xref: /linux/kernel/bpf/verifier.c (revision 995231c820e3bd3633cb38bf4ea6f2541e1da331)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 
24 #include "disasm.h"
25 
26 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27 #define BPF_PROG_TYPE(_id, _name) \
28 	[_id] = & _name ## _verifier_ops,
29 #define BPF_MAP_TYPE(_id, _ops)
30 #include <linux/bpf_types.h>
31 #undef BPF_PROG_TYPE
32 #undef BPF_MAP_TYPE
33 };
34 
35 /* bpf_check() is a static code analyzer that walks eBPF program
36  * instruction by instruction and updates register/stack state.
37  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38  *
39  * The first pass is depth-first-search to check that the program is a DAG.
40  * It rejects the following programs:
41  * - larger than BPF_MAXINSNS insns
42  * - if loop is present (detected via back-edge)
43  * - unreachable insns exist (shouldn't be a forest. program = one function)
44  * - out of bounds or malformed jumps
45  * The second pass is all possible path descent from the 1st insn.
46  * Since it's analyzing all pathes through the program, the length of the
47  * analysis is limited to 64k insn, which may be hit even if total number of
48  * insn is less then 4K, but there are too many branches that change stack/regs.
49  * Number of 'branches to be analyzed' is limited to 1k
50  *
51  * On entry to each instruction, each register has a type, and the instruction
52  * changes the types of the registers depending on instruction semantics.
53  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54  * copied to R1.
55  *
56  * All registers are 64-bit.
57  * R0 - return register
58  * R1-R5 argument passing registers
59  * R6-R9 callee saved registers
60  * R10 - frame pointer read-only
61  *
62  * At the start of BPF program the register R1 contains a pointer to bpf_context
63  * and has type PTR_TO_CTX.
64  *
65  * Verifier tracks arithmetic operations on pointers in case:
66  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68  * 1st insn copies R10 (which has FRAME_PTR) type into R1
69  * and 2nd arithmetic instruction is pattern matched to recognize
70  * that it wants to construct a pointer to some element within stack.
71  * So after 2nd insn, the register R1 has type PTR_TO_STACK
72  * (and -20 constant is saved for further stack bounds checking).
73  * Meaning that this reg is a pointer to stack plus known immediate constant.
74  *
75  * Most of the time the registers have SCALAR_VALUE type, which
76  * means the register has some value, but it's not a valid pointer.
77  * (like pointer plus pointer becomes SCALAR_VALUE type)
78  *
79  * When verifier sees load or store instructions the type of base register
80  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
81  * types recognized by check_mem_access() function.
82  *
83  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84  * and the range of [ptr, ptr + map's value_size) is accessible.
85  *
86  * registers used to pass values to function calls are checked against
87  * function argument constraints.
88  *
89  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90  * It means that the register type passed to this function must be
91  * PTR_TO_STACK and it will be used inside the function as
92  * 'pointer to map element key'
93  *
94  * For example the argument constraints for bpf_map_lookup_elem():
95  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96  *   .arg1_type = ARG_CONST_MAP_PTR,
97  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
98  *
99  * ret_type says that this function returns 'pointer to map elem value or null'
100  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101  * 2nd argument should be a pointer to stack, which will be used inside
102  * the helper function as a pointer to map element key.
103  *
104  * On the kernel side the helper function looks like:
105  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106  * {
107  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108  *    void *key = (void *) (unsigned long) r2;
109  *    void *value;
110  *
111  *    here kernel can access 'key' and 'map' pointers safely, knowing that
112  *    [key, key + map->key_size) bytes are valid and were initialized on
113  *    the stack of eBPF program.
114  * }
115  *
116  * Corresponding eBPF program may look like:
117  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
118  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
120  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121  * here verifier looks at prototype of map_lookup_elem() and sees:
122  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124  *
125  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127  * and were initialized prior to this call.
128  * If it's ok, then verifier allows this BPF_CALL insn and looks at
129  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131  * returns ether pointer to map value or NULL.
132  *
133  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134  * insn, the register holding that pointer in the true branch changes state to
135  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136  * branch. See check_cond_jmp_op().
137  *
138  * After the call R0 is set to return type of the function and registers R1-R5
139  * are set to NOT_INIT to indicate that they are no longer readable.
140  */
141 
142 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
143 struct bpf_verifier_stack_elem {
144 	/* verifer state is 'st'
145 	 * before processing instruction 'insn_idx'
146 	 * and after processing instruction 'prev_insn_idx'
147 	 */
148 	struct bpf_verifier_state st;
149 	int insn_idx;
150 	int prev_insn_idx;
151 	struct bpf_verifier_stack_elem *next;
152 };
153 
154 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
155 #define BPF_COMPLEXITY_LIMIT_STACK	1024
156 
157 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158 
159 struct bpf_call_arg_meta {
160 	struct bpf_map *map_ptr;
161 	bool raw_mode;
162 	bool pkt_access;
163 	int regno;
164 	int access_size;
165 };
166 
167 static DEFINE_MUTEX(bpf_verifier_lock);
168 
169 /* log_level controls verbosity level of eBPF verifier.
170  * verbose() is used to dump the verification trace to the log, so the user
171  * can figure out what's wrong with the program
172  */
173 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 				   const char *fmt, ...)
175 {
176 	struct bpf_verifer_log *log = &env->log;
177 	unsigned int n;
178 	va_list args;
179 
180 	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 		return;
182 
183 	va_start(args, fmt);
184 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185 	va_end(args);
186 
187 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 		  "verifier log line truncated - local buffer too short\n");
189 
190 	n = min(log->len_total - log->len_used - 1, n);
191 	log->kbuf[n] = '\0';
192 
193 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 		log->len_used += n;
195 	else
196 		log->ubuf = NULL;
197 }
198 
199 static bool type_is_pkt_pointer(enum bpf_reg_type type)
200 {
201 	return type == PTR_TO_PACKET ||
202 	       type == PTR_TO_PACKET_META;
203 }
204 
205 /* string representation of 'enum bpf_reg_type' */
206 static const char * const reg_type_str[] = {
207 	[NOT_INIT]		= "?",
208 	[SCALAR_VALUE]		= "inv",
209 	[PTR_TO_CTX]		= "ctx",
210 	[CONST_PTR_TO_MAP]	= "map_ptr",
211 	[PTR_TO_MAP_VALUE]	= "map_value",
212 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
213 	[PTR_TO_STACK]		= "fp",
214 	[PTR_TO_PACKET]		= "pkt",
215 	[PTR_TO_PACKET_META]	= "pkt_meta",
216 	[PTR_TO_PACKET_END]	= "pkt_end",
217 };
218 
219 static void print_verifier_state(struct bpf_verifier_env *env,
220 				 struct bpf_verifier_state *state)
221 {
222 	struct bpf_reg_state *reg;
223 	enum bpf_reg_type t;
224 	int i;
225 
226 	for (i = 0; i < MAX_BPF_REG; i++) {
227 		reg = &state->regs[i];
228 		t = reg->type;
229 		if (t == NOT_INIT)
230 			continue;
231 		verbose(env, " R%d=%s", i, reg_type_str[t]);
232 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 		    tnum_is_const(reg->var_off)) {
234 			/* reg->off should be 0 for SCALAR_VALUE */
235 			verbose(env, "%lld", reg->var_off.value + reg->off);
236 		} else {
237 			verbose(env, "(id=%d", reg->id);
238 			if (t != SCALAR_VALUE)
239 				verbose(env, ",off=%d", reg->off);
240 			if (type_is_pkt_pointer(t))
241 				verbose(env, ",r=%d", reg->range);
242 			else if (t == CONST_PTR_TO_MAP ||
243 				 t == PTR_TO_MAP_VALUE ||
244 				 t == PTR_TO_MAP_VALUE_OR_NULL)
245 				verbose(env, ",ks=%d,vs=%d",
246 					reg->map_ptr->key_size,
247 					reg->map_ptr->value_size);
248 			if (tnum_is_const(reg->var_off)) {
249 				/* Typically an immediate SCALAR_VALUE, but
250 				 * could be a pointer whose offset is too big
251 				 * for reg->off
252 				 */
253 				verbose(env, ",imm=%llx", reg->var_off.value);
254 			} else {
255 				if (reg->smin_value != reg->umin_value &&
256 				    reg->smin_value != S64_MIN)
257 					verbose(env, ",smin_value=%lld",
258 						(long long)reg->smin_value);
259 				if (reg->smax_value != reg->umax_value &&
260 				    reg->smax_value != S64_MAX)
261 					verbose(env, ",smax_value=%lld",
262 						(long long)reg->smax_value);
263 				if (reg->umin_value != 0)
264 					verbose(env, ",umin_value=%llu",
265 						(unsigned long long)reg->umin_value);
266 				if (reg->umax_value != U64_MAX)
267 					verbose(env, ",umax_value=%llu",
268 						(unsigned long long)reg->umax_value);
269 				if (!tnum_is_unknown(reg->var_off)) {
270 					char tn_buf[48];
271 
272 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273 					verbose(env, ",var_off=%s", tn_buf);
274 				}
275 			}
276 			verbose(env, ")");
277 		}
278 	}
279 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
280 		if (state->stack_slot_type[i] == STACK_SPILL)
281 			verbose(env, " fp%d=%s", -MAX_BPF_STACK + i,
282 				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
283 	}
284 	verbose(env, "\n");
285 }
286 
287 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
288 {
289 	struct bpf_verifier_stack_elem *elem;
290 	int insn_idx;
291 
292 	if (env->head == NULL)
293 		return -1;
294 
295 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
296 	insn_idx = env->head->insn_idx;
297 	if (prev_insn_idx)
298 		*prev_insn_idx = env->head->prev_insn_idx;
299 	elem = env->head->next;
300 	kfree(env->head);
301 	env->head = elem;
302 	env->stack_size--;
303 	return insn_idx;
304 }
305 
306 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
307 					     int insn_idx, int prev_insn_idx)
308 {
309 	struct bpf_verifier_stack_elem *elem;
310 
311 	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
312 	if (!elem)
313 		goto err;
314 
315 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
316 	elem->insn_idx = insn_idx;
317 	elem->prev_insn_idx = prev_insn_idx;
318 	elem->next = env->head;
319 	env->head = elem;
320 	env->stack_size++;
321 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
322 		verbose(env, "BPF program is too complex\n");
323 		goto err;
324 	}
325 	return &elem->st;
326 err:
327 	/* pop all elements and return */
328 	while (pop_stack(env, NULL) >= 0);
329 	return NULL;
330 }
331 
332 #define CALLER_SAVED_REGS 6
333 static const int caller_saved[CALLER_SAVED_REGS] = {
334 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
335 };
336 
337 static void __mark_reg_not_init(struct bpf_reg_state *reg);
338 
339 /* Mark the unknown part of a register (variable offset or scalar value) as
340  * known to have the value @imm.
341  */
342 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
343 {
344 	reg->id = 0;
345 	reg->var_off = tnum_const(imm);
346 	reg->smin_value = (s64)imm;
347 	reg->smax_value = (s64)imm;
348 	reg->umin_value = imm;
349 	reg->umax_value = imm;
350 }
351 
352 /* Mark the 'variable offset' part of a register as zero.  This should be
353  * used only on registers holding a pointer type.
354  */
355 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
356 {
357 	__mark_reg_known(reg, 0);
358 }
359 
360 static void mark_reg_known_zero(struct bpf_verifier_env *env,
361 				struct bpf_reg_state *regs, u32 regno)
362 {
363 	if (WARN_ON(regno >= MAX_BPF_REG)) {
364 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
365 		/* Something bad happened, let's kill all regs */
366 		for (regno = 0; regno < MAX_BPF_REG; regno++)
367 			__mark_reg_not_init(regs + regno);
368 		return;
369 	}
370 	__mark_reg_known_zero(regs + regno);
371 }
372 
373 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
374 {
375 	return type_is_pkt_pointer(reg->type);
376 }
377 
378 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
379 {
380 	return reg_is_pkt_pointer(reg) ||
381 	       reg->type == PTR_TO_PACKET_END;
382 }
383 
384 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
385 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
386 				    enum bpf_reg_type which)
387 {
388 	/* The register can already have a range from prior markings.
389 	 * This is fine as long as it hasn't been advanced from its
390 	 * origin.
391 	 */
392 	return reg->type == which &&
393 	       reg->id == 0 &&
394 	       reg->off == 0 &&
395 	       tnum_equals_const(reg->var_off, 0);
396 }
397 
398 /* Attempts to improve min/max values based on var_off information */
399 static void __update_reg_bounds(struct bpf_reg_state *reg)
400 {
401 	/* min signed is max(sign bit) | min(other bits) */
402 	reg->smin_value = max_t(s64, reg->smin_value,
403 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
404 	/* max signed is min(sign bit) | max(other bits) */
405 	reg->smax_value = min_t(s64, reg->smax_value,
406 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
407 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
408 	reg->umax_value = min(reg->umax_value,
409 			      reg->var_off.value | reg->var_off.mask);
410 }
411 
412 /* Uses signed min/max values to inform unsigned, and vice-versa */
413 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
414 {
415 	/* Learn sign from signed bounds.
416 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
417 	 * are the same, so combine.  This works even in the negative case, e.g.
418 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
419 	 */
420 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
421 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
422 							  reg->umin_value);
423 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
424 							  reg->umax_value);
425 		return;
426 	}
427 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
428 	 * boundary, so we must be careful.
429 	 */
430 	if ((s64)reg->umax_value >= 0) {
431 		/* Positive.  We can't learn anything from the smin, but smax
432 		 * is positive, hence safe.
433 		 */
434 		reg->smin_value = reg->umin_value;
435 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
436 							  reg->umax_value);
437 	} else if ((s64)reg->umin_value < 0) {
438 		/* Negative.  We can't learn anything from the smax, but smin
439 		 * is negative, hence safe.
440 		 */
441 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
442 							  reg->umin_value);
443 		reg->smax_value = reg->umax_value;
444 	}
445 }
446 
447 /* Attempts to improve var_off based on unsigned min/max information */
448 static void __reg_bound_offset(struct bpf_reg_state *reg)
449 {
450 	reg->var_off = tnum_intersect(reg->var_off,
451 				      tnum_range(reg->umin_value,
452 						 reg->umax_value));
453 }
454 
455 /* Reset the min/max bounds of a register */
456 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
457 {
458 	reg->smin_value = S64_MIN;
459 	reg->smax_value = S64_MAX;
460 	reg->umin_value = 0;
461 	reg->umax_value = U64_MAX;
462 }
463 
464 /* Mark a register as having a completely unknown (scalar) value. */
465 static void __mark_reg_unknown(struct bpf_reg_state *reg)
466 {
467 	reg->type = SCALAR_VALUE;
468 	reg->id = 0;
469 	reg->off = 0;
470 	reg->var_off = tnum_unknown;
471 	__mark_reg_unbounded(reg);
472 }
473 
474 static void mark_reg_unknown(struct bpf_verifier_env *env,
475 			     struct bpf_reg_state *regs, u32 regno)
476 {
477 	if (WARN_ON(regno >= MAX_BPF_REG)) {
478 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
479 		/* Something bad happened, let's kill all regs */
480 		for (regno = 0; regno < MAX_BPF_REG; regno++)
481 			__mark_reg_not_init(regs + regno);
482 		return;
483 	}
484 	__mark_reg_unknown(regs + regno);
485 }
486 
487 static void __mark_reg_not_init(struct bpf_reg_state *reg)
488 {
489 	__mark_reg_unknown(reg);
490 	reg->type = NOT_INIT;
491 }
492 
493 static void mark_reg_not_init(struct bpf_verifier_env *env,
494 			      struct bpf_reg_state *regs, u32 regno)
495 {
496 	if (WARN_ON(regno >= MAX_BPF_REG)) {
497 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
498 		/* Something bad happened, let's kill all regs */
499 		for (regno = 0; regno < MAX_BPF_REG; regno++)
500 			__mark_reg_not_init(regs + regno);
501 		return;
502 	}
503 	__mark_reg_not_init(regs + regno);
504 }
505 
506 static void init_reg_state(struct bpf_verifier_env *env,
507 			   struct bpf_reg_state *regs)
508 {
509 	int i;
510 
511 	for (i = 0; i < MAX_BPF_REG; i++) {
512 		mark_reg_not_init(env, regs, i);
513 		regs[i].live = REG_LIVE_NONE;
514 	}
515 
516 	/* frame pointer */
517 	regs[BPF_REG_FP].type = PTR_TO_STACK;
518 	mark_reg_known_zero(env, regs, BPF_REG_FP);
519 
520 	/* 1st arg to a function */
521 	regs[BPF_REG_1].type = PTR_TO_CTX;
522 	mark_reg_known_zero(env, regs, BPF_REG_1);
523 }
524 
525 enum reg_arg_type {
526 	SRC_OP,		/* register is used as source operand */
527 	DST_OP,		/* register is used as destination operand */
528 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
529 };
530 
531 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
532 {
533 	struct bpf_verifier_state *parent = state->parent;
534 
535 	if (regno == BPF_REG_FP)
536 		/* We don't need to worry about FP liveness because it's read-only */
537 		return;
538 
539 	while (parent) {
540 		/* if read wasn't screened by an earlier write ... */
541 		if (state->regs[regno].live & REG_LIVE_WRITTEN)
542 			break;
543 		/* ... then we depend on parent's value */
544 		parent->regs[regno].live |= REG_LIVE_READ;
545 		state = parent;
546 		parent = state->parent;
547 	}
548 }
549 
550 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
551 			 enum reg_arg_type t)
552 {
553 	struct bpf_reg_state *regs = env->cur_state.regs;
554 
555 	if (regno >= MAX_BPF_REG) {
556 		verbose(env, "R%d is invalid\n", regno);
557 		return -EINVAL;
558 	}
559 
560 	if (t == SRC_OP) {
561 		/* check whether register used as source operand can be read */
562 		if (regs[regno].type == NOT_INIT) {
563 			verbose(env, "R%d !read_ok\n", regno);
564 			return -EACCES;
565 		}
566 		mark_reg_read(&env->cur_state, regno);
567 	} else {
568 		/* check whether register used as dest operand can be written to */
569 		if (regno == BPF_REG_FP) {
570 			verbose(env, "frame pointer is read only\n");
571 			return -EACCES;
572 		}
573 		regs[regno].live |= REG_LIVE_WRITTEN;
574 		if (t == DST_OP)
575 			mark_reg_unknown(env, regs, regno);
576 	}
577 	return 0;
578 }
579 
580 static bool is_spillable_regtype(enum bpf_reg_type type)
581 {
582 	switch (type) {
583 	case PTR_TO_MAP_VALUE:
584 	case PTR_TO_MAP_VALUE_OR_NULL:
585 	case PTR_TO_STACK:
586 	case PTR_TO_CTX:
587 	case PTR_TO_PACKET:
588 	case PTR_TO_PACKET_META:
589 	case PTR_TO_PACKET_END:
590 	case CONST_PTR_TO_MAP:
591 		return true;
592 	default:
593 		return false;
594 	}
595 }
596 
597 /* check_stack_read/write functions track spill/fill of registers,
598  * stack boundary and alignment are checked in check_mem_access()
599  */
600 static int check_stack_write(struct bpf_verifier_env *env,
601 			     struct bpf_verifier_state *state, int off,
602 			     int size, int value_regno)
603 {
604 	int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
605 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
606 	 * so it's aligned access and [off, off + size) are within stack limits
607 	 */
608 
609 	if (value_regno >= 0 &&
610 	    is_spillable_regtype(state->regs[value_regno].type)) {
611 
612 		/* register containing pointer is being spilled into stack */
613 		if (size != BPF_REG_SIZE) {
614 			verbose(env, "invalid size of register spill\n");
615 			return -EACCES;
616 		}
617 
618 		/* save register state */
619 		state->spilled_regs[spi] = state->regs[value_regno];
620 		state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
621 
622 		for (i = 0; i < BPF_REG_SIZE; i++)
623 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
624 	} else {
625 		/* regular write of data into stack */
626 		state->spilled_regs[spi] = (struct bpf_reg_state) {};
627 
628 		for (i = 0; i < size; i++)
629 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
630 	}
631 	return 0;
632 }
633 
634 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
635 {
636 	struct bpf_verifier_state *parent = state->parent;
637 
638 	while (parent) {
639 		/* if read wasn't screened by an earlier write ... */
640 		if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
641 			break;
642 		/* ... then we depend on parent's value */
643 		parent->spilled_regs[slot].live |= REG_LIVE_READ;
644 		state = parent;
645 		parent = state->parent;
646 	}
647 }
648 
649 static int check_stack_read(struct bpf_verifier_env *env,
650 			    struct bpf_verifier_state *state, int off, int size,
651 			    int value_regno)
652 {
653 	u8 *slot_type;
654 	int i, spi;
655 
656 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
657 
658 	if (slot_type[0] == STACK_SPILL) {
659 		if (size != BPF_REG_SIZE) {
660 			verbose(env, "invalid size of register spill\n");
661 			return -EACCES;
662 		}
663 		for (i = 1; i < BPF_REG_SIZE; i++) {
664 			if (slot_type[i] != STACK_SPILL) {
665 				verbose(env, "corrupted spill memory\n");
666 				return -EACCES;
667 			}
668 		}
669 
670 		spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
671 
672 		if (value_regno >= 0) {
673 			/* restore register state from stack */
674 			state->regs[value_regno] = state->spilled_regs[spi];
675 			mark_stack_slot_read(state, spi);
676 		}
677 		return 0;
678 	} else {
679 		for (i = 0; i < size; i++) {
680 			if (slot_type[i] != STACK_MISC) {
681 				verbose(env, "invalid read from stack off %d+%d size %d\n",
682 					off, i, size);
683 				return -EACCES;
684 			}
685 		}
686 		if (value_regno >= 0)
687 			/* have read misc data from the stack */
688 			mark_reg_unknown(env, state->regs, value_regno);
689 		return 0;
690 	}
691 }
692 
693 /* check read/write into map element returned by bpf_map_lookup_elem() */
694 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
695 			    int size)
696 {
697 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
698 
699 	if (off < 0 || size <= 0 || off + size > map->value_size) {
700 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
701 			map->value_size, off, size);
702 		return -EACCES;
703 	}
704 	return 0;
705 }
706 
707 /* check read/write into a map element with possible variable offset */
708 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
709 				int off, int size)
710 {
711 	struct bpf_verifier_state *state = &env->cur_state;
712 	struct bpf_reg_state *reg = &state->regs[regno];
713 	int err;
714 
715 	/* We may have adjusted the register to this map value, so we
716 	 * need to try adding each of min_value and max_value to off
717 	 * to make sure our theoretical access will be safe.
