xref: /linux/kernel/bpf/verifier.c (revision 9a715cd54347948e74f1a597da22884af287727d)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 
24 /* bpf_check() is a static code analyzer that walks eBPF program
25  * instruction by instruction and updates register/stack state.
26  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27  *
28  * The first pass is depth-first-search to check that the program is a DAG.
29  * It rejects the following programs:
30  * - larger than BPF_MAXINSNS insns
31  * - if loop is present (detected via back-edge)
32  * - unreachable insns exist (shouldn't be a forest. program = one function)
33  * - out of bounds or malformed jumps
34  * The second pass is all possible path descent from the 1st insn.
35  * Since it's analyzing all pathes through the program, the length of the
36  * analysis is limited to 64k insn, which may be hit even if total number of
37  * insn is less then 4K, but there are too many branches that change stack/regs.
38  * Number of 'branches to be analyzed' is limited to 1k
39  *
40  * On entry to each instruction, each register has a type, and the instruction
41  * changes the types of the registers depending on instruction semantics.
42  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43  * copied to R1.
44  *
45  * All registers are 64-bit.
46  * R0 - return register
47  * R1-R5 argument passing registers
48  * R6-R9 callee saved registers
49  * R10 - frame pointer read-only
50  *
51  * At the start of BPF program the register R1 contains a pointer to bpf_context
52  * and has type PTR_TO_CTX.
53  *
54  * Verifier tracks arithmetic operations on pointers in case:
55  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57  * 1st insn copies R10 (which has FRAME_PTR) type into R1
58  * and 2nd arithmetic instruction is pattern matched to recognize
59  * that it wants to construct a pointer to some element within stack.
60  * So after 2nd insn, the register R1 has type PTR_TO_STACK
61  * (and -20 constant is saved for further stack bounds checking).
62  * Meaning that this reg is a pointer to stack plus known immediate constant.
63  *
64  * Most of the time the registers have UNKNOWN_VALUE type, which
65  * means the register has some value, but it's not a valid pointer.
66  * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67  *
68  * When verifier sees load or store instructions the type of base register
69  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70  * types recognized by check_mem_access() function.
71  *
72  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73  * and the range of [ptr, ptr + map's value_size) is accessible.
74  *
75  * registers used to pass values to function calls are checked against
76  * function argument constraints.
77  *
78  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79  * It means that the register type passed to this function must be
80  * PTR_TO_STACK and it will be used inside the function as
81  * 'pointer to map element key'
82  *
83  * For example the argument constraints for bpf_map_lookup_elem():
84  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85  *   .arg1_type = ARG_CONST_MAP_PTR,
86  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
87  *
88  * ret_type says that this function returns 'pointer to map elem value or null'
89  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90  * 2nd argument should be a pointer to stack, which will be used inside
91  * the helper function as a pointer to map element key.
92  *
93  * On the kernel side the helper function looks like:
94  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95  * {
96  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97  *    void *key = (void *) (unsigned long) r2;
98  *    void *value;
99  *
100  *    here kernel can access 'key' and 'map' pointers safely, knowing that
101  *    [key, key + map->key_size) bytes are valid and were initialized on
102  *    the stack of eBPF program.
103  * }
104  *
105  * Corresponding eBPF program may look like:
106  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
107  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
109  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110  * here verifier looks at prototype of map_lookup_elem() and sees:
111  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113  *
114  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116  * and were initialized prior to this call.
117  * If it's ok, then verifier allows this BPF_CALL insn and looks at
118  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120  * returns ether pointer to map value or NULL.
121  *
122  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123  * insn, the register holding that pointer in the true branch changes state to
124  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125  * branch. See check_cond_jmp_op().
126  *
127  * After the call R0 is set to return type of the function and registers R1-R5
128  * are set to NOT_INIT to indicate that they are no longer readable.
129  */
130 
131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
132 struct bpf_verifier_stack_elem {
133 	/* verifer state is 'st'
134 	 * before processing instruction 'insn_idx'
135 	 * and after processing instruction 'prev_insn_idx'
136 	 */
137 	struct bpf_verifier_state st;
138 	int insn_idx;
139 	int prev_insn_idx;
140 	struct bpf_verifier_stack_elem *next;
141 };
142 
143 #define BPF_COMPLEXITY_LIMIT_INSNS	98304
144 #define BPF_COMPLEXITY_LIMIT_STACK	1024
145 
146 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147 
148 struct bpf_call_arg_meta {
149 	struct bpf_map *map_ptr;
150 	bool raw_mode;
151 	bool pkt_access;
152 	int regno;
153 	int access_size;
154 };
155 
156 /* verbose verifier prints what it's seeing
157  * bpf_check() is called under lock, so no race to access these global vars
158  */
159 static u32 log_level, log_size, log_len;
160 static char *log_buf;
161 
162 static DEFINE_MUTEX(bpf_verifier_lock);
163 
164 /* log_level controls verbosity level of eBPF verifier.
165  * verbose() is used to dump the verification trace to the log, so the user
166  * can figure out what's wrong with the program
167  */
168 static __printf(1, 2) void verbose(const char *fmt, ...)
169 {
170 	va_list args;
171 
172 	if (log_level == 0 || log_len >= log_size - 1)
173 		return;
174 
175 	va_start(args, fmt);
176 	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 	va_end(args);
178 }
179 
180 /* string representation of 'enum bpf_reg_type' */
181 static const char * const reg_type_str[] = {
182 	[NOT_INIT]		= "?",
183 	[UNKNOWN_VALUE]		= "inv",
184 	[PTR_TO_CTX]		= "ctx",
185 	[CONST_PTR_TO_MAP]	= "map_ptr",
186 	[PTR_TO_MAP_VALUE]	= "map_value",
187 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
188 	[PTR_TO_MAP_VALUE_ADJ]	= "map_value_adj",
189 	[FRAME_PTR]		= "fp",
190 	[PTR_TO_STACK]		= "fp",
191 	[CONST_IMM]		= "imm",
192 	[PTR_TO_PACKET]		= "pkt",
193 	[PTR_TO_PACKET_END]	= "pkt_end",
194 };
195 
196 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
197 static const char * const func_id_str[] = {
198 	__BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
199 };
200 #undef __BPF_FUNC_STR_FN
201 
202 static const char *func_id_name(int id)
203 {
204 	BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
205 
206 	if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
207 		return func_id_str[id];
208 	else
209 		return "unknown";
210 }
211 
212 static void print_verifier_state(struct bpf_verifier_state *state)
213 {
214 	struct bpf_reg_state *reg;
215 	enum bpf_reg_type t;
216 	int i;
217 
218 	for (i = 0; i < MAX_BPF_REG; i++) {
219 		reg = &state->regs[i];
220 		t = reg->type;
221 		if (t == NOT_INIT)
222 			continue;
223 		verbose(" R%d=%s", i, reg_type_str[t]);
224 		if (t == CONST_IMM || t == PTR_TO_STACK)
225 			verbose("%lld", reg->imm);
226 		else if (t == PTR_TO_PACKET)
227 			verbose("(id=%d,off=%d,r=%d)",
228 				reg->id, reg->off, reg->range);
229 		else if (t == UNKNOWN_VALUE && reg->imm)
230 			verbose("%lld", reg->imm);
231 		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
232 			 t == PTR_TO_MAP_VALUE_OR_NULL ||
233 			 t == PTR_TO_MAP_VALUE_ADJ)
234 			verbose("(ks=%d,vs=%d,id=%u)",
235 				reg->map_ptr->key_size,
236 				reg->map_ptr->value_size,
237 				reg->id);
238 		if (reg->min_value != BPF_REGISTER_MIN_RANGE)
239 			verbose(",min_value=%lld",
240 				(long long)reg->min_value);
241 		if (reg->max_value != BPF_REGISTER_MAX_RANGE)
242 			verbose(",max_value=%llu",
243 				(unsigned long long)reg->max_value);
244 		if (reg->min_align)
245 			verbose(",min_align=%u", reg->min_align);
246 		if (reg->aux_off)
247 			verbose(",aux_off=%u", reg->aux_off);
248 		if (reg->aux_off_align)
249 			verbose(",aux_off_align=%u", reg->aux_off_align);
250 	}
251 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
252 		if (state->stack_slot_type[i] == STACK_SPILL)
253 			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
254 				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
255 	}
256 	verbose("\n");
257 }
258 
259 static const char *const bpf_class_string[] = {
260 	[BPF_LD]    = "ld",
261 	[BPF_LDX]   = "ldx",
262 	[BPF_ST]    = "st",
263 	[BPF_STX]   = "stx",
264 	[BPF_ALU]   = "alu",
265 	[BPF_JMP]   = "jmp",
266 	[BPF_RET]   = "BUG",
267 	[BPF_ALU64] = "alu64",
268 };
269 
270 static const char *const bpf_alu_string[16] = {
271 	[BPF_ADD >> 4]  = "+=",
272 	[BPF_SUB >> 4]  = "-=",
273 	[BPF_MUL >> 4]  = "*=",
274 	[BPF_DIV >> 4]  = "/=",
275 	[BPF_OR  >> 4]  = "|=",
276 	[BPF_AND >> 4]  = "&=",
277 	[BPF_LSH >> 4]  = "<<=",
278 	[BPF_RSH >> 4]  = ">>=",
279 	[BPF_NEG >> 4]  = "neg",
280 	[BPF_MOD >> 4]  = "%=",
281 	[BPF_XOR >> 4]  = "^=",
282 	[BPF_MOV >> 4]  = "=",
283 	[BPF_ARSH >> 4] = "s>>=",
284 	[BPF_END >> 4]  = "endian",
285 };
286 
287 static const char *const bpf_ldst_string[] = {
288 	[BPF_W >> 3]  = "u32",
289 	[BPF_H >> 3]  = "u16",
290 	[BPF_B >> 3]  = "u8",
291 	[BPF_DW >> 3] = "u64",
292 };
293 
294 static const char *const bpf_jmp_string[16] = {
295 	[BPF_JA >> 4]   = "jmp",
296 	[BPF_JEQ >> 4]  = "==",
297 	[BPF_JGT >> 4]  = ">",
298 	[BPF_JGE >> 4]  = ">=",
299 	[BPF_JSET >> 4] = "&",
300 	[BPF_JNE >> 4]  = "!=",
301 	[BPF_JSGT >> 4] = "s>",
302 	[BPF_JSGE >> 4] = "s>=",
303 	[BPF_CALL >> 4] = "call",
304 	[BPF_EXIT >> 4] = "exit",
305 };
306 
307 static void print_bpf_insn(const struct bpf_verifier_env *env,
308 			   const struct bpf_insn *insn)
309 {
310 	u8 class = BPF_CLASS(insn->code);
311 
312 	if (class == BPF_ALU || class == BPF_ALU64) {
313 		if (BPF_SRC(insn->code) == BPF_X)
314 			verbose("(%02x) %sr%d %s %sr%d\n",
315 				insn->code, class == BPF_ALU ? "(u32) " : "",
316 				insn->dst_reg,
317 				bpf_alu_string[BPF_OP(insn->code) >> 4],
318 				class == BPF_ALU ? "(u32) " : "",
319 				insn->src_reg);
320 		else
321 			verbose("(%02x) %sr%d %s %s%d\n",
322 				insn->code, class == BPF_ALU ? "(u32) " : "",
323 				insn->dst_reg,
324 				bpf_alu_string[BPF_OP(insn->code) >> 4],
325 				class == BPF_ALU ? "(u32) " : "",
326 				insn->imm);
327 	} else if (class == BPF_STX) {
328 		if (BPF_MODE(insn->code) == BPF_MEM)
329 			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
330 				insn->code,
331 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
332 				insn->dst_reg,
333 				insn->off, insn->src_reg);
334 		else if (BPF_MODE(insn->code) == BPF_XADD)
335 			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
336 				insn->code,
337 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
338 				insn->dst_reg, insn->off,
339 				insn->src_reg);
340 		else
341 			verbose("BUG_%02x\n", insn->code);
342 	} else if (class == BPF_ST) {
343 		if (BPF_MODE(insn->code) != BPF_MEM) {
344 			verbose("BUG_st_%02x\n", insn->code);
345 			return;
346 		}
347 		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
348 			insn->code,
349 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
350 			insn->dst_reg,
351 			insn->off, insn->imm);
352 	} else if (class == BPF_LDX) {
353 		if (BPF_MODE(insn->code) != BPF_MEM) {
354 			verbose("BUG_ldx_%02x\n", insn->code);
355 			return;
356 		}
357 		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
358 			insn->code, insn->dst_reg,
359 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
360 			insn->src_reg, insn->off);
361 	} else if (class == BPF_LD) {
362 		if (BPF_MODE(insn->code) == BPF_ABS) {
363 			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
364 				insn->code,
365 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
366 				insn->imm);
367 		} else if (BPF_MODE(insn->code) == BPF_IND) {
368 			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
369 				insn->code,
370 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
371 				insn->src_reg, insn->imm);
372 		} else if (BPF_MODE(insn->code) == BPF_IMM &&
373 			   BPF_SIZE(insn->code) == BPF_DW) {
374 			/* At this point, we already made sure that the second
375 			 * part of the ldimm64 insn is accessible.
