1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 32 #include "disasm.h" 33 34 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 35 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 36 [_id] = & _name ## _verifier_ops, 37 #define BPF_MAP_TYPE(_id, _ops) 38 #define BPF_LINK_TYPE(_id, _name) 39 #include <linux/bpf_types.h> 40 #undef BPF_PROG_TYPE 41 #undef BPF_MAP_TYPE 42 #undef BPF_LINK_TYPE 43 }; 44 45 struct bpf_mem_alloc bpf_global_percpu_ma; 46 static bool bpf_global_percpu_ma_set; 47 48 /* bpf_check() is a static code analyzer that walks eBPF program 49 * instruction by instruction and updates register/stack state. 50 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 51 * 52 * The first pass is depth-first-search to check that the program is a DAG. 53 * It rejects the following programs: 54 * - larger than BPF_MAXINSNS insns 55 * - if loop is present (detected via back-edge) 56 * - unreachable insns exist (shouldn't be a forest. program = one function) 57 * - out of bounds or malformed jumps 58 * The second pass is all possible path descent from the 1st insn. 59 * Since it's analyzing all paths through the program, the length of the 60 * analysis is limited to 64k insn, which may be hit even if total number of 61 * insn is less then 4K, but there are too many branches that change stack/regs. 62 * Number of 'branches to be analyzed' is limited to 1k 63 * 64 * On entry to each instruction, each register has a type, and the instruction 65 * changes the types of the registers depending on instruction semantics. 66 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 67 * copied to R1. 68 * 69 * All registers are 64-bit. 70 * R0 - return register 71 * R1-R5 argument passing registers 72 * R6-R9 callee saved registers 73 * R10 - frame pointer read-only 74 * 75 * At the start of BPF program the register R1 contains a pointer to bpf_context 76 * and has type PTR_TO_CTX. 77 * 78 * Verifier tracks arithmetic operations on pointers in case: 79 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 80 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 81 * 1st insn copies R10 (which has FRAME_PTR) type into R1 82 * and 2nd arithmetic instruction is pattern matched to recognize 83 * that it wants to construct a pointer to some element within stack. 84 * So after 2nd insn, the register R1 has type PTR_TO_STACK 85 * (and -20 constant is saved for further stack bounds checking). 86 * Meaning that this reg is a pointer to stack plus known immediate constant. 87 * 88 * Most of the time the registers have SCALAR_VALUE type, which 89 * means the register has some value, but it's not a valid pointer. 90 * (like pointer plus pointer becomes SCALAR_VALUE type) 91 * 92 * When verifier sees load or store instructions the type of base register 93 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 94 * four pointer types recognized by check_mem_access() function. 95 * 96 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 97 * and the range of [ptr, ptr + map's value_size) is accessible. 98 * 99 * registers used to pass values to function calls are checked against 100 * function argument constraints. 101 * 102 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 103 * It means that the register type passed to this function must be 104 * PTR_TO_STACK and it will be used inside the function as 105 * 'pointer to map element key' 106 * 107 * For example the argument constraints for bpf_map_lookup_elem(): 108 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 109 * .arg1_type = ARG_CONST_MAP_PTR, 110 * .arg2_type = ARG_PTR_TO_MAP_KEY, 111 * 112 * ret_type says that this function returns 'pointer to map elem value or null' 113 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 114 * 2nd argument should be a pointer to stack, which will be used inside 115 * the helper function as a pointer to map element key. 116 * 117 * On the kernel side the helper function looks like: 118 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 119 * { 120 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 121 * void *key = (void *) (unsigned long) r2; 122 * void *value; 123 * 124 * here kernel can access 'key' and 'map' pointers safely, knowing that 125 * [key, key + map->key_size) bytes are valid and were initialized on 126 * the stack of eBPF program. 127 * } 128 * 129 * Corresponding eBPF program may look like: 130 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 131 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 132 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 133 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 134 * here verifier looks at prototype of map_lookup_elem() and sees: 135 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 136 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 137 * 138 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 139 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 140 * and were initialized prior to this call. 141 * If it's ok, then verifier allows this BPF_CALL insn and looks at 142 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 143 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 144 * returns either pointer to map value or NULL. 145 * 146 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 147 * insn, the register holding that pointer in the true branch changes state to 148 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 149 * branch. See check_cond_jmp_op(). 150 * 151 * After the call R0 is set to return type of the function and registers R1-R5 152 * are set to NOT_INIT to indicate that they are no longer readable. 153 * 154 * The following reference types represent a potential reference to a kernel 155 * resource which, after first being allocated, must be checked and freed by 156 * the BPF program: 157 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 158 * 159 * When the verifier sees a helper call return a reference type, it allocates a 160 * pointer id for the reference and stores it in the current function state. 161 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 162 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 163 * passes through a NULL-check conditional. For the branch wherein the state is 164 * changed to CONST_IMM, the verifier releases the reference. 165 * 166 * For each helper function that allocates a reference, such as 167 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 168 * bpf_sk_release(). When a reference type passes into the release function, 169 * the verifier also releases the reference. If any unchecked or unreleased 170 * reference remains at the end of the program, the verifier rejects it. 171 */ 172 173 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 174 struct bpf_verifier_stack_elem { 175 /* verifer state is 'st' 176 * before processing instruction 'insn_idx' 177 * and after processing instruction 'prev_insn_idx' 178 */ 179 struct bpf_verifier_state st; 180 int insn_idx; 181 int prev_insn_idx; 182 struct bpf_verifier_stack_elem *next; 183 /* length of verifier log at the time this state was pushed on stack */ 184 u32 log_pos; 185 }; 186 187 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 188 #define BPF_COMPLEXITY_LIMIT_STATES 64 189 190 #define BPF_MAP_KEY_POISON (1ULL << 63) 191 #define BPF_MAP_KEY_SEEN (1ULL << 62) 192 193 #define BPF_MAP_PTR_UNPRIV 1UL 194 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 195 POISON_POINTER_DELTA)) 196 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 197 198 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 199 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 200 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 201 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 202 static int ref_set_non_owning(struct bpf_verifier_env *env, 203 struct bpf_reg_state *reg); 204 static void specialize_kfunc(struct bpf_verifier_env *env, 205 u32 func_id, u16 offset, unsigned long *addr); 206 static bool is_trusted_reg(const struct bpf_reg_state *reg); 207 208 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 211 } 212 213 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 214 { 215 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 216 } 217 218 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 219 const struct bpf_map *map, bool unpriv) 220 { 221 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 222 unpriv |= bpf_map_ptr_unpriv(aux); 223 aux->map_ptr_state = (unsigned long)map | 224 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 225 } 226 227 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 228 { 229 return aux->map_key_state & BPF_MAP_KEY_POISON; 230 } 231 232 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 233 { 234 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 235 } 236 237 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 238 { 239 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 240 } 241 242 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 243 { 244 bool poisoned = bpf_map_key_poisoned(aux); 245 246 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 247 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 248 } 249 250 static bool bpf_helper_call(const struct bpf_insn *insn) 251 { 252 return insn->code == (BPF_JMP | BPF_CALL) && 253 insn->src_reg == 0; 254 } 255 256 static bool bpf_pseudo_call(const struct bpf_insn *insn) 257 { 258 return insn->code == (BPF_JMP | BPF_CALL) && 259 insn->src_reg == BPF_PSEUDO_CALL; 260 } 261 262 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 263 { 264 return insn->code == (BPF_JMP | BPF_CALL) && 265 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 266 } 267 268 struct bpf_call_arg_meta { 269 struct bpf_map *map_ptr; 270 bool raw_mode; 271 bool pkt_access; 272 u8 release_regno; 273 int regno; 274 int access_size; 275 int mem_size; 276 u64 msize_max_value; 277 int ref_obj_id; 278 int dynptr_id; 279 int map_uid; 280 int func_id; 281 struct btf *btf; 282 u32 btf_id; 283 struct btf *ret_btf; 284 u32 ret_btf_id; 285 u32 subprogno; 286 struct btf_field *kptr_field; 287 }; 288 289 struct bpf_kfunc_call_arg_meta { 290 /* In parameters */ 291 struct btf *btf; 292 u32 func_id; 293 u32 kfunc_flags; 294 const struct btf_type *func_proto; 295 const char *func_name; 296 /* Out parameters */ 297 u32 ref_obj_id; 298 u8 release_regno; 299 bool r0_rdonly; 300 u32 ret_btf_id; 301 u64 r0_size; 302 u32 subprogno; 303 struct { 304 u64 value; 305 bool found; 306 } arg_constant; 307 308 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 309 * generally to pass info about user-defined local kptr types to later 310 * verification logic 311 * bpf_obj_drop/bpf_percpu_obj_drop 312 * Record the local kptr type to be drop'd 313 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 314 * Record the local kptr type to be refcount_incr'd and use 315 * arg_owning_ref to determine whether refcount_acquire should be 316 * fallible 317 */ 318 struct btf *arg_btf; 319 u32 arg_btf_id; 320 bool arg_owning_ref; 321 322 struct { 323 struct btf_field *field; 324 } arg_list_head; 325 struct { 326 struct btf_field *field; 327 } arg_rbtree_root; 328 struct { 329 enum bpf_dynptr_type type; 330 u32 id; 331 u32 ref_obj_id; 332 } initialized_dynptr; 333 struct { 334 u8 spi; 335 u8 frameno; 336 } iter; 337 u64 mem_size; 338 }; 339 340 struct btf *btf_vmlinux; 341 342 static const char *btf_type_name(const struct btf *btf, u32 id) 343 { 344 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 345 } 346 347 static DEFINE_MUTEX(bpf_verifier_lock); 348 static DEFINE_MUTEX(bpf_percpu_ma_lock); 349 350 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 351 { 352 struct bpf_verifier_env *env = private_data; 353 va_list args; 354 355 if (!bpf_verifier_log_needed(&env->log)) 356 return; 357 358 va_start(args, fmt); 359 bpf_verifier_vlog(&env->log, fmt, args); 360 va_end(args); 361 } 362 363 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 364 struct bpf_reg_state *reg, 365 struct bpf_retval_range range, const char *ctx, 366 const char *reg_name) 367 { 368 bool unknown = true; 369 370 verbose(env, "%s the register %s has", ctx, reg_name); 371 if (reg->smin_value > S64_MIN) { 372 verbose(env, " smin=%lld", reg->smin_value); 373 unknown = false; 374 } 375 if (reg->smax_value < S64_MAX) { 376 verbose(env, " smax=%lld", reg->smax_value); 377 unknown = false; 378 } 379 if (unknown) 380 verbose(env, " unknown scalar value"); 381 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 382 } 383 384 static bool type_may_be_null(u32 type) 385 { 386 return type & PTR_MAYBE_NULL; 387 } 388 389 static bool reg_not_null(const struct bpf_reg_state *reg) 390 { 391 enum bpf_reg_type type; 392 393 type = reg->type; 394 if (type_may_be_null(type)) 395 return false; 396 397 type = base_type(type); 398 return type == PTR_TO_SOCKET || 399 type == PTR_TO_TCP_SOCK || 400 type == PTR_TO_MAP_VALUE || 401 type == PTR_TO_MAP_KEY || 402 type == PTR_TO_SOCK_COMMON || 403 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 404 type == PTR_TO_MEM; 405 } 406 407 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 408 { 409 struct btf_record *rec = NULL; 410 struct btf_struct_meta *meta; 411 412 if (reg->type == PTR_TO_MAP_VALUE) { 413 rec = reg->map_ptr->record; 414 } else if (type_is_ptr_alloc_obj(reg->type)) { 415 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 416 if (meta) 417 rec = meta->record; 418 } 419 return rec; 420 } 421 422 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 423 { 424 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 425 426 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 427 } 428 429 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 430 { 431 struct bpf_func_info *info; 432 433 if (!env->prog->aux->func_info) 434 return ""; 435 436 info = &env->prog->aux->func_info[subprog]; 437 return btf_type_name(env->prog->aux->btf, info->type_id); 438 } 439 440 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 441 { 442 struct bpf_subprog_info *info = subprog_info(env, subprog); 443 444 info->is_cb = true; 445 info->is_async_cb = true; 446 info->is_exception_cb = true; 447 } 448 449 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 450 { 451 return subprog_info(env, subprog)->is_exception_cb; 452 } 453 454 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 455 { 456 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 457 } 458 459 static bool type_is_rdonly_mem(u32 type) 460 { 461 return type & MEM_RDONLY; 462 } 463 464 static bool is_acquire_function(enum bpf_func_id func_id, 465 const struct bpf_map *map) 466 { 467 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 468 469 if (func_id == BPF_FUNC_sk_lookup_tcp || 470 func_id == BPF_FUNC_sk_lookup_udp || 471 func_id == BPF_FUNC_skc_lookup_tcp || 472 func_id == BPF_FUNC_ringbuf_reserve || 473 func_id == BPF_FUNC_kptr_xchg) 474 return true; 475 476 if (func_id == BPF_FUNC_map_lookup_elem && 477 (map_type == BPF_MAP_TYPE_SOCKMAP || 478 map_type == BPF_MAP_TYPE_SOCKHASH)) 479 return true; 480 481 return false; 482 } 483 484 static bool is_ptr_cast_function(enum bpf_func_id func_id) 485 { 486 return func_id == BPF_FUNC_tcp_sock || 487 func_id == BPF_FUNC_sk_fullsock || 488 func_id == BPF_FUNC_skc_to_tcp_sock || 489 func_id == BPF_FUNC_skc_to_tcp6_sock || 490 func_id == BPF_FUNC_skc_to_udp6_sock || 491 func_id == BPF_FUNC_skc_to_mptcp_sock || 492 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 493 func_id == BPF_FUNC_skc_to_tcp_request_sock; 494 } 495 496 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 497 { 498 return func_id == BPF_FUNC_dynptr_data; 499 } 500 501 static bool is_sync_callback_calling_kfunc(u32 btf_id); 502 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 503 504 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 505 { 506 return func_id == BPF_FUNC_for_each_map_elem || 507 func_id == BPF_FUNC_find_vma || 508 func_id == BPF_FUNC_loop || 509 func_id == BPF_FUNC_user_ringbuf_drain; 510 } 511 512 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 513 { 514 return func_id == BPF_FUNC_timer_set_callback; 515 } 516 517 static bool is_callback_calling_function(enum bpf_func_id func_id) 518 { 519 return is_sync_callback_calling_function(func_id) || 520 is_async_callback_calling_function(func_id); 521 } 522 523 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 524 { 525 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 526 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 527 } 528 529 static bool is_storage_get_function(enum bpf_func_id func_id) 530 { 531 return func_id == BPF_FUNC_sk_storage_get || 532 func_id == BPF_FUNC_inode_storage_get || 533 func_id == BPF_FUNC_task_storage_get || 534 func_id == BPF_FUNC_cgrp_storage_get; 535 } 536 537 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 538 const struct bpf_map *map) 539 { 540 int ref_obj_uses = 0; 541 542 if (is_ptr_cast_function(func_id)) 543 ref_obj_uses++; 544 if (is_acquire_function(func_id, map)) 545 ref_obj_uses++; 546 if (is_dynptr_ref_function(func_id)) 547 ref_obj_uses++; 548 549 return ref_obj_uses > 1; 550 } 551 552 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 553 { 554 return BPF_CLASS(insn->code) == BPF_STX && 555 BPF_MODE(insn->code) == BPF_ATOMIC && 556 insn->imm == BPF_CMPXCHG; 557 } 558 559 static int __get_spi(s32 off) 560 { 561 return (-off - 1) / BPF_REG_SIZE; 562 } 563 564 static struct bpf_func_state *func(struct bpf_verifier_env *env, 565 const struct bpf_reg_state *reg) 566 { 567 struct bpf_verifier_state *cur = env->cur_state; 568 569 return cur->frame[reg->frameno]; 570 } 571 572 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 573 { 574 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 575 576 /* We need to check that slots between [spi - nr_slots + 1, spi] are 577 * within [0, allocated_stack). 578 * 579 * Please note that the spi grows downwards. For example, a dynptr 580 * takes the size of two stack slots; the first slot will be at 581 * spi and the second slot will be at spi - 1. 582 */ 583 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 584 } 585 586 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 587 const char *obj_kind, int nr_slots) 588 { 589 int off, spi; 590 591 if (!tnum_is_const(reg->var_off)) { 592 verbose(env, "%s has to be at a constant offset\n", obj_kind); 593 return -EINVAL; 594 } 595 596 off = reg->off + reg->var_off.value; 597 if (off % BPF_REG_SIZE) { 598 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 599 return -EINVAL; 600 } 601 602 spi = __get_spi(off); 603 if (spi + 1 < nr_slots) { 604 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 605 return -EINVAL; 606 } 607 608 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 609 return -ERANGE; 610 return spi; 611 } 612 613 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 614 { 615 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 616 } 617 618 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 619 { 620 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 621 } 622 623 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 624 { 625 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 626 case DYNPTR_TYPE_LOCAL: 627 return BPF_DYNPTR_TYPE_LOCAL; 628 case DYNPTR_TYPE_RINGBUF: 629 return BPF_DYNPTR_TYPE_RINGBUF; 630 case DYNPTR_TYPE_SKB: 631 return BPF_DYNPTR_TYPE_SKB; 632 case DYNPTR_TYPE_XDP: 633 return BPF_DYNPTR_TYPE_XDP; 634 default: 635 return BPF_DYNPTR_TYPE_INVALID; 636 } 637 } 638 639 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 640 { 641 switch (type) { 642 case BPF_DYNPTR_TYPE_LOCAL: 643 return DYNPTR_TYPE_LOCAL; 644 case BPF_DYNPTR_TYPE_RINGBUF: 645 return DYNPTR_TYPE_RINGBUF; 646 case BPF_DYNPTR_TYPE_SKB: 647 return DYNPTR_TYPE_SKB; 648 case BPF_DYNPTR_TYPE_XDP: 649 return DYNPTR_TYPE_XDP; 650 default: 651 return 0; 652 } 653 } 654 655 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 656 { 657 return type == BPF_DYNPTR_TYPE_RINGBUF; 658 } 659 660 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 661 enum bpf_dynptr_type type, 662 bool first_slot, int dynptr_id); 663 664 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 665 struct bpf_reg_state *reg); 666 667 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 668 struct bpf_reg_state *sreg1, 669 struct bpf_reg_state *sreg2, 670 enum bpf_dynptr_type type) 671 { 672 int id = ++env->id_gen; 673 674 __mark_dynptr_reg(sreg1, type, true, id); 675 __mark_dynptr_reg(sreg2, type, false, id); 676 } 677 678 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 679 struct bpf_reg_state *reg, 680 enum bpf_dynptr_type type) 681 { 682 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 683 } 684 685 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 686 struct bpf_func_state *state, int spi); 687 688 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 689 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 690 { 691 struct bpf_func_state *state = func(env, reg); 692 enum bpf_dynptr_type type; 693 int spi, i, err; 694 695 spi = dynptr_get_spi(env, reg); 696 if (spi < 0) 697 return spi; 698 699 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 700 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 701 * to ensure that for the following example: 702 * [d1][d1][d2][d2] 703 * spi 3 2 1 0 704 * So marking spi = 2 should lead to destruction of both d1 and d2. In 705 * case they do belong to same dynptr, second call won't see slot_type 706 * as STACK_DYNPTR and will simply skip destruction. 707 */ 708 err = destroy_if_dynptr_stack_slot(env, state, spi); 709 if (err) 710 return err; 711 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 712 if (err) 713 return err; 714 715 for (i = 0; i < BPF_REG_SIZE; i++) { 716 state->stack[spi].slot_type[i] = STACK_DYNPTR; 717 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 718 } 719 720 type = arg_to_dynptr_type(arg_type); 721 if (type == BPF_DYNPTR_TYPE_INVALID) 722 return -EINVAL; 723 724 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 725 &state->stack[spi - 1].spilled_ptr, type); 726 727 if (dynptr_type_refcounted(type)) { 728 /* The id is used to track proper releasing */ 729 int id; 730 731 if (clone_ref_obj_id) 732 id = clone_ref_obj_id; 733 else 734 id = acquire_reference_state(env, insn_idx); 735 736 if (id < 0) 737 return id; 738 739 state->stack[spi].spilled_ptr.ref_obj_id = id; 740 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 741 } 742 743 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 744 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 745 746 return 0; 747 } 748 749 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 750 { 751 int i; 752 753 for (i = 0; i < BPF_REG_SIZE; i++) { 754 state->stack[spi].slot_type[i] = STACK_INVALID; 755 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 756 } 757 758 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 759 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 760 761 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 762 * 763 * While we don't allow reading STACK_INVALID, it is still possible to 764 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 765 * helpers or insns can do partial read of that part without failing, 766 * but check_stack_range_initialized, check_stack_read_var_off, and 767 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 768 * the slot conservatively. Hence we need to prevent those liveness 769 * marking walks. 770 * 771 * This was not a problem before because STACK_INVALID is only set by 772 * default (where the default reg state has its reg->parent as NULL), or 773 * in clean_live_states after REG_LIVE_DONE (at which point 774 * mark_reg_read won't walk reg->parent chain), but not randomly during 775 * verifier state exploration (like we did above). Hence, for our case 776 * parentage chain will still be live (i.e. reg->parent may be 777 * non-NULL), while earlier reg->parent was NULL, so we need 778 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 779 * done later on reads or by mark_dynptr_read as well to unnecessary 780 * mark registers in verifier state. 781 */ 782 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 783 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 784 } 785 786 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 787 { 788 struct bpf_func_state *state = func(env, reg); 789 int spi, ref_obj_id, i; 790 791 spi = dynptr_get_spi(env, reg); 792 if (spi < 0) 793 return spi; 794 795 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 796 invalidate_dynptr(env, state, spi); 797 return 0; 798 } 799 800 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 801 802 /* If the dynptr has a ref_obj_id, then we need to invalidate 803 * two things: 804 * 805 * 1) Any dynptrs with a matching ref_obj_id (clones) 806 * 2) Any slices derived from this dynptr. 807 */ 808 809 /* Invalidate any slices associated with this dynptr */ 810 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 811 812 /* Invalidate any dynptr clones */ 813 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 814 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 815 continue; 816 817 /* it should always be the case that if the ref obj id 818 * matches then the stack slot also belongs to a 819 * dynptr 820 */ 821 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 822 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 823 return -EFAULT; 824 } 825 if (state->stack[i].spilled_ptr.dynptr.first_slot) 826 invalidate_dynptr(env, state, i); 827 } 828 829 return 0; 830 } 831 832 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 833 struct bpf_reg_state *reg); 834 835 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 836 { 837 if (!env->allow_ptr_leaks) 838 __mark_reg_not_init(env, reg); 839 else 840 __mark_reg_unknown(env, reg); 841 } 842 843 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 844 struct bpf_func_state *state, int spi) 845 { 846 struct bpf_func_state *fstate; 847 struct bpf_reg_state *dreg; 848 int i, dynptr_id; 849 850 /* We always ensure that STACK_DYNPTR is never set partially, 851 * hence just checking for slot_type[0] is enough. This is 852 * different for STACK_SPILL, where it may be only set for 853 * 1 byte, so code has to use is_spilled_reg. 854 */ 855 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 856 return 0; 857 858 /* Reposition spi to first slot */ 859 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 860 spi = spi + 1; 861 862 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 863 verbose(env, "cannot overwrite referenced dynptr\n"); 864 return -EINVAL; 865 } 866 867 mark_stack_slot_scratched(env, spi); 868 mark_stack_slot_scratched(env, spi - 1); 869 870 /* Writing partially to one dynptr stack slot destroys both. */ 871 for (i = 0; i < BPF_REG_SIZE; i++) { 872 state->stack[spi].slot_type[i] = STACK_INVALID; 873 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 874 } 875 876 dynptr_id = state->stack[spi].spilled_ptr.id; 877 /* Invalidate any slices associated with this dynptr */ 878 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 879 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 880 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 881 continue; 882 if (dreg->dynptr_id == dynptr_id) 883 mark_reg_invalid(env, dreg); 884 })); 885 886 /* Do not release reference state, we are destroying dynptr on stack, 887 * not using some helper to release it. Just reset register. 