718 	 */
719 	if (env->log.level)
720 		print_verifier_state(env, state);
721 	/* The minimum value is only important with signed
722 	 * comparisons where we can't assume the floor of a
723 	 * value is 0.  If we are using signed variables for our
724 	 * index'es we need to make sure that whatever we use
725 	 * will have a set floor within our range.
726 	 */
727 	if (reg->smin_value < 0) {
728 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
729 			regno);
730 		return -EACCES;
731 	}
732 	err = __check_map_access(env, regno, reg->smin_value + off, size);
733 	if (err) {
734 		verbose(env, "R%d min value is outside of the array range\n",
735 			regno);
736 		return err;
737 	}
738 
739 	/* If we haven't set a max value then we need to bail since we can't be
740 	 * sure we won't do bad things.
741 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
742 	 */
743 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
744 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
745 			regno);
746 		return -EACCES;
747 	}
748 	err = __check_map_access(env, regno, reg->umax_value + off, size);
749 	if (err)
750 		verbose(env, "R%d max value is outside of the array range\n",
751 			regno);
752 	return err;
753 }
754 
755 #define MAX_PACKET_OFF 0xffff
756 
757 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
758 				       const struct bpf_call_arg_meta *meta,
759 				       enum bpf_access_type t)
760 {
761 	switch (env->prog->type) {
762 	case BPF_PROG_TYPE_LWT_IN:
763 	case BPF_PROG_TYPE_LWT_OUT:
764 		/* dst_input() and dst_output() can't write for now */
765 		if (t == BPF_WRITE)
766 			return false;
767 		/* fallthrough */
768 	case BPF_PROG_TYPE_SCHED_CLS:
769 	case BPF_PROG_TYPE_SCHED_ACT:
770 	case BPF_PROG_TYPE_XDP:
771 	case BPF_PROG_TYPE_LWT_XMIT:
772 	case BPF_PROG_TYPE_SK_SKB:
773 		if (meta)
774 			return meta->pkt_access;
775 
776 		env->seen_direct_write = true;
777 		return true;
778 	default:
779 		return false;
780 	}
781 }
782 
783 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
784 				 int off, int size)
785 {
786 	struct bpf_reg_state *regs = env->cur_state.regs;
787 	struct bpf_reg_state *reg = &regs[regno];
788 
789 	if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
790 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
791 			off, size, regno, reg->id, reg->off, reg->range);
792 		return -EACCES;
793 	}
794 	return 0;
795 }
796 
797 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
798 			       int size)
799 {
800 	struct bpf_reg_state *regs = env->cur_state.regs;
801 	struct bpf_reg_state *reg = &regs[regno];
802 	int err;
803 
804 	/* We may have added a variable offset to the packet pointer; but any
805 	 * reg->range we have comes after that.  We are only checking the fixed
806 	 * offset.
807 	 */
808 
809 	/* We don't allow negative numbers, because we aren't tracking enough
810 	 * detail to prove they're safe.
811 	 */
812 	if (reg->smin_value < 0) {
813 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
814 			regno);
815 		return -EACCES;
816 	}
817 	err = __check_packet_access(env, regno, off, size);
818 	if (err) {
819 		verbose(env, "R%d offset is outside of the packet\n", regno);
820 		return err;
821 	}
822 	return err;
823 }
824 
825 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
826 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
827 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
828 {
829 	struct bpf_insn_access_aux info = {
830 		.reg_type = *reg_type,
831 	};
832 
833 	if (env->ops->is_valid_access &&
834 	    env->ops->is_valid_access(off, size, t, &info)) {
835 		/* A non zero info.ctx_field_size indicates that this field is a
836 		 * candidate for later verifier transformation to load the whole
837 		 * field and then apply a mask when accessed with a narrower
838 		 * access than actual ctx access size. A zero info.ctx_field_size
839 		 * will only allow for whole field access and rejects any other
840 		 * type of narrower access.
841 		 */
842 		*reg_type = info.reg_type;
843 
844 		if (env->analyzer_ops)
845 			return 0;
846 
847 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
848 		/* remember the offset of last byte accessed in ctx */
849 		if (env->prog->aux->max_ctx_offset < off + size)
850 			env->prog->aux->max_ctx_offset = off + size;
851 		return 0;
852 	}
853 
854 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
855 	return -EACCES;
856 }
857 
858 static bool __is_pointer_value(bool allow_ptr_leaks,
859 			       const struct bpf_reg_state *reg)
860 {
861 	if (allow_ptr_leaks)
862 		return false;
863 
864 	return reg->type != SCALAR_VALUE;
865 }
866 
867 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
868 {
869 	return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
870 }
871 
872 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
873 				   const struct bpf_reg_state *reg,
874 				   int off, int size, bool strict)
875 {
876 	struct tnum reg_off;
877 	int ip_align;
878 
879 	/* Byte size accesses are always allowed. */
880 	if (!strict || size == 1)
881 		return 0;
882 
883 	/* For platforms that do not have a Kconfig enabling
884 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
885 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
886 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
887 	 * to this code only in strict mode where we want to emulate
888 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
889 	 * unconditional IP align value of '2'.
890 	 */
891 	ip_align = 2;
892 
893 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
894 	if (!tnum_is_aligned(reg_off, size)) {
895 		char tn_buf[48];
896 
897 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
898 		verbose(env,
899 			"misaligned packet access off %d+%s+%d+%d size %d\n",
900 			ip_align, tn_buf, reg->off, off, size);
901 		return -EACCES;
902 	}
903 
904 	return 0;
905 }
906 
907 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
908 				       const struct bpf_reg_state *reg,
909 				       const char *pointer_desc,
910 				       int off, int size, bool strict)
911 {
912 	struct tnum reg_off;
913 
914 	/* Byte size accesses are always allowed. */
915 	if (!strict || size == 1)
916 		return 0;
917 
918 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
919 	if (!tnum_is_aligned(reg_off, size)) {
920 		char tn_buf[48];
921 
922 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
923 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
924 			pointer_desc, tn_buf, reg->off, off, size);
925 		return -EACCES;
926 	}
927 
928 	return 0;
929 }
930 
931 static int check_ptr_alignment(struct bpf_verifier_env *env,
932 			       const struct bpf_reg_state *reg,
933 			       int off, int size)
934 {
935 	bool strict = env->strict_alignment;
936 	const char *pointer_desc = "";
937 
938 	switch (reg->type) {
939 	case PTR_TO_PACKET:
940 	case PTR_TO_PACKET_META:
941 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
942 		 * right in front, treat it the very same way.
943 		 */
944 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
945 	case PTR_TO_MAP_VALUE:
946 		pointer_desc = "value ";
947 		break;
948 	case PTR_TO_CTX:
949 		pointer_desc = "context ";
950 		break;
951 	case PTR_TO_STACK:
952 		pointer_desc = "stack ";
953 		break;
954 	default:
955 		break;
956 	}
957 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
958 					   strict);
959 }
960 
961 /* check whether memory at (regno + off) is accessible for t = (read | write)
962  * if t==write, value_regno is a register which value is stored into memory
963  * if t==read, value_regno is a register which will receive the value from memory
964  * if t==write && value_regno==-1, some unknown value is stored into memory
965  * if t==read && value_regno==-1, don't care what we read from memory
966  */
967 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
968 			    int bpf_size, enum bpf_access_type t,
969 			    int value_regno)
970 {
971 	struct bpf_verifier_state *state = &env->cur_state;
972 	struct bpf_reg_state *reg = &state->regs[regno];
973 	int size, err = 0;
974 
975 	size = bpf_size_to_bytes(bpf_size);
976 	if (size < 0)
977 		return size;
978 
979 	/* alignment checks will add in reg->off themselves */
980 	err = check_ptr_alignment(env, reg, off, size);
981 	if (err)
982 		return err;
983 
984 	/* for access checks, reg->off is just part of off */
985 	off += reg->off;
986 
987 	if (reg->type == PTR_TO_MAP_VALUE) {
988 		if (t == BPF_WRITE && value_regno >= 0 &&
989 		    is_pointer_value(env, value_regno)) {
990 			verbose(env, "R%d leaks addr into map\n", value_regno);
991 			return -EACCES;
992 		}
993 
994 		err = check_map_access(env, regno, off, size);
995 		if (!err && t == BPF_READ && value_regno >= 0)
996 			mark_reg_unknown(env, state->regs, value_regno);
997 
998 	} else if (reg->type == PTR_TO_CTX) {
999 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1000 
1001 		if (t == BPF_WRITE && value_regno >= 0 &&
1002 		    is_pointer_value(env, value_regno)) {
1003 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1004 			return -EACCES;
1005 		}
1006 		/* ctx accesses must be at a fixed offset, so that we can
1007 		 * determine what type of data were returned.
1008 		 */
1009 		if (reg->off) {
1010 			verbose(env,
1011 				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1012 				regno, reg->off, off - reg->off);
1013 			return -EACCES;
1014 		}
1015 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1016 			char tn_buf[48];
1017 
1018 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1019 			verbose(env,
1020 				"variable ctx access var_off=%s off=%d size=%d",
1021 				tn_buf, off, size);
1022 			return -EACCES;
1023 		}
1024 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1025 		if (!err && t == BPF_READ && value_regno >= 0) {
1026 			/* ctx access returns either a scalar, or a
1027 			 * PTR_TO_PACKET[_META,_END]. In the latter
1028 			 * case, we know the offset is zero.
1029 			 */
1030 			if (reg_type == SCALAR_VALUE)
1031 				mark_reg_unknown(env, state->regs, value_regno);
1032 			else
1033 				mark_reg_known_zero(env, state->regs,
1034 						    value_regno);
1035 			state->regs[value_regno].id = 0;
1036 			state->regs[value_regno].off = 0;
1037 			state->regs[value_regno].range = 0;
1038 			state->regs[value_regno].type = reg_type;
1039 		}
1040 
1041 	} else if (reg->type == PTR_TO_STACK) {
1042 		/* stack accesses must be at a fixed offset, so that we can
1043 		 * determine what type of data were returned.
1044 		 * See check_stack_read().
1045 		 */
1046 		if (!tnum_is_const(reg->var_off)) {
1047 			char tn_buf[48];
1048 
1049 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1050 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1051 				tn_buf, off, size);
1052 			return -EACCES;
1053 		}
1054 		off += reg->var_off.value;
1055 		if (off >= 0 || off < -MAX_BPF_STACK) {
1056 			verbose(env, "invalid stack off=%d size=%d\n", off,
1057 				size);
1058 			return -EACCES;
1059 		}
1060 
1061 		if (env->prog->aux->stack_depth < -off)
1062 			env->prog->aux->stack_depth = -off;
1063 
1064 		if (t == BPF_WRITE) {
1065 			if (!env->allow_ptr_leaks &&
1066 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
1067 			    size != BPF_REG_SIZE) {
1068 				verbose(env, "attempt to corrupt spilled pointer on stack\n");
1069 				return -EACCES;
1070 			}
1071 			err = check_stack_write(env, state, off, size,
1072 						value_regno);
1073 		} else {
1074 			err = check_stack_read(env, state, off, size,
1075 					       value_regno);
1076 		}
1077 	} else if (reg_is_pkt_pointer(reg)) {
1078 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1079 			verbose(env, "cannot write into packet\n");
1080 			return -EACCES;
1081 		}
1082 		if (t == BPF_WRITE && value_regno >= 0 &&
1083 		    is_pointer_value(env, value_regno)) {
1084 			verbose(env, "R%d leaks addr into packet\n",
1085 				value_regno);
1086 			return -EACCES;
1087 		}
1088 		err = check_packet_access(env, regno, off, size);
1089 		if (!err && t == BPF_READ && value_regno >= 0)
1090 			mark_reg_unknown(env, state->regs, value_regno);
1091 	} else {
1092 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1093 			reg_type_str[reg->type]);
1094 		return -EACCES;
1095 	}
1096 
1097 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1098 	    state->regs[value_regno].type == SCALAR_VALUE) {
1099 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1100 		state->regs[value_regno].var_off = tnum_cast(
1101 					state->regs[value_regno].var_off, size);
1102 		__update_reg_bounds(&state->regs[value_regno]);
1103 	}
1104 	return err;
1105 }
1106 
1107 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1108 {
1109 	int err;
1110 
1111 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1112 	    insn->imm != 0) {
1113 		verbose(env, "BPF_XADD uses reserved fields\n");
1114 		return -EINVAL;
1115 	}
1116 
1117 	/* check src1 operand */
1118 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1119 	if (err)
1120 		return err;
1121 
1122 	/* check src2 operand */
1123 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1124 	if (err)
1125 		return err;
1126 
1127 	if (is_pointer_value(env, insn->src_reg)) {
1128 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1129 		return -EACCES;
1130 	}
1131 
1132 	/* check whether atomic_add can read the memory */
1133 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1134 			       BPF_SIZE(insn->code), BPF_READ, -1);
1135 	if (err)
1136 		return err;
1137 
1138 	/* check whether atomic_add can write into the same memory */
1139 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1140 				BPF_SIZE(insn->code), BPF_WRITE, -1);
1141 }
1142 
1143 /* Does this register contain a constant zero? */
1144 static bool register_is_null(struct bpf_reg_state reg)
1145 {
1146 	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1147 }
1148 
1149 /* when register 'regno' is passed into function that will read 'access_size'
1150  * bytes from that pointer, make sure that it's within stack boundary
1151  * and all elements of stack are initialized.
1152  * Unlike most pointer bounds-checking functions, this one doesn't take an
1153  * 'off' argument, so it has to add in reg->off itself.
