1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 24 #include "disasm.h" 25 26 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 27 #define BPF_PROG_TYPE(_id, _name) \ 28 [_id] = & _name ## _verifier_ops, 29 #define BPF_MAP_TYPE(_id, _ops) 30 #include <linux/bpf_types.h> 31 #undef BPF_PROG_TYPE 32 #undef BPF_MAP_TYPE 33 }; 34 35 /* bpf_check() is a static code analyzer that walks eBPF program 36 * instruction by instruction and updates register/stack state. 37 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 38 * 39 * The first pass is depth-first-search to check that the program is a DAG. 40 * It rejects the following programs: 41 * - larger than BPF_MAXINSNS insns 42 * - if loop is present (detected via back-edge) 43 * - unreachable insns exist (shouldn't be a forest. program = one function) 44 * - out of bounds or malformed jumps 45 * The second pass is all possible path descent from the 1st insn. 46 * Since it's analyzing all pathes through the program, the length of the 47 * analysis is limited to 64k insn, which may be hit even if total number of 48 * insn is less then 4K, but there are too many branches that change stack/regs. 49 * Number of 'branches to be analyzed' is limited to 1k 50 * 51 * On entry to each instruction, each register has a type, and the instruction 52 * changes the types of the registers depending on instruction semantics. 53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 54 * copied to R1. 55 * 56 * All registers are 64-bit. 57 * R0 - return register 58 * R1-R5 argument passing registers 59 * R6-R9 callee saved registers 60 * R10 - frame pointer read-only 61 * 62 * At the start of BPF program the register R1 contains a pointer to bpf_context 63 * and has type PTR_TO_CTX. 64 * 65 * Verifier tracks arithmetic operations on pointers in case: 66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 68 * 1st insn copies R10 (which has FRAME_PTR) type into R1 69 * and 2nd arithmetic instruction is pattern matched to recognize 70 * that it wants to construct a pointer to some element within stack. 71 * So after 2nd insn, the register R1 has type PTR_TO_STACK 72 * (and -20 constant is saved for further stack bounds checking). 73 * Meaning that this reg is a pointer to stack plus known immediate constant. 74 * 75 * Most of the time the registers have SCALAR_VALUE type, which 76 * means the register has some value, but it's not a valid pointer. 77 * (like pointer plus pointer becomes SCALAR_VALUE type) 78 * 79 * When verifier sees load or store instructions the type of base register 80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer 81 * types recognized by check_mem_access() function. 82 * 83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 84 * and the range of [ptr, ptr + map's value_size) is accessible. 85 * 86 * registers used to pass values to function calls are checked against 87 * function argument constraints. 88 * 89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 90 * It means that the register type passed to this function must be 91 * PTR_TO_STACK and it will be used inside the function as 92 * 'pointer to map element key' 93 * 94 * For example the argument constraints for bpf_map_lookup_elem(): 95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 96 * .arg1_type = ARG_CONST_MAP_PTR, 97 * .arg2_type = ARG_PTR_TO_MAP_KEY, 98 * 99 * ret_type says that this function returns 'pointer to map elem value or null' 100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 101 * 2nd argument should be a pointer to stack, which will be used inside 102 * the helper function as a pointer to map element key. 103 * 104 * On the kernel side the helper function looks like: 105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 106 * { 107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 108 * void *key = (void *) (unsigned long) r2; 109 * void *value; 110 * 111 * here kernel can access 'key' and 'map' pointers safely, knowing that 112 * [key, key + map->key_size) bytes are valid and were initialized on 113 * the stack of eBPF program. 114 * } 115 * 116 * Corresponding eBPF program may look like: 117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 121 * here verifier looks at prototype of map_lookup_elem() and sees: 122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 124 * 125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 127 * and were initialized prior to this call. 128 * If it's ok, then verifier allows this BPF_CALL insn and looks at 129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 131 * returns ether pointer to map value or NULL. 132 * 133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 134 * insn, the register holding that pointer in the true branch changes state to 135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 136 * branch. See check_cond_jmp_op(). 137 * 138 * After the call R0 is set to return type of the function and registers R1-R5 139 * are set to NOT_INIT to indicate that they are no longer readable. 140 */ 141 142 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 143 struct bpf_verifier_stack_elem { 144 /* verifer state is 'st' 145 * before processing instruction 'insn_idx' 146 * and after processing instruction 'prev_insn_idx' 147 */ 148 struct bpf_verifier_state st; 149 int insn_idx; 150 int prev_insn_idx; 151 struct bpf_verifier_stack_elem *next; 152 }; 153 154 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 155 #define BPF_COMPLEXITY_LIMIT_STACK 1024 156 157 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA) 158 159 struct bpf_call_arg_meta { 160 struct bpf_map *map_ptr; 161 bool raw_mode; 162 bool pkt_access; 163 int regno; 164 int access_size; 165 }; 166 167 static DEFINE_MUTEX(bpf_verifier_lock); 168 169 /* log_level controls verbosity level of eBPF verifier. 170 * verbose() is used to dump the verification trace to the log, so the user 171 * can figure out what's wrong with the program 172 */ 173 static __printf(2, 3) void verbose(struct bpf_verifier_env *env, 174 const char *fmt, ...) 175 { 176 struct bpf_verifer_log *log = &env->log; 177 unsigned int n; 178 va_list args; 179 180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log)) 181 return; 182 183 va_start(args, fmt); 184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 185 va_end(args); 186 187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 188 "verifier log line truncated - local buffer too short\n"); 189 190 n = min(log->len_total - log->len_used - 1, n); 191 log->kbuf[n] = '\0'; 192 193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 194 log->len_used += n; 195 else 196 log->ubuf = NULL; 197 } 198 199 static bool type_is_pkt_pointer(enum bpf_reg_type type) 200 { 201 return type == PTR_TO_PACKET || 202 type == PTR_TO_PACKET_META; 203 } 204 205 /* string representation of 'enum bpf_reg_type' */ 206 static const char * const reg_type_str[] = { 207 [NOT_INIT] = "?", 208 [SCALAR_VALUE] = "inv", 209 [PTR_TO_CTX] = "ctx", 210 [CONST_PTR_TO_MAP] = "map_ptr", 211 [PTR_TO_MAP_VALUE] = "map_value", 212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 213 [PTR_TO_STACK] = "fp", 214 [PTR_TO_PACKET] = "pkt", 215 [PTR_TO_PACKET_META] = "pkt_meta", 216 [PTR_TO_PACKET_END] = "pkt_end", 217 }; 218 219 static void print_verifier_state(struct bpf_verifier_env *env, 220 struct bpf_verifier_state *state) 221 { 222 struct bpf_reg_state *reg; 223 enum bpf_reg_type t; 224 int i; 225 226 for (i = 0; i < MAX_BPF_REG; i++) { 227 reg = &state->regs[i]; 228 t = reg->type; 229 if (t == NOT_INIT) 230 continue; 231 verbose(env, " R%d=%s", i, reg_type_str[t]); 232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 233 tnum_is_const(reg->var_off)) { 234 /* reg->off should be 0 for SCALAR_VALUE */ 235 verbose(env, "%lld", reg->var_off.value + reg->off); 236 } else { 237 verbose(env, "(id=%d", reg->id); 238 if (t != SCALAR_VALUE) 239 verbose(env, ",off=%d", reg->off); 240 if (type_is_pkt_pointer(t)) 241 verbose(env, ",r=%d", reg->range); 242 else if (t == CONST_PTR_TO_MAP || 243 t == PTR_TO_MAP_VALUE || 244 t == PTR_TO_MAP_VALUE_OR_NULL) 245 verbose(env, ",ks=%d,vs=%d", 246 reg->map_ptr->key_size, 247 reg->map_ptr->value_size); 248 if (tnum_is_const(reg->var_off)) { 249 /* Typically an immediate SCALAR_VALUE, but 250 * could be a pointer whose offset is too big 251 * for reg->off 252 */ 253 verbose(env, ",imm=%llx", reg->var_off.value); 254 } else { 255 if (reg->smin_value != reg->umin_value && 256 reg->smin_value != S64_MIN) 257 verbose(env, ",smin_value=%lld", 258 (long long)reg->smin_value); 259 if (reg->smax_value != reg->umax_value && 260 reg->smax_value != S64_MAX) 261 verbose(env, ",smax_value=%lld", 262 (long long)reg->smax_value); 263 if (reg->umin_value != 0) 264 verbose(env, ",umin_value=%llu", 265 (unsigned long long)reg->umin_value); 266 if (reg->umax_value != U64_MAX) 267 verbose(env, ",umax_value=%llu", 268 (unsigned long long)reg->umax_value); 269 if (!tnum_is_unknown(reg->var_off)) { 270 char tn_buf[48]; 271 272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 273 verbose(env, ",var_off=%s", tn_buf); 274 } 275 } 276 verbose(env, ")"); 277 } 278 } 279 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 280 if (state->stack_slot_type[i] == STACK_SPILL) 281 verbose(env, " fp%d=%s", -MAX_BPF_STACK + i, 282 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]); 283 } 284 verbose(env, "\n"); 285 } 286 287 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx) 288 { 289 struct bpf_verifier_stack_elem *elem; 290 int insn_idx; 291 292 if (env->head == NULL) 293 return -1; 294 295 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state)); 296 insn_idx = env->head->insn_idx; 297 if (prev_insn_idx) 298 *prev_insn_idx = env->head->prev_insn_idx; 299 elem = env->head->next; 300 kfree(env->head); 301 env->head = elem; 302 env->stack_size--; 303 return insn_idx; 304 } 305 306 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 307 int insn_idx, int prev_insn_idx) 308 { 309 struct bpf_verifier_stack_elem *elem; 310 311 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 312 if (!elem) 313 goto err; 314 315 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state)); 316 elem->insn_idx = insn_idx; 317 elem->prev_insn_idx = prev_insn_idx; 318 elem->next = env->head; 319 env->head = elem; 320 env->stack_size++; 321 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 322 verbose(env, "BPF program is too complex\n"); 323 goto err; 324 } 325 return &elem->st; 326 err: 327 /* pop all elements and return */ 328 while (pop_stack(env, NULL) >= 0); 329 return NULL; 330 } 331 332 #define CALLER_SAVED_REGS 6 333 static const int caller_saved[CALLER_SAVED_REGS] = { 334 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 335 }; 336 337 static void __mark_reg_not_init(struct bpf_reg_state *reg); 338 339 /* Mark the unknown part of a register (variable offset or scalar value) as 340 * known to have the value @imm. 341 */ 342 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 343 { 344 reg->id = 0; 345 reg->var_off = tnum_const(imm); 346 reg->smin_value = (s64)imm; 347 reg->smax_value = (s64)imm; 348 reg->umin_value = imm; 349 reg->umax_value = imm; 350 } 351 352 /* Mark the 'variable offset' part of a register as zero. This should be 353 * used only on registers holding a pointer type. 354 */ 355 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 356 { 357 __mark_reg_known(reg, 0); 358 } 359 360 static void mark_reg_known_zero(struct bpf_verifier_env *env, 361 struct bpf_reg_state *regs, u32 regno) 362 { 363 if (WARN_ON(regno >= MAX_BPF_REG)) { 364 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 365 /* Something bad happened, let's kill all regs */ 366 for (regno = 0; regno < MAX_BPF_REG; regno++) 367 __mark_reg_not_init(regs + regno); 368 return; 369 } 370 __mark_reg_known_zero(regs + regno); 371 } 372 373 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 374 { 375 return type_is_pkt_pointer(reg->type); 376 } 377 378 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 379 { 380 return reg_is_pkt_pointer(reg) || 381 reg->type == PTR_TO_PACKET_END; 382 } 383 384 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 385 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 386 enum bpf_reg_type which) 387 { 388 /* The register can already have a range from prior markings. 389 * This is fine as long as it hasn't been advanced from its 390 * origin. 391 */ 392 return reg->type == which && 393 reg->id == 0 && 394 reg->off == 0 && 395 tnum_equals_const(reg->var_off, 0); 396 } 397 398 /* Attempts to improve min/max values based on var_off information */ 399 static void __update_reg_bounds(struct bpf_reg_state *reg) 400 { 401 /* min signed is max(sign bit) | min(other bits) */ 402 reg->smin_value = max_t(s64, reg->smin_value, 403 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 404 /* max signed is min(sign bit) | max(other bits) */ 405 reg->smax_value = min_t(s64, reg->smax_value, 406 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 407 reg->umin_value = max(reg->umin_value, reg->var_off.value); 408 reg->umax_value = min(reg->umax_value, 409 reg->var_off.value | reg->var_off.mask); 410 } 411 412 /* Uses signed min/max values to inform unsigned, and vice-versa */ 413 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 414 { 415 /* Learn sign from signed bounds. 416 * If we cannot cross the sign boundary, then signed and unsigned bounds 417 * are the same, so combine. This works even in the negative case, e.g. 418 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 419 */ 420 if (reg->smin_value >= 0 || reg->smax_value < 0) { 421 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 422 reg->umin_value); 423 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 424 reg->umax_value); 425 return; 426 } 427 /* Learn sign from unsigned bounds. Signed bounds cross the sign 428 * boundary, so we must be careful. 429 */ 430 if ((s64)reg->umax_value >= 0) { 431 /* Positive. We can't learn anything from the smin, but smax 432 * is positive, hence safe. 433 */ 434 reg->smin_value = reg->umin_value; 435 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 436 reg->umax_value); 437 } else if ((s64)reg->umin_value < 0) { 438 /* Negative. We can't learn anything from the smax, but smin 439 * is negative, hence safe. 440 */ 441 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 442 reg->umin_value); 443 reg->smax_value = reg->umax_value; 444 } 445 } 446 447 /* Attempts to improve var_off based on unsigned min/max information */ 448 static void __reg_bound_offset(struct bpf_reg_state *reg) 449 { 450 reg->var_off = tnum_intersect(reg->var_off, 451 tnum_range(reg->umin_value, 452 reg->umax_value)); 453 } 454 455 /* Reset the min/max bounds of a register */ 456 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 457 { 458 reg->smin_value = S64_MIN; 459 reg->smax_value = S64_MAX; 460 reg->umin_value = 0; 461 reg->umax_value = U64_MAX; 462 } 463 464 /* Mark a register as having a completely unknown (scalar) value. */ 465 static void __mark_reg_unknown(struct bpf_reg_state *reg) 466 { 467 reg->type = SCALAR_VALUE; 468 reg->id = 0; 469 reg->off = 0; 470 reg->var_off = tnum_unknown; 471 __mark_reg_unbounded(reg); 472 } 473 474 static void mark_reg_unknown(struct bpf_verifier_env *env, 475 struct bpf_reg_state *regs, u32 regno) 476 { 477 if (WARN_ON(regno >= MAX_BPF_REG)) { 478 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 479 /* Something bad happened, let's kill all regs */ 480 for (regno = 0; regno < MAX_BPF_REG; regno++) 481 __mark_reg_not_init(regs + regno); 482 return; 483 } 484 __mark_reg_unknown(regs + regno); 485 } 486 487 static void __mark_reg_not_init(struct bpf_reg_state *reg) 488 { 489 __mark_reg_unknown(reg); 490 reg->type = NOT_INIT; 491 } 492 493 static void mark_reg_not_init(struct bpf_verifier_env *env, 494 struct bpf_reg_state *regs, u32 regno) 495 { 496 if (WARN_ON(regno >= MAX_BPF_REG)) { 497 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 498 /* Something bad happened, let's kill all regs */ 499 for (regno = 0; regno < MAX_BPF_REG; regno++) 500 __mark_reg_not_init(regs + regno); 501 return; 502 } 503 __mark_reg_not_init(regs + regno); 504 } 505 506 static void init_reg_state(struct bpf_verifier_env *env, 507 struct bpf_reg_state *regs) 508 { 509 int i; 510 511 for (i = 0; i < MAX_BPF_REG; i++) { 512 mark_reg_not_init(env, regs, i); 513 regs[i].live = REG_LIVE_NONE; 514 } 515 516 /* frame pointer */ 517 regs[BPF_REG_FP].type = PTR_TO_STACK; 518 mark_reg_known_zero(env, regs, BPF_REG_FP); 519 520 /* 1st arg to a function */ 521 regs[BPF_REG_1].type = PTR_TO_CTX; 522 mark_reg_known_zero(env, regs, BPF_REG_1); 523 } 524 525 enum reg_arg_type { 526 SRC_OP, /* register is used as source operand */ 527 DST_OP, /* register is used as destination operand */ 528 DST_OP_NO_MARK /* same as above, check only, don't mark */ 529 }; 530 531 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno) 532 { 533 struct bpf_verifier_state *parent = state->parent; 534 535 if (regno == BPF_REG_FP) 536 /* We don't need to worry about FP liveness because it's read-only */ 537 return; 538 539 while (parent) { 540 /* if read wasn't screened by an earlier write ... */ 541 if (state->regs[regno].live & REG_LIVE_WRITTEN) 542 break; 543 /* ... then we depend on parent's value */ 544 parent->regs[regno].live |= REG_LIVE_READ; 545 state = parent; 546 parent = state->parent; 547 } 548 } 549 550 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 551 enum reg_arg_type t) 552 { 553 struct bpf_reg_state *regs = env->cur_state.regs; 554 555 if (regno >= MAX_BPF_REG) { 556 verbose(env, "R%d is invalid\n", regno); 557 return -EINVAL; 