888 */ 889 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 890 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 891 892 /* Same reason as unmark_stack_slots_dynptr above */ 893 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 894 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 895 896 return 0; 897 } 898 899 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 900 { 901 int spi; 902 903 if (reg->type == CONST_PTR_TO_DYNPTR) 904 return false; 905 906 spi = dynptr_get_spi(env, reg); 907 908 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 909 * error because this just means the stack state hasn't been updated yet. 910 * We will do check_mem_access to check and update stack bounds later. 911 */ 912 if (spi < 0 && spi != -ERANGE) 913 return false; 914 915 /* We don't need to check if the stack slots are marked by previous 916 * dynptr initializations because we allow overwriting existing unreferenced 917 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 918 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 919 * touching are completely destructed before we reinitialize them for a new 920 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 921 * instead of delaying it until the end where the user will get "Unreleased 922 * reference" error. 923 */ 924 return true; 925 } 926 927 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 928 { 929 struct bpf_func_state *state = func(env, reg); 930 int i, spi; 931 932 /* This already represents first slot of initialized bpf_dynptr. 933 * 934 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 935 * check_func_arg_reg_off's logic, so we don't need to check its 936 * offset and alignment. 937 */ 938 if (reg->type == CONST_PTR_TO_DYNPTR) 939 return true; 940 941 spi = dynptr_get_spi(env, reg); 942 if (spi < 0) 943 return false; 944 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 945 return false; 946 947 for (i = 0; i < BPF_REG_SIZE; i++) { 948 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 949 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 950 return false; 951 } 952 953 return true; 954 } 955 956 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 957 enum bpf_arg_type arg_type) 958 { 959 struct bpf_func_state *state = func(env, reg); 960 enum bpf_dynptr_type dynptr_type; 961 int spi; 962 963 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 964 if (arg_type == ARG_PTR_TO_DYNPTR) 965 return true; 966 967 dynptr_type = arg_to_dynptr_type(arg_type); 968 if (reg->type == CONST_PTR_TO_DYNPTR) { 969 return reg->dynptr.type == dynptr_type; 970 } else { 971 spi = dynptr_get_spi(env, reg); 972 if (spi < 0) 973 return false; 974 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 975 } 976 } 977 978 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 979 980 static bool in_rcu_cs(struct bpf_verifier_env *env); 981 982 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 983 984 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 985 struct bpf_kfunc_call_arg_meta *meta, 986 struct bpf_reg_state *reg, int insn_idx, 987 struct btf *btf, u32 btf_id, int nr_slots) 988 { 989 struct bpf_func_state *state = func(env, reg); 990 int spi, i, j, id; 991 992 spi = iter_get_spi(env, reg, nr_slots); 993 if (spi < 0) 994 return spi; 995 996 id = acquire_reference_state(env, insn_idx); 997 if (id < 0) 998 return id; 999 1000 for (i = 0; i < nr_slots; i++) { 1001 struct bpf_stack_state *slot = &state->stack[spi - i]; 1002 struct bpf_reg_state *st = &slot->spilled_ptr; 1003 1004 __mark_reg_known_zero(st); 1005 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1006 if (is_kfunc_rcu_protected(meta)) { 1007 if (in_rcu_cs(env)) 1008 st->type |= MEM_RCU; 1009 else 1010 st->type |= PTR_UNTRUSTED; 1011 } 1012 st->live |= REG_LIVE_WRITTEN; 1013 st->ref_obj_id = i == 0 ? id : 0; 1014 st->iter.btf = btf; 1015 st->iter.btf_id = btf_id; 1016 st->iter.state = BPF_ITER_STATE_ACTIVE; 1017 st->iter.depth = 0; 1018 1019 for (j = 0; j < BPF_REG_SIZE; j++) 1020 slot->slot_type[j] = STACK_ITER; 1021 1022 mark_stack_slot_scratched(env, spi - i); 1023 } 1024 1025 return 0; 1026 } 1027 1028 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1029 struct bpf_reg_state *reg, int nr_slots) 1030 { 1031 struct bpf_func_state *state = func(env, reg); 1032 int spi, i, j; 1033 1034 spi = iter_get_spi(env, reg, nr_slots); 1035 if (spi < 0) 1036 return spi; 1037 1038 for (i = 0; i < nr_slots; i++) { 1039 struct bpf_stack_state *slot = &state->stack[spi - i]; 1040 struct bpf_reg_state *st = &slot->spilled_ptr; 1041 1042 if (i == 0) 1043 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1044 1045 __mark_reg_not_init(env, st); 1046 1047 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1048 st->live |= REG_LIVE_WRITTEN; 1049 1050 for (j = 0; j < BPF_REG_SIZE; j++) 1051 slot->slot_type[j] = STACK_INVALID; 1052 1053 mark_stack_slot_scratched(env, spi - i); 1054 } 1055 1056 return 0; 1057 } 1058 1059 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1060 struct bpf_reg_state *reg, int nr_slots) 1061 { 1062 struct bpf_func_state *state = func(env, reg); 1063 int spi, i, j; 1064 1065 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1066 * will do check_mem_access to check and update stack bounds later, so 1067 * return true for that case. 1068 */ 1069 spi = iter_get_spi(env, reg, nr_slots); 1070 if (spi == -ERANGE) 1071 return true; 1072 if (spi < 0) 1073 return false; 1074 1075 for (i = 0; i < nr_slots; i++) { 1076 struct bpf_stack_state *slot = &state->stack[spi - i]; 1077 1078 for (j = 0; j < BPF_REG_SIZE; j++) 1079 if (slot->slot_type[j] == STACK_ITER) 1080 return false; 1081 } 1082 1083 return true; 1084 } 1085 1086 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1087 struct btf *btf, u32 btf_id, int nr_slots) 1088 { 1089 struct bpf_func_state *state = func(env, reg); 1090 int spi, i, j; 1091 1092 spi = iter_get_spi(env, reg, nr_slots); 1093 if (spi < 0) 1094 return -EINVAL; 1095 1096 for (i = 0; i < nr_slots; i++) { 1097 struct bpf_stack_state *slot = &state->stack[spi - i]; 1098 struct bpf_reg_state *st = &slot->spilled_ptr; 1099 1100 if (st->type & PTR_UNTRUSTED) 1101 return -EPROTO; 1102 /* only main (first) slot has ref_obj_id set */ 1103 if (i == 0 && !st->ref_obj_id) 1104 return -EINVAL; 1105 if (i != 0 && st->ref_obj_id) 1106 return -EINVAL; 1107 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1108 return -EINVAL; 1109 1110 for (j = 0; j < BPF_REG_SIZE; j++) 1111 if (slot->slot_type[j] != STACK_ITER) 1112 return -EINVAL; 1113 } 1114 1115 return 0; 1116 } 1117 1118 /* Check if given stack slot is "special": 1119 * - spilled register state (STACK_SPILL); 1120 * - dynptr state (STACK_DYNPTR); 1121 * - iter state (STACK_ITER). 1122 */ 1123 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1124 { 1125 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1126 1127 switch (type) { 1128 case STACK_SPILL: 1129 case STACK_DYNPTR: 1130 case STACK_ITER: 1131 return true; 1132 case STACK_INVALID: 1133 case STACK_MISC: 1134 case STACK_ZERO: 1135 return false; 1136 default: 1137 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1138 return true; 1139 } 1140 } 1141 1142 /* The reg state of a pointer or a bounded scalar was saved when 1143 * it was spilled to the stack. 1144 */ 1145 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1146 { 1147 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1148 } 1149 1150 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1151 { 1152 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1153 stack->spilled_ptr.type == SCALAR_VALUE; 1154 } 1155 1156 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1157 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1158 * more precise STACK_ZERO. 1159 * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take 1160 * env->allow_ptr_leaks into account and force STACK_MISC, if necessary. 1161 */ 1162 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1163 { 1164 if (*stype == STACK_ZERO) 1165 return; 1166 if (env->allow_ptr_leaks && *stype == STACK_INVALID) 1167 return; 1168 *stype = STACK_MISC; 1169 } 1170 1171 static void scrub_spilled_slot(u8 *stype) 1172 { 1173 if (*stype != STACK_INVALID) 1174 *stype = STACK_MISC; 1175 } 1176 1177 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1178 * small to hold src. This is different from krealloc since we don't want to preserve 1179 * the contents of dst. 1180 * 1181 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1182 * not be allocated. 1183 */ 1184 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1185 { 1186 size_t alloc_bytes; 1187 void *orig = dst; 1188 size_t bytes; 1189 1190 if (ZERO_OR_NULL_PTR(src)) 1191 goto out; 1192 1193 if (unlikely(check_mul_overflow(n, size, &bytes))) 1194 return NULL; 1195 1196 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1197 dst = krealloc(orig, alloc_bytes, flags); 1198 if (!dst) { 1199 kfree(orig); 1200 return NULL; 1201 } 1202 1203 memcpy(dst, src, bytes); 1204 out: 1205 return dst ? dst : ZERO_SIZE_PTR; 1206 } 1207 1208 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1209 * small to hold new_n items. new items are zeroed out if the array grows. 1210 * 1211 * Contrary to krealloc_array, does not free arr if new_n is zero. 1212 */ 1213 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1214 { 1215 size_t alloc_size; 1216 void *new_arr; 1217 1218 if (!new_n || old_n == new_n) 1219 goto out; 1220 1221 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1222 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1223 if (!new_arr) { 1224 kfree(arr); 1225 return NULL; 1226 } 1227 arr = new_arr; 1228 1229 if (new_n > old_n) 1230 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1231 1232 out: 1233 return arr ? arr : ZERO_SIZE_PTR; 1234 } 1235 1236 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1237 { 1238 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1239 sizeof(struct bpf_reference_state), GFP_KERNEL); 1240 if (!dst->refs) 1241 return -ENOMEM; 1242 1243 dst->acquired_refs = src->acquired_refs; 1244 return 0; 1245 } 1246 1247 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1248 { 1249 size_t n = src->allocated_stack / BPF_REG_SIZE; 1250 1251 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1252 GFP_KERNEL); 1253 if (!dst->stack) 1254 return -ENOMEM; 1255 1256 dst->allocated_stack = src->allocated_stack; 1257 return 0; 1258 } 1259 1260 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1261 { 1262 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1263 sizeof(struct bpf_reference_state)); 1264 if (!state->refs) 1265 return -ENOMEM; 1266 1267 state->acquired_refs = n; 1268 return 0; 1269 } 1270 1271 /* Possibly update state->allocated_stack to be at least size bytes. Also 1272 * possibly update the function's high-water mark in its bpf_subprog_info. 1273 */ 1274 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1275 { 1276 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1277 1278 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1279 size = round_up(size, BPF_REG_SIZE); 1280 n = size / BPF_REG_SIZE; 1281 1282 if (old_n >= n) 1283 return 0; 1284 1285 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1286 if (!state->stack) 1287 return -ENOMEM; 1288 1289 state->allocated_stack = size; 1290 1291 /* update known max for given subprogram */ 1292 if (env->subprog_info[state->subprogno].stack_depth < size) 1293 env->subprog_info[state->subprogno].stack_depth = size; 1294 1295 return 0; 1296 } 1297 1298 /* Acquire a pointer id from the env and update the state->refs to include 1299 * this new pointer reference. 1300 * On success, returns a valid pointer id to associate with the register 1301 * On failure, returns a negative errno. 1302 */ 1303 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1304 { 1305 struct bpf_func_state *state = cur_func(env); 1306 int new_ofs = state->acquired_refs; 1307 int id, err; 1308 1309 err = resize_reference_state(state, state->acquired_refs + 1); 1310 if (err) 1311 return err; 1312 id = ++env->id_gen; 1313 state->refs[new_ofs].id = id; 1314 state->refs[new_ofs].insn_idx = insn_idx; 1315 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1316 1317 return id; 1318 } 1319 1320 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1321 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1322 { 1323 int i, last_idx; 1324 1325 last_idx = state->acquired_refs - 1; 1326 for (i = 0; i < state->acquired_refs; i++) { 1327 if (state->refs[i].id == ptr_id) { 1328 /* Cannot release caller references in callbacks */ 1329 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1330 return -EINVAL; 1331 if (last_idx && i != last_idx) 1332 memcpy(&state->refs[i], &state->refs[last_idx], 1333 sizeof(*state->refs)); 1334 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1335 state->acquired_refs--; 1336 return 0; 1337 } 1338 } 1339 return -EINVAL; 1340 } 1341 1342 static void free_func_state(struct bpf_func_state *state) 1343 { 1344 if (!state) 1345 return; 1346 kfree(state->refs); 1347 kfree(state->stack); 1348 kfree(state); 1349 } 1350 1351 static void clear_jmp_history(struct bpf_verifier_state *state) 1352 { 1353 kfree(state->jmp_history); 1354 state->jmp_history = NULL; 1355 state->jmp_history_cnt = 0; 1356 } 1357 1358 static void free_verifier_state(struct bpf_verifier_state *state, 1359 bool free_self) 1360 { 1361 int i; 1362 1363 for (i = 0; i <= state->curframe; i++) { 1364 free_func_state(state->frame[i]); 1365 state->frame[i] = NULL; 1366 } 1367 clear_jmp_history(state); 1368 if (free_self) 1369 kfree(state); 1370 } 1371 1372 /* copy verifier state from src to dst growing dst stack space 1373 * when necessary to accommodate larger src stack 1374 */ 1375 static int copy_func_state(struct bpf_func_state *dst, 1376 const struct bpf_func_state *src) 1377 { 1378 int err; 1379 1380 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1381 err = copy_reference_state(dst, src); 1382 if (err) 1383 return err; 1384 return copy_stack_state(dst, src); 1385 } 1386 1387 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1388 const struct bpf_verifier_state *src) 1389 { 1390 struct bpf_func_state *dst; 1391 int i, err; 1392 1393 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1394 src->jmp_history_cnt, sizeof(*dst_state->jmp_history), 1395 GFP_USER); 1396 if (!dst_state->jmp_history) 1397 return -ENOMEM; 1398 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1399 1400 /* if dst has more stack frames then src frame, free them, this is also 1401 * necessary in case of exceptional exits using bpf_throw. 1402 */ 1403 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1404 free_func_state(dst_state->frame[i]); 1405 dst_state->frame[i] = NULL; 1406 } 1407 dst_state->speculative = src->speculative; 1408 dst_state->active_rcu_lock = src->active_rcu_lock; 1409 dst_state->curframe = src->curframe; 1410 dst_state->active_lock.ptr = src->active_lock.ptr; 1411 dst_state->active_lock.id = src->active_lock.id; 1412 dst_state->branches = src->branches; 1413 dst_state->parent = src->parent; 1414 dst_state->first_insn_idx = src->first_insn_idx; 1415 dst_state->last_insn_idx = src->last_insn_idx; 1416 dst_state->dfs_depth = src->dfs_depth; 1417 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1418 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1419 for (i = 0; i <= src->curframe; i++) { 1420 dst = dst_state->frame[i]; 1421 if (!dst) { 1422 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1423 if (!dst) 1424 return -ENOMEM; 1425 dst_state->frame[i] = dst; 1426 } 1427 err = copy_func_state(dst, src->frame[i]); 1428 if (err) 1429 return err; 1430 } 1431 return 0; 1432 } 1433 1434 static u32 state_htab_size(struct bpf_verifier_env *env) 1435 { 1436 return env->prog->len; 1437 } 1438 1439 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1440 { 1441 struct bpf_verifier_state *cur = env->cur_state; 1442 struct bpf_func_state *state = cur->frame[cur->curframe]; 1443 1444 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1445 } 1446 1447 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1448 { 1449 int fr; 1450 1451 if (a->curframe != b->curframe) 1452 return false; 1453 1454 for (fr = a->curframe; fr >= 0; fr--) 1455 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1456 return false; 1457 1458 return true; 1459 } 1460 1461 /* Open coded iterators allow back-edges in the state graph in order to 1462 * check unbounded loops that iterators. 1463 * 1464 * In is_state_visited() it is necessary to know if explored states are 1465 * part of some loops in order to decide whether non-exact states 1466 * comparison could be used: 1467 * - non-exact states comparison establishes sub-state relation and uses 1468 * read and precision marks to do so, these marks are propagated from 1469 * children states and thus are not guaranteed to be final in a loop; 1470 * - exact states comparison just checks if current and explored states 1471 * are identical (and thus form a back-edge). 1472 * 1473 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1474 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1475 * algorithm for loop structure detection and gives an overview of 1476 * relevant terminology. It also has helpful illustrations. 1477 * 1478 * [1] https://api.semanticscholar.org/CorpusID:15784067 1479 * 1480 * We use a similar algorithm but because loop nested structure is 1481 * irrelevant for verifier ours is significantly simpler and resembles 1482 * strongly connected components algorithm from Sedgewick's textbook. 1483 * 1484 * Define topmost loop entry as a first node of the loop traversed in a 1485 * depth first search starting from initial state. The goal of the loop 1486 * tracking algorithm is to associate topmost loop entries with states 1487 * derived from these entries. 1488 * 1489 * For each step in the DFS states traversal algorithm needs to identify 1490 * the following situations: 1491 * 1492 * initial initial initial 1493 * | | | 1494 * V V V 1495 * ... ... .---------> hdr 1496 * | | | | 1497 * V V | V 1498 * cur .-> succ | .------... 1499 * | | | | | | 1500 * V | V | V V 1501 * succ '-- cur | ... ... 1502 * | | | 1503 * | V V 1504 * | succ <- cur 1505 * | | 1506 * | V 1507 * | ... 1508 * | | 1509 * '----' 1510 * 1511 * (A) successor state of cur (B) successor state of cur or it's entry 1512 * not yet traversed are in current DFS path, thus cur and succ 1513 * are members of the same outermost loop 1514 * 1515 * initial initial 1516 * | | 1517 * V V 1518 * ... ... 1519 * | | 1520 * V V 1521 * .------... .------... 1522 * | | | | 1523 * V V V V 1524 * .-> hdr ... ... ... 1525 * | | | | | 1526 * | V V V V 1527 * | succ <- cur succ <- cur 1528 * | | | 1529 * | V V 1530 * | ... ... 1531 * | | | 1532 * '----' exit 1533 * 1534 * (C) successor state of cur is a part of some loop but this loop 1535 * does not include cur or successor state is not in a loop at all. 1536 * 1537 * Algorithm could be described as the following python code: 1538 * 1539 * traversed = set() # Set of traversed nodes 1540 * entries = {} # Mapping from node to loop entry 1541 * depths = {} # Depth level assigned to graph node 1542 * path = set() # Current DFS path 1543 * 1544 * # Find outermost loop entry known for n 1545 * def get_loop_entry(n): 1546 * h = entries.get(n, None) 1547 * while h in entries and entries[h] != h: 1548 * h = entries[h] 1549 * return h 1550 * 1551 * # Update n's loop entry if h's outermost entry comes 1552 * # before n's outermost entry in current DFS path. 1553 * def update_loop_entry(n, h): 1554 * n1 = get_loop_entry(n) or n 1555 * h1 = get_loop_entry(h) or h 1556 * if h1 in path and depths[h1] <= depths[n1]: 1557 * entries[n] = h1 1558 * 1559 * def dfs(n, depth): 1560 * traversed.add(n) 1561 * path.add(n) 1562 * depths[n] = depth 1563 * for succ in G.successors(n): 1564 * if succ not in traversed: 1565 * # Case A: explore succ and update cur's loop entry 1566 * # only if succ's entry is in current DFS path. 1567 * dfs(succ, depth + 1) 1568 * h = get_loop_entry(succ) 1569 * update_loop_entry(n, h) 1570 * else: 1571 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1572 * update_loop_entry(n, succ) 1573 * path.remove(n) 1574 * 1575 * To adapt this algorithm for use with verifier: 1576 * - use st->branch == 0 as a signal that DFS of succ had been finished 1577 * and cur's loop entry has to be updated (case A), handle this in 1578 * update_branch_counts(); 1579 * - use st->branch > 0 as a signal that st is in the current DFS path; 1580 * - handle cases B and C in is_state_visited(); 1581 * - update topmost loop entry for intermediate states in get_loop_entry(). 1582 */ 1583 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1584 { 1585 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1586 1587 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1588 topmost = topmost->loop_entry; 1589 /* Update loop entries for intermediate states to avoid this 1590 * traversal in future get_loop_entry() calls. 1591 */ 1592 while (st && st->loop_entry != topmost) { 1593 old = st->loop_entry; 1594 st->loop_entry = topmost; 1595 st = old; 1596 } 1597 return topmost; 1598 } 1599 1600 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1601 { 1602 struct bpf_verifier_state *cur1, *hdr1; 1603 1604 cur1 = get_loop_entry(cur) ?: cur; 1605 hdr1 = get_loop_entry(hdr) ?: hdr; 1606 /* The head1->branches check decides between cases B and C in 1607 * comment for get_loop_entry(). If hdr1->branches == 0 then 1608 * head's topmost loop entry is not in current DFS path, 1609 * hence 'cur' and 'hdr' are not in the same loop and there is 1610 * no need to update cur->loop_entry. 1611 */ 1612 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1613 cur->loop_entry = hdr; 1614 hdr->used_as_loop_entry = true; 1615 } 1616 } 1617 1618 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1619 { 1620 while (st) { 1621 u32 br = --st->branches; 1622 1623 /* br == 0 signals that DFS exploration for 'st' is finished, 1624 * thus it is necessary to update parent's loop entry if it 1625 * turned out that st is a part of some loop. 1626 * This is a part of 'case A' in get_loop_entry() comment. 1627 */ 1628 if (br == 0 && st->parent && st->loop_entry) 1629 update_loop_entry(st->parent, st->loop_entry); 1630 1631 /* WARN_ON(br > 1) technically makes sense here, 1632 * but see comment in push_stack(), hence: 1633 */ 1634 WARN_ONCE((int)br < 0, 1635 "BUG update_branch_counts:branches_to_explore=%d\n", 1636 br); 1637 if (br) 1638 break; 1639 st = st->parent; 1640 } 1641 } 1642 1643 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1644 int *insn_idx, bool pop_log) 1645 { 1646 struct bpf_verifier_state *cur = env->cur_state; 1647 struct bpf_verifier_stack_elem *elem, *head = env->head; 1648 int err; 1649 1650 if (env->head == NULL) 1651 return -ENOENT; 1652 1653 if (cur) { 1654 err = copy_verifier_state(cur, &head->st); 1655 if (err) 1656 return err; 1657 } 1658 if (pop_log) 1659 bpf_vlog_reset(&env->log, head->log_pos); 1660 if (insn_idx) 1661 *insn_idx = head->insn_idx; 1662 if (prev_insn_idx) 1663 *prev_insn_idx = head->prev_insn_idx; 1664 elem = head->next; 1665 free_verifier_state(&head->st, false); 1666 kfree(head); 1667 env->head = elem; 1668 env->stack_size--; 1669 return 0; 1670 } 1671 1672 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1673 int insn_idx, int prev_insn_idx, 1674 bool speculative) 1675 { 1676 struct bpf_verifier_state *cur = env->cur_state; 1677 struct bpf_verifier_stack_elem *elem; 1678 int err; 1679 1680 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1681 if (!elem) 1682 goto err; 1683 1684 elem->insn_idx = insn_idx; 1685 elem->prev_insn_idx = prev_insn_idx; 1686 elem->next = env->head; 1687 elem->log_pos = env->log.end_pos; 1688 env->head = elem; 1689 env->stack_size++; 1690 err = copy_verifier_state(&elem->st, cur); 1691 if (err) 1692 goto err; 1693 elem->st.speculative |= speculative; 1694 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1695 verbose(env, "The sequence of %d jumps is too complex.\n", 1696 env->stack_size); 1697 goto err; 1698 } 1699 if (elem->st.parent) { 1700 ++elem->st.parent->branches; 1701 /* WARN_ON(branches > 2) technically makes sense here, 1702 * but 1703 * 1. speculative states will bump 'branches' for non-branch 1704 * instructions 1705 * 2. is_state_visited() heuristics may decide not to create 1706 * a new state for a sequence of branches and all such current 1707 * and cloned states will be pointing to a single parent state 1708 * which might have large 'branches' count. 1709 */ 1710 } 1711 return &elem->st; 1712 err: 1713 free_verifier_state(env->cur_state, true); 1714 env->cur_state = NULL; 1715 /* pop all elements and return */ 1716 while (!pop_stack(env, NULL, NULL, false)); 1717 return NULL; 1718 } 1719 1720 #define CALLER_SAVED_REGS 6 1721 static const int caller_saved[CALLER_SAVED_REGS] = { 1722 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1723 }; 1724 1725 /* This helper doesn't clear reg->id */ 1726 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1727 { 1728 reg->var_off = tnum_const(imm); 1729 reg->smin_value = (s64)imm; 1730 reg->smax_value = (s64)imm; 1731 reg->umin_value = imm; 1732 reg->umax_value = imm; 1733 1734 reg->s32_min_value = (s32)imm; 1735 reg->s32_max_value = (s32)imm; 1736 reg->u32_min_value = (u32)imm; 1737 reg->u32_max_value = (u32)imm; 1738 } 1739 1740 /* Mark the unknown part of a register (variable offset or scalar value) as 1741 * known to have the value @imm. 1742 */ 1743 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1744 { 1745 /* Clear off and union(map_ptr, range) */ 1746 memset(((u8 *)reg) + sizeof(reg->type), 0, 1747 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1748 reg->id = 0; 1749 reg->ref_obj_id = 0; 1750 ___mark_reg_known(reg, imm); 1751 } 1752 1753 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1754 { 1755 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1756 reg->s32_min_value = (s32)imm; 1757 reg->s32_max_value = (s32)imm; 1758 reg->u32_min_value = (u32)imm; 1759 reg->u32_max_value = (u32)imm; 1760 } 1761 1762 /* Mark the 'variable offset' part of a register as zero. This should be 1763 * used only on registers holding a pointer type. 1764 */ 1765 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1766 { 1767 __mark_reg_known(reg, 0); 1768 } 1769 1770 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1771 { 1772 __mark_reg_known(reg, 0); 1773 reg->type = SCALAR_VALUE; 1774 /* all scalars are assumed imprecise initially (unless unprivileged, 1775 * in which case everything is forced to be precise) 1776 */ 1777 reg->precise = !env->bpf_capable; 1778 } 1779 1780 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1781 struct bpf_reg_state *regs, u32 regno) 1782 { 1783 if (WARN_ON(regno >= MAX_BPF_REG)) { 1784 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1785 /* Something bad happened, let's kill all regs */ 1786 for (regno = 0; regno < MAX_BPF_REG; regno++) 1787 __mark_reg_not_init(env, regs + regno); 1788 return; 1789 } 1790 __mark_reg_known_zero(regs + regno); 1791 } 1792 1793 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1794 bool first_slot, int dynptr_id) 1795 { 1796 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1797 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1798 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1799 */ 1800 __mark_reg_known_zero(reg); 1801 reg->type = CONST_PTR_TO_DYNPTR; 1802 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1803 reg->id = dynptr_id; 1804 reg->dynptr.type = type; 1805 reg->dynptr.first_slot = first_slot; 1806 } 1807 1808 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1809 { 1810 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1811 const struct bpf_map *map = reg->map_ptr; 1812 1813 if (map->inner_map_meta) { 1814 reg->type = CONST_PTR_TO_MAP; 1815 reg->map_ptr = map->inner_map_meta; 1816 /* transfer reg's id which is unique for every map_lookup_elem 1817 * as UID of the inner map. 1818 */ 1819 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1820 reg->map_uid = reg->id; 1821 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1822 reg->type = PTR_TO_XDP_SOCK; 1823 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1824 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1825 reg->type = PTR_TO_SOCKET; 1826 } else { 1827 reg->type = PTR_TO_MAP_VALUE; 1828 } 1829 return; 1830 } 1831 1832 reg->type &= ~PTR_MAYBE_NULL; 1833 } 1834 1835 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1836 struct btf_field_graph_root *ds_head) 1837 { 1838 __mark_reg_known_zero(®s[regno]); 1839 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1840 regs[regno].btf = ds_head->btf; 1841 regs[regno].btf_id = ds_head->value_btf_id; 1842 regs[regno].off = ds_head->node_offset; 1843 } 1844 1845 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1846 { 1847 return type_is_pkt_pointer(reg->type); 1848 } 1849 1850 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1851 { 1852 return reg_is_pkt_pointer(reg) || 1853 reg->type == PTR_TO_PACKET_END; 1854 } 1855 1856 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 1857 { 1858 return base_type(reg->type) == PTR_TO_MEM && 1859 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 1860 } 1861 1862 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1863 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1864 enum bpf_reg_type which) 1865 { 1866 /* The register can already have a range from prior markings. 