state *reg = NULL;
1892 
1893 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1894 				 state->acquired_refs, true);
1895 	if (err)
1896 		return err;
1897 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1898 	 * so it's aligned access and [off, off + size) are within stack limits
1899 	 */
1900 	if (!env->allow_ptr_leaks &&
1901 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1902 	    size != BPF_REG_SIZE) {
1903 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1904 		return -EACCES;
1905 	}
1906 
1907 	cur = env->cur_state->frame[env->cur_state->curframe];
1908 	if (value_regno >= 0)
1909 		reg = &cur->regs[value_regno];
1910 
1911 	if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1912 	    !register_is_null(reg) && env->allow_ptr_leaks) {
1913 		if (dst_reg != BPF_REG_FP) {
1914 			/* The backtracking logic can only recognize explicit
1915 			 * stack slot address like [fp - 8]. Other spill of
1916 			 * scalar via different register has to be conervative.
1917 			 * Backtrack from here and mark all registers as precise
1918 			 * that contributed into 'reg' being a constant.
1919 			 */
1920 			err = mark_chain_precision(env, value_regno);
1921 			if (err)
1922 				return err;
1923 		}
1924 		save_register_state(state, spi, reg);
1925 	} else if (reg && is_spillable_regtype(reg->type)) {
1926 		/* register containing pointer is being spilled into stack */
1927 		if (size != BPF_REG_SIZE) {
1928 			verbose_linfo(env, insn_idx, "; ");
1929 			verbose(env, "invalid size of register spill\n");
1930 			return -EACCES;
1931 		}
1932 
1933 		if (state != cur && reg->type == PTR_TO_STACK) {
1934 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1935 			return -EINVAL;
1936 		}
1937 
1938 		if (!env->allow_ptr_leaks) {
1939 			bool sanitize = false;
1940 
1941 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
1942 			    register_is_const(&state->stack[spi].spilled_ptr))
1943 				sanitize = true;
1944 			for (i = 0; i < BPF_REG_SIZE; i++)
1945 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
1946 					sanitize = true;
1947 					break;
1948 				}
1949 			if (sanitize) {
1950 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1951 				int soff = (-spi - 1) * BPF_REG_SIZE;
1952 
1953 				/* detected reuse of integer stack slot with a pointer
1954 				 * which means either llvm is reusing stack slot or
1955 				 * an attacker is trying to exploit CVE-2018-3639
1956 				 * (speculative store bypass)
1957 				 * Have to sanitize that slot with preemptive
1958 				 * store of zero.
1959 				 */
1960 				if (*poff && *poff != soff) {
1961 					/* disallow programs where single insn stores
1962 					 * into two different stack slots, since verifier
1963 					 * cannot sanitize them
1964 					 */
1965 					verbose(env,
1966 						"insn %d cannot access two stack slots fp%d and fp%d",
1967 						insn_idx, *poff, soff);
1968 					return -EINVAL;
1969 				}
1970 				*poff = soff;
1971 			}
1972 		}
1973 		save_register_state(state, spi, reg);
1974 	} else {
1975 		u8 type = STACK_MISC;
1976 
1977 		/* regular write of data into stack destroys any spilled ptr */
1978 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1979 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1980 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
1981 			for (i = 0; i < BPF_REG_SIZE; i++)
1982 				state->stack[spi].slot_type[i] = STACK_MISC;
1983 
1984 		/* only mark the slot as written if all 8 bytes were written
1985 		 * otherwise read propagation may incorrectly stop too soon
1986 		 * when stack slots are partially written.
1987 		 * This heuristic means that read propagation will be
1988 		 * conservative, since it will add reg_live_read marks
1989 		 * to stack slots all the way to first state when programs
1990 		 * writes+reads less than 8 bytes
1991 		 */
1992 		if (size == BPF_REG_SIZE)
1993 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1994 
1995 		/* when we zero initialize stack slots mark them as such */
1996 		if (reg && register_is_null(reg)) {
1997 			/* backtracking doesn't work for STACK_ZERO yet. */
1998 			err = mark_chain_precision(env, value_regno);
1999 			if (err)
2000 				return err;
2001 			type = STACK_ZERO;
2002 		}
2003 
2004 		/* Mark slots affected by this stack write. */
2005 		for (i = 0; i < size; i++)
2006 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2007 				type;
2008 	}
2009 	return 0;
2010 }
2011 
2012 static int check_stack_read(struct bpf_verifier_env *env,
2013 			    struct bpf_func_state *reg_state /* func where register points to */,
2014 			    int off, int size, int value_regno)
2015 {
2016 	struct bpf_verifier_state *vstate = env->cur_state;
2017 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2018 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2019 	struct bpf_reg_state *reg;
2020 	u8 *stype;
2021 
2022 	if (reg_state->allocated_stack <= slot) {
2023 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2024 			off, size);
2025 		return -EACCES;
2026 	}
2027 	stype = reg_state->stack[spi].slot_type;
2028 	reg = &reg_state->stack[spi].spilled_ptr;
2029 
2030 	if (stype[0] == STACK_SPILL) {
2031 		if (size != BPF_REG_SIZE) {
2032 			if (reg->type != SCALAR_VALUE) {
2033 				verbose_linfo(env, env->insn_idx, "; ");
2034 				verbose(env, "invalid size of register fill\n");
2035 				return -EACCES;
2036 			}
2037 			if (value_regno >= 0) {
2038 				mark_reg_unknown(env, state->regs, value_regno);
2039 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2040 			}
2041 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2042 			return 0;
2043 		}
2044 		for (i = 1; i < BPF_REG_SIZE; i++) {
2045 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2046 				verbose(env, "corrupted spill memory\n");
2047 				return -EACCES;
2048 			}
2049 		}
2050 
2051 		if (value_regno >= 0) {
2052 			/* restore register state from stack */
2053 			state->regs[value_regno] = *reg;
2054 			/* mark reg as written since spilled pointer state likely
2055 			 * has its liveness marks cleared by is_state_visited()
2056 			 * which resets stack/reg liveness for state transitions
2057 			 */
2058 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2059 		}
2060 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2061 	} else {
2062 		int zeros = 0;
2063 
2064 		for (i = 0; i < size; i++) {
2065 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2066 				continue;
2067 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2068 				zeros++;
2069 				continue;
2070 			}
2071 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2072 				off, i, size);
2073 			return -EACCES;
2074 		}
2075 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2076 		if (value_regno >= 0) {
2077 			if (zeros == size) {
2078 				/* any size read into register is zero extended,
2079 				 * so the whole register == const_zero
2080 				 */
2081 				__mark_reg_const_zero(&state->regs[value_regno]);
2082 				/* backtracking doesn't support STACK_ZERO yet,
2083 				 * so mark it precise here, so that later
2084 				 * backtracking can stop here.
2085 				 * Backtracking may not need this if this register
2086 				 * doesn't participate in pointer adjustment.
2087 				 * Forward propagation of precise flag is not
2088 				 * necessary either. This mark is only to stop
2089 				 * backtracking. Any register that contributed
2090 				 * to const 0 was marked precise before spill.
2091 				 */
2092 				state->regs[value_regno].precise = true;
2093 			} else {
2094 				/* have read misc data from the stack */
2095 				mark_reg_unknown(env, state->regs, value_regno);
2096 			}
2097 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2098 		}
2099 	}
2100 	return 0;
2101 }
2102 
2103 static int check_stack_access(struct bpf_verifier_env *env,
2104 			      const struct bpf_reg_state *reg,
2105 			      int off, int size)
2106 {
2107 	/* Stack accesses must be at a fixed offset, so that we
2108 	 * can determine what type of data were returned. See
2109 	 * check_stack_read().
2110 	 */
2111 	if (!tnum_is_const(reg->var_off)) {
2112 		char tn_buf[48];
2113 
2114 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2115 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2116 			tn_buf, off, size);
2117 		return -EACCES;
2118 	}
2119 
2120 	if (off >= 0 || off < -MAX_BPF_STACK) {
2121 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2122 		return -EACCES;
2123 	}
2124 
2125 	return 0;
2126 }
2127 
2128 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2129 				 int off, int size, enum bpf_access_type type)
2130 {
2131 	struct bpf_reg_state *regs = cur_regs(env);
2132 	struct bpf_map *map = regs[regno].map_ptr;
2133 	u32 cap = bpf_map_flags_to_cap(map);
2134 
2135 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2136 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2137 			map->value_size, off, size);
2138 		return -EACCES;
2139 	}
2140 
2141 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2142 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2143 			map->value_size, off, size);
2144 		return -EACCES;
2145 	}
2146 
2147 	return 0;
2148 }
2149 
2150 /* check read/write into map element returned by bpf_map_lookup_elem() */
2151 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
2152 			      int size, bool zero_size_allowed)
2153 {
2154 	struct bpf_reg_state *regs = cur_regs(env);
2155 	struct bpf_map *map = regs[regno].map_ptr;
2156 
2157 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2158 	    off + size > map->value_size) {
2159 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2160 			map->value_size, off, size);
2161 		return -EACCES;
2162 	}
2163 	return 0;
2164 }
2165 
2166 /* check read/write into a map element with possible variable offset */
2167 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2168 			    int off, int size, bool zero_size_allowed)
2169 {
2170 	struct bpf_verifier_state *vstate = env->cur_state;
2171 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2172 	struct bpf_reg_state *reg = &state->regs[regno];
2173 	int err;
2174 
2175 	/* We may have adjusted the register to this map value, so we
2176 	 * need to try adding each of min_value and max_value to off
2177 	 * to make sure our theoretical access will be safe.
2178 	 */
2179 	if (env->log.level & BPF_LOG_LEVEL)
2180 		print_verifier_state(env, state);
2181 
2182 	/* The minimum value is only important with signed
2183 	 * comparisons where we can't assume the floor of a
2184 	 * value is 0.  If we are using signed variables for our
2185 	 * index'es we need to make sure that whatever we use
2186 	 * will have a set floor within our range.
2187 	 */
2188 	if (reg->smin_value < 0 &&
2189 	    (reg->smin_value == S64_MIN ||
2190 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2191 	      reg->smin_value + off < 0)) {
2192 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2193 			regno);
2194 		return -EACCES;
2195 	}
2196 	err = __check_map_access(env, regno, reg->smin_value + off, size,
2197 				 zero_size_allowed);
2198 	if (err) {
2199 		verbose(env, "R%d min value is outside of the array range\n",
2200 			regno);
2201 		return err;
2202 	}
2203 
2204 	/* If we haven't set a max value then we need to bail since we can't be
2205 	 * sure we won't do bad things.
2206 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2207 	 */
2208 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2209 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
2210 			regno);
2211 		return -EACCES;
2212 	}
2213 	err = __check_map_access(env, regno, reg->umax_value + off, size,
2214 				 zero_size_allowed);
2215 	if (err)
2216 		verbose(env, "R%d max value is outside of the array range\n",
2217 			regno);
2218 
2219 	if (map_value_has_spin_lock(reg->map_ptr)) {
2220 		u32 lock = reg->map_ptr->spin_lock_off;
2221 
2222 		/* if any part of struct bpf_spin_lock can be touched by
2223 		 * load/store reject this program.
2224 		 * To check that [x1, x2) overlaps with [y1, y2)
2225 		 * it is sufficient to check x1 < y2 && y1 < x2.
2226 		 */
2227 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2228 		     lock < reg->umax_value + off + size) {
2229 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2230 			return -EACCES;
2231 		}
2232 	}
2233 	return err;
2234 }
2235 
2236 #define MAX_PACKET_OFF 0xffff
2237 
2238 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2239 				       const struct bpf_call_arg_meta *meta,
2240 				       enum bpf_access_type t)
2241 {
2242 	switch (env->prog->type) {
2243 	/* Program types only with direct read access go here! */
2244 	case BPF_PROG_TYPE_LWT_IN:
2245 	case BPF_PROG_TYPE_LWT_OUT:
2246 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2247 	case BPF_PROG_TYPE_SK_REUSEPORT:
2248 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2249 	case BPF_PROG_TYPE_CGROUP_SKB:
2250 		if (t == BPF_WRITE)
2251 			return false;
2252 		/* fallthrough */
2253 
2254 	/* Program types with direct read + write access go here! */
2255 	case BPF_PROG_TYPE_SCHED_CLS:
2256 	case BPF_PROG_TYPE_SCHED_ACT:
2257 	case BPF_PROG_TYPE_XDP:
2258 	case BPF_PROG_TYPE_LWT_XMIT:
2259 	case BPF_PROG_TYPE_SK_SKB:
2260 	case BPF_PROG_TYPE_SK_MSG:
2261 		if (meta)
2262 			return meta->pkt_access;
2263 
2264 		env->seen_direct_write = true;
2265 		return true;
2266 
2267 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2268 		if (t == BPF_WRITE)
2269 			env->seen_direct_write = true;
2270 
2271 		return true;
2272 
2273 	default:
2274 		return false;
2275 	}
2276 }
2277 
2278 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
2279 				 int off, int size, bool zero_size_allowed)
2280 {
2281 	struct bpf_reg_state *regs = cur_regs(env);
2282 	struct bpf_reg_state *reg = &regs[regno];
2283 
2284 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2285 	    (u64)off + size > reg->range) {
2286 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2287 			off, size, regno, reg->id, reg->off, reg->range);
2288 		return -EACCES;
2289 	}
2290 	return 0;
2291 }
2292 
2293 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2294 			       int size, bool zero_size_allowed)
2295 {
2296 	struct bpf_reg_state *regs = cur_regs(env);
2297 	struct bpf_reg_state *reg = &regs[regno];
2298 	int err;
2299 
2300 	/* We may have added a variable offset to the packet pointer; but any
2301 	 * reg->range we have comes after that.  We are only checking the fixed
2302 	 * offset.
2303 	 */
2304 
2305 	/* We don't allow negative numbers, because we aren't tracking enough
2306 	 * detail to prove they're safe.
2307 	 */
2308 	if (reg->smin_value < 0) {
2309 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2310 			regno);
2311 		return -EACCES;
2312 	}
2313 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
2314 	if (err) {
2315 		verbose(env, "R%d offset is outside of the packet\n", regno);
2316 		return err;
2317 	}
2318 
2319 	/* __check_packet_access has made sure "off + size - 1" is within u16.
2320 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2321 	 * otherwise find_good_pkt_pointers would have refused to set range info
2322 	 * that __check_packet_access would have rejected this pkt access.
2323 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2324 	 */
2325 	env->prog->aux->max_pkt_offset =
2326 		max_t(u32, env->prog->aux->max_pkt_offset,
2327 		      off + reg->umax_value + size - 1);
2328 
2329 	return err;
2330 }
2331 
2332 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2333 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2334 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
2335 {
2336 	struct bpf_insn_access_aux info = {
2337 		.reg_type = *reg_type,
2338 	};
2339 
2340 	if (env->ops->is_valid_access &&
2341 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2342 		/* A non zero info.ctx_field_size indicates that this field is a
2343 		 * candidate for later verifier transformation to load the whole
2344 		 * field and then apply a mask when accessed with a narrower
2345 		 * access than actual ctx access size. A zero info.ctx_field_size
2346 		 * will only allow for whole field access and rejects any other
2347 		 * type of narrower access.
2348 		 */
2349 		*reg_type = info.reg_type;
2350 
2351 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2352 		/* remember the offset of last byte accessed in ctx */
2353 		if (env->prog->aux->max_ctx_offset < off + size)
2354 			env->prog->aux->max_ctx_offset = off + size;
2355 		return 0;
2356 	}
2357 
2358 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2359 	return -EACCES;
2360 }
2361 
2362 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2363 				  int size)
2364 {
2365 	if (size < 0 || off < 0 ||
2366 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2367 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2368 			off, size);
2369 		return -EACCES;
2370 	}
2371 	return 0;
2372 }
2373 
2374 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2375 			     u32 regno, int off, int size,
2376 			     enum bpf_access_type t)
2377 {
2378 	struct bpf_reg_state *regs = cur_regs(env);
2379 	struct bpf_reg_state *reg = &regs[regno];
2380 	struct bpf_insn_access_aux info = {};
2381 	bool valid;
2382 
2383 	if (reg->smin_value < 0) {
2384 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2385 			regno);
2386 		return -EACCES;
2387 	}
2388 
2389 	switch (reg->type) {
2390 	case PTR_TO_SOCK_COMMON:
2391 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2392 		break;
2393 	case PTR_TO_SOCKET:
2394 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2395 		break;
2396 	case PTR_TO_TCP_SOCK:
2397 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2398 		break;
2399 	case PTR_TO_XDP_SOCK:
2400 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2401 		break;
2402 	default:
2403 		valid = false;
2404 	}
2405 
2406 
2407 	if (valid) {
2408 		env->insn_aux_data[insn_idx].ctx_field_size =
2409 			info.ctx_field_size;
2410 		return 0;
2411 	}
2412 
2413 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2414 		regno, reg_type_str[reg->type], off, size);
2415 
2416 	return -EACCES;
2417 }
2418 
2419 static bool __is_pointer_value(bool allow_ptr_leaks,
2420 			       const struct bpf_reg_state *reg)
2421 {
2422 	if (allow_ptr_leaks)
2423 		return false;
2424 
2425 	return reg->type != SCALAR_VALUE;
2426 }
2427 
2428 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2429 {
2430 	return cur_regs(env) + regno;
2431 }
2432 
2433 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2434 {
2435 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2436 }
2437 
2438 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2439 {
2440 	const struct bpf_reg_state *reg = reg_state(env, regno);
2441 
2442 	return reg->type == PTR_TO_CTX;
2443 }
2444 
2445 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2446 {
2447 	const struct bpf_reg_state *reg = reg_state(env, regno);
2448 
2449 	return type_is_sk_pointer(reg->type);
2450 }
2451 
2452 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2453 {
2454 	const struct bpf_reg_state *reg = reg_state(env, regno);
2455 
2456 	return type_is_pkt_pointer(reg->type);
2457 }
2458 
2459 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2460 {
2461 	const struct bpf_reg_state *reg = reg_state(env, regno);
2462 
2463 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2464 	return reg->type == PTR_TO_FLOW_KEYS;
2465 }
2466 
2467 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2468 				   const struct bpf_reg_state *reg,
2469 				   int off, int size, bool strict)
2470 {
2471 	struct tnum reg_off;
2472 	int ip_align;
2473 
2474 	/* Byte size accesses are always allowed. */
2475 	if (!strict || size == 1)
2476 		return 0;
2477 
2478 	/* For platforms that do not have a Kconfig enabling
2479 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2480 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2481 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2482 	 * to this code only in strict mode where we want to emulate
2483 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2484 	 * unconditional IP align value of '2'.
2485 	 */
2486 	ip_align = 2;
2487 
2488 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2489 	if (!tnum_is_aligned(reg_off, size)) {
2490 		char tn_buf[48];
2491 
2492 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2493 		verbose(env,
2494 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2495 			ip_align, tn_buf, reg->off, off, size);
2496 		return -EACCES;
2497 	}
2498 
2499 	return 0;
2500 }
2501 
2502 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2503 				       const struct bpf_reg_state *reg,
2504 				       const char *pointer_desc,
2505 				       int off, int size, bool strict)
2506 {
2507 	struct tnum reg_off;
2508 
2509 	/* Byte size accesses are always allowed. */
2510 	if (!strict || size == 1)
2511 		return 0;
2512 
2513 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2514 	if (!tnum_is_aligned(reg_off, size)) {
2515 		char tn_buf[48];
2516 
2517 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2518 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2519 			pointer_desc, tn_buf, reg->off, off, size);
2520 		return -EACCES;
2521 	}
2522 
2523 	return 0;
2524 }
2525 
2526 static int check_ptr_alignment(struct bpf_verifier_env *env,
2527 			       const struct bpf_reg_state *reg, int off,
2528 			       int size, bool strict_alignment_once)
2529 {
2530 	bool strict = env->strict_alignment || strict_alignment_once;
2531 	const char *pointer_desc = "";
2532 
2533 	switch (reg->type) {
2534 	case PTR_TO_PACKET:
2535 	case PTR_TO_PACKET_META:
2536 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2537 		 * right in front, treat it the very same way.
2538 		 */
2539 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2540 	case PTR_TO_FLOW_KEYS:
2541 		pointer_desc = "flow keys ";
2542 		break;
2543 	case PTR_TO_MAP_VALUE:
2544 		pointer_desc = "value ";
2545 		break;
2546 	case PTR_TO_CTX:
2547 		pointer_desc = "context ";
2548 		break;
2549 	case PTR_TO_STACK:
2550 		pointer_desc = "stack ";
2551 		/* The stack spill tracking logic in check_stack_write()
2552 		 * and check_stack_read() relies on stack accesses being
2553 		 * aligned.
2554 		 */
2555 		strict = true;
2556 		break;
2557 	case PTR_TO_SOCKET:
2558 		pointer_desc = "sock ";
2559 		break;
2560 	case PTR_TO_SOCK_COMMON:
2561 		pointer_desc = "sock_common ";
2562 		break;
2563 	case PTR_TO_TCP_SOCK:
2564 		pointer_desc = "tcp_sock ";
2565 		break;
2566 	case PTR_TO_XDP_SOCK:
2567 		pointer_desc = "xdp_sock ";
2568 		break;
2569 	default:
2570 		break;
2571 	}
2572 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2573 					   strict);
2574 }
2575 
2576 static int update_stack_depth(struct bpf_verifier_env *env,
2577 			      const struct bpf_func_state *func,
2578 			      int off)
2579 {
2580 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
2581 
2582 	if (stack >= -off)
2583 		return 0;
2584 
2585 	/* update known max for given subprogram */
2586 	env->subprog_info[func->subprogno].stack_depth = -off;
2587 	return 0;
2588 }
2589 
2590 /* starting from main bpf function walk all instructions of the function
2591  * and recursively walk all callees that given function can call.
2592  * Ignore jump and exit insns.
2593  * Since recursion is prevented by check_cfg() this algorithm
2594  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2595  */
2596 static int check_max_stack_depth(struct bpf_verifier_env *env)
2597 {
2598 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2599 	struct bpf_subprog_info *subprog = env->subprog_info;
2600 	struct bpf_insn *insn = env->prog->insnsi;
2601 	int ret_insn[MAX_CALL_FRAMES];
2602 	int ret_prog[MAX_CALL_FRAMES];
2603 
2604 process_func:
2605 	/* round up to 32-bytes, since this is granularity
2606 	 * of interpreter stack size
2607 	 */
2608 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2609 	if (depth > MAX_BPF_STACK) {
2610 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
2611 			frame + 1, depth);
2612 		return -EACCES;
2613 	}
2614 continue_func:
2615 	subprog_end = subprog[idx + 1].start;
2616 	for (; i < subprog_end; i++) {
2617 		if (insn[i].code != (BPF_JMP | BPF_CALL))
2618 			continue;
2619 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
2620 			continue;
2621 		/* remember insn and function to return to */
2622 		ret_insn[frame] = i + 1;
2623 		ret_prog[frame] = idx;
2624 
2625 		/* find the callee */
2626 		i = i + insn[i].imm + 1;
2627 		idx = find_subprog(env, i);
2628 		if (idx < 0) {
2629 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2630 				  i);
2631 			return -EFAULT;
2632 		}
2633 		frame++;
2634 		if (frame >= MAX_CALL_FRAMES) {
2635 			verbose(env, "the call stack of %d frames is too deep !\n",
2636 				frame);
2637 			return -E2BIG;
2638 		}
2639 		goto process_func;
2640 	}
2641 	/* end of for() loop means the last insn of the 'subprog'
2642 	 * was reached. Doesn't matter whether it was JA or EXIT
2643 	 */
2644 	if (frame == 0)
2645 		return 0;
2646 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2647 	frame--;
2648 	i = ret_insn[frame];
2649 	idx = ret_prog[frame];
2650 	goto continue_func;
2651 }
2652 
2653 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2654 static int get_callee_stack_depth(struct bpf_verifier_env *env,
2655 				  const struct bpf_insn *insn, int idx)
2656 {
2657 	int start = idx + insn->imm + 1, subprog;
2658 
2659 	subprog = find_subprog(env, start);
2660 	if (subprog < 0) {
2661 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2662 			  start);
2663 		return -EFAULT;
2664 	}
2665 	return env->subprog_info[subprog].stack_depth;
2666 }
2667 #endif
2668 
2669 static int check_ctx_reg(struct bpf_verifier_env *env,
2670 			 const struct bpf_reg_state *reg, int regno)
2671 {
2672 	/* Access to ctx or passing it to a helper is only allowed in
2673 	 * its original, unmodified form.
2674 	 */
2675 
2676 	if (reg->off) {
2677 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2678 			regno, reg->off);
2679 		return -EACCES;
2680 	}
2681 
2682 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2683 		char tn_buf[48];
2684 
2685 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2686 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2687 		return -EACCES;
2688 	}
2689 
2690 	return 0;
2691 }
2692 
2693 static int check_tp_buffer_access(struct bpf_verifier_env *env,
2694 				  const struct bpf_reg_state *reg,
2695 				  int regno, int off, int size)
2696 {
2697 	if (off < 0) {
2698 		verbose(env,
2699 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
2700 			regno, off, size);
2701 		return -EACCES;
2702 	}
2703 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2704 		char tn_buf[48];
2705 
2706 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2707 		verbose(env,
2708 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
2709 			regno, off, tn_buf);
2710 		return -EACCES;
2711 	}
2712 	if (off + size > env->prog->aux->max_tp_access)
2713 		env->prog->aux->max_tp_access = off + size;
2714 
2715 	return 0;
2716 }
2717 
2718 
2719 /* truncate register to smaller size (in bytes)
2720  * must be called with size < BPF_REG_SIZE
2721  */
2722 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2723 {
2724 	u64 mask;
2725 
2726 	/* clear high bits in bit representation */
2727 	reg->var_off = tnum_cast(reg->var_off, size);
2728 
2729 	/* fix arithmetic bounds */
2730 	mask = ((u64)1 << (size * 8)) - 1;
2731 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2732 		reg->umin_value &= mask;
2733 		reg->umax_value &= mask;
2734 	} else {
2735 		reg->umin_value = 0;
2736 		reg->umax_value = mask;
2737 	}
2738 	reg->smin_value = reg->umin_value;
2739 	reg->smax_value = reg->umax_value;
2740 }
2741 
2742 /* check whether memory at (regno + off) is accessible for t = (read | write)
2743  * if t==write, value_regno is a register which value is stored into memory
2744  * if t==read, value_regno is a register which will receive the value from memory
2745  * if t==write && value_regno==-1, some unknown value is stored into memory
2746  * if t==read && value_regno==-1, don't care what we read from memory
2747  */
2748 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2749 			    int off, int bpf_size, enum bpf_access_type t,
2750 			    int value_regno, bool strict_alignment_once)
2751 {
2752 	struct bpf_reg_state *regs = cur_regs(env);
2753 	struct bpf_reg_state *reg = regs + regno;
2754 	struct bpf_func_state *state;
2755 	int size, err = 0;
2756 
2757 	size = bpf_size_to_bytes(bpf_size);
2758 	if (size < 0)
2759 		return size;
2760 
2761 	/* alignment checks will add in reg->off themselves */
2762 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2763 	if (err)
2764 		return err;
2765 
2766 	/* for access checks, reg->off is just part of off */
2767 	off += reg->off;
2768 
2769 	if (reg->type == PTR_TO_MAP_VALUE) {
2770 		if (t == BPF_WRITE && value_regno >= 0 &&
2771 		    is_pointer_value(env, value_regno)) {
2772 			verbose(env, "R%d leaks addr into map\n", value_regno);
2773 			return -EACCES;
2774 		}
2775 		err = check_map_access_type(env, regno, off, size, t);
2776 		if (err)
2777 			return err;
2778 		err = check_map_access(env, regno, off, size, false);
2779 		if (!err && t == BPF_READ && value_regno >= 0)
2780 			mark_reg_unknown(env, regs, value_regno);
2781 
2782 	} else if (reg->type == PTR_TO_CTX) {
2783 		enum bpf_reg_type reg_type = SCALAR_VALUE;
2784 
2785 		if (t == BPF_WRITE && value_regno >= 0 &&
2786 		    is_pointer_value(env, value_regno)) {
2787 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
2788 			return -EACCES;
2789 		}
2790 
2791 		err = check_ctx_reg(env, reg, regno);
2792 		if (err < 0)
2793 			return err;
2794 
2795 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2796 		if (!err && t == BPF_READ && value_regno >= 0) {
2797 			/* ctx access returns either a scalar, or a
2798 			 * PTR_TO_PACKET[_META,_END]. In the latter
2799 			 * case, we know the offset is zero.
2800 			 */
2801 			if (reg_type == SCALAR_VALUE) {
2802 				mark_reg_unknown(env, regs, value_regno);
2803 			} else {
2804 				mark_reg_known_zero(env, regs,
2805 						    value_regno);
2806 				if (reg_type_may_be_null(reg_type))
2807 					regs[value_regno].id = ++env->id_gen;
2808 				/* A load of ctx field could have different
2809 				 * actual load size with the one encoded in the
2810 				 * insn. When the dst is PTR, it is for sure not
2811 				 * a sub-register.
2812 				 */
2813 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
2814 			}
2815 			regs[value_regno].type = reg_type;
2816 		}
2817 
2818 	} else if (reg->type == PTR_TO_STACK) {
2819 		off += reg->var_off.value;
2820 		err = check_stack_access(env, reg, off, size);
2821 		if (err)
2822 			return err;
2823 
2824 		state = func(env, reg);
2825 		err = update_stack_depth(env, state, off);
2826 		if (err)
2827 			return err;
2828 
2829 		if (t == BPF_WRITE)
2830 			err = check_stack_write(env, state, off, size,
2831 						value_regno, insn_idx);
2832 		else
2833 			err = check_stack_read(env, state, off, size,
2834 					       value_regno);
2835 	} else if (reg_is_pkt_pointer(reg)) {
2836 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2837 			verbose(env, "cannot write into packet\n");
2838 			return -EACCES;
2839 		}
2840 		if (t == BPF_WRITE && value_regno >= 0 &&
2841 		    is_pointer_value(env, value_regno)) {
2842 			verbose(env, "R%d leaks addr into packet\n",
2843 				value_regno);
2844 			return -EACCES;
2845 		}
2846 		err = check_packet_access(env, regno, off, size, false);
2847 		if (!err && t == BPF_READ && value_regno >= 0)
2848 			mark_reg_unknown(env, regs, value_regno);
2849 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
2850 		if (t == BPF_WRITE && value_regno >= 0 &&
2851 		    is_pointer_value(env, value_regno)) {
2852 			verbose(env, "R%d leaks addr into flow keys\n",
2853 				value_regno);
2854 			return -EACCES;
2855 		}
2856 
2857 		err = check_flow_keys_access(env, off, size);
2858 		if (!err && t == BPF_READ && value_regno >= 0)
2859 			mark_reg_unknown(env, regs, value_regno);
2860 	} else if (type_is_sk_pointer(reg->type)) {
2861 		if (t == BPF_WRITE) {
2862 			verbose(env, "R%d cannot write into %s\n",
2863 				regno, reg_type_str[reg->type]);
2864 			return -EACCES;
2865 		}
2866 		err = check_sock_access(env, insn_idx, regno, off, size, t);
2867 		if (!err && value_regno >= 0)
2868 			mark_reg_unknown(env, regs, value_regno);
2869 	} else if (reg->type == PTR_TO_TP_BUFFER) {
2870 		err = check_tp_buffer_access(env, reg, regno, off, size);
2871 		if (!err && t == BPF_READ && value_regno >= 0)
2872 			mark_reg_unknown(env, regs, value_regno);
2873 	} else {
2874 		verbose(env, "R%d invalid mem access '%s'\n", regno,
2875 			reg_type_str[reg->type]);
2876 		return -EACCES;
2877 	}
2878 
2879 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2880 	    regs[value_regno].type == SCALAR_VALUE) {
2881 		/* b/h/w load zero-extends, mark upper bits as known 0 */
2882 		coerce_reg_to_size(&regs[value_regno], size);
2883 	}
2884 	return err;
2885 }
2886 
2887 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2888 {
2889 	int err;
2890 
2891 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2892 	    insn->imm != 0) {
2893 		verbose(env, "BPF_XADD uses reserved fields\n");
2894 		return -EINVAL;
2895 	}
2896 
2897 	/* check src1 operand */
2898 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
2899 	if (err)
2900 		return err;
2901 
2902 	/* check src2 operand */
2903 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2904 	if (err)
2905 		return err;
2906 
2907 	if (is_pointer_value(env, insn->src_reg)) {
2908 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2909 		return -EACCES;
2910 	}
2911 
2912 	if (is_ctx_reg(env, insn->dst_reg) ||
2913 	    is_pkt_reg(env, insn->dst_reg) ||
2914 	    is_flow_key_reg(env, insn->dst_reg) ||
2915 	    is_sk_reg(env, insn->dst_reg)) {
2916 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2917 			insn->dst_reg,
2918 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
2919 		return -EACCES;
2920 	}
2921 
2922 	/* check whether atomic_add can read the memory */
2923 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2924 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
2925 	if (err)
2926 		return err;
2927 
2928 	/* check whether atomic_add can write into the same memory */
2929 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2930 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2931 }
2932 
2933 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2934 				  int off, int access_size,
2935 				  bool zero_size_allowed)
2936 {
2937 	struct bpf_reg_state *reg = reg_state(env, regno);
2938 
2939 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2940 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2941 		if (tnum_is_const(reg->var_off)) {
2942 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2943 				regno, off, access_size);
2944 		} else {
2945 			char tn_buf[48];
2946 
2947 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2948 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2949 				regno, tn_buf, access_size);
2950 		}
2951 		return -EACCES;
2952 	}
2953 	return 0;
2954 }
2955 
2956 /* when register 'regno' is passed into function that will read 'access_size'
2957  * bytes from that pointer, make sure that it's within stack boundary
2958  * and all elements of stack are initialized.