376 			 */
377 			u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
378 			bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
379 
380 			if (map_ptr && !env->allow_ptr_leaks)
381 				imm = 0;
382 
383 			verbose("(%02x) r%d = 0x%llx\n", insn->code,
384 				insn->dst_reg, (unsigned long long)imm);
385 		} else {
386 			verbose("BUG_ld_%02x\n", insn->code);
387 			return;
388 		}
389 	} else if (class == BPF_JMP) {
390 		u8 opcode = BPF_OP(insn->code);
391 
392 		if (opcode == BPF_CALL) {
393 			verbose("(%02x) call %s#%d\n", insn->code,
394 				func_id_name(insn->imm), insn->imm);
395 		} else if (insn->code == (BPF_JMP | BPF_JA)) {
396 			verbose("(%02x) goto pc%+d\n",
397 				insn->code, insn->off);
398 		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
399 			verbose("(%02x) exit\n", insn->code);
400 		} else if (BPF_SRC(insn->code) == BPF_X) {
401 			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
402 				insn->code, insn->dst_reg,
403 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
404 				insn->src_reg, insn->off);
405 		} else {
406 			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
407 				insn->code, insn->dst_reg,
408 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
409 				insn->imm, insn->off);
410 		}
411 	} else {
412 		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
413 	}
414 }
415 
416 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
417 {
418 	struct bpf_verifier_stack_elem *elem;
419 	int insn_idx;
420 
421 	if (env->head == NULL)
422 		return -1;
423 
424 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
425 	insn_idx = env->head->insn_idx;
426 	if (prev_insn_idx)
427 		*prev_insn_idx = env->head->prev_insn_idx;
428 	elem = env->head->next;
429 	kfree(env->head);
430 	env->head = elem;
431 	env->stack_size--;
432 	return insn_idx;
433 }
434 
435 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
436 					     int insn_idx, int prev_insn_idx)
437 {
438 	struct bpf_verifier_stack_elem *elem;
439 
440 	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
441 	if (!elem)
442 		goto err;
443 
444 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
445 	elem->insn_idx = insn_idx;
446 	elem->prev_insn_idx = prev_insn_idx;
447 	elem->next = env->head;
448 	env->head = elem;
449 	env->stack_size++;
450 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
451 		verbose("BPF program is too complex\n");
452 		goto err;
453 	}
454 	return &elem->st;
455 err:
456 	/* pop all elements and return */
457 	while (pop_stack(env, NULL) >= 0);
458 	return NULL;
459 }
460 
461 #define CALLER_SAVED_REGS 6
462 static const int caller_saved[CALLER_SAVED_REGS] = {
463 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
464 };
465 
466 static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
467 {
468 	BUG_ON(regno >= MAX_BPF_REG);
469 
470 	memset(&regs[regno], 0, sizeof(regs[regno]));
471 	regs[regno].type = NOT_INIT;
472 	regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
473 	regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
474 }
475 
476 static void init_reg_state(struct bpf_reg_state *regs)
477 {
478 	int i;
479 
480 	for (i = 0; i < MAX_BPF_REG; i++)
481 		mark_reg_not_init(regs, i);
482 
483 	/* frame pointer */
484 	regs[BPF_REG_FP].type = FRAME_PTR;
485 
486 	/* 1st arg to a function */
487 	regs[BPF_REG_1].type = PTR_TO_CTX;
488 }
489 
490 static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
491 {
492 	regs[regno].type = UNKNOWN_VALUE;
493 	regs[regno].id = 0;
494 	regs[regno].imm = 0;
495 }
496 
497 static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
498 {
499 	BUG_ON(regno >= MAX_BPF_REG);
500 	__mark_reg_unknown_value(regs, regno);
501 }
502 
503 static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
504 {
505 	regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
506 	regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
507 	regs[regno].min_align = 0;
508 }
509 
510 static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
511 					     u32 regno)
512 {
513 	mark_reg_unknown_value(regs, regno);
514 	reset_reg_range_values(regs, regno);
515 }
516 
517 enum reg_arg_type {
518 	SRC_OP,		/* register is used as source operand */
519 	DST_OP,		/* register is used as destination operand */
520 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
521 };
522 
523 static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
524 			 enum reg_arg_type t)
525 {
526 	if (regno >= MAX_BPF_REG) {
527 		verbose("R%d is invalid\n", regno);
528 		return -EINVAL;
529 	}
530 
531 	if (t == SRC_OP) {
532 		/* check whether register used as source operand can be read */
533 		if (regs[regno].type == NOT_INIT) {
534 			verbose("R%d !read_ok\n", regno);
535 			return -EACCES;
536 		}
537 	} else {
538 		/* check whether register used as dest operand can be written to */
539 		if (regno == BPF_REG_FP) {
540 			verbose("frame pointer is read only\n");
541 			return -EACCES;
542 		}
543 		if (t == DST_OP)
544 			mark_reg_unknown_value(regs, regno);
545 	}
546 	return 0;
547 }
548 
549 static int bpf_size_to_bytes(int bpf_size)
550 {
551 	if (bpf_size == BPF_W)
552 		return 4;
553 	else if (bpf_size == BPF_H)
554 		return 2;
555 	else if (bpf_size == BPF_B)
556 		return 1;
557 	else if (bpf_size == BPF_DW)
558 		return 8;
559 	else
560 		return -EINVAL;
561 }
562 
563 static bool is_spillable_regtype(enum bpf_reg_type type)
564 {
565 	switch (type) {
566 	case PTR_TO_MAP_VALUE:
567 	case PTR_TO_MAP_VALUE_OR_NULL:
568 	case PTR_TO_MAP_VALUE_ADJ:
569 	case PTR_TO_STACK:
570 	case PTR_TO_CTX:
571 	case PTR_TO_PACKET:
572 	case PTR_TO_PACKET_END:
573 	case FRAME_PTR:
574 	case CONST_PTR_TO_MAP:
575 		return true;
576 	default:
577 		return false;
578 	}
579 }
580 
581 /* check_stack_read/write functions track spill/fill of registers,
582  * stack boundary and alignment are checked in check_mem_access()
583  */
584 static int check_stack_write(struct bpf_verifier_state *state, int off,
585 			     int size, int value_regno)
586 {
587 	int i;
588 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
589 	 * so it's aligned access and [off, off + size) are within stack limits
590 	 */
591 
592 	if (value_regno >= 0 &&
593 	    is_spillable_regtype(state->regs[value_regno].type)) {
594 
595 		/* register containing pointer is being spilled into stack */
596 		if (size != BPF_REG_SIZE) {
597 			verbose("invalid size of register spill\n");
598 			return -EACCES;
599 		}
600 
601 		/* save register state */
602 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
603 			state->regs[value_regno];
604 
605 		for (i = 0; i < BPF_REG_SIZE; i++)
606 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
607 	} else {
608 		/* regular write of data into stack */
609 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
610 			(struct bpf_reg_state) {};
611 
612 		for (i = 0; i < size; i++)
613 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
614 	}
615 	return 0;
616 }
617 
618 static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
619 			    int value_regno)
620 {
621 	u8 *slot_type;
622 	int i;
623 
624 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
625 
626 	if (slot_type[0] == STACK_SPILL) {
627 		if (size != BPF_REG_SIZE) {
628 			verbose("invalid size of register spill\n");
629 			return -EACCES;
630 		}
631 		for (i = 1; i < BPF_REG_SIZE; i++) {
632 			if (slot_type[i] != STACK_SPILL) {
633 				verbose("corrupted spill memory\n");
634 				return -EACCES;
635 			}
636 		}
637 
638 		if (value_regno >= 0)
639 			/* restore register state from stack */
640 			state->regs[value_regno] =
641 				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
642 		return 0;
643 	} else {
644 		for (i = 0; i < size; i++) {
645 			if (slot_type[i] != STACK_MISC) {
646 				verbose("invalid read from stack off %d+%d size %d\n",
647 					off, i, size);
648 				return -EACCES;
649 			}
650 		}
651 		if (value_regno >= 0)
652 			/* have read misc data from the stack */
653 			mark_reg_unknown_value_and_range(state->regs,
654 							 value_regno);
655 		return 0;
656 	}
657 }
658 
659 /* check read/write into map element returned by bpf_map_lookup_elem() */
660 static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
661 			    int size)
662 {
663 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
664 
665 	if (off < 0 || size <= 0 || off + size > map->value_size) {
666 		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
667 			map->value_size, off, size);
668 		return -EACCES;
669 	}
670 	return 0;
671 }
672 
673 /* check read/write into an adjusted map element */
674 static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
675 				int off, int size)
676 {
677 	struct bpf_verifier_state *state = &env->cur_state;
678 	struct bpf_reg_state *reg = &state->regs[regno];
679 	int err;
680 
681 	/* We adjusted the register to this map value, so we
682 	 * need to change off and size to min_value and max_value
683 	 * respectively to make sure our theoretical access will be
684 	 * safe.
685 	 */
686 	if (log_level)
687 		print_verifier_state(state);
688 	env->varlen_map_value_access = true;
689 	/* The minimum value is only important with signed
690 	 * comparisons where we can't assume the floor of a
691 	 * value is 0.  If we are using signed variables for our
692 	 * index'es we need to make sure that whatever we use
693 	 * will have a set floor within our range.
694 	 */
695 	if (reg->min_value < 0) {
696 		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
697 			regno);
698 		return -EACCES;
699 	}
700 	err = check_map_access(env, regno, reg->min_value + off, size);
701 	if (err) {
702 		verbose("R%d min value is outside of the array range\n",
703 			regno);
704 		return err;
705 	}
706 
707 	/* If we haven't set a max value then we need to bail
708 	 * since we can't be sure we won't do bad things.
709 	 */
710 	if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
711 		verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
712 			regno);
713 		return -EACCES;
714 	}
715 	return check_map_access(env, regno, reg->max_value + off, size);
716 }
717 
718 #define MAX_PACKET_OFF 0xffff
719 
720 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
721 				       const struct bpf_call_arg_meta *meta,
722 				       enum bpf_access_type t)
723 {
724 	switch (env->prog->type) {
725 	case BPF_PROG_TYPE_LWT_IN:
726 	case BPF_PROG_TYPE_LWT_OUT:
727 		/* dst_input() and dst_output() can't write for now */
728 		if (t == BPF_WRITE)
729 			return false;
730 		/* fallthrough */
731 	case BPF_PROG_TYPE_SCHED_CLS:
732 	case BPF_PROG_TYPE_SCHED_ACT:
733 	case BPF_PROG_TYPE_XDP:
734 	case BPF_PROG_TYPE_LWT_XMIT:
735 		if (meta)
736 			return meta->pkt_access;
737 
738 		env->seen_direct_write = true;
739 		return true;
740 	default:
741 		return false;
742 	}
743 }
744 
745 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
746 			       int size)
747 {
748 	struct bpf_reg_state *regs = env->cur_state.regs;
749 	struct bpf_reg_state *reg = &regs[regno];
750 
751 	off += reg->off;
752 	if (off < 0 || size <= 0 || off + size > reg->range) {
753 		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
754 			off, size, regno, reg->id, reg->off, reg->range);
755 		return -EACCES;
756 	}
757 	return 0;
758 }
759 
760 /* check access to 'struct bpf_context' fields */
761 static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
762 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
763 {
764 	/* for analyzer ctx accesses are already validated and converted */
765 	if (env->analyzer_ops)
766 		return 0;
767 
768 	if (env->prog->aux->ops->is_valid_access &&
769 	    env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
770 		/* remember the offset of last byte accessed in ctx */
771 		if (env->prog->aux->max_ctx_offset < off + size)
772 			env->prog->aux->max_ctx_offset = off + size;
773 		return 0;
774 	}
775 
776 	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
777 	return -EACCES;
778 }
779 
780 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
781 {
782 	if (env->allow_ptr_leaks)
783 		return false;
784 
785 	switch (env->cur_state.regs[regno].type) {
786 	case UNKNOWN_VALUE:
787 	case CONST_IMM:
788 		return false;
789 	default:
790 		return true;
791 	}
792 }
793 
794 static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
795 				   int off, int size, bool strict)
796 {
797 	int ip_align;
798 	int reg_off;
799 
800 	/* Byte size accesses are always allowed. */
801 	if (!strict || size == 1)
802 		return 0;
803 
804 	reg_off = reg->off;
805 	if (reg->id) {
806 		if (reg->aux_off_align % size) {
807 			verbose("Packet access is only %u byte aligned, %d byte access not allowed\n",
808 				reg->aux_off_align, size);
809 			return -EACCES;
810 		}
811 		reg_off += reg->aux_off;
812 	}
813 
814 	/* For platforms that do not have a Kconfig enabling
815 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
816 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
817 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
818 	 * to this code only in strict mode where we want to emulate
819 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
820 	 * unconditional IP align value of '2'.
821 	 */
822 	ip_align = 2;
823 	if ((ip_align + reg_off + off) % size != 0) {
824 		verbose("misaligned packet access off %d+%d+%d size %d\n",
825 			ip_align, reg_off, off, size);
826 		return -EACCES;
827 	}
828 
829 	return 0;
830 }
831 
832 static int check_val_ptr_alignment(const struct bpf_reg_state *reg,
833 				   int size, bool strict)
834 {
835 	if (strict && size != 1) {
836 		verbose("Unknown alignment. Only byte-sized access allowed in value access.\n");
837 		return -EACCES;
838 	}
839 
840 	return 0;
841 }
842 
843 static int check_ptr_alignment(struct bpf_verifier_env *env,
844 			       const struct bpf_reg_state *reg,
845 			       int off, int size)
846 {
847 	bool strict = env->strict_alignment;
848 
849 	switch (reg->type) {
850 	case PTR_TO_PACKET:
851 		return check_pkt_ptr_alignment(reg, off, size, strict);
852 	case PTR_TO_MAP_VALUE_ADJ:
853 		return check_val_ptr_alignment(reg, size, strict);
854 	default:
855 		if (off % size != 0) {
856 			verbose("misaligned access off %d size %d\n",
857 				off, size);
858 			return -EACCES;
859 		}
860 
861 		return 0;
862 	}
863 }
864 
865 /* check whether memory at (regno + off) is accessible for t = (read | write)
866  * if t==write, value_regno is a register which value is stored into memory
867  * if t==read, value_regno is a register which will receive the value from memory
868  * if t==write && value_regno==-1, some unknown value is stored into memory
869  * if t==read && value_regno==-1, don't care what we read from memory
870  */
871 static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
872 			    int bpf_size, enum bpf_access_type t,
873 			    int value_regno)
874 {
875 	struct bpf_verifier_state *state = &env->cur_state;
876 	struct bpf_reg_state *reg = &state->regs[regno];
877 	int size, err = 0;
878 
879 	if (reg->type == PTR_TO_STACK)
880 		off += reg->imm;
881 
882 	size = bpf_size_to_bytes(bpf_size);
883 	if (size < 0)
884 		return size;
885 
886 	err = check_ptr_alignment(env, reg, off, size);
887 	if (err)
888 		return err;
889 
890 	if (reg->type == PTR_TO_MAP_VALUE ||
891 	    reg->type == PTR_TO_MAP_VALUE_ADJ) {
892 		if (t == BPF_WRITE && value_regno >= 0 &&
893 		    is_pointer_value(env, value_regno)) {
894 			verbose("R%d leaks addr into map\n", value_regno);
895 			return -EACCES;
896 		}
897 
898 		if (reg->type == PTR_TO_MAP_VALUE_ADJ)
899 			err = check_map_access_adj(env, regno, off, size);
900 		else
901 			err = check_map_access(env, regno, off, size);
902 		if (!err && t == BPF_READ && value_regno >= 0)
903 			mark_reg_unknown_value_and_range(state->regs,
904 							 value_regno);
905 
906 	} else if (reg->type == PTR_TO_CTX) {
907 		enum bpf_reg_type reg_type = UNKNOWN_VALUE;
908 
909 		if (t == BPF_WRITE && value_regno >= 0 &&
910 		    is_pointer_value(env, value_regno)) {
911 			verbose("R%d leaks addr into ctx\n", value_regno);
912 			return -EACCES;
913 		}
914 		err = check_ctx_access(env, off, size, t, &reg_type);
915 		if (!err && t == BPF_READ && value_regno >= 0) {
916 			mark_reg_unknown_value_and_range(state->regs,
917 							 value_regno);
918 			/* note that reg.[id|off|range] == 0 */
919 			state->regs[value_regno].type = reg_type;
920 			state->regs[value_regno].aux_off = 0;
921 			state->regs[value_regno].aux_off_align = 0;
922 		}
923 
924 	} else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
925 		if (off >= 0 || off < -MAX_BPF_STACK) {
926 			verbose("invalid stack off=%d size=%d\n", off, size);
927 			return -EACCES;
928 		}
929 		if (t == BPF_WRITE) {
930 			if (!env->allow_ptr_leaks &&
931 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
932 			    size != BPF_REG_SIZE) {
933 				verbose("attempt to corrupt spilled pointer on stack\n");
934 				return -EACCES;
935 			}
936 			err = check_stack_write(state, off, size, value_regno);
937 		} else {
938 			err = check_stack_read(state, off, size, value_regno);
939 		}
940 	} else if (state->regs[regno].type == PTR_TO_PACKET) {
941 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
942 			verbose("cannot write into packet\n");
943 			return -EACCES;
944 		}
945 		if (t == BPF_WRITE && value_regno >= 0 &&
946 		    is_pointer_value(env, value_regno)) {
947 			verbose("R%d leaks addr into packet\n", value_regno);
948 			return -EACCES;
949 		}
950 		err = check_packet_access(env, regno, off, size);
951 		if (!err && t == BPF_READ && value_regno >= 0)
952 			mark_reg_unknown_value_and_range(state->regs,
953 							 value_regno);
954 	} else {
955 		verbose("R%d invalid mem access '%s'\n",
956 			regno, reg_type_str[reg->type]);
957 		return -EACCES;
958 	}
959 
960 	if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
961 	    state->regs[value_regno].type == UNKNOWN_VALUE) {
962 		/* 1 or 2 byte load zero-extends, determine the number of
963 		 * zero upper bits. Not doing it fo 4 byte load, since
964 		 * such values cannot be added to ptr_to_packet anyway.