1867 * This is fine as long as it hasn't been advanced from its 1868 * origin. 1869 */ 1870 return reg->type == which && 1871 reg->id == 0 && 1872 reg->off == 0 && 1873 tnum_equals_const(reg->var_off, 0); 1874 } 1875 1876 /* Reset the min/max bounds of a register */ 1877 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1878 { 1879 reg->smin_value = S64_MIN; 1880 reg->smax_value = S64_MAX; 1881 reg->umin_value = 0; 1882 reg->umax_value = U64_MAX; 1883 1884 reg->s32_min_value = S32_MIN; 1885 reg->s32_max_value = S32_MAX; 1886 reg->u32_min_value = 0; 1887 reg->u32_max_value = U32_MAX; 1888 } 1889 1890 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1891 { 1892 reg->smin_value = S64_MIN; 1893 reg->smax_value = S64_MAX; 1894 reg->umin_value = 0; 1895 reg->umax_value = U64_MAX; 1896 } 1897 1898 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1899 { 1900 reg->s32_min_value = S32_MIN; 1901 reg->s32_max_value = S32_MAX; 1902 reg->u32_min_value = 0; 1903 reg->u32_max_value = U32_MAX; 1904 } 1905 1906 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1907 { 1908 struct tnum var32_off = tnum_subreg(reg->var_off); 1909 1910 /* min signed is max(sign bit) | min(other bits) */ 1911 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1912 var32_off.value | (var32_off.mask & S32_MIN)); 1913 /* max signed is min(sign bit) | max(other bits) */ 1914 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1915 var32_off.value | (var32_off.mask & S32_MAX)); 1916 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1917 reg->u32_max_value = min(reg->u32_max_value, 1918 (u32)(var32_off.value | var32_off.mask)); 1919 } 1920 1921 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1922 { 1923 /* min signed is max(sign bit) | min(other bits) */ 1924 reg->smin_value = max_t(s64, reg->smin_value, 1925 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1926 /* max signed is min(sign bit) | max(other bits) */ 1927 reg->smax_value = min_t(s64, reg->smax_value, 1928 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1929 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1930 reg->umax_value = min(reg->umax_value, 1931 reg->var_off.value | reg->var_off.mask); 1932 } 1933 1934 static void __update_reg_bounds(struct bpf_reg_state *reg) 1935 { 1936 __update_reg32_bounds(reg); 1937 __update_reg64_bounds(reg); 1938 } 1939 1940 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1941 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1942 { 1943 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 1944 * bits to improve our u32/s32 boundaries. 1945 * 1946 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 1947 * u64) is pretty trivial, it's obvious that in u32 we'll also have 1948 * [10, 20] range. But this property holds for any 64-bit range as 1949 * long as upper 32 bits in that entire range of values stay the same. 1950 * 1951 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 1952 * in decimal) has the same upper 32 bits throughout all the values in 1953 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 1954 * range. 1955 * 1956 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 1957 * following the rules outlined below about u64/s64 correspondence 1958 * (which equally applies to u32 vs s32 correspondence). In general it 1959 * depends on actual hexadecimal values of 32-bit range. They can form 1960 * only valid u32, or only valid s32 ranges in some cases. 1961 * 1962 * So we use all these insights to derive bounds for subregisters here. 1963 */ 1964 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 1965 /* u64 to u32 casting preserves validity of low 32 bits as 1966 * a range, if upper 32 bits are the same 1967 */ 1968 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 1969 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 1970 1971 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 1972 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 1973 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 1974 } 1975 } 1976 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 1977 /* low 32 bits should form a proper u32 range */ 1978 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 1979 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 1980 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 1981 } 1982 /* low 32 bits should form a proper s32 range */ 1983 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 1984 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 1985 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 1986 } 1987 } 1988 /* Special case where upper bits form a small sequence of two 1989 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 1990 * 0x00000000 is also valid), while lower bits form a proper s32 range 1991 * going from negative numbers to positive numbers. E.g., let's say we 1992 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 1993 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 1994 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 1995 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 1996 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 1997 * upper 32 bits. As a random example, s64 range 1998 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 1999 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2000 */ 2001 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2002 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2003 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2004 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2005 } 2006 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2007 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2008 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2009 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2010 } 2011 /* if u32 range forms a valid s32 range (due to matching sign bit), 2012 * try to learn from that 2013 */ 2014 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2015 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2016 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2017 } 2018 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2019 * are the same, so combine. This works even in the negative case, e.g. 2020 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2021 */ 2022 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2023 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2024 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2025 } 2026 } 2027 2028 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2029 { 2030 /* If u64 range forms a valid s64 range (due to matching sign bit), 2031 * try to learn from that. Let's do a bit of ASCII art to see when 2032 * this is happening. Let's take u64 range first: 2033 * 2034 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2035 * |-------------------------------|--------------------------------| 2036 * 2037 * Valid u64 range is formed when umin and umax are anywhere in the 2038 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2039 * straightforward. Let's see how s64 range maps onto the same range 2040 * of values, annotated below the line for comparison: 2041 * 2042 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2043 * |-------------------------------|--------------------------------| 2044 * 0 S64_MAX S64_MIN -1 2045 * 2046 * So s64 values basically start in the middle and they are logically 2047 * contiguous to the right of it, wrapping around from -1 to 0, and 2048 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2049 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2050 * more visually as mapped to sign-agnostic range of hex values. 2051 * 2052 * u64 start u64 end 2053 * _______________________________________________________________ 2054 * / \ 2055 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2056 * |-------------------------------|--------------------------------| 2057 * 0 S64_MAX S64_MIN -1 2058 * / \ 2059 * >------------------------------ -------------------------------> 2060 * s64 continues... s64 end s64 start s64 "midpoint" 2061 * 2062 * What this means is that, in general, we can't always derive 2063 * something new about u64 from any random s64 range, and vice versa. 2064 * 2065 * But we can do that in two particular cases. One is when entire 2066 * u64/s64 range is *entirely* contained within left half of the above 2067 * diagram or when it is *entirely* contained in the right half. I.e.: 2068 * 2069 * |-------------------------------|--------------------------------| 2070 * ^ ^ ^ ^ 2071 * A B C D 2072 * 2073 * [A, B] and [C, D] are contained entirely in their respective halves 2074 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2075 * will be non-negative both as u64 and s64 (and in fact it will be 2076 * identical ranges no matter the signedness). [C, D] treated as s64 2077 * will be a range of negative values, while in u64 it will be 2078 * non-negative range of values larger than 0x8000000000000000. 2079 * 2080 * Now, any other range here can't be represented in both u64 and s64 2081 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2082 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2083 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2084 * for example. Similarly, valid s64 range [D, A] (going from negative 2085 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2086 * ranges as u64. Currently reg_state can't represent two segments per 2087 * numeric domain, so in such situations we can only derive maximal 2088 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2089 * 2090 * So we use these facts to derive umin/umax from smin/smax and vice 2091 * versa only if they stay within the same "half". This is equivalent 2092 * to checking sign bit: lower half will have sign bit as zero, upper 2093 * half have sign bit 1. Below in code we simplify this by just 2094 * casting umin/umax as smin/smax and checking if they form valid 2095 * range, and vice versa. Those are equivalent checks. 2096 */ 2097 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2098 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2099 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2100 } 2101 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2102 * are the same, so combine. This works even in the negative case, e.g. 2103 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2104 */ 2105 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2106 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2107 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2108 } 2109 } 2110 2111 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2112 { 2113 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2114 * values on both sides of 64-bit range in hope to have tigher range. 2115 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2116 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2117 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2118 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2119 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2120 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2121 * We just need to make sure that derived bounds we are intersecting 2122 * with are well-formed ranges in respecitve s64 or u64 domain, just 2123 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2124 */ 2125 __u64 new_umin, new_umax; 2126 __s64 new_smin, new_smax; 2127 2128 /* u32 -> u64 tightening, it's always well-formed */ 2129 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2130 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2131 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2132 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2133 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2134 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2135 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2136 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2137 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2138 2139 /* if s32 can be treated as valid u32 range, we can use it as well */ 2140 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2141 /* s32 -> u64 tightening */ 2142 new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2143 new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2144 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2145 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2146 /* s32 -> s64 tightening */ 2147 new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2148 new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2149 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2150 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2151 } 2152 } 2153 2154 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2155 { 2156 __reg32_deduce_bounds(reg); 2157 __reg64_deduce_bounds(reg); 2158 __reg_deduce_mixed_bounds(reg); 2159 } 2160 2161 /* Attempts to improve var_off based on unsigned min/max information */ 2162 static void __reg_bound_offset(struct bpf_reg_state *reg) 2163 { 2164 struct tnum var64_off = tnum_intersect(reg->var_off, 2165 tnum_range(reg->umin_value, 2166 reg->umax_value)); 2167 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2168 tnum_range(reg->u32_min_value, 2169 reg->u32_max_value)); 2170 2171 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2172 } 2173 2174 static void reg_bounds_sync(struct bpf_reg_state *reg) 2175 { 2176 /* We might have learned new bounds from the var_off. */ 2177 __update_reg_bounds(reg); 2178 /* We might have learned something about the sign bit. */ 2179 __reg_deduce_bounds(reg); 2180 __reg_deduce_bounds(reg); 2181 /* We might have learned some bits from the bounds. */ 2182 __reg_bound_offset(reg); 2183 /* Intersecting with the old var_off might have improved our bounds 2184 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2185 * then new var_off is (0; 0x7f...fc) which improves our umax. 2186 */ 2187 __update_reg_bounds(reg); 2188 } 2189 2190 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2191 struct bpf_reg_state *reg, const char *ctx) 2192 { 2193 const char *msg; 2194 2195 if (reg->umin_value > reg->umax_value || 2196 reg->smin_value > reg->smax_value || 2197 reg->u32_min_value > reg->u32_max_value || 2198 reg->s32_min_value > reg->s32_max_value) { 2199 msg = "range bounds violation"; 2200 goto out; 2201 } 2202 2203 if (tnum_is_const(reg->var_off)) { 2204 u64 uval = reg->var_off.value; 2205 s64 sval = (s64)uval; 2206 2207 if (reg->umin_value != uval || reg->umax_value != uval || 2208 reg->smin_value != sval || reg->smax_value != sval) { 2209 msg = "const tnum out of sync with range bounds"; 2210 goto out; 2211 } 2212 } 2213 2214 if (tnum_subreg_is_const(reg->var_off)) { 2215 u32 uval32 = tnum_subreg(reg->var_off).value; 2216 s32 sval32 = (s32)uval32; 2217 2218 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2219 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2220 msg = "const subreg tnum out of sync with range bounds"; 2221 goto out; 2222 } 2223 } 2224 2225 return 0; 2226 out: 2227 verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2228 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n", 2229 ctx, msg, reg->umin_value, reg->umax_value, 2230 reg->smin_value, reg->smax_value, 2231 reg->u32_min_value, reg->u32_max_value, 2232 reg->s32_min_value, reg->s32_max_value, 2233 reg->var_off.value, reg->var_off.mask); 2234 if (env->test_reg_invariants) 2235 return -EFAULT; 2236 __mark_reg_unbounded(reg); 2237 return 0; 2238 } 2239 2240 static bool __reg32_bound_s64(s32 a) 2241 { 2242 return a >= 0 && a <= S32_MAX; 2243 } 2244 2245 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2246 { 2247 reg->umin_value = reg->u32_min_value; 2248 reg->umax_value = reg->u32_max_value; 2249 2250 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2251 * be positive otherwise set to worse case bounds and refine later 2252 * from tnum. 2253 */ 2254 if (__reg32_bound_s64(reg->s32_min_value) && 2255 __reg32_bound_s64(reg->s32_max_value)) { 2256 reg->smin_value = reg->s32_min_value; 2257 reg->smax_value = reg->s32_max_value; 2258 } else { 2259 reg->smin_value = 0; 2260 reg->smax_value = U32_MAX; 2261 } 2262 } 2263 2264 /* Mark a register as having a completely unknown (scalar) value. */ 2265 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2266 struct bpf_reg_state *reg) 2267 { 2268 /* 2269 * Clear type, off, and union(map_ptr, range) and 2270 * padding between 'type' and union 2271 */ 2272 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2273 reg->type = SCALAR_VALUE; 2274 reg->id = 0; 2275 reg->ref_obj_id = 0; 2276 reg->var_off = tnum_unknown; 2277 reg->frameno = 0; 2278 reg->precise = !env->bpf_capable; 2279 __mark_reg_unbounded(reg); 2280 } 2281 2282 static void mark_reg_unknown(struct bpf_verifier_env *env, 2283 struct bpf_reg_state *regs, u32 regno) 2284 { 2285 if (WARN_ON(regno >= MAX_BPF_REG)) { 2286 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2287 /* Something bad happened, let's kill all regs except FP */ 2288 for (regno = 0; regno < BPF_REG_FP; regno++) 2289 __mark_reg_not_init(env, regs + regno); 2290 return; 2291 } 2292 __mark_reg_unknown(env, regs + regno); 2293 } 2294 2295 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2296 struct bpf_reg_state *reg) 2297 { 2298 __mark_reg_unknown(env, reg); 2299 reg->type = NOT_INIT; 2300 } 2301 2302 static void mark_reg_not_init(struct bpf_verifier_env *env, 2303 struct bpf_reg_state *regs, u32 regno) 2304 { 2305 if (WARN_ON(regno >= MAX_BPF_REG)) { 2306 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2307 /* Something bad happened, let's kill all regs except FP */ 2308 for (regno = 0; regno < BPF_REG_FP; regno++) 2309 __mark_reg_not_init(env, regs + regno); 2310 return; 2311 } 2312 __mark_reg_not_init(env, regs + regno); 2313 } 2314 2315 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2316 struct bpf_reg_state *regs, u32 regno, 2317 enum bpf_reg_type reg_type, 2318 struct btf *btf, u32 btf_id, 2319 enum bpf_type_flag flag) 2320 { 2321 if (reg_type == SCALAR_VALUE) { 2322 mark_reg_unknown(env, regs, regno); 2323 return; 2324 } 2325 mark_reg_known_zero(env, regs, regno); 2326 regs[regno].type = PTR_TO_BTF_ID | flag; 2327 regs[regno].btf = btf; 2328 regs[regno].btf_id = btf_id; 2329 } 2330 2331 #define DEF_NOT_SUBREG (0) 2332 static void init_reg_state(struct bpf_verifier_env *env, 2333 struct bpf_func_state *state) 2334 { 2335 struct bpf_reg_state *regs = state->regs; 2336 int i; 2337 2338 for (i = 0; i < MAX_BPF_REG; i++) { 2339 mark_reg_not_init(env, regs, i); 2340 regs[i].live = REG_LIVE_NONE; 2341 regs[i].parent = NULL; 2342 regs[i].subreg_def = DEF_NOT_SUBREG; 2343 } 2344 2345 /* frame pointer */ 2346 regs[BPF_REG_FP].type = PTR_TO_STACK; 2347 mark_reg_known_zero(env, regs, BPF_REG_FP); 2348 regs[BPF_REG_FP].frameno = state->frameno; 2349 } 2350 2351 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2352 { 2353 return (struct bpf_retval_range){ minval, maxval }; 2354 } 2355 2356 #define BPF_MAIN_FUNC (-1) 2357 static void init_func_state(struct bpf_verifier_env *env, 2358 struct bpf_func_state *state, 2359 int callsite, int frameno, int subprogno) 2360 { 2361 state->callsite = callsite; 2362 state->frameno = frameno; 2363 state->subprogno = subprogno; 2364 state->callback_ret_range = retval_range(0, 0); 2365 init_reg_state(env, state); 2366 mark_verifier_state_scratched(env); 2367 } 2368 2369 /* Similar to push_stack(), but for async callbacks */ 2370 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2371 int insn_idx, int prev_insn_idx, 2372 int subprog) 2373 { 2374 struct bpf_verifier_stack_elem *elem; 2375 struct bpf_func_state *frame; 2376 2377 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2378 if (!elem) 2379 goto err; 2380 2381 elem->insn_idx = insn_idx; 2382 elem->prev_insn_idx = prev_insn_idx; 2383 elem->next = env->head; 2384 elem->log_pos = env->log.end_pos; 2385 env->head = elem; 2386 env->stack_size++; 2387 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2388 verbose(env, 2389 "The sequence of %d jumps is too complex for async cb.\n", 2390 env->stack_size); 2391 goto err; 2392 } 2393 /* Unlike push_stack() do not copy_verifier_state(). 2394 * The caller state doesn't matter. 2395 * This is async callback. It starts in a fresh stack. 2396 * Initialize it similar to do_check_common(). 2397 */ 2398 elem->st.branches = 1; 2399 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2400 if (!frame) 2401 goto err; 2402 init_func_state(env, frame, 2403 BPF_MAIN_FUNC /* callsite */, 2404 0 /* frameno within this callchain */, 2405 subprog /* subprog number within this prog */); 2406 elem->st.frame[0] = frame; 2407 return &elem->st; 2408 err: 2409 free_verifier_state(env->cur_state, true); 2410 env->cur_state = NULL; 2411 /* pop all elements and return */ 2412 while (!pop_stack(env, NULL, NULL, false)); 2413 return NULL; 2414 } 2415 2416 2417 enum reg_arg_type { 2418 SRC_OP, /* register is used as source operand */ 2419 DST_OP, /* register is used as destination operand */ 2420 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2421 }; 2422 2423 static int cmp_subprogs(const void *a, const void *b) 2424 { 2425 return ((struct bpf_subprog_info *)a)->start - 2426 ((struct bpf_subprog_info *)b)->start; 2427 } 2428 2429 static int find_subprog(struct bpf_verifier_env *env, int off) 2430 { 2431 struct bpf_subprog_info *p; 2432 2433 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2434 sizeof(env->subprog_info[0]), cmp_subprogs); 2435 if (!p) 2436 return -ENOENT; 2437 return p - env->subprog_info; 2438 2439 } 2440 2441 static int add_subprog(struct bpf_verifier_env *env, int off) 2442 { 2443 int insn_cnt = env->prog->len; 2444 int ret; 2445 2446 if (off >= insn_cnt || off < 0) { 2447 verbose(env, "call to invalid destination\n"); 2448 return -EINVAL; 2449 } 2450 ret = find_subprog(env, off); 2451 if (ret >= 0) 2452 return ret; 2453 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2454 verbose(env, "too many subprograms\n"); 2455 return -E2BIG; 2456 } 2457 /* determine subprog starts. The end is one before the next starts */ 2458 env->subprog_info[env->subprog_cnt++].start = off; 2459 sort(env->subprog_info, env->subprog_cnt, 2460 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2461 return env->subprog_cnt - 1; 2462 } 2463 2464 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 2465 { 2466 struct bpf_prog_aux *aux = env->prog->aux; 2467 struct btf *btf = aux->btf; 2468 const struct btf_type *t; 2469 u32 main_btf_id, id; 2470 const char *name; 2471 int ret, i; 2472 2473 /* Non-zero func_info_cnt implies valid btf */ 2474 if (!aux->func_info_cnt) 2475 return 0; 2476 main_btf_id = aux->func_info[0].type_id; 2477 2478 t = btf_type_by_id(btf, main_btf_id); 2479 if (!t) { 2480 verbose(env, "invalid btf id for main subprog in func_info\n"); 2481 return -EINVAL; 2482 } 2483 2484 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 2485 if (IS_ERR(name)) { 2486 ret = PTR_ERR(name); 2487 /* If there is no tag present, there is no exception callback */ 2488 if (ret == -ENOENT) 2489 ret = 0; 2490 else if (ret == -EEXIST) 2491 verbose(env, "multiple exception callback tags for main subprog\n"); 2492 return ret; 2493 } 2494 2495 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 2496 if (ret < 0) { 2497 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 2498 return ret; 2499 } 2500 id = ret; 2501 t = btf_type_by_id(btf, id); 2502 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 2503 verbose(env, "exception callback '%s' must have global linkage\n", name); 2504 return -EINVAL; 2505 } 2506 ret = 0; 2507 for (i = 0; i < aux->func_info_cnt; i++) { 2508 if (aux->func_info[i].type_id != id) 2509 continue; 2510 ret = aux->func_info[i].insn_off; 2511 /* Further func_info and subprog checks will also happen 2512 * later, so assume this is the right insn_off for now. 2513 */ 2514 if (!ret) { 2515 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 2516 ret = -EINVAL; 2517 } 2518 } 2519 if (!ret) { 2520 verbose(env, "exception callback type id not found in func_info\n"); 2521 ret = -EINVAL; 2522 } 2523 return ret; 2524 } 2525 2526 #define MAX_KFUNC_DESCS 256 2527 #define MAX_KFUNC_BTFS 256 2528 2529 struct bpf_kfunc_desc { 2530 struct btf_func_model func_model; 2531 u32 func_id; 2532 s32 imm; 2533 u16 offset; 2534 unsigned long addr; 2535 }; 2536 2537 struct bpf_kfunc_btf { 2538 struct btf *btf; 2539 struct module *module; 2540 u16 offset; 2541 }; 2542 2543 struct bpf_kfunc_desc_tab { 2544 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2545 * verification. JITs do lookups by bpf_insn, where func_id may not be 2546 * available, therefore at the end of verification do_misc_fixups() 2547 * sorts this by imm and offset. 