2959  * Unlike most pointer bounds-checking functions, this one doesn't take an
2960  * 'off' argument, so it has to add in reg->off itself.
2961  */
2962 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2963 				int access_size, bool zero_size_allowed,
2964 				struct bpf_call_arg_meta *meta)
2965 {
2966 	struct bpf_reg_state *reg = reg_state(env, regno);
2967 	struct bpf_func_state *state = func(env, reg);
2968 	int err, min_off, max_off, i, j, slot, spi;
2969 
2970 	if (reg->type != PTR_TO_STACK) {
2971 		/* Allow zero-byte read from NULL, regardless of pointer type */
2972 		if (zero_size_allowed && access_size == 0 &&
2973 		    register_is_null(reg))
2974 			return 0;
2975 
2976 		verbose(env, "R%d type=%s expected=%s\n", regno,
2977 			reg_type_str[reg->type],
2978 			reg_type_str[PTR_TO_STACK]);
2979 		return -EACCES;
2980 	}
2981 
2982 	if (tnum_is_const(reg->var_off)) {
2983 		min_off = max_off = reg->var_off.value + reg->off;
2984 		err = __check_stack_boundary(env, regno, min_off, access_size,
2985 					     zero_size_allowed);
2986 		if (err)
2987 			return err;
2988 	} else {
2989 		/* Variable offset is prohibited for unprivileged mode for
2990 		 * simplicity since it requires corresponding support in
2991 		 * Spectre masking for stack ALU.
2992 		 * See also retrieve_ptr_limit().
2993 		 */
2994 		if (!env->allow_ptr_leaks) {
2995 			char tn_buf[48];
2996 
2997 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2998 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2999 				regno, tn_buf);
3000 			return -EACCES;
3001 		}
3002 		/* Only initialized buffer on stack is allowed to be accessed
3003 		 * with variable offset. With uninitialized buffer it's hard to
3004 		 * guarantee that whole memory is marked as initialized on
3005 		 * helper return since specific bounds are unknown what may
3006 		 * cause uninitialized stack leaking.
3007 		 */
3008 		if (meta && meta->raw_mode)
3009 			meta = NULL;
3010 
3011 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3012 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3013 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3014 				regno);
3015 			return -EACCES;
3016 		}
3017 		min_off = reg->smin_value + reg->off;
3018 		max_off = reg->smax_value + reg->off;
3019 		err = __check_stack_boundary(env, regno, min_off, access_size,
3020 					     zero_size_allowed);
3021 		if (err) {
3022 			verbose(env, "R%d min value is outside of stack bound\n",
3023 				regno);
3024 			return err;
3025 		}
3026 		err = __check_stack_boundary(env, regno, max_off, access_size,
3027 					     zero_size_allowed);
3028 		if (err) {
3029 			verbose(env, "R%d max value is outside of stack bound\n",
3030 				regno);
3031 			return err;
3032 		}
3033 	}
3034 
3035 	if (meta && meta->raw_mode) {
3036 		meta->access_size = access_size;
3037 		meta->regno = regno;
3038 		return 0;
3039 	}
3040 
3041 	for (i = min_off; i < max_off + access_size; i++) {
3042 		u8 *stype;
3043 
3044 		slot = -i - 1;
3045 		spi = slot / BPF_REG_SIZE;
3046 		if (state->allocated_stack <= slot)
3047 			goto err;
3048 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3049 		if (*stype == STACK_MISC)
3050 			goto mark;
3051 		if (*stype == STACK_ZERO) {
3052 			/* helper can write anything into the stack */
3053 			*stype = STACK_MISC;
3054 			goto mark;
3055 		}
3056 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3057 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3058 			__mark_reg_unknown(&state->stack[spi].spilled_ptr);
3059 			for (j = 0; j < BPF_REG_SIZE; j++)
3060 				state->stack[spi].slot_type[j] = STACK_MISC;
3061 			goto mark;
3062 		}
3063 
3064 err:
3065 		if (tnum_is_const(reg->var_off)) {
3066 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3067 				min_off, i - min_off, access_size);
3068 		} else {
3069 			char tn_buf[48];
3070 
3071 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3072 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3073 				tn_buf, i - min_off, access_size);
3074 		}
3075 		return -EACCES;
3076 mark:
3077 		/* reading any byte out of 8-byte 'spill_slot' will cause
3078 		 * the whole slot to be marked as 'read'
3079 		 */
3080 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3081 			      state->stack[spi].spilled_ptr.parent,
3082 			      REG_LIVE_READ64);
3083 	}
3084 	return update_stack_depth(env, state, min_off);
3085 }
3086 
3087 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3088 				   int access_size, bool zero_size_allowed,
3089 				   struct bpf_call_arg_meta *meta)
3090 {
3091 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3092 
3093 	switch (reg->type) {
3094 	case PTR_TO_PACKET:
3095 	case PTR_TO_PACKET_META:
3096 		return check_packet_access(env, regno, reg->off, access_size,
3097 					   zero_size_allowed);
3098 	case PTR_TO_MAP_VALUE:
3099 		if (check_map_access_type(env, regno, reg->off, access_size,
3100 					  meta && meta->raw_mode ? BPF_WRITE :
3101 					  BPF_READ))
3102 			return -EACCES;
3103 		return check_map_access(env, regno, reg->off, access_size,
3104 					zero_size_allowed);
3105 	default: /* scalar_value|ptr_to_stack or invalid ptr */
3106 		return check_stack_boundary(env, regno, access_size,
3107 					    zero_size_allowed, meta);
3108 	}
3109 }
3110 
3111 /* Implementation details:
3112  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3113  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3114  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3115  * value_or_null->value transition, since the verifier only cares about
3116  * the range of access to valid map value pointer and doesn't care about actual
3117  * address of the map element.
3118  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3119  * reg->id > 0 after value_or_null->value transition. By doing so
3120  * two bpf_map_lookups will be considered two different pointers that
3121  * point to different bpf_spin_locks.
3122  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3123  * dead-locks.
3124  * Since only one bpf_spin_lock is allowed the checks are simpler than
3125  * reg_is_refcounted() logic. The verifier needs to remember only
3126  * one spin_lock instead of array of acquired_refs.
3127  * cur_state->active_spin_lock remembers which map value element got locked
3128  * and clears it after bpf_spin_unlock.
3129  */
3130 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3131 			     bool is_lock)
3132 {
3133 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3134 	struct bpf_verifier_state *cur = env->cur_state;
3135 	bool is_const = tnum_is_const(reg->var_off);
3136 	struct bpf_map *map = reg->map_ptr;
3137 	u64 val = reg->var_off.value;
3138 
3139 	if (reg->type != PTR_TO_MAP_VALUE) {
3140 		verbose(env, "R%d is not a pointer to map_value\n", regno);
3141 		return -EINVAL;
3142 	}
3143 	if (!is_const) {
3144 		verbose(env,
3145 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3146 			regno);
3147 		return -EINVAL;
3148 	}
3149 	if (!map->btf) {
3150 		verbose(env,
3151 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3152 			map->name);
3153 		return -EINVAL;
3154 	}
3155 	if (!map_value_has_spin_lock(map)) {
3156 		if (map->spin_lock_off == -E2BIG)
3157 			verbose(env,
3158 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3159 				map->name);
3160 		else if (map->spin_lock_off == -ENOENT)
3161 			verbose(env,
3162 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3163 				map->name);
3164 		else
3165 			verbose(env,
3166 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3167 				map->name);
3168 		return -EINVAL;
3169 	}
3170 	if (map->spin_lock_off != val + reg->off) {
3171 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3172 			val + reg->off);
3173 		return -EINVAL;
3174 	}
3175 	if (is_lock) {
3176 		if (cur->active_spin_lock) {
3177 			verbose(env,
3178 				"Locking two bpf_spin_locks are not allowed\n");
3179 			return -EINVAL;
3180 		}
3181 		cur->active_spin_lock = reg->id;
3182 	} else {
3183 		if (!cur->active_spin_lock) {
3184 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3185 			return -EINVAL;
3186 		}
3187 		if (cur->active_spin_lock != reg->id) {
3188 			verbose(env, "bpf_spin_unlock of different lock\n");
3189 			return -EINVAL;
3190 		}
3191 		cur->active_spin_lock = 0;
3192 	}
3193 	return 0;
3194 }
3195 
3196 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3197 {
3198 	return type == ARG_PTR_TO_MEM ||
3199 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3200 	       type == ARG_PTR_TO_UNINIT_MEM;
3201 }
3202 
3203 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3204 {
3205 	return type == ARG_CONST_SIZE ||
3206 	       type == ARG_CONST_SIZE_OR_ZERO;
3207 }
3208 
3209 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3210 {
3211 	return type == ARG_PTR_TO_INT ||
3212 	       type == ARG_PTR_TO_LONG;
3213 }
3214 
3215 static int int_ptr_type_to_size(enum bpf_arg_type type)
3216 {
3217 	if (type == ARG_PTR_TO_INT)
3218 		return sizeof(u32);
3219 	else if (type == ARG_PTR_TO_LONG)
3220 		return sizeof(u64);
3221 
3222 	return -EINVAL;
3223 }
3224 
3225 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
3226 			  enum bpf_arg_type arg_type,
3227 			  struct bpf_call_arg_meta *meta)
3228 {
3229 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3230 	enum bpf_reg_type expected_type, type = reg->type;
3231 	int err = 0;
3232 
3233 	if (arg_type == ARG_DONTCARE)
3234 		return 0;
3235 
3236 	err = check_reg_arg(env, regno, SRC_OP);
3237 	if (err)
3238 		return err;
3239 
3240 	if (arg_type == ARG_ANYTHING) {
3241 		if (is_pointer_value(env, regno)) {
3242 			verbose(env, "R%d leaks addr into helper function\n",
3243 				regno);
3244 			return -EACCES;
3245 		}
3246 		return 0;
3247 	}
3248 
3249 	if (type_is_pkt_pointer(type) &&
3250 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3251 		verbose(env, "helper access to the packet is not allowed\n");
3252 		return -EACCES;
3253 	}
3254 
3255 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
3256 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
3257 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3258 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3259 		expected_type = PTR_TO_STACK;
3260 		if (register_is_null(reg) &&
3261 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3262 			/* final test in check_stack_boundary() */;
3263 		else if (!type_is_pkt_pointer(type) &&
3264 			 type != PTR_TO_MAP_VALUE &&
3265 			 type != expected_type)
3266 			goto err_type;
3267 	} else if (arg_type == ARG_CONST_SIZE ||
3268 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
3269 		expected_type = SCALAR_VALUE;
3270 		if (type != expected_type)
3271 			goto err_type;
3272 	} else if (arg_type == ARG_CONST_MAP_PTR) {
3273 		expected_type = CONST_PTR_TO_MAP;
3274 		if (type != expected_type)
3275 			goto err_type;
3276 	} else if (arg_type == ARG_PTR_TO_CTX) {
3277 		expected_type = PTR_TO_CTX;
3278 		if (type != expected_type)
3279 			goto err_type;
3280 		err = check_ctx_reg(env, reg, regno);
3281 		if (err < 0)
3282 			return err;
3283 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3284 		expected_type = PTR_TO_SOCK_COMMON;
3285 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3286 		if (!type_is_sk_pointer(type))
3287 			goto err_type;
3288 		if (reg->ref_obj_id) {
3289 			if (meta->ref_obj_id) {
3290 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3291 					regno, reg->ref_obj_id,
3292 					meta->ref_obj_id);
3293 				return -EFAULT;
3294 			}
3295 			meta->ref_obj_id = reg->ref_obj_id;
3296 		}
3297 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
3298 		expected_type = PTR_TO_SOCKET;
3299 		if (type != expected_type)
3300 			goto err_type;
3301 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3302 		if (meta->func_id == BPF_FUNC_spin_lock) {
3303 			if (process_spin_lock(env, regno, true))
3304 				return -EACCES;
3305 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
3306 			if (process_spin_lock(env, regno, false))
3307 				return -EACCES;
3308 		} else {
3309 			verbose(env, "verifier internal error\n");
3310 			return -EFAULT;
3311 		}
3312 	} else if (arg_type_is_mem_ptr(arg_type)) {
3313 		expected_type = PTR_TO_STACK;
3314 		/* One exception here. In case function allows for NULL to be
3315 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
3316 		 * happens during stack boundary checking.
3317 		 */
3318 		if (register_is_null(reg) &&
3319 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
3320 			/* final test in check_stack_boundary() */;
3321 		else if (!type_is_pkt_pointer(type) &&
3322 			 type != PTR_TO_MAP_VALUE &&
3323 			 type != expected_type)
3324 			goto err_type;
3325 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
3326 	} else if (arg_type_is_int_ptr(arg_type)) {
3327 		expected_type = PTR_TO_STACK;
3328 		if (!type_is_pkt_pointer(type) &&
3329 		    type != PTR_TO_MAP_VALUE &&
3330 		    type != expected_type)
3331 			goto err_type;
3332 	} else {
3333 		verbose(env, "unsupported arg_type %d\n", arg_type);
3334 		return -EFAULT;
3335 	}
3336 
3337 	if (arg_type == ARG_CONST_MAP_PTR) {
3338 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3339 		meta->map_ptr = reg->map_ptr;
3340 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3341 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
3342 		 * check that [key, key + map->key_size) are within
3343 		 * stack limits and initialized
3344 		 */
3345 		if (!meta->map_ptr) {
3346 			/* in function declaration map_ptr must come before
3347 			 * map_key, so that it's verified and known before
3348 			 * we have to check map_key here. Otherwise it means
3349 			 * that kernel subsystem misconfigured verifier
3350 			 */
3351 			verbose(env, "invalid map_ptr to access map->key\n");
3352 			return -EACCES;
3353 		}
3354 		err = check_helper_mem_access(env, regno,
3355 					      meta->map_ptr->key_size, false,
3356 					      NULL);
3357 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3358 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3359 		    !register_is_null(reg)) ||
3360 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
3361 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
3362 		 * check [value, value + map->value_size) validity
3363 		 */
3364 		if (!meta->map_ptr) {
3365 			/* kernel subsystem misconfigured verifier */
3366 			verbose(env, "invalid map_ptr to access map->value\n");
3367 			return -EACCES;
3368 		}
3369 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
3370 		err = check_helper_mem_access(env, regno,
3371 					      meta->map_ptr->value_size, false,
3372 					      meta);
3373 	} else if (arg_type_is_mem_size(arg_type)) {
3374 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
3375 
3376 		/* remember the mem_size which may be used later
3377 		 * to refine return values.
3378 		 */
3379 		meta->msize_smax_value = reg->smax_value;
3380 		meta->msize_umax_value = reg->umax_value;
3381 
3382 		/* The register is SCALAR_VALUE; the access check
3383 		 * happens using its boundaries.
3384 		 */
3385 		if (!tnum_is_const(reg->var_off))
3386 			/* For unprivileged variable accesses, disable raw
3387 			 * mode so that the program is required to
3388 			 * initialize all the memory that the helper could
3389 			 * just partially fill up.
3390 			 */
3391 			meta = NULL;
3392 
3393 		if (reg->smin_value < 0) {
3394 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
3395 				regno);
3396 			return -EACCES;
3397 		}
3398 
3399 		if (reg->umin_value == 0) {
3400 			err = check_helper_mem_access(env, regno - 1, 0,
3401 						      zero_size_allowed,
3402 						      meta);
3403 			if (err)
3404 				return err;
3405 		}
3406 
3407 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
3408 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
3409 				regno);
3410 			return -EACCES;
3411 		}
3412 		err = check_helper_mem_access(env, regno - 1,
3413 					      reg->umax_value,
3414 					      zero_size_allowed, meta);
3415 		if (!err)
3416 			err = mark_chain_precision(env, regno);
3417 	} else if (arg_type_is_int_ptr(arg_type)) {
3418 		int size = int_ptr_type_to_size(arg_type);
3419 
3420 		err = check_helper_mem_access(env, regno, size, false, meta);
3421 		if (err)
3422 			return err;
3423 		err = check_ptr_alignment(env, reg, 0, size, true);
3424 	}
3425 
3426 	return err;
3427 err_type:
3428 	verbose(env, "R%d type=%s expected=%s\n", regno,
3429 		reg_type_str[type], reg_type_str[expected_type]);
3430 	return -EACCES;
3431 }
3432 
3433 static int check_map_func_compatibility(struct bpf_verifier_env *env,
3434 					struct bpf_map *map, int func_id)
3435 {
3436 	if (!map)
3437 		return 0;
3438 
3439 	/* We need a two way check, first is from map perspective ... */
3440 	switch (map->map_type) {
3441 	case BPF_MAP_TYPE_PROG_ARRAY:
3442 		if (func_id != BPF_FUNC_tail_call)
3443 			goto error;
3444 		break;
3445 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3446 		if (func_id != BPF_FUNC_perf_event_read &&
3447 		    func_id != BPF_FUNC_perf_event_output &&
3448 		    func_id != BPF_FUNC_perf_event_read_value)
3449 			goto error;
3450 		break;
3451 	case BPF_MAP_TYPE_STACK_TRACE:
3452 		if (func_id != BPF_FUNC_get_stackid)
3453 			goto error;
3454 		break;
3455 	case BPF_MAP_TYPE_CGROUP_ARRAY:
3456 		if (func_id != BPF_FUNC_skb_under_cgroup &&
3457 		    func_id != BPF_FUNC_current_task_under_cgroup)
3458 			goto error;
3459 		break;
3460 	case BPF_MAP_TYPE_CGROUP_STORAGE:
3461 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
3462 		if (func_id != BPF_FUNC_get_local_storage)
3463 			goto error;
3464 		break;
3465 	case BPF_MAP_TYPE_DEVMAP:
3466 	case BPF_MAP_TYPE_DEVMAP_HASH:
3467 		if (func_id != BPF_FUNC_redirect_map &&
3468 		    func_id != BPF_FUNC_map_lookup_elem)
3469 			goto error;
3470 		break;
3471 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
3472 	 * appear.
3473 	 */
3474 	case BPF_MAP_TYPE_CPUMAP:
3475 		if (func_id != BPF_FUNC_redirect_map)
3476 			goto error;
3477 		break;
3478 	case BPF_MAP_TYPE_XSKMAP:
3479 		if (func_id != BPF_FUNC_redirect_map &&
3480 		    func_id != BPF_FUNC_map_lookup_elem)
3481 			goto error;
3482 		break;
3483 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
3484 	case BPF_MAP_TYPE_HASH_OF_MAPS:
3485 		if (func_id != BPF_FUNC_map_lookup_elem)
3486 			goto error;
3487 		break;
3488 	case BPF_MAP_TYPE_SOCKMAP:
3489 		if (func_id != BPF_FUNC_sk_redirect_map &&
3490 		    func_id != BPF_FUNC_sock_map_update &&
3491 		    func_id != BPF_FUNC_map_delete_elem &&
3492 		    func_id != BPF_FUNC_msg_redirect_map)
3493 			goto error;
3494 		break;
3495 	case BPF_MAP_TYPE_SOCKHASH:
3496 		if (func_id != BPF_FUNC_sk_redirect_hash &&
3497 		    func_id != BPF_FUNC_sock_hash_update &&
3498 		    func_id != BPF_FUNC_map_delete_elem &&
3499 		    func_id != BPF_FUNC_msg_redirect_hash)
3500 			goto error;
3501 		break;
3502 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3503 		if (func_id != BPF_FUNC_sk_select_reuseport)
3504 			goto error;
3505 		break;
3506 	case BPF_MAP_TYPE_QUEUE:
3507 	case BPF_MAP_TYPE_STACK:
3508 		if (func_id != BPF_FUNC_map_peek_elem &&
3509 		    func_id != BPF_FUNC_map_pop_elem &&
3510 		    func_id != BPF_FUNC_map_push_elem)
3511 			goto error;
3512 		break;
3513 	case BPF_MAP_TYPE_SK_STORAGE:
3514 		if (func_id != BPF_FUNC_sk_storage_get &&
3515 		    func_id != BPF_FUNC_sk_storage_delete)
3516 			goto error;
3517 		break;
3518 	default:
3519 		break;
3520 	}
3521 
3522 	/* ... and second from the function itself. */
3523 	switch (func_id) {
3524 	case BPF_FUNC_tail_call:
3525 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3526 			goto error;
3527 		if (env->subprog_cnt > 1) {
3528 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3529 			return -EINVAL;
3530 		}
3531 		break;
3532 	case BPF_FUNC_perf_event_read:
3533 	case BPF_FUNC_perf_event_output:
3534 	case BPF_FUNC_perf_event_read_value:
3535 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3536 			goto error;
3537 		break;
3538 	case BPF_FUNC_get_stackid:
3539 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3540 			goto error;
3541 		break;
3542 	case BPF_FUNC_current_task_under_cgroup:
3543 	case BPF_FUNC_skb_under_cgroup:
3544 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3545 			goto error;
3546 		break;
3547 	case BPF_FUNC_redirect_map:
3548 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
3549 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
3550 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
3551 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
3552 			goto error;
3553 		break;
3554 	case BPF_FUNC_sk_redirect_map:
3555 	case BPF_FUNC_msg_redirect_map:
3556 	case BPF_FUNC_sock_map_update:
3557 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3558 			goto error;
3559 		break;
3560 	case BPF_FUNC_sk_redirect_hash:
3561 	case BPF_FUNC_msg_redirect_hash:
3562 	case BPF_FUNC_sock_hash_update:
3563 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
3564 			goto error;
3565 		break;
3566 	case BPF_FUNC_get_local_storage:
3567 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3568 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
3569 			goto error;
3570 		break;
3571 	case BPF_FUNC_sk_select_reuseport:
3572 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3573 			goto error;
3574 		break;
3575 	case BPF_FUNC_map_peek_elem:
3576 	case BPF_FUNC_map_pop_elem:
3577 	case BPF_FUNC_map_push_elem:
3578 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3579 		    map->map_type != BPF_MAP_TYPE_STACK)
3580 			goto error;
3581 		break;
3582 	case BPF_FUNC_sk_storage_get:
3583 	case BPF_FUNC_sk_storage_delete:
3584 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3585 			goto error;
3586 		break;
3587 	default:
3588 		break;
3589 	}
3590 
3591 	return 0;
3592 error:
3593 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
3594 		map->map_type, func_id_name(func_id), func_id);
3595 	return -EINVAL;
3596 }
3597 
3598 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
3599 {
3600 	int count = 0;
3601 
3602 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
3603 		count++;
3604 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
3605 		count++;
3606 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
3607 		count++;
3608 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
3609 		count++;
3610 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
3611 		count++;
3612 
3613 	/* We only support one arg being in raw mode at the moment,
3614 	 * which is sufficient for the helper functions we have
3615 	 * right now.
3616 	 */
3617 	return count <= 1;
3618 }
3619 
3620 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3621 				    enum bpf_arg_type arg_next)
3622 {
3623 	return (arg_type_is_mem_ptr(arg_curr) &&
3624 	        !arg_type_is_mem_size(arg_next)) ||
3625 	       (!arg_type_is_mem_ptr(arg_curr) &&
3626 		arg_type_is_mem_size(arg_next));
3627 }
3628 
3629 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3630 {
3631 	/* bpf_xxx(..., buf, len) call will access 'len'
3632 	 * bytes from memory 'buf'. Both arg types need
3633 	 * to be paired, so make sure there's no buggy
3634 	 * helper function specification.
3635 	 */
3636 	if (arg_type_is_mem_size(fn->arg1_type) ||
3637 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
3638 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3639 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3640 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3641 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3642 		return false;
3643 
3644 	return true;
3645 }
3646 
3647 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
3648 {
3649 	int count = 0;
3650 
3651 	if (arg_type_may_be_refcounted(fn->arg1_type))
3652 		count++;
3653 	if (arg_type_may_be_refcounted(fn->arg2_type))
3654 		count++;
3655 	if (arg_type_may_be_refcounted(fn->arg3_type))
3656 		count++;
3657 	if (arg_type_may_be_refcounted(fn->arg4_type))
3658 		count++;
3659 	if (arg_type_may_be_refcounted(fn->arg5_type))
3660 		count++;
3661 
3662 	/* A reference acquiring function cannot acquire
3663 	 * another refcounted ptr.
3664 	 */
3665 	if (is_acquire_function(func_id) && count)
3666 		return false;
3667 
3668 	/* We only support one arg being unreferenced at the moment,
3669 	 * which is sufficient for the helper functions we have right now.
3670 	 */
3671 	return count <= 1;
3672 }
3673 
3674 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
3675 {
3676 	return check_raw_mode_ok(fn) &&
3677 	       check_arg_pair_ok(fn) &&
3678 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
3679 }
3680 
3681 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3682  * are now invalid, so turn them into unknown SCALAR_VALUE.
3683  */
3684 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3685 				     struct bpf_func_state *state)
3686 {
3687 	struct bpf_reg_state *regs = state->regs, *reg;
3688 	int i;
3689 
3690 	for (i = 0; i < MAX_BPF_REG; i++)
3691 		if (reg_is_pkt_pointer_any(&regs[i]))
3692 			mark_reg_unknown(env, regs, i);
3693 
3694 	bpf_for_each_spilled_reg(i, state, reg) {
3695 		if (!reg)
3696 			continue;
3697 		if (reg_is_pkt_pointer_any(reg))
3698 			__mark_reg_unknown(reg);
3699 	}
3700 }
3701 
3702 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3703 {
3704 	struct bpf_verifier_state *vstate = env->cur_state;
3705 	int i;
3706 
3707 	for (i = 0; i <= vstate->curframe; i++)
3708 		__clear_all_pkt_pointers(env, vstate->frame[i]);
3709 }
3710 
3711 static void release_reg_references(struct bpf_verifier_env *env,
3712 				   struct bpf_func_state *state,
3713 				   int ref_obj_id)
3714 {
3715 	struct bpf_reg_state *regs = state->regs, *reg;
3716 	int i;
3717 
3718 	for (i = 0; i < MAX_BPF_REG; i++)
3719 		if (regs[i].ref_obj_id == ref_obj_id)
3720 			mark_reg_unknown(env, regs, i);
3721 
3722 	bpf_for_each_spilled_reg(i, state, reg) {
3723 		if (!reg)
3724 			continue;
3725 		if (reg->ref_obj_id == ref_obj_id)
3726 			__mark_reg_unknown(reg);
3727 	}
3728 }
3729 
3730 /* The pointer with the specified id has released its reference to kernel
3731  * resources. Identify all copies of the same pointer and clear the reference.
3732  */
3733 static int release_reference(struct bpf_verifier_env *env,
3734 			     int ref_obj_id)
3735 {
3736 	struct bpf_verifier_state *vstate = env->cur_state;
3737 	int err;
3738 	int i;
3739 
3740 	err = release_reference_state(cur_func(env), ref_obj_id);
3741 	if (err)
3742 		return err;
3743 
3744 	for (i = 0; i <= vstate->curframe; i++)
3745 		release_reg_references(env, vstate->frame[i], ref_obj_id);
3746 
3747 	return 0;
3748 }
3749 
3750 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3751 			   int *insn_idx)
3752 {
3753 	struct bpf_verifier_state *state = env->cur_state;
3754 	struct bpf_func_state *caller, *callee;
3755 	int i, err, subprog, target_insn;
3756 
3757 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3758 		verbose(env, "the call stack of %d frames is too deep\n",
3759 			state->curframe + 2);
3760 		return -E2BIG;
3761 	}
3762 
3763 	target_insn = *insn_idx + insn->imm;
3764 	subprog = find_subprog(env, target_insn + 1);
3765 	if (subprog < 0) {
3766 		verbose(env, "verifier bug. No program starts at insn %d\n",
3767 			target_insn + 1);
3768 		return -EFAULT;
3769 	}
3770 
3771 	caller = state->frame[state->curframe];
3772 	if (state->frame[state->curframe + 1]) {
3773 		verbose(env, "verifier bug. Frame %d already allocated\n",
3774 			state->curframe + 1);
3775 		return -EFAULT;
3776 	}
3777 
3778 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3779 	if (!callee)
3780 		return -ENOMEM;
3781 	state->frame[state->curframe + 1] = callee;
3782 
3783 	/* callee cannot access r0, r6 - r9 for reading and has to write
3784 	 * into its own stack before reading from it.