558 } 559 560 if (t == SRC_OP) { 561 /* check whether register used as source operand can be read */ 562 if (regs[regno].type == NOT_INIT) { 563 verbose(env, "R%d !read_ok\n", regno); 564 return -EACCES; 565 } 566 mark_reg_read(&env->cur_state, regno); 567 } else { 568 /* check whether register used as dest operand can be written to */ 569 if (regno == BPF_REG_FP) { 570 verbose(env, "frame pointer is read only\n"); 571 return -EACCES; 572 } 573 regs[regno].live |= REG_LIVE_WRITTEN; 574 if (t == DST_OP) 575 mark_reg_unknown(env, regs, regno); 576 } 577 return 0; 578 } 579 580 static bool is_spillable_regtype(enum bpf_reg_type type) 581 { 582 switch (type) { 583 case PTR_TO_MAP_VALUE: 584 case PTR_TO_MAP_VALUE_OR_NULL: 585 case PTR_TO_STACK: 586 case PTR_TO_CTX: 587 case PTR_TO_PACKET: 588 case PTR_TO_PACKET_META: 589 case PTR_TO_PACKET_END: 590 case CONST_PTR_TO_MAP: 591 return true; 592 default: 593 return false; 594 } 595 } 596 597 /* check_stack_read/write functions track spill/fill of registers, 598 * stack boundary and alignment are checked in check_mem_access() 599 */ 600 static int check_stack_write(struct bpf_verifier_env *env, 601 struct bpf_verifier_state *state, int off, 602 int size, int value_regno) 603 { 604 int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE; 605 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 606 * so it's aligned access and [off, off + size) are within stack limits 607 */ 608 609 if (value_regno >= 0 && 610 is_spillable_regtype(state->regs[value_regno].type)) { 611 612 /* register containing pointer is being spilled into stack */ 613 if (size != BPF_REG_SIZE) { 614 verbose(env, "invalid size of register spill\n"); 615 return -EACCES; 616 } 617 618 /* save register state */ 619 state->spilled_regs[spi] = state->regs[value_regno]; 620 state->spilled_regs[spi].live |= REG_LIVE_WRITTEN; 621 622 for (i = 0; i < BPF_REG_SIZE; i++) 623 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL; 624 } else { 625 /* regular write of data into stack */ 626 state->spilled_regs[spi] = (struct bpf_reg_state) {}; 627 628 for (i = 0; i < size; i++) 629 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC; 630 } 631 return 0; 632 } 633 634 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot) 635 { 636 struct bpf_verifier_state *parent = state->parent; 637 638 while (parent) { 639 /* if read wasn't screened by an earlier write ... */ 640 if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN) 641 break; 642 /* ... then we depend on parent's value */ 643 parent->spilled_regs[slot].live |= REG_LIVE_READ; 644 state = parent; 645 parent = state->parent; 646 } 647 } 648 649 static int check_stack_read(struct bpf_verifier_env *env, 650 struct bpf_verifier_state *state, int off, int size, 651 int value_regno) 652 { 653 u8 *slot_type; 654 int i, spi; 655 656 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off]; 657 658 if (slot_type[0] == STACK_SPILL) { 659 if (size != BPF_REG_SIZE) { 660 verbose(env, "invalid size of register spill\n"); 661 return -EACCES; 662 } 663 for (i = 1; i < BPF_REG_SIZE; i++) { 664 if (slot_type[i] != STACK_SPILL) { 665 verbose(env, "corrupted spill memory\n"); 666 return -EACCES; 667 } 668 } 669 670 spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE; 671 672 if (value_regno >= 0) { 673 /* restore register state from stack */ 674 state->regs[value_regno] = state->spilled_regs[spi]; 675 mark_stack_slot_read(state, spi); 676 } 677 return 0; 678 } else { 679 for (i = 0; i < size; i++) { 680 if (slot_type[i] != STACK_MISC) { 681 verbose(env, "invalid read from stack off %d+%d size %d\n", 682 off, i, size); 683 return -EACCES; 684 } 685 } 686 if (value_regno >= 0) 687 /* have read misc data from the stack */ 688 mark_reg_unknown(env, state->regs, value_regno); 689 return 0; 690 } 691 } 692 693 /* check read/write into map element returned by bpf_map_lookup_elem() */ 694 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 695 int size) 696 { 697 struct bpf_map *map = env->cur_state.regs[regno].map_ptr; 698 699 if (off < 0 || size <= 0 || off + size > map->value_size) { 700 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 701 map->value_size, off, size); 702 return -EACCES; 703 } 704 return 0; 705 } 706 707 /* check read/write into a map element with possible variable offset */ 708 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 709 int off, int size) 710 { 711 struct bpf_verifier_state *state = &env->cur_state; 712 struct bpf_reg_state *reg = &state->regs[regno]; 713 int err; 714 715 /* We may have adjusted the register to this map value, so we 716 * need to try adding each of min_value and max_value to off 717 * to make sure our theoretical access will be safe. 718 */ 719 if (env->log.level) 720 print_verifier_state(env, state); 721 /* The minimum value is only important with signed 722 * comparisons where we can't assume the floor of a 723 * value is 0. If we are using signed variables for our 724 * index'es we need to make sure that whatever we use 725 * will have a set floor within our range. 726 */ 727 if (reg->smin_value < 0) { 728 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 729 regno); 730 return -EACCES; 731 } 732 err = __check_map_access(env, regno, reg->smin_value + off, size); 733 if (err) { 734 verbose(env, "R%d min value is outside of the array range\n", 735 regno); 736 return err; 737 } 738 739 /* If we haven't set a max value then we need to bail since we can't be 740 * sure we won't do bad things. 741 * If reg->umax_value + off could overflow, treat that as unbounded too. 742 */ 743 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 744 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 745 regno); 746 return -EACCES; 747 } 748 err = __check_map_access(env, regno, reg->umax_value + off, size); 749 if (err) 750 verbose(env, "R%d max value is outside of the array range\n", 751 regno); 752 return err; 753 } 754 755 #define MAX_PACKET_OFF 0xffff 756 757 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 758 const struct bpf_call_arg_meta *meta, 759 enum bpf_access_type t) 760 { 761 switch (env->prog->type) { 762 case BPF_PROG_TYPE_LWT_IN: 763 case BPF_PROG_TYPE_LWT_OUT: 764 /* dst_input() and dst_output() can't write for now */ 765 if (t == BPF_WRITE) 766 return false; 767 /* fallthrough */ 768 case BPF_PROG_TYPE_SCHED_CLS: 769 case BPF_PROG_TYPE_SCHED_ACT: 770 case BPF_PROG_TYPE_XDP: 771 case BPF_PROG_TYPE_LWT_XMIT: 772 case BPF_PROG_TYPE_SK_SKB: 773 if (meta) 774 return meta->pkt_access; 775 776 env->seen_direct_write = true; 777 return true; 778 default: 779 return false; 780 } 781 } 782 783 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 784 int off, int size) 785 { 786 struct bpf_reg_state *regs = env->cur_state.regs; 787 struct bpf_reg_state *reg = ®s[regno]; 788 789 if (off < 0 || size <= 0 || (u64)off + size > reg->range) { 790 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 791 off, size, regno, reg->id, reg->off, reg->range); 792 return -EACCES; 793 } 794 return 0; 795 } 796 797 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 798 int size) 799 { 800 struct bpf_reg_state *regs = env->cur_state.regs; 801 struct bpf_reg_state *reg = ®s[regno]; 802 int err; 803 804 /* We may have added a variable offset to the packet pointer; but any 805 * reg->range we have comes after that. We are only checking the fixed 806 * offset. 807 */ 808 809 /* We don't allow negative numbers, because we aren't tracking enough 810 * detail to prove they're safe. 811 */ 812 if (reg->smin_value < 0) { 813 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 814 regno); 815 return -EACCES; 816 } 817 err = __check_packet_access(env, regno, off, size); 818 if (err) { 819 verbose(env, "R%d offset is outside of the packet\n", regno); 820 return err; 821 } 822 return err; 823 } 824 825 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 826 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 827 enum bpf_access_type t, enum bpf_reg_type *reg_type) 828 { 829 struct bpf_insn_access_aux info = { 830 .reg_type = *reg_type, 831 }; 832 833 if (env->ops->is_valid_access && 834 env->ops->is_valid_access(off, size, t, &info)) { 835 /* A non zero info.ctx_field_size indicates that this field is a 836 * candidate for later verifier transformation to load the whole 837 * field and then apply a mask when accessed with a narrower 838 * access than actual ctx access size. A zero info.ctx_field_size 839 * will only allow for whole field access and rejects any other 840 * type of narrower access. 841 */ 842 *reg_type = info.reg_type; 843 844 if (env->analyzer_ops) 845 return 0; 846 847 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 848 /* remember the offset of last byte accessed in ctx */ 849 if (env->prog->aux->max_ctx_offset < off + size) 850 env->prog->aux->max_ctx_offset = off + size; 851 return 0; 852 } 853 854 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 855 return -EACCES; 856 } 857 858 static bool __is_pointer_value(bool allow_ptr_leaks, 859 const struct bpf_reg_state *reg) 860 { 861 if (allow_ptr_leaks) 862 return false; 863 864 return reg->type != SCALAR_VALUE; 865 } 866 867 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 868 { 869 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]); 870 } 871 872 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 873 const struct bpf_reg_state *reg, 874 int off, int size, bool strict) 875 { 876 struct tnum reg_off; 877 int ip_align; 878 879 /* Byte size accesses are always allowed. */ 880 if (!strict || size == 1) 881 return 0; 882 883 /* For platforms that do not have a Kconfig enabling 884 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 885 * NET_IP_ALIGN is universally set to '2'. And on platforms 886 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 887 * to this code only in strict mode where we want to emulate 888 * the NET_IP_ALIGN==2 checking. Therefore use an 889 * unconditional IP align value of '2'. 890 */ 891 ip_align = 2; 892 893 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 894 if (!tnum_is_aligned(reg_off, size)) { 895 char tn_buf[48]; 896 897 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 898 verbose(env, 899 "misaligned packet access off %d+%s+%d+%d size %d\n", 900 ip_align, tn_buf, reg->off, off, size); 901 return -EACCES; 902 } 903 904 return 0; 905 } 906 907 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 908 const struct bpf_reg_state *reg, 909 const char *pointer_desc, 910 int off, int size, bool strict) 911 { 912 struct tnum reg_off; 913 914 /* Byte size accesses are always allowed. */ 915 if (!strict || size == 1) 916 return 0; 917 918 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 919 if (!tnum_is_aligned(reg_off, size)) { 920 char tn_buf[48]; 921 922 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 923 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 924 pointer_desc, tn_buf, reg->off, off, size); 925 return -EACCES; 926 } 927 928 return 0; 929 } 930 931 static int check_ptr_alignment(struct bpf_verifier_env *env, 932 const struct bpf_reg_state *reg, 933 int off, int size) 934 { 935 bool strict = env->strict_alignment; 936 const char *pointer_desc = ""; 937 938 switch (reg->type) { 939 case PTR_TO_PACKET: 940 case PTR_TO_PACKET_META: 941 /* Special case, because of NET_IP_ALIGN. Given metadata sits 942 * right in front, treat it the very same way. 943 */ 944 return check_pkt_ptr_alignment(env, reg, off, size, strict); 945 case PTR_TO_MAP_VALUE: 946 pointer_desc = "value "; 947 break; 948 case PTR_TO_CTX: 949 pointer_desc = "context "; 950 break; 951 case PTR_TO_STACK: 952 pointer_desc = "stack "; 953 break; 954 default: 955 break; 956 } 957 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 958 strict); 959 } 960 961 /* check whether memory at (regno + off) is accessible for t = (read | write) 962 * if t==write, value_regno is a register which value is stored into memory 963 * if t==read, value_regno is a register which will receive the value from memory 964 * if t==write && value_regno==-1, some unknown value is stored into memory 965 * if t==read && value_regno==-1, don't care what we read from memory 966 */ 967 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off, 968 int bpf_size, enum bpf_access_type t, 969 int value_regno) 970 { 971 struct bpf_verifier_state *state = &env->cur_state; 972 struct bpf_reg_state *reg = &state->regs[regno]; 973 int size, err = 0; 974 975 size = bpf_size_to_bytes(bpf_size); 976 if (size < 0) 977 return size; 978 979 /* alignment checks will add in reg->off themselves */ 980 err = check_ptr_alignment(env, reg, off, size); 981 if (err) 982 return err; 983 984 /* for access checks, reg->off is just part of off */ 985 off += reg->off; 986 987 if (reg->type == PTR_TO_MAP_VALUE) { 988 if (t == BPF_WRITE && value_regno >= 0 && 989 is_pointer_value(env, value_regno)) { 990 verbose(env, "R%d leaks addr into map\n", value_regno); 991 return -EACCES; 992 } 993 994 err = check_map_access(env, regno, off, size); 995 if (!err && t == BPF_READ && value_regno >= 0) 996 mark_reg_unknown(env, state->regs, value_regno); 997 998 } else if (reg->type == PTR_TO_CTX) { 999 enum bpf_reg_type reg_type = SCALAR_VALUE; 1000 1001 if (t == BPF_WRITE && value_regno >= 0 && 1002 is_pointer_value(env, value_regno)) { 1003 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1004 return -EACCES; 1005 } 1006 /* ctx accesses must be at a fixed offset, so that we can 1007 * determine what type of data were returned. 1008 */ 1009 if (reg->off) { 1010 verbose(env, 1011 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n", 1012 regno, reg->off, off - reg->off); 1013 return -EACCES; 1014 } 1015 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1016 char tn_buf[48]; 1017 1018 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1019 verbose(env, 1020 "variable ctx access var_off=%s off=%d size=%d", 1021 tn_buf, off, size); 1022 return -EACCES; 1023 } 1024 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1025 if (!err && t == BPF_READ && value_regno >= 0) { 1026 /* ctx access returns either a scalar, or a 1027 * PTR_TO_PACKET[_META,_END]. In the latter 1028 * case, we know the offset is zero. 1029 */ 1030 if (reg_type == SCALAR_VALUE) 1031 mark_reg_unknown(env, state->regs, value_regno); 1032 else 1033 mark_reg_known_zero(env, state->regs, 1034 value_regno); 1035 state->regs[value_regno].id = 0; 1036 state->regs[value_regno].off = 0; 1037 state->regs[value_regno].range = 0; 1038 state->regs[value_regno].type = reg_type; 1039 } 1040 1041 } else if (reg->type == PTR_TO_STACK) { 1042 /* stack accesses must be at a fixed offset, so that we can 1043 * determine what type of data were returned. 1044 * See check_stack_read(). 1045 */ 1046 if (!tnum_is_const(reg->var_off)) { 1047 char tn_buf[48]; 1048 1049 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1050 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1051 tn_buf, off, size); 1052 return -EACCES; 1053 } 1054 off += reg->var_off.value; 1055 if (off >= 0 || off < -MAX_BPF_STACK) { 1056 verbose(env, "invalid stack off=%d size=%d\n", off, 1057 size); 1058 return -EACCES; 1059 } 1060 1061 if (env->prog->aux->stack_depth < -off) 1062 env->prog->aux->stack_depth = -off; 1063 1064 if (t == BPF_WRITE) { 1065 if (!env->allow_ptr_leaks && 1066 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL && 1067 size != BPF_REG_SIZE) { 1068 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1069 return -EACCES; 1070 } 1071 err = check_stack_write(env, state, off, size, 1072 value_regno); 1073 } else { 1074 err = check_stack_read(env, state, off, size, 1075 value_regno); 1076 } 1077 } else if (reg_is_pkt_pointer(reg)) { 1078 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1079 verbose(env, "cannot write into packet\n"); 1080 return -EACCES; 1081 } 1082 if (t == BPF_WRITE && value_regno >= 0 && 1083 is_pointer_value(env, value_regno)) { 1084 verbose(env, "R%d leaks addr into packet\n", 1085 value_regno); 1086 return -EACCES; 1087 } 1088 err = check_packet_access(env, regno, off, size); 1089 if (!err && t == BPF_READ && value_regno >= 0) 1090 mark_reg_unknown(env, state->regs, value_regno); 1091 } else { 1092 verbose(env, "R%d invalid mem access '%s'\n", regno, 1093 reg_type_str[reg->type]); 1094 return -EACCES; 1095 } 1096 1097 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1098 state->regs[value_regno].type == SCALAR_VALUE) { 1099 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1100 state->regs[value_regno].var_off = tnum_cast( 1101 state->regs[value_regno].var_off, size); 1102 __update_reg_bounds(&state->regs[value_regno]); 1103 } 1104 return err; 1105 } 1106 1107 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1108 { 1109 int err; 1110 1111 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1112 insn->imm != 0) { 1113 verbose(env, "BPF_XADD uses reserved fields\n"); 1114 return -EINVAL; 1115 } 1116 1117 /* check src1 operand */ 1118 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1119 if (err) 1120 return err; 1121 1122 /* check src2 operand */ 1123 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1124 if (err) 1125 return err; 1126 1127 if (is_pointer_value(env, insn->src_reg)) { 1128 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1129 return -EACCES; 1130 } 1131 1132 /* check whether atomic_add can read the memory */ 1133 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1134 BPF_SIZE(insn->code), BPF_READ, -1); 1135 if (err) 1136 return err; 1137 1138 /* check whether atomic_add can write into the same memory */ 1139 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1140 BPF_SIZE(insn->code), BPF_WRITE, -1); 1141 } 1142 1143 /* Does this register contain a constant zero? */ 1144 static bool register_is_null(struct bpf_reg_state reg) 1145 { 1146 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0); 1147 } 1148 1149 /* when register 'regno' is passed into function that will read 'access_size' 1150 * bytes from that pointer, make sure that it's within stack boundary 1151 * and all elements of stack are initialized. 