2548 */ 2549 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2550 u32 nr_descs; 2551 }; 2552 2553 struct bpf_kfunc_btf_tab { 2554 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2555 u32 nr_descs; 2556 }; 2557 2558 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2559 { 2560 const struct bpf_kfunc_desc *d0 = a; 2561 const struct bpf_kfunc_desc *d1 = b; 2562 2563 /* func_id is not greater than BTF_MAX_TYPE */ 2564 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2565 } 2566 2567 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2568 { 2569 const struct bpf_kfunc_btf *d0 = a; 2570 const struct bpf_kfunc_btf *d1 = b; 2571 2572 return d0->offset - d1->offset; 2573 } 2574 2575 static const struct bpf_kfunc_desc * 2576 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2577 { 2578 struct bpf_kfunc_desc desc = { 2579 .func_id = func_id, 2580 .offset = offset, 2581 }; 2582 struct bpf_kfunc_desc_tab *tab; 2583 2584 tab = prog->aux->kfunc_tab; 2585 return bsearch(&desc, tab->descs, tab->nr_descs, 2586 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2587 } 2588 2589 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2590 u16 btf_fd_idx, u8 **func_addr) 2591 { 2592 const struct bpf_kfunc_desc *desc; 2593 2594 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2595 if (!desc) 2596 return -EFAULT; 2597 2598 *func_addr = (u8 *)desc->addr; 2599 return 0; 2600 } 2601 2602 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2603 s16 offset) 2604 { 2605 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2606 struct bpf_kfunc_btf_tab *tab; 2607 struct bpf_kfunc_btf *b; 2608 struct module *mod; 2609 struct btf *btf; 2610 int btf_fd; 2611 2612 tab = env->prog->aux->kfunc_btf_tab; 2613 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2614 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2615 if (!b) { 2616 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2617 verbose(env, "too many different module BTFs\n"); 2618 return ERR_PTR(-E2BIG); 2619 } 2620 2621 if (bpfptr_is_null(env->fd_array)) { 2622 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2623 return ERR_PTR(-EPROTO); 2624 } 2625 2626 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2627 offset * sizeof(btf_fd), 2628 sizeof(btf_fd))) 2629 return ERR_PTR(-EFAULT); 2630 2631 btf = btf_get_by_fd(btf_fd); 2632 if (IS_ERR(btf)) { 2633 verbose(env, "invalid module BTF fd specified\n"); 2634 return btf; 2635 } 2636 2637 if (!btf_is_module(btf)) { 2638 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2639 btf_put(btf); 2640 return ERR_PTR(-EINVAL); 2641 } 2642 2643 mod = btf_try_get_module(btf); 2644 if (!mod) { 2645 btf_put(btf); 2646 return ERR_PTR(-ENXIO); 2647 } 2648 2649 b = &tab->descs[tab->nr_descs++]; 2650 b->btf = btf; 2651 b->module = mod; 2652 b->offset = offset; 2653 2654 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2655 kfunc_btf_cmp_by_off, NULL); 2656 } 2657 return b->btf; 2658 } 2659 2660 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2661 { 2662 if (!tab) 2663 return; 2664 2665 while (tab->nr_descs--) { 2666 module_put(tab->descs[tab->nr_descs].module); 2667 btf_put(tab->descs[tab->nr_descs].btf); 2668 } 2669 kfree(tab); 2670 } 2671 2672 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2673 { 2674 if (offset) { 2675 if (offset < 0) { 2676 /* In the future, this can be allowed to increase limit 2677 * of fd index into fd_array, interpreted as u16. 2678 */ 2679 verbose(env, "negative offset disallowed for kernel module function call\n"); 2680 return ERR_PTR(-EINVAL); 2681 } 2682 2683 return __find_kfunc_desc_btf(env, offset); 2684 } 2685 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2686 } 2687 2688 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2689 { 2690 const struct btf_type *func, *func_proto; 2691 struct bpf_kfunc_btf_tab *btf_tab; 2692 struct bpf_kfunc_desc_tab *tab; 2693 struct bpf_prog_aux *prog_aux; 2694 struct bpf_kfunc_desc *desc; 2695 const char *func_name; 2696 struct btf *desc_btf; 2697 unsigned long call_imm; 2698 unsigned long addr; 2699 int err; 2700 2701 prog_aux = env->prog->aux; 2702 tab = prog_aux->kfunc_tab; 2703 btf_tab = prog_aux->kfunc_btf_tab; 2704 if (!tab) { 2705 if (!btf_vmlinux) { 2706 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2707 return -ENOTSUPP; 2708 } 2709 2710 if (!env->prog->jit_requested) { 2711 verbose(env, "JIT is required for calling kernel function\n"); 2712 return -ENOTSUPP; 2713 } 2714 2715 if (!bpf_jit_supports_kfunc_call()) { 2716 verbose(env, "JIT does not support calling kernel function\n"); 2717 return -ENOTSUPP; 2718 } 2719 2720 if (!env->prog->gpl_compatible) { 2721 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2722 return -EINVAL; 2723 } 2724 2725 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2726 if (!tab) 2727 return -ENOMEM; 2728 prog_aux->kfunc_tab = tab; 2729 } 2730 2731 /* func_id == 0 is always invalid, but instead of returning an error, be 2732 * conservative and wait until the code elimination pass before returning 2733 * error, so that invalid calls that get pruned out can be in BPF programs 2734 * loaded from userspace. It is also required that offset be untouched 2735 * for such calls. 2736 */ 2737 if (!func_id && !offset) 2738 return 0; 2739 2740 if (!btf_tab && offset) { 2741 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2742 if (!btf_tab) 2743 return -ENOMEM; 2744 prog_aux->kfunc_btf_tab = btf_tab; 2745 } 2746 2747 desc_btf = find_kfunc_desc_btf(env, offset); 2748 if (IS_ERR(desc_btf)) { 2749 verbose(env, "failed to find BTF for kernel function\n"); 2750 return PTR_ERR(desc_btf); 2751 } 2752 2753 if (find_kfunc_desc(env->prog, func_id, offset)) 2754 return 0; 2755 2756 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2757 verbose(env, "too many different kernel function calls\n"); 2758 return -E2BIG; 2759 } 2760 2761 func = btf_type_by_id(desc_btf, func_id); 2762 if (!func || !btf_type_is_func(func)) { 2763 verbose(env, "kernel btf_id %u is not a function\n", 2764 func_id); 2765 return -EINVAL; 2766 } 2767 func_proto = btf_type_by_id(desc_btf, func->type); 2768 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2769 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2770 func_id); 2771 return -EINVAL; 2772 } 2773 2774 func_name = btf_name_by_offset(desc_btf, func->name_off); 2775 addr = kallsyms_lookup_name(func_name); 2776 if (!addr) { 2777 verbose(env, "cannot find address for kernel function %s\n", 2778 func_name); 2779 return -EINVAL; 2780 } 2781 specialize_kfunc(env, func_id, offset, &addr); 2782 2783 if (bpf_jit_supports_far_kfunc_call()) { 2784 call_imm = func_id; 2785 } else { 2786 call_imm = BPF_CALL_IMM(addr); 2787 /* Check whether the relative offset overflows desc->imm */ 2788 if ((unsigned long)(s32)call_imm != call_imm) { 2789 verbose(env, "address of kernel function %s is out of range\n", 2790 func_name); 2791 return -EINVAL; 2792 } 2793 } 2794 2795 if (bpf_dev_bound_kfunc_id(func_id)) { 2796 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2797 if (err) 2798 return err; 2799 } 2800 2801 desc = &tab->descs[tab->nr_descs++]; 2802 desc->func_id = func_id; 2803 desc->imm = call_imm; 2804 desc->offset = offset; 2805 desc->addr = addr; 2806 err = btf_distill_func_proto(&env->log, desc_btf, 2807 func_proto, func_name, 2808 &desc->func_model); 2809 if (!err) 2810 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2811 kfunc_desc_cmp_by_id_off, NULL); 2812 return err; 2813 } 2814 2815 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2816 { 2817 const struct bpf_kfunc_desc *d0 = a; 2818 const struct bpf_kfunc_desc *d1 = b; 2819 2820 if (d0->imm != d1->imm) 2821 return d0->imm < d1->imm ? -1 : 1; 2822 if (d0->offset != d1->offset) 2823 return d0->offset < d1->offset ? -1 : 1; 2824 return 0; 2825 } 2826 2827 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2828 { 2829 struct bpf_kfunc_desc_tab *tab; 2830 2831 tab = prog->aux->kfunc_tab; 2832 if (!tab) 2833 return; 2834 2835 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2836 kfunc_desc_cmp_by_imm_off, NULL); 2837 } 2838 2839 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2840 { 2841 return !!prog->aux->kfunc_tab; 2842 } 2843 2844 const struct btf_func_model * 2845 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2846 const struct bpf_insn *insn) 2847 { 2848 const struct bpf_kfunc_desc desc = { 2849 .imm = insn->imm, 2850 .offset = insn->off, 2851 }; 2852 const struct bpf_kfunc_desc *res; 2853 struct bpf_kfunc_desc_tab *tab; 2854 2855 tab = prog->aux->kfunc_tab; 2856 res = bsearch(&desc, tab->descs, tab->nr_descs, 2857 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2858 2859 return res ? &res->func_model : NULL; 2860 } 2861 2862 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2863 { 2864 struct bpf_subprog_info *subprog = env->subprog_info; 2865 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 2866 struct bpf_insn *insn = env->prog->insnsi; 2867 2868 /* Add entry function. */ 2869 ret = add_subprog(env, 0); 2870 if (ret) 2871 return ret; 2872 2873 for (i = 0; i < insn_cnt; i++, insn++) { 2874 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2875 !bpf_pseudo_kfunc_call(insn)) 2876 continue; 2877 2878 if (!env->bpf_capable) { 2879 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2880 return -EPERM; 2881 } 2882 2883 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2884 ret = add_subprog(env, i + insn->imm + 1); 2885 else 2886 ret = add_kfunc_call(env, insn->imm, insn->off); 2887 2888 if (ret < 0) 2889 return ret; 2890 } 2891 2892 ret = bpf_find_exception_callback_insn_off(env); 2893 if (ret < 0) 2894 return ret; 2895 ex_cb_insn = ret; 2896 2897 /* If ex_cb_insn > 0, this means that the main program has a subprog 2898 * marked using BTF decl tag to serve as the exception callback. 2899 */ 2900 if (ex_cb_insn) { 2901 ret = add_subprog(env, ex_cb_insn); 2902 if (ret < 0) 2903 return ret; 2904 for (i = 1; i < env->subprog_cnt; i++) { 2905 if (env->subprog_info[i].start != ex_cb_insn) 2906 continue; 2907 env->exception_callback_subprog = i; 2908 mark_subprog_exc_cb(env, i); 2909 break; 2910 } 2911 } 2912 2913 /* Add a fake 'exit' subprog which could simplify subprog iteration 2914 * logic. 'subprog_cnt' should not be increased. 2915 */ 2916 subprog[env->subprog_cnt].start = insn_cnt; 2917 2918 if (env->log.level & BPF_LOG_LEVEL2) 2919 for (i = 0; i < env->subprog_cnt; i++) 2920 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2921 2922 return 0; 2923 } 2924 2925 static int check_subprogs(struct bpf_verifier_env *env) 2926 { 2927 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2928 struct bpf_subprog_info *subprog = env->subprog_info; 2929 struct bpf_insn *insn = env->prog->insnsi; 2930 int insn_cnt = env->prog->len; 2931 2932 /* now check that all jumps are within the same subprog */ 2933 subprog_start = subprog[cur_subprog].start; 2934 subprog_end = subprog[cur_subprog + 1].start; 2935 for (i = 0; i < insn_cnt; i++) { 2936 u8 code = insn[i].code; 2937 2938 if (code == (BPF_JMP | BPF_CALL) && 2939 insn[i].src_reg == 0 && 2940 insn[i].imm == BPF_FUNC_tail_call) 2941 subprog[cur_subprog].has_tail_call = true; 2942 if (BPF_CLASS(code) == BPF_LD && 2943 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2944 subprog[cur_subprog].has_ld_abs = true; 2945 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2946 goto next; 2947 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2948 goto next; 2949 if (code == (BPF_JMP32 | BPF_JA)) 2950 off = i + insn[i].imm + 1; 2951 else 2952 off = i + insn[i].off + 1; 2953 if (off < subprog_start || off >= subprog_end) { 2954 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2955 return -EINVAL; 2956 } 2957 next: 2958 if (i == subprog_end - 1) { 2959 /* to avoid fall-through from one subprog into another 2960 * the last insn of the subprog should be either exit 2961 * or unconditional jump back or bpf_throw call 2962 */ 2963 if (code != (BPF_JMP | BPF_EXIT) && 2964 code != (BPF_JMP32 | BPF_JA) && 2965 code != (BPF_JMP | BPF_JA)) { 2966 verbose(env, "last insn is not an exit or jmp\n"); 2967 return -EINVAL; 2968 } 2969 subprog_start = subprog_end; 2970 cur_subprog++; 2971 if (cur_subprog < env->subprog_cnt) 2972 subprog_end = subprog[cur_subprog + 1].start; 2973 } 2974 } 2975 return 0; 2976 } 2977 2978 /* Parentage chain of this register (or stack slot) should take care of all 2979 * issues like callee-saved registers, stack slot allocation time, etc. 2980 */ 2981 static int mark_reg_read(struct bpf_verifier_env *env, 2982 const struct bpf_reg_state *state, 2983 struct bpf_reg_state *parent, u8 flag) 2984 { 2985 bool writes = parent == state->parent; /* Observe write marks */ 2986 int cnt = 0; 2987 2988 while (parent) { 2989 /* if read wasn't screened by an earlier write ... */ 2990 if (writes && state->live & REG_LIVE_WRITTEN) 2991 break; 2992 if (parent->live & REG_LIVE_DONE) { 2993 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2994 reg_type_str(env, parent->type), 2995 parent->var_off.value, parent->off); 2996 return -EFAULT; 2997 } 2998 /* The first condition is more likely to be true than the 2999 * second, checked it first. 3000 */ 3001 if ((parent->live & REG_LIVE_READ) == flag || 3002 parent->live & REG_LIVE_READ64) 3003 /* The parentage chain never changes and 3004 * this parent was already marked as LIVE_READ. 3005 * There is no need to keep walking the chain again and 3006 * keep re-marking all parents as LIVE_READ. 3007 * This case happens when the same register is read 3008 * multiple times without writes into it in-between. 3009 * Also, if parent has the stronger REG_LIVE_READ64 set, 3010 * then no need to set the weak REG_LIVE_READ32. 3011 */ 3012 break; 3013 /* ... then we depend on parent's value */ 3014 parent->live |= flag; 3015 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3016 if (flag == REG_LIVE_READ64) 3017 parent->live &= ~REG_LIVE_READ32; 3018 state = parent; 3019 parent = state->parent; 3020 writes = true; 3021 cnt++; 3022 } 3023 3024 if (env->longest_mark_read_walk < cnt) 3025 env->longest_mark_read_walk = cnt; 3026 return 0; 3027 } 3028 3029 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3030 { 3031 struct bpf_func_state *state = func(env, reg); 3032 int spi, ret; 3033 3034 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3035 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3036 * check_kfunc_call. 3037 */ 3038 if (reg->type == CONST_PTR_TO_DYNPTR) 3039 return 0; 3040 spi = dynptr_get_spi(env, reg); 3041 if (spi < 0) 3042 return spi; 3043 /* Caller ensures dynptr is valid and initialized, which means spi is in 3044 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3045 * read. 3046 */ 3047 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 3048 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3049 if (ret) 3050 return ret; 3051 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3052 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3053 } 3054 3055 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3056 int spi, int nr_slots) 3057 { 3058 struct bpf_func_state *state = func(env, reg); 3059 int err, i; 3060 3061 for (i = 0; i < nr_slots; i++) { 3062 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3063 3064 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3065 if (err) 3066 return err; 3067 3068 mark_stack_slot_scratched(env, spi - i); 3069 } 3070 3071 return 0; 3072 } 3073 3074 /* This function is supposed to be used by the following 32-bit optimization 3075 * code only. It returns TRUE if the source or destination register operates 3076 * on 64-bit, otherwise return FALSE. 3077 */ 3078 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3079 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3080 { 3081 u8 code, class, op; 3082 3083 code = insn->code; 3084 class = BPF_CLASS(code); 3085 op = BPF_OP(code); 3086 if (class == BPF_JMP) { 3087 /* BPF_EXIT for "main" will reach here. Return TRUE 3088 * conservatively. 3089 */ 3090 if (op == BPF_EXIT) 3091 return true; 3092 if (op == BPF_CALL) { 3093 /* BPF to BPF call will reach here because of marking 3094 * caller saved clobber with DST_OP_NO_MARK for which we 3095 * don't care the register def because they are anyway 3096 * marked as NOT_INIT already. 3097 */ 3098 if (insn->src_reg == BPF_PSEUDO_CALL) 3099 return false; 3100 /* Helper call will reach here because of arg type 3101 * check, conservatively return TRUE. 3102 */ 3103 if (t == SRC_OP) 3104 return true; 3105 3106 return false; 3107 } 3108 } 3109 3110 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3111 return false; 3112 3113 if (class == BPF_ALU64 || class == BPF_JMP || 3114 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3115 return true; 3116 3117 if (class == BPF_ALU || class == BPF_JMP32) 3118 return false; 3119 3120 if (class == BPF_LDX) { 3121 if (t != SRC_OP) 3122 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3123 /* LDX source must be ptr. */ 3124 return true; 3125 } 3126 3127 if (class == BPF_STX) { 3128 /* BPF_STX (including atomic variants) has multiple source 3129 * operands, one of which is a ptr. Check whether the caller is 3130 * asking about it. 3131 */ 3132 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3133 return true; 3134 return BPF_SIZE(code) == BPF_DW; 3135 } 3136 3137 if (class == BPF_LD) { 3138 u8 mode = BPF_MODE(code); 3139 3140 /* LD_IMM64 */ 3141 if (mode == BPF_IMM) 3142 return true; 3143 3144 /* Both LD_IND and LD_ABS return 32-bit data. */ 3145 if (t != SRC_OP) 3146 return false; 3147 3148 /* Implicit ctx ptr. */ 3149 if (regno == BPF_REG_6) 3150 return true; 3151 3152 /* Explicit source could be any width. */ 3153 return true; 3154 } 3155 3156 if (class == BPF_ST) 3157 /* The only source register for BPF_ST is a ptr. */ 3158 return true; 3159 3160 /* Conservatively return true at default. */ 3161 return true; 3162 } 3163 3164 /* Return the regno defined by the insn, or -1. */ 3165 static int insn_def_regno(const struct bpf_insn *insn) 3166 { 3167 switch (BPF_CLASS(insn->code)) { 3168 case BPF_JMP: 3169 case BPF_JMP32: 3170 case BPF_ST: 3171 return -1; 3172 case BPF_STX: 3173 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3174 (insn->imm & BPF_FETCH)) { 3175 if (insn->imm == BPF_CMPXCHG) 3176 return BPF_REG_0; 3177 else 3178 return insn->src_reg; 3179 } else { 3180 return -1; 3181 } 3182 default: 3183 return insn->dst_reg; 3184 } 3185 } 3186 3187 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3188 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3189 { 3190 int dst_reg = insn_def_regno(insn); 3191 3192 if (dst_reg == -1) 3193 return false; 3194 3195 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3196 } 3197 3198 static void mark_insn_zext(struct bpf_verifier_env *env, 3199 struct bpf_reg_state *reg) 3200 { 3201 s32 def_idx = reg->subreg_def; 3202 3203 if (def_idx == DEF_NOT_SUBREG) 3204 return; 3205 3206 env->insn_aux_data[def_idx - 1].zext_dst = true; 3207 /* The dst will be zero extended, so won't be sub-register anymore. */ 3208 reg->subreg_def = DEF_NOT_SUBREG; 3209 } 3210 3211 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3212 enum reg_arg_type t) 3213 { 3214 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3215 struct bpf_reg_state *reg; 3216 bool rw64; 3217 3218 if (regno >= MAX_BPF_REG) { 3219 verbose(env, "R%d is invalid\n", regno); 3220 return -EINVAL; 3221 } 3222 3223 mark_reg_scratched(env, regno); 3224 3225 reg = ®s[regno]; 3226 rw64 = is_reg64(env, insn, regno, reg, t); 3227 if (t == SRC_OP) { 3228 /* check whether register used as source operand can be read */ 3229 if (reg->type == NOT_INIT) { 3230 verbose(env, "R%d !read_ok\n", regno); 3231 return -EACCES; 3232 } 3233 /* We don't need to worry about FP liveness because it's read-only */ 3234 if (regno == BPF_REG_FP) 3235 return 0; 3236 3237 if (rw64) 3238 mark_insn_zext(env, reg); 3239 3240 return mark_reg_read(env, reg, reg->parent, 3241 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3242 } else { 3243 /* check whether register used as dest operand can be written to */ 3244 if (regno == BPF_REG_FP) { 3245 verbose(env, "frame pointer is read only\n"); 3246 return -EACCES; 3247 } 3248 reg->live |= REG_LIVE_WRITTEN; 3249 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3250 if (t == DST_OP) 3251 mark_reg_unknown(env, regs, regno); 3252 } 3253 return 0; 3254 } 3255 3256 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3257 enum reg_arg_type t) 3258 { 3259 struct bpf_verifier_state *vstate = env->cur_state; 3260 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3261 3262 return __check_reg_arg(env, state->regs, regno, t); 3263 } 3264 3265 static int insn_stack_access_flags(int frameno, int spi) 3266 { 3267 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3268 } 3269 3270 static int insn_stack_access_spi(int insn_flags) 3271 { 3272 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3273 } 3274 3275 static int insn_stack_access_frameno(int insn_flags) 3276 { 3277 return insn_flags & INSN_F_FRAMENO_MASK; 3278 } 3279 3280 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3281 { 3282 env->insn_aux_data[idx].jmp_point = true; 3283 } 3284 3285 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3286 { 3287 return env->insn_aux_data[insn_idx].jmp_point; 3288 } 3289 3290 /* for any branch, call, exit record the history of jmps in the given state */ 3291 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 3292 int insn_flags) 3293 { 3294 u32 cnt = cur->jmp_history_cnt; 3295 struct bpf_jmp_history_entry *p; 3296 size_t alloc_size; 3297 3298 /* combine instruction flags if we already recorded this instruction */ 3299 if (env->cur_hist_ent) { 3300 /* atomic instructions push insn_flags twice, for READ and 3301 * WRITE sides, but they should agree on stack slot 3302 */ 3303 WARN_ONCE((env->cur_hist_ent->flags & insn_flags) && 3304 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 3305 "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n", 3306 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 3307 env->cur_hist_ent->flags |= insn_flags; 3308 return 0; 3309 } 3310 3311 cnt++; 3312 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3313 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3314 if (!p) 3315 return -ENOMEM; 3316 cur->jmp_history = p; 3317 3318 p = &cur->jmp_history[cnt - 1]; 3319 p->idx = env->insn_idx; 3320 p->prev_idx = env->prev_insn_idx; 3321 p->flags = insn_flags; 3322 cur->jmp_history_cnt = cnt; 3323 env->cur_hist_ent = p; 3324 3325 return 0; 3326 } 3327 3328 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st, 3329 u32 hist_end, int insn_idx) 3330 { 3331 if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx) 3332 return &st->jmp_history[hist_end - 1]; 3333 return NULL; 3334 } 3335 3336 /* Backtrack one insn at a time. If idx is not at the top of recorded 3337 * history then previous instruction came from straight line execution. 3338 * Return -ENOENT if we exhausted all instructions within given state. 3339 * 3340 * It's legal to have a bit of a looping with the same starting and ending 3341 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3342 * instruction index is the same as state's first_idx doesn't mean we are 3343 * done. If there is still some jump history left, we should keep going. We 3344 * need to take into account that we might have a jump history between given 3345 * state's parent and itself, due to checkpointing. In this case, we'll have 3346 * history entry recording a jump from last instruction of parent state and 3347 * first instruction of given state. 3348 */ 3349 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3350 u32 *history) 3351 { 3352 u32 cnt = *history; 3353 3354 if (i == st->first_insn_idx) { 3355 if (cnt == 0) 3356 return -ENOENT; 3357 if (cnt == 1 && st->jmp_history[0].idx == i) 3358 return -ENOENT; 3359 } 3360 3361 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3362 i = st->jmp_history[cnt - 1].prev_idx; 3363 (*history)--; 3364 } else { 3365 i--; 3366 } 3367 return i; 3368 } 3369 3370 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3371 { 3372 const struct btf_type *func; 3373 struct btf *desc_btf; 3374 3375 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3376 return NULL; 3377 3378 desc_btf = find_kfunc_desc_btf(data, insn->off); 3379 if (IS_ERR(desc_btf)) 3380 return "<error>"; 3381 3382 func = btf_type_by_id(desc_btf, insn->imm); 3383 return btf_name_by_offset(desc_btf, func->name_off); 3384 } 3385 3386 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3387 { 3388 bt->frame = frame; 3389 } 3390 3391 static inline void bt_reset(struct backtrack_state *bt) 3392 { 3393 struct bpf_verifier_env *env = bt->env; 3394 3395 memset(bt, 0, sizeof(*bt)); 3396 bt->env = env; 3397 } 3398 3399 static inline u32 bt_empty(struct backtrack_state *bt) 3400 { 3401 u64 mask = 0; 3402 int i; 3403 3404 for (i = 0; i <= bt->frame; i++) 3405 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3406 3407 return mask == 0; 3408 } 3409 3410 static inline int bt_subprog_enter(struct backtrack_state *bt) 3411 { 3412 if (bt->frame == MAX_CALL_FRAMES - 1) { 3413 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3414 WARN_ONCE(1, "verifier backtracking bug"); 3415 return -EFAULT; 3416 } 3417 bt->frame++; 3418 return 0; 3419 } 3420 3421 static inline int bt_subprog_exit(struct backtrack_state *bt) 3422 { 3423 if (bt->frame == 0) { 3424 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3425 WARN_ONCE(1, "verifier backtracking bug"); 3426 return -EFAULT; 3427 } 3428 bt->frame--; 3429 return 0; 3430 } 3431 3432 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3433 { 3434 bt->reg_masks[frame] |= 1 << reg; 3435 } 3436 3437 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3438 { 3439 bt->reg_masks[frame] &= ~(1 << reg); 3440 } 3441 3442 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3443 { 3444 bt_set_frame_reg(bt, bt->frame, reg); 3445 } 3446 3447 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3448 { 3449 bt_clear_frame_reg(bt, bt->frame, reg); 3450 } 3451 3452 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3453 { 3454 bt->stack_masks[frame] |= 1ull << slot; 3455 } 3456 3457 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3458 { 3459 bt->stack_masks[frame] &= ~(1ull << slot); 3460 } 3461 3462 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3463 { 3464 return bt->reg_masks[frame]; 3465 } 3466 3467 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3468 { 3469 return bt->reg_masks[bt->frame]; 3470 } 3471 3472 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3473 { 3474 return bt->stack_masks[frame]; 3475 } 3476 3477 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3478 { 3479 return bt->stack_masks[bt->frame]; 3480 } 3481 3482 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3483 { 3484 return bt->reg_masks[bt->frame] & (1 << reg); 3485 } 3486 3487 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 3488 { 3489 return bt->stack_masks[frame] & (1ull << slot); 3490 } 3491 3492 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3493 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3494 { 3495 DECLARE_BITMAP(mask, 64); 3496 bool first = true; 3497 int i, n; 3498 3499 buf[0] = '\0'; 3500 3501 bitmap_from_u64(mask, reg_mask); 3502 for_each_set_bit(i, mask, 32) { 3503 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3504 first = false; 3505 buf += n; 3506 buf_sz -= n; 3507 if (buf_sz < 0) 3508 break; 3509 } 3510 } 3511 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3512 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3513 { 3514 DECLARE_BITMAP(mask, 64); 3515 bool first = true; 3516 int i, n; 3517 3518 buf[0] = '\0'; 3519 3520 bitmap_from_u64(mask, stack_mask); 3521 for_each_set_bit(i, mask, 64) { 3522 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3523 first = false; 3524 buf += n; 3525 buf_sz -= n; 3526 if (buf_sz < 0) 3527 break; 3528 } 3529 } 3530 3531 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3532 3533 /* For given verifier state backtrack_insn() is called from the last insn to 3534 * the first insn. Its purpose is to compute a bitmask of registers and 3535 * stack slots that needs precision in the parent verifier state. 