3785 	 * callee can read/write into caller's stack
3786 	 */
3787 	init_func_state(env, callee,
3788 			/* remember the callsite, it will be used by bpf_exit */
3789 			*insn_idx /* callsite */,
3790 			state->curframe + 1 /* frameno within this callchain */,
3791 			subprog /* subprog number within this prog */);
3792 
3793 	/* Transfer references to the callee */
3794 	err = transfer_reference_state(callee, caller);
3795 	if (err)
3796 		return err;
3797 
3798 	/* copy r1 - r5 args that callee can access.  The copy includes parent
3799 	 * pointers, which connects us up to the liveness chain
3800 	 */
3801 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3802 		callee->regs[i] = caller->regs[i];
3803 
3804 	/* after the call registers r0 - r5 were scratched */
3805 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3806 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
3807 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3808 	}
3809 
3810 	/* only increment it after check_reg_arg() finished */
3811 	state->curframe++;
3812 
3813 	/* and go analyze first insn of the callee */
3814 	*insn_idx = target_insn;
3815 
3816 	if (env->log.level & BPF_LOG_LEVEL) {
3817 		verbose(env, "caller:\n");
3818 		print_verifier_state(env, caller);
3819 		verbose(env, "callee:\n");
3820 		print_verifier_state(env, callee);
3821 	}
3822 	return 0;
3823 }
3824 
3825 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3826 {
3827 	struct bpf_verifier_state *state = env->cur_state;
3828 	struct bpf_func_state *caller, *callee;
3829 	struct bpf_reg_state *r0;
3830 	int err;
3831 
3832 	callee = state->frame[state->curframe];
3833 	r0 = &callee->regs[BPF_REG_0];
3834 	if (r0->type == PTR_TO_STACK) {
3835 		/* technically it's ok to return caller's stack pointer
3836 		 * (or caller's caller's pointer) back to the caller,
3837 		 * since these pointers are valid. Only current stack
3838 		 * pointer will be invalid as soon as function exits,
3839 		 * but let's be conservative
3840 		 */
3841 		verbose(env, "cannot return stack pointer to the caller\n");
3842 		return -EINVAL;
3843 	}
3844 
3845 	state->curframe--;
3846 	caller = state->frame[state->curframe];
3847 	/* return to the caller whatever r0 had in the callee */
3848 	caller->regs[BPF_REG_0] = *r0;
3849 
3850 	/* Transfer references to the caller */
3851 	err = transfer_reference_state(caller, callee);
3852 	if (err)
3853 		return err;
3854 
3855 	*insn_idx = callee->callsite + 1;
3856 	if (env->log.level & BPF_LOG_LEVEL) {
3857 		verbose(env, "returning from callee:\n");
3858 		print_verifier_state(env, callee);
3859 		verbose(env, "to caller at %d:\n", *insn_idx);
3860 		print_verifier_state(env, caller);
3861 	}
3862 	/* clear everything in the callee */
3863 	free_func_state(callee);
3864 	state->frame[state->curframe + 1] = NULL;
3865 	return 0;
3866 }
3867 
3868 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3869 				   int func_id,
3870 				   struct bpf_call_arg_meta *meta)
3871 {
3872 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3873 
3874 	if (ret_type != RET_INTEGER ||
3875 	    (func_id != BPF_FUNC_get_stack &&
3876 	     func_id != BPF_FUNC_probe_read_str))
3877 		return;
3878 
3879 	ret_reg->smax_value = meta->msize_smax_value;
3880 	ret_reg->umax_value = meta->msize_umax_value;
3881 	__reg_deduce_bounds(ret_reg);
3882 	__reg_bound_offset(ret_reg);
3883 }
3884 
3885 static int
3886 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3887 		int func_id, int insn_idx)
3888 {
3889 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
3890 	struct bpf_map *map = meta->map_ptr;
3891 
3892 	if (func_id != BPF_FUNC_tail_call &&
3893 	    func_id != BPF_FUNC_map_lookup_elem &&
3894 	    func_id != BPF_FUNC_map_update_elem &&
3895 	    func_id != BPF_FUNC_map_delete_elem &&
3896 	    func_id != BPF_FUNC_map_push_elem &&
3897 	    func_id != BPF_FUNC_map_pop_elem &&
3898 	    func_id != BPF_FUNC_map_peek_elem)
3899 		return 0;
3900 
3901 	if (map == NULL) {
3902 		verbose(env, "kernel subsystem misconfigured verifier\n");
3903 		return -EINVAL;
3904 	}
3905 
3906 	/* In case of read-only, some additional restrictions
3907 	 * need to be applied in order to prevent altering the
3908 	 * state of the map from program side.
3909 	 */
3910 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3911 	    (func_id == BPF_FUNC_map_delete_elem ||
3912 	     func_id == BPF_FUNC_map_update_elem ||
3913 	     func_id == BPF_FUNC_map_push_elem ||
3914 	     func_id == BPF_FUNC_map_pop_elem)) {
3915 		verbose(env, "write into map forbidden\n");
3916 		return -EACCES;
3917 	}
3918 
3919 	if (!BPF_MAP_PTR(aux->map_state))
3920 		bpf_map_ptr_store(aux, meta->map_ptr,
3921 				  meta->map_ptr->unpriv_array);
3922 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3923 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3924 				  meta->map_ptr->unpriv_array);
3925 	return 0;
3926 }
3927 
3928 static int check_reference_leak(struct bpf_verifier_env *env)
3929 {
3930 	struct bpf_func_state *state = cur_func(env);
3931 	int i;
3932 
3933 	for (i = 0; i < state->acquired_refs; i++) {
3934 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3935 			state->refs[i].id, state->refs[i].insn_idx);
3936 	}
3937 	return state->acquired_refs ? -EINVAL : 0;
3938 }
3939 
3940 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
3941 {
3942 	const struct bpf_func_proto *fn = NULL;
3943 	struct bpf_reg_state *regs;
3944 	struct bpf_call_arg_meta meta;
3945 	bool changes_data;
3946 	int i, err;
3947 
3948 	/* find function prototype */
3949 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
3950 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3951 			func_id);
3952 		return -EINVAL;
3953 	}
3954 
3955 	if (env->ops->get_func_proto)
3956 		fn = env->ops->get_func_proto(func_id, env->prog);
3957 	if (!fn) {
3958 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3959 			func_id);
3960 		return -EINVAL;
3961 	}
3962 
3963 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
3964 	if (!env->prog->gpl_compatible && fn->gpl_only) {
3965 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
3966 		return -EINVAL;
3967 	}
3968 
3969 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
3970 	changes_data = bpf_helper_changes_pkt_data(fn->func);
3971 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3972 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3973 			func_id_name(func_id), func_id);
3974 		return -EINVAL;
3975 	}
3976 
3977 	memset(&meta, 0, sizeof(meta));
3978 	meta.pkt_access = fn->pkt_access;
3979 
3980 	err = check_func_proto(fn, func_id);
3981 	if (err) {
3982 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
3983 			func_id_name(func_id), func_id);
3984 		return err;
3985 	}
3986 
3987 	meta.func_id = func_id;
3988 	/* check args */
3989 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
3990 	if (err)
3991 		return err;
3992 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
3993 	if (err)
3994 		return err;
3995 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
3996 	if (err)
3997 		return err;
3998 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
3999 	if (err)
4000 		return err;
4001 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
4002 	if (err)
4003 		return err;
4004 
4005 	err = record_func_map(env, &meta, func_id, insn_idx);
4006 	if (err)
4007 		return err;
4008 
4009 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
4010 	 * is inferred from register state.
4011 	 */
4012 	for (i = 0; i < meta.access_size; i++) {
4013 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4014 				       BPF_WRITE, -1, false);
4015 		if (err)
4016 			return err;
4017 	}
4018 
4019 	if (func_id == BPF_FUNC_tail_call) {
4020 		err = check_reference_leak(env);
4021 		if (err) {
4022 			verbose(env, "tail_call would lead to reference leak\n");
4023 			return err;
4024 		}
4025 	} else if (is_release_function(func_id)) {
4026 		err = release_reference(env, meta.ref_obj_id);
4027 		if (err) {
4028 			verbose(env, "func %s#%d reference has not been acquired before\n",
4029 				func_id_name(func_id), func_id);
4030 			return err;
4031 		}
4032 	}
4033 
4034 	regs = cur_regs(env);
4035 
4036 	/* check that flags argument in get_local_storage(map, flags) is 0,
4037 	 * this is required because get_local_storage() can't return an error.
4038 	 */
4039 	if (func_id == BPF_FUNC_get_local_storage &&
4040 	    !register_is_null(&regs[BPF_REG_2])) {
4041 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4042 		return -EINVAL;
4043 	}
4044 
4045 	/* reset caller saved regs */
4046 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4047 		mark_reg_not_init(env, regs, caller_saved[i]);
4048 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4049 	}
4050 
4051 	/* helper call returns 64-bit value. */
4052 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4053 
4054 	/* update return register (already marked as written above) */
4055 	if (fn->ret_type == RET_INTEGER) {
4056 		/* sets type to SCALAR_VALUE */
4057 		mark_reg_unknown(env, regs, BPF_REG_0);
4058 	} else if (fn->ret_type == RET_VOID) {
4059 		regs[BPF_REG_0].type = NOT_INIT;
4060 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4061 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4062 		/* There is no offset yet applied, variable or fixed */
4063 		mark_reg_known_zero(env, regs, BPF_REG_0);
4064 		/* remember map_ptr, so that check_map_access()
4065 		 * can check 'value_size' boundary of memory access
4066 		 * to map element returned from bpf_map_lookup_elem()
4067 		 */
4068 		if (meta.map_ptr == NULL) {
4069 			verbose(env,
4070 				"kernel subsystem misconfigured verifier\n");
4071 			return -EINVAL;
4072 		}
4073 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
4074 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4075 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4076 			if (map_value_has_spin_lock(meta.map_ptr))
4077 				regs[BPF_REG_0].id = ++env->id_gen;
4078 		} else {
4079 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4080 			regs[BPF_REG_0].id = ++env->id_gen;
4081 		}
4082 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4083 		mark_reg_known_zero(env, regs, BPF_REG_0);
4084 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4085 		regs[BPF_REG_0].id = ++env->id_gen;
4086 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4087 		mark_reg_known_zero(env, regs, BPF_REG_0);
4088 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4089 		regs[BPF_REG_0].id = ++env->id_gen;
4090 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4091 		mark_reg_known_zero(env, regs, BPF_REG_0);
4092 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4093 		regs[BPF_REG_0].id = ++env->id_gen;
4094 	} else {
4095 		verbose(env, "unknown return type %d of func %s#%d\n",
4096 			fn->ret_type, func_id_name(func_id), func_id);
4097 		return -EINVAL;
4098 	}
4099 
4100 	if (is_ptr_cast_function(func_id)) {
4101 		/* For release_reference() */
4102 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4103 	} else if (is_acquire_function(func_id)) {
4104 		int id = acquire_reference_state(env, insn_idx);
4105 
4106 		if (id < 0)
4107 			return id;
4108 		/* For mark_ptr_or_null_reg() */
4109 		regs[BPF_REG_0].id = id;
4110 		/* For release_reference() */
4111 		regs[BPF_REG_0].ref_obj_id = id;
4112 	}
4113 
4114 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4115 
4116 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4117 	if (err)
4118 		return err;
4119 
4120 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4121 		const char *err_str;
4122 
4123 #ifdef CONFIG_PERF_EVENTS
4124 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
4125 		err_str = "cannot get callchain buffer for func %s#%d\n";
4126 #else
4127 		err = -ENOTSUPP;
4128 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4129 #endif
4130 		if (err) {
4131 			verbose(env, err_str, func_id_name(func_id), func_id);
4132 			return err;
4133 		}
4134 
4135 		env->prog->has_callchain_buf = true;
4136 	}
4137 
4138 	if (changes_data)
4139 		clear_all_pkt_pointers(env);
4140 	return 0;
4141 }
4142 
4143 static bool signed_add_overflows(s64 a, s64 b)
4144 {
4145 	/* Do the add in u64, where overflow is well-defined */
4146 	s64 res = (s64)((u64)a + (u64)b);
4147 
4148 	if (b < 0)
4149 		return res > a;
4150 	return res < a;
4151 }
4152 
4153 static bool signed_sub_overflows(s64 a, s64 b)
4154 {
4155 	/* Do the sub in u64, where overflow is well-defined */
4156 	s64 res = (s64)((u64)a - (u64)b);
4157 
4158 	if (b < 0)
4159 		return res < a;
4160 	return res > a;
4161 }
4162 
4163 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4164 				  const struct bpf_reg_state *reg,
4165 				  enum bpf_reg_type type)
4166 {
4167 	bool known = tnum_is_const(reg->var_off);
4168 	s64 val = reg->var_off.value;
4169 	s64 smin = reg->smin_value;
4170 
4171 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4172 		verbose(env, "math between %s pointer and %lld is not allowed\n",
4173 			reg_type_str[type], val);
4174 		return false;
4175 	}
4176 
4177 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4178 		verbose(env, "%s pointer offset %d is not allowed\n",
4179 			reg_type_str[type], reg->off);
4180 		return false;
4181 	}
4182 
4183 	if (smin == S64_MIN) {
4184 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4185 			reg_type_str[type]);
4186 		return false;
4187 	}
4188 
4189 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4190 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
4191 			smin, reg_type_str[type]);
4192 		return false;
4193 	}
4194 
4195 	return true;
4196 }
4197 
4198 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4199 {
4200 	return &env->insn_aux_data[env->insn_idx];
4201 }
4202 
4203 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4204 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
4205 {
4206 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
4207 			    (opcode == BPF_SUB && !off_is_neg);
4208 	u32 off;
4209 
4210 	switch (ptr_reg->type) {
4211 	case PTR_TO_STACK:
4212 		/* Indirect variable offset stack access is prohibited in
4213 		 * unprivileged mode so it's not handled here.
4214 		 */
4215 		off = ptr_reg->off + ptr_reg->var_off.value;
4216 		if (mask_to_left)
4217 			*ptr_limit = MAX_BPF_STACK + off;
4218 		else
4219 			*ptr_limit = -off;
4220 		return 0;
4221 	case PTR_TO_MAP_VALUE:
4222 		if (mask_to_left) {
4223 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4224 		} else {
4225 			off = ptr_reg->smin_value + ptr_reg->off;
4226 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
4227 		}
4228 		return 0;
4229 	default:
4230 		return -EINVAL;
4231 	}
4232 }
4233 
4234 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4235 				    const struct bpf_insn *insn)
4236 {
4237 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4238 }
4239 
4240 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4241 				       u32 alu_state, u32 alu_limit)
4242 {
4243 	/* If we arrived here from different branches with different
4244 	 * state or limits to sanitize, then this won't work.
4245 	 */
4246 	if (aux->alu_state &&
4247 	    (aux->alu_state != alu_state ||
4248 	     aux->alu_limit != alu_limit))
4249 		return -EACCES;
4250 
4251 	/* Corresponding fixup done in fixup_bpf_calls(). */
4252 	aux->alu_state = alu_state;
4253 	aux->alu_limit = alu_limit;
4254 	return 0;
4255 }
4256 
4257 static int sanitize_val_alu(struct bpf_verifier_env *env,
4258 			    struct bpf_insn *insn)
4259 {
4260 	struct bpf_insn_aux_data *aux = cur_aux(env);
4261 
4262 	if (can_skip_alu_sanitation(env, insn))
4263 		return 0;
4264 
4265 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4266 }
4267 
4268 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4269 			    struct bpf_insn *insn,
4270 			    const struct bpf_reg_state *ptr_reg,
4271 			    struct bpf_reg_state *dst_reg,
4272 			    bool off_is_neg)
4273 {
4274 	struct bpf_verifier_state *vstate = env->cur_state;
4275 	struct bpf_insn_aux_data *aux = cur_aux(env);
4276 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
4277 	u8 opcode = BPF_OP(insn->code);
4278 	u32 alu_state, alu_limit;
4279 	struct bpf_reg_state tmp;
4280 	bool ret;
4281 
4282 	if (can_skip_alu_sanitation(env, insn))
4283 		return 0;
4284 
4285 	/* We already marked aux for masking from non-speculative
4286 	 * paths, thus we got here in the first place. We only care
4287 	 * to explore bad access from here.
4288 	 */
4289 	if (vstate->speculative)
4290 		goto do_sim;
4291 
4292 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4293 	alu_state |= ptr_is_dst_reg ?
4294 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4295 
4296 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4297 		return 0;
4298 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
4299 		return -EACCES;
4300 do_sim:
4301 	/* Simulate and find potential out-of-bounds access under
4302 	 * speculative execution from truncation as a result of
4303 	 * masking when off was not within expected range. If off
4304 	 * sits in dst, then we temporarily need to move ptr there
4305 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4306 	 * for cases where we use K-based arithmetic in one direction
4307 	 * and truncated reg-based in the other in order to explore
4308 	 * bad access.
4309 	 */
4310 	if (!ptr_is_dst_reg) {
4311 		tmp = *dst_reg;
4312 		*dst_reg = *ptr_reg;
4313 	}
4314 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
4315 	if (!ptr_is_dst_reg && ret)
4316 		*dst_reg = tmp;
4317 	return !ret ? -EFAULT : 0;
4318 }
4319 
4320 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
4321  * Caller should also handle BPF_MOV case separately.
4322  * If we return -EACCES, caller may want to try again treating pointer as a
4323  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
4324  */
4325 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4326 				   struct bpf_insn *insn,
4327 				   const struct bpf_reg_state *ptr_reg,
4328 				   const struct bpf_reg_state *off_reg)
4329 {
4330 	struct bpf_verifier_state *vstate = env->cur_state;
4331 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4332 	struct bpf_reg_state *regs = state->regs, *dst_reg;
4333 	bool known = tnum_is_const(off_reg->var_off);
4334 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4335 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4336 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4337 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
4338 	u32 dst = insn->dst_reg, src = insn->src_reg;
4339 	u8 opcode = BPF_OP(insn->code);
4340 	int ret;
4341 
4342 	dst_reg = &regs[dst];
4343 
4344 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4345 	    smin_val > smax_val || umin_val > umax_val) {
4346 		/* Taint dst register if offset had invalid bounds derived from
4347 		 * e.g. dead branches.
4348 		 */
4349 		__mark_reg_unknown(dst_reg);
4350 		return 0;
4351 	}
4352 
4353 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4354 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
4355 		verbose(env,
4356 			"R%d 32-bit pointer arithmetic prohibited\n",
4357 			dst);
4358 		return -EACCES;
4359 	}
4360 
4361 	switch (ptr_reg->type) {
4362 	case PTR_TO_MAP_VALUE_OR_NULL:
4363 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4364 			dst, reg_type_str[ptr_reg->type]);
4365 		return -EACCES;
4366 	case CONST_PTR_TO_MAP:
4367 	case PTR_TO_PACKET_END:
4368 	case PTR_TO_SOCKET:
4369 	case PTR_TO_SOCKET_OR_NULL:
4370 	case PTR_TO_SOCK_COMMON:
4371 	case PTR_TO_SOCK_COMMON_OR_NULL:
4372 	case PTR_TO_TCP_SOCK:
4373 	case PTR_TO_TCP_SOCK_OR_NULL:
4374 	case PTR_TO_XDP_SOCK:
4375 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4376 			dst, reg_type_str[ptr_reg->type]);
4377 		return -EACCES;
4378 	case PTR_TO_MAP_VALUE:
4379 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4380 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4381 				off_reg == dst_reg ? dst : src);
4382 			return -EACCES;
4383 		}
4384 		/* fall-through */
4385 	default:
4386 		break;
4387 	}
4388 
4389 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4390 	 * The id may be overwritten later if we create a new variable offset.
4391 	 */
4392 	dst_reg->type = ptr_reg->type;
4393 	dst_reg->id = ptr_reg->id;
4394 
4395 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4396 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4397 		return -EINVAL;
4398 
4399 	switch (opcode) {
4400 	case BPF_ADD:
4401 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4402 		if (ret < 0) {
4403 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
4404 			return ret;
4405 		}
4406 		/* We can take a fixed offset as long as it doesn't overflow
4407 		 * the s32 'off' field
4408 		 */
4409 		if (known && (ptr_reg->off + smin_val ==
4410 			      (s64)(s32)(ptr_reg->off + smin_val))) {
4411 			/* pointer += K.  Accumulate it into fixed offset */
4412 			dst_reg->smin_value = smin_ptr;
4413 			dst_reg->smax_value = smax_ptr;
4414 			dst_reg->umin_value = umin_ptr;
4415 			dst_reg->umax_value = umax_ptr;
4416 			dst_reg->var_off = ptr_reg->var_off;
4417 			dst_reg->off = ptr_reg->off + smin_val;
4418 			dst_reg->raw = ptr_reg->raw;
4419 			break;
4420 		}
4421 		/* A new variable offset is created.  Note that off_reg->off
4422 		 * == 0, since it's a scalar.
4423 		 * dst_reg gets the pointer type and since some positive
4424 		 * integer value was added to the pointer, give it a new 'id'
4425 		 * if it's a PTR_TO_PACKET.
4426 		 * this creates a new 'base' pointer, off_reg (variable) gets
4427 		 * added into the variable offset, and we copy the fixed offset
4428 		 * from ptr_reg.
4429 		 */
4430 		if (signed_add_overflows(smin_ptr, smin_val) ||
4431 		    signed_add_overflows(smax_ptr, smax_val)) {
4432 			dst_reg->smin_value = S64_MIN;
4433 			dst_reg->smax_value = S64_MAX;
4434 		} else {
4435 			dst_reg->smin_value = smin_ptr + smin_val;
4436 			dst_reg->smax_value = smax_ptr + smax_val;
4437 		}
4438 		if (umin_ptr + umin_val < umin_ptr ||
4439 		    umax_ptr + umax_val < umax_ptr) {
4440 			dst_reg->umin_value = 0;
4441 			dst_reg->umax_value = U64_MAX;
4442 		} else {
4443 			dst_reg->umin_value = umin_ptr + umin_val;
4444 			dst_reg->umax_value = umax_ptr + umax_val;
4445 		}
4446 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4447 		dst_reg->off = ptr_reg->off;
4448 		dst_reg->raw = ptr_reg->raw;
4449 		if (reg_is_pkt_pointer(ptr_reg)) {
4450 			dst_reg->id = ++env->id_gen;
4451 			/* something was added to pkt_ptr, set range to zero */
4452 			dst_reg->raw = 0;
4453 		}
4454 		break;
4455 	case BPF_SUB:
4456 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4457 		if (ret < 0) {
4458 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4459 			return ret;
4460 		}
4461 		if (dst_reg == off_reg) {
4462 			/* scalar -= pointer.  Creates an unknown scalar */
4463 			verbose(env, "R%d tried to subtract pointer from scalar\n",
4464 				dst);
4465 			return -EACCES;
4466 		}
4467 		/* We don't allow subtraction from FP, because (according to
4468 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
4469 		 * be able to deal with it.
4470 		 */
4471 		if (ptr_reg->type == PTR_TO_STACK) {
4472 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
4473 				dst);
4474 			return -EACCES;
4475 		}
4476 		if (known && (ptr_reg->off - smin_val ==
4477 			      (s64)(s32)(ptr_reg->off - smin_val))) {
4478 			/* pointer -= K.  Subtract it from fixed offset */
4479 			dst_reg->smin_value = smin_ptr;
4480 			dst_reg->smax_value = smax_ptr;
4481 			dst_reg->umin_value = umin_ptr;
4482 			dst_reg->umax_value = umax_ptr;
4483 			dst_reg->var_off = ptr_reg->var_off;
4484 			dst_reg->id = ptr_reg->id;
4485 			dst_reg->off = ptr_reg->off - smin_val;
4486 			dst_reg->raw = ptr_reg->raw;
4487 			break;
4488 		}
4489 		/* A new variable offset is created.  If the subtrahend is known
4490 		 * nonnegative, then any reg->range we had before is still good.
4491 		 */
4492 		if (signed_sub_overflows(smin_ptr, smax_val) ||
4493 		    signed_sub_overflows(smax_ptr, smin_val)) {
4494 			/* Overflow possible, we know nothing */
4495 			dst_reg->smin_value = S64_MIN;
4496 			dst_reg->smax_value = S64_MAX;
4497 		} else {
4498 			dst_reg->smin_value = smin_ptr - smax_val;
4499 			dst_reg->smax_value = smax_ptr - smin_val;
4500 		}
4501 		if (umin_ptr < umax_val) {
4502 			/* Overflow possible, we know nothing */
4503 			dst_reg->umin_value = 0;
4504 			dst_reg->umax_value = U64_MAX;
4505 		} else {
4506 			/* Cannot overflow (as long as bounds are consistent) */
4507 			dst_reg->umin_value = umin_ptr - umax_val;
4508 			dst_reg->umax_value = umax_ptr - umin_val;
4509 		}
4510 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4511 		dst_reg->off = ptr_reg->off;
4512 		dst_reg->raw = ptr_reg->raw;
4513 		if (reg_is_pkt_pointer(ptr_reg)) {
4514 			dst_reg->id = ++env->id_gen;
4515 			/* something was added to pkt_ptr, set range to zero */
4516 			if (smin_val < 0)
4517 				dst_reg->raw = 0;
4518 		}
4519 		break;
4520 	case BPF_AND:
4521 	case BPF_OR:
4522 	case BPF_XOR:
4523 		/* bitwise ops on pointers are troublesome, prohibit. */
4524 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4525 			dst, bpf_alu_string[opcode >> 4]);
4526 		return -EACCES;
4527 	default:
4528 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
4529 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4530 			dst, bpf_alu_string[opcode >> 4]);
4531 		return -EACCES;
4532 	}
4533 
4534 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4535 		return -EINVAL;
4536 
4537 	__update_reg_bounds(dst_reg);
4538 	__reg_deduce_bounds(dst_reg);
4539 	__reg_bound_offset(dst_reg);
4540 
4541 	/* For unprivileged we require that resulting offset must be in bounds
4542 	 * in order to be able to sanitize access later on.
4543 	 */
4544 	if (!env->allow_ptr_leaks) {
4545 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
4546 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
4547 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4548 				"prohibited for !root\n", dst);
4549 			return -EACCES;
4550 		} else if (dst_reg->type == PTR_TO_STACK &&
4551 			   check_stack_access(env, dst_reg, dst_reg->off +
4552 					      dst_reg->var_off.value, 1)) {
4553 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
4554 				"prohibited for !root\n", dst);
4555 			return -EACCES;
4556 		}
4557 	}
4558 
4559 	return 0;
4560 }
4561 
4562 /* WARNING: This function does calculations on 64-bit values, but the actual
4563  * execution may occur on 32-bit values. Therefore, things like bitshifts
4564  * need extra checks in the 32-bit case.
4565  */
4566 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4567 				      struct bpf_insn *insn,
4568 				      struct bpf_reg_state *dst_reg,
4569 				      struct bpf_reg_state src_reg)
4570 {
4571 	struct bpf_reg_state *regs = cur_regs(env);
4572 	u8 opcode = BPF_OP(insn->code);
4573 	bool src_known, dst_known;
4574 	s64 smin_val, smax_val;
4575 	u64 umin_val, umax_val;
4576 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
4577 	u32 dst = insn->dst_reg;
4578 	int ret;
4579 
4580 	if (insn_bitness == 32) {
4581 		/* Relevant for 32-bit RSH: Information can propagate towards
4582 		 * LSB, so it isn't sufficient to only truncate the output to
4583 		 * 32 bits.
4584 		 */
4585 		coerce_reg_to_size(dst_reg, 4);
4586 		coerce_reg_to_size(&src_reg, 4);
4587 	}
4588 
4589 	smin_val = src_reg.smin_value;
4590 	smax_val = src_reg.smax_value;
4591 	umin_val = src_reg.umin_value;
4592 	umax_val = src_reg.umax_value;
4593 	src_known = tnum_is_const(src_reg.var_off);
4594 	dst_known = tnum_is_const(dst_reg->var_off);
4595 
4596 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4597 	    smin_val > smax_val || umin_val > umax_val) {
4598 		/* Taint dst register if offset had invalid bounds derived from
4599 		 * e.g. dead branches.
4600 		 */
4601 		__mark_reg_unknown(dst_reg);
4602 		return 0;
4603 	}
4604 
4605 	if (!src_known &&
4606 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
4607 		__mark_reg_unknown(dst_reg);
4608 		return 0;
4609 	}
4610 
4611 	switch (opcode) {
4612 	case BPF_ADD:
4613 		ret = sanitize_val_alu(env, insn);
4614 		if (ret < 0) {
4615 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4616 			return ret;
4617 		}
4618 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4619 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
4620 			dst_reg->smin_value = S64_MIN;
4621 			dst_reg->smax_value = S64_MAX;
4622 		} else {
4623 			dst_reg->smin_value += smin_val;
4624 			dst_reg->smax_value += smax_val;
4625 		}
4626 		if (dst_reg->umin_value + umin_val < umin_val ||
4627 		    dst_reg->umax_value + umax_val < umax_val) {
4628 			dst_reg->umin_value = 0;
4629 			dst_reg->umax_value = U64_MAX;
4630 		} else {
4631 			dst_reg->umin_value += umin_val;
4632 			dst_reg->umax_value += umax_val;
4633 		}
4634 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
4635 		break;
4636 	case BPF_SUB:
4637 		ret = sanitize_val_alu(env, insn);
4638 		if (ret < 0) {
4639 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4640 			return ret;
4641 		}
4642 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4643 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4644 			/* Overflow possible, we know nothing */
4645 			dst_reg->smin_value = S64_MIN;
4646 			dst_reg->smax_value = S64_MAX;
4647 		} else {
4648 			dst_reg->smin_value -= smax_val;
4649 			dst_reg->smax_value -= smin_val;
4650 		}
4651 		if (dst_reg->umin_value < umax_val) {
4652 			/* Overflow possible, we know nothing */
4653 			dst_reg->umin_value = 0;
4654 			dst_reg->umax_value = U64_MAX;
4655 		} else {
4656 			/* Cannot overflow (as long as bounds are consistent) */
4657 			dst_reg->umin_value -= umax_val;
4658 			dst_reg->umax_value -= umin_val;
4659 		}
4660 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
4661 		break;
4662 	case BPF_MUL:
4663 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4664 		if (smin_val < 0 || dst_reg->smin_value < 0) {
4665 			/* Ain't nobody got time to multiply that sign */
4666 			__mark_reg_unbounded(dst_reg);
4667 			__update_reg_bounds(dst_reg);
4668 			break;
4669 		}
4670 		/* Both values are positive, so we can work with unsigned and
4671 		 * copy the result to signed (unless it exceeds S64_MAX).
4672 		 */
4673 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4674 			/* Potential overflow, we know nothing */
4675 			__mark_reg_unbounded(dst_reg);
4676 			/* (except what we can learn from the var_off) */
4677 			__update_reg_bounds(dst_reg);
4678 			break;
4679 		}
4680 		dst_reg->umin_value *= umin_val;
4681 		dst_reg->umax_value *= umax_val;
4682 		if (dst_reg->umax_value > S64_MAX) {
4683 			/* Overflow possible, we know nothing */
4684 			dst_reg->smin_value = S64_MIN;
4685 			dst_reg->smax_value = S64_MAX;
4686 		} else {
4687 			dst_reg->smin_value = dst_reg->umin_value;
4688 			dst_reg->smax_value = dst_reg->umax_value;
4689 		}
4690 		break;
4691 	case BPF_AND:
4692 		if (src_known && dst_known) {
4693 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
4694 						  src_reg.var_off.value);
4695 			break;
4696 		}
4697 		/* We get our minimum from the var_off, since that's inherently
4698 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
4699 		 */
4700 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
4701 		dst_reg->umin_value = dst_reg->var_off.value;
4702 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4703 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4704 			/* Lose signed bounds when ANDing negative numbers,
4705 			 * ain't nobody got time for that.
4706 			 */
4707 			dst_reg->smin_value = S64_MIN;
4708 			dst_reg->smax_value = S64_MAX;
4709 		} else {
4710 			/* ANDing two positives gives a positive, so safe to
4711 			 * cast result into s64.
