1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 #include <linux/trace_events.h> 32 #include <linux/kallsyms.h> 33 34 #include "disasm.h" 35 36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 38 [_id] = & _name ## _verifier_ops, 39 #define BPF_MAP_TYPE(_id, _ops) 40 #define BPF_LINK_TYPE(_id, _name) 41 #include <linux/bpf_types.h> 42 #undef BPF_PROG_TYPE 43 #undef BPF_MAP_TYPE 44 #undef BPF_LINK_TYPE 45 }; 46 47 struct bpf_mem_alloc bpf_global_percpu_ma; 48 static bool bpf_global_percpu_ma_set; 49 50 /* bpf_check() is a static code analyzer that walks eBPF program 51 * instruction by instruction and updates register/stack state. 52 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 53 * 54 * The first pass is depth-first-search to check that the program is a DAG. 55 * It rejects the following programs: 56 * - larger than BPF_MAXINSNS insns 57 * - if loop is present (detected via back-edge) 58 * - unreachable insns exist (shouldn't be a forest. program = one function) 59 * - out of bounds or malformed jumps 60 * The second pass is all possible path descent from the 1st insn. 61 * Since it's analyzing all paths through the program, the length of the 62 * analysis is limited to 64k insn, which may be hit even if total number of 63 * insn is less then 4K, but there are too many branches that change stack/regs. 64 * Number of 'branches to be analyzed' is limited to 1k 65 * 66 * On entry to each instruction, each register has a type, and the instruction 67 * changes the types of the registers depending on instruction semantics. 68 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 69 * copied to R1. 70 * 71 * All registers are 64-bit. 72 * R0 - return register 73 * R1-R5 argument passing registers 74 * R6-R9 callee saved registers 75 * R10 - frame pointer read-only 76 * 77 * At the start of BPF program the register R1 contains a pointer to bpf_context 78 * and has type PTR_TO_CTX. 79 * 80 * Verifier tracks arithmetic operations on pointers in case: 81 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 82 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 83 * 1st insn copies R10 (which has FRAME_PTR) type into R1 84 * and 2nd arithmetic instruction is pattern matched to recognize 85 * that it wants to construct a pointer to some element within stack. 86 * So after 2nd insn, the register R1 has type PTR_TO_STACK 87 * (and -20 constant is saved for further stack bounds checking). 88 * Meaning that this reg is a pointer to stack plus known immediate constant. 89 * 90 * Most of the time the registers have SCALAR_VALUE type, which 91 * means the register has some value, but it's not a valid pointer. 92 * (like pointer plus pointer becomes SCALAR_VALUE type) 93 * 94 * When verifier sees load or store instructions the type of base register 95 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 96 * four pointer types recognized by check_mem_access() function. 97 * 98 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 99 * and the range of [ptr, ptr + map's value_size) is accessible. 100 * 101 * registers used to pass values to function calls are checked against 102 * function argument constraints. 103 * 104 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 105 * It means that the register type passed to this function must be 106 * PTR_TO_STACK and it will be used inside the function as 107 * 'pointer to map element key' 108 * 109 * For example the argument constraints for bpf_map_lookup_elem(): 110 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 111 * .arg1_type = ARG_CONST_MAP_PTR, 112 * .arg2_type = ARG_PTR_TO_MAP_KEY, 113 * 114 * ret_type says that this function returns 'pointer to map elem value or null' 115 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 116 * 2nd argument should be a pointer to stack, which will be used inside 117 * the helper function as a pointer to map element key. 118 * 119 * On the kernel side the helper function looks like: 120 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 121 * { 122 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 123 * void *key = (void *) (unsigned long) r2; 124 * void *value; 125 * 126 * here kernel can access 'key' and 'map' pointers safely, knowing that 127 * [key, key + map->key_size) bytes are valid and were initialized on 128 * the stack of eBPF program. 129 * } 130 * 131 * Corresponding eBPF program may look like: 132 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 133 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 134 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 135 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 136 * here verifier looks at prototype of map_lookup_elem() and sees: 137 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 138 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 139 * 140 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 141 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 142 * and were initialized prior to this call. 143 * If it's ok, then verifier allows this BPF_CALL insn and looks at 144 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 145 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 146 * returns either pointer to map value or NULL. 147 * 148 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 149 * insn, the register holding that pointer in the true branch changes state to 150 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 151 * branch. See check_cond_jmp_op(). 152 * 153 * After the call R0 is set to return type of the function and registers R1-R5 154 * are set to NOT_INIT to indicate that they are no longer readable. 155 * 156 * The following reference types represent a potential reference to a kernel 157 * resource which, after first being allocated, must be checked and freed by 158 * the BPF program: 159 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 160 * 161 * When the verifier sees a helper call return a reference type, it allocates a 162 * pointer id for the reference and stores it in the current function state. 163 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 164 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 165 * passes through a NULL-check conditional. For the branch wherein the state is 166 * changed to CONST_IMM, the verifier releases the reference. 167 * 168 * For each helper function that allocates a reference, such as 169 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 170 * bpf_sk_release(). When a reference type passes into the release function, 171 * the verifier also releases the reference. If any unchecked or unreleased 172 * reference remains at the end of the program, the verifier rejects it. 173 */ 174 175 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 176 struct bpf_verifier_stack_elem { 177 /* verifier state is 'st' 178 * before processing instruction 'insn_idx' 179 * and after processing instruction 'prev_insn_idx' 180 */ 181 struct bpf_verifier_state st; 182 int insn_idx; 183 int prev_insn_idx; 184 struct bpf_verifier_stack_elem *next; 185 /* length of verifier log at the time this state was pushed on stack */ 186 u32 log_pos; 187 }; 188 189 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 190 #define BPF_COMPLEXITY_LIMIT_STATES 64 191 192 #define BPF_MAP_KEY_POISON (1ULL << 63) 193 #define BPF_MAP_KEY_SEEN (1ULL << 62) 194 195 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 196 197 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 198 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 199 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 200 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 201 static int ref_set_non_owning(struct bpf_verifier_env *env, 202 struct bpf_reg_state *reg); 203 static void specialize_kfunc(struct bpf_verifier_env *env, 204 u32 func_id, u16 offset, unsigned long *addr); 205 static bool is_trusted_reg(const struct bpf_reg_state *reg); 206 207 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 208 { 209 return aux->map_ptr_state.poison; 210 } 211 212 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 213 { 214 return aux->map_ptr_state.unpriv; 215 } 216 217 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 218 struct bpf_map *map, 219 bool unpriv, bool poison) 220 { 221 unpriv |= bpf_map_ptr_unpriv(aux); 222 aux->map_ptr_state.unpriv = unpriv; 223 aux->map_ptr_state.poison = poison; 224 aux->map_ptr_state.map_ptr = map; 225 } 226 227 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 228 { 229 return aux->map_key_state & BPF_MAP_KEY_POISON; 230 } 231 232 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 233 { 234 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 235 } 236 237 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 238 { 239 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 240 } 241 242 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 243 { 244 bool poisoned = bpf_map_key_poisoned(aux); 245 246 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 247 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 248 } 249 250 static bool bpf_helper_call(const struct bpf_insn *insn) 251 { 252 return insn->code == (BPF_JMP | BPF_CALL) && 253 insn->src_reg == 0; 254 } 255 256 static bool bpf_pseudo_call(const struct bpf_insn *insn) 257 { 258 return insn->code == (BPF_JMP | BPF_CALL) && 259 insn->src_reg == BPF_PSEUDO_CALL; 260 } 261 262 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 263 { 264 return insn->code == (BPF_JMP | BPF_CALL) && 265 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 266 } 267 268 struct bpf_call_arg_meta { 269 struct bpf_map *map_ptr; 270 bool raw_mode; 271 bool pkt_access; 272 u8 release_regno; 273 int regno; 274 int access_size; 275 int mem_size; 276 u64 msize_max_value; 277 int ref_obj_id; 278 int dynptr_id; 279 int map_uid; 280 int func_id; 281 struct btf *btf; 282 u32 btf_id; 283 struct btf *ret_btf; 284 u32 ret_btf_id; 285 u32 subprogno; 286 struct btf_field *kptr_field; 287 }; 288 289 struct bpf_kfunc_call_arg_meta { 290 /* In parameters */ 291 struct btf *btf; 292 u32 func_id; 293 u32 kfunc_flags; 294 const struct btf_type *func_proto; 295 const char *func_name; 296 /* Out parameters */ 297 u32 ref_obj_id; 298 u8 release_regno; 299 bool r0_rdonly; 300 u32 ret_btf_id; 301 u64 r0_size; 302 u32 subprogno; 303 struct { 304 u64 value; 305 bool found; 306 } arg_constant; 307 308 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 309 * generally to pass info about user-defined local kptr types to later 310 * verification logic 311 * bpf_obj_drop/bpf_percpu_obj_drop 312 * Record the local kptr type to be drop'd 313 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 314 * Record the local kptr type to be refcount_incr'd and use 315 * arg_owning_ref to determine whether refcount_acquire should be 316 * fallible 317 */ 318 struct btf *arg_btf; 319 u32 arg_btf_id; 320 bool arg_owning_ref; 321 322 struct { 323 struct btf_field *field; 324 } arg_list_head; 325 struct { 326 struct btf_field *field; 327 } arg_rbtree_root; 328 struct { 329 enum bpf_dynptr_type type; 330 u32 id; 331 u32 ref_obj_id; 332 } initialized_dynptr; 333 struct { 334 u8 spi; 335 u8 frameno; 336 } iter; 337 struct { 338 struct bpf_map *ptr; 339 int uid; 340 } map; 341 u64 mem_size; 342 }; 343 344 struct btf *btf_vmlinux; 345 346 static const char *btf_type_name(const struct btf *btf, u32 id) 347 { 348 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 349 } 350 351 static DEFINE_MUTEX(bpf_verifier_lock); 352 static DEFINE_MUTEX(bpf_percpu_ma_lock); 353 354 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 355 { 356 struct bpf_verifier_env *env = private_data; 357 va_list args; 358 359 if (!bpf_verifier_log_needed(&env->log)) 360 return; 361 362 va_start(args, fmt); 363 bpf_verifier_vlog(&env->log, fmt, args); 364 va_end(args); 365 } 366 367 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 368 struct bpf_reg_state *reg, 369 struct bpf_retval_range range, const char *ctx, 370 const char *reg_name) 371 { 372 bool unknown = true; 373 374 verbose(env, "%s the register %s has", ctx, reg_name); 375 if (reg->smin_value > S64_MIN) { 376 verbose(env, " smin=%lld", reg->smin_value); 377 unknown = false; 378 } 379 if (reg->smax_value < S64_MAX) { 380 verbose(env, " smax=%lld", reg->smax_value); 381 unknown = false; 382 } 383 if (unknown) 384 verbose(env, " unknown scalar value"); 385 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 386 } 387 388 static bool reg_not_null(const struct bpf_reg_state *reg) 389 { 390 enum bpf_reg_type type; 391 392 type = reg->type; 393 if (type_may_be_null(type)) 394 return false; 395 396 type = base_type(type); 397 return type == PTR_TO_SOCKET || 398 type == PTR_TO_TCP_SOCK || 399 type == PTR_TO_MAP_VALUE || 400 type == PTR_TO_MAP_KEY || 401 type == PTR_TO_SOCK_COMMON || 402 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 403 type == PTR_TO_MEM; 404 } 405 406 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 407 { 408 struct btf_record *rec = NULL; 409 struct btf_struct_meta *meta; 410 411 if (reg->type == PTR_TO_MAP_VALUE) { 412 rec = reg->map_ptr->record; 413 } else if (type_is_ptr_alloc_obj(reg->type)) { 414 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 415 if (meta) 416 rec = meta->record; 417 } 418 return rec; 419 } 420 421 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 422 { 423 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 424 425 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 426 } 427 428 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 429 { 430 struct bpf_func_info *info; 431 432 if (!env->prog->aux->func_info) 433 return ""; 434 435 info = &env->prog->aux->func_info[subprog]; 436 return btf_type_name(env->prog->aux->btf, info->type_id); 437 } 438 439 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 440 { 441 struct bpf_subprog_info *info = subprog_info(env, subprog); 442 443 info->is_cb = true; 444 info->is_async_cb = true; 445 info->is_exception_cb = true; 446 } 447 448 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 449 { 450 return subprog_info(env, subprog)->is_exception_cb; 451 } 452 453 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 454 { 455 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 456 } 457 458 static bool type_is_rdonly_mem(u32 type) 459 { 460 return type & MEM_RDONLY; 461 } 462 463 static bool is_acquire_function(enum bpf_func_id func_id, 464 const struct bpf_map *map) 465 { 466 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 467 468 if (func_id == BPF_FUNC_sk_lookup_tcp || 469 func_id == BPF_FUNC_sk_lookup_udp || 470 func_id == BPF_FUNC_skc_lookup_tcp || 471 func_id == BPF_FUNC_ringbuf_reserve || 472 func_id == BPF_FUNC_kptr_xchg) 473 return true; 474 475 if (func_id == BPF_FUNC_map_lookup_elem && 476 (map_type == BPF_MAP_TYPE_SOCKMAP || 477 map_type == BPF_MAP_TYPE_SOCKHASH)) 478 return true; 479 480 return false; 481 } 482 483 static bool is_ptr_cast_function(enum bpf_func_id func_id) 484 { 485 return func_id == BPF_FUNC_tcp_sock || 486 func_id == BPF_FUNC_sk_fullsock || 487 func_id == BPF_FUNC_skc_to_tcp_sock || 488 func_id == BPF_FUNC_skc_to_tcp6_sock || 489 func_id == BPF_FUNC_skc_to_udp6_sock || 490 func_id == BPF_FUNC_skc_to_mptcp_sock || 491 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 492 func_id == BPF_FUNC_skc_to_tcp_request_sock; 493 } 494 495 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 496 { 497 return func_id == BPF_FUNC_dynptr_data; 498 } 499 500 static bool is_sync_callback_calling_kfunc(u32 btf_id); 501 static bool is_async_callback_calling_kfunc(u32 btf_id); 502 static bool is_callback_calling_kfunc(u32 btf_id); 503 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 504 505 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id); 506 507 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 508 { 509 return func_id == BPF_FUNC_for_each_map_elem || 510 func_id == BPF_FUNC_find_vma || 511 func_id == BPF_FUNC_loop || 512 func_id == BPF_FUNC_user_ringbuf_drain; 513 } 514 515 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 516 { 517 return func_id == BPF_FUNC_timer_set_callback; 518 } 519 520 static bool is_callback_calling_function(enum bpf_func_id func_id) 521 { 522 return is_sync_callback_calling_function(func_id) || 523 is_async_callback_calling_function(func_id); 524 } 525 526 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 527 { 528 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 529 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 530 } 531 532 static bool is_async_callback_calling_insn(struct bpf_insn *insn) 533 { 534 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || 535 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); 536 } 537 538 static bool is_may_goto_insn(struct bpf_insn *insn) 539 { 540 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; 541 } 542 543 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) 544 { 545 return is_may_goto_insn(&env->prog->insnsi[insn_idx]); 546 } 547 548 static bool is_storage_get_function(enum bpf_func_id func_id) 549 { 550 return func_id == BPF_FUNC_sk_storage_get || 551 func_id == BPF_FUNC_inode_storage_get || 552 func_id == BPF_FUNC_task_storage_get || 553 func_id == BPF_FUNC_cgrp_storage_get; 554 } 555 556 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 557 const struct bpf_map *map) 558 { 559 int ref_obj_uses = 0; 560 561 if (is_ptr_cast_function(func_id)) 562 ref_obj_uses++; 563 if (is_acquire_function(func_id, map)) 564 ref_obj_uses++; 565 if (is_dynptr_ref_function(func_id)) 566 ref_obj_uses++; 567 568 return ref_obj_uses > 1; 569 } 570 571 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 572 { 573 return BPF_CLASS(insn->code) == BPF_STX && 574 BPF_MODE(insn->code) == BPF_ATOMIC && 575 insn->imm == BPF_CMPXCHG; 576 } 577 578 static int __get_spi(s32 off) 579 { 580 return (-off - 1) / BPF_REG_SIZE; 581 } 582 583 static struct bpf_func_state *func(struct bpf_verifier_env *env, 584 const struct bpf_reg_state *reg) 585 { 586 struct bpf_verifier_state *cur = env->cur_state; 587 588 return cur->frame[reg->frameno]; 589 } 590 591 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 592 { 593 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 594 595 /* We need to check that slots between [spi - nr_slots + 1, spi] are 596 * within [0, allocated_stack). 597 * 598 * Please note that the spi grows downwards. For example, a dynptr 599 * takes the size of two stack slots; the first slot will be at 600 * spi and the second slot will be at spi - 1. 601 */ 602 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 603 } 604 605 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 606 const char *obj_kind, int nr_slots) 607 { 608 int off, spi; 609 610 if (!tnum_is_const(reg->var_off)) { 611 verbose(env, "%s has to be at a constant offset\n", obj_kind); 612 return -EINVAL; 613 } 614 615 off = reg->off + reg->var_off.value; 616 if (off % BPF_REG_SIZE) { 617 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 618 return -EINVAL; 619 } 620 621 spi = __get_spi(off); 622 if (spi + 1 < nr_slots) { 623 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 624 return -EINVAL; 625 } 626 627 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 628 return -ERANGE; 629 return spi; 630 } 631 632 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 633 { 634 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 635 } 636 637 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 638 { 639 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 640 } 641 642 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 643 { 644 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 645 case DYNPTR_TYPE_LOCAL: 646 return BPF_DYNPTR_TYPE_LOCAL; 647 case DYNPTR_TYPE_RINGBUF: 648 return BPF_DYNPTR_TYPE_RINGBUF; 649 case DYNPTR_TYPE_SKB: 650 return BPF_DYNPTR_TYPE_SKB; 651 case DYNPTR_TYPE_XDP: 652 return BPF_DYNPTR_TYPE_XDP; 653 default: 654 return BPF_DYNPTR_TYPE_INVALID; 655 } 656 } 657 658 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 659 { 660 switch (type) { 661 case BPF_DYNPTR_TYPE_LOCAL: 662 return DYNPTR_TYPE_LOCAL; 663 case BPF_DYNPTR_TYPE_RINGBUF: 664 return DYNPTR_TYPE_RINGBUF; 665 case BPF_DYNPTR_TYPE_SKB: 666 return DYNPTR_TYPE_SKB; 667 case BPF_DYNPTR_TYPE_XDP: 668 return DYNPTR_TYPE_XDP; 669 default: 670 return 0; 671 } 672 } 673 674 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 675 { 676 return type == BPF_DYNPTR_TYPE_RINGBUF; 677 } 678 679 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 680 enum bpf_dynptr_type type, 681 bool first_slot, int dynptr_id); 682 683 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 684 struct bpf_reg_state *reg); 685 686 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 687 struct bpf_reg_state *sreg1, 688 struct bpf_reg_state *sreg2, 689 enum bpf_dynptr_type type) 690 { 691 int id = ++env->id_gen; 692 693 __mark_dynptr_reg(sreg1, type, true, id); 694 __mark_dynptr_reg(sreg2, type, false, id); 695 } 696 697 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 698 struct bpf_reg_state *reg, 699 enum bpf_dynptr_type type) 700 { 701 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 702 } 703 704 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 705 struct bpf_func_state *state, int spi); 706 707 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 708 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 709 { 710 struct bpf_func_state *state = func(env, reg); 711 enum bpf_dynptr_type type; 712 int spi, i, err; 713 714 spi = dynptr_get_spi(env, reg); 715 if (spi < 0) 716 return spi; 717 718 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 719 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 720 * to ensure that for the following example: 721 * [d1][d1][d2][d2] 722 * spi 3 2 1 0 723 * So marking spi = 2 should lead to destruction of both d1 and d2. In 724 * case they do belong to same dynptr, second call won't see slot_type 725 * as STACK_DYNPTR and will simply skip destruction. 726 */ 727 err = destroy_if_dynptr_stack_slot(env, state, spi); 728 if (err) 729 return err; 730 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 731 if (err) 732 return err; 733 734 for (i = 0; i < BPF_REG_SIZE; i++) { 735 state->stack[spi].slot_type[i] = STACK_DYNPTR; 736 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 737 } 738 739 type = arg_to_dynptr_type(arg_type); 740 if (type == BPF_DYNPTR_TYPE_INVALID) 741 return -EINVAL; 742 743 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 744 &state->stack[spi - 1].spilled_ptr, type); 745 746 if (dynptr_type_refcounted(type)) { 747 /* The id is used to track proper releasing */ 748 int id; 749 750 if (clone_ref_obj_id) 751 id = clone_ref_obj_id; 752 else 753 id = acquire_reference_state(env, insn_idx); 754 755 if (id < 0) 756 return id; 757 758 state->stack[spi].spilled_ptr.ref_obj_id = id; 759 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 760 } 761 762 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 763 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 764 765 return 0; 766 } 767 768 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 769 { 770 int i; 771 772 for (i = 0; i < BPF_REG_SIZE; i++) { 773 state->stack[spi].slot_type[i] = STACK_INVALID; 774 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 775 } 776 777 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 778 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 779 780 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 781 * 782 * While we don't allow reading STACK_INVALID, it is still possible to 783 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 784 * helpers or insns can do partial read of that part without failing, 785 * but check_stack_range_initialized, check_stack_read_var_off, and 786 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 787 * the slot conservatively. Hence we need to prevent those liveness 788 * marking walks. 789 * 790 * This was not a problem before because STACK_INVALID is only set by 791 * default (where the default reg state has its reg->parent as NULL), or 792 * in clean_live_states after REG_LIVE_DONE (at which point 793 * mark_reg_read won't walk reg->parent chain), but not randomly during 794 * verifier state exploration (like we did above). Hence, for our case 795 * parentage chain will still be live (i.e. reg->parent may be 796 * non-NULL), while earlier reg->parent was NULL, so we need 797 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 798 * done later on reads or by mark_dynptr_read as well to unnecessary 799 * mark registers in verifier state. 800 */ 801 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 802 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 803 } 804 805 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 806 { 807 struct bpf_func_state *state = func(env, reg); 808 int spi, ref_obj_id, i; 809 810 spi = dynptr_get_spi(env, reg); 811 if (spi < 0) 812 return spi; 813 814 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 815 invalidate_dynptr(env, state, spi); 816 return 0; 817 } 818 819 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 820 821 /* If the dynptr has a ref_obj_id, then we need to invalidate 822 * two things: 823 * 824 * 1) Any dynptrs with a matching ref_obj_id (clones) 825 * 2) Any slices derived from this dynptr. 826 */ 827 828 /* Invalidate any slices associated with this dynptr */ 829 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 830 831 /* Invalidate any dynptr clones */ 832 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 833 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 834 continue; 835 836 /* it should always be the case that if the ref obj id 837 * matches then the stack slot also belongs to a 838 * dynptr 839 */ 840 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 841 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 842 return -EFAULT; 843 } 844 if (state->stack[i].spilled_ptr.dynptr.first_slot) 845 invalidate_dynptr(env, state, i); 846 } 847 848 return 0; 849 } 850 851 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 852 struct bpf_reg_state *reg); 853 854 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 855 { 856 if (!env->allow_ptr_leaks) 857 __mark_reg_not_init(env, reg); 858 else 859 __mark_reg_unknown(env, reg); 860 } 861 862 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 863 struct bpf_func_state *state, int spi) 864 { 865 struct bpf_func_state *fstate; 866 struct bpf_reg_state *dreg; 867 int i, dynptr_id; 868 869 /* We always ensure that STACK_DYNPTR is never set partially, 870 * hence just checking for slot_type[0] is enough. This is 871 * different for STACK_SPILL, where it may be only set for 872 * 1 byte, so code has to use is_spilled_reg. 873 */ 874 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 875 return 0; 876 877 /* Reposition spi to first slot */ 878 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 879 spi = spi + 1; 880 881 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 882 verbose(env, "cannot overwrite referenced dynptr\n"); 883 return -EINVAL; 884 } 885 886 mark_stack_slot_scratched(env, spi); 887 mark_stack_slot_scratched(env, spi - 1); 888 889 /* Writing partially to one dynptr stack slot destroys both. */ 890 for (i = 0; i < BPF_REG_SIZE; i++) { 891 state->stack[spi].slot_type[i] = STACK_INVALID; 892 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 893 } 894 895 dynptr_id = state->stack[spi].spilled_ptr.id; 896 /* Invalidate any slices associated with this dynptr */ 897 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 898 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 899 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 900 continue; 901 if (dreg->dynptr_id == dynptr_id) 902 mark_reg_invalid(env, dreg); 903 })); 904 905 /* Do not release reference state, we are destroying dynptr on stack, 906 * not using some helper to release it. Just reset register. 907 */ 908 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 909 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 910 911 /* Same reason as unmark_stack_slots_dynptr above */ 912 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 913 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 914 915 return 0; 916 } 917 918 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 919 { 920 int spi; 921 922 if (reg->type == CONST_PTR_TO_DYNPTR) 923 return false; 924 925 spi = dynptr_get_spi(env, reg); 926 927 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 928 * error because this just means the stack state hasn't been updated yet. 929 * We will do check_mem_access to check and update stack bounds later. 930 */ 931 if (spi < 0 && spi != -ERANGE) 932 return false; 933 934 /* We don't need to check if the stack slots are marked by previous 935 * dynptr initializations because we allow overwriting existing unreferenced 936 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 937 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 938 * touching are completely destructed before we reinitialize them for a new 939 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 940 * instead of delaying it until the end where the user will get "Unreleased 941 * reference" error. 942 */ 943 return true; 944 } 945 946 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 947 { 948 struct bpf_func_state *state = func(env, reg); 949 int i, spi; 950 951 /* This already represents first slot of initialized bpf_dynptr. 952 * 953 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 954 * check_func_arg_reg_off's logic, so we don't need to check its 955 * offset and alignment. 956 */ 957 if (reg->type == CONST_PTR_TO_DYNPTR) 958 return true; 959 960 spi = dynptr_get_spi(env, reg); 961 if (spi < 0) 962 return false; 963 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 964 return false; 965 966 for (i = 0; i < BPF_REG_SIZE; i++) { 967 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 968 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 969 return false; 970 } 971 972 return true; 973 } 974 975 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 976 enum bpf_arg_type arg_type) 977 { 978 struct bpf_func_state *state = func(env, reg); 979 enum bpf_dynptr_type dynptr_type; 980 int spi; 981 982 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 983 if (arg_type == ARG_PTR_TO_DYNPTR) 984 return true; 985 986 dynptr_type = arg_to_dynptr_type(arg_type); 987 if (reg->type == CONST_PTR_TO_DYNPTR) { 988 return reg->dynptr.type == dynptr_type; 989 } else { 990 spi = dynptr_get_spi(env, reg); 991 if (spi < 0) 992 return false; 993 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 994 } 995 } 996 997 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 998 999 static bool in_rcu_cs(struct bpf_verifier_env *env); 1000 1001 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 1002 1003 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1004 struct bpf_kfunc_call_arg_meta *meta, 1005 struct bpf_reg_state *reg, int insn_idx, 1006 struct btf *btf, u32 btf_id, int nr_slots) 1007 { 1008 struct bpf_func_state *state = func(env, reg); 1009 int spi, i, j, id; 1010 1011 spi = iter_get_spi(env, reg, nr_slots); 1012 if (spi < 0) 1013 return spi; 1014 1015 id = acquire_reference_state(env, insn_idx); 1016 if (id < 0) 1017 return id; 1018 1019 for (i = 0; i < nr_slots; i++) { 1020 struct bpf_stack_state *slot = &state->stack[spi - i]; 1021 struct bpf_reg_state *st = &slot->spilled_ptr; 1022 1023 __mark_reg_known_zero(st); 1024 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1025 if (is_kfunc_rcu_protected(meta)) { 1026 if (in_rcu_cs(env)) 1027 st->type |= MEM_RCU; 1028 else 1029 st->type |= PTR_UNTRUSTED; 1030 } 1031 st->live |= REG_LIVE_WRITTEN; 1032 st->ref_obj_id = i == 0 ? id : 0; 1033 st->iter.btf = btf; 1034 st->iter.btf_id = btf_id; 1035 st->iter.state = BPF_ITER_STATE_ACTIVE; 1036 st->iter.depth = 0; 1037 1038 for (j = 0; j < BPF_REG_SIZE; j++) 1039 slot->slot_type[j] = STACK_ITER; 1040 1041 mark_stack_slot_scratched(env, spi - i); 1042 } 1043 1044 return 0; 1045 } 1046 1047 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1048 struct bpf_reg_state *reg, int nr_slots) 1049 { 1050 struct bpf_func_state *state = func(env, reg); 1051 int spi, i, j; 1052 1053 spi = iter_get_spi(env, reg, nr_slots); 1054 if (spi < 0) 1055 return spi; 1056 1057 for (i = 0; i < nr_slots; i++) { 1058 struct bpf_stack_state *slot = &state->stack[spi - i]; 1059 struct bpf_reg_state *st = &slot->spilled_ptr; 1060 1061 if (i == 0) 1062 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1063 1064 __mark_reg_not_init(env, st); 1065 1066 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1067 st->live |= REG_LIVE_WRITTEN; 1068 1069 for (j = 0; j < BPF_REG_SIZE; j++) 1070 slot->slot_type[j] = STACK_INVALID; 1071 1072 mark_stack_slot_scratched(env, spi - i); 1073 } 1074 1075 return 0; 1076 } 1077 1078 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1079 struct bpf_reg_state *reg, int nr_slots) 1080 { 1081 struct bpf_func_state *state = func(env, reg); 1082 int spi, i, j; 1083 1084 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1085 * will do check_mem_access to check and update stack bounds later, so 1086 * return true for that case. 1087 */ 1088 spi = iter_get_spi(env, reg, nr_slots); 1089 if (spi == -ERANGE) 1090 return true; 1091 if (spi < 0) 1092 return false; 1093 1094 for (i = 0; i < nr_slots; i++) { 1095 struct bpf_stack_state *slot = &state->stack[spi - i]; 1096 1097 for (j = 0; j < BPF_REG_SIZE; j++) 1098 if (slot->slot_type[j] == STACK_ITER) 1099 return false; 1100 } 1101 1102 return true; 1103 } 1104 1105 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1106 struct btf *btf, u32 btf_id, int nr_slots) 1107 { 1108 struct bpf_func_state *state = func(env, reg); 1109 int spi, i, j; 1110 1111 spi = iter_get_spi(env, reg, nr_slots); 1112 if (spi < 0) 1113 return -EINVAL; 1114 1115 for (i = 0; i < nr_slots; i++) { 1116 struct bpf_stack_state *slot = &state->stack[spi - i]; 1117 struct bpf_reg_state *st = &slot->spilled_ptr; 1118 1119 if (st->type & PTR_UNTRUSTED) 1120 return -EPROTO; 1121 /* only main (first) slot has ref_obj_id set */ 1122 if (i == 0 && !st->ref_obj_id) 1123 return -EINVAL; 1124 if (i != 0 && st->ref_obj_id) 1125 return -EINVAL; 1126 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1127 return -EINVAL; 1128 1129 for (j = 0; j < BPF_REG_SIZE; j++) 1130 if (slot->slot_type[j] != STACK_ITER) 1131 return -EINVAL; 1132 } 1133 1134 return 0; 1135 } 1136 1137 /* Check if given stack slot is "special": 1138 * - spilled register state (STACK_SPILL); 1139 * - dynptr state (STACK_DYNPTR); 1140 * - iter state (STACK_ITER). 1141 */ 1142 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1143 { 1144 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1145 1146 switch (type) { 1147 case STACK_SPILL: 1148 case STACK_DYNPTR: 1149 case STACK_ITER: 1150 return true; 1151 case STACK_INVALID: 1152 case STACK_MISC: 1153 case STACK_ZERO: 1154 return false; 1155 default: 1156 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1157 return true; 1158 } 1159 } 1160 1161 /* The reg state of a pointer or a bounded scalar was saved when 1162 * it was spilled to the stack. 1163 */ 1164 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1165 { 1166 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1167 } 1168 1169 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1170 { 1171 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1172 stack->spilled_ptr.type == SCALAR_VALUE; 1173 } 1174 1175 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) 1176 { 1177 return stack->slot_type[0] == STACK_SPILL && 1178 stack->spilled_ptr.type == SCALAR_VALUE; 1179 } 1180 1181 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1182 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1183 * more precise STACK_ZERO. 1184 * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take 1185 * env->allow_ptr_leaks into account and force STACK_MISC, if necessary. 1186 */ 1187 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1188 { 1189 if (*stype == STACK_ZERO) 1190 return; 1191 if (env->allow_ptr_leaks && *stype == STACK_INVALID) 1192 return; 1193 *stype = STACK_MISC; 1194 } 1195 1196 static void scrub_spilled_slot(u8 *stype) 1197 { 1198 if (*stype != STACK_INVALID) 1199 *stype = STACK_MISC; 1200 } 1201 1202 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1203 * small to hold src. This is different from krealloc since we don't want to preserve 1204 * the contents of dst. 1205 * 1206 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1207 * not be allocated. 1208 */ 1209 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1210 { 1211 size_t alloc_bytes; 1212 void *orig = dst; 1213 size_t bytes; 1214 1215 if (ZERO_OR_NULL_PTR(src)) 1216 goto out; 1217 1218 if (unlikely(check_mul_overflow(n, size, &bytes))) 1219 return NULL; 1220 1221 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1222 dst = krealloc(orig, alloc_bytes, flags); 1223 if (!dst) { 1224 kfree(orig); 1225 return NULL; 1226 } 1227 1228 memcpy(dst, src, bytes); 1229 out: 1230 return dst ? dst : ZERO_SIZE_PTR; 1231 } 1232 1233 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1234 * small to hold new_n items. new items are zeroed out if the array grows. 1235 * 1236 * Contrary to krealloc_array, does not free arr if new_n is zero. 1237 */ 1238 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1239 { 1240 size_t alloc_size; 1241 void *new_arr; 1242 1243 if (!new_n || old_n == new_n) 1244 goto out; 1245 1246 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1247 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1248 if (!new_arr) { 1249 kfree(arr); 1250 return NULL; 1251 } 1252 arr = new_arr; 1253 1254 if (new_n > old_n) 1255 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1256 1257 out: 1258 return arr ? arr : ZERO_SIZE_PTR; 1259 } 1260 1261 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1262 { 1263 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1264 sizeof(struct bpf_reference_state), GFP_KERNEL); 1265 if (!dst->refs) 1266 return -ENOMEM; 1267 1268 dst->acquired_refs = src->acquired_refs; 1269 return 0; 1270 } 1271 1272 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1273 { 1274 size_t n = src->allocated_stack / BPF_REG_SIZE; 1275 1276 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1277 GFP_KERNEL); 1278 if (!dst->stack) 1279 return -ENOMEM; 1280 1281 dst->allocated_stack = src->allocated_stack; 1282 return 0; 1283 } 1284 1285 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1286 { 1287 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1288 sizeof(struct bpf_reference_state)); 1289 if (!state->refs) 1290 return -ENOMEM; 1291 1292 state->acquired_refs = n; 1293 return 0; 1294 } 1295 1296 /* Possibly update state->allocated_stack to be at least size bytes. Also 1297 * possibly update the function's high-water mark in its bpf_subprog_info. 1298 */ 1299 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1300 { 1301 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1302 1303 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1304 size = round_up(size, BPF_REG_SIZE); 1305 n = size / BPF_REG_SIZE; 1306 1307 if (old_n >= n) 1308 return 0; 1309 1310 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1311 if (!state->stack) 1312 return -ENOMEM; 1313 1314 state->allocated_stack = size; 1315 1316 /* update known max for given subprogram */ 1317 if (env->subprog_info[state->subprogno].stack_depth < size) 1318 env->subprog_info[state->subprogno].stack_depth = size; 1319 1320 return 0; 1321 } 1322 1323 /* Acquire a pointer id from the env and update the state->refs to include 1324 * this new pointer reference. 1325 * On success, returns a valid pointer id to associate with the register 1326 * On failure, returns a negative errno. 1327 */ 1328 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1329 { 1330 struct bpf_func_state *state = cur_func(env); 1331 int new_ofs = state->acquired_refs; 1332 int id, err; 1333 1334 err = resize_reference_state(state, state->acquired_refs + 1); 1335 if (err) 1336 return err; 1337 id = ++env->id_gen; 1338 state->refs[new_ofs].id = id; 1339 state->refs[new_ofs].insn_idx = insn_idx; 1340 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1341 1342 return id; 1343 } 1344 1345 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1346 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1347 { 1348 int i, last_idx; 1349 1350 last_idx = state->acquired_refs - 1; 1351 for (i = 0; i < state->acquired_refs; i++) { 1352 if (state->refs[i].id == ptr_id) { 1353 /* Cannot release caller references in callbacks */ 1354 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1355 return -EINVAL; 1356 if (last_idx && i != last_idx) 1357 memcpy(&state->refs[i], &state->refs[last_idx], 1358 sizeof(*state->refs)); 1359 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1360 state->acquired_refs--; 1361 return 0; 1362 } 1363 } 1364 return -EINVAL; 1365 } 1366 1367 static void free_func_state(struct bpf_func_state *state) 1368 { 1369 if (!state) 1370 return; 1371 kfree(state->refs); 1372 kfree(state->stack); 1373 kfree(state); 1374 } 1375 1376 static void clear_jmp_history(struct bpf_verifier_state *state) 1377 { 1378 kfree(state->jmp_history); 1379 state->jmp_history = NULL; 1380 state->jmp_history_cnt = 0; 1381 } 1382 1383 static void free_verifier_state(struct bpf_verifier_state *state, 1384 bool free_self) 1385 { 1386 int i; 1387 1388 for (i = 0; i <= state->curframe; i++) { 1389 free_func_state(state->frame[i]); 1390 state->frame[i] = NULL; 1391 } 1392 clear_jmp_history(state); 1393 if (free_self) 1394 kfree(state); 1395 } 1396 1397 /* copy verifier state from src to dst growing dst stack space 1398 * when necessary to accommodate larger src stack 1399 */ 1400 static int copy_func_state(struct bpf_func_state *dst, 1401 const struct bpf_func_state *src) 1402 { 1403 int err; 1404 1405 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1406 err = copy_reference_state(dst, src); 1407 if (err) 1408 return err; 1409 return copy_stack_state(dst, src); 1410 } 1411 1412 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1413 const struct bpf_verifier_state *src) 1414 { 1415 struct bpf_func_state *dst; 1416 int i, err; 1417 1418 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1419 src->jmp_history_cnt, sizeof(*dst_state->jmp_history), 1420 GFP_USER); 1421 if (!dst_state->jmp_history) 1422 return -ENOMEM; 1423 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1424 1425 /* if dst has more stack frames then src frame, free them, this is also 1426 * necessary in case of exceptional exits using bpf_throw. 1427 */ 1428 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1429 free_func_state(dst_state->frame[i]); 1430 dst_state->frame[i] = NULL; 1431 } 1432 dst_state->speculative = src->speculative; 1433 dst_state->active_rcu_lock = src->active_rcu_lock; 1434 dst_state->active_preempt_lock = src->active_preempt_lock; 1435 dst_state->in_sleepable = src->in_sleepable; 1436 dst_state->curframe = src->curframe; 1437 dst_state->active_lock.ptr = src->active_lock.ptr; 1438 dst_state->active_lock.id = src->active_lock.id; 1439 dst_state->branches = src->branches; 1440 dst_state->parent = src->parent; 1441 dst_state->first_insn_idx = src->first_insn_idx; 1442 dst_state->last_insn_idx = src->last_insn_idx; 1443 dst_state->dfs_depth = src->dfs_depth; 1444 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1445 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1446 dst_state->may_goto_depth = src->may_goto_depth; 1447 for (i = 0; i <= src->curframe; i++) { 1448 dst = dst_state->frame[i]; 1449 if (!dst) { 1450 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1451 if (!dst) 1452 return -ENOMEM; 1453 dst_state->frame[i] = dst; 1454 } 1455 err = copy_func_state(dst, src->frame[i]); 1456 if (err) 1457 return err; 1458 } 1459 return 0; 1460 } 1461 1462 static u32 state_htab_size(struct bpf_verifier_env *env) 1463 { 1464 return env->prog->len; 1465 } 1466 1467 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1468 { 1469 struct bpf_verifier_state *cur = env->cur_state; 1470 struct bpf_func_state *state = cur->frame[cur->curframe]; 1471 1472 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1473 } 1474 1475 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1476 { 1477 int fr; 1478 1479 if (a->curframe != b->curframe) 1480 return false; 1481 1482 for (fr = a->curframe; fr >= 0; fr--) 1483 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1484 return false; 1485 1486 return true; 1487 } 1488 1489 /* Open coded iterators allow back-edges in the state graph in order to 1490 * check unbounded loops that iterators. 1491 * 1492 * In is_state_visited() it is necessary to know if explored states are 1493 * part of some loops in order to decide whether non-exact states 1494 * comparison could be used: 1495 * - non-exact states comparison establishes sub-state relation and uses 1496 * read and precision marks to do so, these marks are propagated from 1497 * children states and thus are not guaranteed to be final in a loop; 1498 * - exact states comparison just checks if current and explored states 1499 * are identical (and thus form a back-edge). 1500 * 1501 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1502 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1503 * algorithm for loop structure detection and gives an overview of 1504 * relevant terminology. It also has helpful illustrations. 1505 * 1506 * [1] https://api.semanticscholar.org/CorpusID:15784067 1507 * 1508 * We use a similar algorithm but because loop nested structure is 1509 * irrelevant for verifier ours is significantly simpler and resembles 1510 * strongly connected components algorithm from Sedgewick's textbook. 1511 * 1512 * Define topmost loop entry as a first node of the loop traversed in a 1513 * depth first search starting from initial state. The goal of the loop 1514 * tracking algorithm is to associate topmost loop entries with states 1515 * derived from these entries. 1516 * 1517 * For each step in the DFS states traversal algorithm needs to identify 1518 * the following situations: 1519 * 1520 * initial initial initial 1521 * | | | 1522 * V V V 1523 * ... ... .---------> hdr 1524 * | | | | 1525 * V V | V 1526 * cur .-> succ | .------... 1527 * | | | | | | 1528 * V | V | V V 1529 * succ '-- cur | ... ... 1530 * | | | 1531 * | V V 1532 * | succ <- cur 1533 * | | 1534 * | V 1535 * | ... 1536 * | | 1537 * '----' 1538 * 1539 * (A) successor state of cur (B) successor state of cur or it's entry 1540 * not yet traversed are in current DFS path, thus cur and succ 1541 * are members of the same outermost loop 1542 * 1543 * initial initial 1544 * | | 1545 * V V 1546 * ... ... 1547 * | | 1548 * V V 1549 * .------... .------... 1550 * | | | | 1551 * V V V V 1552 * .-> hdr ... ... ... 1553 * | | | | | 1554 * | V V V V 1555 * | succ <- cur succ <- cur 1556 * | | | 1557 * | V V 1558 * | ... ... 1559 * | | | 1560 * '----' exit 1561 * 1562 * (C) successor state of cur is a part of some loop but this loop 1563 * does not include cur or successor state is not in a loop at all. 1564 * 1565 * Algorithm could be described as the following python code: 1566 * 1567 * traversed = set() # Set of traversed nodes 1568 * entries = {} # Mapping from node to loop entry 1569 * depths = {} # Depth level assigned to graph node 1570 * path = set() # Current DFS path 1571 * 1572 * # Find outermost loop entry known for n 1573 * def get_loop_entry(n): 1574 * h = entries.get(n, None) 1575 * while h in entries and entries[h] != h: 1576 * h = entries[h] 1577 * return h 1578 * 1579 * # Update n's loop entry if h's outermost entry comes 1580 * # before n's outermost entry in current DFS path. 1581 * def update_loop_entry(n, h): 1582 * n1 = get_loop_entry(n) or n 1583 * h1 = get_loop_entry(h) or h 1584 * if h1 in path and depths[h1] <= depths[n1]: 1585 * entries[n] = h1 1586 * 1587 * def dfs(n, depth): 1588 * traversed.add(n) 1589 * path.add(n) 1590 * depths[n] = depth 1591 * for succ in G.successors(n): 1592 * if succ not in traversed: 1593 * # Case A: explore succ and update cur's loop entry 1594 * # only if succ's entry is in current DFS path. 1595 * dfs(succ, depth + 1) 1596 * h = get_loop_entry(succ) 1597 * update_loop_entry(n, h) 1598 * else: 1599 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1600 * update_loop_entry(n, succ) 1601 * path.remove(n) 1602 * 1603 * To adapt this algorithm for use with verifier: 1604 * - use st->branch == 0 as a signal that DFS of succ had been finished 1605 * and cur's loop entry has to be updated (case A), handle this in 1606 * update_branch_counts(); 1607 * - use st->branch > 0 as a signal that st is in the current DFS path; 1608 * - handle cases B and C in is_state_visited(); 1609 * - update topmost loop entry for intermediate states in get_loop_entry(). 1610 */ 1611 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1612 { 1613 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1614 1615 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1616 topmost = topmost->loop_entry; 1617 /* Update loop entries for intermediate states to avoid this 1618 * traversal in future get_loop_entry() calls. 1619 */ 1620 while (st && st->loop_entry != topmost) { 1621 old = st->loop_entry; 1622 st->loop_entry = topmost; 1623 st = old; 1624 } 1625 return topmost; 1626 } 1627 1628 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1629 { 1630 struct bpf_verifier_state *cur1, *hdr1; 1631 1632 cur1 = get_loop_entry(cur) ?: cur; 1633 hdr1 = get_loop_entry(hdr) ?: hdr; 1634 /* The head1->branches check decides between cases B and C in 1635 * comment for get_loop_entry(). If hdr1->branches == 0 then 1636 * head's topmost loop entry is not in current DFS path, 1637 * hence 'cur' and 'hdr' are not in the same loop and there is 1638 * no need to update cur->loop_entry. 1639 */ 1640 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1641 cur->loop_entry = hdr; 1642 hdr->used_as_loop_entry = true; 1643 } 1644 } 1645 1646 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1647 { 1648 while (st) { 1649 u32 br = --st->branches; 1650 1651 /* br == 0 signals that DFS exploration for 'st' is finished, 1652 * thus it is necessary to update parent's loop entry if it 1653 * turned out that st is a part of some loop. 1654 * This is a part of 'case A' in get_loop_entry() comment. 1655 */ 1656 if (br == 0 && st->parent && st->loop_entry) 1657 update_loop_entry(st->parent, st->loop_entry); 1658 1659 /* WARN_ON(br > 1) technically makes sense here, 1660 * but see comment in push_stack(), hence: 1661 */ 1662 WARN_ONCE((int)br < 0, 1663 "BUG update_branch_counts:branches_to_explore=%d\n", 1664 br); 1665 if (br) 1666 break; 1667 st = st->parent; 1668 } 1669 } 1670 1671 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1672 int *insn_idx, bool pop_log) 1673 { 1674 struct bpf_verifier_state *cur = env->cur_state; 1675 struct bpf_verifier_stack_elem *elem, *head = env->head; 1676 int err; 1677 1678 if (env->head == NULL) 1679 return -ENOENT; 1680 1681 if (cur) { 1682 err = copy_verifier_state(cur, &head->st); 1683 if (err) 1684 return err; 1685 } 1686 if (pop_log) 1687 bpf_vlog_reset(&env->log, head->log_pos); 1688 if (insn_idx) 1689 *insn_idx = head->insn_idx; 1690 if (prev_insn_idx) 1691 *prev_insn_idx = head->prev_insn_idx; 1692 elem = head->next; 1693 free_verifier_state(&head->st, false); 1694 kfree(head); 1695 env->head = elem; 1696 env->stack_size--; 1697 return 0; 1698 } 1699 1700 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1701 int insn_idx, int prev_insn_idx, 1702 bool speculative) 1703 { 1704 struct bpf_verifier_state *cur = env->cur_state; 1705 struct bpf_verifier_stack_elem *elem; 1706 int err; 1707 1708 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1709 if (!elem) 1710 goto err; 1711 1712 elem->insn_idx = insn_idx; 1713 elem->prev_insn_idx = prev_insn_idx; 1714 elem->next = env->head; 1715 elem->log_pos = env->log.end_pos; 1716 env->head = elem; 1717 env->stack_size++; 1718 err = copy_verifier_state(&elem->st, cur); 1719 if (err) 1720 goto err; 1721 elem->st.speculative |= speculative; 1722 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1723 verbose(env, "The sequence of %d jumps is too complex.\n", 1724 env->stack_size); 1725 goto err; 1726 } 1727 if (elem->st.parent) { 1728 ++elem->st.parent->branches; 1729 /* WARN_ON(branches > 2) technically makes sense here, 1730 * but 1731 * 1. speculative states will bump 'branches' for non-branch 1732 * instructions 1733 * 2. is_state_visited() heuristics may decide not to create 1734 * a new state for a sequence of branches and all such current 1735 * and cloned states will be pointing to a single parent state 1736 * which might have large 'branches' count. 1737 */ 1738 } 1739 return &elem->st; 1740 err: 1741 free_verifier_state(env->cur_state, true); 1742 env->cur_state = NULL; 1743 /* pop all elements and return */ 1744 while (!pop_stack(env, NULL, NULL, false)); 1745 return NULL; 1746 } 1747 1748 #define CALLER_SAVED_REGS 6 1749 static const int caller_saved[CALLER_SAVED_REGS] = { 1750 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1751 }; 1752 1753 /* This helper doesn't clear reg->id */ 1754 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1755 { 1756 reg->var_off = tnum_const(imm); 1757 reg->smin_value = (s64)imm; 1758 reg->smax_value = (s64)imm; 1759 reg->umin_value = imm; 1760 reg->umax_value = imm; 1761 1762 reg->s32_min_value = (s32)imm; 1763 reg->s32_max_value = (s32)imm; 1764 reg->u32_min_value = (u32)imm; 1765 reg->u32_max_value = (u32)imm; 1766 } 1767 1768 /* Mark the unknown part of a register (variable offset or scalar value) as 1769 * known to have the value @imm. 1770 */ 1771 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1772 { 1773 /* Clear off and union(map_ptr, range) */ 1774 memset(((u8 *)reg) + sizeof(reg->type), 0, 1775 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1776 reg->id = 0; 1777 reg->ref_obj_id = 0; 1778 ___mark_reg_known(reg, imm); 1779 } 1780 1781 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1782 { 1783 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1784 reg->s32_min_value = (s32)imm; 1785 reg->s32_max_value = (s32)imm; 1786 reg->u32_min_value = (u32)imm; 1787 reg->u32_max_value = (u32)imm; 1788 } 1789 1790 /* Mark the 'variable offset' part of a register as zero. This should be 1791 * used only on registers holding a pointer type. 1792 */ 1793 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1794 { 1795 __mark_reg_known(reg, 0); 1796 } 1797 1798 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1799 { 1800 __mark_reg_known(reg, 0); 1801 reg->type = SCALAR_VALUE; 1802 /* all scalars are assumed imprecise initially (unless unprivileged, 1803 * in which case everything is forced to be precise) 1804 */ 1805 reg->precise = !env->bpf_capable; 1806 } 1807 1808 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1809 struct bpf_reg_state *regs, u32 regno) 1810 { 1811 if (WARN_ON(regno >= MAX_BPF_REG)) { 1812 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1813 /* Something bad happened, let's kill all regs */ 1814 for (regno = 0; regno < MAX_BPF_REG; regno++) 1815 __mark_reg_not_init(env, regs + regno); 1816 return; 1817 } 1818 __mark_reg_known_zero(regs + regno); 1819 } 1820 1821 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1822 bool first_slot, int dynptr_id) 1823 { 1824 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1825 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1826 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1827 */ 1828 __mark_reg_known_zero(reg); 1829 reg->type = CONST_PTR_TO_DYNPTR; 1830 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1831 reg->id = dynptr_id; 1832 reg->dynptr.type = type; 1833 reg->dynptr.first_slot = first_slot; 1834 } 1835 1836 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1837 { 1838 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1839 const struct bpf_map *map = reg->map_ptr; 1840 1841 if (map->inner_map_meta) { 1842 reg->type = CONST_PTR_TO_MAP; 1843 reg->map_ptr = map->inner_map_meta; 1844 /* transfer reg's id which is unique for every map_lookup_elem 1845 * as UID of the inner map. 1846 */ 1847 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1848 reg->map_uid = reg->id; 1849 if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE)) 1850 reg->map_uid = reg->id; 1851 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1852 reg->type = PTR_TO_XDP_SOCK; 1853 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1854 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1855 reg->type = PTR_TO_SOCKET; 1856 } else { 1857 reg->type = PTR_TO_MAP_VALUE; 1858 } 1859 return; 1860 } 1861 1862 reg->type &= ~PTR_MAYBE_NULL; 1863 } 1864 1865 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1866 struct btf_field_graph_root *ds_head) 1867 { 1868 __mark_reg_known_zero(®s[regno]); 1869 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1870 regs[regno].btf = ds_head->btf; 1871 regs[regno].btf_id = ds_head->value_btf_id; 1872 regs[regno].off = ds_head->node_offset; 1873 } 1874 1875 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1876 { 1877 return type_is_pkt_pointer(reg->type); 1878 } 1879 1880 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1881 { 1882 return reg_is_pkt_pointer(reg) || 1883 reg->type == PTR_TO_PACKET_END; 1884 } 1885 1886 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 1887 { 1888 return base_type(reg->type) == PTR_TO_MEM && 1889 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 1890 } 1891 1892 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1893 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1894 enum bpf_reg_type which) 1895 { 1896 /* The register can already have a range from prior markings. 1897 * This is fine as long as it hasn't been advanced from its 1898 * origin. 1899 */ 1900 return reg->type == which && 1901 reg->id == 0 && 1902 reg->off == 0 && 1903 tnum_equals_const(reg->var_off, 0); 1904 } 1905 1906 /* Reset the min/max bounds of a register */ 1907 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1908 { 1909 reg->smin_value = S64_MIN; 1910 reg->smax_value = S64_MAX; 1911 reg->umin_value = 0; 1912 reg->umax_value = U64_MAX; 1913 1914 reg->s32_min_value = S32_MIN; 1915 reg->s32_max_value = S32_MAX; 1916 reg->u32_min_value = 0; 1917 reg->u32_max_value = U32_MAX; 1918 } 1919 1920 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1921 { 1922 reg->smin_value = S64_MIN; 1923 reg->smax_value = S64_MAX; 1924 reg->umin_value = 0; 1925 reg->umax_value = U64_MAX; 1926 } 1927 1928 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1929 { 1930 reg->s32_min_value = S32_MIN; 1931 reg->s32_max_value = S32_MAX; 1932 reg->u32_min_value = 0; 1933 reg->u32_max_value = U32_MAX; 1934 } 1935 1936 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1937 { 1938 struct tnum var32_off = tnum_subreg(reg->var_off); 1939 1940 /* min signed is max(sign bit) | min(other bits) */ 1941 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1942 var32_off.value | (var32_off.mask & S32_MIN)); 1943 /* max signed is min(sign bit) | max(other bits) */ 1944 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1945 var32_off.value | (var32_off.mask & S32_MAX)); 1946 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1947 reg->u32_max_value = min(reg->u32_max_value, 1948 (u32)(var32_off.value | var32_off.mask)); 1949 } 1950 1951 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1952 { 1953 /* min signed is max(sign bit) | min(other bits) */ 1954 reg->smin_value = max_t(s64, reg->smin_value, 1955 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1956 /* max signed is min(sign bit) | max(other bits) */ 1957 reg->smax_value = min_t(s64, reg->smax_value, 1958 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1959 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1960 reg->umax_value = min(reg->umax_value, 1961 reg->var_off.value | reg->var_off.mask); 1962 } 1963 1964 static void __update_reg_bounds(struct bpf_reg_state *reg) 1965 { 1966 __update_reg32_bounds(reg); 1967 __update_reg64_bounds(reg); 1968 } 1969 1970 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1971 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1972 { 1973 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 1974 * bits to improve our u32/s32 boundaries. 1975 * 1976 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 1977 * u64) is pretty trivial, it's obvious that in u32 we'll also have 1978 * [10, 20] range. But this property holds for any 64-bit range as 1979 * long as upper 32 bits in that entire range of values stay the same. 1980 * 1981 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 1982 * in decimal) has the same upper 32 bits throughout all the values in 1983 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 1984 * range. 1985 * 1986 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 1987 * following the rules outlined below about u64/s64 correspondence 1988 * (which equally applies to u32 vs s32 correspondence). In general it 1989 * depends on actual hexadecimal values of 32-bit range. They can form 1990 * only valid u32, or only valid s32 ranges in some cases. 1991 * 1992 * So we use all these insights to derive bounds for subregisters here. 1993 */ 1994 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 1995 /* u64 to u32 casting preserves validity of low 32 bits as 1996 * a range, if upper 32 bits are the same 1997 */ 1998 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 1999 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 2000 2001 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 2002 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2003 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2004 } 2005 } 2006 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 2007 /* low 32 bits should form a proper u32 range */ 2008 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 2009 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 2010 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 2011 } 2012 /* low 32 bits should form a proper s32 range */ 2013 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 2014 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2015 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2016 } 2017 } 2018 /* Special case where upper bits form a small sequence of two 2019 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 2020 * 0x00000000 is also valid), while lower bits form a proper s32 range 2021 * going from negative numbers to positive numbers. E.g., let's say we 2022 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 2023 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 2024 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 2025 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 2026 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 2027 * upper 32 bits. As a random example, s64 range 2028 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 2029 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2030 */ 2031 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2032 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2033 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2034 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2035 } 2036 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2037 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2038 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2039 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2040 } 2041 /* if u32 range forms a valid s32 range (due to matching sign bit), 2042 * try to learn from that 2043 */ 2044 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2045 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2046 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2047 } 2048 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2049 * are the same, so combine. This works even in the negative case, e.g. 2050 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2051 */ 2052 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2053 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2054 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2055 } 2056 } 2057 2058 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2059 { 2060 /* If u64 range forms a valid s64 range (due to matching sign bit), 2061 * try to learn from that. Let's do a bit of ASCII art to see when 2062 * this is happening. Let's take u64 range first: 2063 * 2064 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2065 * |-------------------------------|--------------------------------| 2066 * 2067 * Valid u64 range is formed when umin and umax are anywhere in the 2068 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2069 * straightforward. Let's see how s64 range maps onto the same range 2070 * of values, annotated below the line for comparison: 2071 * 2072 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2073 * |-------------------------------|--------------------------------| 2074 * 0 S64_MAX S64_MIN -1 2075 * 2076 * So s64 values basically start in the middle and they are logically 2077 * contiguous to the right of it, wrapping around from -1 to 0, and 2078 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2079 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2080 * more visually as mapped to sign-agnostic range of hex values. 2081 * 2082 * u64 start u64 end 2083 * _______________________________________________________________ 2084 * / \ 2085 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2086 * |-------------------------------|--------------------------------| 2087 * 0 S64_MAX S64_MIN -1 2088 * / \ 2089 * >------------------------------ -------------------------------> 2090 * s64 continues... s64 end s64 start s64 "midpoint" 2091 * 2092 * What this means is that, in general, we can't always derive 2093 * something new about u64 from any random s64 range, and vice versa. 2094 * 2095 * But we can do that in two particular cases. One is when entire 2096 * u64/s64 range is *entirely* contained within left half of the above 2097 * diagram or when it is *entirely* contained in the right half. I.e.: 2098 * 2099 * |-------------------------------|--------------------------------| 2100 * ^ ^ ^ ^ 2101 * A B C D 2102 * 2103 * [A, B] and [C, D] are contained entirely in their respective halves 2104 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2105 * will be non-negative both as u64 and s64 (and in fact it will be 2106 * identical ranges no matter the signedness). [C, D] treated as s64 2107 * will be a range of negative values, while in u64 it will be 2108 * non-negative range of values larger than 0x8000000000000000. 2109 * 2110 * Now, any other range here can't be represented in both u64 and s64 2111 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2112 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2113 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2114 * for example. Similarly, valid s64 range [D, A] (going from negative 2115 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2116 * ranges as u64. Currently reg_state can't represent two segments per 2117 * numeric domain, so in such situations we can only derive maximal 2118 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2119 * 2120 * So we use these facts to derive umin/umax from smin/smax and vice 2121 * versa only if they stay within the same "half". This is equivalent 2122 * to checking sign bit: lower half will have sign bit as zero, upper 2123 * half have sign bit 1. Below in code we simplify this by just 2124 * casting umin/umax as smin/smax and checking if they form valid 2125 * range, and vice versa. Those are equivalent checks. 2126 */ 2127 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2128 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2129 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2130 } 2131 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2132 * are the same, so combine. This works even in the negative case, e.g. 2133 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2134 */ 2135 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2136 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2137 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2138 } 2139 } 2140 2141 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2142 { 2143 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2144 * values on both sides of 64-bit range in hope to have tighter range. 2145 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2146 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2147 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2148 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2149 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2150 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2151 * We just need to make sure that derived bounds we are intersecting 2152 * with are well-formed ranges in respective s64 or u64 domain, just 2153 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2154 */ 2155 __u64 new_umin, new_umax; 2156 __s64 new_smin, new_smax; 2157 2158 /* u32 -> u64 tightening, it's always well-formed */ 2159 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2160 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2161 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2162 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2163 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2164 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2165 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2166 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2167 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2168 2169 /* if s32 can be treated as valid u32 range, we can use it as well */ 2170 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2171 /* s32 -> u64 tightening */ 2172 new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2173 new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2174 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2175 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2176 /* s32 -> s64 tightening */ 2177 new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2178 new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2179 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2180 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2181 } 2182 2183 /* Here we would like to handle a special case after sign extending load, 2184 * when upper bits for a 64-bit range are all 1s or all 0s. 2185 * 2186 * Upper bits are all 1s when register is in a range: 2187 * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff] 2188 * Upper bits are all 0s when register is in a range: 2189 * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff] 2190 * Together this forms are continuous range: 2191 * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff] 2192 * 2193 * Now, suppose that register range is in fact tighter: 2194 * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R) 2195 * Also suppose that it's 32-bit range is positive, 2196 * meaning that lower 32-bits of the full 64-bit register 2197 * are in the range: 2198 * [0x0000_0000, 0x7fff_ffff] (W) 2199 * 2200 * If this happens, then any value in a range: 2201 * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff] 2202 * is smaller than a lowest bound of the range (R): 2203 * 0xffff_ffff_8000_0000 2204 * which means that upper bits of the full 64-bit register 2205 * can't be all 1s, when lower bits are in range (W). 2206 * 2207 * Note that: 2208 * - 0xffff_ffff_8000_0000 == (s64)S32_MIN 2209 * - 0x0000_0000_7fff_ffff == (s64)S32_MAX 2210 * These relations are used in the conditions below. 2211 */ 2212 if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) { 2213 reg->smin_value = reg->s32_min_value; 2214 reg->smax_value = reg->s32_max_value; 2215 reg->umin_value = reg->s32_min_value; 2216 reg->umax_value = reg->s32_max_value; 2217 reg->var_off = tnum_intersect(reg->var_off, 2218 tnum_range(reg->smin_value, reg->smax_value)); 2219 } 2220 } 2221 2222 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2223 { 2224 __reg32_deduce_bounds(reg); 2225 __reg64_deduce_bounds(reg); 2226 __reg_deduce_mixed_bounds(reg); 2227 } 2228 2229 /* Attempts to improve var_off based on unsigned min/max information */ 2230 static void __reg_bound_offset(struct bpf_reg_state *reg) 2231 { 2232 struct tnum var64_off = tnum_intersect(reg->var_off, 2233 tnum_range(reg->umin_value, 2234 reg->umax_value)); 2235 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2236 tnum_range(reg->u32_min_value, 2237 reg->u32_max_value)); 2238 2239 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2240 } 2241 2242 static void reg_bounds_sync(struct bpf_reg_state *reg) 2243 { 2244 /* We might have learned new bounds from the var_off. */ 2245 __update_reg_bounds(reg); 2246 /* We might have learned something about the sign bit. */ 2247 __reg_deduce_bounds(reg); 2248 __reg_deduce_bounds(reg); 2249 /* We might have learned some bits from the bounds. */ 2250 __reg_bound_offset(reg); 2251 /* Intersecting with the old var_off might have improved our bounds 2252 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2253 * then new var_off is (0; 0x7f...fc) which improves our umax. 2254 */ 2255 __update_reg_bounds(reg); 2256 } 2257 2258 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2259 struct bpf_reg_state *reg, const char *ctx) 2260 { 2261 const char *msg; 2262 2263 if (reg->umin_value > reg->umax_value || 2264 reg->smin_value > reg->smax_value || 2265 reg->u32_min_value > reg->u32_max_value || 2266 reg->s32_min_value > reg->s32_max_value) { 2267 msg = "range bounds violation"; 2268 goto out; 2269 } 2270 2271 if (tnum_is_const(reg->var_off)) { 2272 u64 uval = reg->var_off.value; 2273 s64 sval = (s64)uval; 2274 2275 if (reg->umin_value != uval || reg->umax_value != uval || 2276 reg->smin_value != sval || reg->smax_value != sval) { 2277 msg = "const tnum out of sync with range bounds"; 2278 goto out; 2279 } 2280 } 2281 2282 if (tnum_subreg_is_const(reg->var_off)) { 2283 u32 uval32 = tnum_subreg(reg->var_off).value; 2284 s32 sval32 = (s32)uval32; 2285 2286 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2287 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2288 msg = "const subreg tnum out of sync with range bounds"; 2289 goto out; 2290 } 2291 } 2292 2293 return 0; 2294 out: 2295 verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2296 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n", 2297 ctx, msg, reg->umin_value, reg->umax_value, 2298 reg->smin_value, reg->smax_value, 2299 reg->u32_min_value, reg->u32_max_value, 2300 reg->s32_min_value, reg->s32_max_value, 2301 reg->var_off.value, reg->var_off.mask); 2302 if (env->test_reg_invariants) 2303 return -EFAULT; 2304 __mark_reg_unbounded(reg); 2305 return 0; 2306 } 2307 2308 static bool __reg32_bound_s64(s32 a) 2309 { 2310 return a >= 0 && a <= S32_MAX; 2311 } 2312 2313 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2314 { 2315 reg->umin_value = reg->u32_min_value; 2316 reg->umax_value = reg->u32_max_value; 2317 2318 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2319 * be positive otherwise set to worse case bounds and refine later 2320 * from tnum. 2321 */ 2322 if (__reg32_bound_s64(reg->s32_min_value) && 2323 __reg32_bound_s64(reg->s32_max_value)) { 2324 reg->smin_value = reg->s32_min_value; 2325 reg->smax_value = reg->s32_max_value; 2326 } else { 2327 reg->smin_value = 0; 2328 reg->smax_value = U32_MAX; 2329 } 2330 } 2331 2332 /* Mark a register as having a completely unknown (scalar) value. */ 2333 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) 2334 { 2335 /* 2336 * Clear type, off, and union(map_ptr, range) and 2337 * padding between 'type' and union 2338 */ 2339 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2340 reg->type = SCALAR_VALUE; 2341 reg->id = 0; 2342 reg->ref_obj_id = 0; 2343 reg->var_off = tnum_unknown; 2344 reg->frameno = 0; 2345 reg->precise = false; 2346 __mark_reg_unbounded(reg); 2347 } 2348 2349 /* Mark a register as having a completely unknown (scalar) value, 2350 * initialize .precise as true when not bpf capable. 2351 */ 2352 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2353 struct bpf_reg_state *reg) 2354 { 2355 __mark_reg_unknown_imprecise(reg); 2356 reg->precise = !env->bpf_capable; 2357 } 2358 2359 static void mark_reg_unknown(struct bpf_verifier_env *env, 2360 struct bpf_reg_state *regs, u32 regno) 2361 { 2362 if (WARN_ON(regno >= MAX_BPF_REG)) { 2363 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2364 /* Something bad happened, let's kill all regs except FP */ 2365 for (regno = 0; regno < BPF_REG_FP; regno++) 2366 __mark_reg_not_init(env, regs + regno); 2367 return; 2368 } 2369 __mark_reg_unknown(env, regs + regno); 2370 } 2371 2372 static int __mark_reg_s32_range(struct bpf_verifier_env *env, 2373 struct bpf_reg_state *regs, 2374 u32 regno, 2375 s32 s32_min, 2376 s32 s32_max) 2377 { 2378 struct bpf_reg_state *reg = regs + regno; 2379 2380 reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min); 2381 reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max); 2382 2383 reg->smin_value = max_t(s64, reg->smin_value, s32_min); 2384 reg->smax_value = min_t(s64, reg->smax_value, s32_max); 2385 2386 reg_bounds_sync(reg); 2387 2388 return reg_bounds_sanity_check(env, reg, "s32_range"); 2389 } 2390 2391 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2392 struct bpf_reg_state *reg) 2393 { 2394 __mark_reg_unknown(env, reg); 2395 reg->type = NOT_INIT; 2396 } 2397 2398 static void mark_reg_not_init(struct bpf_verifier_env *env, 2399 struct bpf_reg_state *regs, u32 regno) 2400 { 2401 if (WARN_ON(regno >= MAX_BPF_REG)) { 2402 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2403 /* Something bad happened, let's kill all regs except FP */ 2404 for (regno = 0; regno < BPF_REG_FP; regno++) 2405 __mark_reg_not_init(env, regs + regno); 2406 return; 2407 } 2408 __mark_reg_not_init(env, regs + regno); 2409 } 2410 2411 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2412 struct bpf_reg_state *regs, u32 regno, 2413 enum bpf_reg_type reg_type, 2414 struct btf *btf, u32 btf_id, 2415 enum bpf_type_flag flag) 2416 { 2417 if (reg_type == SCALAR_VALUE) { 2418 mark_reg_unknown(env, regs, regno); 2419 return; 2420 } 2421 mark_reg_known_zero(env, regs, regno); 2422 regs[regno].type = PTR_TO_BTF_ID | flag; 2423 regs[regno].btf = btf; 2424 regs[regno].btf_id = btf_id; 2425 if (type_may_be_null(flag)) 2426 regs[regno].id = ++env->id_gen; 2427 } 2428 2429 #define DEF_NOT_SUBREG (0) 2430 static void init_reg_state(struct bpf_verifier_env *env, 2431 struct bpf_func_state *state) 2432 { 2433 struct bpf_reg_state *regs = state->regs; 2434 int i; 2435 2436 for (i = 0; i < MAX_BPF_REG; i++) { 2437 mark_reg_not_init(env, regs, i); 2438 regs[i].live = REG_LIVE_NONE; 2439 regs[i].parent = NULL; 2440 regs[i].subreg_def = DEF_NOT_SUBREG; 2441 } 2442 2443 /* frame pointer */ 2444 regs[BPF_REG_FP].type = PTR_TO_STACK; 2445 mark_reg_known_zero(env, regs, BPF_REG_FP); 2446 regs[BPF_REG_FP].frameno = state->frameno; 2447 } 2448 2449 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2450 { 2451 return (struct bpf_retval_range){ minval, maxval }; 2452 } 2453 2454 #define BPF_MAIN_FUNC (-1) 2455 static void init_func_state(struct bpf_verifier_env *env, 2456 struct bpf_func_state *state, 2457 int callsite, int frameno, int subprogno) 2458 { 2459 state->callsite = callsite; 2460 state->frameno = frameno; 2461 state->subprogno = subprogno; 2462 state->callback_ret_range = retval_range(0, 0); 2463 init_reg_state(env, state); 2464 mark_verifier_state_scratched(env); 2465 } 2466 2467 /* Similar to push_stack(), but for async callbacks */ 2468 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2469 int insn_idx, int prev_insn_idx, 2470 int subprog, bool is_sleepable) 2471 { 2472 struct bpf_verifier_stack_elem *elem; 2473 struct bpf_func_state *frame; 2474 2475 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2476 if (!elem) 2477 goto err; 2478 2479 elem->insn_idx = insn_idx; 2480 elem->prev_insn_idx = prev_insn_idx; 2481 elem->next = env->head; 2482 elem->log_pos = env->log.end_pos; 2483 env->head = elem; 2484 env->stack_size++; 2485 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2486 verbose(env, 2487 "The sequence of %d jumps is too complex for async cb.\n", 2488 env->stack_size); 2489 goto err; 2490 } 2491 /* Unlike push_stack() do not copy_verifier_state(). 2492 * The caller state doesn't matter. 2493 * This is async callback. It starts in a fresh stack. 2494 * Initialize it similar to do_check_common(). 2495 */ 2496 elem->st.branches = 1; 2497 elem->st.in_sleepable = is_sleepable; 2498 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2499 if (!frame) 2500 goto err; 2501 init_func_state(env, frame, 2502 BPF_MAIN_FUNC /* callsite */, 2503 0 /* frameno within this callchain */, 2504 subprog /* subprog number within this prog */); 2505 elem->st.frame[0] = frame; 2506 return &elem->st; 2507 err: 2508 free_verifier_state(env->cur_state, true); 2509 env->cur_state = NULL; 2510 /* pop all elements and return */ 2511 while (!pop_stack(env, NULL, NULL, false)); 2512 return NULL; 2513 } 2514 2515 2516 enum reg_arg_type { 2517 SRC_OP, /* register is used as source operand */ 2518 DST_OP, /* register is used as destination operand */ 2519 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2520 }; 2521 2522 static int cmp_subprogs(const void *a, const void *b) 2523 { 2524 return ((struct bpf_subprog_info *)a)->start - 2525 ((struct bpf_subprog_info *)b)->start; 2526 } 2527 2528 static int find_subprog(struct bpf_verifier_env *env, int off) 2529 { 2530 struct bpf_subprog_info *p; 2531 2532 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2533 sizeof(env->subprog_info[0]), cmp_subprogs); 2534 if (!p) 2535 return -ENOENT; 2536 return p - env->subprog_info; 2537 2538 } 2539 2540 static int add_subprog(struct bpf_verifier_env *env, int off) 2541 { 2542 int insn_cnt = env->prog->len; 2543 int ret; 2544 2545 if (off >= insn_cnt || off < 0) { 2546 verbose(env, "call to invalid destination\n"); 2547 return -EINVAL; 2548 } 2549 ret = find_subprog(env, off); 2550 if (ret >= 0) 2551 return ret; 2552 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2553 verbose(env, "too many subprograms\n"); 2554 return -E2BIG; 2555 } 2556 /* determine subprog starts. The end is one before the next starts */ 2557 env->subprog_info[env->subprog_cnt++].start = off; 2558 sort(env->subprog_info, env->subprog_cnt, 2559 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2560 return env->subprog_cnt - 1; 2561 } 2562 2563 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 2564 { 2565 struct bpf_prog_aux *aux = env->prog->aux; 2566 struct btf *btf = aux->btf; 2567 const struct btf_type *t; 2568 u32 main_btf_id, id; 2569 const char *name; 2570 int ret, i; 2571 2572 /* Non-zero func_info_cnt implies valid btf */ 2573 if (!aux->func_info_cnt) 2574 return 0; 2575 main_btf_id = aux->func_info[0].type_id; 2576 2577 t = btf_type_by_id(btf, main_btf_id); 2578 if (!t) { 2579 verbose(env, "invalid btf id for main subprog in func_info\n"); 2580 return -EINVAL; 2581 } 2582 2583 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 2584 if (IS_ERR(name)) { 2585 ret = PTR_ERR(name); 2586 /* If there is no tag present, there is no exception callback */ 2587 if (ret == -ENOENT) 2588 ret = 0; 2589 else if (ret == -EEXIST) 2590 verbose(env, "multiple exception callback tags for main subprog\n"); 2591 return ret; 2592 } 2593 2594 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 2595 if (ret < 0) { 2596 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 2597 return ret; 2598 } 2599 id = ret; 2600 t = btf_type_by_id(btf, id); 2601 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 2602 verbose(env, "exception callback '%s' must have global linkage\n", name); 2603 return -EINVAL; 2604 } 2605 ret = 0; 2606 for (i = 0; i < aux->func_info_cnt; i++) { 2607 if (aux->func_info[i].type_id != id) 2608 continue; 2609 ret = aux->func_info[i].insn_off; 2610 /* Further func_info and subprog checks will also happen 2611 * later, so assume this is the right insn_off for now. 2612 */ 2613 if (!ret) { 2614 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 2615 ret = -EINVAL; 2616 } 2617 } 2618 if (!ret) { 2619 verbose(env, "exception callback type id not found in func_info\n"); 2620 ret = -EINVAL; 2621 } 2622 return ret; 2623 } 2624 2625 #define MAX_KFUNC_DESCS 256 2626 #define MAX_KFUNC_BTFS 256 2627 2628 struct bpf_kfunc_desc { 2629 struct btf_func_model func_model; 2630 u32 func_id; 2631 s32 imm; 2632 u16 offset; 2633 unsigned long addr; 2634 }; 2635 2636 struct bpf_kfunc_btf { 2637 struct btf *btf; 2638 struct module *module; 2639 u16 offset; 2640 }; 2641 2642 struct bpf_kfunc_desc_tab { 2643 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2644 * verification. JITs do lookups by bpf_insn, where func_id may not be 2645 * available, therefore at the end of verification do_misc_fixups() 2646 * sorts this by imm and offset. 2647 */ 2648 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2649 u32 nr_descs; 2650 }; 2651 2652 struct bpf_kfunc_btf_tab { 2653 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2654 u32 nr_descs; 2655 }; 2656 2657 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2658 { 2659 const struct bpf_kfunc_desc *d0 = a; 2660 const struct bpf_kfunc_desc *d1 = b; 2661 2662 /* func_id is not greater than BTF_MAX_TYPE */ 2663 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2664 } 2665 2666 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2667 { 2668 const struct bpf_kfunc_btf *d0 = a; 2669 const struct bpf_kfunc_btf *d1 = b; 2670 2671 return d0->offset - d1->offset; 2672 } 2673 2674 static const struct bpf_kfunc_desc * 2675 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2676 { 2677 struct bpf_kfunc_desc desc = { 2678 .func_id = func_id, 2679 .offset = offset, 2680 }; 2681 struct bpf_kfunc_desc_tab *tab; 2682 2683 tab = prog->aux->kfunc_tab; 2684 return bsearch(&desc, tab->descs, tab->nr_descs, 2685 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2686 } 2687 2688 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2689 u16 btf_fd_idx, u8 **func_addr) 2690 { 2691 const struct bpf_kfunc_desc *desc; 2692 2693 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2694 if (!desc) 2695 return -EFAULT; 2696 2697 *func_addr = (u8 *)desc->addr; 2698 return 0; 2699 } 2700 2701 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2702 s16 offset) 2703 { 2704 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2705 struct bpf_kfunc_btf_tab *tab; 2706 struct bpf_kfunc_btf *b; 2707 struct module *mod; 2708 struct btf *btf; 2709 int btf_fd; 2710 2711 tab = env->prog->aux->kfunc_btf_tab; 2712 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2713 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2714 if (!b) { 2715 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2716 verbose(env, "too many different module BTFs\n"); 2717 return ERR_PTR(-E2BIG); 2718 } 2719 2720 if (bpfptr_is_null(env->fd_array)) { 2721 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2722 return ERR_PTR(-EPROTO); 2723 } 2724 2725 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2726 offset * sizeof(btf_fd), 2727 sizeof(btf_fd))) 2728 return ERR_PTR(-EFAULT); 2729 2730 btf = btf_get_by_fd(btf_fd); 2731 if (IS_ERR(btf)) { 2732 verbose(env, "invalid module BTF fd specified\n"); 2733 return btf; 2734 } 2735 2736 if (!btf_is_module(btf)) { 2737 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2738 btf_put(btf); 2739 return ERR_PTR(-EINVAL); 2740 } 2741 2742 mod = btf_try_get_module(btf); 2743 if (!mod) { 2744 btf_put(btf); 2745 return ERR_PTR(-ENXIO); 2746 } 2747 2748 b = &tab->descs[tab->nr_descs++]; 2749 b->btf = btf; 2750 b->module = mod; 2751 b->offset = offset; 2752 2753 /* sort() reorders entries by value, so b may no longer point 2754 * to the right entry after this 2755 */ 2756 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2757 kfunc_btf_cmp_by_off, NULL); 2758 } else { 2759 btf = b->btf; 2760 } 2761 2762 return btf; 2763 } 2764 2765 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2766 { 2767 if (!tab) 2768 return; 2769 2770 while (tab->nr_descs--) { 2771 module_put(tab->descs[tab->nr_descs].module); 2772 btf_put(tab->descs[tab->nr_descs].btf); 2773 } 2774 kfree(tab); 2775 } 2776 2777 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2778 { 2779 if (offset) { 2780 if (offset < 0) { 2781 /* In the future, this can be allowed to increase limit 2782 * of fd index into fd_array, interpreted as u16. 2783 */ 2784 verbose(env, "negative offset disallowed for kernel module function call\n"); 2785 return ERR_PTR(-EINVAL); 2786 } 2787 2788 return __find_kfunc_desc_btf(env, offset); 2789 } 2790 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2791 } 2792 2793 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2794 { 2795 const struct btf_type *func, *func_proto; 2796 struct bpf_kfunc_btf_tab *btf_tab; 2797 struct bpf_kfunc_desc_tab *tab; 2798 struct bpf_prog_aux *prog_aux; 2799 struct bpf_kfunc_desc *desc; 2800 const char *func_name; 2801 struct btf *desc_btf; 2802 unsigned long call_imm; 2803 unsigned long addr; 2804 int err; 2805 2806 prog_aux = env->prog->aux; 2807 tab = prog_aux->kfunc_tab; 2808 btf_tab = prog_aux->kfunc_btf_tab; 2809 if (!tab) { 2810 if (!btf_vmlinux) { 2811 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2812 return -ENOTSUPP; 2813 } 2814 2815 if (!env->prog->jit_requested) { 2816 verbose(env, "JIT is required for calling kernel function\n"); 2817 return -ENOTSUPP; 2818 } 2819 2820 if (!bpf_jit_supports_kfunc_call()) { 2821 verbose(env, "JIT does not support calling kernel function\n"); 2822 return -ENOTSUPP; 2823 } 2824 2825 if (!env->prog->gpl_compatible) { 2826 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2827 return -EINVAL; 2828 } 2829 2830 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2831 if (!tab) 2832 return -ENOMEM; 2833 prog_aux->kfunc_tab = tab; 2834 } 2835 2836 /* func_id == 0 is always invalid, but instead of returning an error, be 2837 * conservative and wait until the code elimination pass before returning 2838 * error, so that invalid calls that get pruned out can be in BPF programs 2839 * loaded from userspace. It is also required that offset be untouched 2840 * for such calls. 