3536 * 3537 * @idx is an index of the instruction we are currently processing; 3538 * @subseq_idx is an index of the subsequent instruction that: 3539 * - *would be* executed next, if jump history is viewed in forward order; 3540 * - *was* processed previously during backtracking. 3541 */ 3542 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3543 struct bpf_jmp_history_entry *hist, struct backtrack_state *bt) 3544 { 3545 const struct bpf_insn_cbs cbs = { 3546 .cb_call = disasm_kfunc_name, 3547 .cb_print = verbose, 3548 .private_data = env, 3549 }; 3550 struct bpf_insn *insn = env->prog->insnsi + idx; 3551 u8 class = BPF_CLASS(insn->code); 3552 u8 opcode = BPF_OP(insn->code); 3553 u8 mode = BPF_MODE(insn->code); 3554 u32 dreg = insn->dst_reg; 3555 u32 sreg = insn->src_reg; 3556 u32 spi, i, fr; 3557 3558 if (insn->code == 0) 3559 return 0; 3560 if (env->log.level & BPF_LOG_LEVEL2) { 3561 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3562 verbose(env, "mark_precise: frame%d: regs=%s ", 3563 bt->frame, env->tmp_str_buf); 3564 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3565 verbose(env, "stack=%s before ", env->tmp_str_buf); 3566 verbose(env, "%d: ", idx); 3567 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3568 } 3569 3570 if (class == BPF_ALU || class == BPF_ALU64) { 3571 if (!bt_is_reg_set(bt, dreg)) 3572 return 0; 3573 if (opcode == BPF_END || opcode == BPF_NEG) { 3574 /* sreg is reserved and unused 3575 * dreg still need precision before this insn 3576 */ 3577 return 0; 3578 } else if (opcode == BPF_MOV) { 3579 if (BPF_SRC(insn->code) == BPF_X) { 3580 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3581 * dreg needs precision after this insn 3582 * sreg needs precision before this insn 3583 */ 3584 bt_clear_reg(bt, dreg); 3585 bt_set_reg(bt, sreg); 3586 } else { 3587 /* dreg = K 3588 * dreg needs precision after this insn. 3589 * Corresponding register is already marked 3590 * as precise=true in this verifier state. 3591 * No further markings in parent are necessary 3592 */ 3593 bt_clear_reg(bt, dreg); 3594 } 3595 } else { 3596 if (BPF_SRC(insn->code) == BPF_X) { 3597 /* dreg += sreg 3598 * both dreg and sreg need precision 3599 * before this insn 3600 */ 3601 bt_set_reg(bt, sreg); 3602 } /* else dreg += K 3603 * dreg still needs precision before this insn 3604 */ 3605 } 3606 } else if (class == BPF_LDX) { 3607 if (!bt_is_reg_set(bt, dreg)) 3608 return 0; 3609 bt_clear_reg(bt, dreg); 3610 3611 /* scalars can only be spilled into stack w/o losing precision. 3612 * Load from any other memory can be zero extended. 3613 * The desire to keep that precision is already indicated 3614 * by 'precise' mark in corresponding register of this state. 3615 * No further tracking necessary. 3616 */ 3617 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3618 return 0; 3619 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3620 * that [fp - off] slot contains scalar that needs to be 3621 * tracked with precision 3622 */ 3623 spi = insn_stack_access_spi(hist->flags); 3624 fr = insn_stack_access_frameno(hist->flags); 3625 bt_set_frame_slot(bt, fr, spi); 3626 } else if (class == BPF_STX || class == BPF_ST) { 3627 if (bt_is_reg_set(bt, dreg)) 3628 /* stx & st shouldn't be using _scalar_ dst_reg 3629 * to access memory. It means backtracking 3630 * encountered a case of pointer subtraction. 3631 */ 3632 return -ENOTSUPP; 3633 /* scalars can only be spilled into stack */ 3634 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3635 return 0; 3636 spi = insn_stack_access_spi(hist->flags); 3637 fr = insn_stack_access_frameno(hist->flags); 3638 if (!bt_is_frame_slot_set(bt, fr, spi)) 3639 return 0; 3640 bt_clear_frame_slot(bt, fr, spi); 3641 if (class == BPF_STX) 3642 bt_set_reg(bt, sreg); 3643 } else if (class == BPF_JMP || class == BPF_JMP32) { 3644 if (bpf_pseudo_call(insn)) { 3645 int subprog_insn_idx, subprog; 3646 3647 subprog_insn_idx = idx + insn->imm + 1; 3648 subprog = find_subprog(env, subprog_insn_idx); 3649 if (subprog < 0) 3650 return -EFAULT; 3651 3652 if (subprog_is_global(env, subprog)) { 3653 /* check that jump history doesn't have any 3654 * extra instructions from subprog; the next 3655 * instruction after call to global subprog 3656 * should be literally next instruction in 3657 * caller program 3658 */ 3659 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3660 /* r1-r5 are invalidated after subprog call, 3661 * so for global func call it shouldn't be set 3662 * anymore 3663 */ 3664 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3665 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3666 WARN_ONCE(1, "verifier backtracking bug"); 3667 return -EFAULT; 3668 } 3669 /* global subprog always sets R0 */ 3670 bt_clear_reg(bt, BPF_REG_0); 3671 return 0; 3672 } else { 3673 /* static subprog call instruction, which 3674 * means that we are exiting current subprog, 3675 * so only r1-r5 could be still requested as 3676 * precise, r0 and r6-r10 or any stack slot in 3677 * the current frame should be zero by now 3678 */ 3679 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3680 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3681 WARN_ONCE(1, "verifier backtracking bug"); 3682 return -EFAULT; 3683 } 3684 /* we are now tracking register spills correctly, 3685 * so any instance of leftover slots is a bug 3686 */ 3687 if (bt_stack_mask(bt) != 0) { 3688 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 3689 WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)"); 3690 return -EFAULT; 3691 } 3692 /* propagate r1-r5 to the caller */ 3693 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3694 if (bt_is_reg_set(bt, i)) { 3695 bt_clear_reg(bt, i); 3696 bt_set_frame_reg(bt, bt->frame - 1, i); 3697 } 3698 } 3699 if (bt_subprog_exit(bt)) 3700 return -EFAULT; 3701 return 0; 3702 } 3703 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 3704 /* exit from callback subprog to callback-calling helper or 3705 * kfunc call. Use idx/subseq_idx check to discern it from 3706 * straight line code backtracking. 3707 * Unlike the subprog call handling above, we shouldn't 3708 * propagate precision of r1-r5 (if any requested), as they are 3709 * not actually arguments passed directly to callback subprogs 3710 */ 3711 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3712 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3713 WARN_ONCE(1, "verifier backtracking bug"); 3714 return -EFAULT; 3715 } 3716 if (bt_stack_mask(bt) != 0) { 3717 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 3718 WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)"); 3719 return -EFAULT; 3720 } 3721 /* clear r1-r5 in callback subprog's mask */ 3722 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3723 bt_clear_reg(bt, i); 3724 if (bt_subprog_exit(bt)) 3725 return -EFAULT; 3726 return 0; 3727 } else if (opcode == BPF_CALL) { 3728 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3729 * catch this error later. Make backtracking conservative 3730 * with ENOTSUPP. 3731 */ 3732 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3733 return -ENOTSUPP; 3734 /* regular helper call sets R0 */ 3735 bt_clear_reg(bt, BPF_REG_0); 3736 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3737 /* if backtracing was looking for registers R1-R5 3738 * they should have been found already. 3739 */ 3740 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3741 WARN_ONCE(1, "verifier backtracking bug"); 3742 return -EFAULT; 3743 } 3744 } else if (opcode == BPF_EXIT) { 3745 bool r0_precise; 3746 3747 /* Backtracking to a nested function call, 'idx' is a part of 3748 * the inner frame 'subseq_idx' is a part of the outer frame. 3749 * In case of a regular function call, instructions giving 3750 * precision to registers R1-R5 should have been found already. 3751 * In case of a callback, it is ok to have R1-R5 marked for 3752 * backtracking, as these registers are set by the function 3753 * invoking callback. 3754 */ 3755 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 3756 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3757 bt_clear_reg(bt, i); 3758 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3759 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3760 WARN_ONCE(1, "verifier backtracking bug"); 3761 return -EFAULT; 3762 } 3763 3764 /* BPF_EXIT in subprog or callback always returns 3765 * right after the call instruction, so by checking 3766 * whether the instruction at subseq_idx-1 is subprog 3767 * call or not we can distinguish actual exit from 3768 * *subprog* from exit from *callback*. In the former 3769 * case, we need to propagate r0 precision, if 3770 * necessary. In the former we never do that. 3771 */ 3772 r0_precise = subseq_idx - 1 >= 0 && 3773 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3774 bt_is_reg_set(bt, BPF_REG_0); 3775 3776 bt_clear_reg(bt, BPF_REG_0); 3777 if (bt_subprog_enter(bt)) 3778 return -EFAULT; 3779 3780 if (r0_precise) 3781 bt_set_reg(bt, BPF_REG_0); 3782 /* r6-r9 and stack slots will stay set in caller frame 3783 * bitmasks until we return back from callee(s) 3784 */ 3785 return 0; 3786 } else if (BPF_SRC(insn->code) == BPF_X) { 3787 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3788 return 0; 3789 /* dreg <cond> sreg 3790 * Both dreg and sreg need precision before 3791 * this insn. If only sreg was marked precise 3792 * before it would be equally necessary to 3793 * propagate it to dreg. 3794 */ 3795 bt_set_reg(bt, dreg); 3796 bt_set_reg(bt, sreg); 3797 /* else dreg <cond> K 3798 * Only dreg still needs precision before 3799 * this insn, so for the K-based conditional 3800 * there is nothing new to be marked. 3801 */ 3802 } 3803 } else if (class == BPF_LD) { 3804 if (!bt_is_reg_set(bt, dreg)) 3805 return 0; 3806 bt_clear_reg(bt, dreg); 3807 /* It's ld_imm64 or ld_abs or ld_ind. 3808 * For ld_imm64 no further tracking of precision 3809 * into parent is necessary 3810 */ 3811 if (mode == BPF_IND || mode == BPF_ABS) 3812 /* to be analyzed */ 3813 return -ENOTSUPP; 3814 } 3815 return 0; 3816 } 3817 3818 /* the scalar precision tracking algorithm: 3819 * . at the start all registers have precise=false. 3820 * . scalar ranges are tracked as normal through alu and jmp insns. 3821 * . once precise value of the scalar register is used in: 3822 * . ptr + scalar alu 3823 * . if (scalar cond K|scalar) 3824 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3825 * backtrack through the verifier states and mark all registers and 3826 * stack slots with spilled constants that these scalar regisers 3827 * should be precise. 3828 * . during state pruning two registers (or spilled stack slots) 3829 * are equivalent if both are not precise. 3830 * 3831 * Note the verifier cannot simply walk register parentage chain, 3832 * since many different registers and stack slots could have been 3833 * used to compute single precise scalar. 3834 * 3835 * The approach of starting with precise=true for all registers and then 3836 * backtrack to mark a register as not precise when the verifier detects 3837 * that program doesn't care about specific value (e.g., when helper 3838 * takes register as ARG_ANYTHING parameter) is not safe. 3839 * 3840 * It's ok to walk single parentage chain of the verifier states. 3841 * It's possible that this backtracking will go all the way till 1st insn. 3842 * All other branches will be explored for needing precision later. 3843 * 3844 * The backtracking needs to deal with cases like: 3845 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3846 * r9 -= r8 3847 * r5 = r9 3848 * if r5 > 0x79f goto pc+7 3849 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3850 * r5 += 1 3851 * ... 3852 * call bpf_perf_event_output#25 3853 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3854 * 3855 * and this case: 3856 * r6 = 1 3857 * call foo // uses callee's r6 inside to compute r0 3858 * r0 += r6 3859 * if r0 == 0 goto 3860 * 3861 * to track above reg_mask/stack_mask needs to be independent for each frame. 3862 * 3863 * Also if parent's curframe > frame where backtracking started, 3864 * the verifier need to mark registers in both frames, otherwise callees 3865 * may incorrectly prune callers. This is similar to 3866 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3867 * 3868 * For now backtracking falls back into conservative marking. 3869 */ 3870 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3871 struct bpf_verifier_state *st) 3872 { 3873 struct bpf_func_state *func; 3874 struct bpf_reg_state *reg; 3875 int i, j; 3876 3877 if (env->log.level & BPF_LOG_LEVEL2) { 3878 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3879 st->curframe); 3880 } 3881 3882 /* big hammer: mark all scalars precise in this path. 3883 * pop_stack may still get !precise scalars. 3884 * We also skip current state and go straight to first parent state, 3885 * because precision markings in current non-checkpointed state are 3886 * not needed. See why in the comment in __mark_chain_precision below. 3887 */ 3888 for (st = st->parent; st; st = st->parent) { 3889 for (i = 0; i <= st->curframe; i++) { 3890 func = st->frame[i]; 3891 for (j = 0; j < BPF_REG_FP; j++) { 3892 reg = &func->regs[j]; 3893 if (reg->type != SCALAR_VALUE || reg->precise) 3894 continue; 3895 reg->precise = true; 3896 if (env->log.level & BPF_LOG_LEVEL2) { 3897 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3898 i, j); 3899 } 3900 } 3901 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3902 if (!is_spilled_reg(&func->stack[j])) 3903 continue; 3904 reg = &func->stack[j].spilled_ptr; 3905 if (reg->type != SCALAR_VALUE || reg->precise) 3906 continue; 3907 reg->precise = true; 3908 if (env->log.level & BPF_LOG_LEVEL2) { 3909 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3910 i, -(j + 1) * 8); 3911 } 3912 } 3913 } 3914 } 3915 } 3916 3917 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3918 { 3919 struct bpf_func_state *func; 3920 struct bpf_reg_state *reg; 3921 int i, j; 3922 3923 for (i = 0; i <= st->curframe; i++) { 3924 func = st->frame[i]; 3925 for (j = 0; j < BPF_REG_FP; j++) { 3926 reg = &func->regs[j]; 3927 if (reg->type != SCALAR_VALUE) 3928 continue; 3929 reg->precise = false; 3930 } 3931 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3932 if (!is_spilled_reg(&func->stack[j])) 3933 continue; 3934 reg = &func->stack[j].spilled_ptr; 3935 if (reg->type != SCALAR_VALUE) 3936 continue; 3937 reg->precise = false; 3938 } 3939 } 3940 } 3941 3942 static bool idset_contains(struct bpf_idset *s, u32 id) 3943 { 3944 u32 i; 3945 3946 for (i = 0; i < s->count; ++i) 3947 if (s->ids[i] == id) 3948 return true; 3949 3950 return false; 3951 } 3952 3953 static int idset_push(struct bpf_idset *s, u32 id) 3954 { 3955 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 3956 return -EFAULT; 3957 s->ids[s->count++] = id; 3958 return 0; 3959 } 3960 3961 static void idset_reset(struct bpf_idset *s) 3962 { 3963 s->count = 0; 3964 } 3965 3966 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 3967 * Mark all registers with these IDs as precise. 3968 */ 3969 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3970 { 3971 struct bpf_idset *precise_ids = &env->idset_scratch; 3972 struct backtrack_state *bt = &env->bt; 3973 struct bpf_func_state *func; 3974 struct bpf_reg_state *reg; 3975 DECLARE_BITMAP(mask, 64); 3976 int i, fr; 3977 3978 idset_reset(precise_ids); 3979 3980 for (fr = bt->frame; fr >= 0; fr--) { 3981 func = st->frame[fr]; 3982 3983 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 3984 for_each_set_bit(i, mask, 32) { 3985 reg = &func->regs[i]; 3986 if (!reg->id || reg->type != SCALAR_VALUE) 3987 continue; 3988 if (idset_push(precise_ids, reg->id)) 3989 return -EFAULT; 3990 } 3991 3992 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 3993 for_each_set_bit(i, mask, 64) { 3994 if (i >= func->allocated_stack / BPF_REG_SIZE) 3995 break; 3996 if (!is_spilled_scalar_reg(&func->stack[i])) 3997 continue; 3998 reg = &func->stack[i].spilled_ptr; 3999 if (!reg->id) 4000 continue; 4001 if (idset_push(precise_ids, reg->id)) 4002 return -EFAULT; 4003 } 4004 } 4005 4006 for (fr = 0; fr <= st->curframe; ++fr) { 4007 func = st->frame[fr]; 4008 4009 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 4010 reg = &func->regs[i]; 4011 if (!reg->id) 4012 continue; 4013 if (!idset_contains(precise_ids, reg->id)) 4014 continue; 4015 bt_set_frame_reg(bt, fr, i); 4016 } 4017 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 4018 if (!is_spilled_scalar_reg(&func->stack[i])) 4019 continue; 4020 reg = &func->stack[i].spilled_ptr; 4021 if (!reg->id) 4022 continue; 4023 if (!idset_contains(precise_ids, reg->id)) 4024 continue; 4025 bt_set_frame_slot(bt, fr, i); 4026 } 4027 } 4028 4029 return 0; 4030 } 4031 4032 /* 4033 * __mark_chain_precision() backtracks BPF program instruction sequence and 4034 * chain of verifier states making sure that register *regno* (if regno >= 0) 4035 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4036 * SCALARS, as well as any other registers and slots that contribute to 4037 * a tracked state of given registers/stack slots, depending on specific BPF 4038 * assembly instructions (see backtrack_insns() for exact instruction handling 4039 * logic). This backtracking relies on recorded jmp_history and is able to 4040 * traverse entire chain of parent states. This process ends only when all the 4041 * necessary registers/slots and their transitive dependencies are marked as 4042 * precise. 4043 * 4044 * One important and subtle aspect is that precise marks *do not matter* in 4045 * the currently verified state (current state). It is important to understand 4046 * why this is the case. 4047 * 4048 * First, note that current state is the state that is not yet "checkpointed", 4049 * i.e., it is not yet put into env->explored_states, and it has no children 4050 * states as well. It's ephemeral, and can end up either a) being discarded if 4051 * compatible explored state is found at some point or BPF_EXIT instruction is 4052 * reached or b) checkpointed and put into env->explored_states, branching out 4053 * into one or more children states. 4054 * 4055 * In the former case, precise markings in current state are completely 4056 * ignored by state comparison code (see regsafe() for details). Only 4057 * checkpointed ("old") state precise markings are important, and if old 4058 * state's register/slot is precise, regsafe() assumes current state's 4059 * register/slot as precise and checks value ranges exactly and precisely. If 4060 * states turn out to be compatible, current state's necessary precise 4061 * markings and any required parent states' precise markings are enforced 4062 * after the fact with propagate_precision() logic, after the fact. But it's 4063 * important to realize that in this case, even after marking current state 4064 * registers/slots as precise, we immediately discard current state. So what 4065 * actually matters is any of the precise markings propagated into current 4066 * state's parent states, which are always checkpointed (due to b) case above). 4067 * As such, for scenario a) it doesn't matter if current state has precise 4068 * markings set or not. 4069 * 4070 * Now, for the scenario b), checkpointing and forking into child(ren) 4071 * state(s). Note that before current state gets to checkpointing step, any 4072 * processed instruction always assumes precise SCALAR register/slot 4073 * knowledge: if precise value or range is useful to prune jump branch, BPF 4074 * verifier takes this opportunity enthusiastically. Similarly, when 4075 * register's value is used to calculate offset or memory address, exact 4076 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4077 * what we mentioned above about state comparison ignoring precise markings 4078 * during state comparison, BPF verifier ignores and also assumes precise 4079 * markings *at will* during instruction verification process. But as verifier 4080 * assumes precision, it also propagates any precision dependencies across 4081 * parent states, which are not yet finalized, so can be further restricted 4082 * based on new knowledge gained from restrictions enforced by their children 4083 * states. This is so that once those parent states are finalized, i.e., when 4084 * they have no more active children state, state comparison logic in 4085 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4086 * required for correctness. 4087 * 4088 * To build a bit more intuition, note also that once a state is checkpointed, 4089 * the path we took to get to that state is not important. This is crucial 4090 * property for state pruning. When state is checkpointed and finalized at 4091 * some instruction index, it can be correctly and safely used to "short 4092 * circuit" any *compatible* state that reaches exactly the same instruction 4093 * index. I.e., if we jumped to that instruction from a completely different 4094 * code path than original finalized state was derived from, it doesn't 4095 * matter, current state can be discarded because from that instruction 4096 * forward having a compatible state will ensure we will safely reach the 4097 * exit. States describe preconditions for further exploration, but completely 4098 * forget the history of how we got here. 4099 * 4100 * This also means that even if we needed precise SCALAR range to get to 4101 * finalized state, but from that point forward *that same* SCALAR register is 4102 * never used in a precise context (i.e., it's precise value is not needed for 4103 * correctness), it's correct and safe to mark such register as "imprecise" 4104 * (i.e., precise marking set to false). This is what we rely on when we do 4105 * not set precise marking in current state. If no child state requires 4106 * precision for any given SCALAR register, it's safe to dictate that it can 4107 * be imprecise. If any child state does require this register to be precise, 4108 * we'll mark it precise later retroactively during precise markings 4109 * propagation from child state to parent states. 4110 * 4111 * Skipping precise marking setting in current state is a mild version of 4112 * relying on the above observation. But we can utilize this property even 4113 * more aggressively by proactively forgetting any precise marking in the 4114 * current state (which we inherited from the parent state), right before we 4115 * checkpoint it and branch off into new child state. This is done by 4116 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4117 * finalized states which help in short circuiting more future states. 4118 */ 4119 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4120 { 4121 struct backtrack_state *bt = &env->bt; 4122 struct bpf_verifier_state *st = env->cur_state; 4123 int first_idx = st->first_insn_idx; 4124 int last_idx = env->insn_idx; 4125 int subseq_idx = -1; 4126 struct bpf_func_state *func; 4127 struct bpf_reg_state *reg; 4128 bool skip_first = true; 4129 int i, fr, err; 4130 4131 if (!env->bpf_capable) 4132 return 0; 4133 4134 /* set frame number from which we are starting to backtrack */ 4135 bt_init(bt, env->cur_state->curframe); 4136 4137 /* Do sanity checks against current state of register and/or stack 4138 * slot, but don't set precise flag in current state, as precision 4139 * tracking in the current state is unnecessary. 4140 */ 4141 func = st->frame[bt->frame]; 4142 if (regno >= 0) { 4143 reg = &func->regs[regno]; 4144 if (reg->type != SCALAR_VALUE) { 4145 WARN_ONCE(1, "backtracing misuse"); 4146 return -EFAULT; 4147 } 4148 bt_set_reg(bt, regno); 4149 } 4150 4151 if (bt_empty(bt)) 4152 return 0; 4153 4154 for (;;) { 4155 DECLARE_BITMAP(mask, 64); 4156 u32 history = st->jmp_history_cnt; 4157 struct bpf_jmp_history_entry *hist; 4158 4159 if (env->log.level & BPF_LOG_LEVEL2) { 4160 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4161 bt->frame, last_idx, first_idx, subseq_idx); 4162 } 4163 4164 /* If some register with scalar ID is marked as precise, 4165 * make sure that all registers sharing this ID are also precise. 4166 * This is needed to estimate effect of find_equal_scalars(). 4167 * Do this at the last instruction of each state, 4168 * bpf_reg_state::id fields are valid for these instructions. 4169 * 4170 * Allows to track precision in situation like below: 4171 * 4172 * r2 = unknown value 4173 * ... 4174 * --- state #0 --- 4175 * ... 4176 * r1 = r2 // r1 and r2 now share the same ID 4177 * ... 4178 * --- state #1 {r1.id = A, r2.id = A} --- 4179 * ... 4180 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4181 * ... 4182 * --- state #2 {r1.id = A, r2.id = A} --- 4183 * r3 = r10 4184 * r3 += r1 // need to mark both r1 and r2 4185 */ 4186 if (mark_precise_scalar_ids(env, st)) 4187 return -EFAULT; 4188 4189 if (last_idx < 0) { 4190 /* we are at the entry into subprog, which 4191 * is expected for global funcs, but only if 4192 * requested precise registers are R1-R5 4193 * (which are global func's input arguments) 4194 */ 4195 if (st->curframe == 0 && 4196 st->frame[0]->subprogno > 0 && 4197 st->frame[0]->callsite == BPF_MAIN_FUNC && 4198 bt_stack_mask(bt) == 0 && 4199 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4200 bitmap_from_u64(mask, bt_reg_mask(bt)); 4201 for_each_set_bit(i, mask, 32) { 4202 reg = &st->frame[0]->regs[i]; 4203 bt_clear_reg(bt, i); 4204 if (reg->type == SCALAR_VALUE) 4205 reg->precise = true; 4206 } 4207 return 0; 4208 } 4209 4210 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4211 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4212 WARN_ONCE(1, "verifier backtracking bug"); 4213 return -EFAULT; 4214 } 4215 4216 for (i = last_idx;;) { 4217 if (skip_first) { 4218 err = 0; 4219 skip_first = false; 4220 } else { 4221 hist = get_jmp_hist_entry(st, history, i); 4222 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4223 } 4224 if (err == -ENOTSUPP) { 4225 mark_all_scalars_precise(env, env->cur_state); 4226 bt_reset(bt); 4227 return 0; 4228 } else if (err) { 4229 return err; 4230 } 4231 if (bt_empty(bt)) 4232 /* Found assignment(s) into tracked register in this state. 4233 * Since this state is already marked, just return. 4234 * Nothing to be tracked further in the parent state. 4235 */ 4236 return 0; 4237 subseq_idx = i; 4238 i = get_prev_insn_idx(st, i, &history); 4239 if (i == -ENOENT) 4240 break; 4241 if (i >= env->prog->len) { 4242 /* This can happen if backtracking reached insn 0 4243 * and there are still reg_mask or stack_mask 4244 * to backtrack. 4245 * It means the backtracking missed the spot where 4246 * particular register was initialized with a constant. 