4712 			 */
4713 			dst_reg->smin_value = dst_reg->umin_value;
4714 			dst_reg->smax_value = dst_reg->umax_value;
4715 		}
4716 		/* We may learn something more from the var_off */
4717 		__update_reg_bounds(dst_reg);
4718 		break;
4719 	case BPF_OR:
4720 		if (src_known && dst_known) {
4721 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
4722 						  src_reg.var_off.value);
4723 			break;
4724 		}
4725 		/* We get our maximum from the var_off, and our minimum is the
4726 		 * maximum of the operands' minima
4727 		 */
4728 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
4729 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4730 		dst_reg->umax_value = dst_reg->var_off.value |
4731 				      dst_reg->var_off.mask;
4732 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4733 			/* Lose signed bounds when ORing negative numbers,
4734 			 * ain't nobody got time for that.
4735 			 */
4736 			dst_reg->smin_value = S64_MIN;
4737 			dst_reg->smax_value = S64_MAX;
4738 		} else {
4739 			/* ORing two positives gives a positive, so safe to
4740 			 * cast result into s64.
4741 			 */
4742 			dst_reg->smin_value = dst_reg->umin_value;
4743 			dst_reg->smax_value = dst_reg->umax_value;
4744 		}
4745 		/* We may learn something more from the var_off */
4746 		__update_reg_bounds(dst_reg);
4747 		break;
4748 	case BPF_LSH:
4749 		if (umax_val >= insn_bitness) {
4750 			/* Shifts greater than 31 or 63 are undefined.
4751 			 * This includes shifts by a negative number.
4752 			 */
4753 			mark_reg_unknown(env, regs, insn->dst_reg);
4754 			break;
4755 		}
4756 		/* We lose all sign bit information (except what we can pick
4757 		 * up from var_off)
4758 		 */
4759 		dst_reg->smin_value = S64_MIN;
4760 		dst_reg->smax_value = S64_MAX;
4761 		/* If we might shift our top bit out, then we know nothing */
4762 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4763 			dst_reg->umin_value = 0;
4764 			dst_reg->umax_value = U64_MAX;
4765 		} else {
4766 			dst_reg->umin_value <<= umin_val;
4767 			dst_reg->umax_value <<= umax_val;
4768 		}
4769 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
4770 		/* We may learn something more from the var_off */
4771 		__update_reg_bounds(dst_reg);
4772 		break;
4773 	case BPF_RSH:
4774 		if (umax_val >= insn_bitness) {
4775 			/* Shifts greater than 31 or 63 are undefined.
4776 			 * This includes shifts by a negative number.
4777 			 */
4778 			mark_reg_unknown(env, regs, insn->dst_reg);
4779 			break;
4780 		}
4781 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
4782 		 * be negative, then either:
4783 		 * 1) src_reg might be zero, so the sign bit of the result is
4784 		 *    unknown, so we lose our signed bounds
4785 		 * 2) it's known negative, thus the unsigned bounds capture the
4786 		 *    signed bounds
4787 		 * 3) the signed bounds cross zero, so they tell us nothing
4788 		 *    about the result
4789 		 * If the value in dst_reg is known nonnegative, then again the
4790 		 * unsigned bounts capture the signed bounds.
4791 		 * Thus, in all cases it suffices to blow away our signed bounds
4792 		 * and rely on inferring new ones from the unsigned bounds and
4793 		 * var_off of the result.
4794 		 */
4795 		dst_reg->smin_value = S64_MIN;
4796 		dst_reg->smax_value = S64_MAX;
4797 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
4798 		dst_reg->umin_value >>= umax_val;
4799 		dst_reg->umax_value >>= umin_val;
4800 		/* We may learn something more from the var_off */
4801 		__update_reg_bounds(dst_reg);
4802 		break;
4803 	case BPF_ARSH:
4804 		if (umax_val >= insn_bitness) {
4805 			/* Shifts greater than 31 or 63 are undefined.
4806 			 * This includes shifts by a negative number.
4807 			 */
4808 			mark_reg_unknown(env, regs, insn->dst_reg);
4809 			break;
4810 		}
4811 
4812 		/* Upon reaching here, src_known is true and
4813 		 * umax_val is equal to umin_val.
4814 		 */
4815 		dst_reg->smin_value >>= umin_val;
4816 		dst_reg->smax_value >>= umin_val;
4817 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4818 
4819 		/* blow away the dst_reg umin_value/umax_value and rely on
4820 		 * dst_reg var_off to refine the result.
4821 		 */
4822 		dst_reg->umin_value = 0;
4823 		dst_reg->umax_value = U64_MAX;
4824 		__update_reg_bounds(dst_reg);
4825 		break;
4826 	default:
4827 		mark_reg_unknown(env, regs, insn->dst_reg);
4828 		break;
4829 	}
4830 
4831 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4832 		/* 32-bit ALU ops are (32,32)->32 */
4833 		coerce_reg_to_size(dst_reg, 4);
4834 	}
4835 
4836 	__reg_deduce_bounds(dst_reg);
4837 	__reg_bound_offset(dst_reg);
4838 	return 0;
4839 }
4840 
4841 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4842  * and var_off.
4843  */
4844 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4845 				   struct bpf_insn *insn)
4846 {
4847 	struct bpf_verifier_state *vstate = env->cur_state;
4848 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4849 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
4850 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4851 	u8 opcode = BPF_OP(insn->code);
4852 	int err;
4853 
4854 	dst_reg = &regs[insn->dst_reg];
4855 	src_reg = NULL;
4856 	if (dst_reg->type != SCALAR_VALUE)
4857 		ptr_reg = dst_reg;
4858 	if (BPF_SRC(insn->code) == BPF_X) {
4859 		src_reg = &regs[insn->src_reg];
4860 		if (src_reg->type != SCALAR_VALUE) {
4861 			if (dst_reg->type != SCALAR_VALUE) {
4862 				/* Combining two pointers by any ALU op yields
4863 				 * an arbitrary scalar. Disallow all math except
4864 				 * pointer subtraction
4865 				 */
4866 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
4867 					mark_reg_unknown(env, regs, insn->dst_reg);
4868 					return 0;
4869 				}
4870 				verbose(env, "R%d pointer %s pointer prohibited\n",
4871 					insn->dst_reg,
4872 					bpf_alu_string[opcode >> 4]);
4873 				return -EACCES;
4874 			} else {
4875 				/* scalar += pointer
4876 				 * This is legal, but we have to reverse our
4877 				 * src/dest handling in computing the range
4878 				 */
4879 				err = mark_chain_precision(env, insn->dst_reg);
4880 				if (err)
4881 					return err;
4882 				return adjust_ptr_min_max_vals(env, insn,
4883 							       src_reg, dst_reg);
4884 			}
4885 		} else if (ptr_reg) {
4886 			/* pointer += scalar */
4887 			err = mark_chain_precision(env, insn->src_reg);
4888 			if (err)
4889 				return err;
4890 			return adjust_ptr_min_max_vals(env, insn,
4891 						       dst_reg, src_reg);
4892 		}
4893 	} else {
4894 		/* Pretend the src is a reg with a known value, since we only
4895 		 * need to be able to read from this state.
4896 		 */
4897 		off_reg.type = SCALAR_VALUE;
4898 		__mark_reg_known(&off_reg, insn->imm);
4899 		src_reg = &off_reg;
4900 		if (ptr_reg) /* pointer += K */
4901 			return adjust_ptr_min_max_vals(env, insn,
4902 						       ptr_reg, src_reg);
4903 	}
4904 
4905 	/* Got here implies adding two SCALAR_VALUEs */
4906 	if (WARN_ON_ONCE(ptr_reg)) {
4907 		print_verifier_state(env, state);
4908 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
4909 		return -EINVAL;
4910 	}
4911 	if (WARN_ON(!src_reg)) {
4912 		print_verifier_state(env, state);
4913 		verbose(env, "verifier internal error: no src_reg\n");
4914 		return -EINVAL;
4915 	}
4916 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
4917 }
4918 
4919 /* check validity of 32-bit and 64-bit arithmetic operations */
4920 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
4921 {
4922 	struct bpf_reg_state *regs = cur_regs(env);
4923 	u8 opcode = BPF_OP(insn->code);
4924 	int err;
4925 
4926 	if (opcode == BPF_END || opcode == BPF_NEG) {
4927 		if (opcode == BPF_NEG) {
4928 			if (BPF_SRC(insn->code) != 0 ||
4929 			    insn->src_reg != BPF_REG_0 ||
4930 			    insn->off != 0 || insn->imm != 0) {
4931 				verbose(env, "BPF_NEG uses reserved fields\n");
4932 				return -EINVAL;
4933 			}
4934 		} else {
4935 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
4936 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4937 			    BPF_CLASS(insn->code) == BPF_ALU64) {
4938 				verbose(env, "BPF_END uses reserved fields\n");
4939 				return -EINVAL;
4940 			}
4941 		}
4942 
4943 		/* check src operand */
4944 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4945 		if (err)
4946 			return err;
4947 
4948 		if (is_pointer_value(env, insn->dst_reg)) {
4949 			verbose(env, "R%d pointer arithmetic prohibited\n",
4950 				insn->dst_reg);
4951 			return -EACCES;
4952 		}
4953 
4954 		/* check dest operand */
4955 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
4956 		if (err)
4957 			return err;
4958 
4959 	} else if (opcode == BPF_MOV) {
4960 
4961 		if (BPF_SRC(insn->code) == BPF_X) {
4962 			if (insn->imm != 0 || insn->off != 0) {
4963 				verbose(env, "BPF_MOV uses reserved fields\n");
4964 				return -EINVAL;
4965 			}
4966 
4967 			/* check src operand */
4968 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4969 			if (err)
4970 				return err;
4971 		} else {
4972 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4973 				verbose(env, "BPF_MOV uses reserved fields\n");
4974 				return -EINVAL;
4975 			}
4976 		}
4977 
4978 		/* check dest operand, mark as required later */
4979 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4980 		if (err)
4981 			return err;
4982 
4983 		if (BPF_SRC(insn->code) == BPF_X) {
4984 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
4985 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4986 
4987 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4988 				/* case: R1 = R2
4989 				 * copy register state to dest reg
4990 				 */
4991 				*dst_reg = *src_reg;
4992 				dst_reg->live |= REG_LIVE_WRITTEN;
4993 				dst_reg->subreg_def = DEF_NOT_SUBREG;
4994 			} else {
4995 				/* R1 = (u32) R2 */
4996 				if (is_pointer_value(env, insn->src_reg)) {
4997 					verbose(env,
4998 						"R%d partial copy of pointer\n",
4999 						insn->src_reg);
5000 					return -EACCES;
5001 				} else if (src_reg->type == SCALAR_VALUE) {
5002 					*dst_reg = *src_reg;
5003 					dst_reg->live |= REG_LIVE_WRITTEN;
5004 					dst_reg->subreg_def = env->insn_idx + 1;
5005 				} else {
5006 					mark_reg_unknown(env, regs,
5007 							 insn->dst_reg);
5008 				}
5009 				coerce_reg_to_size(dst_reg, 4);
5010 			}
5011 		} else {
5012 			/* case: R = imm
5013 			 * remember the value we stored into this reg
5014 			 */
5015 			/* clear any state __mark_reg_known doesn't set */
5016 			mark_reg_unknown(env, regs, insn->dst_reg);
5017 			regs[insn->dst_reg].type = SCALAR_VALUE;
5018 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5019 				__mark_reg_known(regs + insn->dst_reg,
5020 						 insn->imm);
5021 			} else {
5022 				__mark_reg_known(regs + insn->dst_reg,
5023 						 (u32)insn->imm);
5024 			}
5025 		}
5026 
5027 	} else if (opcode > BPF_END) {
5028 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
5029 		return -EINVAL;
5030 
5031 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
5032 
5033 		if (BPF_SRC(insn->code) == BPF_X) {
5034 			if (insn->imm != 0 || insn->off != 0) {
5035 				verbose(env, "BPF_ALU uses reserved fields\n");
5036 				return -EINVAL;
5037 			}
5038 			/* check src1 operand */
5039 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5040 			if (err)
5041 				return err;
5042 		} else {
5043 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5044 				verbose(env, "BPF_ALU uses reserved fields\n");
5045 				return -EINVAL;
5046 			}
5047 		}
5048 
5049 		/* check src2 operand */
5050 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5051 		if (err)
5052 			return err;
5053 
5054 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5055 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
5056 			verbose(env, "div by zero\n");
5057 			return -EINVAL;
5058 		}
5059 
5060 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5061 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5062 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5063 
5064 			if (insn->imm < 0 || insn->imm >= size) {
5065 				verbose(env, "invalid shift %d\n", insn->imm);
5066 				return -EINVAL;
5067 			}
5068 		}
5069 
5070 		/* check dest operand */
5071 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5072 		if (err)
5073 			return err;
5074 
5075 		return adjust_reg_min_max_vals(env, insn);
5076 	}
5077 
5078 	return 0;
5079 }
5080 
5081 static void __find_good_pkt_pointers(struct bpf_func_state *state,
5082 				     struct bpf_reg_state *dst_reg,
5083 				     enum bpf_reg_type type, u16 new_range)
5084 {
5085 	struct bpf_reg_state *reg;
5086 	int i;
5087 
5088 	for (i = 0; i < MAX_BPF_REG; i++) {
5089 		reg = &state->regs[i];
5090 		if (reg->type == type && reg->id == dst_reg->id)
5091 			/* keep the maximum range already checked */
5092 			reg->range = max(reg->range, new_range);
5093 	}
5094 
5095 	bpf_for_each_spilled_reg(i, state, reg) {
5096 		if (!reg)
5097 			continue;
5098 		if (reg->type == type && reg->id == dst_reg->id)
5099 			reg->range = max(reg->range, new_range);
5100 	}
5101 }
5102 
5103 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
5104 				   struct bpf_reg_state *dst_reg,
5105 				   enum bpf_reg_type type,
5106 				   bool range_right_open)
5107 {
5108 	u16 new_range;
5109 	int i;
5110 
5111 	if (dst_reg->off < 0 ||
5112 	    (dst_reg->off == 0 && range_right_open))
5113 		/* This doesn't give us any range */
5114 		return;
5115 
5116 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
5117 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
5118 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
5119 		 * than pkt_end, but that's because it's also less than pkt.
5120 		 */
5121 		return;
5122 
5123 	new_range = dst_reg->off;
5124 	if (range_right_open)
5125 		new_range--;
5126 
5127 	/* Examples for register markings:
5128 	 *
5129 	 * pkt_data in dst register:
5130 	 *
5131 	 *   r2 = r3;
5132 	 *   r2 += 8;
5133 	 *   if (r2 > pkt_end) goto <handle exception>
5134 	 *   <access okay>
5135 	 *
5136 	 *   r2 = r3;
5137 	 *   r2 += 8;
5138 	 *   if (r2 < pkt_end) goto <access okay>
5139 	 *   <handle exception>
5140 	 *
5141 	 *   Where:
5142 	 *     r2 == dst_reg, pkt_end == src_reg
5143 	 *     r2=pkt(id=n,off=8,r=0)
5144 	 *     r3=pkt(id=n,off=0,r=0)
5145 	 *
5146 	 * pkt_data in src register:
5147 	 *
5148 	 *   r2 = r3;
5149 	 *   r2 += 8;
5150 	 *   if (pkt_end >= r2) goto <access okay>
5151 	 *   <handle exception>
5152 	 *
5153 	 *   r2 = r3;
5154 	 *   r2 += 8;
5155 	 *   if (pkt_end <= r2) goto <handle exception>
5156 	 *   <access okay>
5157 	 *
5158 	 *   Where:
5159 	 *     pkt_end == dst_reg, r2 == src_reg
5160 	 *     r2=pkt(id=n,off=8,r=0)
5161 	 *     r3=pkt(id=n,off=0,r=0)
5162 	 *
5163 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
5164 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5165 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
5166 	 * the check.
5167 	 */
5168 
5169 	/* If our ids match, then we must have the same max_value.  And we
5170 	 * don't care about the other reg's fixed offset, since if it's too big
5171 	 * the range won't allow anything.
5172 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5173 	 */
5174 	for (i = 0; i <= vstate->curframe; i++)
5175 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5176 					 new_range);
5177 }
5178 
5179 /* compute branch direction of the expression "if (reg opcode val) goto target;"
5180  * and return:
5181  *  1 - branch will be taken and "goto target" will be executed
5182  *  0 - branch will not be taken and fall-through to next insn
5183  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5184  */
5185 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5186 			   bool is_jmp32)
5187 {
5188 	struct bpf_reg_state reg_lo;
5189 	s64 sval;
5190 
5191 	if (__is_pointer_value(false, reg))
5192 		return -1;
5193 
5194 	if (is_jmp32) {
5195 		reg_lo = *reg;
5196 		reg = &reg_lo;
5197 		/* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5198 		 * could truncate high bits and update umin/umax according to
5199 		 * information of low bits.
5200 		 */
5201 		coerce_reg_to_size(reg, 4);
5202 		/* smin/smax need special handling. For example, after coerce,
5203 		 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5204 		 * used as operand to JMP32. It is a negative number from s32's
5205 		 * point of view, while it is a positive number when seen as
5206 		 * s64. The smin/smax are kept as s64, therefore, when used with
5207 		 * JMP32, they need to be transformed into s32, then sign
5208 		 * extended back to s64.
5209 		 *
5210 		 * Also, smin/smax were copied from umin/umax. If umin/umax has
5211 		 * different sign bit, then min/max relationship doesn't
5212 		 * maintain after casting into s32, for this case, set smin/smax
5213 		 * to safest range.
5214 		 */
5215 		if ((reg->umax_value ^ reg->umin_value) &
5216 		    (1ULL << 31)) {
5217 			reg->smin_value = S32_MIN;
5218 			reg->smax_value = S32_MAX;
5219 		}
5220 		reg->smin_value = (s64)(s32)reg->smin_value;
5221 		reg->smax_value = (s64)(s32)reg->smax_value;
5222 
5223 		val = (u32)val;
5224 		sval = (s64)(s32)val;
5225 	} else {
5226 		sval = (s64)val;
5227 	}
5228 
5229 	switch (opcode) {
5230 	case BPF_JEQ:
5231 		if (tnum_is_const(reg->var_off))
5232 			return !!tnum_equals_const(reg->var_off, val);
5233 		break;
5234 	case BPF_JNE:
5235 		if (tnum_is_const(reg->var_off))
5236 			return !tnum_equals_const(reg->var_off, val);
5237 		break;
5238 	case BPF_JSET:
5239 		if ((~reg->var_off.mask & reg->var_off.value) & val)
5240 			return 1;
5241 		if (!((reg->var_off.mask | reg->var_off.value) & val))
5242 			return 0;
5243 		break;
5244 	case BPF_JGT:
5245 		if (reg->umin_value > val)
5246 			return 1;
5247 		else if (reg->umax_value <= val)
5248 			return 0;
5249 		break;
5250 	case BPF_JSGT:
5251 		if (reg->smin_value > sval)
5252 			return 1;
5253 		else if (reg->smax_value < sval)
5254 			return 0;
5255 		break;
5256 	case BPF_JLT:
5257 		if (reg->umax_value < val)
5258 			return 1;
5259 		else if (reg->umin_value >= val)
5260 			return 0;
5261 		break;
5262 	case BPF_JSLT:
5263 		if (reg->smax_value < sval)
5264 			return 1;
5265 		else if (reg->smin_value >= sval)
5266 			return 0;
5267 		break;
5268 	case BPF_JGE:
5269 		if (reg->umin_value >= val)
5270 			return 1;
5271 		else if (reg->umax_value < val)
5272 			return 0;
5273 		break;
5274 	case BPF_JSGE:
5275 		if (reg->smin_value >= sval)
5276 			return 1;
5277 		else if (reg->smax_value < sval)
5278 			return 0;
5279 		break;
5280 	case BPF_JLE:
5281 		if (reg->umax_value <= val)
5282 			return 1;
5283 		else if (reg->umin_value > val)
5284 			return 0;
5285 		break;
5286 	case BPF_JSLE:
5287 		if (reg->smax_value <= sval)
5288 			return 1;
5289 		else if (reg->smin_value > sval)
5290 			return 0;
5291 		break;
5292 	}
5293 
5294 	return -1;
5295 }
5296 
5297 /* Generate min value of the high 32-bit from TNUM info. */
5298 static u64 gen_hi_min(struct tnum var)
5299 {
5300 	return var.value & ~0xffffffffULL;
5301 }
5302 
5303 /* Generate max value of the high 32-bit from TNUM info. */
5304 static u64 gen_hi_max(struct tnum var)
5305 {
5306 	return (var.value | var.mask) & ~0xffffffffULL;
5307 }
5308 
5309 /* Return true if VAL is compared with a s64 sign extended from s32, and they
5310  * are with the same signedness.
5311  */
5312 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5313 {
5314 	return ((s32)sval >= 0 &&
5315 		reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5316 	       ((s32)sval < 0 &&
5317 		reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
5318 }
5319 
5320 /* Adjusts the register min/max values in the case that the dst_reg is the
5321  * variable register that we are working on, and src_reg is a constant or we're
5322  * simply doing a BPF_K check.
5323  * In JEQ/JNE cases we also adjust the var_off values.
5324  */
5325 static void reg_set_min_max(struct bpf_reg_state *true_reg,
5326 			    struct bpf_reg_state *false_reg, u64 val,
5327 			    u8 opcode, bool is_jmp32)
5328 {
5329 	s64 sval;
5330 
5331 	/* If the dst_reg is a pointer, we can't learn anything about its
5332 	 * variable offset from the compare (unless src_reg were a pointer into
5333 	 * the same object, but we don't bother with that.
5334 	 * Since false_reg and true_reg have the same type by construction, we
5335 	 * only need to check one of them for pointerness.
5336 	 */
5337 	if (__is_pointer_value(false, false_reg))
5338 		return;
5339 
5340 	val = is_jmp32 ? (u32)val : val;
5341 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5342 
5343 	switch (opcode) {
5344 	case BPF_JEQ:
5345 	case BPF_JNE:
5346 	{
5347 		struct bpf_reg_state *reg =
5348 			opcode == BPF_JEQ ? true_reg : false_reg;
5349 
5350 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5351 		 * if it is true we know the value for sure. Likewise for
5352 		 * BPF_JNE.
5353 		 */
5354 		if (is_jmp32) {
5355 			u64 old_v = reg->var_off.value;
5356 			u64 hi_mask = ~0xffffffffULL;
5357 
5358 			reg->var_off.value = (old_v & hi_mask) | val;
5359 			reg->var_off.mask &= hi_mask;
5360 		} else {
5361 			__mark_reg_known(reg, val);
5362 		}
5363 		break;
5364 	}
5365 	case BPF_JSET:
5366 		false_reg->var_off = tnum_and(false_reg->var_off,
5367 					      tnum_const(~val));
5368 		if (is_power_of_2(val))
5369 			true_reg->var_off = tnum_or(true_reg->var_off,
5370 						    tnum_const(val));
5371 		break;
5372 	case BPF_JGE:
5373 	case BPF_JGT:
5374 	{
5375 		u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
5376 		u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
5377 
5378 		if (is_jmp32) {
5379 			false_umax += gen_hi_max(false_reg->var_off);
5380 			true_umin += gen_hi_min(true_reg->var_off);
5381 		}
5382 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
5383 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
5384 		break;
5385 	}
5386 	case BPF_JSGE:
5387 	case BPF_JSGT:
5388 	{
5389 		s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
5390 		s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5391 
5392 		/* If the full s64 was not sign-extended from s32 then don't
5393 		 * deduct further info.
5394 		 */
5395 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5396 			break;
5397 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
5398 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
5399 		break;
5400 	}
5401 	case BPF_JLE:
5402 	case BPF_JLT:
5403 	{
5404 		u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
5405 		u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
5406 
5407 		if (is_jmp32) {
5408 			false_umin += gen_hi_min(false_reg->var_off);
5409 			true_umax += gen_hi_max(true_reg->var_off);
5410 		}
5411 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
5412 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
5413 		break;
5414 	}
5415 	case BPF_JSLE:
5416 	case BPF_JSLT:
5417 	{
5418 		s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
5419 		s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5420 
5421 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5422 			break;
5423 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
5424 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
5425 		break;
5426 	}
5427 	default:
5428 		break;
5429 	}
5430 
5431 	__reg_deduce_bounds(false_reg);
5432 	__reg_deduce_bounds(true_reg);
5433 	/* We might have learned some bits from the bounds. */
5434 	__reg_bound_offset(false_reg);
5435 	__reg_bound_offset(true_reg);
5436 	/* Intersecting with the old var_off might have improved our bounds
5437 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5438 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5439 	 */
5440 	__update_reg_bounds(false_reg);
5441 	__update_reg_bounds(true_reg);
5442 }
5443 
5444 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
5445  * the variable reg.
5446  */
5447 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5448 				struct bpf_reg_state *false_reg, u64 val,
5449 				u8 opcode, bool is_jmp32)
5450 {
5451 	s64 sval;
5452 
5453 	if (__is_pointer_value(false, false_reg))
5454 		return;
5455 
5456 	val = is_jmp32 ? (u32)val : val;
5457 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5458 
5459 	switch (opcode) {
5460 	case BPF_JEQ:
5461 	case BPF_JNE:
5462 	{
5463 		struct bpf_reg_state *reg =
5464 			opcode == BPF_JEQ ? true_reg : false_reg;
5465 
5466 		if (is_jmp32) {
5467 			u64 old_v = reg->var_off.value;
5468 			u64 hi_mask = ~0xffffffffULL;
5469 
5470 			reg->var_off.value = (old_v & hi_mask) | val;
5471 			reg->var_off.mask &= hi_mask;
5472 		} else {
5473 			__mark_reg_known(reg, val);
5474 		}
5475 		break;
5476 	}
5477 	case BPF_JSET:
5478 		false_reg->var_off = tnum_and(false_reg->var_off,
5479 					      tnum_const(~val));
5480 		if (is_power_of_2(val))
5481 			true_reg->var_off = tnum_or(true_reg->var_off,
5482 						    tnum_const(val));
5483 		break;
5484 	case BPF_JGE:
5485 	case BPF_JGT:
5486 	{
5487 		u64 false_umin = opcode == BPF_JGT ? val    : val + 1;
5488 		u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
5489 
5490 		if (is_jmp32) {
5491 			false_umin += gen_hi_min(false_reg->var_off);
5492 			true_umax += gen_hi_max(true_reg->var_off);
5493 		}
5494 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
5495 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
5496 		break;
5497 	}
5498 	case BPF_JSGE:
5499 	case BPF_JSGT:
5500 	{
5501 		s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
5502 		s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5503 
5504 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5505 			break;
5506 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
5507 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
5508 		break;
5509 	}
5510 	case BPF_JLE:
5511 	case BPF_JLT:
5512 	{
5513 		u64 false_umax = opcode == BPF_JLT ? val    : val - 1;
5514 		u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
5515 
5516 		if (is_jmp32) {
5517 			false_umax += gen_hi_max(false_reg->var_off);
5518 			true_umin += gen_hi_min(true_reg->var_off);
5519 		}
5520 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
5521 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
5522 		break;
5523 	}
5524 	case BPF_JSLE:
5525 	case BPF_JSLT:
5526 	{
5527 		s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
5528 		s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5529 
5530 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5531 			break;
5532 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
5533 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
5534 		break;
5535 	}
5536 	default:
5537 		break;
5538 	}
5539 
5540 	__reg_deduce_bounds(false_reg);
5541 	__reg_deduce_bounds(true_reg);
5542 	/* We might have learned some bits from the bounds. */
5543 	__reg_bound_offset(false_reg);
5544 	__reg_bound_offset(true_reg);
5545 	/* Intersecting with the old var_off might have improved our bounds
5546 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5547 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5548 	 */
5549 	__update_reg_bounds(false_reg);
5550 	__update_reg_bounds(true_reg);
5551 }
5552 
5553 /* Regs are known to be equal, so intersect their min/max/var_off */
5554 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5555 				  struct bpf_reg_state *dst_reg)
5556 {
5557 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5558 							dst_reg->umin_value);
5559 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5560 							dst_reg->umax_value);
5561 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5562 							dst_reg->smin_value);
5563 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5564 							dst_reg->smax_value);
5565 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5566 							     dst_reg->var_off);
5567 	/* We might have learned new bounds from the var_off. */
5568 	__update_reg_bounds(src_reg);
5569 	__update_reg_bounds(dst_reg);
5570 	/* We might have learned something about the sign bit. */
5571 	__reg_deduce_bounds(src_reg);
5572 	__reg_deduce_bounds(dst_reg);
5573 	/* We might have learned some bits from the bounds. */
5574 	__reg_bound_offset(src_reg);
5575 	__reg_bound_offset(dst_reg);
5576 	/* Intersecting with the old var_off might have improved our bounds
5577 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5578 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5579 	 */
5580 	__update_reg_bounds(src_reg);
5581 	__update_reg_bounds(dst_reg);
5582 }
5583 
5584 static void reg_combine_min_max(struct bpf_reg_state *true_src,
5585 				struct bpf_reg_state *true_dst,
5586 				struct bpf_reg_state *false_src,
5587 				struct bpf_reg_state *false_dst,
5588 				u8 opcode)
5589 {
5590 	switch (opcode) {
5591 	case BPF_JEQ:
5592 		__reg_combine_min_max(true_src, true_dst);
5593 		break;
5594 	case BPF_JNE:
5595 		__reg_combine_min_max(false_src, false_dst);
5596 		break;
5597 	}
5598 }
5599 
5600 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5601 				 struct bpf_reg_state *reg, u32 id,
5602 				 bool is_null)
5603 {
5604 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
5605 		/* Old offset (both fixed and variable parts) should
5606 		 * have been known-zero, because we don't allow pointer
5607 		 * arithmetic on pointers that might be NULL.
5608 		 */
5609 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5610 				 !tnum_equals_const(reg->var_off, 0) ||
5611 				 reg->off)) {
5612 			__mark_reg_known_zero(reg);
5613 			reg->off = 0;
5614 		}
5615 		if (is_null) {
5616 			reg->type = SCALAR_VALUE;
5617 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5618 			if (reg->map_ptr->inner_map_meta) {
5619 				reg->type = CONST_PTR_TO_MAP;
5620 				reg->map_ptr = reg->map_ptr->inner_map_meta;
5621 			} else if (reg->map_ptr->map_type ==
5622 				   BPF_MAP_TYPE_XSKMAP) {
5623 				reg->type = PTR_TO_XDP_SOCK;
5624 			} else {
5625 				reg->type = PTR_TO_MAP_VALUE;
5626 			}
5627 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5628 			reg->type = PTR_TO_SOCKET;
5629 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5630 			reg->type = PTR_TO_SOCK_COMMON;
5631 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5632 			reg->type = PTR_TO_TCP_SOCK;
5633 		}
5634 		if (is_null) {
5635 			/* We don't need id and ref_obj_id from this point
5636 			 * onwards anymore, thus we should better reset it,
5637 			 * so that state pruning has chances to take effect.
5638 			 */
5639 			reg->id = 0;
5640 			reg->ref_obj_id = 0;
5641 		} else if (!reg_may_point_to_spin_lock(reg)) {
5642 			/* For not-NULL ptr, reg->ref_obj_id will be reset
5643 			 * in release_reg_references().
5644 			 *
5645 			 * reg->id is still used by spin_lock ptr. Other
5646 			 * than spin_lock ptr type, reg->id can be reset.
5647 			 */
5648 			reg->id = 0;
5649 		}
5650 	}
5651 }
5652 
5653 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5654 				    bool is_null)
5655 {
5656 	struct bpf_reg_state *reg;
5657 	int i;
5658 
5659 	for (i = 0; i < MAX_BPF_REG; i++)
5660 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5661 
5662 	bpf_for_each_spilled_reg(i, state, reg) {
5663 		if (!reg)
5664 			continue;
5665 		mark_ptr_or_null_reg(state, reg, id, is_null);
5666 	}
5667 }
5668 
5669 /* The logic is similar to find_good_pkt_pointers(), both could eventually
5670  * be folded together at some point.