2841 */ 2842 if (!func_id && !offset) 2843 return 0; 2844 2845 if (!btf_tab && offset) { 2846 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2847 if (!btf_tab) 2848 return -ENOMEM; 2849 prog_aux->kfunc_btf_tab = btf_tab; 2850 } 2851 2852 desc_btf = find_kfunc_desc_btf(env, offset); 2853 if (IS_ERR(desc_btf)) { 2854 verbose(env, "failed to find BTF for kernel function\n"); 2855 return PTR_ERR(desc_btf); 2856 } 2857 2858 if (find_kfunc_desc(env->prog, func_id, offset)) 2859 return 0; 2860 2861 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2862 verbose(env, "too many different kernel function calls\n"); 2863 return -E2BIG; 2864 } 2865 2866 func = btf_type_by_id(desc_btf, func_id); 2867 if (!func || !btf_type_is_func(func)) { 2868 verbose(env, "kernel btf_id %u is not a function\n", 2869 func_id); 2870 return -EINVAL; 2871 } 2872 func_proto = btf_type_by_id(desc_btf, func->type); 2873 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2874 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2875 func_id); 2876 return -EINVAL; 2877 } 2878 2879 func_name = btf_name_by_offset(desc_btf, func->name_off); 2880 addr = kallsyms_lookup_name(func_name); 2881 if (!addr) { 2882 verbose(env, "cannot find address for kernel function %s\n", 2883 func_name); 2884 return -EINVAL; 2885 } 2886 specialize_kfunc(env, func_id, offset, &addr); 2887 2888 if (bpf_jit_supports_far_kfunc_call()) { 2889 call_imm = func_id; 2890 } else { 2891 call_imm = BPF_CALL_IMM(addr); 2892 /* Check whether the relative offset overflows desc->imm */ 2893 if ((unsigned long)(s32)call_imm != call_imm) { 2894 verbose(env, "address of kernel function %s is out of range\n", 2895 func_name); 2896 return -EINVAL; 2897 } 2898 } 2899 2900 if (bpf_dev_bound_kfunc_id(func_id)) { 2901 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2902 if (err) 2903 return err; 2904 } 2905 2906 desc = &tab->descs[tab->nr_descs++]; 2907 desc->func_id = func_id; 2908 desc->imm = call_imm; 2909 desc->offset = offset; 2910 desc->addr = addr; 2911 err = btf_distill_func_proto(&env->log, desc_btf, 2912 func_proto, func_name, 2913 &desc->func_model); 2914 if (!err) 2915 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2916 kfunc_desc_cmp_by_id_off, NULL); 2917 return err; 2918 } 2919 2920 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2921 { 2922 const struct bpf_kfunc_desc *d0 = a; 2923 const struct bpf_kfunc_desc *d1 = b; 2924 2925 if (d0->imm != d1->imm) 2926 return d0->imm < d1->imm ? -1 : 1; 2927 if (d0->offset != d1->offset) 2928 return d0->offset < d1->offset ? -1 : 1; 2929 return 0; 2930 } 2931 2932 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2933 { 2934 struct bpf_kfunc_desc_tab *tab; 2935 2936 tab = prog->aux->kfunc_tab; 2937 if (!tab) 2938 return; 2939 2940 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2941 kfunc_desc_cmp_by_imm_off, NULL); 2942 } 2943 2944 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2945 { 2946 return !!prog->aux->kfunc_tab; 2947 } 2948 2949 const struct btf_func_model * 2950 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2951 const struct bpf_insn *insn) 2952 { 2953 const struct bpf_kfunc_desc desc = { 2954 .imm = insn->imm, 2955 .offset = insn->off, 2956 }; 2957 const struct bpf_kfunc_desc *res; 2958 struct bpf_kfunc_desc_tab *tab; 2959 2960 tab = prog->aux->kfunc_tab; 2961 res = bsearch(&desc, tab->descs, tab->nr_descs, 2962 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2963 2964 return res ? &res->func_model : NULL; 2965 } 2966 2967 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2968 { 2969 struct bpf_subprog_info *subprog = env->subprog_info; 2970 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 2971 struct bpf_insn *insn = env->prog->insnsi; 2972 2973 /* Add entry function. */ 2974 ret = add_subprog(env, 0); 2975 if (ret) 2976 return ret; 2977 2978 for (i = 0; i < insn_cnt; i++, insn++) { 2979 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2980 !bpf_pseudo_kfunc_call(insn)) 2981 continue; 2982 2983 if (!env->bpf_capable) { 2984 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2985 return -EPERM; 2986 } 2987 2988 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2989 ret = add_subprog(env, i + insn->imm + 1); 2990 else 2991 ret = add_kfunc_call(env, insn->imm, insn->off); 2992 2993 if (ret < 0) 2994 return ret; 2995 } 2996 2997 ret = bpf_find_exception_callback_insn_off(env); 2998 if (ret < 0) 2999 return ret; 3000 ex_cb_insn = ret; 3001 3002 /* If ex_cb_insn > 0, this means that the main program has a subprog 3003 * marked using BTF decl tag to serve as the exception callback. 3004 */ 3005 if (ex_cb_insn) { 3006 ret = add_subprog(env, ex_cb_insn); 3007 if (ret < 0) 3008 return ret; 3009 for (i = 1; i < env->subprog_cnt; i++) { 3010 if (env->subprog_info[i].start != ex_cb_insn) 3011 continue; 3012 env->exception_callback_subprog = i; 3013 mark_subprog_exc_cb(env, i); 3014 break; 3015 } 3016 } 3017 3018 /* Add a fake 'exit' subprog which could simplify subprog iteration 3019 * logic. 'subprog_cnt' should not be increased. 3020 */ 3021 subprog[env->subprog_cnt].start = insn_cnt; 3022 3023 if (env->log.level & BPF_LOG_LEVEL2) 3024 for (i = 0; i < env->subprog_cnt; i++) 3025 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3026 3027 return 0; 3028 } 3029 3030 static int check_subprogs(struct bpf_verifier_env *env) 3031 { 3032 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3033 struct bpf_subprog_info *subprog = env->subprog_info; 3034 struct bpf_insn *insn = env->prog->insnsi; 3035 int insn_cnt = env->prog->len; 3036 3037 /* now check that all jumps are within the same subprog */ 3038 subprog_start = subprog[cur_subprog].start; 3039 subprog_end = subprog[cur_subprog + 1].start; 3040 for (i = 0; i < insn_cnt; i++) { 3041 u8 code = insn[i].code; 3042 3043 if (code == (BPF_JMP | BPF_CALL) && 3044 insn[i].src_reg == 0 && 3045 insn[i].imm == BPF_FUNC_tail_call) { 3046 subprog[cur_subprog].has_tail_call = true; 3047 subprog[cur_subprog].tail_call_reachable = true; 3048 } 3049 if (BPF_CLASS(code) == BPF_LD && 3050 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3051 subprog[cur_subprog].has_ld_abs = true; 3052 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3053 goto next; 3054 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3055 goto next; 3056 if (code == (BPF_JMP32 | BPF_JA)) 3057 off = i + insn[i].imm + 1; 3058 else 3059 off = i + insn[i].off + 1; 3060 if (off < subprog_start || off >= subprog_end) { 3061 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3062 return -EINVAL; 3063 } 3064 next: 3065 if (i == subprog_end - 1) { 3066 /* to avoid fall-through from one subprog into another 3067 * the last insn of the subprog should be either exit 3068 * or unconditional jump back or bpf_throw call 3069 */ 3070 if (code != (BPF_JMP | BPF_EXIT) && 3071 code != (BPF_JMP32 | BPF_JA) && 3072 code != (BPF_JMP | BPF_JA)) { 3073 verbose(env, "last insn is not an exit or jmp\n"); 3074 return -EINVAL; 3075 } 3076 subprog_start = subprog_end; 3077 cur_subprog++; 3078 if (cur_subprog < env->subprog_cnt) 3079 subprog_end = subprog[cur_subprog + 1].start; 3080 } 3081 } 3082 return 0; 3083 } 3084 3085 /* Parentage chain of this register (or stack slot) should take care of all 3086 * issues like callee-saved registers, stack slot allocation time, etc. 3087 */ 3088 static int mark_reg_read(struct bpf_verifier_env *env, 3089 const struct bpf_reg_state *state, 3090 struct bpf_reg_state *parent, u8 flag) 3091 { 3092 bool writes = parent == state->parent; /* Observe write marks */ 3093 int cnt = 0; 3094 3095 while (parent) { 3096 /* if read wasn't screened by an earlier write ... */ 3097 if (writes && state->live & REG_LIVE_WRITTEN) 3098 break; 3099 if (parent->live & REG_LIVE_DONE) { 3100 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 3101 reg_type_str(env, parent->type), 3102 parent->var_off.value, parent->off); 3103 return -EFAULT; 3104 } 3105 /* The first condition is more likely to be true than the 3106 * second, checked it first. 3107 */ 3108 if ((parent->live & REG_LIVE_READ) == flag || 3109 parent->live & REG_LIVE_READ64) 3110 /* The parentage chain never changes and 3111 * this parent was already marked as LIVE_READ. 3112 * There is no need to keep walking the chain again and 3113 * keep re-marking all parents as LIVE_READ. 3114 * This case happens when the same register is read 3115 * multiple times without writes into it in-between. 3116 * Also, if parent has the stronger REG_LIVE_READ64 set, 3117 * then no need to set the weak REG_LIVE_READ32. 3118 */ 3119 break; 3120 /* ... then we depend on parent's value */ 3121 parent->live |= flag; 3122 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3123 if (flag == REG_LIVE_READ64) 3124 parent->live &= ~REG_LIVE_READ32; 3125 state = parent; 3126 parent = state->parent; 3127 writes = true; 3128 cnt++; 3129 } 3130 3131 if (env->longest_mark_read_walk < cnt) 3132 env->longest_mark_read_walk = cnt; 3133 return 0; 3134 } 3135 3136 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3137 { 3138 struct bpf_func_state *state = func(env, reg); 3139 int spi, ret; 3140 3141 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3142 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3143 * check_kfunc_call. 3144 */ 3145 if (reg->type == CONST_PTR_TO_DYNPTR) 3146 return 0; 3147 spi = dynptr_get_spi(env, reg); 3148 if (spi < 0) 3149 return spi; 3150 /* Caller ensures dynptr is valid and initialized, which means spi is in 3151 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3152 * read. 3153 */ 3154 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 3155 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3156 if (ret) 3157 return ret; 3158 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3159 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3160 } 3161 3162 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3163 int spi, int nr_slots) 3164 { 3165 struct bpf_func_state *state = func(env, reg); 3166 int err, i; 3167 3168 for (i = 0; i < nr_slots; i++) { 3169 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3170 3171 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3172 if (err) 3173 return err; 3174 3175 mark_stack_slot_scratched(env, spi - i); 3176 } 3177 3178 return 0; 3179 } 3180 3181 /* This function is supposed to be used by the following 32-bit optimization 3182 * code only. It returns TRUE if the source or destination register operates 3183 * on 64-bit, otherwise return FALSE. 3184 */ 3185 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3186 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3187 { 3188 u8 code, class, op; 3189 3190 code = insn->code; 3191 class = BPF_CLASS(code); 3192 op = BPF_OP(code); 3193 if (class == BPF_JMP) { 3194 /* BPF_EXIT for "main" will reach here. Return TRUE 3195 * conservatively. 3196 */ 3197 if (op == BPF_EXIT) 3198 return true; 3199 if (op == BPF_CALL) { 3200 /* BPF to BPF call will reach here because of marking 3201 * caller saved clobber with DST_OP_NO_MARK for which we 3202 * don't care the register def because they are anyway 3203 * marked as NOT_INIT already. 3204 */ 3205 if (insn->src_reg == BPF_PSEUDO_CALL) 3206 return false; 3207 /* Helper call will reach here because of arg type 3208 * check, conservatively return TRUE. 3209 */ 3210 if (t == SRC_OP) 3211 return true; 3212 3213 return false; 3214 } 3215 } 3216 3217 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3218 return false; 3219 3220 if (class == BPF_ALU64 || class == BPF_JMP || 3221 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3222 return true; 3223 3224 if (class == BPF_ALU || class == BPF_JMP32) 3225 return false; 3226 3227 if (class == BPF_LDX) { 3228 if (t != SRC_OP) 3229 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3230 /* LDX source must be ptr. */ 3231 return true; 3232 } 3233 3234 if (class == BPF_STX) { 3235 /* BPF_STX (including atomic variants) has multiple source 3236 * operands, one of which is a ptr. Check whether the caller is 3237 * asking about it. 3238 */ 3239 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3240 return true; 3241 return BPF_SIZE(code) == BPF_DW; 3242 } 3243 3244 if (class == BPF_LD) { 3245 u8 mode = BPF_MODE(code); 3246 3247 /* LD_IMM64 */ 3248 if (mode == BPF_IMM) 3249 return true; 3250 3251 /* Both LD_IND and LD_ABS return 32-bit data. */ 3252 if (t != SRC_OP) 3253 return false; 3254 3255 /* Implicit ctx ptr. */ 3256 if (regno == BPF_REG_6) 3257 return true; 3258 3259 /* Explicit source could be any width. */ 3260 return true; 3261 } 3262 3263 if (class == BPF_ST) 3264 /* The only source register for BPF_ST is a ptr. */ 3265 return true; 3266 3267 /* Conservatively return true at default. */ 3268 return true; 3269 } 3270 3271 /* Return the regno defined by the insn, or -1. */ 3272 static int insn_def_regno(const struct bpf_insn *insn) 3273 { 3274 switch (BPF_CLASS(insn->code)) { 3275 case BPF_JMP: 3276 case BPF_JMP32: 3277 case BPF_ST: 3278 return -1; 3279 case BPF_STX: 3280 if ((BPF_MODE(insn->code) == BPF_ATOMIC || 3281 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) && 3282 (insn->imm & BPF_FETCH)) { 3283 if (insn->imm == BPF_CMPXCHG) 3284 return BPF_REG_0; 3285 else 3286 return insn->src_reg; 3287 } else { 3288 return -1; 3289 } 3290 default: 3291 return insn->dst_reg; 3292 } 3293 } 3294 3295 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3296 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3297 { 3298 int dst_reg = insn_def_regno(insn); 3299 3300 if (dst_reg == -1) 3301 return false; 3302 3303 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3304 } 3305 3306 static void mark_insn_zext(struct bpf_verifier_env *env, 3307 struct bpf_reg_state *reg) 3308 { 3309 s32 def_idx = reg->subreg_def; 3310 3311 if (def_idx == DEF_NOT_SUBREG) 3312 return; 3313 3314 env->insn_aux_data[def_idx - 1].zext_dst = true; 3315 /* The dst will be zero extended, so won't be sub-register anymore. */ 3316 reg->subreg_def = DEF_NOT_SUBREG; 3317 } 3318 3319 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3320 enum reg_arg_type t) 3321 { 3322 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3323 struct bpf_reg_state *reg; 3324 bool rw64; 3325 3326 if (regno >= MAX_BPF_REG) { 3327 verbose(env, "R%d is invalid\n", regno); 3328 return -EINVAL; 3329 } 3330 3331 mark_reg_scratched(env, regno); 3332 3333 reg = ®s[regno]; 3334 rw64 = is_reg64(env, insn, regno, reg, t); 3335 if (t == SRC_OP) { 3336 /* check whether register used as source operand can be read */ 3337 if (reg->type == NOT_INIT) { 3338 verbose(env, "R%d !read_ok\n", regno); 3339 return -EACCES; 3340 } 3341 /* We don't need to worry about FP liveness because it's read-only */ 3342 if (regno == BPF_REG_FP) 3343 return 0; 3344 3345 if (rw64) 3346 mark_insn_zext(env, reg); 3347 3348 return mark_reg_read(env, reg, reg->parent, 3349 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3350 } else { 3351 /* check whether register used as dest operand can be written to */ 3352 if (regno == BPF_REG_FP) { 3353 verbose(env, "frame pointer is read only\n"); 3354 return -EACCES; 3355 } 3356 reg->live |= REG_LIVE_WRITTEN; 3357 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3358 if (t == DST_OP) 3359 mark_reg_unknown(env, regs, regno); 3360 } 3361 return 0; 3362 } 3363 3364 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3365 enum reg_arg_type t) 3366 { 3367 struct bpf_verifier_state *vstate = env->cur_state; 3368 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3369 3370 return __check_reg_arg(env, state->regs, regno, t); 3371 } 3372 3373 static int insn_stack_access_flags(int frameno, int spi) 3374 { 3375 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3376 } 3377 3378 static int insn_stack_access_spi(int insn_flags) 3379 { 3380 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3381 } 3382 3383 static int insn_stack_access_frameno(int insn_flags) 3384 { 3385 return insn_flags & INSN_F_FRAMENO_MASK; 3386 } 3387 3388 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3389 { 3390 env->insn_aux_data[idx].jmp_point = true; 3391 } 3392 3393 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3394 { 3395 return env->insn_aux_data[insn_idx].jmp_point; 3396 } 3397 3398 #define LR_FRAMENO_BITS 3 3399 #define LR_SPI_BITS 6 3400 #define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1) 3401 #define LR_SIZE_BITS 4 3402 #define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1) 3403 #define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1) 3404 #define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1) 3405 #define LR_SPI_OFF LR_FRAMENO_BITS 3406 #define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS) 3407 #define LINKED_REGS_MAX 6 3408 3409 struct linked_reg { 3410 u8 frameno; 3411 union { 3412 u8 spi; 3413 u8 regno; 3414 }; 3415 bool is_reg; 3416 }; 3417 3418 struct linked_regs { 3419 int cnt; 3420 struct linked_reg entries[LINKED_REGS_MAX]; 3421 }; 3422 3423 static struct linked_reg *linked_regs_push(struct linked_regs *s) 3424 { 3425 if (s->cnt < LINKED_REGS_MAX) 3426 return &s->entries[s->cnt++]; 3427 3428 return NULL; 3429 } 3430 3431 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track 3432 * number of elements currently in stack. 3433 * Pack one history entry for linked registers as 10 bits in the following format: 3434 * - 3-bits frameno 3435 * - 6-bits spi_or_reg 3436 * - 1-bit is_reg 3437 */ 3438 static u64 linked_regs_pack(struct linked_regs *s) 3439 { 3440 u64 val = 0; 3441 int i; 3442 3443 for (i = 0; i < s->cnt; ++i) { 3444 struct linked_reg *e = &s->entries[i]; 3445 u64 tmp = 0; 3446 3447 tmp |= e->frameno; 3448 tmp |= e->spi << LR_SPI_OFF; 3449 tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF; 3450 3451 val <<= LR_ENTRY_BITS; 3452 val |= tmp; 3453 } 3454 val <<= LR_SIZE_BITS; 3455 val |= s->cnt; 3456 return val; 3457 } 3458 3459 static void linked_regs_unpack(u64 val, struct linked_regs *s) 3460 { 3461 int i; 3462 3463 s->cnt = val & LR_SIZE_MASK; 3464 val >>= LR_SIZE_BITS; 3465 3466 for (i = 0; i < s->cnt; ++i) { 3467 struct linked_reg *e = &s->entries[i]; 3468 3469 e->frameno = val & LR_FRAMENO_MASK; 3470 e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK; 3471 e->is_reg = (val >> LR_IS_REG_OFF) & 0x1; 3472 val >>= LR_ENTRY_BITS; 3473 } 3474 } 3475 3476 /* for any branch, call, exit record the history of jmps in the given state */ 3477 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 3478 int insn_flags, u64 linked_regs) 3479 { 3480 u32 cnt = cur->jmp_history_cnt; 3481 struct bpf_jmp_history_entry *p; 3482 size_t alloc_size; 3483 3484 /* combine instruction flags if we already recorded this instruction */ 3485 if (env->cur_hist_ent) { 3486 /* atomic instructions push insn_flags twice, for READ and 3487 * WRITE sides, but they should agree on stack slot 3488 */ 3489 WARN_ONCE((env->cur_hist_ent->flags & insn_flags) && 3490 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 3491 "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n", 3492 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 3493 env->cur_hist_ent->flags |= insn_flags; 3494 WARN_ONCE(env->cur_hist_ent->linked_regs != 0, 3495 "verifier insn history bug: insn_idx %d linked_regs != 0: %#llx\n", 3496 env->insn_idx, env->cur_hist_ent->linked_regs); 3497 env->cur_hist_ent->linked_regs = linked_regs; 3498 return 0; 3499 } 3500 3501 cnt++; 3502 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3503 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3504 if (!p) 3505 return -ENOMEM; 3506 cur->jmp_history = p; 3507 3508 p = &cur->jmp_history[cnt - 1]; 3509 p->idx = env->insn_idx; 3510 p->prev_idx = env->prev_insn_idx; 3511 p->flags = insn_flags; 3512 p->linked_regs = linked_regs; 3513 cur->jmp_history_cnt = cnt; 3514 env->cur_hist_ent = p; 3515 3516 return 0; 3517 } 3518 3519 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st, 3520 u32 hist_end, int insn_idx) 3521 { 3522 if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx) 3523 return &st->jmp_history[hist_end - 1]; 3524 return NULL; 3525 } 3526 3527 /* Backtrack one insn at a time. If idx is not at the top of recorded 3528 * history then previous instruction came from straight line execution. 3529 * Return -ENOENT if we exhausted all instructions within given state. 3530 * 3531 * It's legal to have a bit of a looping with the same starting and ending 3532 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3533 * instruction index is the same as state's first_idx doesn't mean we are 3534 * done. If there is still some jump history left, we should keep going. We 3535 * need to take into account that we might have a jump history between given 3536 * state's parent and itself, due to checkpointing. In this case, we'll have 3537 * history entry recording a jump from last instruction of parent state and 3538 * first instruction of given state. 3539 */ 3540 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3541 u32 *history) 3542 { 3543 u32 cnt = *history; 3544 3545 if (i == st->first_insn_idx) { 3546 if (cnt == 0) 3547 return -ENOENT; 3548 if (cnt == 1 && st->jmp_history[0].idx == i) 3549 return -ENOENT; 3550 } 3551 3552 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3553 i = st->jmp_history[cnt - 1].prev_idx; 3554 (*history)--; 3555 } else { 3556 i--; 3557 } 3558 return i; 3559 } 3560 3561 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3562 { 3563 const struct btf_type *func; 3564 struct btf *desc_btf; 3565 3566 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3567 return NULL; 3568 3569 desc_btf = find_kfunc_desc_btf(data, insn->off); 3570 if (IS_ERR(desc_btf)) 3571 return "<error>"; 3572 3573 func = btf_type_by_id(desc_btf, insn->imm); 3574 return btf_name_by_offset(desc_btf, func->name_off); 3575 } 3576 3577 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3578 { 3579 bt->frame = frame; 3580 } 3581 3582 static inline void bt_reset(struct backtrack_state *bt) 3583 { 3584 struct bpf_verifier_env *env = bt->env; 3585 3586 memset(bt, 0, sizeof(*bt)); 3587 bt->env = env; 3588 } 3589 3590 static inline u32 bt_empty(struct backtrack_state *bt) 3591 { 3592 u64 mask = 0; 3593 int i; 3594 3595 for (i = 0; i <= bt->frame; i++) 3596 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3597 3598 return mask == 0; 3599 } 3600 3601 static inline int bt_subprog_enter(struct backtrack_state *bt) 3602 { 3603 if (bt->frame == MAX_CALL_FRAMES - 1) { 3604 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3605 WARN_ONCE(1, "verifier backtracking bug"); 3606 return -EFAULT; 3607 } 3608 bt->frame++; 3609 return 0; 3610 } 3611 3612 static inline int bt_subprog_exit(struct backtrack_state *bt) 3613 { 3614 if (bt->frame == 0) { 3615 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3616 WARN_ONCE(1, "verifier backtracking bug"); 3617 return -EFAULT; 3618 } 3619 bt->frame--; 3620 return 0; 3621 } 3622 3623 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3624 { 3625 bt->reg_masks[frame] |= 1 << reg; 3626 } 3627 3628 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3629 { 3630 bt->reg_masks[frame] &= ~(1 << reg); 3631 } 3632 3633 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3634 { 3635 bt_set_frame_reg(bt, bt->frame, reg); 3636 } 3637 3638 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3639 { 3640 bt_clear_frame_reg(bt, bt->frame, reg); 3641 } 3642 3643 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3644 { 3645 bt->stack_masks[frame] |= 1ull << slot; 3646 } 3647 3648 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3649 { 3650 bt->stack_masks[frame] &= ~(1ull << slot); 3651 } 3652 3653 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3654 { 3655 return bt->reg_masks[frame]; 3656 } 3657 3658 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3659 { 3660 return bt->reg_masks[bt->frame]; 3661 } 3662 3663 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3664 { 3665 return bt->stack_masks[frame]; 3666 } 3667 3668 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3669 { 3670 return bt->stack_masks[bt->frame]; 3671 } 3672 3673 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3674 { 3675 return bt->reg_masks[bt->frame] & (1 << reg); 3676 } 3677 3678 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg) 3679 { 3680 return bt->reg_masks[frame] & (1 << reg); 3681 } 3682 3683 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 3684 { 3685 return bt->stack_masks[frame] & (1ull << slot); 3686 } 3687 3688 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3689 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3690 { 3691 DECLARE_BITMAP(mask, 64); 3692 bool first = true; 3693 int i, n; 3694 3695 buf[0] = '\0'; 3696 3697 bitmap_from_u64(mask, reg_mask); 3698 for_each_set_bit(i, mask, 32) { 3699 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3700 first = false; 3701 buf += n; 3702 buf_sz -= n; 3703 if (buf_sz < 0) 3704 break; 3705 } 3706 } 3707 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3708 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3709 { 3710 DECLARE_BITMAP(mask, 64); 3711 bool first = true; 3712 int i, n; 3713 3714 buf[0] = '\0'; 3715 3716 bitmap_from_u64(mask, stack_mask); 3717 for_each_set_bit(i, mask, 64) { 3718 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3719 first = false; 3720 buf += n; 3721 buf_sz -= n; 3722 if (buf_sz < 0) 3723 break; 3724 } 3725 } 3726 3727 /* If any register R in hist->linked_regs is marked as precise in bt, 3728 * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs. 3729 */ 3730 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist) 3731 { 3732 struct linked_regs linked_regs; 3733 bool some_precise = false; 3734 int i; 3735 3736 if (!hist || hist->linked_regs == 0) 3737 return; 3738 3739 linked_regs_unpack(hist->linked_regs, &linked_regs); 3740 for (i = 0; i < linked_regs.cnt; ++i) { 3741 struct linked_reg *e = &linked_regs.entries[i]; 3742 3743 if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) || 3744 (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) { 3745 some_precise = true; 3746 break; 3747 } 3748 } 3749 3750 if (!some_precise) 3751 return; 3752 3753 for (i = 0; i < linked_regs.cnt; ++i) { 3754 struct linked_reg *e = &linked_regs.entries[i]; 3755 3756 if (e->is_reg) 3757 bt_set_frame_reg(bt, e->frameno, e->regno); 3758 else 3759 bt_set_frame_slot(bt, e->frameno, e->spi); 3760 } 3761 } 3762 3763 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3764 3765 /* For given verifier state backtrack_insn() is called from the last insn to 3766 * the first insn. Its purpose is to compute a bitmask of registers and 3767 * stack slots that needs precision in the parent verifier state. 3768 * 3769 * @idx is an index of the instruction we are currently processing; 3770 * @subseq_idx is an index of the subsequent instruction that: 3771 * - *would be* executed next, if jump history is viewed in forward order; 3772 * - *was* processed previously during backtracking. 3773 */ 3774 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3775 struct bpf_jmp_history_entry *hist, struct backtrack_state *bt) 3776 { 3777 const struct bpf_insn_cbs cbs = { 3778 .cb_call = disasm_kfunc_name, 3779 .cb_print = verbose, 3780 .private_data = env, 3781 }; 3782 struct bpf_insn *insn = env->prog->insnsi + idx; 3783 u8 class = BPF_CLASS(insn->code); 3784 u8 opcode = BPF_OP(insn->code); 3785 u8 mode = BPF_MODE(insn->code); 3786 u32 dreg = insn->dst_reg; 3787 u32 sreg = insn->src_reg; 3788 u32 spi, i, fr; 3789 3790 if (insn->code == 0) 3791 return 0; 3792 if (env->log.level & BPF_LOG_LEVEL2) { 3793 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3794 verbose(env, "mark_precise: frame%d: regs=%s ", 3795 bt->frame, env->tmp_str_buf); 3796 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3797 verbose(env, "stack=%s before ", env->tmp_str_buf); 3798 verbose(env, "%d: ", idx); 3799 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3800 } 3801 3802 /* If there is a history record that some registers gained range at this insn, 3803 * propagate precision marks to those registers, so that bt_is_reg_set() 3804 * accounts for these registers. 3805 */ 3806 bt_sync_linked_regs(bt, hist); 3807 3808 if (class == BPF_ALU || class == BPF_ALU64) { 3809 if (!bt_is_reg_set(bt, dreg)) 3810 return 0; 3811 if (opcode == BPF_END || opcode == BPF_NEG) { 3812 /* sreg is reserved and unused 3813 * dreg still need precision before this insn 3814 */ 3815 return 0; 3816 } else if (opcode == BPF_MOV) { 3817 if (BPF_SRC(insn->code) == BPF_X) { 3818 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3819 * dreg needs precision after this insn 3820 * sreg needs precision before this insn 3821 */ 3822 bt_clear_reg(bt, dreg); 3823 if (sreg != BPF_REG_FP) 3824 bt_set_reg(bt, sreg); 3825 } else { 3826 /* dreg = K 3827 * dreg needs precision after this insn. 3828 * Corresponding register is already marked 3829 * as precise=true in this verifier state. 3830 * No further markings in parent are necessary 3831 */ 3832 bt_clear_reg(bt, dreg); 3833 } 3834 } else { 3835 if (BPF_SRC(insn->code) == BPF_X) { 3836 /* dreg += sreg 3837 * both dreg and sreg need precision 3838 * before this insn 3839 */ 3840 if (sreg != BPF_REG_FP) 3841 bt_set_reg(bt, sreg); 3842 } /* else dreg += K 3843 * dreg still needs precision before this insn 3844 */ 3845 } 3846 } else if (class == BPF_LDX) { 3847 if (!bt_is_reg_set(bt, dreg)) 3848 return 0; 3849 bt_clear_reg(bt, dreg); 3850 3851 /* scalars can only be spilled into stack w/o losing precision. 3852 * Load from any other memory can be zero extended. 3853 * The desire to keep that precision is already indicated 3854 * by 'precise' mark in corresponding register of this state. 3855 * No further tracking necessary. 3856 */ 3857 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3858 return 0; 3859 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3860 * that [fp - off] slot contains scalar that needs to be 3861 * tracked with precision 3862 */ 3863 spi = insn_stack_access_spi(hist->flags); 3864 fr = insn_stack_access_frameno(hist->flags); 3865 bt_set_frame_slot(bt, fr, spi); 3866 } else if (class == BPF_STX || class == BPF_ST) { 3867 if (bt_is_reg_set(bt, dreg)) 3868 /* stx & st shouldn't be using _scalar_ dst_reg 3869 * to access memory. It means backtracking 3870 * encountered a case of pointer subtraction. 3871 */ 3872 return -ENOTSUPP; 3873 /* scalars can only be spilled into stack */ 3874 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3875 return 0; 3876 spi = insn_stack_access_spi(hist->flags); 3877 fr = insn_stack_access_frameno(hist->flags); 3878 if (!bt_is_frame_slot_set(bt, fr, spi)) 3879 return 0; 3880 bt_clear_frame_slot(bt, fr, spi); 3881 if (class == BPF_STX) 3882 bt_set_reg(bt, sreg); 3883 } else if (class == BPF_JMP || class == BPF_JMP32) { 3884 if (bpf_pseudo_call(insn)) { 3885 int subprog_insn_idx, subprog; 3886 3887 subprog_insn_idx = idx + insn->imm + 1; 3888 subprog = find_subprog(env, subprog_insn_idx); 3889 if (subprog < 0) 3890 return -EFAULT; 3891 3892 if (subprog_is_global(env, subprog)) { 3893 /* check that jump history doesn't have any 3894 * extra instructions from subprog; the next 3895 * instruction after call to global subprog 3896 * should be literally next instruction in 3897 * caller program 3898 */ 3899 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3900 /* r1-r5 are invalidated after subprog call, 3901 * so for global func call it shouldn't be set 3902 * anymore 3903 */ 3904 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3905 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3906 WARN_ONCE(1, "verifier backtracking bug"); 3907 return -EFAULT; 3908 } 3909 /* global subprog always sets R0 */ 3910 bt_clear_reg(bt, BPF_REG_0); 3911 return 0; 3912 } else { 3913 /* static subprog call instruction, which 3914 * means that we are exiting current subprog, 3915 * so only r1-r5 could be still requested as 3916 * precise, r0 and r6-r10 or any stack slot in 3917 * the current frame should be zero by now 3918 */ 3919 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3920 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3921 WARN_ONCE(1, "verifier backtracking bug"); 3922 return -EFAULT; 3923 } 3924 /* we are now tracking register spills correctly, 3925 * so any instance of leftover slots is a bug 3926 */ 3927 if (bt_stack_mask(bt) != 0) { 3928 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 3929 WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)"); 3930 return -EFAULT; 3931 } 3932 /* propagate r1-r5 to the caller */ 3933 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3934 if (bt_is_reg_set(bt, i)) { 3935 bt_clear_reg(bt, i); 3936 bt_set_frame_reg(bt, bt->frame - 1, i); 3937 } 3938 } 3939 if (bt_subprog_exit(bt)) 3940 return -EFAULT; 3941 return 0; 3942 } 3943 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 3944 /* exit from callback subprog to callback-calling helper or 3945 * kfunc call. Use idx/subseq_idx check to discern it from 3946 * straight line code backtracking. 3947 * Unlike the subprog call handling above, we shouldn't 3948 * propagate precision of r1-r5 (if any requested), as they are 3949 * not actually arguments passed directly to callback subprogs 3950 */ 3951 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3952 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3953 WARN_ONCE(1, "verifier backtracking bug"); 3954 return -EFAULT; 3955 } 3956 if (bt_stack_mask(bt) != 0) { 3957 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 3958 WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)"); 3959 return -EFAULT; 3960 } 3961 /* clear r1-r5 in callback subprog's mask */ 3962 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3963 bt_clear_reg(bt, i); 3964 if (bt_subprog_exit(bt)) 3965 return -EFAULT; 3966 return 0; 3967 } else if (opcode == BPF_CALL) { 3968 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3969 * catch this error later. Make backtracking conservative 3970 * with ENOTSUPP. 3971 */ 3972 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3973 return -ENOTSUPP; 3974 /* regular helper call sets R0 */ 3975 bt_clear_reg(bt, BPF_REG_0); 3976 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3977 /* if backtracing was looking for registers R1-R5 3978 * they should have been found already. 3979 */ 3980 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3981 WARN_ONCE(1, "verifier backtracking bug"); 3982 return -EFAULT; 3983 } 3984 } else if (opcode == BPF_EXIT) { 3985 bool r0_precise; 3986 3987 /* Backtracking to a nested function call, 'idx' is a part of 3988 * the inner frame 'subseq_idx' is a part of the outer frame. 3989 * In case of a regular function call, instructions giving 3990 * precision to registers R1-R5 should have been found already. 3991 * In case of a callback, it is ok to have R1-R5 marked for 3992 * backtracking, as these registers are set by the function 3993 * invoking callback. 3994 */ 3995 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 3996 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3997 bt_clear_reg(bt, i); 3998 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3999 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4000 WARN_ONCE(1, "verifier backtracking bug"); 4001 return -EFAULT; 4002 } 4003 4004 /* BPF_EXIT in subprog or callback always returns 4005 * right after the call instruction, so by checking 4006 * whether the instruction at subseq_idx-1 is subprog 4007 * call or not we can distinguish actual exit from 4008 * *subprog* from exit from *callback*. In the former 4009 * case, we need to propagate r0 precision, if 4010 * necessary. In the former we never do that. 4011 */ 4012 r0_precise = subseq_idx - 1 >= 0 && 4013 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 4014 bt_is_reg_set(bt, BPF_REG_0); 4015 4016 bt_clear_reg(bt, BPF_REG_0); 4017 if (bt_subprog_enter(bt)) 4018 return -EFAULT; 4019 4020 if (r0_precise) 4021 bt_set_reg(bt, BPF_REG_0); 4022 /* r6-r9 and stack slots will stay set in caller frame 4023 * bitmasks until we return back from callee(s) 4024 */ 4025 return 0; 4026 } else if (BPF_SRC(insn->code) == BPF_X) { 4027 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 4028 return 0; 4029 /* dreg <cond> sreg 4030 * Both dreg and sreg need precision before 4031 * this insn. If only sreg was marked precise 4032 * before it would be equally necessary to 4033 * propagate it to dreg. 4034 */ 4035 bt_set_reg(bt, dreg); 4036 bt_set_reg(bt, sreg); 4037 } else if (BPF_SRC(insn->code) == BPF_K) { 4038 /* dreg <cond> K 4039 * Only dreg still needs precision before 4040 * this insn, so for the K-based conditional 4041 * there is nothing new to be marked. 4042 */ 4043 } 4044 } else if (class == BPF_LD) { 4045 if (!bt_is_reg_set(bt, dreg)) 4046 return 0; 4047 bt_clear_reg(bt, dreg); 4048 /* It's ld_imm64 or ld_abs or ld_ind. 4049 * For ld_imm64 no further tracking of precision 4050 * into parent is necessary 4051 */ 4052 if (mode == BPF_IND || mode == BPF_ABS) 4053 /* to be analyzed */ 4054 return -ENOTSUPP; 4055 } 4056 /* Propagate precision marks to linked registers, to account for 4057 * registers marked as precise in this function. 4058 */ 4059 bt_sync_linked_regs(bt, hist); 4060 return 0; 4061 } 4062 4063 /* the scalar precision tracking algorithm: 4064 * . at the start all registers have precise=false. 4065 * . scalar ranges are tracked as normal through alu and jmp insns. 4066 * . once precise value of the scalar register is used in: 4067 * . ptr + scalar alu 4068 * . if (scalar cond K|scalar) 4069 * . helper_call(.., scalar, ...) where ARG_CONST is expected 4070 * backtrack through the verifier states and mark all registers and 4071 * stack slots with spilled constants that these scalar regisers 4072 * should be precise. 4073 * . during state pruning two registers (or spilled stack slots) 4074 * are equivalent if both are not precise. 4075 * 4076 * Note the verifier cannot simply walk register parentage chain, 4077 * since many different registers and stack slots could have been 4078 * used to compute single precise scalar. 4079 * 4080 * The approach of starting with precise=true for all registers and then 4081 * backtrack to mark a register as not precise when the verifier detects 4082 * that program doesn't care about specific value (e.g., when helper 4083 * takes register as ARG_ANYTHING parameter) is not safe. 4084 * 4085 * It's ok to walk single parentage chain of the verifier states. 4086 * It's possible that this backtracking will go all the way till 1st insn. 4087 * All other branches will be explored for needing precision later. 4088 * 4089 * The backtracking needs to deal with cases like: 4090 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 4091 * r9 -= r8 4092 * r5 = r9 4093 * if r5 > 0x79f goto pc+7 4094 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 4095 * r5 += 1 4096 * ... 4097 * call bpf_perf_event_output#25 4098 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 4099 * 4100 * and this case: 4101 * r6 = 1 4102 * call foo // uses callee's r6 inside to compute r0 4103 * r0 += r6 4104 * if r0 == 0 goto 4105 * 4106 * to track above reg_mask/stack_mask needs to be independent for each frame. 4107 * 4108 * Also if parent's curframe > frame where backtracking started, 4109 * the verifier need to mark registers in both frames, otherwise callees 4110 * may incorrectly prune callers. This is similar to 4111 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 4112 * 4113 * For now backtracking falls back into conservative marking. 4114 */ 4115 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 4116 struct bpf_verifier_state *st) 4117 { 4118 struct bpf_func_state *func; 4119 struct bpf_reg_state *reg; 4120 int i, j; 4121 4122 if (env->log.level & BPF_LOG_LEVEL2) { 4123 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 4124 st->curframe); 4125 } 4126 4127 /* big hammer: mark all scalars precise in this path. 4128 * pop_stack may still get !precise scalars. 4129 * We also skip current state and go straight to first parent state, 4130 * because precision markings in current non-checkpointed state are 4131 * not needed. See why in the comment in __mark_chain_precision below. 4132 */ 4133 for (st = st->parent; st; st = st->parent) { 4134 for (i = 0; i <= st->curframe; i++) { 4135 func = st->frame[i]; 4136 for (j = 0; j < BPF_REG_FP; j++) { 4137 reg = &func->regs[j]; 4138 if (reg->type != SCALAR_VALUE || reg->precise) 4139 continue; 4140 reg->precise = true; 4141 if (env->log.level & BPF_LOG_LEVEL2) { 4142 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4143 i, j); 4144 } 4145 } 4146 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4147 if (!is_spilled_reg(&func->stack[j])) 4148 continue; 4149 reg = &func->stack[j].spilled_ptr; 4150 if (reg->type != SCALAR_VALUE || reg->precise) 4151 continue; 4152 reg->precise = true; 4153 if (env->log.level & BPF_LOG_LEVEL2) { 4154 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4155 i, -(j + 1) * 8); 4156 } 4157 } 4158 } 4159 } 4160 } 4161 4162 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4163 { 4164 struct bpf_func_state *func; 4165 struct bpf_reg_state *reg; 4166 int i, j; 4167 4168 for (i = 0; i <= st->curframe; i++) { 4169 func = st->frame[i]; 4170 for (j = 0; j < BPF_REG_FP; j++) { 4171 reg = &func->regs[j]; 4172 if (reg->type != SCALAR_VALUE) 4173 continue; 4174 reg->precise = false; 4175 } 4176 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4177 if (!is_spilled_reg(&func->stack[j])) 4178 continue; 4179 reg = &func->stack[j].spilled_ptr; 4180 if (reg->type != SCALAR_VALUE) 4181 continue; 4182 reg->precise = false; 4183 } 4184 } 4185 } 4186 4187 /* 4188 * __mark_chain_precision() backtracks BPF program instruction sequence and 4189 * chain of verifier states making sure that register *regno* (if regno >= 0) 4190 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4191 * SCALARS, as well as any other registers and slots that contribute to 4192 * a tracked state of given registers/stack slots, depending on specific BPF 4193 * assembly instructions (see backtrack_insns() for exact instruction handling 4194 * logic). This backtracking relies on recorded jmp_history and is able to 4195 * traverse entire chain of parent states. This process ends only when all the 4196 * necessary registers/slots and their transitive dependencies are marked as 4197 * precise. 4198 * 4199 * One important and subtle aspect is that precise marks *do not matter* in 4200 * the currently verified state (current state). It is important to understand 4201 * why this is the case. 4202 * 4203 * First, note that current state is the state that is not yet "checkpointed", 4204 * i.e., it is not yet put into env->explored_states, and it has no children 4205 * states as well. It's ephemeral, and can end up either a) being discarded if 4206 * compatible explored state is found at some point or BPF_EXIT instruction is 4207 * reached or b) checkpointed and put into env->explored_states, branching out 4208 * into one or more children states. 4209 * 4210 * In the former case, precise markings in current state are completely 4211 * ignored by state comparison code (see regsafe() for details). Only 4212 * checkpointed ("old") state precise markings are important, and if old 4213 * state's register/slot is precise, regsafe() assumes current state's 4214 * register/slot as precise and checks value ranges exactly and precisely. If 4215 * states turn out to be compatible, current state's necessary precise 4216 * markings and any required parent states' precise markings are enforced 4217 * after the fact with propagate_precision() logic, after the fact. But it's 4218 * important to realize that in this case, even after marking current state 4219 * registers/slots as precise, we immediately discard current state. So what 4220 * actually matters is any of the precise markings propagated into current 4221 * state's parent states, which are always checkpointed (due to b) case above). 4222 * As such, for scenario a) it doesn't matter if current state has precise 4223 * markings set or not. 4224 * 4225 * Now, for the scenario b), checkpointing and forking into child(ren) 4226 * state(s). Note that before current state gets to checkpointing step, any 4227 * processed instruction always assumes precise SCALAR register/slot 4228 * knowledge: if precise value or range is useful to prune jump branch, BPF 4229 * verifier takes this opportunity enthusiastically. Similarly, when 4230 * register's value is used to calculate offset or memory address, exact 4231 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4232 * what we mentioned above about state comparison ignoring precise markings 4233 * during state comparison, BPF verifier ignores and also assumes precise 4234 * markings *at will* during instruction verification process. But as verifier 4235 * assumes precision, it also propagates any precision dependencies across 4236 * parent states, which are not yet finalized, so can be further restricted 4237 * based on new knowledge gained from restrictions enforced by their children 4238 * states. This is so that once those parent states are finalized, i.e., when 4239 * they have no more active children state, state comparison logic in 4240 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4241 * required for correctness. 4242 * 4243 * To build a bit more intuition, note also that once a state is checkpointed, 4244 * the path we took to get to that state is not important. This is crucial 4245 * property for state pruning. When state is checkpointed and finalized at 4246 * some instruction index, it can be correctly and safely used to "short 4247 * circuit" any *compatible* state that reaches exactly the same instruction 4248 * index. I.e., if we jumped to that instruction from a completely different 4249 * code path than original finalized state was derived from, it doesn't 4250 * matter, current state can be discarded because from that instruction 4251 * forward having a compatible state will ensure we will safely reach the 4252 * exit. States describe preconditions for further exploration, but completely 4253 * forget the history of how we got here. 4254 * 4255 * This also means that even if we needed precise SCALAR range to get to 4256 * finalized state, but from that point forward *that same* SCALAR register is 4257 * never used in a precise context (i.e., it's precise value is not needed for 4258 * correctness), it's correct and safe to mark such register as "imprecise" 4259 * (i.e., precise marking set to false). This is what we rely on when we do 4260 * not set precise marking in current state. If no child state requires 4261 * precision for any given SCALAR register, it's safe to dictate that it can 4262 * be imprecise. If any child state does require this register to be precise, 4263 * we'll mark it precise later retroactively during precise markings 4264 * propagation from child state to parent states. 4265 * 4266 * Skipping precise marking setting in current state is a mild version of 4267 * relying on the above observation. But we can utilize this property even 4268 * more aggressively by proactively forgetting any precise marking in the 4269 * current state (which we inherited from the parent state), right before we 4270 * checkpoint it and branch off into new child state. This is done by 4271 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4272 * finalized states which help in short circuiting more future states. 4273 */ 4274 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4275 { 4276 struct backtrack_state *bt = &env->bt; 4277 struct bpf_verifier_state *st = env->cur_state; 4278 int first_idx = st->first_insn_idx; 4279 int last_idx = env->insn_idx; 4280 int subseq_idx = -1; 4281 struct bpf_func_state *func; 4282 struct bpf_reg_state *reg; 4283 bool skip_first = true; 4284 int i, fr, err; 4285 4286 if (!env->bpf_capable) 4287 return 0; 4288 4289 /* set frame number from which we are starting to backtrack */ 4290 bt_init(bt, env->cur_state->curframe); 4291 4292 /* Do sanity checks against current state of register and/or stack 4293 * slot, but don't set precise flag in current state, as precision 4294 * tracking in the current state is unnecessary. 4295 */ 4296 func = st->frame[bt->frame]; 4297 if (regno >= 0) { 4298 reg = &func->regs[regno]; 4299 if (reg->type != SCALAR_VALUE) { 4300 WARN_ONCE(1, "backtracing misuse"); 4301 return -EFAULT; 4302 } 4303 bt_set_reg(bt, regno); 4304 } 4305 4306 if (bt_empty(bt)) 4307 return 0; 4308 4309 for (;;) { 4310 DECLARE_BITMAP(mask, 64); 4311 u32 history = st->jmp_history_cnt; 4312 struct bpf_jmp_history_entry *hist; 4313 4314 if (env->log.level & BPF_LOG_LEVEL2) { 4315 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4316 bt->frame, last_idx, first_idx, subseq_idx); 4317 } 4318 4319 if (last_idx < 0) { 4320 /* we are at the entry into subprog, which 4321 * is expected for global funcs, but only if 4322 * requested precise registers are R1-R5 4323 * (which are global func's input arguments) 4324 */ 4325 if (st->curframe == 0 && 4326 st->frame[0]->subprogno > 0 && 4327 st->frame[0]->callsite == BPF_MAIN_FUNC && 4328 bt_stack_mask(bt) == 0 && 4329 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4330 bitmap_from_u64(mask, bt_reg_mask(bt)); 4331 for_each_set_bit(i, mask, 32) { 4332 reg = &st->frame[0]->regs[i]; 4333 bt_clear_reg(bt, i); 4334 if (reg->type == SCALAR_VALUE) 4335 reg->precise = true; 4336 } 4337 return 0; 4338 } 4339 4340 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4341 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4342 WARN_ONCE(1, "verifier backtracking bug"); 4343 return -EFAULT; 4344 } 4345 4346 for (i = last_idx;;) { 4347 if (skip_first) { 4348 err = 0; 4349 skip_first = false; 4350 } else { 4351 hist = get_jmp_hist_entry(st, history, i); 4352 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4353 } 4354 if (err == -ENOTSUPP) { 4355 mark_all_scalars_precise(env, env->cur_state); 4356 bt_reset(bt); 4357 return 0; 4358 } else if (err) { 4359 return err; 4360 } 4361 if (bt_empty(bt)) 4362 /* Found assignment(s) into tracked register in this state. 4363 * Since this state is already marked, just return. 4364 * Nothing to be tracked further in the parent state. 4365 */ 4366 return 0; 4367 subseq_idx = i; 4368 i = get_prev_insn_idx(st, i, &history); 4369 if (i == -ENOENT) 4370 break; 4371 if (i >= env->prog->len) { 4372 /* This can happen if backtracking reached insn 0 4373 * and there are still reg_mask or stack_mask 4374 * to backtrack. 4375 * It means the backtracking missed the spot where 4376 * particular register was initialized with a constant. 4377 */ 4378 verbose(env, "BUG backtracking idx %d\n", i); 4379 WARN_ONCE(1, "verifier backtracking bug"); 4380 return -EFAULT; 4381 } 4382 } 4383 st = st->parent; 4384 if (!st) 4385 break; 4386 4387 for (fr = bt->frame; fr >= 0; fr--) { 4388 func = st->frame[fr]; 4389 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4390 for_each_set_bit(i, mask, 32) { 4391 reg = &func->regs[i]; 4392 if (reg->type != SCALAR_VALUE) { 4393 bt_clear_frame_reg(bt, fr, i); 4394 continue; 4395 } 4396 if (reg->precise) 4397 bt_clear_frame_reg(bt, fr, i); 4398 else 4399 reg->precise = true; 4400 } 4401 4402 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4403 for_each_set_bit(i, mask, 64) { 4404 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4405 verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n", 4406 i, func->allocated_stack / BPF_REG_SIZE); 4407 WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)"); 4408 return -EFAULT; 4409 } 4410 4411 if (!is_spilled_scalar_reg(&func->stack[i])) { 4412 bt_clear_frame_slot(bt, fr, i); 4413 continue; 4414 } 4415 reg = &func->stack[i].spilled_ptr; 4416 if (reg->precise) 4417 bt_clear_frame_slot(bt, fr, i); 4418 else 4419 reg->precise = true; 4420 } 4421 if (env->log.level & BPF_LOG_LEVEL2) { 4422 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4423 bt_frame_reg_mask(bt, fr)); 4424 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4425 fr, env->tmp_str_buf); 4426 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4427 bt_frame_stack_mask(bt, fr)); 4428 verbose(env, "stack=%s: ", env->tmp_str_buf); 4429 print_verifier_state(env, func, true); 4430 } 4431 } 4432 4433 if (bt_empty(bt)) 4434 return 0; 4435 4436 subseq_idx = first_idx; 4437 last_idx = st->last_insn_idx; 4438 first_idx = st->first_insn_idx; 4439 } 4440 4441 /* if we still have requested precise regs or slots, we missed 4442 * something (e.g., stack access through non-r10 register), so 4443 * fallback to marking all precise 4444 */ 4445 if (!bt_empty(bt)) { 4446 mark_all_scalars_precise(env, env->cur_state); 4447 bt_reset(bt); 4448 } 4449 4450 return 0; 4451 } 4452 4453 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4454 { 4455 return __mark_chain_precision(env, regno); 4456 } 4457 4458 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4459 * desired reg and stack masks across all relevant frames 4460 */ 4461 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4462 { 4463 return __mark_chain_precision(env, -1); 4464 } 4465 4466 static bool is_spillable_regtype(enum bpf_reg_type type) 4467 { 4468 switch (base_type(type)) { 4469 case PTR_TO_MAP_VALUE: 4470 case PTR_TO_STACK: 4471 case PTR_TO_CTX: 4472 case PTR_TO_PACKET: 4473 case PTR_TO_PACKET_META: 4474 case PTR_TO_PACKET_END: 4475 case PTR_TO_FLOW_KEYS: 4476 case CONST_PTR_TO_MAP: 4477 case PTR_TO_SOCKET: 4478 case PTR_TO_SOCK_COMMON: 4479 case PTR_TO_TCP_SOCK: 4480 case PTR_TO_XDP_SOCK: 4481 case PTR_TO_BTF_ID: 4482 case PTR_TO_BUF: 4483 case PTR_TO_MEM: 4484 case PTR_TO_FUNC: 4485 case PTR_TO_MAP_KEY: 4486 case PTR_TO_ARENA: 4487 return true; 4488 default: 4489 return false; 4490 } 4491 } 4492 4493 /* Does this register contain a constant zero? */ 4494 static bool register_is_null(struct bpf_reg_state *reg) 4495 { 4496 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4497 } 4498 4499 /* check if register is a constant scalar value */ 4500 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 4501 { 4502 return reg->type == SCALAR_VALUE && 4503 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 4504 } 4505 4506 /* assuming is_reg_const() is true, return constant value of a register */ 4507 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 4508 { 4509 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 4510 } 4511 4512 static bool __is_pointer_value(bool allow_ptr_leaks, 4513 const struct bpf_reg_state *reg) 4514 { 4515 if (allow_ptr_leaks) 4516 return false; 4517 4518 return reg->type != SCALAR_VALUE; 4519 } 4520 4521 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, 4522 struct bpf_reg_state *src_reg) 4523 { 4524 if (src_reg->type != SCALAR_VALUE) 4525 return; 4526 4527 if (src_reg->id & BPF_ADD_CONST) { 4528 /* 4529 * The verifier is processing rX = rY insn and 4530 * rY->id has special linked register already. 4531 * Cleared it, since multiple rX += const are not supported. 4532 */ 4533 src_reg->id = 0; 4534 src_reg->off = 0; 4535 } 4536 4537 if (!src_reg->id && !tnum_is_const(src_reg->var_off)) 4538 /* Ensure that src_reg has a valid ID that will be copied to 4539 * dst_reg and then will be used by sync_linked_regs() to 4540 * propagate min/max range. 4541 */ 4542 src_reg->id = ++env->id_gen; 4543 } 4544 4545 /* Copy src state preserving dst->parent and dst->live fields */ 4546 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4547 { 4548 struct bpf_reg_state *parent = dst->parent; 4549 enum bpf_reg_liveness live = dst->live; 4550 4551 *dst = *src; 4552 dst->parent = parent; 4553 dst->live = live; 4554 } 4555 4556 static void save_register_state(struct bpf_verifier_env *env, 4557 struct bpf_func_state *state, 4558 int spi, struct bpf_reg_state *reg, 4559 int size) 4560 { 4561 int i; 4562 4563 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4564 if (size == BPF_REG_SIZE) 4565 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4566 4567 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4568 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4569 4570 /* size < 8 bytes spill */ 4571 for (; i; i--) 4572 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 4573 } 4574 4575 static bool is_bpf_st_mem(struct bpf_insn *insn) 4576 { 4577 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4578 } 4579 4580 static int get_reg_width(struct bpf_reg_state *reg) 4581 { 4582 return fls64(reg->umax_value); 4583 } 4584 4585 /* See comment for mark_fastcall_pattern_for_call() */ 4586 static void check_fastcall_stack_contract(struct bpf_verifier_env *env, 4587 struct bpf_func_state *state, int insn_idx, int off) 4588 { 4589 struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno]; 4590 struct bpf_insn_aux_data *aux = env->insn_aux_data; 4591 int i; 4592 4593 if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern) 4594 return; 4595 /* access to the region [max_stack_depth .. fastcall_stack_off) 4596 * from something that is not a part of the fastcall pattern, 4597 * disable fastcall rewrites for current subprogram by setting 4598 * fastcall_stack_off to a value smaller than any possible offset. 4599 */ 4600 subprog->fastcall_stack_off = S16_MIN; 4601 /* reset fastcall aux flags within subprogram, 4602 * happens at most once per subprogram 4603 */ 4604 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 4605 aux[i].fastcall_spills_num = 0; 4606 aux[i].fastcall_pattern = 0; 4607 } 4608 } 4609 4610 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4611 * stack boundary and alignment are checked in check_mem_access() 4612 */ 4613 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4614 /* stack frame we're writing to */ 4615 struct bpf_func_state *state, 4616 int off, int size, int value_regno, 4617 int insn_idx) 4618 { 4619 struct bpf_func_state *cur; /* state of the current function */ 4620 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4621 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4622 struct bpf_reg_state *reg = NULL; 4623 int insn_flags = insn_stack_access_flags(state->frameno, spi); 4624 4625 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4626 * so it's aligned access and [off, off + size) are within stack limits 4627 */ 4628 if (!env->allow_ptr_leaks && 4629 is_spilled_reg(&state->stack[spi]) && 4630 size != BPF_REG_SIZE) { 4631 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4632 return -EACCES; 4633 } 4634 4635 cur = env->cur_state->frame[env->cur_state->curframe]; 4636 if (value_regno >= 0) 4637 reg = &cur->regs[value_regno]; 4638 if (!env->bypass_spec_v4) { 4639 bool sanitize = reg && is_spillable_regtype(reg->type); 4640 4641 for (i = 0; i < size; i++) { 4642 u8 type = state->stack[spi].slot_type[i]; 4643 4644 if (type != STACK_MISC && type != STACK_ZERO) { 4645 sanitize = true; 4646 break; 4647 } 4648 } 4649 4650 if (sanitize) 4651 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4652 } 4653 4654 err = destroy_if_dynptr_stack_slot(env, state, spi); 4655 if (err) 4656 return err; 4657 4658 check_fastcall_stack_contract(env, state, insn_idx, off); 4659 mark_stack_slot_scratched(env, spi); 4660 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { 4661 bool reg_value_fits; 4662 4663 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; 4664 /* Make sure that reg had an ID to build a relation on spill. */ 4665 if (reg_value_fits) 4666 assign_scalar_id_before_mov(env, reg); 4667 save_register_state(env, state, spi, reg, size); 4668 /* Break the relation on a narrowing spill. */ 4669 if (!reg_value_fits) 4670 state->stack[spi].spilled_ptr.id = 0; 4671 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4672 env->bpf_capable) { 4673 struct bpf_reg_state *tmp_reg = &env->fake_reg[0]; 4674 4675 memset(tmp_reg, 0, sizeof(*tmp_reg)); 4676 __mark_reg_known(tmp_reg, insn->imm); 4677 tmp_reg->type = SCALAR_VALUE; 4678 save_register_state(env, state, spi, tmp_reg, size); 4679 } else if (reg && is_spillable_regtype(reg->type)) { 4680 /* register containing pointer is being spilled into stack */ 4681 if (size != BPF_REG_SIZE) { 4682 verbose_linfo(env, insn_idx, "; "); 4683 verbose(env, "invalid size of register spill\n"); 4684 return -EACCES; 4685 } 4686 if (state != cur && reg->type == PTR_TO_STACK) { 4687 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4688 return -EINVAL; 4689 } 4690 save_register_state(env, state, spi, reg, size); 4691 } else { 4692 u8 type = STACK_MISC; 4693 4694 /* regular write of data into stack destroys any spilled ptr */ 4695 state->stack[spi].spilled_ptr.type = NOT_INIT; 4696 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4697 if (is_stack_slot_special(&state->stack[spi])) 4698 for (i = 0; i < BPF_REG_SIZE; i++) 4699 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4700 4701 /* only mark the slot as written if all 8 bytes were written 4702 * otherwise read propagation may incorrectly stop too soon 4703 * when stack slots are partially written. 4704 * This heuristic means that read propagation will be 4705 * conservative, since it will add reg_live_read marks 4706 * to stack slots all the way to first state when programs 4707 * writes+reads less than 8 bytes 4708 */ 4709 if (size == BPF_REG_SIZE) 4710 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4711 4712 /* when we zero initialize stack slots mark them as such */ 4713 if ((reg && register_is_null(reg)) || 4714 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4715 /* STACK_ZERO case happened because register spill 4716 * wasn't properly aligned at the stack slot boundary, 4717 * so it's not a register spill anymore; force 4718 * originating register to be precise to make 4719 * STACK_ZERO correct for subsequent states 4720 */ 4721 err = mark_chain_precision(env, value_regno); 4722 if (err) 4723 return err; 4724 type = STACK_ZERO; 4725 } 4726 4727 /* Mark slots affected by this stack write. */ 4728 for (i = 0; i < size; i++) 4729 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 4730 insn_flags = 0; /* not a register spill */ 4731 } 4732 4733 if (insn_flags) 4734 return push_jmp_history(env, env->cur_state, insn_flags, 0); 4735 return 0; 4736 } 4737 4738 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4739 * known to contain a variable offset. 4740 * This function checks whether the write is permitted and conservatively 4741 * tracks the effects of the write, considering that each stack slot in the 4742 * dynamic range is potentially written to. 4743 * 4744 * 'off' includes 'regno->off'. 4745 * 'value_regno' can be -1, meaning that an unknown value is being written to 4746 * the stack. 4747 * 4748 * Spilled pointers in range are not marked as written because we don't know 4749 * what's going to be actually written. This means that read propagation for 4750 * future reads cannot be terminated by this write. 4751 * 4752 * For privileged programs, uninitialized stack slots are considered 4753 * initialized by this write (even though we don't know exactly what offsets 4754 * are going to be written to). The idea is that we don't want the verifier to 4755 * reject future reads that access slots written to through variable offsets. 4756 */ 4757 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4758 /* func where register points to */ 4759 struct bpf_func_state *state, 4760 int ptr_regno, int off, int size, 4761 int value_regno, int insn_idx) 4762 { 4763 struct bpf_func_state *cur; /* state of the current function */ 4764 int min_off, max_off; 4765 int i, err; 4766 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4767 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4768 bool writing_zero = false; 4769 /* set if the fact that we're writing a zero is used to let any 4770 * stack slots remain STACK_ZERO 4771 */ 4772 bool zero_used = false; 4773 4774 cur = env->cur_state->frame[env->cur_state->curframe]; 4775 ptr_reg = &cur->regs[ptr_regno]; 4776 min_off = ptr_reg->smin_value + off; 4777 max_off = ptr_reg->smax_value + off + size; 4778 if (value_regno >= 0) 4779 value_reg = &cur->regs[value_regno]; 4780 if ((value_reg && register_is_null(value_reg)) || 4781 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4782 writing_zero = true; 4783 4784 for (i = min_off; i < max_off; i++) { 4785 int spi; 4786 4787 spi = __get_spi(i); 4788 err = destroy_if_dynptr_stack_slot(env, state, spi); 4789 if (err) 4790 return err; 4791 } 4792 4793 check_fastcall_stack_contract(env, state, insn_idx, min_off); 4794 /* Variable offset writes destroy any spilled pointers in range. */ 4795 for (i = min_off; i < max_off; i++) { 4796 u8 new_type, *stype; 4797 int slot, spi; 4798 4799 slot = -i - 1; 4800 spi = slot / BPF_REG_SIZE; 4801 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4802 mark_stack_slot_scratched(env, spi); 4803 4804 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4805 /* Reject the write if range we may write to has not 4806 * been initialized beforehand. If we didn't reject 4807 * here, the ptr status would be erased below (even 4808 * though not all slots are actually overwritten), 4809 * possibly opening the door to leaks. 4810 * 4811 * We do however catch STACK_INVALID case below, and 4812 * only allow reading possibly uninitialized memory 4813 * later for CAP_PERFMON, as the write may not happen to 4814 * that slot. 4815 */ 4816 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4817 insn_idx, i); 4818 return -EINVAL; 4819 } 4820 4821 /* If writing_zero and the spi slot contains a spill of value 0, 4822 * maintain the spill type. 4823 */ 4824 if (writing_zero && *stype == STACK_SPILL && 4825 is_spilled_scalar_reg(&state->stack[spi])) { 4826 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; 4827 4828 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { 4829 zero_used = true; 4830 continue; 4831 } 4832 } 4833 4834 /* Erase all other spilled pointers. */ 4835 state->stack[spi].spilled_ptr.type = NOT_INIT; 4836 4837 /* Update the slot type. */ 4838 new_type = STACK_MISC; 4839 if (writing_zero && *stype == STACK_ZERO) { 4840 new_type = STACK_ZERO; 4841 zero_used = true; 4842 } 4843 /* If the slot is STACK_INVALID, we check whether it's OK to 4844 * pretend that it will be initialized by this write. The slot 4845 * might not actually be written to, and so if we mark it as 4846 * initialized future reads might leak uninitialized memory. 4847 * For privileged programs, we will accept such reads to slots 4848 * that may or may not be written because, if we're reject 4849 * them, the error would be too confusing. 4850 */ 4851 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4852 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4853 insn_idx, i); 4854 return -EINVAL; 4855 } 4856 *stype = new_type; 4857 } 4858 if (zero_used) { 4859 /* backtracking doesn't work for STACK_ZERO yet. */ 4860 err = mark_chain_precision(env, value_regno); 4861 if (err) 4862 return err; 4863 } 4864 return 0; 4865 } 4866 4867 /* When register 'dst_regno' is assigned some values from stack[min_off, 4868 * max_off), we set the register's type according to the types of the 4869 * respective stack slots. If all the stack values are known to be zeros, then 4870 * so is the destination reg. Otherwise, the register is considered to be 4871 * SCALAR. This function does not deal with register filling; the caller must 4872 * ensure that all spilled registers in the stack range have been marked as 4873 * read. 4874 */ 4875 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4876 /* func where src register points to */ 4877 struct bpf_func_state *ptr_state, 4878 int min_off, int max_off, int dst_regno) 4879 { 4880 struct bpf_verifier_state *vstate = env->cur_state; 4881 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4882 int i, slot, spi; 4883 u8 *stype; 4884 int zeros = 0; 4885 4886 for (i = min_off; i < max_off; i++) { 4887 slot = -i - 1; 4888 spi = slot / BPF_REG_SIZE; 4889 mark_stack_slot_scratched(env, spi); 4890 stype = ptr_state->stack[spi].slot_type; 4891 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4892 break; 4893 zeros++; 4894 } 4895 if (zeros == max_off - min_off) { 4896 /* Any access_size read into register is zero extended, 4897 * so the whole register == const_zero. 4898 */ 4899 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4900 } else { 4901 /* have read misc data from the stack */ 4902 mark_reg_unknown(env, state->regs, dst_regno); 4903 } 4904 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4905 } 4906 4907 /* Read the stack at 'off' and put the results into the register indicated by 4908 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4909 * spilled reg. 4910 * 4911 * 'dst_regno' can be -1, meaning that the read value is not going to a 4912 * register. 4913 * 4914 * The access is assumed to be within the current stack bounds. 4915 */ 4916 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4917 /* func where src register points to */ 4918 struct bpf_func_state *reg_state, 4919 int off, int size, int dst_regno) 4920 { 4921 struct bpf_verifier_state *vstate = env->cur_state; 4922 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4923 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4924 struct bpf_reg_state *reg; 4925 u8 *stype, type; 4926 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 4927 4928 stype = reg_state->stack[spi].slot_type; 4929 reg = ®_state->stack[spi].spilled_ptr; 4930 4931 mark_stack_slot_scratched(env, spi); 4932 check_fastcall_stack_contract(env, state, env->insn_idx, off); 4933 4934 if (is_spilled_reg(®_state->stack[spi])) { 4935 u8 spill_size = 1; 4936 4937 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4938 spill_size++; 4939 4940 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4941 if (reg->type != SCALAR_VALUE) { 4942 verbose_linfo(env, env->insn_idx, "; "); 4943 verbose(env, "invalid size of register fill\n"); 4944 return -EACCES; 4945 } 4946 4947 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4948 if (dst_regno < 0) 4949 return 0; 4950 4951 if (size <= spill_size && 4952 bpf_stack_narrow_access_ok(off, size, spill_size)) { 4953 /* The earlier check_reg_arg() has decided the 4954 * subreg_def for this insn. Save it first. 4955 */ 4956 s32 subreg_def = state->regs[dst_regno].subreg_def; 4957 4958 copy_register_state(&state->regs[dst_regno], reg); 4959 state->regs[dst_regno].subreg_def = subreg_def; 4960 4961 /* Break the relation on a narrowing fill. 4962 * coerce_reg_to_size will adjust the boundaries. 4963 */ 4964 if (get_reg_width(reg) > size * BITS_PER_BYTE) 4965 state->regs[dst_regno].id = 0; 4966 } else { 4967 int spill_cnt = 0, zero_cnt = 0; 4968 4969 for (i = 0; i < size; i++) { 4970 type = stype[(slot - i) % BPF_REG_SIZE]; 4971 if (type == STACK_SPILL) { 4972 spill_cnt++; 4973 continue; 4974 } 4975 if (type == STACK_MISC) 4976 continue; 4977 if (type == STACK_ZERO) { 4978 zero_cnt++; 4979 continue; 4980 } 4981 if (type == STACK_INVALID && env->allow_uninit_stack) 4982 continue; 4983 verbose(env, "invalid read from stack off %d+%d size %d\n", 4984 off, i, size); 4985 return -EACCES; 4986 } 4987 4988 if (spill_cnt == size && 4989 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 4990 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4991 /* this IS register fill, so keep insn_flags */ 4992 } else if (zero_cnt == size) { 4993 /* similarly to mark_reg_stack_read(), preserve zeroes */ 4994 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4995 insn_flags = 0; /* not restoring original register state */ 4996 } else { 4997 mark_reg_unknown(env, state->regs, dst_regno); 4998 insn_flags = 0; /* not restoring original register state */ 4999 } 5000 } 5001 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5002 } else if (dst_regno >= 0) { 5003 /* restore register state from stack */ 5004 copy_register_state(&state->regs[dst_regno], reg); 5005 /* mark reg as written since spilled pointer state likely 5006 * has its liveness marks cleared by is_state_visited() 5007 * which resets stack/reg liveness for state transitions 5008 */ 5009 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5010 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 5011 /* If dst_regno==-1, the caller is asking us whether 5012 * it is acceptable to use this value as a SCALAR_VALUE 5013 * (e.g. for XADD). 5014 * We must not allow unprivileged callers to do that 5015 * with spilled pointers. 5016 */ 5017 verbose(env, "leaking pointer from stack off %d\n", 5018 off); 5019 return -EACCES; 5020 } 5021 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5022 } else { 5023 for (i = 0; i < size; i++) { 5024 type = stype[(slot - i) % BPF_REG_SIZE]; 5025 if (type == STACK_MISC) 5026 continue; 5027 if (type == STACK_ZERO) 5028 continue; 5029 if (type == STACK_INVALID && env->allow_uninit_stack) 5030 continue; 5031 verbose(env, "invalid read from stack off %d+%d size %d\n", 5032 off, i, size); 5033 return -EACCES; 5034 } 5035 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5036 if (dst_regno >= 0) 5037 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 5038 insn_flags = 0; /* we are not restoring spilled register */ 5039 } 5040 if (insn_flags) 5041 return push_jmp_history(env, env->cur_state, insn_flags, 0); 5042 return 0; 5043 } 5044 5045 enum bpf_access_src { 5046 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 5047 ACCESS_HELPER = 2, /* the access is performed by a helper */ 5048 }; 5049 5050 static int check_stack_range_initialized(struct bpf_verifier_env *env, 5051 int regno, int off, int access_size, 5052 bool zero_size_allowed, 5053 enum bpf_access_src type, 5054 struct bpf_call_arg_meta *meta); 5055 5056 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 5057 { 5058 return cur_regs(env) + regno; 5059 } 5060 5061 /* Read the stack at 'ptr_regno + off' and put the result into the register 5062 * 'dst_regno'. 5063 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 5064 * but not its variable offset. 5065 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 5066 * 5067 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 5068 * filling registers (i.e. reads of spilled register cannot be detected when 5069 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 5070 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 5071 * offset; for a fixed offset check_stack_read_fixed_off should be used 5072 * instead. 5073 */ 5074 static int check_stack_read_var_off(struct bpf_verifier_env *env, 5075 int ptr_regno, int off, int size, int dst_regno) 5076 { 5077 /* The state of the source register. */ 5078 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5079 struct bpf_func_state *ptr_state = func(env, reg); 5080 int err; 5081 int min_off, max_off; 5082 5083 /* Note that we pass a NULL meta, so raw access will not be permitted. 5084 */ 5085 err = check_stack_range_initialized(env, ptr_regno, off, size, 5086 false, ACCESS_DIRECT, NULL); 5087 if (err) 5088 return err; 5089 5090 min_off = reg->smin_value + off; 5091 max_off = reg->smax_value + off; 5092 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 5093 check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off); 5094 return 0; 5095 } 5096 5097 /* check_stack_read dispatches to check_stack_read_fixed_off or 5098 * check_stack_read_var_off. 5099 * 5100 * The caller must ensure that the offset falls within the allocated stack 5101 * bounds. 5102 * 5103 * 'dst_regno' is a register which will receive the value from the stack. It 5104 * can be -1, meaning that the read value is not going to a register. 5105 */ 5106 static int check_stack_read(struct bpf_verifier_env *env, 5107 int ptr_regno, int off, int size, 5108 int dst_regno) 5109 { 5110 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5111 struct bpf_func_state *state = func(env, reg); 5112 int err; 5113 /* Some accesses are only permitted with a static offset. */ 5114 bool var_off = !tnum_is_const(reg->var_off); 5115 5116 /* The offset is required to be static when reads don't go to a 5117 * register, in order to not leak pointers (see 5118 * check_stack_read_fixed_off). 5119 */ 5120 if (dst_regno < 0 && var_off) { 5121 char tn_buf[48]; 5122 5123 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5124 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5125 tn_buf, off, size); 5126 return -EACCES; 5127 } 5128 /* Variable offset is prohibited for unprivileged mode for simplicity 5129 * since it requires corresponding support in Spectre masking for stack 5130 * ALU. See also retrieve_ptr_limit(). The check in 5131 * check_stack_access_for_ptr_arithmetic() called by 5132 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5133 * with variable offsets, therefore no check is required here. Further, 5134 * just checking it here would be insufficient as speculative stack 5135 * writes could still lead to unsafe speculative behaviour. 5136 */ 5137 if (!var_off) { 5138 off += reg->var_off.value; 5139 err = check_stack_read_fixed_off(env, state, off, size, 5140 dst_regno); 5141 } else { 5142 /* Variable offset stack reads need more conservative handling 5143 * than fixed offset ones. Note that dst_regno >= 0 on this 5144 * branch. 5145 */ 5146 err = check_stack_read_var_off(env, ptr_regno, off, size, 5147 dst_regno); 5148 } 5149 return err; 5150 } 5151 5152 5153 /* check_stack_write dispatches to check_stack_write_fixed_off or 5154 * check_stack_write_var_off. 5155 * 5156 * 'ptr_regno' is the register used as a pointer into the stack. 5157 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5158 * 'value_regno' is the register whose value we're writing to the stack. It can 5159 * be -1, meaning that we're not writing from a register. 5160 * 5161 * The caller must ensure that the offset falls within the maximum stack size. 5162 */ 5163 static int check_stack_write(struct bpf_verifier_env *env, 5164 int ptr_regno, int off, int size, 5165 int value_regno, int insn_idx) 5166 { 5167 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5168 struct bpf_func_state *state = func(env, reg); 5169 int err; 5170 5171 if (tnum_is_const(reg->var_off)) { 5172 off += reg->var_off.value; 5173 err = check_stack_write_fixed_off(env, state, off, size, 5174 value_regno, insn_idx); 5175 } else { 5176 /* Variable offset stack reads need more conservative handling 5177 * than fixed offset ones. 5178 */ 5179 err = check_stack_write_var_off(env, state, 5180 ptr_regno, off, size, 5181 value_regno, insn_idx); 5182 } 5183 return err; 5184 } 5185 5186 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5187 int off, int size, enum bpf_access_type type) 5188 { 5189 struct bpf_reg_state *regs = cur_regs(env); 5190 struct bpf_map *map = regs[regno].map_ptr; 5191 u32 cap = bpf_map_flags_to_cap(map); 5192 5193 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5194 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5195 map->value_size, off, size); 5196 return -EACCES; 5197 } 5198 5199 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5200 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5201 map->value_size, off, size); 5202 return -EACCES; 5203 } 5204 5205 return 0; 5206 } 5207 5208 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5209 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5210 int off, int size, u32 mem_size, 5211 bool zero_size_allowed) 5212 { 5213 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5214 struct bpf_reg_state *reg; 5215 5216 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5217 return 0; 5218 5219 reg = &cur_regs(env)[regno]; 5220 switch (reg->type) { 5221 case PTR_TO_MAP_KEY: 5222 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5223 mem_size, off, size); 5224 break; 5225 case PTR_TO_MAP_VALUE: 5226 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5227 mem_size, off, size); 5228 break; 5229 case PTR_TO_PACKET: 5230 case PTR_TO_PACKET_META: 5231 case PTR_TO_PACKET_END: 5232 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5233 off, size, regno, reg->id, off, mem_size); 5234 break; 5235 case PTR_TO_MEM: 5236 default: 5237 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5238 mem_size, off, size); 5239 } 5240 5241 return -EACCES; 5242 } 5243 5244 /* check read/write into a memory region with possible variable offset */ 5245 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5246 int off, int size, u32 mem_size, 5247 bool zero_size_allowed) 5248 { 5249 struct bpf_verifier_state *vstate = env->cur_state; 5250 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5251 struct bpf_reg_state *reg = &state->regs[regno]; 5252 int err; 5253 5254 /* We may have adjusted the register pointing to memory region, so we 5255 * need to try adding each of min_value and max_value to off 5256 * to make sure our theoretical access will be safe. 5257 * 5258 * The minimum value is only important with signed 5259 * comparisons where we can't assume the floor of a 5260 * value is 0. If we are using signed variables for our 5261 * index'es we need to make sure that whatever we use 5262 * will have a set floor within our range. 5263 */ 5264 if (reg->smin_value < 0 && 5265 (reg->smin_value == S64_MIN || 5266 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5267 reg->smin_value + off < 0)) { 5268 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5269 regno); 5270 return -EACCES; 5271 } 5272 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5273 mem_size, zero_size_allowed); 5274 if (err) { 5275 verbose(env, "R%d min value is outside of the allowed memory range\n", 5276 regno); 5277 return err; 5278 } 5279 5280 /* If we haven't set a max value then we need to bail since we can't be 5281 * sure we won't do bad things. 5282 * If reg->umax_value + off could overflow, treat that as unbounded too. 5283 */ 5284 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5285 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5286 regno); 5287 return -EACCES; 5288 } 5289 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5290 mem_size, zero_size_allowed); 5291 if (err) { 5292 verbose(env, "R%d max value is outside of the allowed memory range\n", 5293 regno); 5294 return err; 5295 } 5296 5297 return 0; 5298 } 5299 5300 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5301 const struct bpf_reg_state *reg, int regno, 5302 bool fixed_off_ok) 5303 { 5304 /* Access to this pointer-typed register or passing it to a helper 5305 * is only allowed in its original, unmodified form. 5306 */ 5307 5308 if (reg->off < 0) { 5309 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5310 reg_type_str(env, reg->type), regno, reg->off); 5311 return -EACCES; 5312 } 5313 5314 if (!fixed_off_ok && reg->off) { 5315 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5316 reg_type_str(env, reg->type), regno, reg->off); 5317 return -EACCES; 5318 } 5319 5320 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5321 char tn_buf[48]; 5322 5323 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5324 verbose(env, "variable %s access var_off=%s disallowed\n", 5325 reg_type_str(env, reg->type), tn_buf); 5326 return -EACCES; 5327 } 5328 5329 return 0; 5330 } 5331 5332 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5333 const struct bpf_reg_state *reg, int regno) 5334 { 5335 return __check_ptr_off_reg(env, reg, regno, false); 5336 } 5337 5338 static int map_kptr_match_type(struct bpf_verifier_env *env, 5339 struct btf_field *kptr_field, 5340 struct bpf_reg_state *reg, u32 regno) 5341 { 5342 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5343 int perm_flags; 5344 const char *reg_name = ""; 5345 5346 if (btf_is_kernel(reg->btf)) { 5347 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5348 5349 /* Only unreferenced case accepts untrusted pointers */ 5350 if (kptr_field->type == BPF_KPTR_UNREF) 5351 perm_flags |= PTR_UNTRUSTED; 5352 } else { 5353 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5354 if (kptr_field->type == BPF_KPTR_PERCPU) 5355 perm_flags |= MEM_PERCPU; 5356 } 5357 5358 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5359 goto bad_type; 5360 5361 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5362 reg_name = btf_type_name(reg->btf, reg->btf_id); 5363 5364 /* For ref_ptr case, release function check should ensure we get one 5365 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5366 * normal store of unreferenced kptr, we must ensure var_off is zero. 5367 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5368 * reg->off and reg->ref_obj_id are not needed here. 5369 */ 5370 if (__check_ptr_off_reg(env, reg, regno, true)) 5371 return -EACCES; 5372 5373 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5374 * we also need to take into account the reg->off. 5375 * 5376 * We want to support cases like: 5377 * 5378 * struct foo { 5379 * struct bar br; 5380 * struct baz bz; 5381 * }; 5382 * 5383 * struct foo *v; 5384 * v = func(); // PTR_TO_BTF_ID 5385 * val->foo = v; // reg->off is zero, btf and btf_id match type 5386 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5387 * // first member type of struct after comparison fails 5388 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5389 * // to match type 5390 * 5391 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5392 * is zero. We must also ensure that btf_struct_ids_match does not walk 5393 * the struct to match type against first member of struct, i.e. reject 5394 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5395 * strict mode to true for type match. 5396 */ 5397 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5398 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5399 kptr_field->type != BPF_KPTR_UNREF)) 5400 goto bad_type; 5401 return 0; 5402 bad_type: 5403 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5404 reg_type_str(env, reg->type), reg_name); 5405 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5406 if (kptr_field->type == BPF_KPTR_UNREF) 5407 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5408 targ_name); 5409 else 5410 verbose(env, "\n"); 5411 return -EINVAL; 5412 } 5413 5414 static bool in_sleepable(struct bpf_verifier_env *env) 5415 { 5416 return env->prog->sleepable || 5417 (env->cur_state && env->cur_state->in_sleepable); 5418 } 5419 5420 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5421 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5422 */ 5423 static bool in_rcu_cs(struct bpf_verifier_env *env) 5424 { 5425 return env->cur_state->active_rcu_lock || 5426 env->cur_state->active_lock.ptr || 5427 !in_sleepable(env); 5428 } 5429 5430 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5431 BTF_SET_START(rcu_protected_types) 5432 BTF_ID(struct, prog_test_ref_kfunc) 5433 #ifdef CONFIG_CGROUPS 5434 BTF_ID(struct, cgroup) 5435 #endif 5436 #ifdef CONFIG_BPF_JIT 5437 BTF_ID(struct, bpf_cpumask) 5438 #endif 5439 BTF_ID(struct, task_struct) 5440 BTF_ID(struct, bpf_crypto_ctx) 5441 BTF_SET_END(rcu_protected_types) 5442 5443 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5444 { 5445 if (!btf_is_kernel(btf)) 5446 return true; 5447 return btf_id_set_contains(&rcu_protected_types, btf_id); 5448 } 5449 5450 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5451 { 5452 struct btf_struct_meta *meta; 5453 5454 if (btf_is_kernel(kptr_field->kptr.btf)) 5455 return NULL; 5456 5457 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5458 kptr_field->kptr.btf_id); 5459 5460 return meta ? meta->record : NULL; 5461 } 5462 5463 static bool rcu_safe_kptr(const struct btf_field *field) 5464 { 5465 const struct btf_field_kptr *kptr = &field->kptr; 5466 5467 return field->type == BPF_KPTR_PERCPU || 5468 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5469 } 5470 5471 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5472 { 5473 struct btf_record *rec; 5474 u32 ret; 5475 5476 ret = PTR_MAYBE_NULL; 5477 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5478 ret |= MEM_RCU; 5479 if (kptr_field->type == BPF_KPTR_PERCPU) 5480 ret |= MEM_PERCPU; 5481 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5482 ret |= MEM_ALLOC; 5483 5484 rec = kptr_pointee_btf_record(kptr_field); 5485 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5486 ret |= NON_OWN_REF; 5487 } else { 5488 ret |= PTR_UNTRUSTED; 5489 } 5490 5491 return ret; 5492 } 5493 5494 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5495 int value_regno, int insn_idx, 5496 struct btf_field *kptr_field) 5497 { 5498 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5499 int class = BPF_CLASS(insn->code); 5500 struct bpf_reg_state *val_reg; 5501 5502 /* Things we already checked for in check_map_access and caller: 5503 * - Reject cases where variable offset may touch kptr 5504 * - size of access (must be BPF_DW) 5505 * - tnum_is_const(reg->var_off) 5506 * - kptr_field->offset == off + reg->var_off.value 5507 */ 5508 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5509 if (BPF_MODE(insn->code) != BPF_MEM) { 5510 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5511 return -EACCES; 5512 } 5513 5514 /* We only allow loading referenced kptr, since it will be marked as 5515 * untrusted, similar to unreferenced kptr. 5516 */ 5517 if (class != BPF_LDX && 5518 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 5519 verbose(env, "store to referenced kptr disallowed\n"); 5520 return -EACCES; 5521 } 5522 5523 if (class == BPF_LDX) { 5524 val_reg = reg_state(env, value_regno); 5525 /* We can simply mark the value_regno receiving the pointer 5526 * value from map as PTR_TO_BTF_ID, with the correct type. 5527 */ 5528 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5529 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); 5530 } else if (class == BPF_STX) { 5531 val_reg = reg_state(env, value_regno); 5532 if (!register_is_null(val_reg) && 5533 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5534 return -EACCES; 5535 } else if (class == BPF_ST) { 5536 if (insn->imm) { 5537 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5538 kptr_field->offset); 5539 return -EACCES; 5540 } 5541 } else { 5542 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5543 return -EACCES; 5544 } 5545 return 0; 5546 } 5547 5548 /* check read/write into a map element with possible variable offset */ 5549 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5550 int off, int size, bool zero_size_allowed, 5551 enum bpf_access_src src) 5552 { 5553 struct bpf_verifier_state *vstate = env->cur_state; 5554 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5555 struct bpf_reg_state *reg = &state->regs[regno]; 5556 struct bpf_map *map = reg->map_ptr; 5557 struct btf_record *rec; 5558 int err, i; 5559 5560 err = check_mem_region_access(env, regno, off, size, map->value_size, 5561 zero_size_allowed); 5562 if (err) 5563 return err; 5564 5565 if (IS_ERR_OR_NULL(map->record)) 5566 return 0; 5567 rec = map->record; 5568 for (i = 0; i < rec->cnt; i++) { 5569 struct btf_field *field = &rec->fields[i]; 5570 u32 p = field->offset; 5571 5572 /* If any part of a field can be touched by load/store, reject 5573 * this program. To check that [x1, x2) overlaps with [y1, y2), 5574 * it is sufficient to check x1 < y2 && y1 < x2. 5575 */ 5576 if (reg->smin_value + off < p + field->size && 5577 p < reg->umax_value + off + size) { 5578 switch (field->type) { 5579 case BPF_KPTR_UNREF: 5580 case BPF_KPTR_REF: 5581 case BPF_KPTR_PERCPU: 5582 if (src != ACCESS_DIRECT) { 5583 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5584 return -EACCES; 5585 } 5586 if (!tnum_is_const(reg->var_off)) { 5587 verbose(env, "kptr access cannot have variable offset\n"); 5588 return -EACCES; 5589 } 5590 if (p != off + reg->var_off.value) { 5591 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5592 p, off + reg->var_off.value); 5593 return -EACCES; 5594 } 5595 if (size != bpf_size_to_bytes(BPF_DW)) { 5596 verbose(env, "kptr access size must be BPF_DW\n"); 5597 return -EACCES; 5598 } 5599 break; 5600 default: 5601 verbose(env, "%s cannot be accessed directly by load/store\n", 5602 btf_field_type_name(field->type)); 5603 return -EACCES; 5604 } 5605 } 5606 } 5607 return 0; 5608 } 5609 5610 #define MAX_PACKET_OFF 0xffff 5611 5612 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5613 const struct bpf_call_arg_meta *meta, 5614 enum bpf_access_type t) 5615 { 5616 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5617 5618 switch (prog_type) { 5619 /* Program types only with direct read access go here! */ 5620 case BPF_PROG_TYPE_LWT_IN: 5621 case BPF_PROG_TYPE_LWT_OUT: 5622 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5623 case BPF_PROG_TYPE_SK_REUSEPORT: 5624 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5625 case BPF_PROG_TYPE_CGROUP_SKB: 5626 if (t == BPF_WRITE) 5627 return false; 5628 fallthrough; 5629 5630 /* Program types with direct read + write access go here! */ 5631 case BPF_PROG_TYPE_SCHED_CLS: 5632 case BPF_PROG_TYPE_SCHED_ACT: 5633 case BPF_PROG_TYPE_XDP: 5634 case BPF_PROG_TYPE_LWT_XMIT: 5635 case BPF_PROG_TYPE_SK_SKB: 5636 case BPF_PROG_TYPE_SK_MSG: 5637 if (meta) 5638 return meta->pkt_access; 5639 5640 env->seen_direct_write = true; 5641 return true; 5642 5643 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5644 if (t == BPF_WRITE) 5645 env->seen_direct_write = true; 5646 5647 return true; 5648 5649 default: 5650 return false; 5651 } 5652 } 5653 5654 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5655 int size, bool zero_size_allowed) 5656 { 5657 struct bpf_reg_state *regs = cur_regs(env); 5658 struct bpf_reg_state *reg = ®s[regno]; 5659 int err; 5660 5661 /* We may have added a variable offset to the packet pointer; but any 5662 * reg->range we have comes after that. We are only checking the fixed 5663 * offset. 