965 		 */
966 		state->regs[value_regno].imm = 64 - size * 8;
967 	}
968 	return err;
969 }
970 
971 static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
972 {
973 	struct bpf_reg_state *regs = env->cur_state.regs;
974 	int err;
975 
976 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
977 	    insn->imm != 0) {
978 		verbose("BPF_XADD uses reserved fields\n");
979 		return -EINVAL;
980 	}
981 
982 	/* check src1 operand */
983 	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
984 	if (err)
985 		return err;
986 
987 	/* check src2 operand */
988 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
989 	if (err)
990 		return err;
991 
992 	if (is_pointer_value(env, insn->src_reg)) {
993 		verbose("R%d leaks addr into mem\n", insn->src_reg);
994 		return -EACCES;
995 	}
996 
997 	/* check whether atomic_add can read the memory */
998 	err = check_mem_access(env, insn->dst_reg, insn->off,
999 			       BPF_SIZE(insn->code), BPF_READ, -1);
1000 	if (err)
1001 		return err;
1002 
1003 	/* check whether atomic_add can write into the same memory */
1004 	return check_mem_access(env, insn->dst_reg, insn->off,
1005 				BPF_SIZE(insn->code), BPF_WRITE, -1);
1006 }
1007 
1008 /* when register 'regno' is passed into function that will read 'access_size'
1009  * bytes from that pointer, make sure that it's within stack boundary
1010  * and all elements of stack are initialized
1011  */
1012 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1013 				int access_size, bool zero_size_allowed,
1014 				struct bpf_call_arg_meta *meta)
1015 {
1016 	struct bpf_verifier_state *state = &env->cur_state;
1017 	struct bpf_reg_state *regs = state->regs;
1018 	int off, i;
1019 
1020 	if (regs[regno].type != PTR_TO_STACK) {
1021 		if (zero_size_allowed && access_size == 0 &&
1022 		    regs[regno].type == CONST_IMM &&
1023 		    regs[regno].imm  == 0)
1024 			return 0;
1025 
1026 		verbose("R%d type=%s expected=%s\n", regno,
1027 			reg_type_str[regs[regno].type],
1028 			reg_type_str[PTR_TO_STACK]);
1029 		return -EACCES;
1030 	}
1031 
1032 	off = regs[regno].imm;
1033 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1034 	    access_size <= 0) {
1035 		verbose("invalid stack type R%d off=%d access_size=%d\n",
1036 			regno, off, access_size);
1037 		return -EACCES;
1038 	}
1039 
1040 	if (meta && meta->raw_mode) {
1041 		meta->access_size = access_size;
1042 		meta->regno = regno;
1043 		return 0;
1044 	}
1045 
1046 	for (i = 0; i < access_size; i++) {
1047 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1048 			verbose("invalid indirect read from stack off %d+%d size %d\n",
1049 				off, i, access_size);
1050 			return -EACCES;
1051 		}
1052 	}
1053 	return 0;
1054 }
1055 
1056 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1057 				   int access_size, bool zero_size_allowed,
1058 				   struct bpf_call_arg_meta *meta)
1059 {
1060 	struct bpf_reg_state *regs = env->cur_state.regs;
1061 
1062 	switch (regs[regno].type) {
1063 	case PTR_TO_PACKET:
1064 		return check_packet_access(env, regno, 0, access_size);
1065 	case PTR_TO_MAP_VALUE:
1066 		return check_map_access(env, regno, 0, access_size);
1067 	case PTR_TO_MAP_VALUE_ADJ:
1068 		return check_map_access_adj(env, regno, 0, access_size);
1069 	default: /* const_imm|ptr_to_stack or invalid ptr */
1070 		return check_stack_boundary(env, regno, access_size,
1071 					    zero_size_allowed, meta);
1072 	}
1073 }
1074 
1075 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1076 			  enum bpf_arg_type arg_type,
1077 			  struct bpf_call_arg_meta *meta)
1078 {
1079 	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1080 	enum bpf_reg_type expected_type, type = reg->type;
1081 	int err = 0;
1082 
1083 	if (arg_type == ARG_DONTCARE)
1084 		return 0;
1085 
1086 	if (type == NOT_INIT) {
1087 		verbose("R%d !read_ok\n", regno);
1088 		return -EACCES;
1089 	}
1090 
1091 	if (arg_type == ARG_ANYTHING) {
1092 		if (is_pointer_value(env, regno)) {
1093 			verbose("R%d leaks addr into helper function\n", regno);
1094 			return -EACCES;
1095 		}
1096 		return 0;
1097 	}
1098 
1099 	if (type == PTR_TO_PACKET &&
1100 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1101 		verbose("helper access to the packet is not allowed\n");
1102 		return -EACCES;
1103 	}
1104 
1105 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1106 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1107 		expected_type = PTR_TO_STACK;
1108 		if (type != PTR_TO_PACKET && type != expected_type)
1109 			goto err_type;
1110 	} else if (arg_type == ARG_CONST_SIZE ||
1111 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1112 		expected_type = CONST_IMM;
1113 		/* One exception. Allow UNKNOWN_VALUE registers when the
1114 		 * boundaries are known and don't cause unsafe memory accesses
1115 		 */
1116 		if (type != UNKNOWN_VALUE && type != expected_type)
1117 			goto err_type;
1118 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1119 		expected_type = CONST_PTR_TO_MAP;
1120 		if (type != expected_type)
1121 			goto err_type;
1122 	} else if (arg_type == ARG_PTR_TO_CTX) {
1123 		expected_type = PTR_TO_CTX;
1124 		if (type != expected_type)
1125 			goto err_type;
1126 	} else if (arg_type == ARG_PTR_TO_MEM ||
1127 		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1128 		expected_type = PTR_TO_STACK;
1129 		/* One exception here. In case function allows for NULL to be
1130 		 * passed in as argument, it's a CONST_IMM type. Final test
1131 		 * happens during stack boundary checking.
1132 		 */
1133 		if (type == CONST_IMM && reg->imm == 0)
1134 			/* final test in check_stack_boundary() */;
1135 		else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1136 			 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
1137 			goto err_type;
1138 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1139 	} else {
1140 		verbose("unsupported arg_type %d\n", arg_type);
1141 		return -EFAULT;
1142 	}
1143 
1144 	if (arg_type == ARG_CONST_MAP_PTR) {
1145 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1146 		meta->map_ptr = reg->map_ptr;
1147 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1148 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1149 		 * check that [key, key + map->key_size) are within
1150 		 * stack limits and initialized
1151 		 */
1152 		if (!meta->map_ptr) {
1153 			/* in function declaration map_ptr must come before
1154 			 * map_key, so that it's verified and known before
1155 			 * we have to check map_key here. Otherwise it means
1156 			 * that kernel subsystem misconfigured verifier
1157 			 */
1158 			verbose("invalid map_ptr to access map->key\n");
1159 			return -EACCES;
1160 		}
1161 		if (type == PTR_TO_PACKET)
1162 			err = check_packet_access(env, regno, 0,
1163 						  meta->map_ptr->key_size);
1164 		else
1165 			err = check_stack_boundary(env, regno,
1166 						   meta->map_ptr->key_size,
1167 						   false, NULL);
1168 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1169 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1170 		 * check [value, value + map->value_size) validity
1171 		 */
1172 		if (!meta->map_ptr) {
1173 			/* kernel subsystem misconfigured verifier */
1174 			verbose("invalid map_ptr to access map->value\n");
1175 			return -EACCES;
1176 		}
1177 		if (type == PTR_TO_PACKET)
1178 			err = check_packet_access(env, regno, 0,
1179 						  meta->map_ptr->value_size);
1180 		else
1181 			err = check_stack_boundary(env, regno,
1182 						   meta->map_ptr->value_size,
1183 						   false, NULL);
1184 	} else if (arg_type == ARG_CONST_SIZE ||
1185 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1186 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1187 
1188 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1189 		 * from stack pointer 'buf'. Check it
1190 		 * note: regno == len, regno - 1 == buf
1191 		 */
1192 		if (regno == 0) {
1193 			/* kernel subsystem misconfigured verifier */
1194 			verbose("ARG_CONST_SIZE cannot be first argument\n");
1195 			return -EACCES;
1196 		}
1197 
1198 		/* If the register is UNKNOWN_VALUE, the access check happens
1199 		 * using its boundaries. Otherwise, just use its imm
1200 		 */
1201 		if (type == UNKNOWN_VALUE) {
1202 			/* For unprivileged variable accesses, disable raw
1203 			 * mode so that the program is required to
1204 			 * initialize all the memory that the helper could
1205 			 * just partially fill up.
1206 			 */
1207 			meta = NULL;
1208 
1209 			if (reg->min_value < 0) {
1210 				verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1211 					regno);
1212 				return -EACCES;
1213 			}
1214 
1215 			if (reg->min_value == 0) {
1216 				err = check_helper_mem_access(env, regno - 1, 0,
1217 							      zero_size_allowed,
1218 							      meta);
1219 				if (err)
1220 					return err;
1221 			}
1222 
1223 			if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1224 				verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1225 					regno);
1226 				return -EACCES;
1227 			}
1228 			err = check_helper_mem_access(env, regno - 1,
1229 						      reg->max_value,
1230 						      zero_size_allowed, meta);
1231 			if (err)
1232 				return err;
1233 		} else {
1234 			/* register is CONST_IMM */
1235 			err = check_helper_mem_access(env, regno - 1, reg->imm,
1236 						      zero_size_allowed, meta);
1237 		}
1238 	}
1239 
1240 	return err;
1241 err_type:
1242 	verbose("R%d type=%s expected=%s\n", regno,
1243 		reg_type_str[type], reg_type_str[expected_type]);
1244 	return -EACCES;
1245 }
1246 
1247 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1248 {
1249 	if (!map)
1250 		return 0;
1251 
1252 	/* We need a two way check, first is from map perspective ... */
1253 	switch (map->map_type) {
1254 	case BPF_MAP_TYPE_PROG_ARRAY:
1255 		if (func_id != BPF_FUNC_tail_call)
1256 			goto error;
1257 		break;
1258 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1259 		if (func_id != BPF_FUNC_perf_event_read &&
1260 		    func_id != BPF_FUNC_perf_event_output)
1261 			goto error;
1262 		break;
1263 	case BPF_MAP_TYPE_STACK_TRACE:
1264 		if (func_id != BPF_FUNC_get_stackid)
1265 			goto error;
1266 		break;
1267 	case BPF_MAP_TYPE_CGROUP_ARRAY:
1268 		if (func_id != BPF_FUNC_skb_under_cgroup &&
1269 		    func_id != BPF_FUNC_current_task_under_cgroup)
1270 			goto error;
1271 		break;
1272 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1273 	case BPF_MAP_TYPE_HASH_OF_MAPS:
1274 		if (func_id != BPF_FUNC_map_lookup_elem)
1275 			goto error;
1276 	default:
1277 		break;
1278 	}
1279 
1280 	/* ... and second from the function itself. */
1281 	switch (func_id) {
1282 	case BPF_FUNC_tail_call:
1283 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1284 			goto error;
1285 		break;
1286 	case BPF_FUNC_perf_event_read:
1287 	case BPF_FUNC_perf_event_output:
1288 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1289 			goto error;
1290 		break;
1291 	case BPF_FUNC_get_stackid:
1292 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1293 			goto error;
1294 		break;
1295 	case BPF_FUNC_current_task_under_cgroup:
1296 	case BPF_FUNC_skb_under_cgroup:
1297 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1298 			goto error;
1299 		break;
1300 	default:
1301 		break;
1302 	}
1303 
1304 	return 0;
1305 error:
1306 	verbose("cannot pass map_type %d into func %s#%d\n",
1307 		map->map_type, func_id_name(func_id), func_id);
1308 	return -EINVAL;
1309 }
1310 
1311 static int check_raw_mode(const struct bpf_func_proto *fn)
1312 {
1313 	int count = 0;
1314 
1315 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1316 		count++;
1317 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1318 		count++;
1319 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1320 		count++;
1321 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1322 		count++;
1323 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1324 		count++;
1325 
1326 	return count > 1 ? -EINVAL : 0;
1327 }
1328 
1329 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1330 {
1331 	struct bpf_verifier_state *state = &env->cur_state;
1332 	struct bpf_reg_state *regs = state->regs, *reg;
1333 	int i;
1334 
1335 	for (i = 0; i < MAX_BPF_REG; i++)
1336 		if (regs[i].type == PTR_TO_PACKET ||
1337 		    regs[i].type == PTR_TO_PACKET_END)
1338 			mark_reg_unknown_value(regs, i);
1339 
1340 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1341 		if (state->stack_slot_type[i] != STACK_SPILL)
1342 			continue;
1343 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1344 		if (reg->type != PTR_TO_PACKET &&
1345 		    reg->type != PTR_TO_PACKET_END)
1346 			continue;
1347 		reg->type = UNKNOWN_VALUE;
1348 		reg->imm = 0;
1349 	}
1350 }
1351 
1352 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1353 {
1354 	struct bpf_verifier_state *state = &env->cur_state;
1355 	const struct bpf_func_proto *fn = NULL;
1356 	struct bpf_reg_state *regs = state->regs;
1357 	struct bpf_call_arg_meta meta;
1358 	bool changes_data;
1359 	int i, err;
1360 
1361 	/* find function prototype */
1362 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1363 		verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1364 		return -EINVAL;
1365 	}
1366 
1367 	if (env->prog->aux->ops->get_func_proto)
1368 		fn = env->prog->aux->ops->get_func_proto(func_id);
1369 
1370 	if (!fn) {
1371 		verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1372 		return -EINVAL;
1373 	}
1374 
1375 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1376 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1377 		verbose("cannot call GPL only function from proprietary program\n");
1378 		return -EINVAL;
1379 	}
1380 
1381 	changes_data = bpf_helper_changes_pkt_data(fn->func);
1382 
1383 	memset(&meta, 0, sizeof(meta));
1384 	meta.pkt_access = fn->pkt_access;
1385 
1386 	/* We only support one arg being in raw mode at the moment, which
1387 	 * is sufficient for the helper functions we have right now.
1388 	 */
1389 	err = check_raw_mode(fn);
1390 	if (err) {
1391 		verbose("kernel subsystem misconfigured func %s#%d\n",
1392 			func_id_name(func_id), func_id);
1393 		return err;
1394 	}
1395 
1396 	/* check args */
1397 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1398 	if (err)
1399 		return err;
1400 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1401 	if (err)
1402 		return err;
1403 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1404 	if (err)
1405 		return err;
1406 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1407 	if (err)
1408 		return err;
1409 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1410 	if (err)
1411 		return err;
1412 
1413 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1414 	 * is inferred from register state.