4247 */ 4248 verbose(env, "BUG backtracking idx %d\n", i); 4249 WARN_ONCE(1, "verifier backtracking bug"); 4250 return -EFAULT; 4251 } 4252 } 4253 st = st->parent; 4254 if (!st) 4255 break; 4256 4257 for (fr = bt->frame; fr >= 0; fr--) { 4258 func = st->frame[fr]; 4259 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4260 for_each_set_bit(i, mask, 32) { 4261 reg = &func->regs[i]; 4262 if (reg->type != SCALAR_VALUE) { 4263 bt_clear_frame_reg(bt, fr, i); 4264 continue; 4265 } 4266 if (reg->precise) 4267 bt_clear_frame_reg(bt, fr, i); 4268 else 4269 reg->precise = true; 4270 } 4271 4272 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4273 for_each_set_bit(i, mask, 64) { 4274 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4275 verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n", 4276 i, func->allocated_stack / BPF_REG_SIZE); 4277 WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)"); 4278 return -EFAULT; 4279 } 4280 4281 if (!is_spilled_scalar_reg(&func->stack[i])) { 4282 bt_clear_frame_slot(bt, fr, i); 4283 continue; 4284 } 4285 reg = &func->stack[i].spilled_ptr; 4286 if (reg->precise) 4287 bt_clear_frame_slot(bt, fr, i); 4288 else 4289 reg->precise = true; 4290 } 4291 if (env->log.level & BPF_LOG_LEVEL2) { 4292 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4293 bt_frame_reg_mask(bt, fr)); 4294 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4295 fr, env->tmp_str_buf); 4296 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4297 bt_frame_stack_mask(bt, fr)); 4298 verbose(env, "stack=%s: ", env->tmp_str_buf); 4299 print_verifier_state(env, func, true); 4300 } 4301 } 4302 4303 if (bt_empty(bt)) 4304 return 0; 4305 4306 subseq_idx = first_idx; 4307 last_idx = st->last_insn_idx; 4308 first_idx = st->first_insn_idx; 4309 } 4310 4311 /* if we still have requested precise regs or slots, we missed 4312 * something (e.g., stack access through non-r10 register), so 4313 * fallback to marking all precise 4314 */ 4315 if (!bt_empty(bt)) { 4316 mark_all_scalars_precise(env, env->cur_state); 4317 bt_reset(bt); 4318 } 4319 4320 return 0; 4321 } 4322 4323 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4324 { 4325 return __mark_chain_precision(env, regno); 4326 } 4327 4328 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4329 * desired reg and stack masks across all relevant frames 4330 */ 4331 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4332 { 4333 return __mark_chain_precision(env, -1); 4334 } 4335 4336 static bool is_spillable_regtype(enum bpf_reg_type type) 4337 { 4338 switch (base_type(type)) { 4339 case PTR_TO_MAP_VALUE: 4340 case PTR_TO_STACK: 4341 case PTR_TO_CTX: 4342 case PTR_TO_PACKET: 4343 case PTR_TO_PACKET_META: 4344 case PTR_TO_PACKET_END: 4345 case PTR_TO_FLOW_KEYS: 4346 case CONST_PTR_TO_MAP: 4347 case PTR_TO_SOCKET: 4348 case PTR_TO_SOCK_COMMON: 4349 case PTR_TO_TCP_SOCK: 4350 case PTR_TO_XDP_SOCK: 4351 case PTR_TO_BTF_ID: 4352 case PTR_TO_BUF: 4353 case PTR_TO_MEM: 4354 case PTR_TO_FUNC: 4355 case PTR_TO_MAP_KEY: 4356 return true; 4357 default: 4358 return false; 4359 } 4360 } 4361 4362 /* Does this register contain a constant zero? */ 4363 static bool register_is_null(struct bpf_reg_state *reg) 4364 { 4365 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4366 } 4367 4368 /* check if register is a constant scalar value */ 4369 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 4370 { 4371 return reg->type == SCALAR_VALUE && 4372 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 4373 } 4374 4375 /* assuming is_reg_const() is true, return constant value of a register */ 4376 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 4377 { 4378 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 4379 } 4380 4381 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4382 { 4383 return tnum_is_unknown(reg->var_off) && 4384 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4385 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4386 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4387 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4388 } 4389 4390 static bool register_is_bounded(struct bpf_reg_state *reg) 4391 { 4392 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4393 } 4394 4395 static bool __is_pointer_value(bool allow_ptr_leaks, 4396 const struct bpf_reg_state *reg) 4397 { 4398 if (allow_ptr_leaks) 4399 return false; 4400 4401 return reg->type != SCALAR_VALUE; 4402 } 4403 4404 /* Copy src state preserving dst->parent and dst->live fields */ 4405 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4406 { 4407 struct bpf_reg_state *parent = dst->parent; 4408 enum bpf_reg_liveness live = dst->live; 4409 4410 *dst = *src; 4411 dst->parent = parent; 4412 dst->live = live; 4413 } 4414 4415 static void save_register_state(struct bpf_verifier_env *env, 4416 struct bpf_func_state *state, 4417 int spi, struct bpf_reg_state *reg, 4418 int size) 4419 { 4420 int i; 4421 4422 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4423 if (size == BPF_REG_SIZE) 4424 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4425 4426 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4427 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4428 4429 /* size < 8 bytes spill */ 4430 for (; i; i--) 4431 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 4432 } 4433 4434 static bool is_bpf_st_mem(struct bpf_insn *insn) 4435 { 4436 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4437 } 4438 4439 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4440 * stack boundary and alignment are checked in check_mem_access() 4441 */ 4442 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4443 /* stack frame we're writing to */ 4444 struct bpf_func_state *state, 4445 int off, int size, int value_regno, 4446 int insn_idx) 4447 { 4448 struct bpf_func_state *cur; /* state of the current function */ 4449 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4450 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4451 struct bpf_reg_state *reg = NULL; 4452 int insn_flags = insn_stack_access_flags(state->frameno, spi); 4453 4454 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4455 * so it's aligned access and [off, off + size) are within stack limits 4456 */ 4457 if (!env->allow_ptr_leaks && 4458 is_spilled_reg(&state->stack[spi]) && 4459 size != BPF_REG_SIZE) { 4460 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4461 return -EACCES; 4462 } 4463 4464 cur = env->cur_state->frame[env->cur_state->curframe]; 4465 if (value_regno >= 0) 4466 reg = &cur->regs[value_regno]; 4467 if (!env->bypass_spec_v4) { 4468 bool sanitize = reg && is_spillable_regtype(reg->type); 4469 4470 for (i = 0; i < size; i++) { 4471 u8 type = state->stack[spi].slot_type[i]; 4472 4473 if (type != STACK_MISC && type != STACK_ZERO) { 4474 sanitize = true; 4475 break; 4476 } 4477 } 4478 4479 if (sanitize) 4480 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4481 } 4482 4483 err = destroy_if_dynptr_stack_slot(env, state, spi); 4484 if (err) 4485 return err; 4486 4487 mark_stack_slot_scratched(env, spi); 4488 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && env->bpf_capable) { 4489 save_register_state(env, state, spi, reg, size); 4490 /* Break the relation on a narrowing spill. */ 4491 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4492 state->stack[spi].spilled_ptr.id = 0; 4493 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4494 insn->imm != 0 && env->bpf_capable) { 4495 struct bpf_reg_state fake_reg = {}; 4496 4497 __mark_reg_known(&fake_reg, insn->imm); 4498 fake_reg.type = SCALAR_VALUE; 4499 save_register_state(env, state, spi, &fake_reg, size); 4500 } else if (reg && is_spillable_regtype(reg->type)) { 4501 /* register containing pointer is being spilled into stack */ 4502 if (size != BPF_REG_SIZE) { 4503 verbose_linfo(env, insn_idx, "; "); 4504 verbose(env, "invalid size of register spill\n"); 4505 return -EACCES; 4506 } 4507 if (state != cur && reg->type == PTR_TO_STACK) { 4508 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4509 return -EINVAL; 4510 } 4511 save_register_state(env, state, spi, reg, size); 4512 } else { 4513 u8 type = STACK_MISC; 4514 4515 /* regular write of data into stack destroys any spilled ptr */ 4516 state->stack[spi].spilled_ptr.type = NOT_INIT; 4517 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4518 if (is_stack_slot_special(&state->stack[spi])) 4519 for (i = 0; i < BPF_REG_SIZE; i++) 4520 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4521 4522 /* only mark the slot as written if all 8 bytes were written 4523 * otherwise read propagation may incorrectly stop too soon 4524 * when stack slots are partially written. 4525 * This heuristic means that read propagation will be 4526 * conservative, since it will add reg_live_read marks 4527 * to stack slots all the way to first state when programs 4528 * writes+reads less than 8 bytes 4529 */ 4530 if (size == BPF_REG_SIZE) 4531 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4532 4533 /* when we zero initialize stack slots mark them as such */ 4534 if ((reg && register_is_null(reg)) || 4535 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4536 /* STACK_ZERO case happened because register spill 4537 * wasn't properly aligned at the stack slot boundary, 4538 * so it's not a register spill anymore; force 4539 * originating register to be precise to make 4540 * STACK_ZERO correct for subsequent states 4541 */ 4542 err = mark_chain_precision(env, value_regno); 4543 if (err) 4544 return err; 4545 type = STACK_ZERO; 4546 } 4547 4548 /* Mark slots affected by this stack write. */ 4549 for (i = 0; i < size; i++) 4550 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 4551 insn_flags = 0; /* not a register spill */ 4552 } 4553 4554 if (insn_flags) 4555 return push_jmp_history(env, env->cur_state, insn_flags); 4556 return 0; 4557 } 4558 4559 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4560 * known to contain a variable offset. 4561 * This function checks whether the write is permitted and conservatively 4562 * tracks the effects of the write, considering that each stack slot in the 4563 * dynamic range is potentially written to. 4564 * 4565 * 'off' includes 'regno->off'. 4566 * 'value_regno' can be -1, meaning that an unknown value is being written to 4567 * the stack. 4568 * 4569 * Spilled pointers in range are not marked as written because we don't know 4570 * what's going to be actually written. This means that read propagation for 4571 * future reads cannot be terminated by this write. 4572 * 4573 * For privileged programs, uninitialized stack slots are considered 4574 * initialized by this write (even though we don't know exactly what offsets 4575 * are going to be written to). The idea is that we don't want the verifier to 4576 * reject future reads that access slots written to through variable offsets. 4577 */ 4578 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4579 /* func where register points to */ 4580 struct bpf_func_state *state, 4581 int ptr_regno, int off, int size, 4582 int value_regno, int insn_idx) 4583 { 4584 struct bpf_func_state *cur; /* state of the current function */ 4585 int min_off, max_off; 4586 int i, err; 4587 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4588 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4589 bool writing_zero = false; 4590 /* set if the fact that we're writing a zero is used to let any 4591 * stack slots remain STACK_ZERO 4592 */ 4593 bool zero_used = false; 4594 4595 cur = env->cur_state->frame[env->cur_state->curframe]; 4596 ptr_reg = &cur->regs[ptr_regno]; 4597 min_off = ptr_reg->smin_value + off; 4598 max_off = ptr_reg->smax_value + off + size; 4599 if (value_regno >= 0) 4600 value_reg = &cur->regs[value_regno]; 4601 if ((value_reg && register_is_null(value_reg)) || 4602 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4603 writing_zero = true; 4604 4605 for (i = min_off; i < max_off; i++) { 4606 int spi; 4607 4608 spi = __get_spi(i); 4609 err = destroy_if_dynptr_stack_slot(env, state, spi); 4610 if (err) 4611 return err; 4612 } 4613 4614 /* Variable offset writes destroy any spilled pointers in range. */ 4615 for (i = min_off; i < max_off; i++) { 4616 u8 new_type, *stype; 4617 int slot, spi; 4618 4619 slot = -i - 1; 4620 spi = slot / BPF_REG_SIZE; 4621 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4622 mark_stack_slot_scratched(env, spi); 4623 4624 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4625 /* Reject the write if range we may write to has not 4626 * been initialized beforehand. If we didn't reject 4627 * here, the ptr status would be erased below (even 4628 * though not all slots are actually overwritten), 4629 * possibly opening the door to leaks. 4630 * 4631 * We do however catch STACK_INVALID case below, and 4632 * only allow reading possibly uninitialized memory 4633 * later for CAP_PERFMON, as the write may not happen to 4634 * that slot. 4635 */ 4636 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4637 insn_idx, i); 4638 return -EINVAL; 4639 } 4640 4641 /* Erase all spilled pointers. */ 4642 state->stack[spi].spilled_ptr.type = NOT_INIT; 4643 4644 /* Update the slot type. */ 4645 new_type = STACK_MISC; 4646 if (writing_zero && *stype == STACK_ZERO) { 4647 new_type = STACK_ZERO; 4648 zero_used = true; 4649 } 4650 /* If the slot is STACK_INVALID, we check whether it's OK to 4651 * pretend that it will be initialized by this write. The slot 4652 * might not actually be written to, and so if we mark it as 4653 * initialized future reads might leak uninitialized memory. 4654 * For privileged programs, we will accept such reads to slots 4655 * that may or may not be written because, if we're reject 4656 * them, the error would be too confusing. 4657 */ 4658 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4659 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4660 insn_idx, i); 4661 return -EINVAL; 4662 } 4663 *stype = new_type; 4664 } 4665 if (zero_used) { 4666 /* backtracking doesn't work for STACK_ZERO yet. */ 4667 err = mark_chain_precision(env, value_regno); 4668 if (err) 4669 return err; 4670 } 4671 return 0; 4672 } 4673 4674 /* When register 'dst_regno' is assigned some values from stack[min_off, 4675 * max_off), we set the register's type according to the types of the 4676 * respective stack slots. If all the stack values are known to be zeros, then 4677 * so is the destination reg. Otherwise, the register is considered to be 4678 * SCALAR. This function does not deal with register filling; the caller must 4679 * ensure that all spilled registers in the stack range have been marked as 4680 * read. 4681 */ 4682 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4683 /* func where src register points to */ 4684 struct bpf_func_state *ptr_state, 4685 int min_off, int max_off, int dst_regno) 4686 { 4687 struct bpf_verifier_state *vstate = env->cur_state; 4688 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4689 int i, slot, spi; 4690 u8 *stype; 4691 int zeros = 0; 4692 4693 for (i = min_off; i < max_off; i++) { 4694 slot = -i - 1; 4695 spi = slot / BPF_REG_SIZE; 4696 mark_stack_slot_scratched(env, spi); 4697 stype = ptr_state->stack[spi].slot_type; 4698 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4699 break; 4700 zeros++; 4701 } 4702 if (zeros == max_off - min_off) { 4703 /* Any access_size read into register is zero extended, 4704 * so the whole register == const_zero. 4705 */ 4706 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4707 } else { 4708 /* have read misc data from the stack */ 4709 mark_reg_unknown(env, state->regs, dst_regno); 4710 } 4711 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4712 } 4713 4714 /* Read the stack at 'off' and put the results into the register indicated by 4715 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4716 * spilled reg. 4717 * 4718 * 'dst_regno' can be -1, meaning that the read value is not going to a 4719 * register. 4720 * 4721 * The access is assumed to be within the current stack bounds. 4722 */ 4723 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4724 /* func where src register points to */ 4725 struct bpf_func_state *reg_state, 4726 int off, int size, int dst_regno) 4727 { 4728 struct bpf_verifier_state *vstate = env->cur_state; 4729 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4730 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4731 struct bpf_reg_state *reg; 4732 u8 *stype, type; 4733 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 4734 4735 stype = reg_state->stack[spi].slot_type; 4736 reg = ®_state->stack[spi].spilled_ptr; 4737 4738 mark_stack_slot_scratched(env, spi); 4739 4740 if (is_spilled_reg(®_state->stack[spi])) { 4741 u8 spill_size = 1; 4742 4743 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4744 spill_size++; 4745 4746 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4747 if (reg->type != SCALAR_VALUE) { 4748 verbose_linfo(env, env->insn_idx, "; "); 4749 verbose(env, "invalid size of register fill\n"); 4750 return -EACCES; 4751 } 4752 4753 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4754 if (dst_regno < 0) 4755 return 0; 4756 4757 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4758 /* The earlier check_reg_arg() has decided the 4759 * subreg_def for this insn. Save it first. 4760 */ 4761 s32 subreg_def = state->regs[dst_regno].subreg_def; 4762 4763 copy_register_state(&state->regs[dst_regno], reg); 4764 state->regs[dst_regno].subreg_def = subreg_def; 4765 } else { 4766 int spill_cnt = 0, zero_cnt = 0; 4767 4768 for (i = 0; i < size; i++) { 4769 type = stype[(slot - i) % BPF_REG_SIZE]; 4770 if (type == STACK_SPILL) { 4771 spill_cnt++; 4772 continue; 4773 } 4774 if (type == STACK_MISC) 4775 continue; 4776 if (type == STACK_ZERO) { 4777 zero_cnt++; 4778 continue; 4779 } 4780 if (type == STACK_INVALID && env->allow_uninit_stack) 4781 continue; 4782 verbose(env, "invalid read from stack off %d+%d size %d\n", 4783 off, i, size); 4784 return -EACCES; 4785 } 4786 4787 if (spill_cnt == size && 4788 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 4789 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4790 /* this IS register fill, so keep insn_flags */ 4791 } else if (zero_cnt == size) { 4792 /* similarly to mark_reg_stack_read(), preserve zeroes */ 4793 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4794 insn_flags = 0; /* not restoring original register state */ 4795 } else { 4796 mark_reg_unknown(env, state->regs, dst_regno); 4797 insn_flags = 0; /* not restoring original register state */ 4798 } 4799 } 4800 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4801 } else if (dst_regno >= 0) { 4802 /* restore register state from stack */ 4803 copy_register_state(&state->regs[dst_regno], reg); 4804 /* mark reg as written since spilled pointer state likely 4805 * has its liveness marks cleared by is_state_visited() 4806 * which resets stack/reg liveness for state transitions 4807 */ 4808 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4809 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4810 /* If dst_regno==-1, the caller is asking us whether 4811 * it is acceptable to use this value as a SCALAR_VALUE 4812 * (e.g. for XADD). 4813 * We must not allow unprivileged callers to do that 4814 * with spilled pointers. 4815 */ 4816 verbose(env, "leaking pointer from stack off %d\n", 4817 off); 4818 return -EACCES; 4819 } 4820 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4821 } else { 4822 for (i = 0; i < size; i++) { 4823 type = stype[(slot - i) % BPF_REG_SIZE]; 4824 if (type == STACK_MISC) 4825 continue; 4826 if (type == STACK_ZERO) 4827 continue; 4828 if (type == STACK_INVALID && env->allow_uninit_stack) 4829 continue; 4830 verbose(env, "invalid read from stack off %d+%d size %d\n", 4831 off, i, size); 4832 return -EACCES; 4833 } 4834 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4835 if (dst_regno >= 0) 4836 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4837 insn_flags = 0; /* we are not restoring spilled register */ 4838 } 4839 if (insn_flags) 4840 return push_jmp_history(env, env->cur_state, insn_flags); 4841 return 0; 4842 } 4843 4844 enum bpf_access_src { 4845 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4846 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4847 }; 4848 4849 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4850 int regno, int off, int access_size, 4851 bool zero_size_allowed, 4852 enum bpf_access_src type, 4853 struct bpf_call_arg_meta *meta); 4854 4855 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4856 { 4857 return cur_regs(env) + regno; 4858 } 4859 4860 /* Read the stack at 'ptr_regno + off' and put the result into the register 4861 * 'dst_regno'. 4862 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4863 * but not its variable offset. 4864 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4865 * 4866 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4867 * filling registers (i.e. reads of spilled register cannot be detected when 4868 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4869 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4870 * offset; for a fixed offset check_stack_read_fixed_off should be used 4871 * instead. 4872 */ 4873 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4874 int ptr_regno, int off, int size, int dst_regno) 4875 { 4876 /* The state of the source register. */ 4877 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4878 struct bpf_func_state *ptr_state = func(env, reg); 4879 int err; 4880 int min_off, max_off; 4881 4882 /* Note that we pass a NULL meta, so raw access will not be permitted. 4883 */ 4884 err = check_stack_range_initialized(env, ptr_regno, off, size, 4885 false, ACCESS_DIRECT, NULL); 4886 if (err) 4887 return err; 4888 4889 min_off = reg->smin_value + off; 4890 max_off = reg->smax_value + off; 4891 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4892 return 0; 4893 } 4894 4895 /* check_stack_read dispatches to check_stack_read_fixed_off or 4896 * check_stack_read_var_off. 4897 * 4898 * The caller must ensure that the offset falls within the allocated stack 4899 * bounds. 4900 * 4901 * 'dst_regno' is a register which will receive the value from the stack. It 4902 * can be -1, meaning that the read value is not going to a register. 4903 */ 4904 static int check_stack_read(struct bpf_verifier_env *env, 4905 int ptr_regno, int off, int size, 4906 int dst_regno) 4907 { 4908 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4909 struct bpf_func_state *state = func(env, reg); 4910 int err; 4911 /* Some accesses are only permitted with a static offset. */ 4912 bool var_off = !tnum_is_const(reg->var_off); 4913 4914 /* The offset is required to be static when reads don't go to a 4915 * register, in order to not leak pointers (see 4916 * check_stack_read_fixed_off). 4917 */ 4918 if (dst_regno < 0 && var_off) { 4919 char tn_buf[48]; 4920 4921 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4922 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4923 tn_buf, off, size); 4924 return -EACCES; 4925 } 4926 /* Variable offset is prohibited for unprivileged mode for simplicity 4927 * since it requires corresponding support in Spectre masking for stack 4928 * ALU. See also retrieve_ptr_limit(). The check in 4929 * check_stack_access_for_ptr_arithmetic() called by 4930 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 4931 * with variable offsets, therefore no check is required here. Further, 4932 * just checking it here would be insufficient as speculative stack 4933 * writes could still lead to unsafe speculative behaviour. 4934 */ 4935 if (!var_off) { 4936 off += reg->var_off.value; 4937 err = check_stack_read_fixed_off(env, state, off, size, 4938 dst_regno); 4939 } else { 4940 /* Variable offset stack reads need more conservative handling 4941 * than fixed offset ones. Note that dst_regno >= 0 on this 4942 * branch. 4943 */ 4944 err = check_stack_read_var_off(env, ptr_regno, off, size, 4945 dst_regno); 4946 } 4947 return err; 4948 } 4949 4950 4951 /* check_stack_write dispatches to check_stack_write_fixed_off or 4952 * check_stack_write_var_off. 4953 * 4954 * 'ptr_regno' is the register used as a pointer into the stack. 4955 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 4956 * 'value_regno' is the register whose value we're writing to the stack. It can 4957 * be -1, meaning that we're not writing from a register. 4958 * 4959 * The caller must ensure that the offset falls within the maximum stack size. 4960 */ 4961 static int check_stack_write(struct bpf_verifier_env *env, 4962 int ptr_regno, int off, int size, 4963 int value_regno, int insn_idx) 4964 { 4965 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4966 struct bpf_func_state *state = func(env, reg); 4967 int err; 4968 4969 if (tnum_is_const(reg->var_off)) { 4970 off += reg->var_off.value; 4971 err = check_stack_write_fixed_off(env, state, off, size, 4972 value_regno, insn_idx); 4973 } else { 4974 /* Variable offset stack reads need more conservative handling 4975 * than fixed offset ones. 4976 */ 4977 err = check_stack_write_var_off(env, state, 4978 ptr_regno, off, size, 4979 value_regno, insn_idx); 4980 } 4981 return err; 4982 } 4983 4984 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4985 int off, int size, enum bpf_access_type type) 4986 { 4987 struct bpf_reg_state *regs = cur_regs(env); 4988 struct bpf_map *map = regs[regno].map_ptr; 4989 u32 cap = bpf_map_flags_to_cap(map); 4990 4991 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4992 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4993 map->value_size, off, size); 4994 return -EACCES; 4995 } 4996 4997 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4998 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4999 map->value_size, off, size); 5000 return -EACCES; 5001 } 5002 5003 return 0; 5004 } 5005 5006 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5007 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5008 int off, int size, u32 mem_size, 5009 bool zero_size_allowed) 5010 { 5011 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5012 struct bpf_reg_state *reg; 5013 5014 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5015 return 0; 5016 5017 reg = &cur_regs(env)[regno]; 5018 switch (reg->type) { 5019 case PTR_TO_MAP_KEY: 5020 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5021 mem_size, off, size); 5022 break; 5023 case PTR_TO_MAP_VALUE: 5024 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5025 mem_size, off, size); 5026 break; 5027 case PTR_TO_PACKET: 5028 case PTR_TO_PACKET_META: 5029 case PTR_TO_PACKET_END: 5030 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5031 off, size, regno, reg->id, off, mem_size); 5032 break; 5033 case PTR_TO_MEM: 5034 default: 5035 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5036 mem_size, off, size); 5037 } 5038 5039 return -EACCES; 5040 } 5041 5042 /* check read/write into a memory region with possible variable offset */ 5043 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5044 int off, int size, u32 mem_size, 5045 bool zero_size_allowed) 5046 { 5047 struct bpf_verifier_state *vstate = env->cur_state; 5048 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5049 struct bpf_reg_state *reg = &state->regs[regno]; 5050 int err; 5051 5052 /* We may have adjusted the register pointing to memory region, so we 5053 * need to try adding each of min_value and max_value to off 5054 * to make sure our theoretical access will be safe. 5055 * 5056 * The minimum value is only important with signed 5057 * comparisons where we can't assume the floor of a 5058 * value is 0. If we are using signed variables for our 5059 * index'es we need to make sure that whatever we use 5060 * will have a set floor within our range. 