5664 */ 5665 5666 /* We don't allow negative numbers, because we aren't tracking enough 5667 * detail to prove they're safe. 5668 */ 5669 if (reg->smin_value < 0) { 5670 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5671 regno); 5672 return -EACCES; 5673 } 5674 5675 err = reg->range < 0 ? -EINVAL : 5676 __check_mem_access(env, regno, off, size, reg->range, 5677 zero_size_allowed); 5678 if (err) { 5679 verbose(env, "R%d offset is outside of the packet\n", regno); 5680 return err; 5681 } 5682 5683 /* __check_mem_access has made sure "off + size - 1" is within u16. 5684 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5685 * otherwise find_good_pkt_pointers would have refused to set range info 5686 * that __check_mem_access would have rejected this pkt access. 5687 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5688 */ 5689 env->prog->aux->max_pkt_offset = 5690 max_t(u32, env->prog->aux->max_pkt_offset, 5691 off + reg->umax_value + size - 1); 5692 5693 return err; 5694 } 5695 5696 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5697 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5698 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5699 struct btf **btf, u32 *btf_id, bool *is_retval, bool is_ldsx) 5700 { 5701 struct bpf_insn_access_aux info = { 5702 .reg_type = *reg_type, 5703 .log = &env->log, 5704 .is_retval = false, 5705 .is_ldsx = is_ldsx, 5706 }; 5707 5708 if (env->ops->is_valid_access && 5709 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5710 /* A non zero info.ctx_field_size indicates that this field is a 5711 * candidate for later verifier transformation to load the whole 5712 * field and then apply a mask when accessed with a narrower 5713 * access than actual ctx access size. A zero info.ctx_field_size 5714 * will only allow for whole field access and rejects any other 5715 * type of narrower access. 5716 */ 5717 *reg_type = info.reg_type; 5718 *is_retval = info.is_retval; 5719 5720 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5721 *btf = info.btf; 5722 *btf_id = info.btf_id; 5723 } else { 5724 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5725 } 5726 /* remember the offset of last byte accessed in ctx */ 5727 if (env->prog->aux->max_ctx_offset < off + size) 5728 env->prog->aux->max_ctx_offset = off + size; 5729 return 0; 5730 } 5731 5732 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5733 return -EACCES; 5734 } 5735 5736 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5737 int size) 5738 { 5739 if (size < 0 || off < 0 || 5740 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5741 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5742 off, size); 5743 return -EACCES; 5744 } 5745 return 0; 5746 } 5747 5748 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5749 u32 regno, int off, int size, 5750 enum bpf_access_type t) 5751 { 5752 struct bpf_reg_state *regs = cur_regs(env); 5753 struct bpf_reg_state *reg = ®s[regno]; 5754 struct bpf_insn_access_aux info = {}; 5755 bool valid; 5756 5757 if (reg->smin_value < 0) { 5758 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5759 regno); 5760 return -EACCES; 5761 } 5762 5763 switch (reg->type) { 5764 case PTR_TO_SOCK_COMMON: 5765 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5766 break; 5767 case PTR_TO_SOCKET: 5768 valid = bpf_sock_is_valid_access(off, size, t, &info); 5769 break; 5770 case PTR_TO_TCP_SOCK: 5771 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5772 break; 5773 case PTR_TO_XDP_SOCK: 5774 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5775 break; 5776 default: 5777 valid = false; 5778 } 5779 5780 5781 if (valid) { 5782 env->insn_aux_data[insn_idx].ctx_field_size = 5783 info.ctx_field_size; 5784 return 0; 5785 } 5786 5787 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5788 regno, reg_type_str(env, reg->type), off, size); 5789 5790 return -EACCES; 5791 } 5792 5793 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5794 { 5795 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5796 } 5797 5798 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5799 { 5800 const struct bpf_reg_state *reg = reg_state(env, regno); 5801 5802 return reg->type == PTR_TO_CTX; 5803 } 5804 5805 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5806 { 5807 const struct bpf_reg_state *reg = reg_state(env, regno); 5808 5809 return type_is_sk_pointer(reg->type); 5810 } 5811 5812 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5813 { 5814 const struct bpf_reg_state *reg = reg_state(env, regno); 5815 5816 return type_is_pkt_pointer(reg->type); 5817 } 5818 5819 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5820 { 5821 const struct bpf_reg_state *reg = reg_state(env, regno); 5822 5823 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5824 return reg->type == PTR_TO_FLOW_KEYS; 5825 } 5826 5827 static bool is_arena_reg(struct bpf_verifier_env *env, int regno) 5828 { 5829 const struct bpf_reg_state *reg = reg_state(env, regno); 5830 5831 return reg->type == PTR_TO_ARENA; 5832 } 5833 5834 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5835 #ifdef CONFIG_NET 5836 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5837 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5838 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5839 #endif 5840 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5841 }; 5842 5843 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5844 { 5845 /* A referenced register is always trusted. */ 5846 if (reg->ref_obj_id) 5847 return true; 5848 5849 /* Types listed in the reg2btf_ids are always trusted */ 5850 if (reg2btf_ids[base_type(reg->type)] && 5851 !bpf_type_has_unsafe_modifiers(reg->type)) 5852 return true; 5853 5854 /* If a register is not referenced, it is trusted if it has the 5855 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5856 * other type modifiers may be safe, but we elect to take an opt-in 5857 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5858 * not. 5859 * 5860 * Eventually, we should make PTR_TRUSTED the single source of truth 5861 * for whether a register is trusted. 5862 */ 5863 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5864 !bpf_type_has_unsafe_modifiers(reg->type); 5865 } 5866 5867 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5868 { 5869 return reg->type & MEM_RCU; 5870 } 5871 5872 static void clear_trusted_flags(enum bpf_type_flag *flag) 5873 { 5874 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5875 } 5876 5877 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5878 const struct bpf_reg_state *reg, 5879 int off, int size, bool strict) 5880 { 5881 struct tnum reg_off; 5882 int ip_align; 5883 5884 /* Byte size accesses are always allowed. */ 5885 if (!strict || size == 1) 5886 return 0; 5887 5888 /* For platforms that do not have a Kconfig enabling 5889 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5890 * NET_IP_ALIGN is universally set to '2'. And on platforms 5891 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5892 * to this code only in strict mode where we want to emulate 5893 * the NET_IP_ALIGN==2 checking. Therefore use an 5894 * unconditional IP align value of '2'. 5895 */ 5896 ip_align = 2; 5897 5898 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5899 if (!tnum_is_aligned(reg_off, size)) { 5900 char tn_buf[48]; 5901 5902 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5903 verbose(env, 5904 "misaligned packet access off %d+%s+%d+%d size %d\n", 5905 ip_align, tn_buf, reg->off, off, size); 5906 return -EACCES; 5907 } 5908 5909 return 0; 5910 } 5911 5912 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5913 const struct bpf_reg_state *reg, 5914 const char *pointer_desc, 5915 int off, int size, bool strict) 5916 { 5917 struct tnum reg_off; 5918 5919 /* Byte size accesses are always allowed. */ 5920 if (!strict || size == 1) 5921 return 0; 5922 5923 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5924 if (!tnum_is_aligned(reg_off, size)) { 5925 char tn_buf[48]; 5926 5927 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5928 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5929 pointer_desc, tn_buf, reg->off, off, size); 5930 return -EACCES; 5931 } 5932 5933 return 0; 5934 } 5935 5936 static int check_ptr_alignment(struct bpf_verifier_env *env, 5937 const struct bpf_reg_state *reg, int off, 5938 int size, bool strict_alignment_once) 5939 { 5940 bool strict = env->strict_alignment || strict_alignment_once; 5941 const char *pointer_desc = ""; 5942 5943 switch (reg->type) { 5944 case PTR_TO_PACKET: 5945 case PTR_TO_PACKET_META: 5946 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5947 * right in front, treat it the very same way. 5948 */ 5949 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5950 case PTR_TO_FLOW_KEYS: 5951 pointer_desc = "flow keys "; 5952 break; 5953 case PTR_TO_MAP_KEY: 5954 pointer_desc = "key "; 5955 break; 5956 case PTR_TO_MAP_VALUE: 5957 pointer_desc = "value "; 5958 break; 5959 case PTR_TO_CTX: 5960 pointer_desc = "context "; 5961 break; 5962 case PTR_TO_STACK: 5963 pointer_desc = "stack "; 5964 /* The stack spill tracking logic in check_stack_write_fixed_off() 5965 * and check_stack_read_fixed_off() relies on stack accesses being 5966 * aligned. 5967 */ 5968 strict = true; 5969 break; 5970 case PTR_TO_SOCKET: 5971 pointer_desc = "sock "; 5972 break; 5973 case PTR_TO_SOCK_COMMON: 5974 pointer_desc = "sock_common "; 5975 break; 5976 case PTR_TO_TCP_SOCK: 5977 pointer_desc = "tcp_sock "; 5978 break; 5979 case PTR_TO_XDP_SOCK: 5980 pointer_desc = "xdp_sock "; 5981 break; 5982 case PTR_TO_ARENA: 5983 return 0; 5984 default: 5985 break; 5986 } 5987 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5988 strict); 5989 } 5990 5991 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) 5992 { 5993 if (env->prog->jit_requested) 5994 return round_up(stack_depth, 16); 5995 5996 /* round up to 32-bytes, since this is granularity 5997 * of interpreter stack size 5998 */ 5999 return round_up(max_t(u32, stack_depth, 1), 32); 6000 } 6001 6002 /* starting from main bpf function walk all instructions of the function 6003 * and recursively walk all callees that given function can call. 6004 * Ignore jump and exit insns. 6005 * Since recursion is prevented by check_cfg() this algorithm 6006 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 6007 */ 6008 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 6009 { 6010 struct bpf_subprog_info *subprog = env->subprog_info; 6011 struct bpf_insn *insn = env->prog->insnsi; 6012 int depth = 0, frame = 0, i, subprog_end; 6013 bool tail_call_reachable = false; 6014 int ret_insn[MAX_CALL_FRAMES]; 6015 int ret_prog[MAX_CALL_FRAMES]; 6016 int j; 6017 6018 i = subprog[idx].start; 6019 process_func: 6020 /* protect against potential stack overflow that might happen when 6021 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 6022 * depth for such case down to 256 so that the worst case scenario 6023 * would result in 8k stack size (32 which is tailcall limit * 256 = 6024 * 8k). 6025 * 6026 * To get the idea what might happen, see an example: 6027 * func1 -> sub rsp, 128 6028 * subfunc1 -> sub rsp, 256 6029 * tailcall1 -> add rsp, 256 6030 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 6031 * subfunc2 -> sub rsp, 64 6032 * subfunc22 -> sub rsp, 128 6033 * tailcall2 -> add rsp, 128 6034 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 6035 * 6036 * tailcall will unwind the current stack frame but it will not get rid 6037 * of caller's stack as shown on the example above. 6038 */ 6039 if (idx && subprog[idx].has_tail_call && depth >= 256) { 6040 verbose(env, 6041 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 6042 depth); 6043 return -EACCES; 6044 } 6045 depth += round_up_stack_depth(env, subprog[idx].stack_depth); 6046 if (depth > MAX_BPF_STACK) { 6047 verbose(env, "combined stack size of %d calls is %d. Too large\n", 6048 frame + 1, depth); 6049 return -EACCES; 6050 } 6051 continue_func: 6052 subprog_end = subprog[idx + 1].start; 6053 for (; i < subprog_end; i++) { 6054 int next_insn, sidx; 6055 6056 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 6057 bool err = false; 6058 6059 if (!is_bpf_throw_kfunc(insn + i)) 6060 continue; 6061 if (subprog[idx].is_cb) 6062 err = true; 6063 for (int c = 0; c < frame && !err; c++) { 6064 if (subprog[ret_prog[c]].is_cb) { 6065 err = true; 6066 break; 6067 } 6068 } 6069 if (!err) 6070 continue; 6071 verbose(env, 6072 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 6073 i, idx); 6074 return -EINVAL; 6075 } 6076 6077 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 6078 continue; 6079 /* remember insn and function to return to */ 6080 ret_insn[frame] = i + 1; 6081 ret_prog[frame] = idx; 6082 6083 /* find the callee */ 6084 next_insn = i + insn[i].imm + 1; 6085 sidx = find_subprog(env, next_insn); 6086 if (sidx < 0) { 6087 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6088 next_insn); 6089 return -EFAULT; 6090 } 6091 if (subprog[sidx].is_async_cb) { 6092 if (subprog[sidx].has_tail_call) { 6093 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 6094 return -EFAULT; 6095 } 6096 /* async callbacks don't increase bpf prog stack size unless called directly */ 6097 if (!bpf_pseudo_call(insn + i)) 6098 continue; 6099 if (subprog[sidx].is_exception_cb) { 6100 verbose(env, "insn %d cannot call exception cb directly\n", i); 6101 return -EINVAL; 6102 } 6103 } 6104 i = next_insn; 6105 idx = sidx; 6106 6107 if (subprog[idx].has_tail_call) 6108 tail_call_reachable = true; 6109 6110 frame++; 6111 if (frame >= MAX_CALL_FRAMES) { 6112 verbose(env, "the call stack of %d frames is too deep !\n", 6113 frame); 6114 return -E2BIG; 6115 } 6116 goto process_func; 6117 } 6118 /* if tail call got detected across bpf2bpf calls then mark each of the 6119 * currently present subprog frames as tail call reachable subprogs; 6120 * this info will be utilized by JIT so that we will be preserving the 6121 * tail call counter throughout bpf2bpf calls combined with tailcalls 6122 */ 6123 if (tail_call_reachable) 6124 for (j = 0; j < frame; j++) { 6125 if (subprog[ret_prog[j]].is_exception_cb) { 6126 verbose(env, "cannot tail call within exception cb\n"); 6127 return -EINVAL; 6128 } 6129 subprog[ret_prog[j]].tail_call_reachable = true; 6130 } 6131 if (subprog[0].tail_call_reachable) 6132 env->prog->aux->tail_call_reachable = true; 6133 6134 /* end of for() loop means the last insn of the 'subprog' 6135 * was reached. Doesn't matter whether it was JA or EXIT 6136 */ 6137 if (frame == 0) 6138 return 0; 6139 depth -= round_up_stack_depth(env, subprog[idx].stack_depth); 6140 frame--; 6141 i = ret_insn[frame]; 6142 idx = ret_prog[frame]; 6143 goto continue_func; 6144 } 6145 6146 static int check_max_stack_depth(struct bpf_verifier_env *env) 6147 { 6148 struct bpf_subprog_info *si = env->subprog_info; 6149 int ret; 6150 6151 for (int i = 0; i < env->subprog_cnt; i++) { 6152 if (!i || si[i].is_async_cb) { 6153 ret = check_max_stack_depth_subprog(env, i); 6154 if (ret < 0) 6155 return ret; 6156 } 6157 continue; 6158 } 6159 return 0; 6160 } 6161 6162 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6163 static int get_callee_stack_depth(struct bpf_verifier_env *env, 6164 const struct bpf_insn *insn, int idx) 6165 { 6166 int start = idx + insn->imm + 1, subprog; 6167 6168 subprog = find_subprog(env, start); 6169 if (subprog < 0) { 6170 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6171 start); 6172 return -EFAULT; 6173 } 6174 return env->subprog_info[subprog].stack_depth; 6175 } 6176 #endif 6177 6178 static int __check_buffer_access(struct bpf_verifier_env *env, 6179 const char *buf_info, 6180 const struct bpf_reg_state *reg, 6181 int regno, int off, int size) 6182 { 6183 if (off < 0) { 6184 verbose(env, 6185 "R%d invalid %s buffer access: off=%d, size=%d\n", 6186 regno, buf_info, off, size); 6187 return -EACCES; 6188 } 6189 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6190 char tn_buf[48]; 6191 6192 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6193 verbose(env, 6194 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6195 regno, off, tn_buf); 6196 return -EACCES; 6197 } 6198 6199 return 0; 6200 } 6201 6202 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6203 const struct bpf_reg_state *reg, 6204 int regno, int off, int size) 6205 { 6206 int err; 6207 6208 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6209 if (err) 6210 return err; 6211 6212 if (off + size > env->prog->aux->max_tp_access) 6213 env->prog->aux->max_tp_access = off + size; 6214 6215 return 0; 6216 } 6217 6218 static int check_buffer_access(struct bpf_verifier_env *env, 6219 const struct bpf_reg_state *reg, 6220 int regno, int off, int size, 6221 bool zero_size_allowed, 6222 u32 *max_access) 6223 { 6224 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6225 int err; 6226 6227 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6228 if (err) 6229 return err; 6230 6231 if (off + size > *max_access) 6232 *max_access = off + size; 6233 6234 return 0; 6235 } 6236 6237 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6238 static void zext_32_to_64(struct bpf_reg_state *reg) 6239 { 6240 reg->var_off = tnum_subreg(reg->var_off); 6241 __reg_assign_32_into_64(reg); 6242 } 6243 6244 /* truncate register to smaller size (in bytes) 6245 * must be called with size < BPF_REG_SIZE 6246 */ 6247 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6248 { 6249 u64 mask; 6250 6251 /* clear high bits in bit representation */ 6252 reg->var_off = tnum_cast(reg->var_off, size); 6253 6254 /* fix arithmetic bounds */ 6255 mask = ((u64)1 << (size * 8)) - 1; 6256 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6257 reg->umin_value &= mask; 6258 reg->umax_value &= mask; 6259 } else { 6260 reg->umin_value = 0; 6261 reg->umax_value = mask; 6262 } 6263 reg->smin_value = reg->umin_value; 6264 reg->smax_value = reg->umax_value; 6265 6266 /* If size is smaller than 32bit register the 32bit register 6267 * values are also truncated so we push 64-bit bounds into 6268 * 32-bit bounds. Above were truncated < 32-bits already. 6269 */ 6270 if (size < 4) 6271 __mark_reg32_unbounded(reg); 6272 6273 reg_bounds_sync(reg); 6274 } 6275 6276 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6277 { 6278 if (size == 1) { 6279 reg->smin_value = reg->s32_min_value = S8_MIN; 6280 reg->smax_value = reg->s32_max_value = S8_MAX; 6281 } else if (size == 2) { 6282 reg->smin_value = reg->s32_min_value = S16_MIN; 6283 reg->smax_value = reg->s32_max_value = S16_MAX; 6284 } else { 6285 /* size == 4 */ 6286 reg->smin_value = reg->s32_min_value = S32_MIN; 6287 reg->smax_value = reg->s32_max_value = S32_MAX; 6288 } 6289 reg->umin_value = reg->u32_min_value = 0; 6290 reg->umax_value = U64_MAX; 6291 reg->u32_max_value = U32_MAX; 6292 reg->var_off = tnum_unknown; 6293 } 6294 6295 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6296 { 6297 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6298 u64 top_smax_value, top_smin_value; 6299 u64 num_bits = size * 8; 6300 6301 if (tnum_is_const(reg->var_off)) { 6302 u64_cval = reg->var_off.value; 6303 if (size == 1) 6304 reg->var_off = tnum_const((s8)u64_cval); 6305 else if (size == 2) 6306 reg->var_off = tnum_const((s16)u64_cval); 6307 else 6308 /* size == 4 */ 6309 reg->var_off = tnum_const((s32)u64_cval); 6310 6311 u64_cval = reg->var_off.value; 6312 reg->smax_value = reg->smin_value = u64_cval; 6313 reg->umax_value = reg->umin_value = u64_cval; 6314 reg->s32_max_value = reg->s32_min_value = u64_cval; 6315 reg->u32_max_value = reg->u32_min_value = u64_cval; 6316 return; 6317 } 6318 6319 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6320 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6321 6322 if (top_smax_value != top_smin_value) 6323 goto out; 6324 6325 /* find the s64_min and s64_min after sign extension */ 6326 if (size == 1) { 6327 init_s64_max = (s8)reg->smax_value; 6328 init_s64_min = (s8)reg->smin_value; 6329 } else if (size == 2) { 6330 init_s64_max = (s16)reg->smax_value; 6331 init_s64_min = (s16)reg->smin_value; 6332 } else { 6333 init_s64_max = (s32)reg->smax_value; 6334 init_s64_min = (s32)reg->smin_value; 6335 } 6336 6337 s64_max = max(init_s64_max, init_s64_min); 6338 s64_min = min(init_s64_max, init_s64_min); 6339 6340 /* both of s64_max/s64_min positive or negative */ 6341 if ((s64_max >= 0) == (s64_min >= 0)) { 6342 reg->s32_min_value = reg->smin_value = s64_min; 6343 reg->s32_max_value = reg->smax_value = s64_max; 6344 reg->u32_min_value = reg->umin_value = s64_min; 6345 reg->u32_max_value = reg->umax_value = s64_max; 6346 reg->var_off = tnum_range(s64_min, s64_max); 6347 return; 6348 } 6349 6350 out: 6351 set_sext64_default_val(reg, size); 6352 } 6353 6354 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6355 { 6356 if (size == 1) { 6357 reg->s32_min_value = S8_MIN; 6358 reg->s32_max_value = S8_MAX; 6359 } else { 6360 /* size == 2 */ 6361 reg->s32_min_value = S16_MIN; 6362 reg->s32_max_value = S16_MAX; 6363 } 6364 reg->u32_min_value = 0; 6365 reg->u32_max_value = U32_MAX; 6366 reg->var_off = tnum_subreg(tnum_unknown); 6367 } 6368 6369 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6370 { 6371 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6372 u32 top_smax_value, top_smin_value; 6373 u32 num_bits = size * 8; 6374 6375 if (tnum_is_const(reg->var_off)) { 6376 u32_val = reg->var_off.value; 6377 if (size == 1) 6378 reg->var_off = tnum_const((s8)u32_val); 6379 else 6380 reg->var_off = tnum_const((s16)u32_val); 6381 6382 u32_val = reg->var_off.value; 6383 reg->s32_min_value = reg->s32_max_value = u32_val; 6384 reg->u32_min_value = reg->u32_max_value = u32_val; 6385 return; 6386 } 6387 6388 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6389 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6390 6391 if (top_smax_value != top_smin_value) 6392 goto out; 6393 6394 /* find the s32_min and s32_min after sign extension */ 6395 if (size == 1) { 6396 init_s32_max = (s8)reg->s32_max_value; 6397 init_s32_min = (s8)reg->s32_min_value; 6398 } else { 6399 /* size == 2 */ 6400 init_s32_max = (s16)reg->s32_max_value; 6401 init_s32_min = (s16)reg->s32_min_value; 6402 } 6403 s32_max = max(init_s32_max, init_s32_min); 6404 s32_min = min(init_s32_max, init_s32_min); 6405 6406 if ((s32_min >= 0) == (s32_max >= 0)) { 6407 reg->s32_min_value = s32_min; 6408 reg->s32_max_value = s32_max; 6409 reg->u32_min_value = (u32)s32_min; 6410 reg->u32_max_value = (u32)s32_max; 6411 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); 6412 return; 6413 } 6414 6415 out: 6416 set_sext32_default_val(reg, size); 6417 } 6418 6419 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6420 { 6421 /* A map is considered read-only if the following condition are true: 6422 * 6423 * 1) BPF program side cannot change any of the map content. The 6424 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6425 * and was set at map creation time. 6426 * 2) The map value(s) have been initialized from user space by a 6427 * loader and then "frozen", such that no new map update/delete 6428 * operations from syscall side are possible for the rest of 6429 * the map's lifetime from that point onwards. 6430 * 3) Any parallel/pending map update/delete operations from syscall 6431 * side have been completed. Only after that point, it's safe to 6432 * assume that map value(s) are immutable. 6433 */ 6434 return (map->map_flags & BPF_F_RDONLY_PROG) && 6435 READ_ONCE(map->frozen) && 6436 !bpf_map_write_active(map); 6437 } 6438 6439 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6440 bool is_ldsx) 6441 { 6442 void *ptr; 6443 u64 addr; 6444 int err; 6445 6446 err = map->ops->map_direct_value_addr(map, &addr, off); 6447 if (err) 6448 return err; 6449 ptr = (void *)(long)addr + off; 6450 6451 switch (size) { 6452 case sizeof(u8): 6453 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6454 break; 6455 case sizeof(u16): 6456 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6457 break; 6458 case sizeof(u32): 6459 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6460 break; 6461 case sizeof(u64): 6462 *val = *(u64 *)ptr; 6463 break; 6464 default: 6465 return -EINVAL; 6466 } 6467 return 0; 6468 } 6469 6470 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6471 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6472 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6473 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 6474 6475 /* 6476 * Allow list few fields as RCU trusted or full trusted. 6477 * This logic doesn't allow mix tagging and will be removed once GCC supports 6478 * btf_type_tag. 6479 */ 6480 6481 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6482 BTF_TYPE_SAFE_RCU(struct task_struct) { 6483 const cpumask_t *cpus_ptr; 6484 struct css_set __rcu *cgroups; 6485 struct task_struct __rcu *real_parent; 6486 struct task_struct *group_leader; 6487 }; 6488 6489 BTF_TYPE_SAFE_RCU(struct cgroup) { 6490 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6491 struct kernfs_node *kn; 6492 }; 6493 6494 BTF_TYPE_SAFE_RCU(struct css_set) { 6495 struct cgroup *dfl_cgrp; 6496 }; 6497 6498 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6499 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6500 struct file __rcu *exe_file; 6501 }; 6502 6503 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6504 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6505 */ 6506 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6507 struct sock *sk; 6508 }; 6509 6510 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6511 struct sock *sk; 6512 }; 6513 6514 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6515 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6516 struct seq_file *seq; 6517 }; 6518 6519 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6520 struct bpf_iter_meta *meta; 6521 struct task_struct *task; 6522 }; 6523 6524 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6525 struct file *file; 6526 }; 6527 6528 BTF_TYPE_SAFE_TRUSTED(struct file) { 6529 struct inode *f_inode; 6530 }; 6531 6532 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6533 /* no negative dentry-s in places where bpf can see it */ 6534 struct inode *d_inode; 6535 }; 6536 6537 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 6538 struct sock *sk; 6539 }; 6540 6541 static bool type_is_rcu(struct bpf_verifier_env *env, 6542 struct bpf_reg_state *reg, 6543 const char *field_name, u32 btf_id) 6544 { 6545 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6546 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6547 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6548 6549 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6550 } 6551 6552 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6553 struct bpf_reg_state *reg, 6554 const char *field_name, u32 btf_id) 6555 { 6556 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6557 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6558 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6559 6560 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6561 } 6562 6563 static bool type_is_trusted(struct bpf_verifier_env *env, 6564 struct bpf_reg_state *reg, 6565 const char *field_name, u32 btf_id) 6566 { 6567 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6568 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6569 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6570 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6571 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6572 6573 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6574 } 6575 6576 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 6577 struct bpf_reg_state *reg, 6578 const char *field_name, u32 btf_id) 6579 { 6580 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 6581 6582 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 6583 "__safe_trusted_or_null"); 6584 } 6585 6586 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6587 struct bpf_reg_state *regs, 6588 int regno, int off, int size, 6589 enum bpf_access_type atype, 6590 int value_regno) 6591 { 6592 struct bpf_reg_state *reg = regs + regno; 6593 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6594 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6595 const char *field_name = NULL; 6596 enum bpf_type_flag flag = 0; 6597 u32 btf_id = 0; 6598 int ret; 6599 6600 if (!env->allow_ptr_leaks) { 6601 verbose(env, 6602 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6603 tname); 6604 return -EPERM; 6605 } 6606 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6607 verbose(env, 6608 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6609 tname); 6610 return -EINVAL; 6611 } 6612 if (off < 0) { 6613 verbose(env, 6614 "R%d is ptr_%s invalid negative access: off=%d\n", 6615 regno, tname, off); 6616 return -EACCES; 6617 } 6618 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6619 char tn_buf[48]; 6620 6621 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6622 verbose(env, 6623 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6624 regno, tname, off, tn_buf); 6625 return -EACCES; 6626 } 6627 6628 if (reg->type & MEM_USER) { 6629 verbose(env, 6630 "R%d is ptr_%s access user memory: off=%d\n", 6631 regno, tname, off); 6632 return -EACCES; 6633 } 6634 6635 if (reg->type & MEM_PERCPU) { 6636 verbose(env, 6637 "R%d is ptr_%s access percpu memory: off=%d\n", 6638 regno, tname, off); 6639 return -EACCES; 6640 } 6641 6642 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6643 if (!btf_is_kernel(reg->btf)) { 6644 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6645 return -EFAULT; 6646 } 6647 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6648 } else { 6649 /* Writes are permitted with default btf_struct_access for 6650 * program allocated objects (which always have ref_obj_id > 0), 6651 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6652 */ 6653 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6654 verbose(env, "only read is supported\n"); 6655 return -EACCES; 6656 } 6657 6658 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6659 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 6660 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6661 return -EFAULT; 6662 } 6663 6664 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6665 } 6666 6667 if (ret < 0) 6668 return ret; 6669 6670 if (ret != PTR_TO_BTF_ID) { 6671 /* just mark; */ 6672 6673 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6674 /* If this is an untrusted pointer, all pointers formed by walking it 6675 * also inherit the untrusted flag. 6676 */ 6677 flag = PTR_UNTRUSTED; 6678 6679 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6680 /* By default any pointer obtained from walking a trusted pointer is no 6681 * longer trusted, unless the field being accessed has explicitly been 6682 * marked as inheriting its parent's state of trust (either full or RCU). 6683 * For example: 6684 * 'cgroups' pointer is untrusted if task->cgroups dereference 6685 * happened in a sleepable program outside of bpf_rcu_read_lock() 6686 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6687 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6688 * 6689 * A regular RCU-protected pointer with __rcu tag can also be deemed 6690 * trusted if we are in an RCU CS. Such pointer can be NULL. 6691 */ 6692 if (type_is_trusted(env, reg, field_name, btf_id)) { 6693 flag |= PTR_TRUSTED; 6694 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 6695 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 6696 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6697 if (type_is_rcu(env, reg, field_name, btf_id)) { 6698 /* ignore __rcu tag and mark it MEM_RCU */ 6699 flag |= MEM_RCU; 6700 } else if (flag & MEM_RCU || 6701 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6702 /* __rcu tagged pointers can be NULL */ 6703 flag |= MEM_RCU | PTR_MAYBE_NULL; 6704 6705 /* We always trust them */ 6706 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6707 flag & PTR_UNTRUSTED) 6708 flag &= ~PTR_UNTRUSTED; 6709 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6710 /* keep as-is */ 6711 } else { 6712 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6713 clear_trusted_flags(&flag); 6714 } 6715 } else { 6716 /* 6717 * If not in RCU CS or MEM_RCU pointer can be NULL then 6718 * aggressively mark as untrusted otherwise such 6719 * pointers will be plain PTR_TO_BTF_ID without flags 6720 * and will be allowed to be passed into helpers for 6721 * compat reasons. 6722 */ 6723 flag = PTR_UNTRUSTED; 6724 } 6725 } else { 6726 /* Old compat. Deprecated */ 6727 clear_trusted_flags(&flag); 6728 } 6729 6730 if (atype == BPF_READ && value_regno >= 0) 6731 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6732 6733 return 0; 6734 } 6735 6736 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6737 struct bpf_reg_state *regs, 6738 int regno, int off, int size, 6739 enum bpf_access_type atype, 6740 int value_regno) 6741 { 6742 struct bpf_reg_state *reg = regs + regno; 6743 struct bpf_map *map = reg->map_ptr; 6744 struct bpf_reg_state map_reg; 6745 enum bpf_type_flag flag = 0; 6746 const struct btf_type *t; 6747 const char *tname; 6748 u32 btf_id; 6749 int ret; 6750 6751 if (!btf_vmlinux) { 6752 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6753 return -ENOTSUPP; 6754 } 6755 6756 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6757 verbose(env, "map_ptr access not supported for map type %d\n", 6758 map->map_type); 6759 return -ENOTSUPP; 6760 } 6761 6762 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6763 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6764 6765 if (!env->allow_ptr_leaks) { 6766 verbose(env, 6767 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6768 tname); 6769 return -EPERM; 6770 } 6771 6772 if (off < 0) { 6773 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6774 regno, tname, off); 6775 return -EACCES; 6776 } 6777 6778 if (atype != BPF_READ) { 6779 verbose(env, "only read from %s is supported\n", tname); 6780 return -EACCES; 6781 } 6782 6783 /* Simulate access to a PTR_TO_BTF_ID */ 6784 memset(&map_reg, 0, sizeof(map_reg)); 6785 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6786 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6787 if (ret < 0) 6788 return ret; 6789 6790 if (value_regno >= 0) 6791 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6792 6793 return 0; 6794 } 6795 6796 /* Check that the stack access at the given offset is within bounds. The 6797 * maximum valid offset is -1. 6798 * 6799 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6800 * -state->allocated_stack for reads. 6801 */ 6802 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 6803 s64 off, 6804 struct bpf_func_state *state, 6805 enum bpf_access_type t) 6806 { 6807 struct bpf_insn_aux_data *aux = &env->insn_aux_data[env->insn_idx]; 6808 int min_valid_off, max_bpf_stack; 6809 6810 /* If accessing instruction is a spill/fill from bpf_fastcall pattern, 6811 * add room for all caller saved registers below MAX_BPF_STACK. 6812 * In case if bpf_fastcall rewrite won't happen maximal stack depth 6813 * would be checked by check_max_stack_depth_subprog(). 6814 */ 6815 max_bpf_stack = MAX_BPF_STACK; 6816 if (aux->fastcall_pattern) 6817 max_bpf_stack += CALLER_SAVED_REGS * BPF_REG_SIZE; 6818 6819 if (t == BPF_WRITE || env->allow_uninit_stack) 6820 min_valid_off = -max_bpf_stack; 6821 else 6822 min_valid_off = -state->allocated_stack; 6823 6824 if (off < min_valid_off || off > -1) 6825 return -EACCES; 6826 return 0; 6827 } 6828 6829 /* Check that the stack access at 'regno + off' falls within the maximum stack 6830 * bounds. 6831 * 6832 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6833 */ 6834 static int check_stack_access_within_bounds( 6835 struct bpf_verifier_env *env, 6836 int regno, int off, int access_size, 6837 enum bpf_access_src src, enum bpf_access_type type) 6838 { 6839 struct bpf_reg_state *regs = cur_regs(env); 6840 struct bpf_reg_state *reg = regs + regno; 6841 struct bpf_func_state *state = func(env, reg); 6842 s64 min_off, max_off; 6843 int err; 6844 char *err_extra; 6845 6846 if (src == ACCESS_HELPER) 6847 /* We don't know if helpers are reading or writing (or both). */ 6848 err_extra = " indirect access to"; 6849 else if (type == BPF_READ) 6850 err_extra = " read from"; 6851 else 6852 err_extra = " write to"; 6853 6854 if (tnum_is_const(reg->var_off)) { 6855 min_off = (s64)reg->var_off.value + off; 6856 max_off = min_off + access_size; 6857 } else { 6858 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6859 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6860 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6861 err_extra, regno); 6862 return -EACCES; 6863 } 6864 min_off = reg->smin_value + off; 6865 max_off = reg->smax_value + off + access_size; 6866 } 6867 6868 err = check_stack_slot_within_bounds(env, min_off, state, type); 6869 if (!err && max_off > 0) 6870 err = -EINVAL; /* out of stack access into non-negative offsets */ 6871 if (!err && access_size < 0) 6872 /* access_size should not be negative (or overflow an int); others checks 6873 * along the way should have prevented such an access. 6874 */ 6875 err = -EFAULT; /* invalid negative access size; integer overflow? */ 6876 6877 if (err) { 6878 if (tnum_is_const(reg->var_off)) { 6879 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6880 err_extra, regno, off, access_size); 6881 } else { 6882 char tn_buf[48]; 6883 6884 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6885 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 6886 err_extra, regno, tn_buf, off, access_size); 6887 } 6888 return err; 6889 } 6890 6891 /* Note that there is no stack access with offset zero, so the needed stack 6892 * size is -min_off, not -min_off+1. 6893 */ 6894 return grow_stack_state(env, state, -min_off /* size */); 6895 } 6896 6897 static bool get_func_retval_range(struct bpf_prog *prog, 6898 struct bpf_retval_range *range) 6899 { 6900 if (prog->type == BPF_PROG_TYPE_LSM && 6901 prog->expected_attach_type == BPF_LSM_MAC && 6902 !bpf_lsm_get_retval_range(prog, range)) { 6903 return true; 6904 } 6905 return false; 6906 } 6907 6908 /* check whether memory at (regno + off) is accessible for t = (read | write) 6909 * if t==write, value_regno is a register which value is stored into memory 6910 * if t==read, value_regno is a register which will receive the value from memory 6911 * if t==write && value_regno==-1, some unknown value is stored into memory 6912 * if t==read && value_regno==-1, don't care what we read from memory 6913 */ 6914 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6915 int off, int bpf_size, enum bpf_access_type t, 6916 int value_regno, bool strict_alignment_once, bool is_ldsx) 6917 { 6918 struct bpf_reg_state *regs = cur_regs(env); 6919 struct bpf_reg_state *reg = regs + regno; 6920 int size, err = 0; 6921 6922 size = bpf_size_to_bytes(bpf_size); 6923 if (size < 0) 6924 return size; 6925 6926 /* alignment checks will add in reg->off themselves */ 6927 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6928 if (err) 6929 return err; 6930 6931 /* for access checks, reg->off is just part of off */ 6932 off += reg->off; 6933 6934 if (reg->type == PTR_TO_MAP_KEY) { 6935 if (t == BPF_WRITE) { 6936 verbose(env, "write to change key R%d not allowed\n", regno); 6937 return -EACCES; 6938 } 6939 6940 err = check_mem_region_access(env, regno, off, size, 6941 reg->map_ptr->key_size, false); 6942 if (err) 6943 return err; 6944 if (value_regno >= 0) 6945 mark_reg_unknown(env, regs, value_regno); 6946 } else if (reg->type == PTR_TO_MAP_VALUE) { 6947 struct btf_field *kptr_field = NULL; 6948 6949 if (t == BPF_WRITE && value_regno >= 0 && 6950 is_pointer_value(env, value_regno)) { 6951 verbose(env, "R%d leaks addr into map\n", value_regno); 6952 return -EACCES; 6953 } 6954 err = check_map_access_type(env, regno, off, size, t); 6955 if (err) 6956 return err; 6957 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6958 if (err) 6959 return err; 6960 if (tnum_is_const(reg->var_off)) 6961 kptr_field = btf_record_find(reg->map_ptr->record, 6962 off + reg->var_off.value, BPF_KPTR); 6963 if (kptr_field) { 6964 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6965 } else if (t == BPF_READ && value_regno >= 0) { 6966 struct bpf_map *map = reg->map_ptr; 6967 6968 /* if map is read-only, track its contents as scalars */ 6969 if (tnum_is_const(reg->var_off) && 6970 bpf_map_is_rdonly(map) && 6971 map->ops->map_direct_value_addr) { 6972 int map_off = off + reg->var_off.value; 6973 u64 val = 0; 6974 6975 err = bpf_map_direct_read(map, map_off, size, 6976 &val, is_ldsx); 6977 if (err) 6978 return err; 6979 6980 regs[value_regno].type = SCALAR_VALUE; 6981 __mark_reg_known(®s[value_regno], val); 6982 } else { 6983 mark_reg_unknown(env, regs, value_regno); 6984 } 6985 } 6986 } else if (base_type(reg->type) == PTR_TO_MEM) { 6987 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6988 6989 if (type_may_be_null(reg->type)) { 6990 verbose(env, "R%d invalid mem access '%s'\n", regno, 6991 reg_type_str(env, reg->type)); 6992 return -EACCES; 6993 } 6994 6995 if (t == BPF_WRITE && rdonly_mem) { 6996 verbose(env, "R%d cannot write into %s\n", 6997 regno, reg_type_str(env, reg->type)); 6998 return -EACCES; 6999 } 7000 7001 if (t == BPF_WRITE && value_regno >= 0 && 7002 is_pointer_value(env, value_regno)) { 7003 verbose(env, "R%d leaks addr into mem\n", value_regno); 7004 return -EACCES; 7005 } 7006 7007 err = check_mem_region_access(env, regno, off, size, 7008 reg->mem_size, false); 7009 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 7010 mark_reg_unknown(env, regs, value_regno); 7011 } else if (reg->type == PTR_TO_CTX) { 7012 bool is_retval = false; 7013 struct bpf_retval_range range; 7014 enum bpf_reg_type reg_type = SCALAR_VALUE; 7015 struct btf *btf = NULL; 7016 u32 btf_id = 0; 7017 7018 if (t == BPF_WRITE && value_regno >= 0 && 7019 is_pointer_value(env, value_regno)) { 7020 verbose(env, "R%d leaks addr into ctx\n", value_regno); 7021 return -EACCES; 7022 } 7023 7024 err = check_ptr_off_reg(env, reg, regno); 7025 if (err < 0) 7026 return err; 7027 7028 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 7029 &btf_id, &is_retval, is_ldsx); 7030 if (err) 7031 verbose_linfo(env, insn_idx, "; "); 7032 if (!err && t == BPF_READ && value_regno >= 0) { 7033 /* ctx access returns either a scalar, or a 7034 * PTR_TO_PACKET[_META,_END]. In the latter 7035 * case, we know the offset is zero. 7036 */ 7037 if (reg_type == SCALAR_VALUE) { 7038 if (is_retval && get_func_retval_range(env->prog, &range)) { 7039 err = __mark_reg_s32_range(env, regs, value_regno, 7040 range.minval, range.maxval); 7041 if (err) 7042 return err; 7043 } else { 7044 mark_reg_unknown(env, regs, value_regno); 7045 } 7046 } else { 7047 mark_reg_known_zero(env, regs, 7048 value_regno); 7049 if (type_may_be_null(reg_type)) 7050 regs[value_regno].id = ++env->id_gen; 7051 /* A load of ctx field could have different 7052 * actual load size with the one encoded in the 7053 * insn. When the dst is PTR, it is for sure not 7054 * a sub-register. 7055 */ 7056 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 7057 if (base_type(reg_type) == PTR_TO_BTF_ID) { 7058 regs[value_regno].btf = btf; 7059 regs[value_regno].btf_id = btf_id; 7060 } 7061 } 7062 regs[value_regno].type = reg_type; 7063 } 7064 7065 } else if (reg->type == PTR_TO_STACK) { 7066 /* Basic bounds checks. */ 7067 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 7068 if (err) 7069 return err; 7070 7071 if (t == BPF_READ) 7072 err = check_stack_read(env, regno, off, size, 7073 value_regno); 7074 else 7075 err = check_stack_write(env, regno, off, size, 7076 value_regno, insn_idx); 7077 } else if (reg_is_pkt_pointer(reg)) { 7078 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 7079 verbose(env, "cannot write into packet\n"); 7080 return -EACCES; 7081 } 7082 if (t == BPF_WRITE && value_regno >= 0 && 7083 is_pointer_value(env, value_regno)) { 7084 verbose(env, "R%d leaks addr into packet\n", 7085 value_regno); 7086 return -EACCES; 7087 } 7088 err = check_packet_access(env, regno, off, size, false); 7089 if (!err && t == BPF_READ && value_regno >= 0) 7090 mark_reg_unknown(env, regs, value_regno); 7091 } else if (reg->type == PTR_TO_FLOW_KEYS) { 7092 if (t == BPF_WRITE && value_regno >= 0 && 7093 is_pointer_value(env, value_regno)) { 7094 verbose(env, "R%d leaks addr into flow keys\n", 7095 value_regno); 7096 return -EACCES; 7097 } 7098 7099 err = check_flow_keys_access(env, off, size); 7100 if (!err && t == BPF_READ && value_regno >= 0) 7101 mark_reg_unknown(env, regs, value_regno); 7102 } else if (type_is_sk_pointer(reg->type)) { 7103 if (t == BPF_WRITE) { 7104 verbose(env, "R%d cannot write into %s\n", 7105 regno, reg_type_str(env, reg->type)); 7106 return -EACCES; 7107 } 7108 err = check_sock_access(env, insn_idx, regno, off, size, t); 7109 if (!err && value_regno >= 0) 7110 mark_reg_unknown(env, regs, value_regno); 7111 } else if (reg->type == PTR_TO_TP_BUFFER) { 7112 err = check_tp_buffer_access(env, reg, regno, off, size); 7113 if (!err && t == BPF_READ && value_regno >= 0) 7114 mark_reg_unknown(env, regs, value_regno); 7115 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 7116 !type_may_be_null(reg->type)) { 7117 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 7118 value_regno); 7119 } else if (reg->type == CONST_PTR_TO_MAP) { 7120 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 7121 value_regno); 7122 } else if (base_type(reg->type) == PTR_TO_BUF) { 7123 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7124 u32 *max_access; 7125 7126 if (rdonly_mem) { 7127 if (t == BPF_WRITE) { 7128 verbose(env, "R%d cannot write into %s\n", 7129 regno, reg_type_str(env, reg->type)); 7130 return -EACCES; 7131 } 7132 max_access = &env->prog->aux->max_rdonly_access; 7133 } else { 7134 max_access = &env->prog->aux->max_rdwr_access; 7135 } 7136 7137 err = check_buffer_access(env, reg, regno, off, size, false, 7138 max_access); 7139 7140 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 7141 mark_reg_unknown(env, regs, value_regno); 7142 } else if (reg->type == PTR_TO_ARENA) { 7143 if (t == BPF_READ && value_regno >= 0) 7144 mark_reg_unknown(env, regs, value_regno); 7145 } else { 7146 verbose(env, "R%d invalid mem access '%s'\n", regno, 7147 reg_type_str(env, reg->type)); 7148 return -EACCES; 7149 } 7150 7151 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 7152 regs[value_regno].type == SCALAR_VALUE) { 7153 if (!is_ldsx) 7154 /* b/h/w load zero-extends, mark upper bits as known 0 */ 7155 coerce_reg_to_size(®s[value_regno], size); 7156 else 7157 coerce_reg_to_size_sx(®s[value_regno], size); 7158 } 7159 return err; 7160 } 7161 7162 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 7163 bool allow_trust_mismatch); 7164 7165 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 7166 { 7167 int load_reg; 7168 int err; 7169 7170 switch (insn->imm) { 7171 case BPF_ADD: 7172 case BPF_ADD | BPF_FETCH: 7173 case BPF_AND: 7174 case BPF_AND | BPF_FETCH: 7175 case BPF_OR: 7176 case BPF_OR | BPF_FETCH: 7177 case BPF_XOR: 7178 case BPF_XOR | BPF_FETCH: 7179 case BPF_XCHG: 7180 case BPF_CMPXCHG: 7181 break; 7182 default: 7183 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 7184 return -EINVAL; 7185 } 7186 7187 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 7188 verbose(env, "invalid atomic operand size\n"); 7189 return -EINVAL; 7190 } 7191 7192 /* check src1 operand */ 7193 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7194 if (err) 7195 return err; 7196 7197 /* check src2 operand */ 7198 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7199 if (err) 7200 return err; 7201 7202 if (insn->imm == BPF_CMPXCHG) { 7203 /* Check comparison of R0 with memory location */ 7204 const u32 aux_reg = BPF_REG_0; 7205 7206 err = check_reg_arg(env, aux_reg, SRC_OP); 7207 if (err) 7208 return err; 7209 7210 if (is_pointer_value(env, aux_reg)) { 7211 verbose(env, "R%d leaks addr into mem\n", aux_reg); 7212 return -EACCES; 7213 } 7214 } 7215 7216 if (is_pointer_value(env, insn->src_reg)) { 7217 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 7218 return -EACCES; 7219 } 7220 7221 if (is_ctx_reg(env, insn->dst_reg) || 7222 is_pkt_reg(env, insn->dst_reg) || 7223 is_flow_key_reg(env, insn->dst_reg) || 7224 is_sk_reg(env, insn->dst_reg) || 7225 (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) { 7226 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7227 insn->dst_reg, 7228 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7229 return -EACCES; 7230 } 7231 7232 if (insn->imm & BPF_FETCH) { 7233 if (insn->imm == BPF_CMPXCHG) 7234 load_reg = BPF_REG_0; 7235 else 7236 load_reg = insn->src_reg; 7237 7238 /* check and record load of old value */ 7239 err = check_reg_arg(env, load_reg, DST_OP); 7240 if (err) 7241 return err; 7242 } else { 7243 /* This instruction accesses a memory location but doesn't 7244 * actually load it into a register. 7245 */ 7246 load_reg = -1; 7247 } 7248 7249 /* Check whether we can read the memory, with second call for fetch 7250 * case to simulate the register fill. 7251 */ 7252 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7253 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7254 if (!err && load_reg >= 0) 7255 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7256 BPF_SIZE(insn->code), BPF_READ, load_reg, 7257 true, false); 7258 if (err) 7259 return err; 7260 7261 if (is_arena_reg(env, insn->dst_reg)) { 7262 err = save_aux_ptr_type(env, PTR_TO_ARENA, false); 7263 if (err) 7264 return err; 7265 } 7266 /* Check whether we can write into the same memory. */ 7267 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7268 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7269 if (err) 7270 return err; 7271 return 0; 7272 } 7273 7274 /* When register 'regno' is used to read the stack (either directly or through 7275 * a helper function) make sure that it's within stack boundary and, depending 7276 * on the access type and privileges, that all elements of the stack are 7277 * initialized. 7278 * 7279 * 'off' includes 'regno->off', but not its dynamic part (if any). 7280 * 7281 * All registers that have been spilled on the stack in the slots within the 7282 * read offsets are marked as read. 7283 */ 7284 static int check_stack_range_initialized( 7285 struct bpf_verifier_env *env, int regno, int off, 7286 int access_size, bool zero_size_allowed, 7287 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 7288 { 7289 struct bpf_reg_state *reg = reg_state(env, regno); 7290 struct bpf_func_state *state = func(env, reg); 7291 int err, min_off, max_off, i, j, slot, spi; 7292 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 7293 enum bpf_access_type bounds_check_type; 7294 /* Some accesses can write anything into the stack, others are 7295 * read-only. 7296 */ 7297 bool clobber = false; 7298 7299 if (access_size == 0 && !zero_size_allowed) { 7300 verbose(env, "invalid zero-sized read\n"); 7301 return -EACCES; 7302 } 7303 7304 if (type == ACCESS_HELPER) { 7305 /* The bounds checks for writes are more permissive than for 7306 * reads. However, if raw_mode is not set, we'll do extra 7307 * checks below. 7308 */ 7309 bounds_check_type = BPF_WRITE; 7310 clobber = true; 7311 } else { 7312 bounds_check_type = BPF_READ; 7313 } 7314 err = check_stack_access_within_bounds(env, regno, off, access_size, 7315 type, bounds_check_type); 7316 if (err) 7317 return err; 7318 7319 7320 if (tnum_is_const(reg->var_off)) { 7321 min_off = max_off = reg->var_off.value + off; 7322 } else { 7323 /* Variable offset is prohibited for unprivileged mode for 7324 * simplicity since it requires corresponding support in 7325 * Spectre masking for stack ALU. 7326 * See also retrieve_ptr_limit(). 7327 */ 7328 if (!env->bypass_spec_v1) { 7329 char tn_buf[48]; 7330 7331 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7332 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 7333 regno, err_extra, tn_buf); 7334 return -EACCES; 7335 } 7336 /* Only initialized buffer on stack is allowed to be accessed 7337 * with variable offset. With uninitialized buffer it's hard to 7338 * guarantee that whole memory is marked as initialized on 7339 * helper return since specific bounds are unknown what may 7340 * cause uninitialized stack leaking. 7341 */ 7342 if (meta && meta->raw_mode) 7343 meta = NULL; 7344 7345 min_off = reg->smin_value + off; 7346 max_off = reg->smax_value + off; 7347 } 7348 7349 if (meta && meta->raw_mode) { 7350 /* Ensure we won't be overwriting dynptrs when simulating byte 7351 * by byte access in check_helper_call using meta.access_size. 7352 * This would be a problem if we have a helper in the future 7353 * which takes: 7354 * 7355 * helper(uninit_mem, len, dynptr) 7356 * 7357 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7358 * may end up writing to dynptr itself when touching memory from 7359 * arg 1. This can be relaxed on a case by case basis for known 7360 * safe cases, but reject due to the possibilitiy of aliasing by 7361 * default. 7362 */ 7363 for (i = min_off; i < max_off + access_size; i++) { 7364 int stack_off = -i - 1; 7365 7366 spi = __get_spi(i); 7367 /* raw_mode may write past allocated_stack */ 7368 if (state->allocated_stack <= stack_off) 7369 continue; 7370 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7371 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7372 return -EACCES; 7373 } 7374 } 7375 meta->access_size = access_size; 7376 meta->regno = regno; 7377 return 0; 7378 } 7379 7380 for (i = min_off; i < max_off + access_size; i++) { 7381 u8 *stype; 7382 7383 slot = -i - 1; 7384 spi = slot / BPF_REG_SIZE; 7385 if (state->allocated_stack <= slot) { 7386 verbose(env, "verifier bug: allocated_stack too small"); 7387 return -EFAULT; 7388 } 7389 7390 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7391 if (*stype == STACK_MISC) 7392 goto mark; 7393 if ((*stype == STACK_ZERO) || 7394 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7395 if (clobber) { 7396 /* helper can write anything into the stack */ 7397 *stype = STACK_MISC; 7398 } 7399 goto mark; 7400 } 7401 7402 if (is_spilled_reg(&state->stack[spi]) && 7403 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7404 env->allow_ptr_leaks)) { 7405 if (clobber) { 7406 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7407 for (j = 0; j < BPF_REG_SIZE; j++) 7408 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7409 } 7410 goto mark; 7411 } 7412 7413 if (tnum_is_const(reg->var_off)) { 7414 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7415 err_extra, regno, min_off, i - min_off, access_size); 7416 } else { 7417 char tn_buf[48]; 7418 7419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7420 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7421 err_extra, regno, tn_buf, i - min_off, access_size); 7422 } 7423 return -EACCES; 7424 mark: 7425 /* reading any byte out of 8-byte 'spill_slot' will cause 7426 * the whole slot to be marked as 'read' 7427 */ 7428 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7429 state->stack[spi].spilled_ptr.parent, 7430 REG_LIVE_READ64); 7431 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7432 * be sure that whether stack slot is written to or not. Hence, 7433 * we must still conservatively propagate reads upwards even if 7434 * helper may write to the entire memory range. 7435 */ 7436 } 7437 return 0; 7438 } 7439 7440 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7441 int access_size, bool zero_size_allowed, 7442 struct bpf_call_arg_meta *meta) 7443 { 7444 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7445 u32 *max_access; 7446 7447 switch (base_type(reg->type)) { 7448 case PTR_TO_PACKET: 7449 case PTR_TO_PACKET_META: 7450 return check_packet_access(env, regno, reg->off, access_size, 7451 zero_size_allowed); 7452 case PTR_TO_MAP_KEY: 7453 if (meta && meta->raw_mode) { 7454 verbose(env, "R%d cannot write into %s\n", regno, 7455 reg_type_str(env, reg->type)); 7456 return -EACCES; 7457 } 7458 return check_mem_region_access(env, regno, reg->off, access_size, 7459 reg->map_ptr->key_size, false); 7460 case PTR_TO_MAP_VALUE: 7461 if (check_map_access_type(env, regno, reg->off, access_size, 7462 meta && meta->raw_mode ? BPF_WRITE : 7463 BPF_READ)) 7464 return -EACCES; 7465 return check_map_access(env, regno, reg->off, access_size, 7466 zero_size_allowed, ACCESS_HELPER); 7467 case PTR_TO_MEM: 7468 if (type_is_rdonly_mem(reg->type)) { 7469 if (meta && meta->raw_mode) { 7470 verbose(env, "R%d cannot write into %s\n", regno, 7471 reg_type_str(env, reg->type)); 7472 return -EACCES; 7473 } 7474 } 7475 return check_mem_region_access(env, regno, reg->off, 7476 access_size, reg->mem_size, 7477 zero_size_allowed); 7478 case PTR_TO_BUF: 7479 if (type_is_rdonly_mem(reg->type)) { 7480 if (meta && meta->raw_mode) { 7481 verbose(env, "R%d cannot write into %s\n", regno, 7482 reg_type_str(env, reg->type)); 7483 return -EACCES; 7484 } 7485 7486 max_access = &env->prog->aux->max_rdonly_access; 7487 } else { 7488 max_access = &env->prog->aux->max_rdwr_access; 7489 } 7490 return check_buffer_access(env, reg, regno, reg->off, 7491 access_size, zero_size_allowed, 7492 max_access); 7493 case PTR_TO_STACK: 7494 return check_stack_range_initialized( 7495 env, 7496 regno, reg->off, access_size, 7497 zero_size_allowed, ACCESS_HELPER, meta); 7498 case PTR_TO_BTF_ID: 7499 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7500 access_size, BPF_READ, -1); 7501 case PTR_TO_CTX: 7502 /* in case the function doesn't know how to access the context, 7503 * (because we are in a program of type SYSCALL for example), we 7504 * can not statically check its size. 7505 * Dynamically check it now. 7506 */ 7507 if (!env->ops->convert_ctx_access) { 7508 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7509 int offset = access_size - 1; 7510 7511 /* Allow zero-byte read from PTR_TO_CTX */ 7512 if (access_size == 0) 7513 return zero_size_allowed ? 0 : -EACCES; 7514 7515 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7516 atype, -1, false, false); 7517 } 7518 7519 fallthrough; 7520 default: /* scalar_value or invalid ptr */ 7521 /* Allow zero-byte read from NULL, regardless of pointer type */ 7522 if (zero_size_allowed && access_size == 0 && 7523 register_is_null(reg)) 7524 return 0; 7525 7526 verbose(env, "R%d type=%s ", regno, 7527 reg_type_str(env, reg->type)); 7528 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7529 return -EACCES; 7530 } 7531 } 7532 7533 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 7534 * size. 7535 * 7536 * @regno is the register containing the access size. regno-1 is the register 7537 * containing the pointer. 7538 */ 7539 static int check_mem_size_reg(struct bpf_verifier_env *env, 7540 struct bpf_reg_state *reg, u32 regno, 7541 bool zero_size_allowed, 7542 struct bpf_call_arg_meta *meta) 7543 { 7544 int err; 7545 7546 /* This is used to refine r0 return value bounds for helpers 7547 * that enforce this value as an upper bound on return values. 7548 * See do_refine_retval_range() for helpers that can refine 7549 * the return value. C type of helper is u32 so we pull register 7550 * bound from umax_value however, if negative verifier errors 7551 * out. Only upper bounds can be learned because retval is an 7552 * int type and negative retvals are allowed. 7553 */ 7554 meta->msize_max_value = reg->umax_value; 7555 7556 /* The register is SCALAR_VALUE; the access check 7557 * happens using its boundaries. 7558 */ 7559 if (!tnum_is_const(reg->var_off)) 7560 /* For unprivileged variable accesses, disable raw 7561 * mode so that the program is required to 7562 * initialize all the memory that the helper could 7563 * just partially fill up. 7564 */ 7565 meta = NULL; 7566 7567 if (reg->smin_value < 0) { 7568 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7569 regno); 7570 return -EACCES; 7571 } 7572 7573 if (reg->umin_value == 0 && !zero_size_allowed) { 7574 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 7575 regno, reg->umin_value, reg->umax_value); 7576 return -EACCES; 7577 } 7578 7579 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7580 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7581 regno); 7582 return -EACCES; 7583 } 7584 err = check_helper_mem_access(env, regno - 1, 7585 reg->umax_value, 7586 zero_size_allowed, meta); 7587 if (!err) 7588 err = mark_chain_precision(env, regno); 7589 return err; 7590 } 7591 7592 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7593 u32 regno, u32 mem_size) 7594 { 7595 bool may_be_null = type_may_be_null(reg->type); 7596 struct bpf_reg_state saved_reg; 7597 struct bpf_call_arg_meta meta; 7598 int err; 7599 7600 if (register_is_null(reg)) 7601 return 0; 7602 7603 memset(&meta, 0, sizeof(meta)); 7604 /* Assuming that the register contains a value check if the memory 7605 * access is safe. Temporarily save and restore the register's state as 7606 * the conversion shouldn't be visible to a caller. 7607 */ 7608 if (may_be_null) { 7609 saved_reg = *reg; 7610 mark_ptr_not_null_reg(reg); 7611 } 7612 7613 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7614 /* Check access for BPF_WRITE */ 7615 meta.raw_mode = true; 7616 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7617 7618 if (may_be_null) 7619 *reg = saved_reg; 7620 7621 return err; 7622 } 7623 7624 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7625 u32 regno) 7626 { 7627 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7628 bool may_be_null = type_may_be_null(mem_reg->type); 7629 struct bpf_reg_state saved_reg; 7630 struct bpf_call_arg_meta meta; 7631 int err; 7632 7633 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7634 7635 memset(&meta, 0, sizeof(meta)); 7636 7637 if (may_be_null) { 7638 saved_reg = *mem_reg; 7639 mark_ptr_not_null_reg(mem_reg); 7640 } 7641 7642 err = check_mem_size_reg(env, reg, regno, true, &meta); 7643 /* Check access for BPF_WRITE */ 7644 meta.raw_mode = true; 7645 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7646 7647 if (may_be_null) 7648 *mem_reg = saved_reg; 7649 return err; 7650 } 7651 7652 /* Implementation details: 7653 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7654 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7655 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7656 * Two separate bpf_obj_new will also have different reg->id. 7657 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7658 * clears reg->id after value_or_null->value transition, since the verifier only 7659 * cares about the range of access to valid map value pointer and doesn't care 7660 * about actual address of the map element. 7661 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7662 * reg->id > 0 after value_or_null->value transition. By doing so 7663 * two bpf_map_lookups will be considered two different pointers that 7664 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7665 * returned from bpf_obj_new. 7666 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7667 * dead-locks. 7668 * Since only one bpf_spin_lock is allowed the checks are simpler than 7669 * reg_is_refcounted() logic. The verifier needs to remember only 7670 * one spin_lock instead of array of acquired_refs. 7671 * cur_state->active_lock remembers which map value element or allocated 7672 * object got locked and clears it after bpf_spin_unlock. 7673 */ 7674 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7675 bool is_lock) 7676 { 7677 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7678 struct bpf_verifier_state *cur = env->cur_state; 7679 bool is_const = tnum_is_const(reg->var_off); 7680 u64 val = reg->var_off.value; 7681 struct bpf_map *map = NULL; 7682 struct btf *btf = NULL; 7683 struct btf_record *rec; 7684 7685 if (!is_const) { 7686 verbose(env, 7687 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7688 regno); 7689 return -EINVAL; 7690 } 7691 if (reg->type == PTR_TO_MAP_VALUE) { 7692 map = reg->map_ptr; 7693 if (!map->btf) { 7694 verbose(env, 7695 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7696 map->name); 7697 return -EINVAL; 7698 } 7699 } else { 7700 btf = reg->btf; 7701 } 7702 7703 rec = reg_btf_record(reg); 7704 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7705 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7706 map ? map->name : "kptr"); 7707 return -EINVAL; 7708 } 7709 if (rec->spin_lock_off != val + reg->off) { 7710 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7711 val + reg->off, rec->spin_lock_off); 7712 return -EINVAL; 7713 } 7714 if (is_lock) { 7715 if (cur->active_lock.ptr) { 7716 verbose(env, 7717 "Locking two bpf_spin_locks are not allowed\n"); 7718 return -EINVAL; 7719 } 7720 if (map) 7721 cur->active_lock.ptr = map; 7722 else 7723 cur->active_lock.ptr = btf; 7724 cur->active_lock.id = reg->id; 7725 } else { 7726 void *ptr; 7727 7728 if (map) 7729 ptr = map; 7730 else 7731 ptr = btf; 7732 7733 if (!cur->active_lock.ptr) { 7734 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7735 return -EINVAL; 7736 } 7737 if (cur->active_lock.ptr != ptr || 7738 cur->active_lock.id != reg->id) { 7739 verbose(env, "bpf_spin_unlock of different lock\n"); 7740 return -EINVAL; 7741 } 7742 7743 invalidate_non_owning_refs(env); 7744 7745 cur->active_lock.ptr = NULL; 7746 cur->active_lock.id = 0; 7747 } 7748 return 0; 7749 } 7750 7751 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7752 struct bpf_call_arg_meta *meta) 7753 { 7754 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7755 bool is_const = tnum_is_const(reg->var_off); 7756 struct bpf_map *map = reg->map_ptr; 7757 u64 val = reg->var_off.value; 7758 7759 if (!is_const) { 7760 verbose(env, 7761 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7762 regno); 7763 return -EINVAL; 7764 } 7765 if (!map->btf) { 7766 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7767 map->name); 7768 return -EINVAL; 7769 } 7770 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7771 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7772 return -EINVAL; 7773 } 7774 if (map->record->timer_off != val + reg->off) { 7775 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7776 val + reg->off, map->record->timer_off); 7777 return -EINVAL; 7778 } 7779 if (meta->map_ptr) { 7780 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7781 return -EFAULT; 7782 } 7783 meta->map_uid = reg->map_uid; 7784 meta->map_ptr = map; 7785 return 0; 7786 } 7787 7788 static int process_wq_func(struct bpf_verifier_env *env, int regno, 7789 struct bpf_kfunc_call_arg_meta *meta) 7790 { 7791 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7792 struct bpf_map *map = reg->map_ptr; 7793 u64 val = reg->var_off.value; 7794 7795 if (map->record->wq_off != val + reg->off) { 7796 verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n", 7797 val + reg->off, map->record->wq_off); 7798 return -EINVAL; 7799 } 7800 meta->map.uid = reg->map_uid; 7801 meta->map.ptr = map; 7802 return 0; 7803 } 7804 7805 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7806 struct bpf_call_arg_meta *meta) 7807 { 7808 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7809 struct btf_field *kptr_field; 7810 struct bpf_map *map_ptr; 7811 struct btf_record *rec; 7812 u32 kptr_off; 7813 7814 if (type_is_ptr_alloc_obj(reg->type)) { 7815 rec = reg_btf_record(reg); 7816 } else { /* PTR_TO_MAP_VALUE */ 7817 map_ptr = reg->map_ptr; 7818 if (!map_ptr->btf) { 7819 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7820 map_ptr->name); 7821 return -EINVAL; 7822 } 7823 rec = map_ptr->record; 7824 meta->map_ptr = map_ptr; 7825 } 7826 7827 if (!tnum_is_const(reg->var_off)) { 7828 verbose(env, 7829 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7830 regno); 7831 return -EINVAL; 7832 } 7833 7834 if (!btf_record_has_field(rec, BPF_KPTR)) { 7835 verbose(env, "R%d has no valid kptr\n", regno); 7836 return -EINVAL; 7837 } 7838 7839 kptr_off = reg->off + reg->var_off.value; 7840 kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR); 7841 if (!kptr_field) { 7842 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7843 return -EACCES; 7844 } 7845 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 7846 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7847 return -EACCES; 7848 } 7849 meta->kptr_field = kptr_field; 7850 return 0; 7851 } 7852 7853 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7854 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7855 * 7856 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7857 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7858 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7859 * 7860 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7861 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7862 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7863 * mutate the view of the dynptr and also possibly destroy it. In the latter 7864 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7865 * memory that dynptr points to. 7866 * 7867 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7868 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7869 * readonly dynptr view yet, hence only the first case is tracked and checked. 7870 * 7871 * This is consistent with how C applies the const modifier to a struct object, 7872 * where the pointer itself inside bpf_dynptr becomes const but not what it 7873 * points to. 7874 * 7875 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7876 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7877 */ 7878 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7879 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7880 { 7881 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7882 int err; 7883 7884 if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) { 7885 verbose(env, 7886 "arg#%d expected pointer to stack or const struct bpf_dynptr\n", 7887 regno); 7888 return -EINVAL; 7889 } 7890 7891 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7892 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7893 */ 7894 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7895 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7896 return -EFAULT; 7897 } 7898 7899 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7900 * constructing a mutable bpf_dynptr object. 7901 * 7902 * Currently, this is only possible with PTR_TO_STACK 7903 * pointing to a region of at least 16 bytes which doesn't 7904 * contain an existing bpf_dynptr. 7905 * 7906 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7907 * mutated or destroyed. However, the memory it points to 7908 * may be mutated. 7909 * 7910 * None - Points to a initialized dynptr that can be mutated and 7911 * destroyed, including mutation of the memory it points 7912 * to. 7913 */ 7914 if (arg_type & MEM_UNINIT) { 7915 int i; 7916 7917 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7918 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7919 return -EINVAL; 7920 } 7921 7922 /* we write BPF_DW bits (8 bytes) at a time */ 7923 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7924 err = check_mem_access(env, insn_idx, regno, 7925 i, BPF_DW, BPF_WRITE, -1, false, false); 7926 if (err) 7927 return err; 7928 } 7929 7930 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7931 } else /* MEM_RDONLY and None case from above */ { 7932 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7933 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7934 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7935 return -EINVAL; 7936 } 7937 7938 if (!is_dynptr_reg_valid_init(env, reg)) { 7939 verbose(env, 7940 "Expected an initialized dynptr as arg #%d\n", 7941 regno); 7942 return -EINVAL; 7943 } 7944 7945 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7946 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7947 verbose(env, 7948 "Expected a dynptr of type %s as arg #%d\n", 7949 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7950 return -EINVAL; 7951 } 7952 7953 err = mark_dynptr_read(env, reg); 7954 } 7955 return err; 7956 } 7957 7958 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7959 { 7960 struct bpf_func_state *state = func(env, reg); 7961 7962 return state->stack[spi].spilled_ptr.ref_obj_id; 7963 } 7964 7965 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7966 { 7967 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7968 } 7969 7970 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7971 { 7972 return meta->kfunc_flags & KF_ITER_NEW; 7973 } 7974 7975 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7976 { 7977 return meta->kfunc_flags & KF_ITER_NEXT; 7978 } 7979 7980 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7981 { 7982 return meta->kfunc_flags & KF_ITER_DESTROY; 7983 } 7984 7985 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx, 7986 const struct btf_param *arg) 7987 { 7988 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7989 * kfunc is iter state pointer 7990 */ 7991 if (is_iter_kfunc(meta)) 7992 return arg_idx == 0; 7993 7994 /* iter passed as an argument to a generic kfunc */ 7995 return btf_param_match_suffix(meta->btf, arg, "__iter"); 7996 } 7997 7998 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7999 struct bpf_kfunc_call_arg_meta *meta) 8000 { 8001 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8002 const struct btf_type *t; 8003 int spi, err, i, nr_slots, btf_id; 8004 8005 /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs() 8006 * ensures struct convention, so we wouldn't need to do any BTF 8007 * validation here. But given iter state can be passed as a parameter 8008 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more 8009 * conservative here. 8010 */ 8011 btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1); 8012 if (btf_id < 0) { 8013 verbose(env, "expected valid iter pointer as arg #%d\n", regno); 8014 return -EINVAL; 8015 } 8016 t = btf_type_by_id(meta->btf, btf_id); 8017 nr_slots = t->size / BPF_REG_SIZE; 8018 8019 if (is_iter_new_kfunc(meta)) { 8020 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 8021 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 8022 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 8023 iter_type_str(meta->btf, btf_id), regno); 8024 return -EINVAL; 8025 } 8026 8027 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 8028 err = check_mem_access(env, insn_idx, regno, 8029 i, BPF_DW, BPF_WRITE, -1, false, false); 8030 if (err) 8031 return err; 8032 } 8033 8034 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 8035 if (err) 8036 return err; 8037 } else { 8038 /* iter_next() or iter_destroy(), as well as any kfunc 8039 * accepting iter argument, expect initialized iter state 8040 */ 8041 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 8042 switch (err) { 8043 case 0: 8044 break; 8045 case -EINVAL: 8046 verbose(env, "expected an initialized iter_%s as arg #%d\n", 8047 iter_type_str(meta->btf, btf_id), regno); 8048 return err; 8049 case -EPROTO: 8050 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 8051 return err; 8052 default: 8053 return err; 8054 } 8055 8056 spi = iter_get_spi(env, reg, nr_slots); 8057 if (spi < 0) 8058 return spi; 8059 8060 err = mark_iter_read(env, reg, spi, nr_slots); 8061 if (err) 8062 return err; 8063 8064 /* remember meta->iter info for process_iter_next_call() */ 8065 meta->iter.spi = spi; 8066 meta->iter.frameno = reg->frameno; 8067 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 8068 8069 if (is_iter_destroy_kfunc(meta)) { 8070 err = unmark_stack_slots_iter(env, reg, nr_slots); 8071 if (err) 8072 return err; 8073 } 8074 } 8075 8076 return 0; 8077 } 8078 8079 /* Look for a previous loop entry at insn_idx: nearest parent state 8080 * stopped at insn_idx with callsites matching those in cur->frame. 8081 */ 8082 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 8083 struct bpf_verifier_state *cur, 8084 int insn_idx) 8085 { 8086 struct bpf_verifier_state_list *sl; 8087 struct bpf_verifier_state *st; 8088 8089 /* Explored states are pushed in stack order, most recent states come first */ 8090 sl = *explored_state(env, insn_idx); 8091 for (; sl; sl = sl->next) { 8092 /* If st->branches != 0 state is a part of current DFS verification path, 8093 * hence cur & st for a loop. 8094 */ 8095 st = &sl->state; 8096 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 8097 st->dfs_depth < cur->dfs_depth) 8098 return st; 8099 } 8100 8101 return NULL; 8102 } 8103 8104 static void reset_idmap_scratch(struct bpf_verifier_env *env); 8105 static bool regs_exact(const struct bpf_reg_state *rold, 8106 const struct bpf_reg_state *rcur, 8107 struct bpf_idmap *idmap); 8108 8109 static void maybe_widen_reg(struct bpf_verifier_env *env, 8110 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8111 struct bpf_idmap *idmap) 8112 { 8113 if (rold->type != SCALAR_VALUE) 8114 return; 8115 if (rold->type != rcur->type) 8116 return; 8117 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 8118 return; 8119 __mark_reg_unknown(env, rcur); 8120 } 8121 8122 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 8123 struct bpf_verifier_state *old, 8124 struct bpf_verifier_state *cur) 8125 { 8126 struct bpf_func_state *fold, *fcur; 8127 int i, fr; 8128 8129 reset_idmap_scratch(env); 8130 for (fr = old->curframe; fr >= 0; fr--) { 8131 fold = old->frame[fr]; 8132 fcur = cur->frame[fr]; 8133 8134 for (i = 0; i < MAX_BPF_REG; i++) 8135 maybe_widen_reg(env, 8136 &fold->regs[i], 8137 &fcur->regs[i], 8138 &env->idmap_scratch); 8139 8140 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 8141 if (!is_spilled_reg(&fold->stack[i]) || 8142 !is_spilled_reg(&fcur->stack[i])) 8143 continue; 8144 8145 maybe_widen_reg(env, 8146 &fold->stack[i].spilled_ptr, 8147 &fcur->stack[i].spilled_ptr, 8148 &env->idmap_scratch); 8149 } 8150 } 8151 return 0; 8152 } 8153 8154 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st, 8155 struct bpf_kfunc_call_arg_meta *meta) 8156 { 8157 int iter_frameno = meta->iter.frameno; 8158 int iter_spi = meta->iter.spi; 8159 8160 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8161 } 8162 8163 /* process_iter_next_call() is called when verifier gets to iterator's next 8164 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 8165 * to it as just "iter_next()" in comments below. 8166 * 8167 * BPF verifier relies on a crucial contract for any iter_next() 8168 * implementation: it should *eventually* return NULL, and once that happens 8169 * it should keep returning NULL. That is, once iterator exhausts elements to 8170 * iterate, it should never reset or spuriously return new elements. 8171 * 8172 * With the assumption of such contract, process_iter_next_call() simulates 8173 * a fork in the verifier state to validate loop logic correctness and safety 8174 * without having to simulate infinite amount of iterations. 8175 * 8176 * In current state, we first assume that iter_next() returned NULL and 8177 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 8178 * conditions we should not form an infinite loop and should eventually reach 8179 * exit. 8180 * 8181 * Besides that, we also fork current state and enqueue it for later 8182 * verification. In a forked state we keep iterator state as ACTIVE 8183 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 8184 * also bump iteration depth to prevent erroneous infinite loop detection 8185 * later on (see iter_active_depths_differ() comment for details). In this 8186 * state we assume that we'll eventually loop back to another iter_next() 8187 * calls (it could be in exactly same location or in some other instruction, 8188 * it doesn't matter, we don't make any unnecessary assumptions about this, 8189 * everything revolves around iterator state in a stack slot, not which 8190 * instruction is calling iter_next()). When that happens, we either will come 8191 * to iter_next() with equivalent state and can conclude that next iteration 8192 * will proceed in exactly the same way as we just verified, so it's safe to 8193 * assume that loop converges. If not, we'll go on another iteration 8194 * simulation with a different input state, until all possible starting states 8195 * are validated or we reach maximum number of instructions limit. 8196 * 8197 * This way, we will either exhaustively discover all possible input states 8198 * that iterator loop can start with and eventually will converge, or we'll 8199 * effectively regress into bounded loop simulation logic and either reach 8200 * maximum number of instructions if loop is not provably convergent, or there 8201 * is some statically known limit on number of iterations (e.g., if there is 8202 * an explicit `if n > 100 then break;` statement somewhere in the loop). 8203 * 8204 * Iteration convergence logic in is_state_visited() relies on exact 8205 * states comparison, which ignores read and precision marks. 8206 * This is necessary because read and precision marks are not finalized 8207 * while in the loop. Exact comparison might preclude convergence for 8208 * simple programs like below: 8209 * 8210 * i = 0; 8211 * while(iter_next(&it)) 8212 * i++; 8213 * 8214 * At each iteration step i++ would produce a new distinct state and 8215 * eventually instruction processing limit would be reached. 8216 * 8217 * To avoid such behavior speculatively forget (widen) range for 8218 * imprecise scalar registers, if those registers were not precise at the 8219 * end of the previous iteration and do not match exactly. 8220 * 8221 * This is a conservative heuristic that allows to verify wide range of programs, 8222 * however it precludes verification of programs that conjure an 8223 * imprecise value on the first loop iteration and use it as precise on a second. 8224 * For example, the following safe program would fail to verify: 8225 * 8226 * struct bpf_num_iter it; 8227 * int arr[10]; 8228 * int i = 0, a = 0; 8229 * bpf_iter_num_new(&it, 0, 10); 8230 * while (bpf_iter_num_next(&it)) { 8231 * if (a == 0) { 8232 * a = 1; 8233 * i = 7; // Because i changed verifier would forget 8234 * // it's range on second loop entry. 8235 * } else { 8236 * arr[i] = 42; // This would fail to verify. 8237 * } 8238 * } 8239 * bpf_iter_num_destroy(&it); 8240 */ 8241 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 8242 struct bpf_kfunc_call_arg_meta *meta) 8243 { 8244 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 8245 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 8246 struct bpf_reg_state *cur_iter, *queued_iter; 8247 8248 BTF_TYPE_EMIT(struct bpf_iter); 8249 8250 cur_iter = get_iter_from_state(cur_st, meta); 8251 8252 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 8253 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 8254 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 8255 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 8256 return -EFAULT; 8257 } 8258 8259 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 8260 /* Because iter_next() call is a checkpoint is_state_visitied() 8261 * should guarantee parent state with same call sites and insn_idx. 8262 */ 8263 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 8264 !same_callsites(cur_st->parent, cur_st)) { 8265 verbose(env, "bug: bad parent state for iter next call"); 8266 return -EFAULT; 8267 } 8268 /* Note cur_st->parent in the call below, it is necessary to skip 8269 * checkpoint created for cur_st by is_state_visited() 8270 * right at this instruction. 8271 */ 8272 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 8273 /* branch out active iter state */ 8274 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 8275 if (!queued_st) 8276 return -ENOMEM; 8277 8278 queued_iter = get_iter_from_state(queued_st, meta); 8279 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 8280 queued_iter->iter.depth++; 8281 if (prev_st) 8282 widen_imprecise_scalars(env, prev_st, queued_st); 8283 8284 queued_fr = queued_st->frame[queued_st->curframe]; 8285 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 8286 } 8287 8288 /* switch to DRAINED state, but keep the depth unchanged */ 8289 /* mark current iter state as drained and assume returned NULL */ 8290 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 8291 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 8292 8293 return 0; 8294 } 8295 8296 static bool arg_type_is_mem_size(enum bpf_arg_type type) 8297 { 8298 return type == ARG_CONST_SIZE || 8299 type == ARG_CONST_SIZE_OR_ZERO; 8300 } 8301 8302 static bool arg_type_is_raw_mem(enum bpf_arg_type type) 8303 { 8304 return base_type(type) == ARG_PTR_TO_MEM && 8305 type & MEM_UNINIT; 8306 } 8307 8308 static bool arg_type_is_release(enum bpf_arg_type type) 8309 { 8310 return type & OBJ_RELEASE; 8311 } 8312 8313 static bool arg_type_is_dynptr(enum bpf_arg_type type) 8314 { 8315 return base_type(type) == ARG_PTR_TO_DYNPTR; 8316 } 8317 8318 static int resolve_map_arg_type(struct bpf_verifier_env *env, 8319 const struct bpf_call_arg_meta *meta, 8320 enum bpf_arg_type *arg_type) 8321 { 8322 if (!meta->map_ptr) { 8323 /* kernel subsystem misconfigured verifier */ 8324 verbose(env, "invalid map_ptr to access map->type\n"); 8325 return -EACCES; 8326 } 8327 8328 switch (meta->map_ptr->map_type) { 8329 case BPF_MAP_TYPE_SOCKMAP: 8330 case BPF_MAP_TYPE_SOCKHASH: 8331 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8332 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8333 } else { 8334 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8335 return -EINVAL; 8336 } 8337 break; 8338 case BPF_MAP_TYPE_BLOOM_FILTER: 8339 if (meta->func_id == BPF_FUNC_map_peek_elem) 8340 *arg_type = ARG_PTR_TO_MAP_VALUE; 8341 break; 8342 default: 8343 break; 8344 } 8345 return 0; 8346 } 8347 8348 struct bpf_reg_types { 8349 const enum bpf_reg_type types[10]; 8350 u32 *btf_id; 8351 }; 8352 8353 static const struct bpf_reg_types sock_types = { 8354 .types = { 8355 PTR_TO_SOCK_COMMON, 8356 PTR_TO_SOCKET, 8357 PTR_TO_TCP_SOCK, 8358 PTR_TO_XDP_SOCK, 8359 }, 8360 }; 8361 8362 #ifdef CONFIG_NET 8363 static const struct bpf_reg_types btf_id_sock_common_types = { 8364 .types = { 8365 PTR_TO_SOCK_COMMON, 8366 PTR_TO_SOCKET, 8367 PTR_TO_TCP_SOCK, 8368 PTR_TO_XDP_SOCK, 8369 PTR_TO_BTF_ID, 8370 PTR_TO_BTF_ID | PTR_TRUSTED, 8371 }, 8372 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8373 }; 8374 #endif 8375 8376 static const struct bpf_reg_types mem_types = { 8377 .types = { 8378 PTR_TO_STACK, 8379 PTR_TO_PACKET, 8380 PTR_TO_PACKET_META, 8381 PTR_TO_MAP_KEY, 8382 PTR_TO_MAP_VALUE, 8383 PTR_TO_MEM, 8384 PTR_TO_MEM | MEM_RINGBUF, 8385 PTR_TO_BUF, 8386 PTR_TO_BTF_ID | PTR_TRUSTED, 8387 }, 8388 }; 8389 8390 static const struct bpf_reg_types spin_lock_types = { 8391 .types = { 8392 PTR_TO_MAP_VALUE, 8393 PTR_TO_BTF_ID | MEM_ALLOC, 8394 } 8395 }; 8396 8397 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8398 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8399 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8400 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8401 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8402 static const struct bpf_reg_types btf_ptr_types = { 8403 .types = { 8404 PTR_TO_BTF_ID, 8405 PTR_TO_BTF_ID | PTR_TRUSTED, 8406 PTR_TO_BTF_ID | MEM_RCU, 8407 }, 8408 }; 8409 static const struct bpf_reg_types percpu_btf_ptr_types = { 8410 .types = { 8411 PTR_TO_BTF_ID | MEM_PERCPU, 8412 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 8413 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8414 } 8415 }; 8416 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8417 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8418 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8419 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8420 static const struct bpf_reg_types kptr_xchg_dest_types = { 8421 .types = { 8422 PTR_TO_MAP_VALUE, 8423 PTR_TO_BTF_ID | MEM_ALLOC 8424 } 8425 }; 8426 static const struct bpf_reg_types dynptr_types = { 8427 .types = { 8428 PTR_TO_STACK, 8429 CONST_PTR_TO_DYNPTR, 8430 } 8431 }; 8432 8433 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8434 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8435 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8436 [ARG_CONST_SIZE] = &scalar_types, 8437 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8438 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8439 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8440 [ARG_PTR_TO_CTX] = &context_types, 8441 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8442 #ifdef CONFIG_NET 8443 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8444 #endif 8445 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8446 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8447 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8448 [ARG_PTR_TO_MEM] = &mem_types, 8449 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8450 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8451 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8452 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8453 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8454 [ARG_PTR_TO_TIMER] = &timer_types, 8455 [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types, 8456 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8457 }; 8458 8459 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8460 enum bpf_arg_type arg_type, 8461 const u32 *arg_btf_id, 8462 struct bpf_call_arg_meta *meta) 8463 { 8464 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8465 enum bpf_reg_type expected, type = reg->type; 8466 const struct bpf_reg_types *compatible; 8467 int i, j; 8468 8469 compatible = compatible_reg_types[base_type(arg_type)]; 8470 if (!compatible) { 8471 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8472 return -EFAULT; 8473 } 8474 8475 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8476 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8477 * 8478 * Same for MAYBE_NULL: 8479 * 8480 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8481 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8482 * 8483 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8484 * 8485 * Therefore we fold these flags depending on the arg_type before comparison. 8486 */ 8487 if (arg_type & MEM_RDONLY) 8488 type &= ~MEM_RDONLY; 8489 if (arg_type & PTR_MAYBE_NULL) 8490 type &= ~PTR_MAYBE_NULL; 8491 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8492 type &= ~DYNPTR_TYPE_FLAG_MASK; 8493 8494 /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */ 8495 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) { 8496 type &= ~MEM_ALLOC; 8497 type &= ~MEM_PERCPU; 8498 } 8499 8500 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8501 expected = compatible->types[i]; 8502 if (expected == NOT_INIT) 8503 break; 8504 8505 if (type == expected) 8506 goto found; 8507 } 8508 8509 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8510 for (j = 0; j + 1 < i; j++) 8511 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8512 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8513 return -EACCES; 8514 8515 found: 8516 if (base_type(reg->type) != PTR_TO_BTF_ID) 8517 return 0; 8518 8519 if (compatible == &mem_types) { 8520 if (!(arg_type & MEM_RDONLY)) { 8521 verbose(env, 8522 "%s() may write into memory pointed by R%d type=%s\n", 8523 func_id_name(meta->func_id), 8524 regno, reg_type_str(env, reg->type)); 8525 return -EACCES; 8526 } 8527 return 0; 8528 } 8529 8530 switch ((int)reg->type) { 8531 case PTR_TO_BTF_ID: 8532 case PTR_TO_BTF_ID | PTR_TRUSTED: 8533 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 8534 case PTR_TO_BTF_ID | MEM_RCU: 8535 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8536 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8537 { 8538 /* For bpf_sk_release, it needs to match against first member 8539 * 'struct sock_common', hence make an exception for it. This 8540 * allows bpf_sk_release to work for multiple socket types. 