1415 	 */
1416 	for (i = 0; i < meta.access_size; i++) {
1417 		err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1418 		if (err)
1419 			return err;
1420 	}
1421 
1422 	/* reset caller saved regs */
1423 	for (i = 0; i < CALLER_SAVED_REGS; i++)
1424 		mark_reg_not_init(regs, caller_saved[i]);
1425 
1426 	/* update return register */
1427 	if (fn->ret_type == RET_INTEGER) {
1428 		regs[BPF_REG_0].type = UNKNOWN_VALUE;
1429 	} else if (fn->ret_type == RET_VOID) {
1430 		regs[BPF_REG_0].type = NOT_INIT;
1431 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1432 		struct bpf_insn_aux_data *insn_aux;
1433 
1434 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1435 		regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
1436 		/* remember map_ptr, so that check_map_access()
1437 		 * can check 'value_size' boundary of memory access
1438 		 * to map element returned from bpf_map_lookup_elem()
1439 		 */
1440 		if (meta.map_ptr == NULL) {
1441 			verbose("kernel subsystem misconfigured verifier\n");
1442 			return -EINVAL;
1443 		}
1444 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1445 		regs[BPF_REG_0].id = ++env->id_gen;
1446 		insn_aux = &env->insn_aux_data[insn_idx];
1447 		if (!insn_aux->map_ptr)
1448 			insn_aux->map_ptr = meta.map_ptr;
1449 		else if (insn_aux->map_ptr != meta.map_ptr)
1450 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1451 	} else {
1452 		verbose("unknown return type %d of func %s#%d\n",
1453 			fn->ret_type, func_id_name(func_id), func_id);
1454 		return -EINVAL;
1455 	}
1456 
1457 	err = check_map_func_compatibility(meta.map_ptr, func_id);
1458 	if (err)
1459 		return err;
1460 
1461 	if (changes_data)
1462 		clear_all_pkt_pointers(env);
1463 	return 0;
1464 }
1465 
1466 static int check_packet_ptr_add(struct bpf_verifier_env *env,
1467 				struct bpf_insn *insn)
1468 {
1469 	struct bpf_reg_state *regs = env->cur_state.regs;
1470 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1471 	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1472 	struct bpf_reg_state tmp_reg;
1473 	s32 imm;
1474 
1475 	if (BPF_SRC(insn->code) == BPF_K) {
1476 		/* pkt_ptr += imm */
1477 		imm = insn->imm;
1478 
1479 add_imm:
1480 		if (imm < 0) {
1481 			verbose("addition of negative constant to packet pointer is not allowed\n");
1482 			return -EACCES;
1483 		}
1484 		if (imm >= MAX_PACKET_OFF ||
1485 		    imm + dst_reg->off >= MAX_PACKET_OFF) {
1486 			verbose("constant %d is too large to add to packet pointer\n",
1487 				imm);
1488 			return -EACCES;
1489 		}
1490 		/* a constant was added to pkt_ptr.
1491 		 * Remember it while keeping the same 'id'
1492 		 */
1493 		dst_reg->off += imm;
1494 	} else {
1495 		bool had_id;
1496 
1497 		if (src_reg->type == PTR_TO_PACKET) {
1498 			/* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1499 			tmp_reg = *dst_reg;  /* save r7 state */
1500 			*dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1501 			src_reg = &tmp_reg;  /* pretend it's src_reg state */
1502 			/* if the checks below reject it, the copy won't matter,
1503 			 * since we're rejecting the whole program. If all ok,
1504 			 * then imm22 state will be added to r7
1505 			 * and r7 will be pkt(id=0,off=22,r=62) while
1506 			 * r6 will stay as pkt(id=0,off=0,r=62)
1507 			 */
1508 		}
1509 
1510 		if (src_reg->type == CONST_IMM) {
1511 			/* pkt_ptr += reg where reg is known constant */
1512 			imm = src_reg->imm;
1513 			goto add_imm;
1514 		}
1515 		/* disallow pkt_ptr += reg
1516 		 * if reg is not uknown_value with guaranteed zero upper bits
1517 		 * otherwise pkt_ptr may overflow and addition will become
1518 		 * subtraction which is not allowed
1519 		 */
1520 		if (src_reg->type != UNKNOWN_VALUE) {
1521 			verbose("cannot add '%s' to ptr_to_packet\n",
1522 				reg_type_str[src_reg->type]);
1523 			return -EACCES;
1524 		}
1525 		if (src_reg->imm < 48) {
1526 			verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1527 				src_reg->imm);
1528 			return -EACCES;
1529 		}
1530 
1531 		had_id = (dst_reg->id != 0);
1532 
1533 		/* dst_reg stays as pkt_ptr type and since some positive
1534 		 * integer value was added to the pointer, increment its 'id'
1535 		 */
1536 		dst_reg->id = ++env->id_gen;
1537 
1538 		/* something was added to pkt_ptr, set range to zero */
1539 		dst_reg->aux_off += dst_reg->off;
1540 		dst_reg->off = 0;
1541 		dst_reg->range = 0;
1542 		if (had_id)
1543 			dst_reg->aux_off_align = min(dst_reg->aux_off_align,
1544 						     src_reg->min_align);
1545 		else
1546 			dst_reg->aux_off_align = src_reg->min_align;
1547 	}
1548 	return 0;
1549 }
1550 
1551 static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
1552 {
1553 	struct bpf_reg_state *regs = env->cur_state.regs;
1554 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1555 	u8 opcode = BPF_OP(insn->code);
1556 	s64 imm_log2;
1557 
1558 	/* for type == UNKNOWN_VALUE:
1559 	 * imm > 0 -> number of zero upper bits
1560 	 * imm == 0 -> don't track which is the same as all bits can be non-zero
1561 	 */
1562 
1563 	if (BPF_SRC(insn->code) == BPF_X) {
1564 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1565 
1566 		if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1567 		    dst_reg->imm && opcode == BPF_ADD) {
1568 			/* dreg += sreg
1569 			 * where both have zero upper bits. Adding them
1570 			 * can only result making one more bit non-zero
1571 			 * in the larger value.
1572 			 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1573 			 *     0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1574 			 */
1575 			dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1576 			dst_reg->imm--;
1577 			return 0;
1578 		}
1579 		if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1580 		    dst_reg->imm && opcode == BPF_ADD) {
1581 			/* dreg += sreg
1582 			 * where dreg has zero upper bits and sreg is const.
1583 			 * Adding them can only result making one more bit
1584 			 * non-zero in the larger value.
1585 			 */
1586 			imm_log2 = __ilog2_u64((long long)src_reg->imm);
1587 			dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1588 			dst_reg->imm--;
1589 			return 0;
1590 		}
1591 		/* all other cases non supported yet, just mark dst_reg */
1592 		dst_reg->imm = 0;
1593 		return 0;
1594 	}
1595 
1596 	/* sign extend 32-bit imm into 64-bit to make sure that
1597 	 * negative values occupy bit 63. Note ilog2() would have
1598 	 * been incorrect, since sizeof(insn->imm) == 4
1599 	 */
1600 	imm_log2 = __ilog2_u64((long long)insn->imm);
1601 
1602 	if (dst_reg->imm && opcode == BPF_LSH) {
1603 		/* reg <<= imm
1604 		 * if reg was a result of 2 byte load, then its imm == 48
1605 		 * which means that upper 48 bits are zero and shifting this reg
1606 		 * left by 4 would mean that upper 44 bits are still zero
1607 		 */
1608 		dst_reg->imm -= insn->imm;
1609 	} else if (dst_reg->imm && opcode == BPF_MUL) {
1610 		/* reg *= imm
1611 		 * if multiplying by 14 subtract 4
1612 		 * This is conservative calculation of upper zero bits.
1613 		 * It's not trying to special case insn->imm == 1 or 0 cases
1614 		 */
1615 		dst_reg->imm -= imm_log2 + 1;
1616 	} else if (opcode == BPF_AND) {
1617 		/* reg &= imm */
1618 		dst_reg->imm = 63 - imm_log2;
1619 	} else if (dst_reg->imm && opcode == BPF_ADD) {
1620 		/* reg += imm */
1621 		dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1622 		dst_reg->imm--;
1623 	} else if (opcode == BPF_RSH) {
1624 		/* reg >>= imm
1625 		 * which means that after right shift, upper bits will be zero
1626 		 * note that verifier already checked that
1627 		 * 0 <= imm < 64 for shift insn
1628 		 */
1629 		dst_reg->imm += insn->imm;
1630 		if (unlikely(dst_reg->imm > 64))
1631 			/* some dumb code did:
1632 			 * r2 = *(u32 *)mem;
1633 			 * r2 >>= 32;
1634 			 * and all bits are zero now */
1635 			dst_reg->imm = 64;
1636 	} else {
1637 		/* all other alu ops, means that we don't know what will
1638 		 * happen to the value, mark it with unknown number of zero bits
1639 		 */
1640 		dst_reg->imm = 0;
1641 	}
1642 
1643 	if (dst_reg->imm < 0) {
1644 		/* all 64 bits of the register can contain non-zero bits
1645 		 * and such value cannot be added to ptr_to_packet, since it
1646 		 * may overflow, mark it as unknown to avoid further eval
1647 		 */
1648 		dst_reg->imm = 0;
1649 	}
1650 	return 0;
1651 }
1652 
1653 static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1654 				struct bpf_insn *insn)
1655 {
1656 	struct bpf_reg_state *regs = env->cur_state.regs;
1657 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1658 	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1659 	u8 opcode = BPF_OP(insn->code);
1660 	u64 dst_imm = dst_reg->imm;
1661 
1662 	/* dst_reg->type == CONST_IMM here. Simulate execution of insns
1663 	 * containing ALU ops. Don't care about overflow or negative
1664 	 * values, just add/sub/... them; registers are in u64.
1665 	 */
1666 	if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
1667 		dst_imm += insn->imm;
1668 	} else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1669 		   src_reg->type == CONST_IMM) {
1670 		dst_imm += src_reg->imm;
1671 	} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
1672 		dst_imm -= insn->imm;
1673 	} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
1674 		   src_reg->type == CONST_IMM) {
1675 		dst_imm -= src_reg->imm;
1676 	} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
1677 		dst_imm *= insn->imm;
1678 	} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
1679 		   src_reg->type == CONST_IMM) {
1680 		dst_imm *= src_reg->imm;
1681 	} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
1682 		dst_imm |= insn->imm;
1683 	} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1684 		   src_reg->type == CONST_IMM) {
1685 		dst_imm |= src_reg->imm;
1686 	} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
1687 		dst_imm &= insn->imm;
1688 	} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
1689 		   src_reg->type == CONST_IMM) {
1690 		dst_imm &= src_reg->imm;
1691 	} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
1692 		dst_imm >>= insn->imm;
1693 	} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
1694 		   src_reg->type == CONST_IMM) {
1695 		dst_imm >>= src_reg->imm;
1696 	} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
1697 		dst_imm <<= insn->imm;
1698 	} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
1699 		   src_reg->type == CONST_IMM) {
1700 		dst_imm <<= src_reg->imm;
1701 	} else {
1702 		mark_reg_unknown_value(regs, insn->dst_reg);
1703 		goto out;
1704 	}
1705 
1706 	dst_reg->imm = dst_imm;
1707 out:
1708 	return 0;
1709 }
1710 
1711 static void check_reg_overflow(struct bpf_reg_state *reg)
1712 {
1713 	if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1714 		reg->max_value = BPF_REGISTER_MAX_RANGE;
1715 	if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1716 	    reg->min_value > BPF_REGISTER_MAX_RANGE)
1717 		reg->min_value = BPF_REGISTER_MIN_RANGE;
1718 }
1719 
1720 static u32 calc_align(u32 imm)
1721 {
1722 	if (!imm)
1723 		return 1U << 31;
1724 	return imm - ((imm - 1) & imm);
1725 }
1726 
1727 static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1728 				    struct bpf_insn *insn)
1729 {
1730 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1731 	s64 min_val = BPF_REGISTER_MIN_RANGE;
1732 	u64 max_val = BPF_REGISTER_MAX_RANGE;
1733 	u8 opcode = BPF_OP(insn->code);
1734 	u32 dst_align, src_align;
1735 
1736 	dst_reg = &regs[insn->dst_reg];
1737 	src_align = 0;
1738 	if (BPF_SRC(insn->code) == BPF_X) {
1739 		check_reg_overflow(&regs[insn->src_reg]);
1740 		min_val = regs[insn->src_reg].min_value;
1741 		max_val = regs[insn->src_reg].max_value;
1742 
1743 		/* If the source register is a random pointer then the
1744 		 * min_value/max_value values represent the range of the known
1745 		 * accesses into that value, not the actual min/max value of the
1746 		 * register itself.  In this case we have to reset the reg range
1747 		 * values so we know it is not safe to look at.
1748 		 */
1749 		if (regs[insn->src_reg].type != CONST_IMM &&
1750 		    regs[insn->src_reg].type != UNKNOWN_VALUE) {
1751 			min_val = BPF_REGISTER_MIN_RANGE;
1752 			max_val = BPF_REGISTER_MAX_RANGE;
1753 			src_align = 0;
1754 		} else {
1755 			src_align = regs[insn->src_reg].min_align;
1756 		}
1757 	} else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1758 		   (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1759 		min_val = max_val = insn->imm;
1760 		src_align = calc_align(insn->imm);
1761 	}
1762 
1763 	dst_align = dst_reg->min_align;
1764 
1765 	/* We don't know anything about what was done to this register, mark it
1766 	 * as unknown.
1767 	 */
1768 	if (min_val == BPF_REGISTER_MIN_RANGE &&
1769 	    max_val == BPF_REGISTER_MAX_RANGE) {
1770 		reset_reg_range_values(regs, insn->dst_reg);
1771 		return;
1772 	}
1773 
1774 	/* If one of our values was at the end of our ranges then we can't just
1775 	 * do our normal operations to the register, we need to set the values
1776 	 * to the min/max since they are undefined.
1777 	 */
1778 	if (min_val == BPF_REGISTER_MIN_RANGE)
1779 		dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1780 	if (max_val == BPF_REGISTER_MAX_RANGE)
1781 		dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1782 
1783 	switch (opcode) {
1784 	case BPF_ADD:
1785 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1786 			dst_reg->min_value += min_val;
1787 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1788 			dst_reg->max_value += max_val;
1789 		dst_reg->min_align = min(src_align, dst_align);
1790 		break;
1791 	case BPF_SUB:
1792 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1793 			dst_reg->min_value -= min_val;
1794 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1795 			dst_reg->max_value -= max_val;
1796 		dst_reg->min_align = min(src_align, dst_align);
1797 		break;
1798 	case BPF_MUL:
1799 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1800 			dst_reg->min_value *= min_val;
1801 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1802 			dst_reg->max_value *= max_val;
1803 		dst_reg->min_align = max(src_align, dst_align);
1804 		break;
1805 	case BPF_AND:
1806 		/* Disallow AND'ing of negative numbers, ain't nobody got time
1807 		 * for that.  Otherwise the minimum is 0 and the max is the max
1808 		 * value we could AND against.
1809 		 */
1810 		if (min_val < 0)
1811 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1812 		else
1813 			dst_reg->min_value = 0;
1814 		dst_reg->max_value = max_val;
1815 		dst_reg->min_align = max(src_align, dst_align);
1816 		break;
1817 	case BPF_LSH:
1818 		/* Gotta have special overflow logic here, if we're shifting
1819 		 * more than MAX_RANGE then just assume we have an invalid
1820 		 * range.
1821 		 */
1822 		if (min_val > ilog2(BPF_REGISTER_MAX_RANGE)) {
1823 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1824 			dst_reg->min_align = 1;
1825 		} else {
1826 			if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1827 				dst_reg->min_value <<= min_val;
1828 			if (!dst_reg->min_align)
1829 				dst_reg->min_align = 1;
1830 			dst_reg->min_align <<= min_val;
1831 		}
1832 		if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1833 			dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1834 		else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1835 			dst_reg->max_value <<= max_val;
1836 		break;
1837 	case BPF_RSH:
1838 		/* RSH by a negative number is undefined, and the BPF_RSH is an
1839 		 * unsigned shift, so make the appropriate casts.