5061 */ 5062 if (reg->smin_value < 0 && 5063 (reg->smin_value == S64_MIN || 5064 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5065 reg->smin_value + off < 0)) { 5066 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5067 regno); 5068 return -EACCES; 5069 } 5070 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5071 mem_size, zero_size_allowed); 5072 if (err) { 5073 verbose(env, "R%d min value is outside of the allowed memory range\n", 5074 regno); 5075 return err; 5076 } 5077 5078 /* If we haven't set a max value then we need to bail since we can't be 5079 * sure we won't do bad things. 5080 * If reg->umax_value + off could overflow, treat that as unbounded too. 5081 */ 5082 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5083 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5084 regno); 5085 return -EACCES; 5086 } 5087 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5088 mem_size, zero_size_allowed); 5089 if (err) { 5090 verbose(env, "R%d max value is outside of the allowed memory range\n", 5091 regno); 5092 return err; 5093 } 5094 5095 return 0; 5096 } 5097 5098 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5099 const struct bpf_reg_state *reg, int regno, 5100 bool fixed_off_ok) 5101 { 5102 /* Access to this pointer-typed register or passing it to a helper 5103 * is only allowed in its original, unmodified form. 5104 */ 5105 5106 if (reg->off < 0) { 5107 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5108 reg_type_str(env, reg->type), regno, reg->off); 5109 return -EACCES; 5110 } 5111 5112 if (!fixed_off_ok && reg->off) { 5113 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5114 reg_type_str(env, reg->type), regno, reg->off); 5115 return -EACCES; 5116 } 5117 5118 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5119 char tn_buf[48]; 5120 5121 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5122 verbose(env, "variable %s access var_off=%s disallowed\n", 5123 reg_type_str(env, reg->type), tn_buf); 5124 return -EACCES; 5125 } 5126 5127 return 0; 5128 } 5129 5130 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5131 const struct bpf_reg_state *reg, int regno) 5132 { 5133 return __check_ptr_off_reg(env, reg, regno, false); 5134 } 5135 5136 static int map_kptr_match_type(struct bpf_verifier_env *env, 5137 struct btf_field *kptr_field, 5138 struct bpf_reg_state *reg, u32 regno) 5139 { 5140 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5141 int perm_flags; 5142 const char *reg_name = ""; 5143 5144 if (btf_is_kernel(reg->btf)) { 5145 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5146 5147 /* Only unreferenced case accepts untrusted pointers */ 5148 if (kptr_field->type == BPF_KPTR_UNREF) 5149 perm_flags |= PTR_UNTRUSTED; 5150 } else { 5151 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5152 if (kptr_field->type == BPF_KPTR_PERCPU) 5153 perm_flags |= MEM_PERCPU; 5154 } 5155 5156 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5157 goto bad_type; 5158 5159 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5160 reg_name = btf_type_name(reg->btf, reg->btf_id); 5161 5162 /* For ref_ptr case, release function check should ensure we get one 5163 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5164 * normal store of unreferenced kptr, we must ensure var_off is zero. 5165 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5166 * reg->off and reg->ref_obj_id are not needed here. 5167 */ 5168 if (__check_ptr_off_reg(env, reg, regno, true)) 5169 return -EACCES; 5170 5171 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5172 * we also need to take into account the reg->off. 5173 * 5174 * We want to support cases like: 5175 * 5176 * struct foo { 5177 * struct bar br; 5178 * struct baz bz; 5179 * }; 5180 * 5181 * struct foo *v; 5182 * v = func(); // PTR_TO_BTF_ID 5183 * val->foo = v; // reg->off is zero, btf and btf_id match type 5184 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5185 * // first member type of struct after comparison fails 5186 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5187 * // to match type 5188 * 5189 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5190 * is zero. We must also ensure that btf_struct_ids_match does not walk 5191 * the struct to match type against first member of struct, i.e. reject 5192 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5193 * strict mode to true for type match. 5194 */ 5195 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5196 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5197 kptr_field->type != BPF_KPTR_UNREF)) 5198 goto bad_type; 5199 return 0; 5200 bad_type: 5201 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5202 reg_type_str(env, reg->type), reg_name); 5203 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5204 if (kptr_field->type == BPF_KPTR_UNREF) 5205 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5206 targ_name); 5207 else 5208 verbose(env, "\n"); 5209 return -EINVAL; 5210 } 5211 5212 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5213 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5214 */ 5215 static bool in_rcu_cs(struct bpf_verifier_env *env) 5216 { 5217 return env->cur_state->active_rcu_lock || 5218 env->cur_state->active_lock.ptr || 5219 !env->prog->aux->sleepable; 5220 } 5221 5222 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5223 BTF_SET_START(rcu_protected_types) 5224 BTF_ID(struct, prog_test_ref_kfunc) 5225 #ifdef CONFIG_CGROUPS 5226 BTF_ID(struct, cgroup) 5227 #endif 5228 BTF_ID(struct, bpf_cpumask) 5229 BTF_ID(struct, task_struct) 5230 BTF_SET_END(rcu_protected_types) 5231 5232 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5233 { 5234 if (!btf_is_kernel(btf)) 5235 return true; 5236 return btf_id_set_contains(&rcu_protected_types, btf_id); 5237 } 5238 5239 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5240 { 5241 struct btf_struct_meta *meta; 5242 5243 if (btf_is_kernel(kptr_field->kptr.btf)) 5244 return NULL; 5245 5246 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5247 kptr_field->kptr.btf_id); 5248 5249 return meta ? meta->record : NULL; 5250 } 5251 5252 static bool rcu_safe_kptr(const struct btf_field *field) 5253 { 5254 const struct btf_field_kptr *kptr = &field->kptr; 5255 5256 return field->type == BPF_KPTR_PERCPU || 5257 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5258 } 5259 5260 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5261 { 5262 struct btf_record *rec; 5263 u32 ret; 5264 5265 ret = PTR_MAYBE_NULL; 5266 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5267 ret |= MEM_RCU; 5268 if (kptr_field->type == BPF_KPTR_PERCPU) 5269 ret |= MEM_PERCPU; 5270 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5271 ret |= MEM_ALLOC; 5272 5273 rec = kptr_pointee_btf_record(kptr_field); 5274 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5275 ret |= NON_OWN_REF; 5276 } else { 5277 ret |= PTR_UNTRUSTED; 5278 } 5279 5280 return ret; 5281 } 5282 5283 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5284 int value_regno, int insn_idx, 5285 struct btf_field *kptr_field) 5286 { 5287 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5288 int class = BPF_CLASS(insn->code); 5289 struct bpf_reg_state *val_reg; 5290 5291 /* Things we already checked for in check_map_access and caller: 5292 * - Reject cases where variable offset may touch kptr 5293 * - size of access (must be BPF_DW) 5294 * - tnum_is_const(reg->var_off) 5295 * - kptr_field->offset == off + reg->var_off.value 5296 */ 5297 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5298 if (BPF_MODE(insn->code) != BPF_MEM) { 5299 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5300 return -EACCES; 5301 } 5302 5303 /* We only allow loading referenced kptr, since it will be marked as 5304 * untrusted, similar to unreferenced kptr. 5305 */ 5306 if (class != BPF_LDX && 5307 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 5308 verbose(env, "store to referenced kptr disallowed\n"); 5309 return -EACCES; 5310 } 5311 5312 if (class == BPF_LDX) { 5313 val_reg = reg_state(env, value_regno); 5314 /* We can simply mark the value_regno receiving the pointer 5315 * value from map as PTR_TO_BTF_ID, with the correct type. 5316 */ 5317 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5318 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); 5319 /* For mark_ptr_or_null_reg */ 5320 val_reg->id = ++env->id_gen; 5321 } else if (class == BPF_STX) { 5322 val_reg = reg_state(env, value_regno); 5323 if (!register_is_null(val_reg) && 5324 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5325 return -EACCES; 5326 } else if (class == BPF_ST) { 5327 if (insn->imm) { 5328 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5329 kptr_field->offset); 5330 return -EACCES; 5331 } 5332 } else { 5333 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5334 return -EACCES; 5335 } 5336 return 0; 5337 } 5338 5339 /* check read/write into a map element with possible variable offset */ 5340 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5341 int off, int size, bool zero_size_allowed, 5342 enum bpf_access_src src) 5343 { 5344 struct bpf_verifier_state *vstate = env->cur_state; 5345 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5346 struct bpf_reg_state *reg = &state->regs[regno]; 5347 struct bpf_map *map = reg->map_ptr; 5348 struct btf_record *rec; 5349 int err, i; 5350 5351 err = check_mem_region_access(env, regno, off, size, map->value_size, 5352 zero_size_allowed); 5353 if (err) 5354 return err; 5355 5356 if (IS_ERR_OR_NULL(map->record)) 5357 return 0; 5358 rec = map->record; 5359 for (i = 0; i < rec->cnt; i++) { 5360 struct btf_field *field = &rec->fields[i]; 5361 u32 p = field->offset; 5362 5363 /* If any part of a field can be touched by load/store, reject 5364 * this program. To check that [x1, x2) overlaps with [y1, y2), 5365 * it is sufficient to check x1 < y2 && y1 < x2. 5366 */ 5367 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5368 p < reg->umax_value + off + size) { 5369 switch (field->type) { 5370 case BPF_KPTR_UNREF: 5371 case BPF_KPTR_REF: 5372 case BPF_KPTR_PERCPU: 5373 if (src != ACCESS_DIRECT) { 5374 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5375 return -EACCES; 5376 } 5377 if (!tnum_is_const(reg->var_off)) { 5378 verbose(env, "kptr access cannot have variable offset\n"); 5379 return -EACCES; 5380 } 5381 if (p != off + reg->var_off.value) { 5382 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5383 p, off + reg->var_off.value); 5384 return -EACCES; 5385 } 5386 if (size != bpf_size_to_bytes(BPF_DW)) { 5387 verbose(env, "kptr access size must be BPF_DW\n"); 5388 return -EACCES; 5389 } 5390 break; 5391 default: 5392 verbose(env, "%s cannot be accessed directly by load/store\n", 5393 btf_field_type_name(field->type)); 5394 return -EACCES; 5395 } 5396 } 5397 } 5398 return 0; 5399 } 5400 5401 #define MAX_PACKET_OFF 0xffff 5402 5403 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5404 const struct bpf_call_arg_meta *meta, 5405 enum bpf_access_type t) 5406 { 5407 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5408 5409 switch (prog_type) { 5410 /* Program types only with direct read access go here! */ 5411 case BPF_PROG_TYPE_LWT_IN: 5412 case BPF_PROG_TYPE_LWT_OUT: 5413 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5414 case BPF_PROG_TYPE_SK_REUSEPORT: 5415 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5416 case BPF_PROG_TYPE_CGROUP_SKB: 5417 if (t == BPF_WRITE) 5418 return false; 5419 fallthrough; 5420 5421 /* Program types with direct read + write access go here! */ 5422 case BPF_PROG_TYPE_SCHED_CLS: 5423 case BPF_PROG_TYPE_SCHED_ACT: 5424 case BPF_PROG_TYPE_XDP: 5425 case BPF_PROG_TYPE_LWT_XMIT: 5426 case BPF_PROG_TYPE_SK_SKB: 5427 case BPF_PROG_TYPE_SK_MSG: 5428 if (meta) 5429 return meta->pkt_access; 5430 5431 env->seen_direct_write = true; 5432 return true; 5433 5434 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5435 if (t == BPF_WRITE) 5436 env->seen_direct_write = true; 5437 5438 return true; 5439 5440 default: 5441 return false; 5442 } 5443 } 5444 5445 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5446 int size, bool zero_size_allowed) 5447 { 5448 struct bpf_reg_state *regs = cur_regs(env); 5449 struct bpf_reg_state *reg = ®s[regno]; 5450 int err; 5451 5452 /* We may have added a variable offset to the packet pointer; but any 5453 * reg->range we have comes after that. We are only checking the fixed 5454 * offset. 5455 */ 5456 5457 /* We don't allow negative numbers, because we aren't tracking enough 5458 * detail to prove they're safe. 5459 */ 5460 if (reg->smin_value < 0) { 5461 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5462 regno); 5463 return -EACCES; 5464 } 5465 5466 err = reg->range < 0 ? -EINVAL : 5467 __check_mem_access(env, regno, off, size, reg->range, 5468 zero_size_allowed); 5469 if (err) { 5470 verbose(env, "R%d offset is outside of the packet\n", regno); 5471 return err; 5472 } 5473 5474 /* __check_mem_access has made sure "off + size - 1" is within u16. 5475 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5476 * otherwise find_good_pkt_pointers would have refused to set range info 5477 * that __check_mem_access would have rejected this pkt access. 5478 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5479 */ 5480 env->prog->aux->max_pkt_offset = 5481 max_t(u32, env->prog->aux->max_pkt_offset, 5482 off + reg->umax_value + size - 1); 5483 5484 return err; 5485 } 5486 5487 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5488 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5489 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5490 struct btf **btf, u32 *btf_id) 5491 { 5492 struct bpf_insn_access_aux info = { 5493 .reg_type = *reg_type, 5494 .log = &env->log, 5495 }; 5496 5497 if (env->ops->is_valid_access && 5498 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5499 /* A non zero info.ctx_field_size indicates that this field is a 5500 * candidate for later verifier transformation to load the whole 5501 * field and then apply a mask when accessed with a narrower 5502 * access than actual ctx access size. A zero info.ctx_field_size 5503 * will only allow for whole field access and rejects any other 5504 * type of narrower access. 5505 */ 5506 *reg_type = info.reg_type; 5507 5508 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5509 *btf = info.btf; 5510 *btf_id = info.btf_id; 5511 } else { 5512 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5513 } 5514 /* remember the offset of last byte accessed in ctx */ 5515 if (env->prog->aux->max_ctx_offset < off + size) 5516 env->prog->aux->max_ctx_offset = off + size; 5517 return 0; 5518 } 5519 5520 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5521 return -EACCES; 5522 } 5523 5524 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5525 int size) 5526 { 5527 if (size < 0 || off < 0 || 5528 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5529 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5530 off, size); 5531 return -EACCES; 5532 } 5533 return 0; 5534 } 5535 5536 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5537 u32 regno, int off, int size, 5538 enum bpf_access_type t) 5539 { 5540 struct bpf_reg_state *regs = cur_regs(env); 5541 struct bpf_reg_state *reg = ®s[regno]; 5542 struct bpf_insn_access_aux info = {}; 5543 bool valid; 5544 5545 if (reg->smin_value < 0) { 5546 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5547 regno); 5548 return -EACCES; 5549 } 5550 5551 switch (reg->type) { 5552 case PTR_TO_SOCK_COMMON: 5553 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5554 break; 5555 case PTR_TO_SOCKET: 5556 valid = bpf_sock_is_valid_access(off, size, t, &info); 5557 break; 5558 case PTR_TO_TCP_SOCK: 5559 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5560 break; 5561 case PTR_TO_XDP_SOCK: 5562 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5563 break; 5564 default: 5565 valid = false; 5566 } 5567 5568 5569 if (valid) { 5570 env->insn_aux_data[insn_idx].ctx_field_size = 5571 info.ctx_field_size; 5572 return 0; 5573 } 5574 5575 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5576 regno, reg_type_str(env, reg->type), off, size); 5577 5578 return -EACCES; 5579 } 5580 5581 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5582 { 5583 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5584 } 5585 5586 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5587 { 5588 const struct bpf_reg_state *reg = reg_state(env, regno); 5589 5590 return reg->type == PTR_TO_CTX; 5591 } 5592 5593 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5594 { 5595 const struct bpf_reg_state *reg = reg_state(env, regno); 5596 5597 return type_is_sk_pointer(reg->type); 5598 } 5599 5600 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5601 { 5602 const struct bpf_reg_state *reg = reg_state(env, regno); 5603 5604 return type_is_pkt_pointer(reg->type); 5605 } 5606 5607 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5608 { 5609 const struct bpf_reg_state *reg = reg_state(env, regno); 5610 5611 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5612 return reg->type == PTR_TO_FLOW_KEYS; 5613 } 5614 5615 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5616 #ifdef CONFIG_NET 5617 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5618 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5619 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5620 #endif 5621 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5622 }; 5623 5624 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5625 { 5626 /* A referenced register is always trusted. */ 5627 if (reg->ref_obj_id) 5628 return true; 5629 5630 /* Types listed in the reg2btf_ids are always trusted */ 5631 if (reg2btf_ids[base_type(reg->type)]) 5632 return true; 5633 5634 /* If a register is not referenced, it is trusted if it has the 5635 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5636 * other type modifiers may be safe, but we elect to take an opt-in 5637 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5638 * not. 5639 * 5640 * Eventually, we should make PTR_TRUSTED the single source of truth 5641 * for whether a register is trusted. 5642 */ 5643 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5644 !bpf_type_has_unsafe_modifiers(reg->type); 5645 } 5646 5647 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5648 { 5649 return reg->type & MEM_RCU; 5650 } 5651 5652 static void clear_trusted_flags(enum bpf_type_flag *flag) 5653 { 5654 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5655 } 5656 5657 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5658 const struct bpf_reg_state *reg, 5659 int off, int size, bool strict) 5660 { 5661 struct tnum reg_off; 5662 int ip_align; 5663 5664 /* Byte size accesses are always allowed. */ 5665 if (!strict || size == 1) 5666 return 0; 5667 5668 /* For platforms that do not have a Kconfig enabling 5669 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5670 * NET_IP_ALIGN is universally set to '2'. And on platforms 5671 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5672 * to this code only in strict mode where we want to emulate 5673 * the NET_IP_ALIGN==2 checking. Therefore use an 5674 * unconditional IP align value of '2'. 5675 */ 5676 ip_align = 2; 5677 5678 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5679 if (!tnum_is_aligned(reg_off, size)) { 5680 char tn_buf[48]; 5681 5682 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5683 verbose(env, 5684 "misaligned packet access off %d+%s+%d+%d size %d\n", 5685 ip_align, tn_buf, reg->off, off, size); 5686 return -EACCES; 5687 } 5688 5689 return 0; 5690 } 5691 5692 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5693 const struct bpf_reg_state *reg, 5694 const char *pointer_desc, 5695 int off, int size, bool strict) 5696 { 5697 struct tnum reg_off; 5698 5699 /* Byte size accesses are always allowed. */ 5700 if (!strict || size == 1) 5701 return 0; 5702 5703 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5704 if (!tnum_is_aligned(reg_off, size)) { 5705 char tn_buf[48]; 5706 5707 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5708 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5709 pointer_desc, tn_buf, reg->off, off, size); 5710 return -EACCES; 5711 } 5712 5713 return 0; 5714 } 5715 5716 static int check_ptr_alignment(struct bpf_verifier_env *env, 5717 const struct bpf_reg_state *reg, int off, 5718 int size, bool strict_alignment_once) 5719 { 5720 bool strict = env->strict_alignment || strict_alignment_once; 5721 const char *pointer_desc = ""; 5722 5723 switch (reg->type) { 5724 case PTR_TO_PACKET: 5725 case PTR_TO_PACKET_META: 5726 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5727 * right in front, treat it the very same way. 5728 */ 5729 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5730 case PTR_TO_FLOW_KEYS: 5731 pointer_desc = "flow keys "; 5732 break; 5733 case PTR_TO_MAP_KEY: 5734 pointer_desc = "key "; 5735 break; 5736 case PTR_TO_MAP_VALUE: 5737 pointer_desc = "value "; 5738 break; 5739 case PTR_TO_CTX: 5740 pointer_desc = "context "; 5741 break; 5742 case PTR_TO_STACK: 5743 pointer_desc = "stack "; 5744 /* The stack spill tracking logic in check_stack_write_fixed_off() 5745 * and check_stack_read_fixed_off() relies on stack accesses being 5746 * aligned. 5747 */ 5748 strict = true; 5749 break; 5750 case PTR_TO_SOCKET: 5751 pointer_desc = "sock "; 5752 break; 5753 case PTR_TO_SOCK_COMMON: 5754 pointer_desc = "sock_common "; 5755 break; 5756 case PTR_TO_TCP_SOCK: 5757 pointer_desc = "tcp_sock "; 5758 break; 5759 case PTR_TO_XDP_SOCK: 5760 pointer_desc = "xdp_sock "; 5761 break; 5762 default: 5763 break; 5764 } 5765 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5766 strict); 5767 } 5768 5769 /* starting from main bpf function walk all instructions of the function 5770 * and recursively walk all callees that given function can call. 5771 * Ignore jump and exit insns. 5772 * Since recursion is prevented by check_cfg() this algorithm 5773 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5774 */ 5775 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5776 { 5777 struct bpf_subprog_info *subprog = env->subprog_info; 5778 struct bpf_insn *insn = env->prog->insnsi; 5779 int depth = 0, frame = 0, i, subprog_end; 5780 bool tail_call_reachable = false; 5781 int ret_insn[MAX_CALL_FRAMES]; 5782 int ret_prog[MAX_CALL_FRAMES]; 5783 int j; 5784 5785 i = subprog[idx].start; 5786 process_func: 5787 /* protect against potential stack overflow that might happen when 5788 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5789 * depth for such case down to 256 so that the worst case scenario 5790 * would result in 8k stack size (32 which is tailcall limit * 256 = 5791 * 8k). 5792 * 5793 * To get the idea what might happen, see an example: 5794 * func1 -> sub rsp, 128 5795 * subfunc1 -> sub rsp, 256 5796 * tailcall1 -> add rsp, 256 5797 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5798 * subfunc2 -> sub rsp, 64 5799 * subfunc22 -> sub rsp, 128 5800 * tailcall2 -> add rsp, 128 5801 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5802 * 5803 * tailcall will unwind the current stack frame but it will not get rid 5804 * of caller's stack as shown on the example above. 5805 */ 5806 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5807 verbose(env, 5808 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5809 depth); 5810 return -EACCES; 5811 } 5812 /* round up to 32-bytes, since this is granularity 5813 * of interpreter stack size 5814 */ 5815 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5816 if (depth > MAX_BPF_STACK) { 5817 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5818 frame + 1, depth); 5819 return -EACCES; 5820 } 5821 continue_func: 5822 subprog_end = subprog[idx + 1].start; 5823 for (; i < subprog_end; i++) { 5824 int next_insn, sidx; 5825 5826 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 5827 bool err = false; 5828 5829 if (!is_bpf_throw_kfunc(insn + i)) 5830 continue; 5831 if (subprog[idx].is_cb) 5832 err = true; 5833 for (int c = 0; c < frame && !err; c++) { 5834 if (subprog[ret_prog[c]].is_cb) { 5835 err = true; 5836 break; 5837 } 5838 } 5839 if (!err) 5840 continue; 5841 verbose(env, 5842 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 5843 i, idx); 5844 return -EINVAL; 5845 } 5846 5847 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5848 continue; 5849 /* remember insn and function to return to */ 5850 ret_insn[frame] = i + 1; 5851 ret_prog[frame] = idx; 5852 5853 /* find the callee */ 5854 next_insn = i + insn[i].imm + 1; 5855 sidx = find_subprog(env, next_insn); 5856 if (sidx < 0) { 5857 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5858 next_insn); 5859 return -EFAULT; 5860 } 5861 if (subprog[sidx].is_async_cb) { 5862 if (subprog[sidx].has_tail_call) { 5863 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5864 return -EFAULT; 5865 } 5866 /* async callbacks don't increase bpf prog stack size unless called directly */ 5867 if (!bpf_pseudo_call(insn + i)) 5868 continue; 5869 if (subprog[sidx].is_exception_cb) { 5870 verbose(env, "insn %d cannot call exception cb directly\n", i); 5871 return -EINVAL; 5872 } 5873 } 5874 i = next_insn; 5875 idx = sidx; 5876 5877 if (subprog[idx].has_tail_call) 5878 tail_call_reachable = true; 5879 5880 frame++; 5881 if (frame >= MAX_CALL_FRAMES) { 5882 verbose(env, "the call stack of %d frames is too deep !