1152 * Unlike most pointer bounds-checking functions, this one doesn't take an 1153 * 'off' argument, so it has to add in reg->off itself. 1154 */ 1155 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1156 int access_size, bool zero_size_allowed, 1157 struct bpf_call_arg_meta *meta) 1158 { 1159 struct bpf_verifier_state *state = &env->cur_state; 1160 struct bpf_reg_state *regs = state->regs; 1161 int off, i; 1162 1163 if (regs[regno].type != PTR_TO_STACK) { 1164 /* Allow zero-byte read from NULL, regardless of pointer type */ 1165 if (zero_size_allowed && access_size == 0 && 1166 register_is_null(regs[regno])) 1167 return 0; 1168 1169 verbose(env, "R%d type=%s expected=%s\n", regno, 1170 reg_type_str[regs[regno].type], 1171 reg_type_str[PTR_TO_STACK]); 1172 return -EACCES; 1173 } 1174 1175 /* Only allow fixed-offset stack reads */ 1176 if (!tnum_is_const(regs[regno].var_off)) { 1177 char tn_buf[48]; 1178 1179 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off); 1180 verbose(env, "invalid variable stack read R%d var_off=%s\n", 1181 regno, tn_buf); 1182 } 1183 off = regs[regno].off + regs[regno].var_off.value; 1184 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1185 access_size <= 0) { 1186 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 1187 regno, off, access_size); 1188 return -EACCES; 1189 } 1190 1191 if (env->prog->aux->stack_depth < -off) 1192 env->prog->aux->stack_depth = -off; 1193 1194 if (meta && meta->raw_mode) { 1195 meta->access_size = access_size; 1196 meta->regno = regno; 1197 return 0; 1198 } 1199 1200 for (i = 0; i < access_size; i++) { 1201 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) { 1202 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 1203 off, i, access_size); 1204 return -EACCES; 1205 } 1206 } 1207 return 0; 1208 } 1209 1210 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1211 int access_size, bool zero_size_allowed, 1212 struct bpf_call_arg_meta *meta) 1213 { 1214 struct bpf_reg_state *regs = env->cur_state.regs, *reg = ®s[regno]; 1215 1216 switch (reg->type) { 1217 case PTR_TO_PACKET: 1218 case PTR_TO_PACKET_META: 1219 return check_packet_access(env, regno, reg->off, access_size); 1220 case PTR_TO_MAP_VALUE: 1221 return check_map_access(env, regno, reg->off, access_size); 1222 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1223 return check_stack_boundary(env, regno, access_size, 1224 zero_size_allowed, meta); 1225 } 1226 } 1227 1228 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1229 enum bpf_arg_type arg_type, 1230 struct bpf_call_arg_meta *meta) 1231 { 1232 struct bpf_reg_state *regs = env->cur_state.regs, *reg = ®s[regno]; 1233 enum bpf_reg_type expected_type, type = reg->type; 1234 int err = 0; 1235 1236 if (arg_type == ARG_DONTCARE) 1237 return 0; 1238 1239 err = check_reg_arg(env, regno, SRC_OP); 1240 if (err) 1241 return err; 1242 1243 if (arg_type == ARG_ANYTHING) { 1244 if (is_pointer_value(env, regno)) { 1245 verbose(env, "R%d leaks addr into helper function\n", 1246 regno); 1247 return -EACCES; 1248 } 1249 return 0; 1250 } 1251 1252 if (type_is_pkt_pointer(type) && 1253 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1254 verbose(env, "helper access to the packet is not allowed\n"); 1255 return -EACCES; 1256 } 1257 1258 if (arg_type == ARG_PTR_TO_MAP_KEY || 1259 arg_type == ARG_PTR_TO_MAP_VALUE) { 1260 expected_type = PTR_TO_STACK; 1261 if (!type_is_pkt_pointer(type) && 1262 type != expected_type) 1263 goto err_type; 1264 } else if (arg_type == ARG_CONST_SIZE || 1265 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1266 expected_type = SCALAR_VALUE; 1267 if (type != expected_type) 1268 goto err_type; 1269 } else if (arg_type == ARG_CONST_MAP_PTR) { 1270 expected_type = CONST_PTR_TO_MAP; 1271 if (type != expected_type) 1272 goto err_type; 1273 } else if (arg_type == ARG_PTR_TO_CTX) { 1274 expected_type = PTR_TO_CTX; 1275 if (type != expected_type) 1276 goto err_type; 1277 } else if (arg_type == ARG_PTR_TO_MEM || 1278 arg_type == ARG_PTR_TO_UNINIT_MEM) { 1279 expected_type = PTR_TO_STACK; 1280 /* One exception here. In case function allows for NULL to be 1281 * passed in as argument, it's a SCALAR_VALUE type. Final test 1282 * happens during stack boundary checking. 1283 */ 1284 if (register_is_null(*reg)) 1285 /* final test in check_stack_boundary() */; 1286 else if (!type_is_pkt_pointer(type) && 1287 type != PTR_TO_MAP_VALUE && 1288 type != expected_type) 1289 goto err_type; 1290 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 1291 } else { 1292 verbose(env, "unsupported arg_type %d\n", arg_type); 1293 return -EFAULT; 1294 } 1295 1296 if (arg_type == ARG_CONST_MAP_PTR) { 1297 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 1298 meta->map_ptr = reg->map_ptr; 1299 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 1300 /* bpf_map_xxx(..., map_ptr, ..., key) call: 1301 * check that [key, key + map->key_size) are within 1302 * stack limits and initialized 1303 */ 1304 if (!meta->map_ptr) { 1305 /* in function declaration map_ptr must come before 1306 * map_key, so that it's verified and known before 1307 * we have to check map_key here. Otherwise it means 1308 * that kernel subsystem misconfigured verifier 1309 */ 1310 verbose(env, "invalid map_ptr to access map->key\n"); 1311 return -EACCES; 1312 } 1313 if (type_is_pkt_pointer(type)) 1314 err = check_packet_access(env, regno, reg->off, 1315 meta->map_ptr->key_size); 1316 else 1317 err = check_stack_boundary(env, regno, 1318 meta->map_ptr->key_size, 1319 false, NULL); 1320 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 1321 /* bpf_map_xxx(..., map_ptr, ..., value) call: 1322 * check [value, value + map->value_size) validity 1323 */ 1324 if (!meta->map_ptr) { 1325 /* kernel subsystem misconfigured verifier */ 1326 verbose(env, "invalid map_ptr to access map->value\n"); 1327 return -EACCES; 1328 } 1329 if (type_is_pkt_pointer(type)) 1330 err = check_packet_access(env, regno, reg->off, 1331 meta->map_ptr->value_size); 1332 else 1333 err = check_stack_boundary(env, regno, 1334 meta->map_ptr->value_size, 1335 false, NULL); 1336 } else if (arg_type == ARG_CONST_SIZE || 1337 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1338 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 1339 1340 /* bpf_xxx(..., buf, len) call will access 'len' bytes 1341 * from stack pointer 'buf'. Check it 1342 * note: regno == len, regno - 1 == buf 1343 */ 1344 if (regno == 0) { 1345 /* kernel subsystem misconfigured verifier */ 1346 verbose(env, 1347 "ARG_CONST_SIZE cannot be first argument\n"); 1348 return -EACCES; 1349 } 1350 1351 /* The register is SCALAR_VALUE; the access check 1352 * happens using its boundaries. 1353 */ 1354 1355 if (!tnum_is_const(reg->var_off)) 1356 /* For unprivileged variable accesses, disable raw 1357 * mode so that the program is required to 1358 * initialize all the memory that the helper could 1359 * just partially fill up. 1360 */ 1361 meta = NULL; 1362 1363 if (reg->smin_value < 0) { 1364 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 1365 regno); 1366 return -EACCES; 1367 } 1368 1369 if (reg->umin_value == 0) { 1370 err = check_helper_mem_access(env, regno - 1, 0, 1371 zero_size_allowed, 1372 meta); 1373 if (err) 1374 return err; 1375 } 1376 1377 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 1378 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 1379 regno); 1380 return -EACCES; 1381 } 1382 err = check_helper_mem_access(env, regno - 1, 1383 reg->umax_value, 1384 zero_size_allowed, meta); 1385 } 1386 1387 return err; 1388 err_type: 1389 verbose(env, "R%d type=%s expected=%s\n", regno, 1390 reg_type_str[type], reg_type_str[expected_type]); 1391 return -EACCES; 1392 } 1393 1394 static int check_map_func_compatibility(struct bpf_verifier_env *env, 1395 struct bpf_map *map, int func_id) 1396 { 1397 if (!map) 1398 return 0; 1399 1400 /* We need a two way check, first is from map perspective ... */ 1401 switch (map->map_type) { 1402 case BPF_MAP_TYPE_PROG_ARRAY: 1403 if (func_id != BPF_FUNC_tail_call) 1404 goto error; 1405 break; 1406 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 1407 if (func_id != BPF_FUNC_perf_event_read && 1408 func_id != BPF_FUNC_perf_event_output && 1409 func_id != BPF_FUNC_perf_event_read_value) 1410 goto error; 1411 break; 1412 case BPF_MAP_TYPE_STACK_TRACE: 1413 if (func_id != BPF_FUNC_get_stackid) 1414 goto error; 1415 break; 1416 case BPF_MAP_TYPE_CGROUP_ARRAY: 1417 if (func_id != BPF_FUNC_skb_under_cgroup && 1418 func_id != BPF_FUNC_current_task_under_cgroup) 1419 goto error; 1420 break; 1421 /* devmap returns a pointer to a live net_device ifindex that we cannot 1422 * allow to be modified from bpf side. So do not allow lookup elements 1423 * for now. 1424 */ 1425 case BPF_MAP_TYPE_DEVMAP: 1426 if (func_id != BPF_FUNC_redirect_map) 1427 goto error; 1428 break; 1429 /* Restrict bpf side of cpumap, open when use-cases appear */ 1430 case BPF_MAP_TYPE_CPUMAP: 1431 if (func_id != BPF_FUNC_redirect_map) 1432 goto error; 1433 break; 1434 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 1435 case BPF_MAP_TYPE_HASH_OF_MAPS: 1436 if (func_id != BPF_FUNC_map_lookup_elem) 1437 goto error; 1438 break; 1439 case BPF_MAP_TYPE_SOCKMAP: 1440 if (func_id != BPF_FUNC_sk_redirect_map && 1441 func_id != BPF_FUNC_sock_map_update && 1442 func_id != BPF_FUNC_map_delete_elem) 1443 goto error; 1444 break; 1445 default: 1446 break; 1447 } 1448 1449 /* ... and second from the function itself. */ 1450 switch (func_id) { 1451 case BPF_FUNC_tail_call: 1452 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 1453 goto error; 1454 break; 1455 case BPF_FUNC_perf_event_read: 1456 case BPF_FUNC_perf_event_output: 1457 case BPF_FUNC_perf_event_read_value: 1458 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 1459 goto error; 1460 break; 1461 case BPF_FUNC_get_stackid: 1462 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 1463 goto error; 1464 break; 1465 case BPF_FUNC_current_task_under_cgroup: 1466 case BPF_FUNC_skb_under_cgroup: 1467 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 1468 goto error; 1469 break; 1470 case BPF_FUNC_redirect_map: 1471 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 1472 map->map_type != BPF_MAP_TYPE_CPUMAP) 1473 goto error; 1474 break; 1475 case BPF_FUNC_sk_redirect_map: 1476 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 1477 goto error; 1478 break; 1479 case BPF_FUNC_sock_map_update: 1480 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 1481 goto error; 1482 break; 1483 default: 1484 break; 1485 } 1486 1487 return 0; 1488 error: 1489 verbose(env, "cannot pass map_type %d into func %s#%d\n", 1490 map->map_type, func_id_name(func_id), func_id); 1491 return -EINVAL; 1492 } 1493 1494 static int check_raw_mode(const struct bpf_func_proto *fn) 1495 { 1496 int count = 0; 1497 1498 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 1499 count++; 1500 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 1501 count++; 1502 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 1503 count++; 1504 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 1505 count++; 1506 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 1507 count++; 1508 1509 return count > 1 ? -EINVAL : 0; 1510 } 1511 1512 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 1513 * are now invalid, so turn them into unknown SCALAR_VALUE. 1514 */ 1515 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 1516 { 1517 struct bpf_verifier_state *state = &env->cur_state; 1518 struct bpf_reg_state *regs = state->regs, *reg; 1519 int i; 1520 1521 for (i = 0; i < MAX_BPF_REG; i++) 1522 if (reg_is_pkt_pointer_any(®s[i])) 1523 mark_reg_unknown(env, regs, i); 1524 1525 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 1526 if (state->stack_slot_type[i] != STACK_SPILL) 1527 continue; 1528 reg = &state->spilled_regs[i / BPF_REG_SIZE]; 1529 if (reg_is_pkt_pointer_any(reg)) 1530 __mark_reg_unknown(reg); 1531 } 1532 } 1533 1534 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 1535 { 1536 struct bpf_verifier_state *state = &env->cur_state; 1537 const struct bpf_func_proto *fn = NULL; 1538 struct bpf_reg_state *regs = state->regs; 1539 struct bpf_call_arg_meta meta; 1540 bool changes_data; 1541 int i, err; 1542 1543 /* find function prototype */ 1544 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 1545 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 1546 func_id); 1547 return -EINVAL; 1548 } 1549 1550 if (env->ops->get_func_proto) 1551 fn = env->ops->get_func_proto(func_id); 1552 1553 if (!fn) { 1554 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 1555 func_id); 1556 return -EINVAL; 1557 } 1558 1559 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 1560 if (!env->prog->gpl_compatible && fn->gpl_only) { 1561 verbose(env, "cannot call GPL only function from proprietary program\n"); 1562 return -EINVAL; 1563 } 1564 1565 changes_data = bpf_helper_changes_pkt_data(fn->func); 1566 1567 memset(&meta, 0, sizeof(meta)); 1568 meta.pkt_access = fn->pkt_access; 1569 1570 /* We only support one arg being in raw mode at the moment, which 1571 * is sufficient for the helper functions we have right now. 1572 */ 1573 err = check_raw_mode(fn); 1574 if (err) { 1575 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 1576 func_id_name(func_id), func_id); 1577 return err; 1578 } 1579 1580 /* check args */ 1581 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 1582 if (err) 1583 return err; 1584 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 1585 if (err) 1586 return err; 1587 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 1588 if (err) 1589 return err; 1590 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 1591 if (err) 1592 return err; 1593 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 1594 if (err) 1595 return err; 1596 1597 /* Mark slots with STACK_MISC in case of raw mode, stack offset 1598 * is inferred from register state. 1599 */ 1600 for (i = 0; i < meta.access_size; i++) { 1601 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1); 1602 if (err) 1603 return err; 1604 } 1605 1606 /* reset caller saved regs */ 1607 for (i = 0; i < CALLER_SAVED_REGS; i++) { 1608 mark_reg_not_init(env, regs, caller_saved[i]); 1609 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 1610 } 1611 1612 /* update return register (already marked as written above) */ 1613 if (fn->ret_type == RET_INTEGER) { 1614 /* sets type to SCALAR_VALUE */ 1615 mark_reg_unknown(env, regs, BPF_REG_0); 1616 } else if (fn->ret_type == RET_VOID) { 1617 regs[BPF_REG_0].type = NOT_INIT; 1618 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { 1619 struct bpf_insn_aux_data *insn_aux; 1620 1621 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 1622 /* There is no offset yet applied, variable or fixed */ 1623 mark_reg_known_zero(env, regs, BPF_REG_0); 1624 regs[BPF_REG_0].off = 0; 1625 /* remember map_ptr, so that check_map_access() 1626 * can check 'value_size' boundary of memory access 1627 * to map element returned from bpf_map_lookup_elem() 1628 */ 1629 if (meta.map_ptr == NULL) { 1630 verbose(env, 1631 "kernel subsystem misconfigured verifier\n"); 1632 return -EINVAL; 1633 } 1634 regs[BPF_REG_0].map_ptr = meta.map_ptr; 1635 regs[BPF_REG_0].id = ++env->id_gen; 1636 insn_aux = &env->insn_aux_data[insn_idx]; 1637 if (!insn_aux->map_ptr) 1638 insn_aux->map_ptr = meta.map_ptr; 1639 else if (insn_aux->map_ptr != meta.map_ptr) 1640 insn_aux->map_ptr = BPF_MAP_PTR_POISON; 1641 } else { 1642 verbose(env, "unknown return type %d of func %s#%d\n", 1643 fn->ret_type, func_id_name(func_id), func_id); 1644 return -EINVAL; 1645 } 1646 1647 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 1648 if (err) 1649 return err; 1650 1651 if (changes_data) 1652 clear_all_pkt_pointers(env); 1653 return 0; 1654 } 1655 1656 static void coerce_reg_to_32(struct bpf_reg_state *reg) 1657 { 1658 /* clear high 32 bits */ 1659 reg->var_off = tnum_cast(reg->var_off, 4); 1660 /* Update bounds */ 1661 __update_reg_bounds(reg); 1662 } 1663 1664 static bool signed_add_overflows(s64 a, s64 b) 1665 { 1666 /* Do the add in u64, where overflow is well-defined */ 1667 s64 res = (s64)((u64)a + (u64)b); 1668 1669 if (b < 0) 1670 return res > a; 1671 return res < a; 1672 } 1673 1674 static bool signed_sub_overflows(s64 a, s64 b) 1675 { 1676 /* Do the sub in u64, where overflow is well-defined */ 1677 s64 res = (s64)((u64)a - (u64)b); 1678 1679 if (b < 0) 1680 return res < a; 1681 return res > a; 1682 } 1683 1684 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 1685 * Caller should also handle BPF_MOV case separately. 