1840 		 */
1841 		if (min_val < 0 || dst_reg->min_value < 0) {
1842 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1843 		} else {
1844 			dst_reg->min_value =
1845 				(u64)(dst_reg->min_value) >> min_val;
1846 		}
1847 		if (min_val < 0) {
1848 			dst_reg->min_align = 1;
1849 		} else {
1850 			dst_reg->min_align >>= (u64) min_val;
1851 			if (!dst_reg->min_align)
1852 				dst_reg->min_align = 1;
1853 		}
1854 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1855 			dst_reg->max_value >>= max_val;
1856 		break;
1857 	default:
1858 		reset_reg_range_values(regs, insn->dst_reg);
1859 		break;
1860 	}
1861 
1862 	check_reg_overflow(dst_reg);
1863 }
1864 
1865 /* check validity of 32-bit and 64-bit arithmetic operations */
1866 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
1867 {
1868 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1869 	u8 opcode = BPF_OP(insn->code);
1870 	int err;
1871 
1872 	if (opcode == BPF_END || opcode == BPF_NEG) {
1873 		if (opcode == BPF_NEG) {
1874 			if (BPF_SRC(insn->code) != 0 ||
1875 			    insn->src_reg != BPF_REG_0 ||
1876 			    insn->off != 0 || insn->imm != 0) {
1877 				verbose("BPF_NEG uses reserved fields\n");
1878 				return -EINVAL;
1879 			}
1880 		} else {
1881 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1882 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1883 				verbose("BPF_END uses reserved fields\n");
1884 				return -EINVAL;
1885 			}
1886 		}
1887 
1888 		/* check src operand */
1889 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1890 		if (err)
1891 			return err;
1892 
1893 		if (is_pointer_value(env, insn->dst_reg)) {
1894 			verbose("R%d pointer arithmetic prohibited\n",
1895 				insn->dst_reg);
1896 			return -EACCES;
1897 		}
1898 
1899 		/* check dest operand */
1900 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1901 		if (err)
1902 			return err;
1903 
1904 	} else if (opcode == BPF_MOV) {
1905 
1906 		if (BPF_SRC(insn->code) == BPF_X) {
1907 			if (insn->imm != 0 || insn->off != 0) {
1908 				verbose("BPF_MOV uses reserved fields\n");
1909 				return -EINVAL;
1910 			}
1911 
1912 			/* check src operand */
1913 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1914 			if (err)
1915 				return err;
1916 		} else {
1917 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1918 				verbose("BPF_MOV uses reserved fields\n");
1919 				return -EINVAL;
1920 			}
1921 		}
1922 
1923 		/* check dest operand */
1924 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1925 		if (err)
1926 			return err;
1927 
1928 		/* we are setting our register to something new, we need to
1929 		 * reset its range values.
1930 		 */
1931 		reset_reg_range_values(regs, insn->dst_reg);
1932 
1933 		if (BPF_SRC(insn->code) == BPF_X) {
1934 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
1935 				/* case: R1 = R2
1936 				 * copy register state to dest reg
1937 				 */
1938 				regs[insn->dst_reg] = regs[insn->src_reg];
1939 			} else {
1940 				if (is_pointer_value(env, insn->src_reg)) {
1941 					verbose("R%d partial copy of pointer\n",
1942 						insn->src_reg);
1943 					return -EACCES;
1944 				}
1945 				mark_reg_unknown_value(regs, insn->dst_reg);
1946 			}
1947 		} else {
1948 			/* case: R = imm
1949 			 * remember the value we stored into this reg
1950 			 */
1951 			regs[insn->dst_reg].type = CONST_IMM;
1952 			regs[insn->dst_reg].imm = insn->imm;
1953 			regs[insn->dst_reg].max_value = insn->imm;
1954 			regs[insn->dst_reg].min_value = insn->imm;
1955 			regs[insn->dst_reg].min_align = calc_align(insn->imm);
1956 		}
1957 
1958 	} else if (opcode > BPF_END) {
1959 		verbose("invalid BPF_ALU opcode %x\n", opcode);
1960 		return -EINVAL;
1961 
1962 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
1963 
1964 		if (BPF_SRC(insn->code) == BPF_X) {
1965 			if (insn->imm != 0 || insn->off != 0) {
1966 				verbose("BPF_ALU uses reserved fields\n");
1967 				return -EINVAL;
1968 			}
1969 			/* check src1 operand */
1970 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1971 			if (err)
1972 				return err;
1973 		} else {
1974 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1975 				verbose("BPF_ALU uses reserved fields\n");
1976 				return -EINVAL;
1977 			}
1978 		}
1979 
1980 		/* check src2 operand */
1981 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1982 		if (err)
1983 			return err;
1984 
1985 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1986 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1987 			verbose("div by zero\n");
1988 			return -EINVAL;
1989 		}
1990 
1991 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1992 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1993 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1994 
1995 			if (insn->imm < 0 || insn->imm >= size) {
1996 				verbose("invalid shift %d\n", insn->imm);
1997 				return -EINVAL;
1998 			}
1999 		}
2000 
2001 		/* check dest operand */
2002 		err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2003 		if (err)
2004 			return err;
2005 
2006 		dst_reg = &regs[insn->dst_reg];
2007 
2008 		/* first we want to adjust our ranges. */
2009 		adjust_reg_min_max_vals(env, insn);
2010 
2011 		/* pattern match 'bpf_add Rx, imm' instruction */
2012 		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
2013 		    dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
2014 			dst_reg->type = PTR_TO_STACK;
2015 			dst_reg->imm = insn->imm;
2016 			return 0;
2017 		} else if (opcode == BPF_ADD &&
2018 			   BPF_CLASS(insn->code) == BPF_ALU64 &&
2019 			   dst_reg->type == PTR_TO_STACK &&
2020 			   ((BPF_SRC(insn->code) == BPF_X &&
2021 			     regs[insn->src_reg].type == CONST_IMM) ||
2022 			    BPF_SRC(insn->code) == BPF_K)) {
2023 			if (BPF_SRC(insn->code) == BPF_X)
2024 				dst_reg->imm += regs[insn->src_reg].imm;
2025 			else
2026 				dst_reg->imm += insn->imm;
2027 			return 0;
2028 		} else if (opcode == BPF_ADD &&
2029 			   BPF_CLASS(insn->code) == BPF_ALU64 &&
2030 			   (dst_reg->type == PTR_TO_PACKET ||
2031 			    (BPF_SRC(insn->code) == BPF_X &&
2032 			     regs[insn->src_reg].type == PTR_TO_PACKET))) {
2033 			/* ptr_to_packet += K|X */
2034 			return check_packet_ptr_add(env, insn);
2035 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2036 			   dst_reg->type == UNKNOWN_VALUE &&
2037 			   env->allow_ptr_leaks) {
2038 			/* unknown += K|X */
2039 			return evaluate_reg_alu(env, insn);
2040 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2041 			   dst_reg->type == CONST_IMM &&
2042 			   env->allow_ptr_leaks) {
2043 			/* reg_imm += K|X */
2044 			return evaluate_reg_imm_alu(env, insn);
2045 		} else if (is_pointer_value(env, insn->dst_reg)) {
2046 			verbose("R%d pointer arithmetic prohibited\n",
2047 				insn->dst_reg);
2048 			return -EACCES;
2049 		} else if (BPF_SRC(insn->code) == BPF_X &&
2050 			   is_pointer_value(env, insn->src_reg)) {
2051 			verbose("R%d pointer arithmetic prohibited\n",
2052 				insn->src_reg);
2053 			return -EACCES;
2054 		}
2055 
2056 		/* If we did pointer math on a map value then just set it to our
2057 		 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
2058 		 * loads to this register appropriately, otherwise just mark the
2059 		 * register as unknown.
2060 		 */
2061 		if (env->allow_ptr_leaks &&
2062 		    BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD &&
2063 		    (dst_reg->type == PTR_TO_MAP_VALUE ||
2064 		     dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
2065 			dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
2066 		else
2067 			mark_reg_unknown_value(regs, insn->dst_reg);
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2074 				   struct bpf_reg_state *dst_reg)
2075 {
2076 	struct bpf_reg_state *regs = state->regs, *reg;
2077 	int i;
2078 
2079 	/* LLVM can generate two kind of checks:
2080 	 *
2081 	 * Type 1:
2082 	 *
2083 	 *   r2 = r3;
2084 	 *   r2 += 8;
2085 	 *   if (r2 > pkt_end) goto <handle exception>
2086 	 *   <access okay>
2087 	 *
2088 	 *   Where:
2089 	 *     r2 == dst_reg, pkt_end == src_reg
2090 	 *     r2=pkt(id=n,off=8,r=0)
2091 	 *     r3=pkt(id=n,off=0,r=0)
2092 	 *
2093 	 * Type 2:
2094 	 *
2095 	 *   r2 = r3;
2096 	 *   r2 += 8;
2097 	 *   if (pkt_end >= r2) goto <access okay>
2098 	 *   <handle exception>
2099 	 *
2100 	 *   Where:
2101 	 *     pkt_end == dst_reg, r2 == src_reg
2102 	 *     r2=pkt(id=n,off=8,r=0)
2103 	 *     r3=pkt(id=n,off=0,r=0)
2104 	 *
2105 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2106 	 * so that range of bytes [r3, r3 + 8) is safe to access.
2107 	 */
2108 
2109 	for (i = 0; i < MAX_BPF_REG; i++)
2110 		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
2111 			/* keep the maximum range already checked */
2112 			regs[i].range = max(regs[i].range, dst_reg->off);
2113 
2114 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2115 		if (state->stack_slot_type[i] != STACK_SPILL)
2116 			continue;
2117 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
2118 		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
2119 			reg->range = max(reg->range, dst_reg->off);
2120 	}
2121 }
2122 
2123 /* Adjusts the register min/max values in the case that the dst_reg is the
2124  * variable register that we are working on, and src_reg is a constant or we're
2125  * simply doing a BPF_K check.
2126  */
2127 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2128 			    struct bpf_reg_state *false_reg, u64 val,
2129 			    u8 opcode)
2130 {
2131 	switch (opcode) {
2132 	case BPF_JEQ:
2133 		/* If this is false then we know nothing Jon Snow, but if it is
2134 		 * true then we know for sure.
2135 		 */
2136 		true_reg->max_value = true_reg->min_value = val;
2137 		break;
2138 	case BPF_JNE:
2139 		/* If this is true we know nothing Jon Snow, but if it is false
2140 		 * we know the value for sure;
2141 		 */
2142 		false_reg->max_value = false_reg->min_value = val;
2143 		break;
2144 	case BPF_JGT:
2145 		/* Unsigned comparison, the minimum value is 0. */
2146 		false_reg->min_value = 0;
2147 		/* fallthrough */
2148 	case BPF_JSGT:
2149 		/* If this is false then we know the maximum val is val,
2150 		 * otherwise we know the min val is val+1.
2151 		 */
2152 		false_reg->max_value = val;
2153 		true_reg->min_value = val + 1;
2154 		break;
2155 	case BPF_JGE:
2156 		/* Unsigned comparison, the minimum value is 0. */
2157 		false_reg->min_value = 0;
2158 		/* fallthrough */
2159 	case BPF_JSGE:
2160 		/* If this is false then we know the maximum value is val - 1,
2161 		 * otherwise we know the mimimum value is val.
2162 		 */
2163 		false_reg->max_value = val - 1;
2164 		true_reg->min_value = val;
2165 		break;
2166 	default:
2167 		break;
2168 	}
2169 
2170 	check_reg_overflow(false_reg);
2171 	check_reg_overflow(true_reg);
2172 }
2173 
2174 /* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2175  * is the variable reg.
2176  */
2177 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2178 				struct bpf_reg_state *false_reg, u64 val,
2179 				u8 opcode)
2180 {
2181 	switch (opcode) {
2182 	case BPF_JEQ:
2183 		/* If this is false then we know nothing Jon Snow, but if it is
2184 		 * true then we know for sure.
2185 		 */
2186 		true_reg->max_value = true_reg->min_value = val;
2187 		break;
2188 	case BPF_JNE:
2189 		/* If this is true we know nothing Jon Snow, but if it is false
2190 		 * we know the value for sure;
2191 		 */
2192 		false_reg->max_value = false_reg->min_value = val;
2193 		break;
2194 	case BPF_JGT:
2195 		/* Unsigned comparison, the minimum value is 0. */
2196 		true_reg->min_value = 0;
2197 		/* fallthrough */
2198 	case BPF_JSGT:
2199 		/*
2200 		 * If this is false, then the val is <= the register, if it is
2201 		 * true the register <= to the val.
2202 		 */
2203 		false_reg->min_value = val;
2204 		true_reg->max_value = val - 1;
2205 		break;
2206 	case BPF_JGE:
2207 		/* Unsigned comparison, the minimum value is 0. */
2208 		true_reg->min_value = 0;
2209 		/* fallthrough */
2210 	case BPF_JSGE:
2211 		/* If this is false then constant < register, if it is true then
2212 		 * the register < constant.
2213 		 */
2214 		false_reg->min_value = val + 1;
2215 		true_reg->max_value = val;
2216 		break;
2217 	default:
2218 		break;
2219 	}
2220 
2221 	check_reg_overflow(false_reg);
2222 	check_reg_overflow(true_reg);
2223 }
2224 
2225 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2226 			 enum bpf_reg_type type)
2227 {
2228 	struct bpf_reg_state *reg = &regs[regno];
2229 
2230 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2231 		if (type == UNKNOWN_VALUE) {
2232 			__mark_reg_unknown_value(regs, regno);
2233 		} else if (reg->map_ptr->inner_map_meta) {
2234 			reg->type = CONST_PTR_TO_MAP;
2235 			reg->map_ptr = reg->map_ptr->inner_map_meta;
2236 		} else {
2237 			reg->type = type;
2238 		}
2239 		/* We don't need id from this point onwards anymore, thus we
2240 		 * should better reset it, so that state pruning has chances
2241 		 * to take effect.
2242 		 */
2243 		reg->id = 0;
2244 	}
2245 }
2246 
2247 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2248  * be folded together at some point.
2249  */
2250 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2251 			  enum bpf_reg_type type)
2252 {
2253 	struct bpf_reg_state *regs = state->regs;
2254 	u32 id = regs[regno].id;
2255 	int i;
2256 
2257 	for (i = 0; i < MAX_BPF_REG; i++)
2258 		mark_map_reg(regs, i, id, type);
2259 
2260 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2261 		if (state->stack_slot_type[i] != STACK_SPILL)
2262 			continue;
2263 		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
2264 	}
2265 }
2266 
2267 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2268 			     struct bpf_insn *insn, int *insn_idx)
2269 {
2270 	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2271 	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2272 	u8 opcode = BPF_OP(insn->code);
2273 	int err;
2274 
2275 	if (opcode > BPF_EXIT) {
2276 		verbose("invalid BPF_JMP opcode %x\n", opcode);
2277 		return -EINVAL;
2278 	}
2279 
2280 	if (BPF_SRC(insn->code) == BPF_X) {
2281 		if (insn->imm != 0) {
2282 			verbose("BPF_JMP uses reserved fields\n");
2283 			return -EINVAL;
2284 		}
2285 
2286 		/* check src1 operand */
2287 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2288 		if (err)
2289 			return err;
2290 
2291 		if (is_pointer_value(env, insn->src_reg)) {
2292 			verbose("R%d pointer comparison prohibited\n",
2293 				insn->src_reg);
2294 			return -EACCES;
2295 		}
2296 	} else {
2297 		if (insn->src_reg != BPF_REG_0) {
2298 			verbose("BPF_JMP uses reserved fields\n");
2299 			return -EINVAL;
2300 		}
2301 	}
2302 
2303 	/* check src2 operand */
2304 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2305 	if (err)
2306 		return err;
2307 
2308 	dst_reg = &regs[insn->dst_reg];
2309 
2310 	/* detect if R == 0 where R was initialized to zero earlier */
2311 	if (BPF_SRC(insn->code) == BPF_K &&
2312 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2313 	    dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
2314 		if (opcode == BPF_JEQ) {
2315 			/* if (imm == imm) goto pc+off;
2316 			 * only follow the goto, ignore fall-through
2317 			 */
2318 			*insn_idx += insn->off;
2319 			return 0;
2320 		} else {
2321 			/* if (imm != imm) goto pc+off;
2322 			 * only follow fall-through branch, since
2323 			 * that's where the program will go
2324 			 */
2325 			return 0;
2326 		}
2327 	}
2328 
2329 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2330 	if (!other_branch)
2331 		return -EFAULT;
2332 
2333 	/* detect if we are comparing against a constant value so we can adjust
2334 	 * our min/max values for our dst register.