1154  */
1155 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1156 				int access_size, bool zero_size_allowed,
1157 				struct bpf_call_arg_meta *meta)
1158 {
1159 	struct bpf_verifier_state *state = &env->cur_state;
1160 	struct bpf_reg_state *regs = state->regs;
1161 	int off, i;
1162 
1163 	if (regs[regno].type != PTR_TO_STACK) {
1164 		/* Allow zero-byte read from NULL, regardless of pointer type */
1165 		if (zero_size_allowed && access_size == 0 &&
1166 		    register_is_null(regs[regno]))
1167 			return 0;
1168 
1169 		verbose(env, "R%d type=%s expected=%s\n", regno,
1170 			reg_type_str[regs[regno].type],
1171 			reg_type_str[PTR_TO_STACK]);
1172 		return -EACCES;
1173 	}
1174 
1175 	/* Only allow fixed-offset stack reads */
1176 	if (!tnum_is_const(regs[regno].var_off)) {
1177 		char tn_buf[48];
1178 
1179 		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1180 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1181 			regno, tn_buf);
1182 	}
1183 	off = regs[regno].off + regs[regno].var_off.value;
1184 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1185 	    access_size <= 0) {
1186 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1187 			regno, off, access_size);
1188 		return -EACCES;
1189 	}
1190 
1191 	if (env->prog->aux->stack_depth < -off)
1192 		env->prog->aux->stack_depth = -off;
1193 
1194 	if (meta && meta->raw_mode) {
1195 		meta->access_size = access_size;
1196 		meta->regno = regno;
1197 		return 0;
1198 	}
1199 
1200 	for (i = 0; i < access_size; i++) {
1201 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1202 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1203 				off, i, access_size);
1204 			return -EACCES;
1205 		}
1206 	}
1207 	return 0;
1208 }
1209 
1210 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1211 				   int access_size, bool zero_size_allowed,
1212 				   struct bpf_call_arg_meta *meta)
1213 {
1214 	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1215 
1216 	switch (reg->type) {
1217 	case PTR_TO_PACKET:
1218 	case PTR_TO_PACKET_META:
1219 		return check_packet_access(env, regno, reg->off, access_size);
1220 	case PTR_TO_MAP_VALUE:
1221 		return check_map_access(env, regno, reg->off, access_size);
1222 	default: /* scalar_value|ptr_to_stack or invalid ptr */
1223 		return check_stack_boundary(env, regno, access_size,
1224 					    zero_size_allowed, meta);
1225 	}
1226 }
1227 
1228 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1229 			  enum bpf_arg_type arg_type,
1230 			  struct bpf_call_arg_meta *meta)
1231 {
1232 	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1233 	enum bpf_reg_type expected_type, type = reg->type;
1234 	int err = 0;
1235 
1236 	if (arg_type == ARG_DONTCARE)
1237 		return 0;
1238 
1239 	err = check_reg_arg(env, regno, SRC_OP);
1240 	if (err)
1241 		return err;
1242 
1243 	if (arg_type == ARG_ANYTHING) {
1244 		if (is_pointer_value(env, regno)) {
1245 			verbose(env, "R%d leaks addr into helper function\n",
1246 				regno);
1247 			return -EACCES;
1248 		}
1249 		return 0;
1250 	}
1251 
1252 	if (type_is_pkt_pointer(type) &&
1253 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1254 		verbose(env, "helper access to the packet is not allowed\n");
1255 		return -EACCES;
1256 	}
1257 
1258 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1259 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1260 		expected_type = PTR_TO_STACK;
1261 		if (!type_is_pkt_pointer(type) &&
1262 		    type != expected_type)
1263 			goto err_type;
1264 	} else if (arg_type == ARG_CONST_SIZE ||
1265 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1266 		expected_type = SCALAR_VALUE;
1267 		if (type != expected_type)
1268 			goto err_type;
1269 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1270 		expected_type = CONST_PTR_TO_MAP;
1271 		if (type != expected_type)
1272 			goto err_type;
1273 	} else if (arg_type == ARG_PTR_TO_CTX) {
1274 		expected_type = PTR_TO_CTX;
1275 		if (type != expected_type)
1276 			goto err_type;
1277 	} else if (arg_type == ARG_PTR_TO_MEM ||
1278 		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1279 		expected_type = PTR_TO_STACK;
1280 		/* One exception here. In case function allows for NULL to be
1281 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1282 		 * happens during stack boundary checking.
1283 		 */
1284 		if (register_is_null(*reg))
1285 			/* final test in check_stack_boundary() */;
1286 		else if (!type_is_pkt_pointer(type) &&
1287 			 type != PTR_TO_MAP_VALUE &&
1288 			 type != expected_type)
1289 			goto err_type;
1290 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1291 	} else {
1292 		verbose(env, "unsupported arg_type %d\n", arg_type);
1293 		return -EFAULT;
1294 	}
1295 
1296 	if (arg_type == ARG_CONST_MAP_PTR) {
1297 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1298 		meta->map_ptr = reg->map_ptr;
1299 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1300 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1301 		 * check that [key, key + map->key_size) are within
1302 		 * stack limits and initialized
1303 		 */
1304 		if (!meta->map_ptr) {
1305 			/* in function declaration map_ptr must come before
1306 			 * map_key, so that it's verified and known before
1307 			 * we have to check map_key here. Otherwise it means
1308 			 * that kernel subsystem misconfigured verifier
1309 			 */
1310 			verbose(env, "invalid map_ptr to access map->key\n");
1311 			return -EACCES;
1312 		}
1313 		if (type_is_pkt_pointer(type))
1314 			err = check_packet_access(env, regno, reg->off,
1315 						  meta->map_ptr->key_size);
1316 		else
1317 			err = check_stack_boundary(env, regno,
1318 						   meta->map_ptr->key_size,
1319 						   false, NULL);
1320 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1321 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1322 		 * check [value, value + map->value_size) validity
1323 		 */
1324 		if (!meta->map_ptr) {
1325 			/* kernel subsystem misconfigured verifier */
1326 			verbose(env, "invalid map_ptr to access map->value\n");
1327 			return -EACCES;
1328 		}
1329 		if (type_is_pkt_pointer(type))
1330 			err = check_packet_access(env, regno, reg->off,
1331 						  meta->map_ptr->value_size);
1332 		else
1333 			err = check_stack_boundary(env, regno,
1334 						   meta->map_ptr->value_size,
1335 						   false, NULL);
1336 	} else if (arg_type == ARG_CONST_SIZE ||
1337 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1338 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1339 
1340 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1341 		 * from stack pointer 'buf'. Check it
1342 		 * note: regno == len, regno - 1 == buf
1343 		 */
1344 		if (regno == 0) {
1345 			/* kernel subsystem misconfigured verifier */
1346 			verbose(env,
1347 				"ARG_CONST_SIZE cannot be first argument\n");
1348 			return -EACCES;
1349 		}
1350 
1351 		/* The register is SCALAR_VALUE; the access check
1352 		 * happens using its boundaries.
1353 		 */
1354 
1355 		if (!tnum_is_const(reg->var_off))
1356 			/* For unprivileged variable accesses, disable raw
1357 			 * mode so that the program is required to
1358 			 * initialize all the memory that the helper could
1359 			 * just partially fill up.
1360 			 */
1361 			meta = NULL;
1362 
1363 		if (reg->smin_value < 0) {
1364 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1365 				regno);
1366 			return -EACCES;
1367 		}
1368 
1369 		if (reg->umin_value == 0) {
1370 			err = check_helper_mem_access(env, regno - 1, 0,
1371 						      zero_size_allowed,
1372 						      meta);
1373 			if (err)
1374 				return err;
1375 		}
1376 
1377 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1378 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1379 				regno);
1380 			return -EACCES;
1381 		}
1382 		err = check_helper_mem_access(env, regno - 1,
1383 					      reg->umax_value,
1384 					      zero_size_allowed, meta);
1385 	}
1386 
1387 	return err;
1388 err_type:
1389 	verbose(env, "R%d type=%s expected=%s\n", regno,
1390 		reg_type_str[type], reg_type_str[expected_type]);
1391 	return -EACCES;
1392 }
1393 
1394 static int check_map_func_compatibility(struct bpf_verifier_env *env,
1395 					struct bpf_map *map, int func_id)
1396 {
1397 	if (!map)
1398 		return 0;
1399 
1400 	/* We need a two way check, first is from map perspective ... */
1401 	switch (map->map_type) {
1402 	case BPF_MAP_TYPE_PROG_ARRAY:
1403 		if (func_id != BPF_FUNC_tail_call)
1404 			goto error;
1405 		break;
1406 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1407 		if (func_id != BPF_FUNC_perf_event_read &&
1408 		    func_id != BPF_FUNC_perf_event_output &&
1409 		    func_id != BPF_FUNC_perf_event_read_value)
1410 			goto error;
1411 		break;
1412 	case BPF_MAP_TYPE_STACK_TRACE:
1413 		if (func_id != BPF_FUNC_get_stackid)
1414 			goto error;
1415 		break;
1416 	case BPF_MAP_TYPE_CGROUP_ARRAY:
1417 		if (func_id != BPF_FUNC_skb_under_cgroup &&
1418 		    func_id != BPF_FUNC_current_task_under_cgroup)
1419 			goto error;
1420 		break;
1421 	/* devmap returns a pointer to a live net_device ifindex that we cannot
1422 	 * allow to be modified from bpf side. So do not allow lookup elements
1423 	 * for now.
1424 	 */
1425 	case BPF_MAP_TYPE_DEVMAP:
1426 		if (func_id != BPF_FUNC_redirect_map)
1427 			goto error;
1428 		break;
1429 	/* Restrict bpf side of cpumap, open when use-cases appear */
1430 	case BPF_MAP_TYPE_CPUMAP:
1431 		if (func_id != BPF_FUNC_redirect_map)
1432 			goto error;
1433 		break;
1434 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1435 	case BPF_MAP_TYPE_HASH_OF_MAPS:
1436 		if (func_id != BPF_FUNC_map_lookup_elem)
1437 			goto error;
1438 		break;
1439 	case BPF_MAP_TYPE_SOCKMAP:
1440 		if (func_id != BPF_FUNC_sk_redirect_map &&
1441 		    func_id != BPF_FUNC_sock_map_update &&
1442 		    func_id != BPF_FUNC_map_delete_elem)
1443 			goto error;
1444 		break;
1445 	default:
1446 		break;
1447 	}
1448 
1449 	/* ... and second from the function itself. */
1450 	switch (func_id) {
1451 	case BPF_FUNC_tail_call:
1452 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1453 			goto error;
1454 		break;
1455 	case BPF_FUNC_perf_event_read:
1456 	case BPF_FUNC_perf_event_output:
1457 	case BPF_FUNC_perf_event_read_value:
1458 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1459 			goto error;
1460 		break;
1461 	case BPF_FUNC_get_stackid:
1462 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1463 			goto error;
1464 		break;
1465 	case BPF_FUNC_current_task_under_cgroup:
1466 	case BPF_FUNC_skb_under_cgroup:
1467 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1468 			goto error;
1469 		break;
1470 	case BPF_FUNC_redirect_map:
1471 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1472 		    map->map_type != BPF_MAP_TYPE_CPUMAP)
1473 			goto error;
1474 		break;
1475 	case BPF_FUNC_sk_redirect_map:
1476 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1477 			goto error;
1478 		break;
1479 	case BPF_FUNC_sock_map_update:
1480 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1481 			goto error;
1482 		break;
1483 	default:
1484 		break;
1485 	}
1486 
1487 	return 0;
1488 error:
1489 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
1490 		map->map_type, func_id_name(func_id), func_id);
1491 	return -EINVAL;
1492 }
1493 
1494 static int check_raw_mode(const struct bpf_func_proto *fn)
1495 {
1496 	int count = 0;
1497 
1498 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1499 		count++;
1500 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1501 		count++;
1502 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1503 		count++;
1504 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1505 		count++;
1506 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1507 		count++;
1508 
1509 	return count > 1 ? -EINVAL : 0;
1510 }
1511 
1512 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1513  * are now invalid, so turn them into unknown SCALAR_VALUE.
1514  */
1515 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1516 {
1517 	struct bpf_verifier_state *state = &env->cur_state;
1518 	struct bpf_reg_state *regs = state->regs, *reg;
1519 	int i;
1520 
1521 	for (i = 0; i < MAX_BPF_REG; i++)
1522 		if (reg_is_pkt_pointer_any(&regs[i]))
1523 			mark_reg_unknown(env, regs, i);
1524 
1525 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1526 		if (state->stack_slot_type[i] != STACK_SPILL)
1527 			continue;
1528 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1529 		if (reg_is_pkt_pointer_any(reg))
1530 			__mark_reg_unknown(reg);
1531 	}
1532 }
1533 
1534 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1535 {
1536 	struct bpf_verifier_state *state = &env->cur_state;
1537 	const struct bpf_func_proto *fn = NULL;
1538 	struct bpf_reg_state *regs = state->regs;
1539 	struct bpf_call_arg_meta meta;
1540 	bool changes_data;
1541 	int i, err;
1542 
1543 	/* find function prototype */
1544 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1545 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1546 			func_id);
1547 		return -EINVAL;
1548 	}
1549 
1550 	if (env->ops->get_func_proto)
1551 		fn = env->ops->get_func_proto(func_id);
1552 
1553 	if (!fn) {
1554 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1555 			func_id);
1556 		return -EINVAL;
1557 	}
1558 
1559 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1560 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1561 		verbose(env, "cannot call GPL only function from proprietary program\n");
1562 		return -EINVAL;
1563 	}
1564 
1565 	changes_data = bpf_helper_changes_pkt_data(fn->func);
1566 
1567 	memset(&meta, 0, sizeof(meta));
1568 	meta.pkt_access = fn->pkt_access;
1569 
1570 	/* We only support one arg being in raw mode at the moment, which
1571 	 * is sufficient for the helper functions we have right now.
1572 	 */
1573 	err = check_raw_mode(fn);
1574 	if (err) {
1575 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1576 			func_id_name(func_id), func_id);
1577 		return err;
1578 	}
1579 
1580 	/* check args */
1581 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1582 	if (err)
1583 		return err;
1584 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1585 	if (err)
1586 		return err;
1587 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1588 	if (err)
1589 		return err;
1590 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1591 	if (err)
1592 		return err;
1593 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1594 	if (err)
1595 		return err;
1596 
1597 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1598 	 * is inferred from register state.
1599 	 */
1600 	for (i = 0; i < meta.access_size; i++) {
1601 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1602 		if (err)
1603 			return err;
1604 	}
1605 
1606 	/* reset caller saved regs */
1607 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1608 		mark_reg_not_init(env, regs, caller_saved[i]);
1609 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1610 	}
1611 
1612 	/* update return register (already marked as written above) */
1613 	if (fn->ret_type == RET_INTEGER) {
1614 		/* sets type to SCALAR_VALUE */
1615 		mark_reg_unknown(env, regs, BPF_REG_0);
1616 	} else if (fn->ret_type == RET_VOID) {
1617 		regs[BPF_REG_0].type = NOT_INIT;
1618 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1619 		struct bpf_insn_aux_data *insn_aux;
1620 
1621 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1622 		/* There is no offset yet applied, variable or fixed */
1623 		mark_reg_known_zero(env, regs, BPF_REG_0);
1624 		regs[BPF_REG_0].off = 0;
1625 		/* remember map_ptr, so that check_map_access()
1626 		 * can check 'value_size' boundary of memory access
1627 		 * to map element returned from bpf_map_lookup_elem()
1628 		 */
1629 		if (meta.map_ptr == NULL) {
1630 			verbose(env,
1631 				"kernel subsystem misconfigured verifier\n");
1632 			return -EINVAL;
1633 		}
1634 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1635 		regs[BPF_REG_0].id = ++env->id_gen;
1636 		insn_aux = &env->insn_aux_data[insn_idx];
1637 		if (!insn_aux->map_ptr)
1638 			insn_aux->map_ptr = meta.map_ptr;
1639 		else if (insn_aux->map_ptr != meta.map_ptr)
1640 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1641 	} else {
1642 		verbose(env, "unknown return type %d of func %s#%d\n",
1643 			fn->ret_type, func_id_name(func_id), func_id);
1644 		return -EINVAL;
1645 	}
1646 
1647 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1648 	if (err)
1649 		return err;
1650 
1651 	if (changes_data)
1652 		clear_all_pkt_pointers(env);
1653 	return 0;
1654 }
1655 
1656 static void coerce_reg_to_32(struct bpf_reg_state *reg)
1657 {
1658 	/* clear high 32 bits */
1659 	reg->var_off = tnum_cast(reg->var_off, 4);
1660 	/* Update bounds */
1661 	__update_reg_bounds(reg);
1662 }
1663 
1664 static bool signed_add_overflows(s64 a, s64 b)
1665 {
1666 	/* Do the add in u64, where overflow is well-defined */
1667 	s64 res = (s64)((u64)a + (u64)b);
1668 
1669 	if (b < 0)
1670 		return res > a;
1671 	return res < a;
1672 }
1673 
1674 static bool signed_sub_overflows(s64 a, s64 b)
1675 {
1676 	/* Do the sub in u64, where overflow is well-defined */
1677 	s64 res = (s64)((u64)a - (u64)b);
1678 
1679 	if (b < 0)
1680 		return res < a;
1681 	return res > a;
1682 }
1683 
1684 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1685  * Caller should also handle BPF_MOV case separately.
1686  * If we return -EACCES, caller may want to try again treating pointer as a
1687  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
1688  */
1689 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1690 				   struct bpf_insn *insn,
1691 				   const struct bpf_reg_state *ptr_reg,
1692 				   const struct bpf_reg_state *off_reg)
1693 {
1694 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1695 	bool known = tnum_is_const(off_reg->var_off);
1696 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1697 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1698 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1699 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1700 	u8 opcode = BPF_OP(insn->code);
1701 	u32 dst = insn->dst_reg;
1702 
1703 	dst_reg = &regs[dst];
1704 
1705 	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1706 		print_verifier_state(env, &env->cur_state);
1707 		verbose(env,
1708 			"verifier internal error: known but bad sbounds\n");
1709 		return -EINVAL;
1710 	}
1711 	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1712 		print_verifier_state(env, &env->cur_state);
1713 		verbose(env,
1714 			"verifier internal error: known but bad ubounds\n");
1715 		return -EINVAL;
1716 	}
1717 
1718 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
1719 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
1720 		if (!env->allow_ptr_leaks)
1721 			verbose(env,
1722 				"R%d 32-bit pointer arithmetic prohibited\n",
1723 				dst);
1724 		return -EACCES;
1725 	}
1726 
1727 	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1728 		if (!env->allow_ptr_leaks)
1729 			verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1730 				dst);
1731 		return -EACCES;
1732 	}
1733 	if (ptr_reg->type == CONST_PTR_TO_MAP) {
1734 		if (!env->allow_ptr_leaks)
1735 			verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1736 				dst);
1737 		return -EACCES;
1738 	}
1739 	if (ptr_reg->type == PTR_TO_PACKET_END) {
1740 		if (!env->allow_ptr_leaks)
1741 			verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1742 				dst);
1743 		return -EACCES;
1744 	}
1745 
1746 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1747 	 * The id may be overwritten later if we create a new variable offset.