8541 */ 8542 bool strict_type_match = arg_type_is_release(arg_type) && 8543 meta->func_id != BPF_FUNC_sk_release; 8544 8545 if (type_may_be_null(reg->type) && 8546 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8547 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8548 return -EACCES; 8549 } 8550 8551 if (!arg_btf_id) { 8552 if (!compatible->btf_id) { 8553 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8554 return -EFAULT; 8555 } 8556 arg_btf_id = compatible->btf_id; 8557 } 8558 8559 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8560 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8561 return -EACCES; 8562 } else { 8563 if (arg_btf_id == BPF_PTR_POISON) { 8564 verbose(env, "verifier internal error:"); 8565 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8566 regno); 8567 return -EACCES; 8568 } 8569 8570 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8571 btf_vmlinux, *arg_btf_id, 8572 strict_type_match)) { 8573 verbose(env, "R%d is of type %s but %s is expected\n", 8574 regno, btf_type_name(reg->btf, reg->btf_id), 8575 btf_type_name(btf_vmlinux, *arg_btf_id)); 8576 return -EACCES; 8577 } 8578 } 8579 break; 8580 } 8581 case PTR_TO_BTF_ID | MEM_ALLOC: 8582 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 8583 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8584 meta->func_id != BPF_FUNC_kptr_xchg) { 8585 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8586 return -EFAULT; 8587 } 8588 /* Check if local kptr in src arg matches kptr in dst arg */ 8589 if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) { 8590 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8591 return -EACCES; 8592 } 8593 break; 8594 case PTR_TO_BTF_ID | MEM_PERCPU: 8595 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 8596 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8597 /* Handled by helper specific checks */ 8598 break; 8599 default: 8600 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8601 return -EFAULT; 8602 } 8603 return 0; 8604 } 8605 8606 static struct btf_field * 8607 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8608 { 8609 struct btf_field *field; 8610 struct btf_record *rec; 8611 8612 rec = reg_btf_record(reg); 8613 if (!rec) 8614 return NULL; 8615 8616 field = btf_record_find(rec, off, fields); 8617 if (!field) 8618 return NULL; 8619 8620 return field; 8621 } 8622 8623 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 8624 const struct bpf_reg_state *reg, int regno, 8625 enum bpf_arg_type arg_type) 8626 { 8627 u32 type = reg->type; 8628 8629 /* When referenced register is passed to release function, its fixed 8630 * offset must be 0. 8631 * 8632 * We will check arg_type_is_release reg has ref_obj_id when storing 8633 * meta->release_regno. 8634 */ 8635 if (arg_type_is_release(arg_type)) { 8636 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8637 * may not directly point to the object being released, but to 8638 * dynptr pointing to such object, which might be at some offset 8639 * on the stack. In that case, we simply to fallback to the 8640 * default handling. 8641 */ 8642 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8643 return 0; 8644 8645 /* Doing check_ptr_off_reg check for the offset will catch this 8646 * because fixed_off_ok is false, but checking here allows us 8647 * to give the user a better error message. 8648 */ 8649 if (reg->off) { 8650 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8651 regno); 8652 return -EINVAL; 8653 } 8654 return __check_ptr_off_reg(env, reg, regno, false); 8655 } 8656 8657 switch (type) { 8658 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8659 case PTR_TO_STACK: 8660 case PTR_TO_PACKET: 8661 case PTR_TO_PACKET_META: 8662 case PTR_TO_MAP_KEY: 8663 case PTR_TO_MAP_VALUE: 8664 case PTR_TO_MEM: 8665 case PTR_TO_MEM | MEM_RDONLY: 8666 case PTR_TO_MEM | MEM_RINGBUF: 8667 case PTR_TO_BUF: 8668 case PTR_TO_BUF | MEM_RDONLY: 8669 case PTR_TO_ARENA: 8670 case SCALAR_VALUE: 8671 return 0; 8672 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8673 * fixed offset. 8674 */ 8675 case PTR_TO_BTF_ID: 8676 case PTR_TO_BTF_ID | MEM_ALLOC: 8677 case PTR_TO_BTF_ID | PTR_TRUSTED: 8678 case PTR_TO_BTF_ID | MEM_RCU: 8679 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8680 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8681 /* When referenced PTR_TO_BTF_ID is passed to release function, 8682 * its fixed offset must be 0. In the other cases, fixed offset 8683 * can be non-zero. This was already checked above. So pass 8684 * fixed_off_ok as true to allow fixed offset for all other 8685 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8686 * still need to do checks instead of returning. 8687 */ 8688 return __check_ptr_off_reg(env, reg, regno, true); 8689 default: 8690 return __check_ptr_off_reg(env, reg, regno, false); 8691 } 8692 } 8693 8694 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8695 const struct bpf_func_proto *fn, 8696 struct bpf_reg_state *regs) 8697 { 8698 struct bpf_reg_state *state = NULL; 8699 int i; 8700 8701 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8702 if (arg_type_is_dynptr(fn->arg_type[i])) { 8703 if (state) { 8704 verbose(env, "verifier internal error: multiple dynptr args\n"); 8705 return NULL; 8706 } 8707 state = ®s[BPF_REG_1 + i]; 8708 } 8709 8710 if (!state) 8711 verbose(env, "verifier internal error: no dynptr arg found\n"); 8712 8713 return state; 8714 } 8715 8716 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8717 { 8718 struct bpf_func_state *state = func(env, reg); 8719 int spi; 8720 8721 if (reg->type == CONST_PTR_TO_DYNPTR) 8722 return reg->id; 8723 spi = dynptr_get_spi(env, reg); 8724 if (spi < 0) 8725 return spi; 8726 return state->stack[spi].spilled_ptr.id; 8727 } 8728 8729 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8730 { 8731 struct bpf_func_state *state = func(env, reg); 8732 int spi; 8733 8734 if (reg->type == CONST_PTR_TO_DYNPTR) 8735 return reg->ref_obj_id; 8736 spi = dynptr_get_spi(env, reg); 8737 if (spi < 0) 8738 return spi; 8739 return state->stack[spi].spilled_ptr.ref_obj_id; 8740 } 8741 8742 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8743 struct bpf_reg_state *reg) 8744 { 8745 struct bpf_func_state *state = func(env, reg); 8746 int spi; 8747 8748 if (reg->type == CONST_PTR_TO_DYNPTR) 8749 return reg->dynptr.type; 8750 8751 spi = __get_spi(reg->off); 8752 if (spi < 0) { 8753 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8754 return BPF_DYNPTR_TYPE_INVALID; 8755 } 8756 8757 return state->stack[spi].spilled_ptr.dynptr.type; 8758 } 8759 8760 static int check_reg_const_str(struct bpf_verifier_env *env, 8761 struct bpf_reg_state *reg, u32 regno) 8762 { 8763 struct bpf_map *map = reg->map_ptr; 8764 int err; 8765 int map_off; 8766 u64 map_addr; 8767 char *str_ptr; 8768 8769 if (reg->type != PTR_TO_MAP_VALUE) 8770 return -EINVAL; 8771 8772 if (!bpf_map_is_rdonly(map)) { 8773 verbose(env, "R%d does not point to a readonly map'\n", regno); 8774 return -EACCES; 8775 } 8776 8777 if (!tnum_is_const(reg->var_off)) { 8778 verbose(env, "R%d is not a constant address'\n", regno); 8779 return -EACCES; 8780 } 8781 8782 if (!map->ops->map_direct_value_addr) { 8783 verbose(env, "no direct value access support for this map type\n"); 8784 return -EACCES; 8785 } 8786 8787 err = check_map_access(env, regno, reg->off, 8788 map->value_size - reg->off, false, 8789 ACCESS_HELPER); 8790 if (err) 8791 return err; 8792 8793 map_off = reg->off + reg->var_off.value; 8794 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8795 if (err) { 8796 verbose(env, "direct value access on string failed\n"); 8797 return err; 8798 } 8799 8800 str_ptr = (char *)(long)(map_addr); 8801 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8802 verbose(env, "string is not zero-terminated\n"); 8803 return -EINVAL; 8804 } 8805 return 0; 8806 } 8807 8808 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8809 struct bpf_call_arg_meta *meta, 8810 const struct bpf_func_proto *fn, 8811 int insn_idx) 8812 { 8813 u32 regno = BPF_REG_1 + arg; 8814 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8815 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8816 enum bpf_reg_type type = reg->type; 8817 u32 *arg_btf_id = NULL; 8818 int err = 0; 8819 8820 if (arg_type == ARG_DONTCARE) 8821 return 0; 8822 8823 err = check_reg_arg(env, regno, SRC_OP); 8824 if (err) 8825 return err; 8826 8827 if (arg_type == ARG_ANYTHING) { 8828 if (is_pointer_value(env, regno)) { 8829 verbose(env, "R%d leaks addr into helper function\n", 8830 regno); 8831 return -EACCES; 8832 } 8833 return 0; 8834 } 8835 8836 if (type_is_pkt_pointer(type) && 8837 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8838 verbose(env, "helper access to the packet is not allowed\n"); 8839 return -EACCES; 8840 } 8841 8842 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8843 err = resolve_map_arg_type(env, meta, &arg_type); 8844 if (err) 8845 return err; 8846 } 8847 8848 if (register_is_null(reg) && type_may_be_null(arg_type)) 8849 /* A NULL register has a SCALAR_VALUE type, so skip 8850 * type checking. 8851 */ 8852 goto skip_type_check; 8853 8854 /* arg_btf_id and arg_size are in a union. */ 8855 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8856 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8857 arg_btf_id = fn->arg_btf_id[arg]; 8858 8859 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8860 if (err) 8861 return err; 8862 8863 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8864 if (err) 8865 return err; 8866 8867 skip_type_check: 8868 if (arg_type_is_release(arg_type)) { 8869 if (arg_type_is_dynptr(arg_type)) { 8870 struct bpf_func_state *state = func(env, reg); 8871 int spi; 8872 8873 /* Only dynptr created on stack can be released, thus 8874 * the get_spi and stack state checks for spilled_ptr 8875 * should only be done before process_dynptr_func for 8876 * PTR_TO_STACK. 8877 */ 8878 if (reg->type == PTR_TO_STACK) { 8879 spi = dynptr_get_spi(env, reg); 8880 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8881 verbose(env, "arg %d is an unacquired reference\n", regno); 8882 return -EINVAL; 8883 } 8884 } else { 8885 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8886 return -EINVAL; 8887 } 8888 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8889 verbose(env, "R%d must be referenced when passed to release function\n", 8890 regno); 8891 return -EINVAL; 8892 } 8893 if (meta->release_regno) { 8894 verbose(env, "verifier internal error: more than one release argument\n"); 8895 return -EFAULT; 8896 } 8897 meta->release_regno = regno; 8898 } 8899 8900 if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) { 8901 if (meta->ref_obj_id) { 8902 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8903 regno, reg->ref_obj_id, 8904 meta->ref_obj_id); 8905 return -EFAULT; 8906 } 8907 meta->ref_obj_id = reg->ref_obj_id; 8908 } 8909 8910 switch (base_type(arg_type)) { 8911 case ARG_CONST_MAP_PTR: 8912 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8913 if (meta->map_ptr) { 8914 /* Use map_uid (which is unique id of inner map) to reject: 8915 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8916 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8917 * if (inner_map1 && inner_map2) { 8918 * timer = bpf_map_lookup_elem(inner_map1); 8919 * if (timer) 8920 * // mismatch would have been allowed 8921 * bpf_timer_init(timer, inner_map2); 8922 * } 8923 * 8924 * Comparing map_ptr is enough to distinguish normal and outer maps. 8925 */ 8926 if (meta->map_ptr != reg->map_ptr || 8927 meta->map_uid != reg->map_uid) { 8928 verbose(env, 8929 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8930 meta->map_uid, reg->map_uid); 8931 return -EINVAL; 8932 } 8933 } 8934 meta->map_ptr = reg->map_ptr; 8935 meta->map_uid = reg->map_uid; 8936 break; 8937 case ARG_PTR_TO_MAP_KEY: 8938 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8939 * check that [key, key + map->key_size) are within 8940 * stack limits and initialized 8941 */ 8942 if (!meta->map_ptr) { 8943 /* in function declaration map_ptr must come before 8944 * map_key, so that it's verified and known before 8945 * we have to check map_key here. Otherwise it means 8946 * that kernel subsystem misconfigured verifier 8947 */ 8948 verbose(env, "invalid map_ptr to access map->key\n"); 8949 return -EACCES; 8950 } 8951 err = check_helper_mem_access(env, regno, 8952 meta->map_ptr->key_size, false, 8953 NULL); 8954 break; 8955 case ARG_PTR_TO_MAP_VALUE: 8956 if (type_may_be_null(arg_type) && register_is_null(reg)) 8957 return 0; 8958 8959 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8960 * check [value, value + map->value_size) validity 8961 */ 8962 if (!meta->map_ptr) { 8963 /* kernel subsystem misconfigured verifier */ 8964 verbose(env, "invalid map_ptr to access map->value\n"); 8965 return -EACCES; 8966 } 8967 meta->raw_mode = arg_type & MEM_UNINIT; 8968 err = check_helper_mem_access(env, regno, 8969 meta->map_ptr->value_size, false, 8970 meta); 8971 break; 8972 case ARG_PTR_TO_PERCPU_BTF_ID: 8973 if (!reg->btf_id) { 8974 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8975 return -EACCES; 8976 } 8977 meta->ret_btf = reg->btf; 8978 meta->ret_btf_id = reg->btf_id; 8979 break; 8980 case ARG_PTR_TO_SPIN_LOCK: 8981 if (in_rbtree_lock_required_cb(env)) { 8982 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8983 return -EACCES; 8984 } 8985 if (meta->func_id == BPF_FUNC_spin_lock) { 8986 err = process_spin_lock(env, regno, true); 8987 if (err) 8988 return err; 8989 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8990 err = process_spin_lock(env, regno, false); 8991 if (err) 8992 return err; 8993 } else { 8994 verbose(env, "verifier internal error\n"); 8995 return -EFAULT; 8996 } 8997 break; 8998 case ARG_PTR_TO_TIMER: 8999 err = process_timer_func(env, regno, meta); 9000 if (err) 9001 return err; 9002 break; 9003 case ARG_PTR_TO_FUNC: 9004 meta->subprogno = reg->subprogno; 9005 break; 9006 case ARG_PTR_TO_MEM: 9007 /* The access to this pointer is only checked when we hit the 9008 * next is_mem_size argument below. 9009 */ 9010 meta->raw_mode = arg_type & MEM_UNINIT; 9011 if (arg_type & MEM_FIXED_SIZE) { 9012 err = check_helper_mem_access(env, regno, fn->arg_size[arg], false, meta); 9013 if (err) 9014 return err; 9015 if (arg_type & MEM_ALIGNED) 9016 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true); 9017 } 9018 break; 9019 case ARG_CONST_SIZE: 9020 err = check_mem_size_reg(env, reg, regno, false, meta); 9021 break; 9022 case ARG_CONST_SIZE_OR_ZERO: 9023 err = check_mem_size_reg(env, reg, regno, true, meta); 9024 break; 9025 case ARG_PTR_TO_DYNPTR: 9026 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 9027 if (err) 9028 return err; 9029 break; 9030 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 9031 if (!tnum_is_const(reg->var_off)) { 9032 verbose(env, "R%d is not a known constant'\n", 9033 regno); 9034 return -EACCES; 9035 } 9036 meta->mem_size = reg->var_off.value; 9037 err = mark_chain_precision(env, regno); 9038 if (err) 9039 return err; 9040 break; 9041 case ARG_PTR_TO_CONST_STR: 9042 { 9043 err = check_reg_const_str(env, reg, regno); 9044 if (err) 9045 return err; 9046 break; 9047 } 9048 case ARG_KPTR_XCHG_DEST: 9049 err = process_kptr_func(env, regno, meta); 9050 if (err) 9051 return err; 9052 break; 9053 } 9054 9055 return err; 9056 } 9057 9058 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 9059 { 9060 enum bpf_attach_type eatype = env->prog->expected_attach_type; 9061 enum bpf_prog_type type = resolve_prog_type(env->prog); 9062 9063 if (func_id != BPF_FUNC_map_update_elem && 9064 func_id != BPF_FUNC_map_delete_elem) 9065 return false; 9066 9067 /* It's not possible to get access to a locked struct sock in these 9068 * contexts, so updating is safe. 9069 */ 9070 switch (type) { 9071 case BPF_PROG_TYPE_TRACING: 9072 if (eatype == BPF_TRACE_ITER) 9073 return true; 9074 break; 9075 case BPF_PROG_TYPE_SOCK_OPS: 9076 /* map_update allowed only via dedicated helpers with event type checks */ 9077 if (func_id == BPF_FUNC_map_delete_elem) 9078 return true; 9079 break; 9080 case BPF_PROG_TYPE_SOCKET_FILTER: 9081 case BPF_PROG_TYPE_SCHED_CLS: 9082 case BPF_PROG_TYPE_SCHED_ACT: 9083 case BPF_PROG_TYPE_XDP: 9084 case BPF_PROG_TYPE_SK_REUSEPORT: 9085 case BPF_PROG_TYPE_FLOW_DISSECTOR: 9086 case BPF_PROG_TYPE_SK_LOOKUP: 9087 return true; 9088 default: 9089 break; 9090 } 9091 9092 verbose(env, "cannot update sockmap in this context\n"); 9093 return false; 9094 } 9095 9096 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 9097 { 9098 return env->prog->jit_requested && 9099 bpf_jit_supports_subprog_tailcalls(); 9100 } 9101 9102 static int check_map_func_compatibility(struct bpf_verifier_env *env, 9103 struct bpf_map *map, int func_id) 9104 { 9105 if (!map) 9106 return 0; 9107 9108 /* We need a two way check, first is from map perspective ... */ 9109 switch (map->map_type) { 9110 case BPF_MAP_TYPE_PROG_ARRAY: 9111 if (func_id != BPF_FUNC_tail_call) 9112 goto error; 9113 break; 9114 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 9115 if (func_id != BPF_FUNC_perf_event_read && 9116 func_id != BPF_FUNC_perf_event_output && 9117 func_id != BPF_FUNC_skb_output && 9118 func_id != BPF_FUNC_perf_event_read_value && 9119 func_id != BPF_FUNC_xdp_output) 9120 goto error; 9121 break; 9122 case BPF_MAP_TYPE_RINGBUF: 9123 if (func_id != BPF_FUNC_ringbuf_output && 9124 func_id != BPF_FUNC_ringbuf_reserve && 9125 func_id != BPF_FUNC_ringbuf_query && 9126 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 9127 func_id != BPF_FUNC_ringbuf_submit_dynptr && 9128 func_id != BPF_FUNC_ringbuf_discard_dynptr) 9129 goto error; 9130 break; 9131 case BPF_MAP_TYPE_USER_RINGBUF: 9132 if (func_id != BPF_FUNC_user_ringbuf_drain) 9133 goto error; 9134 break; 9135 case BPF_MAP_TYPE_STACK_TRACE: 9136 if (func_id != BPF_FUNC_get_stackid) 9137 goto error; 9138 break; 9139 case BPF_MAP_TYPE_CGROUP_ARRAY: 9140 if (func_id != BPF_FUNC_skb_under_cgroup && 9141 func_id != BPF_FUNC_current_task_under_cgroup) 9142 goto error; 9143 break; 9144 case BPF_MAP_TYPE_CGROUP_STORAGE: 9145 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 9146 if (func_id != BPF_FUNC_get_local_storage) 9147 goto error; 9148 break; 9149 case BPF_MAP_TYPE_DEVMAP: 9150 case BPF_MAP_TYPE_DEVMAP_HASH: 9151 if (func_id != BPF_FUNC_redirect_map && 9152 func_id != BPF_FUNC_map_lookup_elem) 9153 goto error; 9154 break; 9155 /* Restrict bpf side of cpumap and xskmap, open when use-cases 9156 * appear. 9157 */ 9158 case BPF_MAP_TYPE_CPUMAP: 9159 if (func_id != BPF_FUNC_redirect_map) 9160 goto error; 9161 break; 9162 case BPF_MAP_TYPE_XSKMAP: 9163 if (func_id != BPF_FUNC_redirect_map && 9164 func_id != BPF_FUNC_map_lookup_elem) 9165 goto error; 9166 break; 9167 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 9168 case BPF_MAP_TYPE_HASH_OF_MAPS: 9169 if (func_id != BPF_FUNC_map_lookup_elem) 9170 goto error; 9171 break; 9172 case BPF_MAP_TYPE_SOCKMAP: 9173 if (func_id != BPF_FUNC_sk_redirect_map && 9174 func_id != BPF_FUNC_sock_map_update && 9175 func_id != BPF_FUNC_msg_redirect_map && 9176 func_id != BPF_FUNC_sk_select_reuseport && 9177 func_id != BPF_FUNC_map_lookup_elem && 9178 !may_update_sockmap(env, func_id)) 9179 goto error; 9180 break; 9181 case BPF_MAP_TYPE_SOCKHASH: 9182 if (func_id != BPF_FUNC_sk_redirect_hash && 9183 func_id != BPF_FUNC_sock_hash_update && 9184 func_id != BPF_FUNC_msg_redirect_hash && 9185 func_id != BPF_FUNC_sk_select_reuseport && 9186 func_id != BPF_FUNC_map_lookup_elem && 9187 !may_update_sockmap(env, func_id)) 9188 goto error; 9189 break; 9190 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 9191 if (func_id != BPF_FUNC_sk_select_reuseport) 9192 goto error; 9193 break; 9194 case BPF_MAP_TYPE_QUEUE: 9195 case BPF_MAP_TYPE_STACK: 9196 if (func_id != BPF_FUNC_map_peek_elem && 9197 func_id != BPF_FUNC_map_pop_elem && 9198 func_id != BPF_FUNC_map_push_elem) 9199 goto error; 9200 break; 9201 case BPF_MAP_TYPE_SK_STORAGE: 9202 if (func_id != BPF_FUNC_sk_storage_get && 9203 func_id != BPF_FUNC_sk_storage_delete && 9204 func_id != BPF_FUNC_kptr_xchg) 9205 goto error; 9206 break; 9207 case BPF_MAP_TYPE_INODE_STORAGE: 9208 if (func_id != BPF_FUNC_inode_storage_get && 9209 func_id != BPF_FUNC_inode_storage_delete && 9210 func_id != BPF_FUNC_kptr_xchg) 9211 goto error; 9212 break; 9213 case BPF_MAP_TYPE_TASK_STORAGE: 9214 if (func_id != BPF_FUNC_task_storage_get && 9215 func_id != BPF_FUNC_task_storage_delete && 9216 func_id != BPF_FUNC_kptr_xchg) 9217 goto error; 9218 break; 9219 case BPF_MAP_TYPE_CGRP_STORAGE: 9220 if (func_id != BPF_FUNC_cgrp_storage_get && 9221 func_id != BPF_FUNC_cgrp_storage_delete && 9222 func_id != BPF_FUNC_kptr_xchg) 9223 goto error; 9224 break; 9225 case BPF_MAP_TYPE_BLOOM_FILTER: 9226 if (func_id != BPF_FUNC_map_peek_elem && 9227 func_id != BPF_FUNC_map_push_elem) 9228 goto error; 9229 break; 9230 default: 9231 break; 9232 } 9233 9234 /* ... and second from the function itself. */ 9235 switch (func_id) { 9236 case BPF_FUNC_tail_call: 9237 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 9238 goto error; 9239 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 9240 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 9241 return -EINVAL; 9242 } 9243 break; 9244 case BPF_FUNC_perf_event_read: 9245 case BPF_FUNC_perf_event_output: 9246 case BPF_FUNC_perf_event_read_value: 9247 case BPF_FUNC_skb_output: 9248 case BPF_FUNC_xdp_output: 9249 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9250 goto error; 9251 break; 9252 case BPF_FUNC_ringbuf_output: 9253 case BPF_FUNC_ringbuf_reserve: 9254 case BPF_FUNC_ringbuf_query: 9255 case BPF_FUNC_ringbuf_reserve_dynptr: 9256 case BPF_FUNC_ringbuf_submit_dynptr: 9257 case BPF_FUNC_ringbuf_discard_dynptr: 9258 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 9259 goto error; 9260 break; 9261 case BPF_FUNC_user_ringbuf_drain: 9262 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 9263 goto error; 9264 break; 9265 case BPF_FUNC_get_stackid: 9266 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 9267 goto error; 9268 break; 9269 case BPF_FUNC_current_task_under_cgroup: 9270 case BPF_FUNC_skb_under_cgroup: 9271 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 9272 goto error; 9273 break; 9274 case BPF_FUNC_redirect_map: 9275 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 9276 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 9277 map->map_type != BPF_MAP_TYPE_CPUMAP && 9278 map->map_type != BPF_MAP_TYPE_XSKMAP) 9279 goto error; 9280 break; 9281 case BPF_FUNC_sk_redirect_map: 9282 case BPF_FUNC_msg_redirect_map: 9283 case BPF_FUNC_sock_map_update: 9284 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 9285 goto error; 9286 break; 9287 case BPF_FUNC_sk_redirect_hash: 9288 case BPF_FUNC_msg_redirect_hash: 9289 case BPF_FUNC_sock_hash_update: 9290 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 9291 goto error; 9292 break; 9293 case BPF_FUNC_get_local_storage: 9294 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 9295 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 9296 goto error; 9297 break; 9298 case BPF_FUNC_sk_select_reuseport: 9299 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 9300 map->map_type != BPF_MAP_TYPE_SOCKMAP && 9301 map->map_type != BPF_MAP_TYPE_SOCKHASH) 9302 goto error; 9303 break; 9304 case BPF_FUNC_map_pop_elem: 9305 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9306 map->map_type != BPF_MAP_TYPE_STACK) 9307 goto error; 9308 break; 9309 case BPF_FUNC_map_peek_elem: 9310 case BPF_FUNC_map_push_elem: 9311 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9312 map->map_type != BPF_MAP_TYPE_STACK && 9313 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 9314 goto error; 9315 break; 9316 case BPF_FUNC_map_lookup_percpu_elem: 9317 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 9318 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9319 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 9320 goto error; 9321 break; 9322 case BPF_FUNC_sk_storage_get: 9323 case BPF_FUNC_sk_storage_delete: 9324 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 9325 goto error; 9326 break; 9327 case BPF_FUNC_inode_storage_get: 9328 case BPF_FUNC_inode_storage_delete: 9329 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 9330 goto error; 9331 break; 9332 case BPF_FUNC_task_storage_get: 9333 case BPF_FUNC_task_storage_delete: 9334 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 9335 goto error; 9336 break; 9337 case BPF_FUNC_cgrp_storage_get: 9338 case BPF_FUNC_cgrp_storage_delete: 9339 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9340 goto error; 9341 break; 9342 default: 9343 break; 9344 } 9345 9346 return 0; 9347 error: 9348 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9349 map->map_type, func_id_name(func_id), func_id); 9350 return -EINVAL; 9351 } 9352 9353 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9354 { 9355 int count = 0; 9356 9357 if (arg_type_is_raw_mem(fn->arg1_type)) 9358 count++; 9359 if (arg_type_is_raw_mem(fn->arg2_type)) 9360 count++; 9361 if (arg_type_is_raw_mem(fn->arg3_type)) 9362 count++; 9363 if (arg_type_is_raw_mem(fn->arg4_type)) 9364 count++; 9365 if (arg_type_is_raw_mem(fn->arg5_type)) 9366 count++; 9367 9368 /* We only support one arg being in raw mode at the moment, 9369 * which is sufficient for the helper functions we have 9370 * right now. 9371 */ 9372 return count <= 1; 9373 } 9374 9375 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9376 { 9377 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9378 bool has_size = fn->arg_size[arg] != 0; 9379 bool is_next_size = false; 9380 9381 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9382 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9383 9384 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9385 return is_next_size; 9386 9387 return has_size == is_next_size || is_next_size == is_fixed; 9388 } 9389 9390 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9391 { 9392 /* bpf_xxx(..., buf, len) call will access 'len' 9393 * bytes from memory 'buf'. Both arg types need 9394 * to be paired, so make sure there's no buggy 9395 * helper function specification. 9396 */ 9397 if (arg_type_is_mem_size(fn->arg1_type) || 9398 check_args_pair_invalid(fn, 0) || 9399 check_args_pair_invalid(fn, 1) || 9400 check_args_pair_invalid(fn, 2) || 9401 check_args_pair_invalid(fn, 3) || 9402 check_args_pair_invalid(fn, 4)) 9403 return false; 9404 9405 return true; 9406 } 9407 9408 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9409 { 9410 int i; 9411 9412 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9413 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9414 return !!fn->arg_btf_id[i]; 9415 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9416 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9417 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9418 /* arg_btf_id and arg_size are in a union. */ 9419 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9420 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9421 return false; 9422 } 9423 9424 return true; 9425 } 9426 9427 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9428 { 9429 return check_raw_mode_ok(fn) && 9430 check_arg_pair_ok(fn) && 9431 check_btf_id_ok(fn) ? 0 : -EINVAL; 9432 } 9433 9434 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9435 * are now invalid, so turn them into unknown SCALAR_VALUE. 9436 * 9437 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9438 * since these slices point to packet data. 9439 */ 9440 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9441 { 9442 struct bpf_func_state *state; 9443 struct bpf_reg_state *reg; 9444 9445 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9446 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9447 mark_reg_invalid(env, reg); 9448 })); 9449 } 9450 9451 enum { 9452 AT_PKT_END = -1, 9453 BEYOND_PKT_END = -2, 9454 }; 9455 9456 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9457 { 9458 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9459 struct bpf_reg_state *reg = &state->regs[regn]; 9460 9461 if (reg->type != PTR_TO_PACKET) 9462 /* PTR_TO_PACKET_META is not supported yet */ 9463 return; 9464 9465 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9466 * How far beyond pkt_end it goes is unknown. 9467 * if (!range_open) it's the case of pkt >= pkt_end 9468 * if (range_open) it's the case of pkt > pkt_end 9469 * hence this pointer is at least 1 byte bigger than pkt_end 9470 */ 9471 if (range_open) 9472 reg->range = BEYOND_PKT_END; 9473 else 9474 reg->range = AT_PKT_END; 9475 } 9476 9477 /* The pointer with the specified id has released its reference to kernel 9478 * resources. Identify all copies of the same pointer and clear the reference. 9479 */ 9480 static int release_reference(struct bpf_verifier_env *env, 9481 int ref_obj_id) 9482 { 9483 struct bpf_func_state *state; 9484 struct bpf_reg_state *reg; 9485 int err; 9486 9487 err = release_reference_state(cur_func(env), ref_obj_id); 9488 if (err) 9489 return err; 9490 9491 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9492 if (reg->ref_obj_id == ref_obj_id) 9493 mark_reg_invalid(env, reg); 9494 })); 9495 9496 return 0; 9497 } 9498 9499 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9500 { 9501 struct bpf_func_state *unused; 9502 struct bpf_reg_state *reg; 9503 9504 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9505 if (type_is_non_owning_ref(reg->type)) 9506 mark_reg_invalid(env, reg); 9507 })); 9508 } 9509 9510 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9511 struct bpf_reg_state *regs) 9512 { 9513 int i; 9514 9515 /* after the call registers r0 - r5 were scratched */ 9516 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9517 mark_reg_not_init(env, regs, caller_saved[i]); 9518 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9519 } 9520 } 9521 9522 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9523 struct bpf_func_state *caller, 9524 struct bpf_func_state *callee, 9525 int insn_idx); 9526 9527 static int set_callee_state(struct bpf_verifier_env *env, 9528 struct bpf_func_state *caller, 9529 struct bpf_func_state *callee, int insn_idx); 9530 9531 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9532 set_callee_state_fn set_callee_state_cb, 9533 struct bpf_verifier_state *state) 9534 { 9535 struct bpf_func_state *caller, *callee; 9536 int err; 9537 9538 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9539 verbose(env, "the call stack of %d frames is too deep\n", 9540 state->curframe + 2); 9541 return -E2BIG; 9542 } 9543 9544 if (state->frame[state->curframe + 1]) { 9545 verbose(env, "verifier bug. Frame %d already allocated\n", 9546 state->curframe + 1); 9547 return -EFAULT; 9548 } 9549 9550 caller = state->frame[state->curframe]; 9551 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9552 if (!callee) 9553 return -ENOMEM; 9554 state->frame[state->curframe + 1] = callee; 9555 9556 /* callee cannot access r0, r6 - r9 for reading and has to write 9557 * into its own stack before reading from it. 9558 * callee can read/write into caller's stack 9559 */ 9560 init_func_state(env, callee, 9561 /* remember the callsite, it will be used by bpf_exit */ 9562 callsite, 9563 state->curframe + 1 /* frameno within this callchain */, 9564 subprog /* subprog number within this prog */); 9565 /* Transfer references to the callee */ 9566 err = copy_reference_state(callee, caller); 9567 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9568 if (err) 9569 goto err_out; 9570 9571 /* only increment it after check_reg_arg() finished */ 9572 state->curframe++; 9573 9574 return 0; 9575 9576 err_out: 9577 free_func_state(callee); 9578 state->frame[state->curframe + 1] = NULL; 9579 return err; 9580 } 9581 9582 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 9583 const struct btf *btf, 9584 struct bpf_reg_state *regs) 9585 { 9586 struct bpf_subprog_info *sub = subprog_info(env, subprog); 9587 struct bpf_verifier_log *log = &env->log; 9588 u32 i; 9589 int ret; 9590 9591 ret = btf_prepare_func_args(env, subprog); 9592 if (ret) 9593 return ret; 9594 9595 /* check that BTF function arguments match actual types that the 9596 * verifier sees. 9597 */ 9598 for (i = 0; i < sub->arg_cnt; i++) { 9599 u32 regno = i + 1; 9600 struct bpf_reg_state *reg = ®s[regno]; 9601 struct bpf_subprog_arg_info *arg = &sub->args[i]; 9602 9603 if (arg->arg_type == ARG_ANYTHING) { 9604 if (reg->type != SCALAR_VALUE) { 9605 bpf_log(log, "R%d is not a scalar\n", regno); 9606 return -EINVAL; 9607 } 9608 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 9609 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9610 if (ret < 0) 9611 return ret; 9612 /* If function expects ctx type in BTF check that caller 9613 * is passing PTR_TO_CTX. 9614 */ 9615 if (reg->type != PTR_TO_CTX) { 9616 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 9617 return -EINVAL; 9618 } 9619 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 9620 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9621 if (ret < 0) 9622 return ret; 9623 if (check_mem_reg(env, reg, regno, arg->mem_size)) 9624 return -EINVAL; 9625 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 9626 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 9627 return -EINVAL; 9628 } 9629 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 9630 /* 9631 * Can pass any value and the kernel won't crash, but 9632 * only PTR_TO_ARENA or SCALAR make sense. Everything 9633 * else is a bug in the bpf program. Point it out to 9634 * the user at the verification time instead of 9635 * run-time debug nightmare. 9636 */ 9637 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { 9638 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); 9639 return -EINVAL; 9640 } 9641 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 9642 ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR); 9643 if (ret) 9644 return ret; 9645 9646 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 9647 if (ret) 9648 return ret; 9649 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 9650 struct bpf_call_arg_meta meta; 9651 int err; 9652 9653 if (register_is_null(reg) && type_may_be_null(arg->arg_type)) 9654 continue; 9655 9656 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ 9657 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); 9658 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); 9659 if (err) 9660 return err; 9661 } else { 9662 bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n", 9663 i, arg->arg_type); 9664 return -EFAULT; 9665 } 9666 } 9667 9668 return 0; 9669 } 9670 9671 /* Compare BTF of a function call with given bpf_reg_state. 9672 * Returns: 9673 * EFAULT - there is a verifier bug. Abort verification. 9674 * EINVAL - there is a type mismatch or BTF is not available. 9675 * 0 - BTF matches with what bpf_reg_state expects. 9676 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 9677 */ 9678 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 9679 struct bpf_reg_state *regs) 9680 { 9681 struct bpf_prog *prog = env->prog; 9682 struct btf *btf = prog->aux->btf; 9683 u32 btf_id; 9684 int err; 9685 9686 if (!prog->aux->func_info) 9687 return -EINVAL; 9688 9689 btf_id = prog->aux->func_info[subprog].type_id; 9690 if (!btf_id) 9691 return -EFAULT; 9692 9693 if (prog->aux->func_info_aux[subprog].unreliable) 9694 return -EINVAL; 9695 9696 err = btf_check_func_arg_match(env, subprog, btf, regs); 9697 /* Compiler optimizations can remove arguments from static functions 9698 * or mismatched type can be passed into a global function. 9699 * In such cases mark the function as unreliable from BTF point of view. 9700 */ 9701 if (err) 9702 prog->aux->func_info_aux[subprog].unreliable = true; 9703 return err; 9704 } 9705 9706 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9707 int insn_idx, int subprog, 9708 set_callee_state_fn set_callee_state_cb) 9709 { 9710 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9711 struct bpf_func_state *caller, *callee; 9712 int err; 9713 9714 caller = state->frame[state->curframe]; 9715 err = btf_check_subprog_call(env, subprog, caller->regs); 9716 if (err == -EFAULT) 9717 return err; 9718 9719 /* set_callee_state is used for direct subprog calls, but we are 9720 * interested in validating only BPF helpers that can call subprogs as 9721 * callbacks 9722 */ 9723 env->subprog_info[subprog].is_cb = true; 9724 if (bpf_pseudo_kfunc_call(insn) && 9725 !is_callback_calling_kfunc(insn->imm)) { 9726 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9727 func_id_name(insn->imm), insn->imm); 9728 return -EFAULT; 9729 } else if (!bpf_pseudo_kfunc_call(insn) && 9730 !is_callback_calling_function(insn->imm)) { /* helper */ 9731 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9732 func_id_name(insn->imm), insn->imm); 9733 return -EFAULT; 9734 } 9735 9736 if (is_async_callback_calling_insn(insn)) { 9737 struct bpf_verifier_state *async_cb; 9738 9739 /* there is no real recursion here. timer and workqueue callbacks are async */ 9740 env->subprog_info[subprog].is_async_cb = true; 9741 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9742 insn_idx, subprog, 9743 is_bpf_wq_set_callback_impl_kfunc(insn->imm)); 9744 if (!async_cb) 9745 return -EFAULT; 9746 callee = async_cb->frame[0]; 9747 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9748 9749 /* Convert bpf_timer_set_callback() args into timer callback args */ 9750 err = set_callee_state_cb(env, caller, callee, insn_idx); 9751 if (err) 9752 return err; 9753 9754 return 0; 9755 } 9756 9757 /* for callback functions enqueue entry to callback and 9758 * proceed with next instruction within current frame. 9759 */ 9760 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9761 if (!callback_state) 9762 return -ENOMEM; 9763 9764 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9765 callback_state); 9766 if (err) 9767 return err; 9768 9769 callback_state->callback_unroll_depth++; 9770 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9771 caller->callback_depth = 0; 9772 return 0; 9773 } 9774 9775 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9776 int *insn_idx) 9777 { 9778 struct bpf_verifier_state *state = env->cur_state; 9779 struct bpf_func_state *caller; 9780 int err, subprog, target_insn; 9781 9782 target_insn = *insn_idx + insn->imm + 1; 9783 subprog = find_subprog(env, target_insn); 9784 if (subprog < 0) { 9785 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9786 return -EFAULT; 9787 } 9788 9789 caller = state->frame[state->curframe]; 9790 err = btf_check_subprog_call(env, subprog, caller->regs); 9791 if (err == -EFAULT) 9792 return err; 9793 if (subprog_is_global(env, subprog)) { 9794 const char *sub_name = subprog_name(env, subprog); 9795 9796 /* Only global subprogs cannot be called with a lock held. */ 9797 if (env->cur_state->active_lock.ptr) { 9798 verbose(env, "global function calls are not allowed while holding a lock,\n" 9799 "use static function instead\n"); 9800 return -EINVAL; 9801 } 9802 9803 /* Only global subprogs cannot be called with preemption disabled. */ 9804 if (env->cur_state->active_preempt_lock) { 9805 verbose(env, "global function calls are not allowed with preemption disabled,\n" 9806 "use static function instead\n"); 9807 return -EINVAL; 9808 } 9809 9810 if (err) { 9811 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 9812 subprog, sub_name); 9813 return err; 9814 } 9815 9816 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 9817 subprog, sub_name); 9818 /* mark global subprog for verifying after main prog */ 9819 subprog_aux(env, subprog)->called = true; 9820 clear_caller_saved_regs(env, caller->regs); 9821 9822 /* All global functions return a 64-bit SCALAR_VALUE */ 9823 mark_reg_unknown(env, caller->regs, BPF_REG_0); 9824 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9825 9826 /* continue with next insn after call */ 9827 return 0; 9828 } 9829 9830 /* for regular function entry setup new frame and continue 9831 * from that frame. 9832 */ 9833 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 9834 if (err) 9835 return err; 9836 9837 clear_caller_saved_regs(env, caller->regs); 9838 9839 /* and go analyze first insn of the callee */ 9840 *insn_idx = env->subprog_info[subprog].start - 1; 9841 9842 if (env->log.level & BPF_LOG_LEVEL) { 9843 verbose(env, "caller:\n"); 9844 print_verifier_state(env, caller, true); 9845 verbose(env, "callee:\n"); 9846 print_verifier_state(env, state->frame[state->curframe], true); 9847 } 9848 9849 return 0; 9850 } 9851 9852 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9853 struct bpf_func_state *caller, 9854 struct bpf_func_state *callee) 9855 { 9856 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9857 * void *callback_ctx, u64 flags); 9858 * callback_fn(struct bpf_map *map, void *key, void *value, 9859 * void *callback_ctx); 9860 */ 9861 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9862 9863 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9864 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9865 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9866 9867 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9868 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9869 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9870 9871 /* pointer to stack or null */ 9872 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9873 9874 /* unused */ 9875 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9876 return 0; 9877 } 9878 9879 static int set_callee_state(struct bpf_verifier_env *env, 9880 struct bpf_func_state *caller, 9881 struct bpf_func_state *callee, int insn_idx) 9882 { 9883 int i; 9884 9885 /* copy r1 - r5 args that callee can access. The copy includes parent 9886 * pointers, which connects us up to the liveness chain 9887 */ 9888 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9889 callee->regs[i] = caller->regs[i]; 9890 return 0; 9891 } 9892 9893 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9894 struct bpf_func_state *caller, 9895 struct bpf_func_state *callee, 9896 int insn_idx) 9897 { 9898 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9899 struct bpf_map *map; 9900 int err; 9901 9902 /* valid map_ptr and poison value does not matter */ 9903 map = insn_aux->map_ptr_state.map_ptr; 9904 if (!map->ops->map_set_for_each_callback_args || 9905 !map->ops->map_for_each_callback) { 9906 verbose(env, "callback function not allowed for map\n"); 9907 return -ENOTSUPP; 9908 } 9909 9910 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9911 if (err) 9912 return err; 9913 9914 callee->in_callback_fn = true; 9915 callee->callback_ret_range = retval_range(0, 1); 9916 return 0; 9917 } 9918 9919 static int set_loop_callback_state(struct bpf_verifier_env *env, 9920 struct bpf_func_state *caller, 9921 struct bpf_func_state *callee, 9922 int insn_idx) 9923 { 9924 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9925 * u64 flags); 9926 * callback_fn(u32 index, void *callback_ctx); 9927 */ 9928 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9929 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9930 9931 /* unused */ 9932 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9933 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9934 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9935 9936 callee->in_callback_fn = true; 9937 callee->callback_ret_range = retval_range(0, 1); 9938 return 0; 9939 } 9940 9941 static int set_timer_callback_state(struct bpf_verifier_env *env, 9942 struct bpf_func_state *caller, 9943 struct bpf_func_state *callee, 9944 int insn_idx) 9945 { 9946 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9947 9948 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9949 * callback_fn(struct bpf_map *map, void *key, void *value); 9950 */ 9951 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9952 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9953 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9954 9955 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9956 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9957 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9958 9959 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9960 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9961 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9962 9963 /* unused */ 9964 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9965 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9966 callee->in_async_callback_fn = true; 9967 callee->callback_ret_range = retval_range(0, 1); 9968 return 0; 9969 } 9970 9971 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9972 struct bpf_func_state *caller, 9973 struct bpf_func_state *callee, 9974 int insn_idx) 9975 { 9976 /* bpf_find_vma(struct task_struct *task, u64 addr, 9977 * void *callback_fn, void *callback_ctx, u64 flags) 9978 * (callback_fn)(struct task_struct *task, 9979 * struct vm_area_struct *vma, void *callback_ctx); 9980 */ 9981 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9982 9983 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9984 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9985 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9986 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 9987 9988 /* pointer to stack or null */ 9989 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9990 9991 /* unused */ 9992 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9993 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9994 callee->in_callback_fn = true; 9995 callee->callback_ret_range = retval_range(0, 1); 9996 return 0; 9997 } 9998 9999 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 10000 struct bpf_func_state *caller, 10001 struct bpf_func_state *callee, 10002 int insn_idx) 10003 { 10004 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 10005 * callback_ctx, u64 flags); 10006 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 10007 */ 10008 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 10009 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 10010 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10011 10012 /* unused */ 10013 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10014 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10015 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10016 10017 callee->in_callback_fn = true; 10018 callee->callback_ret_range = retval_range(0, 1); 10019 return 0; 10020 } 10021 10022 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 10023 struct bpf_func_state *caller, 10024 struct bpf_func_state *callee, 10025 int insn_idx) 10026 { 10027 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 10028 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 10029 * 10030 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 10031 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 10032 * by this point, so look at 'root' 10033 */ 10034 struct btf_field *field; 10035 10036 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 10037 BPF_RB_ROOT); 10038 if (!field || !field->graph_root.value_btf_id) 10039 return -EFAULT; 10040 10041 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 10042 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 10043 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 10044 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 10045 10046 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10047 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10048 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10049 callee->in_callback_fn = true; 10050 callee->callback_ret_range = retval_range(0, 1); 10051 return 0; 10052 } 10053 10054 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 10055 10056 /* Are we currently verifying the callback for a rbtree helper that must 10057 * be called with lock held? If so, no need to complain about unreleased 10058 * lock 10059 */ 10060 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 10061 { 10062 struct bpf_verifier_state *state = env->cur_state; 10063 struct bpf_insn *insn = env->prog->insnsi; 10064 struct bpf_func_state *callee; 10065 int kfunc_btf_id; 10066 10067 if (!state->curframe) 10068 return false; 10069 10070 callee = state->frame[state->curframe]; 10071 10072 if (!callee->in_callback_fn) 10073 return false; 10074 10075 kfunc_btf_id = insn[callee->callsite].imm; 10076 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 10077 } 10078 10079 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg, 10080 bool return_32bit) 10081 { 10082 if (return_32bit) 10083 return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval; 10084 else 10085 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 10086 } 10087 10088 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 10089 { 10090 struct bpf_verifier_state *state = env->cur_state, *prev_st; 10091 struct bpf_func_state *caller, *callee; 10092 struct bpf_reg_state *r0; 10093 bool in_callback_fn; 10094 int err; 10095 10096 callee = state->frame[state->curframe]; 10097 r0 = &callee->regs[BPF_REG_0]; 10098 if (r0->type == PTR_TO_STACK) { 10099 /* technically it's ok to return caller's stack pointer 10100 * (or caller's caller's pointer) back to the caller, 10101 * since these pointers are valid. Only current stack 10102 * pointer will be invalid as soon as function exits, 10103 * but let's be conservative 10104 */ 10105 verbose(env, "cannot return stack pointer to the caller\n"); 10106 return -EINVAL; 10107 } 10108 10109 caller = state->frame[state->curframe - 1]; 10110 if (callee->in_callback_fn) { 10111 if (r0->type != SCALAR_VALUE) { 10112 verbose(env, "R0 not a scalar value\n"); 10113 return -EACCES; 10114 } 10115 10116 /* we are going to rely on register's precise value */ 10117 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 10118 err = err ?: mark_chain_precision(env, BPF_REG_0); 10119 if (err) 10120 return err; 10121 10122 /* enforce R0 return value range, and bpf_callback_t returns 64bit */ 10123 if (!retval_range_within(callee->callback_ret_range, r0, false)) { 10124 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 10125 "At callback return", "R0"); 10126 return -EINVAL; 10127 } 10128 if (!calls_callback(env, callee->callsite)) { 10129 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 10130 *insn_idx, callee->callsite); 10131 return -EFAULT; 10132 } 10133 } else { 10134 /* return to the caller whatever r0 had in the callee */ 10135 caller->regs[BPF_REG_0] = *r0; 10136 } 10137 10138 /* callback_fn frame should have released its own additions to parent's 10139 * reference state at this point, or check_reference_leak would 10140 * complain, hence it must be the same as the caller. There is no need 10141 * to copy it back. 10142 */ 10143 if (!callee->in_callback_fn) { 10144 /* Transfer references to the caller */ 10145 err = copy_reference_state(caller, callee); 10146 if (err) 10147 return err; 10148 } 10149 10150 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 10151 * there function call logic would reschedule callback visit. If iteration 10152 * converges is_state_visited() would prune that visit eventually. 10153 */ 10154 in_callback_fn = callee->in_callback_fn; 10155 if (in_callback_fn) 10156 *insn_idx = callee->callsite; 10157 else 10158 *insn_idx = callee->callsite + 1; 10159 10160 if (env->log.level & BPF_LOG_LEVEL) { 10161 verbose(env, "returning from callee:\n"); 10162 print_verifier_state(env, callee, true); 10163 verbose(env, "to caller at %d:\n", *insn_idx); 10164 print_verifier_state(env, caller, true); 10165 } 10166 /* clear everything in the callee. In case of exceptional exits using 10167 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 10168 free_func_state(callee); 10169 state->frame[state->curframe--] = NULL; 10170 10171 /* for callbacks widen imprecise scalars to make programs like below verify: 10172 * 10173 * struct ctx { int i; } 10174 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 10175 * ... 10176 * struct ctx = { .i = 0; } 10177 * bpf_loop(100, cb, &ctx, 0); 10178 * 10179 * This is similar to what is done in process_iter_next_call() for open 10180 * coded iterators. 10181 */ 10182 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 10183 if (prev_st) { 10184 err = widen_imprecise_scalars(env, prev_st, state); 10185 if (err) 10186 return err; 10187 } 10188 return 0; 10189 } 10190 10191 static int do_refine_retval_range(struct bpf_verifier_env *env, 10192 struct bpf_reg_state *regs, int ret_type, 10193 int func_id, 10194 struct bpf_call_arg_meta *meta) 10195 { 10196 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 10197 10198 if (ret_type != RET_INTEGER) 10199 return 0; 10200 10201 switch (func_id) { 10202 case BPF_FUNC_get_stack: 10203 case BPF_FUNC_get_task_stack: 10204 case BPF_FUNC_probe_read_str: 10205 case BPF_FUNC_probe_read_kernel_str: 10206 case BPF_FUNC_probe_read_user_str: 10207 ret_reg->smax_value = meta->msize_max_value; 10208 ret_reg->s32_max_value = meta->msize_max_value; 10209 ret_reg->smin_value = -MAX_ERRNO; 10210 ret_reg->s32_min_value = -MAX_ERRNO; 10211 reg_bounds_sync(ret_reg); 10212 break; 10213 case BPF_FUNC_get_smp_processor_id: 10214 ret_reg->umax_value = nr_cpu_ids - 1; 10215 ret_reg->u32_max_value = nr_cpu_ids - 1; 10216 ret_reg->smax_value = nr_cpu_ids - 1; 10217 ret_reg->s32_max_value = nr_cpu_ids - 1; 10218 ret_reg->umin_value = 0; 10219 ret_reg->u32_min_value = 0; 10220 ret_reg->smin_value = 0; 10221 ret_reg->s32_min_value = 0; 10222 reg_bounds_sync(ret_reg); 10223 break; 10224 } 10225 10226 return reg_bounds_sanity_check(env, ret_reg, "retval"); 10227 } 10228 10229 static int 10230 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10231 int func_id, int insn_idx) 10232 { 10233 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10234 struct bpf_map *map = meta->map_ptr; 10235 10236 if (func_id != BPF_FUNC_tail_call && 10237 func_id != BPF_FUNC_map_lookup_elem && 10238 func_id != BPF_FUNC_map_update_elem && 10239 func_id != BPF_FUNC_map_delete_elem && 10240 func_id != BPF_FUNC_map_push_elem && 10241 func_id != BPF_FUNC_map_pop_elem && 10242 func_id != BPF_FUNC_map_peek_elem && 10243 func_id != BPF_FUNC_for_each_map_elem && 10244 func_id != BPF_FUNC_redirect_map && 10245 func_id != BPF_FUNC_map_lookup_percpu_elem) 10246 return 0; 10247 10248 if (map == NULL) { 10249 verbose(env, "kernel subsystem misconfigured verifier\n"); 10250 return -EINVAL; 10251 } 10252 10253 /* In case of read-only, some additional restrictions 10254 * need to be applied in order to prevent altering the 10255 * state of the map from program side. 10256 */ 10257 if ((map->map_flags & BPF_F_RDONLY_PROG) && 10258 (func_id == BPF_FUNC_map_delete_elem || 10259 func_id == BPF_FUNC_map_update_elem || 10260 func_id == BPF_FUNC_map_push_elem || 10261 func_id == BPF_FUNC_map_pop_elem)) { 10262 verbose(env, "write into map forbidden\n"); 10263 return -EACCES; 10264 } 10265 10266 if (!aux->map_ptr_state.map_ptr) 10267 bpf_map_ptr_store(aux, meta->map_ptr, 10268 !meta->map_ptr->bypass_spec_v1, false); 10269 else if (aux->map_ptr_state.map_ptr != meta->map_ptr) 10270 bpf_map_ptr_store(aux, meta->map_ptr, 10271 !meta->map_ptr->bypass_spec_v1, true); 10272 return 0; 10273 } 10274 10275 static int 10276 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10277 int func_id, int insn_idx) 10278 { 10279 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10280 struct bpf_reg_state *regs = cur_regs(env), *reg; 10281 struct bpf_map *map = meta->map_ptr; 10282 u64 val, max; 10283 int err; 10284 10285 if (func_id != BPF_FUNC_tail_call) 10286 return 0; 10287 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 10288 verbose(env, "kernel subsystem misconfigured verifier\n"); 10289 return -EINVAL; 10290 } 10291 10292 reg = ®s[BPF_REG_3]; 10293 val = reg->var_off.value; 10294 max = map->max_entries; 10295 10296 if (!(is_reg_const(reg, false) && val < max)) { 10297 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10298 return 0; 10299 } 10300 10301 err = mark_chain_precision(env, BPF_REG_3); 10302 if (err) 10303 return err; 10304 if (bpf_map_key_unseen(aux)) 10305 bpf_map_key_store(aux, val); 10306 else if (!bpf_map_key_poisoned(aux) && 10307 bpf_map_key_immediate(aux) != val) 10308 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10309 return 0; 10310 } 10311 10312 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 10313 { 10314 struct bpf_func_state *state = cur_func(env); 10315 bool refs_lingering = false; 10316 int i; 10317 10318 if (!exception_exit && state->frameno && !state->in_callback_fn) 10319 return 0; 10320 10321 for (i = 0; i < state->acquired_refs; i++) { 10322 if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 10323 continue; 10324 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 10325 state->refs[i].id, state->refs[i].insn_idx); 10326 refs_lingering = true; 10327 } 10328 return refs_lingering ? -EINVAL : 0; 10329 } 10330 10331 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 10332 struct bpf_reg_state *regs) 10333 { 10334 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 10335 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 10336 struct bpf_map *fmt_map = fmt_reg->map_ptr; 10337 struct bpf_bprintf_data data = {}; 10338 int err, fmt_map_off, num_args; 10339 u64 fmt_addr; 10340 char *fmt; 10341 10342 /* data must be an array of u64 */ 10343 if (data_len_reg->var_off.value % 8) 10344 return -EINVAL; 10345 num_args = data_len_reg->var_off.value / 8; 10346 10347 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 10348 * and map_direct_value_addr is set. 10349 */ 10350 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 10351 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 10352 fmt_map_off); 10353 if (err) { 10354 verbose(env, "verifier bug\n"); 10355 return -EFAULT; 10356 } 10357 fmt = (char *)(long)fmt_addr + fmt_map_off; 10358 10359 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 10360 * can focus on validating the format specifiers. 10361 */ 10362 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 10363 if (err < 0) 10364 verbose(env, "Invalid format string\n"); 10365 10366 return err; 10367 } 10368 10369 static int check_get_func_ip(struct bpf_verifier_env *env) 10370 { 10371 enum bpf_prog_type type = resolve_prog_type(env->prog); 10372 int func_id = BPF_FUNC_get_func_ip; 10373 10374 if (type == BPF_PROG_TYPE_TRACING) { 10375 if (!bpf_prog_has_trampoline(env->prog)) { 10376 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 10377 func_id_name(func_id), func_id); 10378 return -ENOTSUPP; 10379 } 10380 return 0; 10381 } else if (type == BPF_PROG_TYPE_KPROBE) { 10382 return 0; 10383 } 10384 10385 verbose(env, "func %s#%d not supported for program type %d\n", 10386 func_id_name(func_id), func_id, type); 10387 return -ENOTSUPP; 10388 } 10389 10390 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 10391 { 10392 return &env->insn_aux_data[env->insn_idx]; 10393 } 10394 10395 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 10396 { 10397 struct bpf_reg_state *regs = cur_regs(env); 10398 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 10399 bool reg_is_null = register_is_null(reg); 10400 10401 if (reg_is_null) 10402 mark_chain_precision(env, BPF_REG_4); 10403 10404 return reg_is_null; 10405 } 10406 10407 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 10408 { 10409 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 10410 10411 if (!state->initialized) { 10412 state->initialized = 1; 10413 state->fit_for_inline = loop_flag_is_zero(env); 10414 state->callback_subprogno = subprogno; 10415 return; 10416 } 10417 10418 if (!state->fit_for_inline) 10419 return; 10420 10421 state->fit_for_inline = (loop_flag_is_zero(env) && 10422 state->callback_subprogno == subprogno); 10423 } 10424 10425 static int get_helper_proto(struct bpf_verifier_env *env, int func_id, 10426 const struct bpf_func_proto **ptr) 10427 { 10428 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) 10429 return -ERANGE; 10430 10431 if (!env->ops->get_func_proto) 10432 return -EINVAL; 10433 10434 *ptr = env->ops->get_func_proto(func_id, env->prog); 10435 return *ptr ? 0 : -EINVAL; 10436 } 10437 10438 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10439 int *insn_idx_p) 10440 { 10441 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10442 bool returns_cpu_specific_alloc_ptr = false; 10443 const struct bpf_func_proto *fn = NULL; 10444 enum bpf_return_type ret_type; 10445 enum bpf_type_flag ret_flag; 10446 struct bpf_reg_state *regs; 10447 struct bpf_call_arg_meta meta; 10448 int insn_idx = *insn_idx_p; 10449 bool changes_data; 10450 int i, err, func_id; 10451 10452 /* find function prototype */ 10453 func_id = insn->imm; 10454 err = get_helper_proto(env, insn->imm, &fn); 10455 if (err == -ERANGE) { 10456 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id); 10457 return -EINVAL; 10458 } 10459 10460 if (err) { 10461 verbose(env, "program of this type cannot use helper %s#%d\n", 10462 func_id_name(func_id), func_id); 10463 return err; 10464 } 10465 10466 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 10467 if (!env->prog->gpl_compatible && fn->gpl_only) { 10468 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 10469 return -EINVAL; 10470 } 10471 10472 if (fn->allowed && !fn->allowed(env->prog)) { 10473 verbose(env, "helper call is not allowed in probe\n"); 10474 return -EINVAL; 10475 } 10476 10477 if (!in_sleepable(env) && fn->might_sleep) { 10478 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 10479 return -EINVAL; 10480 } 10481 10482 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 10483 changes_data = bpf_helper_changes_pkt_data(fn->func); 10484 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 10485 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 10486 func_id_name(func_id), func_id); 10487 return -EINVAL; 10488 } 10489 10490 memset(&meta, 0, sizeof(meta)); 10491 meta.pkt_access = fn->pkt_access; 10492 10493 err = check_func_proto(fn, func_id); 10494 if (err) { 10495 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 10496 func_id_name(func_id), func_id); 10497 return err; 10498 } 10499 10500 if (env->cur_state->active_rcu_lock) { 10501 if (fn->might_sleep) { 10502 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10503 func_id_name(func_id), func_id); 10504 return -EINVAL; 10505 } 10506 10507 if (in_sleepable(env) && is_storage_get_function(func_id)) 10508 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10509 } 10510 10511 if (env->cur_state->active_preempt_lock) { 10512 if (fn->might_sleep) { 10513 verbose(env, "sleepable helper %s#%d in non-preemptible region\n", 10514 func_id_name(func_id), func_id); 10515 return -EINVAL; 10516 } 10517 10518 if (in_sleepable(env) && is_storage_get_function(func_id)) 10519 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10520 } 10521 10522 meta.func_id = func_id; 10523 /* check args */ 10524 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 10525 err = check_func_arg(env, i, &meta, fn, insn_idx); 10526 if (err) 10527 return err; 10528 } 10529 10530 err = record_func_map(env, &meta, func_id, insn_idx); 10531 if (err) 10532 return err; 10533 10534 err = record_func_key(env, &meta, func_id, insn_idx); 10535 if (err) 10536 return err; 10537 10538 /* Mark slots with STACK_MISC in case of raw mode, stack offset 10539 * is inferred from register state. 10540 */ 10541 for (i = 0; i < meta.access_size; i++) { 10542 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 10543 BPF_WRITE, -1, false, false); 10544 if (err) 10545 return err; 10546 } 10547 10548 regs = cur_regs(env); 10549 10550 if (meta.release_regno) { 10551 err = -EINVAL; 10552 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10553 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10554 * is safe to do directly. 10555 */ 10556 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10557 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10558 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10559 return -EFAULT; 10560 } 10561 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10562 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 10563 u32 ref_obj_id = meta.ref_obj_id; 10564 bool in_rcu = in_rcu_cs(env); 10565 struct bpf_func_state *state; 10566 struct bpf_reg_state *reg; 10567 10568 err = release_reference_state(cur_func(env), ref_obj_id); 10569 if (!err) { 10570 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10571 if (reg->ref_obj_id == ref_obj_id) { 10572 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 10573 reg->ref_obj_id = 0; 10574 reg->type &= ~MEM_ALLOC; 10575 reg->type |= MEM_RCU; 10576 } else { 10577 mark_reg_invalid(env, reg); 10578 } 10579 } 10580 })); 10581 } 10582 } else if (meta.ref_obj_id) { 10583 err = release_reference(env, meta.ref_obj_id); 10584 } else if (register_is_null(®s[meta.release_regno])) { 10585 /* meta.ref_obj_id can only be 0 if register that is meant to be 10586 * released is NULL, which must be > R0. 10587 */ 10588 err = 0; 10589 } 10590 if (err) { 10591 verbose(env, "func %s#%d reference has not been acquired before\n", 10592 func_id_name(func_id), func_id); 10593 return err; 10594 } 10595 } 10596 10597 switch (func_id) { 10598 case BPF_FUNC_tail_call: 10599 err = check_reference_leak(env, false); 10600 if (err) { 10601 verbose(env, "tail_call would lead to reference leak\n"); 10602 return err; 10603 } 10604 break; 10605 case BPF_FUNC_get_local_storage: 10606 /* check that flags argument in get_local_storage(map, flags) is 0, 10607 * this is required because get_local_storage() can't return an error. 10608 */ 10609 if (!register_is_null(®s[BPF_REG_2])) { 10610 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10611 return -EINVAL; 10612 } 10613 break; 10614 case BPF_FUNC_for_each_map_elem: 10615 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10616 set_map_elem_callback_state); 10617 break; 10618 case BPF_FUNC_timer_set_callback: 10619 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10620 set_timer_callback_state); 10621 break; 10622 case BPF_FUNC_find_vma: 10623 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10624 set_find_vma_callback_state); 10625 break; 10626 case BPF_FUNC_snprintf: 10627 err = check_bpf_snprintf_call(env, regs); 10628 break; 10629 case BPF_FUNC_loop: 10630 update_loop_inline_state(env, meta.subprogno); 10631 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10632 * is finished, thus mark it precise. 10633 */ 10634 err = mark_chain_precision(env, BPF_REG_1); 10635 if (err) 10636 return err; 10637 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10638 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10639 set_loop_callback_state); 10640 } else { 10641 cur_func(env)->callback_depth = 0; 10642 if (env->log.level & BPF_LOG_LEVEL2) 10643 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10644 env->cur_state->curframe); 10645 } 10646 break; 10647 case BPF_FUNC_dynptr_from_mem: 10648 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10649 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10650 reg_type_str(env, regs[BPF_REG_1].type)); 10651 return -EACCES; 10652 } 10653 break; 10654 case BPF_FUNC_set_retval: 10655 if (prog_type == BPF_PROG_TYPE_LSM && 10656 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10657 if (!env->prog->aux->attach_func_proto->type) { 10658 /* Make sure programs that attach to void 10659 * hooks don't try to modify return value. 10660 */ 10661 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10662 return -EINVAL; 10663 } 10664 } 10665 break; 10666 case BPF_FUNC_dynptr_data: 10667 { 10668 struct bpf_reg_state *reg; 10669 int id, ref_obj_id; 10670 10671 reg = get_dynptr_arg_reg(env, fn, regs); 10672 if (!reg) 10673 return -EFAULT; 10674 10675 10676 if (meta.dynptr_id) { 10677 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10678 return -EFAULT; 10679 } 10680 if (meta.ref_obj_id) { 10681 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10682 return -EFAULT; 10683 } 10684 10685 id = dynptr_id(env, reg); 10686 if (id < 0) { 10687 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10688 return id; 10689 } 10690 10691 ref_obj_id = dynptr_ref_obj_id(env, reg); 10692 if (ref_obj_id < 0) { 10693 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10694 return ref_obj_id; 10695 } 10696 10697 meta.dynptr_id = id; 10698 meta.ref_obj_id = ref_obj_id; 10699 10700 break; 10701 } 10702 case BPF_FUNC_dynptr_write: 10703 { 10704 enum bpf_dynptr_type dynptr_type; 10705 struct bpf_reg_state *reg; 10706 10707 reg = get_dynptr_arg_reg(env, fn, regs); 10708 if (!reg) 10709 return -EFAULT; 10710 10711 dynptr_type = dynptr_get_type(env, reg); 10712 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10713 return -EFAULT; 10714 10715 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10716 /* this will trigger clear_all_pkt_pointers(), which will 10717 * invalidate all dynptr slices associated with the skb 10718 */ 10719 changes_data = true; 10720 10721 break; 10722 } 10723 case BPF_FUNC_per_cpu_ptr: 10724 case BPF_FUNC_this_cpu_ptr: 10725 { 10726 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 10727 const struct btf_type *type; 10728 10729 if (reg->type & MEM_RCU) { 10730 type = btf_type_by_id(reg->btf, reg->btf_id); 10731 if (!type || !btf_type_is_struct(type)) { 10732 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 10733 return -EFAULT; 10734 } 10735 returns_cpu_specific_alloc_ptr = true; 10736 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 10737 } 10738 break; 10739 } 10740 case BPF_FUNC_user_ringbuf_drain: 10741 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10742 set_user_ringbuf_callback_state); 10743 break; 10744 } 10745 10746 if (err) 10747 return err; 10748 10749 /* reset caller saved regs */ 10750 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10751 mark_reg_not_init(env, regs, caller_saved[i]); 10752 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10753 } 10754 10755 /* helper call returns 64-bit value. */ 10756 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10757 10758 /* update return register (already marked as written above) */ 10759 ret_type = fn->ret_type; 10760 ret_flag = type_flag(ret_type); 10761 10762 switch (base_type(ret_type)) { 10763 case RET_INTEGER: 10764 /* sets type to SCALAR_VALUE */ 10765 mark_reg_unknown(env, regs, BPF_REG_0); 10766 break; 10767 case RET_VOID: 10768 regs[BPF_REG_0].type = NOT_INIT; 10769 break; 10770 case RET_PTR_TO_MAP_VALUE: 10771 /* There is no offset yet applied, variable or fixed */ 10772 mark_reg_known_zero(env, regs, BPF_REG_0); 10773 /* remember map_ptr, so that check_map_access() 10774 * can check 'value_size' boundary of memory access 10775 * to map element returned from bpf_map_lookup_elem() 10776 */ 10777 if (meta.map_ptr == NULL) { 10778 verbose(env, 10779 "kernel subsystem misconfigured verifier\n"); 10780 return -EINVAL; 10781 } 10782 regs[BPF_REG_0].map_ptr = meta.map_ptr; 10783 regs[BPF_REG_0].map_uid = meta.map_uid; 10784 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 10785 if (!type_may_be_null(ret_type) && 10786 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 10787 regs[BPF_REG_0].id = ++env->id_gen; 10788 } 10789 break; 10790 case RET_PTR_TO_SOCKET: 10791 mark_reg_known_zero(env, regs, BPF_REG_0); 10792 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 10793 break; 10794 case RET_PTR_TO_SOCK_COMMON: 10795 mark_reg_known_zero(env, regs, BPF_REG_0); 10796 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 10797 break; 10798 case RET_PTR_TO_TCP_SOCK: 10799 mark_reg_known_zero(env, regs, BPF_REG_0); 10800 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 10801 break; 10802 case RET_PTR_TO_MEM: 10803 mark_reg_known_zero(env, regs, BPF_REG_0); 10804 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10805 regs[BPF_REG_0].mem_size = meta.mem_size; 10806 break; 10807 case RET_PTR_TO_MEM_OR_BTF_ID: 10808 { 10809 const struct btf_type *t; 10810 10811 mark_reg_known_zero(env, regs, BPF_REG_0); 10812 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 10813 if (!btf_type_is_struct(t)) { 10814 u32 tsize; 10815 const struct btf_type *ret; 10816 const char *tname; 10817 10818 /* resolve the type size of ksym. */ 10819 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 10820 if (IS_ERR(ret)) { 10821 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 10822 verbose(env, "unable to resolve the size of type '%s': %ld\n", 10823 tname, PTR_ERR(ret)); 10824 return -EINVAL; 10825 } 10826 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10827 regs[BPF_REG_0].mem_size = tsize; 10828 } else { 10829 if (returns_cpu_specific_alloc_ptr) { 10830 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 10831 } else { 10832 /* MEM_RDONLY may be carried from ret_flag, but it 10833 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 10834 * it will confuse the check of PTR_TO_BTF_ID in 10835 * check_mem_access(). 10836 */ 10837 ret_flag &= ~MEM_RDONLY; 10838 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10839 } 10840 10841 regs[BPF_REG_0].btf = meta.ret_btf; 10842 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 10843 } 10844 break; 10845 } 10846 case RET_PTR_TO_BTF_ID: 10847 { 10848 struct btf *ret_btf; 10849 int ret_btf_id; 10850 10851 mark_reg_known_zero(env, regs, BPF_REG_0); 10852 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10853 if (func_id == BPF_FUNC_kptr_xchg) { 10854 ret_btf = meta.kptr_field->kptr.btf; 10855 ret_btf_id = meta.kptr_field->kptr.btf_id; 10856 if (!btf_is_kernel(ret_btf)) { 10857 regs[BPF_REG_0].type |= MEM_ALLOC; 10858 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 10859 regs[BPF_REG_0].type |= MEM_PERCPU; 10860 } 10861 } else { 10862 if (fn->ret_btf_id == BPF_PTR_POISON) { 10863 verbose(env, "verifier internal error:"); 10864 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 10865 func_id_name(func_id)); 10866 return -EINVAL; 10867 } 10868 ret_btf = btf_vmlinux; 10869 ret_btf_id = *fn->ret_btf_id; 10870 } 10871 if (ret_btf_id == 0) { 10872 verbose(env, "invalid return type %u of func %s#%d\n", 10873 base_type(ret_type), func_id_name(func_id), 10874 func_id); 10875 return -EINVAL; 10876 } 10877 regs[BPF_REG_0].btf = ret_btf; 10878 regs[BPF_REG_0].btf_id = ret_btf_id; 10879 break; 10880 } 10881 default: 10882 verbose(env, "unknown return type %u of func %s#%d\n", 10883 base_type(ret_type), func_id_name(func_id), func_id); 10884 return -EINVAL; 10885 } 10886 10887 if (type_may_be_null(regs[BPF_REG_0].type)) 10888 regs[BPF_REG_0].id = ++env->id_gen; 10889 10890 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 10891 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 10892 func_id_name(func_id), func_id); 10893 return -EFAULT; 10894 } 10895 10896 if (is_dynptr_ref_function(func_id)) 10897 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 10898 10899 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 10900 /* For release_reference() */ 10901 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10902 } else if (is_acquire_function(func_id, meta.map_ptr)) { 10903 int id = acquire_reference_state(env, insn_idx); 10904 10905 if (id < 0) 10906 return id; 10907 /* For mark_ptr_or_null_reg() */ 10908 regs[BPF_REG_0].id = id; 10909 /* For release_reference() */ 10910 regs[BPF_REG_0].ref_obj_id = id; 10911 } 10912 10913 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 10914 if (err) 10915 return err; 10916 10917 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 10918 if (err) 10919 return err; 10920 10921 if ((func_id == BPF_FUNC_get_stack || 10922 func_id == BPF_FUNC_get_task_stack) && 10923 !env->prog->has_callchain_buf) { 10924 const char *err_str; 10925 10926 #ifdef CONFIG_PERF_EVENTS 10927 err = get_callchain_buffers(sysctl_perf_event_max_stack); 10928 err_str = "cannot get callchain buffer for func %s#%d\n"; 10929 #else 10930 err = -ENOTSUPP; 10931 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 10932 #endif 10933 if (err) { 10934 verbose(env, err_str, func_id_name(func_id), func_id); 10935 return err; 10936 } 10937 10938 env->prog->has_callchain_buf = true; 10939 } 10940 10941 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 10942 env->prog->call_get_stack = true; 10943 10944 if (func_id == BPF_FUNC_get_func_ip) { 10945 if (check_get_func_ip(env)) 10946 return -ENOTSUPP; 10947 env->prog->call_get_func_ip = true; 10948 } 10949 10950 if (changes_data) 10951 clear_all_pkt_pointers(env); 10952 return 0; 10953 } 10954 10955 /* mark_btf_func_reg_size() is used when the reg size is determined by 10956 * the BTF func_proto's return value size and argument. 10957 */ 10958 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 10959 size_t reg_size) 10960 { 10961 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10962 10963 if (regno == BPF_REG_0) { 10964 /* Function return value */ 10965 reg->live |= REG_LIVE_WRITTEN; 10966 reg->subreg_def = reg_size == sizeof(u64) ? 10967 DEF_NOT_SUBREG : env->insn_idx + 1; 10968 } else { 10969 /* Function argument */ 10970 if (reg_size == sizeof(u64)) { 10971 mark_insn_zext(env, reg); 10972 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10973 } else { 10974 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10975 } 10976 } 10977 } 10978 10979 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10980 { 10981 return meta->kfunc_flags & KF_ACQUIRE; 10982 } 10983 10984 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10985 { 10986 return meta->kfunc_flags & KF_RELEASE; 10987 } 10988 10989 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10990 { 10991 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10992 } 10993 10994 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10995 { 10996 return meta->kfunc_flags & KF_SLEEPABLE; 10997 } 10998 10999 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 11000 { 11001 return meta->kfunc_flags & KF_DESTRUCTIVE; 11002 } 11003 11004 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 11005 { 11006 return meta->kfunc_flags & KF_RCU; 11007 } 11008 11009 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 11010 { 11011 return meta->kfunc_flags & KF_RCU_PROTECTED; 11012 } 11013 11014 static bool is_kfunc_arg_mem_size(const struct btf *btf, 11015 const struct btf_param *arg, 11016 const struct bpf_reg_state *reg) 11017 { 11018 const struct btf_type *t; 11019 11020 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11021 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11022 return false; 11023 11024 return btf_param_match_suffix(btf, arg, "__sz"); 11025 } 11026 11027 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 11028 const struct btf_param *arg, 11029 const struct bpf_reg_state *reg) 11030 { 11031 const struct btf_type *t; 11032 11033 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11034 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11035 return false; 11036 11037 return btf_param_match_suffix(btf, arg, "__szk"); 11038 } 11039 11040 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 11041 { 11042 return btf_param_match_suffix(btf, arg, "__opt"); 11043 } 11044 11045 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 11046 { 11047 return btf_param_match_suffix(btf, arg, "__k"); 11048 } 11049 11050 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 11051 { 11052 return btf_param_match_suffix(btf, arg, "__ign"); 11053 } 11054 11055 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) 11056 { 11057 return btf_param_match_suffix(btf, arg, "__map"); 11058 } 11059 11060 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 11061 { 11062 return btf_param_match_suffix(btf, arg, "__alloc"); 11063 } 11064 11065 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 11066 { 11067 return btf_param_match_suffix(btf, arg, "__uninit"); 11068 } 11069 11070 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 11071 { 11072 return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); 11073 } 11074 11075 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 11076 { 11077 return btf_param_match_suffix(btf, arg, "__nullable"); 11078 } 11079 11080 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 11081 { 11082 return btf_param_match_suffix(btf, arg, "__str"); 11083 } 11084 11085 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 11086 const struct btf_param *arg, 11087 const char *name) 11088 { 11089 int len, target_len = strlen(name); 11090 const char *param_name; 11091 11092 param_name = btf_name_by_offset(btf, arg->name_off); 11093 if (str_is_empty(param_name)) 11094 return false; 11095 len = strlen(param_name); 11096 if (len != target_len) 11097 return false; 11098 if (strcmp(param_name, name)) 11099 return false; 11100 11101 return true; 11102 } 11103 11104 enum { 11105 KF_ARG_DYNPTR_ID, 11106 KF_ARG_LIST_HEAD_ID, 11107 KF_ARG_LIST_NODE_ID, 11108 KF_ARG_RB_ROOT_ID, 11109 KF_ARG_RB_NODE_ID, 11110 KF_ARG_WORKQUEUE_ID, 11111 }; 11112 11113 BTF_ID_LIST(kf_arg_btf_ids) 11114 BTF_ID(struct, bpf_dynptr) 11115 BTF_ID(struct, bpf_list_head) 11116 BTF_ID(struct, bpf_list_node) 11117 BTF_ID(struct, bpf_rb_root) 11118 BTF_ID(struct, bpf_rb_node) 11119 BTF_ID(struct, bpf_wq) 11120 11121 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 11122 const struct btf_param *arg, int type) 11123 { 11124 const struct btf_type *t; 11125 u32 res_id; 11126 11127 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11128 if (!t) 11129 return false; 11130 if (!btf_type_is_ptr(t)) 11131 return false; 11132 t = btf_type_skip_modifiers(btf, t->type, &res_id); 11133 if (!t) 11134 return false; 11135 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 11136 } 11137 11138 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 11139 { 11140 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 11141 } 11142 11143 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 11144 { 11145 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 11146 } 11147 11148 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 11149 { 11150 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 11151 } 11152 11153 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 11154 { 11155 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 11156 } 11157 11158 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 11159 { 11160 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 11161 } 11162 11163 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) 11164 { 11165 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); 11166 } 11167 11168 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 11169 const struct btf_param *arg) 11170 { 11171 const struct btf_type *t; 11172 11173 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 11174 if (!t) 11175 return false; 11176 11177 return true; 11178 } 11179 11180 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 11181 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 11182 const struct btf *btf, 11183 const struct btf_type *t, int rec) 11184 { 11185 const struct btf_type *member_type; 11186 const struct btf_member *member; 11187 u32 i; 11188 11189 if (!btf_type_is_struct(t)) 11190 return false; 11191 11192 for_each_member(i, t, member) { 11193 const struct btf_array *array; 11194 11195 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 11196 if (btf_type_is_struct(member_type)) { 11197 if (rec >= 3) { 11198 verbose(env, "max struct nesting depth exceeded\n"); 11199 return false; 11200 } 11201 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 11202 return false; 11203 continue; 11204 } 11205 if (btf_type_is_array(member_type)) { 11206 array = btf_array(member_type); 11207 if (!array->nelems) 11208 return false; 11209 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 11210 if (!btf_type_is_scalar(member_type)) 11211 return false; 11212 continue; 11213 } 11214 if (!btf_type_is_scalar(member_type)) 11215 return false; 11216 } 11217 return true; 11218 } 11219 11220 enum kfunc_ptr_arg_type { 11221 KF_ARG_PTR_TO_CTX, 11222 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 11223 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 11224 KF_ARG_PTR_TO_DYNPTR, 11225 KF_ARG_PTR_TO_ITER, 11226 KF_ARG_PTR_TO_LIST_HEAD, 11227 KF_ARG_PTR_TO_LIST_NODE, 11228 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 11229 KF_ARG_PTR_TO_MEM, 11230 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 11231 KF_ARG_PTR_TO_CALLBACK, 11232 KF_ARG_PTR_TO_RB_ROOT, 11233 KF_ARG_PTR_TO_RB_NODE, 11234 KF_ARG_PTR_TO_NULL, 11235 KF_ARG_PTR_TO_CONST_STR, 11236 KF_ARG_PTR_TO_MAP, 11237 KF_ARG_PTR_TO_WORKQUEUE, 11238 }; 11239 11240 enum special_kfunc_type { 11241 KF_bpf_obj_new_impl, 11242 KF_bpf_obj_drop_impl, 11243 KF_bpf_refcount_acquire_impl, 11244 KF_bpf_list_push_front_impl, 11245 KF_bpf_list_push_back_impl, 11246 KF_bpf_list_pop_front, 11247 KF_bpf_list_pop_back, 11248 KF_bpf_cast_to_kern_ctx, 11249 KF_bpf_rdonly_cast, 11250 KF_bpf_rcu_read_lock, 11251 KF_bpf_rcu_read_unlock, 11252 KF_bpf_rbtree_remove, 11253 KF_bpf_rbtree_add_impl, 11254 KF_bpf_rbtree_first, 11255 KF_bpf_dynptr_from_skb, 11256 KF_bpf_dynptr_from_xdp, 11257 KF_bpf_dynptr_slice, 11258 KF_bpf_dynptr_slice_rdwr, 11259 KF_bpf_dynptr_clone, 11260 KF_bpf_percpu_obj_new_impl, 11261 KF_bpf_percpu_obj_drop_impl, 11262 KF_bpf_throw, 11263 KF_bpf_wq_set_callback_impl, 11264 KF_bpf_preempt_disable, 11265 KF_bpf_preempt_enable, 11266 KF_bpf_iter_css_task_new, 11267 KF_bpf_session_cookie, 11268 }; 11269 11270 BTF_SET_START(special_kfunc_set) 11271 BTF_ID(func, bpf_obj_new_impl) 11272 BTF_ID(func, bpf_obj_drop_impl) 11273 BTF_ID(func, bpf_refcount_acquire_impl) 11274 BTF_ID(func, bpf_list_push_front_impl) 11275 BTF_ID(func, bpf_list_push_back_impl) 11276 BTF_ID(func, bpf_list_pop_front) 11277 BTF_ID(func, bpf_list_pop_back) 11278 BTF_ID(func, bpf_cast_to_kern_ctx) 11279 BTF_ID(func, bpf_rdonly_cast) 11280 BTF_ID(func, bpf_rbtree_remove) 11281 BTF_ID(func, bpf_rbtree_add_impl) 11282 BTF_ID(func, bpf_rbtree_first) 11283 BTF_ID(func, bpf_dynptr_from_skb) 11284 BTF_ID(func, bpf_dynptr_from_xdp) 11285 BTF_ID(func, bpf_dynptr_slice) 11286 BTF_ID(func, bpf_dynptr_slice_rdwr) 11287 BTF_ID(func, bpf_dynptr_clone) 11288 BTF_ID(func, bpf_percpu_obj_new_impl) 11289 BTF_ID(func, bpf_percpu_obj_drop_impl) 11290 BTF_ID(func, bpf_throw) 11291 BTF_ID(func, bpf_wq_set_callback_impl) 11292 #ifdef CONFIG_CGROUPS 11293 BTF_ID(func, bpf_iter_css_task_new) 11294 #endif 11295 BTF_SET_END(special_kfunc_set) 11296 11297 BTF_ID_LIST(special_kfunc_list) 11298 BTF_ID(func, bpf_obj_new_impl) 11299 BTF_ID(func, bpf_obj_drop_impl) 11300 BTF_ID(func, bpf_refcount_acquire_impl) 11301 BTF_ID(func, bpf_list_push_front_impl) 11302 BTF_ID(func, bpf_list_push_back_impl) 11303 BTF_ID(func, bpf_list_pop_front) 11304 BTF_ID(func, bpf_list_pop_back) 11305 BTF_ID(func, bpf_cast_to_kern_ctx) 11306 BTF_ID(func, bpf_rdonly_cast) 11307 BTF_ID(func, bpf_rcu_read_lock) 11308 BTF_ID(func, bpf_rcu_read_unlock) 11309 BTF_ID(func, bpf_rbtree_remove) 11310 BTF_ID(func, bpf_rbtree_add_impl) 11311 BTF_ID(func, bpf_rbtree_first) 11312 BTF_ID(func, bpf_dynptr_from_skb) 11313 BTF_ID(func, bpf_dynptr_from_xdp) 11314 BTF_ID(func, bpf_dynptr_slice) 11315 BTF_ID(func, bpf_dynptr_slice_rdwr) 11316 BTF_ID(func, bpf_dynptr_clone) 11317 BTF_ID(func, bpf_percpu_obj_new_impl) 11318 BTF_ID(func, bpf_percpu_obj_drop_impl) 11319 BTF_ID(func, bpf_throw) 11320 BTF_ID(func, bpf_wq_set_callback_impl) 11321 BTF_ID(func, bpf_preempt_disable) 11322 BTF_ID(func, bpf_preempt_enable) 11323 #ifdef CONFIG_CGROUPS 11324 BTF_ID(func, bpf_iter_css_task_new) 11325 #else 11326 BTF_ID_UNUSED 11327 #endif 11328 #ifdef CONFIG_BPF_EVENTS 11329 BTF_ID(func, bpf_session_cookie) 11330 #else 11331 BTF_ID_UNUSED 11332 #endif 11333 11334 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 11335 { 11336 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 11337 meta->arg_owning_ref) { 11338 return false; 11339 } 11340 11341 return meta->kfunc_flags & KF_RET_NULL; 11342 } 11343 11344 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 11345 { 11346 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 11347 } 11348 11349 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 11350 { 11351 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 11352 } 11353 11354 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) 11355 { 11356 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; 11357 } 11358 11359 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) 11360 { 11361 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; 11362 } 11363 11364 static enum kfunc_ptr_arg_type 11365 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 11366 struct bpf_kfunc_call_arg_meta *meta, 11367 const struct btf_type *t, const struct btf_type *ref_t, 11368 const char *ref_tname, const struct btf_param *args, 11369 int argno, int nargs) 11370 { 11371 u32 regno = argno + 1; 11372 struct bpf_reg_state *regs = cur_regs(env); 11373 struct bpf_reg_state *reg = ®s[regno]; 11374 bool arg_mem_size = false; 11375 11376 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 11377 return KF_ARG_PTR_TO_CTX; 11378 11379 /* In this function, we verify the kfunc's BTF as per the argument type, 11380 * leaving the rest of the verification with respect to the register 11381 * type to our caller. When a set of conditions hold in the BTF type of 11382 * arguments, we resolve it to a known kfunc_ptr_arg_type. 11383 */ 11384 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 11385 return KF_ARG_PTR_TO_CTX; 11386 11387 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 11388 return KF_ARG_PTR_TO_NULL; 11389 11390 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 11391 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 11392 11393 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 11394 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 11395 11396 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 11397 return KF_ARG_PTR_TO_DYNPTR; 11398 11399 if (is_kfunc_arg_iter(meta, argno, &args[argno])) 11400 return KF_ARG_PTR_TO_ITER; 11401 11402 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 11403 return KF_ARG_PTR_TO_LIST_HEAD; 11404 11405 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 11406 return KF_ARG_PTR_TO_LIST_NODE; 11407 11408 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 11409 return KF_ARG_PTR_TO_RB_ROOT; 11410 11411 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 11412 return KF_ARG_PTR_TO_RB_NODE; 11413 11414 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 11415 return KF_ARG_PTR_TO_CONST_STR; 11416 11417 if (is_kfunc_arg_map(meta->btf, &args[argno])) 11418 return KF_ARG_PTR_TO_MAP; 11419 11420 if (is_kfunc_arg_wq(meta->btf, &args[argno])) 11421 return KF_ARG_PTR_TO_WORKQUEUE; 11422 11423 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 11424 if (!btf_type_is_struct(ref_t)) { 11425 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 11426 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 11427 return -EINVAL; 11428 } 11429 return KF_ARG_PTR_TO_BTF_ID; 11430 } 11431 11432 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 11433 return KF_ARG_PTR_TO_CALLBACK; 11434 11435 if (argno + 1 < nargs && 11436 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 11437 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 11438 arg_mem_size = true; 11439 11440 /* This is the catch all argument type of register types supported by 11441 * check_helper_mem_access. However, we only allow when argument type is 11442 * pointer to scalar, or struct composed (recursively) of scalars. When 11443 * arg_mem_size is true, the pointer can be void *. 