2335 	 */
2336 	if (BPF_SRC(insn->code) == BPF_X) {
2337 		if (regs[insn->src_reg].type == CONST_IMM)
2338 			reg_set_min_max(&other_branch->regs[insn->dst_reg],
2339 					dst_reg, regs[insn->src_reg].imm,
2340 					opcode);
2341 		else if (dst_reg->type == CONST_IMM)
2342 			reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2343 					    &regs[insn->src_reg], dst_reg->imm,
2344 					    opcode);
2345 	} else {
2346 		reg_set_min_max(&other_branch->regs[insn->dst_reg],
2347 					dst_reg, insn->imm, opcode);
2348 	}
2349 
2350 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2351 	if (BPF_SRC(insn->code) == BPF_K &&
2352 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2353 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2354 		/* Mark all identical map registers in each branch as either
2355 		 * safe or unknown depending R == 0 or R != 0 conditional.
2356 		 */
2357 		mark_map_regs(this_branch, insn->dst_reg,
2358 			      opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2359 		mark_map_regs(other_branch, insn->dst_reg,
2360 			      opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
2361 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2362 		   dst_reg->type == PTR_TO_PACKET &&
2363 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2364 		find_good_pkt_pointers(this_branch, dst_reg);
2365 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2366 		   dst_reg->type == PTR_TO_PACKET_END &&
2367 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2368 		find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2369 	} else if (is_pointer_value(env, insn->dst_reg)) {
2370 		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2371 		return -EACCES;
2372 	}
2373 	if (log_level)
2374 		print_verifier_state(this_branch);
2375 	return 0;
2376 }
2377 
2378 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2379 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2380 {
2381 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2382 
2383 	return (struct bpf_map *) (unsigned long) imm64;
2384 }
2385 
2386 /* verify BPF_LD_IMM64 instruction */
2387 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2388 {
2389 	struct bpf_reg_state *regs = env->cur_state.regs;
2390 	int err;
2391 
2392 	if (BPF_SIZE(insn->code) != BPF_DW) {
2393 		verbose("invalid BPF_LD_IMM insn\n");
2394 		return -EINVAL;
2395 	}
2396 	if (insn->off != 0) {
2397 		verbose("BPF_LD_IMM64 uses reserved fields\n");
2398 		return -EINVAL;
2399 	}
2400 
2401 	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2402 	if (err)
2403 		return err;
2404 
2405 	if (insn->src_reg == 0) {
2406 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2407 
2408 		regs[insn->dst_reg].type = CONST_IMM;
2409 		regs[insn->dst_reg].imm = imm;
2410 		return 0;
2411 	}
2412 
2413 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2414 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2415 
2416 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2417 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2418 	return 0;
2419 }
2420 
2421 static bool may_access_skb(enum bpf_prog_type type)
2422 {
2423 	switch (type) {
2424 	case BPF_PROG_TYPE_SOCKET_FILTER:
2425 	case BPF_PROG_TYPE_SCHED_CLS:
2426 	case BPF_PROG_TYPE_SCHED_ACT:
2427 		return true;
2428 	default:
2429 		return false;
2430 	}
2431 }
2432 
2433 /* verify safety of LD_ABS|LD_IND instructions:
2434  * - they can only appear in the programs where ctx == skb
2435  * - since they are wrappers of function calls, they scratch R1-R5 registers,
2436  *   preserve R6-R9, and store return value into R0
2437  *
2438  * Implicit input:
2439  *   ctx == skb == R6 == CTX
2440  *
2441  * Explicit input:
2442  *   SRC == any register
2443  *   IMM == 32-bit immediate
2444  *
2445  * Output:
2446  *   R0 - 8/16/32-bit skb data converted to cpu endianness
2447  */
2448 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2449 {
2450 	struct bpf_reg_state *regs = env->cur_state.regs;
2451 	u8 mode = BPF_MODE(insn->code);
2452 	int i, err;
2453 
2454 	if (!may_access_skb(env->prog->type)) {
2455 		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2456 		return -EINVAL;
2457 	}
2458 
2459 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2460 	    BPF_SIZE(insn->code) == BPF_DW ||
2461 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2462 		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2463 		return -EINVAL;
2464 	}
2465 
2466 	/* check whether implicit source operand (register R6) is readable */
2467 	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2468 	if (err)
2469 		return err;
2470 
2471 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2472 		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2473 		return -EINVAL;
2474 	}
2475 
2476 	if (mode == BPF_IND) {
2477 		/* check explicit source operand */
2478 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2479 		if (err)
2480 			return err;
2481 	}
2482 
2483 	/* reset caller saved regs to unreadable */
2484 	for (i = 0; i < CALLER_SAVED_REGS; i++)
2485 		mark_reg_not_init(regs, caller_saved[i]);
2486 
2487 	/* mark destination R0 register as readable, since it contains
2488 	 * the value fetched from the packet
2489 	 */
2490 	regs[BPF_REG_0].type = UNKNOWN_VALUE;
2491 	return 0;
2492 }
2493 
2494 /* non-recursive DFS pseudo code
2495  * 1  procedure DFS-iterative(G,v):
2496  * 2      label v as discovered
2497  * 3      let S be a stack
2498  * 4      S.push(v)
2499  * 5      while S is not empty
2500  * 6            t <- S.pop()
2501  * 7            if t is what we're looking for:
2502  * 8                return t
2503  * 9            for all edges e in G.adjacentEdges(t) do
2504  * 10               if edge e is already labelled
2505  * 11                   continue with the next edge
2506  * 12               w <- G.adjacentVertex(t,e)
2507  * 13               if vertex w is not discovered and not explored
2508  * 14                   label e as tree-edge
2509  * 15                   label w as discovered
2510  * 16                   S.push(w)
2511  * 17                   continue at 5
2512  * 18               else if vertex w is discovered
2513  * 19                   label e as back-edge
2514  * 20               else
2515  * 21                   // vertex w is explored
2516  * 22                   label e as forward- or cross-edge
2517  * 23           label t as explored
2518  * 24           S.pop()
2519  *
2520  * convention:
2521  * 0x10 - discovered
2522  * 0x11 - discovered and fall-through edge labelled
2523  * 0x12 - discovered and fall-through and branch edges labelled
2524  * 0x20 - explored
2525  */
2526 
2527 enum {
2528 	DISCOVERED = 0x10,
2529 	EXPLORED = 0x20,
2530 	FALLTHROUGH = 1,
2531 	BRANCH = 2,
2532 };
2533 
2534 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
2535 
2536 static int *insn_stack;	/* stack of insns to process */
2537 static int cur_stack;	/* current stack index */
2538 static int *insn_state;
2539 
2540 /* t, w, e - match pseudo-code above:
2541  * t - index of current instruction
2542  * w - next instruction
2543  * e - edge
2544  */
2545 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
2546 {
2547 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2548 		return 0;
2549 
2550 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2551 		return 0;
2552 
2553 	if (w < 0 || w >= env->prog->len) {
2554 		verbose("jump out of range from insn %d to %d\n", t, w);
2555 		return -EINVAL;
2556 	}
2557 
2558 	if (e == BRANCH)
2559 		/* mark branch target for state pruning */
2560 		env->explored_states[w] = STATE_LIST_MARK;
2561 
2562 	if (insn_state[w] == 0) {
2563 		/* tree-edge */
2564 		insn_state[t] = DISCOVERED | e;
2565 		insn_state[w] = DISCOVERED;
2566 		if (cur_stack >= env->prog->len)
2567 			return -E2BIG;
2568 		insn_stack[cur_stack++] = w;
2569 		return 1;
2570 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2571 		verbose("back-edge from insn %d to %d\n", t, w);
2572 		return -EINVAL;
2573 	} else if (insn_state[w] == EXPLORED) {
2574 		/* forward- or cross-edge */
2575 		insn_state[t] = DISCOVERED | e;
2576 	} else {
2577 		verbose("insn state internal bug\n");
2578 		return -EFAULT;
2579 	}
2580 	return 0;
2581 }
2582 
2583 /* non-recursive depth-first-search to detect loops in BPF program
2584  * loop == back-edge in directed graph
2585  */
2586 static int check_cfg(struct bpf_verifier_env *env)
2587 {
2588 	struct bpf_insn *insns = env->prog->insnsi;
2589 	int insn_cnt = env->prog->len;
2590 	int ret = 0;
2591 	int i, t;
2592 
2593 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2594 	if (!insn_state)
2595 		return -ENOMEM;
2596 
2597 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2598 	if (!insn_stack) {
2599 		kfree(insn_state);
2600 		return -ENOMEM;
2601 	}
2602 
2603 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2604 	insn_stack[0] = 0; /* 0 is the first instruction */
2605 	cur_stack = 1;
2606 
2607 peek_stack:
2608 	if (cur_stack == 0)
2609 		goto check_state;
2610 	t = insn_stack[cur_stack - 1];
2611 
2612 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2613 		u8 opcode = BPF_OP(insns[t].code);
2614 
2615 		if (opcode == BPF_EXIT) {
2616 			goto mark_explored;
2617 		} else if (opcode == BPF_CALL) {
2618 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
2619 			if (ret == 1)
2620 				goto peek_stack;
2621 			else if (ret < 0)
2622 				goto err_free;
2623 			if (t + 1 < insn_cnt)
2624 				env->explored_states[t + 1] = STATE_LIST_MARK;
2625 		} else if (opcode == BPF_JA) {
2626 			if (BPF_SRC(insns[t].code) != BPF_K) {
2627 				ret = -EINVAL;
2628 				goto err_free;
2629 			}
2630 			/* unconditional jump with single edge */
2631 			ret = push_insn(t, t + insns[t].off + 1,
2632 					FALLTHROUGH, env);
2633 			if (ret == 1)
2634 				goto peek_stack;
2635 			else if (ret < 0)
2636 				goto err_free;
2637 			/* tell verifier to check for equivalent states
2638 			 * after every call and jump
2639 			 */
2640 			if (t + 1 < insn_cnt)
2641 				env->explored_states[t + 1] = STATE_LIST_MARK;
2642 		} else {
2643 			/* conditional jump with two edges */
2644 			env->explored_states[t] = STATE_LIST_MARK;
2645 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
2646 			if (ret == 1)
2647 				goto peek_stack;
2648 			else if (ret < 0)
2649 				goto err_free;
2650 
2651 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2652 			if (ret == 1)
2653 				goto peek_stack;
2654 			else if (ret < 0)
2655 				goto err_free;
2656 		}
2657 	} else {
2658 		/* all other non-branch instructions with single
2659 		 * fall-through edge
2660 		 */
2661 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
2662 		if (ret == 1)
2663 			goto peek_stack;
2664 		else if (ret < 0)
2665 			goto err_free;
2666 	}
2667 
2668 mark_explored:
2669 	insn_state[t] = EXPLORED;
2670 	if (cur_stack-- <= 0) {
2671 		verbose("pop stack internal bug\n");
2672 		ret = -EFAULT;
2673 		goto err_free;
2674 	}
2675 	goto peek_stack;
2676 
2677 check_state:
2678 	for (i = 0; i < insn_cnt; i++) {
2679 		if (insn_state[i] != EXPLORED) {
2680 			verbose("unreachable insn %d\n", i);
2681 			ret = -EINVAL;
2682 			goto err_free;
2683 		}
2684 	}
2685 	ret = 0; /* cfg looks good */
2686 
2687 err_free:
2688 	kfree(insn_state);
2689 	kfree(insn_stack);
2690 	return ret;
2691 }
2692 
2693 /* the following conditions reduce the number of explored insns
2694  * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2695  */
2696 static bool compare_ptrs_to_packet(struct bpf_verifier_env *env,
2697 				   struct bpf_reg_state *old,
2698 				   struct bpf_reg_state *cur)
2699 {
2700 	if (old->id != cur->id)
2701 		return false;
2702 
2703 	/* old ptr_to_packet is more conservative, since it allows smaller
2704 	 * range. Ex:
2705 	 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2706 	 * old(off=0,r=10) means that with range=10 the verifier proceeded
2707 	 * further and found no issues with the program. Now we're in the same
2708 	 * spot with cur(off=0,r=20), so we're safe too, since anything further
2709 	 * will only be looking at most 10 bytes after this pointer.
2710 	 */
2711 	if (old->off == cur->off && old->range < cur->range)
2712 		return true;
2713 
2714 	/* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2715 	 * since both cannot be used for packet access and safe(old)
2716 	 * pointer has smaller off that could be used for further
2717 	 * 'if (ptr > data_end)' check
2718 	 * Ex:
2719 	 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2720 	 * that we cannot access the packet.
2721 	 * The safe range is:
2722 	 * [ptr, ptr + range - off)
2723 	 * so whenever off >=range, it means no safe bytes from this pointer.
2724 	 * When comparing old->off <= cur->off, it means that older code
2725 	 * went with smaller offset and that offset was later
2726 	 * used to figure out the safe range after 'if (ptr > data_end)' check
2727 	 * Say, 'old' state was explored like:
2728 	 * ... R3(off=0, r=0)
2729 	 * R4 = R3 + 20
2730 	 * ... now R4(off=20,r=0)  <-- here
2731 	 * if (R4 > data_end)
2732 	 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2733 	 * ... the code further went all the way to bpf_exit.
2734 	 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2735 	 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2736 	 * goes further, such cur_R4 will give larger safe packet range after
2737 	 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2738 	 * so they will be good with r=30 and we can prune the search.
2739 	 */
2740 	if (!env->strict_alignment && old->off <= cur->off &&
2741 	    old->off >= old->range && cur->off >= cur->range)
2742 		return true;
2743 
2744 	return false;
2745 }
2746 
2747 /* compare two verifier states
2748  *
2749  * all states stored in state_list are known to be valid, since
2750  * verifier reached 'bpf_exit' instruction through them
2751  *
2752  * this function is called when verifier exploring different branches of
2753  * execution popped from the state stack. If it sees an old state that has
2754  * more strict register state and more strict stack state then this execution
2755  * branch doesn't need to be explored further, since verifier already
2756  * concluded that more strict state leads to valid finish.
2757  *
2758  * Therefore two states are equivalent if register state is more conservative
2759  * and explored stack state is more conservative than the current one.