1748 	 */
1749 	dst_reg->type = ptr_reg->type;
1750 	dst_reg->id = ptr_reg->id;
1751 
1752 	switch (opcode) {
1753 	case BPF_ADD:
1754 		/* We can take a fixed offset as long as it doesn't overflow
1755 		 * the s32 'off' field
1756 		 */
1757 		if (known && (ptr_reg->off + smin_val ==
1758 			      (s64)(s32)(ptr_reg->off + smin_val))) {
1759 			/* pointer += K.  Accumulate it into fixed offset */
1760 			dst_reg->smin_value = smin_ptr;
1761 			dst_reg->smax_value = smax_ptr;
1762 			dst_reg->umin_value = umin_ptr;
1763 			dst_reg->umax_value = umax_ptr;
1764 			dst_reg->var_off = ptr_reg->var_off;
1765 			dst_reg->off = ptr_reg->off + smin_val;
1766 			dst_reg->range = ptr_reg->range;
1767 			break;
1768 		}
1769 		/* A new variable offset is created.  Note that off_reg->off
1770 		 * == 0, since it's a scalar.
1771 		 * dst_reg gets the pointer type and since some positive
1772 		 * integer value was added to the pointer, give it a new 'id'
1773 		 * if it's a PTR_TO_PACKET.
1774 		 * this creates a new 'base' pointer, off_reg (variable) gets
1775 		 * added into the variable offset, and we copy the fixed offset
1776 		 * from ptr_reg.
1777 		 */
1778 		if (signed_add_overflows(smin_ptr, smin_val) ||
1779 		    signed_add_overflows(smax_ptr, smax_val)) {
1780 			dst_reg->smin_value = S64_MIN;
1781 			dst_reg->smax_value = S64_MAX;
1782 		} else {
1783 			dst_reg->smin_value = smin_ptr + smin_val;
1784 			dst_reg->smax_value = smax_ptr + smax_val;
1785 		}
1786 		if (umin_ptr + umin_val < umin_ptr ||
1787 		    umax_ptr + umax_val < umax_ptr) {
1788 			dst_reg->umin_value = 0;
1789 			dst_reg->umax_value = U64_MAX;
1790 		} else {
1791 			dst_reg->umin_value = umin_ptr + umin_val;
1792 			dst_reg->umax_value = umax_ptr + umax_val;
1793 		}
1794 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1795 		dst_reg->off = ptr_reg->off;
1796 		if (reg_is_pkt_pointer(ptr_reg)) {
1797 			dst_reg->id = ++env->id_gen;
1798 			/* something was added to pkt_ptr, set range to zero */
1799 			dst_reg->range = 0;
1800 		}
1801 		break;
1802 	case BPF_SUB:
1803 		if (dst_reg == off_reg) {
1804 			/* scalar -= pointer.  Creates an unknown scalar */
1805 			if (!env->allow_ptr_leaks)
1806 				verbose(env, "R%d tried to subtract pointer from scalar\n",
1807 					dst);
1808 			return -EACCES;
1809 		}
1810 		/* We don't allow subtraction from FP, because (according to
1811 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
1812 		 * be able to deal with it.
1813 		 */
1814 		if (ptr_reg->type == PTR_TO_STACK) {
1815 			if (!env->allow_ptr_leaks)
1816 				verbose(env, "R%d subtraction from stack pointer prohibited\n",
1817 					dst);
1818 			return -EACCES;
1819 		}
1820 		if (known && (ptr_reg->off - smin_val ==
1821 			      (s64)(s32)(ptr_reg->off - smin_val))) {
1822 			/* pointer -= K.  Subtract it from fixed offset */
1823 			dst_reg->smin_value = smin_ptr;
1824 			dst_reg->smax_value = smax_ptr;
1825 			dst_reg->umin_value = umin_ptr;
1826 			dst_reg->umax_value = umax_ptr;
1827 			dst_reg->var_off = ptr_reg->var_off;
1828 			dst_reg->id = ptr_reg->id;
1829 			dst_reg->off = ptr_reg->off - smin_val;
1830 			dst_reg->range = ptr_reg->range;
1831 			break;
1832 		}
1833 		/* A new variable offset is created.  If the subtrahend is known
1834 		 * nonnegative, then any reg->range we had before is still good.
1835 		 */
1836 		if (signed_sub_overflows(smin_ptr, smax_val) ||
1837 		    signed_sub_overflows(smax_ptr, smin_val)) {
1838 			/* Overflow possible, we know nothing */
1839 			dst_reg->smin_value = S64_MIN;
1840 			dst_reg->smax_value = S64_MAX;
1841 		} else {
1842 			dst_reg->smin_value = smin_ptr - smax_val;
1843 			dst_reg->smax_value = smax_ptr - smin_val;
1844 		}
1845 		if (umin_ptr < umax_val) {
1846 			/* Overflow possible, we know nothing */
1847 			dst_reg->umin_value = 0;
1848 			dst_reg->umax_value = U64_MAX;
1849 		} else {
1850 			/* Cannot overflow (as long as bounds are consistent) */
1851 			dst_reg->umin_value = umin_ptr - umax_val;
1852 			dst_reg->umax_value = umax_ptr - umin_val;
1853 		}
1854 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1855 		dst_reg->off = ptr_reg->off;
1856 		if (reg_is_pkt_pointer(ptr_reg)) {
1857 			dst_reg->id = ++env->id_gen;
1858 			/* something was added to pkt_ptr, set range to zero */
1859 			if (smin_val < 0)
1860 				dst_reg->range = 0;
1861 		}
1862 		break;
1863 	case BPF_AND:
1864 	case BPF_OR:
1865 	case BPF_XOR:
1866 		/* bitwise ops on pointers are troublesome, prohibit for now.
1867 		 * (However, in principle we could allow some cases, e.g.
1868 		 * ptr &= ~3 which would reduce min_value by 3.)
1869 		 */
1870 		if (!env->allow_ptr_leaks)
1871 			verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
1872 				dst, bpf_alu_string[opcode >> 4]);
1873 		return -EACCES;
1874 	default:
1875 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
1876 		if (!env->allow_ptr_leaks)
1877 			verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
1878 				dst, bpf_alu_string[opcode >> 4]);
1879 		return -EACCES;
1880 	}
1881 
1882 	__update_reg_bounds(dst_reg);
1883 	__reg_deduce_bounds(dst_reg);
1884 	__reg_bound_offset(dst_reg);
1885 	return 0;
1886 }
1887 
1888 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
1889 				      struct bpf_insn *insn,
1890 				      struct bpf_reg_state *dst_reg,
1891 				      struct bpf_reg_state src_reg)
1892 {
1893 	struct bpf_reg_state *regs = env->cur_state.regs;
1894 	u8 opcode = BPF_OP(insn->code);
1895 	bool src_known, dst_known;
1896 	s64 smin_val, smax_val;
1897 	u64 umin_val, umax_val;
1898 
1899 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
1900 		/* 32-bit ALU ops are (32,32)->64 */
1901 		coerce_reg_to_32(dst_reg);
1902 		coerce_reg_to_32(&src_reg);
1903 	}
1904 	smin_val = src_reg.smin_value;
1905 	smax_val = src_reg.smax_value;
1906 	umin_val = src_reg.umin_value;
1907 	umax_val = src_reg.umax_value;
1908 	src_known = tnum_is_const(src_reg.var_off);
1909 	dst_known = tnum_is_const(dst_reg->var_off);
1910 
1911 	switch (opcode) {
1912 	case BPF_ADD:
1913 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
1914 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
1915 			dst_reg->smin_value = S64_MIN;
1916 			dst_reg->smax_value = S64_MAX;
1917 		} else {
1918 			dst_reg->smin_value += smin_val;
1919 			dst_reg->smax_value += smax_val;
1920 		}
1921 		if (dst_reg->umin_value + umin_val < umin_val ||
1922 		    dst_reg->umax_value + umax_val < umax_val) {
1923 			dst_reg->umin_value = 0;
1924 			dst_reg->umax_value = U64_MAX;
1925 		} else {
1926 			dst_reg->umin_value += umin_val;
1927 			dst_reg->umax_value += umax_val;
1928 		}
1929 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
1930 		break;
1931 	case BPF_SUB:
1932 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
1933 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
1934 			/* Overflow possible, we know nothing */
1935 			dst_reg->smin_value = S64_MIN;
1936 			dst_reg->smax_value = S64_MAX;
1937 		} else {
1938 			dst_reg->smin_value -= smax_val;
1939 			dst_reg->smax_value -= smin_val;
1940 		}
1941 		if (dst_reg->umin_value < umax_val) {
1942 			/* Overflow possible, we know nothing */
1943 			dst_reg->umin_value = 0;
1944 			dst_reg->umax_value = U64_MAX;
1945 		} else {
1946 			/* Cannot overflow (as long as bounds are consistent) */
1947 			dst_reg->umin_value -= umax_val;
1948 			dst_reg->umax_value -= umin_val;
1949 		}
1950 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
1951 		break;
1952 	case BPF_MUL:
1953 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
1954 		if (smin_val < 0 || dst_reg->smin_value < 0) {
1955 			/* Ain't nobody got time to multiply that sign */
1956 			__mark_reg_unbounded(dst_reg);
1957 			__update_reg_bounds(dst_reg);
1958 			break;
1959 		}
1960 		/* Both values are positive, so we can work with unsigned and
1961 		 * copy the result to signed (unless it exceeds S64_MAX).
1962 		 */
1963 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
1964 			/* Potential overflow, we know nothing */
1965 			__mark_reg_unbounded(dst_reg);
1966 			/* (except what we can learn from the var_off) */
1967 			__update_reg_bounds(dst_reg);
1968 			break;
1969 		}
1970 		dst_reg->umin_value *= umin_val;
1971 		dst_reg->umax_value *= umax_val;
1972 		if (dst_reg->umax_value > S64_MAX) {
1973 			/* Overflow possible, we know nothing */
1974 			dst_reg->smin_value = S64_MIN;
1975 			dst_reg->smax_value = S64_MAX;
1976 		} else {
1977 			dst_reg->smin_value = dst_reg->umin_value;
1978 			dst_reg->smax_value = dst_reg->umax_value;
1979 		}
1980 		break;
1981 	case BPF_AND:
1982 		if (src_known && dst_known) {
1983 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
1984 						  src_reg.var_off.value);
1985 			break;
1986 		}
1987 		/* We get our minimum from the var_off, since that's inherently
1988 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
1989 		 */
1990 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
1991 		dst_reg->umin_value = dst_reg->var_off.value;
1992 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
1993 		if (dst_reg->smin_value < 0 || smin_val < 0) {
1994 			/* Lose signed bounds when ANDing negative numbers,
1995 			 * ain't nobody got time for that.
1996 			 */
1997 			dst_reg->smin_value = S64_MIN;
1998 			dst_reg->smax_value = S64_MAX;
1999 		} else {
2000 			/* ANDing two positives gives a positive, so safe to
2001 			 * cast result into s64.
2002 			 */
2003 			dst_reg->smin_value = dst_reg->umin_value;
2004 			dst_reg->smax_value = dst_reg->umax_value;
2005 		}
2006 		/* We may learn something more from the var_off */
2007 		__update_reg_bounds(dst_reg);
2008 		break;
2009 	case BPF_OR:
2010 		if (src_known && dst_known) {
2011 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
2012 						  src_reg.var_off.value);
2013 			break;
2014 		}
2015 		/* We get our maximum from the var_off, and our minimum is the
2016 		 * maximum of the operands' minima
2017 		 */
2018 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2019 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2020 		dst_reg->umax_value = dst_reg->var_off.value |
2021 				      dst_reg->var_off.mask;
2022 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2023 			/* Lose signed bounds when ORing negative numbers,
2024 			 * ain't nobody got time for that.
2025 			 */
2026 			dst_reg->smin_value = S64_MIN;
2027 			dst_reg->smax_value = S64_MAX;
2028 		} else {
2029 			/* ORing two positives gives a positive, so safe to
2030 			 * cast result into s64.
2031 			 */
2032 			dst_reg->smin_value = dst_reg->umin_value;
2033 			dst_reg->smax_value = dst_reg->umax_value;
2034 		}
2035 		/* We may learn something more from the var_off */
2036 		__update_reg_bounds(dst_reg);
2037 		break;
2038 	case BPF_LSH:
2039 		if (umax_val > 63) {
2040 			/* Shifts greater than 63 are undefined.  This includes
2041 			 * shifts by a negative number.
2042 			 */
2043 			mark_reg_unknown(env, regs, insn->dst_reg);
2044 			break;
2045 		}
2046 		/* We lose all sign bit information (except what we can pick
2047 		 * up from var_off)
2048 		 */
2049 		dst_reg->smin_value = S64_MIN;
2050 		dst_reg->smax_value = S64_MAX;
2051 		/* If we might shift our top bit out, then we know nothing */
2052 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2053 			dst_reg->umin_value = 0;
2054 			dst_reg->umax_value = U64_MAX;
2055 		} else {
2056 			dst_reg->umin_value <<= umin_val;
2057 			dst_reg->umax_value <<= umax_val;
2058 		}
2059 		if (src_known)
2060 			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2061 		else
2062 			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2063 		/* We may learn something more from the var_off */
2064 		__update_reg_bounds(dst_reg);
2065 		break;
2066 	case BPF_RSH:
2067 		if (umax_val > 63) {
2068 			/* Shifts greater than 63 are undefined.  This includes
2069 			 * shifts by a negative number.
2070 			 */
2071 			mark_reg_unknown(env, regs, insn->dst_reg);
2072 			break;
2073 		}
2074 		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
2075 		if (dst_reg->smin_value < 0) {
2076 			if (umin_val) {
2077 				/* Sign bit will be cleared */
2078 				dst_reg->smin_value = 0;
2079 			} else {
2080 				/* Lost sign bit information */
2081 				dst_reg->smin_value = S64_MIN;
2082 				dst_reg->smax_value = S64_MAX;
2083 			}
2084 		} else {
2085 			dst_reg->smin_value =
2086 				(u64)(dst_reg->smin_value) >> umax_val;
2087 		}
2088 		if (src_known)
2089 			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2090 						       umin_val);
2091 		else
2092 			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2093 		dst_reg->umin_value >>= umax_val;
2094 		dst_reg->umax_value >>= umin_val;
2095 		/* We may learn something more from the var_off */
2096 		__update_reg_bounds(dst_reg);
2097 		break;
2098 	default:
2099 		mark_reg_unknown(env, regs, insn->dst_reg);
2100 		break;
2101 	}
2102 
2103 	__reg_deduce_bounds(dst_reg);
2104 	__reg_bound_offset(dst_reg);
2105 	return 0;
2106 }
2107 
2108 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2109  * and var_off.
2110  */
2111 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2112 				   struct bpf_insn *insn)
2113 {
2114 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
2115 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2116 	u8 opcode = BPF_OP(insn->code);
2117 	int rc;
2118 
2119 	dst_reg = &regs[insn->dst_reg];
2120 	src_reg = NULL;
2121 	if (dst_reg->type != SCALAR_VALUE)
2122 		ptr_reg = dst_reg;
2123 	if (BPF_SRC(insn->code) == BPF_X) {
2124 		src_reg = &regs[insn->src_reg];
2125 		if (src_reg->type != SCALAR_VALUE) {
2126 			if (dst_reg->type != SCALAR_VALUE) {
2127 				/* Combining two pointers by any ALU op yields
2128 				 * an arbitrary scalar.
2129 				 */
2130 				if (!env->allow_ptr_leaks) {
2131 					verbose(env, "R%d pointer %s pointer prohibited\n",
2132 						insn->dst_reg,
2133 						bpf_alu_string[opcode >> 4]);
2134 					return -EACCES;
2135 				}
2136 				mark_reg_unknown(env, regs, insn->dst_reg);
2137 				return 0;
2138 			} else {
2139 				/* scalar += pointer
2140 				 * This is legal, but we have to reverse our
2141 				 * src/dest handling in computing the range
2142 				 */
2143 				rc = adjust_ptr_min_max_vals(env, insn,
2144 							     src_reg, dst_reg);
2145 				if (rc == -EACCES && env->allow_ptr_leaks) {
2146 					/* scalar += unknown scalar */
2147 					__mark_reg_unknown(&off_reg);
2148 					return adjust_scalar_min_max_vals(
2149 							env, insn,
2150 							dst_reg, off_reg);
2151 				}
2152 				return rc;
2153 			}
2154 		} else if (ptr_reg) {
2155 			/* pointer += scalar */
2156 			rc = adjust_ptr_min_max_vals(env, insn,
2157 						     dst_reg, src_reg);
2158 			if (rc == -EACCES && env->allow_ptr_leaks) {
2159 				/* unknown scalar += scalar */
2160 				__mark_reg_unknown(dst_reg);
2161 				return adjust_scalar_min_max_vals(
2162 						env, insn, dst_reg, *src_reg);
2163 			}
2164 			return rc;
2165 		}
2166 	} else {
2167 		/* Pretend the src is a reg with a known value, since we only
2168 		 * need to be able to read from this state.