5671  */
5672 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5673 				  bool is_null)
5674 {
5675 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5676 	struct bpf_reg_state *regs = state->regs;
5677 	u32 ref_obj_id = regs[regno].ref_obj_id;
5678 	u32 id = regs[regno].id;
5679 	int i;
5680 
5681 	if (ref_obj_id && ref_obj_id == id && is_null)
5682 		/* regs[regno] is in the " == NULL" branch.
5683 		 * No one could have freed the reference state before
5684 		 * doing the NULL check.
5685 		 */
5686 		WARN_ON_ONCE(release_reference_state(state, id));
5687 
5688 	for (i = 0; i <= vstate->curframe; i++)
5689 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
5690 }
5691 
5692 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5693 				   struct bpf_reg_state *dst_reg,
5694 				   struct bpf_reg_state *src_reg,
5695 				   struct bpf_verifier_state *this_branch,
5696 				   struct bpf_verifier_state *other_branch)
5697 {
5698 	if (BPF_SRC(insn->code) != BPF_X)
5699 		return false;
5700 
5701 	/* Pointers are always 64-bit. */
5702 	if (BPF_CLASS(insn->code) == BPF_JMP32)
5703 		return false;
5704 
5705 	switch (BPF_OP(insn->code)) {
5706 	case BPF_JGT:
5707 		if ((dst_reg->type == PTR_TO_PACKET &&
5708 		     src_reg->type == PTR_TO_PACKET_END) ||
5709 		    (dst_reg->type == PTR_TO_PACKET_META &&
5710 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5711 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5712 			find_good_pkt_pointers(this_branch, dst_reg,
5713 					       dst_reg->type, false);
5714 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5715 			    src_reg->type == PTR_TO_PACKET) ||
5716 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5717 			    src_reg->type == PTR_TO_PACKET_META)) {
5718 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
5719 			find_good_pkt_pointers(other_branch, src_reg,
5720 					       src_reg->type, true);
5721 		} else {
5722 			return false;
5723 		}
5724 		break;
5725 	case BPF_JLT:
5726 		if ((dst_reg->type == PTR_TO_PACKET &&
5727 		     src_reg->type == PTR_TO_PACKET_END) ||
5728 		    (dst_reg->type == PTR_TO_PACKET_META &&
5729 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5730 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5731 			find_good_pkt_pointers(other_branch, dst_reg,
5732 					       dst_reg->type, true);
5733 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5734 			    src_reg->type == PTR_TO_PACKET) ||
5735 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5736 			    src_reg->type == PTR_TO_PACKET_META)) {
5737 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
5738 			find_good_pkt_pointers(this_branch, src_reg,
5739 					       src_reg->type, false);
5740 		} else {
5741 			return false;
5742 		}
5743 		break;
5744 	case BPF_JGE:
5745 		if ((dst_reg->type == PTR_TO_PACKET &&
5746 		     src_reg->type == PTR_TO_PACKET_END) ||
5747 		    (dst_reg->type == PTR_TO_PACKET_META &&
5748 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5749 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5750 			find_good_pkt_pointers(this_branch, dst_reg,
5751 					       dst_reg->type, true);
5752 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5753 			    src_reg->type == PTR_TO_PACKET) ||
5754 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5755 			    src_reg->type == PTR_TO_PACKET_META)) {
5756 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5757 			find_good_pkt_pointers(other_branch, src_reg,
5758 					       src_reg->type, false);
5759 		} else {
5760 			return false;
5761 		}
5762 		break;
5763 	case BPF_JLE:
5764 		if ((dst_reg->type == PTR_TO_PACKET &&
5765 		     src_reg->type == PTR_TO_PACKET_END) ||
5766 		    (dst_reg->type == PTR_TO_PACKET_META &&
5767 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5768 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5769 			find_good_pkt_pointers(other_branch, dst_reg,
5770 					       dst_reg->type, false);
5771 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5772 			    src_reg->type == PTR_TO_PACKET) ||
5773 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5774 			    src_reg->type == PTR_TO_PACKET_META)) {
5775 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5776 			find_good_pkt_pointers(this_branch, src_reg,
5777 					       src_reg->type, true);
5778 		} else {
5779 			return false;
5780 		}
5781 		break;
5782 	default:
5783 		return false;
5784 	}
5785 
5786 	return true;
5787 }
5788 
5789 static int check_cond_jmp_op(struct bpf_verifier_env *env,
5790 			     struct bpf_insn *insn, int *insn_idx)
5791 {
5792 	struct bpf_verifier_state *this_branch = env->cur_state;
5793 	struct bpf_verifier_state *other_branch;
5794 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
5795 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
5796 	u8 opcode = BPF_OP(insn->code);
5797 	bool is_jmp32;
5798 	int pred = -1;
5799 	int err;
5800 
5801 	/* Only conditional jumps are expected to reach here. */
5802 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
5803 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
5804 		return -EINVAL;
5805 	}
5806 
5807 	if (BPF_SRC(insn->code) == BPF_X) {
5808 		if (insn->imm != 0) {
5809 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5810 			return -EINVAL;
5811 		}
5812 
5813 		/* check src1 operand */
5814 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
5815 		if (err)
5816 			return err;
5817 
5818 		if (is_pointer_value(env, insn->src_reg)) {
5819 			verbose(env, "R%d pointer comparison prohibited\n",
5820 				insn->src_reg);
5821 			return -EACCES;
5822 		}
5823 		src_reg = &regs[insn->src_reg];
5824 	} else {
5825 		if (insn->src_reg != BPF_REG_0) {
5826 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5827 			return -EINVAL;
5828 		}
5829 	}
5830 
5831 	/* check src2 operand */
5832 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5833 	if (err)
5834 		return err;
5835 
5836 	dst_reg = &regs[insn->dst_reg];
5837 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
5838 
5839 	if (BPF_SRC(insn->code) == BPF_K)
5840 		pred = is_branch_taken(dst_reg, insn->imm,
5841 				       opcode, is_jmp32);
5842 	else if (src_reg->type == SCALAR_VALUE &&
5843 		 tnum_is_const(src_reg->var_off))
5844 		pred = is_branch_taken(dst_reg, src_reg->var_off.value,
5845 				       opcode, is_jmp32);
5846 	if (pred >= 0) {
5847 		err = mark_chain_precision(env, insn->dst_reg);
5848 		if (BPF_SRC(insn->code) == BPF_X && !err)
5849 			err = mark_chain_precision(env, insn->src_reg);
5850 		if (err)
5851 			return err;
5852 	}
5853 	if (pred == 1) {
5854 		/* only follow the goto, ignore fall-through */
5855 		*insn_idx += insn->off;
5856 		return 0;
5857 	} else if (pred == 0) {
5858 		/* only follow fall-through branch, since
5859 		 * that's where the program will go
5860 		 */
5861 		return 0;
5862 	}
5863 
5864 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5865 				  false);
5866 	if (!other_branch)
5867 		return -EFAULT;
5868 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
5869 
5870 	/* detect if we are comparing against a constant value so we can adjust
5871 	 * our min/max values for our dst register.
5872 	 * this is only legit if both are scalars (or pointers to the same
5873 	 * object, I suppose, but we don't support that right now), because
5874 	 * otherwise the different base pointers mean the offsets aren't
5875 	 * comparable.
5876 	 */
5877 	if (BPF_SRC(insn->code) == BPF_X) {
5878 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5879 		struct bpf_reg_state lo_reg0 = *dst_reg;
5880 		struct bpf_reg_state lo_reg1 = *src_reg;
5881 		struct bpf_reg_state *src_lo, *dst_lo;
5882 
5883 		dst_lo = &lo_reg0;
5884 		src_lo = &lo_reg1;
5885 		coerce_reg_to_size(dst_lo, 4);
5886 		coerce_reg_to_size(src_lo, 4);
5887 
5888 		if (dst_reg->type == SCALAR_VALUE &&
5889 		    src_reg->type == SCALAR_VALUE) {
5890 			if (tnum_is_const(src_reg->var_off) ||
5891 			    (is_jmp32 && tnum_is_const(src_lo->var_off)))
5892 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
5893 						dst_reg,
5894 						is_jmp32
5895 						? src_lo->var_off.value
5896 						: src_reg->var_off.value,
5897 						opcode, is_jmp32);
5898 			else if (tnum_is_const(dst_reg->var_off) ||
5899 				 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
5900 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
5901 						    src_reg,
5902 						    is_jmp32
5903 						    ? dst_lo->var_off.value
5904 						    : dst_reg->var_off.value,
5905 						    opcode, is_jmp32);
5906 			else if (!is_jmp32 &&
5907 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
5908 				/* Comparing for equality, we can combine knowledge */
5909 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
5910 						    &other_branch_regs[insn->dst_reg],
5911 						    src_reg, dst_reg, opcode);
5912 		}
5913 	} else if (dst_reg->type == SCALAR_VALUE) {
5914 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
5915 					dst_reg, insn->imm, opcode, is_jmp32);
5916 	}
5917 
5918 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5919 	 * NOTE: these optimizations below are related with pointer comparison
5920 	 *       which will never be JMP32.
5921 	 */
5922 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
5923 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
5924 	    reg_type_may_be_null(dst_reg->type)) {
5925 		/* Mark all identical registers in each branch as either
5926 		 * safe or unknown depending R == 0 or R != 0 conditional.
5927 		 */
5928 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5929 				      opcode == BPF_JNE);
5930 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5931 				      opcode == BPF_JEQ);
5932 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5933 					   this_branch, other_branch) &&
5934 		   is_pointer_value(env, insn->dst_reg)) {
5935 		verbose(env, "R%d pointer comparison prohibited\n",
5936 			insn->dst_reg);
5937 		return -EACCES;
5938 	}
5939 	if (env->log.level & BPF_LOG_LEVEL)
5940 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
5941 	return 0;
5942 }
5943 
5944 /* verify BPF_LD_IMM64 instruction */
5945 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
5946 {
5947 	struct bpf_insn_aux_data *aux = cur_aux(env);
5948 	struct bpf_reg_state *regs = cur_regs(env);
5949 	struct bpf_map *map;
5950 	int err;
5951 
5952 	if (BPF_SIZE(insn->code) != BPF_DW) {
5953 		verbose(env, "invalid BPF_LD_IMM insn\n");
5954 		return -EINVAL;
5955 	}
5956 	if (insn->off != 0) {
5957 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
5958 		return -EINVAL;
5959 	}
5960 
5961 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
5962 	if (err)
5963 		return err;
5964 
5965 	if (insn->src_reg == 0) {
5966 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5967 
5968 		regs[insn->dst_reg].type = SCALAR_VALUE;
5969 		__mark_reg_known(&regs[insn->dst_reg], imm);
5970 		return 0;
5971 	}
5972 
5973 	map = env->used_maps[aux->map_index];
5974 	mark_reg_known_zero(env, regs, insn->dst_reg);
5975 	regs[insn->dst_reg].map_ptr = map;
5976 
5977 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5978 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5979 		regs[insn->dst_reg].off = aux->map_off;
5980 		if (map_value_has_spin_lock(map))
5981 			regs[insn->dst_reg].id = ++env->id_gen;
5982 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5983 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5984 	} else {
5985 		verbose(env, "bpf verifier is misconfigured\n");
5986 		return -EINVAL;
5987 	}
5988 
5989 	return 0;
5990 }
5991 
5992 static bool may_access_skb(enum bpf_prog_type type)
5993 {
5994 	switch (type) {
5995 	case BPF_PROG_TYPE_SOCKET_FILTER:
5996 	case BPF_PROG_TYPE_SCHED_CLS:
5997 	case BPF_PROG_TYPE_SCHED_ACT:
5998 		return true;
5999 	default:
6000 		return false;
6001 	}
6002 }
6003 
6004 /* verify safety of LD_ABS|LD_IND instructions:
6005  * - they can only appear in the programs where ctx == skb
6006  * - since they are wrappers of function calls, they scratch R1-R5 registers,
6007  *   preserve R6-R9, and store return value into R0
6008  *
6009  * Implicit input:
6010  *   ctx == skb == R6 == CTX
6011  *
6012  * Explicit input:
6013  *   SRC == any register
6014  *   IMM == 32-bit immediate
6015  *
6016  * Output:
6017  *   R0 - 8/16/32-bit skb data converted to cpu endianness
6018  */
6019 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
6020 {
6021 	struct bpf_reg_state *regs = cur_regs(env);
6022 	u8 mode = BPF_MODE(insn->code);
6023 	int i, err;
6024 
6025 	if (!may_access_skb(env->prog->type)) {
6026 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
6027 		return -EINVAL;
6028 	}
6029 
6030 	if (!env->ops->gen_ld_abs) {
6031 		verbose(env, "bpf verifier is misconfigured\n");
6032 		return -EINVAL;
6033 	}
6034 
6035 	if (env->subprog_cnt > 1) {
6036 		/* when program has LD_ABS insn JITs and interpreter assume
6037 		 * that r1 == ctx == skb which is not the case for callees
6038 		 * that can have arbitrary arguments. It's problematic
6039 		 * for main prog as well since JITs would need to analyze
6040 		 * all functions in order to make proper register save/restore
6041 		 * decisions in the main prog. Hence disallow LD_ABS with calls
6042 		 */
6043 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6044 		return -EINVAL;
6045 	}
6046 
6047 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
6048 	    BPF_SIZE(insn->code) == BPF_DW ||
6049 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
6050 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
6051 		return -EINVAL;
6052 	}
6053 
6054 	/* check whether implicit source operand (register R6) is readable */
6055 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
6056 	if (err)
6057 		return err;
6058 
6059 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6060 	 * gen_ld_abs() may terminate the program at runtime, leading to
6061 	 * reference leak.
6062 	 */
6063 	err = check_reference_leak(env);
6064 	if (err) {
6065 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6066 		return err;
6067 	}
6068 
6069 	if (env->cur_state->active_spin_lock) {
6070 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6071 		return -EINVAL;
6072 	}
6073 
6074 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
6075 		verbose(env,
6076 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
6077 		return -EINVAL;
6078 	}
6079 
6080 	if (mode == BPF_IND) {
6081 		/* check explicit source operand */
6082 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6083 		if (err)
6084 			return err;
6085 	}
6086 
6087 	/* reset caller saved regs to unreadable */
6088 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6089 		mark_reg_not_init(env, regs, caller_saved[i]);
6090 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6091 	}
6092 
6093 	/* mark destination R0 register as readable, since it contains
6094 	 * the value fetched from the packet.
6095 	 * Already marked as written above.
6096 	 */
6097 	mark_reg_unknown(env, regs, BPF_REG_0);
6098 	/* ld_abs load up to 32-bit skb data. */
6099 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
6100 	return 0;
6101 }
6102 
6103 static int check_return_code(struct bpf_verifier_env *env)
6104 {
6105 	struct tnum enforce_attach_type_range = tnum_unknown;
6106 	struct bpf_reg_state *reg;
6107 	struct tnum range = tnum_range(0, 1);
6108 
6109 	switch (env->prog->type) {
6110 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
6111 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6112 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6113 			range = tnum_range(1, 1);
6114 		break;
6115 	case BPF_PROG_TYPE_CGROUP_SKB:
6116 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6117 			range = tnum_range(0, 3);
6118 			enforce_attach_type_range = tnum_range(2, 3);
6119 		}
6120 		break;
6121 	case BPF_PROG_TYPE_CGROUP_SOCK:
6122 	case BPF_PROG_TYPE_SOCK_OPS:
6123 	case BPF_PROG_TYPE_CGROUP_DEVICE:
6124 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
6125 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
6126 		break;
6127 	default:
6128 		return 0;
6129 	}
6130 
6131 	reg = cur_regs(env) + BPF_REG_0;
6132 	if (reg->type != SCALAR_VALUE) {
6133 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
6134 			reg_type_str[reg->type]);
6135 		return -EINVAL;
6136 	}
6137 
6138 	if (!tnum_in(range, reg->var_off)) {
6139 		char tn_buf[48];
6140 
6141 		verbose(env, "At program exit the register R0 ");
6142 		if (!tnum_is_unknown(reg->var_off)) {
6143 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6144 			verbose(env, "has value %s", tn_buf);
6145 		} else {
6146 			verbose(env, "has unknown scalar value");
6147 		}
6148 		tnum_strn(tn_buf, sizeof(tn_buf), range);
6149 		verbose(env, " should have been in %s\n", tn_buf);
6150 		return -EINVAL;
6151 	}
6152 
6153 	if (!tnum_is_unknown(enforce_attach_type_range) &&
6154 	    tnum_in(enforce_attach_type_range, reg->var_off))
6155 		env->prog->enforce_expected_attach_type = 1;
6156 	return 0;
6157 }
6158 
6159 /* non-recursive DFS pseudo code
6160  * 1  procedure DFS-iterative(G,v):
6161  * 2      label v as discovered
6162  * 3      let S be a stack
6163  * 4      S.push(v)
6164  * 5      while S is not empty
6165  * 6            t <- S.pop()
6166  * 7            if t is what we're looking for:
6167  * 8                return t
6168  * 9            for all edges e in G.adjacentEdges(t) do
6169  * 10               if edge e is already labelled
6170  * 11                   continue with the next edge
6171  * 12               w <- G.adjacentVertex(t,e)
6172  * 13               if vertex w is not discovered and not explored
6173  * 14                   label e as tree-edge
6174  * 15                   label w as discovered
6175  * 16                   S.push(w)
6176  * 17                   continue at 5
6177  * 18               else if vertex w is discovered
6178  * 19                   label e as back-edge
6179  * 20               else
6180  * 21                   // vertex w is explored
6181  * 22                   label e as forward- or cross-edge
6182  * 23           label t as explored
6183  * 24           S.pop()
6184  *
6185  * convention:
6186  * 0x10 - discovered
6187  * 0x11 - discovered and fall-through edge labelled
6188  * 0x12 - discovered and fall-through and branch edges labelled
6189  * 0x20 - explored
6190  */
6191 
6192 enum {
6193 	DISCOVERED = 0x10,
6194 	EXPLORED = 0x20,
6195 	FALLTHROUGH = 1,
6196 	BRANCH = 2,
6197 };
6198 
6199 static u32 state_htab_size(struct bpf_verifier_env *env)
6200 {
6201 	return env->prog->len;
6202 }
6203 
6204 static struct bpf_verifier_state_list **explored_state(
6205 					struct bpf_verifier_env *env,
6206 					int idx)
6207 {
6208 	struct bpf_verifier_state *cur = env->cur_state;
6209 	struct bpf_func_state *state = cur->frame[cur->curframe];
6210 
6211 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
6212 }
6213 
6214 static void init_explored_state(struct bpf_verifier_env *env, int idx)
6215 {
6216 	env->insn_aux_data[idx].prune_point = true;
6217 }
6218 
6219 /* t, w, e - match pseudo-code above:
6220  * t - index of current instruction
6221  * w - next instruction
6222  * e - edge
6223  */
6224 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6225 		     bool loop_ok)
6226 {
6227 	int *insn_stack = env->cfg.insn_stack;
6228 	int *insn_state = env->cfg.insn_state;
6229 
6230 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6231 		return 0;
6232 
6233 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6234 		return 0;
6235 
6236 	if (w < 0 || w >= env->prog->len) {
6237 		verbose_linfo(env, t, "%d: ", t);
6238 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
6239 		return -EINVAL;
6240 	}
6241 
6242 	if (e == BRANCH)
6243 		/* mark branch target for state pruning */
6244 		init_explored_state(env, w);
6245 
6246 	if (insn_state[w] == 0) {
6247 		/* tree-edge */
6248 		insn_state[t] = DISCOVERED | e;
6249 		insn_state[w] = DISCOVERED;
6250 		if (env->cfg.cur_stack >= env->prog->len)
6251 			return -E2BIG;
6252 		insn_stack[env->cfg.cur_stack++] = w;
6253 		return 1;
6254 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
6255 		if (loop_ok && env->allow_ptr_leaks)
6256 			return 0;
6257 		verbose_linfo(env, t, "%d: ", t);
6258 		verbose_linfo(env, w, "%d: ", w);
6259 		verbose(env, "back-edge from insn %d to %d\n", t, w);
6260 		return -EINVAL;
6261 	} else if (insn_state[w] == EXPLORED) {
6262 		/* forward- or cross-edge */
6263 		insn_state[t] = DISCOVERED | e;
6264 	} else {
6265 		verbose(env, "insn state internal bug\n");
6266 		return -EFAULT;
6267 	}
6268 	return 0;
6269 }
6270 
6271 /* non-recursive depth-first-search to detect loops in BPF program
6272  * loop == back-edge in directed graph
6273  */
6274 static int check_cfg(struct bpf_verifier_env *env)
6275 {
6276 	struct bpf_insn *insns = env->prog->insnsi;
6277 	int insn_cnt = env->prog->len;
6278 	int *insn_stack, *insn_state;
6279 	int ret = 0;
6280 	int i, t;
6281 
6282 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6283 	if (!insn_state)
6284 		return -ENOMEM;
6285 
6286 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6287 	if (!insn_stack) {
6288 		kvfree(insn_state);
6289 		return -ENOMEM;
6290 	}
6291 
6292 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6293 	insn_stack[0] = 0; /* 0 is the first instruction */
6294 	env->cfg.cur_stack = 1;
6295 
6296 peek_stack:
6297 	if (env->cfg.cur_stack == 0)
6298 		goto check_state;
6299 	t = insn_stack[env->cfg.cur_stack - 1];
6300 
6301 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6302 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
6303 		u8 opcode = BPF_OP(insns[t].code);
6304 
6305 		if (opcode == BPF_EXIT) {
6306 			goto mark_explored;
6307 		} else if (opcode == BPF_CALL) {
6308 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6309 			if (ret == 1)
6310 				goto peek_stack;
6311 			else if (ret < 0)
6312 				goto err_free;
6313 			if (t + 1 < insn_cnt)
6314 				init_explored_state(env, t + 1);
6315 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
6316 				init_explored_state(env, t);
6317 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6318 						env, false);
6319 				if (ret == 1)
6320 					goto peek_stack;
6321 				else if (ret < 0)
6322 					goto err_free;
6323 			}
6324 		} else if (opcode == BPF_JA) {
6325 			if (BPF_SRC(insns[t].code) != BPF_K) {
6326 				ret = -EINVAL;
6327 				goto err_free;
6328 			}
6329 			/* unconditional jump with single edge */
6330 			ret = push_insn(t, t + insns[t].off + 1,
6331 					FALLTHROUGH, env, true);
6332 			if (ret == 1)
6333 				goto peek_stack;
6334 			else if (ret < 0)
6335 				goto err_free;
6336 			/* unconditional jmp is not a good pruning point,
6337 			 * but it's marked, since backtracking needs
6338 			 * to record jmp history in is_state_visited().
6339 			 */
6340 			init_explored_state(env, t + insns[t].off + 1);
6341 			/* tell verifier to check for equivalent states
6342 			 * after every call and jump
6343 			 */
6344 			if (t + 1 < insn_cnt)
6345 				init_explored_state(env, t + 1);
6346 		} else {
6347 			/* conditional jump with two edges */
6348 			init_explored_state(env, t);
6349 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
6350 			if (ret == 1)
6351 				goto peek_stack;
6352 			else if (ret < 0)
6353 				goto err_free;
6354 
6355 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
6356 			if (ret == 1)
6357 				goto peek_stack;
6358 			else if (ret < 0)
6359 				goto err_free;
6360 		}
6361 	} else {
6362 		/* all other non-branch instructions with single
6363 		 * fall-through edge
6364 		 */
6365 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6366 		if (ret == 1)
6367 			goto peek_stack;
6368 		else if (ret < 0)
6369 			goto err_free;
6370 	}
6371 
6372 mark_explored:
6373 	insn_state[t] = EXPLORED;
6374 	if (env->cfg.cur_stack-- <= 0) {
6375 		verbose(env, "pop stack internal bug\n");
6376 		ret = -EFAULT;
6377 		goto err_free;
6378 	}
6379 	goto peek_stack;
6380 
6381 check_state:
6382 	for (i = 0; i < insn_cnt; i++) {
6383 		if (insn_state[i] != EXPLORED) {
6384 			verbose(env, "unreachable insn %d\n", i);
6385 			ret = -EINVAL;
6386 			goto err_free;
6387 		}
6388 	}
6389 	ret = 0; /* cfg looks good */
6390 
6391 err_free:
6392 	kvfree(insn_state);
6393 	kvfree(insn_stack);
6394 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
6395 	return ret;
6396 }
6397 
6398 /* The minimum supported BTF func info size */
6399 #define MIN_BPF_FUNCINFO_SIZE	8
6400 #define MAX_FUNCINFO_REC_SIZE	252
6401 
6402 static int check_btf_func(struct bpf_verifier_env *env,
6403 			  const union bpf_attr *attr,
6404 			  union bpf_attr __user *uattr)
6405 {
6406 	u32 i, nfuncs, urec_size, min_size;
6407 	u32 krec_size = sizeof(struct bpf_func_info);
6408 	struct bpf_func_info *krecord;
6409 	const struct btf_type *type;
6410 	struct bpf_prog *prog;
6411 	const struct btf *btf;
6412 	void __user *urecord;
6413 	u32 prev_offset = 0;
6414 	int ret = 0;
6415 
6416 	nfuncs = attr->func_info_cnt;
6417 	if (!nfuncs)
6418 		return 0;
6419 
6420 	if (nfuncs != env->subprog_cnt) {
6421 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6422 		return -EINVAL;
6423 	}
6424 
6425 	urec_size = attr->func_info_rec_size;
6426 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6427 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
6428 	    urec_size % sizeof(u32)) {
6429 		verbose(env, "invalid func info rec size %u\n", urec_size);
6430 		return -EINVAL;
6431 	}
6432 
6433 	prog = env->prog;
6434 	btf = prog->aux->btf;
6435 
6436 	urecord = u64_to_user_ptr(attr->func_info);
6437 	min_size = min_t(u32, krec_size, urec_size);
6438 
6439 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
6440 	if (!krecord)
6441 		return -ENOMEM;
6442 
6443 	for (i = 0; i < nfuncs; i++) {
6444 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6445 		if (ret) {
6446 			if (ret == -E2BIG) {
6447 				verbose(env, "nonzero tailing record in func info");
6448 				/* set the size kernel expects so loader can zero
6449 				 * out the rest of the record.
6450 				 */
6451 				if (put_user(min_size, &uattr->func_info_rec_size))
6452 					ret = -EFAULT;
6453 			}
6454 			goto err_free;
6455 		}
6456 
6457 		if (copy_from_user(&krecord[i], urecord, min_size)) {
6458 			ret = -EFAULT;
6459 			goto err_free;
6460 		}
6461 
6462 		/* check insn_off */
6463 		if (i == 0) {
6464 			if (krecord[i].insn_off) {
6465 				verbose(env,
6466 					"nonzero insn_off %u for the first func info record",
6467 					krecord[i].insn_off);
6468 				ret = -EINVAL;
6469 				goto err_free;
6470 			}
6471 		} else if (krecord[i].insn_off <= prev_offset) {
6472 			verbose(env,
6473 				"same or smaller insn offset (%u) than previous func info record (%u)",
6474 				krecord[i].insn_off, prev_offset);
6475 			ret = -EINVAL;
6476 			goto err_free;
6477 		}
6478 
6479 		if (env->subprog_info[i].start != krecord[i].insn_off) {
6480 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6481 			ret = -EINVAL;
6482 			goto err_free;
6483 		}
6484 
6485 		/* check type_id */
6486 		type = btf_type_by_id(btf, krecord[i].type_id);
6487 		if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
6488 			verbose(env, "invalid type id %d in func info",
6489 				krecord[i].type_id);
6490 			ret = -EINVAL;
6491 			goto err_free;
6492 		}
6493 
6494 		prev_offset = krecord[i].insn_off;
6495 		urecord += urec_size;
6496 	}
6497 
6498 	prog->aux->func_info = krecord;
6499 	prog->aux->func_info_cnt = nfuncs;
6500 	return 0;
6501 
6502 err_free:
6503 	kvfree(krecord);
6504 	return ret;
6505 }
6506 
6507 static void adjust_btf_func(struct bpf_verifier_env *env)
6508 {
6509 	int i;
6510 
6511 	if (!env->prog->aux->func_info)
6512 		return;
6513 
6514 	for (i = 0; i < env->subprog_cnt; i++)
6515 		env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
6516 }
6517 
6518 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
6519 		sizeof(((struct bpf_line_info *)(0))->line_col))
6520 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
6521 
6522 static int check_btf_line(struct bpf_verifier_env *env,
6523 			  const union bpf_attr *attr,
6524 			  union bpf_attr __user *uattr)
6525 {
6526 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6527 	struct bpf_subprog_info *sub;
6528 	struct bpf_line_info *linfo;
6529 	struct bpf_prog *prog;
6530 	const struct btf *btf;
6531 	void __user *ulinfo;
6532 	int err;
6533 
6534 	nr_linfo = attr->line_info_cnt;
6535 	if (!nr_linfo)
6536 		return 0;
6537 
6538 	rec_size = attr->line_info_rec_size;
6539 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6540 	    rec_size > MAX_LINEINFO_REC_SIZE ||
6541 	    rec_size & (sizeof(u32) - 1))
6542 		return -EINVAL;
6543 
6544 	/* Need to zero it in case the userspace may
6545 	 * pass in a smaller bpf_line_info object.
6546 	 */
6547 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6548 			 GFP_KERNEL | __GFP_NOWARN);
6549 	if (!linfo)
6550 		return -ENOMEM;
6551 
6552 	prog = env->prog;
6553 	btf = prog->aux->btf;
6554 
6555 	s = 0;
6556 	sub = env->subprog_info;
6557 	ulinfo = u64_to_user_ptr(attr->line_info);
6558 	expected_size = sizeof(struct bpf_line_info);
6559 	ncopy = min_t(u32, expected_size, rec_size);
6560 	for (i = 0; i < nr_linfo; i++) {
6561 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6562 		if (err) {
6563 			if (err == -E2BIG) {
6564 				verbose(env, "nonzero tailing record in line_info");
6565 				if (put_user(expected_size,
6566 					     &uattr->line_info_rec_size))
6567 					err = -EFAULT;
6568 			}
6569 			goto err_free;
6570 		}
6571 
6572 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6573 			err = -EFAULT;
6574 			goto err_free;
6575 		}
6576 
6577 		/*
6578 		 * Check insn_off to ensure
6579 		 * 1) strictly increasing AND
6580 		 * 2) bounded by prog->len
6581 		 *
6582 		 * The linfo[0].insn_off == 0 check logically falls into
6583 		 * the later "missing bpf_line_info for func..." case
6584 		 * because the first linfo[0].insn_off must be the
6585 		 * first sub also and the first sub must have
6586 		 * subprog_info[0].start == 0.