1686 * If we return -EACCES, caller may want to try again treating pointer as a 1687 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 1688 */ 1689 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 1690 struct bpf_insn *insn, 1691 const struct bpf_reg_state *ptr_reg, 1692 const struct bpf_reg_state *off_reg) 1693 { 1694 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg; 1695 bool known = tnum_is_const(off_reg->var_off); 1696 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 1697 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 1698 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 1699 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 1700 u8 opcode = BPF_OP(insn->code); 1701 u32 dst = insn->dst_reg; 1702 1703 dst_reg = ®s[dst]; 1704 1705 if (WARN_ON_ONCE(known && (smin_val != smax_val))) { 1706 print_verifier_state(env, &env->cur_state); 1707 verbose(env, 1708 "verifier internal error: known but bad sbounds\n"); 1709 return -EINVAL; 1710 } 1711 if (WARN_ON_ONCE(known && (umin_val != umax_val))) { 1712 print_verifier_state(env, &env->cur_state); 1713 verbose(env, 1714 "verifier internal error: known but bad ubounds\n"); 1715 return -EINVAL; 1716 } 1717 1718 if (BPF_CLASS(insn->code) != BPF_ALU64) { 1719 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 1720 if (!env->allow_ptr_leaks) 1721 verbose(env, 1722 "R%d 32-bit pointer arithmetic prohibited\n", 1723 dst); 1724 return -EACCES; 1725 } 1726 1727 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 1728 if (!env->allow_ptr_leaks) 1729 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", 1730 dst); 1731 return -EACCES; 1732 } 1733 if (ptr_reg->type == CONST_PTR_TO_MAP) { 1734 if (!env->allow_ptr_leaks) 1735 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", 1736 dst); 1737 return -EACCES; 1738 } 1739 if (ptr_reg->type == PTR_TO_PACKET_END) { 1740 if (!env->allow_ptr_leaks) 1741 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", 1742 dst); 1743 return -EACCES; 1744 } 1745 1746 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 1747 * The id may be overwritten later if we create a new variable offset. 1748 */ 1749 dst_reg->type = ptr_reg->type; 1750 dst_reg->id = ptr_reg->id; 1751 1752 switch (opcode) { 1753 case BPF_ADD: 1754 /* We can take a fixed offset as long as it doesn't overflow 1755 * the s32 'off' field 1756 */ 1757 if (known && (ptr_reg->off + smin_val == 1758 (s64)(s32)(ptr_reg->off + smin_val))) { 1759 /* pointer += K. Accumulate it into fixed offset */ 1760 dst_reg->smin_value = smin_ptr; 1761 dst_reg->smax_value = smax_ptr; 1762 dst_reg->umin_value = umin_ptr; 1763 dst_reg->umax_value = umax_ptr; 1764 dst_reg->var_off = ptr_reg->var_off; 1765 dst_reg->off = ptr_reg->off + smin_val; 1766 dst_reg->range = ptr_reg->range; 1767 break; 1768 } 1769 /* A new variable offset is created. Note that off_reg->off 1770 * == 0, since it's a scalar. 1771 * dst_reg gets the pointer type and since some positive 1772 * integer value was added to the pointer, give it a new 'id' 1773 * if it's a PTR_TO_PACKET. 1774 * this creates a new 'base' pointer, off_reg (variable) gets 1775 * added into the variable offset, and we copy the fixed offset 1776 * from ptr_reg. 1777 */ 1778 if (signed_add_overflows(smin_ptr, smin_val) || 1779 signed_add_overflows(smax_ptr, smax_val)) { 1780 dst_reg->smin_value = S64_MIN; 1781 dst_reg->smax_value = S64_MAX; 1782 } else { 1783 dst_reg->smin_value = smin_ptr + smin_val; 1784 dst_reg->smax_value = smax_ptr + smax_val; 1785 } 1786 if (umin_ptr + umin_val < umin_ptr || 1787 umax_ptr + umax_val < umax_ptr) { 1788 dst_reg->umin_value = 0; 1789 dst_reg->umax_value = U64_MAX; 1790 } else { 1791 dst_reg->umin_value = umin_ptr + umin_val; 1792 dst_reg->umax_value = umax_ptr + umax_val; 1793 } 1794 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 1795 dst_reg->off = ptr_reg->off; 1796 if (reg_is_pkt_pointer(ptr_reg)) { 1797 dst_reg->id = ++env->id_gen; 1798 /* something was added to pkt_ptr, set range to zero */ 1799 dst_reg->range = 0; 1800 } 1801 break; 1802 case BPF_SUB: 1803 if (dst_reg == off_reg) { 1804 /* scalar -= pointer. Creates an unknown scalar */ 1805 if (!env->allow_ptr_leaks) 1806 verbose(env, "R%d tried to subtract pointer from scalar\n", 1807 dst); 1808 return -EACCES; 1809 } 1810 /* We don't allow subtraction from FP, because (according to 1811 * test_verifier.c test "invalid fp arithmetic", JITs might not 1812 * be able to deal with it. 1813 */ 1814 if (ptr_reg->type == PTR_TO_STACK) { 1815 if (!env->allow_ptr_leaks) 1816 verbose(env, "R%d subtraction from stack pointer prohibited\n", 1817 dst); 1818 return -EACCES; 1819 } 1820 if (known && (ptr_reg->off - smin_val == 1821 (s64)(s32)(ptr_reg->off - smin_val))) { 1822 /* pointer -= K. Subtract it from fixed offset */ 1823 dst_reg->smin_value = smin_ptr; 1824 dst_reg->smax_value = smax_ptr; 1825 dst_reg->umin_value = umin_ptr; 1826 dst_reg->umax_value = umax_ptr; 1827 dst_reg->var_off = ptr_reg->var_off; 1828 dst_reg->id = ptr_reg->id; 1829 dst_reg->off = ptr_reg->off - smin_val; 1830 dst_reg->range = ptr_reg->range; 1831 break; 1832 } 1833 /* A new variable offset is created. If the subtrahend is known 1834 * nonnegative, then any reg->range we had before is still good. 1835 */ 1836 if (signed_sub_overflows(smin_ptr, smax_val) || 1837 signed_sub_overflows(smax_ptr, smin_val)) { 1838 /* Overflow possible, we know nothing */ 1839 dst_reg->smin_value = S64_MIN; 1840 dst_reg->smax_value = S64_MAX; 1841 } else { 1842 dst_reg->smin_value = smin_ptr - smax_val; 1843 dst_reg->smax_value = smax_ptr - smin_val; 1844 } 1845 if (umin_ptr < umax_val) { 1846 /* Overflow possible, we know nothing */ 1847 dst_reg->umin_value = 0; 1848 dst_reg->umax_value = U64_MAX; 1849 } else { 1850 /* Cannot overflow (as long as bounds are consistent) */ 1851 dst_reg->umin_value = umin_ptr - umax_val; 1852 dst_reg->umax_value = umax_ptr - umin_val; 1853 } 1854 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 1855 dst_reg->off = ptr_reg->off; 1856 if (reg_is_pkt_pointer(ptr_reg)) { 1857 dst_reg->id = ++env->id_gen; 1858 /* something was added to pkt_ptr, set range to zero */ 1859 if (smin_val < 0) 1860 dst_reg->range = 0; 1861 } 1862 break; 1863 case BPF_AND: 1864 case BPF_OR: 1865 case BPF_XOR: 1866 /* bitwise ops on pointers are troublesome, prohibit for now. 1867 * (However, in principle we could allow some cases, e.g. 1868 * ptr &= ~3 which would reduce min_value by 3.) 1869 */ 1870 if (!env->allow_ptr_leaks) 1871 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 1872 dst, bpf_alu_string[opcode >> 4]); 1873 return -EACCES; 1874 default: 1875 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 1876 if (!env->allow_ptr_leaks) 1877 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 1878 dst, bpf_alu_string[opcode >> 4]); 1879 return -EACCES; 1880 } 1881 1882 __update_reg_bounds(dst_reg); 1883 __reg_deduce_bounds(dst_reg); 1884 __reg_bound_offset(dst_reg); 1885 return 0; 1886 } 1887 1888 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 1889 struct bpf_insn *insn, 1890 struct bpf_reg_state *dst_reg, 1891 struct bpf_reg_state src_reg) 1892 { 1893 struct bpf_reg_state *regs = env->cur_state.regs; 1894 u8 opcode = BPF_OP(insn->code); 1895 bool src_known, dst_known; 1896 s64 smin_val, smax_val; 1897 u64 umin_val, umax_val; 1898 1899 if (BPF_CLASS(insn->code) != BPF_ALU64) { 1900 /* 32-bit ALU ops are (32,32)->64 */ 1901 coerce_reg_to_32(dst_reg); 1902 coerce_reg_to_32(&src_reg); 1903 } 1904 smin_val = src_reg.smin_value; 1905 smax_val = src_reg.smax_value; 1906 umin_val = src_reg.umin_value; 1907 umax_val = src_reg.umax_value; 1908 src_known = tnum_is_const(src_reg.var_off); 1909 dst_known = tnum_is_const(dst_reg->var_off); 1910 1911 switch (opcode) { 1912 case BPF_ADD: 1913 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 1914 signed_add_overflows(dst_reg->smax_value, smax_val)) { 1915 dst_reg->smin_value = S64_MIN; 1916 dst_reg->smax_value = S64_MAX; 1917 } else { 1918 dst_reg->smin_value += smin_val; 1919 dst_reg->smax_value += smax_val; 1920 } 1921 if (dst_reg->umin_value + umin_val < umin_val || 1922 dst_reg->umax_value + umax_val < umax_val) { 1923 dst_reg->umin_value = 0; 1924 dst_reg->umax_value = U64_MAX; 1925 } else { 1926 dst_reg->umin_value += umin_val; 1927 dst_reg->umax_value += umax_val; 1928 } 1929 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 1930 break; 1931 case BPF_SUB: 1932 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 1933 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 1934 /* Overflow possible, we know nothing */ 1935 dst_reg->smin_value = S64_MIN; 1936 dst_reg->smax_value = S64_MAX; 1937 } else { 1938 dst_reg->smin_value -= smax_val; 1939 dst_reg->smax_value -= smin_val; 1940 } 1941 if (dst_reg->umin_value < umax_val) { 1942 /* Overflow possible, we know nothing */ 1943 dst_reg->umin_value = 0; 1944 dst_reg->umax_value = U64_MAX; 1945 } else { 1946 /* Cannot overflow (as long as bounds are consistent) */ 1947 dst_reg->umin_value -= umax_val; 1948 dst_reg->umax_value -= umin_val; 1949 } 1950 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 1951 break; 1952 case BPF_MUL: 1953 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 1954 if (smin_val < 0 || dst_reg->smin_value < 0) { 1955 /* Ain't nobody got time to multiply that sign */ 1956 __mark_reg_unbounded(dst_reg); 1957 __update_reg_bounds(dst_reg); 1958 break; 1959 } 1960 /* Both values are positive, so we can work with unsigned and 1961 * copy the result to signed (unless it exceeds S64_MAX). 1962 */ 1963 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 1964 /* Potential overflow, we know nothing */ 1965 __mark_reg_unbounded(dst_reg); 1966 /* (except what we can learn from the var_off) */ 1967 __update_reg_bounds(dst_reg); 1968 break; 1969 } 1970 dst_reg->umin_value *= umin_val; 1971 dst_reg->umax_value *= umax_val; 1972 if (dst_reg->umax_value > S64_MAX) { 1973 /* Overflow possible, we know nothing */ 1974 dst_reg->smin_value = S64_MIN; 1975 dst_reg->smax_value = S64_MAX; 1976 } else { 1977 dst_reg->smin_value = dst_reg->umin_value; 1978 dst_reg->smax_value = dst_reg->umax_value; 1979 } 1980 break; 1981 case BPF_AND: 1982 if (src_known && dst_known) { 1983 __mark_reg_known(dst_reg, dst_reg->var_off.value & 1984 src_reg.var_off.value); 1985 break; 1986 } 1987 /* We get our minimum from the var_off, since that's inherently 1988 * bitwise. Our maximum is the minimum of the operands' maxima. 1989 */ 1990 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 1991 dst_reg->umin_value = dst_reg->var_off.value; 1992 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 1993 if (dst_reg->smin_value < 0 || smin_val < 0) { 1994 /* Lose signed bounds when ANDing negative numbers, 1995 * ain't nobody got time for that. 1996 */ 1997 dst_reg->smin_value = S64_MIN; 1998 dst_reg->smax_value = S64_MAX; 1999 } else { 2000 /* ANDing two positives gives a positive, so safe to 2001 * cast result into s64. 2002 */ 2003 dst_reg->smin_value = dst_reg->umin_value; 2004 dst_reg->smax_value = dst_reg->umax_value; 2005 } 2006 /* We may learn something more from the var_off */ 2007 __update_reg_bounds(dst_reg); 2008 break; 2009 case BPF_OR: 2010 if (src_known && dst_known) { 2011 __mark_reg_known(dst_reg, dst_reg->var_off.value | 2012 src_reg.var_off.value); 2013 break; 2014 } 2015 /* We get our maximum from the var_off, and our minimum is the 2016 * maximum of the operands' minima 2017 */ 2018 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 2019 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 2020 dst_reg->umax_value = dst_reg->var_off.value | 2021 dst_reg->var_off.mask; 2022 if (dst_reg->smin_value < 0 || smin_val < 0) { 2023 /* Lose signed bounds when ORing negative numbers, 2024 * ain't nobody got time for that. 2025 */ 2026 dst_reg->smin_value = S64_MIN; 2027 dst_reg->smax_value = S64_MAX; 2028 } else { 2029 /* ORing two positives gives a positive, so safe to 2030 * cast result into s64. 2031 */ 2032 dst_reg->smin_value = dst_reg->umin_value; 2033 dst_reg->smax_value = dst_reg->umax_value; 2034 } 2035 /* We may learn something more from the var_off */ 2036 __update_reg_bounds(dst_reg); 2037 break; 2038 case BPF_LSH: 2039 if (umax_val > 63) { 2040 /* Shifts greater than 63 are undefined. This includes 2041 * shifts by a negative number. 2042 */ 2043 mark_reg_unknown(env, regs, insn->dst_reg); 2044 break; 2045 } 2046 /* We lose all sign bit information (except what we can pick 2047 * up from var_off) 2048 */ 2049 dst_reg->smin_value = S64_MIN; 2050 dst_reg->smax_value = S64_MAX; 2051 /* If we might shift our top bit out, then we know nothing */ 2052 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 2053 dst_reg->umin_value = 0; 2054 dst_reg->umax_value = U64_MAX; 2055 } else { 2056 dst_reg->umin_value <<= umin_val; 2057 dst_reg->umax_value <<= umax_val; 2058 } 2059 if (src_known) 2060 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 2061 else 2062 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val); 2063 /* We may learn something more from the var_off */ 2064 __update_reg_bounds(dst_reg); 2065 break; 2066 case BPF_RSH: 2067 if (umax_val > 63) { 2068 /* Shifts greater than 63 are undefined. This includes 2069 * shifts by a negative number. 2070 */ 2071 mark_reg_unknown(env, regs, insn->dst_reg); 2072 break; 2073 } 2074 /* BPF_RSH is an unsigned shift, so make the appropriate casts */ 2075 if (dst_reg->smin_value < 0) { 2076 if (umin_val) { 2077 /* Sign bit will be cleared */ 2078 dst_reg->smin_value = 0; 2079 } else { 2080 /* Lost sign bit information */ 2081 dst_reg->smin_value = S64_MIN; 2082 dst_reg->smax_value = S64_MAX; 2083 } 2084 } else { 2085 dst_reg->smin_value = 2086 (u64)(dst_reg->smin_value) >> umax_val; 2087 } 2088 if (src_known) 2089 dst_reg->var_off = tnum_rshift(dst_reg->var_off, 2090 umin_val); 2091 else 2092 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val); 2093 dst_reg->umin_value >>= umax_val; 2094 dst_reg->umax_value >>= umin_val; 2095 /* We may learn something more from the var_off */ 2096 __update_reg_bounds(dst_reg); 2097 break; 2098 default: 2099 mark_reg_unknown(env, regs, insn->dst_reg); 2100 break; 2101 } 2102 2103 __reg_deduce_bounds(dst_reg); 2104 __reg_bound_offset(dst_reg); 2105 return 0; 2106 } 2107 2108 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 2109 * and var_off. 2110 */ 2111 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 2112 struct bpf_insn *insn) 2113 { 2114 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg; 2115 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 2116 u8 opcode = BPF_OP(insn->code); 2117 int rc; 2118 2119 dst_reg = ®s[insn->dst_reg]; 2120 src_reg = NULL; 2121 if (dst_reg->type != SCALAR_VALUE) 2122 ptr_reg = dst_reg; 2123 if (BPF_SRC(insn->code) == BPF_X) { 2124 src_reg = ®s[insn->src_reg]; 2125 if (src_reg->type != SCALAR_VALUE) { 2126 if (dst_reg->type != SCALAR_VALUE) { 2127 /* Combining two pointers by any ALU op yields 2128 * an arbitrary scalar. 2129 */ 2130 if (!env->allow_ptr_leaks) { 2131 verbose(env, "R%d pointer %s pointer prohibited\n", 2132 insn->dst_reg, 2133 bpf_alu_string[opcode >> 4]); 2134 return -EACCES; 2135 } 2136 mark_reg_unknown(env, regs, insn->dst_reg); 2137 return 0; 2138 } else { 2139 /* scalar += pointer 2140 * This is legal, but we have to reverse our 2141 * src/dest handling in computing the range 2142 */ 2143 rc = adjust_ptr_min_max_vals(env, insn, 2144 src_reg, dst_reg); 2145 if (rc == -EACCES && env->allow_ptr_leaks) { 2146 /* scalar += unknown scalar */ 2147 __mark_reg_unknown(&off_reg); 2148 return adjust_scalar_min_max_vals( 2149 env, insn, 2150 dst_reg, off_reg); 2151 } 2152 return rc; 2153 } 2154 } else if (ptr_reg) { 2155 /* pointer += scalar */ 2156 rc = adjust_ptr_min_max_vals(env, insn, 2157 dst_reg, src_reg); 2158 if (rc == -EACCES && env->allow_ptr_leaks) { 2159 /* unknown scalar += scalar */ 2160 __mark_reg_unknown(dst_reg); 2161 return adjust_scalar_min_max_vals( 2162 env, insn, dst_reg, *src_reg); 2163 } 2164 return rc; 2165 } 2166 } else { 2167 /* Pretend the src is a reg with a known value, since we only 2168 * need to be able to read from this state. 