2169 		 */
2170 		off_reg.type = SCALAR_VALUE;
2171 		__mark_reg_known(&off_reg, insn->imm);
2172 		src_reg = &off_reg;
2173 		if (ptr_reg) { /* pointer += K */
2174 			rc = adjust_ptr_min_max_vals(env, insn,
2175 						     ptr_reg, src_reg);
2176 			if (rc == -EACCES && env->allow_ptr_leaks) {
2177 				/* unknown scalar += K */
2178 				__mark_reg_unknown(dst_reg);
2179 				return adjust_scalar_min_max_vals(
2180 						env, insn, dst_reg, off_reg);
2181 			}
2182 			return rc;
2183 		}
2184 	}
2185 
2186 	/* Got here implies adding two SCALAR_VALUEs */
2187 	if (WARN_ON_ONCE(ptr_reg)) {
2188 		print_verifier_state(env, &env->cur_state);
2189 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
2190 		return -EINVAL;
2191 	}
2192 	if (WARN_ON(!src_reg)) {
2193 		print_verifier_state(env, &env->cur_state);
2194 		verbose(env, "verifier internal error: no src_reg\n");
2195 		return -EINVAL;
2196 	}
2197 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2198 }
2199 
2200 /* check validity of 32-bit and 64-bit arithmetic operations */
2201 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2202 {
2203 	struct bpf_reg_state *regs = env->cur_state.regs;
2204 	u8 opcode = BPF_OP(insn->code);
2205 	int err;
2206 
2207 	if (opcode == BPF_END || opcode == BPF_NEG) {
2208 		if (opcode == BPF_NEG) {
2209 			if (BPF_SRC(insn->code) != 0 ||
2210 			    insn->src_reg != BPF_REG_0 ||
2211 			    insn->off != 0 || insn->imm != 0) {
2212 				verbose(env, "BPF_NEG uses reserved fields\n");
2213 				return -EINVAL;
2214 			}
2215 		} else {
2216 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2217 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2218 			    BPF_CLASS(insn->code) == BPF_ALU64) {
2219 				verbose(env, "BPF_END uses reserved fields\n");
2220 				return -EINVAL;
2221 			}
2222 		}
2223 
2224 		/* check src operand */
2225 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2226 		if (err)
2227 			return err;
2228 
2229 		if (is_pointer_value(env, insn->dst_reg)) {
2230 			verbose(env, "R%d pointer arithmetic prohibited\n",
2231 				insn->dst_reg);
2232 			return -EACCES;
2233 		}
2234 
2235 		/* check dest operand */
2236 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2237 		if (err)
2238 			return err;
2239 
2240 	} else if (opcode == BPF_MOV) {
2241 
2242 		if (BPF_SRC(insn->code) == BPF_X) {
2243 			if (insn->imm != 0 || insn->off != 0) {
2244 				verbose(env, "BPF_MOV uses reserved fields\n");
2245 				return -EINVAL;
2246 			}
2247 
2248 			/* check src operand */
2249 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2250 			if (err)
2251 				return err;
2252 		} else {
2253 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2254 				verbose(env, "BPF_MOV uses reserved fields\n");
2255 				return -EINVAL;
2256 			}
2257 		}
2258 
2259 		/* check dest operand */
2260 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2261 		if (err)
2262 			return err;
2263 
2264 		if (BPF_SRC(insn->code) == BPF_X) {
2265 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
2266 				/* case: R1 = R2
2267 				 * copy register state to dest reg
2268 				 */
2269 				regs[insn->dst_reg] = regs[insn->src_reg];
2270 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2271 			} else {
2272 				/* R1 = (u32) R2 */
2273 				if (is_pointer_value(env, insn->src_reg)) {
2274 					verbose(env,
2275 						"R%d partial copy of pointer\n",
2276 						insn->src_reg);
2277 					return -EACCES;
2278 				}
2279 				mark_reg_unknown(env, regs, insn->dst_reg);
2280 				/* high 32 bits are known zero. */
2281 				regs[insn->dst_reg].var_off = tnum_cast(
2282 						regs[insn->dst_reg].var_off, 4);
2283 				__update_reg_bounds(&regs[insn->dst_reg]);
2284 			}
2285 		} else {
2286 			/* case: R = imm
2287 			 * remember the value we stored into this reg
2288 			 */
2289 			regs[insn->dst_reg].type = SCALAR_VALUE;
2290 			__mark_reg_known(regs + insn->dst_reg, insn->imm);
2291 		}
2292 
2293 	} else if (opcode > BPF_END) {
2294 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2295 		return -EINVAL;
2296 
2297 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
2298 
2299 		if (BPF_SRC(insn->code) == BPF_X) {
2300 			if (insn->imm != 0 || insn->off != 0) {
2301 				verbose(env, "BPF_ALU uses reserved fields\n");
2302 				return -EINVAL;
2303 			}
2304 			/* check src1 operand */
2305 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2306 			if (err)
2307 				return err;
2308 		} else {
2309 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2310 				verbose(env, "BPF_ALU uses reserved fields\n");
2311 				return -EINVAL;
2312 			}
2313 		}
2314 
2315 		/* check src2 operand */
2316 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2317 		if (err)
2318 			return err;
2319 
2320 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2321 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2322 			verbose(env, "div by zero\n");
2323 			return -EINVAL;
2324 		}
2325 
2326 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2327 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2328 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2329 
2330 			if (insn->imm < 0 || insn->imm >= size) {
2331 				verbose(env, "invalid shift %d\n", insn->imm);
2332 				return -EINVAL;
2333 			}
2334 		}
2335 
2336 		/* check dest operand */
2337 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2338 		if (err)
2339 			return err;
2340 
2341 		return adjust_reg_min_max_vals(env, insn);
2342 	}
2343 
2344 	return 0;
2345 }
2346 
2347 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2348 				   struct bpf_reg_state *dst_reg,
2349 				   enum bpf_reg_type type,
2350 				   bool range_right_open)
2351 {
2352 	struct bpf_reg_state *regs = state->regs, *reg;
2353 	u16 new_range;
2354 	int i;
2355 
2356 	if (dst_reg->off < 0 ||
2357 	    (dst_reg->off == 0 && range_right_open))
2358 		/* This doesn't give us any range */
2359 		return;
2360 
2361 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
2362 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2363 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
2364 		 * than pkt_end, but that's because it's also less than pkt.
2365 		 */
2366 		return;
2367 
2368 	new_range = dst_reg->off;
2369 	if (range_right_open)
2370 		new_range--;
2371 
2372 	/* Examples for register markings:
2373 	 *
2374 	 * pkt_data in dst register:
2375 	 *
2376 	 *   r2 = r3;
2377 	 *   r2 += 8;
2378 	 *   if (r2 > pkt_end) goto <handle exception>
2379 	 *   <access okay>
2380 	 *
2381 	 *   r2 = r3;
2382 	 *   r2 += 8;
2383 	 *   if (r2 < pkt_end) goto <access okay>
2384 	 *   <handle exception>
2385 	 *
2386 	 *   Where:
2387 	 *     r2 == dst_reg, pkt_end == src_reg
2388 	 *     r2=pkt(id=n,off=8,r=0)
2389 	 *     r3=pkt(id=n,off=0,r=0)
2390 	 *
2391 	 * pkt_data in src register:
2392 	 *
2393 	 *   r2 = r3;
2394 	 *   r2 += 8;
2395 	 *   if (pkt_end >= r2) goto <access okay>
2396 	 *   <handle exception>
2397 	 *
2398 	 *   r2 = r3;
2399 	 *   r2 += 8;
2400 	 *   if (pkt_end <= r2) goto <handle exception>
2401 	 *   <access okay>
2402 	 *
2403 	 *   Where:
2404 	 *     pkt_end == dst_reg, r2 == src_reg
2405 	 *     r2=pkt(id=n,off=8,r=0)
2406 	 *     r3=pkt(id=n,off=0,r=0)
2407 	 *
2408 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2409 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2410 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
2411 	 * the check.
2412 	 */
2413 
2414 	/* If our ids match, then we must have the same max_value.  And we
2415 	 * don't care about the other reg's fixed offset, since if it's too big
2416 	 * the range won't allow anything.
2417 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2418 	 */
2419 	for (i = 0; i < MAX_BPF_REG; i++)
2420 		if (regs[i].type == type && regs[i].id == dst_reg->id)
2421 			/* keep the maximum range already checked */
2422 			regs[i].range = max(regs[i].range, new_range);
2423 
2424 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2425 		if (state->stack_slot_type[i] != STACK_SPILL)
2426 			continue;
2427 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
2428 		if (reg->type == type && reg->id == dst_reg->id)
2429 			reg->range = max_t(u16, reg->range, new_range);
2430 	}
2431 }
2432 
2433 /* Adjusts the register min/max values in the case that the dst_reg is the
2434  * variable register that we are working on, and src_reg is a constant or we're
2435  * simply doing a BPF_K check.
2436  * In JEQ/JNE cases we also adjust the var_off values.
2437  */
2438 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2439 			    struct bpf_reg_state *false_reg, u64 val,
2440 			    u8 opcode)
2441 {
2442 	/* If the dst_reg is a pointer, we can't learn anything about its
2443 	 * variable offset from the compare (unless src_reg were a pointer into
2444 	 * the same object, but we don't bother with that.
2445 	 * Since false_reg and true_reg have the same type by construction, we
2446 	 * only need to check one of them for pointerness.
2447 	 */
2448 	if (__is_pointer_value(false, false_reg))
2449 		return;
2450 
2451 	switch (opcode) {
2452 	case BPF_JEQ:
2453 		/* If this is false then we know nothing Jon Snow, but if it is
2454 		 * true then we know for sure.
2455 		 */
2456 		__mark_reg_known(true_reg, val);
2457 		break;
2458 	case BPF_JNE:
2459 		/* If this is true we know nothing Jon Snow, but if it is false
2460 		 * we know the value for sure;
2461 		 */
2462 		__mark_reg_known(false_reg, val);
2463 		break;
2464 	case BPF_JGT:
2465 		false_reg->umax_value = min(false_reg->umax_value, val);
2466 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2467 		break;
2468 	case BPF_JSGT:
2469 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2470 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2471 		break;
2472 	case BPF_JLT:
2473 		false_reg->umin_value = max(false_reg->umin_value, val);
2474 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2475 		break;
2476 	case BPF_JSLT:
2477 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2478 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2479 		break;
2480 	case BPF_JGE:
2481 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2482 		true_reg->umin_value = max(true_reg->umin_value, val);
2483 		break;
2484 	case BPF_JSGE:
2485 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2486 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2487 		break;
2488 	case BPF_JLE:
2489 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2490 		true_reg->umax_value = min(true_reg->umax_value, val);
2491 		break;
2492 	case BPF_JSLE:
2493 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2494 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2495 		break;
2496 	default:
2497 		break;
2498 	}
2499 
2500 	__reg_deduce_bounds(false_reg);
2501 	__reg_deduce_bounds(true_reg);
2502 	/* We might have learned some bits from the bounds. */
2503 	__reg_bound_offset(false_reg);
2504 	__reg_bound_offset(true_reg);
2505 	/* Intersecting with the old var_off might have improved our bounds
2506 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2507 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2508 	 */
2509 	__update_reg_bounds(false_reg);
2510 	__update_reg_bounds(true_reg);
2511 }
2512 
2513 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2514  * the variable reg.
2515  */
2516 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2517 				struct bpf_reg_state *false_reg, u64 val,
2518 				u8 opcode)
2519 {
2520 	if (__is_pointer_value(false, false_reg))
2521 		return;
2522 
2523 	switch (opcode) {
2524 	case BPF_JEQ:
2525 		/* If this is false then we know nothing Jon Snow, but if it is
2526 		 * true then we know for sure.
2527 		 */
2528 		__mark_reg_known(true_reg, val);
2529 		break;
2530 	case BPF_JNE:
2531 		/* If this is true we know nothing Jon Snow, but if it is false
2532 		 * we know the value for sure;
2533 		 */
2534 		__mark_reg_known(false_reg, val);
2535 		break;
2536 	case BPF_JGT:
2537 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2538 		false_reg->umin_value = max(false_reg->umin_value, val);
2539 		break;
2540 	case BPF_JSGT:
2541 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2542 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2543 		break;
2544 	case BPF_JLT:
2545 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2546 		false_reg->umax_value = min(false_reg->umax_value, val);
2547 		break;
2548 	case BPF_JSLT:
2549 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2550 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2551 		break;
2552 	case BPF_JGE:
2553 		true_reg->umax_value = min(true_reg->umax_value, val);
2554 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2555 		break;
2556 	case BPF_JSGE:
2557 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2558 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2559 		break;
2560 	case BPF_JLE:
2561 		true_reg->umin_value = max(true_reg->umin_value, val);
2562 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2563 		break;
2564 	case BPF_JSLE:
2565 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2566 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2567 		break;
2568 	default:
2569 		break;
2570 	}
2571 
2572 	__reg_deduce_bounds(false_reg);
2573 	__reg_deduce_bounds(true_reg);
2574 	/* We might have learned some bits from the bounds. */
2575 	__reg_bound_offset(false_reg);
2576 	__reg_bound_offset(true_reg);
2577 	/* Intersecting with the old var_off might have improved our bounds
2578 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2579 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2580 	 */
2581 	__update_reg_bounds(false_reg);
2582 	__update_reg_bounds(true_reg);
2583 }
2584 
2585 /* Regs are known to be equal, so intersect their min/max/var_off */
2586 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2587 				  struct bpf_reg_state *dst_reg)
2588 {
2589 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2590 							dst_reg->umin_value);
2591 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2592 							dst_reg->umax_value);
2593 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2594 							dst_reg->smin_value);
2595 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2596 							dst_reg->smax_value);
2597 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2598 							     dst_reg->var_off);
2599 	/* We might have learned new bounds from the var_off. */
2600 	__update_reg_bounds(src_reg);
2601 	__update_reg_bounds(dst_reg);
2602 	/* We might have learned something about the sign bit. */
2603 	__reg_deduce_bounds(src_reg);
2604 	__reg_deduce_bounds(dst_reg);
2605 	/* We might have learned some bits from the bounds. */
2606 	__reg_bound_offset(src_reg);
2607 	__reg_bound_offset(dst_reg);
2608 	/* Intersecting with the old var_off might have improved our bounds
2609 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2610 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2611 	 */
2612 	__update_reg_bounds(src_reg);
2613 	__update_reg_bounds(dst_reg);
2614 }
2615 
2616 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2617 				struct bpf_reg_state *true_dst,
2618 				struct bpf_reg_state *false_src,
2619 				struct bpf_reg_state *false_dst,
2620 				u8 opcode)
2621 {
2622 	switch (opcode) {
2623 	case BPF_JEQ:
2624 		__reg_combine_min_max(true_src, true_dst);
2625 		break;
2626 	case BPF_JNE:
2627 		__reg_combine_min_max(false_src, false_dst);
2628 		break;
2629 	}
2630 }
2631 
2632 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2633 			 bool is_null)
2634 {
2635 	struct bpf_reg_state *reg = &regs[regno];
2636 
2637 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2638 		/* Old offset (both fixed and variable parts) should
2639 		 * have been known-zero, because we don't allow pointer
2640 		 * arithmetic on pointers that might be NULL.
2641 		 */
2642 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2643 				 !tnum_equals_const(reg->var_off, 0) ||
2644 				 reg->off)) {
2645 			__mark_reg_known_zero(reg);
2646 			reg->off = 0;
2647 		}
2648 		if (is_null) {
2649 			reg->type = SCALAR_VALUE;
2650 		} else if (reg->map_ptr->inner_map_meta) {
2651 			reg->type = CONST_PTR_TO_MAP;
2652 			reg->map_ptr = reg->map_ptr->inner_map_meta;
2653 		} else {
2654 			reg->type = PTR_TO_MAP_VALUE;
2655 		}
2656 		/* We don't need id from this point onwards anymore, thus we
2657 		 * should better reset it, so that state pruning has chances
2658 		 * to take effect.
2659 		 */
2660 		reg->id = 0;
2661 	}
2662 }
2663 
2664 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2665  * be folded together at some point.
2666  */
2667 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2668 			  bool is_null)
2669 {
2670 	struct bpf_reg_state *regs = state->regs;
2671 	u32 id = regs[regno].id;
2672 	int i;
2673 
2674 	for (i = 0; i < MAX_BPF_REG; i++)
2675 		mark_map_reg(regs, i, id, is_null);
2676 
2677 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2678 		if (state->stack_slot_type[i] != STACK_SPILL)
2679 			continue;
2680 		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
2681 	}
2682 }
2683 
2684 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2685 			     struct bpf_insn *insn, int *insn_idx)
2686 {
2687 	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2688 	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2689 	u8 opcode = BPF_OP(insn->code);
2690 	int err;
2691 
2692 	if (opcode > BPF_JSLE) {
2693 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2694 		return -EINVAL;
2695 	}
2696 
2697 	if (BPF_SRC(insn->code) == BPF_X) {
2698 		if (insn->imm != 0) {
2699 			verbose(env, "BPF_JMP uses reserved fields\n");
2700 			return -EINVAL;
2701 		}
2702 
2703 		/* check src1 operand */
2704 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2705 		if (err)
2706 			return err;
2707 
2708 		if (is_pointer_value(env, insn->src_reg)) {
2709 			verbose(env, "R%d pointer comparison prohibited\n",
2710 				insn->src_reg);
2711 			return -EACCES;
2712 		}
2713 	} else {
2714 		if (insn->src_reg != BPF_REG_0) {
2715 			verbose(env, "BPF_JMP uses reserved fields\n");
2716 			return -EINVAL;
2717 		}
2718 	}
2719 
2720 	/* check src2 operand */
2721 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2722 	if (err)
2723 		return err;
2724 
2725 	dst_reg = &regs[insn->dst_reg];
2726 
2727 	/* detect if R == 0 where R was initialized to zero earlier */
2728 	if (BPF_SRC(insn->code) == BPF_K &&
2729 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2730 	    dst_reg->type == SCALAR_VALUE &&
2731 	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
2732 		if (opcode == BPF_JEQ) {
2733 			/* if (imm == imm) goto pc+off;
2734 			 * only follow the goto, ignore fall-through
2735 			 */
2736 			*insn_idx += insn->off;
2737 			return 0;
2738 		} else {
2739 			/* if (imm != imm) goto pc+off;
2740 			 * only follow fall-through branch, since
2741 			 * that's where the program will go
2742 			 */
2743 			return 0;
2744 		}
2745 	}
2746 
2747 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2748 	if (!other_branch)
2749 		return -EFAULT;
2750 
2751 	/* detect if we are comparing against a constant value so we can adjust
2752 	 * our min/max values for our dst register.
2753 	 * this is only legit if both are scalars (or pointers to the same
2754 	 * object, I suppose, but we don't support that right now), because
2755 	 * otherwise the different base pointers mean the offsets aren't
2756 	 * comparable.
2757 	 */
2758 	if (BPF_SRC(insn->code) == BPF_X) {
2759 		if (dst_reg->type == SCALAR_VALUE &&
2760 		    regs[insn->src_reg].type == SCALAR_VALUE) {
2761 			if (tnum_is_const(regs[insn->src_reg].var_off))
2762 				reg_set_min_max(&other_branch->regs[insn->dst_reg],
2763 						dst_reg, regs[insn->src_reg].var_off.value,
2764 						opcode);
2765 			else if (tnum_is_const(dst_reg->var_off))
2766 				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2767 						    &regs[insn->src_reg],
2768 						    dst_reg->var_off.value, opcode);
2769 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2770 				/* Comparing for equality, we can combine knowledge */
2771 				reg_combine_min_max(&other_branch->regs[insn->src_reg],
2772 						    &other_branch->regs[insn->dst_reg],
2773 						    &regs[insn->src_reg],
2774 						    &regs[insn->dst_reg], opcode);
2775 		}
2776 	} else if (dst_reg->type == SCALAR_VALUE) {
2777 		reg_set_min_max(&other_branch->regs[insn->dst_reg],
2778 					dst_reg, insn->imm, opcode);
2779 	}
2780 
2781 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2782 	if (BPF_SRC(insn->code) == BPF_K &&
2783 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2784 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2785 		/* Mark all identical map registers in each branch as either
2786 		 * safe or unknown depending R == 0 or R != 0 conditional.