11444 */ 11445 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 11446 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 11447 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 11448 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 11449 return -EINVAL; 11450 } 11451 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 11452 } 11453 11454 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 11455 struct bpf_reg_state *reg, 11456 const struct btf_type *ref_t, 11457 const char *ref_tname, u32 ref_id, 11458 struct bpf_kfunc_call_arg_meta *meta, 11459 int argno) 11460 { 11461 const struct btf_type *reg_ref_t; 11462 bool strict_type_match = false; 11463 const struct btf *reg_btf; 11464 const char *reg_ref_tname; 11465 bool taking_projection; 11466 bool struct_same; 11467 u32 reg_ref_id; 11468 11469 if (base_type(reg->type) == PTR_TO_BTF_ID) { 11470 reg_btf = reg->btf; 11471 reg_ref_id = reg->btf_id; 11472 } else { 11473 reg_btf = btf_vmlinux; 11474 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 11475 } 11476 11477 /* Enforce strict type matching for calls to kfuncs that are acquiring 11478 * or releasing a reference, or are no-cast aliases. We do _not_ 11479 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 11480 * as we want to enable BPF programs to pass types that are bitwise 11481 * equivalent without forcing them to explicitly cast with something 11482 * like bpf_cast_to_kern_ctx(). 11483 * 11484 * For example, say we had a type like the following: 11485 * 11486 * struct bpf_cpumask { 11487 * cpumask_t cpumask; 11488 * refcount_t usage; 11489 * }; 11490 * 11491 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 11492 * to a struct cpumask, so it would be safe to pass a struct 11493 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 11494 * 11495 * The philosophy here is similar to how we allow scalars of different 11496 * types to be passed to kfuncs as long as the size is the same. The 11497 * only difference here is that we're simply allowing 11498 * btf_struct_ids_match() to walk the struct at the 0th offset, and 11499 * resolve types. 11500 */ 11501 if ((is_kfunc_release(meta) && reg->ref_obj_id) || 11502 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 11503 strict_type_match = true; 11504 11505 WARN_ON_ONCE(is_kfunc_release(meta) && 11506 (reg->off || !tnum_is_const(reg->var_off) || 11507 reg->var_off.value)); 11508 11509 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 11510 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 11511 struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match); 11512 /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot 11513 * actually use it -- it must cast to the underlying type. So we allow 11514 * caller to pass in the underlying type. 11515 */ 11516 taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname); 11517 if (!taking_projection && !struct_same) { 11518 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 11519 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 11520 btf_type_str(reg_ref_t), reg_ref_tname); 11521 return -EINVAL; 11522 } 11523 return 0; 11524 } 11525 11526 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11527 { 11528 struct bpf_verifier_state *state = env->cur_state; 11529 struct btf_record *rec = reg_btf_record(reg); 11530 11531 if (!state->active_lock.ptr) { 11532 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 11533 return -EFAULT; 11534 } 11535 11536 if (type_flag(reg->type) & NON_OWN_REF) { 11537 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 11538 return -EFAULT; 11539 } 11540 11541 reg->type |= NON_OWN_REF; 11542 if (rec->refcount_off >= 0) 11543 reg->type |= MEM_RCU; 11544 11545 return 0; 11546 } 11547 11548 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 11549 { 11550 struct bpf_func_state *state, *unused; 11551 struct bpf_reg_state *reg; 11552 int i; 11553 11554 state = cur_func(env); 11555 11556 if (!ref_obj_id) { 11557 verbose(env, "verifier internal error: ref_obj_id is zero for " 11558 "owning -> non-owning conversion\n"); 11559 return -EFAULT; 11560 } 11561 11562 for (i = 0; i < state->acquired_refs; i++) { 11563 if (state->refs[i].id != ref_obj_id) 11564 continue; 11565 11566 /* Clear ref_obj_id here so release_reference doesn't clobber 11567 * the whole reg 11568 */ 11569 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 11570 if (reg->ref_obj_id == ref_obj_id) { 11571 reg->ref_obj_id = 0; 11572 ref_set_non_owning(env, reg); 11573 } 11574 })); 11575 return 0; 11576 } 11577 11578 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 11579 return -EFAULT; 11580 } 11581 11582 /* Implementation details: 11583 * 11584 * Each register points to some region of memory, which we define as an 11585 * allocation. Each allocation may embed a bpf_spin_lock which protects any 11586 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 11587 * allocation. The lock and the data it protects are colocated in the same 11588 * memory region. 11589 * 11590 * Hence, everytime a register holds a pointer value pointing to such 11591 * allocation, the verifier preserves a unique reg->id for it. 11592 * 11593 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 11594 * bpf_spin_lock is called. 11595 * 11596 * To enable this, lock state in the verifier captures two values: 11597 * active_lock.ptr = Register's type specific pointer 11598 * active_lock.id = A unique ID for each register pointer value 11599 * 11600 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 11601 * supported register types. 11602 * 11603 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 11604 * allocated objects is the reg->btf pointer. 11605 * 11606 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 11607 * can establish the provenance of the map value statically for each distinct 11608 * lookup into such maps. They always contain a single map value hence unique 11609 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 11610 * 11611 * So, in case of global variables, they use array maps with max_entries = 1, 11612 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 11613 * into the same map value as max_entries is 1, as described above). 11614 * 11615 * In case of inner map lookups, the inner map pointer has same map_ptr as the 11616 * outer map pointer (in verifier context), but each lookup into an inner map 11617 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 11618 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 11619 * will get different reg->id assigned to each lookup, hence different 11620 * active_lock.id. 11621 * 11622 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 11623 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 11624 * returned from bpf_obj_new. Each allocation receives a new reg->id. 11625 */ 11626 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11627 { 11628 void *ptr; 11629 u32 id; 11630 11631 switch ((int)reg->type) { 11632 case PTR_TO_MAP_VALUE: 11633 ptr = reg->map_ptr; 11634 break; 11635 case PTR_TO_BTF_ID | MEM_ALLOC: 11636 ptr = reg->btf; 11637 break; 11638 default: 11639 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11640 return -EFAULT; 11641 } 11642 id = reg->id; 11643 11644 if (!env->cur_state->active_lock.ptr) 11645 return -EINVAL; 11646 if (env->cur_state->active_lock.ptr != ptr || 11647 env->cur_state->active_lock.id != id) { 11648 verbose(env, "held lock and object are not in the same allocation\n"); 11649 return -EINVAL; 11650 } 11651 return 0; 11652 } 11653 11654 static bool is_bpf_list_api_kfunc(u32 btf_id) 11655 { 11656 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11657 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11658 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11659 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11660 } 11661 11662 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11663 { 11664 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11665 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11666 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11667 } 11668 11669 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11670 { 11671 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11672 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11673 } 11674 11675 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11676 { 11677 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11678 } 11679 11680 static bool is_async_callback_calling_kfunc(u32 btf_id) 11681 { 11682 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 11683 } 11684 11685 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 11686 { 11687 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 11688 insn->imm == special_kfunc_list[KF_bpf_throw]; 11689 } 11690 11691 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id) 11692 { 11693 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 11694 } 11695 11696 static bool is_callback_calling_kfunc(u32 btf_id) 11697 { 11698 return is_sync_callback_calling_kfunc(btf_id) || 11699 is_async_callback_calling_kfunc(btf_id); 11700 } 11701 11702 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11703 { 11704 return is_bpf_rbtree_api_kfunc(btf_id); 11705 } 11706 11707 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11708 enum btf_field_type head_field_type, 11709 u32 kfunc_btf_id) 11710 { 11711 bool ret; 11712 11713 switch (head_field_type) { 11714 case BPF_LIST_HEAD: 11715 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11716 break; 11717 case BPF_RB_ROOT: 11718 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11719 break; 11720 default: 11721 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11722 btf_field_type_name(head_field_type)); 11723 return false; 11724 } 11725 11726 if (!ret) 11727 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11728 btf_field_type_name(head_field_type)); 11729 return ret; 11730 } 11731 11732 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11733 enum btf_field_type node_field_type, 11734 u32 kfunc_btf_id) 11735 { 11736 bool ret; 11737 11738 switch (node_field_type) { 11739 case BPF_LIST_NODE: 11740 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11741 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11742 break; 11743 case BPF_RB_NODE: 11744 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11745 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11746 break; 11747 default: 11748 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11749 btf_field_type_name(node_field_type)); 11750 return false; 11751 } 11752 11753 if (!ret) 11754 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11755 btf_field_type_name(node_field_type)); 11756 return ret; 11757 } 11758 11759 static int 11760 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11761 struct bpf_reg_state *reg, u32 regno, 11762 struct bpf_kfunc_call_arg_meta *meta, 11763 enum btf_field_type head_field_type, 11764 struct btf_field **head_field) 11765 { 11766 const char *head_type_name; 11767 struct btf_field *field; 11768 struct btf_record *rec; 11769 u32 head_off; 11770 11771 if (meta->btf != btf_vmlinux) { 11772 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11773 return -EFAULT; 11774 } 11775 11776 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 11777 return -EFAULT; 11778 11779 head_type_name = btf_field_type_name(head_field_type); 11780 if (!tnum_is_const(reg->var_off)) { 11781 verbose(env, 11782 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11783 regno, head_type_name); 11784 return -EINVAL; 11785 } 11786 11787 rec = reg_btf_record(reg); 11788 head_off = reg->off + reg->var_off.value; 11789 field = btf_record_find(rec, head_off, head_field_type); 11790 if (!field) { 11791 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 11792 return -EINVAL; 11793 } 11794 11795 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 11796 if (check_reg_allocation_locked(env, reg)) { 11797 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 11798 rec->spin_lock_off, head_type_name); 11799 return -EINVAL; 11800 } 11801 11802 if (*head_field) { 11803 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 11804 return -EFAULT; 11805 } 11806 *head_field = field; 11807 return 0; 11808 } 11809 11810 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 11811 struct bpf_reg_state *reg, u32 regno, 11812 struct bpf_kfunc_call_arg_meta *meta) 11813 { 11814 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 11815 &meta->arg_list_head.field); 11816 } 11817 11818 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 11819 struct bpf_reg_state *reg, u32 regno, 11820 struct bpf_kfunc_call_arg_meta *meta) 11821 { 11822 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 11823 &meta->arg_rbtree_root.field); 11824 } 11825 11826 static int 11827 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 11828 struct bpf_reg_state *reg, u32 regno, 11829 struct bpf_kfunc_call_arg_meta *meta, 11830 enum btf_field_type head_field_type, 11831 enum btf_field_type node_field_type, 11832 struct btf_field **node_field) 11833 { 11834 const char *node_type_name; 11835 const struct btf_type *et, *t; 11836 struct btf_field *field; 11837 u32 node_off; 11838 11839 if (meta->btf != btf_vmlinux) { 11840 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11841 return -EFAULT; 11842 } 11843 11844 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 11845 return -EFAULT; 11846 11847 node_type_name = btf_field_type_name(node_field_type); 11848 if (!tnum_is_const(reg->var_off)) { 11849 verbose(env, 11850 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11851 regno, node_type_name); 11852 return -EINVAL; 11853 } 11854 11855 node_off = reg->off + reg->var_off.value; 11856 field = reg_find_field_offset(reg, node_off, node_field_type); 11857 if (!field) { 11858 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 11859 return -EINVAL; 11860 } 11861 11862 field = *node_field; 11863 11864 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 11865 t = btf_type_by_id(reg->btf, reg->btf_id); 11866 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 11867 field->graph_root.value_btf_id, true)) { 11868 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 11869 "in struct %s, but arg is at offset=%d in struct %s\n", 11870 btf_field_type_name(head_field_type), 11871 btf_field_type_name(node_field_type), 11872 field->graph_root.node_offset, 11873 btf_name_by_offset(field->graph_root.btf, et->name_off), 11874 node_off, btf_name_by_offset(reg->btf, t->name_off)); 11875 return -EINVAL; 11876 } 11877 meta->arg_btf = reg->btf; 11878 meta->arg_btf_id = reg->btf_id; 11879 11880 if (node_off != field->graph_root.node_offset) { 11881 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 11882 node_off, btf_field_type_name(node_field_type), 11883 field->graph_root.node_offset, 11884 btf_name_by_offset(field->graph_root.btf, et->name_off)); 11885 return -EINVAL; 11886 } 11887 11888 return 0; 11889 } 11890 11891 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 11892 struct bpf_reg_state *reg, u32 regno, 11893 struct bpf_kfunc_call_arg_meta *meta) 11894 { 11895 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11896 BPF_LIST_HEAD, BPF_LIST_NODE, 11897 &meta->arg_list_head.field); 11898 } 11899 11900 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 11901 struct bpf_reg_state *reg, u32 regno, 11902 struct bpf_kfunc_call_arg_meta *meta) 11903 { 11904 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11905 BPF_RB_ROOT, BPF_RB_NODE, 11906 &meta->arg_rbtree_root.field); 11907 } 11908 11909 /* 11910 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 11911 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 11912 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 11913 * them can only be attached to some specific hook points. 11914 */ 11915 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 11916 { 11917 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 11918 11919 switch (prog_type) { 11920 case BPF_PROG_TYPE_LSM: 11921 return true; 11922 case BPF_PROG_TYPE_TRACING: 11923 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 11924 return true; 11925 fallthrough; 11926 default: 11927 return in_sleepable(env); 11928 } 11929 } 11930 11931 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 11932 int insn_idx) 11933 { 11934 const char *func_name = meta->func_name, *ref_tname; 11935 const struct btf *btf = meta->btf; 11936 const struct btf_param *args; 11937 struct btf_record *rec; 11938 u32 i, nargs; 11939 int ret; 11940 11941 args = (const struct btf_param *)(meta->func_proto + 1); 11942 nargs = btf_type_vlen(meta->func_proto); 11943 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 11944 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 11945 MAX_BPF_FUNC_REG_ARGS); 11946 return -EINVAL; 11947 } 11948 11949 /* Check that BTF function arguments match actual types that the 11950 * verifier sees. 11951 */ 11952 for (i = 0; i < nargs; i++) { 11953 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 11954 const struct btf_type *t, *ref_t, *resolve_ret; 11955 enum bpf_arg_type arg_type = ARG_DONTCARE; 11956 u32 regno = i + 1, ref_id, type_size; 11957 bool is_ret_buf_sz = false; 11958 int kf_arg_type; 11959 11960 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 11961 11962 if (is_kfunc_arg_ignore(btf, &args[i])) 11963 continue; 11964 11965 if (btf_type_is_scalar(t)) { 11966 if (reg->type != SCALAR_VALUE) { 11967 verbose(env, "R%d is not a scalar\n", regno); 11968 return -EINVAL; 11969 } 11970 11971 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 11972 if (meta->arg_constant.found) { 11973 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11974 return -EFAULT; 11975 } 11976 if (!tnum_is_const(reg->var_off)) { 11977 verbose(env, "R%d must be a known constant\n", regno); 11978 return -EINVAL; 11979 } 11980 ret = mark_chain_precision(env, regno); 11981 if (ret < 0) 11982 return ret; 11983 meta->arg_constant.found = true; 11984 meta->arg_constant.value = reg->var_off.value; 11985 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 11986 meta->r0_rdonly = true; 11987 is_ret_buf_sz = true; 11988 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 11989 is_ret_buf_sz = true; 11990 } 11991 11992 if (is_ret_buf_sz) { 11993 if (meta->r0_size) { 11994 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 11995 return -EINVAL; 11996 } 11997 11998 if (!tnum_is_const(reg->var_off)) { 11999 verbose(env, "R%d is not a const\n", regno); 12000 return -EINVAL; 12001 } 12002 12003 meta->r0_size = reg->var_off.value; 12004 ret = mark_chain_precision(env, regno); 12005 if (ret) 12006 return ret; 12007 } 12008 continue; 12009 } 12010 12011 if (!btf_type_is_ptr(t)) { 12012 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 12013 return -EINVAL; 12014 } 12015 12016 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 12017 (register_is_null(reg) || type_may_be_null(reg->type)) && 12018 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 12019 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 12020 return -EACCES; 12021 } 12022 12023 if (reg->ref_obj_id) { 12024 if (is_kfunc_release(meta) && meta->ref_obj_id) { 12025 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 12026 regno, reg->ref_obj_id, 12027 meta->ref_obj_id); 12028 return -EFAULT; 12029 } 12030 meta->ref_obj_id = reg->ref_obj_id; 12031 if (is_kfunc_release(meta)) 12032 meta->release_regno = regno; 12033 } 12034 12035 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 12036 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 12037 12038 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 12039 if (kf_arg_type < 0) 12040 return kf_arg_type; 12041 12042 switch (kf_arg_type) { 12043 case KF_ARG_PTR_TO_NULL: 12044 continue; 12045 case KF_ARG_PTR_TO_MAP: 12046 if (!reg->map_ptr) { 12047 verbose(env, "pointer in R%d isn't map pointer\n", regno); 12048 return -EINVAL; 12049 } 12050 if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) { 12051 /* Use map_uid (which is unique id of inner map) to reject: 12052 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 12053 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 12054 * if (inner_map1 && inner_map2) { 12055 * wq = bpf_map_lookup_elem(inner_map1); 12056 * if (wq) 12057 * // mismatch would have been allowed 12058 * bpf_wq_init(wq, inner_map2); 12059 * } 12060 * 12061 * Comparing map_ptr is enough to distinguish normal and outer maps. 12062 */ 12063 if (meta->map.ptr != reg->map_ptr || 12064 meta->map.uid != reg->map_uid) { 12065 verbose(env, 12066 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 12067 meta->map.uid, reg->map_uid); 12068 return -EINVAL; 12069 } 12070 } 12071 meta->map.ptr = reg->map_ptr; 12072 meta->map.uid = reg->map_uid; 12073 fallthrough; 12074 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 12075 case KF_ARG_PTR_TO_BTF_ID: 12076 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 12077 break; 12078 12079 if (!is_trusted_reg(reg)) { 12080 if (!is_kfunc_rcu(meta)) { 12081 verbose(env, "R%d must be referenced or trusted\n", regno); 12082 return -EINVAL; 12083 } 12084 if (!is_rcu_reg(reg)) { 12085 verbose(env, "R%d must be a rcu pointer\n", regno); 12086 return -EINVAL; 12087 } 12088 } 12089 fallthrough; 12090 case KF_ARG_PTR_TO_CTX: 12091 case KF_ARG_PTR_TO_DYNPTR: 12092 case KF_ARG_PTR_TO_ITER: 12093 case KF_ARG_PTR_TO_LIST_HEAD: 12094 case KF_ARG_PTR_TO_LIST_NODE: 12095 case KF_ARG_PTR_TO_RB_ROOT: 12096 case KF_ARG_PTR_TO_RB_NODE: 12097 case KF_ARG_PTR_TO_MEM: 12098 case KF_ARG_PTR_TO_MEM_SIZE: 12099 case KF_ARG_PTR_TO_CALLBACK: 12100 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 12101 case KF_ARG_PTR_TO_CONST_STR: 12102 case KF_ARG_PTR_TO_WORKQUEUE: 12103 break; 12104 default: 12105 WARN_ON_ONCE(1); 12106 return -EFAULT; 12107 } 12108 12109 if (is_kfunc_release(meta) && reg->ref_obj_id) 12110 arg_type |= OBJ_RELEASE; 12111 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 12112 if (ret < 0) 12113 return ret; 12114 12115 switch (kf_arg_type) { 12116 case KF_ARG_PTR_TO_CTX: 12117 if (reg->type != PTR_TO_CTX) { 12118 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", 12119 i, reg_type_str(env, reg->type)); 12120 return -EINVAL; 12121 } 12122 12123 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 12124 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 12125 if (ret < 0) 12126 return -EINVAL; 12127 meta->ret_btf_id = ret; 12128 } 12129 break; 12130 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 12131 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 12132 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 12133 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 12134 return -EINVAL; 12135 } 12136 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 12137 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 12138 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 12139 return -EINVAL; 12140 } 12141 } else { 12142 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12143 return -EINVAL; 12144 } 12145 if (!reg->ref_obj_id) { 12146 verbose(env, "allocated object must be referenced\n"); 12147 return -EINVAL; 12148 } 12149 if (meta->btf == btf_vmlinux) { 12150 meta->arg_btf = reg->btf; 12151 meta->arg_btf_id = reg->btf_id; 12152 } 12153 break; 12154 case KF_ARG_PTR_TO_DYNPTR: 12155 { 12156 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 12157 int clone_ref_obj_id = 0; 12158 12159 if (reg->type == CONST_PTR_TO_DYNPTR) 12160 dynptr_arg_type |= MEM_RDONLY; 12161 12162 if (is_kfunc_arg_uninit(btf, &args[i])) 12163 dynptr_arg_type |= MEM_UNINIT; 12164 12165 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 12166 dynptr_arg_type |= DYNPTR_TYPE_SKB; 12167 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 12168 dynptr_arg_type |= DYNPTR_TYPE_XDP; 12169 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 12170 (dynptr_arg_type & MEM_UNINIT)) { 12171 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 12172 12173 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 12174 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 12175 return -EFAULT; 12176 } 12177 12178 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 12179 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 12180 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 12181 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 12182 return -EFAULT; 12183 } 12184 } 12185 12186 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 12187 if (ret < 0) 12188 return ret; 12189 12190 if (!(dynptr_arg_type & MEM_UNINIT)) { 12191 int id = dynptr_id(env, reg); 12192 12193 if (id < 0) { 12194 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 12195 return id; 12196 } 12197 meta->initialized_dynptr.id = id; 12198 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 12199 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 12200 } 12201 12202 break; 12203 } 12204 case KF_ARG_PTR_TO_ITER: 12205 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 12206 if (!check_css_task_iter_allowlist(env)) { 12207 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 12208 return -EINVAL; 12209 } 12210 } 12211 ret = process_iter_arg(env, regno, insn_idx, meta); 12212 if (ret < 0) 12213 return ret; 12214 break; 12215 case KF_ARG_PTR_TO_LIST_HEAD: 12216 if (reg->type != PTR_TO_MAP_VALUE && 12217 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12218 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 12219 return -EINVAL; 12220 } 12221 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 12222 verbose(env, "allocated object must be referenced\n"); 12223 return -EINVAL; 12224 } 12225 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 12226 if (ret < 0) 12227 return ret; 12228 break; 12229 case KF_ARG_PTR_TO_RB_ROOT: 12230 if (reg->type != PTR_TO_MAP_VALUE && 12231 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12232 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 12233 return -EINVAL; 12234 } 12235 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 12236 verbose(env, "allocated object must be referenced\n"); 12237 return -EINVAL; 12238 } 12239 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 12240 if (ret < 0) 12241 return ret; 12242 break; 12243 case KF_ARG_PTR_TO_LIST_NODE: 12244 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12245 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12246 return -EINVAL; 12247 } 12248 if (!reg->ref_obj_id) { 12249 verbose(env, "allocated object must be referenced\n"); 12250 return -EINVAL; 12251 } 12252 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 12253 if (ret < 0) 12254 return ret; 12255 break; 12256 case KF_ARG_PTR_TO_RB_NODE: 12257 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 12258 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 12259 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 12260 return -EINVAL; 12261 } 12262 if (in_rbtree_lock_required_cb(env)) { 12263 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 12264 return -EINVAL; 12265 } 12266 } else { 12267 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12268 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12269 return -EINVAL; 12270 } 12271 if (!reg->ref_obj_id) { 12272 verbose(env, "allocated object must be referenced\n"); 12273 return -EINVAL; 12274 } 12275 } 12276 12277 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 12278 if (ret < 0) 12279 return ret; 12280 break; 12281 case KF_ARG_PTR_TO_MAP: 12282 /* If argument has '__map' suffix expect 'struct bpf_map *' */ 12283 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; 12284 ref_t = btf_type_by_id(btf_vmlinux, ref_id); 12285 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 12286 fallthrough; 12287 case KF_ARG_PTR_TO_BTF_ID: 12288 /* Only base_type is checked, further checks are done here */ 12289 if ((base_type(reg->type) != PTR_TO_BTF_ID || 12290 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 12291 !reg2btf_ids[base_type(reg->type)]) { 12292 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 12293 verbose(env, "expected %s or socket\n", 12294 reg_type_str(env, base_type(reg->type) | 12295 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 12296 return -EINVAL; 12297 } 12298 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 12299 if (ret < 0) 12300 return ret; 12301 break; 12302 case KF_ARG_PTR_TO_MEM: 12303 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 12304 if (IS_ERR(resolve_ret)) { 12305 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 12306 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 12307 return -EINVAL; 12308 } 12309 ret = check_mem_reg(env, reg, regno, type_size); 12310 if (ret < 0) 12311 return ret; 12312 break; 12313 case KF_ARG_PTR_TO_MEM_SIZE: 12314 { 12315 struct bpf_reg_state *buff_reg = ®s[regno]; 12316 const struct btf_param *buff_arg = &args[i]; 12317 struct bpf_reg_state *size_reg = ®s[regno + 1]; 12318 const struct btf_param *size_arg = &args[i + 1]; 12319 12320 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 12321 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 12322 if (ret < 0) { 12323 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 12324 return ret; 12325 } 12326 } 12327 12328 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 12329 if (meta->arg_constant.found) { 12330 verbose(env, "verifier internal error: only one constant argument permitted\n"); 12331 return -EFAULT; 12332 } 12333 if (!tnum_is_const(size_reg->var_off)) { 12334 verbose(env, "R%d must be a known constant\n", regno + 1); 12335 return -EINVAL; 12336 } 12337 meta->arg_constant.found = true; 12338 meta->arg_constant.value = size_reg->var_off.value; 12339 } 12340 12341 /* Skip next '__sz' or '__szk' argument */ 12342 i++; 12343 break; 12344 } 12345 case KF_ARG_PTR_TO_CALLBACK: 12346 if (reg->type != PTR_TO_FUNC) { 12347 verbose(env, "arg%d expected pointer to func\n", i); 12348 return -EINVAL; 12349 } 12350 meta->subprogno = reg->subprogno; 12351 break; 12352 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 12353 if (!type_is_ptr_alloc_obj(reg->type)) { 12354 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 12355 return -EINVAL; 12356 } 12357 if (!type_is_non_owning_ref(reg->type)) 12358 meta->arg_owning_ref = true; 12359 12360 rec = reg_btf_record(reg); 12361 if (!rec) { 12362 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 12363 return -EFAULT; 12364 } 12365 12366 if (rec->refcount_off < 0) { 12367 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 12368 return -EINVAL; 12369 } 12370 12371 meta->arg_btf = reg->btf; 12372 meta->arg_btf_id = reg->btf_id; 12373 break; 12374 case KF_ARG_PTR_TO_CONST_STR: 12375 if (reg->type != PTR_TO_MAP_VALUE) { 12376 verbose(env, "arg#%d doesn't point to a const string\n", i); 12377 return -EINVAL; 12378 } 12379 ret = check_reg_const_str(env, reg, regno); 12380 if (ret) 12381 return ret; 12382 break; 12383 case KF_ARG_PTR_TO_WORKQUEUE: 12384 if (reg->type != PTR_TO_MAP_VALUE) { 12385 verbose(env, "arg#%d doesn't point to a map value\n", i); 12386 return -EINVAL; 12387 } 12388 ret = process_wq_func(env, regno, meta); 12389 if (ret < 0) 12390 return ret; 12391 break; 12392 } 12393 } 12394 12395 if (is_kfunc_release(meta) && !meta->release_regno) { 12396 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 12397 func_name); 12398 return -EINVAL; 12399 } 12400 12401 return 0; 12402 } 12403 12404 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 12405 struct bpf_insn *insn, 12406 struct bpf_kfunc_call_arg_meta *meta, 12407 const char **kfunc_name) 12408 { 12409 const struct btf_type *func, *func_proto; 12410 u32 func_id, *kfunc_flags; 12411 const char *func_name; 12412 struct btf *desc_btf; 12413 12414 if (kfunc_name) 12415 *kfunc_name = NULL; 12416 12417 if (!insn->imm) 12418 return -EINVAL; 12419 12420 desc_btf = find_kfunc_desc_btf(env, insn->off); 12421 if (IS_ERR(desc_btf)) 12422 return PTR_ERR(desc_btf); 12423 12424 func_id = insn->imm; 12425 func = btf_type_by_id(desc_btf, func_id); 12426 func_name = btf_name_by_offset(desc_btf, func->name_off); 12427 if (kfunc_name) 12428 *kfunc_name = func_name; 12429 func_proto = btf_type_by_id(desc_btf, func->type); 12430 12431 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 12432 if (!kfunc_flags) { 12433 return -EACCES; 12434 } 12435 12436 memset(meta, 0, sizeof(*meta)); 12437 meta->btf = desc_btf; 12438 meta->func_id = func_id; 12439 meta->kfunc_flags = *kfunc_flags; 12440 meta->func_proto = func_proto; 12441 meta->func_name = func_name; 12442 12443 return 0; 12444 } 12445 12446 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 12447 12448 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 12449 int *insn_idx_p) 12450 { 12451 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; 12452 u32 i, nargs, ptr_type_id, release_ref_obj_id; 12453 struct bpf_reg_state *regs = cur_regs(env); 12454 const char *func_name, *ptr_type_name; 12455 const struct btf_type *t, *ptr_type; 12456 struct bpf_kfunc_call_arg_meta meta; 12457 struct bpf_insn_aux_data *insn_aux; 12458 int err, insn_idx = *insn_idx_p; 12459 const struct btf_param *args; 12460 const struct btf_type *ret_t; 12461 struct btf *desc_btf; 12462 12463 /* skip for now, but return error when we find this in fixup_kfunc_call */ 12464 if (!insn->imm) 12465 return 0; 12466 12467 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 12468 if (err == -EACCES && func_name) 12469 verbose(env, "calling kernel function %s is not allowed\n", func_name); 12470 if (err) 12471 return err; 12472 desc_btf = meta.btf; 12473 insn_aux = &env->insn_aux_data[insn_idx]; 12474 12475 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 12476 12477 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 12478 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 12479 return -EACCES; 12480 } 12481 12482 sleepable = is_kfunc_sleepable(&meta); 12483 if (sleepable && !in_sleepable(env)) { 12484 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 12485 return -EACCES; 12486 } 12487 12488 /* Check the arguments */ 12489 err = check_kfunc_args(env, &meta, insn_idx); 12490 if (err < 0) 12491 return err; 12492 12493 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12494 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 12495 set_rbtree_add_callback_state); 12496 if (err) { 12497 verbose(env, "kfunc %s#%d failed callback verification\n", 12498 func_name, meta.func_id); 12499 return err; 12500 } 12501 } 12502 12503 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) { 12504 meta.r0_size = sizeof(u64); 12505 meta.r0_rdonly = false; 12506 } 12507 12508 if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) { 12509 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 12510 set_timer_callback_state); 12511 if (err) { 12512 verbose(env, "kfunc %s#%d failed callback verification\n", 12513 func_name, meta.func_id); 12514 return err; 12515 } 12516 } 12517 12518 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 12519 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 12520 12521 preempt_disable = is_kfunc_bpf_preempt_disable(&meta); 12522 preempt_enable = is_kfunc_bpf_preempt_enable(&meta); 12523 12524 if (env->cur_state->active_rcu_lock) { 12525 struct bpf_func_state *state; 12526 struct bpf_reg_state *reg; 12527 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 12528 12529 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 12530 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 12531 return -EACCES; 12532 } 12533 12534 if (rcu_lock) { 12535 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 12536 return -EINVAL; 12537 } else if (rcu_unlock) { 12538 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 12539 if (reg->type & MEM_RCU) { 12540 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 12541 reg->type |= PTR_UNTRUSTED; 12542 } 12543 })); 12544 env->cur_state->active_rcu_lock = false; 12545 } else if (sleepable) { 12546 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 12547 return -EACCES; 12548 } 12549 } else if (rcu_lock) { 12550 env->cur_state->active_rcu_lock = true; 12551 } else if (rcu_unlock) { 12552 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 12553 return -EINVAL; 12554 } 12555 12556 if (env->cur_state->active_preempt_lock) { 12557 if (preempt_disable) { 12558 env->cur_state->active_preempt_lock++; 12559 } else if (preempt_enable) { 12560 env->cur_state->active_preempt_lock--; 12561 } else if (sleepable) { 12562 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); 12563 return -EACCES; 12564 } 12565 } else if (preempt_disable) { 12566 env->cur_state->active_preempt_lock++; 12567 } else if (preempt_enable) { 12568 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); 12569 return -EINVAL; 12570 } 12571 12572 /* In case of release function, we get register number of refcounted 12573 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 12574 */ 12575 if (meta.release_regno) { 12576 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 12577 if (err) { 12578 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12579 func_name, meta.func_id); 12580 return err; 12581 } 12582 } 12583 12584 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12585 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12586 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12587 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 12588 insn_aux->insert_off = regs[BPF_REG_2].off; 12589 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 12590 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 12591 if (err) { 12592 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 12593 func_name, meta.func_id); 12594 return err; 12595 } 12596 12597 err = release_reference(env, release_ref_obj_id); 12598 if (err) { 12599 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12600 func_name, meta.func_id); 12601 return err; 12602 } 12603 } 12604 12605 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 12606 if (!bpf_jit_supports_exceptions()) { 12607 verbose(env, "JIT does not support calling kfunc %s#%d\n", 12608 func_name, meta.func_id); 12609 return -ENOTSUPP; 12610 } 12611 env->seen_exception = true; 12612 12613 /* In the case of the default callback, the cookie value passed 12614 * to bpf_throw becomes the return value of the program. 12615 */ 12616 if (!env->exception_callback_subprog) { 12617 err = check_return_code(env, BPF_REG_1, "R1"); 12618 if (err < 0) 12619 return err; 12620 } 12621 } 12622 12623 for (i = 0; i < CALLER_SAVED_REGS; i++) 12624 mark_reg_not_init(env, regs, caller_saved[i]); 12625 12626 /* Check return type */ 12627 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 12628 12629 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 12630 /* Only exception is bpf_obj_new_impl */ 12631 if (meta.btf != btf_vmlinux || 12632 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 12633 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 12634 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 12635 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 12636 return -EINVAL; 12637 } 12638 } 12639 12640 if (btf_type_is_scalar(t)) { 12641 mark_reg_unknown(env, regs, BPF_REG_0); 12642 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 12643 } else if (btf_type_is_ptr(t)) { 12644 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 12645 12646 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12647 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 12648 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12649 struct btf_struct_meta *struct_meta; 12650 struct btf *ret_btf; 12651 u32 ret_btf_id; 12652 12653 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 12654 return -ENOMEM; 12655 12656 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 12657 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 12658 return -EINVAL; 12659 } 12660 12661 ret_btf = env->prog->aux->btf; 12662 ret_btf_id = meta.arg_constant.value; 12663 12664 /* This may be NULL due to user not supplying a BTF */ 12665 if (!ret_btf) { 12666 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 12667 return -EINVAL; 12668 } 12669 12670 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 12671 if (!ret_t || !__btf_type_is_struct(ret_t)) { 12672 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 12673 return -EINVAL; 12674 } 12675 12676 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12677 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { 12678 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", 12679 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); 12680 return -EINVAL; 12681 } 12682 12683 if (!bpf_global_percpu_ma_set) { 12684 mutex_lock(&bpf_percpu_ma_lock); 12685 if (!bpf_global_percpu_ma_set) { 12686 /* Charge memory allocated with bpf_global_percpu_ma to 12687 * root memcg. The obj_cgroup for root memcg is NULL. 12688 */ 12689 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); 12690 if (!err) 12691 bpf_global_percpu_ma_set = true; 12692 } 12693 mutex_unlock(&bpf_percpu_ma_lock); 12694 if (err) 12695 return err; 12696 } 12697 12698 mutex_lock(&bpf_percpu_ma_lock); 12699 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); 12700 mutex_unlock(&bpf_percpu_ma_lock); 12701 if (err) 12702 return err; 12703 } 12704 12705 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 12706 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12707 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 12708 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 12709 return -EINVAL; 12710 } 12711 12712 if (struct_meta) { 12713 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 12714 return -EINVAL; 12715 } 12716 } 12717 12718 mark_reg_known_zero(env, regs, BPF_REG_0); 12719 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12720 regs[BPF_REG_0].btf = ret_btf; 12721 regs[BPF_REG_0].btf_id = ret_btf_id; 12722 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 12723 regs[BPF_REG_0].type |= MEM_PERCPU; 12724 12725 insn_aux->obj_new_size = ret_t->size; 12726 insn_aux->kptr_struct_meta = struct_meta; 12727 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 12728 mark_reg_known_zero(env, regs, BPF_REG_0); 12729 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12730 regs[BPF_REG_0].btf = meta.arg_btf; 12731 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 12732 12733 insn_aux->kptr_struct_meta = 12734 btf_find_struct_meta(meta.arg_btf, 12735 meta.arg_btf_id); 12736 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 12737 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 12738 struct btf_field *field = meta.arg_list_head.field; 12739 12740 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12741 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12742 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12743 struct btf_field *field = meta.arg_rbtree_root.field; 12744 12745 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12746 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 12747 mark_reg_known_zero(env, regs, BPF_REG_0); 12748 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 12749 regs[BPF_REG_0].btf = desc_btf; 12750 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 12751 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 12752 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 12753 if (!ret_t || !btf_type_is_struct(ret_t)) { 12754 verbose(env, 12755 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 12756 return -EINVAL; 12757 } 12758 12759 mark_reg_known_zero(env, regs, BPF_REG_0); 12760 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 12761 regs[BPF_REG_0].btf = desc_btf; 12762 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 12763 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 12764 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 12765 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 12766 12767 mark_reg_known_zero(env, regs, BPF_REG_0); 12768 12769 if (!meta.arg_constant.found) { 12770 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 12771 return -EFAULT; 12772 } 12773 12774 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 12775 12776 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 12777 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 12778 12779 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 12780 regs[BPF_REG_0].type |= MEM_RDONLY; 12781 } else { 12782 /* this will set env->seen_direct_write to true */ 12783 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 12784 verbose(env, "the prog does not allow writes to packet data\n"); 12785 return -EINVAL; 12786 } 12787 } 12788 12789 if (!meta.initialized_dynptr.id) { 12790 verbose(env, "verifier internal error: no dynptr id\n"); 12791 return -EFAULT; 12792 } 12793 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 12794 12795 /* we don't need to set BPF_REG_0's ref obj id 12796 * because packet slices are not refcounted (see 12797 * dynptr_type_refcounted) 12798 */ 12799 } else { 12800 verbose(env, "kernel function %s unhandled dynamic return type\n", 12801 meta.func_name); 12802 return -EFAULT; 12803 } 12804 } else if (btf_type_is_void(ptr_type)) { 12805 /* kfunc returning 'void *' is equivalent to returning scalar */ 12806 mark_reg_unknown(env, regs, BPF_REG_0); 12807 } else if (!__btf_type_is_struct(ptr_type)) { 12808 if (!meta.r0_size) { 12809 __u32 sz; 12810 12811 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 12812 meta.r0_size = sz; 12813 meta.r0_rdonly = true; 12814 } 12815 } 12816 if (!meta.r0_size) { 12817 ptr_type_name = btf_name_by_offset(desc_btf, 12818 ptr_type->name_off); 12819 verbose(env, 12820 "kernel function %s returns pointer type %s %s is not supported\n", 12821 func_name, 12822 btf_type_str(ptr_type), 12823 ptr_type_name); 12824 return -EINVAL; 12825 } 12826 12827 mark_reg_known_zero(env, regs, BPF_REG_0); 12828 regs[BPF_REG_0].type = PTR_TO_MEM; 12829 regs[BPF_REG_0].mem_size = meta.r0_size; 12830 12831 if (meta.r0_rdonly) 12832 regs[BPF_REG_0].type |= MEM_RDONLY; 12833 12834 /* Ensures we don't access the memory after a release_reference() */ 12835 if (meta.ref_obj_id) 12836 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 12837 } else { 12838 mark_reg_known_zero(env, regs, BPF_REG_0); 12839 regs[BPF_REG_0].btf = desc_btf; 12840 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 12841 regs[BPF_REG_0].btf_id = ptr_type_id; 12842 12843 if (is_iter_next_kfunc(&meta)) { 12844 struct bpf_reg_state *cur_iter; 12845 12846 cur_iter = get_iter_from_state(env->cur_state, &meta); 12847 12848 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */ 12849 regs[BPF_REG_0].type |= MEM_RCU; 12850 else 12851 regs[BPF_REG_0].type |= PTR_TRUSTED; 12852 } 12853 } 12854 12855 if (is_kfunc_ret_null(&meta)) { 12856 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 12857 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 12858 regs[BPF_REG_0].id = ++env->id_gen; 12859 } 12860 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 12861 if (is_kfunc_acquire(&meta)) { 12862 int id = acquire_reference_state(env, insn_idx); 12863 12864 if (id < 0) 12865 return id; 12866 if (is_kfunc_ret_null(&meta)) 12867 regs[BPF_REG_0].id = id; 12868 regs[BPF_REG_0].ref_obj_id = id; 12869 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12870 ref_set_non_owning(env, ®s[BPF_REG_0]); 12871 } 12872 12873 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 12874 regs[BPF_REG_0].id = ++env->id_gen; 12875 } else if (btf_type_is_void(t)) { 12876 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12877 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 12878 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 12879 insn_aux->kptr_struct_meta = 12880 btf_find_struct_meta(meta.arg_btf, 12881 meta.arg_btf_id); 12882 } 12883 } 12884 } 12885 12886 nargs = btf_type_vlen(meta.func_proto); 12887 args = (const struct btf_param *)(meta.func_proto + 1); 12888 for (i = 0; i < nargs; i++) { 12889 u32 regno = i + 1; 12890 12891 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 12892 if (btf_type_is_ptr(t)) 12893 mark_btf_func_reg_size(env, regno, sizeof(void *)); 12894 else 12895 /* scalar. ensured by btf_check_kfunc_arg_match() */ 12896 mark_btf_func_reg_size(env, regno, t->size); 12897 } 12898 12899 if (is_iter_next_kfunc(&meta)) { 12900 err = process_iter_next_call(env, insn_idx, &meta); 12901 if (err) 12902 return err; 12903 } 12904 12905 return 0; 12906 } 12907 12908 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 12909 const struct bpf_reg_state *reg, 12910 enum bpf_reg_type type) 12911 { 12912 bool known = tnum_is_const(reg->var_off); 12913 s64 val = reg->var_off.value; 12914 s64 smin = reg->smin_value; 12915 12916 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 12917 verbose(env, "math between %s pointer and %lld is not allowed\n", 12918 reg_type_str(env, type), val); 12919 return false; 12920 } 12921 12922 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 12923 verbose(env, "%s pointer offset %d is not allowed\n", 12924 reg_type_str(env, type), reg->off); 12925 return false; 12926 } 12927 12928 if (smin == S64_MIN) { 12929 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 12930 reg_type_str(env, type)); 12931 return false; 12932 } 12933 12934 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 12935 verbose(env, "value %lld makes %s pointer be out of bounds\n", 12936 smin, reg_type_str(env, type)); 12937 return false; 12938 } 12939 12940 return true; 12941 } 12942 12943 enum { 12944 REASON_BOUNDS = -1, 12945 REASON_TYPE = -2, 12946 REASON_PATHS = -3, 12947 REASON_LIMIT = -4, 12948 REASON_STACK = -5, 12949 }; 12950 12951 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 12952 u32 *alu_limit, bool mask_to_left) 12953 { 12954 u32 max = 0, ptr_limit = 0; 12955 12956 switch (ptr_reg->type) { 12957 case PTR_TO_STACK: 12958 /* Offset 0 is out-of-bounds, but acceptable start for the 12959 * left direction, see BPF_REG_FP. Also, unknown scalar 12960 * offset where we would need to deal with min/max bounds is 12961 * currently prohibited for unprivileged. 12962 */ 12963 max = MAX_BPF_STACK + mask_to_left; 12964 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 12965 break; 12966 case PTR_TO_MAP_VALUE: 12967 max = ptr_reg->map_ptr->value_size; 12968 ptr_limit = (mask_to_left ? 12969 ptr_reg->smin_value : 12970 ptr_reg->umax_value) + ptr_reg->off; 12971 break; 12972 default: 12973 return REASON_TYPE; 12974 } 12975 12976 if (ptr_limit >= max) 12977 return REASON_LIMIT; 12978 *alu_limit = ptr_limit; 12979 return 0; 12980 } 12981 12982 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 12983 const struct bpf_insn *insn) 12984 { 12985 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 12986 } 12987 12988 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 12989 u32 alu_state, u32 alu_limit) 12990 { 12991 /* If we arrived here from different branches with different 12992 * state or limits to sanitize, then this won't work. 12993 */ 12994 if (aux->alu_state && 12995 (aux->alu_state != alu_state || 12996 aux->alu_limit != alu_limit)) 12997 return REASON_PATHS; 12998 12999 /* Corresponding fixup done in do_misc_fixups(). */ 13000 aux->alu_state = alu_state; 13001 aux->alu_limit = alu_limit; 13002 return 0; 13003 } 13004 13005 static int sanitize_val_alu(struct bpf_verifier_env *env, 13006 struct bpf_insn *insn) 13007 { 13008 struct bpf_insn_aux_data *aux = cur_aux(env); 13009 13010 if (can_skip_alu_sanitation(env, insn)) 13011 return 0; 13012 13013 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 13014 } 13015 13016 static bool sanitize_needed(u8 opcode) 13017 { 13018 return opcode == BPF_ADD || opcode == BPF_SUB; 13019 } 13020 13021 struct bpf_sanitize_info { 13022 struct bpf_insn_aux_data aux; 13023 bool mask_to_left; 13024 }; 13025 13026 static struct bpf_verifier_state * 13027 sanitize_speculative_path(struct bpf_verifier_env *env, 13028 const struct bpf_insn *insn, 13029 u32 next_idx, u32 curr_idx) 13030 { 13031 struct bpf_verifier_state *branch; 13032 struct bpf_reg_state *regs; 13033 13034 branch = push_stack(env, next_idx, curr_idx, true); 13035 if (branch && insn) { 13036 regs = branch->frame[branch->curframe]->regs; 13037 if (BPF_SRC(insn->code) == BPF_K) { 13038 mark_reg_unknown(env, regs, insn->dst_reg); 13039 } else if (BPF_SRC(insn->code) == BPF_X) { 13040 mark_reg_unknown(env, regs, insn->dst_reg); 13041 mark_reg_unknown(env, regs, insn->src_reg); 13042 } 13043 } 13044 return branch; 13045 } 13046 13047 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 13048 struct bpf_insn *insn, 13049 const struct bpf_reg_state *ptr_reg, 13050 const struct bpf_reg_state *off_reg, 13051 struct bpf_reg_state *dst_reg, 13052 struct bpf_sanitize_info *info, 13053 const bool commit_window) 13054 { 13055 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 13056 struct bpf_verifier_state *vstate = env->cur_state; 13057 bool off_is_imm = tnum_is_const(off_reg->var_off); 13058 bool off_is_neg = off_reg->smin_value < 0; 13059 bool ptr_is_dst_reg = ptr_reg == dst_reg; 13060 u8 opcode = BPF_OP(insn->code); 13061 u32 alu_state, alu_limit; 13062 struct bpf_reg_state tmp; 13063 bool ret; 13064 int err; 13065 13066 if (can_skip_alu_sanitation(env, insn)) 13067 return 0; 13068 13069 /* We already marked aux for masking from non-speculative 13070 * paths, thus we got here in the first place. We only care 13071 * to explore bad access from here. 13072 */ 13073 if (vstate->speculative) 13074 goto do_sim; 13075 13076 if (!commit_window) { 13077 if (!tnum_is_const(off_reg->var_off) && 13078 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 13079 return REASON_BOUNDS; 13080 13081 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 13082 (opcode == BPF_SUB && !off_is_neg); 13083 } 13084 13085 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 13086 if (err < 0) 13087 return err; 13088 13089 if (commit_window) { 13090 /* In commit phase we narrow the masking window based on 13091 * the observed pointer move after the simulated operation. 13092 */ 13093 alu_state = info->aux.alu_state; 13094 alu_limit = abs(info->aux.alu_limit - alu_limit); 13095 } else { 13096 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 13097 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 13098 alu_state |= ptr_is_dst_reg ? 13099 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 13100 13101 /* Limit pruning on unknown scalars to enable deep search for 13102 * potential masking differences from other program paths. 13103 */ 13104 if (!off_is_imm) 13105 env->explore_alu_limits = true; 13106 } 13107 13108 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 13109 if (err < 0) 13110 return err; 13111 do_sim: 13112 /* If we're in commit phase, we're done here given we already 13113 * pushed the truncated dst_reg into the speculative verification 13114 * stack. 13115 * 13116 * Also, when register is a known constant, we rewrite register-based 13117 * operation to immediate-based, and thus do not need masking (and as 13118 * a consequence, do not need to simulate the zero-truncation either). 13119 */ 13120 if (commit_window || off_is_imm) 13121 return 0; 13122 13123 /* Simulate and find potential out-of-bounds access under 13124 * speculative execution from truncation as a result of 13125 * masking when off was not within expected range. If off 13126 * sits in dst, then we temporarily need to move ptr there 13127 * to simulate dst (== 0) +/-= ptr. Needed, for example, 13128 * for cases where we use K-based arithmetic in one direction 13129 * and truncated reg-based in the other in order to explore 13130 * bad access. 13131 */ 13132 if (!ptr_is_dst_reg) { 13133 tmp = *dst_reg; 13134 copy_register_state(dst_reg, ptr_reg); 13135 } 13136 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 13137 env->insn_idx); 13138 if (!ptr_is_dst_reg && ret) 13139 *dst_reg = tmp; 13140 return !ret ? REASON_STACK : 0; 13141 } 13142 13143 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 13144 { 13145 struct bpf_verifier_state *vstate = env->cur_state; 13146 13147 /* If we simulate paths under speculation, we don't update the 13148 * insn as 'seen' such that when we verify unreachable paths in 13149 * the non-speculative domain, sanitize_dead_code() can still 13150 * rewrite/sanitize them. 13151 */ 13152 if (!vstate->speculative) 13153 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 13154 } 13155 13156 static int sanitize_err(struct bpf_verifier_env *env, 13157 const struct bpf_insn *insn, int reason, 13158 const struct bpf_reg_state *off_reg, 13159 const struct bpf_reg_state *dst_reg) 13160 { 13161 static const char *err = "pointer arithmetic with it prohibited for !root"; 13162 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 13163 u32 dst = insn->dst_reg, src = insn->src_reg; 13164 13165 switch (reason) { 13166 case REASON_BOUNDS: 13167 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 13168 off_reg == dst_reg ? dst : src, err); 13169 break; 13170 case REASON_TYPE: 13171 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 13172 off_reg == dst_reg ? src : dst, err); 13173 break; 13174 case REASON_PATHS: 13175 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 13176 dst, op, err); 13177 break; 13178 case REASON_LIMIT: 13179 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 13180 dst, op, err); 13181 break; 13182 case REASON_STACK: 13183 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 13184 dst, err); 13185 break; 13186 default: 13187 verbose(env, "verifier internal error: unknown reason (%d)\n", 13188 reason); 13189 break; 13190 } 13191 13192 return -EACCES; 13193 } 13194 13195 /* check that stack access falls within stack limits and that 'reg' doesn't 13196 * have a variable offset. 13197 * 13198 * Variable offset is prohibited for unprivileged mode for simplicity since it 13199 * requires corresponding support in Spectre masking for stack ALU. See also 13200 * retrieve_ptr_limit(). 13201 * 13202 * 13203 * 'off' includes 'reg->off'. 13204 */ 13205 static int check_stack_access_for_ptr_arithmetic( 13206 struct bpf_verifier_env *env, 13207 int regno, 13208 const struct bpf_reg_state *reg, 13209 int off) 13210 { 13211 if (!tnum_is_const(reg->var_off)) { 13212 char tn_buf[48]; 13213 13214 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 13215 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 13216 regno, tn_buf, off); 13217 return -EACCES; 13218 } 13219 13220 if (off >= 0 || off < -MAX_BPF_STACK) { 13221 verbose(env, "R%d stack pointer arithmetic goes out of range, " 13222 "prohibited for !root; off=%d\n", regno, off); 13223 return -EACCES; 13224 } 13225 13226 return 0; 13227 } 13228 13229 static int sanitize_check_bounds(struct bpf_verifier_env *env, 13230 const struct bpf_insn *insn, 13231 const struct bpf_reg_state *dst_reg) 13232 { 13233 u32 dst = insn->dst_reg; 13234 13235 /* For unprivileged we require that resulting offset must be in bounds 13236 * in order to be able to sanitize access later on. 13237 */ 13238 if (env->bypass_spec_v1) 13239 return 0; 13240 13241 switch (dst_reg->type) { 13242 case PTR_TO_STACK: 13243 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 13244 dst_reg->off + dst_reg->var_off.value)) 13245 return -EACCES; 13246 break; 13247 case PTR_TO_MAP_VALUE: 13248 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 13249 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 13250 "prohibited for !root\n", dst); 13251 return -EACCES; 13252 } 13253 break; 13254 default: 13255 break; 13256 } 13257 13258 return 0; 13259 } 13260 13261 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 13262 * Caller should also handle BPF_MOV case separately. 13263 * If we return -EACCES, caller may want to try again treating pointer as a 13264 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 13265 */ 13266 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 13267 struct bpf_insn *insn, 13268 const struct bpf_reg_state *ptr_reg, 13269 const struct bpf_reg_state *off_reg) 13270 { 13271 struct bpf_verifier_state *vstate = env->cur_state; 13272 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13273 struct bpf_reg_state *regs = state->regs, *dst_reg; 13274 bool known = tnum_is_const(off_reg->var_off); 13275 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 13276 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 13277 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 13278 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 13279 struct bpf_sanitize_info info = {}; 13280 u8 opcode = BPF_OP(insn->code); 13281 u32 dst = insn->dst_reg; 13282 int ret; 13283 13284 dst_reg = ®s[dst]; 13285 13286 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 13287 smin_val > smax_val || umin_val > umax_val) { 13288 /* Taint dst register if offset had invalid bounds derived from 13289 * e.g. dead branches. 13290 */ 13291 __mark_reg_unknown(env, dst_reg); 13292 return 0; 13293 } 13294 13295 if (BPF_CLASS(insn->code) != BPF_ALU64) { 13296 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 13297 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13298 __mark_reg_unknown(env, dst_reg); 13299 return 0; 13300 } 13301 13302 verbose(env, 13303 "R%d 32-bit pointer arithmetic prohibited\n", 13304 dst); 13305 return -EACCES; 13306 } 13307 13308 if (ptr_reg->type & PTR_MAYBE_NULL) { 13309 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 13310 dst, reg_type_str(env, ptr_reg->type)); 13311 return -EACCES; 13312 } 13313 13314 switch (base_type(ptr_reg->type)) { 13315 case PTR_TO_CTX: 13316 case PTR_TO_MAP_VALUE: 13317 case PTR_TO_MAP_KEY: 13318 case PTR_TO_STACK: 13319 case PTR_TO_PACKET_META: 13320 case PTR_TO_PACKET: 13321 case PTR_TO_TP_BUFFER: 13322 case PTR_TO_BTF_ID: 13323 case PTR_TO_MEM: 13324 case PTR_TO_BUF: 13325 case PTR_TO_FUNC: 13326 case CONST_PTR_TO_DYNPTR: 13327 break; 13328 case PTR_TO_FLOW_KEYS: 13329 if (known) 13330 break; 13331 fallthrough; 13332 case CONST_PTR_TO_MAP: 13333 /* smin_val represents the known value */ 13334 if (known && smin_val == 0 && opcode == BPF_ADD) 13335 break; 13336 fallthrough; 13337 default: 13338 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 13339 dst, reg_type_str(env, ptr_reg->type)); 13340 return -EACCES; 13341 } 13342 13343 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 13344 * The id may be overwritten later if we create a new variable offset. 13345 */ 13346 dst_reg->type = ptr_reg->type; 13347 dst_reg->id = ptr_reg->id; 13348 13349 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 13350 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 13351 return -EINVAL; 13352 13353 /* pointer types do not carry 32-bit bounds at the moment. */ 13354 __mark_reg32_unbounded(dst_reg); 13355 13356 if (sanitize_needed(opcode)) { 13357 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 13358 &info, false); 13359 if (ret < 0) 13360 return sanitize_err(env, insn, ret, off_reg, dst_reg); 13361 } 13362 13363 switch (opcode) { 13364 case BPF_ADD: 13365 /* We can take a fixed offset as long as it doesn't overflow 13366 * the s32 'off' field 13367 */ 13368 if (known && (ptr_reg->off + smin_val == 13369 (s64)(s32)(ptr_reg->off + smin_val))) { 13370 /* pointer += K. Accumulate it into fixed offset */ 13371 dst_reg->smin_value = smin_ptr; 13372 dst_reg->smax_value = smax_ptr; 13373 dst_reg->umin_value = umin_ptr; 13374 dst_reg->umax_value = umax_ptr; 13375 dst_reg->var_off = ptr_reg->var_off; 13376 dst_reg->off = ptr_reg->off + smin_val; 13377 dst_reg->raw = ptr_reg->raw; 13378 break; 13379 } 13380 /* A new variable offset is created. Note that off_reg->off 13381 * == 0, since it's a scalar. 13382 * dst_reg gets the pointer type and since some positive 13383 * integer value was added to the pointer, give it a new 'id' 13384 * if it's a PTR_TO_PACKET. 13385 * this creates a new 'base' pointer, off_reg (variable) gets 13386 * added into the variable offset, and we copy the fixed offset 13387 * from ptr_reg. 13388 */ 13389 if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) || 13390 check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) { 13391 dst_reg->smin_value = S64_MIN; 13392 dst_reg->smax_value = S64_MAX; 13393 } 13394 if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) || 13395 check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) { 13396 dst_reg->umin_value = 0; 13397 dst_reg->umax_value = U64_MAX; 13398 } 13399 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 13400 dst_reg->off = ptr_reg->off; 13401 dst_reg->raw = ptr_reg->raw; 13402 if (reg_is_pkt_pointer(ptr_reg)) { 13403 dst_reg->id = ++env->id_gen; 13404 /* something was added to pkt_ptr, set range to zero */ 13405 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 13406 } 13407 break; 13408 case BPF_SUB: 13409 if (dst_reg == off_reg) { 13410 /* scalar -= pointer. Creates an unknown scalar */ 13411 verbose(env, "R%d tried to subtract pointer from scalar\n", 13412 dst); 13413 return -EACCES; 13414 } 13415 /* We don't allow subtraction from FP, because (according to 13416 * test_verifier.c test "invalid fp arithmetic", JITs might not 13417 * be able to deal with it. 13418 */ 13419 if (ptr_reg->type == PTR_TO_STACK) { 13420 verbose(env, "R%d subtraction from stack pointer prohibited\n", 13421 dst); 13422 return -EACCES; 13423 } 13424 if (known && (ptr_reg->off - smin_val == 13425 (s64)(s32)(ptr_reg->off - smin_val))) { 13426 /* pointer -= K. Subtract it from fixed offset */ 13427 dst_reg->smin_value = smin_ptr; 13428 dst_reg->smax_value = smax_ptr; 13429 dst_reg->umin_value = umin_ptr; 13430 dst_reg->umax_value = umax_ptr; 13431 dst_reg->var_off = ptr_reg->var_off; 13432 dst_reg->id = ptr_reg->id; 13433 dst_reg->off = ptr_reg->off - smin_val; 13434 dst_reg->raw = ptr_reg->raw; 13435 break; 13436 } 13437 /* A new variable offset is created. If the subtrahend is known 13438 * nonnegative, then any reg->range we had before is still good. 13439 */ 13440 if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) || 13441 check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) { 13442 /* Overflow possible, we know nothing */ 13443 dst_reg->smin_value = S64_MIN; 13444 dst_reg->smax_value = S64_MAX; 13445 } 13446 if (umin_ptr < umax_val) { 13447 /* Overflow possible, we know nothing */ 13448 dst_reg->umin_value = 0; 13449 dst_reg->umax_value = U64_MAX; 13450 } else { 13451 /* Cannot overflow (as long as bounds are consistent) */ 13452 dst_reg->umin_value = umin_ptr - umax_val; 13453 dst_reg->umax_value = umax_ptr - umin_val; 13454 } 13455 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 13456 dst_reg->off = ptr_reg->off; 13457 dst_reg->raw = ptr_reg->raw; 13458 if (reg_is_pkt_pointer(ptr_reg)) { 13459 dst_reg->id = ++env->id_gen; 13460 /* something was added to pkt_ptr, set range to zero */ 13461 if (smin_val < 0) 13462 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 13463 } 13464 break; 13465 case BPF_AND: 13466 case BPF_OR: 13467 case BPF_XOR: 13468 /* bitwise ops on pointers are troublesome, prohibit. */ 13469 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 13470 dst, bpf_alu_string[opcode >> 4]); 13471 return -EACCES; 13472 default: 13473 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 13474 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 13475 dst, bpf_alu_string[opcode >> 4]); 13476 return -EACCES; 13477 } 13478 13479 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 13480 return -EINVAL; 13481 reg_bounds_sync(dst_reg); 13482 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 13483 return -EACCES; 13484 if (sanitize_needed(opcode)) { 13485 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 13486 &info, true); 13487 if (ret < 0) 13488 return sanitize_err(env, insn, ret, off_reg, dst_reg); 13489 } 13490 13491 return 0; 13492 } 13493 13494 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 13495 struct bpf_reg_state *src_reg) 13496 { 13497 s32 *dst_smin = &dst_reg->s32_min_value; 13498 s32 *dst_smax = &dst_reg->s32_max_value; 13499 u32 *dst_umin = &dst_reg->u32_min_value; 13500 u32 *dst_umax = &dst_reg->u32_max_value; 13501 13502 if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) || 13503 check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) { 13504 *dst_smin = S32_MIN; 13505 *dst_smax = S32_MAX; 13506 } 13507 if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) || 13508 check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) { 13509 *dst_umin = 0; 13510 *dst_umax = U32_MAX; 13511 } 13512 } 13513 13514 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 13515 struct bpf_reg_state *src_reg) 13516 { 13517 s64 *dst_smin = &dst_reg->smin_value; 13518 s64 *dst_smax = &dst_reg->smax_value; 13519 u64 *dst_umin = &dst_reg->umin_value; 13520 u64 *dst_umax = &dst_reg->umax_value; 13521 13522 if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) || 13523 check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) { 13524 *dst_smin = S64_MIN; 13525 *dst_smax = S64_MAX; 13526 } 13527 if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) || 13528 check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) { 13529 *dst_umin = 0; 13530 *dst_umax = U64_MAX; 13531 } 13532 } 13533 13534 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 13535 struct bpf_reg_state *src_reg) 13536 { 13537 s32 *dst_smin = &dst_reg->s32_min_value; 13538 s32 *dst_smax = &dst_reg->s32_max_value; 13539 u32 umin_val = src_reg->u32_min_value; 13540 u32 umax_val = src_reg->u32_max_value; 13541 13542 if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) || 13543 check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) { 13544 /* Overflow possible, we know nothing */ 13545 *dst_smin = S32_MIN; 13546 *dst_smax = S32_MAX; 13547 } 13548 if (dst_reg->u32_min_value < umax_val) { 13549 /* Overflow possible, we know nothing */ 13550 dst_reg->u32_min_value = 0; 13551 dst_reg->u32_max_value = U32_MAX; 13552 } else { 13553 /* Cannot overflow (as long as bounds are consistent) */ 13554 dst_reg->u32_min_value -= umax_val; 13555 dst_reg->u32_max_value -= umin_val; 13556 } 13557 } 13558 13559 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 13560 struct bpf_reg_state *src_reg) 13561 { 13562 s64 *dst_smin = &dst_reg->smin_value; 13563 s64 *dst_smax = &dst_reg->smax_value; 13564 u64 umin_val = src_reg->umin_value; 13565 u64 umax_val = src_reg->umax_value; 13566 13567 if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) || 13568 check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) { 13569 /* Overflow possible, we know nothing */ 13570 *dst_smin = S64_MIN; 13571 *dst_smax = S64_MAX; 13572 } 13573 if (dst_reg->umin_value < umax_val) { 13574 /* Overflow possible, we know nothing */ 13575 dst_reg->umin_value = 0; 13576 dst_reg->umax_value = U64_MAX; 13577 } else { 13578 /* Cannot overflow (as long as bounds are consistent) */ 13579 dst_reg->umin_value -= umax_val; 13580 dst_reg->umax_value -= umin_val; 13581 } 13582 } 13583 13584 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 13585 struct bpf_reg_state *src_reg) 13586 { 13587 s32 smin_val = src_reg->s32_min_value; 13588 u32 umin_val = src_reg->u32_min_value; 13589 u32 umax_val = src_reg->u32_max_value; 13590 13591 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 13592 /* Ain't nobody got time to multiply that sign */ 13593 __mark_reg32_unbounded(dst_reg); 13594 return; 13595 } 13596 /* Both values are positive, so we can work with unsigned and 13597 * copy the result to signed (unless it exceeds S32_MAX). 13598 */ 13599 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 13600 /* Potential overflow, we know nothing */ 13601 __mark_reg32_unbounded(dst_reg); 13602 return; 13603 } 13604 dst_reg->u32_min_value *= umin_val; 13605 dst_reg->u32_max_value *= umax_val; 13606 if (dst_reg->u32_max_value > S32_MAX) { 13607 /* Overflow possible, we know nothing */ 13608 dst_reg->s32_min_value = S32_MIN; 13609 dst_reg->s32_max_value = S32_MAX; 13610 } else { 13611 dst_reg->s32_min_value = dst_reg->u32_min_value; 13612 dst_reg->s32_max_value = dst_reg->u32_max_value; 13613 } 13614 } 13615 13616 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 13617 struct bpf_reg_state *src_reg) 13618 { 13619 s64 smin_val = src_reg->smin_value; 13620 u64 umin_val = src_reg->umin_value; 13621 u64 umax_val = src_reg->umax_value; 13622 13623 if (smin_val < 0 || dst_reg->smin_value < 0) { 13624 /* Ain't nobody got time to multiply that sign */ 13625 __mark_reg64_unbounded(dst_reg); 13626 return; 13627 } 13628 /* Both values are positive, so we can work with unsigned and 13629 * copy the result to signed (unless it exceeds S64_MAX). 13630 */ 13631 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 13632 /* Potential overflow, we know nothing */ 13633 __mark_reg64_unbounded(dst_reg); 13634 return; 13635 } 13636 dst_reg->umin_value *= umin_val; 13637 dst_reg->umax_value *= umax_val; 13638 if (dst_reg->umax_value > S64_MAX) { 13639 /* Overflow possible, we know nothing */ 13640 dst_reg->smin_value = S64_MIN; 13641 dst_reg->smax_value = S64_MAX; 13642 } else { 13643 dst_reg->smin_value = dst_reg->umin_value; 13644 dst_reg->smax_value = dst_reg->umax_value; 13645 } 13646 } 13647 13648 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 13649 struct bpf_reg_state *src_reg) 13650 { 13651 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13652 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13653 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13654 u32 umax_val = src_reg->u32_max_value; 13655 13656 if (src_known && dst_known) { 13657 __mark_reg32_known(dst_reg, var32_off.value); 13658 return; 13659 } 13660 13661 /* We get our minimum from the var_off, since that's inherently 13662 * bitwise. Our maximum is the minimum of the operands' maxima. 13663 */ 13664 dst_reg->u32_min_value = var32_off.value; 13665 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 13666 13667 /* Safe to set s32 bounds by casting u32 result into s32 when u32 13668 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 13669 */ 13670 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 13671 dst_reg->s32_min_value = dst_reg->u32_min_value; 13672 dst_reg->s32_max_value = dst_reg->u32_max_value; 13673 } else { 13674 dst_reg->s32_min_value = S32_MIN; 13675 dst_reg->s32_max_value = S32_MAX; 13676 } 13677 } 13678 13679 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 13680 struct bpf_reg_state *src_reg) 13681 { 13682 bool src_known = tnum_is_const(src_reg->var_off); 13683 bool dst_known = tnum_is_const(dst_reg->var_off); 13684 u64 umax_val = src_reg->umax_value; 13685 13686 if (src_known && dst_known) { 13687 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13688 return; 13689 } 13690 13691 /* We get our minimum from the var_off, since that's inherently 13692 * bitwise. Our maximum is the minimum of the operands' maxima. 13693 */ 13694 dst_reg->umin_value = dst_reg->var_off.value; 13695 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 13696 13697 /* Safe to set s64 bounds by casting u64 result into s64 when u64 13698 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 13699 */ 13700 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 13701 dst_reg->smin_value = dst_reg->umin_value; 13702 dst_reg->smax_value = dst_reg->umax_value; 13703 } else { 13704 dst_reg->smin_value = S64_MIN; 13705 dst_reg->smax_value = S64_MAX; 13706 } 13707 /* We may learn something more from the var_off */ 13708 __update_reg_bounds(dst_reg); 13709 } 13710 13711 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 13712 struct bpf_reg_state *src_reg) 13713 { 13714 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13715 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13716 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13717 u32 umin_val = src_reg->u32_min_value; 13718 13719 if (src_known && dst_known) { 13720 __mark_reg32_known(dst_reg, var32_off.value); 13721 return; 13722 } 13723 13724 /* We get our maximum from the var_off, and our minimum is the 13725 * maximum of the operands' minima 13726 */ 13727 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 13728 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13729 13730 /* Safe to set s32 bounds by casting u32 result into s32 when u32 13731 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 13732 */ 13733 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 13734 dst_reg->s32_min_value = dst_reg->u32_min_value; 13735 dst_reg->s32_max_value = dst_reg->u32_max_value; 13736 } else { 13737 dst_reg->s32_min_value = S32_MIN; 13738 dst_reg->s32_max_value = S32_MAX; 13739 } 13740 } 13741 13742 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 13743 struct bpf_reg_state *src_reg) 13744 { 13745 bool src_known = tnum_is_const(src_reg->var_off); 13746 bool dst_known = tnum_is_const(dst_reg->var_off); 13747 u64 umin_val = src_reg->umin_value; 13748 13749 if (src_known && dst_known) { 13750 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13751 return; 13752 } 13753 13754 /* We get our maximum from the var_off, and our minimum is the 13755 * maximum of the operands' minima 13756 */ 13757 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 13758 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13759 13760 /* Safe to set s64 bounds by casting u64 result into s64 when u64 13761 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 13762 */ 13763 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 13764 dst_reg->smin_value = dst_reg->umin_value; 13765 dst_reg->smax_value = dst_reg->umax_value; 13766 } else { 13767 dst_reg->smin_value = S64_MIN; 13768 dst_reg->smax_value = S64_MAX; 13769 } 13770 /* We may learn something more from the var_off */ 13771 __update_reg_bounds(dst_reg); 13772 } 13773 13774 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 13775 struct bpf_reg_state *src_reg) 13776 { 13777 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13778 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13779 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13780 13781 if (src_known && dst_known) { 13782 __mark_reg32_known(dst_reg, var32_off.value); 13783 return; 13784 } 13785 13786 /* We get both minimum and maximum from the var32_off. */ 13787 dst_reg->u32_min_value = var32_off.value; 13788 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13789 13790 /* Safe to set s32 bounds by casting u32 result into s32 when u32 13791 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 13792 */ 13793 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 13794 dst_reg->s32_min_value = dst_reg->u32_min_value; 13795 dst_reg->s32_max_value = dst_reg->u32_max_value; 13796 } else { 13797 dst_reg->s32_min_value = S32_MIN; 13798 dst_reg->s32_max_value = S32_MAX; 13799 } 13800 } 13801 13802 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 13803 struct bpf_reg_state *src_reg) 13804 { 13805 bool src_known = tnum_is_const(src_reg->var_off); 13806 bool dst_known = tnum_is_const(dst_reg->var_off); 13807 13808 if (src_known && dst_known) { 13809 /* dst_reg->var_off.value has been updated earlier */ 13810 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13811 return; 13812 } 13813 13814 /* We get both minimum and maximum from the var_off. */ 13815 dst_reg->umin_value = dst_reg->var_off.value; 13816 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13817 13818 /* Safe to set s64 bounds by casting u64 result into s64 when u64 13819 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 13820 */ 13821 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 13822 dst_reg->smin_value = dst_reg->umin_value; 13823 dst_reg->smax_value = dst_reg->umax_value; 13824 } else { 13825 dst_reg->smin_value = S64_MIN; 13826 dst_reg->smax_value = S64_MAX; 13827 } 13828 13829 __update_reg_bounds(dst_reg); 13830 } 13831 13832 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13833 u64 umin_val, u64 umax_val) 13834 { 13835 /* We lose all sign bit information (except what we can pick 13836 * up from var_off) 13837 */ 13838 dst_reg->s32_min_value = S32_MIN; 13839 dst_reg->s32_max_value = S32_MAX; 13840 /* If we might shift our top bit out, then we know nothing */ 13841 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 13842 dst_reg->u32_min_value = 0; 13843 dst_reg->u32_max_value = U32_MAX; 13844 } else { 13845 dst_reg->u32_min_value <<= umin_val; 13846 dst_reg->u32_max_value <<= umax_val; 13847 } 13848 } 13849 13850 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13851 struct bpf_reg_state *src_reg) 13852 { 13853 u32 umax_val = src_reg->u32_max_value; 13854 u32 umin_val = src_reg->u32_min_value; 13855 /* u32 alu operation will zext upper bits */ 13856 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13857 13858 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13859 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 13860 /* Not required but being careful mark reg64 bounds as unknown so 13861 * that we are forced to pick them up from tnum and zext later and 13862 * if some path skips this step we are still safe. 13863 */ 13864 __mark_reg64_unbounded(dst_reg); 13865 __update_reg32_bounds(dst_reg); 13866 } 13867 13868 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 13869 u64 umin_val, u64 umax_val) 13870 { 13871 /* Special case <<32 because it is a common compiler pattern to sign 13872 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 13873 * positive we know this shift will also be positive so we can track 13874 * bounds correctly. Otherwise we lose all sign bit information except 13875 * what we can pick up from var_off. Perhaps we can generalize this 13876 * later to shifts of any length. 13877 */ 13878 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 13879 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 13880 else 13881 dst_reg->smax_value = S64_MAX; 13882 13883 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 13884 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 13885 else 13886 dst_reg->smin_value = S64_MIN; 13887 13888 /* If we might shift our top bit out, then we know nothing */ 13889 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 13890 dst_reg->umin_value = 0; 13891 dst_reg->umax_value = U64_MAX; 13892 } else { 13893 dst_reg->umin_value <<= umin_val; 13894 dst_reg->umax_value <<= umax_val; 13895 } 13896 } 13897 13898 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 13899 struct bpf_reg_state *src_reg) 13900 { 13901 u64 umax_val = src_reg->umax_value; 13902 u64 umin_val = src_reg->umin_value; 13903 13904 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 13905 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 13906 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13907 13908 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 13909 /* We may learn something more from the var_off */ 13910 __update_reg_bounds(dst_reg); 13911 } 13912 13913 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 13914 struct bpf_reg_state *src_reg) 13915 { 13916 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13917 u32 umax_val = src_reg->u32_max_value; 13918 u32 umin_val = src_reg->u32_min_value; 13919 13920 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13921 * be negative, then either: 13922 * 1) src_reg might be zero, so the sign bit of the result is 13923 * unknown, so we lose our signed bounds 13924 * 2) it's known negative, thus the unsigned bounds capture the 13925 * signed bounds 13926 * 3) the signed bounds cross zero, so they tell us nothing 13927 * about the result 13928 * If the value in dst_reg is known nonnegative, then again the 13929 * unsigned bounds capture the signed bounds. 13930 * Thus, in all cases it suffices to blow away our signed bounds 13931 * and rely on inferring new ones from the unsigned bounds and 13932 * var_off of the result. 13933 */ 13934 dst_reg->s32_min_value = S32_MIN; 13935 dst_reg->s32_max_value = S32_MAX; 13936 13937 dst_reg->var_off = tnum_rshift(subreg, umin_val); 13938 dst_reg->u32_min_value >>= umax_val; 13939 dst_reg->u32_max_value >>= umin_val; 13940 13941 __mark_reg64_unbounded(dst_reg); 13942 __update_reg32_bounds(dst_reg); 13943 } 13944 13945 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 13946 struct bpf_reg_state *src_reg) 13947 { 13948 u64 umax_val = src_reg->umax_value; 13949 u64 umin_val = src_reg->umin_value; 13950 13951 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13952 * be negative, then either: 13953 * 1) src_reg might be zero, so the sign bit of the result is 13954 * unknown, so we lose our signed bounds 13955 * 2) it's known negative, thus the unsigned bounds capture the 13956 * signed bounds 13957 * 3) the signed bounds cross zero, so they tell us nothing 13958 * about the result 13959 * If the value in dst_reg is known nonnegative, then again the 13960 * unsigned bounds capture the signed bounds. 13961 * Thus, in all cases it suffices to blow away our signed bounds 13962 * and rely on inferring new ones from the unsigned bounds and 13963 * var_off of the result. 13964 */ 13965 dst_reg->smin_value = S64_MIN; 13966 dst_reg->smax_value = S64_MAX; 13967 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 13968 dst_reg->umin_value >>= umax_val; 13969 dst_reg->umax_value >>= umin_val; 13970 13971 /* Its not easy to operate on alu32 bounds here because it depends 13972 * on bits being shifted in. Take easy way out and mark unbounded 13973 * so we can recalculate later from tnum. 13974 */ 13975 __mark_reg32_unbounded(dst_reg); 13976 __update_reg_bounds(dst_reg); 13977 } 13978 13979 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 13980 struct bpf_reg_state *src_reg) 13981 { 13982 u64 umin_val = src_reg->u32_min_value; 13983 13984 /* Upon reaching here, src_known is true and 13985 * umax_val is equal to umin_val. 13986 */ 13987 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 13988 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 13989 13990 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 13991 13992 /* blow away the dst_reg umin_value/umax_value and rely on 13993 * dst_reg var_off to refine the result. 13994 */ 13995 dst_reg->u32_min_value = 0; 13996 dst_reg->u32_max_value = U32_MAX; 13997 13998 __mark_reg64_unbounded(dst_reg); 13999 __update_reg32_bounds(dst_reg); 14000 } 14001 14002 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 14003 struct bpf_reg_state *src_reg) 14004 { 14005 u64 umin_val = src_reg->umin_value; 14006 14007 /* Upon reaching here, src_known is true and umax_val is equal 14008 * to umin_val. 14009 */ 14010 dst_reg->smin_value >>= umin_val; 14011 dst_reg->smax_value >>= umin_val; 14012 14013 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 14014 14015 /* blow away the dst_reg umin_value/umax_value and rely on 14016 * dst_reg var_off to refine the result. 14017 */ 14018 dst_reg->umin_value = 0; 14019 dst_reg->umax_value = U64_MAX; 14020 14021 /* Its not easy to operate on alu32 bounds here because it depends 14022 * on bits being shifted in from upper 32-bits. Take easy way out 14023 * and mark unbounded so we can recalculate later from tnum. 14024 */ 14025 __mark_reg32_unbounded(dst_reg); 14026 __update_reg_bounds(dst_reg); 14027 } 14028 14029 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, 14030 const struct bpf_reg_state *src_reg) 14031 { 14032 bool src_is_const = false; 14033 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 14034 14035 if (insn_bitness == 32) { 14036 if (tnum_subreg_is_const(src_reg->var_off) 14037 && src_reg->s32_min_value == src_reg->s32_max_value 14038 && src_reg->u32_min_value == src_reg->u32_max_value) 14039 src_is_const = true; 14040 } else { 14041 if (tnum_is_const(src_reg->var_off) 14042 && src_reg->smin_value == src_reg->smax_value 14043 && src_reg->umin_value == src_reg->umax_value) 14044 src_is_const = true; 14045 } 14046 14047 switch (BPF_OP(insn->code)) { 14048 case BPF_ADD: 14049 case BPF_SUB: 14050 case BPF_AND: 14051 case BPF_XOR: 14052 case BPF_OR: 14053 case BPF_MUL: 14054 return true; 14055 14056 /* Shift operators range is only computable if shift dimension operand 14057 * is a constant. Shifts greater than 31 or 63 are undefined. This 14058 * includes shifts by a negative number. 14059 */ 14060 case BPF_LSH: 14061 case BPF_RSH: 14062 case BPF_ARSH: 14063 return (src_is_const && src_reg->umax_value < insn_bitness); 14064 default: 14065 return false; 14066 } 14067 } 14068 14069 /* WARNING: This function does calculations on 64-bit values, but the actual 14070 * execution may occur on 32-bit values. Therefore, things like bitshifts 14071 * need extra checks in the 32-bit case. 14072 */ 14073 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 14074 struct bpf_insn *insn, 14075 struct bpf_reg_state *dst_reg, 14076 struct bpf_reg_state src_reg) 14077 { 14078 u8 opcode = BPF_OP(insn->code); 14079 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 14080 int ret; 14081 14082 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) { 14083 __mark_reg_unknown(env, dst_reg); 14084 return 0; 14085 } 14086 14087 if (sanitize_needed(opcode)) { 14088 ret = sanitize_val_alu(env, insn); 14089 if (ret < 0) 14090 return sanitize_err(env, insn, ret, NULL, NULL); 14091 } 14092 14093 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 14094 * There are two classes of instructions: The first class we track both 14095 * alu32 and alu64 sign/unsigned bounds independently this provides the 14096 * greatest amount of precision when alu operations are mixed with jmp32 14097 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 14098 * and BPF_OR. This is possible because these ops have fairly easy to 14099 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 14100 * See alu32 verifier tests for examples. The second class of 14101 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 14102 * with regards to tracking sign/unsigned bounds because the bits may 14103 * cross subreg boundaries in the alu64 case. When this happens we mark 14104 * the reg unbounded in the subreg bound space and use the resulting 14105 * tnum to calculate an approximation of the sign/unsigned bounds. 14106 */ 14107 switch (opcode) { 14108 case BPF_ADD: 14109 scalar32_min_max_add(dst_reg, &src_reg); 14110 scalar_min_max_add(dst_reg, &src_reg); 14111 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 14112 break; 14113 case BPF_SUB: 14114 scalar32_min_max_sub(dst_reg, &src_reg); 14115 scalar_min_max_sub(dst_reg, &src_reg); 14116 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 14117 break; 14118 case BPF_MUL: 14119 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 14120 scalar32_min_max_mul(dst_reg, &src_reg); 14121 scalar_min_max_mul(dst_reg, &src_reg); 14122 break; 14123 case BPF_AND: 14124 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 14125 scalar32_min_max_and(dst_reg, &src_reg); 14126 scalar_min_max_and(dst_reg, &src_reg); 14127 break; 14128 case BPF_OR: 14129 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 14130 scalar32_min_max_or(dst_reg, &src_reg); 14131 scalar_min_max_or(dst_reg, &src_reg); 14132 break; 14133 case BPF_XOR: 14134 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 14135 scalar32_min_max_xor(dst_reg, &src_reg); 14136 scalar_min_max_xor(dst_reg, &src_reg); 14137 break; 14138 case BPF_LSH: 14139 if (alu32) 14140 scalar32_min_max_lsh(dst_reg, &src_reg); 14141 else 14142 scalar_min_max_lsh(dst_reg, &src_reg); 14143 break; 14144 case BPF_RSH: 14145 if (alu32) 14146 scalar32_min_max_rsh(dst_reg, &src_reg); 14147 else 14148 scalar_min_max_rsh(dst_reg, &src_reg); 14149 break; 14150 case BPF_ARSH: 14151 if (alu32) 14152 scalar32_min_max_arsh(dst_reg, &src_reg); 14153 else 14154 scalar_min_max_arsh(dst_reg, &src_reg); 14155 break; 14156 default: 14157 break; 14158 } 14159 14160 /* ALU32 ops are zero extended into 64bit register */ 14161 if (alu32) 14162 zext_32_to_64(dst_reg); 14163 reg_bounds_sync(dst_reg); 14164 return 0; 14165 } 14166 14167 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 14168 * and var_off. 14169 */ 14170 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 14171 struct bpf_insn *insn) 14172 { 14173 struct bpf_verifier_state *vstate = env->cur_state; 14174 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14175 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 14176 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 14177 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 14178 u8 opcode = BPF_OP(insn->code); 14179 int err; 14180 14181 dst_reg = ®s[insn->dst_reg]; 14182 src_reg = NULL; 14183 14184 if (dst_reg->type == PTR_TO_ARENA) { 14185 struct bpf_insn_aux_data *aux = cur_aux(env); 14186 14187 if (BPF_CLASS(insn->code) == BPF_ALU64) 14188 /* 14189 * 32-bit operations zero upper bits automatically. 