6587 		 */
6588 		if ((i && linfo[i].insn_off <= prev_offset) ||
6589 		    linfo[i].insn_off >= prog->len) {
6590 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6591 				i, linfo[i].insn_off, prev_offset,
6592 				prog->len);
6593 			err = -EINVAL;
6594 			goto err_free;
6595 		}
6596 
6597 		if (!prog->insnsi[linfo[i].insn_off].code) {
6598 			verbose(env,
6599 				"Invalid insn code at line_info[%u].insn_off\n",
6600 				i);
6601 			err = -EINVAL;
6602 			goto err_free;
6603 		}
6604 
6605 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6606 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
6607 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6608 			err = -EINVAL;
6609 			goto err_free;
6610 		}
6611 
6612 		if (s != env->subprog_cnt) {
6613 			if (linfo[i].insn_off == sub[s].start) {
6614 				sub[s].linfo_idx = i;
6615 				s++;
6616 			} else if (sub[s].start < linfo[i].insn_off) {
6617 				verbose(env, "missing bpf_line_info for func#%u\n", s);
6618 				err = -EINVAL;
6619 				goto err_free;
6620 			}
6621 		}
6622 
6623 		prev_offset = linfo[i].insn_off;
6624 		ulinfo += rec_size;
6625 	}
6626 
6627 	if (s != env->subprog_cnt) {
6628 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6629 			env->subprog_cnt - s, s);
6630 		err = -EINVAL;
6631 		goto err_free;
6632 	}
6633 
6634 	prog->aux->linfo = linfo;
6635 	prog->aux->nr_linfo = nr_linfo;
6636 
6637 	return 0;
6638 
6639 err_free:
6640 	kvfree(linfo);
6641 	return err;
6642 }
6643 
6644 static int check_btf_info(struct bpf_verifier_env *env,
6645 			  const union bpf_attr *attr,
6646 			  union bpf_attr __user *uattr)
6647 {
6648 	struct btf *btf;
6649 	int err;
6650 
6651 	if (!attr->func_info_cnt && !attr->line_info_cnt)
6652 		return 0;
6653 
6654 	btf = btf_get_by_fd(attr->prog_btf_fd);
6655 	if (IS_ERR(btf))
6656 		return PTR_ERR(btf);
6657 	env->prog->aux->btf = btf;
6658 
6659 	err = check_btf_func(env, attr, uattr);
6660 	if (err)
6661 		return err;
6662 
6663 	err = check_btf_line(env, attr, uattr);
6664 	if (err)
6665 		return err;
6666 
6667 	return 0;
6668 }
6669 
6670 /* check %cur's range satisfies %old's */
6671 static bool range_within(struct bpf_reg_state *old,
6672 			 struct bpf_reg_state *cur)
6673 {
6674 	return old->umin_value <= cur->umin_value &&
6675 	       old->umax_value >= cur->umax_value &&
6676 	       old->smin_value <= cur->smin_value &&
6677 	       old->smax_value >= cur->smax_value;
6678 }
6679 
6680 /* Maximum number of register states that can exist at once */
6681 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
6682 struct idpair {
6683 	u32 old;
6684 	u32 cur;
6685 };
6686 
6687 /* If in the old state two registers had the same id, then they need to have
6688  * the same id in the new state as well.  But that id could be different from
6689  * the old state, so we need to track the mapping from old to new ids.
6690  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6691  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
6692  * regs with a different old id could still have new id 9, we don't care about
6693  * that.
6694  * So we look through our idmap to see if this old id has been seen before.  If
6695  * so, we require the new id to match; otherwise, we add the id pair to the map.
6696  */
6697 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
6698 {
6699 	unsigned int i;
6700 
6701 	for (i = 0; i < ID_MAP_SIZE; i++) {
6702 		if (!idmap[i].old) {
6703 			/* Reached an empty slot; haven't seen this id before */
6704 			idmap[i].old = old_id;
6705 			idmap[i].cur = cur_id;
6706 			return true;
6707 		}
6708 		if (idmap[i].old == old_id)
6709 			return idmap[i].cur == cur_id;
6710 	}
6711 	/* We ran out of idmap slots, which should be impossible */
6712 	WARN_ON_ONCE(1);
6713 	return false;
6714 }
6715 
6716 static void clean_func_state(struct bpf_verifier_env *env,
6717 			     struct bpf_func_state *st)
6718 {
6719 	enum bpf_reg_liveness live;
6720 	int i, j;
6721 
6722 	for (i = 0; i < BPF_REG_FP; i++) {
6723 		live = st->regs[i].live;
6724 		/* liveness must not touch this register anymore */
6725 		st->regs[i].live |= REG_LIVE_DONE;
6726 		if (!(live & REG_LIVE_READ))
6727 			/* since the register is unused, clear its state
6728 			 * to make further comparison simpler
6729 			 */
6730 			__mark_reg_not_init(&st->regs[i]);
6731 	}
6732 
6733 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
6734 		live = st->stack[i].spilled_ptr.live;
6735 		/* liveness must not touch this stack slot anymore */
6736 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
6737 		if (!(live & REG_LIVE_READ)) {
6738 			__mark_reg_not_init(&st->stack[i].spilled_ptr);
6739 			for (j = 0; j < BPF_REG_SIZE; j++)
6740 				st->stack[i].slot_type[j] = STACK_INVALID;
6741 		}
6742 	}
6743 }
6744 
6745 static void clean_verifier_state(struct bpf_verifier_env *env,
6746 				 struct bpf_verifier_state *st)
6747 {
6748 	int i;
6749 
6750 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
6751 		/* all regs in this state in all frames were already marked */
6752 		return;
6753 
6754 	for (i = 0; i <= st->curframe; i++)
6755 		clean_func_state(env, st->frame[i]);
6756 }
6757 
6758 /* the parentage chains form a tree.
6759  * the verifier states are added to state lists at given insn and
6760  * pushed into state stack for future exploration.
6761  * when the verifier reaches bpf_exit insn some of the verifer states
6762  * stored in the state lists have their final liveness state already,
6763  * but a lot of states will get revised from liveness point of view when
6764  * the verifier explores other branches.
6765  * Example:
6766  * 1: r0 = 1
6767  * 2: if r1 == 100 goto pc+1
6768  * 3: r0 = 2
6769  * 4: exit
6770  * when the verifier reaches exit insn the register r0 in the state list of
6771  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
6772  * of insn 2 and goes exploring further. At the insn 4 it will walk the
6773  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
6774  *
6775  * Since the verifier pushes the branch states as it sees them while exploring
6776  * the program the condition of walking the branch instruction for the second
6777  * time means that all states below this branch were already explored and
6778  * their final liveness markes are already propagated.
6779  * Hence when the verifier completes the search of state list in is_state_visited()
6780  * we can call this clean_live_states() function to mark all liveness states
6781  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
6782  * will not be used.
6783  * This function also clears the registers and stack for states that !READ
6784  * to simplify state merging.
6785  *
6786  * Important note here that walking the same branch instruction in the callee
6787  * doesn't meant that the states are DONE. The verifier has to compare
6788  * the callsites
6789  */
6790 static void clean_live_states(struct bpf_verifier_env *env, int insn,
6791 			      struct bpf_verifier_state *cur)
6792 {
6793 	struct bpf_verifier_state_list *sl;
6794 	int i;
6795 
6796 	sl = *explored_state(env, insn);
6797 	while (sl) {
6798 		if (sl->state.branches)
6799 			goto next;
6800 		if (sl->state.insn_idx != insn ||
6801 		    sl->state.curframe != cur->curframe)
6802 			goto next;
6803 		for (i = 0; i <= cur->curframe; i++)
6804 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6805 				goto next;
6806 		clean_verifier_state(env, &sl->state);
6807 next:
6808 		sl = sl->next;
6809 	}
6810 }
6811 
6812 /* Returns true if (rold safe implies rcur safe) */
6813 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6814 		    struct idpair *idmap)
6815 {
6816 	bool equal;
6817 
6818 	if (!(rold->live & REG_LIVE_READ))
6819 		/* explored state didn't use this */
6820 		return true;
6821 
6822 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
6823 
6824 	if (rold->type == PTR_TO_STACK)
6825 		/* two stack pointers are equal only if they're pointing to
6826 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
6827 		 */
6828 		return equal && rold->frameno == rcur->frameno;
6829 
6830 	if (equal)
6831 		return true;
6832 
6833 	if (rold->type == NOT_INIT)
6834 		/* explored state can't have used this */
6835 		return true;
6836 	if (rcur->type == NOT_INIT)
6837 		return false;
6838 	switch (rold->type) {
6839 	case SCALAR_VALUE:
6840 		if (rcur->type == SCALAR_VALUE) {
6841 			if (!rold->precise && !rcur->precise)
6842 				return true;
6843 			/* new val must satisfy old val knowledge */
6844 			return range_within(rold, rcur) &&
6845 			       tnum_in(rold->var_off, rcur->var_off);
6846 		} else {
6847 			/* We're trying to use a pointer in place of a scalar.
6848 			 * Even if the scalar was unbounded, this could lead to
6849 			 * pointer leaks because scalars are allowed to leak
6850 			 * while pointers are not. We could make this safe in
6851 			 * special cases if root is calling us, but it's
6852 			 * probably not worth the hassle.
6853 			 */
6854 			return false;
6855 		}
6856 	case PTR_TO_MAP_VALUE:
6857 		/* If the new min/max/var_off satisfy the old ones and
6858 		 * everything else matches, we are OK.
6859 		 * 'id' is not compared, since it's only used for maps with
6860 		 * bpf_spin_lock inside map element and in such cases if
6861 		 * the rest of the prog is valid for one map element then
6862 		 * it's valid for all map elements regardless of the key
6863 		 * used in bpf_map_lookup()
6864 		 */
6865 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6866 		       range_within(rold, rcur) &&
6867 		       tnum_in(rold->var_off, rcur->var_off);
6868 	case PTR_TO_MAP_VALUE_OR_NULL:
6869 		/* a PTR_TO_MAP_VALUE could be safe to use as a
6870 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6871 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6872 		 * checked, doing so could have affected others with the same
6873 		 * id, and we can't check for that because we lost the id when
6874 		 * we converted to a PTR_TO_MAP_VALUE.
6875 		 */
6876 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6877 			return false;
6878 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6879 			return false;
6880 		/* Check our ids match any regs they're supposed to */
6881 		return check_ids(rold->id, rcur->id, idmap);
6882 	case PTR_TO_PACKET_META:
6883 	case PTR_TO_PACKET:
6884 		if (rcur->type != rold->type)
6885 			return false;
6886 		/* We must have at least as much range as the old ptr
6887 		 * did, so that any accesses which were safe before are
6888 		 * still safe.  This is true even if old range < old off,
6889 		 * since someone could have accessed through (ptr - k), or
6890 		 * even done ptr -= k in a register, to get a safe access.
6891 		 */
6892 		if (rold->range > rcur->range)
6893 			return false;
6894 		/* If the offsets don't match, we can't trust our alignment;
6895 		 * nor can we be sure that we won't fall out of range.
6896 		 */
6897 		if (rold->off != rcur->off)
6898 			return false;
6899 		/* id relations must be preserved */
6900 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6901 			return false;
6902 		/* new val must satisfy old val knowledge */
6903 		return range_within(rold, rcur) &&
6904 		       tnum_in(rold->var_off, rcur->var_off);
6905 	case PTR_TO_CTX:
6906 	case CONST_PTR_TO_MAP:
6907 	case PTR_TO_PACKET_END:
6908 	case PTR_TO_FLOW_KEYS:
6909 	case PTR_TO_SOCKET:
6910 	case PTR_TO_SOCKET_OR_NULL:
6911 	case PTR_TO_SOCK_COMMON:
6912 	case PTR_TO_SOCK_COMMON_OR_NULL:
6913 	case PTR_TO_TCP_SOCK:
6914 	case PTR_TO_TCP_SOCK_OR_NULL:
6915 	case PTR_TO_XDP_SOCK:
6916 		/* Only valid matches are exact, which memcmp() above
6917 		 * would have accepted
6918 		 */
6919 	default:
6920 		/* Don't know what's going on, just say it's not safe */
6921 		return false;
6922 	}
6923 
6924 	/* Shouldn't get here; if we do, say it's not safe */
6925 	WARN_ON_ONCE(1);
6926 	return false;
6927 }
6928 
6929 static bool stacksafe(struct bpf_func_state *old,
6930 		      struct bpf_func_state *cur,
6931 		      struct idpair *idmap)
6932 {
6933 	int i, spi;
6934 
6935 	/* walk slots of the explored stack and ignore any additional
6936 	 * slots in the current stack, since explored(safe) state
6937 	 * didn't use them
6938 	 */
6939 	for (i = 0; i < old->allocated_stack; i++) {
6940 		spi = i / BPF_REG_SIZE;
6941 
6942 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6943 			i += BPF_REG_SIZE - 1;
6944 			/* explored state didn't use this */
6945 			continue;
6946 		}
6947 
6948 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6949 			continue;
6950 
6951 		/* explored stack has more populated slots than current stack
6952 		 * and these slots were used
6953 		 */
6954 		if (i >= cur->allocated_stack)
6955 			return false;
6956 
6957 		/* if old state was safe with misc data in the stack
6958 		 * it will be safe with zero-initialized stack.
6959 		 * The opposite is not true
6960 		 */
6961 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6962 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6963 			continue;
6964 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6965 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6966 			/* Ex: old explored (safe) state has STACK_SPILL in
6967 			 * this stack slot, but current has has STACK_MISC ->
6968 			 * this verifier states are not equivalent,
6969 			 * return false to continue verification of this path
6970 			 */
6971 			return false;
6972 		if (i % BPF_REG_SIZE)
6973 			continue;
6974 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
6975 			continue;
6976 		if (!regsafe(&old->stack[spi].spilled_ptr,
6977 			     &cur->stack[spi].spilled_ptr,
6978 			     idmap))
6979 			/* when explored and current stack slot are both storing
6980 			 * spilled registers, check that stored pointers types
6981 			 * are the same as well.
6982 			 * Ex: explored safe path could have stored
6983 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6984 			 * but current path has stored:
6985 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6986 			 * such verifier states are not equivalent.
6987 			 * return false to continue verification of this path
6988 			 */
6989 			return false;
6990 	}
6991 	return true;
6992 }
6993 
6994 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6995 {
6996 	if (old->acquired_refs != cur->acquired_refs)
6997 		return false;
6998 	return !memcmp(old->refs, cur->refs,
6999 		       sizeof(*old->refs) * old->acquired_refs);
7000 }
7001 
7002 /* compare two verifier states
7003  *
7004  * all states stored in state_list are known to be valid, since
7005  * verifier reached 'bpf_exit' instruction through them
7006  *
7007  * this function is called when verifier exploring different branches of
7008  * execution popped from the state stack. If it sees an old state that has
7009  * more strict register state and more strict stack state then this execution
7010  * branch doesn't need to be explored further, since verifier already
7011  * concluded that more strict state leads to valid finish.
7012  *
7013  * Therefore two states are equivalent if register state is more conservative
7014  * and explored stack state is more conservative than the current one.
7015  * Example:
7016  *       explored                   current
7017  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7018  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7019  *
7020  * In other words if current stack state (one being explored) has more
7021  * valid slots than old one that already passed validation, it means
7022  * the verifier can stop exploring and conclude that current state is valid too
7023  *
7024  * Similarly with registers. If explored state has register type as invalid
7025  * whereas register type in current state is meaningful, it means that
7026  * the current state will reach 'bpf_exit' instruction safely
7027  */
7028 static bool func_states_equal(struct bpf_func_state *old,
7029 			      struct bpf_func_state *cur)
7030 {
7031 	struct idpair *idmap;
7032 	bool ret = false;
7033 	int i;
7034 
7035 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
7036 	/* If we failed to allocate the idmap, just say it's not safe */
7037 	if (!idmap)
7038 		return false;
7039 
7040 	for (i = 0; i < MAX_BPF_REG; i++) {
7041 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
7042 			goto out_free;
7043 	}
7044 
7045 	if (!stacksafe(old, cur, idmap))
7046 		goto out_free;
7047 
7048 	if (!refsafe(old, cur))
7049 		goto out_free;
7050 	ret = true;
7051 out_free:
7052 	kfree(idmap);
7053 	return ret;
7054 }
7055 
7056 static bool states_equal(struct bpf_verifier_env *env,
7057 			 struct bpf_verifier_state *old,
7058 			 struct bpf_verifier_state *cur)
7059 {
7060 	int i;
7061 
7062 	if (old->curframe != cur->curframe)
7063 		return false;
7064 
7065 	/* Verification state from speculative execution simulation
7066 	 * must never prune a non-speculative execution one.
7067 	 */
7068 	if (old->speculative && !cur->speculative)
7069 		return false;
7070 
7071 	if (old->active_spin_lock != cur->active_spin_lock)
7072 		return false;
7073 
7074 	/* for states to be equal callsites have to be the same
7075 	 * and all frame states need to be equivalent
7076 	 */
7077 	for (i = 0; i <= old->curframe; i++) {
7078 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
7079 			return false;
7080 		if (!func_states_equal(old->frame[i], cur->frame[i]))
7081 			return false;
7082 	}
7083 	return true;
7084 }
7085 
7086 /* Return 0 if no propagation happened. Return negative error code if error
7087  * happened. Otherwise, return the propagated bit.
7088  */
7089 static int propagate_liveness_reg(struct bpf_verifier_env *env,
7090 				  struct bpf_reg_state *reg,
7091 				  struct bpf_reg_state *parent_reg)
7092 {
7093 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7094 	u8 flag = reg->live & REG_LIVE_READ;
7095 	int err;
7096 
7097 	/* When comes here, read flags of PARENT_REG or REG could be any of
7098 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7099 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7100 	 */
7101 	if (parent_flag == REG_LIVE_READ64 ||
7102 	    /* Or if there is no read flag from REG. */
7103 	    !flag ||
7104 	    /* Or if the read flag from REG is the same as PARENT_REG. */
7105 	    parent_flag == flag)
7106 		return 0;
7107 
7108 	err = mark_reg_read(env, reg, parent_reg, flag);
7109 	if (err)
7110 		return err;
7111 
7112 	return flag;
7113 }
7114 
7115 /* A write screens off any subsequent reads; but write marks come from the
7116  * straight-line code between a state and its parent.  When we arrive at an
7117  * equivalent state (jump target or such) we didn't arrive by the straight-line
7118  * code, so read marks in the state must propagate to the parent regardless
7119  * of the state's write marks. That's what 'parent == state->parent' comparison
7120  * in mark_reg_read() is for.
7121  */
7122 static int propagate_liveness(struct bpf_verifier_env *env,
7123 			      const struct bpf_verifier_state *vstate,
7124 			      struct bpf_verifier_state *vparent)
7125 {
7126 	struct bpf_reg_state *state_reg, *parent_reg;
7127 	struct bpf_func_state *state, *parent;
7128 	int i, frame, err = 0;
7129 
7130 	if (vparent->curframe != vstate->curframe) {
7131 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
7132 		     vparent->curframe, vstate->curframe);
7133 		return -EFAULT;
7134 	}
7135 	/* Propagate read liveness of registers... */
7136 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
7137 	for (frame = 0; frame <= vstate->curframe; frame++) {
7138 		parent = vparent->frame[frame];
7139 		state = vstate->frame[frame];
7140 		parent_reg = parent->regs;
7141 		state_reg = state->regs;
7142 		/* We don't need to worry about FP liveness, it's read-only */
7143 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
7144 			err = propagate_liveness_reg(env, &state_reg[i],
7145 						     &parent_reg[i]);
7146 			if (err < 0)
7147 				return err;
7148 			if (err == REG_LIVE_READ64)
7149 				mark_insn_zext(env, &parent_reg[i]);
7150 		}
7151 
7152 		/* Propagate stack slots. */
7153 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7154 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
7155 			parent_reg = &parent->stack[i].spilled_ptr;
7156 			state_reg = &state->stack[i].spilled_ptr;
7157 			err = propagate_liveness_reg(env, state_reg,
7158 						     parent_reg);
7159 			if (err < 0)
7160 				return err;
7161 		}
7162 	}
7163 	return 0;
7164 }
7165 
7166 /* find precise scalars in the previous equivalent state and
7167  * propagate them into the current state
7168  */
7169 static int propagate_precision(struct bpf_verifier_env *env,
7170 			       const struct bpf_verifier_state *old)
7171 {
7172 	struct bpf_reg_state *state_reg;
7173 	struct bpf_func_state *state;
7174 	int i, err = 0;
7175 
7176 	state = old->frame[old->curframe];
7177 	state_reg = state->regs;
7178 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
7179 		if (state_reg->type != SCALAR_VALUE ||
7180 		    !state_reg->precise)
7181 			continue;
7182 		if (env->log.level & BPF_LOG_LEVEL2)
7183 			verbose(env, "propagating r%d\n", i);
7184 		err = mark_chain_precision(env, i);
7185 		if (err < 0)
7186 			return err;
7187 	}
7188 
7189 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
7190 		if (state->stack[i].slot_type[0] != STACK_SPILL)
7191 			continue;
7192 		state_reg = &state->stack[i].spilled_ptr;
7193 		if (state_reg->type != SCALAR_VALUE ||
7194 		    !state_reg->precise)
7195 			continue;
7196 		if (env->log.level & BPF_LOG_LEVEL2)
7197 			verbose(env, "propagating fp%d\n",
7198 				(-i - 1) * BPF_REG_SIZE);
7199 		err = mark_chain_precision_stack(env, i);
7200 		if (err < 0)
7201 			return err;
7202 	}
7203 	return 0;
7204 }
7205 
7206 static bool states_maybe_looping(struct bpf_verifier_state *old,
7207 				 struct bpf_verifier_state *cur)
7208 {
7209 	struct bpf_func_state *fold, *fcur;
7210 	int i, fr = cur->curframe;
7211 
7212 	if (old->curframe != fr)
7213 		return false;
7214 
7215 	fold = old->frame[fr];
7216 	fcur = cur->frame[fr];
7217 	for (i = 0; i < MAX_BPF_REG; i++)
7218 		if (memcmp(&fold->regs[i], &fcur->regs[i],
7219 			   offsetof(struct bpf_reg_state, parent)))
7220 			return false;
7221 	return true;
7222 }
7223 
7224 
7225 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
7226 {
7227 	struct bpf_verifier_state_list *new_sl;
7228 	struct bpf_verifier_state_list *sl, **pprev;
7229 	struct bpf_verifier_state *cur = env->cur_state, *new;
7230 	int i, j, err, states_cnt = 0;
7231 	bool add_new_state = env->test_state_freq ? true : false;
7232 
7233 	cur->last_insn_idx = env->prev_insn_idx;
7234 	if (!env->insn_aux_data[insn_idx].prune_point)
7235 		/* this 'insn_idx' instruction wasn't marked, so we will not
7236 		 * be doing state search here
7237 		 */
7238 		return 0;
7239 
7240 	/* bpf progs typically have pruning point every 4 instructions
7241 	 * http://vger.kernel.org/bpfconf2019.html#session-1
7242 	 * Do not add new state for future pruning if the verifier hasn't seen
7243 	 * at least 2 jumps and at least 8 instructions.
7244 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7245 	 * In tests that amounts to up to 50% reduction into total verifier
7246 	 * memory consumption and 20% verifier time speedup.
7247 	 */
7248 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7249 	    env->insn_processed - env->prev_insn_processed >= 8)
7250 		add_new_state = true;
7251 
7252 	pprev = explored_state(env, insn_idx);
7253 	sl = *pprev;
7254 
7255 	clean_live_states(env, insn_idx, cur);
7256 
7257 	while (sl) {
7258 		states_cnt++;
7259 		if (sl->state.insn_idx != insn_idx)
7260 			goto next;
7261 		if (sl->state.branches) {
7262 			if (states_maybe_looping(&sl->state, cur) &&
7263 			    states_equal(env, &sl->state, cur)) {
7264 				verbose_linfo(env, insn_idx, "; ");
7265 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7266 				return -EINVAL;
7267 			}
7268 			/* if the verifier is processing a loop, avoid adding new state
7269 			 * too often, since different loop iterations have distinct
7270 			 * states and may not help future pruning.
7271 			 * This threshold shouldn't be too low to make sure that
7272 			 * a loop with large bound will be rejected quickly.
7273 			 * The most abusive loop will be:
7274 			 * r1 += 1
7275 			 * if r1 < 1000000 goto pc-2
7276 			 * 1M insn_procssed limit / 100 == 10k peak states.
7277 			 * This threshold shouldn't be too high either, since states
7278 			 * at the end of the loop are likely to be useful in pruning.
7279 			 */
7280 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7281 			    env->insn_processed - env->prev_insn_processed < 100)
7282 				add_new_state = false;
7283 			goto miss;
7284 		}
7285 		if (states_equal(env, &sl->state, cur)) {
7286 			sl->hit_cnt++;
7287 			/* reached equivalent register/stack state,
7288 			 * prune the search.
7289 			 * Registers read by the continuation are read by us.
7290 			 * If we have any write marks in env->cur_state, they
7291 			 * will prevent corresponding reads in the continuation
7292 			 * from reaching our parent (an explored_state).  Our
7293 			 * own state will get the read marks recorded, but
7294 			 * they'll be immediately forgotten as we're pruning
7295 			 * this state and will pop a new one.
7296 			 */
7297 			err = propagate_liveness(env, &sl->state, cur);
7298 
7299 			/* if previous state reached the exit with precision and
7300 			 * current state is equivalent to it (except precsion marks)
7301 			 * the precision needs to be propagated back in
7302 			 * the current state.
7303 			 */
7304 			err = err ? : push_jmp_history(env, cur);
7305 			err = err ? : propagate_precision(env, &sl->state);
7306 			if (err)
7307 				return err;
7308 			return 1;
7309 		}
7310 miss:
7311 		/* when new state is not going to be added do not increase miss count.
7312 		 * Otherwise several loop iterations will remove the state
7313 		 * recorded earlier. The goal of these heuristics is to have
7314 		 * states from some iterations of the loop (some in the beginning
7315 		 * and some at the end) to help pruning.
7316 		 */
7317 		if (add_new_state)
7318 			sl->miss_cnt++;
7319 		/* heuristic to determine whether this state is beneficial
7320 		 * to keep checking from state equivalence point of view.
7321 		 * Higher numbers increase max_states_per_insn and verification time,
7322 		 * but do not meaningfully decrease insn_processed.
7323 		 */
7324 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7325 			/* the state is unlikely to be useful. Remove it to
7326 			 * speed up verification
7327 			 */
7328 			*pprev = sl->next;
7329 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
7330 				u32 br = sl->state.branches;
7331 
7332 				WARN_ONCE(br,
7333 					  "BUG live_done but branches_to_explore %d\n",
7334 					  br);
7335 				free_verifier_state(&sl->state, false);
7336 				kfree(sl);
7337 				env->peak_states--;
7338 			} else {
7339 				/* cannot free this state, since parentage chain may
7340 				 * walk it later. Add it for free_list instead to
7341 				 * be freed at the end of verification
7342 				 */
7343 				sl->next = env->free_list;
7344 				env->free_list = sl;
7345 			}
7346 			sl = *pprev;
7347 			continue;
7348 		}
7349 next:
7350 		pprev = &sl->next;
7351 		sl = *pprev;
7352 	}
7353 
7354 	if (env->max_states_per_insn < states_cnt)
7355 		env->max_states_per_insn = states_cnt;
7356 
7357 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
7358 		return push_jmp_history(env, cur);
7359 
7360 	if (!add_new_state)
7361 		return push_jmp_history(env, cur);
7362 
7363 	/* There were no equivalent states, remember the current one.
7364 	 * Technically the current state is not proven to be safe yet,
7365 	 * but it will either reach outer most bpf_exit (which means it's safe)
7366 	 * or it will be rejected. When there are no loops the verifier won't be
7367 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
7368 	 * again on the way to bpf_exit.
7369 	 * When looping the sl->state.branches will be > 0 and this state
7370 	 * will not be considered for equivalence until branches == 0.
7371 	 */
7372 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
7373 	if (!new_sl)
7374 		return -ENOMEM;
7375 	env->total_states++;
7376 	env->peak_states++;
7377 	env->prev_jmps_processed = env->jmps_processed;
7378 	env->prev_insn_processed = env->insn_processed;
7379 
7380 	/* add new state to the head of linked list */
7381 	new = &new_sl->state;
7382 	err = copy_verifier_state(new, cur);
7383 	if (err) {
7384 		free_verifier_state(new, false);
7385 		kfree(new_sl);
7386 		return err;
7387 	}
7388 	new->insn_idx = insn_idx;
7389 	WARN_ONCE(new->branches != 1,
7390 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
7391 
7392 	cur->parent = new;
7393 	cur->first_insn_idx = insn_idx;
7394 	clear_jmp_history(cur);
7395 	new_sl->next = *explored_state(env, insn_idx);
7396 	*explored_state(env, insn_idx) = new_sl;
7397 	/* connect new state to parentage chain. Current frame needs all
7398 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
7399 	 * to the stack implicitly by JITs) so in callers' frames connect just
7400 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7401 	 * the state of the call instruction (with WRITTEN set), and r0 comes
7402 	 * from callee with its full parentage chain, anyway.
7403 	 */
7404 	/* clear write marks in current state: the writes we did are not writes
7405 	 * our child did, so they don't screen off its reads from us.
7406 	 * (There are no read marks in current state, because reads always mark
7407 	 * their parent and current state never has children yet.  Only
7408 	 * explored_states can get read marks.)
7409 	 */
7410 	for (j = 0; j <= cur->curframe; j++) {
7411 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7412 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7413 		for (i = 0; i < BPF_REG_FP; i++)
7414 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7415 	}
7416 
7417 	/* all stack frames are accessible from callee, clear them all */
7418 	for (j = 0; j <= cur->curframe; j++) {
7419 		struct bpf_func_state *frame = cur->frame[j];
7420 		struct bpf_func_state *newframe = new->frame[j];
7421 
7422 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
7423 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
7424 			frame->stack[i].spilled_ptr.parent =
7425 						&newframe->stack[i].spilled_ptr;
7426 		}
7427 	}
7428 	return 0;
7429 }
7430 
7431 /* Return true if it's OK to have the same insn return a different type. */
7432 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7433 {
7434 	switch (type) {
7435 	case PTR_TO_CTX:
7436 	case PTR_TO_SOCKET:
7437 	case PTR_TO_SOCKET_OR_NULL:
7438 	case PTR_TO_SOCK_COMMON:
7439 	case PTR_TO_SOCK_COMMON_OR_NULL:
7440 	case PTR_TO_TCP_SOCK:
7441 	case PTR_TO_TCP_SOCK_OR_NULL:
7442 	case PTR_TO_XDP_SOCK:
7443 		return false;
7444 	default:
7445 		return true;
7446 	}
7447 }
7448 
7449 /* If an instruction was previously used with particular pointer types, then we
7450  * need to be careful to avoid cases such as the below, where it may be ok
7451  * for one branch accessing the pointer, but not ok for the other branch:
7452  *
7453  * R1 = sock_ptr
7454  * goto X;
7455  * ...
7456  * R1 = some_other_valid_ptr;
7457  * goto X;
7458  * ...