2787 		 */
2788 		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2789 		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
2790 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2791 		   dst_reg->type == PTR_TO_PACKET &&
2792 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2793 		/* pkt_data' > pkt_end */
2794 		find_good_pkt_pointers(this_branch, dst_reg,
2795 				       PTR_TO_PACKET, false);
2796 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2797 		   dst_reg->type == PTR_TO_PACKET_END &&
2798 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2799 		/* pkt_end > pkt_data' */
2800 		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2801 				       PTR_TO_PACKET, true);
2802 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2803 		   dst_reg->type == PTR_TO_PACKET &&
2804 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2805 		/* pkt_data' < pkt_end */
2806 		find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET,
2807 				       true);
2808 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2809 		   dst_reg->type == PTR_TO_PACKET_END &&
2810 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2811 		/* pkt_end < pkt_data' */
2812 		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2813 				       PTR_TO_PACKET, false);
2814 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2815 		   dst_reg->type == PTR_TO_PACKET &&
2816 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2817 		/* pkt_data' >= pkt_end */
2818 		find_good_pkt_pointers(this_branch, dst_reg,
2819 				       PTR_TO_PACKET, true);
2820 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2821 		   dst_reg->type == PTR_TO_PACKET_END &&
2822 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2823 		/* pkt_end >= pkt_data' */
2824 		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2825 				       PTR_TO_PACKET, false);
2826 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2827 		   dst_reg->type == PTR_TO_PACKET &&
2828 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2829 		/* pkt_data' <= pkt_end */
2830 		find_good_pkt_pointers(other_branch, dst_reg,
2831 				       PTR_TO_PACKET, false);
2832 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2833 		   dst_reg->type == PTR_TO_PACKET_END &&
2834 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2835 		/* pkt_end <= pkt_data' */
2836 		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2837 				       PTR_TO_PACKET, true);
2838 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2839 		   dst_reg->type == PTR_TO_PACKET_META &&
2840 		   reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2841 		find_good_pkt_pointers(this_branch, dst_reg,
2842 				       PTR_TO_PACKET_META, false);
2843 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2844 		   dst_reg->type == PTR_TO_PACKET_META &&
2845 		   reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2846 		find_good_pkt_pointers(other_branch, dst_reg,
2847 				       PTR_TO_PACKET_META, false);
2848 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2849 		   reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2850 		   regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2851 		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2852 				       PTR_TO_PACKET_META, false);
2853 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2854 		   reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2855 		   regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2856 		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2857 				       PTR_TO_PACKET_META, false);
2858 	} else if (is_pointer_value(env, insn->dst_reg)) {
2859 		verbose(env, "R%d pointer comparison prohibited\n",
2860 			insn->dst_reg);
2861 		return -EACCES;
2862 	}
2863 	if (env->log.level)
2864 		print_verifier_state(env, this_branch);
2865 	return 0;
2866 }
2867 
2868 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2869 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2870 {
2871 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2872 
2873 	return (struct bpf_map *) (unsigned long) imm64;
2874 }
2875 
2876 /* verify BPF_LD_IMM64 instruction */
2877 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2878 {
2879 	struct bpf_reg_state *regs = env->cur_state.regs;
2880 	int err;
2881 
2882 	if (BPF_SIZE(insn->code) != BPF_DW) {
2883 		verbose(env, "invalid BPF_LD_IMM insn\n");
2884 		return -EINVAL;
2885 	}
2886 	if (insn->off != 0) {
2887 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
2888 		return -EINVAL;
2889 	}
2890 
2891 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
2892 	if (err)
2893 		return err;
2894 
2895 	if (insn->src_reg == 0) {
2896 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2897 
2898 		regs[insn->dst_reg].type = SCALAR_VALUE;
2899 		__mark_reg_known(&regs[insn->dst_reg], imm);
2900 		return 0;
2901 	}
2902 
2903 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2904 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2905 
2906 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2907 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2908 	return 0;
2909 }
2910 
2911 static bool may_access_skb(enum bpf_prog_type type)
2912 {
2913 	switch (type) {
2914 	case BPF_PROG_TYPE_SOCKET_FILTER:
2915 	case BPF_PROG_TYPE_SCHED_CLS:
2916 	case BPF_PROG_TYPE_SCHED_ACT:
2917 		return true;
2918 	default:
2919 		return false;
2920 	}
2921 }
2922 
2923 /* verify safety of LD_ABS|LD_IND instructions:
2924  * - they can only appear in the programs where ctx == skb
2925  * - since they are wrappers of function calls, they scratch R1-R5 registers,
2926  *   preserve R6-R9, and store return value into R0
2927  *
2928  * Implicit input:
2929  *   ctx == skb == R6 == CTX
2930  *
2931  * Explicit input:
2932  *   SRC == any register
2933  *   IMM == 32-bit immediate
2934  *
2935  * Output:
2936  *   R0 - 8/16/32-bit skb data converted to cpu endianness
2937  */
2938 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2939 {
2940 	struct bpf_reg_state *regs = env->cur_state.regs;
2941 	u8 mode = BPF_MODE(insn->code);
2942 	int i, err;
2943 
2944 	if (!may_access_skb(env->prog->type)) {
2945 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2946 		return -EINVAL;
2947 	}
2948 
2949 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2950 	    BPF_SIZE(insn->code) == BPF_DW ||
2951 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2952 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
2953 		return -EINVAL;
2954 	}
2955 
2956 	/* check whether implicit source operand (register R6) is readable */
2957 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
2958 	if (err)
2959 		return err;
2960 
2961 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2962 		verbose(env,
2963 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2964 		return -EINVAL;
2965 	}
2966 
2967 	if (mode == BPF_IND) {
2968 		/* check explicit source operand */
2969 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2970 		if (err)
2971 			return err;
2972 	}
2973 
2974 	/* reset caller saved regs to unreadable */
2975 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2976 		mark_reg_not_init(env, regs, caller_saved[i]);
2977 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2978 	}
2979 
2980 	/* mark destination R0 register as readable, since it contains
2981 	 * the value fetched from the packet.
2982 	 * Already marked as written above.
2983 	 */
2984 	mark_reg_unknown(env, regs, BPF_REG_0);
2985 	return 0;
2986 }
2987 
2988 static int check_return_code(struct bpf_verifier_env *env)
2989 {
2990 	struct bpf_reg_state *reg;
2991 	struct tnum range = tnum_range(0, 1);
2992 
2993 	switch (env->prog->type) {
2994 	case BPF_PROG_TYPE_CGROUP_SKB:
2995 	case BPF_PROG_TYPE_CGROUP_SOCK:
2996 	case BPF_PROG_TYPE_SOCK_OPS:
2997 		break;
2998 	default:
2999 		return 0;
3000 	}
3001 
3002 	reg = &env->cur_state.regs[BPF_REG_0];
3003 	if (reg->type != SCALAR_VALUE) {
3004 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3005 			reg_type_str[reg->type]);
3006 		return -EINVAL;
3007 	}
3008 
3009 	if (!tnum_in(range, reg->var_off)) {
3010 		verbose(env, "At program exit the register R0 ");
3011 		if (!tnum_is_unknown(reg->var_off)) {
3012 			char tn_buf[48];
3013 
3014 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3015 			verbose(env, "has value %s", tn_buf);
3016 		} else {
3017 			verbose(env, "has unknown scalar value");
3018 		}
3019 		verbose(env, " should have been 0 or 1\n");
3020 		return -EINVAL;
3021 	}
3022 	return 0;
3023 }
3024 
3025 /* non-recursive DFS pseudo code
3026  * 1  procedure DFS-iterative(G,v):
3027  * 2      label v as discovered
3028  * 3      let S be a stack
3029  * 4      S.push(v)
3030  * 5      while S is not empty
3031  * 6            t <- S.pop()
3032  * 7            if t is what we're looking for:
3033  * 8                return t
3034  * 9            for all edges e in G.adjacentEdges(t) do
3035  * 10               if edge e is already labelled
3036  * 11                   continue with the next edge
3037  * 12               w <- G.adjacentVertex(t,e)
3038  * 13               if vertex w is not discovered and not explored
3039  * 14                   label e as tree-edge
3040  * 15                   label w as discovered
3041  * 16                   S.push(w)
3042  * 17                   continue at 5
3043  * 18               else if vertex w is discovered
3044  * 19                   label e as back-edge
3045  * 20               else
3046  * 21                   // vertex w is explored
3047  * 22                   label e as forward- or cross-edge
3048  * 23           label t as explored
3049  * 24           S.pop()
3050  *
3051  * convention:
3052  * 0x10 - discovered
3053  * 0x11 - discovered and fall-through edge labelled
3054  * 0x12 - discovered and fall-through and branch edges labelled
3055  * 0x20 - explored
3056  */
3057 
3058 enum {
3059 	DISCOVERED = 0x10,
3060 	EXPLORED = 0x20,
3061 	FALLTHROUGH = 1,
3062 	BRANCH = 2,
3063 };
3064 
3065 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3066 
3067 static int *insn_stack;	/* stack of insns to process */
3068 static int cur_stack;	/* current stack index */
3069 static int *insn_state;
3070 
3071 /* t, w, e - match pseudo-code above:
3072  * t - index of current instruction
3073  * w - next instruction
3074  * e - edge
3075  */
3076 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3077 {
3078 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3079 		return 0;
3080 
3081 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3082 		return 0;
3083 
3084 	if (w < 0 || w >= env->prog->len) {
3085 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3086 		return -EINVAL;
3087 	}
3088 
3089 	if (e == BRANCH)
3090 		/* mark branch target for state pruning */
3091 		env->explored_states[w] = STATE_LIST_MARK;
3092 
3093 	if (insn_state[w] == 0) {
3094 		/* tree-edge */
3095 		insn_state[t] = DISCOVERED | e;
3096 		insn_state[w] = DISCOVERED;
3097 		if (cur_stack >= env->prog->len)
3098 			return -E2BIG;
3099 		insn_stack[cur_stack++] = w;
3100 		return 1;
3101 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3102 		verbose(env, "back-edge from insn %d to %d\n", t, w);
3103 		return -EINVAL;
3104 	} else if (insn_state[w] == EXPLORED) {
3105 		/* forward- or cross-edge */
3106 		insn_state[t] = DISCOVERED | e;
3107 	} else {
3108 		verbose(env, "insn state internal bug\n");
3109 		return -EFAULT;
3110 	}
3111 	return 0;
3112 }
3113 
3114 /* non-recursive depth-first-search to detect loops in BPF program
3115  * loop == back-edge in directed graph
3116  */
3117 static int check_cfg(struct bpf_verifier_env *env)
3118 {
3119 	struct bpf_insn *insns = env->prog->insnsi;
3120 	int insn_cnt = env->prog->len;
3121 	int ret = 0;
3122 	int i, t;
3123 
3124 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3125 	if (!insn_state)
3126 		return -ENOMEM;
3127 
3128 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3129 	if (!insn_stack) {
3130 		kfree(insn_state);
3131 		return -ENOMEM;
3132 	}
3133 
3134 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3135 	insn_stack[0] = 0; /* 0 is the first instruction */
3136 	cur_stack = 1;
3137 
3138 peek_stack:
3139 	if (cur_stack == 0)
3140 		goto check_state;
3141 	t = insn_stack[cur_stack - 1];
3142 
3143 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3144 		u8 opcode = BPF_OP(insns[t].code);
3145 
3146 		if (opcode == BPF_EXIT) {
3147 			goto mark_explored;
3148 		} else if (opcode == BPF_CALL) {
3149 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3150 			if (ret == 1)
3151 				goto peek_stack;
3152 			else if (ret < 0)
3153 				goto err_free;
3154 			if (t + 1 < insn_cnt)
3155 				env->explored_states[t + 1] = STATE_LIST_MARK;
3156 		} else if (opcode == BPF_JA) {
3157 			if (BPF_SRC(insns[t].code) != BPF_K) {
3158 				ret = -EINVAL;
3159 				goto err_free;
3160 			}
3161 			/* unconditional jump with single edge */
3162 			ret = push_insn(t, t + insns[t].off + 1,
3163 					FALLTHROUGH, env);
3164 			if (ret == 1)
3165 				goto peek_stack;
3166 			else if (ret < 0)
3167 				goto err_free;
3168 			/* tell verifier to check for equivalent states
3169 			 * after every call and jump
3170 			 */
3171 			if (t + 1 < insn_cnt)
3172 				env->explored_states[t + 1] = STATE_LIST_MARK;
3173 		} else {
3174 			/* conditional jump with two edges */
3175 			env->explored_states[t] = STATE_LIST_MARK;
3176 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3177 			if (ret == 1)
3178 				goto peek_stack;
3179 			else if (ret < 0)
3180 				goto err_free;
3181 
3182 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3183 			if (ret == 1)
3184 				goto peek_stack;
3185 			else if (ret < 0)
3186 				goto err_free;
3187 		}
3188 	} else {
3189 		/* all other non-branch instructions with single
3190 		 * fall-through edge
3191 		 */
3192 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
3193 		if (ret == 1)
3194 			goto peek_stack;
3195 		else if (ret < 0)
3196 			goto err_free;
3197 	}
3198 
3199 mark_explored:
3200 	insn_state[t] = EXPLORED;
3201 	if (cur_stack-- <= 0) {
3202 		verbose(env, "pop stack internal bug\n");
3203 		ret = -EFAULT;
3204 		goto err_free;
3205 	}
3206 	goto peek_stack;
3207 
3208 check_state:
3209 	for (i = 0; i < insn_cnt; i++) {
3210 		if (insn_state[i] != EXPLORED) {
3211 			verbose(env, "unreachable insn %d\n", i);
3212 			ret = -EINVAL;
3213 			goto err_free;
3214 		}
3215 	}
3216 	ret = 0; /* cfg looks good */
3217 
3218 err_free:
3219 	kfree(insn_state);
3220 	kfree(insn_stack);
3221 	return ret;
3222 }
3223 
3224 /* check %cur's range satisfies %old's */
3225 static bool range_within(struct bpf_reg_state *old,
3226 			 struct bpf_reg_state *cur)
3227 {
3228 	return old->umin_value <= cur->umin_value &&
3229 	       old->umax_value >= cur->umax_value &&
3230 	       old->smin_value <= cur->smin_value &&
3231 	       old->smax_value >= cur->smax_value;
3232 }
3233 
3234 /* Maximum number of register states that can exist at once */
3235 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3236 struct idpair {
3237 	u32 old;
3238 	u32 cur;
3239 };
3240 
3241 /* If in the old state two registers had the same id, then they need to have
3242  * the same id in the new state as well.  But that id could be different from
3243  * the old state, so we need to track the mapping from old to new ids.
3244  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3245  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
3246  * regs with a different old id could still have new id 9, we don't care about
3247  * that.
3248  * So we look through our idmap to see if this old id has been seen before.  If
3249  * so, we require the new id to match; otherwise, we add the id pair to the map.
3250  */
3251 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3252 {
3253 	unsigned int i;
3254 
3255 	for (i = 0; i < ID_MAP_SIZE; i++) {
3256 		if (!idmap[i].old) {
3257 			/* Reached an empty slot; haven't seen this id before */
3258 			idmap[i].old = old_id;
3259 			idmap[i].cur = cur_id;
3260 			return true;
3261 		}
3262 		if (idmap[i].old == old_id)
3263 			return idmap[i].cur == cur_id;
3264 	}
3265 	/* We ran out of idmap slots, which should be impossible */
3266 	WARN_ON_ONCE(1);
3267 	return false;
3268 }
3269 
3270 /* Returns true if (rold safe implies rcur safe) */
3271 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3272 		    struct idpair *idmap)
3273 {
3274 	if (!(rold->live & REG_LIVE_READ))
3275 		/* explored state didn't use this */
3276 		return true;
3277 
3278 	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3279 		return true;
3280 
3281 	if (rold->type == NOT_INIT)
3282 		/* explored state can't have used this */
3283 		return true;
3284 	if (rcur->type == NOT_INIT)
3285 		return false;
3286 	switch (rold->type) {
3287 	case SCALAR_VALUE:
3288 		if (rcur->type == SCALAR_VALUE) {
3289 			/* new val must satisfy old val knowledge */
3290 			return range_within(rold, rcur) &&
3291 			       tnum_in(rold->var_off, rcur->var_off);
3292 		} else {
3293 			/* if we knew anything about the old value, we're not
3294 			 * equal, because we can't know anything about the
3295 			 * scalar value of the pointer in the new value.
3296 			 */
3297 			return rold->umin_value == 0 &&
3298 			       rold->umax_value == U64_MAX &&
3299 			       rold->smin_value == S64_MIN &&
3300 			       rold->smax_value == S64_MAX &&
3301 			       tnum_is_unknown(rold->var_off);
3302 		}
3303 	case PTR_TO_MAP_VALUE:
3304 		/* If the new min/max/var_off satisfy the old ones and
3305 		 * everything else matches, we are OK.
3306 		 * We don't care about the 'id' value, because nothing
3307 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3308 		 */
3309 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3310 		       range_within(rold, rcur) &&
3311 		       tnum_in(rold->var_off, rcur->var_off);
3312 	case PTR_TO_MAP_VALUE_OR_NULL:
3313 		/* a PTR_TO_MAP_VALUE could be safe to use as a
3314 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3315 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3316 		 * checked, doing so could have affected others with the same
3317 		 * id, and we can't check for that because we lost the id when
3318 		 * we converted to a PTR_TO_MAP_VALUE.
3319 		 */
3320 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3321 			return false;
3322 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3323 			return false;
3324 		/* Check our ids match any regs they're supposed to */
3325 		return check_ids(rold->id, rcur->id, idmap);
3326 	case PTR_TO_PACKET_META:
3327 	case PTR_TO_PACKET:
3328 		if (rcur->type != rold->type)
3329 			return false;
3330 		/* We must have at least as much range as the old ptr
3331 		 * did, so that any accesses which were safe before are
3332 		 * still safe.  This is true even if old range < old off,
3333 		 * since someone could have accessed through (ptr - k), or
3334 		 * even done ptr -= k in a register, to get a safe access.
3335 		 */
3336 		if (rold->range > rcur->range)
3337 			return false;
3338 		/* If the offsets don't match, we can't trust our alignment;
3339 		 * nor can we be sure that we won't fall out of range.