2169 */ 2170 off_reg.type = SCALAR_VALUE; 2171 __mark_reg_known(&off_reg, insn->imm); 2172 src_reg = &off_reg; 2173 if (ptr_reg) { /* pointer += K */ 2174 rc = adjust_ptr_min_max_vals(env, insn, 2175 ptr_reg, src_reg); 2176 if (rc == -EACCES && env->allow_ptr_leaks) { 2177 /* unknown scalar += K */ 2178 __mark_reg_unknown(dst_reg); 2179 return adjust_scalar_min_max_vals( 2180 env, insn, dst_reg, off_reg); 2181 } 2182 return rc; 2183 } 2184 } 2185 2186 /* Got here implies adding two SCALAR_VALUEs */ 2187 if (WARN_ON_ONCE(ptr_reg)) { 2188 print_verifier_state(env, &env->cur_state); 2189 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 2190 return -EINVAL; 2191 } 2192 if (WARN_ON(!src_reg)) { 2193 print_verifier_state(env, &env->cur_state); 2194 verbose(env, "verifier internal error: no src_reg\n"); 2195 return -EINVAL; 2196 } 2197 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 2198 } 2199 2200 /* check validity of 32-bit and 64-bit arithmetic operations */ 2201 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 2202 { 2203 struct bpf_reg_state *regs = env->cur_state.regs; 2204 u8 opcode = BPF_OP(insn->code); 2205 int err; 2206 2207 if (opcode == BPF_END || opcode == BPF_NEG) { 2208 if (opcode == BPF_NEG) { 2209 if (BPF_SRC(insn->code) != 0 || 2210 insn->src_reg != BPF_REG_0 || 2211 insn->off != 0 || insn->imm != 0) { 2212 verbose(env, "BPF_NEG uses reserved fields\n"); 2213 return -EINVAL; 2214 } 2215 } else { 2216 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 2217 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 2218 BPF_CLASS(insn->code) == BPF_ALU64) { 2219 verbose(env, "BPF_END uses reserved fields\n"); 2220 return -EINVAL; 2221 } 2222 } 2223 2224 /* check src operand */ 2225 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2226 if (err) 2227 return err; 2228 2229 if (is_pointer_value(env, insn->dst_reg)) { 2230 verbose(env, "R%d pointer arithmetic prohibited\n", 2231 insn->dst_reg); 2232 return -EACCES; 2233 } 2234 2235 /* check dest operand */ 2236 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2237 if (err) 2238 return err; 2239 2240 } else if (opcode == BPF_MOV) { 2241 2242 if (BPF_SRC(insn->code) == BPF_X) { 2243 if (insn->imm != 0 || insn->off != 0) { 2244 verbose(env, "BPF_MOV uses reserved fields\n"); 2245 return -EINVAL; 2246 } 2247 2248 /* check src operand */ 2249 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2250 if (err) 2251 return err; 2252 } else { 2253 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 2254 verbose(env, "BPF_MOV uses reserved fields\n"); 2255 return -EINVAL; 2256 } 2257 } 2258 2259 /* check dest operand */ 2260 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2261 if (err) 2262 return err; 2263 2264 if (BPF_SRC(insn->code) == BPF_X) { 2265 if (BPF_CLASS(insn->code) == BPF_ALU64) { 2266 /* case: R1 = R2 2267 * copy register state to dest reg 2268 */ 2269 regs[insn->dst_reg] = regs[insn->src_reg]; 2270 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 2271 } else { 2272 /* R1 = (u32) R2 */ 2273 if (is_pointer_value(env, insn->src_reg)) { 2274 verbose(env, 2275 "R%d partial copy of pointer\n", 2276 insn->src_reg); 2277 return -EACCES; 2278 } 2279 mark_reg_unknown(env, regs, insn->dst_reg); 2280 /* high 32 bits are known zero. */ 2281 regs[insn->dst_reg].var_off = tnum_cast( 2282 regs[insn->dst_reg].var_off, 4); 2283 __update_reg_bounds(®s[insn->dst_reg]); 2284 } 2285 } else { 2286 /* case: R = imm 2287 * remember the value we stored into this reg 2288 */ 2289 regs[insn->dst_reg].type = SCALAR_VALUE; 2290 __mark_reg_known(regs + insn->dst_reg, insn->imm); 2291 } 2292 2293 } else if (opcode > BPF_END) { 2294 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 2295 return -EINVAL; 2296 2297 } else { /* all other ALU ops: and, sub, xor, add, ... */ 2298 2299 if (BPF_SRC(insn->code) == BPF_X) { 2300 if (insn->imm != 0 || insn->off != 0) { 2301 verbose(env, "BPF_ALU uses reserved fields\n"); 2302 return -EINVAL; 2303 } 2304 /* check src1 operand */ 2305 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2306 if (err) 2307 return err; 2308 } else { 2309 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 2310 verbose(env, "BPF_ALU uses reserved fields\n"); 2311 return -EINVAL; 2312 } 2313 } 2314 2315 /* check src2 operand */ 2316 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2317 if (err) 2318 return err; 2319 2320 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 2321 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 2322 verbose(env, "div by zero\n"); 2323 return -EINVAL; 2324 } 2325 2326 if ((opcode == BPF_LSH || opcode == BPF_RSH || 2327 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 2328 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 2329 2330 if (insn->imm < 0 || insn->imm >= size) { 2331 verbose(env, "invalid shift %d\n", insn->imm); 2332 return -EINVAL; 2333 } 2334 } 2335 2336 /* check dest operand */ 2337 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 2338 if (err) 2339 return err; 2340 2341 return adjust_reg_min_max_vals(env, insn); 2342 } 2343 2344 return 0; 2345 } 2346 2347 static void find_good_pkt_pointers(struct bpf_verifier_state *state, 2348 struct bpf_reg_state *dst_reg, 2349 enum bpf_reg_type type, 2350 bool range_right_open) 2351 { 2352 struct bpf_reg_state *regs = state->regs, *reg; 2353 u16 new_range; 2354 int i; 2355 2356 if (dst_reg->off < 0 || 2357 (dst_reg->off == 0 && range_right_open)) 2358 /* This doesn't give us any range */ 2359 return; 2360 2361 if (dst_reg->umax_value > MAX_PACKET_OFF || 2362 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 2363 /* Risk of overflow. For instance, ptr + (1<<63) may be less 2364 * than pkt_end, but that's because it's also less than pkt. 2365 */ 2366 return; 2367 2368 new_range = dst_reg->off; 2369 if (range_right_open) 2370 new_range--; 2371 2372 /* Examples for register markings: 2373 * 2374 * pkt_data in dst register: 2375 * 2376 * r2 = r3; 2377 * r2 += 8; 2378 * if (r2 > pkt_end) goto <handle exception> 2379 * <access okay> 2380 * 2381 * r2 = r3; 2382 * r2 += 8; 2383 * if (r2 < pkt_end) goto <access okay> 2384 * <handle exception> 2385 * 2386 * Where: 2387 * r2 == dst_reg, pkt_end == src_reg 2388 * r2=pkt(id=n,off=8,r=0) 2389 * r3=pkt(id=n,off=0,r=0) 2390 * 2391 * pkt_data in src register: 2392 * 2393 * r2 = r3; 2394 * r2 += 8; 2395 * if (pkt_end >= r2) goto <access okay> 2396 * <handle exception> 2397 * 2398 * r2 = r3; 2399 * r2 += 8; 2400 * if (pkt_end <= r2) goto <handle exception> 2401 * <access okay> 2402 * 2403 * Where: 2404 * pkt_end == dst_reg, r2 == src_reg 2405 * r2=pkt(id=n,off=8,r=0) 2406 * r3=pkt(id=n,off=0,r=0) 2407 * 2408 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 2409 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 2410 * and [r3, r3 + 8-1) respectively is safe to access depending on 2411 * the check. 2412 */ 2413 2414 /* If our ids match, then we must have the same max_value. And we 2415 * don't care about the other reg's fixed offset, since if it's too big 2416 * the range won't allow anything. 2417 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 2418 */ 2419 for (i = 0; i < MAX_BPF_REG; i++) 2420 if (regs[i].type == type && regs[i].id == dst_reg->id) 2421 /* keep the maximum range already checked */ 2422 regs[i].range = max(regs[i].range, new_range); 2423 2424 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 2425 if (state->stack_slot_type[i] != STACK_SPILL) 2426 continue; 2427 reg = &state->spilled_regs[i / BPF_REG_SIZE]; 2428 if (reg->type == type && reg->id == dst_reg->id) 2429 reg->range = max_t(u16, reg->range, new_range); 2430 } 2431 } 2432 2433 /* Adjusts the register min/max values in the case that the dst_reg is the 2434 * variable register that we are working on, and src_reg is a constant or we're 2435 * simply doing a BPF_K check. 2436 * In JEQ/JNE cases we also adjust the var_off values. 2437 */ 2438 static void reg_set_min_max(struct bpf_reg_state *true_reg, 2439 struct bpf_reg_state *false_reg, u64 val, 2440 u8 opcode) 2441 { 2442 /* If the dst_reg is a pointer, we can't learn anything about its 2443 * variable offset from the compare (unless src_reg were a pointer into 2444 * the same object, but we don't bother with that. 2445 * Since false_reg and true_reg have the same type by construction, we 2446 * only need to check one of them for pointerness. 2447 */ 2448 if (__is_pointer_value(false, false_reg)) 2449 return; 2450 2451 switch (opcode) { 2452 case BPF_JEQ: 2453 /* If this is false then we know nothing Jon Snow, but if it is 2454 * true then we know for sure. 2455 */ 2456 __mark_reg_known(true_reg, val); 2457 break; 2458 case BPF_JNE: 2459 /* If this is true we know nothing Jon Snow, but if it is false 2460 * we know the value for sure; 2461 */ 2462 __mark_reg_known(false_reg, val); 2463 break; 2464 case BPF_JGT: 2465 false_reg->umax_value = min(false_reg->umax_value, val); 2466 true_reg->umin_value = max(true_reg->umin_value, val + 1); 2467 break; 2468 case BPF_JSGT: 2469 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 2470 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 2471 break; 2472 case BPF_JLT: 2473 false_reg->umin_value = max(false_reg->umin_value, val); 2474 true_reg->umax_value = min(true_reg->umax_value, val - 1); 2475 break; 2476 case BPF_JSLT: 2477 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 2478 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 2479 break; 2480 case BPF_JGE: 2481 false_reg->umax_value = min(false_reg->umax_value, val - 1); 2482 true_reg->umin_value = max(true_reg->umin_value, val); 2483 break; 2484 case BPF_JSGE: 2485 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 2486 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 2487 break; 2488 case BPF_JLE: 2489 false_reg->umin_value = max(false_reg->umin_value, val + 1); 2490 true_reg->umax_value = min(true_reg->umax_value, val); 2491 break; 2492 case BPF_JSLE: 2493 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 2494 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 2495 break; 2496 default: 2497 break; 2498 } 2499 2500 __reg_deduce_bounds(false_reg); 2501 __reg_deduce_bounds(true_reg); 2502 /* We might have learned some bits from the bounds. */ 2503 __reg_bound_offset(false_reg); 2504 __reg_bound_offset(true_reg); 2505 /* Intersecting with the old var_off might have improved our bounds 2506 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2507 * then new var_off is (0; 0x7f...fc) which improves our umax. 2508 */ 2509 __update_reg_bounds(false_reg); 2510 __update_reg_bounds(true_reg); 2511 } 2512 2513 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 2514 * the variable reg. 2515 */ 2516 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 2517 struct bpf_reg_state *false_reg, u64 val, 2518 u8 opcode) 2519 { 2520 if (__is_pointer_value(false, false_reg)) 2521 return; 2522 2523 switch (opcode) { 2524 case BPF_JEQ: 2525 /* If this is false then we know nothing Jon Snow, but if it is 2526 * true then we know for sure. 2527 */ 2528 __mark_reg_known(true_reg, val); 2529 break; 2530 case BPF_JNE: 2531 /* If this is true we know nothing Jon Snow, but if it is false 2532 * we know the value for sure; 2533 */ 2534 __mark_reg_known(false_reg, val); 2535 break; 2536 case BPF_JGT: 2537 true_reg->umax_value = min(true_reg->umax_value, val - 1); 2538 false_reg->umin_value = max(false_reg->umin_value, val); 2539 break; 2540 case BPF_JSGT: 2541 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 2542 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 2543 break; 2544 case BPF_JLT: 2545 true_reg->umin_value = max(true_reg->umin_value, val + 1); 2546 false_reg->umax_value = min(false_reg->umax_value, val); 2547 break; 2548 case BPF_JSLT: 2549 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 2550 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 2551 break; 2552 case BPF_JGE: 2553 true_reg->umax_value = min(true_reg->umax_value, val); 2554 false_reg->umin_value = max(false_reg->umin_value, val + 1); 2555 break; 2556 case BPF_JSGE: 2557 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 2558 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 2559 break; 2560 case BPF_JLE: 2561 true_reg->umin_value = max(true_reg->umin_value, val); 2562 false_reg->umax_value = min(false_reg->umax_value, val - 1); 2563 break; 2564 case BPF_JSLE: 2565 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 2566 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 2567 break; 2568 default: 2569 break; 2570 } 2571 2572 __reg_deduce_bounds(false_reg); 2573 __reg_deduce_bounds(true_reg); 2574 /* We might have learned some bits from the bounds. */ 2575 __reg_bound_offset(false_reg); 2576 __reg_bound_offset(true_reg); 2577 /* Intersecting with the old var_off might have improved our bounds 2578 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2579 * then new var_off is (0; 0x7f...fc) which improves our umax. 2580 */ 2581 __update_reg_bounds(false_reg); 2582 __update_reg_bounds(true_reg); 2583 } 2584 2585 /* Regs are known to be equal, so intersect their min/max/var_off */ 2586 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 2587 struct bpf_reg_state *dst_reg) 2588 { 2589 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 2590 dst_reg->umin_value); 2591 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 2592 dst_reg->umax_value); 2593 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 2594 dst_reg->smin_value); 2595 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 2596 dst_reg->smax_value); 2597 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 2598 dst_reg->var_off); 2599 /* We might have learned new bounds from the var_off. */ 2600 __update_reg_bounds(src_reg); 2601 __update_reg_bounds(dst_reg); 2602 /* We might have learned something about the sign bit. */ 2603 __reg_deduce_bounds(src_reg); 2604 __reg_deduce_bounds(dst_reg); 2605 /* We might have learned some bits from the bounds. */ 2606 __reg_bound_offset(src_reg); 2607 __reg_bound_offset(dst_reg); 2608 /* Intersecting with the old var_off might have improved our bounds 2609 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2610 * then new var_off is (0; 0x7f...fc) which improves our umax. 2611 */ 2612 __update_reg_bounds(src_reg); 2613 __update_reg_bounds(dst_reg); 2614 } 2615 2616 static void reg_combine_min_max(struct bpf_reg_state *true_src, 2617 struct bpf_reg_state *true_dst, 2618 struct bpf_reg_state *false_src, 2619 struct bpf_reg_state *false_dst, 2620 u8 opcode) 2621 { 2622 switch (opcode) { 2623 case BPF_JEQ: 2624 __reg_combine_min_max(true_src, true_dst); 2625 break; 2626 case BPF_JNE: 2627 __reg_combine_min_max(false_src, false_dst); 2628 break; 2629 } 2630 } 2631 2632 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 2633 bool is_null) 2634 { 2635 struct bpf_reg_state *reg = ®s[regno]; 2636 2637 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 2638 /* Old offset (both fixed and variable parts) should 2639 * have been known-zero, because we don't allow pointer 2640 * arithmetic on pointers that might be NULL. 2641 */ 2642 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 2643 !tnum_equals_const(reg->var_off, 0) || 2644 reg->off)) { 2645 __mark_reg_known_zero(reg); 2646 reg->off = 0; 2647 } 2648 if (is_null) { 2649 reg->type = SCALAR_VALUE; 2650 } else if (reg->map_ptr->inner_map_meta) { 2651 reg->type = CONST_PTR_TO_MAP; 2652 reg->map_ptr = reg->map_ptr->inner_map_meta; 2653 } else { 2654 reg->type = PTR_TO_MAP_VALUE; 2655 } 2656 /* We don't need id from this point onwards anymore, thus we 2657 * should better reset it, so that state pruning has chances 2658 * to take effect. 2659 */ 2660 reg->id = 0; 2661 } 2662 } 2663 2664 /* The logic is similar to find_good_pkt_pointers(), both could eventually 2665 * be folded together at some point. 2666 */ 2667 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno, 2668 bool is_null) 2669 { 2670 struct bpf_reg_state *regs = state->regs; 2671 u32 id = regs[regno].id; 2672 int i; 2673 2674 for (i = 0; i < MAX_BPF_REG; i++) 2675 mark_map_reg(regs, i, id, is_null); 2676 2677 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 2678 if (state->stack_slot_type[i] != STACK_SPILL) 2679 continue; 2680 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null); 2681 } 2682 } 2683 2684 static int check_cond_jmp_op(struct bpf_verifier_env *env, 2685 struct bpf_insn *insn, int *insn_idx) 2686 { 2687 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state; 2688 struct bpf_reg_state *regs = this_branch->regs, *dst_reg; 2689 u8 opcode = BPF_OP(insn->code); 2690 int err; 2691 2692 if (opcode > BPF_JSLE) { 2693 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 2694 return -EINVAL; 2695 } 2696 2697 if (BPF_SRC(insn->code) == BPF_X) { 2698 if (insn->imm != 0) { 2699 verbose(env, "BPF_JMP uses reserved fields\n"); 2700 return -EINVAL; 2701 } 2702 2703 /* check src1 operand */ 2704 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2705 if (err) 2706 return err; 2707 2708 if (is_pointer_value(env, insn->src_reg)) { 2709 verbose(env, "R%d pointer comparison prohibited\n", 2710 insn->src_reg); 2711 return -EACCES; 2712 } 2713 } else { 2714 if (insn->src_reg != BPF_REG_0) { 2715 verbose(env, "BPF_JMP uses reserved fields\n"); 2716 return -EINVAL; 2717 } 2718 } 2719 2720 /* check src2 operand */ 2721 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2722 if (err) 2723 return err; 2724 2725 dst_reg = ®s[insn->dst_reg]; 2726 2727 /* detect if R == 0 where R was initialized to zero earlier */ 2728 if (BPF_SRC(insn->code) == BPF_K && 2729 (opcode == BPF_JEQ || opcode == BPF_JNE) && 2730 dst_reg->type == SCALAR_VALUE && 2731 tnum_equals_const(dst_reg->var_off, insn->imm)) { 2732 if (opcode == BPF_JEQ) { 2733 /* if (imm == imm) goto pc+off; 2734 * only follow the goto, ignore fall-through 2735 */ 2736 *insn_idx += insn->off; 2737 return 0; 2738 } else { 2739 /* if (imm != imm) goto pc+off; 2740 * only follow fall-through branch, since 2741 * that's where the program will go 2742 */ 2743 return 0; 2744 } 2745 } 2746 2747 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 2748 if (!other_branch) 2749 return -EFAULT; 2750 2751 /* detect if we are comparing against a constant value so we can adjust 2752 * our min/max values for our dst register. 2753 * this is only legit if both are scalars (or pointers to the same 2754 * object, I suppose, but we don't support that right now), because 2755 * otherwise the different base pointers mean the offsets aren't 2756 * comparable. 2757 */ 2758 if (BPF_SRC(insn->code) == BPF_X) { 2759 if (dst_reg->type == SCALAR_VALUE && 2760 regs[insn->src_reg].type == SCALAR_VALUE) { 2761 if (tnum_is_const(regs[insn->src_reg].var_off)) 2762 reg_set_min_max(&other_branch->regs[insn->dst_reg], 2763 dst_reg, regs[insn->src_reg].var_off.value, 2764 opcode); 2765 else if (tnum_is_const(dst_reg->var_off)) 2766 reg_set_min_max_inv(&other_branch->regs[insn->src_reg], 2767 ®s[insn->src_reg], 2768 dst_reg->var_off.value, opcode); 2769 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 2770 /* Comparing for equality, we can combine knowledge */ 2771 reg_combine_min_max(&other_branch->regs[insn->src_reg], 2772 &other_branch->regs[insn->dst_reg], 2773 ®s[insn->src_reg], 2774 ®s[insn->dst_reg], opcode); 2775 } 2776 } else if (dst_reg->type == SCALAR_VALUE) { 2777 reg_set_min_max(&other_branch->regs[insn->dst_reg], 2778 dst_reg, insn->imm, opcode); 2779 } 2780 2781 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 2782 if (BPF_SRC(insn->code) == BPF_K && 2783 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 2784 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2785 /* Mark all identical map registers in each branch as either 2786 * safe or unknown depending R == 0 or R != 0 conditional. 