2760  * Example:
2761  *       explored                   current
2762  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2763  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2764  *
2765  * In other words if current stack state (one being explored) has more
2766  * valid slots than old one that already passed validation, it means
2767  * the verifier can stop exploring and conclude that current state is valid too
2768  *
2769  * Similarly with registers. If explored state has register type as invalid
2770  * whereas register type in current state is meaningful, it means that
2771  * the current state will reach 'bpf_exit' instruction safely
2772  */
2773 static bool states_equal(struct bpf_verifier_env *env,
2774 			 struct bpf_verifier_state *old,
2775 			 struct bpf_verifier_state *cur)
2776 {
2777 	bool varlen_map_access = env->varlen_map_value_access;
2778 	struct bpf_reg_state *rold, *rcur;
2779 	int i;
2780 
2781 	for (i = 0; i < MAX_BPF_REG; i++) {
2782 		rold = &old->regs[i];
2783 		rcur = &cur->regs[i];
2784 
2785 		if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2786 			continue;
2787 
2788 		/* If the ranges were not the same, but everything else was and
2789 		 * we didn't do a variable access into a map then we are a-ok.
2790 		 */
2791 		if (!varlen_map_access &&
2792 		    memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
2793 			continue;
2794 
2795 		/* If we didn't map access then again we don't care about the
2796 		 * mismatched range values and it's ok if our old type was
2797 		 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2798 		 */
2799 		if (rold->type == NOT_INIT ||
2800 		    (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2801 		     rcur->type != NOT_INIT))
2802 			continue;
2803 
2804 		/* Don't care about the reg->id in this case. */
2805 		if (rold->type == PTR_TO_MAP_VALUE_OR_NULL &&
2806 		    rcur->type == PTR_TO_MAP_VALUE_OR_NULL &&
2807 		    rold->map_ptr == rcur->map_ptr)
2808 			continue;
2809 
2810 		if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2811 		    compare_ptrs_to_packet(env, rold, rcur))
2812 			continue;
2813 
2814 		return false;
2815 	}
2816 
2817 	for (i = 0; i < MAX_BPF_STACK; i++) {
2818 		if (old->stack_slot_type[i] == STACK_INVALID)
2819 			continue;
2820 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2821 			/* Ex: old explored (safe) state has STACK_SPILL in
2822 			 * this stack slot, but current has has STACK_MISC ->
2823 			 * this verifier states are not equivalent,
2824 			 * return false to continue verification of this path
2825 			 */
2826 			return false;
2827 		if (i % BPF_REG_SIZE)
2828 			continue;
2829 		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2830 			   &cur->spilled_regs[i / BPF_REG_SIZE],
2831 			   sizeof(old->spilled_regs[0])))
2832 			/* when explored and current stack slot types are
2833 			 * the same, check that stored pointers types
2834 			 * are the same as well.
2835 			 * Ex: explored safe path could have stored
2836 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
2837 			 * but current path has stored:
2838 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
2839 			 * such verifier states are not equivalent.
2840 			 * return false to continue verification of this path
2841 			 */
2842 			return false;
2843 		else
2844 			continue;
2845 	}
2846 	return true;
2847 }
2848 
2849 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
2850 {
2851 	struct bpf_verifier_state_list *new_sl;
2852 	struct bpf_verifier_state_list *sl;
2853 
2854 	sl = env->explored_states[insn_idx];
2855 	if (!sl)
2856 		/* this 'insn_idx' instruction wasn't marked, so we will not
2857 		 * be doing state search here
2858 		 */
2859 		return 0;
2860 
2861 	while (sl != STATE_LIST_MARK) {
2862 		if (states_equal(env, &sl->state, &env->cur_state))
2863 			/* reached equivalent register/stack state,
2864 			 * prune the search
2865 			 */
2866 			return 1;
2867 		sl = sl->next;
2868 	}
2869 
2870 	/* there were no equivalent states, remember current one.
2871 	 * technically the current state is not proven to be safe yet,
2872 	 * but it will either reach bpf_exit (which means it's safe) or
2873 	 * it will be rejected. Since there are no loops, we won't be
2874 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2875 	 */
2876 	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
2877 	if (!new_sl)
2878 		return -ENOMEM;
2879 
2880 	/* add new state to the head of linked list */
2881 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2882 	new_sl->next = env->explored_states[insn_idx];
2883 	env->explored_states[insn_idx] = new_sl;
2884 	return 0;
2885 }
2886 
2887 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2888 				  int insn_idx, int prev_insn_idx)
2889 {
2890 	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2891 		return 0;
2892 
2893 	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2894 }
2895 
2896 static int do_check(struct bpf_verifier_env *env)
2897 {
2898 	struct bpf_verifier_state *state = &env->cur_state;
2899 	struct bpf_insn *insns = env->prog->insnsi;
2900 	struct bpf_reg_state *regs = state->regs;
2901 	int insn_cnt = env->prog->len;
2902 	int insn_idx, prev_insn_idx = 0;
2903 	int insn_processed = 0;
2904 	bool do_print_state = false;
2905 
2906 	init_reg_state(regs);
2907 	insn_idx = 0;
2908 	env->varlen_map_value_access = false;
2909 	for (;;) {
2910 		struct bpf_insn *insn;
2911 		u8 class;
2912 		int err;
2913 
2914 		if (insn_idx >= insn_cnt) {
2915 			verbose("invalid insn idx %d insn_cnt %d\n",
2916 				insn_idx, insn_cnt);
2917 			return -EFAULT;
2918 		}
2919 
2920 		insn = &insns[insn_idx];
2921 		class = BPF_CLASS(insn->code);
2922 
2923 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2924 			verbose("BPF program is too large. Processed %d insn\n",
2925 				insn_processed);
2926 			return -E2BIG;
2927 		}
2928 
2929 		err = is_state_visited(env, insn_idx);
2930 		if (err < 0)
2931 			return err;
2932 		if (err == 1) {
2933 			/* found equivalent state, can prune the search */
2934 			if (log_level) {
2935 				if (do_print_state)
2936 					verbose("\nfrom %d to %d: safe\n",
2937 						prev_insn_idx, insn_idx);
2938 				else
2939 					verbose("%d: safe\n", insn_idx);
2940 			}
2941 			goto process_bpf_exit;
2942 		}
2943 
2944 		if (need_resched())
2945 			cond_resched();
2946 
2947 		if (log_level > 1 || (log_level && do_print_state)) {
2948 			if (log_level > 1)
2949 				verbose("%d:", insn_idx);
2950 			else
2951 				verbose("\nfrom %d to %d:",
2952 					prev_insn_idx, insn_idx);
2953 			print_verifier_state(&env->cur_state);
2954 			do_print_state = false;
2955 		}
2956 
2957 		if (log_level) {
2958 			verbose("%d: ", insn_idx);
2959 			print_bpf_insn(env, insn);
2960 		}
2961 
2962 		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2963 		if (err)
2964 			return err;
2965 
2966 		if (class == BPF_ALU || class == BPF_ALU64) {
2967 			err = check_alu_op(env, insn);
2968 			if (err)
2969 				return err;
2970 
2971 		} else if (class == BPF_LDX) {
2972 			enum bpf_reg_type *prev_src_type, src_reg_type;
2973 
2974 			/* check for reserved fields is already done */
2975 
2976 			/* check src operand */
2977 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2978 			if (err)
2979 				return err;
2980 
2981 			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2982 			if (err)
2983 				return err;
2984 
2985 			src_reg_type = regs[insn->src_reg].type;
2986 
2987 			/* check that memory (src_reg + off) is readable,
2988 			 * the state of dst_reg will be updated by this func
2989 			 */
2990 			err = check_mem_access(env, insn->src_reg, insn->off,
2991 					       BPF_SIZE(insn->code), BPF_READ,
2992 					       insn->dst_reg);
2993 			if (err)
2994 				return err;
2995 
2996 			if (BPF_SIZE(insn->code) != BPF_W &&
2997 			    BPF_SIZE(insn->code) != BPF_DW) {
2998 				insn_idx++;
2999 				continue;
3000 			}
3001 
3002 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3003 
3004 			if (*prev_src_type == NOT_INIT) {
3005 				/* saw a valid insn
3006 				 * dst_reg = *(u32 *)(src_reg + off)
3007 				 * save type to validate intersecting paths
3008 				 */
3009 				*prev_src_type = src_reg_type;
3010 
3011 			} else if (src_reg_type != *prev_src_type &&
3012 				   (src_reg_type == PTR_TO_CTX ||
3013 				    *prev_src_type == PTR_TO_CTX)) {
3014 				/* ABuser program is trying to use the same insn
3015 				 * dst_reg = *(u32*) (src_reg + off)
3016 				 * with different pointer types:
3017 				 * src_reg == ctx in one branch and
3018 				 * src_reg == stack|map in some other branch.
3019 				 * Reject it.
3020 				 */
3021 				verbose("same insn cannot be used with different pointers\n");
3022 				return -EINVAL;
3023 			}
3024 
3025 		} else if (class == BPF_STX) {
3026 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3027 
3028 			if (BPF_MODE(insn->code) == BPF_XADD) {
3029 				err = check_xadd(env, insn);
3030 				if (err)
3031 					return err;
3032 				insn_idx++;
3033 				continue;
3034 			}
3035 
3036 			/* check src1 operand */
3037 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
3038 			if (err)
3039 				return err;
3040 			/* check src2 operand */
3041 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3042 			if (err)
3043 				return err;
3044 
3045 			dst_reg_type = regs[insn->dst_reg].type;
3046 
3047 			/* check that memory (dst_reg + off) is writeable */
3048 			err = check_mem_access(env, insn->dst_reg, insn->off,
3049 					       BPF_SIZE(insn->code), BPF_WRITE,
3050 					       insn->src_reg);
3051 			if (err)
3052 				return err;
3053 
3054 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3055 
3056 			if (*prev_dst_type == NOT_INIT) {
3057 				*prev_dst_type = dst_reg_type;
3058 			} else if (dst_reg_type != *prev_dst_type &&
3059 				   (dst_reg_type == PTR_TO_CTX ||
3060 				    *prev_dst_type == PTR_TO_CTX)) {
3061 				verbose("same insn cannot be used with different pointers\n");
3062 				return -EINVAL;
3063 			}
3064 
3065 		} else if (class == BPF_ST) {
3066 			if (BPF_MODE(insn->code) != BPF_MEM ||
3067 			    insn->src_reg != BPF_REG_0) {
3068 				verbose("BPF_ST uses reserved fields\n");
3069 				return -EINVAL;
3070 			}
3071 			/* check src operand */
3072 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3073 			if (err)
3074 				return err;
3075 
3076 			/* check that memory (dst_reg + off) is writeable */
3077 			err = check_mem_access(env, insn->dst_reg, insn->off,
3078 					       BPF_SIZE(insn->code), BPF_WRITE,
3079 					       -1);
3080 			if (err)
3081 				return err;
3082 
3083 		} else if (class == BPF_JMP) {
3084 			u8 opcode = BPF_OP(insn->code);
3085 
3086 			if (opcode == BPF_CALL) {
3087 				if (BPF_SRC(insn->code) != BPF_K ||
3088 				    insn->off != 0 ||
3089 				    insn->src_reg != BPF_REG_0 ||
3090 				    insn->dst_reg != BPF_REG_0) {
3091 					verbose("BPF_CALL uses reserved fields\n");
3092 					return -EINVAL;
3093 				}
3094 
3095 				err = check_call(env, insn->imm, insn_idx);
3096 				if (err)
3097 					return err;
3098 
3099 			} else if (opcode == BPF_JA) {
3100 				if (BPF_SRC(insn->code) != BPF_K ||
3101 				    insn->imm != 0 ||
3102 				    insn->src_reg != BPF_REG_0 ||
3103 				    insn->dst_reg != BPF_REG_0) {
3104 					verbose("BPF_JA uses reserved fields\n");
3105 					return -EINVAL;
3106 				}
3107 
3108 				insn_idx += insn->off + 1;
3109 				continue;
3110 
3111 			} else if (opcode == BPF_EXIT) {
3112 				if (BPF_SRC(insn->code) != BPF_K ||
3113 				    insn->imm != 0 ||
3114 				    insn->src_reg != BPF_REG_0 ||
3115 				    insn->dst_reg != BPF_REG_0) {
3116 					verbose("BPF_EXIT uses reserved fields\n");
3117 					return -EINVAL;
3118 				}
3119 
3120 				/* eBPF calling convetion is such that R0 is used
3121 				 * to return the value from eBPF program.
3122 				 * Make sure that it's readable at this time
3123 				 * of bpf_exit, which means that program wrote
3124 				 * something into it earlier
3125 				 */
3126 				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
3127 				if (err)
3128 					return err;
3129 
3130 				if (is_pointer_value(env, BPF_REG_0)) {
3131 					verbose("R0 leaks addr as return value\n");
3132 					return -EACCES;
3133 				}
3134 
3135 process_bpf_exit:
3136 				insn_idx = pop_stack(env, &prev_insn_idx);
3137 				if (insn_idx < 0) {
3138 					break;
3139 				} else {
3140 					do_print_state = true;
3141 					continue;
3142 				}
3143 			} else {
3144 				err = check_cond_jmp_op(env, insn, &insn_idx);
3145 				if (err)
3146 					return err;
3147 			}
3148 		} else if (class == BPF_LD) {
3149 			u8 mode = BPF_MODE(insn->code);
3150 
3151 			if (mode == BPF_ABS || mode == BPF_IND) {
3152 				err = check_ld_abs(env, insn);
3153 				if (err)
3154 					return err;
3155 
3156 			} else if (mode == BPF_IMM) {
3157 				err = check_ld_imm(env, insn);
3158 				if (err)
3159 					return err;
3160 
3161 				insn_idx++;
3162 			} else {
3163 				verbose("invalid BPF_LD mode\n");
3164 				return -EINVAL;
3165 			}
3166 			reset_reg_range_values(regs, insn->dst_reg);
3167 		} else {
3168 			verbose("unknown insn class %d\n", class);
3169 			return -EINVAL;
3170 		}
3171 
3172 		insn_idx++;
3173 	}
3174 
3175 	verbose("processed %d insns\n", insn_processed);
3176 	return 0;
3177 }
3178 
3179 static int check_map_prealloc(struct bpf_map *map)
3180 {
3181 	return (map->map_type != BPF_MAP_TYPE_HASH &&
3182 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3183 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3184 		!(map->map_flags & BPF_F_NO_PREALLOC);
3185 }
3186 
3187 static int check_map_prog_compatibility(struct bpf_map *map,
3188 					struct bpf_prog *prog)
3189 
3190 {
3191 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3192 	 * preallocated hash maps, since doing memory allocation
3193 	 * in overflow_handler can crash depending on where nmi got
3194 	 * triggered.