3340 		 */
3341 		if (rold->off != rcur->off)
3342 			return false;
3343 		/* id relations must be preserved */
3344 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3345 			return false;
3346 		/* new val must satisfy old val knowledge */
3347 		return range_within(rold, rcur) &&
3348 		       tnum_in(rold->var_off, rcur->var_off);
3349 	case PTR_TO_CTX:
3350 	case CONST_PTR_TO_MAP:
3351 	case PTR_TO_STACK:
3352 	case PTR_TO_PACKET_END:
3353 		/* Only valid matches are exact, which memcmp() above
3354 		 * would have accepted
3355 		 */
3356 	default:
3357 		/* Don't know what's going on, just say it's not safe */
3358 		return false;
3359 	}
3360 
3361 	/* Shouldn't get here; if we do, say it's not safe */
3362 	WARN_ON_ONCE(1);
3363 	return false;
3364 }
3365 
3366 /* compare two verifier states
3367  *
3368  * all states stored in state_list are known to be valid, since
3369  * verifier reached 'bpf_exit' instruction through them
3370  *
3371  * this function is called when verifier exploring different branches of
3372  * execution popped from the state stack. If it sees an old state that has
3373  * more strict register state and more strict stack state then this execution
3374  * branch doesn't need to be explored further, since verifier already
3375  * concluded that more strict state leads to valid finish.
3376  *
3377  * Therefore two states are equivalent if register state is more conservative
3378  * and explored stack state is more conservative than the current one.
3379  * Example:
3380  *       explored                   current
3381  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3382  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3383  *
3384  * In other words if current stack state (one being explored) has more
3385  * valid slots than old one that already passed validation, it means
3386  * the verifier can stop exploring and conclude that current state is valid too
3387  *
3388  * Similarly with registers. If explored state has register type as invalid
3389  * whereas register type in current state is meaningful, it means that
3390  * the current state will reach 'bpf_exit' instruction safely
3391  */
3392 static bool states_equal(struct bpf_verifier_env *env,
3393 			 struct bpf_verifier_state *old,
3394 			 struct bpf_verifier_state *cur)
3395 {
3396 	struct idpair *idmap;
3397 	bool ret = false;
3398 	int i;
3399 
3400 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3401 	/* If we failed to allocate the idmap, just say it's not safe */
3402 	if (!idmap)
3403 		return false;
3404 
3405 	for (i = 0; i < MAX_BPF_REG; i++) {
3406 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3407 			goto out_free;
3408 	}
3409 
3410 	for (i = 0; i < MAX_BPF_STACK; i++) {
3411 		if (old->stack_slot_type[i] == STACK_INVALID)
3412 			continue;
3413 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
3414 			/* Ex: old explored (safe) state has STACK_SPILL in
3415 			 * this stack slot, but current has has STACK_MISC ->
3416 			 * this verifier states are not equivalent,
3417 			 * return false to continue verification of this path
3418 			 */
3419 			goto out_free;
3420 		if (i % BPF_REG_SIZE)
3421 			continue;
3422 		if (old->stack_slot_type[i] != STACK_SPILL)
3423 			continue;
3424 		if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
3425 			     &cur->spilled_regs[i / BPF_REG_SIZE],
3426 			     idmap))
3427 			/* when explored and current stack slot are both storing
3428 			 * spilled registers, check that stored pointers types
3429 			 * are the same as well.
3430 			 * Ex: explored safe path could have stored
3431 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3432 			 * but current path has stored:
3433 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3434 			 * such verifier states are not equivalent.
3435 			 * return false to continue verification of this path
3436 			 */
3437 			goto out_free;
3438 		else
3439 			continue;
3440 	}
3441 	ret = true;
3442 out_free:
3443 	kfree(idmap);
3444 	return ret;
3445 }
3446 
3447 /* A write screens off any subsequent reads; but write marks come from the
3448  * straight-line code between a state and its parent.  When we arrive at a
3449  * jump target (in the first iteration of the propagate_liveness() loop),
3450  * we didn't arrive by the straight-line code, so read marks in state must
3451  * propagate to parent regardless of state's write marks.
3452  */
3453 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3454 				  struct bpf_verifier_state *parent)
3455 {
3456 	bool writes = parent == state->parent; /* Observe write marks */
3457 	bool touched = false; /* any changes made? */
3458 	int i;
3459 
3460 	if (!parent)
3461 		return touched;
3462 	/* Propagate read liveness of registers... */
3463 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3464 	/* We don't need to worry about FP liveness because it's read-only */
3465 	for (i = 0; i < BPF_REG_FP; i++) {
3466 		if (parent->regs[i].live & REG_LIVE_READ)
3467 			continue;
3468 		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3469 			continue;
3470 		if (state->regs[i].live & REG_LIVE_READ) {
3471 			parent->regs[i].live |= REG_LIVE_READ;
3472 			touched = true;
3473 		}
3474 	}
3475 	/* ... and stack slots */
3476 	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
3477 		if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3478 			continue;
3479 		if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3480 			continue;
3481 		if (parent->spilled_regs[i].live & REG_LIVE_READ)
3482 			continue;
3483 		if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
3484 			continue;
3485 		if (state->spilled_regs[i].live & REG_LIVE_READ) {
3486 			parent->spilled_regs[i].live |= REG_LIVE_READ;
3487 			touched = true;
3488 		}
3489 	}
3490 	return touched;
3491 }
3492 
3493 /* "parent" is "a state from which we reach the current state", but initially
3494  * it is not the state->parent (i.e. "the state whose straight-line code leads
3495  * to the current state"), instead it is the state that happened to arrive at
3496  * a (prunable) equivalent of the current state.  See comment above
3497  * do_propagate_liveness() for consequences of this.
3498  * This function is just a more efficient way of calling mark_reg_read() or
3499  * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3500  * though it requires that parent != state->parent in the call arguments.
3501  */
3502 static void propagate_liveness(const struct bpf_verifier_state *state,
3503 			       struct bpf_verifier_state *parent)
3504 {
3505 	while (do_propagate_liveness(state, parent)) {
3506 		/* Something changed, so we need to feed those changes onward */
3507 		state = parent;
3508 		parent = state->parent;
3509 	}
3510 }
3511 
3512 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3513 {
3514 	struct bpf_verifier_state_list *new_sl;
3515 	struct bpf_verifier_state_list *sl;
3516 	int i;
3517 
3518 	sl = env->explored_states[insn_idx];
3519 	if (!sl)
3520 		/* this 'insn_idx' instruction wasn't marked, so we will not
3521 		 * be doing state search here
3522 		 */
3523 		return 0;
3524 
3525 	while (sl != STATE_LIST_MARK) {
3526 		if (states_equal(env, &sl->state, &env->cur_state)) {
3527 			/* reached equivalent register/stack state,
3528 			 * prune the search.
3529 			 * Registers read by the continuation are read by us.
3530 			 * If we have any write marks in env->cur_state, they
3531 			 * will prevent corresponding reads in the continuation
3532 			 * from reaching our parent (an explored_state).  Our
3533 			 * own state will get the read marks recorded, but
3534 			 * they'll be immediately forgotten as we're pruning
3535 			 * this state and will pop a new one.
3536 			 */
3537 			propagate_liveness(&sl->state, &env->cur_state);
3538 			return 1;
3539 		}
3540 		sl = sl->next;
3541 	}
3542 
3543 	/* there were no equivalent states, remember current one.
3544 	 * technically the current state is not proven to be safe yet,
3545 	 * but it will either reach bpf_exit (which means it's safe) or
3546 	 * it will be rejected. Since there are no loops, we won't be
3547 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3548 	 */
3549 	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
3550 	if (!new_sl)
3551 		return -ENOMEM;
3552 
3553 	/* add new state to the head of linked list */
3554 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3555 	new_sl->next = env->explored_states[insn_idx];
3556 	env->explored_states[insn_idx] = new_sl;
3557 	/* connect new state to parentage chain */
3558 	env->cur_state.parent = &new_sl->state;
3559 	/* clear write marks in current state: the writes we did are not writes
3560 	 * our child did, so they don't screen off its reads from us.
3561 	 * (There are no read marks in current state, because reads always mark
3562 	 * their parent and current state never has children yet.  Only
3563 	 * explored_states can get read marks.)
3564 	 */
3565 	for (i = 0; i < BPF_REG_FP; i++)
3566 		env->cur_state.regs[i].live = REG_LIVE_NONE;
3567 	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
3568 		if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
3569 			env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
3570 	return 0;
3571 }
3572 
3573 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3574 				  int insn_idx, int prev_insn_idx)
3575 {
3576 	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3577 		return 0;
3578 
3579 	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3580 }
3581 
3582 static int do_check(struct bpf_verifier_env *env)
3583 {
3584 	struct bpf_verifier_state *state = &env->cur_state;
3585 	struct bpf_insn *insns = env->prog->insnsi;
3586 	struct bpf_reg_state *regs = state->regs;
3587 	int insn_cnt = env->prog->len;
3588 	int insn_idx, prev_insn_idx = 0;
3589 	int insn_processed = 0;
3590 	bool do_print_state = false;
3591 
3592 	init_reg_state(env, regs);
3593 	state->parent = NULL;
3594 	insn_idx = 0;
3595 	for (;;) {
3596 		struct bpf_insn *insn;
3597 		u8 class;
3598 		int err;
3599 
3600 		if (insn_idx >= insn_cnt) {
3601 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
3602 				insn_idx, insn_cnt);
3603 			return -EFAULT;
3604 		}
3605 
3606 		insn = &insns[insn_idx];
3607 		class = BPF_CLASS(insn->code);
3608 
3609 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3610 			verbose(env,
3611 				"BPF program is too large. Processed %d insn\n",
3612 				insn_processed);
3613 			return -E2BIG;
3614 		}
3615 
3616 		err = is_state_visited(env, insn_idx);
3617 		if (err < 0)
3618 			return err;
3619 		if (err == 1) {
3620 			/* found equivalent state, can prune the search */
3621 			if (env->log.level) {
3622 				if (do_print_state)
3623 					verbose(env, "\nfrom %d to %d: safe\n",
3624 						prev_insn_idx, insn_idx);
3625 				else
3626 					verbose(env, "%d: safe\n", insn_idx);
3627 			}
3628 			goto process_bpf_exit;
3629 		}
3630 
3631 		if (need_resched())
3632 			cond_resched();
3633 
3634 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
3635 			if (env->log.level > 1)
3636 				verbose(env, "%d:", insn_idx);
3637 			else
3638 				verbose(env, "\nfrom %d to %d:",
3639 					prev_insn_idx, insn_idx);
3640 			print_verifier_state(env, &env->cur_state);
3641 			do_print_state = false;
3642 		}
3643 
3644 		if (env->log.level) {
3645 			verbose(env, "%d: ", insn_idx);
3646 			print_bpf_insn(verbose, env, insn,
3647 				       env->allow_ptr_leaks);
3648 		}
3649 
3650 		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3651 		if (err)
3652 			return err;
3653 
3654 		if (class == BPF_ALU || class == BPF_ALU64) {
3655 			err = check_alu_op(env, insn);
3656 			if (err)
3657 				return err;
3658 
3659 		} else if (class == BPF_LDX) {
3660 			enum bpf_reg_type *prev_src_type, src_reg_type;
3661 
3662 			/* check for reserved fields is already done */
3663 
3664 			/* check src operand */
3665 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3666 			if (err)
3667 				return err;
3668 
3669 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3670 			if (err)
3671 				return err;
3672 
3673 			src_reg_type = regs[insn->src_reg].type;
3674 
3675 			/* check that memory (src_reg + off) is readable,
3676 			 * the state of dst_reg will be updated by this func
3677 			 */
3678 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3679 					       BPF_SIZE(insn->code), BPF_READ,
3680 					       insn->dst_reg);
3681 			if (err)
3682 				return err;
3683 
3684 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3685 
3686 			if (*prev_src_type == NOT_INIT) {
3687 				/* saw a valid insn
3688 				 * dst_reg = *(u32 *)(src_reg + off)
3689 				 * save type to validate intersecting paths
3690 				 */
3691 				*prev_src_type = src_reg_type;
3692 
3693 			} else if (src_reg_type != *prev_src_type &&
3694 				   (src_reg_type == PTR_TO_CTX ||
3695 				    *prev_src_type == PTR_TO_CTX)) {
3696 				/* ABuser program is trying to use the same insn
3697 				 * dst_reg = *(u32*) (src_reg + off)
3698 				 * with different pointer types:
3699 				 * src_reg == ctx in one branch and
3700 				 * src_reg == stack|map in some other branch.
3701 				 * Reject it.
3702 				 */
3703 				verbose(env, "same insn cannot be used with different pointers\n");
3704 				return -EINVAL;
3705 			}
3706 
3707 		} else if (class == BPF_STX) {
3708 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3709 
3710 			if (BPF_MODE(insn->code) == BPF_XADD) {
3711 				err = check_xadd(env, insn_idx, insn);
3712 				if (err)
3713 					return err;
3714 				insn_idx++;
3715 				continue;
3716 			}
3717 
3718 			/* check src1 operand */
3719 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3720 			if (err)
3721 				return err;
3722 			/* check src2 operand */
3723 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3724 			if (err)
3725 				return err;
3726 
3727 			dst_reg_type = regs[insn->dst_reg].type;
3728 
3729 			/* check that memory (dst_reg + off) is writeable */
3730 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3731 					       BPF_SIZE(insn->code), BPF_WRITE,
3732 					       insn->src_reg);
3733 			if (err)
3734 				return err;
3735 
3736 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3737 
3738 			if (*prev_dst_type == NOT_INIT) {
3739 				*prev_dst_type = dst_reg_type;
3740 			} else if (dst_reg_type != *prev_dst_type &&
3741 				   (dst_reg_type == PTR_TO_CTX ||
3742 				    *prev_dst_type == PTR_TO_CTX)) {
3743 				verbose(env, "same insn cannot be used with different pointers\n");
3744 				return -EINVAL;
3745 			}
3746 
3747 		} else if (class == BPF_ST) {
3748 			if (BPF_MODE(insn->code) != BPF_MEM ||
3749 			    insn->src_reg != BPF_REG_0) {
3750 				verbose(env, "BPF_ST uses reserved fields\n");
3751 				return -EINVAL;
3752 			}
3753 			/* check src operand */
3754 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3755 			if (err)
3756 				return err;
3757 
3758 			/* check that memory (dst_reg + off) is writeable */
3759 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3760 					       BPF_SIZE(insn->code), BPF_WRITE,
3761 					       -1);
3762 			if (err)
3763 				return err;
3764 
3765 		} else if (class == BPF_JMP) {
3766 			u8 opcode = BPF_OP(insn->code);
3767 
3768 			if (opcode == BPF_CALL) {
3769 				if (BPF_SRC(insn->code) != BPF_K ||
3770 				    insn->off != 0 ||
3771 				    insn->src_reg != BPF_REG_0 ||
3772 				    insn->dst_reg != BPF_REG_0) {
3773 					verbose(env, "BPF_CALL uses reserved fields\n");
3774 					return -EINVAL;
3775 				}
3776 
3777 				err = check_call(env, insn->imm, insn_idx);
3778 				if (err)
3779 					return err;
3780 
3781 			} else if (opcode == BPF_JA) {
3782 				if (BPF_SRC(insn->code) != BPF_K ||
3783 				    insn->imm != 0 ||
3784 				    insn->src_reg != BPF_REG_0 ||
3785 				    insn->dst_reg != BPF_REG_0) {
3786 					verbose(env, "BPF_JA uses reserved fields\n");
3787 					return -EINVAL;
3788 				}
3789 
3790 				insn_idx += insn->off + 1;
3791 				continue;
3792 
3793 			} else if (opcode == BPF_EXIT) {
3794 				if (BPF_SRC(insn->code) != BPF_K ||
3795 				    insn->imm != 0 ||
3796 				    insn->src_reg != BPF_REG_0 ||
3797 				    insn->dst_reg != BPF_REG_0) {
3798 					verbose(env, "BPF_EXIT uses reserved fields\n");
3799 					return -EINVAL;
3800 				}
3801 
3802 				/* eBPF calling convetion is such that R0 is used
3803 				 * to return the value from eBPF program.
3804 				 * Make sure that it's readable at this time
3805 				 * of bpf_exit, which means that program wrote
3806 				 * something into it earlier
3807 				 */
3808 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3809 				if (err)
3810 					return err;
3811 
3812 				if (is_pointer_value(env, BPF_REG_0)) {
3813 					verbose(env, "R0 leaks addr as return value\n");
3814 					return -EACCES;
3815 				}
3816 
3817 				err = check_return_code(env);
3818 				if (err)
3819 					return err;
3820 process_bpf_exit:
3821 				insn_idx = pop_stack(env, &prev_insn_idx);
3822 				if (insn_idx < 0) {
3823 					break;
3824 				} else {
3825 					do_print_state = true;
3826 					continue;
3827 				}
3828 			} else {
3829 				err = check_cond_jmp_op(env, insn, &insn_idx);
3830 				if (err)
3831 					return err;
3832 			}
3833 		} else if (class == BPF_LD) {
3834 			u8 mode = BPF_MODE(insn->code);
3835 
3836 			if (mode == BPF_ABS || mode == BPF_IND) {
3837 				err = check_ld_abs(env, insn);
3838 				if (err)
3839 					return err;
3840 
3841 			} else if (mode == BPF_IMM) {
3842 				err = check_ld_imm(env, insn);
3843 				if (err)
3844 					return err;
3845 
3846 				insn_idx++;
3847 			} else {
3848 				verbose(env, "invalid BPF_LD mode\n");
3849 				return -EINVAL;
3850 			}
3851 		} else {
3852 			verbose(env, "unknown insn class %d\n", class);
3853 			return -EINVAL;
3854 		}
3855 
3856 		insn_idx++;
3857 	}
3858 
3859 	verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
3860 		env->prog->aux->stack_depth);
3861 	return 0;
3862 }
3863 
3864 static int check_map_prealloc(struct bpf_map *map)
3865 {
3866 	return (map->map_type != BPF_MAP_TYPE_HASH &&
3867 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3868 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3869 		!(map->map_flags & BPF_F_NO_PREALLOC);
3870 }
3871 
3872 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
3873 					struct bpf_map *map,
3874 					struct bpf_prog *prog)
3875 
3876 {
3877 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3878 	 * preallocated hash maps, since doing memory allocation
3879 	 * in overflow_handler can crash depending on where nmi got
3880 	 * triggered.