2787 */ 2788 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 2789 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); 2790 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT && 2791 dst_reg->type == PTR_TO_PACKET && 2792 regs[insn->src_reg].type == PTR_TO_PACKET_END) { 2793 /* pkt_data' > pkt_end */ 2794 find_good_pkt_pointers(this_branch, dst_reg, 2795 PTR_TO_PACKET, false); 2796 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT && 2797 dst_reg->type == PTR_TO_PACKET_END && 2798 regs[insn->src_reg].type == PTR_TO_PACKET) { 2799 /* pkt_end > pkt_data' */ 2800 find_good_pkt_pointers(other_branch, ®s[insn->src_reg], 2801 PTR_TO_PACKET, true); 2802 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT && 2803 dst_reg->type == PTR_TO_PACKET && 2804 regs[insn->src_reg].type == PTR_TO_PACKET_END) { 2805 /* pkt_data' < pkt_end */ 2806 find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET, 2807 true); 2808 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT && 2809 dst_reg->type == PTR_TO_PACKET_END && 2810 regs[insn->src_reg].type == PTR_TO_PACKET) { 2811 /* pkt_end < pkt_data' */ 2812 find_good_pkt_pointers(this_branch, ®s[insn->src_reg], 2813 PTR_TO_PACKET, false); 2814 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE && 2815 dst_reg->type == PTR_TO_PACKET && 2816 regs[insn->src_reg].type == PTR_TO_PACKET_END) { 2817 /* pkt_data' >= pkt_end */ 2818 find_good_pkt_pointers(this_branch, dst_reg, 2819 PTR_TO_PACKET, true); 2820 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE && 2821 dst_reg->type == PTR_TO_PACKET_END && 2822 regs[insn->src_reg].type == PTR_TO_PACKET) { 2823 /* pkt_end >= pkt_data' */ 2824 find_good_pkt_pointers(other_branch, ®s[insn->src_reg], 2825 PTR_TO_PACKET, false); 2826 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE && 2827 dst_reg->type == PTR_TO_PACKET && 2828 regs[insn->src_reg].type == PTR_TO_PACKET_END) { 2829 /* pkt_data' <= pkt_end */ 2830 find_good_pkt_pointers(other_branch, dst_reg, 2831 PTR_TO_PACKET, false); 2832 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE && 2833 dst_reg->type == PTR_TO_PACKET_END && 2834 regs[insn->src_reg].type == PTR_TO_PACKET) { 2835 /* pkt_end <= pkt_data' */ 2836 find_good_pkt_pointers(this_branch, ®s[insn->src_reg], 2837 PTR_TO_PACKET, true); 2838 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT && 2839 dst_reg->type == PTR_TO_PACKET_META && 2840 reg_is_init_pkt_pointer(®s[insn->src_reg], PTR_TO_PACKET)) { 2841 find_good_pkt_pointers(this_branch, dst_reg, 2842 PTR_TO_PACKET_META, false); 2843 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT && 2844 dst_reg->type == PTR_TO_PACKET_META && 2845 reg_is_init_pkt_pointer(®s[insn->src_reg], PTR_TO_PACKET)) { 2846 find_good_pkt_pointers(other_branch, dst_reg, 2847 PTR_TO_PACKET_META, false); 2848 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE && 2849 reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 2850 regs[insn->src_reg].type == PTR_TO_PACKET_META) { 2851 find_good_pkt_pointers(other_branch, ®s[insn->src_reg], 2852 PTR_TO_PACKET_META, false); 2853 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE && 2854 reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 2855 regs[insn->src_reg].type == PTR_TO_PACKET_META) { 2856 find_good_pkt_pointers(this_branch, ®s[insn->src_reg], 2857 PTR_TO_PACKET_META, false); 2858 } else if (is_pointer_value(env, insn->dst_reg)) { 2859 verbose(env, "R%d pointer comparison prohibited\n", 2860 insn->dst_reg); 2861 return -EACCES; 2862 } 2863 if (env->log.level) 2864 print_verifier_state(env, this_branch); 2865 return 0; 2866 } 2867 2868 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 2869 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 2870 { 2871 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 2872 2873 return (struct bpf_map *) (unsigned long) imm64; 2874 } 2875 2876 /* verify BPF_LD_IMM64 instruction */ 2877 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 2878 { 2879 struct bpf_reg_state *regs = env->cur_state.regs; 2880 int err; 2881 2882 if (BPF_SIZE(insn->code) != BPF_DW) { 2883 verbose(env, "invalid BPF_LD_IMM insn\n"); 2884 return -EINVAL; 2885 } 2886 if (insn->off != 0) { 2887 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 2888 return -EINVAL; 2889 } 2890 2891 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2892 if (err) 2893 return err; 2894 2895 if (insn->src_reg == 0) { 2896 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 2897 2898 regs[insn->dst_reg].type = SCALAR_VALUE; 2899 __mark_reg_known(®s[insn->dst_reg], imm); 2900 return 0; 2901 } 2902 2903 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 2904 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 2905 2906 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 2907 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 2908 return 0; 2909 } 2910 2911 static bool may_access_skb(enum bpf_prog_type type) 2912 { 2913 switch (type) { 2914 case BPF_PROG_TYPE_SOCKET_FILTER: 2915 case BPF_PROG_TYPE_SCHED_CLS: 2916 case BPF_PROG_TYPE_SCHED_ACT: 2917 return true; 2918 default: 2919 return false; 2920 } 2921 } 2922 2923 /* verify safety of LD_ABS|LD_IND instructions: 2924 * - they can only appear in the programs where ctx == skb 2925 * - since they are wrappers of function calls, they scratch R1-R5 registers, 2926 * preserve R6-R9, and store return value into R0 2927 * 2928 * Implicit input: 2929 * ctx == skb == R6 == CTX 2930 * 2931 * Explicit input: 2932 * SRC == any register 2933 * IMM == 32-bit immediate 2934 * 2935 * Output: 2936 * R0 - 8/16/32-bit skb data converted to cpu endianness 2937 */ 2938 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 2939 { 2940 struct bpf_reg_state *regs = env->cur_state.regs; 2941 u8 mode = BPF_MODE(insn->code); 2942 int i, err; 2943 2944 if (!may_access_skb(env->prog->type)) { 2945 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 2946 return -EINVAL; 2947 } 2948 2949 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 2950 BPF_SIZE(insn->code) == BPF_DW || 2951 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 2952 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 2953 return -EINVAL; 2954 } 2955 2956 /* check whether implicit source operand (register R6) is readable */ 2957 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 2958 if (err) 2959 return err; 2960 2961 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 2962 verbose(env, 2963 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 2964 return -EINVAL; 2965 } 2966 2967 if (mode == BPF_IND) { 2968 /* check explicit source operand */ 2969 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2970 if (err) 2971 return err; 2972 } 2973 2974 /* reset caller saved regs to unreadable */ 2975 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2976 mark_reg_not_init(env, regs, caller_saved[i]); 2977 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2978 } 2979 2980 /* mark destination R0 register as readable, since it contains 2981 * the value fetched from the packet. 2982 * Already marked as written above. 2983 */ 2984 mark_reg_unknown(env, regs, BPF_REG_0); 2985 return 0; 2986 } 2987 2988 static int check_return_code(struct bpf_verifier_env *env) 2989 { 2990 struct bpf_reg_state *reg; 2991 struct tnum range = tnum_range(0, 1); 2992 2993 switch (env->prog->type) { 2994 case BPF_PROG_TYPE_CGROUP_SKB: 2995 case BPF_PROG_TYPE_CGROUP_SOCK: 2996 case BPF_PROG_TYPE_SOCK_OPS: 2997 break; 2998 default: 2999 return 0; 3000 } 3001 3002 reg = &env->cur_state.regs[BPF_REG_0]; 3003 if (reg->type != SCALAR_VALUE) { 3004 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 3005 reg_type_str[reg->type]); 3006 return -EINVAL; 3007 } 3008 3009 if (!tnum_in(range, reg->var_off)) { 3010 verbose(env, "At program exit the register R0 "); 3011 if (!tnum_is_unknown(reg->var_off)) { 3012 char tn_buf[48]; 3013 3014 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3015 verbose(env, "has value %s", tn_buf); 3016 } else { 3017 verbose(env, "has unknown scalar value"); 3018 } 3019 verbose(env, " should have been 0 or 1\n"); 3020 return -EINVAL; 3021 } 3022 return 0; 3023 } 3024 3025 /* non-recursive DFS pseudo code 3026 * 1 procedure DFS-iterative(G,v): 3027 * 2 label v as discovered 3028 * 3 let S be a stack 3029 * 4 S.push(v) 3030 * 5 while S is not empty 3031 * 6 t <- S.pop() 3032 * 7 if t is what we're looking for: 3033 * 8 return t 3034 * 9 for all edges e in G.adjacentEdges(t) do 3035 * 10 if edge e is already labelled 3036 * 11 continue with the next edge 3037 * 12 w <- G.adjacentVertex(t,e) 3038 * 13 if vertex w is not discovered and not explored 3039 * 14 label e as tree-edge 3040 * 15 label w as discovered 3041 * 16 S.push(w) 3042 * 17 continue at 5 3043 * 18 else if vertex w is discovered 3044 * 19 label e as back-edge 3045 * 20 else 3046 * 21 // vertex w is explored 3047 * 22 label e as forward- or cross-edge 3048 * 23 label t as explored 3049 * 24 S.pop() 3050 * 3051 * convention: 3052 * 0x10 - discovered 3053 * 0x11 - discovered and fall-through edge labelled 3054 * 0x12 - discovered and fall-through and branch edges labelled 3055 * 0x20 - explored 3056 */ 3057 3058 enum { 3059 DISCOVERED = 0x10, 3060 EXPLORED = 0x20, 3061 FALLTHROUGH = 1, 3062 BRANCH = 2, 3063 }; 3064 3065 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 3066 3067 static int *insn_stack; /* stack of insns to process */ 3068 static int cur_stack; /* current stack index */ 3069 static int *insn_state; 3070 3071 /* t, w, e - match pseudo-code above: 3072 * t - index of current instruction 3073 * w - next instruction 3074 * e - edge 3075 */ 3076 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 3077 { 3078 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 3079 return 0; 3080 3081 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 3082 return 0; 3083 3084 if (w < 0 || w >= env->prog->len) { 3085 verbose(env, "jump out of range from insn %d to %d\n", t, w); 3086 return -EINVAL; 3087 } 3088 3089 if (e == BRANCH) 3090 /* mark branch target for state pruning */ 3091 env->explored_states[w] = STATE_LIST_MARK; 3092 3093 if (insn_state[w] == 0) { 3094 /* tree-edge */ 3095 insn_state[t] = DISCOVERED | e; 3096 insn_state[w] = DISCOVERED; 3097 if (cur_stack >= env->prog->len) 3098 return -E2BIG; 3099 insn_stack[cur_stack++] = w; 3100 return 1; 3101 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 3102 verbose(env, "back-edge from insn %d to %d\n", t, w); 3103 return -EINVAL; 3104 } else if (insn_state[w] == EXPLORED) { 3105 /* forward- or cross-edge */ 3106 insn_state[t] = DISCOVERED | e; 3107 } else { 3108 verbose(env, "insn state internal bug\n"); 3109 return -EFAULT; 3110 } 3111 return 0; 3112 } 3113 3114 /* non-recursive depth-first-search to detect loops in BPF program 3115 * loop == back-edge in directed graph 3116 */ 3117 static int check_cfg(struct bpf_verifier_env *env) 3118 { 3119 struct bpf_insn *insns = env->prog->insnsi; 3120 int insn_cnt = env->prog->len; 3121 int ret = 0; 3122 int i, t; 3123 3124 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 3125 if (!insn_state) 3126 return -ENOMEM; 3127 3128 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 3129 if (!insn_stack) { 3130 kfree(insn_state); 3131 return -ENOMEM; 3132 } 3133 3134 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 3135 insn_stack[0] = 0; /* 0 is the first instruction */ 3136 cur_stack = 1; 3137 3138 peek_stack: 3139 if (cur_stack == 0) 3140 goto check_state; 3141 t = insn_stack[cur_stack - 1]; 3142 3143 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 3144 u8 opcode = BPF_OP(insns[t].code); 3145 3146 if (opcode == BPF_EXIT) { 3147 goto mark_explored; 3148 } else if (opcode == BPF_CALL) { 3149 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3150 if (ret == 1) 3151 goto peek_stack; 3152 else if (ret < 0) 3153 goto err_free; 3154 if (t + 1 < insn_cnt) 3155 env->explored_states[t + 1] = STATE_LIST_MARK; 3156 } else if (opcode == BPF_JA) { 3157 if (BPF_SRC(insns[t].code) != BPF_K) { 3158 ret = -EINVAL; 3159 goto err_free; 3160 } 3161 /* unconditional jump with single edge */ 3162 ret = push_insn(t, t + insns[t].off + 1, 3163 FALLTHROUGH, env); 3164 if (ret == 1) 3165 goto peek_stack; 3166 else if (ret < 0) 3167 goto err_free; 3168 /* tell verifier to check for equivalent states 3169 * after every call and jump 3170 */ 3171 if (t + 1 < insn_cnt) 3172 env->explored_states[t + 1] = STATE_LIST_MARK; 3173 } else { 3174 /* conditional jump with two edges */ 3175 env->explored_states[t] = STATE_LIST_MARK; 3176 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3177 if (ret == 1) 3178 goto peek_stack; 3179 else if (ret < 0) 3180 goto err_free; 3181 3182 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 3183 if (ret == 1) 3184 goto peek_stack; 3185 else if (ret < 0) 3186 goto err_free; 3187 } 3188 } else { 3189 /* all other non-branch instructions with single 3190 * fall-through edge 3191 */ 3192 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3193 if (ret == 1) 3194 goto peek_stack; 3195 else if (ret < 0) 3196 goto err_free; 3197 } 3198 3199 mark_explored: 3200 insn_state[t] = EXPLORED; 3201 if (cur_stack-- <= 0) { 3202 verbose(env, "pop stack internal bug\n"); 3203 ret = -EFAULT; 3204 goto err_free; 3205 } 3206 goto peek_stack; 3207 3208 check_state: 3209 for (i = 0; i < insn_cnt; i++) { 3210 if (insn_state[i] != EXPLORED) { 3211 verbose(env, "unreachable insn %d\n", i); 3212 ret = -EINVAL; 3213 goto err_free; 3214 } 3215 } 3216 ret = 0; /* cfg looks good */ 3217 3218 err_free: 3219 kfree(insn_state); 3220 kfree(insn_stack); 3221 return ret; 3222 } 3223 3224 /* check %cur's range satisfies %old's */ 3225 static bool range_within(struct bpf_reg_state *old, 3226 struct bpf_reg_state *cur) 3227 { 3228 return old->umin_value <= cur->umin_value && 3229 old->umax_value >= cur->umax_value && 3230 old->smin_value <= cur->smin_value && 3231 old->smax_value >= cur->smax_value; 3232 } 3233 3234 /* Maximum number of register states that can exist at once */ 3235 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 3236 struct idpair { 3237 u32 old; 3238 u32 cur; 3239 }; 3240 3241 /* If in the old state two registers had the same id, then they need to have 3242 * the same id in the new state as well. But that id could be different from 3243 * the old state, so we need to track the mapping from old to new ids. 3244 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 3245 * regs with old id 5 must also have new id 9 for the new state to be safe. But 3246 * regs with a different old id could still have new id 9, we don't care about 3247 * that. 3248 * So we look through our idmap to see if this old id has been seen before. If 3249 * so, we require the new id to match; otherwise, we add the id pair to the map. 3250 */ 3251 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 3252 { 3253 unsigned int i; 3254 3255 for (i = 0; i < ID_MAP_SIZE; i++) { 3256 if (!idmap[i].old) { 3257 /* Reached an empty slot; haven't seen this id before */ 3258 idmap[i].old = old_id; 3259 idmap[i].cur = cur_id; 3260 return true; 3261 } 3262 if (idmap[i].old == old_id) 3263 return idmap[i].cur == cur_id; 3264 } 3265 /* We ran out of idmap slots, which should be impossible */ 3266 WARN_ON_ONCE(1); 3267 return false; 3268 } 3269 3270 /* Returns true if (rold safe implies rcur safe) */ 3271 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 3272 struct idpair *idmap) 3273 { 3274 if (!(rold->live & REG_LIVE_READ)) 3275 /* explored state didn't use this */ 3276 return true; 3277 3278 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0) 3279 return true; 3280 3281 if (rold->type == NOT_INIT) 3282 /* explored state can't have used this */ 3283 return true; 3284 if (rcur->type == NOT_INIT) 3285 return false; 3286 switch (rold->type) { 3287 case SCALAR_VALUE: 3288 if (rcur->type == SCALAR_VALUE) { 3289 /* new val must satisfy old val knowledge */ 3290 return range_within(rold, rcur) && 3291 tnum_in(rold->var_off, rcur->var_off); 3292 } else { 3293 /* if we knew anything about the old value, we're not 3294 * equal, because we can't know anything about the 3295 * scalar value of the pointer in the new value. 3296 */ 3297 return rold->umin_value == 0 && 3298 rold->umax_value == U64_MAX && 3299 rold->smin_value == S64_MIN && 3300 rold->smax_value == S64_MAX && 3301 tnum_is_unknown(rold->var_off); 3302 } 3303 case PTR_TO_MAP_VALUE: 3304 /* If the new min/max/var_off satisfy the old ones and 3305 * everything else matches, we are OK. 3306 * We don't care about the 'id' value, because nothing 3307 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 3308 */ 3309 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 3310 range_within(rold, rcur) && 3311 tnum_in(rold->var_off, rcur->var_off); 3312 case PTR_TO_MAP_VALUE_OR_NULL: 3313 /* a PTR_TO_MAP_VALUE could be safe to use as a 3314 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 3315 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 3316 * checked, doing so could have affected others with the same 3317 * id, and we can't check for that because we lost the id when 3318 * we converted to a PTR_TO_MAP_VALUE. 3319 */ 3320 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 3321 return false; 3322 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 3323 return false; 3324 /* Check our ids match any regs they're supposed to */ 3325 return check_ids(rold->id, rcur->id, idmap); 3326 case PTR_TO_PACKET_META: 3327 case PTR_TO_PACKET: 3328 if (rcur->type != rold->type) 3329 return false; 3330 /* We must have at least as much range as the old ptr 3331 * did, so that any accesses which were safe before are 3332 * still safe. This is true even if old range < old off, 3333 * since someone could have accessed through (ptr - k), or 3334 * even done ptr -= k in a register, to get a safe access. 