3195 	 */
3196 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3197 		if (!check_map_prealloc(map)) {
3198 			verbose("perf_event programs can only use preallocated hash map\n");
3199 			return -EINVAL;
3200 		}
3201 		if (map->inner_map_meta &&
3202 		    !check_map_prealloc(map->inner_map_meta)) {
3203 			verbose("perf_event programs can only use preallocated inner hash map\n");
3204 			return -EINVAL;
3205 		}
3206 	}
3207 	return 0;
3208 }
3209 
3210 /* look for pseudo eBPF instructions that access map FDs and
3211  * replace them with actual map pointers
3212  */
3213 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3214 {
3215 	struct bpf_insn *insn = env->prog->insnsi;
3216 	int insn_cnt = env->prog->len;
3217 	int i, j, err;
3218 
3219 	err = bpf_prog_calc_tag(env->prog);
3220 	if (err)
3221 		return err;
3222 
3223 	for (i = 0; i < insn_cnt; i++, insn++) {
3224 		if (BPF_CLASS(insn->code) == BPF_LDX &&
3225 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3226 			verbose("BPF_LDX uses reserved fields\n");
3227 			return -EINVAL;
3228 		}
3229 
3230 		if (BPF_CLASS(insn->code) == BPF_STX &&
3231 		    ((BPF_MODE(insn->code) != BPF_MEM &&
3232 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3233 			verbose("BPF_STX uses reserved fields\n");
3234 			return -EINVAL;
3235 		}
3236 
3237 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3238 			struct bpf_map *map;
3239 			struct fd f;
3240 
3241 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
3242 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3243 			    insn[1].off != 0) {
3244 				verbose("invalid bpf_ld_imm64 insn\n");
3245 				return -EINVAL;
3246 			}
3247 
3248 			if (insn->src_reg == 0)
3249 				/* valid generic load 64-bit imm */
3250 				goto next_insn;
3251 
3252 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3253 				verbose("unrecognized bpf_ld_imm64 insn\n");
3254 				return -EINVAL;
3255 			}
3256 
3257 			f = fdget(insn->imm);
3258 			map = __bpf_map_get(f);
3259 			if (IS_ERR(map)) {
3260 				verbose("fd %d is not pointing to valid bpf_map\n",
3261 					insn->imm);
3262 				return PTR_ERR(map);
3263 			}
3264 
3265 			err = check_map_prog_compatibility(map, env->prog);
3266 			if (err) {
3267 				fdput(f);
3268 				return err;
3269 			}
3270 
3271 			/* store map pointer inside BPF_LD_IMM64 instruction */
3272 			insn[0].imm = (u32) (unsigned long) map;
3273 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
3274 
3275 			/* check whether we recorded this map already */
3276 			for (j = 0; j < env->used_map_cnt; j++)
3277 				if (env->used_maps[j] == map) {
3278 					fdput(f);
3279 					goto next_insn;
3280 				}
3281 
3282 			if (env->used_map_cnt >= MAX_USED_MAPS) {
3283 				fdput(f);
3284 				return -E2BIG;
3285 			}
3286 
3287 			/* hold the map. If the program is rejected by verifier,
3288 			 * the map will be released by release_maps() or it
3289 			 * will be used by the valid program until it's unloaded
3290 			 * and all maps are released in free_bpf_prog_info()
3291 			 */
3292 			map = bpf_map_inc(map, false);
3293 			if (IS_ERR(map)) {
3294 				fdput(f);
3295 				return PTR_ERR(map);
3296 			}
3297 			env->used_maps[env->used_map_cnt++] = map;
3298 
3299 			fdput(f);
3300 next_insn:
3301 			insn++;
3302 			i++;
3303 		}
3304 	}
3305 
3306 	/* now all pseudo BPF_LD_IMM64 instructions load valid
3307 	 * 'struct bpf_map *' into a register instead of user map_fd.
3308 	 * These pointers will be used later by verifier to validate map access.
3309 	 */
3310 	return 0;
3311 }
3312 
3313 /* drop refcnt of maps used by the rejected program */
3314 static void release_maps(struct bpf_verifier_env *env)
3315 {
3316 	int i;
3317 
3318 	for (i = 0; i < env->used_map_cnt; i++)
3319 		bpf_map_put(env->used_maps[i]);
3320 }
3321 
3322 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3323 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3324 {
3325 	struct bpf_insn *insn = env->prog->insnsi;
3326 	int insn_cnt = env->prog->len;
3327 	int i;
3328 
3329 	for (i = 0; i < insn_cnt; i++, insn++)
3330 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3331 			insn->src_reg = 0;
3332 }
3333 
3334 /* single env->prog->insni[off] instruction was replaced with the range
3335  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
3336  * [0, off) and [off, end) to new locations, so the patched range stays zero
3337  */
3338 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3339 				u32 off, u32 cnt)
3340 {
3341 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3342 
3343 	if (cnt == 1)
3344 		return 0;
3345 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3346 	if (!new_data)
3347 		return -ENOMEM;
3348 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3349 	memcpy(new_data + off + cnt - 1, old_data + off,
3350 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3351 	env->insn_aux_data = new_data;
3352 	vfree(old_data);
3353 	return 0;
3354 }
3355 
3356 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3357 					    const struct bpf_insn *patch, u32 len)
3358 {
3359 	struct bpf_prog *new_prog;
3360 
3361 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
3362 	if (!new_prog)
3363 		return NULL;
3364 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
3365 		return NULL;
3366 	return new_prog;
3367 }
3368 
3369 /* convert load instructions that access fields of 'struct __sk_buff'
3370  * into sequence of instructions that access fields of 'struct sk_buff'
3371  */
3372 static int convert_ctx_accesses(struct bpf_verifier_env *env)
3373 {
3374 	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3375 	const int insn_cnt = env->prog->len;
3376 	struct bpf_insn insn_buf[16], *insn;
3377 	struct bpf_prog *new_prog;
3378 	enum bpf_access_type type;
3379 	int i, cnt, delta = 0;
3380 
3381 	if (ops->gen_prologue) {
3382 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3383 					env->prog);
3384 		if (cnt >= ARRAY_SIZE(insn_buf)) {
3385 			verbose("bpf verifier is misconfigured\n");
3386 			return -EINVAL;
3387 		} else if (cnt) {
3388 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
3389 			if (!new_prog)
3390 				return -ENOMEM;
3391 
3392 			env->prog = new_prog;
3393 			delta += cnt - 1;
3394 		}
3395 	}
3396 
3397 	if (!ops->convert_ctx_access)
3398 		return 0;
3399 
3400 	insn = env->prog->insnsi + delta;
3401 
3402 	for (i = 0; i < insn_cnt; i++, insn++) {
3403 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3404 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3405 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
3406 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
3407 			type = BPF_READ;
3408 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3409 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3410 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
3411 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
3412 			type = BPF_WRITE;
3413 		else
3414 			continue;
3415 
3416 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
3417 			continue;
3418 
3419 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog);
3420 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3421 			verbose("bpf verifier is misconfigured\n");
3422 			return -EINVAL;
3423 		}
3424 
3425 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
3426 		if (!new_prog)
3427 			return -ENOMEM;
3428 
3429 		delta += cnt - 1;
3430 
3431 		/* keep walking new program and skip insns we just inserted */
3432 		env->prog = new_prog;
3433 		insn      = new_prog->insnsi + i + delta;
3434 	}
3435 
3436 	return 0;
3437 }
3438 
3439 /* fixup insn->imm field of bpf_call instructions
3440  * and inline eligible helpers as explicit sequence of BPF instructions
3441  *
3442  * this function is called after eBPF program passed verification
3443  */
3444 static int fixup_bpf_calls(struct bpf_verifier_env *env)
3445 {
3446 	struct bpf_prog *prog = env->prog;
3447 	struct bpf_insn *insn = prog->insnsi;
3448 	const struct bpf_func_proto *fn;
3449 	const int insn_cnt = prog->len;
3450 	struct bpf_insn insn_buf[16];
3451 	struct bpf_prog *new_prog;
3452 	struct bpf_map *map_ptr;
3453 	int i, cnt, delta = 0;
3454 
3455 	for (i = 0; i < insn_cnt; i++, insn++) {
3456 		if (insn->code != (BPF_JMP | BPF_CALL))
3457 			continue;
3458 
3459 		if (insn->imm == BPF_FUNC_get_route_realm)
3460 			prog->dst_needed = 1;
3461 		if (insn->imm == BPF_FUNC_get_prandom_u32)
3462 			bpf_user_rnd_init_once();
3463 		if (insn->imm == BPF_FUNC_tail_call) {
3464 			/* If we tail call into other programs, we
3465 			 * cannot make any assumptions since they can
3466 			 * be replaced dynamically during runtime in
3467 			 * the program array.
3468 			 */
3469 			prog->cb_access = 1;
3470 
3471 			/* mark bpf_tail_call as different opcode to avoid
3472 			 * conditional branch in the interpeter for every normal
3473 			 * call and to prevent accidental JITing by JIT compiler
3474 			 * that doesn't support bpf_tail_call yet
3475 			 */
3476 			insn->imm = 0;
3477 			insn->code |= BPF_X;
3478 			continue;
3479 		}
3480 
3481 		if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
3482 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
3483 			if (map_ptr == BPF_MAP_PTR_POISON ||
3484 			    !map_ptr->ops->map_gen_lookup)
3485 				goto patch_call_imm;
3486 
3487 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
3488 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3489 				verbose("bpf verifier is misconfigured\n");
3490 				return -EINVAL;
3491 			}
3492 
3493 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
3494 						       cnt);
3495 			if (!new_prog)
3496 				return -ENOMEM;
3497 
3498 			delta += cnt - 1;
3499 
3500 			/* keep walking new program and skip insns we just inserted */
3501 			env->prog = prog = new_prog;
3502 			insn      = new_prog->insnsi + i + delta;
3503 			continue;
3504 		}
3505 
3506 patch_call_imm:
3507 		fn = prog->aux->ops->get_func_proto(insn->imm);
3508 		/* all functions that have prototype and verifier allowed
3509 		 * programs to call them, must be real in-kernel functions
3510 		 */
3511 		if (!fn->func) {
3512 			verbose("kernel subsystem misconfigured func %s#%d\n",
3513 				func_id_name(insn->imm), insn->imm);
3514 			return -EFAULT;
3515 		}
3516 		insn->imm = fn->func - __bpf_call_base;
3517 	}
3518 
3519 	return 0;
3520 }
3521 
3522 static void free_states(struct bpf_verifier_env *env)
3523 {
3524 	struct bpf_verifier_state_list *sl, *sln;
3525 	int i;
3526 
3527 	if (!env->explored_states)
3528 		return;
3529 
3530 	for (i = 0; i < env->prog->len; i++) {
3531 		sl = env->explored_states[i];
3532 
3533 		if (sl)
3534 			while (sl != STATE_LIST_MARK) {
3535 				sln = sl->next;
3536 				kfree(sl);
3537 				sl = sln;
3538 			}
3539 	}
3540 
3541 	kfree(env->explored_states);
3542 }
3543 
3544 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
3545 {
3546 	char __user *log_ubuf = NULL;
3547 	struct bpf_verifier_env *env;
3548 	int ret = -EINVAL;
3549 
3550 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
3551 	 * allocate/free it every time bpf_check() is called
3552 	 */
3553 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3554 	if (!env)
3555 		return -ENOMEM;
3556 
3557 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3558 				     (*prog)->len);
3559 	ret = -ENOMEM;
3560 	if (!env->insn_aux_data)
3561 		goto err_free_env;
3562 	env->prog = *prog;
3563 
3564 	/* grab the mutex to protect few globals used by verifier */
3565 	mutex_lock(&bpf_verifier_lock);
3566 
3567 	if (attr->log_level || attr->log_buf || attr->log_size) {
3568 		/* user requested verbose verifier output
3569 		 * and supplied buffer to store the verification trace
3570 		 */
3571 		log_level = attr->log_level;
3572 		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3573 		log_size = attr->log_size;
3574 		log_len = 0;
3575 
3576 		ret = -EINVAL;
3577 		/* log_* values have to be sane */
3578 		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3579 		    log_level == 0 || log_ubuf == NULL)
3580 			goto err_unlock;
3581 
3582 		ret = -ENOMEM;
3583 		log_buf = vmalloc(log_size);
3584 		if (!log_buf)
3585 			goto err_unlock;
3586 	} else {
3587 		log_level = 0;
3588 	}
3589 
3590 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
3591 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
3592 		env->strict_alignment = true;
3593 
3594 	ret = replace_map_fd_with_map_ptr(env);
3595 	if (ret < 0)
3596 		goto skip_full_check;
3597 
3598 	env->explored_states = kcalloc(env->prog->len,
3599 				       sizeof(struct bpf_verifier_state_list *),
3600 				       GFP_USER);
3601 	ret = -ENOMEM;
3602 	if (!env->explored_states)
3603 		goto skip_full_check;
3604 
3605 	ret = check_cfg(env);
3606 	if (ret < 0)
3607 		goto skip_full_check;
3608 
3609 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3610 
3611 	ret = do_check(env);
3612 
3613 skip_full_check:
3614 	while (pop_stack(env, NULL) >= 0);
3615 	free_states(env);
3616 
3617 	if (ret == 0)
3618 		/* program is valid, convert *(u32*)(ctx + off) accesses */
3619 		ret = convert_ctx_accesses(env);
3620 
3621 	if (ret == 0)
3622 		ret = fixup_bpf_calls(env);
3623 
3624 	if (log_level && log_len >= log_size - 1) {
3625 		BUG_ON(log_len >= log_size);
3626 		/* verifier log exceeded user supplied buffer */
3627 		ret = -ENOSPC;
3628 		/* fall through to return what was recorded */
3629 	}
3630 
3631 	/* copy verifier log back to user space including trailing zero */
3632 	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3633 		ret = -EFAULT;
3634 		goto free_log_buf;
3635 	}
3636 
3637 	if (ret == 0 && env->used_map_cnt) {
3638 		/* if program passed verifier, update used_maps in bpf_prog_info */
3639 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3640 							  sizeof(env->used_maps[0]),
3641 							  GFP_KERNEL);
3642 
3643 		if (!env->prog->aux->used_maps) {
3644 			ret = -ENOMEM;
3645 			goto free_log_buf;
3646 		}
3647 
3648 		memcpy(env->prog->aux->used_maps, env->used_maps,
3649 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
3650 		env->prog->aux->used_map_cnt = env->used_map_cnt;
3651 
3652 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
3653 		 * bpf_ld_imm64 instructions
3654 		 */
3655 		convert_pseudo_ld_imm64(env);
3656 	}
3657 
3658 free_log_buf:
3659 	if (log_level)
3660 		vfree(log_buf);
3661 	if (!env->prog->aux->used_maps)
3662 		/* if we didn't copy map pointers into bpf_prog_info, release
3663 		 * them now. Otherwise free_bpf_prog_info() will release them.
3664 		 */
3665 		release_maps(env);
3666 	*prog = env->prog;
3667 err_unlock:
3668 	mutex_unlock(&bpf_verifier_lock);
3669 	vfree(env->insn_aux_data);
3670 err_free_env:
3671 	kfree(env);
3672 	return ret;
3673 }
3674 
3675 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3676 		 void *priv)
3677 {
3678 	struct bpf_verifier_env *env;
3679 	int ret;
3680 
3681 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3682 	if (!env)
3683 		return -ENOMEM;
3684 
3685 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3686 				     prog->len);
3687 	ret = -ENOMEM;
3688 	if (!env->insn_aux_data)
3689 		goto err_free_env;
3690 	env->prog = prog;
3691 	env->analyzer_ops = ops;
3692 	env->analyzer_priv = priv;
3693 
3694 	/* grab the mutex to protect few globals used by verifier */
3695 	mutex_lock(&bpf_verifier_lock);
3696 
3697 	log_level = 0;
3698 
3699 	env->strict_alignment = false;
3700 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
3701 		env->strict_alignment = true;
3702 
3703 	env->explored_states = kcalloc(env->prog->len,
3704 				       sizeof(struct bpf_verifier_state_list *),
3705 				       GFP_KERNEL);
3706 	ret = -ENOMEM;
3707 	if (!env->explored_states)
3708 		goto skip_full_check;
3709 
3710 	ret = check_cfg(env);
3711 	if (ret < 0)
3712 		goto skip_full_check;
3713 
3714 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3715 
3716 	ret = do_check(env);
3717 
3718 skip_full_check:
3719 	while (pop_stack(env, NULL) >= 0);
3720 	free_states(env);
3721 
3722 	mutex_unlock(&bpf_verifier_lock);
3723 	vfree(env->insn_aux_data);
3724 err_free_env:
3725 	kfree(env);
3726 	return ret;
3727 }
3728 EXPORT_SYMBOL_GPL(bpf_analyzer);
3729