7459  * R2 = *(u32 *)(R1 + 0);
7460  */
7461 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7462 {
7463 	return src != prev && (!reg_type_mismatch_ok(src) ||
7464 			       !reg_type_mismatch_ok(prev));
7465 }
7466 
7467 static int do_check(struct bpf_verifier_env *env)
7468 {
7469 	struct bpf_verifier_state *state;
7470 	struct bpf_insn *insns = env->prog->insnsi;
7471 	struct bpf_reg_state *regs;
7472 	int insn_cnt = env->prog->len;
7473 	bool do_print_state = false;
7474 	int prev_insn_idx = -1;
7475 
7476 	env->prev_linfo = NULL;
7477 
7478 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
7479 	if (!state)
7480 		return -ENOMEM;
7481 	state->curframe = 0;
7482 	state->speculative = false;
7483 	state->branches = 1;
7484 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
7485 	if (!state->frame[0]) {
7486 		kfree(state);
7487 		return -ENOMEM;
7488 	}
7489 	env->cur_state = state;
7490 	init_func_state(env, state->frame[0],
7491 			BPF_MAIN_FUNC /* callsite */,
7492 			0 /* frameno */,
7493 			0 /* subprogno, zero == main subprog */);
7494 
7495 	for (;;) {
7496 		struct bpf_insn *insn;
7497 		u8 class;
7498 		int err;
7499 
7500 		env->prev_insn_idx = prev_insn_idx;
7501 		if (env->insn_idx >= insn_cnt) {
7502 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
7503 				env->insn_idx, insn_cnt);
7504 			return -EFAULT;
7505 		}
7506 
7507 		insn = &insns[env->insn_idx];
7508 		class = BPF_CLASS(insn->code);
7509 
7510 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
7511 			verbose(env,
7512 				"BPF program is too large. Processed %d insn\n",
7513 				env->insn_processed);
7514 			return -E2BIG;
7515 		}
7516 
7517 		err = is_state_visited(env, env->insn_idx);
7518 		if (err < 0)
7519 			return err;
7520 		if (err == 1) {
7521 			/* found equivalent state, can prune the search */
7522 			if (env->log.level & BPF_LOG_LEVEL) {
7523 				if (do_print_state)
7524 					verbose(env, "\nfrom %d to %d%s: safe\n",
7525 						env->prev_insn_idx, env->insn_idx,
7526 						env->cur_state->speculative ?
7527 						" (speculative execution)" : "");
7528 				else
7529 					verbose(env, "%d: safe\n", env->insn_idx);
7530 			}
7531 			goto process_bpf_exit;
7532 		}
7533 
7534 		if (signal_pending(current))
7535 			return -EAGAIN;
7536 
7537 		if (need_resched())
7538 			cond_resched();
7539 
7540 		if (env->log.level & BPF_LOG_LEVEL2 ||
7541 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7542 			if (env->log.level & BPF_LOG_LEVEL2)
7543 				verbose(env, "%d:", env->insn_idx);
7544 			else
7545 				verbose(env, "\nfrom %d to %d%s:",
7546 					env->prev_insn_idx, env->insn_idx,
7547 					env->cur_state->speculative ?
7548 					" (speculative execution)" : "");
7549 			print_verifier_state(env, state->frame[state->curframe]);
7550 			do_print_state = false;
7551 		}
7552 
7553 		if (env->log.level & BPF_LOG_LEVEL) {
7554 			const struct bpf_insn_cbs cbs = {
7555 				.cb_print	= verbose,
7556 				.private_data	= env,
7557 			};
7558 
7559 			verbose_linfo(env, env->insn_idx, "; ");
7560 			verbose(env, "%d: ", env->insn_idx);
7561 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
7562 		}
7563 
7564 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
7565 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7566 							   env->prev_insn_idx);
7567 			if (err)
7568 				return err;
7569 		}
7570 
7571 		regs = cur_regs(env);
7572 		env->insn_aux_data[env->insn_idx].seen = true;
7573 		prev_insn_idx = env->insn_idx;
7574 
7575 		if (class == BPF_ALU || class == BPF_ALU64) {
7576 			err = check_alu_op(env, insn);
7577 			if (err)
7578 				return err;
7579 
7580 		} else if (class == BPF_LDX) {
7581 			enum bpf_reg_type *prev_src_type, src_reg_type;
7582 
7583 			/* check for reserved fields is already done */
7584 
7585 			/* check src operand */
7586 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7587 			if (err)
7588 				return err;
7589 
7590 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7591 			if (err)
7592 				return err;
7593 
7594 			src_reg_type = regs[insn->src_reg].type;
7595 
7596 			/* check that memory (src_reg + off) is readable,
7597 			 * the state of dst_reg will be updated by this func
7598 			 */
7599 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
7600 					       insn->off, BPF_SIZE(insn->code),
7601 					       BPF_READ, insn->dst_reg, false);
7602 			if (err)
7603 				return err;
7604 
7605 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7606 
7607 			if (*prev_src_type == NOT_INIT) {
7608 				/* saw a valid insn
7609 				 * dst_reg = *(u32 *)(src_reg + off)
7610 				 * save type to validate intersecting paths
7611 				 */
7612 				*prev_src_type = src_reg_type;
7613 
7614 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
7615 				/* ABuser program is trying to use the same insn
7616 				 * dst_reg = *(u32*) (src_reg + off)
7617 				 * with different pointer types:
7618 				 * src_reg == ctx in one branch and
7619 				 * src_reg == stack|map in some other branch.
7620 				 * Reject it.
7621 				 */
7622 				verbose(env, "same insn cannot be used with different pointers\n");
7623 				return -EINVAL;
7624 			}
7625 
7626 		} else if (class == BPF_STX) {
7627 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
7628 
7629 			if (BPF_MODE(insn->code) == BPF_XADD) {
7630 				err = check_xadd(env, env->insn_idx, insn);
7631 				if (err)
7632 					return err;
7633 				env->insn_idx++;
7634 				continue;
7635 			}
7636 
7637 			/* check src1 operand */
7638 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7639 			if (err)
7640 				return err;
7641 			/* check src2 operand */
7642 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7643 			if (err)
7644 				return err;
7645 
7646 			dst_reg_type = regs[insn->dst_reg].type;
7647 
7648 			/* check that memory (dst_reg + off) is writeable */
7649 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7650 					       insn->off, BPF_SIZE(insn->code),
7651 					       BPF_WRITE, insn->src_reg, false);
7652 			if (err)
7653 				return err;
7654 
7655 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7656 
7657 			if (*prev_dst_type == NOT_INIT) {
7658 				*prev_dst_type = dst_reg_type;
7659 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
7660 				verbose(env, "same insn cannot be used with different pointers\n");
7661 				return -EINVAL;
7662 			}
7663 
7664 		} else if (class == BPF_ST) {
7665 			if (BPF_MODE(insn->code) != BPF_MEM ||
7666 			    insn->src_reg != BPF_REG_0) {
7667 				verbose(env, "BPF_ST uses reserved fields\n");
7668 				return -EINVAL;
7669 			}
7670 			/* check src operand */
7671 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7672 			if (err)
7673 				return err;
7674 
7675 			if (is_ctx_reg(env, insn->dst_reg)) {
7676 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
7677 					insn->dst_reg,
7678 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
7679 				return -EACCES;
7680 			}
7681 
7682 			/* check that memory (dst_reg + off) is writeable */
7683 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7684 					       insn->off, BPF_SIZE(insn->code),
7685 					       BPF_WRITE, -1, false);
7686 			if (err)
7687 				return err;
7688 
7689 		} else if (class == BPF_JMP || class == BPF_JMP32) {
7690 			u8 opcode = BPF_OP(insn->code);
7691 
7692 			env->jmps_processed++;
7693 			if (opcode == BPF_CALL) {
7694 				if (BPF_SRC(insn->code) != BPF_K ||
7695 				    insn->off != 0 ||
7696 				    (insn->src_reg != BPF_REG_0 &&
7697 				     insn->src_reg != BPF_PSEUDO_CALL) ||
7698 				    insn->dst_reg != BPF_REG_0 ||
7699 				    class == BPF_JMP32) {
7700 					verbose(env, "BPF_CALL uses reserved fields\n");
7701 					return -EINVAL;
7702 				}
7703 
7704 				if (env->cur_state->active_spin_lock &&
7705 				    (insn->src_reg == BPF_PSEUDO_CALL ||
7706 				     insn->imm != BPF_FUNC_spin_unlock)) {
7707 					verbose(env, "function calls are not allowed while holding a lock\n");
7708 					return -EINVAL;
7709 				}
7710 				if (insn->src_reg == BPF_PSEUDO_CALL)
7711 					err = check_func_call(env, insn, &env->insn_idx);
7712 				else
7713 					err = check_helper_call(env, insn->imm, env->insn_idx);
7714 				if (err)
7715 					return err;
7716 
7717 			} else if (opcode == BPF_JA) {
7718 				if (BPF_SRC(insn->code) != BPF_K ||
7719 				    insn->imm != 0 ||
7720 				    insn->src_reg != BPF_REG_0 ||
7721 				    insn->dst_reg != BPF_REG_0 ||
7722 				    class == BPF_JMP32) {
7723 					verbose(env, "BPF_JA uses reserved fields\n");
7724 					return -EINVAL;
7725 				}
7726 
7727 				env->insn_idx += insn->off + 1;
7728 				continue;
7729 
7730 			} else if (opcode == BPF_EXIT) {
7731 				if (BPF_SRC(insn->code) != BPF_K ||
7732 				    insn->imm != 0 ||
7733 				    insn->src_reg != BPF_REG_0 ||
7734 				    insn->dst_reg != BPF_REG_0 ||
7735 				    class == BPF_JMP32) {
7736 					verbose(env, "BPF_EXIT uses reserved fields\n");
7737 					return -EINVAL;
7738 				}
7739 
7740 				if (env->cur_state->active_spin_lock) {
7741 					verbose(env, "bpf_spin_unlock is missing\n");
7742 					return -EINVAL;
7743 				}
7744 
7745 				if (state->curframe) {
7746 					/* exit from nested function */
7747 					err = prepare_func_exit(env, &env->insn_idx);
7748 					if (err)
7749 						return err;
7750 					do_print_state = true;
7751 					continue;
7752 				}
7753 
7754 				err = check_reference_leak(env);
7755 				if (err)
7756 					return err;
7757 
7758 				/* eBPF calling convetion is such that R0 is used
7759 				 * to return the value from eBPF program.
7760 				 * Make sure that it's readable at this time
7761 				 * of bpf_exit, which means that program wrote
7762 				 * something into it earlier
7763 				 */
7764 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7765 				if (err)
7766 					return err;
7767 
7768 				if (is_pointer_value(env, BPF_REG_0)) {
7769 					verbose(env, "R0 leaks addr as return value\n");
7770 					return -EACCES;
7771 				}
7772 
7773 				err = check_return_code(env);
7774 				if (err)
7775 					return err;
7776 process_bpf_exit:
7777 				update_branch_counts(env, env->cur_state);
7778 				err = pop_stack(env, &prev_insn_idx,
7779 						&env->insn_idx);
7780 				if (err < 0) {
7781 					if (err != -ENOENT)
7782 						return err;
7783 					break;
7784 				} else {
7785 					do_print_state = true;
7786 					continue;
7787 				}
7788 			} else {
7789 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
7790 				if (err)
7791 					return err;
7792 			}
7793 		} else if (class == BPF_LD) {
7794 			u8 mode = BPF_MODE(insn->code);
7795 
7796 			if (mode == BPF_ABS || mode == BPF_IND) {
7797 				err = check_ld_abs(env, insn);
7798 				if (err)
7799 					return err;
7800 
7801 			} else if (mode == BPF_IMM) {
7802 				err = check_ld_imm(env, insn);
7803 				if (err)
7804 					return err;
7805 
7806 				env->insn_idx++;
7807 				env->insn_aux_data[env->insn_idx].seen = true;
7808 			} else {
7809 				verbose(env, "invalid BPF_LD mode\n");
7810 				return -EINVAL;
7811 			}
7812 		} else {
7813 			verbose(env, "unknown insn class %d\n", class);
7814 			return -EINVAL;
7815 		}
7816 
7817 		env->insn_idx++;
7818 	}
7819 
7820 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
7821 	return 0;
7822 }
7823 
7824 static int check_map_prealloc(struct bpf_map *map)
7825 {
7826 	return (map->map_type != BPF_MAP_TYPE_HASH &&
7827 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7828 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
7829 		!(map->map_flags & BPF_F_NO_PREALLOC);
7830 }
7831 
7832 static bool is_tracing_prog_type(enum bpf_prog_type type)
7833 {
7834 	switch (type) {
7835 	case BPF_PROG_TYPE_KPROBE:
7836 	case BPF_PROG_TYPE_TRACEPOINT:
7837 	case BPF_PROG_TYPE_PERF_EVENT:
7838 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
7839 		return true;
7840 	default:
7841 		return false;
7842 	}
7843 }
7844 
7845 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
7846 					struct bpf_map *map,
7847 					struct bpf_prog *prog)
7848 
7849 {
7850 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
7851 	 * preallocated hash maps, since doing memory allocation
7852 	 * in overflow_handler can crash depending on where nmi got
7853 	 * triggered.
7854 	 */
7855 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
7856 		if (!check_map_prealloc(map)) {
7857 			verbose(env, "perf_event programs can only use preallocated hash map\n");
7858 			return -EINVAL;
7859 		}
7860 		if (map->inner_map_meta &&
7861 		    !check_map_prealloc(map->inner_map_meta)) {
7862 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
7863 			return -EINVAL;
7864 		}
7865 	}
7866 
7867 	if ((is_tracing_prog_type(prog->type) ||
7868 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
7869 	    map_value_has_spin_lock(map)) {
7870 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
7871 		return -EINVAL;
7872 	}
7873 
7874 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
7875 	    !bpf_offload_prog_map_match(prog, map)) {
7876 		verbose(env, "offload device mismatch between prog and map\n");
7877 		return -EINVAL;
7878 	}
7879 
7880 	return 0;
7881 }
7882 
7883 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
7884 {
7885 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
7886 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
7887 }
7888 
7889 /* look for pseudo eBPF instructions that access map FDs and
7890  * replace them with actual map pointers
7891  */
7892 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
7893 {
7894 	struct bpf_insn *insn = env->prog->insnsi;
7895 	int insn_cnt = env->prog->len;
7896 	int i, j, err;
7897 
7898 	err = bpf_prog_calc_tag(env->prog);
7899 	if (err)
7900 		return err;
7901 
7902 	for (i = 0; i < insn_cnt; i++, insn++) {
7903 		if (BPF_CLASS(insn->code) == BPF_LDX &&
7904 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
7905 			verbose(env, "BPF_LDX uses reserved fields\n");
7906 			return -EINVAL;
7907 		}
7908 
7909 		if (BPF_CLASS(insn->code) == BPF_STX &&
7910 		    ((BPF_MODE(insn->code) != BPF_MEM &&
7911 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
7912 			verbose(env, "BPF_STX uses reserved fields\n");
7913 			return -EINVAL;
7914 		}
7915 
7916 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
7917 			struct bpf_insn_aux_data *aux;
7918 			struct bpf_map *map;
7919 			struct fd f;
7920 			u64 addr;
7921 
7922 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
7923 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
7924 			    insn[1].off != 0) {
7925 				verbose(env, "invalid bpf_ld_imm64 insn\n");
7926 				return -EINVAL;
7927 			}
7928 
7929 			if (insn[0].src_reg == 0)
7930 				/* valid generic load 64-bit imm */
7931 				goto next_insn;
7932 
7933 			/* In final convert_pseudo_ld_imm64() step, this is
7934 			 * converted into regular 64-bit imm load insn.
7935 			 */
7936 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
7937 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
7938 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
7939 			     insn[1].imm != 0)) {
7940 				verbose(env,
7941 					"unrecognized bpf_ld_imm64 insn\n");
7942 				return -EINVAL;
7943 			}
7944 
7945 			f = fdget(insn[0].imm);
7946 			map = __bpf_map_get(f);
7947 			if (IS_ERR(map)) {
7948 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
7949 					insn[0].imm);
7950 				return PTR_ERR(map);
7951 			}
7952 
7953 			err = check_map_prog_compatibility(env, map, env->prog);
7954 			if (err) {
7955 				fdput(f);
7956 				return err;
7957 			}
7958 
7959 			aux = &env->insn_aux_data[i];
7960 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7961 				addr = (unsigned long)map;
7962 			} else {
7963 				u32 off = insn[1].imm;
7964 
7965 				if (off >= BPF_MAX_VAR_OFF) {
7966 					verbose(env, "direct value offset of %u is not allowed\n", off);
7967 					fdput(f);
7968 					return -EINVAL;
7969 				}
7970 
7971 				if (!map->ops->map_direct_value_addr) {
7972 					verbose(env, "no direct value access support for this map type\n");
7973 					fdput(f);
7974 					return -EINVAL;
7975 				}
7976 
7977 				err = map->ops->map_direct_value_addr(map, &addr, off);
7978 				if (err) {
7979 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
7980 						map->value_size, off);
7981 					fdput(f);
7982 					return err;
7983 				}
7984 
7985 				aux->map_off = off;
7986 				addr += off;
7987 			}
7988 
7989 			insn[0].imm = (u32)addr;
7990 			insn[1].imm = addr >> 32;
7991 
7992 			/* check whether we recorded this map already */
7993 			for (j = 0; j < env->used_map_cnt; j++) {
7994 				if (env->used_maps[j] == map) {
7995 					aux->map_index = j;
7996 					fdput(f);
7997 					goto next_insn;
7998 				}
7999 			}
8000 
8001 			if (env->used_map_cnt >= MAX_USED_MAPS) {
8002 				fdput(f);
8003 				return -E2BIG;
8004 			}
8005 
8006 			/* hold the map. If the program is rejected by verifier,
8007 			 * the map will be released by release_maps() or it
8008 			 * will be used by the valid program until it's unloaded
8009 			 * and all maps are released in free_used_maps()
8010 			 */
8011 			map = bpf_map_inc(map, false);
8012 			if (IS_ERR(map)) {
8013 				fdput(f);
8014 				return PTR_ERR(map);
8015 			}
8016 
8017 			aux->map_index = env->used_map_cnt;
8018 			env->used_maps[env->used_map_cnt++] = map;
8019 
8020 			if (bpf_map_is_cgroup_storage(map) &&
8021 			    bpf_cgroup_storage_assign(env->prog, map)) {
8022 				verbose(env, "only one cgroup storage of each type is allowed\n");
8023 				fdput(f);
8024 				return -EBUSY;
8025 			}
8026 
8027 			fdput(f);
8028 next_insn:
8029 			insn++;
8030 			i++;
8031 			continue;
8032 		}
8033 
8034 		/* Basic sanity check before we invest more work here. */
8035 		if (!bpf_opcode_in_insntable(insn->code)) {
8036 			verbose(env, "unknown opcode %02x\n", insn->code);
8037 			return -EINVAL;
8038 		}
8039 	}
8040 
8041 	/* now all pseudo BPF_LD_IMM64 instructions load valid
8042 	 * 'struct bpf_map *' into a register instead of user map_fd.
8043 	 * These pointers will be used later by verifier to validate map access.
8044 	 */
8045 	return 0;
8046 }
8047 
8048 /* drop refcnt of maps used by the rejected program */
8049 static void release_maps(struct bpf_verifier_env *env)
8050 {
8051 	enum bpf_cgroup_storage_type stype;
8052 	int i;
8053 
8054 	for_each_cgroup_storage_type(stype) {
8055 		if (!env->prog->aux->cgroup_storage[stype])
8056 			continue;
8057 		bpf_cgroup_storage_release(env->prog,
8058 			env->prog->aux->cgroup_storage[stype]);
8059 	}
8060 
8061 	for (i = 0; i < env->used_map_cnt; i++)
8062 		bpf_map_put(env->used_maps[i]);
8063 }
8064 
8065 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
8066 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
8067 {
8068 	struct bpf_insn *insn = env->prog->insnsi;
8069 	int insn_cnt = env->prog->len;
8070 	int i;
8071 
8072 	for (i = 0; i < insn_cnt; i++, insn++)
8073 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8074 			insn->src_reg = 0;
8075 }
8076 
8077 /* single env->prog->insni[off] instruction was replaced with the range
8078  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
8079  * [0, off) and [off, end) to new locations, so the patched range stays zero
8080  */
8081 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
8082 				struct bpf_prog *new_prog, u32 off, u32 cnt)
8083 {
8084 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
8085 	struct bpf_insn *insn = new_prog->insnsi;
8086 	u32 prog_len;
8087 	int i;
8088 
8089 	/* aux info at OFF always needs adjustment, no matter fast path
8090 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
8091 	 * original insn at old prog.
8092 	 */
8093 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
8094 
8095 	if (cnt == 1)
8096 		return 0;
8097 	prog_len = new_prog->len;
8098 	new_data = vzalloc(array_size(prog_len,
8099 				      sizeof(struct bpf_insn_aux_data)));
8100 	if (!new_data)
8101 		return -ENOMEM;
8102 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8103 	memcpy(new_data + off + cnt - 1, old_data + off,
8104 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
8105 	for (i = off; i < off + cnt - 1; i++) {
8106 		new_data[i].seen = true;
8107 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
8108 	}
8109 	env->insn_aux_data = new_data;
8110 	vfree(old_data);
8111 	return 0;
8112 }
8113 
8114 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8115 {
8116 	int i;
8117 
8118 	if (len == 1)
8119 		return;
8120 	/* NOTE: fake 'exit' subprog should be updated as well. */
8121 	for (i = 0; i <= env->subprog_cnt; i++) {
8122 		if (env->subprog_info[i].start <= off)
8123 			continue;
8124 		env->subprog_info[i].start += len - 1;
8125 	}
8126 }
8127 
8128 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8129 					    const struct bpf_insn *patch, u32 len)
8130 {
8131 	struct bpf_prog *new_prog;
8132 
8133 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
8134 	if (IS_ERR(new_prog)) {
8135 		if (PTR_ERR(new_prog) == -ERANGE)
8136 			verbose(env,
8137 				"insn %d cannot be patched due to 16-bit range\n",
8138 				env->insn_aux_data[off].orig_idx);
8139 		return NULL;
8140 	}
8141 	if (adjust_insn_aux_data(env, new_prog, off, len))
8142 		return NULL;
8143 	adjust_subprog_starts(env, off, len);
8144 	return new_prog;
8145 }
8146 
8147 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8148 					      u32 off, u32 cnt)
8149 {
8150 	int i, j;
8151 
8152 	/* find first prog starting at or after off (first to remove) */
8153 	for (i = 0; i < env->subprog_cnt; i++)
8154 		if (env->subprog_info[i].start >= off)
8155 			break;
8156 	/* find first prog starting at or after off + cnt (first to stay) */
8157 	for (j = i; j < env->subprog_cnt; j++)
8158 		if (env->subprog_info[j].start >= off + cnt)
8159 			break;
8160 	/* if j doesn't start exactly at off + cnt, we are just removing
8161 	 * the front of previous prog
8162 	 */
8163 	if (env->subprog_info[j].start != off + cnt)
8164 		j--;
8165 
8166 	if (j > i) {
8167 		struct bpf_prog_aux *aux = env->prog->aux;
8168 		int move;
8169 
8170 		/* move fake 'exit' subprog as well */
8171 		move = env->subprog_cnt + 1 - j;
8172 
8173 		memmove(env->subprog_info + i,
8174 			env->subprog_info + j,
8175 			sizeof(*env->subprog_info) * move);
8176 		env->subprog_cnt -= j - i;
8177 
8178 		/* remove func_info */
8179 		if (aux->func_info) {
8180 			move = aux->func_info_cnt - j;
8181 
8182 			memmove(aux->func_info + i,
8183 				aux->func_info + j,
8184 				sizeof(*aux->func_info) * move);
8185 			aux->func_info_cnt -= j - i;
8186 			/* func_info->insn_off is set after all code rewrites,
8187 			 * in adjust_btf_func() - no need to adjust
8188 			 */
8189 		}
8190 	} else {
8191 		/* convert i from "first prog to remove" to "first to adjust" */
8192 		if (env->subprog_info[i].start == off)
8193 			i++;
8194 	}
8195 
8196 	/* update fake 'exit' subprog as well */
8197 	for (; i <= env->subprog_cnt; i++)
8198 		env->subprog_info[i].start -= cnt;
8199 
8200 	return 0;
8201 }
8202 
8203 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8204 				      u32 cnt)
8205 {
8206 	struct bpf_prog *prog = env->prog;
8207 	u32 i, l_off, l_cnt, nr_linfo;
8208 	struct bpf_line_info *linfo;
8209 
8210 	nr_linfo = prog->aux->nr_linfo;
8211 	if (!nr_linfo)
8212 		return 0;
8213 
8214 	linfo = prog->aux->linfo;
8215 
8216 	/* find first line info to remove, count lines to be removed */
8217 	for (i = 0; i < nr_linfo; i++)
8218 		if (linfo[i].insn_off >= off)
8219 			break;
8220 
8221 	l_off = i;
8222 	l_cnt = 0;
8223 	for (; i < nr_linfo; i++)
8224 		if (linfo[i].insn_off < off + cnt)
8225 			l_cnt++;
8226 		else
8227 			break;
8228 
8229 	/* First live insn doesn't match first live linfo, it needs to "inherit"
8230 	 * last removed linfo.  prog is already modified, so prog->len == off
8231 	 * means no live instructions after (tail of the program was removed).
8232 	 */
8233 	if (prog->len != off && l_cnt &&
8234 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8235 		l_cnt--;
8236 		linfo[--i].insn_off = off + cnt;
8237 	}
8238 
8239 	/* remove the line info which refer to the removed instructions */
8240 	if (l_cnt) {
8241 		memmove(linfo + l_off, linfo + i,
8242 			sizeof(*linfo) * (nr_linfo - i));
8243 
8244 		prog->aux->nr_linfo -= l_cnt;
8245 		nr_linfo = prog->aux->nr_linfo;
8246 	}
8247 
8248 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
8249 	for (i = l_off; i < nr_linfo; i++)
8250 		linfo[i].insn_off -= cnt;
8251 
8252 	/* fix up all subprogs (incl. 'exit') which start >= off */
8253 	for (i = 0; i <= env->subprog_cnt; i++)
8254 		if (env->subprog_info[i].linfo_idx > l_off) {
8255 			/* program may have started in the removed region but
8256 			 * may not be fully removed
8257 			 */
8258 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8259 				env->subprog_info[i].linfo_idx -= l_cnt;
8260 			else
8261 				env->subprog_info[i].linfo_idx = l_off;
8262 		}
8263 
8264 	return 0;
8265 }
8266 
8267 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8268 {
8269 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8270 	unsigned int orig_prog_len = env->prog->len;
8271 	int err;
8272 
8273 	if (bpf_prog_is_dev_bound(env->prog->aux))
8274 		bpf_prog_offload_remove_insns(env, off, cnt);
8275 
8276 	err = bpf_remove_insns(env->prog, off, cnt);
8277 	if (err)
8278 		return err;
8279 
8280 	err = adjust_subprog_starts_after_remove(env, off, cnt);
8281 	if (err)
8282 		return err;
8283 
8284 	err = bpf_adj_linfo_after_remove(env, off, cnt);
8285 	if (err)
8286 		return err;
8287 
8288 	memmove(aux_data + off,	aux_data + off + cnt,
8289 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
8290 
8291 	return 0;
8292 }
8293 
8294 /* The verifier does more data flow analysis than llvm and will not
8295  * explore branches that are dead at run time. Malicious programs can
8296  * have dead code too. Therefore replace all dead at-run-time code
8297  * with 'ja -1'.
8298  *
8299  * Just nops are not optimal, e.g. if they would sit at the end of the
8300  * program and through another bug we would manage to jump there, then
8301  * we'd execute beyond program memory otherwise. Returning exception
8302  * code also wouldn't work since we can have subprogs where the dead
8303  * code could be located.
8304  */
8305 static void sanitize_dead_code(struct bpf_verifier_env *env)
8306 {
8307 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8308 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
8309 	struct bpf_insn *insn = env->prog->insnsi;
8310 	const int insn_cnt = env->prog->len;
8311 	int i;
8312 
8313 	for (i = 0; i < insn_cnt; i++) {
8314 		if (aux_data[i].seen)
8315 			continue;
8316 		memcpy(insn + i, &trap, sizeof(trap));
8317 	}
8318 }
8319 
8320 static bool insn_is_cond_jump(u8 code)
8321 {
8322 	u8 op;
8323 
8324 	if (BPF_CLASS(code) == BPF_JMP32)
8325 		return true;
8326 
8327 	if (BPF_CLASS(code) != BPF_JMP)
8328 		return false;
8329 
8330 	op = BPF_OP(code);
8331 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8332 }
8333 
8334 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8335 {
8336 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8337 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8338 	struct bpf_insn *insn = env->prog->insnsi;
8339 	const int insn_cnt = env->prog->len;
8340 	int i;
8341 
8342 	for (i = 0; i < insn_cnt; i++, insn++) {
8343 		if (!insn_is_cond_jump(insn->code))
8344 			continue;
8345 
8346 		if (!aux_data[i + 1].seen)
8347 			ja.off = insn->off;
8348 		else if (!aux_data[i + 1 + insn->off].seen)
8349 			ja.off = 0;
8350 		else
8351 			continue;
8352 
8353 		if (bpf_prog_is_dev_bound(env->prog->aux))
8354 			bpf_prog_offload_replace_insn(env, i, &ja);
8355 
8356 		memcpy(insn, &ja, sizeof(ja));
8357 	}
8358 }
8359 
8360 static int opt_remove_dead_code(struct bpf_verifier_env *env)
8361 {
8362 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8363 	int insn_cnt = env->prog->len;
8364 	int i, err;
8365 
8366 	for (i = 0; i < insn_cnt; i++) {
8367 		int j;
8368 
8369 		j = 0;
8370 		while (i + j < insn_cnt && !aux_data[i + j].seen)
8371 			j++;
8372 		if (!j)
8373 			continue;
8374 
8375 		err = verifier_remove_insns(env, i, j);
8376 		if (err)
8377 			return err;
8378 		insn_cnt = env->prog->len;
8379 	}
8380 
8381 	return 0;
8382 }
8383 
8384 static int opt_remove_nops(struct bpf_verifier_env *env)
8385 {
8386 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8387 	struct bpf_insn *insn = env->prog->insnsi;
8388 	int insn_cnt = env->prog->len;
8389 	int i, err;
8390 
8391 	for (i = 0; i < insn_cnt; i++) {
8392 		if (memcmp(&insn[i], &ja, sizeof(ja)))
8393 			continue;
8394 
8395 		err = verifier_remove_insns(env, i, 1);
8396 		if (err)
8397 			return err;
8398 		insn_cnt--;
8399 		i--;
8400 	}
8401 
8402 	return 0;
8403 }
8404 
8405 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8406 					 const union bpf_attr *attr)
8407 {
8408 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
8409 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
8410 	int i, patch_len, delta = 0, len = env->prog->len;
8411 	struct bpf_insn *insns = env->prog->insnsi;
8412 	struct bpf_prog *new_prog;
8413 	bool rnd_hi32;
8414 
8415 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
8416 	zext_patch[1] = BPF_ZEXT_REG(0);
8417 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8418 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8419 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
8420 	for (i = 0; i < len; i++) {
8421 		int adj_idx = i + delta;
8422 		struct bpf_insn insn;
8423 
8424 		insn = insns[adj_idx];
8425 		if (!aux[adj_idx].zext_dst) {
8426 			u8 code, class;
8427 			u32 imm_rnd;
8428 
8429 			if (!rnd_hi32)
8430 				continue;
8431 
8432 			code = insn.code;
8433 			class = BPF_CLASS(code);
8434 			if (insn_no_def(&insn))
8435 				continue;
8436 
8437 			/* NOTE: arg "reg" (the fourth one) is only used for
8438 			 *       BPF_STX which has been ruled out in above
8439 			 *       check, it is safe to pass NULL here.