3335 */ 3336 if (rold->range > rcur->range) 3337 return false; 3338 /* If the offsets don't match, we can't trust our alignment; 3339 * nor can we be sure that we won't fall out of range. 3340 */ 3341 if (rold->off != rcur->off) 3342 return false; 3343 /* id relations must be preserved */ 3344 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 3345 return false; 3346 /* new val must satisfy old val knowledge */ 3347 return range_within(rold, rcur) && 3348 tnum_in(rold->var_off, rcur->var_off); 3349 case PTR_TO_CTX: 3350 case CONST_PTR_TO_MAP: 3351 case PTR_TO_STACK: 3352 case PTR_TO_PACKET_END: 3353 /* Only valid matches are exact, which memcmp() above 3354 * would have accepted 3355 */ 3356 default: 3357 /* Don't know what's going on, just say it's not safe */ 3358 return false; 3359 } 3360 3361 /* Shouldn't get here; if we do, say it's not safe */ 3362 WARN_ON_ONCE(1); 3363 return false; 3364 } 3365 3366 /* compare two verifier states 3367 * 3368 * all states stored in state_list are known to be valid, since 3369 * verifier reached 'bpf_exit' instruction through them 3370 * 3371 * this function is called when verifier exploring different branches of 3372 * execution popped from the state stack. If it sees an old state that has 3373 * more strict register state and more strict stack state then this execution 3374 * branch doesn't need to be explored further, since verifier already 3375 * concluded that more strict state leads to valid finish. 3376 * 3377 * Therefore two states are equivalent if register state is more conservative 3378 * and explored stack state is more conservative than the current one. 3379 * Example: 3380 * explored current 3381 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 3382 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 3383 * 3384 * In other words if current stack state (one being explored) has more 3385 * valid slots than old one that already passed validation, it means 3386 * the verifier can stop exploring and conclude that current state is valid too 3387 * 3388 * Similarly with registers. If explored state has register type as invalid 3389 * whereas register type in current state is meaningful, it means that 3390 * the current state will reach 'bpf_exit' instruction safely 3391 */ 3392 static bool states_equal(struct bpf_verifier_env *env, 3393 struct bpf_verifier_state *old, 3394 struct bpf_verifier_state *cur) 3395 { 3396 struct idpair *idmap; 3397 bool ret = false; 3398 int i; 3399 3400 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 3401 /* If we failed to allocate the idmap, just say it's not safe */ 3402 if (!idmap) 3403 return false; 3404 3405 for (i = 0; i < MAX_BPF_REG; i++) { 3406 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 3407 goto out_free; 3408 } 3409 3410 for (i = 0; i < MAX_BPF_STACK; i++) { 3411 if (old->stack_slot_type[i] == STACK_INVALID) 3412 continue; 3413 if (old->stack_slot_type[i] != cur->stack_slot_type[i]) 3414 /* Ex: old explored (safe) state has STACK_SPILL in 3415 * this stack slot, but current has has STACK_MISC -> 3416 * this verifier states are not equivalent, 3417 * return false to continue verification of this path 3418 */ 3419 goto out_free; 3420 if (i % BPF_REG_SIZE) 3421 continue; 3422 if (old->stack_slot_type[i] != STACK_SPILL) 3423 continue; 3424 if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE], 3425 &cur->spilled_regs[i / BPF_REG_SIZE], 3426 idmap)) 3427 /* when explored and current stack slot are both storing 3428 * spilled registers, check that stored pointers types 3429 * are the same as well. 3430 * Ex: explored safe path could have stored 3431 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 3432 * but current path has stored: 3433 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 3434 * such verifier states are not equivalent. 3435 * return false to continue verification of this path 3436 */ 3437 goto out_free; 3438 else 3439 continue; 3440 } 3441 ret = true; 3442 out_free: 3443 kfree(idmap); 3444 return ret; 3445 } 3446 3447 /* A write screens off any subsequent reads; but write marks come from the 3448 * straight-line code between a state and its parent. When we arrive at a 3449 * jump target (in the first iteration of the propagate_liveness() loop), 3450 * we didn't arrive by the straight-line code, so read marks in state must 3451 * propagate to parent regardless of state's write marks. 3452 */ 3453 static bool do_propagate_liveness(const struct bpf_verifier_state *state, 3454 struct bpf_verifier_state *parent) 3455 { 3456 bool writes = parent == state->parent; /* Observe write marks */ 3457 bool touched = false; /* any changes made? */ 3458 int i; 3459 3460 if (!parent) 3461 return touched; 3462 /* Propagate read liveness of registers... */ 3463 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 3464 /* We don't need to worry about FP liveness because it's read-only */ 3465 for (i = 0; i < BPF_REG_FP; i++) { 3466 if (parent->regs[i].live & REG_LIVE_READ) 3467 continue; 3468 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN)) 3469 continue; 3470 if (state->regs[i].live & REG_LIVE_READ) { 3471 parent->regs[i].live |= REG_LIVE_READ; 3472 touched = true; 3473 } 3474 } 3475 /* ... and stack slots */ 3476 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) { 3477 if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL) 3478 continue; 3479 if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL) 3480 continue; 3481 if (parent->spilled_regs[i].live & REG_LIVE_READ) 3482 continue; 3483 if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN)) 3484 continue; 3485 if (state->spilled_regs[i].live & REG_LIVE_READ) { 3486 parent->spilled_regs[i].live |= REG_LIVE_READ; 3487 touched = true; 3488 } 3489 } 3490 return touched; 3491 } 3492 3493 /* "parent" is "a state from which we reach the current state", but initially 3494 * it is not the state->parent (i.e. "the state whose straight-line code leads 3495 * to the current state"), instead it is the state that happened to arrive at 3496 * a (prunable) equivalent of the current state. See comment above 3497 * do_propagate_liveness() for consequences of this. 3498 * This function is just a more efficient way of calling mark_reg_read() or 3499 * mark_stack_slot_read() on each reg in "parent" that is read in "state", 3500 * though it requires that parent != state->parent in the call arguments. 3501 */ 3502 static void propagate_liveness(const struct bpf_verifier_state *state, 3503 struct bpf_verifier_state *parent) 3504 { 3505 while (do_propagate_liveness(state, parent)) { 3506 /* Something changed, so we need to feed those changes onward */ 3507 state = parent; 3508 parent = state->parent; 3509 } 3510 } 3511 3512 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 3513 { 3514 struct bpf_verifier_state_list *new_sl; 3515 struct bpf_verifier_state_list *sl; 3516 int i; 3517 3518 sl = env->explored_states[insn_idx]; 3519 if (!sl) 3520 /* this 'insn_idx' instruction wasn't marked, so we will not 3521 * be doing state search here 3522 */ 3523 return 0; 3524 3525 while (sl != STATE_LIST_MARK) { 3526 if (states_equal(env, &sl->state, &env->cur_state)) { 3527 /* reached equivalent register/stack state, 3528 * prune the search. 3529 * Registers read by the continuation are read by us. 3530 * If we have any write marks in env->cur_state, they 3531 * will prevent corresponding reads in the continuation 3532 * from reaching our parent (an explored_state). Our 3533 * own state will get the read marks recorded, but 3534 * they'll be immediately forgotten as we're pruning 3535 * this state and will pop a new one. 3536 */ 3537 propagate_liveness(&sl->state, &env->cur_state); 3538 return 1; 3539 } 3540 sl = sl->next; 3541 } 3542 3543 /* there were no equivalent states, remember current one. 3544 * technically the current state is not proven to be safe yet, 3545 * but it will either reach bpf_exit (which means it's safe) or 3546 * it will be rejected. Since there are no loops, we won't be 3547 * seeing this 'insn_idx' instruction again on the way to bpf_exit 3548 */ 3549 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER); 3550 if (!new_sl) 3551 return -ENOMEM; 3552 3553 /* add new state to the head of linked list */ 3554 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state)); 3555 new_sl->next = env->explored_states[insn_idx]; 3556 env->explored_states[insn_idx] = new_sl; 3557 /* connect new state to parentage chain */ 3558 env->cur_state.parent = &new_sl->state; 3559 /* clear write marks in current state: the writes we did are not writes 3560 * our child did, so they don't screen off its reads from us. 3561 * (There are no read marks in current state, because reads always mark 3562 * their parent and current state never has children yet. Only 3563 * explored_states can get read marks.) 3564 */ 3565 for (i = 0; i < BPF_REG_FP; i++) 3566 env->cur_state.regs[i].live = REG_LIVE_NONE; 3567 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) 3568 if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL) 3569 env->cur_state.spilled_regs[i].live = REG_LIVE_NONE; 3570 return 0; 3571 } 3572 3573 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env, 3574 int insn_idx, int prev_insn_idx) 3575 { 3576 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook) 3577 return 0; 3578 3579 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx); 3580 } 3581 3582 static int do_check(struct bpf_verifier_env *env) 3583 { 3584 struct bpf_verifier_state *state = &env->cur_state; 3585 struct bpf_insn *insns = env->prog->insnsi; 3586 struct bpf_reg_state *regs = state->regs; 3587 int insn_cnt = env->prog->len; 3588 int insn_idx, prev_insn_idx = 0; 3589 int insn_processed = 0; 3590 bool do_print_state = false; 3591 3592 init_reg_state(env, regs); 3593 state->parent = NULL; 3594 insn_idx = 0; 3595 for (;;) { 3596 struct bpf_insn *insn; 3597 u8 class; 3598 int err; 3599 3600 if (insn_idx >= insn_cnt) { 3601 verbose(env, "invalid insn idx %d insn_cnt %d\n", 3602 insn_idx, insn_cnt); 3603 return -EFAULT; 3604 } 3605 3606 insn = &insns[insn_idx]; 3607 class = BPF_CLASS(insn->code); 3608 3609 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 3610 verbose(env, 3611 "BPF program is too large. Processed %d insn\n", 3612 insn_processed); 3613 return -E2BIG; 3614 } 3615 3616 err = is_state_visited(env, insn_idx); 3617 if (err < 0) 3618 return err; 3619 if (err == 1) { 3620 /* found equivalent state, can prune the search */ 3621 if (env->log.level) { 3622 if (do_print_state) 3623 verbose(env, "\nfrom %d to %d: safe\n", 3624 prev_insn_idx, insn_idx); 3625 else 3626 verbose(env, "%d: safe\n", insn_idx); 3627 } 3628 goto process_bpf_exit; 3629 } 3630 3631 if (need_resched()) 3632 cond_resched(); 3633 3634 if (env->log.level > 1 || (env->log.level && do_print_state)) { 3635 if (env->log.level > 1) 3636 verbose(env, "%d:", insn_idx); 3637 else 3638 verbose(env, "\nfrom %d to %d:", 3639 prev_insn_idx, insn_idx); 3640 print_verifier_state(env, &env->cur_state); 3641 do_print_state = false; 3642 } 3643 3644 if (env->log.level) { 3645 verbose(env, "%d: ", insn_idx); 3646 print_bpf_insn(verbose, env, insn, 3647 env->allow_ptr_leaks); 3648 } 3649 3650 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx); 3651 if (err) 3652 return err; 3653 3654 if (class == BPF_ALU || class == BPF_ALU64) { 3655 err = check_alu_op(env, insn); 3656 if (err) 3657 return err; 3658 3659 } else if (class == BPF_LDX) { 3660 enum bpf_reg_type *prev_src_type, src_reg_type; 3661 3662 /* check for reserved fields is already done */ 3663 3664 /* check src operand */ 3665 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3666 if (err) 3667 return err; 3668 3669 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3670 if (err) 3671 return err; 3672 3673 src_reg_type = regs[insn->src_reg].type; 3674 3675 /* check that memory (src_reg + off) is readable, 3676 * the state of dst_reg will be updated by this func 3677 */ 3678 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 3679 BPF_SIZE(insn->code), BPF_READ, 3680 insn->dst_reg); 3681 if (err) 3682 return err; 3683 3684 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 3685 3686 if (*prev_src_type == NOT_INIT) { 3687 /* saw a valid insn 3688 * dst_reg = *(u32 *)(src_reg + off) 3689 * save type to validate intersecting paths 3690 */ 3691 *prev_src_type = src_reg_type; 3692 3693 } else if (src_reg_type != *prev_src_type && 3694 (src_reg_type == PTR_TO_CTX || 3695 *prev_src_type == PTR_TO_CTX)) { 3696 /* ABuser program is trying to use the same insn 3697 * dst_reg = *(u32*) (src_reg + off) 3698 * with different pointer types: 3699 * src_reg == ctx in one branch and 3700 * src_reg == stack|map in some other branch. 3701 * Reject it. 3702 */ 3703 verbose(env, "same insn cannot be used with different pointers\n"); 3704 return -EINVAL; 3705 } 3706 3707 } else if (class == BPF_STX) { 3708 enum bpf_reg_type *prev_dst_type, dst_reg_type; 3709 3710 if (BPF_MODE(insn->code) == BPF_XADD) { 3711 err = check_xadd(env, insn_idx, insn); 3712 if (err) 3713 return err; 3714 insn_idx++; 3715 continue; 3716 } 3717 3718 /* check src1 operand */ 3719 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3720 if (err) 3721 return err; 3722 /* check src2 operand */ 3723 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3724 if (err) 3725 return err; 3726 3727 dst_reg_type = regs[insn->dst_reg].type; 3728 3729 /* check that memory (dst_reg + off) is writeable */ 3730 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3731 BPF_SIZE(insn->code), BPF_WRITE, 3732 insn->src_reg); 3733 if (err) 3734 return err; 3735 3736 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 3737 3738 if (*prev_dst_type == NOT_INIT) { 3739 *prev_dst_type = dst_reg_type; 3740 } else if (dst_reg_type != *prev_dst_type && 3741 (dst_reg_type == PTR_TO_CTX || 3742 *prev_dst_type == PTR_TO_CTX)) { 3743 verbose(env, "same insn cannot be used with different pointers\n"); 3744 return -EINVAL; 3745 } 3746 3747 } else if (class == BPF_ST) { 3748 if (BPF_MODE(insn->code) != BPF_MEM || 3749 insn->src_reg != BPF_REG_0) { 3750 verbose(env, "BPF_ST uses reserved fields\n"); 3751 return -EINVAL; 3752 } 3753 /* check src operand */ 3754 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3755 if (err) 3756 return err; 3757 3758 /* check that memory (dst_reg + off) is writeable */ 3759 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3760 BPF_SIZE(insn->code), BPF_WRITE, 3761 -1); 3762 if (err) 3763 return err; 3764 3765 } else if (class == BPF_JMP) { 3766 u8 opcode = BPF_OP(insn->code); 3767 3768 if (opcode == BPF_CALL) { 3769 if (BPF_SRC(insn->code) != BPF_K || 3770 insn->off != 0 || 3771 insn->src_reg != BPF_REG_0 || 3772 insn->dst_reg != BPF_REG_0) { 3773 verbose(env, "BPF_CALL uses reserved fields\n"); 3774 return -EINVAL; 3775 } 3776 3777 err = check_call(env, insn->imm, insn_idx); 3778 if (err) 3779 return err; 3780 3781 } else if (opcode == BPF_JA) { 3782 if (BPF_SRC(insn->code) != BPF_K || 3783 insn->imm != 0 || 3784 insn->src_reg != BPF_REG_0 || 3785 insn->dst_reg != BPF_REG_0) { 3786 verbose(env, "BPF_JA uses reserved fields\n"); 3787 return -EINVAL; 3788 } 3789 3790 insn_idx += insn->off + 1; 3791 continue; 3792 3793 } else if (opcode == BPF_EXIT) { 3794 if (BPF_SRC(insn->code) != BPF_K || 3795 insn->imm != 0 || 3796 insn->src_reg != BPF_REG_0 || 3797 insn->dst_reg != BPF_REG_0) { 3798 verbose(env, "BPF_EXIT uses reserved fields\n"); 3799 return -EINVAL; 3800 } 3801 3802 /* eBPF calling convetion is such that R0 is used 3803 * to return the value from eBPF program. 3804 * Make sure that it's readable at this time 3805 * of bpf_exit, which means that program wrote 3806 * something into it earlier 3807 */ 3808 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 3809 if (err) 3810 return err; 3811 3812 if (is_pointer_value(env, BPF_REG_0)) { 3813 verbose(env, "R0 leaks addr as return value\n"); 3814 return -EACCES; 3815 } 3816 3817 err = check_return_code(env); 3818 if (err) 3819 return err; 3820 process_bpf_exit: 3821 insn_idx = pop_stack(env, &prev_insn_idx); 3822 if (insn_idx < 0) { 3823 break; 3824 } else { 3825 do_print_state = true; 3826 continue; 3827 } 3828 } else { 3829 err = check_cond_jmp_op(env, insn, &insn_idx); 3830 if (err) 3831 return err; 3832 } 3833 } else if (class == BPF_LD) { 3834 u8 mode = BPF_MODE(insn->code); 3835 3836 if (mode == BPF_ABS || mode == BPF_IND) { 3837 err = check_ld_abs(env, insn); 3838 if (err) 3839 return err; 3840 3841 } else if (mode == BPF_IMM) { 3842 err = check_ld_imm(env, insn); 3843 if (err) 3844 return err; 3845 3846 insn_idx++; 3847 } else { 3848 verbose(env, "invalid BPF_LD mode\n"); 3849 return -EINVAL; 3850 } 3851 } else { 3852 verbose(env, "unknown insn class %d\n", class); 3853 return -EINVAL; 3854 } 3855 3856 insn_idx++; 3857 } 3858 3859 verbose(env, "processed %d insns, stack depth %d\n", insn_processed, 3860 env->prog->aux->stack_depth); 3861 return 0; 3862 } 3863 3864 static int check_map_prealloc(struct bpf_map *map) 3865 { 3866 return (map->map_type != BPF_MAP_TYPE_HASH && 3867 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 3868 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 3869 !(map->map_flags & BPF_F_NO_PREALLOC); 3870 } 3871 3872 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 3873 struct bpf_map *map, 3874 struct bpf_prog *prog) 3875 3876 { 3877 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 3878 * preallocated hash maps, since doing memory allocation 3879 * in overflow_handler can crash depending on where nmi got 3880 * triggered. 