14190 * 64-bit operations need to be converted to 32. 14191 */ 14192 aux->needs_zext = true; 14193 14194 /* Any arithmetic operations are allowed on arena pointers */ 14195 return 0; 14196 } 14197 14198 if (dst_reg->type != SCALAR_VALUE) 14199 ptr_reg = dst_reg; 14200 14201 if (BPF_SRC(insn->code) == BPF_X) { 14202 src_reg = ®s[insn->src_reg]; 14203 if (src_reg->type != SCALAR_VALUE) { 14204 if (dst_reg->type != SCALAR_VALUE) { 14205 /* Combining two pointers by any ALU op yields 14206 * an arbitrary scalar. Disallow all math except 14207 * pointer subtraction 14208 */ 14209 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 14210 mark_reg_unknown(env, regs, insn->dst_reg); 14211 return 0; 14212 } 14213 verbose(env, "R%d pointer %s pointer prohibited\n", 14214 insn->dst_reg, 14215 bpf_alu_string[opcode >> 4]); 14216 return -EACCES; 14217 } else { 14218 /* scalar += pointer 14219 * This is legal, but we have to reverse our 14220 * src/dest handling in computing the range 14221 */ 14222 err = mark_chain_precision(env, insn->dst_reg); 14223 if (err) 14224 return err; 14225 return adjust_ptr_min_max_vals(env, insn, 14226 src_reg, dst_reg); 14227 } 14228 } else if (ptr_reg) { 14229 /* pointer += scalar */ 14230 err = mark_chain_precision(env, insn->src_reg); 14231 if (err) 14232 return err; 14233 return adjust_ptr_min_max_vals(env, insn, 14234 dst_reg, src_reg); 14235 } else if (dst_reg->precise) { 14236 /* if dst_reg is precise, src_reg should be precise as well */ 14237 err = mark_chain_precision(env, insn->src_reg); 14238 if (err) 14239 return err; 14240 } 14241 } else { 14242 /* Pretend the src is a reg with a known value, since we only 14243 * need to be able to read from this state. 14244 */ 14245 off_reg.type = SCALAR_VALUE; 14246 __mark_reg_known(&off_reg, insn->imm); 14247 src_reg = &off_reg; 14248 if (ptr_reg) /* pointer += K */ 14249 return adjust_ptr_min_max_vals(env, insn, 14250 ptr_reg, src_reg); 14251 } 14252 14253 /* Got here implies adding two SCALAR_VALUEs */ 14254 if (WARN_ON_ONCE(ptr_reg)) { 14255 print_verifier_state(env, state, true); 14256 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 14257 return -EINVAL; 14258 } 14259 if (WARN_ON(!src_reg)) { 14260 print_verifier_state(env, state, true); 14261 verbose(env, "verifier internal error: no src_reg\n"); 14262 return -EINVAL; 14263 } 14264 err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 14265 if (err) 14266 return err; 14267 /* 14268 * Compilers can generate the code 14269 * r1 = r2 14270 * r1 += 0x1 14271 * if r2 < 1000 goto ... 14272 * use r1 in memory access 14273 * So for 64-bit alu remember constant delta between r2 and r1 and 14274 * update r1 after 'if' condition. 14275 */ 14276 if (env->bpf_capable && 14277 BPF_OP(insn->code) == BPF_ADD && !alu32 && 14278 dst_reg->id && is_reg_const(src_reg, false)) { 14279 u64 val = reg_const_value(src_reg, false); 14280 14281 if ((dst_reg->id & BPF_ADD_CONST) || 14282 /* prevent overflow in sync_linked_regs() later */ 14283 val > (u32)S32_MAX) { 14284 /* 14285 * If the register already went through rX += val 14286 * we cannot accumulate another val into rx->off. 14287 */ 14288 dst_reg->off = 0; 14289 dst_reg->id = 0; 14290 } else { 14291 dst_reg->id |= BPF_ADD_CONST; 14292 dst_reg->off = val; 14293 } 14294 } else { 14295 /* 14296 * Make sure ID is cleared otherwise dst_reg min/max could be 14297 * incorrectly propagated into other registers by sync_linked_regs() 14298 */ 14299 dst_reg->id = 0; 14300 } 14301 return 0; 14302 } 14303 14304 /* check validity of 32-bit and 64-bit arithmetic operations */ 14305 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 14306 { 14307 struct bpf_reg_state *regs = cur_regs(env); 14308 u8 opcode = BPF_OP(insn->code); 14309 int err; 14310 14311 if (opcode == BPF_END || opcode == BPF_NEG) { 14312 if (opcode == BPF_NEG) { 14313 if (BPF_SRC(insn->code) != BPF_K || 14314 insn->src_reg != BPF_REG_0 || 14315 insn->off != 0 || insn->imm != 0) { 14316 verbose(env, "BPF_NEG uses reserved fields\n"); 14317 return -EINVAL; 14318 } 14319 } else { 14320 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 14321 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 14322 (BPF_CLASS(insn->code) == BPF_ALU64 && 14323 BPF_SRC(insn->code) != BPF_TO_LE)) { 14324 verbose(env, "BPF_END uses reserved fields\n"); 14325 return -EINVAL; 14326 } 14327 } 14328 14329 /* check src operand */ 14330 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14331 if (err) 14332 return err; 14333 14334 if (is_pointer_value(env, insn->dst_reg)) { 14335 verbose(env, "R%d pointer arithmetic prohibited\n", 14336 insn->dst_reg); 14337 return -EACCES; 14338 } 14339 14340 /* check dest operand */ 14341 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14342 if (err) 14343 return err; 14344 14345 } else if (opcode == BPF_MOV) { 14346 14347 if (BPF_SRC(insn->code) == BPF_X) { 14348 if (BPF_CLASS(insn->code) == BPF_ALU) { 14349 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || 14350 insn->imm) { 14351 verbose(env, "BPF_MOV uses reserved fields\n"); 14352 return -EINVAL; 14353 } 14354 } else if (insn->off == BPF_ADDR_SPACE_CAST) { 14355 if (insn->imm != 1 && insn->imm != 1u << 16) { 14356 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); 14357 return -EINVAL; 14358 } 14359 if (!env->prog->aux->arena) { 14360 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); 14361 return -EINVAL; 14362 } 14363 } else { 14364 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && 14365 insn->off != 32) || insn->imm) { 14366 verbose(env, "BPF_MOV uses reserved fields\n"); 14367 return -EINVAL; 14368 } 14369 } 14370 14371 /* check src operand */ 14372 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14373 if (err) 14374 return err; 14375 } else { 14376 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 14377 verbose(env, "BPF_MOV uses reserved fields\n"); 14378 return -EINVAL; 14379 } 14380 } 14381 14382 /* check dest operand, mark as required later */ 14383 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14384 if (err) 14385 return err; 14386 14387 if (BPF_SRC(insn->code) == BPF_X) { 14388 struct bpf_reg_state *src_reg = regs + insn->src_reg; 14389 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 14390 14391 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14392 if (insn->imm) { 14393 /* off == BPF_ADDR_SPACE_CAST */ 14394 mark_reg_unknown(env, regs, insn->dst_reg); 14395 if (insn->imm == 1) { /* cast from as(1) to as(0) */ 14396 dst_reg->type = PTR_TO_ARENA; 14397 /* PTR_TO_ARENA is 32-bit */ 14398 dst_reg->subreg_def = env->insn_idx + 1; 14399 } 14400 } else if (insn->off == 0) { 14401 /* case: R1 = R2 14402 * copy register state to dest reg 14403 */ 14404 assign_scalar_id_before_mov(env, src_reg); 14405 copy_register_state(dst_reg, src_reg); 14406 dst_reg->live |= REG_LIVE_WRITTEN; 14407 dst_reg->subreg_def = DEF_NOT_SUBREG; 14408 } else { 14409 /* case: R1 = (s8, s16 s32)R2 */ 14410 if (is_pointer_value(env, insn->src_reg)) { 14411 verbose(env, 14412 "R%d sign-extension part of pointer\n", 14413 insn->src_reg); 14414 return -EACCES; 14415 } else if (src_reg->type == SCALAR_VALUE) { 14416 bool no_sext; 14417 14418 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 14419 if (no_sext) 14420 assign_scalar_id_before_mov(env, src_reg); 14421 copy_register_state(dst_reg, src_reg); 14422 if (!no_sext) 14423 dst_reg->id = 0; 14424 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 14425 dst_reg->live |= REG_LIVE_WRITTEN; 14426 dst_reg->subreg_def = DEF_NOT_SUBREG; 14427 } else { 14428 mark_reg_unknown(env, regs, insn->dst_reg); 14429 } 14430 } 14431 } else { 14432 /* R1 = (u32) R2 */ 14433 if (is_pointer_value(env, insn->src_reg)) { 14434 verbose(env, 14435 "R%d partial copy of pointer\n", 14436 insn->src_reg); 14437 return -EACCES; 14438 } else if (src_reg->type == SCALAR_VALUE) { 14439 if (insn->off == 0) { 14440 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; 14441 14442 if (is_src_reg_u32) 14443 assign_scalar_id_before_mov(env, src_reg); 14444 copy_register_state(dst_reg, src_reg); 14445 /* Make sure ID is cleared if src_reg is not in u32 14446 * range otherwise dst_reg min/max could be incorrectly 14447 * propagated into src_reg by sync_linked_regs() 14448 */ 14449 if (!is_src_reg_u32) 14450 dst_reg->id = 0; 14451 dst_reg->live |= REG_LIVE_WRITTEN; 14452 dst_reg->subreg_def = env->insn_idx + 1; 14453 } else { 14454 /* case: W1 = (s8, s16)W2 */ 14455 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 14456 14457 if (no_sext) 14458 assign_scalar_id_before_mov(env, src_reg); 14459 copy_register_state(dst_reg, src_reg); 14460 if (!no_sext) 14461 dst_reg->id = 0; 14462 dst_reg->live |= REG_LIVE_WRITTEN; 14463 dst_reg->subreg_def = env->insn_idx + 1; 14464 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 14465 } 14466 } else { 14467 mark_reg_unknown(env, regs, 14468 insn->dst_reg); 14469 } 14470 zext_32_to_64(dst_reg); 14471 reg_bounds_sync(dst_reg); 14472 } 14473 } else { 14474 /* case: R = imm 14475 * remember the value we stored into this reg 14476 */ 14477 /* clear any state __mark_reg_known doesn't set */ 14478 mark_reg_unknown(env, regs, insn->dst_reg); 14479 regs[insn->dst_reg].type = SCALAR_VALUE; 14480 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14481 __mark_reg_known(regs + insn->dst_reg, 14482 insn->imm); 14483 } else { 14484 __mark_reg_known(regs + insn->dst_reg, 14485 (u32)insn->imm); 14486 } 14487 } 14488 14489 } else if (opcode > BPF_END) { 14490 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 14491 return -EINVAL; 14492 14493 } else { /* all other ALU ops: and, sub, xor, add, ... */ 14494 14495 if (BPF_SRC(insn->code) == BPF_X) { 14496 if (insn->imm != 0 || insn->off > 1 || 14497 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14498 verbose(env, "BPF_ALU uses reserved fields\n"); 14499 return -EINVAL; 14500 } 14501 /* check src1 operand */ 14502 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14503 if (err) 14504 return err; 14505 } else { 14506 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 14507 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14508 verbose(env, "BPF_ALU uses reserved fields\n"); 14509 return -EINVAL; 14510 } 14511 } 14512 14513 /* check src2 operand */ 14514 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14515 if (err) 14516 return err; 14517 14518 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 14519 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 14520 verbose(env, "div by zero\n"); 14521 return -EINVAL; 14522 } 14523 14524 if ((opcode == BPF_LSH || opcode == BPF_RSH || 14525 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 14526 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 14527 14528 if (insn->imm < 0 || insn->imm >= size) { 14529 verbose(env, "invalid shift %d\n", insn->imm); 14530 return -EINVAL; 14531 } 14532 } 14533 14534 /* check dest operand */ 14535 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14536 err = err ?: adjust_reg_min_max_vals(env, insn); 14537 if (err) 14538 return err; 14539 } 14540 14541 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 14542 } 14543 14544 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 14545 struct bpf_reg_state *dst_reg, 14546 enum bpf_reg_type type, 14547 bool range_right_open) 14548 { 14549 struct bpf_func_state *state; 14550 struct bpf_reg_state *reg; 14551 int new_range; 14552 14553 if (dst_reg->off < 0 || 14554 (dst_reg->off == 0 && range_right_open)) 14555 /* This doesn't give us any range */ 14556 return; 14557 14558 if (dst_reg->umax_value > MAX_PACKET_OFF || 14559 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 14560 /* Risk of overflow. For instance, ptr + (1<<63) may be less 14561 * than pkt_end, but that's because it's also less than pkt. 14562 */ 14563 return; 14564 14565 new_range = dst_reg->off; 14566 if (range_right_open) 14567 new_range++; 14568 14569 /* Examples for register markings: 14570 * 14571 * pkt_data in dst register: 14572 * 14573 * r2 = r3; 14574 * r2 += 8; 14575 * if (r2 > pkt_end) goto <handle exception> 14576 * <access okay> 14577 * 14578 * r2 = r3; 14579 * r2 += 8; 14580 * if (r2 < pkt_end) goto <access okay> 14581 * <handle exception> 14582 * 14583 * Where: 14584 * r2 == dst_reg, pkt_end == src_reg 14585 * r2=pkt(id=n,off=8,r=0) 14586 * r3=pkt(id=n,off=0,r=0) 14587 * 14588 * pkt_data in src register: 14589 * 14590 * r2 = r3; 14591 * r2 += 8; 14592 * if (pkt_end >= r2) goto <access okay> 14593 * <handle exception> 14594 * 14595 * r2 = r3; 14596 * r2 += 8; 14597 * if (pkt_end <= r2) goto <handle exception> 14598 * <access okay> 14599 * 14600 * Where: 14601 * pkt_end == dst_reg, r2 == src_reg 14602 * r2=pkt(id=n,off=8,r=0) 14603 * r3=pkt(id=n,off=0,r=0) 14604 * 14605 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 14606 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 14607 * and [r3, r3 + 8-1) respectively is safe to access depending on 14608 * the check. 14609 */ 14610 14611 /* If our ids match, then we must have the same max_value. And we 14612 * don't care about the other reg's fixed offset, since if it's too big 14613 * the range won't allow anything. 14614 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 14615 */ 14616 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14617 if (reg->type == type && reg->id == dst_reg->id) 14618 /* keep the maximum range already checked */ 14619 reg->range = max(reg->range, new_range); 14620 })); 14621 } 14622 14623 /* 14624 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 14625 */ 14626 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14627 u8 opcode, bool is_jmp32) 14628 { 14629 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 14630 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 14631 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 14632 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 14633 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 14634 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 14635 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 14636 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 14637 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 14638 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 14639 14640 switch (opcode) { 14641 case BPF_JEQ: 14642 /* constants, umin/umax and smin/smax checks would be 14643 * redundant in this case because they all should match 14644 */ 14645 if (tnum_is_const(t1) && tnum_is_const(t2)) 14646 return t1.value == t2.value; 14647 /* non-overlapping ranges */ 14648 if (umin1 > umax2 || umax1 < umin2) 14649 return 0; 14650 if (smin1 > smax2 || smax1 < smin2) 14651 return 0; 14652 if (!is_jmp32) { 14653 /* if 64-bit ranges are inconclusive, see if we can 14654 * utilize 32-bit subrange knowledge to eliminate 14655 * branches that can't be taken a priori 14656 */ 14657 if (reg1->u32_min_value > reg2->u32_max_value || 14658 reg1->u32_max_value < reg2->u32_min_value) 14659 return 0; 14660 if (reg1->s32_min_value > reg2->s32_max_value || 14661 reg1->s32_max_value < reg2->s32_min_value) 14662 return 0; 14663 } 14664 break; 14665 case BPF_JNE: 14666 /* constants, umin/umax and smin/smax checks would be 14667 * redundant in this case because they all should match 14668 */ 14669 if (tnum_is_const(t1) && tnum_is_const(t2)) 14670 return t1.value != t2.value; 14671 /* non-overlapping ranges */ 14672 if (umin1 > umax2 || umax1 < umin2) 14673 return 1; 14674 if (smin1 > smax2 || smax1 < smin2) 14675 return 1; 14676 if (!is_jmp32) { 14677 /* if 64-bit ranges are inconclusive, see if we can 14678 * utilize 32-bit subrange knowledge to eliminate 14679 * branches that can't be taken a priori 14680 */ 14681 if (reg1->u32_min_value > reg2->u32_max_value || 14682 reg1->u32_max_value < reg2->u32_min_value) 14683 return 1; 14684 if (reg1->s32_min_value > reg2->s32_max_value || 14685 reg1->s32_max_value < reg2->s32_min_value) 14686 return 1; 14687 } 14688 break; 14689 case BPF_JSET: 14690 if (!is_reg_const(reg2, is_jmp32)) { 14691 swap(reg1, reg2); 14692 swap(t1, t2); 14693 } 14694 if (!is_reg_const(reg2, is_jmp32)) 14695 return -1; 14696 if ((~t1.mask & t1.value) & t2.value) 14697 return 1; 14698 if (!((t1.mask | t1.value) & t2.value)) 14699 return 0; 14700 break; 14701 case BPF_JGT: 14702 if (umin1 > umax2) 14703 return 1; 14704 else if (umax1 <= umin2) 14705 return 0; 14706 break; 14707 case BPF_JSGT: 14708 if (smin1 > smax2) 14709 return 1; 14710 else if (smax1 <= smin2) 14711 return 0; 14712 break; 14713 case BPF_JLT: 14714 if (umax1 < umin2) 14715 return 1; 14716 else if (umin1 >= umax2) 14717 return 0; 14718 break; 14719 case BPF_JSLT: 14720 if (smax1 < smin2) 14721 return 1; 14722 else if (smin1 >= smax2) 14723 return 0; 14724 break; 14725 case BPF_JGE: 14726 if (umin1 >= umax2) 14727 return 1; 14728 else if (umax1 < umin2) 14729 return 0; 14730 break; 14731 case BPF_JSGE: 14732 if (smin1 >= smax2) 14733 return 1; 14734 else if (smax1 < smin2) 14735 return 0; 14736 break; 14737 case BPF_JLE: 14738 if (umax1 <= umin2) 14739 return 1; 14740 else if (umin1 > umax2) 14741 return 0; 14742 break; 14743 case BPF_JSLE: 14744 if (smax1 <= smin2) 14745 return 1; 14746 else if (smin1 > smax2) 14747 return 0; 14748 break; 14749 } 14750 14751 return -1; 14752 } 14753 14754 static int flip_opcode(u32 opcode) 14755 { 14756 /* How can we transform "a <op> b" into "b <op> a"? */ 14757 static const u8 opcode_flip[16] = { 14758 /* these stay the same */ 14759 [BPF_JEQ >> 4] = BPF_JEQ, 14760 [BPF_JNE >> 4] = BPF_JNE, 14761 [BPF_JSET >> 4] = BPF_JSET, 14762 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 14763 [BPF_JGE >> 4] = BPF_JLE, 14764 [BPF_JGT >> 4] = BPF_JLT, 14765 [BPF_JLE >> 4] = BPF_JGE, 14766 [BPF_JLT >> 4] = BPF_JGT, 14767 [BPF_JSGE >> 4] = BPF_JSLE, 14768 [BPF_JSGT >> 4] = BPF_JSLT, 14769 [BPF_JSLE >> 4] = BPF_JSGE, 14770 [BPF_JSLT >> 4] = BPF_JSGT 14771 }; 14772 return opcode_flip[opcode >> 4]; 14773 } 14774 14775 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 14776 struct bpf_reg_state *src_reg, 14777 u8 opcode) 14778 { 14779 struct bpf_reg_state *pkt; 14780 14781 if (src_reg->type == PTR_TO_PACKET_END) { 14782 pkt = dst_reg; 14783 } else if (dst_reg->type == PTR_TO_PACKET_END) { 14784 pkt = src_reg; 14785 opcode = flip_opcode(opcode); 14786 } else { 14787 return -1; 14788 } 14789 14790 if (pkt->range >= 0) 14791 return -1; 14792 14793 switch (opcode) { 14794 case BPF_JLE: 14795 /* pkt <= pkt_end */ 14796 fallthrough; 14797 case BPF_JGT: 14798 /* pkt > pkt_end */ 14799 if (pkt->range == BEYOND_PKT_END) 14800 /* pkt has at last one extra byte beyond pkt_end */ 14801 return opcode == BPF_JGT; 14802 break; 14803 case BPF_JLT: 14804 /* pkt < pkt_end */ 14805 fallthrough; 14806 case BPF_JGE: 14807 /* pkt >= pkt_end */ 14808 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 14809 return opcode == BPF_JGE; 14810 break; 14811 } 14812 return -1; 14813 } 14814 14815 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 14816 * and return: 14817 * 1 - branch will be taken and "goto target" will be executed 14818 * 0 - branch will not be taken and fall-through to next insn 14819 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 14820 * range [0,10] 14821 */ 14822 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14823 u8 opcode, bool is_jmp32) 14824 { 14825 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 14826 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 14827 14828 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 14829 u64 val; 14830 14831 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 14832 if (!is_reg_const(reg2, is_jmp32)) { 14833 opcode = flip_opcode(opcode); 14834 swap(reg1, reg2); 14835 } 14836 /* and ensure that reg2 is a constant */ 14837 if (!is_reg_const(reg2, is_jmp32)) 14838 return -1; 14839 14840 if (!reg_not_null(reg1)) 14841 return -1; 14842 14843 /* If pointer is valid tests against zero will fail so we can 14844 * use this to direct branch taken. 14845 */ 14846 val = reg_const_value(reg2, is_jmp32); 14847 if (val != 0) 14848 return -1; 14849 14850 switch (opcode) { 14851 case BPF_JEQ: 14852 return 0; 14853 case BPF_JNE: 14854 return 1; 14855 default: 14856 return -1; 14857 } 14858 } 14859 14860 /* now deal with two scalars, but not necessarily constants */ 14861 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 14862 } 14863 14864 /* Opcode that corresponds to a *false* branch condition. 14865 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 14866 */ 14867 static u8 rev_opcode(u8 opcode) 14868 { 14869 switch (opcode) { 14870 case BPF_JEQ: return BPF_JNE; 14871 case BPF_JNE: return BPF_JEQ; 14872 /* JSET doesn't have it's reverse opcode in BPF, so add 14873 * BPF_X flag to denote the reverse of that operation 14874 */ 14875 case BPF_JSET: return BPF_JSET | BPF_X; 14876 case BPF_JSET | BPF_X: return BPF_JSET; 14877 case BPF_JGE: return BPF_JLT; 14878 case BPF_JGT: return BPF_JLE; 14879 case BPF_JLE: return BPF_JGT; 14880 case BPF_JLT: return BPF_JGE; 14881 case BPF_JSGE: return BPF_JSLT; 14882 case BPF_JSGT: return BPF_JSLE; 14883 case BPF_JSLE: return BPF_JSGT; 14884 case BPF_JSLT: return BPF_JSGE; 14885 default: return 0; 14886 } 14887 } 14888 14889 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 14890 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14891 u8 opcode, bool is_jmp32) 14892 { 14893 struct tnum t; 14894 u64 val; 14895 14896 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ 14897 switch (opcode) { 14898 case BPF_JGE: 14899 case BPF_JGT: 14900 case BPF_JSGE: 14901 case BPF_JSGT: 14902 opcode = flip_opcode(opcode); 14903 swap(reg1, reg2); 14904 break; 14905 default: 14906 break; 14907 } 14908 14909 switch (opcode) { 14910 case BPF_JEQ: 14911 if (is_jmp32) { 14912 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 14913 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 14914 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 14915 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 14916 reg2->u32_min_value = reg1->u32_min_value; 14917 reg2->u32_max_value = reg1->u32_max_value; 14918 reg2->s32_min_value = reg1->s32_min_value; 14919 reg2->s32_max_value = reg1->s32_max_value; 14920 14921 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 14922 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14923 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 14924 } else { 14925 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 14926 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 14927 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 14928 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 14929 reg2->umin_value = reg1->umin_value; 14930 reg2->umax_value = reg1->umax_value; 14931 reg2->smin_value = reg1->smin_value; 14932 reg2->smax_value = reg1->smax_value; 14933 14934 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 14935 reg2->var_off = reg1->var_off; 14936 } 14937 break; 14938 case BPF_JNE: 14939 if (!is_reg_const(reg2, is_jmp32)) 14940 swap(reg1, reg2); 14941 if (!is_reg_const(reg2, is_jmp32)) 14942 break; 14943 14944 /* try to recompute the bound of reg1 if reg2 is a const and 14945 * is exactly the edge of reg1. 14946 */ 14947 val = reg_const_value(reg2, is_jmp32); 14948 if (is_jmp32) { 14949 /* u32_min_value is not equal to 0xffffffff at this point, 14950 * because otherwise u32_max_value is 0xffffffff as well, 14951 * in such a case both reg1 and reg2 would be constants, 14952 * jump would be predicted and reg_set_min_max() won't 14953 * be called. 14954 * 14955 * Same reasoning works for all {u,s}{min,max}{32,64} cases 14956 * below. 14957 */ 14958 if (reg1->u32_min_value == (u32)val) 14959 reg1->u32_min_value++; 14960 if (reg1->u32_max_value == (u32)val) 14961 reg1->u32_max_value--; 14962 if (reg1->s32_min_value == (s32)val) 14963 reg1->s32_min_value++; 14964 if (reg1->s32_max_value == (s32)val) 14965 reg1->s32_max_value--; 14966 } else { 14967 if (reg1->umin_value == (u64)val) 14968 reg1->umin_value++; 14969 if (reg1->umax_value == (u64)val) 14970 reg1->umax_value--; 14971 if (reg1->smin_value == (s64)val) 14972 reg1->smin_value++; 14973 if (reg1->smax_value == (s64)val) 14974 reg1->smax_value--; 14975 } 14976 break; 14977 case BPF_JSET: 14978 if (!is_reg_const(reg2, is_jmp32)) 14979 swap(reg1, reg2); 14980 if (!is_reg_const(reg2, is_jmp32)) 14981 break; 14982 val = reg_const_value(reg2, is_jmp32); 14983 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 14984 * requires single bit to learn something useful. E.g., if we 14985 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 14986 * are actually set? We can learn something definite only if 14987 * it's a single-bit value to begin with. 14988 * 14989 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 14990 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 14991 * bit 1 is set, which we can readily use in adjustments. 14992 */ 14993 if (!is_power_of_2(val)) 14994 break; 14995 if (is_jmp32) { 14996 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 14997 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14998 } else { 14999 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 15000 } 15001 break; 15002 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 15003 if (!is_reg_const(reg2, is_jmp32)) 15004 swap(reg1, reg2); 15005 if (!is_reg_const(reg2, is_jmp32)) 15006 break; 15007 val = reg_const_value(reg2, is_jmp32); 15008 if (is_jmp32) { 15009 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 15010 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 15011 } else { 15012 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 15013 } 15014 break; 15015 case BPF_JLE: 15016 if (is_jmp32) { 15017 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 15018 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 15019 } else { 15020 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 15021 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 15022 } 15023 break; 15024 case BPF_JLT: 15025 if (is_jmp32) { 15026 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 15027 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 15028 } else { 15029 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 15030 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 15031 } 15032 break; 15033 case BPF_JSLE: 15034 if (is_jmp32) { 15035 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 15036 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 15037 } else { 15038 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 15039 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 15040 } 15041 break; 15042 case BPF_JSLT: 15043 if (is_jmp32) { 15044 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 15045 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 15046 } else { 15047 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 15048 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 15049 } 15050 break; 15051 default: 15052 return; 15053 } 15054 } 15055 15056 /* Adjusts the register min/max values in the case that the dst_reg and 15057 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 15058 * check, in which case we have a fake SCALAR_VALUE representing insn->imm). 15059 * Technically we can do similar adjustments for pointers to the same object, 15060 * but we don't support that right now. 15061 */ 15062 static int reg_set_min_max(struct bpf_verifier_env *env, 15063 struct bpf_reg_state *true_reg1, 15064 struct bpf_reg_state *true_reg2, 15065 struct bpf_reg_state *false_reg1, 15066 struct bpf_reg_state *false_reg2, 15067 u8 opcode, bool is_jmp32) 15068 { 15069 int err; 15070 15071 /* If either register is a pointer, we can't learn anything about its 15072 * variable offset from the compare (unless they were a pointer into 15073 * the same object, but we don't bother with that). 15074 */ 15075 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 15076 return 0; 15077 15078 /* fallthrough (FALSE) branch */ 15079 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 15080 reg_bounds_sync(false_reg1); 15081 reg_bounds_sync(false_reg2); 15082 15083 /* jump (TRUE) branch */ 15084 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 15085 reg_bounds_sync(true_reg1); 15086 reg_bounds_sync(true_reg2); 15087 15088 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 15089 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 15090 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 15091 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 15092 return err; 15093 } 15094 15095 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 15096 struct bpf_reg_state *reg, u32 id, 15097 bool is_null) 15098 { 15099 if (type_may_be_null(reg->type) && reg->id == id && 15100 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 15101 /* Old offset (both fixed and variable parts) should have been 15102 * known-zero, because we don't allow pointer arithmetic on 15103 * pointers that might be NULL. If we see this happening, don't 15104 * convert the register. 15105 * 15106 * But in some cases, some helpers that return local kptrs 15107 * advance offset for the returned pointer. In those cases, it 15108 * is fine to expect to see reg->off. 15109 */ 15110 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 15111 return; 15112 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 15113 WARN_ON_ONCE(reg->off)) 15114 return; 15115 15116 if (is_null) { 15117 reg->type = SCALAR_VALUE; 15118 /* We don't need id and ref_obj_id from this point 15119 * onwards anymore, thus we should better reset it, 15120 * so that state pruning has chances to take effect. 15121 */ 15122 reg->id = 0; 15123 reg->ref_obj_id = 0; 15124 15125 return; 15126 } 15127 15128 mark_ptr_not_null_reg(reg); 15129 15130 if (!reg_may_point_to_spin_lock(reg)) { 15131 /* For not-NULL ptr, reg->ref_obj_id will be reset 15132 * in release_reference(). 15133 * 15134 * reg->id is still used by spin_lock ptr. Other 15135 * than spin_lock ptr type, reg->id can be reset. 15136 */ 15137 reg->id = 0; 15138 } 15139 } 15140 } 15141 15142 /* The logic is similar to find_good_pkt_pointers(), both could eventually 15143 * be folded together at some point. 15144 */ 15145 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 15146 bool is_null) 15147 { 15148 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 15149 struct bpf_reg_state *regs = state->regs, *reg; 15150 u32 ref_obj_id = regs[regno].ref_obj_id; 15151 u32 id = regs[regno].id; 15152 15153 if (ref_obj_id && ref_obj_id == id && is_null) 15154 /* regs[regno] is in the " == NULL" branch. 15155 * No one could have freed the reference state before 15156 * doing the NULL check. 15157 */ 15158 WARN_ON_ONCE(release_reference_state(state, id)); 15159 15160 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 15161 mark_ptr_or_null_reg(state, reg, id, is_null); 15162 })); 15163 } 15164 15165 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 15166 struct bpf_reg_state *dst_reg, 15167 struct bpf_reg_state *src_reg, 15168 struct bpf_verifier_state *this_branch, 15169 struct bpf_verifier_state *other_branch) 15170 { 15171 if (BPF_SRC(insn->code) != BPF_X) 15172 return false; 15173 15174 /* Pointers are always 64-bit. */ 15175 if (BPF_CLASS(insn->code) == BPF_JMP32) 15176 return false; 15177 15178 switch (BPF_OP(insn->code)) { 15179 case BPF_JGT: 15180 if ((dst_reg->type == PTR_TO_PACKET && 15181 src_reg->type == PTR_TO_PACKET_END) || 15182 (dst_reg->type == PTR_TO_PACKET_META && 15183 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15184 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 15185 find_good_pkt_pointers(this_branch, dst_reg, 15186 dst_reg->type, false); 15187 mark_pkt_end(other_branch, insn->dst_reg, true); 15188 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15189 src_reg->type == PTR_TO_PACKET) || 15190 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15191 src_reg->type == PTR_TO_PACKET_META)) { 15192 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 15193 find_good_pkt_pointers(other_branch, src_reg, 15194 src_reg->type, true); 15195 mark_pkt_end(this_branch, insn->src_reg, false); 15196 } else { 15197 return false; 15198 } 15199 break; 15200 case BPF_JLT: 15201 if ((dst_reg->type == PTR_TO_PACKET && 15202 src_reg->type == PTR_TO_PACKET_END) || 15203 (dst_reg->type == PTR_TO_PACKET_META && 15204 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15205 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 15206 find_good_pkt_pointers(other_branch, dst_reg, 15207 dst_reg->type, true); 15208 mark_pkt_end(this_branch, insn->dst_reg, false); 15209 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15210 src_reg->type == PTR_TO_PACKET) || 15211 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15212 src_reg->type == PTR_TO_PACKET_META)) { 15213 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 15214 find_good_pkt_pointers(this_branch, src_reg, 15215 src_reg->type, false); 15216 mark_pkt_end(other_branch, insn->src_reg, true); 15217 } else { 15218 return false; 15219 } 15220 break; 15221 case BPF_JGE: 15222 if ((dst_reg->type == PTR_TO_PACKET && 15223 src_reg->type == PTR_TO_PACKET_END) || 15224 (dst_reg->type == PTR_TO_PACKET_META && 15225 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15226 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 15227 find_good_pkt_pointers(this_branch, dst_reg, 15228 dst_reg->type, true); 15229 mark_pkt_end(other_branch, insn->dst_reg, false); 15230 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15231 src_reg->type == PTR_TO_PACKET) || 15232 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15233 src_reg->type == PTR_TO_PACKET_META)) { 15234 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 15235 find_good_pkt_pointers(other_branch, src_reg, 15236 src_reg->type, false); 15237 mark_pkt_end(this_branch, insn->src_reg, true); 15238 } else { 15239 return false; 15240 } 15241 break; 15242 case BPF_JLE: 15243 if ((dst_reg->type == PTR_TO_PACKET && 15244 src_reg->type == PTR_TO_PACKET_END) || 15245 (dst_reg->type == PTR_TO_PACKET_META && 15246 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15247 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 15248 find_good_pkt_pointers(other_branch, dst_reg, 15249 dst_reg->type, false); 15250 mark_pkt_end(this_branch, insn->dst_reg, true); 15251 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15252 src_reg->type == PTR_TO_PACKET) || 15253 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15254 src_reg->type == PTR_TO_PACKET_META)) { 15255 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 15256 find_good_pkt_pointers(this_branch, src_reg, 15257 src_reg->type, true); 15258 mark_pkt_end(other_branch, insn->src_reg, false); 15259 } else { 15260 return false; 15261 } 15262 break; 15263 default: 15264 return false; 15265 } 15266 15267 return true; 15268 } 15269 15270 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg, 15271 u32 id, u32 frameno, u32 spi_or_reg, bool is_reg) 15272 { 15273 struct linked_reg *e; 15274 15275 if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id) 15276 return; 15277 15278 e = linked_regs_push(reg_set); 15279 if (e) { 15280 e->frameno = frameno; 15281 e->is_reg = is_reg; 15282 e->regno = spi_or_reg; 15283 } else { 15284 reg->id = 0; 15285 } 15286 } 15287 15288 /* For all R being scalar registers or spilled scalar registers 15289 * in verifier state, save R in linked_regs if R->id == id. 15290 * If there are too many Rs sharing same id, reset id for leftover Rs. 15291 */ 15292 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id, 15293 struct linked_regs *linked_regs) 15294 { 15295 struct bpf_func_state *func; 15296 struct bpf_reg_state *reg; 15297 int i, j; 15298 15299 id = id & ~BPF_ADD_CONST; 15300 for (i = vstate->curframe; i >= 0; i--) { 15301 func = vstate->frame[i]; 15302 for (j = 0; j < BPF_REG_FP; j++) { 15303 reg = &func->regs[j]; 15304 __collect_linked_regs(linked_regs, reg, id, i, j, true); 15305 } 15306 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 15307 if (!is_spilled_reg(&func->stack[j])) 15308 continue; 15309 reg = &func->stack[j].spilled_ptr; 15310 __collect_linked_regs(linked_regs, reg, id, i, j, false); 15311 } 15312 } 15313 } 15314 15315 /* For all R in linked_regs, copy known_reg range into R 15316 * if R->id == known_reg->id. 15317 */ 15318 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg, 15319 struct linked_regs *linked_regs) 15320 { 15321 struct bpf_reg_state fake_reg; 15322 struct bpf_reg_state *reg; 15323 struct linked_reg *e; 15324 int i; 15325 15326 for (i = 0; i < linked_regs->cnt; ++i) { 15327 e = &linked_regs->entries[i]; 15328 reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno] 15329 : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr; 15330 if (reg->type != SCALAR_VALUE || reg == known_reg) 15331 continue; 15332 if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST)) 15333 continue; 15334 if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) || 15335 reg->off == known_reg->off) { 15336 s32 saved_subreg_def = reg->subreg_def; 15337 15338 copy_register_state(reg, known_reg); 15339 reg->subreg_def = saved_subreg_def; 15340 } else { 15341 s32 saved_subreg_def = reg->subreg_def; 15342 s32 saved_off = reg->off; 15343 15344 fake_reg.type = SCALAR_VALUE; 15345 __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off); 15346 15347 /* reg = known_reg; reg += delta */ 15348 copy_register_state(reg, known_reg); 15349 /* 15350 * Must preserve off, id and add_const flag, 15351 * otherwise another sync_linked_regs() will be incorrect. 15352 */ 15353 reg->off = saved_off; 15354 reg->subreg_def = saved_subreg_def; 15355 15356 scalar32_min_max_add(reg, &fake_reg); 15357 scalar_min_max_add(reg, &fake_reg); 15358 reg->var_off = tnum_add(reg->var_off, fake_reg.var_off); 15359 } 15360 } 15361 } 15362 15363 static int check_cond_jmp_op(struct bpf_verifier_env *env, 15364 struct bpf_insn *insn, int *insn_idx) 15365 { 15366 struct bpf_verifier_state *this_branch = env->cur_state; 15367 struct bpf_verifier_state *other_branch; 15368 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 15369 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 15370 struct bpf_reg_state *eq_branch_regs; 15371 struct linked_regs linked_regs = {}; 15372 u8 opcode = BPF_OP(insn->code); 15373 bool is_jmp32; 15374 int pred = -1; 15375 int err; 15376 15377 /* Only conditional jumps are expected to reach here. */ 15378 if (opcode == BPF_JA || opcode > BPF_JCOND) { 15379 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 15380 return -EINVAL; 15381 } 15382 15383 if (opcode == BPF_JCOND) { 15384 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 15385 int idx = *insn_idx; 15386 15387 if (insn->code != (BPF_JMP | BPF_JCOND) || 15388 insn->src_reg != BPF_MAY_GOTO || 15389 insn->dst_reg || insn->imm || insn->off == 0) { 15390 verbose(env, "invalid may_goto off %d imm %d\n", 15391 insn->off, insn->imm); 15392 return -EINVAL; 15393 } 15394 prev_st = find_prev_entry(env, cur_st->parent, idx); 15395 15396 /* branch out 'fallthrough' insn as a new state to explore */ 15397 queued_st = push_stack(env, idx + 1, idx, false); 15398 if (!queued_st) 15399 return -ENOMEM; 15400 15401 queued_st->may_goto_depth++; 15402 if (prev_st) 15403 widen_imprecise_scalars(env, prev_st, queued_st); 15404 *insn_idx += insn->off; 15405 return 0; 15406 } 15407 15408 /* check src2 operand */ 15409 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15410 if (err) 15411 return err; 15412 15413 dst_reg = ®s[insn->dst_reg]; 15414 if (BPF_SRC(insn->code) == BPF_X) { 15415 if (insn->imm != 0) { 15416 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 15417 return -EINVAL; 15418 } 15419 15420 /* check src1 operand */ 15421 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15422 if (err) 15423 return err; 15424 15425 src_reg = ®s[insn->src_reg]; 15426 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 15427 is_pointer_value(env, insn->src_reg)) { 15428 verbose(env, "R%d pointer comparison prohibited\n", 15429 insn->src_reg); 15430 return -EACCES; 15431 } 15432 } else { 15433 if (insn->src_reg != BPF_REG_0) { 15434 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 15435 return -EINVAL; 15436 } 15437 src_reg = &env->fake_reg[0]; 15438 memset(src_reg, 0, sizeof(*src_reg)); 15439 src_reg->type = SCALAR_VALUE; 15440 __mark_reg_known(src_reg, insn->imm); 15441 } 15442 15443 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 15444 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 15445 if (pred >= 0) { 15446 /* If we get here with a dst_reg pointer type it is because 15447 * above is_branch_taken() special cased the 0 comparison. 15448 */ 15449 if (!__is_pointer_value(false, dst_reg)) 15450 err = mark_chain_precision(env, insn->dst_reg); 15451 if (BPF_SRC(insn->code) == BPF_X && !err && 15452 !__is_pointer_value(false, src_reg)) 15453 err = mark_chain_precision(env, insn->src_reg); 15454 if (err) 15455 return err; 15456 } 15457 15458 if (pred == 1) { 15459 /* Only follow the goto, ignore fall-through. If needed, push 15460 * the fall-through branch for simulation under speculative 15461 * execution. 15462 */ 15463 if (!env->bypass_spec_v1 && 15464 !sanitize_speculative_path(env, insn, *insn_idx + 1, 15465 *insn_idx)) 15466 return -EFAULT; 15467 if (env->log.level & BPF_LOG_LEVEL) 15468 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15469 *insn_idx += insn->off; 15470 return 0; 15471 } else if (pred == 0) { 15472 /* Only follow the fall-through branch, since that's where the 15473 * program will go. If needed, push the goto branch for 15474 * simulation under speculative execution. 15475 */ 15476 if (!env->bypass_spec_v1 && 15477 !sanitize_speculative_path(env, insn, 15478 *insn_idx + insn->off + 1, 15479 *insn_idx)) 15480 return -EFAULT; 15481 if (env->log.level & BPF_LOG_LEVEL) 15482 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15483 return 0; 15484 } 15485 15486 /* Push scalar registers sharing same ID to jump history, 15487 * do this before creating 'other_branch', so that both 15488 * 'this_branch' and 'other_branch' share this history 15489 * if parent state is created. 15490 */ 15491 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id) 15492 collect_linked_regs(this_branch, src_reg->id, &linked_regs); 15493 if (dst_reg->type == SCALAR_VALUE && dst_reg->id) 15494 collect_linked_regs(this_branch, dst_reg->id, &linked_regs); 15495 if (linked_regs.cnt > 1) { 15496 err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); 15497 if (err) 15498 return err; 15499 } 15500 15501 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 15502 false); 15503 if (!other_branch) 15504 return -EFAULT; 15505 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 15506 15507 if (BPF_SRC(insn->code) == BPF_X) { 15508 err = reg_set_min_max(env, 15509 &other_branch_regs[insn->dst_reg], 15510 &other_branch_regs[insn->src_reg], 15511 dst_reg, src_reg, opcode, is_jmp32); 15512 } else /* BPF_SRC(insn->code) == BPF_K */ { 15513 /* reg_set_min_max() can mangle the fake_reg. Make a copy 15514 * so that these are two different memory locations. The 15515 * src_reg is not used beyond here in context of K. 15516 */ 15517 memcpy(&env->fake_reg[1], &env->fake_reg[0], 15518 sizeof(env->fake_reg[0])); 15519 err = reg_set_min_max(env, 15520 &other_branch_regs[insn->dst_reg], 15521 &env->fake_reg[0], 15522 dst_reg, &env->fake_reg[1], 15523 opcode, is_jmp32); 15524 } 15525 if (err) 15526 return err; 15527 15528 if (BPF_SRC(insn->code) == BPF_X && 15529 src_reg->type == SCALAR_VALUE && src_reg->id && 15530 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 15531 sync_linked_regs(this_branch, src_reg, &linked_regs); 15532 sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs); 15533 } 15534 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 15535 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 15536 sync_linked_regs(this_branch, dst_reg, &linked_regs); 15537 sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs); 15538 } 15539 15540 /* if one pointer register is compared to another pointer 15541 * register check if PTR_MAYBE_NULL could be lifted. 15542 * E.g. register A - maybe null 15543 * register B - not null 15544 * for JNE A, B, ... - A is not null in the false branch; 15545 * for JEQ A, B, ... - A is not null in the true branch. 15546 * 15547 * Since PTR_TO_BTF_ID points to a kernel struct that does 15548 * not need to be null checked by the BPF program, i.e., 15549 * could be null even without PTR_MAYBE_NULL marking, so 15550 * only propagate nullness when neither reg is that type. 15551 */ 15552 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 15553 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 15554 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 15555 base_type(src_reg->type) != PTR_TO_BTF_ID && 15556 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 15557 eq_branch_regs = NULL; 15558 switch (opcode) { 15559 case BPF_JEQ: 15560 eq_branch_regs = other_branch_regs; 15561 break; 15562 case BPF_JNE: 15563 eq_branch_regs = regs; 15564 break; 15565 default: 15566 /* do nothing */ 15567 break; 15568 } 15569 if (eq_branch_regs) { 15570 if (type_may_be_null(src_reg->type)) 15571 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 15572 else 15573 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 15574 } 15575 } 15576 15577 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 15578 * NOTE: these optimizations below are related with pointer comparison 15579 * which will never be JMP32. 15580 */ 15581 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 15582 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 15583 type_may_be_null(dst_reg->type)) { 15584 /* Mark all identical registers in each branch as either 15585 * safe or unknown depending R == 0 or R != 0 conditional. 15586 */ 15587 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 15588 opcode == BPF_JNE); 15589 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 15590 opcode == BPF_JEQ); 15591 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 15592 this_branch, other_branch) && 15593 is_pointer_value(env, insn->dst_reg)) { 15594 verbose(env, "R%d pointer comparison prohibited\n", 15595 insn->dst_reg); 15596 return -EACCES; 15597 } 15598 if (env->log.level & BPF_LOG_LEVEL) 15599 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15600 return 0; 15601 } 15602 15603 /* verify BPF_LD_IMM64 instruction */ 15604 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 15605 { 15606 struct bpf_insn_aux_data *aux = cur_aux(env); 15607 struct bpf_reg_state *regs = cur_regs(env); 15608 struct bpf_reg_state *dst_reg; 15609 struct bpf_map *map; 15610 int err; 15611 15612 if (BPF_SIZE(insn->code) != BPF_DW) { 15613 verbose(env, "invalid BPF_LD_IMM insn\n"); 15614 return -EINVAL; 15615 } 15616 if (insn->off != 0) { 15617 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 15618 return -EINVAL; 15619 } 15620 15621 err = check_reg_arg(env, insn->dst_reg, DST_OP); 15622 if (err) 15623 return err; 15624 15625 dst_reg = ®s[insn->dst_reg]; 15626 if (insn->src_reg == 0) { 15627 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 15628 15629 dst_reg->type = SCALAR_VALUE; 15630 __mark_reg_known(®s[insn->dst_reg], imm); 15631 return 0; 15632 } 15633 15634 /* All special src_reg cases are listed below. From this point onwards 15635 * we either succeed and assign a corresponding dst_reg->type after 15636 * zeroing the offset, or fail and reject the program. 15637 */ 15638 mark_reg_known_zero(env, regs, insn->dst_reg); 15639 15640 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 15641 dst_reg->type = aux->btf_var.reg_type; 15642 switch (base_type(dst_reg->type)) { 15643 case PTR_TO_MEM: 15644 dst_reg->mem_size = aux->btf_var.mem_size; 15645 break; 15646 case PTR_TO_BTF_ID: 15647 dst_reg->btf = aux->btf_var.btf; 15648 dst_reg->btf_id = aux->btf_var.btf_id; 15649 break; 15650 default: 15651 verbose(env, "bpf verifier is misconfigured\n"); 15652 return -EFAULT; 15653 } 15654 return 0; 15655 } 15656 15657 if (insn->src_reg == BPF_PSEUDO_FUNC) { 15658 struct bpf_prog_aux *aux = env->prog->aux; 15659 u32 subprogno = find_subprog(env, 15660 env->insn_idx + insn->imm + 1); 15661 15662 if (!aux->func_info) { 15663 verbose(env, "missing btf func_info\n"); 15664 return -EINVAL; 15665 } 15666 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 15667 verbose(env, "callback function not static\n"); 15668 return -EINVAL; 15669 } 15670 15671 dst_reg->type = PTR_TO_FUNC; 15672 dst_reg->subprogno = subprogno; 15673 return 0; 15674 } 15675 15676 map = env->used_maps[aux->map_index]; 15677 dst_reg->map_ptr = map; 15678 15679 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 15680 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 15681 if (map->map_type == BPF_MAP_TYPE_ARENA) { 15682 __mark_reg_unknown(env, dst_reg); 15683 return 0; 15684 } 15685 dst_reg->type = PTR_TO_MAP_VALUE; 15686 dst_reg->off = aux->map_off; 15687 WARN_ON_ONCE(map->max_entries != 1); 15688 /* We want reg->id to be same (0) as map_value is not distinct */ 15689 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 15690 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 15691 dst_reg->type = CONST_PTR_TO_MAP; 15692 } else { 15693 verbose(env, "bpf verifier is misconfigured\n"); 15694 return -EINVAL; 15695 } 15696 15697 return 0; 15698 } 15699 15700 static bool may_access_skb(enum bpf_prog_type type) 15701 { 15702 switch (type) { 15703 case BPF_PROG_TYPE_SOCKET_FILTER: 15704 case BPF_PROG_TYPE_SCHED_CLS: 15705 case BPF_PROG_TYPE_SCHED_ACT: 15706 return true; 15707 default: 15708 return false; 15709 } 15710 } 15711 15712 /* verify safety of LD_ABS|LD_IND instructions: 15713 * - they can only appear in the programs where ctx == skb 15714 * - since they are wrappers of function calls, they scratch R1-R5 registers, 15715 * preserve R6-R9, and store return value into R0 15716 * 15717 * Implicit input: 15718 * ctx == skb == R6 == CTX 15719 * 15720 * Explicit input: 15721 * SRC == any register 15722 * IMM == 32-bit immediate 15723 * 15724 * Output: 15725 * R0 - 8/16/32-bit skb data converted to cpu endianness 15726 */ 15727 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 15728 { 15729 struct bpf_reg_state *regs = cur_regs(env); 15730 static const int ctx_reg = BPF_REG_6; 15731 u8 mode = BPF_MODE(insn->code); 15732 int i, err; 15733 15734 if (!may_access_skb(resolve_prog_type(env->prog))) { 15735 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 15736 return -EINVAL; 15737 } 15738 15739 if (!env->ops->gen_ld_abs) { 15740 verbose(env, "bpf verifier is misconfigured\n"); 15741 return -EINVAL; 15742 } 15743 15744 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 15745 BPF_SIZE(insn->code) == BPF_DW || 15746 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 15747 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 15748 return -EINVAL; 15749 } 15750 15751 /* check whether implicit source operand (register R6) is readable */ 15752 err = check_reg_arg(env, ctx_reg, SRC_OP); 15753 if (err) 15754 return err; 15755 15756 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 15757 * gen_ld_abs() may terminate the program at runtime, leading to 15758 * reference leak. 15759 */ 15760 err = check_reference_leak(env, false); 15761 if (err) { 15762 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 15763 return err; 15764 } 15765 15766 if (env->cur_state->active_lock.ptr) { 15767 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 15768 return -EINVAL; 15769 } 15770 15771 if (env->cur_state->active_rcu_lock) { 15772 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 15773 return -EINVAL; 15774 } 15775 15776 if (env->cur_state->active_preempt_lock) { 15777 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_preempt_disable-ed region\n"); 15778 return -EINVAL; 15779 } 15780 15781 if (regs[ctx_reg].type != PTR_TO_CTX) { 15782 verbose(env, 15783 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 15784 return -EINVAL; 15785 } 15786 15787 if (mode == BPF_IND) { 15788 /* check explicit source operand */ 15789 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15790 if (err) 15791 return err; 15792 } 15793 15794 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 15795 if (err < 0) 15796 return err; 15797 15798 /* reset caller saved regs to unreadable */ 15799 for (i = 0; i < CALLER_SAVED_REGS; i++) { 15800 mark_reg_not_init(env, regs, caller_saved[i]); 15801 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 15802 } 15803 15804 /* mark destination R0 register as readable, since it contains 15805 * the value fetched from the packet. 15806 * Already marked as written above. 15807 */ 15808 mark_reg_unknown(env, regs, BPF_REG_0); 15809 /* ld_abs load up to 32-bit skb data. */ 15810 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 15811 return 0; 15812 } 15813 15814 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 15815 { 15816 const char *exit_ctx = "At program exit"; 15817 struct tnum enforce_attach_type_range = tnum_unknown; 15818 const struct bpf_prog *prog = env->prog; 15819 struct bpf_reg_state *reg; 15820 struct bpf_retval_range range = retval_range(0, 1); 15821 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 15822 int err; 15823 struct bpf_func_state *frame = env->cur_state->frame[0]; 15824 const bool is_subprog = frame->subprogno; 15825 bool return_32bit = false; 15826 15827 /* LSM and struct_ops func-ptr's return type could be "void" */ 15828 if (!is_subprog || frame->in_exception_callback_fn) { 15829 switch (prog_type) { 15830 case BPF_PROG_TYPE_LSM: 15831 if (prog->expected_attach_type == BPF_LSM_CGROUP) 15832 /* See below, can be 0 or 0-1 depending on hook. */ 15833 break; 15834 fallthrough; 15835 case BPF_PROG_TYPE_STRUCT_OPS: 15836 if (!prog->aux->attach_func_proto->type) 15837 return 0; 15838 break; 15839 default: 15840 break; 15841 } 15842 } 15843 15844 /* eBPF calling convention is such that R0 is used 15845 * to return the value from eBPF program. 15846 * Make sure that it's readable at this time 15847 * of bpf_exit, which means that program wrote 15848 * something into it earlier 15849 */ 15850 err = check_reg_arg(env, regno, SRC_OP); 15851 if (err) 15852 return err; 15853 15854 if (is_pointer_value(env, regno)) { 15855 verbose(env, "R%d leaks addr as return value\n", regno); 15856 return -EACCES; 15857 } 15858 15859 reg = cur_regs(env) + regno; 15860 15861 if (frame->in_async_callback_fn) { 15862 /* enforce return zero from async callbacks like timer */ 15863 exit_ctx = "At async callback return"; 15864 range = retval_range(0, 0); 15865 goto enforce_retval; 15866 } 15867 15868 if (is_subprog && !frame->in_exception_callback_fn) { 15869 if (reg->type != SCALAR_VALUE) { 15870 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 15871 regno, reg_type_str(env, reg->type)); 15872 return -EINVAL; 15873 } 15874 return 0; 15875 } 15876 15877 switch (prog_type) { 15878 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 15879 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 15880 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 15881 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 15882 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 15883 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 15884 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 15885 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 15886 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 15887 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 15888 range = retval_range(1, 1); 15889 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 15890 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 15891 range = retval_range(0, 3); 15892 break; 15893 case BPF_PROG_TYPE_CGROUP_SKB: 15894 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 15895 range = retval_range(0, 3); 15896 enforce_attach_type_range = tnum_range(2, 3); 15897 } 15898 break; 15899 case BPF_PROG_TYPE_CGROUP_SOCK: 15900 case BPF_PROG_TYPE_SOCK_OPS: 15901 case BPF_PROG_TYPE_CGROUP_DEVICE: 15902 case BPF_PROG_TYPE_CGROUP_SYSCTL: 15903 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 15904 break; 15905 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15906 if (!env->prog->aux->attach_btf_id) 15907 return 0; 15908 range = retval_range(0, 0); 15909 break; 15910 case BPF_PROG_TYPE_TRACING: 15911 switch (env->prog->expected_attach_type) { 15912 case BPF_TRACE_FENTRY: 15913 case BPF_TRACE_FEXIT: 15914 range = retval_range(0, 0); 15915 break; 15916 case BPF_TRACE_RAW_TP: 15917 case BPF_MODIFY_RETURN: 15918 return 0; 15919 case BPF_TRACE_ITER: 15920 break; 15921 default: 15922 return -ENOTSUPP; 15923 } 15924 break; 15925 case BPF_PROG_TYPE_SK_LOOKUP: 15926 range = retval_range(SK_DROP, SK_PASS); 15927 break; 15928 15929 case BPF_PROG_TYPE_LSM: 15930 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 15931 /* no range found, any return value is allowed */ 15932 if (!get_func_retval_range(env->prog, &range)) 15933 return 0; 15934 /* no restricted range, any return value is allowed */ 15935 if (range.minval == S32_MIN && range.maxval == S32_MAX) 15936 return 0; 15937 return_32bit = true; 15938 } else if (!env->prog->aux->attach_func_proto->type) { 15939 /* Make sure programs that attach to void 15940 * hooks don't try to modify return value. 15941 */ 15942 range = retval_range(1, 1); 15943 } 15944 break; 15945 15946 case BPF_PROG_TYPE_NETFILTER: 15947 range = retval_range(NF_DROP, NF_ACCEPT); 15948 break; 15949 case BPF_PROG_TYPE_EXT: 15950 /* freplace program can return anything as its return value 15951 * depends on the to-be-replaced kernel func or bpf program. 15952 */ 15953 default: 15954 return 0; 15955 } 15956 15957 enforce_retval: 15958 if (reg->type != SCALAR_VALUE) { 15959 verbose(env, "%s the register R%d is not a known value (%s)\n", 15960 exit_ctx, regno, reg_type_str(env, reg->type)); 15961 return -EINVAL; 15962 } 15963 15964 err = mark_chain_precision(env, regno); 15965 if (err) 15966 return err; 15967 15968 if (!retval_range_within(range, reg, return_32bit)) { 15969 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 15970 if (!is_subprog && 15971 prog->expected_attach_type == BPF_LSM_CGROUP && 15972 prog_type == BPF_PROG_TYPE_LSM && 15973 !prog->aux->attach_func_proto->type) 15974 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 15975 return -EINVAL; 15976 } 15977 15978 if (!tnum_is_unknown(enforce_attach_type_range) && 15979 tnum_in(enforce_attach_type_range, reg->var_off)) 15980 env->prog->enforce_expected_attach_type = 1; 15981 return 0; 15982 } 15983 15984 /* non-recursive DFS pseudo code 15985 * 1 procedure DFS-iterative(G,v): 15986 * 2 label v as discovered 15987 * 3 let S be a stack 15988 * 4 S.push(v) 15989 * 5 while S is not empty 15990 * 6 t <- S.peek() 15991 * 7 if t is what we're looking for: 15992 * 8 return t 15993 * 9 for all edges e in G.adjacentEdges(t) do 15994 * 10 if edge e is already labelled 15995 * 11 continue with the next edge 15996 * 12 w <- G.adjacentVertex(t,e) 15997 * 13 if vertex w is not discovered and not explored 15998 * 14 label e as tree-edge 15999 * 15 label w as discovered 16000 * 16 S.push(w) 16001 * 17 continue at 5 16002 * 18 else if vertex w is discovered 16003 * 19 label e as back-edge 16004 * 20 else 16005 * 21 // vertex w is explored 16006 * 22 label e as forward- or cross-edge 16007 * 23 label t as explored 16008 * 24 S.pop() 16009 * 16010 * convention: 16011 * 0x10 - discovered 16012 * 0x11 - discovered and fall-through edge labelled 16013 * 0x12 - discovered and fall-through and branch edges labelled 16014 * 0x20 - explored 16015 */ 16016 16017 enum { 16018 DISCOVERED = 0x10, 16019 EXPLORED = 0x20, 16020 FALLTHROUGH = 1, 16021 BRANCH = 2, 16022 }; 16023 16024 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 16025 { 16026 env->insn_aux_data[idx].prune_point = true; 16027 } 16028 16029 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 16030 { 16031 return env->insn_aux_data[insn_idx].prune_point; 16032 } 16033 16034 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 16035 { 16036 env->insn_aux_data[idx].force_checkpoint = true; 16037 } 16038 16039 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 16040 { 16041 return env->insn_aux_data[insn_idx].force_checkpoint; 16042 } 16043 16044 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 16045 { 16046 env->insn_aux_data[idx].calls_callback = true; 16047 } 16048 16049 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 16050 { 16051 return env->insn_aux_data[insn_idx].calls_callback; 16052 } 16053 16054 enum { 16055 DONE_EXPLORING = 0, 16056 KEEP_EXPLORING = 1, 16057 }; 16058 16059 /* t, w, e - match pseudo-code above: 16060 * t - index of current instruction 16061 * w - next instruction 16062 * e - edge 16063 */ 16064 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 16065 { 16066 int *insn_stack = env->cfg.insn_stack; 16067 int *insn_state = env->cfg.insn_state; 16068 16069 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 16070 return DONE_EXPLORING; 16071 16072 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 16073 return DONE_EXPLORING; 16074 16075 if (w < 0 || w >= env->prog->len) { 16076 verbose_linfo(env, t, "%d: ", t); 16077 verbose(env, "jump out of range from insn %d to %d\n", t, w); 16078 return -EINVAL; 16079 } 16080 16081 if (e == BRANCH) { 16082 /* mark branch target for state pruning */ 16083 mark_prune_point(env, w); 16084 mark_jmp_point(env, w); 16085 } 16086 16087 if (insn_state[w] == 0) { 16088 /* tree-edge */ 16089 insn_state[t] = DISCOVERED | e; 16090 insn_state[w] = DISCOVERED; 16091 if (env->cfg.cur_stack >= env->prog->len) 16092 return -E2BIG; 16093 insn_stack[env->cfg.cur_stack++] = w; 16094 return KEEP_EXPLORING; 16095 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 16096 if (env->bpf_capable) 16097 return DONE_EXPLORING; 16098 verbose_linfo(env, t, "%d: ", t); 16099 verbose_linfo(env, w, "%d: ", w); 16100 verbose(env, "back-edge from insn %d to %d\n", t, w); 16101 return -EINVAL; 16102 } else if (insn_state[w] == EXPLORED) { 16103 /* forward- or cross-edge */ 16104 insn_state[t] = DISCOVERED | e; 16105 } else { 16106 verbose(env, "insn state internal bug\n"); 16107 return -EFAULT; 16108 } 16109 return DONE_EXPLORING; 16110 } 16111 16112 static int visit_func_call_insn(int t, struct bpf_insn *insns, 16113 struct bpf_verifier_env *env, 16114 bool visit_callee) 16115 { 16116 int ret, insn_sz; 16117 16118 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 16119 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 16120 if (ret) 16121 return ret; 16122 16123 mark_prune_point(env, t + insn_sz); 16124 /* when we exit from subprog, we need to record non-linear history */ 16125 mark_jmp_point(env, t + insn_sz); 16126 16127 if (visit_callee) { 16128 mark_prune_point(env, t); 16129 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 16130 } 16131 return ret; 16132 } 16133 16134 /* Bitmask with 1s for all caller saved registers */ 16135 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 16136 16137 /* Return a bitmask specifying which caller saved registers are 16138 * clobbered by a call to a helper *as if* this helper follows 16139 * bpf_fastcall contract: 16140 * - includes R0 if function is non-void; 16141 * - includes R1-R5 if corresponding parameter has is described 16142 * in the function prototype. 16143 */ 16144 static u32 helper_fastcall_clobber_mask(const struct bpf_func_proto *fn) 16145 { 16146 u32 mask; 16147 int i; 16148 16149 mask = 0; 16150 if (fn->ret_type != RET_VOID) 16151 mask |= BIT(BPF_REG_0); 16152 for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) 16153 if (fn->arg_type[i] != ARG_DONTCARE) 16154 mask |= BIT(BPF_REG_1 + i); 16155 return mask; 16156 } 16157 16158 /* True if do_misc_fixups() replaces calls to helper number 'imm', 16159 * replacement patch is presumed to follow bpf_fastcall contract 16160 * (see mark_fastcall_pattern_for_call() below). 16161 */ 16162 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm) 16163 { 16164 switch (imm) { 16165 #ifdef CONFIG_X86_64 16166 case BPF_FUNC_get_smp_processor_id: 16167 return env->prog->jit_requested && bpf_jit_supports_percpu_insn(); 16168 #endif 16169 default: 16170 return false; 16171 } 16172 } 16173 16174 /* Same as helper_fastcall_clobber_mask() but for kfuncs, see comment above */ 16175 static u32 kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta *meta) 16176 { 16177 u32 vlen, i, mask; 16178 16179 vlen = btf_type_vlen(meta->func_proto); 16180 mask = 0; 16181 if (!btf_type_is_void(btf_type_by_id(meta->btf, meta->func_proto->type))) 16182 mask |= BIT(BPF_REG_0); 16183 for (i = 0; i < vlen; ++i) 16184 mask |= BIT(BPF_REG_1 + i); 16185 return mask; 16186 } 16187 16188 /* Same as verifier_inlines_helper_call() but for kfuncs, see comment above */ 16189 static bool is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta *meta) 16190 { 16191 if (meta->btf == btf_vmlinux) 16192 return meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 16193 meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]; 16194 return false; 16195 } 16196 16197 /* LLVM define a bpf_fastcall function attribute. 16198 * This attribute means that function scratches only some of 16199 * the caller saved registers defined by ABI. 16200 * For BPF the set of such registers could be defined as follows: 16201 * - R0 is scratched only if function is non-void; 16202 * - R1-R5 are scratched only if corresponding parameter type is defined 16203 * in the function prototype. 16204 * 16205 * The contract between kernel and clang allows to simultaneously use 16206 * such functions and maintain backwards compatibility with old 16207 * kernels that don't understand bpf_fastcall calls: 16208 * 16209 * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5 16210 * registers are not scratched by the call; 16211 * 16212 * - as a post-processing step, clang visits each bpf_fastcall call and adds 16213 * spill/fill for every live r0-r5; 16214 * 16215 * - stack offsets used for the spill/fill are allocated as lowest 16216 * stack offsets in whole function and are not used for any other 16217 * purposes; 16218 * 16219 * - when kernel loads a program, it looks for such patterns 16220 * (bpf_fastcall function surrounded by spills/fills) and checks if 16221 * spill/fill stack offsets are used exclusively in fastcall patterns; 16222 * 16223 * - if so, and if verifier or current JIT inlines the call to the 16224 * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary 16225 * spill/fill pairs; 16226 * 16227 * - when old kernel loads a program, presence of spill/fill pairs 16228 * keeps BPF program valid, albeit slightly less efficient. 16229 * 16230 * For example: 16231 * 16232 * r1 = 1; 16233 * r2 = 2; 16234 * *(u64 *)(r10 - 8) = r1; r1 = 1; 16235 * *(u64 *)(r10 - 16) = r2; r2 = 2; 16236 * call %[to_be_inlined] --> call %[to_be_inlined] 16237 * r2 = *(u64 *)(r10 - 16); r0 = r1; 16238 * r1 = *(u64 *)(r10 - 8); r0 += r2; 16239 * r0 = r1; exit; 16240 * r0 += r2; 16241 * exit; 16242 * 16243 * The purpose of mark_fastcall_pattern_for_call is to: 16244 * - look for such patterns; 16245 * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern; 16246 * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction; 16247 * - update env->subprog_info[*]->fastcall_stack_off to find an offset 16248 * at which bpf_fastcall spill/fill stack slots start; 16249 * - update env->subprog_info[*]->keep_fastcall_stack. 16250 * 16251 * The .fastcall_pattern and .fastcall_stack_off are used by 16252 * check_fastcall_stack_contract() to check if every stack access to 16253 * fastcall spill/fill stack slot originates from spill/fill 16254 * instructions, members of fastcall patterns. 16255 * 16256 * If such condition holds true for a subprogram, fastcall patterns could 16257 * be rewritten by remove_fastcall_spills_fills(). 16258 * Otherwise bpf_fastcall patterns are not changed in the subprogram 16259 * (code, presumably, generated by an older clang version). 16260 * 16261 * For example, it is *not* safe to remove spill/fill below: 16262 * 16263 * r1 = 1; 16264 * *(u64 *)(r10 - 8) = r1; r1 = 1; 16265 * call %[to_be_inlined] --> call %[to_be_inlined] 16266 * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!! 16267 * r0 = *(u64 *)(r10 - 8); r0 += r1; 16268 * r0 += r1; exit; 16269 * exit; 16270 */ 16271 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env, 16272 struct bpf_subprog_info *subprog, 16273 int insn_idx, s16 lowest_off) 16274 { 16275 struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx; 16276 struct bpf_insn *call = &env->prog->insnsi[insn_idx]; 16277 const struct bpf_func_proto *fn; 16278 u32 clobbered_regs_mask = ALL_CALLER_SAVED_REGS; 16279 u32 expected_regs_mask; 16280 bool can_be_inlined = false; 16281 s16 off; 16282 int i; 16283 16284 if (bpf_helper_call(call)) { 16285 if (get_helper_proto(env, call->imm, &fn) < 0) 16286 /* error would be reported later */ 16287 return; 16288 clobbered_regs_mask = helper_fastcall_clobber_mask(fn); 16289 can_be_inlined = fn->allow_fastcall && 16290 (verifier_inlines_helper_call(env, call->imm) || 16291 bpf_jit_inlines_helper_call(call->imm)); 16292 } 16293 16294 if (bpf_pseudo_kfunc_call(call)) { 16295 struct bpf_kfunc_call_arg_meta meta; 16296 int err; 16297 16298 err = fetch_kfunc_meta(env, call, &meta, NULL); 16299 if (err < 0) 16300 /* error would be reported later */ 16301 return; 16302 16303 clobbered_regs_mask = kfunc_fastcall_clobber_mask(&meta); 16304 can_be_inlined = is_fastcall_kfunc_call(&meta); 16305 } 16306 16307 if (clobbered_regs_mask == ALL_CALLER_SAVED_REGS) 16308 return; 16309 16310 /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */ 16311 expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS; 16312 16313 /* match pairs of form: 16314 * 16315 * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0) 16316 * ... 16317 * call %[to_be_inlined] 16318 * ... 16319 * rX = *(u64 *)(r10 - Y) 16320 */ 16321 for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) { 16322 if (insn_idx - i < 0 || insn_idx + i >= env->prog->len) 16323 break; 16324 stx = &insns[insn_idx - i]; 16325 ldx = &insns[insn_idx + i]; 16326 /* must be a stack spill/fill pair */ 16327 if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) || 16328 ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) || 16329 stx->dst_reg != BPF_REG_10 || 16330 ldx->src_reg != BPF_REG_10) 16331 break; 16332 /* must be a spill/fill for the same reg */ 16333 if (stx->src_reg != ldx->dst_reg) 16334 break; 16335 /* must be one of the previously unseen registers */ 16336 if ((BIT(stx->src_reg) & expected_regs_mask) == 0) 16337 break; 16338 /* must be a spill/fill for the same expected offset, 16339 * no need to check offset alignment, BPF_DW stack access 16340 * is always 8-byte aligned. 16341 */ 16342 if (stx->off != off || ldx->off != off) 16343 break; 16344 expected_regs_mask &= ~BIT(stx->src_reg); 16345 env->insn_aux_data[insn_idx - i].fastcall_pattern = 1; 16346 env->insn_aux_data[insn_idx + i].fastcall_pattern = 1; 16347 } 16348 if (i == 1) 16349 return; 16350 16351 /* Conditionally set 'fastcall_spills_num' to allow forward 16352 * compatibility when more helper functions are marked as 16353 * bpf_fastcall at compile time than current kernel supports, e.g: 16354 * 16355 * 1: *(u64 *)(r10 - 8) = r1 16356 * 2: call A ;; assume A is bpf_fastcall for current kernel 16357 * 3: r1 = *(u64 *)(r10 - 8) 16358 * 4: *(u64 *)(r10 - 8) = r1 16359 * 5: call B ;; assume B is not bpf_fastcall for current kernel 16360 * 6: r1 = *(u64 *)(r10 - 8) 16361 * 16362 * There is no need to block bpf_fastcall rewrite for such program. 16363 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy, 16364 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills() 16365 * does not remove spill/fill pair {4,6}. 16366 */ 16367 if (can_be_inlined) 16368 env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1; 16369 else 16370 subprog->keep_fastcall_stack = 1; 16371 subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off); 16372 } 16373 16374 static int mark_fastcall_patterns(struct bpf_verifier_env *env) 16375 { 16376 struct bpf_subprog_info *subprog = env->subprog_info; 16377 struct bpf_insn *insn; 16378 s16 lowest_off; 16379 int s, i; 16380 16381 for (s = 0; s < env->subprog_cnt; ++s, ++subprog) { 16382 /* find lowest stack spill offset used in this subprog */ 16383 lowest_off = 0; 16384 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 16385 insn = env->prog->insnsi + i; 16386 if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) || 16387 insn->dst_reg != BPF_REG_10) 16388 continue; 16389 lowest_off = min(lowest_off, insn->off); 16390 } 16391 /* use this offset to find fastcall patterns */ 16392 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 16393 insn = env->prog->insnsi + i; 16394 if (insn->code != (BPF_JMP | BPF_CALL)) 16395 continue; 16396 mark_fastcall_pattern_for_call(env, subprog, i, lowest_off); 16397 } 16398 } 16399 return 0; 16400 } 16401 16402 /* Visits the instruction at index t and returns one of the following: 16403 * < 0 - an error occurred 16404 * DONE_EXPLORING - the instruction was fully explored 16405 * KEEP_EXPLORING - there is still work to be done before it is fully explored 16406 */ 16407 static int visit_insn(int t, struct bpf_verifier_env *env) 16408 { 16409 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 16410 int ret, off, insn_sz; 16411 16412 if (bpf_pseudo_func(insn)) 16413 return visit_func_call_insn(t, insns, env, true); 16414 16415 /* All non-branch instructions have a single fall-through edge. */ 16416 if (BPF_CLASS(insn->code) != BPF_JMP && 16417 BPF_CLASS(insn->code) != BPF_JMP32) { 16418 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 16419 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 16420 } 16421 16422 switch (BPF_OP(insn->code)) { 16423 case BPF_EXIT: 16424 return DONE_EXPLORING; 16425 16426 case BPF_CALL: 16427 if (is_async_callback_calling_insn(insn)) 16428 /* Mark this call insn as a prune point to trigger 16429 * is_state_visited() check before call itself is 16430 * processed by __check_func_call(). Otherwise new 16431 * async state will be pushed for further exploration. 16432 */ 16433 mark_prune_point(env, t); 16434 /* For functions that invoke callbacks it is not known how many times 16435 * callback would be called. Verifier models callback calling functions 16436 * by repeatedly visiting callback bodies and returning to origin call 16437 * instruction. 16438 * In order to stop such iteration verifier needs to identify when a 16439 * state identical some state from a previous iteration is reached. 16440 * Check below forces creation of checkpoint before callback calling 16441 * instruction to allow search for such identical states. 16442 */ 16443 if (is_sync_callback_calling_insn(insn)) { 16444 mark_calls_callback(env, t); 16445 mark_force_checkpoint(env, t); 16446 mark_prune_point(env, t); 16447 mark_jmp_point(env, t); 16448 } 16449 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 16450 struct bpf_kfunc_call_arg_meta meta; 16451 16452 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 16453 if (ret == 0 && is_iter_next_kfunc(&meta)) { 16454 mark_prune_point(env, t); 16455 /* Checking and saving state checkpoints at iter_next() call 16456 * is crucial for fast convergence of open-coded iterator loop 16457 * logic, so we need to force it. If we don't do that, 16458 * is_state_visited() might skip saving a checkpoint, causing 16459 * unnecessarily long sequence of not checkpointed 16460 * instructions and jumps, leading to exhaustion of jump 16461 * history buffer, and potentially other undesired outcomes. 16462 * It is expected that with correct open-coded iterators 16463 * convergence will happen quickly, so we don't run a risk of 16464 * exhausting memory. 16465 */ 16466 mark_force_checkpoint(env, t); 16467 } 16468 } 16469 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 16470 16471 case BPF_JA: 16472 if (BPF_SRC(insn->code) != BPF_K) 16473 return -EINVAL; 16474 16475 if (BPF_CLASS(insn->code) == BPF_JMP) 16476 off = insn->off; 16477 else 16478 off = insn->imm; 16479 16480 /* unconditional jump with single edge */ 16481 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 16482 if (ret) 16483 return ret; 16484 16485 mark_prune_point(env, t + off + 1); 16486 mark_jmp_point(env, t + off + 1); 16487 16488 return ret; 16489 16490 default: 16491 /* conditional jump with two edges */ 16492 mark_prune_point(env, t); 16493 if (is_may_goto_insn(insn)) 16494 mark_force_checkpoint(env, t); 16495 16496 ret = push_insn(t, t + 1, FALLTHROUGH, env); 16497 if (ret) 16498 return ret; 16499 16500 return push_insn(t, t + insn->off + 1, BRANCH, env); 16501 } 16502 } 16503 16504 /* non-recursive depth-first-search to detect loops in BPF program 16505 * loop == back-edge in directed graph 16506 */ 16507 static int check_cfg(struct bpf_verifier_env *env) 16508 { 16509 int insn_cnt = env->prog->len; 16510 int *insn_stack, *insn_state; 16511 int ex_insn_beg, i, ret = 0; 16512 bool ex_done = false; 16513 16514 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 16515 if (!insn_state) 16516 return -ENOMEM; 16517 16518 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 16519 if (!insn_stack) { 16520 kvfree(insn_state); 16521 return -ENOMEM; 16522 } 16523 16524 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 16525 insn_stack[0] = 0; /* 0 is the first instruction */ 16526 env->cfg.cur_stack = 1; 16527 16528 walk_cfg: 16529 while (env->cfg.cur_stack > 0) { 16530 int t = insn_stack[env->cfg.cur_stack - 1]; 16531 16532 ret = visit_insn(t, env); 16533 switch (ret) { 16534 case DONE_EXPLORING: 16535 insn_state[t] = EXPLORED; 16536 env->cfg.cur_stack--; 16537 break; 16538 case KEEP_EXPLORING: 16539 break; 16540 default: 16541 if (ret > 0) { 16542 verbose(env, "visit_insn internal bug\n"); 16543 ret = -EFAULT; 16544 } 16545 goto err_free; 16546 } 16547 } 16548 16549 if (env->cfg.cur_stack < 0) { 16550 verbose(env, "pop stack internal bug\n"); 16551 ret = -EFAULT; 16552 goto err_free; 16553 } 16554 16555 if (env->exception_callback_subprog && !ex_done) { 16556 ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start; 16557 16558 insn_state[ex_insn_beg] = DISCOVERED; 16559 insn_stack[0] = ex_insn_beg; 16560 env->cfg.cur_stack = 1; 16561 ex_done = true; 16562 goto walk_cfg; 16563 } 16564 16565 for (i = 0; i < insn_cnt; i++) { 16566 struct bpf_insn *insn = &env->prog->insnsi[i]; 16567 16568 if (insn_state[i] != EXPLORED) { 16569 verbose(env, "unreachable insn %d\n", i); 16570 ret = -EINVAL; 16571 goto err_free; 16572 } 16573 if (bpf_is_ldimm64(insn)) { 16574 if (insn_state[i + 1] != 0) { 16575 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 16576 ret = -EINVAL; 16577 goto err_free; 16578 } 16579 i++; /* skip second half of ldimm64 */ 16580 } 16581 } 16582 ret = 0; /* cfg looks good */ 16583 16584 err_free: 16585 kvfree(insn_state); 16586 kvfree(insn_stack); 16587 env->cfg.insn_state = env->cfg.insn_stack = NULL; 16588 return ret; 16589 } 16590 16591 static int check_abnormal_return(struct bpf_verifier_env *env) 16592 { 16593 int i; 16594 16595 for (i = 1; i < env->subprog_cnt; i++) { 16596 if (env->subprog_info[i].has_ld_abs) { 16597 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 16598 return -EINVAL; 16599 } 16600 if (env->subprog_info[i].has_tail_call) { 16601 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 16602 return -EINVAL; 16603 } 16604 } 16605 return 0; 16606 } 16607 16608 /* The minimum supported BTF func info size */ 16609 #define MIN_BPF_FUNCINFO_SIZE 8 16610 #define MAX_FUNCINFO_REC_SIZE 252 16611 16612 static int check_btf_func_early(struct bpf_verifier_env *env, 16613 const union bpf_attr *attr, 16614 bpfptr_t uattr) 16615 { 16616 u32 krec_size = sizeof(struct bpf_func_info); 16617 const struct btf_type *type, *func_proto; 16618 u32 i, nfuncs, urec_size, min_size; 16619 struct bpf_func_info *krecord; 16620 struct bpf_prog *prog; 16621 const struct btf *btf; 16622 u32 prev_offset = 0; 16623 bpfptr_t urecord; 16624 int ret = -ENOMEM; 16625 16626 nfuncs = attr->func_info_cnt; 16627 if (!nfuncs) { 16628 if (check_abnormal_return(env)) 16629 return -EINVAL; 16630 return 0; 16631 } 16632 16633 urec_size = attr->func_info_rec_size; 16634 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 16635 urec_size > MAX_FUNCINFO_REC_SIZE || 16636 urec_size % sizeof(u32)) { 16637 verbose(env, "invalid func info rec size %u\n", urec_size); 16638 return -EINVAL; 16639 } 16640 16641 prog = env->prog; 16642 btf = prog->aux->btf; 16643 16644 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 16645 min_size = min_t(u32, krec_size, urec_size); 16646 16647 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 16648 if (!krecord) 16649 return -ENOMEM; 16650 16651 for (i = 0; i < nfuncs; i++) { 16652 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 16653 if (ret) { 16654 if (ret == -E2BIG) { 16655 verbose(env, "nonzero tailing record in func info"); 16656 /* set the size kernel expects so loader can zero 16657 * out the rest of the record. 16658 */ 16659 if (copy_to_bpfptr_offset(uattr, 16660 offsetof(union bpf_attr, func_info_rec_size), 16661 &min_size, sizeof(min_size))) 16662 ret = -EFAULT; 16663 } 16664 goto err_free; 16665 } 16666 16667 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 16668 ret = -EFAULT; 16669 goto err_free; 16670 } 16671 16672 /* check insn_off */ 16673 ret = -EINVAL; 16674 if (i == 0) { 16675 if (krecord[i].insn_off) { 16676 verbose(env, 16677 "nonzero insn_off %u for the first func info record", 16678 krecord[i].insn_off); 16679 goto err_free; 16680 } 16681 } else if (krecord[i].insn_off <= prev_offset) { 16682 verbose(env, 16683 "same or smaller insn offset (%u) than previous func info record (%u)", 16684 krecord[i].insn_off, prev_offset); 16685 goto err_free; 16686 } 16687 16688 /* check type_id */ 16689 type = btf_type_by_id(btf, krecord[i].type_id); 16690 if (!type || !btf_type_is_func(type)) { 16691 verbose(env, "invalid type id %d in func info", 16692 krecord[i].type_id); 16693 goto err_free; 16694 } 16695 16696 func_proto = btf_type_by_id(btf, type->type); 16697 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 16698 /* btf_func_check() already verified it during BTF load */ 16699 goto err_free; 16700 16701 prev_offset = krecord[i].insn_off; 16702 bpfptr_add(&urecord, urec_size); 16703 } 16704 16705 prog->aux->func_info = krecord; 16706 prog->aux->func_info_cnt = nfuncs; 16707 return 0; 16708 16709 err_free: 16710 kvfree(krecord); 16711 return ret; 16712 } 16713 16714 static int check_btf_func(struct bpf_verifier_env *env, 16715 const union bpf_attr *attr, 16716 bpfptr_t uattr) 16717 { 16718 const struct btf_type *type, *func_proto, *ret_type; 16719 u32 i, nfuncs, urec_size; 16720 struct bpf_func_info *krecord; 16721 struct bpf_func_info_aux *info_aux = NULL; 16722 struct bpf_prog *prog; 16723 const struct btf *btf; 16724 bpfptr_t urecord; 16725 bool scalar_return; 16726 int ret = -ENOMEM; 16727 16728 nfuncs = attr->func_info_cnt; 16729 if (!nfuncs) { 16730 if (check_abnormal_return(env)) 16731 return -EINVAL; 16732 return 0; 16733 } 16734 if (nfuncs != env->subprog_cnt) { 16735 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 16736 return -EINVAL; 16737 } 16738 16739 urec_size = attr->func_info_rec_size; 16740 16741 prog = env->prog; 16742 btf = prog->aux->btf; 16743 16744 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 16745 16746 krecord = prog->aux->func_info; 16747 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 16748 if (!info_aux) 16749 return -ENOMEM; 16750 16751 for (i = 0; i < nfuncs; i++) { 16752 /* check insn_off */ 16753 ret = -EINVAL; 16754 16755 if (env->subprog_info[i].start != krecord[i].insn_off) { 16756 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 16757 goto err_free; 16758 } 16759 16760 /* Already checked type_id */ 16761 type = btf_type_by_id(btf, krecord[i].type_id); 16762 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 16763 /* Already checked func_proto */ 16764 func_proto = btf_type_by_id(btf, type->type); 16765 16766 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 16767 scalar_return = 16768 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 16769 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 16770 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 16771 goto err_free; 16772 } 16773 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 16774 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 16775 goto err_free; 16776 } 16777 16778 bpfptr_add(&urecord, urec_size); 16779 } 16780 16781 prog->aux->func_info_aux = info_aux; 16782 return 0; 16783 16784 err_free: 16785 kfree(info_aux); 16786 return ret; 16787 } 16788 16789 static void adjust_btf_func(struct bpf_verifier_env *env) 16790 { 16791 struct bpf_prog_aux *aux = env->prog->aux; 16792 int i; 16793 16794 if (!aux->func_info) 16795 return; 16796 16797 /* func_info is not available for hidden subprogs */ 16798 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 16799 aux->func_info[i].insn_off = env->subprog_info[i].start; 16800 } 16801 16802 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 16803 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 16804 16805 static int check_btf_line(struct bpf_verifier_env *env, 16806 const union bpf_attr *attr, 16807 bpfptr_t uattr) 16808 { 16809 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 16810 struct bpf_subprog_info *sub; 16811 struct bpf_line_info *linfo; 16812 struct bpf_prog *prog; 16813 const struct btf *btf; 16814 bpfptr_t ulinfo; 16815 int err; 16816 16817 nr_linfo = attr->line_info_cnt; 16818 if (!nr_linfo) 16819 return 0; 16820 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 16821 return -EINVAL; 16822 16823 rec_size = attr->line_info_rec_size; 16824 if (rec_size < MIN_BPF_LINEINFO_SIZE || 16825 rec_size > MAX_LINEINFO_REC_SIZE || 16826 rec_size & (sizeof(u32) - 1)) 16827 return -EINVAL; 16828 16829 /* Need to zero it in case the userspace may 16830 * pass in a smaller bpf_line_info object. 16831 */ 16832 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 16833 GFP_KERNEL | __GFP_NOWARN); 16834 if (!linfo) 16835 return -ENOMEM; 16836 16837 prog = env->prog; 16838 btf = prog->aux->btf; 16839 16840 s = 0; 16841 sub = env->subprog_info; 16842 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 16843 expected_size = sizeof(struct bpf_line_info); 16844 ncopy = min_t(u32, expected_size, rec_size); 16845 for (i = 0; i < nr_linfo; i++) { 16846 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 16847 if (err) { 16848 if (err == -E2BIG) { 16849 verbose(env, "nonzero tailing record in line_info"); 16850 if (copy_to_bpfptr_offset(uattr, 16851 offsetof(union bpf_attr, line_info_rec_size), 16852 &expected_size, sizeof(expected_size))) 16853 err = -EFAULT; 16854 } 16855 goto err_free; 16856 } 16857 16858 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 16859 err = -EFAULT; 16860 goto err_free; 16861 } 16862 16863 /* 16864 * Check insn_off to ensure 16865 * 1) strictly increasing AND 16866 * 2) bounded by prog->len 16867 * 16868 * The linfo[0].insn_off == 0 check logically falls into 16869 * the later "missing bpf_line_info for func..." case 16870 * because the first linfo[0].insn_off must be the 16871 * first sub also and the first sub must have 16872 * subprog_info[0].start == 0. 16873 */ 16874 if ((i && linfo[i].insn_off <= prev_offset) || 16875 linfo[i].insn_off >= prog->len) { 16876 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 16877 i, linfo[i].insn_off, prev_offset, 16878 prog->len); 16879 err = -EINVAL; 16880 goto err_free; 16881 } 16882 16883 if (!prog->insnsi[linfo[i].insn_off].code) { 16884 verbose(env, 16885 "Invalid insn code at line_info[%u].insn_off\n", 16886 i); 16887 err = -EINVAL; 16888 goto err_free; 16889 } 16890 16891 if (!btf_name_by_offset(btf, linfo[i].line_off) || 16892 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 16893 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 16894 err = -EINVAL; 16895 goto err_free; 16896 } 16897 16898 if (s != env->subprog_cnt) { 16899 if (linfo[i].insn_off == sub[s].start) { 16900 sub[s].linfo_idx = i; 16901 s++; 16902 } else if (sub[s].start < linfo[i].insn_off) { 16903 verbose(env, "missing bpf_line_info for func#%u\n", s); 16904 err = -EINVAL; 16905 goto err_free; 16906 } 16907 } 16908 16909 prev_offset = linfo[i].insn_off; 16910 bpfptr_add(&ulinfo, rec_size); 16911 } 16912 16913 if (s != env->subprog_cnt) { 16914 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 16915 env->subprog_cnt - s, s); 16916 err = -EINVAL; 16917 goto err_free; 16918 } 16919 16920 prog->aux->linfo = linfo; 16921 prog->aux->nr_linfo = nr_linfo; 16922 16923 return 0; 16924 16925 err_free: 16926 kvfree(linfo); 16927 return err; 16928 } 16929 16930 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 16931 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 16932 16933 static int check_core_relo(struct bpf_verifier_env *env, 16934 const union bpf_attr *attr, 16935 bpfptr_t uattr) 16936 { 16937 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 16938 struct bpf_core_relo core_relo = {}; 16939 struct bpf_prog *prog = env->prog; 16940 const struct btf *btf = prog->aux->btf; 16941 struct bpf_core_ctx ctx = { 16942 .log = &env->log, 16943 .btf = btf, 16944 }; 16945 bpfptr_t u_core_relo; 16946 int err; 16947 16948 nr_core_relo = attr->core_relo_cnt; 16949 if (!nr_core_relo) 16950 return 0; 16951 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 16952 return -EINVAL; 16953 16954 rec_size = attr->core_relo_rec_size; 16955 if (rec_size < MIN_CORE_RELO_SIZE || 16956 rec_size > MAX_CORE_RELO_SIZE || 16957 rec_size % sizeof(u32)) 16958 return -EINVAL; 16959 16960 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 16961 expected_size = sizeof(struct bpf_core_relo); 16962 ncopy = min_t(u32, expected_size, rec_size); 16963 16964 /* Unlike func_info and line_info, copy and apply each CO-RE 16965 * relocation record one at a time. 16966 */ 16967 for (i = 0; i < nr_core_relo; i++) { 16968 /* future proofing when sizeof(bpf_core_relo) changes */ 16969 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 16970 if (err) { 16971 if (err == -E2BIG) { 16972 verbose(env, "nonzero tailing record in core_relo"); 16973 if (copy_to_bpfptr_offset(uattr, 16974 offsetof(union bpf_attr, core_relo_rec_size), 16975 &expected_size, sizeof(expected_size))) 16976 err = -EFAULT; 16977 } 16978 break; 16979 } 16980 16981 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 16982 err = -EFAULT; 16983 break; 16984 } 16985 16986 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 16987 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 16988 i, core_relo.insn_off, prog->len); 16989 err = -EINVAL; 16990 break; 16991 } 16992 16993 err = bpf_core_apply(&ctx, &core_relo, i, 16994 &prog->insnsi[core_relo.insn_off / 8]); 16995 if (err) 16996 break; 16997 bpfptr_add(&u_core_relo, rec_size); 16998 } 16999 return err; 17000 } 17001 17002 static int check_btf_info_early(struct bpf_verifier_env *env, 17003 const union bpf_attr *attr, 17004 bpfptr_t uattr) 17005 { 17006 struct btf *btf; 17007 int err; 17008 17009 if (!attr->func_info_cnt && !attr->line_info_cnt) { 17010 if (check_abnormal_return(env)) 17011 return -EINVAL; 17012 return 0; 17013 } 17014 17015 btf = btf_get_by_fd(attr->prog_btf_fd); 17016 if (IS_ERR(btf)) 17017 return PTR_ERR(btf); 17018 if (btf_is_kernel(btf)) { 17019 btf_put(btf); 17020 return -EACCES; 17021 } 17022 env->prog->aux->btf = btf; 17023 17024 err = check_btf_func_early(env, attr, uattr); 17025 if (err) 17026 return err; 17027 return 0; 17028 } 17029 17030 static int check_btf_info(struct bpf_verifier_env *env, 17031 const union bpf_attr *attr, 17032 bpfptr_t uattr) 17033 { 17034 int err; 17035 17036 if (!attr->func_info_cnt && !attr->line_info_cnt) { 17037 if (check_abnormal_return(env)) 17038 return -EINVAL; 17039 return 0; 17040 } 17041 17042 err = check_btf_func(env, attr, uattr); 17043 if (err) 17044 return err; 17045 17046 err = check_btf_line(env, attr, uattr); 17047 if (err) 17048 return err; 17049 17050 err = check_core_relo(env, attr, uattr); 17051 if (err) 17052 return err; 17053 17054 return 0; 17055 } 17056 17057 /* check %cur's range satisfies %old's */ 17058 static bool range_within(const struct bpf_reg_state *old, 17059 const struct bpf_reg_state *cur) 17060 { 17061 return old->umin_value <= cur->umin_value && 17062 old->umax_value >= cur->umax_value && 17063 old->smin_value <= cur->smin_value && 17064 old->smax_value >= cur->smax_value && 17065 old->u32_min_value <= cur->u32_min_value && 17066 old->u32_max_value >= cur->u32_max_value && 17067 old->s32_min_value <= cur->s32_min_value && 17068 old->s32_max_value >= cur->s32_max_value; 17069 } 17070 17071 /* If in the old state two registers had the same id, then they need to have 17072 * the same id in the new state as well. But that id could be different from 17073 * the old state, so we need to track the mapping from old to new ids. 17074 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 17075 * regs with old id 5 must also have new id 9 for the new state to be safe. But 17076 * regs with a different old id could still have new id 9, we don't care about 17077 * that. 17078 * So we look through our idmap to see if this old id has been seen before. If 17079 * so, we require the new id to match; otherwise, we add the id pair to the map. 17080 */ 17081 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 17082 { 17083 struct bpf_id_pair *map = idmap->map; 17084 unsigned int i; 17085 17086 /* either both IDs should be set or both should be zero */ 17087 if (!!old_id != !!cur_id) 17088 return false; 17089 17090 if (old_id == 0) /* cur_id == 0 as well */ 17091 return true; 17092 17093 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 17094 if (!map[i].old) { 17095 /* Reached an empty slot; haven't seen this id before */ 17096 map[i].old = old_id; 17097 map[i].cur = cur_id; 17098 return true; 17099 } 17100 if (map[i].old == old_id) 17101 return map[i].cur == cur_id; 17102 if (map[i].cur == cur_id) 17103 return false; 17104 } 17105 /* We ran out of idmap slots, which should be impossible */ 17106 WARN_ON_ONCE(1); 17107 return false; 17108 } 17109 17110 /* Similar to check_ids(), but allocate a unique temporary ID 17111 * for 'old_id' or 'cur_id' of zero. 17112 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 17113 */ 17114 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 17115 { 17116 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 17117 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 17118 17119 return check_ids(old_id, cur_id, idmap); 17120 } 17121 17122 static void clean_func_state(struct bpf_verifier_env *env, 17123 struct bpf_func_state *st) 17124 { 17125 enum bpf_reg_liveness live; 17126 int i, j; 17127 17128 for (i = 0; i < BPF_REG_FP; i++) { 17129 live = st->regs[i].live; 17130 /* liveness must not touch this register anymore */ 17131 st->regs[i].live |= REG_LIVE_DONE; 17132 if (!