8440 			 */
8441 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8442 				if (class == BPF_LD &&
8443 				    BPF_MODE(code) == BPF_IMM)
8444 					i++;
8445 				continue;
8446 			}
8447 
8448 			/* ctx load could be transformed into wider load. */
8449 			if (class == BPF_LDX &&
8450 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
8451 				continue;
8452 
8453 			imm_rnd = get_random_int();
8454 			rnd_hi32_patch[0] = insn;
8455 			rnd_hi32_patch[1].imm = imm_rnd;
8456 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8457 			patch = rnd_hi32_patch;
8458 			patch_len = 4;
8459 			goto apply_patch_buffer;
8460 		}
8461 
8462 		if (!bpf_jit_needs_zext())
8463 			continue;
8464 
8465 		zext_patch[0] = insn;
8466 		zext_patch[1].dst_reg = insn.dst_reg;
8467 		zext_patch[1].src_reg = insn.dst_reg;
8468 		patch = zext_patch;
8469 		patch_len = 2;
8470 apply_patch_buffer:
8471 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
8472 		if (!new_prog)
8473 			return -ENOMEM;
8474 		env->prog = new_prog;
8475 		insns = new_prog->insnsi;
8476 		aux = env->insn_aux_data;
8477 		delta += patch_len - 1;
8478 	}
8479 
8480 	return 0;
8481 }
8482 
8483 /* convert load instructions that access fields of a context type into a
8484  * sequence of instructions that access fields of the underlying structure:
8485  *     struct __sk_buff    -> struct sk_buff
8486  *     struct bpf_sock_ops -> struct sock
8487  */
8488 static int convert_ctx_accesses(struct bpf_verifier_env *env)
8489 {
8490 	const struct bpf_verifier_ops *ops = env->ops;
8491 	int i, cnt, size, ctx_field_size, delta = 0;
8492 	const int insn_cnt = env->prog->len;
8493 	struct bpf_insn insn_buf[16], *insn;
8494 	u32 target_size, size_default, off;
8495 	struct bpf_prog *new_prog;
8496 	enum bpf_access_type type;
8497 	bool is_narrower_load;
8498 
8499 	if (ops->gen_prologue || env->seen_direct_write) {
8500 		if (!ops->gen_prologue) {
8501 			verbose(env, "bpf verifier is misconfigured\n");
8502 			return -EINVAL;
8503 		}
8504 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8505 					env->prog);
8506 		if (cnt >= ARRAY_SIZE(insn_buf)) {
8507 			verbose(env, "bpf verifier is misconfigured\n");
8508 			return -EINVAL;
8509 		} else if (cnt) {
8510 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
8511 			if (!new_prog)
8512 				return -ENOMEM;
8513 
8514 			env->prog = new_prog;
8515 			delta += cnt - 1;
8516 		}
8517 	}
8518 
8519 	if (bpf_prog_is_dev_bound(env->prog->aux))
8520 		return 0;
8521 
8522 	insn = env->prog->insnsi + delta;
8523 
8524 	for (i = 0; i < insn_cnt; i++, insn++) {
8525 		bpf_convert_ctx_access_t convert_ctx_access;
8526 
8527 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8528 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8529 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
8530 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
8531 			type = BPF_READ;
8532 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8533 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8534 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
8535 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
8536 			type = BPF_WRITE;
8537 		else
8538 			continue;
8539 
8540 		if (type == BPF_WRITE &&
8541 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
8542 			struct bpf_insn patch[] = {
8543 				/* Sanitize suspicious stack slot with zero.
8544 				 * There are no memory dependencies for this store,
8545 				 * since it's only using frame pointer and immediate
8546 				 * constant of zero
8547 				 */
8548 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
8549 					   env->insn_aux_data[i + delta].sanitize_stack_off,
8550 					   0),
8551 				/* the original STX instruction will immediately
8552 				 * overwrite the same stack slot with appropriate value
8553 				 */
8554 				*insn,
8555 			};
8556 
8557 			cnt = ARRAY_SIZE(patch);
8558 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8559 			if (!new_prog)
8560 				return -ENOMEM;
8561 
8562 			delta    += cnt - 1;
8563 			env->prog = new_prog;
8564 			insn      = new_prog->insnsi + i + delta;
8565 			continue;
8566 		}
8567 
8568 		switch (env->insn_aux_data[i + delta].ptr_type) {
8569 		case PTR_TO_CTX:
8570 			if (!ops->convert_ctx_access)
8571 				continue;
8572 			convert_ctx_access = ops->convert_ctx_access;
8573 			break;
8574 		case PTR_TO_SOCKET:
8575 		case PTR_TO_SOCK_COMMON:
8576 			convert_ctx_access = bpf_sock_convert_ctx_access;
8577 			break;
8578 		case PTR_TO_TCP_SOCK:
8579 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8580 			break;
8581 		case PTR_TO_XDP_SOCK:
8582 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8583 			break;
8584 		default:
8585 			continue;
8586 		}
8587 
8588 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
8589 		size = BPF_LDST_BYTES(insn);
8590 
8591 		/* If the read access is a narrower load of the field,
8592 		 * convert to a 4/8-byte load, to minimum program type specific
8593 		 * convert_ctx_access changes. If conversion is successful,
8594 		 * we will apply proper mask to the result.
8595 		 */
8596 		is_narrower_load = size < ctx_field_size;
8597 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8598 		off = insn->off;
8599 		if (is_narrower_load) {
8600 			u8 size_code;
8601 
8602 			if (type == BPF_WRITE) {
8603 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
8604 				return -EINVAL;
8605 			}
8606 
8607 			size_code = BPF_H;
8608 			if (ctx_field_size == 4)
8609 				size_code = BPF_W;
8610 			else if (ctx_field_size == 8)
8611 				size_code = BPF_DW;
8612 
8613 			insn->off = off & ~(size_default - 1);
8614 			insn->code = BPF_LDX | BPF_MEM | size_code;
8615 		}
8616 
8617 		target_size = 0;
8618 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8619 					 &target_size);
8620 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8621 		    (ctx_field_size && !target_size)) {
8622 			verbose(env, "bpf verifier is misconfigured\n");
8623 			return -EINVAL;
8624 		}
8625 
8626 		if (is_narrower_load && size < target_size) {
8627 			u8 shift = bpf_ctx_narrow_access_offset(
8628 				off, size, size_default) * 8;
8629 			if (ctx_field_size <= 4) {
8630 				if (shift)
8631 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8632 									insn->dst_reg,
8633 									shift);
8634 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
8635 								(1 << size * 8) - 1);
8636 			} else {
8637 				if (shift)
8638 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8639 									insn->dst_reg,
8640 									shift);
8641 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
8642 								(1ULL << size * 8) - 1);
8643 			}
8644 		}
8645 
8646 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8647 		if (!new_prog)
8648 			return -ENOMEM;
8649 
8650 		delta += cnt - 1;
8651 
8652 		/* keep walking new program and skip insns we just inserted */
8653 		env->prog = new_prog;
8654 		insn      = new_prog->insnsi + i + delta;
8655 	}
8656 
8657 	return 0;
8658 }
8659 
8660 static int jit_subprogs(struct bpf_verifier_env *env)
8661 {
8662 	struct bpf_prog *prog = env->prog, **func, *tmp;
8663 	int i, j, subprog_start, subprog_end = 0, len, subprog;
8664 	struct bpf_insn *insn;
8665 	void *old_bpf_func;
8666 	int err;
8667 
8668 	if (env->subprog_cnt <= 1)
8669 		return 0;
8670 
8671 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8672 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8673 		    insn->src_reg != BPF_PSEUDO_CALL)
8674 			continue;
8675 		/* Upon error here we cannot fall back to interpreter but
8676 		 * need a hard reject of the program. Thus -EFAULT is
8677 		 * propagated in any case.
8678 		 */
8679 		subprog = find_subprog(env, i + insn->imm + 1);
8680 		if (subprog < 0) {
8681 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8682 				  i + insn->imm + 1);
8683 			return -EFAULT;
8684 		}
8685 		/* temporarily remember subprog id inside insn instead of
8686 		 * aux_data, since next loop will split up all insns into funcs
8687 		 */
8688 		insn->off = subprog;
8689 		/* remember original imm in case JIT fails and fallback
8690 		 * to interpreter will be needed
8691 		 */
8692 		env->insn_aux_data[i].call_imm = insn->imm;
8693 		/* point imm to __bpf_call_base+1 from JITs point of view */
8694 		insn->imm = 1;
8695 	}
8696 
8697 	err = bpf_prog_alloc_jited_linfo(prog);
8698 	if (err)
8699 		goto out_undo_insn;
8700 
8701 	err = -ENOMEM;
8702 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
8703 	if (!func)
8704 		goto out_undo_insn;
8705 
8706 	for (i = 0; i < env->subprog_cnt; i++) {
8707 		subprog_start = subprog_end;
8708 		subprog_end = env->subprog_info[i + 1].start;
8709 
8710 		len = subprog_end - subprog_start;
8711 		/* BPF_PROG_RUN doesn't call subprogs directly,
8712 		 * hence main prog stats include the runtime of subprogs.
8713 		 * subprogs don't have IDs and not reachable via prog_get_next_id
8714 		 * func[i]->aux->stats will never be accessed and stays NULL
8715 		 */
8716 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
8717 		if (!func[i])
8718 			goto out_free;
8719 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
8720 		       len * sizeof(struct bpf_insn));
8721 		func[i]->type = prog->type;
8722 		func[i]->len = len;
8723 		if (bpf_prog_calc_tag(func[i]))
8724 			goto out_free;
8725 		func[i]->is_func = 1;
8726 		func[i]->aux->func_idx = i;
8727 		/* the btf and func_info will be freed only at prog->aux */
8728 		func[i]->aux->btf = prog->aux->btf;
8729 		func[i]->aux->func_info = prog->aux->func_info;
8730 
8731 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
8732 		 * Long term would need debug info to populate names
8733 		 */
8734 		func[i]->aux->name[0] = 'F';
8735 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
8736 		func[i]->jit_requested = 1;
8737 		func[i]->aux->linfo = prog->aux->linfo;
8738 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
8739 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
8740 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
8741 		func[i] = bpf_int_jit_compile(func[i]);
8742 		if (!func[i]->jited) {
8743 			err = -ENOTSUPP;
8744 			goto out_free;
8745 		}
8746 		cond_resched();
8747 	}
8748 	/* at this point all bpf functions were successfully JITed
8749 	 * now populate all bpf_calls with correct addresses and
8750 	 * run last pass of JIT
8751 	 */
8752 	for (i = 0; i < env->subprog_cnt; i++) {
8753 		insn = func[i]->insnsi;
8754 		for (j = 0; j < func[i]->len; j++, insn++) {
8755 			if (insn->code != (BPF_JMP | BPF_CALL) ||
8756 			    insn->src_reg != BPF_PSEUDO_CALL)
8757 				continue;
8758 			subprog = insn->off;
8759 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
8760 				    __bpf_call_base;
8761 		}
8762 
8763 		/* we use the aux data to keep a list of the start addresses
8764 		 * of the JITed images for each function in the program
8765 		 *
8766 		 * for some architectures, such as powerpc64, the imm field
8767 		 * might not be large enough to hold the offset of the start
8768 		 * address of the callee's JITed image from __bpf_call_base
8769 		 *
8770 		 * in such cases, we can lookup the start address of a callee
8771 		 * by using its subprog id, available from the off field of
8772 		 * the call instruction, as an index for this list
8773 		 */
8774 		func[i]->aux->func = func;
8775 		func[i]->aux->func_cnt = env->subprog_cnt;
8776 	}
8777 	for (i = 0; i < env->subprog_cnt; i++) {
8778 		old_bpf_func = func[i]->bpf_func;
8779 		tmp = bpf_int_jit_compile(func[i]);
8780 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
8781 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
8782 			err = -ENOTSUPP;
8783 			goto out_free;
8784 		}
8785 		cond_resched();
8786 	}
8787 
8788 	/* finally lock prog and jit images for all functions and
8789 	 * populate kallsysm
8790 	 */
8791 	for (i = 0; i < env->subprog_cnt; i++) {
8792 		bpf_prog_lock_ro(func[i]);
8793 		bpf_prog_kallsyms_add(func[i]);
8794 	}
8795 
8796 	/* Last step: make now unused interpreter insns from main
8797 	 * prog consistent for later dump requests, so they can
8798 	 * later look the same as if they were interpreted only.
8799 	 */
8800 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8801 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8802 		    insn->src_reg != BPF_PSEUDO_CALL)
8803 			continue;
8804 		insn->off = env->insn_aux_data[i].call_imm;
8805 		subprog = find_subprog(env, i + insn->off + 1);
8806 		insn->imm = subprog;
8807 	}
8808 
8809 	prog->jited = 1;
8810 	prog->bpf_func = func[0]->bpf_func;
8811 	prog->aux->func = func;
8812 	prog->aux->func_cnt = env->subprog_cnt;
8813 	bpf_prog_free_unused_jited_linfo(prog);
8814 	return 0;
8815 out_free:
8816 	for (i = 0; i < env->subprog_cnt; i++)
8817 		if (func[i])
8818 			bpf_jit_free(func[i]);
8819 	kfree(func);
8820 out_undo_insn:
8821 	/* cleanup main prog to be interpreted */
8822 	prog->jit_requested = 0;
8823 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8824 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8825 		    insn->src_reg != BPF_PSEUDO_CALL)
8826 			continue;
8827 		insn->off = 0;
8828 		insn->imm = env->insn_aux_data[i].call_imm;
8829 	}
8830 	bpf_prog_free_jited_linfo(prog);
8831 	return err;
8832 }
8833 
8834 static int fixup_call_args(struct bpf_verifier_env *env)
8835 {
8836 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
8837 	struct bpf_prog *prog = env->prog;
8838 	struct bpf_insn *insn = prog->insnsi;
8839 	int i, depth;
8840 #endif
8841 	int err = 0;
8842 
8843 	if (env->prog->jit_requested &&
8844 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
8845 		err = jit_subprogs(env);
8846 		if (err == 0)
8847 			return 0;
8848 		if (err == -EFAULT)
8849 			return err;
8850 	}
8851 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
8852 	for (i = 0; i < prog->len; i++, insn++) {
8853 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8854 		    insn->src_reg != BPF_PSEUDO_CALL)
8855 			continue;
8856 		depth = get_callee_stack_depth(env, insn, i);
8857 		if (depth < 0)
8858 			return depth;
8859 		bpf_patch_call_args(insn, depth);
8860 	}
8861 	err = 0;
8862 #endif
8863 	return err;
8864 }
8865 
8866 /* fixup insn->imm field of bpf_call instructions
8867  * and inline eligible helpers as explicit sequence of BPF instructions
8868  *
8869  * this function is called after eBPF program passed verification
8870  */
8871 static int fixup_bpf_calls(struct bpf_verifier_env *env)
8872 {
8873 	struct bpf_prog *prog = env->prog;
8874 	struct bpf_insn *insn = prog->insnsi;
8875 	const struct bpf_func_proto *fn;
8876 	const int insn_cnt = prog->len;
8877 	const struct bpf_map_ops *ops;
8878 	struct bpf_insn_aux_data *aux;
8879 	struct bpf_insn insn_buf[16];
8880 	struct bpf_prog *new_prog;
8881 	struct bpf_map *map_ptr;
8882 	int i, cnt, delta = 0;
8883 
8884 	for (i = 0; i < insn_cnt; i++, insn++) {
8885 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
8886 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8887 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
8888 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8889 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
8890 			struct bpf_insn mask_and_div[] = {
8891 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8892 				/* Rx div 0 -> 0 */
8893 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
8894 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
8895 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
8896 				*insn,
8897 			};
8898 			struct bpf_insn mask_and_mod[] = {
8899 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8900 				/* Rx mod 0 -> Rx */
8901 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
8902 				*insn,
8903 			};
8904 			struct bpf_insn *patchlet;
8905 
8906 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8907 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8908 				patchlet = mask_and_div + (is64 ? 1 : 0);
8909 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
8910 			} else {
8911 				patchlet = mask_and_mod + (is64 ? 1 : 0);
8912 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
8913 			}
8914 
8915 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
8916 			if (!new_prog)
8917 				return -ENOMEM;
8918 
8919 			delta    += cnt - 1;
8920 			env->prog = prog = new_prog;
8921 			insn      = new_prog->insnsi + i + delta;
8922 			continue;
8923 		}
8924 
8925 		if (BPF_CLASS(insn->code) == BPF_LD &&
8926 		    (BPF_MODE(insn->code) == BPF_ABS ||
8927 		     BPF_MODE(insn->code) == BPF_IND)) {
8928 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
8929 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8930 				verbose(env, "bpf verifier is misconfigured\n");
8931 				return -EINVAL;
8932 			}
8933 
8934 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8935 			if (!new_prog)
8936 				return -ENOMEM;
8937 
8938 			delta    += cnt - 1;
8939 			env->prog = prog = new_prog;
8940 			insn      = new_prog->insnsi + i + delta;
8941 			continue;
8942 		}
8943 
8944 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
8945 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
8946 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
8947 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
8948 			struct bpf_insn insn_buf[16];
8949 			struct bpf_insn *patch = &insn_buf[0];
8950 			bool issrc, isneg;
8951 			u32 off_reg;
8952 
8953 			aux = &env->insn_aux_data[i + delta];
8954 			if (!aux->alu_state ||
8955 			    aux->alu_state == BPF_ALU_NON_POINTER)
8956 				continue;
8957 
8958 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
8959 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
8960 				BPF_ALU_SANITIZE_SRC;
8961 
8962 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
8963 			if (isneg)
8964 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8965 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
8966 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
8967 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
8968 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
8969 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
8970 			if (issrc) {
8971 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
8972 							 off_reg);
8973 				insn->src_reg = BPF_REG_AX;
8974 			} else {
8975 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
8976 							 BPF_REG_AX);
8977 			}
8978 			if (isneg)
8979 				insn->code = insn->code == code_add ?
8980 					     code_sub : code_add;
8981 			*patch++ = *insn;
8982 			if (issrc && isneg)
8983 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8984 			cnt = patch - insn_buf;
8985 
8986 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8987 			if (!new_prog)
8988 				return -ENOMEM;
8989 
8990 			delta    += cnt - 1;
8991 			env->prog = prog = new_prog;
8992 			insn      = new_prog->insnsi + i + delta;
8993 			continue;
8994 		}
8995 
8996 		if (insn->code != (BPF_JMP | BPF_CALL))
8997 			continue;
8998 		if (insn->src_reg == BPF_PSEUDO_CALL)
8999 			continue;
9000 
9001 		if (insn->imm == BPF_FUNC_get_route_realm)
9002 			prog->dst_needed = 1;
9003 		if (insn->imm == BPF_FUNC_get_prandom_u32)
9004 			bpf_user_rnd_init_once();
9005 		if (insn->imm == BPF_FUNC_override_return)
9006 			prog->kprobe_override = 1;
9007 		if (insn->imm == BPF_FUNC_tail_call) {
9008 			/* If we tail call into other programs, we
9009 			 * cannot make any assumptions since they can
9010 			 * be replaced dynamically during runtime in
9011 			 * the program array.
9012 			 */
9013 			prog->cb_access = 1;
9014 			env->prog->aux->stack_depth = MAX_BPF_STACK;
9015 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
9016 
9017 			/* mark bpf_tail_call as different opcode to avoid
9018 			 * conditional branch in the interpeter for every normal
9019 			 * call and to prevent accidental JITing by JIT compiler
9020 			 * that doesn't support bpf_tail_call yet
9021 			 */
9022 			insn->imm = 0;
9023 			insn->code = BPF_JMP | BPF_TAIL_CALL;
9024 
9025 			aux = &env->insn_aux_data[i + delta];
9026 			if (!bpf_map_ptr_unpriv(aux))
9027 				continue;
9028 
9029 			/* instead of changing every JIT dealing with tail_call
9030 			 * emit two extra insns:
9031 			 * if (index >= max_entries) goto out;
9032 			 * index &= array->index_mask;
9033 			 * to avoid out-of-bounds cpu speculation
9034 			 */
9035 			if (bpf_map_ptr_poisoned(aux)) {
9036 				verbose(env, "tail_call abusing map_ptr\n");
9037 				return -EINVAL;
9038 			}
9039 
9040 			map_ptr = BPF_MAP_PTR(aux->map_state);
9041 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9042 						  map_ptr->max_entries, 2);
9043 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9044 						    container_of(map_ptr,
9045 								 struct bpf_array,
9046 								 map)->index_mask);
9047 			insn_buf[2] = *insn;
9048 			cnt = 3;
9049 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9050 			if (!new_prog)
9051 				return -ENOMEM;
9052 
9053 			delta    += cnt - 1;
9054 			env->prog = prog = new_prog;
9055 			insn      = new_prog->insnsi + i + delta;
9056 			continue;
9057 		}
9058 
9059 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
9060 		 * and other inlining handlers are currently limited to 64 bit
9061 		 * only.
9062 		 */
9063 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
9064 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
9065 		     insn->imm == BPF_FUNC_map_update_elem ||
9066 		     insn->imm == BPF_FUNC_map_delete_elem ||
9067 		     insn->imm == BPF_FUNC_map_push_elem   ||
9068 		     insn->imm == BPF_FUNC_map_pop_elem    ||
9069 		     insn->imm == BPF_FUNC_map_peek_elem)) {
9070 			aux = &env->insn_aux_data[i + delta];
9071 			if (bpf_map_ptr_poisoned(aux))
9072 				goto patch_call_imm;
9073 
9074 			map_ptr = BPF_MAP_PTR(aux->map_state);
9075 			ops = map_ptr->ops;
9076 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
9077 			    ops->map_gen_lookup) {
9078 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
9079 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9080 					verbose(env, "bpf verifier is misconfigured\n");
9081 					return -EINVAL;
9082 				}
9083 
9084 				new_prog = bpf_patch_insn_data(env, i + delta,
9085 							       insn_buf, cnt);
9086 				if (!new_prog)
9087 					return -ENOMEM;
9088 
9089 				delta    += cnt - 1;
9090 				env->prog = prog = new_prog;
9091 				insn      = new_prog->insnsi + i + delta;
9092 				continue;
9093 			}
9094 
9095 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
9096 				     (void *(*)(struct bpf_map *map, void *key))NULL));
9097 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
9098 				     (int (*)(struct bpf_map *map, void *key))NULL));
9099 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9100 				     (int (*)(struct bpf_map *map, void *key, void *value,
9101 					      u64 flags))NULL));
9102 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9103 				     (int (*)(struct bpf_map *map, void *value,
9104 					      u64 flags))NULL));
9105 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9106 				     (int (*)(struct bpf_map *map, void *value))NULL));
9107 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9108 				     (int (*)(struct bpf_map *map, void *value))NULL));
9109 
9110 			switch (insn->imm) {
9111 			case BPF_FUNC_map_lookup_elem:
9112 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9113 					    __bpf_call_base;
9114 				continue;
9115 			case BPF_FUNC_map_update_elem:
9116 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9117 					    __bpf_call_base;
9118 				continue;
9119 			case BPF_FUNC_map_delete_elem:
9120 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9121 					    __bpf_call_base;
9122 				continue;
9123 			case BPF_FUNC_map_push_elem:
9124 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9125 					    __bpf_call_base;
9126 				continue;
9127 			case BPF_FUNC_map_pop_elem:
9128 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9129 					    __bpf_call_base;
9130 				continue;
9131 			case BPF_FUNC_map_peek_elem:
9132 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9133 					    __bpf_call_base;
9134 				continue;
9135 			}
9136 
9137 			goto patch_call_imm;
9138 		}
9139 
9140 patch_call_imm:
9141 		fn = env->ops->get_func_proto(insn->imm, env->prog);
9142 		/* all functions that have prototype and verifier allowed
9143 		 * programs to call them, must be real in-kernel functions
9144 		 */
9145 		if (!fn->func) {
9146 			verbose(env,
9147 				"kernel subsystem misconfigured func %s#%d\n",
9148 				func_id_name(insn->imm), insn->imm);
9149 			return -EFAULT;
9150 		}
9151 		insn->imm = fn->func - __bpf_call_base;
9152 	}
9153 
9154 	return 0;
9155 }
9156 
9157 static void free_states(struct bpf_verifier_env *env)
9158 {
9159 	struct bpf_verifier_state_list *sl, *sln;
9160 	int i;
9161 
9162 	sl = env->free_list;
9163 	while (sl) {
9164 		sln = sl->next;
9165 		free_verifier_state(&sl->state, false);
9166 		kfree(sl);
9167 		sl = sln;
9168 	}
9169 
9170 	if (!env->explored_states)
9171 		return;
9172 
9173 	for (i = 0; i < state_htab_size(env); i++) {
9174 		sl = env->explored_states[i];
9175 
9176 		while (sl) {
9177 			sln = sl->next;
9178 			free_verifier_state(&sl->state, false);
9179 			kfree(sl);
9180 			sl = sln;
9181 		}
9182 	}
9183 
9184 	kvfree(env->explored_states);
9185 }
9186 
9187 static void print_verification_stats(struct bpf_verifier_env *env)
9188 {
9189 	int i;
9190 
9191 	if (env->log.level & BPF_LOG_STATS) {
9192 		verbose(env, "verification time %lld usec\n",
9193 			div_u64(env->verification_time, 1000));
9194 		verbose(env, "stack depth ");
9195 		for (i = 0; i < env->subprog_cnt; i++) {
9196 			u32 depth = env->subprog_info[i].stack_depth;
9197 
9198 			verbose(env, "%d", depth);
9199 			if (i + 1 < env->subprog_cnt)
9200 				verbose(env, "+");
9201 		}
9202 		verbose(env, "\n");
9203 	}
9204 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9205 		"total_states %d peak_states %d mark_read %d\n",
9206 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9207 		env->max_states_per_insn, env->total_states,
9208 		env->peak_states, env->longest_mark_read_walk);
9209 }
9210 
9211 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9212 	      union bpf_attr __user *uattr)
9213 {
9214 	u64 start_time = ktime_get_ns();
9215 	struct bpf_verifier_env *env;
9216 	struct bpf_verifier_log *log;
9217 	int i, len, ret = -EINVAL;
9218 	bool is_priv;
9219 
9220 	/* no program is valid */
9221 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9222 		return -EINVAL;
9223 
9224 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
9225 	 * allocate/free it every time bpf_check() is called
9226 	 */
9227 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
9228 	if (!env)
9229 		return -ENOMEM;
9230 	log = &env->log;
9231 
9232 	len = (*prog)->len;
9233 	env->insn_aux_data =
9234 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
9235 	ret = -ENOMEM;
9236 	if (!env->insn_aux_data)
9237 		goto err_free_env;
9238 	for (i = 0; i < len; i++)
9239 		env->insn_aux_data[i].orig_idx = i;
9240 	env->prog = *prog;
9241 	env->ops = bpf_verifier_ops[env->prog->type];
9242 	is_priv = capable(CAP_SYS_ADMIN);
9243 
9244 	/* grab the mutex to protect few globals used by verifier */
9245 	if (!is_priv)
9246 		mutex_lock(&bpf_verifier_lock);
9247 
9248 	if (attr->log_level || attr->log_buf || attr->log_size) {
9249 		/* user requested verbose verifier output
9250 		 * and supplied buffer to store the verification trace
9251 		 */
9252 		log->level = attr->log_level;
9253 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
9254 		log->len_total = attr->log_size;
9255 
9256 		ret = -EINVAL;
9257 		/* log attributes have to be sane */
9258 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
9259 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
9260 			goto err_unlock;
9261 	}
9262 
9263 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
9264 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
9265 		env->strict_alignment = true;
9266 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
9267 		env->strict_alignment = false;
9268 
9269 	env->allow_ptr_leaks = is_priv;
9270 
9271 	if (is_priv)
9272 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
9273 
9274 	ret = replace_map_fd_with_map_ptr(env);
9275 	if (ret < 0)
9276 		goto skip_full_check;
9277 
9278 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
9279 		ret = bpf_prog_offload_verifier_prep(env->prog);
9280 		if (ret)
9281 			goto skip_full_check;
9282 	}
9283 
9284 	env->explored_states = kvcalloc(state_htab_size(env),
9285 				       sizeof(struct bpf_verifier_state_list *),
9286 				       GFP_USER);
9287 	ret = -ENOMEM;
9288 	if (!env->explored_states)
9289 		goto skip_full_check;
9290 
9291 	ret = check_subprogs(env);
9292 	if (ret < 0)
9293 		goto skip_full_check;
9294 
9295 	ret = check_btf_info(env, attr, uattr);
9296 	if (ret < 0)
9297 		goto skip_full_check;
9298 
9299 	ret = check_cfg(env);
9300 	if (ret < 0)
9301 		goto skip_full_check;
9302 
9303 	ret = do_check(env);
9304 	if (env->cur_state) {
9305 		free_verifier_state(env->cur_state, true);
9306 		env->cur_state = NULL;
9307 	}
9308 
9309 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
9310 		ret = bpf_prog_offload_finalize(env);
9311 
9312 skip_full_check:
9313 	while (!pop_stack(env, NULL, NULL));
9314 	free_states(env);
9315 
9316 	if (ret == 0)
9317 		ret = check_max_stack_depth(env);
9318 
9319 	/* instruction rewrites happen after this point */
9320 	if (is_priv) {
9321 		if (ret == 0)
9322 			opt_hard_wire_dead_code_branches(env);
9323 		if (ret == 0)
9324 			ret = opt_remove_dead_code(env);
9325 		if (ret == 0)
9326 			ret = opt_remove_nops(env);
9327 	} else {
9328 		if (ret == 0)
9329 			sanitize_dead_code(env);
9330 	}
9331 
9332 	if (ret == 0)
9333 		/* program is valid, convert *(u32*)(ctx + off) accesses */
9334 		ret = convert_ctx_accesses(env);
9335 
9336 	if (ret == 0)
9337 		ret = fixup_bpf_calls(env);
9338 
9339 	/* do 32-bit optimization after insn patching has done so those patched
9340 	 * insns could be handled correctly.
9341 	 */
9342 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
9343 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
9344 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
9345 								     : false;
9346 	}
9347 
9348 	if (ret == 0)
9349 		ret = fixup_call_args(env);
9350 
9351 	env->verification_time = ktime_get_ns() - start_time;
9352 	print_verification_stats(env);
9353 
9354 	if (log->level && bpf_verifier_log_full(log))
9355 		ret = -ENOSPC;
9356 	if (log->level && !log->ubuf) {
9357 		ret = -EFAULT;
9358 		goto err_release_maps;
9359 	}
9360 
9361 	if (ret == 0 && env->used_map_cnt) {
9362 		/* if program passed verifier, update used_maps in bpf_prog_info */
9363 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
9364 							  sizeof(env->used_maps[0]),
9365 							  GFP_KERNEL);
9366 
9367 		if (!env->prog->aux->used_maps) {
9368 			ret = -ENOMEM;
9369 			goto err_release_maps;
9370 		}
9371 
9372 		memcpy(env->prog->aux->used_maps, env->used_maps,
9373 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
9374 		env->prog->aux->used_map_cnt = env->used_map_cnt;
9375 
9376 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
9377 		 * bpf_ld_imm64 instructions
9378 		 */
9379 		convert_pseudo_ld_imm64(env);
9380 	}
9381 
9382 	if (ret == 0)
9383 		adjust_btf_func(env);
9384 
9385 err_release_maps:
9386 	if (!env->prog->aux->used_maps)
9387 		/* if we didn't copy map pointers into bpf_prog_info, release
9388 		 * them now. Otherwise free_used_maps() will release them.
9389 		 */
9390 		release_maps(env);
9391 	*prog = env->prog;
9392 err_unlock:
9393 	if (!is_priv)
9394 		mutex_unlock(&bpf_verifier_lock);
9395 	vfree(env->insn_aux_data);
9396 err_free_env:
9397 	kfree(env);
9398 	return ret;
9399 }
9400