3881 */ 3882 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 3883 if (!check_map_prealloc(map)) { 3884 verbose(env, "perf_event programs can only use preallocated hash map\n"); 3885 return -EINVAL; 3886 } 3887 if (map->inner_map_meta && 3888 !check_map_prealloc(map->inner_map_meta)) { 3889 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 3890 return -EINVAL; 3891 } 3892 } 3893 return 0; 3894 } 3895 3896 /* look for pseudo eBPF instructions that access map FDs and 3897 * replace them with actual map pointers 3898 */ 3899 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 3900 { 3901 struct bpf_insn *insn = env->prog->insnsi; 3902 int insn_cnt = env->prog->len; 3903 int i, j, err; 3904 3905 err = bpf_prog_calc_tag(env->prog); 3906 if (err) 3907 return err; 3908 3909 for (i = 0; i < insn_cnt; i++, insn++) { 3910 if (BPF_CLASS(insn->code) == BPF_LDX && 3911 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 3912 verbose(env, "BPF_LDX uses reserved fields\n"); 3913 return -EINVAL; 3914 } 3915 3916 if (BPF_CLASS(insn->code) == BPF_STX && 3917 ((BPF_MODE(insn->code) != BPF_MEM && 3918 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 3919 verbose(env, "BPF_STX uses reserved fields\n"); 3920 return -EINVAL; 3921 } 3922 3923 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 3924 struct bpf_map *map; 3925 struct fd f; 3926 3927 if (i == insn_cnt - 1 || insn[1].code != 0 || 3928 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 3929 insn[1].off != 0) { 3930 verbose(env, "invalid bpf_ld_imm64 insn\n"); 3931 return -EINVAL; 3932 } 3933 3934 if (insn->src_reg == 0) 3935 /* valid generic load 64-bit imm */ 3936 goto next_insn; 3937 3938 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 3939 verbose(env, 3940 "unrecognized bpf_ld_imm64 insn\n"); 3941 return -EINVAL; 3942 } 3943 3944 f = fdget(insn->imm); 3945 map = __bpf_map_get(f); 3946 if (IS_ERR(map)) { 3947 verbose(env, "fd %d is not pointing to valid bpf_map\n", 3948 insn->imm); 3949 return PTR_ERR(map); 3950 } 3951 3952 err = check_map_prog_compatibility(env, map, env->prog); 3953 if (err) { 3954 fdput(f); 3955 return err; 3956 } 3957 3958 /* store map pointer inside BPF_LD_IMM64 instruction */ 3959 insn[0].imm = (u32) (unsigned long) map; 3960 insn[1].imm = ((u64) (unsigned long) map) >> 32; 3961 3962 /* check whether we recorded this map already */ 3963 for (j = 0; j < env->used_map_cnt; j++) 3964 if (env->used_maps[j] == map) { 3965 fdput(f); 3966 goto next_insn; 3967 } 3968 3969 if (env->used_map_cnt >= MAX_USED_MAPS) { 3970 fdput(f); 3971 return -E2BIG; 3972 } 3973 3974 /* hold the map. If the program is rejected by verifier, 3975 * the map will be released by release_maps() or it 3976 * will be used by the valid program until it's unloaded 3977 * and all maps are released in free_bpf_prog_info() 3978 */ 3979 map = bpf_map_inc(map, false); 3980 if (IS_ERR(map)) { 3981 fdput(f); 3982 return PTR_ERR(map); 3983 } 3984 env->used_maps[env->used_map_cnt++] = map; 3985 3986 fdput(f); 3987 next_insn: 3988 insn++; 3989 i++; 3990 } 3991 } 3992 3993 /* now all pseudo BPF_LD_IMM64 instructions load valid 3994 * 'struct bpf_map *' into a register instead of user map_fd. 3995 * These pointers will be used later by verifier to validate map access. 3996 */ 3997 return 0; 3998 } 3999 4000 /* drop refcnt of maps used by the rejected program */ 4001 static void release_maps(struct bpf_verifier_env *env) 4002 { 4003 int i; 4004 4005 for (i = 0; i < env->used_map_cnt; i++) 4006 bpf_map_put(env->used_maps[i]); 4007 } 4008 4009 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 4010 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 4011 { 4012 struct bpf_insn *insn = env->prog->insnsi; 4013 int insn_cnt = env->prog->len; 4014 int i; 4015 4016 for (i = 0; i < insn_cnt; i++, insn++) 4017 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 4018 insn->src_reg = 0; 4019 } 4020 4021 /* single env->prog->insni[off] instruction was replaced with the range 4022 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 4023 * [0, off) and [off, end) to new locations, so the patched range stays zero 4024 */ 4025 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 4026 u32 off, u32 cnt) 4027 { 4028 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 4029 4030 if (cnt == 1) 4031 return 0; 4032 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len); 4033 if (!new_data) 4034 return -ENOMEM; 4035 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 4036 memcpy(new_data + off + cnt - 1, old_data + off, 4037 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 4038 env->insn_aux_data = new_data; 4039 vfree(old_data); 4040 return 0; 4041 } 4042 4043 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 4044 const struct bpf_insn *patch, u32 len) 4045 { 4046 struct bpf_prog *new_prog; 4047 4048 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 4049 if (!new_prog) 4050 return NULL; 4051 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 4052 return NULL; 4053 return new_prog; 4054 } 4055 4056 /* convert load instructions that access fields of 'struct __sk_buff' 4057 * into sequence of instructions that access fields of 'struct sk_buff' 4058 */ 4059 static int convert_ctx_accesses(struct bpf_verifier_env *env) 4060 { 4061 const struct bpf_verifier_ops *ops = env->ops; 4062 int i, cnt, size, ctx_field_size, delta = 0; 4063 const int insn_cnt = env->prog->len; 4064 struct bpf_insn insn_buf[16], *insn; 4065 struct bpf_prog *new_prog; 4066 enum bpf_access_type type; 4067 bool is_narrower_load; 4068 u32 target_size; 4069 4070 if (ops->gen_prologue) { 4071 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 4072 env->prog); 4073 if (cnt >= ARRAY_SIZE(insn_buf)) { 4074 verbose(env, "bpf verifier is misconfigured\n"); 4075 return -EINVAL; 4076 } else if (cnt) { 4077 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 4078 if (!new_prog) 4079 return -ENOMEM; 4080 4081 env->prog = new_prog; 4082 delta += cnt - 1; 4083 } 4084 } 4085 4086 if (!ops->convert_ctx_access) 4087 return 0; 4088 4089 insn = env->prog->insnsi + delta; 4090 4091 for (i = 0; i < insn_cnt; i++, insn++) { 4092 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 4093 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 4094 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 4095 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 4096 type = BPF_READ; 4097 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 4098 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 4099 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 4100 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 4101 type = BPF_WRITE; 4102 else 4103 continue; 4104 4105 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 4106 continue; 4107 4108 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 4109 size = BPF_LDST_BYTES(insn); 4110 4111 /* If the read access is a narrower load of the field, 4112 * convert to a 4/8-byte load, to minimum program type specific 4113 * convert_ctx_access changes. If conversion is successful, 4114 * we will apply proper mask to the result. 4115 */ 4116 is_narrower_load = size < ctx_field_size; 4117 if (is_narrower_load) { 4118 u32 off = insn->off; 4119 u8 size_code; 4120 4121 if (type == BPF_WRITE) { 4122 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 4123 return -EINVAL; 4124 } 4125 4126 size_code = BPF_H; 4127 if (ctx_field_size == 4) 4128 size_code = BPF_W; 4129 else if (ctx_field_size == 8) 4130 size_code = BPF_DW; 4131 4132 insn->off = off & ~(ctx_field_size - 1); 4133 insn->code = BPF_LDX | BPF_MEM | size_code; 4134 } 4135 4136 target_size = 0; 4137 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 4138 &target_size); 4139 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 4140 (ctx_field_size && !target_size)) { 4141 verbose(env, "bpf verifier is misconfigured\n"); 4142 return -EINVAL; 4143 } 4144 4145 if (is_narrower_load && size < target_size) { 4146 if (ctx_field_size <= 4) 4147 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 4148 (1 << size * 8) - 1); 4149 else 4150 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 4151 (1 << size * 8) - 1); 4152 } 4153 4154 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 4155 if (!new_prog) 4156 return -ENOMEM; 4157 4158 delta += cnt - 1; 4159 4160 /* keep walking new program and skip insns we just inserted */ 4161 env->prog = new_prog; 4162 insn = new_prog->insnsi + i + delta; 4163 } 4164 4165 return 0; 4166 } 4167 4168 /* fixup insn->imm field of bpf_call instructions 4169 * and inline eligible helpers as explicit sequence of BPF instructions 4170 * 4171 * this function is called after eBPF program passed verification 4172 */ 4173 static int fixup_bpf_calls(struct bpf_verifier_env *env) 4174 { 4175 struct bpf_prog *prog = env->prog; 4176 struct bpf_insn *insn = prog->insnsi; 4177 const struct bpf_func_proto *fn; 4178 const int insn_cnt = prog->len; 4179 struct bpf_insn insn_buf[16]; 4180 struct bpf_prog *new_prog; 4181 struct bpf_map *map_ptr; 4182 int i, cnt, delta = 0; 4183 4184 for (i = 0; i < insn_cnt; i++, insn++) { 4185 if (insn->code != (BPF_JMP | BPF_CALL)) 4186 continue; 4187 4188 if (insn->imm == BPF_FUNC_get_route_realm) 4189 prog->dst_needed = 1; 4190 if (insn->imm == BPF_FUNC_get_prandom_u32) 4191 bpf_user_rnd_init_once(); 4192 if (insn->imm == BPF_FUNC_tail_call) { 4193 /* If we tail call into other programs, we 4194 * cannot make any assumptions since they can 4195 * be replaced dynamically during runtime in 4196 * the program array. 4197 */ 4198 prog->cb_access = 1; 4199 env->prog->aux->stack_depth = MAX_BPF_STACK; 4200 4201 /* mark bpf_tail_call as different opcode to avoid 4202 * conditional branch in the interpeter for every normal 4203 * call and to prevent accidental JITing by JIT compiler 4204 * that doesn't support bpf_tail_call yet 4205 */ 4206 insn->imm = 0; 4207 insn->code = BPF_JMP | BPF_TAIL_CALL; 4208 continue; 4209 } 4210 4211 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 4212 * handlers are currently limited to 64 bit only. 4213 */ 4214 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 && 4215 insn->imm == BPF_FUNC_map_lookup_elem) { 4216 map_ptr = env->insn_aux_data[i + delta].map_ptr; 4217 if (map_ptr == BPF_MAP_PTR_POISON || 4218 !map_ptr->ops->map_gen_lookup) 4219 goto patch_call_imm; 4220 4221 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf); 4222 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 4223 verbose(env, "bpf verifier is misconfigured\n"); 4224 return -EINVAL; 4225 } 4226 4227 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 4228 cnt); 4229 if (!new_prog) 4230 return -ENOMEM; 4231 4232 delta += cnt - 1; 4233 4234 /* keep walking new program and skip insns we just inserted */ 4235 env->prog = prog = new_prog; 4236 insn = new_prog->insnsi + i + delta; 4237 continue; 4238 } 4239 4240 if (insn->imm == BPF_FUNC_redirect_map) { 4241 /* Note, we cannot use prog directly as imm as subsequent 4242 * rewrites would still change the prog pointer. The only 4243 * stable address we can use is aux, which also works with 4244 * prog clones during blinding. 4245 */ 4246 u64 addr = (unsigned long)prog->aux; 4247 struct bpf_insn r4_ld[] = { 4248 BPF_LD_IMM64(BPF_REG_4, addr), 4249 *insn, 4250 }; 4251 cnt = ARRAY_SIZE(r4_ld); 4252 4253 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt); 4254 if (!new_prog) 4255 return -ENOMEM; 4256 4257 delta += cnt - 1; 4258 env->prog = prog = new_prog; 4259 insn = new_prog->insnsi + i + delta; 4260 } 4261 patch_call_imm: 4262 fn = env->ops->get_func_proto(insn->imm); 4263 /* all functions that have prototype and verifier allowed 4264 * programs to call them, must be real in-kernel functions 4265 */ 4266 if (!fn->func) { 4267 verbose(env, 4268 "kernel subsystem misconfigured func %s#%d\n", 4269 func_id_name(insn->imm), insn->imm); 4270 return -EFAULT; 4271 } 4272 insn->imm = fn->func - __bpf_call_base; 4273 } 4274 4275 return 0; 4276 } 4277 4278 static void free_states(struct bpf_verifier_env *env) 4279 { 4280 struct bpf_verifier_state_list *sl, *sln; 4281 int i; 4282 4283 if (!env->explored_states) 4284 return; 4285 4286 for (i = 0; i < env->prog->len; i++) { 4287 sl = env->explored_states[i]; 4288 4289 if (sl) 4290 while (sl != STATE_LIST_MARK) { 4291 sln = sl->next; 4292 kfree(sl); 4293 sl = sln; 4294 } 4295 } 4296 4297 kfree(env->explored_states); 4298 } 4299 4300 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 4301 { 4302 struct bpf_verifier_env *env; 4303 struct bpf_verifer_log *log; 4304 int ret = -EINVAL; 4305 4306 /* 'struct bpf_verifier_env' can be global, but since it's not small, 4307 * allocate/free it every time bpf_check() is called 4308 */ 4309 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 4310 if (!env) 4311 return -ENOMEM; 4312 log = &env->log; 4313 4314 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 4315 (*prog)->len); 4316 ret = -ENOMEM; 4317 if (!env->insn_aux_data) 4318 goto err_free_env; 4319 env->prog = *prog; 4320 env->ops = bpf_verifier_ops[env->prog->type]; 4321 4322 /* grab the mutex to protect few globals used by verifier */ 4323 mutex_lock(&bpf_verifier_lock); 4324 4325 if (attr->log_level || attr->log_buf || attr->log_size) { 4326 /* user requested verbose verifier output 4327 * and supplied buffer to store the verification trace 4328 */ 4329 log->level = attr->log_level; 4330 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 4331 log->len_total = attr->log_size; 4332 4333 ret = -EINVAL; 4334 /* log attributes have to be sane */ 4335 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 4336 !log->level || !log->ubuf) 4337 goto err_unlock; 4338 } 4339 4340 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 4341 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 4342 env->strict_alignment = true; 4343 4344 ret = replace_map_fd_with_map_ptr(env); 4345 if (ret < 0) 4346 goto skip_full_check; 4347 4348 env->explored_states = kcalloc(env->prog->len, 4349 sizeof(struct bpf_verifier_state_list *), 4350 GFP_USER); 4351 ret = -ENOMEM; 4352 if (!env->explored_states) 4353 goto skip_full_check; 4354 4355 ret = check_cfg(env); 4356 if (ret < 0) 4357 goto skip_full_check; 4358 4359 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 4360 4361 ret = do_check(env); 4362 4363 skip_full_check: 4364 while (pop_stack(env, NULL) >= 0); 4365 free_states(env); 4366 4367 if (ret == 0) 4368 /* program is valid, convert *(u32*)(ctx + off) accesses */ 4369 ret = convert_ctx_accesses(env); 4370 4371 if (ret == 0) 4372 ret = fixup_bpf_calls(env); 4373 4374 if (log->level && bpf_verifier_log_full(log)) 4375 ret = -ENOSPC; 4376 if (log->level && !log->ubuf) { 4377 ret = -EFAULT; 4378 goto err_release_maps; 4379 } 4380 4381 if (ret == 0 && env->used_map_cnt) { 4382 /* if program passed verifier, update used_maps in bpf_prog_info */ 4383 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 4384 sizeof(env->used_maps[0]), 4385 GFP_KERNEL); 4386 4387 if (!env->prog->aux->used_maps) { 4388 ret = -ENOMEM; 4389 goto err_release_maps; 4390 } 4391 4392 memcpy(env->prog->aux->used_maps, env->used_maps, 4393 sizeof(env->used_maps[0]) * env->used_map_cnt); 4394 env->prog->aux->used_map_cnt = env->used_map_cnt; 4395 4396 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 4397 * bpf_ld_imm64 instructions 4398 */ 4399 convert_pseudo_ld_imm64(env); 4400 } 4401 4402 err_release_maps: 4403 if (!env->prog->aux->used_maps) 4404 /* if we didn't copy map pointers into bpf_prog_info, release 4405 * them now. Otherwise free_bpf_prog_info() will release them. 4406 */ 4407 release_maps(env); 4408 *prog = env->prog; 4409 err_unlock: 4410 mutex_unlock(&bpf_verifier_lock); 4411 vfree(env->insn_aux_data); 4412 err_free_env: 4413 kfree(env); 4414 return ret; 4415 } 4416 4417 static const struct bpf_verifier_ops * const bpf_analyzer_ops[] = { 4418 [BPF_PROG_TYPE_XDP] = &xdp_analyzer_ops, 4419 [BPF_PROG_TYPE_SCHED_CLS] = &tc_cls_act_analyzer_ops, 4420 }; 4421 4422 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops, 4423 void *priv) 4424 { 4425 struct bpf_verifier_env *env; 4426 int ret; 4427 4428 if (prog->type >= ARRAY_SIZE(bpf_analyzer_ops) || 4429 !bpf_analyzer_ops[prog->type]) 4430 return -EOPNOTSUPP; 4431 4432 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 4433 if (!env) 4434 return -ENOMEM; 4435 4436 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 4437 prog->len); 4438 ret = -ENOMEM; 4439 if (!env->insn_aux_data) 4440 goto err_free_env; 4441 env->prog = prog; 4442 env->ops = bpf_analyzer_ops[env->prog->type]; 4443 env->analyzer_ops = ops; 4444 env->analyzer_priv = priv; 4445 4446 /* grab the mutex to protect few globals used by verifier */ 4447 mutex_lock(&bpf_verifier_lock); 4448 4449 env->strict_alignment = false; 4450 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 4451 env->strict_alignment = true; 4452 4453 env->explored_states = kcalloc(env->prog->len, 4454 sizeof(struct bpf_verifier_state_list *), 4455 GFP_KERNEL); 4456 ret = -ENOMEM; 4457 if (!env->explored_states) 4458 goto skip_full_check; 4459 4460 ret = check_cfg(env); 4461 if (ret < 0) 4462 goto skip_full_check; 4463 4464 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 4465 4466 ret = do_check(env); 4467 4468 skip_full_check: 4469 while (pop_stack(env, NULL) >= 0); 4470 free_states(env); 4471 4472 mutex_unlock(&bpf_verifier_lock); 4473 vfree(env->insn_aux_data); 4474 err_free_env: 4475 kfree(env); 4476 return ret; 4477 } 4478 EXPORT_SYMBOL_GPL(bpf_analyzer); 4479