(live & REG_LIVE_READ)) 17133 /* since the register is unused, clear its state 17134 * to make further comparison simpler 17135 */ 17136 __mark_reg_not_init(env, &st->regs[i]); 17137 } 17138 17139 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 17140 live = st->stack[i].spilled_ptr.live; 17141 /* liveness must not touch this stack slot anymore */ 17142 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 17143 if (!(live & REG_LIVE_READ)) { 17144 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 17145 for (j = 0; j < BPF_REG_SIZE; j++) 17146 st->stack[i].slot_type[j] = STACK_INVALID; 17147 } 17148 } 17149 } 17150 17151 static void clean_verifier_state(struct bpf_verifier_env *env, 17152 struct bpf_verifier_state *st) 17153 { 17154 int i; 17155 17156 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 17157 /* all regs in this state in all frames were already marked */ 17158 return; 17159 17160 for (i = 0; i <= st->curframe; i++) 17161 clean_func_state(env, st->frame[i]); 17162 } 17163 17164 /* the parentage chains form a tree. 17165 * the verifier states are added to state lists at given insn and 17166 * pushed into state stack for future exploration. 17167 * when the verifier reaches bpf_exit insn some of the verifer states 17168 * stored in the state lists have their final liveness state already, 17169 * but a lot of states will get revised from liveness point of view when 17170 * the verifier explores other branches. 17171 * Example: 17172 * 1: r0 = 1 17173 * 2: if r1 == 100 goto pc+1 17174 * 3: r0 = 2 17175 * 4: exit 17176 * when the verifier reaches exit insn the register r0 in the state list of 17177 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 17178 * of insn 2 and goes exploring further. At the insn 4 it will walk the 17179 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 17180 * 17181 * Since the verifier pushes the branch states as it sees them while exploring 17182 * the program the condition of walking the branch instruction for the second 17183 * time means that all states below this branch were already explored and 17184 * their final liveness marks are already propagated. 17185 * Hence when the verifier completes the search of state list in is_state_visited() 17186 * we can call this clean_live_states() function to mark all liveness states 17187 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 17188 * will not be used. 17189 * This function also clears the registers and stack for states that !READ 17190 * to simplify state merging. 17191 * 17192 * Important note here that walking the same branch instruction in the callee 17193 * doesn't meant that the states are DONE. The verifier has to compare 17194 * the callsites 17195 */ 17196 static void clean_live_states(struct bpf_verifier_env *env, int insn, 17197 struct bpf_verifier_state *cur) 17198 { 17199 struct bpf_verifier_state_list *sl; 17200 17201 sl = *explored_state(env, insn); 17202 while (sl) { 17203 if (sl->state.branches) 17204 goto next; 17205 if (sl->state.insn_idx != insn || 17206 !same_callsites(&sl->state, cur)) 17207 goto next; 17208 clean_verifier_state(env, &sl->state); 17209 next: 17210 sl = sl->next; 17211 } 17212 } 17213 17214 static bool regs_exact(const struct bpf_reg_state *rold, 17215 const struct bpf_reg_state *rcur, 17216 struct bpf_idmap *idmap) 17217 { 17218 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 17219 check_ids(rold->id, rcur->id, idmap) && 17220 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 17221 } 17222 17223 enum exact_level { 17224 NOT_EXACT, 17225 EXACT, 17226 RANGE_WITHIN 17227 }; 17228 17229 /* Returns true if (rold safe implies rcur safe) */ 17230 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 17231 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, 17232 enum exact_level exact) 17233 { 17234 if (exact == EXACT) 17235 return regs_exact(rold, rcur, idmap); 17236 17237 if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT) 17238 /* explored state didn't use this */ 17239 return true; 17240 if (rold->type == NOT_INIT) { 17241 if (exact == NOT_EXACT || rcur->type == NOT_INIT) 17242 /* explored state can't have used this */ 17243 return true; 17244 } 17245 17246 /* Enforce that register types have to match exactly, including their 17247 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 17248 * rule. 17249 * 17250 * One can make a point that using a pointer register as unbounded 17251 * SCALAR would be technically acceptable, but this could lead to 17252 * pointer leaks because scalars are allowed to leak while pointers 17253 * are not. We could make this safe in special cases if root is 17254 * calling us, but it's probably not worth the hassle. 17255 * 17256 * Also, register types that are *not* MAYBE_NULL could technically be 17257 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 17258 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 17259 * to the same map). 17260 * However, if the old MAYBE_NULL register then got NULL checked, 17261 * doing so could have affected others with the same id, and we can't 17262 * check for that because we lost the id when we converted to 17263 * a non-MAYBE_NULL variant. 17264 * So, as a general rule we don't allow mixing MAYBE_NULL and 17265 * non-MAYBE_NULL registers as well. 17266 */ 17267 if (rold->type != rcur->type) 17268 return false; 17269 17270 switch (base_type(rold->type)) { 17271 case SCALAR_VALUE: 17272 if (env->explore_alu_limits) { 17273 /* explore_alu_limits disables tnum_in() and range_within() 17274 * logic and requires everything to be strict 17275 */ 17276 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 17277 check_scalar_ids(rold->id, rcur->id, idmap); 17278 } 17279 if (!rold->precise && exact == NOT_EXACT) 17280 return true; 17281 if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST)) 17282 return false; 17283 if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off)) 17284 return false; 17285 /* Why check_ids() for scalar registers? 17286 * 17287 * Consider the following BPF code: 17288 * 1: r6 = ... unbound scalar, ID=a ... 17289 * 2: r7 = ... unbound scalar, ID=b ... 17290 * 3: if (r6 > r7) goto +1 17291 * 4: r6 = r7 17292 * 5: if (r6 > X) goto ... 17293 * 6: ... memory operation using r7 ... 17294 * 17295 * First verification path is [1-6]: 17296 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 17297 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark 17298 * r7 <= X, because r6 and r7 share same id. 17299 * Next verification path is [1-4, 6]. 17300 * 17301 * Instruction (6) would be reached in two states: 17302 * I. r6{.id=b}, r7{.id=b} via path 1-6; 17303 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 17304 * 17305 * Use check_ids() to distinguish these states. 17306 * --- 17307 * Also verify that new value satisfies old value range knowledge. 17308 */ 17309 return range_within(rold, rcur) && 17310 tnum_in(rold->var_off, rcur->var_off) && 17311 check_scalar_ids(rold->id, rcur->id, idmap); 17312 case PTR_TO_MAP_KEY: 17313 case PTR_TO_MAP_VALUE: 17314 case PTR_TO_MEM: 17315 case PTR_TO_BUF: 17316 case PTR_TO_TP_BUFFER: 17317 /* If the new min/max/var_off satisfy the old ones and 17318 * everything else matches, we are OK. 17319 */ 17320 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 17321 range_within(rold, rcur) && 17322 tnum_in(rold->var_off, rcur->var_off) && 17323 check_ids(rold->id, rcur->id, idmap) && 17324 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 17325 case PTR_TO_PACKET_META: 17326 case PTR_TO_PACKET: 17327 /* We must have at least as much range as the old ptr 17328 * did, so that any accesses which were safe before are 17329 * still safe. This is true even if old range < old off, 17330 * since someone could have accessed through (ptr - k), or 17331 * even done ptr -= k in a register, to get a safe access. 17332 */ 17333 if (rold->range > rcur->range) 17334 return false; 17335 /* If the offsets don't match, we can't trust our alignment; 17336 * nor can we be sure that we won't fall out of range. 17337 */ 17338 if (rold->off != rcur->off) 17339 return false; 17340 /* id relations must be preserved */ 17341 if (!check_ids(rold->id, rcur->id, idmap)) 17342 return false; 17343 /* new val must satisfy old val knowledge */ 17344 return range_within(rold, rcur) && 17345 tnum_in(rold->var_off, rcur->var_off); 17346 case PTR_TO_STACK: 17347 /* two stack pointers are equal only if they're pointing to 17348 * the same stack frame, since fp-8 in foo != fp-8 in bar 17349 */ 17350 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 17351 case PTR_TO_ARENA: 17352 return true; 17353 default: 17354 return regs_exact(rold, rcur, idmap); 17355 } 17356 } 17357 17358 static struct bpf_reg_state unbound_reg; 17359 17360 static __init int unbound_reg_init(void) 17361 { 17362 __mark_reg_unknown_imprecise(&unbound_reg); 17363 unbound_reg.live |= REG_LIVE_READ; 17364 return 0; 17365 } 17366 late_initcall(unbound_reg_init); 17367 17368 static bool is_stack_all_misc(struct bpf_verifier_env *env, 17369 struct bpf_stack_state *stack) 17370 { 17371 u32 i; 17372 17373 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { 17374 if ((stack->slot_type[i] == STACK_MISC) || 17375 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) 17376 continue; 17377 return false; 17378 } 17379 17380 return true; 17381 } 17382 17383 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, 17384 struct bpf_stack_state *stack) 17385 { 17386 if (is_spilled_scalar_reg64(stack)) 17387 return &stack->spilled_ptr; 17388 17389 if (is_stack_all_misc(env, stack)) 17390 return &unbound_reg; 17391 17392 return NULL; 17393 } 17394 17395 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 17396 struct bpf_func_state *cur, struct bpf_idmap *idmap, 17397 enum exact_level exact) 17398 { 17399 int i, spi; 17400 17401 /* walk slots of the explored stack and ignore any additional 17402 * slots in the current stack, since explored(safe) state 17403 * didn't use them 17404 */ 17405 for (i = 0; i < old->allocated_stack; i++) { 17406 struct bpf_reg_state *old_reg, *cur_reg; 17407 17408 spi = i / BPF_REG_SIZE; 17409 17410 if (exact != NOT_EXACT && 17411 (i >= cur->allocated_stack || 17412 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 17413 cur->stack[spi].slot_type[i % BPF_REG_SIZE])) 17414 return false; 17415 17416 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) 17417 && exact == NOT_EXACT) { 17418 i += BPF_REG_SIZE - 1; 17419 /* explored state didn't use this */ 17420 continue; 17421 } 17422 17423 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 17424 continue; 17425 17426 if (env->allow_uninit_stack && 17427 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 17428 continue; 17429 17430 /* explored stack has more populated slots than current stack 17431 * and these slots were used 17432 */ 17433 if (i >= cur->allocated_stack) 17434 return false; 17435 17436 /* 64-bit scalar spill vs all slots MISC and vice versa. 17437 * Load from all slots MISC produces unbound scalar. 17438 * Construct a fake register for such stack and call 17439 * regsafe() to ensure scalar ids are compared. 17440 */ 17441 old_reg = scalar_reg_for_stack(env, &old->stack[spi]); 17442 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); 17443 if (old_reg && cur_reg) { 17444 if (!regsafe(env, old_reg, cur_reg, idmap, exact)) 17445 return false; 17446 i += BPF_REG_SIZE - 1; 17447 continue; 17448 } 17449 17450 /* if old state was safe with misc data in the stack 17451 * it will be safe with zero-initialized stack. 17452 * The opposite is not true 17453 */ 17454 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 17455 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 17456 continue; 17457 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 17458 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 17459 /* Ex: old explored (safe) state has STACK_SPILL in 17460 * this stack slot, but current has STACK_MISC -> 17461 * this verifier states are not equivalent, 17462 * return false to continue verification of this path 17463 */ 17464 return false; 17465 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 17466 continue; 17467 /* Both old and cur are having same slot_type */ 17468 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 17469 case STACK_SPILL: 17470 /* when explored and current stack slot are both storing 17471 * spilled registers, check that stored pointers types 17472 * are the same as well. 17473 * Ex: explored safe path could have stored 17474 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 17475 * but current path has stored: 17476 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 17477 * such verifier states are not equivalent. 17478 * return false to continue verification of this path 17479 */ 17480 if (!regsafe(env, &old->stack[spi].spilled_ptr, 17481 &cur->stack[spi].spilled_ptr, idmap, exact)) 17482 return false; 17483 break; 17484 case STACK_DYNPTR: 17485 old_reg = &old->stack[spi].spilled_ptr; 17486 cur_reg = &cur->stack[spi].spilled_ptr; 17487 if (old_reg->dynptr.type != cur_reg->dynptr.type || 17488 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 17489 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 17490 return false; 17491 break; 17492 case STACK_ITER: 17493 old_reg = &old->stack[spi].spilled_ptr; 17494 cur_reg = &cur->stack[spi].spilled_ptr; 17495 /* iter.depth is not compared between states as it 17496 * doesn't matter for correctness and would otherwise 17497 * prevent convergence; we maintain it only to prevent 17498 * infinite loop check triggering, see 17499 * iter_active_depths_differ() 17500 */ 17501 if (old_reg->iter.btf != cur_reg->iter.btf || 17502 old_reg->iter.btf_id != cur_reg->iter.btf_id || 17503 old_reg->iter.state != cur_reg->iter.state || 17504 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 17505 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 17506 return false; 17507 break; 17508 case STACK_MISC: 17509 case STACK_ZERO: 17510 case STACK_INVALID: 17511 continue; 17512 /* Ensure that new unhandled slot types return false by default */ 17513 default: 17514 return false; 17515 } 17516 } 17517 return true; 17518 } 17519 17520 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 17521 struct bpf_idmap *idmap) 17522 { 17523 int i; 17524 17525 if (old->acquired_refs != cur->acquired_refs) 17526 return false; 17527 17528 for (i = 0; i < old->acquired_refs; i++) { 17529 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 17530 return false; 17531 } 17532 17533 return true; 17534 } 17535 17536 /* compare two verifier states 17537 * 17538 * all states stored in state_list are known to be valid, since 17539 * verifier reached 'bpf_exit' instruction through them 17540 * 17541 * this function is called when verifier exploring different branches of 17542 * execution popped from the state stack. If it sees an old state that has 17543 * more strict register state and more strict stack state then this execution 17544 * branch doesn't need to be explored further, since verifier already 17545 * concluded that more strict state leads to valid finish. 17546 * 17547 * Therefore two states are equivalent if register state is more conservative 17548 * and explored stack state is more conservative than the current one. 17549 * Example: 17550 * explored current 17551 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 17552 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 17553 * 17554 * In other words if current stack state (one being explored) has more 17555 * valid slots than old one that already passed validation, it means 17556 * the verifier can stop exploring and conclude that current state is valid too 17557 * 17558 * Similarly with registers. If explored state has register type as invalid 17559 * whereas register type in current state is meaningful, it means that 17560 * the current state will reach 'bpf_exit' instruction safely 17561 */ 17562 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 17563 struct bpf_func_state *cur, enum exact_level exact) 17564 { 17565 int i; 17566 17567 if (old->callback_depth > cur->callback_depth) 17568 return false; 17569 17570 for (i = 0; i < MAX_BPF_REG; i++) 17571 if (!regsafe(env, &old->regs[i], &cur->regs[i], 17572 &env->idmap_scratch, exact)) 17573 return false; 17574 17575 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 17576 return false; 17577 17578 if (!refsafe(old, cur, &env->idmap_scratch)) 17579 return false; 17580 17581 return true; 17582 } 17583 17584 static void reset_idmap_scratch(struct bpf_verifier_env *env) 17585 { 17586 env->idmap_scratch.tmp_id_gen = env->id_gen; 17587 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 17588 } 17589 17590 static bool states_equal(struct bpf_verifier_env *env, 17591 struct bpf_verifier_state *old, 17592 struct bpf_verifier_state *cur, 17593 enum exact_level exact) 17594 { 17595 int i; 17596 17597 if (old->curframe != cur->curframe) 17598 return false; 17599 17600 reset_idmap_scratch(env); 17601 17602 /* Verification state from speculative execution simulation 17603 * must never prune a non-speculative execution one. 17604 */ 17605 if (old->speculative && !cur->speculative) 17606 return false; 17607 17608 if (old->active_lock.ptr != cur->active_lock.ptr) 17609 return false; 17610 17611 /* Old and cur active_lock's have to be either both present 17612 * or both absent. 17613 */ 17614 if (!!old->active_lock.id != !!cur->active_lock.id) 17615 return false; 17616 17617 if (old->active_lock.id && 17618 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 17619 return false; 17620 17621 if (old->active_rcu_lock != cur->active_rcu_lock) 17622 return false; 17623 17624 if (old->active_preempt_lock != cur->active_preempt_lock) 17625 return false; 17626 17627 if (old->in_sleepable != cur->in_sleepable) 17628 return false; 17629 17630 /* for states to be equal callsites have to be the same 17631 * and all frame states need to be equivalent 17632 */ 17633 for (i = 0; i <= old->curframe; i++) { 17634 if (old->frame[i]->callsite != cur->frame[i]->callsite) 17635 return false; 17636 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 17637 return false; 17638 } 17639 return true; 17640 } 17641 17642 /* Return 0 if no propagation happened. Return negative error code if error 17643 * happened. Otherwise, return the propagated bit. 17644 */ 17645 static int propagate_liveness_reg(struct bpf_verifier_env *env, 17646 struct bpf_reg_state *reg, 17647 struct bpf_reg_state *parent_reg) 17648 { 17649 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 17650 u8 flag = reg->live & REG_LIVE_READ; 17651 int err; 17652 17653 /* When comes here, read flags of PARENT_REG or REG could be any of 17654 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 17655 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 17656 */ 17657 if (parent_flag == REG_LIVE_READ64 || 17658 /* Or if there is no read flag from REG. */ 17659 !flag || 17660 /* Or if the read flag from REG is the same as PARENT_REG. */ 17661 parent_flag == flag) 17662 return 0; 17663 17664 err = mark_reg_read(env, reg, parent_reg, flag); 17665 if (err) 17666 return err; 17667 17668 return flag; 17669 } 17670 17671 /* A write screens off any subsequent reads; but write marks come from the 17672 * straight-line code between a state and its parent. When we arrive at an 17673 * equivalent state (jump target or such) we didn't arrive by the straight-line 17674 * code, so read marks in the state must propagate to the parent regardless 17675 * of the state's write marks. That's what 'parent == state->parent' comparison 17676 * in mark_reg_read() is for. 17677 */ 17678 static int propagate_liveness(struct bpf_verifier_env *env, 17679 const struct bpf_verifier_state *vstate, 17680 struct bpf_verifier_state *vparent) 17681 { 17682 struct bpf_reg_state *state_reg, *parent_reg; 17683 struct bpf_func_state *state, *parent; 17684 int i, frame, err = 0; 17685 17686 if (vparent->curframe != vstate->curframe) { 17687 WARN(1, "propagate_live: parent frame %d current frame %d\n", 17688 vparent->curframe, vstate->curframe); 17689 return -EFAULT; 17690 } 17691 /* Propagate read liveness of registers... */ 17692 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 17693 for (frame = 0; frame <= vstate->curframe; frame++) { 17694 parent = vparent->frame[frame]; 17695 state = vstate->frame[frame]; 17696 parent_reg = parent->regs; 17697 state_reg = state->regs; 17698 /* We don't need to worry about FP liveness, it's read-only */ 17699 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 17700 err = propagate_liveness_reg(env, &state_reg[i], 17701 &parent_reg[i]); 17702 if (err < 0) 17703 return err; 17704 if (err == REG_LIVE_READ64) 17705 mark_insn_zext(env, &parent_reg[i]); 17706 } 17707 17708 /* Propagate stack slots. */ 17709 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 17710 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 17711 parent_reg = &parent->stack[i].spilled_ptr; 17712 state_reg = &state->stack[i].spilled_ptr; 17713 err = propagate_liveness_reg(env, state_reg, 17714 parent_reg); 17715 if (err < 0) 17716 return err; 17717 } 17718 } 17719 return 0; 17720 } 17721 17722 /* find precise scalars in the previous equivalent state and 17723 * propagate them into the current state 17724 */ 17725 static int propagate_precision(struct bpf_verifier_env *env, 17726 const struct bpf_verifier_state *old) 17727 { 17728 struct bpf_reg_state *state_reg; 17729 struct bpf_func_state *state; 17730 int i, err = 0, fr; 17731 bool first; 17732 17733 for (fr = old->curframe; fr >= 0; fr--) { 17734 state = old->frame[fr]; 17735 state_reg = state->regs; 17736 first = true; 17737 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 17738 if (state_reg->type != SCALAR_VALUE || 17739 !state_reg->precise || 17740 !(state_reg->live & REG_LIVE_READ)) 17741 continue; 17742 if (env->log.level & BPF_LOG_LEVEL2) { 17743 if (first) 17744 verbose(env, "frame %d: propagating r%d", fr, i); 17745 else 17746 verbose(env, ",r%d", i); 17747 } 17748 bt_set_frame_reg(&env->bt, fr, i); 17749 first = false; 17750 } 17751 17752 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 17753 if (!is_spilled_reg(&state->stack[i])) 17754 continue; 17755 state_reg = &state->stack[i].spilled_ptr; 17756 if (state_reg->type != SCALAR_VALUE || 17757 !state_reg->precise || 17758 !(state_reg->live & REG_LIVE_READ)) 17759 continue; 17760 if (env->log.level & BPF_LOG_LEVEL2) { 17761 if (first) 17762 verbose(env, "frame %d: propagating fp%d", 17763 fr, (-i - 1) * BPF_REG_SIZE); 17764 else 17765 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 17766 } 17767 bt_set_frame_slot(&env->bt, fr, i); 17768 first = false; 17769 } 17770 if (!first) 17771 verbose(env, "\n"); 17772 } 17773 17774 err = mark_chain_precision_batch(env); 17775 if (err < 0) 17776 return err; 17777 17778 return 0; 17779 } 17780 17781 static bool states_maybe_looping(struct bpf_verifier_state *old, 17782 struct bpf_verifier_state *cur) 17783 { 17784 struct bpf_func_state *fold, *fcur; 17785 int i, fr = cur->curframe; 17786 17787 if (old->curframe != fr) 17788 return false; 17789 17790 fold = old->frame[fr]; 17791 fcur = cur->frame[fr]; 17792 for (i = 0; i < MAX_BPF_REG; i++) 17793 if (memcmp(&fold->regs[i], &fcur->regs[i], 17794 offsetof(struct bpf_reg_state, parent))) 17795 return false; 17796 return true; 17797 } 17798 17799 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 17800 { 17801 return env->insn_aux_data[insn_idx].is_iter_next; 17802 } 17803 17804 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 17805 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 17806 * states to match, which otherwise would look like an infinite loop. So while 17807 * iter_next() calls are taken care of, we still need to be careful and 17808 * prevent erroneous and too eager declaration of "ininite loop", when 17809 * iterators are involved. 17810 * 17811 * Here's a situation in pseudo-BPF assembly form: 17812 * 17813 * 0: again: ; set up iter_next() call args 17814 * 1: r1 = &it ; <CHECKPOINT HERE> 17815 * 2: call bpf_iter_num_next ; this is iter_next() call 17816 * 3: if r0 == 0 goto done 17817 * 4: ... something useful here ... 17818 * 5: goto again ; another iteration 17819 * 6: done: 17820 * 7: r1 = &it 17821 * 8: call bpf_iter_num_destroy ; clean up iter state 17822 * 9: exit 17823 * 17824 * This is a typical loop. Let's assume that we have a prune point at 1:, 17825 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 17826 * again`, assuming other heuristics don't get in a way). 17827 * 17828 * When we first time come to 1:, let's say we have some state X. We proceed 17829 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 17830 * Now we come back to validate that forked ACTIVE state. We proceed through 17831 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 17832 * are converging. But the problem is that we don't know that yet, as this 17833 * convergence has to happen at iter_next() call site only. So if nothing is 17834 * done, at 1: verifier will use bounded loop logic and declare infinite 17835 * looping (and would be *technically* correct, if not for iterator's 17836 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 17837 * don't want that. So what we do in process_iter_next_call() when we go on 17838 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 17839 * a different iteration. So when we suspect an infinite loop, we additionally 17840 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 17841 * pretend we are not looping and wait for next iter_next() call. 17842 * 17843 * This only applies to ACTIVE state. In DRAINED state we don't expect to 17844 * loop, because that would actually mean infinite loop, as DRAINED state is 17845 * "sticky", and so we'll keep returning into the same instruction with the 17846 * same state (at least in one of possible code paths). 17847 * 17848 * This approach allows to keep infinite loop heuristic even in the face of 17849 * active iterator. E.g., C snippet below is and will be detected as 17850 * inifintely looping: 17851 * 17852 * struct bpf_iter_num it; 17853 * int *p, x; 17854 * 17855 * bpf_iter_num_new(&it, 0, 10); 17856 * while ((p = bpf_iter_num_next(&t))) { 17857 * x = p; 17858 * while (x--) {} // <<-- infinite loop here 17859 * } 17860 * 17861 */ 17862 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 17863 { 17864 struct bpf_reg_state *slot, *cur_slot; 17865 struct bpf_func_state *state; 17866 int i, fr; 17867 17868 for (fr = old->curframe; fr >= 0; fr--) { 17869 state = old->frame[fr]; 17870 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 17871 if (state->stack[i].slot_type[0] != STACK_ITER) 17872 continue; 17873 17874 slot = &state->stack[i].spilled_ptr; 17875 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 17876 continue; 17877 17878 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 17879 if (cur_slot->iter.depth != slot->iter.depth) 17880 return true; 17881 } 17882 } 17883 return false; 17884 } 17885 17886 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 17887 { 17888 struct bpf_verifier_state_list *new_sl; 17889 struct bpf_verifier_state_list *sl, **pprev; 17890 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 17891 int i, j, n, err, states_cnt = 0; 17892 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 17893 bool add_new_state = force_new_state; 17894 bool force_exact; 17895 17896 /* bpf progs typically have pruning point every 4 instructions 17897 * http://vger.kernel.org/bpfconf2019.html#session-1 17898 * Do not add new state for future pruning if the verifier hasn't seen 17899 * at least 2 jumps and at least 8 instructions. 17900 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 17901 * In tests that amounts to up to 50% reduction into total verifier 17902 * memory consumption and 20% verifier time speedup. 17903 */ 17904 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 17905 env->insn_processed - env->prev_insn_processed >= 8) 17906 add_new_state = true; 17907 17908 pprev = explored_state(env, insn_idx); 17909 sl = *pprev; 17910 17911 clean_live_states(env, insn_idx, cur); 17912 17913 while (sl) { 17914 states_cnt++; 17915 if (sl->state.insn_idx != insn_idx) 17916 goto next; 17917 17918 if (sl->state.branches) { 17919 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 17920 17921 if (frame->in_async_callback_fn && 17922 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 17923 /* Different async_entry_cnt means that the verifier is 17924 * processing another entry into async callback. 17925 * Seeing the same state is not an indication of infinite 17926 * loop or infinite recursion. 17927 * But finding the same state doesn't mean that it's safe 17928 * to stop processing the current state. The previous state 17929 * hasn't yet reached bpf_exit, since state.branches > 0. 17930 * Checking in_async_callback_fn alone is not enough either. 17931 * Since the verifier still needs to catch infinite loops 17932 * inside async callbacks. 17933 */ 17934 goto skip_inf_loop_check; 17935 } 17936 /* BPF open-coded iterators loop detection is special. 17937 * states_maybe_looping() logic is too simplistic in detecting 17938 * states that *might* be equivalent, because it doesn't know 17939 * about ID remapping, so don't even perform it. 17940 * See process_iter_next_call() and iter_active_depths_differ() 17941 * for overview of the logic. When current and one of parent 17942 * states are detected as equivalent, it's a good thing: we prove 17943 * convergence and can stop simulating further iterations. 17944 * It's safe to assume that iterator loop will finish, taking into 17945 * account iter_next() contract of eventually returning 17946 * sticky NULL result. 17947 * 17948 * Note, that states have to be compared exactly in this case because 17949 * read and precision marks might not be finalized inside the loop. 17950 * E.g. as in the program below: 17951 * 17952 * 1. r7 = -16 17953 * 2. r6 = bpf_get_prandom_u32() 17954 * 3. while (bpf_iter_num_next(&fp[-8])) { 17955 * 4. if (r6 != 42) { 17956 * 5. r7 = -32 17957 * 6. r6 = bpf_get_prandom_u32() 17958 * 7. continue 17959 * 8. } 17960 * 9. r0 = r10 17961 * 10. r0 += r7 17962 * 11. r8 = *(u64 *)(r0 + 0) 17963 * 12. r6 = bpf_get_prandom_u32() 17964 * 13. } 17965 * 17966 * Here verifier would first visit path 1-3, create a checkpoint at 3 17967 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 17968 * not have read or precision mark for r7 yet, thus inexact states 17969 * comparison would discard current state with r7=-32 17970 * => unsafe memory access at 11 would not be caught. 17971 */ 17972 if (is_iter_next_insn(env, insn_idx)) { 17973 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 17974 struct bpf_func_state *cur_frame; 17975 struct bpf_reg_state *iter_state, *iter_reg; 17976 int spi; 17977 17978 cur_frame = cur->frame[cur->curframe]; 17979 /* btf_check_iter_kfuncs() enforces that 17980 * iter state pointer is always the first arg 17981 */ 17982 iter_reg = &cur_frame->regs[BPF_REG_1]; 17983 /* current state is valid due to states_equal(), 17984 * so we can assume valid iter and reg state, 17985 * no need for extra (re-)validations 17986 */ 17987 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 17988 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 17989 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 17990 update_loop_entry(cur, &sl->state); 17991 goto hit; 17992 } 17993 } 17994 goto skip_inf_loop_check; 17995 } 17996 if (is_may_goto_insn_at(env, insn_idx)) { 17997 if (sl->state.may_goto_depth != cur->may_goto_depth && 17998 states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 17999 update_loop_entry(cur, &sl->state); 18000 goto hit; 18001 } 18002 } 18003 if (calls_callback(env, insn_idx)) { 18004 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) 18005 goto hit; 18006 goto skip_inf_loop_check; 18007 } 18008 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 18009 if (states_maybe_looping(&sl->state, cur) && 18010 states_equal(env, &sl->state, cur, EXACT) && 18011 !iter_active_depths_differ(&sl->state, cur) && 18012 sl->state.may_goto_depth == cur->may_goto_depth && 18013 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 18014 verbose_linfo(env, insn_idx, "; "); 18015 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 18016 verbose(env, "cur state:"); 18017 print_verifier_state(env, cur->frame[cur->curframe], true); 18018 verbose(env, "old state:"); 18019 print_verifier_state(env, sl->state.frame[cur->curframe], true); 18020 return -EINVAL; 18021 } 18022 /* if the verifier is processing a loop, avoid adding new state 18023 * too often, since different loop iterations have distinct 18024 * states and may not help future pruning. 18025 * This threshold shouldn't be too low to make sure that 18026 * a loop with large bound will be rejected quickly. 18027 * The most abusive loop will be: 18028 * r1 += 1 18029 * if r1 < 1000000 goto pc-2 18030 * 1M insn_procssed limit / 100 == 10k peak states. 18031 * This threshold shouldn't be too high either, since states 18032 * at the end of the loop are likely to be useful in pruning. 18033 */ 18034 skip_inf_loop_check: 18035 if (!force_new_state && 18036 env->jmps_processed - env->prev_jmps_processed < 20 && 18037 env->insn_processed - env->prev_insn_processed < 100) 18038 add_new_state = false; 18039 goto miss; 18040 } 18041 /* If sl->state is a part of a loop and this loop's entry is a part of 18042 * current verification path then states have to be compared exactly. 18043 * 'force_exact' is needed to catch the following case: 18044 * 18045 * initial Here state 'succ' was processed first, 18046 * | it was eventually tracked to produce a 18047 * V state identical to 'hdr'. 18048 * .---------> hdr All branches from 'succ' had been explored 18049 * | | and thus 'succ' has its .branches == 0. 18050 * | V 18051 * | .------... Suppose states 'cur' and 'succ' correspond 18052 * | | | to the same instruction + callsites. 18053 * | V V In such case it is necessary to check 18054 * | ... ... if 'succ' and 'cur' are states_equal(). 18055 * | | | If 'succ' and 'cur' are a part of the 18056 * | V V same loop exact flag has to be set. 18057 * | succ <- cur To check if that is the case, verify 18058 * | | if loop entry of 'succ' is in current 18059 * | V DFS path. 18060 * | ... 18061 * | | 18062 * '----' 18063 * 18064 * Additional details are in the comment before get_loop_entry(). 18065 */ 18066 loop_entry = get_loop_entry(&sl->state); 18067 force_exact = loop_entry && loop_entry->branches > 0; 18068 if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) { 18069 if (force_exact) 18070 update_loop_entry(cur, loop_entry); 18071 hit: 18072 sl->hit_cnt++; 18073 /* reached equivalent register/stack state, 18074 * prune the search. 18075 * Registers read by the continuation are read by us. 18076 * If we have any write marks in env->cur_state, they 18077 * will prevent corresponding reads in the continuation 18078 * from reaching our parent (an explored_state). Our 18079 * own state will get the read marks recorded, but 18080 * they'll be immediately forgotten as we're pruning 18081 * this state and will pop a new one. 18082 */ 18083 err = propagate_liveness(env, &sl->state, cur); 18084 18085 /* if previous state reached the exit with precision and 18086 * current state is equivalent to it (except precision marks) 18087 * the precision needs to be propagated back in 18088 * the current state. 18089 */ 18090 if (is_jmp_point(env, env->insn_idx)) 18091 err = err ? : push_jmp_history(env, cur, 0, 0); 18092 err = err ? : propagate_precision(env, &sl->state); 18093 if (err) 18094 return err; 18095 return 1; 18096 } 18097 miss: 18098 /* when new state is not going to be added do not increase miss count. 18099 * Otherwise several loop iterations will remove the state 18100 * recorded earlier. The goal of these heuristics is to have 18101 * states from some iterations of the loop (some in the beginning 18102 * and some at the end) to help pruning. 18103 */ 18104 if (add_new_state) 18105 sl->miss_cnt++; 18106 /* heuristic to determine whether this state is beneficial 18107 * to keep checking from state equivalence point of view. 18108 * Higher numbers increase max_states_per_insn and verification time, 18109 * but do not meaningfully decrease insn_processed. 18110 * 'n' controls how many times state could miss before eviction. 18111 * Use bigger 'n' for checkpoints because evicting checkpoint states 18112 * too early would hinder iterator convergence. 18113 */ 18114 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 18115 if (sl->miss_cnt > sl->hit_cnt * n + n) { 18116 /* the state is unlikely to be useful. Remove it to 18117 * speed up verification 18118 */ 18119 *pprev = sl->next; 18120 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 18121 !sl->state.used_as_loop_entry) { 18122 u32 br = sl->state.branches; 18123 18124 WARN_ONCE(br, 18125 "BUG live_done but branches_to_explore %d\n", 18126 br); 18127 free_verifier_state(&sl->state, false); 18128 kfree(sl); 18129 env->peak_states--; 18130 } else { 18131 /* cannot free this state, since parentage chain may 18132 * walk it later. Add it for free_list instead to 18133 * be freed at the end of verification 18134 */ 18135 sl->next = env->free_list; 18136 env->free_list = sl; 18137 } 18138 sl = *pprev; 18139 continue; 18140 } 18141 next: 18142 pprev = &sl->next; 18143 sl = *pprev; 18144 } 18145 18146 if (env->max_states_per_insn < states_cnt) 18147 env->max_states_per_insn = states_cnt; 18148 18149 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 18150 return 0; 18151 18152 if (!add_new_state) 18153 return 0; 18154 18155 /* There were no equivalent states, remember the current one. 18156 * Technically the current state is not proven to be safe yet, 18157 * but it will either reach outer most bpf_exit (which means it's safe) 18158 * or it will be rejected. When there are no loops the verifier won't be 18159 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 18160 * again on the way to bpf_exit. 18161 * When looping the sl->state.branches will be > 0 and this state 18162 * will not be considered for equivalence until branches == 0. 18163 */ 18164 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 18165 if (!new_sl) 18166 return -ENOMEM; 18167 env->total_states++; 18168 env->peak_states++; 18169 env->prev_jmps_processed = env->jmps_processed; 18170 env->prev_insn_processed = env->insn_processed; 18171 18172 /* forget precise markings we inherited, see __mark_chain_precision */ 18173 if (env->bpf_capable) 18174 mark_all_scalars_imprecise(env, cur); 18175 18176 /* add new state to the head of linked list */ 18177 new = &new_sl->state; 18178 err = copy_verifier_state(new, cur); 18179 if (err) { 18180 free_verifier_state(new, false); 18181 kfree(new_sl); 18182 return err; 18183 } 18184 new->insn_idx = insn_idx; 18185 WARN_ONCE(new->branches != 1, 18186 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 18187 18188 cur->parent = new; 18189 cur->first_insn_idx = insn_idx; 18190 cur->dfs_depth = new->dfs_depth + 1; 18191 clear_jmp_history(cur); 18192 new_sl->next = *explored_state(env, insn_idx); 18193 *explored_state(env, insn_idx) = new_sl; 18194 /* connect new state to parentage chain. Current frame needs all 18195 * registers connected. Only r6 - r9 of the callers are alive (pushed 18196 * to the stack implicitly by JITs) so in callers' frames connect just 18197 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 18198 * the state of the call instruction (with WRITTEN set), and r0 comes 18199 * from callee with its full parentage chain, anyway. 18200 */ 18201 /* clear write marks in current state: the writes we did are not writes 18202 * our child did, so they don't screen off its reads from us. 18203 * (There are no read marks in current state, because reads always mark 18204 * their parent and current state never has children yet. Only 18205 * explored_states can get read marks.) 18206 */ 18207 for (j = 0; j <= cur->curframe; j++) { 18208 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 18209 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 18210 for (i = 0; i < BPF_REG_FP; i++) 18211 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 18212 } 18213 18214 /* all stack frames are accessible from callee, clear them all */ 18215 for (j = 0; j <= cur->curframe; j++) { 18216 struct bpf_func_state *frame = cur->frame[j]; 18217 struct bpf_func_state *newframe = new->frame[j]; 18218 18219 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 18220 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 18221 frame->stack[i].spilled_ptr.parent = 18222 &newframe->stack[i].spilled_ptr; 18223 } 18224 } 18225 return 0; 18226 } 18227 18228 /* Return true if it's OK to have the same insn return a different type. */ 18229 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 18230 { 18231 switch (base_type(type)) { 18232 case PTR_TO_CTX: 18233 case PTR_TO_SOCKET: 18234 case PTR_TO_SOCK_COMMON: 18235 case PTR_TO_TCP_SOCK: 18236 case PTR_TO_XDP_SOCK: 18237 case PTR_TO_BTF_ID: 18238 case PTR_TO_ARENA: 18239 return false; 18240 default: 18241 return true; 18242 } 18243 } 18244 18245 /* If an instruction was previously used with particular pointer types, then we 18246 * need to be careful to avoid cases such as the below, where it may be ok 18247 * for one branch accessing the pointer, but not ok for the other branch: 18248 * 18249 * R1 = sock_ptr 18250 * goto X; 18251 * ... 18252 * R1 = some_other_valid_ptr; 18253 * goto X; 18254 * ... 18255 * R2 = *(u32 *)(R1 + 0); 18256 */ 18257 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 18258 { 18259 return src != prev && (!reg_type_mismatch_ok(src) || 18260 !reg_type_mismatch_ok(prev)); 18261 } 18262 18263 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 18264 bool allow_trust_mismatch) 18265 { 18266 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 18267 18268 if (*prev_type == NOT_INIT) { 18269 /* Saw a valid insn 18270 * dst_reg = *(u32 *)(src_reg + off) 18271 * save type to validate intersecting paths 18272 */ 18273 *prev_type = type; 18274 } else if (reg_type_mismatch(type, *prev_type)) { 18275 /* Abuser program is trying to use the same insn 18276 * dst_reg = *(u32*) (src_reg + off) 18277 * with different pointer types: 18278 * src_reg == ctx in one branch and 18279 * src_reg == stack|map in some other branch. 18280 * Reject it. 18281 */ 18282 if (allow_trust_mismatch && 18283 base_type(type) == PTR_TO_BTF_ID && 18284 base_type(*prev_type) == PTR_TO_BTF_ID) { 18285 /* 18286 * Have to support a use case when one path through 18287 * the program yields TRUSTED pointer while another 18288 * is UNTRUSTED. Fallback to UNTRUSTED to generate 18289 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 18290 */ 18291 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 18292 } else { 18293 verbose(env, "same insn cannot be used with different pointers\n"); 18294 return -EINVAL; 18295 } 18296 } 18297 18298 return 0; 18299 } 18300 18301 static int do_check(struct bpf_verifier_env *env) 18302 { 18303 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 18304 struct bpf_verifier_state *state = env->cur_state; 18305 struct bpf_insn *insns = env->prog->insnsi; 18306 struct bpf_reg_state *regs; 18307 int insn_cnt = env->prog->len; 18308 bool do_print_state = false; 18309 int prev_insn_idx = -1; 18310 18311 for (;;) { 18312 bool exception_exit = false; 18313 struct bpf_insn *insn; 18314 u8 class; 18315 int err; 18316 18317 /* reset current history entry on each new instruction */ 18318 env->cur_hist_ent = NULL; 18319 18320 env->prev_insn_idx = prev_insn_idx; 18321 if (env->insn_idx >= insn_cnt) { 18322 verbose(env, "invalid insn idx %d insn_cnt %d\n", 18323 env->insn_idx, insn_cnt); 18324 return -EFAULT; 18325 } 18326 18327 insn = &insns[env->insn_idx]; 18328 class = BPF_CLASS(insn->code); 18329 18330 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 18331 verbose(env, 18332 "BPF program is too large. Processed %d insn\n", 18333 env->insn_processed); 18334 return -E2BIG; 18335 } 18336 18337 state->last_insn_idx = env->prev_insn_idx; 18338 18339 if (is_prune_point(env, env->insn_idx)) { 18340 err = is_state_visited(env, env->insn_idx); 18341 if (err < 0) 18342 return err; 18343 if (err == 1) { 18344 /* found equivalent state, can prune the search */ 18345 if (env->log.level & BPF_LOG_LEVEL) { 18346 if (do_print_state) 18347 verbose(env, "\nfrom %d to %d%s: safe\n", 18348 env->prev_insn_idx, env->insn_idx, 18349 env->cur_state->speculative ? 18350 " (speculative execution)" : ""); 18351 else 18352 verbose(env, "%d: safe\n", env->insn_idx); 18353 } 18354 goto process_bpf_exit; 18355 } 18356 } 18357 18358 if (is_jmp_point(env, env->insn_idx)) { 18359 err = push_jmp_history(env, state, 0, 0); 18360 if (err) 18361 return err; 18362 } 18363 18364 if (signal_pending(current)) 18365 return -EAGAIN; 18366 18367 if (need_resched()) 18368 cond_resched(); 18369 18370 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 18371 verbose(env, "\nfrom %d to %d%s:", 18372 env->prev_insn_idx, env->insn_idx, 18373 env->cur_state->speculative ? 18374 " (speculative execution)" : ""); 18375 print_verifier_state(env, state->frame[state->curframe], true); 18376 do_print_state = false; 18377 } 18378 18379 if (env->log.level & BPF_LOG_LEVEL) { 18380 const struct bpf_insn_cbs cbs = { 18381 .cb_call = disasm_kfunc_name, 18382 .cb_print = verbose, 18383 .private_data = env, 18384 }; 18385 18386 if (verifier_state_scratched(env)) 18387 print_insn_state(env, state->frame[state->curframe]); 18388 18389 verbose_linfo(env, env->insn_idx, "; "); 18390 env->prev_log_pos = env->log.end_pos; 18391 verbose(env, "%d: ", env->insn_idx); 18392 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 18393 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 18394 env->prev_log_pos = env->log.end_pos; 18395 } 18396 18397 if (bpf_prog_is_offloaded(env->prog->aux)) { 18398 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 18399 env->prev_insn_idx); 18400 if (err) 18401 return err; 18402 } 18403 18404 regs = cur_regs(env); 18405 sanitize_mark_insn_seen(env); 18406 prev_insn_idx = env->insn_idx; 18407 18408 if (class == BPF_ALU || class == BPF_ALU64) { 18409 err = check_alu_op(env, insn); 18410 if (err) 18411 return err; 18412 18413 } else if (class == BPF_LDX) { 18414 enum bpf_reg_type src_reg_type; 18415 18416 /* check for reserved fields is already done */ 18417 18418 /* check src operand */ 18419 err = check_reg_arg(env, insn->src_reg, SRC_OP); 18420 if (err) 18421 return err; 18422 18423 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 18424 if (err) 18425 return err; 18426 18427 src_reg_type = regs[insn->src_reg].type; 18428 18429 /* check that memory (src_reg + off) is readable, 18430 * the state of dst_reg will be updated by this func 18431 */ 18432 err = check_mem_access(env, env->insn_idx, insn->src_reg, 18433 insn->off, BPF_SIZE(insn->code), 18434 BPF_READ, insn->dst_reg, false, 18435 BPF_MODE(insn->code) == BPF_MEMSX); 18436 err = err ?: save_aux_ptr_type(env, src_reg_type, true); 18437 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx"); 18438 if (err) 18439 return err; 18440 } else if (class == BPF_STX) { 18441 enum bpf_reg_type dst_reg_type; 18442 18443 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 18444 err = check_atomic(env, env->insn_idx, insn); 18445 if (err) 18446 return err; 18447 env->insn_idx++; 18448 continue; 18449 } 18450 18451 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 18452 verbose(env, "BPF_STX uses reserved fields\n"); 18453 return -EINVAL; 18454 } 18455 18456 /* check src1 operand */ 18457 err = check_reg_arg(env, insn->src_reg, SRC_OP); 18458 if (err) 18459 return err; 18460 /* check src2 operand */ 18461 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 18462 if (err) 18463 return err; 18464 18465 dst_reg_type = regs[insn->dst_reg].type; 18466 18467 /* check that memory (dst_reg + off) is writeable */ 18468 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 18469 insn->off, BPF_SIZE(insn->code), 18470 BPF_WRITE, insn->src_reg, false, false); 18471 if (err) 18472 return err; 18473 18474 err = save_aux_ptr_type(env, dst_reg_type, false); 18475 if (err) 18476 return err; 18477 } else if (class == BPF_ST) { 18478 enum bpf_reg_type dst_reg_type; 18479 18480 if (BPF_MODE(insn->code) != BPF_MEM || 18481 insn->src_reg != BPF_REG_0) { 18482 verbose(env, "BPF_ST uses reserved fields\n"); 18483 return -EINVAL; 18484 } 18485 /* check src operand */ 18486 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 18487 if (err) 18488 return err; 18489 18490 dst_reg_type = regs[insn->dst_reg].type; 18491 18492 /* check that memory (dst_reg + off) is writeable */ 18493 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 18494 insn->off, BPF_SIZE(insn->code), 18495 BPF_WRITE, -1, false, false); 18496 if (err) 18497 return err; 18498 18499 err = save_aux_ptr_type(env, dst_reg_type, false); 18500 if (err) 18501 return err; 18502 } else if (class == BPF_JMP || class == BPF_JMP32) { 18503 u8 opcode = BPF_OP(insn->code); 18504 18505 env->jmps_processed++; 18506 if (opcode == BPF_CALL) { 18507 if (BPF_SRC(insn->code) != BPF_K || 18508 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 18509 && insn->off != 0) || 18510 (insn->src_reg != BPF_REG_0 && 18511 insn->src_reg != BPF_PSEUDO_CALL && 18512 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 18513 insn->dst_reg != BPF_REG_0 || 18514 class == BPF_JMP32) { 18515 verbose(env, "BPF_CALL uses reserved fields\n"); 18516 return -EINVAL; 18517 } 18518 18519 if (env->cur_state->active_lock.ptr) { 18520 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 18521 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 18522 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 18523 verbose(env, "function calls are not allowed while holding a lock\n"); 18524 return -EINVAL; 18525 } 18526 } 18527 if (insn->src_reg == BPF_PSEUDO_CALL) { 18528 err = check_func_call(env, insn, &env->insn_idx); 18529 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18530 err = check_kfunc_call(env, insn, &env->insn_idx); 18531 if (!err && is_bpf_throw_kfunc(insn)) { 18532 exception_exit = true; 18533 goto process_bpf_exit_full; 18534 } 18535 } else { 18536 err = check_helper_call(env, insn, &env->insn_idx); 18537 } 18538 if (err) 18539 return err; 18540 18541 mark_reg_scratched(env, BPF_REG_0); 18542 } else if (opcode == BPF_JA) { 18543 if (BPF_SRC(insn->code) != BPF_K || 18544 insn->src_reg != BPF_REG_0 || 18545 insn->dst_reg != BPF_REG_0 || 18546 (class == BPF_JMP && insn->imm != 0) || 18547 (class == BPF_JMP32 && insn->off != 0)) { 18548 verbose(env, "BPF_JA uses reserved fields\n"); 18549 return -EINVAL; 18550 } 18551 18552 if (class == BPF_JMP) 18553 env->insn_idx += insn->off + 1; 18554 else 18555 env->insn_idx += insn->imm + 1; 18556 continue; 18557 18558 } else if (opcode == BPF_EXIT) { 18559 if (BPF_SRC(insn->code) != BPF_K || 18560 insn->imm != 0 || 18561 insn->src_reg != BPF_REG_0 || 18562 insn->dst_reg != BPF_REG_0 || 18563 class == BPF_JMP32) { 18564 verbose(env, "BPF_EXIT uses reserved fields\n"); 18565 return -EINVAL; 18566 } 18567 process_bpf_exit_full: 18568 if (env->cur_state->active_lock.ptr && !env->cur_state->curframe) { 18569 verbose(env, "bpf_spin_unlock is missing\n"); 18570 return -EINVAL; 18571 } 18572 18573 if (env->cur_state->active_rcu_lock && !env->cur_state->curframe) { 18574 verbose(env, "bpf_rcu_read_unlock is missing\n"); 18575 return -EINVAL; 18576 } 18577 18578 if (env->cur_state->active_preempt_lock && !env->cur_state->curframe) { 18579 verbose(env, "%d bpf_preempt_enable%s missing\n", 18580 env->cur_state->active_preempt_lock, 18581 env->cur_state->active_preempt_lock == 1 ? " is" : "(s) are"); 18582 return -EINVAL; 18583 } 18584 18585 /* We must do check_reference_leak here before 18586 * prepare_func_exit to handle the case when 18587 * state->curframe > 0, it may be a callback 18588 * function, for which reference_state must 18589 * match caller reference state when it exits. 18590 */ 18591 err = check_reference_leak(env, exception_exit); 18592 if (err) 18593 return err; 18594 18595 /* The side effect of the prepare_func_exit 18596 * which is being skipped is that it frees 18597 * bpf_func_state. Typically, process_bpf_exit 18598 * will only be hit with outermost exit. 18599 * copy_verifier_state in pop_stack will handle 18600 * freeing of any extra bpf_func_state left over 18601 * from not processing all nested function 18602 * exits. We also skip return code checks as 18603 * they are not needed for exceptional exits. 18604 */ 18605 if (exception_exit) 18606 goto process_bpf_exit; 18607 18608 if (state->curframe) { 18609 /* exit from nested function */ 18610 err = prepare_func_exit(env, &env->insn_idx); 18611 if (err) 18612 return err; 18613 do_print_state = true; 18614 continue; 18615 } 18616 18617 err = check_return_code(env, BPF_REG_0, "R0"); 18618 if (err) 18619 return err; 18620 process_bpf_exit: 18621 mark_verifier_state_scratched(env); 18622 update_branch_counts(env, env->cur_state); 18623 err = pop_stack(env, &prev_insn_idx, 18624 &env->insn_idx, pop_log); 18625 if (err < 0) { 18626 if (err != -ENOENT) 18627 return err; 18628 break; 18629 } else { 18630 do_print_state = true; 18631 continue; 18632 } 18633 } else { 18634 err = check_cond_jmp_op(env, insn, &env->insn_idx); 18635 if (err) 18636 return err; 18637 } 18638 } else if (class == BPF_LD) { 18639 u8 mode = BPF_MODE(insn->code); 18640 18641 if (mode == BPF_ABS || mode == BPF_IND) { 18642 err = check_ld_abs(env, insn); 18643 if (err) 18644 return err; 18645 18646 } else if (mode == BPF_IMM) { 18647 err = check_ld_imm(env, insn); 18648 if (err) 18649 return err; 18650 18651 env->insn_idx++; 18652 sanitize_mark_insn_seen(env); 18653 } else { 18654 verbose(env, "invalid BPF_LD mode\n"); 18655 return -EINVAL; 18656 } 18657 } else { 18658 verbose(env, "unknown insn class %d\n", class); 18659 return -EINVAL; 18660 } 18661 18662 env->insn_idx++; 18663 } 18664 18665 return 0; 18666 } 18667 18668 static int find_btf_percpu_datasec(struct btf *btf) 18669 { 18670 const struct btf_type *t; 18671 const char *tname; 18672 int i, n; 18673 18674 /* 18675 * Both vmlinux and module each have their own ".data..percpu" 18676 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 18677 * types to look at only module's own BTF types. 18678 */ 18679 n = btf_nr_types(btf); 18680 if (btf_is_module(btf)) 18681 i = btf_nr_types(btf_vmlinux); 18682 else 18683 i = 1; 18684 18685 for(; i < n; i++) { 18686 t = btf_type_by_id(btf, i); 18687 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 18688 continue; 18689 18690 tname = btf_name_by_offset(btf, t->name_off); 18691 if (!strcmp(tname, ".data..percpu")) 18692 return i; 18693 } 18694 18695 return -ENOENT; 18696 } 18697 18698 /* replace pseudo btf_id with kernel symbol address */ 18699 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 18700 struct bpf_insn *insn, 18701 struct bpf_insn_aux_data *aux) 18702 { 18703 const struct btf_var_secinfo *vsi; 18704 const struct btf_type *datasec; 18705 struct btf_mod_pair *btf_mod; 18706 const struct btf_type *t; 18707 const char *sym_name; 18708 bool percpu = false; 18709 u32 type, id = insn->imm; 18710 struct btf *btf; 18711 s32 datasec_id; 18712 u64 addr; 18713 int i, btf_fd, err; 18714 18715 btf_fd = insn[1].imm; 18716 if (btf_fd) { 18717 btf = btf_get_by_fd(btf_fd); 18718 if (IS_ERR(btf)) { 18719 verbose(env, "invalid module BTF object FD specified.\n"); 18720 return -EINVAL; 18721 } 18722 } else { 18723 if (!btf_vmlinux) { 18724 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 18725 return -EINVAL; 18726 } 18727 btf = btf_vmlinux; 18728 btf_get(btf); 18729 } 18730 18731 t = btf_type_by_id(btf, id); 18732 if (!t) { 18733 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 18734 err = -ENOENT; 18735 goto err_put; 18736 } 18737 18738 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 18739 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 18740 err = -EINVAL; 18741 goto err_put; 18742 } 18743 18744 sym_name = btf_name_by_offset(btf, t->name_off); 18745 addr = kallsyms_lookup_name(sym_name); 18746 if (!addr) { 18747 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 18748 sym_name); 18749 err = -ENOENT; 18750 goto err_put; 18751 } 18752 insn[0].imm = (u32)addr; 18753 insn[1].imm = addr >> 32; 18754 18755 if (btf_type_is_func(t)) { 18756 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 18757 aux->btf_var.mem_size = 0; 18758 goto check_btf; 18759 } 18760 18761 datasec_id = find_btf_percpu_datasec(btf); 18762 if (datasec_id > 0) { 18763 datasec = btf_type_by_id(btf, datasec_id); 18764 for_each_vsi(i, datasec, vsi) { 18765 if (vsi->type == id) { 18766 percpu = true; 18767 break; 18768 } 18769 } 18770 } 18771 18772 type = t->type; 18773 t = btf_type_skip_modifiers(btf, type, NULL); 18774 if (percpu) { 18775 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 18776 aux->btf_var.btf = btf; 18777 aux->btf_var.btf_id = type; 18778 } else if (!btf_type_is_struct(t)) { 18779 const struct btf_type *ret; 18780 const char *tname; 18781 u32 tsize; 18782 18783 /* resolve the type size of ksym. */ 18784 ret = btf_resolve_size(btf, t, &tsize); 18785 if (IS_ERR(ret)) { 18786 tname = btf_name_by_offset(btf, t->name_off); 18787 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 18788 tname, PTR_ERR(ret)); 18789 err = -EINVAL; 18790 goto err_put; 18791 } 18792 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 18793 aux->btf_var.mem_size = tsize; 18794 } else { 18795 aux->btf_var.reg_type = PTR_TO_BTF_ID; 18796 aux->btf_var.btf = btf; 18797 aux->btf_var.btf_id = type; 18798 } 18799 check_btf: 18800 /* check whether we recorded this BTF (and maybe module) already */ 18801 for (i = 0; i < env->used_btf_cnt; i++) { 18802 if (env->used_btfs[i].btf == btf) { 18803 btf_put(btf); 18804 return 0; 18805 } 18806 } 18807 18808 if (env->used_btf_cnt >= MAX_USED_BTFS) { 18809 err = -E2BIG; 18810 goto err_put; 18811 } 18812 18813 btf_mod = &env->used_btfs[env->used_btf_cnt]; 18814 btf_mod->btf = btf; 18815 btf_mod->module = NULL; 18816 18817 /* if we reference variables from kernel module, bump its refcount */ 18818 if (btf_is_module(btf)) { 18819 btf_mod->module = btf_try_get_module(btf); 18820 if (!btf_mod->module) { 18821 err = -ENXIO; 18822 goto err_put; 18823 } 18824 } 18825 18826 env->used_btf_cnt++; 18827 18828 return 0; 18829 err_put: 18830 btf_put(btf); 18831 return err; 18832 } 18833 18834 static bool is_tracing_prog_type(enum bpf_prog_type type) 18835 { 18836 switch (type) { 18837 case BPF_PROG_TYPE_KPROBE: 18838 case BPF_PROG_TYPE_TRACEPOINT: 18839 case BPF_PROG_TYPE_PERF_EVENT: 18840 case BPF_PROG_TYPE_RAW_TRACEPOINT: 18841 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 18842 return true; 18843 default: 18844 return false; 18845 } 18846 } 18847 18848 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 18849 struct bpf_map *map, 18850 struct bpf_prog *prog) 18851 18852 { 18853 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18854 18855 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 18856 btf_record_has_field(map->record, BPF_RB_ROOT)) { 18857 if (is_tracing_prog_type(prog_type)) { 18858 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 18859 return -EINVAL; 18860 } 18861 } 18862 18863 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 18864 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 18865 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 18866 return -EINVAL; 18867 } 18868 18869 if (is_tracing_prog_type(prog_type)) { 18870 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 18871 return -EINVAL; 18872 } 18873 } 18874 18875 if (btf_record_has_field(map->record, BPF_TIMER)) { 18876 if (is_tracing_prog_type(prog_type)) { 18877 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 18878 return -EINVAL; 18879 } 18880 } 18881 18882 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) { 18883 if (is_tracing_prog_type(prog_type)) { 18884 verbose(env, "tracing progs cannot use bpf_wq yet\n"); 18885 return -EINVAL; 18886 } 18887 } 18888 18889 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 18890 !bpf_offload_prog_map_match(prog, map)) { 18891 verbose(env, "offload device mismatch between prog and map\n"); 18892 return -EINVAL; 18893 } 18894 18895 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 18896 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 18897 return -EINVAL; 18898 } 18899 18900 if (prog->sleepable) 18901 switch (map->map_type) { 18902 case BPF_MAP_TYPE_HASH: 18903 case BPF_MAP_TYPE_LRU_HASH: 18904 case BPF_MAP_TYPE_ARRAY: 18905 case BPF_MAP_TYPE_PERCPU_HASH: 18906 case BPF_MAP_TYPE_PERCPU_ARRAY: 18907 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 18908 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 18909 case BPF_MAP_TYPE_HASH_OF_MAPS: 18910 case BPF_MAP_TYPE_RINGBUF: 18911 case BPF_MAP_TYPE_USER_RINGBUF: 18912 case BPF_MAP_TYPE_INODE_STORAGE: 18913 case BPF_MAP_TYPE_SK_STORAGE: 18914 case BPF_MAP_TYPE_TASK_STORAGE: 18915 case BPF_MAP_TYPE_CGRP_STORAGE: 18916 case BPF_MAP_TYPE_QUEUE: 18917 case BPF_MAP_TYPE_STACK: 18918 case BPF_MAP_TYPE_ARENA: 18919 break; 18920 default: 18921 verbose(env, 18922 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 18923 return -EINVAL; 18924 } 18925 18926 return 0; 18927 } 18928 18929 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 18930 { 18931 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 18932 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 18933 } 18934 18935 /* Add map behind fd to used maps list, if it's not already there, and return 18936 * its index. Also set *reused to true if this map was already in the list of 18937 * used maps. 18938 * Returns <0 on error, or >= 0 index, on success. 18939 */ 18940 static int add_used_map_from_fd(struct bpf_verifier_env *env, int fd, bool *reused) 18941 { 18942 CLASS(fd, f)(fd); 18943 struct bpf_map *map; 18944 int i; 18945 18946 map = __bpf_map_get(f); 18947 if (IS_ERR(map)) { 18948 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 18949 return PTR_ERR(map); 18950 } 18951 18952 /* check whether we recorded this map already */ 18953 for (i = 0; i < env->used_map_cnt; i++) { 18954 if (env->used_maps[i] == map) { 18955 *reused = true; 18956 return i; 18957 } 18958 } 18959 18960 if (env->used_map_cnt >= MAX_USED_MAPS) { 18961 verbose(env, "The total number of maps per program has reached the limit of %u\n", 18962 MAX_USED_MAPS); 18963 return -E2BIG; 18964 } 18965 18966 if (env->prog->sleepable) 18967 atomic64_inc(&map->sleepable_refcnt); 18968 18969 /* hold the map. If the program is rejected by verifier, 18970 * the map will be released by release_maps() or it 18971 * will be used by the valid program until it's unloaded 18972 * and all maps are released in bpf_free_used_maps() 18973 */ 18974 bpf_map_inc(map); 18975 18976 *reused = false; 18977 env->used_maps[env->used_map_cnt++] = map; 18978 18979 return env->used_map_cnt - 1; 18980 } 18981 18982 /* find and rewrite pseudo imm in ld_imm64 instructions: 18983 * 18984 * 1. if it accesses map FD, replace it with actual map pointer. 18985 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 18986 * 18987 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 18988 */ 18989 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 18990 { 18991 struct bpf_insn *insn = env->prog->insnsi; 18992 int insn_cnt = env->prog->len; 18993 int i, err; 18994 18995 err = bpf_prog_calc_tag(env->prog); 18996 if (err) 18997 return err; 18998 18999 for (i = 0; i < insn_cnt; i++, insn++) { 19000 if (BPF_CLASS(insn->code) == BPF_LDX && 19001 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 19002 insn->imm != 0)) { 19003 verbose(env, "BPF_LDX uses reserved fields\n"); 19004 return -EINVAL; 19005 } 19006 19007 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 19008 struct bpf_insn_aux_data *aux; 19009 struct bpf_map *map; 19010 int map_idx; 19011 u64 addr; 19012 u32 fd; 19013 bool reused; 19014 19015 if (i == insn_cnt - 1 || insn[1].code != 0 || 19016 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 19017 insn[1].off != 0) { 19018 verbose(env, "invalid bpf_ld_imm64 insn\n"); 19019 return -EINVAL; 19020 } 19021 19022 if (insn[0].src_reg == 0) 19023 /* valid generic load 64-bit imm */ 19024 goto next_insn; 19025 19026 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 19027 aux = &env->insn_aux_data[i]; 19028 err = check_pseudo_btf_id(env, insn, aux); 19029 if (err) 19030 return err; 19031 goto next_insn; 19032 } 19033 19034 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 19035 aux = &env->insn_aux_data[i]; 19036 aux->ptr_type = PTR_TO_FUNC; 19037 goto next_insn; 19038 } 19039 19040 /* In final convert_pseudo_ld_imm64() step, this is 19041 * converted into regular 64-bit imm load insn. 19042 */ 19043 switch (insn[0].src_reg) { 19044 case BPF_PSEUDO_MAP_VALUE: 19045 case BPF_PSEUDO_MAP_IDX_VALUE: 19046 break; 19047 case BPF_PSEUDO_MAP_FD: 19048 case BPF_PSEUDO_MAP_IDX: 19049 if (insn[1].imm == 0) 19050 break; 19051 fallthrough; 19052 default: 19053 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 19054 return -EINVAL; 19055 } 19056 19057 switch (insn[0].src_reg) { 19058 case BPF_PSEUDO_MAP_IDX_VALUE: 19059 case BPF_PSEUDO_MAP_IDX: 19060 if (bpfptr_is_null(env->fd_array)) { 19061 verbose(env, "fd_idx without fd_array is invalid\n"); 19062 return -EPROTO; 19063 } 19064 if (copy_from_bpfptr_offset(&fd, env->fd_array, 19065 insn[0].imm * sizeof(fd), 19066 sizeof(fd))) 19067 return -EFAULT; 19068 break; 19069 default: 19070 fd = insn[0].imm; 19071 break; 19072 } 19073 19074 map_idx = add_used_map_from_fd(env, fd, &reused); 19075 if (map_idx < 0) 19076 return map_idx; 19077 map = env->used_maps[map_idx]; 19078 19079 aux = &env->insn_aux_data[i]; 19080 aux->map_index = map_idx; 19081 19082 err = check_map_prog_compatibility(env, map, env->prog); 19083 if (err) 19084 return err; 19085 19086 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 19087 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 19088 addr = (unsigned long)map; 19089 } else { 19090 u32 off = insn[1].imm; 19091 19092 if (off >= BPF_MAX_VAR_OFF) { 19093 verbose(env, "direct value offset of %u is not allowed\n", off); 19094 return -EINVAL; 19095 } 19096 19097 if (!map->ops->map_direct_value_addr) { 19098 verbose(env, "no direct value access support for this map type\n"); 19099 return -EINVAL; 19100 } 19101 19102 err = map->ops->map_direct_value_addr(map, &addr, off); 19103 if (err) { 19104 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 19105 map->value_size, off); 19106 return err; 19107 } 19108 19109 aux->map_off = off; 19110 addr += off; 19111 } 19112 19113 insn[0].imm = (u32)addr; 19114 insn[1].imm = addr >> 32; 19115 19116 /* proceed with extra checks only if its newly added used map */ 19117 if (reused) 19118 goto next_insn; 19119 19120 if (bpf_map_is_cgroup_storage(map) && 19121 bpf_cgroup_storage_assign(env->prog->aux, map)) { 19122 verbose(env, "only one cgroup storage of each type is allowed\n"); 19123 return -EBUSY; 19124 } 19125 if (map->map_type == BPF_MAP_TYPE_ARENA) { 19126 if (env->prog->aux->arena) { 19127 verbose(env, "Only one arena per program\n"); 19128 return -EBUSY; 19129 } 19130 if (!env->allow_ptr_leaks || !env->bpf_capable) { 19131 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); 19132 return -EPERM; 19133 } 19134 if (!env->prog->jit_requested) { 19135 verbose(env, "JIT is required to use arena\n"); 19136 return -EOPNOTSUPP; 19137 } 19138 if (!bpf_jit_supports_arena()) { 19139 verbose(env, "JIT doesn't support arena\n"); 19140 return -EOPNOTSUPP; 19141 } 19142 env->prog->aux->arena = (void *)map; 19143 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { 19144 verbose(env, "arena's user address must be set via map_extra or mmap()\n"); 19145 return -EINVAL; 19146 } 19147 } 19148 19149 next_insn: 19150 insn++; 19151 i++; 19152 continue; 19153 } 19154 19155 /* Basic sanity check before we invest more work here. */ 19156 if (!bpf_opcode_in_insntable(insn->code)) { 19157 verbose(env, "unknown opcode %02x\n", insn->code); 19158 return -EINVAL; 19159 } 19160 } 19161 19162 /* now all pseudo BPF_LD_IMM64 instructions load valid 19163 * 'struct bpf_map *' into a register instead of user map_fd. 19164 * These pointers will be used later by verifier to validate map access. 19165 */ 19166 return 0; 19167 } 19168 19169 /* drop refcnt of maps used by the rejected program */ 19170 static void release_maps(struct bpf_verifier_env *env) 19171 { 19172 __bpf_free_used_maps(env->prog->aux, env->used_maps, 19173 env->used_map_cnt); 19174 } 19175 19176 /* drop refcnt of maps used by the rejected program */ 19177 static void release_btfs(struct bpf_verifier_env *env) 19178 { 19179 __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt); 19180 } 19181 19182 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 19183 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 19184 { 19185 struct bpf_insn *insn = env->prog->insnsi; 19186 int insn_cnt = env->prog->len; 19187 int i; 19188 19189 for (i = 0; i < insn_cnt; i++, insn++) { 19190 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 19191 continue; 19192 if (insn->src_reg == BPF_PSEUDO_FUNC) 19193 continue; 19194 insn->src_reg = 0; 19195 } 19196 } 19197 19198 /* single env->prog->insni[off] instruction was replaced with the range 19199 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 19200 * [0, off) and [off, end) to new locations, so the patched range stays zero 19201 */ 19202 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 19203 struct bpf_insn_aux_data *new_data, 19204 struct bpf_prog *new_prog, u32 off, u32 cnt) 19205 { 19206 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 19207 struct bpf_insn *insn = new_prog->insnsi; 19208 u32 old_seen = old_data[off].seen; 19209 u32 prog_len; 19210 int i; 19211 19212 /* aux info at OFF always needs adjustment, no matter fast path 19213 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 19214 * original insn at old prog. 19215 */ 19216 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 19217 19218 if (cnt == 1) 19219 return; 19220 prog_len = new_prog->len; 19221 19222 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 19223 memcpy(new_data + off + cnt - 1, old_data + off, 19224 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 19225 for (i = off; i < off + cnt - 1; i++) { 19226 /* Expand insni[off]'s seen count to the patched range. */ 19227 new_data[i].seen = old_seen; 19228 new_data[i].zext_dst = insn_has_def32(env, insn + i); 19229 } 19230 env->insn_aux_data = new_data; 19231 vfree(old_data); 19232 } 19233 19234 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 19235 { 19236 int i; 19237 19238 if (len == 1) 19239 return; 19240 /* NOTE: fake 'exit' subprog should be updated as well. */ 19241 for (i = 0; i <= env->subprog_cnt; i++) { 19242 if (env->subprog_info[i].start <= off) 19243 continue; 19244 env->subprog_info[i].start += len - 1; 19245 } 19246 } 19247 19248 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 19249 { 19250 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 19251 int i, sz = prog->aux->size_poke_tab; 19252 struct bpf_jit_poke_descriptor *desc; 19253 19254 for (i = 0; i < sz; i++) { 19255 desc = &tab[i]; 19256 if (desc->insn_idx <= off) 19257 continue; 19258 desc->insn_idx += len - 1; 19259 } 19260 } 19261 19262 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 19263 const struct bpf_insn *patch, u32 len) 19264 { 19265 struct bpf_prog *new_prog; 19266 struct bpf_insn_aux_data *new_data = NULL; 19267 19268 if (len > 1) { 19269 new_data = vzalloc(array_size(env->prog->len + len - 1, 19270 sizeof(struct bpf_insn_aux_data))); 19271 if (!new_data) 19272 return NULL; 19273 } 19274 19275 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 19276 if (IS_ERR(new_prog)) { 19277 if (PTR_ERR(new_prog) == -ERANGE) 19278 verbose(env, 19279 "insn %d cannot be patched due to 16-bit range\n", 19280 env->insn_aux_data[off].orig_idx); 19281 vfree(new_data); 19282 return NULL; 19283 } 19284 adjust_insn_aux_data(env, new_data, new_prog, off, len); 19285 adjust_subprog_starts(env, off, len); 19286 adjust_poke_descs(new_prog, off, len); 19287 return new_prog; 19288 } 19289 19290 /* 19291 * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the 19292 * jump offset by 'delta'. 19293 */ 19294 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta) 19295 { 19296 struct bpf_insn *insn = prog->insnsi; 19297 u32 insn_cnt = prog->len, i; 19298 s32 imm; 19299 s16 off; 19300 19301 for (i = 0; i < insn_cnt; i++, insn++) { 19302 u8 code = insn->code; 19303 19304 if (tgt_idx <= i && i < tgt_idx + delta) 19305 continue; 19306 19307 if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || 19308 BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT) 19309 continue; 19310 19311 if (insn->code == (BPF_JMP32 | BPF_JA)) { 19312 if (i + 1 + insn->imm != tgt_idx) 19313 continue; 19314 if (check_add_overflow(insn->imm, delta, &imm)) 19315 return -ERANGE; 19316 insn->imm = imm; 19317 } else { 19318 if (i + 1 + insn->off != tgt_idx) 19319 continue; 19320 if (check_add_overflow(insn->off, delta, &off)) 19321 return -ERANGE; 19322 insn->off = off; 19323 } 19324 } 19325 return 0; 19326 } 19327 19328 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 19329 u32 off, u32 cnt) 19330 { 19331 int i, j; 19332 19333 /* find first prog starting at or after off (first to remove) */ 19334 for (i = 0; i < env->subprog_cnt; i++) 19335 if (env->subprog_info[i].start >= off) 19336 break; 19337 /* find first prog starting at or after off + cnt (first to stay) */ 19338 for (j = i; j < env->subprog_cnt; j++) 19339 if (env->subprog_info[j].start >= off + cnt) 19340 break; 19341 /* if j doesn't start exactly at off + cnt, we are just removing 19342 * the front of previous prog 19343 */ 19344 if (env->subprog_info[j].start != off + cnt) 19345 j--; 19346 19347 if (j > i) { 19348 struct bpf_prog_aux *aux = env->prog->aux; 19349 int move; 19350 19351 /* move fake 'exit' subprog as well */ 19352 move = env->subprog_cnt + 1 - j; 19353 19354 memmove(env->subprog_info + i, 19355 env->subprog_info + j, 19356 sizeof(*env->subprog_info) * move); 19357 env->subprog_cnt -= j - i; 19358 19359 /* remove func_info */ 19360 if (aux->func_info) { 19361 move = aux->func_info_cnt - j; 19362 19363 memmove(aux->func_info + i, 19364 aux->func_info + j, 19365 sizeof(*aux->func_info) * move); 19366 aux->func_info_cnt -= j - i; 19367 /* func_info->insn_off is set after all code rewrites, 19368 * in adjust_btf_func() - no need to adjust 19369 */ 19370 } 19371 } else { 19372 /* convert i from "first prog to remove" to "first to adjust" */ 19373 if (env->subprog_info[i].start == off) 19374 i++; 19375 } 19376 19377 /* update fake 'exit' subprog as well */ 19378 for (; i <= env->subprog_cnt; i++) 19379 env->subprog_info[i].start -= cnt; 19380 19381 return 0; 19382 } 19383 19384 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 19385 u32 cnt) 19386 { 19387 struct bpf_prog *prog = env->prog; 19388 u32 i, l_off, l_cnt, nr_linfo; 19389 struct bpf_line_info *linfo; 19390 19391 nr_linfo = prog->aux->nr_linfo; 19392 if (!nr_linfo) 19393 return 0; 19394 19395 linfo = prog->aux->linfo; 19396 19397 /* find first line info to remove, count lines to be removed */ 19398 for (i = 0; i < nr_linfo; i++) 19399 if (linfo[i].insn_off >= off) 19400 break; 19401 19402 l_off = i; 19403 l_cnt = 0; 19404 for (; i < nr_linfo; i++) 19405 if (linfo[i].insn_off < off + cnt) 19406 l_cnt++; 19407 else 19408 break; 19409 19410 /* First live insn doesn't match first live linfo, it needs to "inherit" 19411 * last removed linfo. prog is already modified, so prog->len == off 19412 * means no live instructions after (tail of the program was removed). 19413 */ 19414 if (prog->len != off && l_cnt && 19415 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 19416 l_cnt--; 19417 linfo[--i].insn_off = off + cnt; 19418 } 19419 19420 /* remove the line info which refer to the removed instructions */ 19421 if (l_cnt) { 19422 memmove(linfo + l_off, linfo + i, 19423 sizeof(*linfo) * (nr_linfo - i)); 19424 19425 prog->aux->nr_linfo -= l_cnt; 19426 nr_linfo = prog->aux->nr_linfo; 19427 } 19428 19429 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 19430 for (i = l_off; i < nr_linfo; i++) 19431 linfo[i].insn_off -= cnt; 19432 19433 /* fix up all subprogs (incl. 'exit') which start >= off */ 19434 for (i = 0; i <= env->subprog_cnt; i++) 19435 if (env->subprog_info[i].linfo_idx > l_off) { 19436 /* program may have started in the removed region but 19437 * may not be fully removed 19438 */ 19439 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 19440 env->subprog_info[i].linfo_idx -= l_cnt; 19441 else 19442 env->subprog_info[i].linfo_idx = l_off; 19443 } 19444 19445 return 0; 19446 } 19447 19448 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 19449 { 19450 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 19451 unsigned int orig_prog_len = env->prog->len; 19452 int err; 19453 19454 if (bpf_prog_is_offloaded(env->prog->aux)) 19455 bpf_prog_offload_remove_insns(env, off, cnt); 19456 19457 err = bpf_remove_insns(env->prog, off, cnt); 19458 if (err) 19459 return err; 19460 19461 err = adjust_subprog_starts_after_remove(env, off, cnt); 19462 if (err) 19463 return err; 19464 19465 err = bpf_adj_linfo_after_remove(env, off, cnt); 19466 if (err) 19467 return err; 19468 19469 memmove(aux_data + off, aux_data + off + cnt, 19470 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 19471 19472 return 0; 19473 } 19474 19475 /* The verifier does more data flow analysis than llvm and will not 19476 * explore branches that are dead at run time. Malicious programs can 19477 * have dead code too. Therefore replace all dead at-run-time code 19478 * with 'ja -1'. 19479 * 19480 * Just nops are not optimal, e.g. if they would sit at the end of the 19481 * program and through another bug we would manage to jump there, then 19482 * we'd execute beyond program memory otherwise. Returning exception 19483 * code also wouldn't work since we can have subprogs where the dead 19484 * code could be located. 19485 */ 19486 static void sanitize_dead_code(struct bpf_verifier_env *env) 19487 { 19488 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 19489 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 19490 struct bpf_insn *insn = env->prog->insnsi; 19491 const int insn_cnt = env->prog->len; 19492 int i; 19493 19494 for (i = 0; i < insn_cnt; i++) { 19495 if (aux_data[i].seen) 19496 continue; 19497 memcpy(insn + i, &trap, sizeof(trap)); 19498 aux_data[i].zext_dst = false; 19499 } 19500 } 19501 19502 static bool insn_is_cond_jump(u8 code) 19503 { 19504 u8 op; 19505 19506 op = BPF_OP(code); 19507 if (BPF_CLASS(code) == BPF_JMP32) 19508 return op != BPF_JA; 19509 19510 if (BPF_CLASS(code) != BPF_JMP) 19511 return false; 19512 19513 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 19514 } 19515 19516 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 19517 { 19518 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 19519 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 19520 struct bpf_insn *insn = env->prog->insnsi; 19521 const int insn_cnt = env->prog->len; 19522 int i; 19523 19524 for (i = 0; i < insn_cnt; i++, insn++) { 19525 if (!insn_is_cond_jump(insn->code)) 19526 continue; 19527 19528 if (!aux_data[i + 1].seen) 19529 ja.off = insn->off; 19530 else if (!aux_data[i + 1 + insn->off].seen) 19531 ja.off = 0; 19532 else 19533 continue; 19534 19535 if (bpf_prog_is_offloaded(env->prog->aux)) 19536 bpf_prog_offload_replace_insn(env, i, &ja); 19537 19538 memcpy(insn, &ja, sizeof(ja)); 19539 } 19540 } 19541 19542 static int opt_remove_dead_code(struct bpf_verifier_env *env) 19543 { 19544 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 19545 int insn_cnt = env->prog->len; 19546 int i, err; 19547 19548 for (i = 0; i < insn_cnt; i++) { 19549 int j; 19550 19551 j = 0; 19552 while (i + j < insn_cnt && !aux_data[i + j].seen) 19553 j++; 19554 if (!j) 19555 continue; 19556 19557 err = verifier_remove_insns(env, i, j); 19558 if (err) 19559 return err; 19560 insn_cnt = env->prog->len; 19561 } 19562 19563 return 0; 19564 } 19565 19566 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 19567 19568 static int opt_remove_nops(struct bpf_verifier_env *env) 19569 { 19570 const struct bpf_insn ja = NOP; 19571 struct bpf_insn *insn = env->prog->insnsi; 19572 int insn_cnt = env->prog->len; 19573 int i, err; 19574 19575 for (i = 0; i < insn_cnt; i++) { 19576 if (memcmp(&insn[i], &ja, sizeof(ja))) 19577 continue; 19578 19579 err = verifier_remove_insns(env, i, 1); 19580 if (err) 19581 return err; 19582 insn_cnt--; 19583 i--; 19584 } 19585 19586 return 0; 19587 } 19588 19589 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 19590 const union bpf_attr *attr) 19591 { 19592 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 19593 struct bpf_insn_aux_data *aux = env->insn_aux_data; 19594 int i, patch_len, delta = 0, len = env->prog->len; 19595 struct bpf_insn *insns = env->prog->insnsi; 19596 struct bpf_prog *new_prog; 19597 bool rnd_hi32; 19598 19599 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 19600 zext_patch[1] = BPF_ZEXT_REG(0); 19601 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 19602 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 19603 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 19604 for (i = 0; i < len; i++) { 19605 int adj_idx = i + delta; 19606 struct bpf_insn insn; 19607 int load_reg; 19608 19609 insn = insns[adj_idx]; 19610 load_reg = insn_def_regno(&insn); 19611 if (!aux[adj_idx].zext_dst) { 19612 u8 code, class; 19613 u32 imm_rnd; 19614 19615 if (!rnd_hi32) 19616 continue; 19617 19618 code = insn.code; 19619 class = BPF_CLASS(code); 19620 if (load_reg == -1) 19621 continue; 19622 19623 /* NOTE: arg "reg" (the fourth one) is only used for 19624 * BPF_STX + SRC_OP, so it is safe to pass NULL 19625 * here. 19626 */ 19627 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 19628 if (class == BPF_LD && 19629 BPF_MODE(code) == BPF_IMM) 19630 i++; 19631 continue; 19632 } 19633 19634 /* ctx load could be transformed into wider load. */ 19635 if (class == BPF_LDX && 19636 aux[adj_idx].ptr_type == PTR_TO_CTX) 19637 continue; 19638 19639 imm_rnd = get_random_u32(); 19640 rnd_hi32_patch[0] = insn; 19641 rnd_hi32_patch[1].imm = imm_rnd; 19642 rnd_hi32_patch[3].dst_reg = load_reg; 19643 patch = rnd_hi32_patch; 19644 patch_len = 4; 19645 goto apply_patch_buffer; 19646 } 19647 19648 /* Add in an zero-extend instruction if a) the JIT has requested 19649 * it or b) it's a CMPXCHG. 19650 * 19651 * The latter is because: BPF_CMPXCHG always loads a value into 19652 * R0, therefore always zero-extends. However some archs' 19653 * equivalent instruction only does this load when the 19654 * comparison is successful. This detail of CMPXCHG is 19655 * orthogonal to the general zero-extension behaviour of the 19656 * CPU, so it's treated independently of bpf_jit_needs_zext. 19657 */ 19658 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 19659 continue; 19660 19661 /* Zero-extension is done by the caller. */ 19662 if (bpf_pseudo_kfunc_call(&insn)) 19663 continue; 19664 19665 if (WARN_ON(load_reg == -1)) { 19666 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 19667 return -EFAULT; 19668 } 19669 19670 zext_patch[0] = insn; 19671 zext_patch[1].dst_reg = load_reg; 19672 zext_patch[1].src_reg = load_reg; 19673 patch = zext_patch; 19674 patch_len = 2; 19675 apply_patch_buffer: 19676 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 19677 if (!new_prog) 19678 return -ENOMEM; 19679 env->prog = new_prog; 19680 insns = new_prog->insnsi; 19681 aux = env->insn_aux_data; 19682 delta += patch_len - 1; 19683 } 19684 19685 return 0; 19686 } 19687 19688 /* convert load instructions that access fields of a context type into a 19689 * sequence of instructions that access fields of the underlying structure: 19690 * struct __sk_buff -> struct sk_buff 19691 * struct bpf_sock_ops -> struct sock 19692 */ 19693 static int convert_ctx_accesses(struct bpf_verifier_env *env) 19694 { 19695 struct bpf_subprog_info *subprogs = env->subprog_info; 19696 const struct bpf_verifier_ops *ops = env->ops; 19697 int i, cnt, size, ctx_field_size, delta = 0, epilogue_cnt = 0; 19698 const int insn_cnt = env->prog->len; 19699 struct bpf_insn *epilogue_buf = env->epilogue_buf; 19700 struct bpf_insn *insn_buf = env->insn_buf; 19701 struct bpf_insn *insn; 19702 u32 target_size, size_default, off; 19703 struct bpf_prog *new_prog; 19704 enum bpf_access_type type; 19705 bool is_narrower_load; 19706 int epilogue_idx = 0; 19707 19708 if (ops->gen_epilogue) { 19709 epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog, 19710 -(subprogs[0].stack_depth + 8)); 19711 if (epilogue_cnt >= INSN_BUF_SIZE) { 19712 verbose(env, "bpf verifier is misconfigured\n"); 19713 return -EINVAL; 19714 } else if (epilogue_cnt) { 19715 /* Save the ARG_PTR_TO_CTX for the epilogue to use */ 19716 cnt = 0; 19717 subprogs[0].stack_depth += 8; 19718 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1, 19719 -subprogs[0].stack_depth); 19720 insn_buf[cnt++] = env->prog->insnsi[0]; 19721 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 19722 if (!new_prog) 19723 return -ENOMEM; 19724 env->prog = new_prog; 19725 delta += cnt - 1; 19726 } 19727 } 19728 19729 if (ops->gen_prologue || env->seen_direct_write) { 19730 if (!ops->gen_prologue) { 19731 verbose(env, "bpf verifier is misconfigured\n"); 19732 return -EINVAL; 19733 } 19734 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 19735 env->prog); 19736 if (cnt >= INSN_BUF_SIZE) { 19737 verbose(env, "bpf verifier is misconfigured\n"); 19738 return -EINVAL; 19739 } else if (cnt) { 19740 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 19741 if (!new_prog) 19742 return -ENOMEM; 19743 19744 env->prog = new_prog; 19745 delta += cnt - 1; 19746 } 19747 } 19748 19749 if (delta) 19750 WARN_ON(adjust_jmp_off(env->prog, 0, delta)); 19751 19752 if (bpf_prog_is_offloaded(env->prog->aux)) 19753 return 0; 19754 19755 insn = env->prog->insnsi + delta; 19756 19757 for (i = 0; i < insn_cnt; i++, insn++) { 19758 bpf_convert_ctx_access_t convert_ctx_access; 19759 u8 mode; 19760 19761 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 19762 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 19763 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 19764 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 19765 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 19766 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 19767 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 19768 type = BPF_READ; 19769 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 19770 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 19771 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 19772 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 19773 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 19774 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 19775 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 19776 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 19777 type = BPF_WRITE; 19778 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || 19779 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && 19780 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { 19781 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); 19782 env->prog->aux->num_exentries++; 19783 continue; 19784 } else if (insn->code == (BPF_JMP | BPF_EXIT) && 19785 epilogue_cnt && 19786 i + delta < subprogs[1].start) { 19787 /* Generate epilogue for the main prog */ 19788 if (epilogue_idx) { 19789 /* jump back to the earlier generated epilogue */ 19790 insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1); 19791 cnt = 1; 19792 } else { 19793 memcpy(insn_buf, epilogue_buf, 19794 epilogue_cnt * sizeof(*epilogue_buf)); 19795 cnt = epilogue_cnt; 19796 /* epilogue_idx cannot be 0. It must have at 19797 * least one ctx ptr saving insn before the 19798 * epilogue. 