3881 	 */
3882 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3883 		if (!check_map_prealloc(map)) {
3884 			verbose(env, "perf_event programs can only use preallocated hash map\n");
3885 			return -EINVAL;
3886 		}
3887 		if (map->inner_map_meta &&
3888 		    !check_map_prealloc(map->inner_map_meta)) {
3889 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
3890 			return -EINVAL;
3891 		}
3892 	}
3893 	return 0;
3894 }
3895 
3896 /* look for pseudo eBPF instructions that access map FDs and
3897  * replace them with actual map pointers
3898  */
3899 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3900 {
3901 	struct bpf_insn *insn = env->prog->insnsi;
3902 	int insn_cnt = env->prog->len;
3903 	int i, j, err;
3904 
3905 	err = bpf_prog_calc_tag(env->prog);
3906 	if (err)
3907 		return err;
3908 
3909 	for (i = 0; i < insn_cnt; i++, insn++) {
3910 		if (BPF_CLASS(insn->code) == BPF_LDX &&
3911 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3912 			verbose(env, "BPF_LDX uses reserved fields\n");
3913 			return -EINVAL;
3914 		}
3915 
3916 		if (BPF_CLASS(insn->code) == BPF_STX &&
3917 		    ((BPF_MODE(insn->code) != BPF_MEM &&
3918 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3919 			verbose(env, "BPF_STX uses reserved fields\n");
3920 			return -EINVAL;
3921 		}
3922 
3923 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3924 			struct bpf_map *map;
3925 			struct fd f;
3926 
3927 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
3928 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3929 			    insn[1].off != 0) {
3930 				verbose(env, "invalid bpf_ld_imm64 insn\n");
3931 				return -EINVAL;
3932 			}
3933 
3934 			if (insn->src_reg == 0)
3935 				/* valid generic load 64-bit imm */
3936 				goto next_insn;
3937 
3938 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3939 				verbose(env,
3940 					"unrecognized bpf_ld_imm64 insn\n");
3941 				return -EINVAL;
3942 			}
3943 
3944 			f = fdget(insn->imm);
3945 			map = __bpf_map_get(f);
3946 			if (IS_ERR(map)) {
3947 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
3948 					insn->imm);
3949 				return PTR_ERR(map);
3950 			}
3951 
3952 			err = check_map_prog_compatibility(env, map, env->prog);
3953 			if (err) {
3954 				fdput(f);
3955 				return err;
3956 			}
3957 
3958 			/* store map pointer inside BPF_LD_IMM64 instruction */
3959 			insn[0].imm = (u32) (unsigned long) map;
3960 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
3961 
3962 			/* check whether we recorded this map already */
3963 			for (j = 0; j < env->used_map_cnt; j++)
3964 				if (env->used_maps[j] == map) {
3965 					fdput(f);
3966 					goto next_insn;
3967 				}
3968 
3969 			if (env->used_map_cnt >= MAX_USED_MAPS) {
3970 				fdput(f);
3971 				return -E2BIG;
3972 			}
3973 
3974 			/* hold the map. If the program is rejected by verifier,
3975 			 * the map will be released by release_maps() or it
3976 			 * will be used by the valid program until it's unloaded
3977 			 * and all maps are released in free_bpf_prog_info()
3978 			 */
3979 			map = bpf_map_inc(map, false);
3980 			if (IS_ERR(map)) {
3981 				fdput(f);
3982 				return PTR_ERR(map);
3983 			}
3984 			env->used_maps[env->used_map_cnt++] = map;
3985 
3986 			fdput(f);
3987 next_insn:
3988 			insn++;
3989 			i++;
3990 		}
3991 	}
3992 
3993 	/* now all pseudo BPF_LD_IMM64 instructions load valid
3994 	 * 'struct bpf_map *' into a register instead of user map_fd.
3995 	 * These pointers will be used later by verifier to validate map access.
3996 	 */
3997 	return 0;
3998 }
3999 
4000 /* drop refcnt of maps used by the rejected program */
4001 static void release_maps(struct bpf_verifier_env *env)
4002 {
4003 	int i;
4004 
4005 	for (i = 0; i < env->used_map_cnt; i++)
4006 		bpf_map_put(env->used_maps[i]);
4007 }
4008 
4009 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4010 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4011 {
4012 	struct bpf_insn *insn = env->prog->insnsi;
4013 	int insn_cnt = env->prog->len;
4014 	int i;
4015 
4016 	for (i = 0; i < insn_cnt; i++, insn++)
4017 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4018 			insn->src_reg = 0;
4019 }
4020 
4021 /* single env->prog->insni[off] instruction was replaced with the range
4022  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
4023  * [0, off) and [off, end) to new locations, so the patched range stays zero
4024  */
4025 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4026 				u32 off, u32 cnt)
4027 {
4028 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4029 
4030 	if (cnt == 1)
4031 		return 0;
4032 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4033 	if (!new_data)
4034 		return -ENOMEM;
4035 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4036 	memcpy(new_data + off + cnt - 1, old_data + off,
4037 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4038 	env->insn_aux_data = new_data;
4039 	vfree(old_data);
4040 	return 0;
4041 }
4042 
4043 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4044 					    const struct bpf_insn *patch, u32 len)
4045 {
4046 	struct bpf_prog *new_prog;
4047 
4048 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4049 	if (!new_prog)
4050 		return NULL;
4051 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
4052 		return NULL;
4053 	return new_prog;
4054 }
4055 
4056 /* convert load instructions that access fields of 'struct __sk_buff'
4057  * into sequence of instructions that access fields of 'struct sk_buff'
4058  */
4059 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4060 {
4061 	const struct bpf_verifier_ops *ops = env->ops;
4062 	int i, cnt, size, ctx_field_size, delta = 0;
4063 	const int insn_cnt = env->prog->len;
4064 	struct bpf_insn insn_buf[16], *insn;
4065 	struct bpf_prog *new_prog;
4066 	enum bpf_access_type type;
4067 	bool is_narrower_load;
4068 	u32 target_size;
4069 
4070 	if (ops->gen_prologue) {
4071 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4072 					env->prog);
4073 		if (cnt >= ARRAY_SIZE(insn_buf)) {
4074 			verbose(env, "bpf verifier is misconfigured\n");
4075 			return -EINVAL;
4076 		} else if (cnt) {
4077 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4078 			if (!new_prog)
4079 				return -ENOMEM;
4080 
4081 			env->prog = new_prog;
4082 			delta += cnt - 1;
4083 		}
4084 	}
4085 
4086 	if (!ops->convert_ctx_access)
4087 		return 0;
4088 
4089 	insn = env->prog->insnsi + delta;
4090 
4091 	for (i = 0; i < insn_cnt; i++, insn++) {
4092 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4093 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4094 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4095 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4096 			type = BPF_READ;
4097 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4098 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4099 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4100 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4101 			type = BPF_WRITE;
4102 		else
4103 			continue;
4104 
4105 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4106 			continue;
4107 
4108 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4109 		size = BPF_LDST_BYTES(insn);
4110 
4111 		/* If the read access is a narrower load of the field,
4112 		 * convert to a 4/8-byte load, to minimum program type specific
4113 		 * convert_ctx_access changes. If conversion is successful,
4114 		 * we will apply proper mask to the result.
4115 		 */
4116 		is_narrower_load = size < ctx_field_size;
4117 		if (is_narrower_load) {
4118 			u32 off = insn->off;
4119 			u8 size_code;
4120 
4121 			if (type == BPF_WRITE) {
4122 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4123 				return -EINVAL;
4124 			}
4125 
4126 			size_code = BPF_H;
4127 			if (ctx_field_size == 4)
4128 				size_code = BPF_W;
4129 			else if (ctx_field_size == 8)
4130 				size_code = BPF_DW;
4131 
4132 			insn->off = off & ~(ctx_field_size - 1);
4133 			insn->code = BPF_LDX | BPF_MEM | size_code;
4134 		}
4135 
4136 		target_size = 0;
4137 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4138 					      &target_size);
4139 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4140 		    (ctx_field_size && !target_size)) {
4141 			verbose(env, "bpf verifier is misconfigured\n");
4142 			return -EINVAL;
4143 		}
4144 
4145 		if (is_narrower_load && size < target_size) {
4146 			if (ctx_field_size <= 4)
4147 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4148 								(1 << size * 8) - 1);
4149 			else
4150 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4151 								(1 << size * 8) - 1);
4152 		}
4153 
4154 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4155 		if (!new_prog)
4156 			return -ENOMEM;
4157 
4158 		delta += cnt - 1;
4159 
4160 		/* keep walking new program and skip insns we just inserted */
4161 		env->prog = new_prog;
4162 		insn      = new_prog->insnsi + i + delta;
4163 	}
4164 
4165 	return 0;
4166 }
4167 
4168 /* fixup insn->imm field of bpf_call instructions
4169  * and inline eligible helpers as explicit sequence of BPF instructions
4170  *
4171  * this function is called after eBPF program passed verification
4172  */
4173 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4174 {
4175 	struct bpf_prog *prog = env->prog;
4176 	struct bpf_insn *insn = prog->insnsi;
4177 	const struct bpf_func_proto *fn;
4178 	const int insn_cnt = prog->len;
4179 	struct bpf_insn insn_buf[16];
4180 	struct bpf_prog *new_prog;
4181 	struct bpf_map *map_ptr;
4182 	int i, cnt, delta = 0;
4183 
4184 	for (i = 0; i < insn_cnt; i++, insn++) {
4185 		if (insn->code != (BPF_JMP | BPF_CALL))
4186 			continue;
4187 
4188 		if (insn->imm == BPF_FUNC_get_route_realm)
4189 			prog->dst_needed = 1;
4190 		if (insn->imm == BPF_FUNC_get_prandom_u32)
4191 			bpf_user_rnd_init_once();
4192 		if (insn->imm == BPF_FUNC_tail_call) {
4193 			/* If we tail call into other programs, we
4194 			 * cannot make any assumptions since they can
4195 			 * be replaced dynamically during runtime in
4196 			 * the program array.
4197 			 */
4198 			prog->cb_access = 1;
4199 			env->prog->aux->stack_depth = MAX_BPF_STACK;
4200 
4201 			/* mark bpf_tail_call as different opcode to avoid
4202 			 * conditional branch in the interpeter for every normal
4203 			 * call and to prevent accidental JITing by JIT compiler
4204 			 * that doesn't support bpf_tail_call yet
4205 			 */
4206 			insn->imm = 0;
4207 			insn->code = BPF_JMP | BPF_TAIL_CALL;
4208 			continue;
4209 		}
4210 
4211 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4212 		 * handlers are currently limited to 64 bit only.
4213 		 */
4214 		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4215 		    insn->imm == BPF_FUNC_map_lookup_elem) {
4216 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4217 			if (map_ptr == BPF_MAP_PTR_POISON ||
4218 			    !map_ptr->ops->map_gen_lookup)
4219 				goto patch_call_imm;
4220 
4221 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4222 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4223 				verbose(env, "bpf verifier is misconfigured\n");
4224 				return -EINVAL;
4225 			}
4226 
4227 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4228 						       cnt);
4229 			if (!new_prog)
4230 				return -ENOMEM;
4231 
4232 			delta += cnt - 1;
4233 
4234 			/* keep walking new program and skip insns we just inserted */
4235 			env->prog = prog = new_prog;
4236 			insn      = new_prog->insnsi + i + delta;
4237 			continue;
4238 		}
4239 
4240 		if (insn->imm == BPF_FUNC_redirect_map) {
4241 			/* Note, we cannot use prog directly as imm as subsequent
4242 			 * rewrites would still change the prog pointer. The only
4243 			 * stable address we can use is aux, which also works with
4244 			 * prog clones during blinding.
4245 			 */
4246 			u64 addr = (unsigned long)prog->aux;
4247 			struct bpf_insn r4_ld[] = {
4248 				BPF_LD_IMM64(BPF_REG_4, addr),
4249 				*insn,
4250 			};
4251 			cnt = ARRAY_SIZE(r4_ld);
4252 
4253 			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4254 			if (!new_prog)
4255 				return -ENOMEM;
4256 
4257 			delta    += cnt - 1;
4258 			env->prog = prog = new_prog;
4259 			insn      = new_prog->insnsi + i + delta;
4260 		}
4261 patch_call_imm:
4262 		fn = env->ops->get_func_proto(insn->imm);
4263 		/* all functions that have prototype and verifier allowed
4264 		 * programs to call them, must be real in-kernel functions
4265 		 */
4266 		if (!fn->func) {
4267 			verbose(env,
4268 				"kernel subsystem misconfigured func %s#%d\n",
4269 				func_id_name(insn->imm), insn->imm);
4270 			return -EFAULT;
4271 		}
4272 		insn->imm = fn->func - __bpf_call_base;
4273 	}
4274 
4275 	return 0;
4276 }
4277 
4278 static void free_states(struct bpf_verifier_env *env)
4279 {
4280 	struct bpf_verifier_state_list *sl, *sln;
4281 	int i;
4282 
4283 	if (!env->explored_states)
4284 		return;
4285 
4286 	for (i = 0; i < env->prog->len; i++) {
4287 		sl = env->explored_states[i];
4288 
4289 		if (sl)
4290 			while (sl != STATE_LIST_MARK) {
4291 				sln = sl->next;
4292 				kfree(sl);
4293 				sl = sln;
4294 			}
4295 	}
4296 
4297 	kfree(env->explored_states);
4298 }
4299 
4300 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4301 {
4302 	struct bpf_verifier_env *env;
4303 	struct bpf_verifer_log *log;
4304 	int ret = -EINVAL;
4305 
4306 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4307 	 * allocate/free it every time bpf_check() is called
4308 	 */
4309 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4310 	if (!env)
4311 		return -ENOMEM;
4312 	log = &env->log;
4313 
4314 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4315 				     (*prog)->len);
4316 	ret = -ENOMEM;
4317 	if (!env->insn_aux_data)
4318 		goto err_free_env;
4319 	env->prog = *prog;
4320 	env->ops = bpf_verifier_ops[env->prog->type];
4321 
4322 	/* grab the mutex to protect few globals used by verifier */
4323 	mutex_lock(&bpf_verifier_lock);
4324 
4325 	if (attr->log_level || attr->log_buf || attr->log_size) {
4326 		/* user requested verbose verifier output
4327 		 * and supplied buffer to store the verification trace
4328 		 */
4329 		log->level = attr->log_level;
4330 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4331 		log->len_total = attr->log_size;
4332 
4333 		ret = -EINVAL;
4334 		/* log attributes have to be sane */
4335 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4336 		    !log->level || !log->ubuf)
4337 			goto err_unlock;
4338 	}
4339 
4340 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4341 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4342 		env->strict_alignment = true;
4343 
4344 	ret = replace_map_fd_with_map_ptr(env);
4345 	if (ret < 0)
4346 		goto skip_full_check;
4347 
4348 	env->explored_states = kcalloc(env->prog->len,
4349 				       sizeof(struct bpf_verifier_state_list *),
4350 				       GFP_USER);
4351 	ret = -ENOMEM;
4352 	if (!env->explored_states)
4353 		goto skip_full_check;
4354 
4355 	ret = check_cfg(env);
4356 	if (ret < 0)
4357 		goto skip_full_check;
4358 
4359 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4360 
4361 	ret = do_check(env);
4362 
4363 skip_full_check:
4364 	while (pop_stack(env, NULL) >= 0);
4365 	free_states(env);
4366 
4367 	if (ret == 0)
4368 		/* program is valid, convert *(u32*)(ctx + off) accesses */
4369 		ret = convert_ctx_accesses(env);
4370 
4371 	if (ret == 0)
4372 		ret = fixup_bpf_calls(env);
4373 
4374 	if (log->level && bpf_verifier_log_full(log))
4375 		ret = -ENOSPC;
4376 	if (log->level && !log->ubuf) {
4377 		ret = -EFAULT;
4378 		goto err_release_maps;
4379 	}
4380 
4381 	if (ret == 0 && env->used_map_cnt) {
4382 		/* if program passed verifier, update used_maps in bpf_prog_info */
4383 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4384 							  sizeof(env->used_maps[0]),
4385 							  GFP_KERNEL);
4386 
4387 		if (!env->prog->aux->used_maps) {
4388 			ret = -ENOMEM;
4389 			goto err_release_maps;
4390 		}
4391 
4392 		memcpy(env->prog->aux->used_maps, env->used_maps,
4393 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4394 		env->prog->aux->used_map_cnt = env->used_map_cnt;
4395 
4396 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
4397 		 * bpf_ld_imm64 instructions
4398 		 */
4399 		convert_pseudo_ld_imm64(env);
4400 	}
4401 
4402 err_release_maps:
4403 	if (!env->prog->aux->used_maps)
4404 		/* if we didn't copy map pointers into bpf_prog_info, release
4405 		 * them now. Otherwise free_bpf_prog_info() will release them.
4406 		 */
4407 		release_maps(env);
4408 	*prog = env->prog;
4409 err_unlock:
4410 	mutex_unlock(&bpf_verifier_lock);
4411 	vfree(env->insn_aux_data);
4412 err_free_env:
4413 	kfree(env);
4414 	return ret;
4415 }
4416 
4417 static const struct bpf_verifier_ops * const bpf_analyzer_ops[] = {
4418 	[BPF_PROG_TYPE_XDP]		= &xdp_analyzer_ops,
4419 	[BPF_PROG_TYPE_SCHED_CLS]	= &tc_cls_act_analyzer_ops,
4420 };
4421 
4422 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4423 		 void *priv)
4424 {
4425 	struct bpf_verifier_env *env;
4426 	int ret;
4427 
4428 	if (prog->type >= ARRAY_SIZE(bpf_analyzer_ops) ||
4429 	    !bpf_analyzer_ops[prog->type])
4430 		return -EOPNOTSUPP;
4431 
4432 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4433 	if (!env)
4434 		return -ENOMEM;
4435 
4436 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4437 				     prog->len);
4438 	ret = -ENOMEM;
4439 	if (!env->insn_aux_data)
4440 		goto err_free_env;
4441 	env->prog = prog;
4442 	env->ops = bpf_analyzer_ops[env->prog->type];
4443 	env->analyzer_ops = ops;
4444 	env->analyzer_priv = priv;
4445 
4446 	/* grab the mutex to protect few globals used by verifier */
4447 	mutex_lock(&bpf_verifier_lock);
4448 
4449 	env->strict_alignment = false;
4450 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4451 		env->strict_alignment = true;
4452 
4453 	env->explored_states = kcalloc(env->prog->len,
4454 				       sizeof(struct bpf_verifier_state_list *),
4455 				       GFP_KERNEL);
4456 	ret = -ENOMEM;
4457 	if (!env->explored_states)
4458 		goto skip_full_check;
4459 
4460 	ret = check_cfg(env);
4461 	if (ret < 0)
4462 		goto skip_full_check;
4463 
4464 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4465 
4466 	ret = do_check(env);
4467 
4468 skip_full_check:
4469 	while (pop_stack(env, NULL) >= 0);
4470 	free_states(env);
4471 
4472 	mutex_unlock(&bpf_verifier_lock);
4473 	vfree(env->insn_aux_data);
4474 err_free_env:
4475 	kfree(env);
4476 	return ret;
4477 }
4478 EXPORT_SYMBOL_GPL(bpf_analyzer);
4479