19799 */ 19800 epilogue_idx = i + delta; 19801 } 19802 goto patch_insn_buf; 19803 } else { 19804 continue; 19805 } 19806 19807 if (type == BPF_WRITE && 19808 env->insn_aux_data[i + delta].sanitize_stack_spill) { 19809 struct bpf_insn patch[] = { 19810 *insn, 19811 BPF_ST_NOSPEC(), 19812 }; 19813 19814 cnt = ARRAY_SIZE(patch); 19815 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 19816 if (!new_prog) 19817 return -ENOMEM; 19818 19819 delta += cnt - 1; 19820 env->prog = new_prog; 19821 insn = new_prog->insnsi + i + delta; 19822 continue; 19823 } 19824 19825 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 19826 case PTR_TO_CTX: 19827 if (!ops->convert_ctx_access) 19828 continue; 19829 convert_ctx_access = ops->convert_ctx_access; 19830 break; 19831 case PTR_TO_SOCKET: 19832 case PTR_TO_SOCK_COMMON: 19833 convert_ctx_access = bpf_sock_convert_ctx_access; 19834 break; 19835 case PTR_TO_TCP_SOCK: 19836 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 19837 break; 19838 case PTR_TO_XDP_SOCK: 19839 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 19840 break; 19841 case PTR_TO_BTF_ID: 19842 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 19843 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 19844 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 19845 * be said once it is marked PTR_UNTRUSTED, hence we must handle 19846 * any faults for loads into such types. BPF_WRITE is disallowed 19847 * for this case. 19848 */ 19849 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 19850 if (type == BPF_READ) { 19851 if (BPF_MODE(insn->code) == BPF_MEM) 19852 insn->code = BPF_LDX | BPF_PROBE_MEM | 19853 BPF_SIZE((insn)->code); 19854 else 19855 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 19856 BPF_SIZE((insn)->code); 19857 env->prog->aux->num_exentries++; 19858 } 19859 continue; 19860 case PTR_TO_ARENA: 19861 if (BPF_MODE(insn->code) == BPF_MEMSX) { 19862 verbose(env, "sign extending loads from arena are not supported yet\n"); 19863 return -EOPNOTSUPP; 19864 } 19865 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); 19866 env->prog->aux->num_exentries++; 19867 continue; 19868 default: 19869 continue; 19870 } 19871 19872 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 19873 size = BPF_LDST_BYTES(insn); 19874 mode = BPF_MODE(insn->code); 19875 19876 /* If the read access is a narrower load of the field, 19877 * convert to a 4/8-byte load, to minimum program type specific 19878 * convert_ctx_access changes. If conversion is successful, 19879 * we will apply proper mask to the result. 19880 */ 19881 is_narrower_load = size < ctx_field_size; 19882 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 19883 off = insn->off; 19884 if (is_narrower_load) { 19885 u8 size_code; 19886 19887 if (type == BPF_WRITE) { 19888 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 19889 return -EINVAL; 19890 } 19891 19892 size_code = BPF_H; 19893 if (ctx_field_size == 4) 19894 size_code = BPF_W; 19895 else if (ctx_field_size == 8) 19896 size_code = BPF_DW; 19897 19898 insn->off = off & ~(size_default - 1); 19899 insn->code = BPF_LDX | BPF_MEM | size_code; 19900 } 19901 19902 target_size = 0; 19903 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 19904 &target_size); 19905 if (cnt == 0 || cnt >= INSN_BUF_SIZE || 19906 (ctx_field_size && !target_size)) { 19907 verbose(env, "bpf verifier is misconfigured\n"); 19908 return -EINVAL; 19909 } 19910 19911 if (is_narrower_load && size < target_size) { 19912 u8 shift = bpf_ctx_narrow_access_offset( 19913 off, size, size_default) * 8; 19914 if (shift && cnt + 1 >= INSN_BUF_SIZE) { 19915 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 19916 return -EINVAL; 19917 } 19918 if (ctx_field_size <= 4) { 19919 if (shift) 19920 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 19921 insn->dst_reg, 19922 shift); 19923 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 19924 (1 << size * 8) - 1); 19925 } else { 19926 if (shift) 19927 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 19928 insn->dst_reg, 19929 shift); 19930 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 19931 (1ULL << size * 8) - 1); 19932 } 19933 } 19934 if (mode == BPF_MEMSX) 19935 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 19936 insn->dst_reg, insn->dst_reg, 19937 size * 8, 0); 19938 19939 patch_insn_buf: 19940 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19941 if (!new_prog) 19942 return -ENOMEM; 19943 19944 delta += cnt - 1; 19945 19946 /* keep walking new program and skip insns we just inserted */ 19947 env->prog = new_prog; 19948 insn = new_prog->insnsi + i + delta; 19949 } 19950 19951 return 0; 19952 } 19953 19954 static int jit_subprogs(struct bpf_verifier_env *env) 19955 { 19956 struct bpf_prog *prog = env->prog, **func, *tmp; 19957 int i, j, subprog_start, subprog_end = 0, len, subprog; 19958 struct bpf_map *map_ptr; 19959 struct bpf_insn *insn; 19960 void *old_bpf_func; 19961 int err, num_exentries; 19962 19963 if (env->subprog_cnt <= 1) 19964 return 0; 19965 19966 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 19967 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 19968 continue; 19969 19970 /* Upon error here we cannot fall back to interpreter but 19971 * need a hard reject of the program. Thus -EFAULT is 19972 * propagated in any case. 19973 */ 19974 subprog = find_subprog(env, i + insn->imm + 1); 19975 if (subprog < 0) { 19976 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 19977 i + insn->imm + 1); 19978 return -EFAULT; 19979 } 19980 /* temporarily remember subprog id inside insn instead of 19981 * aux_data, since next loop will split up all insns into funcs 19982 */ 19983 insn->off = subprog; 19984 /* remember original imm in case JIT fails and fallback 19985 * to interpreter will be needed 19986 */ 19987 env->insn_aux_data[i].call_imm = insn->imm; 19988 /* point imm to __bpf_call_base+1 from JITs point of view */ 19989 insn->imm = 1; 19990 if (bpf_pseudo_func(insn)) { 19991 #if defined(MODULES_VADDR) 19992 u64 addr = MODULES_VADDR; 19993 #else 19994 u64 addr = VMALLOC_START; 19995 #endif 19996 /* jit (e.g. x86_64) may emit fewer instructions 19997 * if it learns a u32 imm is the same as a u64 imm. 19998 * Set close enough to possible prog address. 19999 */ 20000 insn[0].imm = (u32)addr; 20001 insn[1].imm = addr >> 32; 20002 } 20003 } 20004 20005 err = bpf_prog_alloc_jited_linfo(prog); 20006 if (err) 20007 goto out_undo_insn; 20008 20009 err = -ENOMEM; 20010 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 20011 if (!func) 20012 goto out_undo_insn; 20013 20014 for (i = 0; i < env->subprog_cnt; i++) { 20015 subprog_start = subprog_end; 20016 subprog_end = env->subprog_info[i + 1].start; 20017 20018 len = subprog_end - subprog_start; 20019 /* bpf_prog_run() doesn't call subprogs directly, 20020 * hence main prog stats include the runtime of subprogs. 20021 * subprogs don't have IDs and not reachable via prog_get_next_id 20022 * func[i]->stats will never be accessed and stays NULL 20023 */ 20024 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 20025 if (!func[i]) 20026 goto out_free; 20027 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 20028 len * sizeof(struct bpf_insn)); 20029 func[i]->type = prog->type; 20030 func[i]->len = len; 20031 if (bpf_prog_calc_tag(func[i])) 20032 goto out_free; 20033 func[i]->is_func = 1; 20034 func[i]->sleepable = prog->sleepable; 20035 func[i]->aux->func_idx = i; 20036 /* Below members will be freed only at prog->aux */ 20037 func[i]->aux->btf = prog->aux->btf; 20038 func[i]->aux->func_info = prog->aux->func_info; 20039 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 20040 func[i]->aux->poke_tab = prog->aux->poke_tab; 20041 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 20042 20043 for (j = 0; j < prog->aux->size_poke_tab; j++) { 20044 struct bpf_jit_poke_descriptor *poke; 20045 20046 poke = &prog->aux->poke_tab[j]; 20047 if (poke->insn_idx < subprog_end && 20048 poke->insn_idx >= subprog_start) 20049 poke->aux = func[i]->aux; 20050 } 20051 20052 func[i]->aux->name[0] = 'F'; 20053 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 20054 func[i]->jit_requested = 1; 20055 func[i]->blinding_requested = prog->blinding_requested; 20056 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 20057 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 20058 func[i]->aux->linfo = prog->aux->linfo; 20059 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 20060 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 20061 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 20062 func[i]->aux->arena = prog->aux->arena; 20063 num_exentries = 0; 20064 insn = func[i]->insnsi; 20065 for (j = 0; j < func[i]->len; j++, insn++) { 20066 if (BPF_CLASS(insn->code) == BPF_LDX && 20067 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 20068 BPF_MODE(insn->code) == BPF_PROBE_MEM32 || 20069 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 20070 num_exentries++; 20071 if ((BPF_CLASS(insn->code) == BPF_STX || 20072 BPF_CLASS(insn->code) == BPF_ST) && 20073 BPF_MODE(insn->code) == BPF_PROBE_MEM32) 20074 num_exentries++; 20075 if (BPF_CLASS(insn->code) == BPF_STX && 20076 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) 20077 num_exentries++; 20078 } 20079 func[i]->aux->num_exentries = num_exentries; 20080 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 20081 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 20082 if (!i) 20083 func[i]->aux->exception_boundary = env->seen_exception; 20084 func[i] = bpf_int_jit_compile(func[i]); 20085 if (!func[i]->jited) { 20086 err = -ENOTSUPP; 20087 goto out_free; 20088 } 20089 cond_resched(); 20090 } 20091 20092 /* at this point all bpf functions were successfully JITed 20093 * now populate all bpf_calls with correct addresses and 20094 * run last pass of JIT 20095 */ 20096 for (i = 0; i < env->subprog_cnt; i++) { 20097 insn = func[i]->insnsi; 20098 for (j = 0; j < func[i]->len; j++, insn++) { 20099 if (bpf_pseudo_func(insn)) { 20100 subprog = insn->off; 20101 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 20102 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 20103 continue; 20104 } 20105 if (!bpf_pseudo_call(insn)) 20106 continue; 20107 subprog = insn->off; 20108 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 20109 } 20110 20111 /* we use the aux data to keep a list of the start addresses 20112 * of the JITed images for each function in the program 20113 * 20114 * for some architectures, such as powerpc64, the imm field 20115 * might not be large enough to hold the offset of the start 20116 * address of the callee's JITed image from __bpf_call_base 20117 * 20118 * in such cases, we can lookup the start address of a callee 20119 * by using its subprog id, available from the off field of 20120 * the call instruction, as an index for this list 20121 */ 20122 func[i]->aux->func = func; 20123 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 20124 func[i]->aux->real_func_cnt = env->subprog_cnt; 20125 } 20126 for (i = 0; i < env->subprog_cnt; i++) { 20127 old_bpf_func = func[i]->bpf_func; 20128 tmp = bpf_int_jit_compile(func[i]); 20129 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 20130 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 20131 err = -ENOTSUPP; 20132 goto out_free; 20133 } 20134 cond_resched(); 20135 } 20136 20137 /* finally lock prog and jit images for all functions and 20138 * populate kallsysm. Begin at the first subprogram, since 20139 * bpf_prog_load will add the kallsyms for the main program. 20140 */ 20141 for (i = 1; i < env->subprog_cnt; i++) { 20142 err = bpf_prog_lock_ro(func[i]); 20143 if (err) 20144 goto out_free; 20145 } 20146 20147 for (i = 1; i < env->subprog_cnt; i++) 20148 bpf_prog_kallsyms_add(func[i]); 20149 20150 /* Last step: make now unused interpreter insns from main 20151 * prog consistent for later dump requests, so they can 20152 * later look the same as if they were interpreted only. 20153 */ 20154 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 20155 if (bpf_pseudo_func(insn)) { 20156 insn[0].imm = env->insn_aux_data[i].call_imm; 20157 insn[1].imm = insn->off; 20158 insn->off = 0; 20159 continue; 20160 } 20161 if (!bpf_pseudo_call(insn)) 20162 continue; 20163 insn->off = env->insn_aux_data[i].call_imm; 20164 subprog = find_subprog(env, i + insn->off + 1); 20165 insn->imm = subprog; 20166 } 20167 20168 prog->jited = 1; 20169 prog->bpf_func = func[0]->bpf_func; 20170 prog->jited_len = func[0]->jited_len; 20171 prog->aux->extable = func[0]->aux->extable; 20172 prog->aux->num_exentries = func[0]->aux->num_exentries; 20173 prog->aux->func = func; 20174 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 20175 prog->aux->real_func_cnt = env->subprog_cnt; 20176 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 20177 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 20178 bpf_prog_jit_attempt_done(prog); 20179 return 0; 20180 out_free: 20181 /* We failed JIT'ing, so at this point we need to unregister poke 20182 * descriptors from subprogs, so that kernel is not attempting to 20183 * patch it anymore as we're freeing the subprog JIT memory. 20184 */ 20185 for (i = 0; i < prog->aux->size_poke_tab; i++) { 20186 map_ptr = prog->aux->poke_tab[i].tail_call.map; 20187 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 20188 } 20189 /* At this point we're guaranteed that poke descriptors are not 20190 * live anymore. We can just unlink its descriptor table as it's 20191 * released with the main prog. 20192 */ 20193 for (i = 0; i < env->subprog_cnt; i++) { 20194 if (!func[i]) 20195 continue; 20196 func[i]->aux->poke_tab = NULL; 20197 bpf_jit_free(func[i]); 20198 } 20199 kfree(func); 20200 out_undo_insn: 20201 /* cleanup main prog to be interpreted */ 20202 prog->jit_requested = 0; 20203 prog->blinding_requested = 0; 20204 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 20205 if (!bpf_pseudo_call(insn)) 20206 continue; 20207 insn->off = 0; 20208 insn->imm = env->insn_aux_data[i].call_imm; 20209 } 20210 bpf_prog_jit_attempt_done(prog); 20211 return err; 20212 } 20213 20214 static int fixup_call_args(struct bpf_verifier_env *env) 20215 { 20216 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 20217 struct bpf_prog *prog = env->prog; 20218 struct bpf_insn *insn = prog->insnsi; 20219 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 20220 int i, depth; 20221 #endif 20222 int err = 0; 20223 20224 if (env->prog->jit_requested && 20225 !bpf_prog_is_offloaded(env->prog->aux)) { 20226 err = jit_subprogs(env); 20227 if (err == 0) 20228 return 0; 20229 if (err == -EFAULT) 20230 return err; 20231 } 20232 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 20233 if (has_kfunc_call) { 20234 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 20235 return -EINVAL; 20236 } 20237 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 20238 /* When JIT fails the progs with bpf2bpf calls and tail_calls 20239 * have to be rejected, since interpreter doesn't support them yet. 20240 */ 20241 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 20242 return -EINVAL; 20243 } 20244 for (i = 0; i < prog->len; i++, insn++) { 20245 if (bpf_pseudo_func(insn)) { 20246 /* When JIT fails the progs with callback calls 20247 * have to be rejected, since interpreter doesn't support them yet. 20248 */ 20249 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 20250 return -EINVAL; 20251 } 20252 20253 if (!bpf_pseudo_call(insn)) 20254 continue; 20255 depth = get_callee_stack_depth(env, insn, i); 20256 if (depth < 0) 20257 return depth; 20258 bpf_patch_call_args(insn, depth); 20259 } 20260 err = 0; 20261 #endif 20262 return err; 20263 } 20264 20265 /* replace a generic kfunc with a specialized version if necessary */ 20266 static void specialize_kfunc(struct bpf_verifier_env *env, 20267 u32 func_id, u16 offset, unsigned long *addr) 20268 { 20269 struct bpf_prog *prog = env->prog; 20270 bool seen_direct_write; 20271 void *xdp_kfunc; 20272 bool is_rdonly; 20273 20274 if (bpf_dev_bound_kfunc_id(func_id)) { 20275 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 20276 if (xdp_kfunc) { 20277 *addr = (unsigned long)xdp_kfunc; 20278 return; 20279 } 20280 /* fallback to default kfunc when not supported by netdev */ 20281 } 20282 20283 if (offset) 20284 return; 20285 20286 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 20287 seen_direct_write = env->seen_direct_write; 20288 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 20289 20290 if (is_rdonly) 20291 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 20292 20293 /* restore env->seen_direct_write to its original value, since 20294 * may_access_direct_pkt_data mutates it 20295 */ 20296 env->seen_direct_write = seen_direct_write; 20297 } 20298 } 20299 20300 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 20301 u16 struct_meta_reg, 20302 u16 node_offset_reg, 20303 struct bpf_insn *insn, 20304 struct bpf_insn *insn_buf, 20305 int *cnt) 20306 { 20307 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 20308 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 20309 20310 insn_buf[0] = addr[0]; 20311 insn_buf[1] = addr[1]; 20312 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 20313 insn_buf[3] = *insn; 20314 *cnt = 4; 20315 } 20316 20317 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 20318 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 20319 { 20320 const struct bpf_kfunc_desc *desc; 20321 20322 if (!insn->imm) { 20323 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 20324 return -EINVAL; 20325 } 20326 20327 *cnt = 0; 20328 20329 /* insn->imm has the btf func_id. Replace it with an offset relative to 20330 * __bpf_call_base, unless the JIT needs to call functions that are 20331 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 20332 */ 20333 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 20334 if (!desc) { 20335 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 20336 insn->imm); 20337 return -EFAULT; 20338 } 20339 20340 if (!bpf_jit_supports_far_kfunc_call()) 20341 insn->imm = BPF_CALL_IMM(desc->addr); 20342 if (insn->off) 20343 return 0; 20344 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 20345 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 20346 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 20347 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 20348 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 20349 20350 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 20351 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 20352 insn_idx); 20353 return -EFAULT; 20354 } 20355 20356 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 20357 insn_buf[1] = addr[0]; 20358 insn_buf[2] = addr[1]; 20359 insn_buf[3] = *insn; 20360 *cnt = 4; 20361 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 20362 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 20363 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 20364 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 20365 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 20366 20367 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 20368 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 20369 insn_idx); 20370 return -EFAULT; 20371 } 20372 20373 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 20374 !kptr_struct_meta) { 20375 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 20376 insn_idx); 20377 return -EFAULT; 20378 } 20379 20380 insn_buf[0] = addr[0]; 20381 insn_buf[1] = addr[1]; 20382 insn_buf[2] = *insn; 20383 *cnt = 3; 20384 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 20385 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 20386 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 20387 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 20388 int struct_meta_reg = BPF_REG_3; 20389 int node_offset_reg = BPF_REG_4; 20390 20391 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 20392 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 20393 struct_meta_reg = BPF_REG_4; 20394 node_offset_reg = BPF_REG_5; 20395 } 20396 20397 if (!kptr_struct_meta) { 20398 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 20399 insn_idx); 20400 return -EFAULT; 20401 } 20402 20403 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 20404 node_offset_reg, insn, insn_buf, cnt); 20405 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 20406 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 20407 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 20408 *cnt = 1; 20409 } else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) { 20410 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) }; 20411 20412 insn_buf[0] = ld_addrs[0]; 20413 insn_buf[1] = ld_addrs[1]; 20414 insn_buf[2] = *insn; 20415 *cnt = 3; 20416 } 20417 return 0; 20418 } 20419 20420 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 20421 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 20422 { 20423 struct bpf_subprog_info *info = env->subprog_info; 20424 int cnt = env->subprog_cnt; 20425 struct bpf_prog *prog; 20426 20427 /* We only reserve one slot for hidden subprogs in subprog_info. */ 20428 if (env->hidden_subprog_cnt) { 20429 verbose(env, "verifier internal error: only one hidden subprog supported\n"); 20430 return -EFAULT; 20431 } 20432 /* We're not patching any existing instruction, just appending the new 20433 * ones for the hidden subprog. Hence all of the adjustment operations 20434 * in bpf_patch_insn_data are no-ops. 20435 */ 20436 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 20437 if (!prog) 20438 return -ENOMEM; 20439 env->prog = prog; 20440 info[cnt + 1].start = info[cnt].start; 20441 info[cnt].start = prog->len - len + 1; 20442 env->subprog_cnt++; 20443 env->hidden_subprog_cnt++; 20444 return 0; 20445 } 20446 20447 /* Do various post-verification rewrites in a single program pass. 20448 * These rewrites simplify JIT and interpreter implementations. 20449 */ 20450 static int do_misc_fixups(struct bpf_verifier_env *env) 20451 { 20452 struct bpf_prog *prog = env->prog; 20453 enum bpf_attach_type eatype = prog->expected_attach_type; 20454 enum bpf_prog_type prog_type = resolve_prog_type(prog); 20455 struct bpf_insn *insn = prog->insnsi; 20456 const struct bpf_func_proto *fn; 20457 const int insn_cnt = prog->len; 20458 const struct bpf_map_ops *ops; 20459 struct bpf_insn_aux_data *aux; 20460 struct bpf_insn *insn_buf = env->insn_buf; 20461 struct bpf_prog *new_prog; 20462 struct bpf_map *map_ptr; 20463 int i, ret, cnt, delta = 0, cur_subprog = 0; 20464 struct bpf_subprog_info *subprogs = env->subprog_info; 20465 u16 stack_depth = subprogs[cur_subprog].stack_depth; 20466 u16 stack_depth_extra = 0; 20467 20468 if (env->seen_exception && !env->exception_callback_subprog) { 20469 struct bpf_insn patch[] = { 20470 env->prog->insnsi[insn_cnt - 1], 20471 BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), 20472 BPF_EXIT_INSN(), 20473 }; 20474 20475 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); 20476 if (ret < 0) 20477 return ret; 20478 prog = env->prog; 20479 insn = prog->insnsi; 20480 20481 env->exception_callback_subprog = env->subprog_cnt - 1; 20482 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 20483 mark_subprog_exc_cb(env, env->exception_callback_subprog); 20484 } 20485 20486 for (i = 0; i < insn_cnt;) { 20487 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { 20488 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || 20489 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { 20490 /* convert to 32-bit mov that clears upper 32-bit */ 20491 insn->code = BPF_ALU | BPF_MOV | BPF_X; 20492 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ 20493 insn->off = 0; 20494 insn->imm = 0; 20495 } /* cast from as(0) to as(1) should be handled by JIT */ 20496 goto next_insn; 20497 } 20498 20499 if (env->insn_aux_data[i + delta].needs_zext) 20500 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ 20501 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); 20502 20503 /* Make sdiv/smod divide-by-minus-one exceptions impossible. */ 20504 if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) || 20505 insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) || 20506 insn->code == (BPF_ALU | BPF_MOD | BPF_K) || 20507 insn->code == (BPF_ALU | BPF_DIV | BPF_K)) && 20508 insn->off == 1 && insn->imm == -1) { 20509 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 20510 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 20511 struct bpf_insn *patchlet; 20512 struct bpf_insn chk_and_sdiv[] = { 20513 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20514 BPF_NEG | BPF_K, insn->dst_reg, 20515 0, 0, 0), 20516 }; 20517 struct bpf_insn chk_and_smod[] = { 20518 BPF_MOV32_IMM(insn->dst_reg, 0), 20519 }; 20520 20521 patchlet = isdiv ? chk_and_sdiv : chk_and_smod; 20522 cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod); 20523 20524 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 20525 if (!new_prog) 20526 return -ENOMEM; 20527 20528 delta += cnt - 1; 20529 env->prog = prog = new_prog; 20530 insn = new_prog->insnsi + i + delta; 20531 goto next_insn; 20532 } 20533 20534 /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */ 20535 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 20536 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 20537 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 20538 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 20539 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 20540 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 20541 bool is_sdiv = isdiv && insn->off == 1; 20542 bool is_smod = !isdiv && insn->off == 1; 20543 struct bpf_insn *patchlet; 20544 struct bpf_insn chk_and_div[] = { 20545 /* [R,W]x div 0 -> 0 */ 20546 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20547 BPF_JNE | BPF_K, insn->src_reg, 20548 0, 2, 0), 20549 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 20550 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20551 *insn, 20552 }; 20553 struct bpf_insn chk_and_mod[] = { 20554 /* [R,W]x mod 0 -> [R,W]x */ 20555 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20556 BPF_JEQ | BPF_K, insn->src_reg, 20557 0, 1 + (is64 ? 0 : 1), 0), 20558 *insn, 20559 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20560 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 20561 }; 20562 struct bpf_insn chk_and_sdiv[] = { 20563 /* [R,W]x sdiv 0 -> 0 20564 * LLONG_MIN sdiv -1 -> LLONG_MIN 20565 * INT_MIN sdiv -1 -> INT_MIN 20566 */ 20567 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), 20568 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20569 BPF_ADD | BPF_K, BPF_REG_AX, 20570 0, 0, 1), 20571 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20572 BPF_JGT | BPF_K, BPF_REG_AX, 20573 0, 4, 1), 20574 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20575 BPF_JEQ | BPF_K, BPF_REG_AX, 20576 0, 1, 0), 20577 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20578 BPF_MOV | BPF_K, insn->dst_reg, 20579 0, 0, 0), 20580 /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */ 20581 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20582 BPF_NEG | BPF_K, insn->dst_reg, 20583 0, 0, 0), 20584 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20585 *insn, 20586 }; 20587 struct bpf_insn chk_and_smod[] = { 20588 /* [R,W]x mod 0 -> [R,W]x */ 20589 /* [R,W]x mod -1 -> 0 */ 20590 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), 20591 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 20592 BPF_ADD | BPF_K, BPF_REG_AX, 20593 0, 0, 1), 20594 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20595 BPF_JGT | BPF_K, BPF_REG_AX, 20596 0, 3, 1), 20597 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 20598 BPF_JEQ | BPF_K, BPF_REG_AX, 20599 0, 3 + (is64 ? 0 : 1), 1), 20600 BPF_MOV32_IMM(insn->dst_reg, 0), 20601 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20602 *insn, 20603 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 20604 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 20605 }; 20606 20607 if (is_sdiv) { 20608 patchlet = chk_and_sdiv; 20609 cnt = ARRAY_SIZE(chk_and_sdiv); 20610 } else if (is_smod) { 20611 patchlet = chk_and_smod; 20612 cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0); 20613 } else { 20614 patchlet = isdiv ? chk_and_div : chk_and_mod; 20615 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 20616 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 20617 } 20618 20619 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 20620 if (!new_prog) 20621 return -ENOMEM; 20622 20623 delta += cnt - 1; 20624 env->prog = prog = new_prog; 20625 insn = new_prog->insnsi + i + delta; 20626 goto next_insn; 20627 } 20628 20629 /* Make it impossible to de-reference a userspace address */ 20630 if (BPF_CLASS(insn->code) == BPF_LDX && 20631 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 20632 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { 20633 struct bpf_insn *patch = &insn_buf[0]; 20634 u64 uaddress_limit = bpf_arch_uaddress_limit(); 20635 20636 if (!uaddress_limit) 20637 goto next_insn; 20638 20639 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 20640 if (insn->off) 20641 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); 20642 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); 20643 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); 20644 *patch++ = *insn; 20645 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 20646 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); 20647 20648 cnt = patch - insn_buf; 20649 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20650 if (!new_prog) 20651 return -ENOMEM; 20652 20653 delta += cnt - 1; 20654 env->prog = prog = new_prog; 20655 insn = new_prog->insnsi + i + delta; 20656 goto next_insn; 20657 } 20658 20659 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 20660 if (BPF_CLASS(insn->code) == BPF_LD && 20661 (BPF_MODE(insn->code) == BPF_ABS || 20662 BPF_MODE(insn->code) == BPF_IND)) { 20663 cnt = env->ops->gen_ld_abs(insn, insn_buf); 20664 if (cnt == 0 || cnt >= INSN_BUF_SIZE) { 20665 verbose(env, "bpf verifier is misconfigured\n"); 20666 return -EINVAL; 20667 } 20668 20669 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20670 if (!new_prog) 20671 return -ENOMEM; 20672 20673 delta += cnt - 1; 20674 env->prog = prog = new_prog; 20675 insn = new_prog->insnsi + i + delta; 20676 goto next_insn; 20677 } 20678 20679 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 20680 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 20681 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 20682 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 20683 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 20684 struct bpf_insn *patch = &insn_buf[0]; 20685 bool issrc, isneg, isimm; 20686 u32 off_reg; 20687 20688 aux = &env->insn_aux_data[i + delta]; 20689 if (!aux->alu_state || 20690 aux->alu_state == BPF_ALU_NON_POINTER) 20691 goto next_insn; 20692 20693 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 20694 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 20695 BPF_ALU_SANITIZE_SRC; 20696 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 20697 20698 off_reg = issrc ? insn->src_reg : insn->dst_reg; 20699 if (isimm) { 20700 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 20701 } else { 20702 if (isneg) 20703 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 20704 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 20705 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 20706 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 20707 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 20708 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 20709 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 20710 } 20711 if (!issrc) 20712 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 20713 insn->src_reg = BPF_REG_AX; 20714 if (isneg) 20715 insn->code = insn->code == code_add ? 20716 code_sub : code_add; 20717 *patch++ = *insn; 20718 if (issrc && isneg && !isimm) 20719 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 20720 cnt = patch - insn_buf; 20721 20722 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20723 if (!new_prog) 20724 return -ENOMEM; 20725 20726 delta += cnt - 1; 20727 env->prog = prog = new_prog; 20728 insn = new_prog->insnsi + i + delta; 20729 goto next_insn; 20730 } 20731 20732 if (is_may_goto_insn(insn)) { 20733 int stack_off = -stack_depth - 8; 20734 20735 stack_depth_extra = 8; 20736 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); 20737 if (insn->off >= 0) 20738 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); 20739 else 20740 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 20741 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 20742 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); 20743 cnt = 4; 20744 20745 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20746 if (!new_prog) 20747 return -ENOMEM; 20748 20749 delta += cnt - 1; 20750 env->prog = prog = new_prog; 20751 insn = new_prog->insnsi + i + delta; 20752 goto next_insn; 20753 } 20754 20755 if (insn->code != (BPF_JMP | BPF_CALL)) 20756 goto next_insn; 20757 if (insn->src_reg == BPF_PSEUDO_CALL) 20758 goto next_insn; 20759 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 20760 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 20761 if (ret) 20762 return ret; 20763 if (cnt == 0) 20764 goto next_insn; 20765 20766 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20767 if (!new_prog) 20768 return -ENOMEM; 20769 20770 delta += cnt - 1; 20771 env->prog = prog = new_prog; 20772 insn = new_prog->insnsi + i + delta; 20773 goto next_insn; 20774 } 20775 20776 /* Skip inlining the helper call if the JIT does it. */ 20777 if (bpf_jit_inlines_helper_call(insn->imm)) 20778 goto next_insn; 20779 20780 if (insn->imm == BPF_FUNC_get_route_realm) 20781 prog->dst_needed = 1; 20782 if (insn->imm == BPF_FUNC_get_prandom_u32) 20783 bpf_user_rnd_init_once(); 20784 if (insn->imm == BPF_FUNC_override_return) 20785 prog->kprobe_override = 1; 20786 if (insn->imm == BPF_FUNC_tail_call) { 20787 /* If we tail call into other programs, we 20788 * cannot make any assumptions since they can 20789 * be replaced dynamically during runtime in 20790 * the program array. 20791 */ 20792 prog->cb_access = 1; 20793 if (!allow_tail_call_in_subprogs(env)) 20794 prog->aux->stack_depth = MAX_BPF_STACK; 20795 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 20796 20797 /* mark bpf_tail_call as different opcode to avoid 20798 * conditional branch in the interpreter for every normal 20799 * call and to prevent accidental JITing by JIT compiler 20800 * that doesn't support bpf_tail_call yet 20801 */ 20802 insn->imm = 0; 20803 insn->code = BPF_JMP | BPF_TAIL_CALL; 20804 20805 aux = &env->insn_aux_data[i + delta]; 20806 if (env->bpf_capable && !prog->blinding_requested && 20807 prog->jit_requested && 20808 !bpf_map_key_poisoned(aux) && 20809 !bpf_map_ptr_poisoned(aux) && 20810 !bpf_map_ptr_unpriv(aux)) { 20811 struct bpf_jit_poke_descriptor desc = { 20812 .reason = BPF_POKE_REASON_TAIL_CALL, 20813 .tail_call.map = aux->map_ptr_state.map_ptr, 20814 .tail_call.key = bpf_map_key_immediate(aux), 20815 .insn_idx = i + delta, 20816 }; 20817 20818 ret = bpf_jit_add_poke_descriptor(prog, &desc); 20819 if (ret < 0) { 20820 verbose(env, "adding tail call poke descriptor failed\n"); 20821 return ret; 20822 } 20823 20824 insn->imm = ret + 1; 20825 goto next_insn; 20826 } 20827 20828 if (!bpf_map_ptr_unpriv(aux)) 20829 goto next_insn; 20830 20831 /* instead of changing every JIT dealing with tail_call 20832 * emit two extra insns: 20833 * if (index >= max_entries) goto out; 20834 * index &= array->index_mask; 20835 * to avoid out-of-bounds cpu speculation 20836 */ 20837 if (bpf_map_ptr_poisoned(aux)) { 20838 verbose(env, "tail_call abusing map_ptr\n"); 20839 return -EINVAL; 20840 } 20841 20842 map_ptr = aux->map_ptr_state.map_ptr; 20843 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 20844 map_ptr->max_entries, 2); 20845 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 20846 container_of(map_ptr, 20847 struct bpf_array, 20848 map)->index_mask); 20849 insn_buf[2] = *insn; 20850 cnt = 3; 20851 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20852 if (!new_prog) 20853 return -ENOMEM; 20854 20855 delta += cnt - 1; 20856 env->prog = prog = new_prog; 20857 insn = new_prog->insnsi + i + delta; 20858 goto next_insn; 20859 } 20860 20861 if (insn->imm == BPF_FUNC_timer_set_callback) { 20862 /* The verifier will process callback_fn as many times as necessary 20863 * with different maps and the register states prepared by 20864 * set_timer_callback_state will be accurate. 20865 * 20866 * The following use case is valid: 20867 * map1 is shared by prog1, prog2, prog3. 20868 * prog1 calls bpf_timer_init for some map1 elements 20869 * prog2 calls bpf_timer_set_callback for some map1 elements. 20870 * Those that were not bpf_timer_init-ed will return -EINVAL. 20871 * prog3 calls bpf_timer_start for some map1 elements. 20872 * Those that were not both bpf_timer_init-ed and 20873 * bpf_timer_set_callback-ed will return -EINVAL. 20874 */ 20875 struct bpf_insn ld_addrs[2] = { 20876 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 20877 }; 20878 20879 insn_buf[0] = ld_addrs[0]; 20880 insn_buf[1] = ld_addrs[1]; 20881 insn_buf[2] = *insn; 20882 cnt = 3; 20883 20884 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20885 if (!new_prog) 20886 return -ENOMEM; 20887 20888 delta += cnt - 1; 20889 env->prog = prog = new_prog; 20890 insn = new_prog->insnsi + i + delta; 20891 goto patch_call_imm; 20892 } 20893 20894 if (is_storage_get_function(insn->imm)) { 20895 if (!in_sleepable(env) || 20896 env->insn_aux_data[i + delta].storage_get_func_atomic) 20897 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 20898 else 20899 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 20900 insn_buf[1] = *insn; 20901 cnt = 2; 20902 20903 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20904 if (!new_prog) 20905 return -ENOMEM; 20906 20907 delta += cnt - 1; 20908 env->prog = prog = new_prog; 20909 insn = new_prog->insnsi + i + delta; 20910 goto patch_call_imm; 20911 } 20912 20913 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 20914 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 20915 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 20916 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 20917 */ 20918 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 20919 insn_buf[1] = *insn; 20920 cnt = 2; 20921 20922 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20923 if (!new_prog) 20924 return -ENOMEM; 20925 20926 delta += cnt - 1; 20927 env->prog = prog = new_prog; 20928 insn = new_prog->insnsi + i + delta; 20929 goto patch_call_imm; 20930 } 20931 20932 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 20933 * and other inlining handlers are currently limited to 64 bit 20934 * only. 20935 */ 20936 if (prog->jit_requested && BITS_PER_LONG == 64 && 20937 (insn->imm == BPF_FUNC_map_lookup_elem || 20938 insn->imm == BPF_FUNC_map_update_elem || 20939 insn->imm == BPF_FUNC_map_delete_elem || 20940 insn->imm == BPF_FUNC_map_push_elem || 20941 insn->imm == BPF_FUNC_map_pop_elem || 20942 insn->imm == BPF_FUNC_map_peek_elem || 20943 insn->imm == BPF_FUNC_redirect_map || 20944 insn->imm == BPF_FUNC_for_each_map_elem || 20945 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 20946 aux = &env->insn_aux_data[i + delta]; 20947 if (bpf_map_ptr_poisoned(aux)) 20948 goto patch_call_imm; 20949 20950 map_ptr = aux->map_ptr_state.map_ptr; 20951 ops = map_ptr->ops; 20952 if (insn->imm == BPF_FUNC_map_lookup_elem && 20953 ops->map_gen_lookup) { 20954 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 20955 if (cnt == -EOPNOTSUPP) 20956 goto patch_map_ops_generic; 20957 if (cnt <= 0 || cnt >= INSN_BUF_SIZE) { 20958 verbose(env, "bpf verifier is misconfigured\n"); 20959 return -EINVAL; 20960 } 20961 20962 new_prog = bpf_patch_insn_data(env, i + delta, 20963 insn_buf, cnt); 20964 if (!new_prog) 20965 return -ENOMEM; 20966 20967 delta += cnt - 1; 20968 env->prog = prog = new_prog; 20969 insn = new_prog->insnsi + i + delta; 20970 goto next_insn; 20971 } 20972 20973 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 20974 (void *(*)(struct bpf_map *map, void *key))NULL)); 20975 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 20976 (long (*)(struct bpf_map *map, void *key))NULL)); 20977 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 20978 (long (*)(struct bpf_map *map, void *key, void *value, 20979 u64 flags))NULL)); 20980 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 20981 (long (*)(struct bpf_map *map, void *value, 20982 u64 flags))NULL)); 20983 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 20984 (long (*)(struct bpf_map *map, void *value))NULL)); 20985 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 20986 (long (*)(struct bpf_map *map, void *value))NULL)); 20987 BUILD_BUG_ON(!__same_type(ops->map_redirect, 20988 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 20989 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 20990 (long (*)(struct bpf_map *map, 20991 bpf_callback_t callback_fn, 20992 void *callback_ctx, 20993 u64 flags))NULL)); 20994 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 20995 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 20996 20997 patch_map_ops_generic: 20998 switch (insn->imm) { 20999 case BPF_FUNC_map_lookup_elem: 21000 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 21001 goto next_insn; 21002 case BPF_FUNC_map_update_elem: 21003 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 21004 goto next_insn; 21005 case BPF_FUNC_map_delete_elem: 21006 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 21007 goto next_insn; 21008 case BPF_FUNC_map_push_elem: 21009 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 21010 goto next_insn; 21011 case BPF_FUNC_map_pop_elem: 21012 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 21013 goto next_insn; 21014 case BPF_FUNC_map_peek_elem: 21015 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 21016 goto next_insn; 21017 case BPF_FUNC_redirect_map: 21018 insn->imm = BPF_CALL_IMM(ops->map_redirect); 21019 goto next_insn; 21020 case BPF_FUNC_for_each_map_elem: 21021 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 21022 goto next_insn; 21023 case BPF_FUNC_map_lookup_percpu_elem: 21024 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 21025 goto next_insn; 21026 } 21027 21028 goto patch_call_imm; 21029 } 21030 21031 /* Implement bpf_jiffies64 inline. */ 21032 if (prog->jit_requested && BITS_PER_LONG == 64 && 21033 insn->imm == BPF_FUNC_jiffies64) { 21034 struct bpf_insn ld_jiffies_addr[2] = { 21035 BPF_LD_IMM64(BPF_REG_0, 21036 (unsigned long)&jiffies), 21037 }; 21038 21039 insn_buf[0] = ld_jiffies_addr[0]; 21040 insn_buf[1] = ld_jiffies_addr[1]; 21041 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 21042 BPF_REG_0, 0); 21043 cnt = 3; 21044 21045 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 21046 cnt); 21047 if (!new_prog) 21048 return -ENOMEM; 21049 21050 delta += cnt - 1; 21051 env->prog = prog = new_prog; 21052 insn = new_prog->insnsi + i + delta; 21053 goto next_insn; 21054 } 21055 21056 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) 21057 /* Implement bpf_get_smp_processor_id() inline. */ 21058 if (insn->imm == BPF_FUNC_get_smp_processor_id && 21059 verifier_inlines_helper_call(env, insn->imm)) { 21060 /* BPF_FUNC_get_smp_processor_id inlining is an 21061 * optimization, so if pcpu_hot.cpu_number is ever 21062 * changed in some incompatible and hard to support 21063 * way, it's fine to back out this inlining logic 21064 */ 21065 insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number); 21066 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 21067 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); 21068 cnt = 3; 21069 21070 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21071 if (!new_prog) 21072 return -ENOMEM; 21073 21074 delta += cnt - 1; 21075 env->prog = prog = new_prog; 21076 insn = new_prog->insnsi + i + delta; 21077 goto next_insn; 21078 } 21079 #endif 21080 /* Implement bpf_get_func_arg inline. */ 21081 if (prog_type == BPF_PROG_TYPE_TRACING && 21082 insn->imm == BPF_FUNC_get_func_arg) { 21083 /* Load nr_args from ctx - 8 */ 21084 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21085 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 21086 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 21087 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 21088 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 21089 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 21090 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 21091 insn_buf[7] = BPF_JMP_A(1); 21092 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 21093 cnt = 9; 21094 21095 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21096 if (!new_prog) 21097 return -ENOMEM; 21098 21099 delta += cnt - 1; 21100 env->prog = prog = new_prog; 21101 insn = new_prog->insnsi + i + delta; 21102 goto next_insn; 21103 } 21104 21105 /* Implement bpf_get_func_ret inline. */ 21106 if (prog_type == BPF_PROG_TYPE_TRACING && 21107 insn->imm == BPF_FUNC_get_func_ret) { 21108 if (eatype == BPF_TRACE_FEXIT || 21109 eatype == BPF_MODIFY_RETURN) { 21110 /* Load nr_args from ctx - 8 */ 21111 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21112 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 21113 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 21114 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 21115 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 21116 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 21117 cnt = 6; 21118 } else { 21119 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 21120 cnt = 1; 21121 } 21122 21123 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21124 if (!new_prog) 21125 return -ENOMEM; 21126 21127 delta += cnt - 1; 21128 env->prog = prog = new_prog; 21129 insn = new_prog->insnsi + i + delta; 21130 goto next_insn; 21131 } 21132 21133 /* Implement get_func_arg_cnt inline. */ 21134 if (prog_type == BPF_PROG_TYPE_TRACING && 21135 insn->imm == BPF_FUNC_get_func_arg_cnt) { 21136 /* Load nr_args from ctx - 8 */ 21137 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 21138 21139 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 21140 if (!new_prog) 21141 return -ENOMEM; 21142 21143 env->prog = prog = new_prog; 21144 insn = new_prog->insnsi + i + delta; 21145 goto next_insn; 21146 } 21147 21148 /* Implement bpf_get_func_ip inline. */ 21149 if (prog_type == BPF_PROG_TYPE_TRACING && 21150 insn->imm == BPF_FUNC_get_func_ip) { 21151 /* Load IP address from ctx - 16 */ 21152 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 21153 21154 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 21155 if (!new_prog) 21156 return -ENOMEM; 21157 21158 env->prog = prog = new_prog; 21159 insn = new_prog->insnsi + i + delta; 21160 goto next_insn; 21161 } 21162 21163 /* Implement bpf_get_branch_snapshot inline. */ 21164 if (IS_ENABLED(CONFIG_PERF_EVENTS) && 21165 prog->jit_requested && BITS_PER_LONG == 64 && 21166 insn->imm == BPF_FUNC_get_branch_snapshot) { 21167 /* We are dealing with the following func protos: 21168 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); 21169 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); 21170 */ 21171 const u32 br_entry_size = sizeof(struct perf_branch_entry); 21172 21173 /* struct perf_branch_entry is part of UAPI and is 21174 * used as an array element, so extremely unlikely to 21175 * ever grow or shrink 21176 */ 21177 BUILD_BUG_ON(br_entry_size != 24); 21178 21179 /* if (unlikely(flags)) return -EINVAL */ 21180 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); 21181 21182 /* Transform size (bytes) into number of entries (cnt = size / 24). 21183 * But to avoid expensive division instruction, we implement 21184 * divide-by-3 through multiplication, followed by further 21185 * division by 8 through 3-bit right shift. 21186 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., 21187 * p. 227, chapter "Unsigned Division by 3" for details and proofs. 21188 * 21189 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. 21190 */ 21191 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); 21192 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); 21193 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); 21194 21195 /* call perf_snapshot_branch_stack implementation */ 21196 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); 21197 /* if (entry_cnt == 0) return -ENOENT */ 21198 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); 21199 /* return entry_cnt * sizeof(struct perf_branch_entry) */ 21200 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); 21201 insn_buf[7] = BPF_JMP_A(3); 21202 /* return -EINVAL; */ 21203 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 21204 insn_buf[9] = BPF_JMP_A(1); 21205 /* return -ENOENT; */ 21206 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); 21207 cnt = 11; 21208 21209 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21210 if (!new_prog) 21211 return -ENOMEM; 21212 21213 delta += cnt - 1; 21214 env->prog = prog = new_prog; 21215 insn = new_prog->insnsi + i + delta; 21216 continue; 21217 } 21218 21219 /* Implement bpf_kptr_xchg inline */ 21220 if (prog->jit_requested && BITS_PER_LONG == 64 && 21221 insn->imm == BPF_FUNC_kptr_xchg && 21222 bpf_jit_supports_ptr_xchg()) { 21223 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); 21224 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); 21225 cnt = 2; 21226 21227 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21228 if (!new_prog) 21229 return -ENOMEM; 21230 21231 delta += cnt - 1; 21232 env->prog = prog = new_prog; 21233 insn = new_prog->insnsi + i + delta; 21234 goto next_insn; 21235 } 21236 patch_call_imm: 21237 fn = env->ops->get_func_proto(insn->imm, env->prog); 21238 /* all functions that have prototype and verifier allowed 21239 * programs to call them, must be real in-kernel functions 21240 */ 21241 if (!fn->func) { 21242 verbose(env, 21243 "kernel subsystem misconfigured func %s#%d\n", 21244 func_id_name(insn->imm), insn->imm); 21245 return -EFAULT; 21246 } 21247 insn->imm = fn->func - __bpf_call_base; 21248 next_insn: 21249 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 21250 subprogs[cur_subprog].stack_depth += stack_depth_extra; 21251 subprogs[cur_subprog].stack_extra = stack_depth_extra; 21252 cur_subprog++; 21253 stack_depth = subprogs[cur_subprog].stack_depth; 21254 stack_depth_extra = 0; 21255 } 21256 i++; 21257 insn++; 21258 } 21259 21260 env->prog->aux->stack_depth = subprogs[0].stack_depth; 21261 for (i = 0; i < env->subprog_cnt; i++) { 21262 int subprog_start = subprogs[i].start; 21263 int stack_slots = subprogs[i].stack_extra / 8; 21264 21265 if (!stack_slots) 21266 continue; 21267 if (stack_slots > 1) { 21268 verbose(env, "verifier bug: stack_slots supports may_goto only\n"); 21269 return -EFAULT; 21270 } 21271 21272 /* Add ST insn to subprog prologue to init extra stack */ 21273 insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, 21274 -subprogs[i].stack_depth, BPF_MAX_LOOPS); 21275 /* Copy first actual insn to preserve it */ 21276 insn_buf[1] = env->prog->insnsi[subprog_start]; 21277 21278 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2); 21279 if (!new_prog) 21280 return -ENOMEM; 21281 env->prog = prog = new_prog; 21282 /* 21283 * If may_goto is a first insn of a prog there could be a jmp 21284 * insn that points to it, hence adjust all such jmps to point 21285 * to insn after BPF_ST that inits may_goto count. 21286 * Adjustment will succeed because bpf_patch_insn_data() didn't fail. 21287 */ 21288 WARN_ON(adjust_jmp_off(env->prog, subprog_start, 1)); 21289 } 21290 21291 /* Since poke tab is now finalized, publish aux to tracker. */ 21292 for (i = 0; i < prog->aux->size_poke_tab; i++) { 21293 map_ptr = prog->aux->poke_tab[i].tail_call.map; 21294 if (!map_ptr->ops->map_poke_track || 21295 !map_ptr->ops->map_poke_untrack || 21296 !map_ptr->ops->map_poke_run) { 21297 verbose(env, "bpf verifier is misconfigured\n"); 21298 return -EINVAL; 21299 } 21300 21301 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 21302 if (ret < 0) { 21303 verbose(env, "tracking tail call prog failed\n"); 21304 return ret; 21305 } 21306 } 21307 21308 sort_kfunc_descs_by_imm_off(env->prog); 21309 21310 return 0; 21311 } 21312 21313 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 21314 int position, 21315 s32 stack_base, 21316 u32 callback_subprogno, 21317 u32 *total_cnt) 21318 { 21319 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 21320 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 21321 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 21322 int reg_loop_max = BPF_REG_6; 21323 int reg_loop_cnt = BPF_REG_7; 21324 int reg_loop_ctx = BPF_REG_8; 21325 21326 struct bpf_insn *insn_buf = env->insn_buf; 21327 struct bpf_prog *new_prog; 21328 u32 callback_start; 21329 u32 call_insn_offset; 21330 s32 callback_offset; 21331 u32 cnt = 0; 21332 21333 /* This represents an inlined version of bpf_iter.c:bpf_loop, 21334 * be careful to modify this code in sync. 21335 */ 21336 21337 /* Return error and jump to the end of the patch if 21338 * expected number of iterations is too big. 21339 */ 21340 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2); 21341 insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG); 21342 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16); 21343 /* spill R6, R7, R8 to use these as loop vars */ 21344 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset); 21345 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset); 21346 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset); 21347 /* initialize loop vars */ 21348 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1); 21349 insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0); 21350 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3); 21351 /* loop header, 21352 * if reg_loop_cnt >= reg_loop_max skip the loop body 21353 */ 21354 insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5); 21355 /* callback call, 21356 * correct callback offset would be set after patching 21357 */ 21358 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt); 21359 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx); 21360 insn_buf[cnt++] = BPF_CALL_REL(0); 21361 /* increment loop counter */ 21362 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1); 21363 /* jump to loop header if callback returned 0 */ 21364 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6); 21365 /* return value of bpf_loop, 21366 * set R0 to the number of iterations 21367 */ 21368 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt); 21369 /* restore original values of R6, R7, R8 */ 21370 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset); 21371 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset); 21372 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset); 21373 21374 *total_cnt = cnt; 21375 new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt); 21376 if (!new_prog) 21377 return new_prog; 21378 21379 /* callback start is known only after patching */ 21380 callback_start = env->subprog_info[callback_subprogno].start; 21381 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 21382 call_insn_offset = position + 12; 21383 callback_offset = callback_start - call_insn_offset - 1; 21384 new_prog->insnsi[call_insn_offset].imm = callback_offset; 21385 21386 return new_prog; 21387 } 21388 21389 static bool is_bpf_loop_call(struct bpf_insn *insn) 21390 { 21391 return insn->code == (BPF_JMP | BPF_CALL) && 21392 insn->src_reg == 0 && 21393 insn->imm == BPF_FUNC_loop; 21394 } 21395 21396 /* For all sub-programs in the program (including main) check 21397 * insn_aux_data to see if there are bpf_loop calls that require 21398 * inlining. If such calls are found the calls are replaced with a 21399 * sequence of instructions produced by `inline_bpf_loop` function and 21400 * subprog stack_depth is increased by the size of 3 registers. 21401 * This stack space is used to spill values of the R6, R7, R8. These 21402 * registers are used to store the loop bound, counter and context 21403 * variables. 21404 */ 21405 static int optimize_bpf_loop(struct bpf_verifier_env *env) 21406 { 21407 struct bpf_subprog_info *subprogs = env->subprog_info; 21408 int i, cur_subprog = 0, cnt, delta = 0; 21409 struct bpf_insn *insn = env->prog->insnsi; 21410 int insn_cnt = env->prog->len; 21411 u16 stack_depth = subprogs[cur_subprog].stack_depth; 21412 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 21413 u16 stack_depth_extra = 0; 21414 21415 for (i = 0; i < insn_cnt; i++, insn++) { 21416 struct bpf_loop_inline_state *inline_state = 21417 &env->insn_aux_data[i + delta].loop_inline_state; 21418 21419 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 21420 struct bpf_prog *new_prog; 21421 21422 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 21423 new_prog = inline_bpf_loop(env, 21424 i + delta, 21425 -(stack_depth + stack_depth_extra), 21426 inline_state->callback_subprogno, 21427 &cnt); 21428 if (!new_prog) 21429 return -ENOMEM; 21430 21431 delta += cnt - 1; 21432 env->prog = new_prog; 21433 insn = new_prog->insnsi + i + delta; 21434 } 21435 21436 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 21437 subprogs[cur_subprog].stack_depth += stack_depth_extra; 21438 cur_subprog++; 21439 stack_depth = subprogs[cur_subprog].stack_depth; 21440 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 21441 stack_depth_extra = 0; 21442 } 21443 } 21444 21445 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 21446 21447 return 0; 21448 } 21449 21450 /* Remove unnecessary spill/fill pairs, members of fastcall pattern, 21451 * adjust subprograms stack depth when possible. 21452 */ 21453 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env) 21454 { 21455 struct bpf_subprog_info *subprog = env->subprog_info; 21456 struct bpf_insn_aux_data *aux = env->insn_aux_data; 21457 struct bpf_insn *insn = env->prog->insnsi; 21458 int insn_cnt = env->prog->len; 21459 u32 spills_num; 21460 bool modified = false; 21461 int i, j; 21462 21463 for (i = 0; i < insn_cnt; i++, insn++) { 21464 if (aux[i].fastcall_spills_num > 0) { 21465 spills_num = aux[i].fastcall_spills_num; 21466 /* NOPs would be removed by opt_remove_nops() */ 21467 for (j = 1; j <= spills_num; ++j) { 21468 *(insn - j) = NOP; 21469 *(insn + j) = NOP; 21470 } 21471 modified = true; 21472 } 21473 if ((subprog + 1)->start == i + 1) { 21474 if (modified && !subprog->keep_fastcall_stack) 21475 subprog->stack_depth = -subprog->fastcall_stack_off; 21476 subprog++; 21477 modified = false; 21478 } 21479 } 21480 21481 return 0; 21482 } 21483 21484 static void free_states(struct bpf_verifier_env *env) 21485 { 21486 struct bpf_verifier_state_list *sl, *sln; 21487 int i; 21488 21489 sl = env->free_list; 21490 while (sl) { 21491 sln = sl->next; 21492 free_verifier_state(&sl->state, false); 21493 kfree(sl); 21494 sl = sln; 21495 } 21496 env->free_list = NULL; 21497 21498 if (!env->explored_states) 21499 return; 21500 21501 for (i = 0; i < state_htab_size(env); i++) { 21502 sl = env->explored_states[i]; 21503 21504 while (sl) { 21505 sln = sl->next; 21506 free_verifier_state(&sl->state, false); 21507 kfree(sl); 21508 sl = sln; 21509 } 21510 env->explored_states[i] = NULL; 21511 } 21512 } 21513 21514 static int do_check_common(struct bpf_verifier_env *env, int subprog) 21515 { 21516 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 21517 struct bpf_subprog_info *sub = subprog_info(env, subprog); 21518 struct bpf_verifier_state *state; 21519 struct bpf_reg_state *regs; 21520 int ret, i; 21521 21522 env->prev_linfo = NULL; 21523 env->pass_cnt++; 21524 21525 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 21526 if (!state) 21527 return -ENOMEM; 21528 state->curframe = 0; 21529 state->speculative = false; 21530 state->branches = 1; 21531 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 21532 if (!state->frame[0]) { 21533 kfree(state); 21534 return -ENOMEM; 21535 } 21536 env->cur_state = state; 21537 init_func_state(env, state->frame[0], 21538 BPF_MAIN_FUNC /* callsite */, 21539 0 /* frameno */, 21540 subprog); 21541 state->first_insn_idx = env->subprog_info[subprog].start; 21542 state->last_insn_idx = -1; 21543 21544 regs = state->frame[state->curframe]->regs; 21545 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 21546 const char *sub_name = subprog_name(env, subprog); 21547 struct bpf_subprog_arg_info *arg; 21548 struct bpf_reg_state *reg; 21549 21550 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 21551 ret = btf_prepare_func_args(env, subprog); 21552 if (ret) 21553 goto out; 21554 21555 if (subprog_is_exc_cb(env, subprog)) { 21556 state->frame[0]->in_exception_callback_fn = true; 21557 /* We have already ensured that the callback returns an integer, just 21558 * like all global subprogs. We need to determine it only has a single 21559 * scalar argument. 21560 */ 21561 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 21562 verbose(env, "exception cb only supports single integer argument\n"); 21563 ret = -EINVAL; 21564 goto out; 21565 } 21566 } 21567 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 21568 arg = &sub->args[i - BPF_REG_1]; 21569 reg = ®s[i]; 21570 21571 if (arg->arg_type == ARG_PTR_TO_CTX) { 21572 reg->type = PTR_TO_CTX; 21573 mark_reg_known_zero(env, regs, i); 21574 } else if (arg->arg_type == ARG_ANYTHING) { 21575 reg->type = SCALAR_VALUE; 21576 mark_reg_unknown(env, regs, i); 21577 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 21578 /* assume unspecial LOCAL dynptr type */ 21579 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 21580 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 21581 reg->type = PTR_TO_MEM; 21582 if (arg->arg_type & PTR_MAYBE_NULL) 21583 reg->type |= PTR_MAYBE_NULL; 21584 mark_reg_known_zero(env, regs, i); 21585 reg->mem_size = arg->mem_size; 21586 reg->id = ++env->id_gen; 21587 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 21588 reg->type = PTR_TO_BTF_ID; 21589 if (arg->arg_type & PTR_MAYBE_NULL) 21590 reg->type |= PTR_MAYBE_NULL; 21591 if (arg->arg_type & PTR_UNTRUSTED) 21592 reg->type |= PTR_UNTRUSTED; 21593 if (arg->arg_type & PTR_TRUSTED) 21594 reg->type |= PTR_TRUSTED; 21595 mark_reg_known_zero(env, regs, i); 21596 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ 21597 reg->btf_id = arg->btf_id; 21598 reg->id = ++env->id_gen; 21599 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 21600 /* caller can pass either PTR_TO_ARENA or SCALAR */ 21601 mark_reg_unknown(env, regs, i); 21602 } else { 21603 WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n", 21604 i - BPF_REG_1, arg->arg_type); 21605 ret = -EFAULT; 21606 goto out; 21607 } 21608 } 21609 } else { 21610 /* if main BPF program has associated BTF info, validate that 21611 * it's matching expected signature, and otherwise mark BTF 21612 * info for main program as unreliable 21613 */ 21614 if (env->prog->aux->func_info_aux) { 21615 ret = btf_prepare_func_args(env, 0); 21616 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 21617 env->prog->aux->func_info_aux[0].unreliable = true; 21618 } 21619 21620 /* 1st arg to a function */ 21621 regs[BPF_REG_1].type = PTR_TO_CTX; 21622 mark_reg_known_zero(env, regs, BPF_REG_1); 21623 } 21624 21625 ret = do_check(env); 21626 out: 21627 /* check for NULL is necessary, since cur_state can be freed inside 21628 * do_check() under memory pressure. 21629 */ 21630 if (env->cur_state) { 21631 free_verifier_state(env->cur_state, true); 21632 env->cur_state = NULL; 21633 } 21634 while (!pop_stack(env, NULL, NULL, false)); 21635 if (!ret && pop_log) 21636 bpf_vlog_reset(&env->log, 0); 21637 free_states(env); 21638 return ret; 21639 } 21640 21641 /* Lazily verify all global functions based on their BTF, if they are called 21642 * from main BPF program or any of subprograms transitively. 21643 * BPF global subprogs called from dead code are not validated. 21644 * All callable global functions must pass verification. 21645 * Otherwise the whole program is rejected. 21646 * Consider: 21647 * int bar(int); 21648 * int foo(int f) 21649 * { 21650 * return bar(f); 21651 * } 21652 * int bar(int b) 21653 * { 21654 * ... 21655 * } 21656 * foo() will be verified first for R1=any_scalar_value. During verification it 21657 * will be assumed that bar() already verified successfully and call to bar() 21658 * from foo() will be checked for type match only. Later bar() will be verified 21659 * independently to check that it's safe for R1=any_scalar_value. 21660 */ 21661 static int do_check_subprogs(struct bpf_verifier_env *env) 21662 { 21663 struct bpf_prog_aux *aux = env->prog->aux; 21664 struct bpf_func_info_aux *sub_aux; 21665 int i, ret, new_cnt; 21666 21667 if (!aux->func_info) 21668 return 0; 21669 21670 /* exception callback is presumed to be always called */ 21671 if (env->exception_callback_subprog) 21672 subprog_aux(env, env->exception_callback_subprog)->called = true; 21673 21674 again: 21675 new_cnt = 0; 21676 for (i = 1; i < env->subprog_cnt; i++) { 21677 if (!subprog_is_global(env, i)) 21678 continue; 21679 21680 sub_aux = subprog_aux(env, i); 21681 if (!sub_aux->called || sub_aux->verified) 21682 continue; 21683 21684 env->insn_idx = env->subprog_info[i].start; 21685 WARN_ON_ONCE(env->insn_idx == 0); 21686 ret = do_check_common(env, i); 21687 if (ret) { 21688 return ret; 21689 } else if (env->log.level & BPF_LOG_LEVEL) { 21690 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 21691 i, subprog_name(env, i)); 21692 } 21693 21694 /* We verified new global subprog, it might have called some 21695 * more global subprogs that we haven't verified yet, so we 21696 * need to do another pass over subprogs to verify those. 21697 */ 21698 sub_aux->verified = true; 21699 new_cnt++; 21700 } 21701 21702 /* We can't loop forever as we verify at least one global subprog on 21703 * each pass. 21704 */ 21705 if (new_cnt) 21706 goto again; 21707 21708 return 0; 21709 } 21710 21711 static int do_check_main(struct bpf_verifier_env *env) 21712 { 21713 int ret; 21714 21715 env->insn_idx = 0; 21716 ret = do_check_common(env, 0); 21717 if (!ret) 21718 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 21719 return ret; 21720 } 21721 21722 21723 static void print_verification_stats(struct bpf_verifier_env *env) 21724 { 21725 int i; 21726 21727 if (env->log.level & BPF_LOG_STATS) { 21728 verbose(env, "verification time %lld usec\n", 21729 div_u64(env->verification_time, 1000)); 21730 verbose(env, "stack depth "); 21731 for (i = 0; i < env->subprog_cnt; i++) { 21732 u32 depth = env->subprog_info[i].stack_depth; 21733 21734 verbose(env, "%d", depth); 21735 if (i + 1 < env->subprog_cnt) 21736 verbose(env, "+"); 21737 } 21738 verbose(env, "\n"); 21739 } 21740 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 21741 "total_states %d peak_states %d mark_read %d\n", 21742 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 21743 env->max_states_per_insn, env->total_states, 21744 env->peak_states, env->longest_mark_read_walk); 21745 } 21746 21747 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 21748 { 21749 const struct btf_type *t, *func_proto; 21750 const struct bpf_struct_ops_desc *st_ops_desc; 21751 const struct bpf_struct_ops *st_ops; 21752 const struct btf_member *member; 21753 struct bpf_prog *prog = env->prog; 21754 u32 btf_id, member_idx; 21755 struct btf *btf; 21756 const char *mname; 21757 int err; 21758 21759 if (!prog->gpl_compatible) { 21760 verbose(env, "struct ops programs must have a GPL compatible license\n"); 21761 return -EINVAL; 21762 } 21763 21764 if (!prog->aux->attach_btf_id) 21765 return -ENOTSUPP; 21766 21767 btf = prog->aux->attach_btf; 21768 if (btf_is_module(btf)) { 21769 /* Make sure st_ops is valid through the lifetime of env */ 21770 env->attach_btf_mod = btf_try_get_module(btf); 21771 if (!env->attach_btf_mod) { 21772 verbose(env, "struct_ops module %s is not found\n", 21773 btf_get_name(btf)); 21774 return -ENOTSUPP; 21775 } 21776 } 21777 21778 btf_id = prog->aux->attach_btf_id; 21779 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 21780 if (!st_ops_desc) { 21781 verbose(env, "attach_btf_id %u is not a supported struct\n", 21782 btf_id); 21783 return -ENOTSUPP; 21784 } 21785 st_ops = st_ops_desc->st_ops; 21786 21787 t = st_ops_desc->type; 21788 member_idx = prog->expected_attach_type; 21789 if (member_idx >= btf_type_vlen(t)) { 21790 verbose(env, "attach to invalid member idx %u of struct %s\n", 21791 member_idx, st_ops->name); 21792 return -EINVAL; 21793 } 21794 21795 member = &btf_type_member(t)[member_idx]; 21796 mname = btf_name_by_offset(btf, member->name_off); 21797 func_proto = btf_type_resolve_func_ptr(btf, member->type, 21798 NULL); 21799 if (!func_proto) { 21800 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 21801 mname, member_idx, st_ops->name); 21802 return -EINVAL; 21803 } 21804 21805 err = bpf_struct_ops_supported(st_ops, __btf_member_bit_offset(t, member) / 8); 21806 if (err) { 21807 verbose(env, "attach to unsupported member %s of struct %s\n", 21808 mname, st_ops->name); 21809 return err; 21810 } 21811 21812 if (st_ops->check_member) { 21813 err = st_ops->check_member(t, member, prog); 21814 21815 if (err) { 21816 verbose(env, "attach to unsupported member %s of struct %s\n", 21817 mname, st_ops->name); 21818 return err; 21819 } 21820 } 21821 21822 /* btf_ctx_access() used this to provide argument type info */ 21823 prog->aux->ctx_arg_info = 21824 st_ops_desc->arg_info[member_idx].info; 21825 prog->aux->ctx_arg_info_size = 21826 st_ops_desc->arg_info[member_idx].cnt; 21827 21828 prog->aux->attach_func_proto = func_proto; 21829 prog->aux->attach_func_name = mname; 21830 env->ops = st_ops->verifier_ops; 21831 21832 return 0; 21833 } 21834 #define SECURITY_PREFIX "security_" 21835 21836 static int check_attach_modify_return(unsigned long addr, const char *func_name) 21837 { 21838 if (within_error_injection_list(addr) || 21839 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 21840 return 0; 21841 21842 return -EINVAL; 21843 } 21844 21845 /* list of non-sleepable functions that are otherwise on 21846 * ALLOW_ERROR_INJECTION list 21847 */ 21848 BTF_SET_START(btf_non_sleepable_error_inject) 21849 /* Three functions below can be called from sleepable and non-sleepable context. 21850 * Assume non-sleepable from bpf safety point of view. 21851 */ 21852 BTF_ID(func, __filemap_add_folio) 21853 #ifdef CONFIG_FAIL_PAGE_ALLOC 21854 BTF_ID(func, should_fail_alloc_page) 21855 #endif 21856 #ifdef CONFIG_FAILSLAB 21857 BTF_ID(func, should_failslab) 21858 #endif 21859 BTF_SET_END(btf_non_sleepable_error_inject) 21860 21861 static int check_non_sleepable_error_inject(u32 btf_id) 21862 { 21863 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 21864 } 21865 21866 int bpf_check_attach_target(struct bpf_verifier_log *log, 21867 const struct bpf_prog *prog, 21868 const struct bpf_prog *tgt_prog, 21869 u32 btf_id, 21870 struct bpf_attach_target_info *tgt_info) 21871 { 21872 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 21873 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; 21874 char trace_symbol[KSYM_SYMBOL_LEN]; 21875 const char prefix[] = "btf_trace_"; 21876 struct bpf_raw_event_map *btp; 21877 int ret = 0, subprog = -1, i; 21878 const struct btf_type *t; 21879 bool conservative = true; 21880 const char *tname, *fname; 21881 struct btf *btf; 21882 long addr = 0; 21883 struct module *mod = NULL; 21884 21885 if (!btf_id) { 21886 bpf_log(log, "Tracing programs must provide btf_id\n"); 21887 return -EINVAL; 21888 } 21889 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 21890 if (!btf) { 21891 bpf_log(log, 21892 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 21893 return -EINVAL; 21894 } 21895 t = btf_type_by_id(btf, btf_id); 21896 if (!t) { 21897 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 21898 return -EINVAL; 21899 } 21900 tname = btf_name_by_offset(btf, t->name_off); 21901 if (!tname) { 21902 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 21903 return -EINVAL; 21904 } 21905 if (tgt_prog) { 21906 struct bpf_prog_aux *aux = tgt_prog->aux; 21907 21908 if (bpf_prog_is_dev_bound(prog->aux) && 21909 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 21910 bpf_log(log, "Target program bound device mismatch"); 21911 return -EINVAL; 21912 } 21913 21914 for (i = 0; i < aux->func_info_cnt; i++) 21915 if (aux->func_info[i].type_id == btf_id) { 21916 subprog = i; 21917 break; 21918 } 21919 if (subprog == -1) { 21920 bpf_log(log, "Subprog %s doesn't exist\n", tname); 21921 return -EINVAL; 21922 } 21923 if (aux->func && aux->func[subprog]->aux->exception_cb) { 21924 bpf_log(log, 21925 "%s programs cannot attach to exception callback\n", 21926 prog_extension ? "Extension" : "FENTRY/FEXIT"); 21927 return -EINVAL; 21928 } 21929 conservative = aux->func_info_aux[subprog].unreliable; 21930 if (prog_extension) { 21931 if (conservative) { 21932 bpf_log(log, 21933 "Cannot replace static functions\n"); 21934 return -EINVAL; 21935 } 21936 if (!prog->jit_requested) { 21937 bpf_log(log, 21938 "Extension programs should be JITed\n"); 21939 return -EINVAL; 21940 } 21941 } 21942 if (!tgt_prog->jited) { 21943 bpf_log(log, "Can attach to only JITed progs\n"); 21944 return -EINVAL; 21945 } 21946 if (prog_tracing) { 21947 if (aux->attach_tracing_prog) { 21948 /* 21949 * Target program is an fentry/fexit which is already attached 21950 * to another tracing program. More levels of nesting 21951 * attachment are not allowed. 21952 */ 21953 bpf_log(log, "Cannot nest tracing program attach more than once\n"); 21954 return -EINVAL; 21955 } 21956 } else if (tgt_prog->type == prog->type) { 21957 /* 21958 * To avoid potential call chain cycles, prevent attaching of a 21959 * program extension to another extension. It's ok to attach 21960 * fentry/fexit to extension program. 21961 */ 21962 bpf_log(log, "Cannot recursively attach\n"); 21963 return -EINVAL; 21964 } 21965 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 21966 prog_extension && 21967 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 21968 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 21969 /* Program extensions can extend all program types 21970 * except fentry/fexit. The reason is the following. 21971 * The fentry/fexit programs are used for performance 21972 * analysis, stats and can be attached to any program 21973 * type. When extension program is replacing XDP function 21974 * it is necessary to allow performance analysis of all 21975 * functions. Both original XDP program and its program 21976 * extension. Hence attaching fentry/fexit to 21977 * BPF_PROG_TYPE_EXT is allowed. If extending of 21978 * fentry/fexit was allowed it would be possible to create 21979 * long call chain fentry->extension->fentry->extension 21980 * beyond reasonable stack size. Hence extending fentry 21981 * is not allowed. 21982 */ 21983 bpf_log(log, "Cannot extend fentry/fexit\n"); 21984 return -EINVAL; 21985 } 21986 } else { 21987 if (prog_extension) { 21988 bpf_log(log, "Cannot replace kernel functions\n"); 21989 return -EINVAL; 21990 } 21991 } 21992 21993 switch (prog->expected_attach_type) { 21994 case BPF_TRACE_RAW_TP: 21995 if (tgt_prog) { 21996 bpf_log(log, 21997 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 21998 return -EINVAL; 21999 } 22000 if (!btf_type_is_typedef(t)) { 22001 bpf_log(log, "attach_btf_id %u is not a typedef\n", 22002 btf_id); 22003 return -EINVAL; 22004 } 22005 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 22006 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 22007 btf_id, tname); 22008 return -EINVAL; 22009 } 22010 tname += sizeof(prefix) - 1; 22011 22012 /* The func_proto of "btf_trace_##tname" is generated from typedef without argument 22013 * names. Thus using bpf_raw_event_map to get argument names. 22014 */ 22015 btp = bpf_get_raw_tracepoint(tname); 22016 if (!btp) 22017 return -EINVAL; 22018 fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL, 22019 trace_symbol); 22020 bpf_put_raw_tracepoint(btp); 22021 22022 if (fname) 22023 ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC); 22024 22025 if (!fname || ret < 0) { 22026 bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n", 22027 prefix, tname); 22028 t = btf_type_by_id(btf, t->type); 22029 if (!btf_type_is_ptr(t)) 22030 /* should never happen in valid vmlinux build */ 22031 return -EINVAL; 22032 } else { 22033 t = btf_type_by_id(btf, ret); 22034 if (!btf_type_is_func(t)) 22035 /* should never happen in valid vmlinux build */ 22036 return -EINVAL; 22037 } 22038 22039 t = btf_type_by_id(btf, t->type); 22040 if (!btf_type_is_func_proto(t)) 22041 /* should never happen in valid vmlinux build */ 22042 return -EINVAL; 22043 22044 break; 22045 case BPF_TRACE_ITER: 22046 if (!btf_type_is_func(t)) { 22047 bpf_log(log, "attach_btf_id %u is not a function\n", 22048 btf_id); 22049 return -EINVAL; 22050 } 22051 t = btf_type_by_id(btf, t->type); 22052 if (!btf_type_is_func_proto(t)) 22053 return -EINVAL; 22054 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 22055 if (ret) 22056 return ret; 22057 break; 22058 default: 22059 if (!prog_extension) 22060 return -EINVAL; 22061 fallthrough; 22062 case BPF_MODIFY_RETURN: 22063 case BPF_LSM_MAC: 22064 case BPF_LSM_CGROUP: 22065 case BPF_TRACE_FENTRY: 22066 case BPF_TRACE_FEXIT: 22067 if (!btf_type_is_func(t)) { 22068 bpf_log(log, "attach_btf_id %u is not a function\n", 22069 btf_id); 22070 return -EINVAL; 22071 } 22072 if (prog_extension && 22073 btf_check_type_match(log, prog, btf, t)) 22074 return -EINVAL; 22075 t = btf_type_by_id(btf, t->type); 22076 if (!btf_type_is_func_proto(t)) 22077 return -EINVAL; 22078 22079 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 22080 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 22081 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 22082 return -EINVAL; 22083 22084 if (tgt_prog && conservative) 22085 t = NULL; 22086 22087 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 22088 if (ret < 0) 22089 return ret; 22090 22091 if (tgt_prog) { 22092 if (subprog == 0) 22093 addr = (long) tgt_prog->bpf_func; 22094 else 22095 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 22096 } else { 22097 if (btf_is_module(btf)) { 22098 mod = btf_try_get_module(btf); 22099 if (mod) 22100 addr = find_kallsyms_symbol_value(mod, tname); 22101 else 22102 addr = 0; 22103 } else { 22104 addr = kallsyms_lookup_name(tname); 22105 } 22106 if (!addr) { 22107 module_put(mod); 22108 bpf_log(log, 22109 "The address of function %s cannot be found\n", 22110 tname); 22111 return -ENOENT; 22112 } 22113 } 22114 22115 if (prog->sleepable) { 22116 ret = -EINVAL; 22117 switch (prog->type) { 22118 case BPF_PROG_TYPE_TRACING: 22119 22120 /* fentry/fexit/fmod_ret progs can be sleepable if they are 22121 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 22122 */ 22123 if (!check_non_sleepable_error_inject(btf_id) && 22124 within_error_injection_list(addr)) 22125 ret = 0; 22126 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 22127 * in the fmodret id set with the KF_SLEEPABLE flag. 22128 */ 22129 else { 22130 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 22131 prog); 22132 22133 if (flags && (*flags & KF_SLEEPABLE)) 22134 ret = 0; 22135 } 22136 break; 22137 case BPF_PROG_TYPE_LSM: 22138 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 22139 * Only some of them are sleepable. 22140 */ 22141 if (bpf_lsm_is_sleepable_hook(btf_id)) 22142 ret = 0; 22143 break; 22144 default: 22145 break; 22146 } 22147 if (ret) { 22148 module_put(mod); 22149 bpf_log(log, "%s is not sleepable\n", tname); 22150 return ret; 22151 } 22152 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 22153 if (tgt_prog) { 22154 module_put(mod); 22155 bpf_log(log, "can't modify return codes of BPF programs\n"); 22156 return -EINVAL; 22157 } 22158 ret = -EINVAL; 22159 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 22160 !check_attach_modify_return(addr, tname)) 22161 ret = 0; 22162 if (ret) { 22163 module_put(mod); 22164 bpf_log(log, "%s() is not modifiable\n", tname); 22165 return ret; 22166 } 22167 } 22168 22169 break; 22170 } 22171 tgt_info->tgt_addr = addr; 22172 tgt_info->tgt_name = tname; 22173 tgt_info->tgt_type = t; 22174 tgt_info->tgt_mod = mod; 22175 return 0; 22176 } 22177 22178 BTF_SET_START(btf_id_deny) 22179 BTF_ID_UNUSED 22180 #ifdef CONFIG_SMP 22181 BTF_ID(func, migrate_disable) 22182 BTF_ID(func, migrate_enable) 22183 #endif 22184 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 22185 BTF_ID(func, rcu_read_unlock_strict) 22186 #endif 22187 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 22188 BTF_ID(func, preempt_count_add) 22189 BTF_ID(func, preempt_count_sub) 22190 #endif 22191 #ifdef CONFIG_PREEMPT_RCU 22192 BTF_ID(func, __rcu_read_lock) 22193 BTF_ID(func, __rcu_read_unlock) 22194 #endif 22195 BTF_SET_END(btf_id_deny) 22196 22197 static bool can_be_sleepable(struct bpf_prog *prog) 22198 { 22199 if (prog->type == BPF_PROG_TYPE_TRACING) { 22200 switch (prog->expected_attach_type) { 22201 case BPF_TRACE_FENTRY: 22202 case BPF_TRACE_FEXIT: 22203 case BPF_MODIFY_RETURN: 22204 case BPF_TRACE_ITER: 22205 return true; 22206 default: 22207 return false; 22208 } 22209 } 22210 return prog->type == BPF_PROG_TYPE_LSM || 22211 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 22212 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 22213 } 22214 22215 static int check_attach_btf_id(struct bpf_verifier_env *env) 22216 { 22217 struct bpf_prog *prog = env->prog; 22218 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 22219 struct bpf_attach_target_info tgt_info = {}; 22220 u32 btf_id = prog->aux->attach_btf_id; 22221 struct bpf_trampoline *tr; 22222 int ret; 22223 u64 key; 22224 22225 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 22226 if (prog->sleepable) 22227 /* attach_btf_id checked to be zero already */ 22228 return 0; 22229 verbose(env, "Syscall programs can only be sleepable\n"); 22230 return -EINVAL; 22231 } 22232 22233 if (prog->sleepable && !can_be_sleepable(prog)) { 22234 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 22235 return -EINVAL; 22236 } 22237 22238 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 22239 return check_struct_ops_btf_id(env); 22240 22241 if (prog->type != BPF_PROG_TYPE_TRACING && 22242 prog->type != BPF_PROG_TYPE_LSM && 22243 prog->type != BPF_PROG_TYPE_EXT) 22244 return 0; 22245 22246 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 22247 if (ret) 22248 return ret; 22249 22250 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 22251 /* to make freplace equivalent to their targets, they need to 22252 * inherit env->ops and expected_attach_type for the rest of the 22253 * verification 22254 */ 22255 env->ops = bpf_verifier_ops[tgt_prog->type]; 22256 prog->expected_attach_type = tgt_prog->expected_attach_type; 22257 } 22258 22259 /* store info about the attachment target that will be used later */ 22260 prog->aux->attach_func_proto = tgt_info.tgt_type; 22261 prog->aux->attach_func_name = tgt_info.tgt_name; 22262 prog->aux->mod = tgt_info.tgt_mod; 22263 22264 if (tgt_prog) { 22265 prog->aux->saved_dst_prog_type = tgt_prog->type; 22266 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 22267 } 22268 22269 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 22270 prog->aux->attach_btf_trace = true; 22271 return 0; 22272 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 22273 if (!bpf_iter_prog_supported(prog)) 22274 return -EINVAL; 22275 return 0; 22276 } 22277 22278 if (prog->type == BPF_PROG_TYPE_LSM) { 22279 ret = bpf_lsm_verify_prog(&env->log, prog); 22280 if (ret < 0) 22281 return ret; 22282 } else if (prog->type == BPF_PROG_TYPE_TRACING && 22283 btf_id_set_contains(&btf_id_deny, btf_id)) { 22284 return -EINVAL; 22285 } 22286 22287 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 22288 tr = bpf_trampoline_get(key, &tgt_info); 22289 if (!tr) 22290 return -ENOMEM; 22291 22292 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 22293 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 22294 22295 prog->aux->dst_trampoline = tr; 22296 return 0; 22297 } 22298 22299 struct btf *bpf_get_btf_vmlinux(void) 22300 { 22301 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 22302 mutex_lock(&bpf_verifier_lock); 22303 if (!btf_vmlinux) 22304 btf_vmlinux = btf_parse_vmlinux(); 22305 mutex_unlock(&bpf_verifier_lock); 22306 } 22307 return btf_vmlinux; 22308 } 22309 22310 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 22311 { 22312 u64 start_time = ktime_get_ns(); 22313 struct bpf_verifier_env *env; 22314 int i, len, ret = -EINVAL, err; 22315 u32 log_true_size; 22316 bool is_priv; 22317 22318 /* no program is valid */ 22319 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 22320 return -EINVAL; 22321 22322 /* 'struct bpf_verifier_env' can be global, but since it's not small, 22323 * allocate/free it every time bpf_check() is called 22324 */ 22325 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 22326 if (!env) 22327 return -ENOMEM; 22328 22329 env->bt.env = env; 22330 22331 len = (*prog)->len; 22332 env->insn_aux_data = 22333 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 22334 ret = -ENOMEM; 22335 if (!env->insn_aux_data) 22336 goto err_free_env; 22337 for (i = 0; i < len; i++) 22338 env->insn_aux_data[i].orig_idx = i; 22339 env->prog = *prog; 22340 env->ops = bpf_verifier_ops[env->prog->type]; 22341 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 22342 22343 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); 22344 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); 22345 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); 22346 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); 22347 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); 22348 22349 bpf_get_btf_vmlinux(); 22350 22351 /* grab the mutex to protect few globals used by verifier */ 22352 if (!is_priv) 22353 mutex_lock(&bpf_verifier_lock); 22354 22355 /* user could have requested verbose verifier output 22356 * and supplied buffer to store the verification trace 22357 */ 22358 ret = bpf_vlog_init(&env->log, attr->log_level, 22359 (char __user *) (unsigned long) attr->log_buf, 22360 attr->log_size); 22361 if (ret) 22362 goto err_unlock; 22363 22364 mark_verifier_state_clean(env); 22365 22366 if (IS_ERR(btf_vmlinux)) { 22367 /* Either gcc or pahole or kernel are broken. */ 22368 verbose(env, "in-kernel BTF is malformed\n"); 22369 ret = PTR_ERR(btf_vmlinux); 22370 goto skip_full_check; 22371 } 22372 22373 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 22374 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 22375 env->strict_alignment = true; 22376 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 22377 env->strict_alignment = false; 22378 22379 if (is_priv) 22380 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 22381 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 22382 22383 env->explored_states = kvcalloc(state_htab_size(env), 22384 sizeof(struct bpf_verifier_state_list *), 22385 GFP_USER); 22386 ret = -ENOMEM; 22387 if (!env->explored_states) 22388 goto skip_full_check; 22389 22390 ret = check_btf_info_early(env, attr, uattr); 22391 if (ret < 0) 22392 goto skip_full_check; 22393 22394 ret = add_subprog_and_kfunc(env); 22395 if (ret < 0) 22396 goto skip_full_check; 22397 22398 ret = check_subprogs(env); 22399 if (ret < 0) 22400 goto skip_full_check; 22401 22402 ret = check_btf_info(env, attr, uattr); 22403 if (ret < 0) 22404 goto skip_full_check; 22405 22406 ret = check_attach_btf_id(env); 22407 if (ret) 22408 goto skip_full_check; 22409 22410 ret = resolve_pseudo_ldimm64(env); 22411 if (ret < 0) 22412 goto skip_full_check; 22413 22414 if (bpf_prog_is_offloaded(env->prog->aux)) { 22415 ret = bpf_prog_offload_verifier_prep(env->prog); 22416 if (ret) 22417 goto skip_full_check; 22418 } 22419 22420 ret = check_cfg(env); 22421 if (ret < 0) 22422 goto skip_full_check; 22423 22424 ret = mark_fastcall_patterns(env); 22425 if (ret < 0) 22426 goto skip_full_check; 22427 22428 ret = do_check_main(env); 22429 ret = ret ?: do_check_subprogs(env); 22430 22431 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 22432 ret = bpf_prog_offload_finalize(env); 22433 22434 skip_full_check: 22435 kvfree(env->explored_states); 22436 22437 /* might decrease stack depth, keep it before passes that 22438 * allocate additional slots. 22439 */ 22440 if (ret == 0) 22441 ret = remove_fastcall_spills_fills(env); 22442 22443 if (ret == 0) 22444 ret = check_max_stack_depth(env); 22445 22446 /* instruction rewrites happen after this point */ 22447 if (ret == 0) 22448 ret = optimize_bpf_loop(env); 22449 22450 if (is_priv) { 22451 if (ret == 0) 22452 opt_hard_wire_dead_code_branches(env); 22453 if (ret == 0) 22454 ret = opt_remove_dead_code(env); 22455 if (ret == 0) 22456 ret = opt_remove_nops(env); 22457 } else { 22458 if (ret == 0) 22459 sanitize_dead_code(env); 22460 } 22461 22462 if (ret == 0) 22463 /* program is valid, convert *(u32*)(ctx + off) accesses */ 22464 ret = convert_ctx_accesses(env); 22465 22466 if (ret == 0) 22467 ret = do_misc_fixups(env); 22468 22469 /* do 32-bit optimization after insn patching has done so those patched 22470 * insns could be handled correctly. 22471 */ 22472 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 22473 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 22474 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 22475 : false; 22476 } 22477 22478 if (ret == 0) 22479 ret = fixup_call_args(env); 22480 22481 env->verification_time = ktime_get_ns() - start_time; 22482 print_verification_stats(env); 22483 env->prog->aux->verified_insns = env->insn_processed; 22484 22485 /* preserve original error even if log finalization is successful */ 22486 err = bpf_vlog_finalize(&env->log, &log_true_size); 22487 if (err) 22488 ret = err; 22489 22490 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 22491 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 22492 &log_true_size, sizeof(log_true_size))) { 22493 ret = -EFAULT; 22494 goto err_release_maps; 22495 } 22496 22497 if (ret) 22498 goto err_release_maps; 22499 22500 if (env->used_map_cnt) { 22501 /* if program passed verifier, update used_maps in bpf_prog_info */ 22502 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 22503 sizeof(env->used_maps[0]), 22504 GFP_KERNEL); 22505 22506 if (!env->prog->aux->used_maps) { 22507 ret = -ENOMEM; 22508 goto err_release_maps; 22509 } 22510 22511 memcpy(env->prog->aux->used_maps, env->used_maps, 22512 sizeof(env->used_maps[0]) * env->used_map_cnt); 22513 env->prog->aux->used_map_cnt = env->used_map_cnt; 22514 } 22515 if (env->used_btf_cnt) { 22516 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 22517 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 22518 sizeof(env->used_btfs[0]), 22519 GFP_KERNEL); 22520 if (!env->prog->aux->used_btfs) { 22521 ret = -ENOMEM; 22522 goto err_release_maps; 22523 } 22524 22525 memcpy(env->prog->aux->used_btfs, env->used_btfs, 22526 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 22527 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 22528 } 22529 if (env->used_map_cnt || env->used_btf_cnt) { 22530 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 22531 * bpf_ld_imm64 instructions 22532 */ 22533 convert_pseudo_ld_imm64(env); 22534 } 22535 22536 adjust_btf_func(env); 22537 22538 err_release_maps: 22539 if (!env->prog->aux->used_maps) 22540 /* if we didn't copy map pointers into bpf_prog_info, release 22541 * them now. Otherwise free_used_maps() will release them. 22542 */ 22543 release_maps(env); 22544 if (!env->prog->aux->used_btfs) 22545 release_btfs(env); 22546 22547 /* extension progs temporarily inherit the attach_type of their targets 22548 for verification purposes, so set it back to zero before returning 22549 */ 22550 if (env->prog->type == BPF_PROG_TYPE_EXT) 22551 env->prog->expected_attach_type = 0; 22552 22553 *prog = env->prog; 22554 22555 module_put(env->attach_btf_mod); 22556 err_unlock: 22557 if (!is_priv) 22558 mutex_unlock(&bpf_verifier_lock); 22559 vfree(env->insn_aux_data); 22560 err_free_env: 22561 kvfree(env); 22562 return ret; 22563 } 22564