\n", 5883 frame); 5884 return -E2BIG; 5885 } 5886 goto process_func; 5887 } 5888 /* if tail call got detected across bpf2bpf calls then mark each of the 5889 * currently present subprog frames as tail call reachable subprogs; 5890 * this info will be utilized by JIT so that we will be preserving the 5891 * tail call counter throughout bpf2bpf calls combined with tailcalls 5892 */ 5893 if (tail_call_reachable) 5894 for (j = 0; j < frame; j++) { 5895 if (subprog[ret_prog[j]].is_exception_cb) { 5896 verbose(env, "cannot tail call within exception cb\n"); 5897 return -EINVAL; 5898 } 5899 subprog[ret_prog[j]].tail_call_reachable = true; 5900 } 5901 if (subprog[0].tail_call_reachable) 5902 env->prog->aux->tail_call_reachable = true; 5903 5904 /* end of for() loop means the last insn of the 'subprog' 5905 * was reached. Doesn't matter whether it was JA or EXIT 5906 */ 5907 if (frame == 0) 5908 return 0; 5909 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5910 frame--; 5911 i = ret_insn[frame]; 5912 idx = ret_prog[frame]; 5913 goto continue_func; 5914 } 5915 5916 static int check_max_stack_depth(struct bpf_verifier_env *env) 5917 { 5918 struct bpf_subprog_info *si = env->subprog_info; 5919 int ret; 5920 5921 for (int i = 0; i < env->subprog_cnt; i++) { 5922 if (!i || si[i].is_async_cb) { 5923 ret = check_max_stack_depth_subprog(env, i); 5924 if (ret < 0) 5925 return ret; 5926 } 5927 continue; 5928 } 5929 return 0; 5930 } 5931 5932 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5933 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5934 const struct bpf_insn *insn, int idx) 5935 { 5936 int start = idx + insn->imm + 1, subprog; 5937 5938 subprog = find_subprog(env, start); 5939 if (subprog < 0) { 5940 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5941 start); 5942 return -EFAULT; 5943 } 5944 return env->subprog_info[subprog].stack_depth; 5945 } 5946 #endif 5947 5948 static int __check_buffer_access(struct bpf_verifier_env *env, 5949 const char *buf_info, 5950 const struct bpf_reg_state *reg, 5951 int regno, int off, int size) 5952 { 5953 if (off < 0) { 5954 verbose(env, 5955 "R%d invalid %s buffer access: off=%d, size=%d\n", 5956 regno, buf_info, off, size); 5957 return -EACCES; 5958 } 5959 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5960 char tn_buf[48]; 5961 5962 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5963 verbose(env, 5964 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5965 regno, off, tn_buf); 5966 return -EACCES; 5967 } 5968 5969 return 0; 5970 } 5971 5972 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5973 const struct bpf_reg_state *reg, 5974 int regno, int off, int size) 5975 { 5976 int err; 5977 5978 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 5979 if (err) 5980 return err; 5981 5982 if (off + size > env->prog->aux->max_tp_access) 5983 env->prog->aux->max_tp_access = off + size; 5984 5985 return 0; 5986 } 5987 5988 static int check_buffer_access(struct bpf_verifier_env *env, 5989 const struct bpf_reg_state *reg, 5990 int regno, int off, int size, 5991 bool zero_size_allowed, 5992 u32 *max_access) 5993 { 5994 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 5995 int err; 5996 5997 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 5998 if (err) 5999 return err; 6000 6001 if (off + size > *max_access) 6002 *max_access = off + size; 6003 6004 return 0; 6005 } 6006 6007 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6008 static void zext_32_to_64(struct bpf_reg_state *reg) 6009 { 6010 reg->var_off = tnum_subreg(reg->var_off); 6011 __reg_assign_32_into_64(reg); 6012 } 6013 6014 /* truncate register to smaller size (in bytes) 6015 * must be called with size < BPF_REG_SIZE 6016 */ 6017 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6018 { 6019 u64 mask; 6020 6021 /* clear high bits in bit representation */ 6022 reg->var_off = tnum_cast(reg->var_off, size); 6023 6024 /* fix arithmetic bounds */ 6025 mask = ((u64)1 << (size * 8)) - 1; 6026 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6027 reg->umin_value &= mask; 6028 reg->umax_value &= mask; 6029 } else { 6030 reg->umin_value = 0; 6031 reg->umax_value = mask; 6032 } 6033 reg->smin_value = reg->umin_value; 6034 reg->smax_value = reg->umax_value; 6035 6036 /* If size is smaller than 32bit register the 32bit register 6037 * values are also truncated so we push 64-bit bounds into 6038 * 32-bit bounds. Above were truncated < 32-bits already. 6039 */ 6040 if (size < 4) { 6041 __mark_reg32_unbounded(reg); 6042 reg_bounds_sync(reg); 6043 } 6044 } 6045 6046 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6047 { 6048 if (size == 1) { 6049 reg->smin_value = reg->s32_min_value = S8_MIN; 6050 reg->smax_value = reg->s32_max_value = S8_MAX; 6051 } else if (size == 2) { 6052 reg->smin_value = reg->s32_min_value = S16_MIN; 6053 reg->smax_value = reg->s32_max_value = S16_MAX; 6054 } else { 6055 /* size == 4 */ 6056 reg->smin_value = reg->s32_min_value = S32_MIN; 6057 reg->smax_value = reg->s32_max_value = S32_MAX; 6058 } 6059 reg->umin_value = reg->u32_min_value = 0; 6060 reg->umax_value = U64_MAX; 6061 reg->u32_max_value = U32_MAX; 6062 reg->var_off = tnum_unknown; 6063 } 6064 6065 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6066 { 6067 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6068 u64 top_smax_value, top_smin_value; 6069 u64 num_bits = size * 8; 6070 6071 if (tnum_is_const(reg->var_off)) { 6072 u64_cval = reg->var_off.value; 6073 if (size == 1) 6074 reg->var_off = tnum_const((s8)u64_cval); 6075 else if (size == 2) 6076 reg->var_off = tnum_const((s16)u64_cval); 6077 else 6078 /* size == 4 */ 6079 reg->var_off = tnum_const((s32)u64_cval); 6080 6081 u64_cval = reg->var_off.value; 6082 reg->smax_value = reg->smin_value = u64_cval; 6083 reg->umax_value = reg->umin_value = u64_cval; 6084 reg->s32_max_value = reg->s32_min_value = u64_cval; 6085 reg->u32_max_value = reg->u32_min_value = u64_cval; 6086 return; 6087 } 6088 6089 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6090 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6091 6092 if (top_smax_value != top_smin_value) 6093 goto out; 6094 6095 /* find the s64_min and s64_min after sign extension */ 6096 if (size == 1) { 6097 init_s64_max = (s8)reg->smax_value; 6098 init_s64_min = (s8)reg->smin_value; 6099 } else if (size == 2) { 6100 init_s64_max = (s16)reg->smax_value; 6101 init_s64_min = (s16)reg->smin_value; 6102 } else { 6103 init_s64_max = (s32)reg->smax_value; 6104 init_s64_min = (s32)reg->smin_value; 6105 } 6106 6107 s64_max = max(init_s64_max, init_s64_min); 6108 s64_min = min(init_s64_max, init_s64_min); 6109 6110 /* both of s64_max/s64_min positive or negative */ 6111 if ((s64_max >= 0) == (s64_min >= 0)) { 6112 reg->smin_value = reg->s32_min_value = s64_min; 6113 reg->smax_value = reg->s32_max_value = s64_max; 6114 reg->umin_value = reg->u32_min_value = s64_min; 6115 reg->umax_value = reg->u32_max_value = s64_max; 6116 reg->var_off = tnum_range(s64_min, s64_max); 6117 return; 6118 } 6119 6120 out: 6121 set_sext64_default_val(reg, size); 6122 } 6123 6124 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6125 { 6126 if (size == 1) { 6127 reg->s32_min_value = S8_MIN; 6128 reg->s32_max_value = S8_MAX; 6129 } else { 6130 /* size == 2 */ 6131 reg->s32_min_value = S16_MIN; 6132 reg->s32_max_value = S16_MAX; 6133 } 6134 reg->u32_min_value = 0; 6135 reg->u32_max_value = U32_MAX; 6136 } 6137 6138 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6139 { 6140 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6141 u32 top_smax_value, top_smin_value; 6142 u32 num_bits = size * 8; 6143 6144 if (tnum_is_const(reg->var_off)) { 6145 u32_val = reg->var_off.value; 6146 if (size == 1) 6147 reg->var_off = tnum_const((s8)u32_val); 6148 else 6149 reg->var_off = tnum_const((s16)u32_val); 6150 6151 u32_val = reg->var_off.value; 6152 reg->s32_min_value = reg->s32_max_value = u32_val; 6153 reg->u32_min_value = reg->u32_max_value = u32_val; 6154 return; 6155 } 6156 6157 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6158 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6159 6160 if (top_smax_value != top_smin_value) 6161 goto out; 6162 6163 /* find the s32_min and s32_min after sign extension */ 6164 if (size == 1) { 6165 init_s32_max = (s8)reg->s32_max_value; 6166 init_s32_min = (s8)reg->s32_min_value; 6167 } else { 6168 /* size == 2 */ 6169 init_s32_max = (s16)reg->s32_max_value; 6170 init_s32_min = (s16)reg->s32_min_value; 6171 } 6172 s32_max = max(init_s32_max, init_s32_min); 6173 s32_min = min(init_s32_max, init_s32_min); 6174 6175 if ((s32_min >= 0) == (s32_max >= 0)) { 6176 reg->s32_min_value = s32_min; 6177 reg->s32_max_value = s32_max; 6178 reg->u32_min_value = (u32)s32_min; 6179 reg->u32_max_value = (u32)s32_max; 6180 return; 6181 } 6182 6183 out: 6184 set_sext32_default_val(reg, size); 6185 } 6186 6187 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6188 { 6189 /* A map is considered read-only if the following condition are true: 6190 * 6191 * 1) BPF program side cannot change any of the map content. The 6192 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6193 * and was set at map creation time. 6194 * 2) The map value(s) have been initialized from user space by a 6195 * loader and then "frozen", such that no new map update/delete 6196 * operations from syscall side are possible for the rest of 6197 * the map's lifetime from that point onwards. 6198 * 3) Any parallel/pending map update/delete operations from syscall 6199 * side have been completed. Only after that point, it's safe to 6200 * assume that map value(s) are immutable. 6201 */ 6202 return (map->map_flags & BPF_F_RDONLY_PROG) && 6203 READ_ONCE(map->frozen) && 6204 !bpf_map_write_active(map); 6205 } 6206 6207 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6208 bool is_ldsx) 6209 { 6210 void *ptr; 6211 u64 addr; 6212 int err; 6213 6214 err = map->ops->map_direct_value_addr(map, &addr, off); 6215 if (err) 6216 return err; 6217 ptr = (void *)(long)addr + off; 6218 6219 switch (size) { 6220 case sizeof(u8): 6221 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6222 break; 6223 case sizeof(u16): 6224 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6225 break; 6226 case sizeof(u32): 6227 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6228 break; 6229 case sizeof(u64): 6230 *val = *(u64 *)ptr; 6231 break; 6232 default: 6233 return -EINVAL; 6234 } 6235 return 0; 6236 } 6237 6238 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6239 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6240 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6241 6242 /* 6243 * Allow list few fields as RCU trusted or full trusted. 6244 * This logic doesn't allow mix tagging and will be removed once GCC supports 6245 * btf_type_tag. 6246 */ 6247 6248 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6249 BTF_TYPE_SAFE_RCU(struct task_struct) { 6250 const cpumask_t *cpus_ptr; 6251 struct css_set __rcu *cgroups; 6252 struct task_struct __rcu *real_parent; 6253 struct task_struct *group_leader; 6254 }; 6255 6256 BTF_TYPE_SAFE_RCU(struct cgroup) { 6257 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6258 struct kernfs_node *kn; 6259 }; 6260 6261 BTF_TYPE_SAFE_RCU(struct css_set) { 6262 struct cgroup *dfl_cgrp; 6263 }; 6264 6265 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6266 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6267 struct file __rcu *exe_file; 6268 }; 6269 6270 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6271 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6272 */ 6273 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6274 struct sock *sk; 6275 }; 6276 6277 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6278 struct sock *sk; 6279 }; 6280 6281 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6282 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6283 struct seq_file *seq; 6284 }; 6285 6286 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6287 struct bpf_iter_meta *meta; 6288 struct task_struct *task; 6289 }; 6290 6291 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6292 struct file *file; 6293 }; 6294 6295 BTF_TYPE_SAFE_TRUSTED(struct file) { 6296 struct inode *f_inode; 6297 }; 6298 6299 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6300 /* no negative dentry-s in places where bpf can see it */ 6301 struct inode *d_inode; 6302 }; 6303 6304 BTF_TYPE_SAFE_TRUSTED(struct socket) { 6305 struct sock *sk; 6306 }; 6307 6308 static bool type_is_rcu(struct bpf_verifier_env *env, 6309 struct bpf_reg_state *reg, 6310 const char *field_name, u32 btf_id) 6311 { 6312 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6313 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6314 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6315 6316 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6317 } 6318 6319 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6320 struct bpf_reg_state *reg, 6321 const char *field_name, u32 btf_id) 6322 { 6323 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6324 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6325 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6326 6327 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6328 } 6329 6330 static bool type_is_trusted(struct bpf_verifier_env *env, 6331 struct bpf_reg_state *reg, 6332 const char *field_name, u32 btf_id) 6333 { 6334 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6335 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6336 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6337 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6338 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6339 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 6340 6341 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6342 } 6343 6344 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6345 struct bpf_reg_state *regs, 6346 int regno, int off, int size, 6347 enum bpf_access_type atype, 6348 int value_regno) 6349 { 6350 struct bpf_reg_state *reg = regs + regno; 6351 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6352 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6353 const char *field_name = NULL; 6354 enum bpf_type_flag flag = 0; 6355 u32 btf_id = 0; 6356 int ret; 6357 6358 if (!env->allow_ptr_leaks) { 6359 verbose(env, 6360 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6361 tname); 6362 return -EPERM; 6363 } 6364 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6365 verbose(env, 6366 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6367 tname); 6368 return -EINVAL; 6369 } 6370 if (off < 0) { 6371 verbose(env, 6372 "R%d is ptr_%s invalid negative access: off=%d\n", 6373 regno, tname, off); 6374 return -EACCES; 6375 } 6376 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6377 char tn_buf[48]; 6378 6379 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6380 verbose(env, 6381 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6382 regno, tname, off, tn_buf); 6383 return -EACCES; 6384 } 6385 6386 if (reg->type & MEM_USER) { 6387 verbose(env, 6388 "R%d is ptr_%s access user memory: off=%d\n", 6389 regno, tname, off); 6390 return -EACCES; 6391 } 6392 6393 if (reg->type & MEM_PERCPU) { 6394 verbose(env, 6395 "R%d is ptr_%s access percpu memory: off=%d\n", 6396 regno, tname, off); 6397 return -EACCES; 6398 } 6399 6400 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6401 if (!btf_is_kernel(reg->btf)) { 6402 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6403 return -EFAULT; 6404 } 6405 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6406 } else { 6407 /* Writes are permitted with default btf_struct_access for 6408 * program allocated objects (which always have ref_obj_id > 0), 6409 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6410 */ 6411 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6412 verbose(env, "only read is supported\n"); 6413 return -EACCES; 6414 } 6415 6416 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6417 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 6418 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6419 return -EFAULT; 6420 } 6421 6422 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6423 } 6424 6425 if (ret < 0) 6426 return ret; 6427 6428 if (ret != PTR_TO_BTF_ID) { 6429 /* just mark; */ 6430 6431 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6432 /* If this is an untrusted pointer, all pointers formed by walking it 6433 * also inherit the untrusted flag. 6434 */ 6435 flag = PTR_UNTRUSTED; 6436 6437 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6438 /* By default any pointer obtained from walking a trusted pointer is no 6439 * longer trusted, unless the field being accessed has explicitly been 6440 * marked as inheriting its parent's state of trust (either full or RCU). 6441 * For example: 6442 * 'cgroups' pointer is untrusted if task->cgroups dereference 6443 * happened in a sleepable program outside of bpf_rcu_read_lock() 6444 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6445 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6446 * 6447 * A regular RCU-protected pointer with __rcu tag can also be deemed 6448 * trusted if we are in an RCU CS. Such pointer can be NULL. 6449 */ 6450 if (type_is_trusted(env, reg, field_name, btf_id)) { 6451 flag |= PTR_TRUSTED; 6452 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6453 if (type_is_rcu(env, reg, field_name, btf_id)) { 6454 /* ignore __rcu tag and mark it MEM_RCU */ 6455 flag |= MEM_RCU; 6456 } else if (flag & MEM_RCU || 6457 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6458 /* __rcu tagged pointers can be NULL */ 6459 flag |= MEM_RCU | PTR_MAYBE_NULL; 6460 6461 /* We always trust them */ 6462 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6463 flag & PTR_UNTRUSTED) 6464 flag &= ~PTR_UNTRUSTED; 6465 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6466 /* keep as-is */ 6467 } else { 6468 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6469 clear_trusted_flags(&flag); 6470 } 6471 } else { 6472 /* 6473 * If not in RCU CS or MEM_RCU pointer can be NULL then 6474 * aggressively mark as untrusted otherwise such 6475 * pointers will be plain PTR_TO_BTF_ID without flags 6476 * and will be allowed to be passed into helpers for 6477 * compat reasons. 6478 */ 6479 flag = PTR_UNTRUSTED; 6480 } 6481 } else { 6482 /* Old compat. Deprecated */ 6483 clear_trusted_flags(&flag); 6484 } 6485 6486 if (atype == BPF_READ && value_regno >= 0) 6487 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6488 6489 return 0; 6490 } 6491 6492 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6493 struct bpf_reg_state *regs, 6494 int regno, int off, int size, 6495 enum bpf_access_type atype, 6496 int value_regno) 6497 { 6498 struct bpf_reg_state *reg = regs + regno; 6499 struct bpf_map *map = reg->map_ptr; 6500 struct bpf_reg_state map_reg; 6501 enum bpf_type_flag flag = 0; 6502 const struct btf_type *t; 6503 const char *tname; 6504 u32 btf_id; 6505 int ret; 6506 6507 if (!btf_vmlinux) { 6508 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6509 return -ENOTSUPP; 6510 } 6511 6512 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6513 verbose(env, "map_ptr access not supported for map type %d\n", 6514 map->map_type); 6515 return -ENOTSUPP; 6516 } 6517 6518 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6519 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6520 6521 if (!env->allow_ptr_leaks) { 6522 verbose(env, 6523 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6524 tname); 6525 return -EPERM; 6526 } 6527 6528 if (off < 0) { 6529 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6530 regno, tname, off); 6531 return -EACCES; 6532 } 6533 6534 if (atype != BPF_READ) { 6535 verbose(env, "only read from %s is supported\n", tname); 6536 return -EACCES; 6537 } 6538 6539 /* Simulate access to a PTR_TO_BTF_ID */ 6540 memset(&map_reg, 0, sizeof(map_reg)); 6541 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6542 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6543 if (ret < 0) 6544 return ret; 6545 6546 if (value_regno >= 0) 6547 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6548 6549 return 0; 6550 } 6551 6552 /* Check that the stack access at the given offset is within bounds. The 6553 * maximum valid offset is -1. 6554 * 6555 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6556 * -state->allocated_stack for reads. 6557 */ 6558 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 6559 s64 off, 6560 struct bpf_func_state *state, 6561 enum bpf_access_type t) 6562 { 6563 int min_valid_off; 6564 6565 if (t == BPF_WRITE || env->allow_uninit_stack) 6566 min_valid_off = -MAX_BPF_STACK; 6567 else 6568 min_valid_off = -state->allocated_stack; 6569 6570 if (off < min_valid_off || off > -1) 6571 return -EACCES; 6572 return 0; 6573 } 6574 6575 /* Check that the stack access at 'regno + off' falls within the maximum stack 6576 * bounds. 6577 * 6578 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6579 */ 6580 static int check_stack_access_within_bounds( 6581 struct bpf_verifier_env *env, 6582 int regno, int off, int access_size, 6583 enum bpf_access_src src, enum bpf_access_type type) 6584 { 6585 struct bpf_reg_state *regs = cur_regs(env); 6586 struct bpf_reg_state *reg = regs + regno; 6587 struct bpf_func_state *state = func(env, reg); 6588 s64 min_off, max_off; 6589 int err; 6590 char *err_extra; 6591 6592 if (src == ACCESS_HELPER) 6593 /* We don't know if helpers are reading or writing (or both). */ 6594 err_extra = " indirect access to"; 6595 else if (type == BPF_READ) 6596 err_extra = " read from"; 6597 else 6598 err_extra = " write to"; 6599 6600 if (tnum_is_const(reg->var_off)) { 6601 min_off = (s64)reg->var_off.value + off; 6602 max_off = min_off + access_size; 6603 } else { 6604 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6605 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6606 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6607 err_extra, regno); 6608 return -EACCES; 6609 } 6610 min_off = reg->smin_value + off; 6611 max_off = reg->smax_value + off + access_size; 6612 } 6613 6614 err = check_stack_slot_within_bounds(env, min_off, state, type); 6615 if (!err && max_off > 0) 6616 err = -EINVAL; /* out of stack access into non-negative offsets */ 6617 6618 if (err) { 6619 if (tnum_is_const(reg->var_off)) { 6620 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6621 err_extra, regno, off, access_size); 6622 } else { 6623 char tn_buf[48]; 6624 6625 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6626 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 6627 err_extra, regno, tn_buf, off, access_size); 6628 } 6629 return err; 6630 } 6631 6632 /* Note that there is no stack access with offset zero, so the needed stack 6633 * size is -min_off, not -min_off+1. 6634 */ 6635 return grow_stack_state(env, state, -min_off /* size */); 6636 } 6637 6638 /* check whether memory at (regno + off) is accessible for t = (read | write) 6639 * if t==write, value_regno is a register which value is stored into memory 6640 * if t==read, value_regno is a register which will receive the value from memory 6641 * if t==write && value_regno==-1, some unknown value is stored into memory 6642 * if t==read && value_regno==-1, don't care what we read from memory 6643 */ 6644 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6645 int off, int bpf_size, enum bpf_access_type t, 6646 int value_regno, bool strict_alignment_once, bool is_ldsx) 6647 { 6648 struct bpf_reg_state *regs = cur_regs(env); 6649 struct bpf_reg_state *reg = regs + regno; 6650 int size, err = 0; 6651 6652 size = bpf_size_to_bytes(bpf_size); 6653 if (size < 0) 6654 return size; 6655 6656 /* alignment checks will add in reg->off themselves */ 6657 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6658 if (err) 6659 return err; 6660 6661 /* for access checks, reg->off is just part of off */ 6662 off += reg->off; 6663 6664 if (reg->type == PTR_TO_MAP_KEY) { 6665 if (t == BPF_WRITE) { 6666 verbose(env, "write to change key R%d not allowed\n", regno); 6667 return -EACCES; 6668 } 6669 6670 err = check_mem_region_access(env, regno, off, size, 6671 reg->map_ptr->key_size, false); 6672 if (err) 6673 return err; 6674 if (value_regno >= 0) 6675 mark_reg_unknown(env, regs, value_regno); 6676 } else if (reg->type == PTR_TO_MAP_VALUE) { 6677 struct btf_field *kptr_field = NULL; 6678 6679 if (t == BPF_WRITE && value_regno >= 0 && 6680 is_pointer_value(env, value_regno)) { 6681 verbose(env, "R%d leaks addr into map\n", value_regno); 6682 return -EACCES; 6683 } 6684 err = check_map_access_type(env, regno, off, size, t); 6685 if (err) 6686 return err; 6687 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6688 if (err) 6689 return err; 6690 if (tnum_is_const(reg->var_off)) 6691 kptr_field = btf_record_find(reg->map_ptr->record, 6692 off + reg->var_off.value, BPF_KPTR); 6693 if (kptr_field) { 6694 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6695 } else if (t == BPF_READ && value_regno >= 0) { 6696 struct bpf_map *map = reg->map_ptr; 6697 6698 /* if map is read-only, track its contents as scalars */ 6699 if (tnum_is_const(reg->var_off) && 6700 bpf_map_is_rdonly(map) && 6701 map->ops->map_direct_value_addr) { 6702 int map_off = off + reg->var_off.value; 6703 u64 val = 0; 6704 6705 err = bpf_map_direct_read(map, map_off, size, 6706 &val, is_ldsx); 6707 if (err) 6708 return err; 6709 6710 regs[value_regno].type = SCALAR_VALUE; 6711 __mark_reg_known(®s[value_regno], val); 6712 } else { 6713 mark_reg_unknown(env, regs, value_regno); 6714 } 6715 } 6716 } else if (base_type(reg->type) == PTR_TO_MEM) { 6717 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6718 6719 if (type_may_be_null(reg->type)) { 6720 verbose(env, "R%d invalid mem access '%s'\n", regno, 6721 reg_type_str(env, reg->type)); 6722 return -EACCES; 6723 } 6724 6725 if (t == BPF_WRITE && rdonly_mem) { 6726 verbose(env, "R%d cannot write into %s\n", 6727 regno, reg_type_str(env, reg->type)); 6728 return -EACCES; 6729 } 6730 6731 if (t == BPF_WRITE && value_regno >= 0 && 6732 is_pointer_value(env, value_regno)) { 6733 verbose(env, "R%d leaks addr into mem\n", value_regno); 6734 return -EACCES; 6735 } 6736 6737 err = check_mem_region_access(env, regno, off, size, 6738 reg->mem_size, false); 6739 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6740 mark_reg_unknown(env, regs, value_regno); 6741 } else if (reg->type == PTR_TO_CTX) { 6742 enum bpf_reg_type reg_type = SCALAR_VALUE; 6743 struct btf *btf = NULL; 6744 u32 btf_id = 0; 6745 6746 if (t == BPF_WRITE && value_regno >= 0 && 6747 is_pointer_value(env, value_regno)) { 6748 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6749 return -EACCES; 6750 } 6751 6752 err = check_ptr_off_reg(env, reg, regno); 6753 if (err < 0) 6754 return err; 6755 6756 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6757 &btf_id); 6758 if (err) 6759 verbose_linfo(env, insn_idx, "; "); 6760 if (!err && t == BPF_READ && value_regno >= 0) { 6761 /* ctx access returns either a scalar, or a 6762 * PTR_TO_PACKET[_META,_END]. In the latter 6763 * case, we know the offset is zero. 6764 */ 6765 if (reg_type == SCALAR_VALUE) { 6766 mark_reg_unknown(env, regs, value_regno); 6767 } else { 6768 mark_reg_known_zero(env, regs, 6769 value_regno); 6770 if (type_may_be_null(reg_type)) 6771 regs[value_regno].id = ++env->id_gen; 6772 /* A load of ctx field could have different 6773 * actual load size with the one encoded in the 6774 * insn. When the dst is PTR, it is for sure not 6775 * a sub-register. 6776 */ 6777 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6778 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6779 regs[value_regno].btf = btf; 6780 regs[value_regno].btf_id = btf_id; 6781 } 6782 } 6783 regs[value_regno].type = reg_type; 6784 } 6785 6786 } else if (reg->type == PTR_TO_STACK) { 6787 /* Basic bounds checks. */ 6788 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6789 if (err) 6790 return err; 6791 6792 if (t == BPF_READ) 6793 err = check_stack_read(env, regno, off, size, 6794 value_regno); 6795 else 6796 err = check_stack_write(env, regno, off, size, 6797 value_regno, insn_idx); 6798 } else if (reg_is_pkt_pointer(reg)) { 6799 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6800 verbose(env, "cannot write into packet\n"); 6801 return -EACCES; 6802 } 6803 if (t == BPF_WRITE && value_regno >= 0 && 6804 is_pointer_value(env, value_regno)) { 6805 verbose(env, "R%d leaks addr into packet\n", 6806 value_regno); 6807 return -EACCES; 6808 } 6809 err = check_packet_access(env, regno, off, size, false); 6810 if (!err && t == BPF_READ && value_regno >= 0) 6811 mark_reg_unknown(env, regs, value_regno); 6812 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6813 if (t == BPF_WRITE && value_regno >= 0 && 6814 is_pointer_value(env, value_regno)) { 6815 verbose(env, "R%d leaks addr into flow keys\n", 6816 value_regno); 6817 return -EACCES; 6818 } 6819 6820 err = check_flow_keys_access(env, off, size); 6821 if (!err && t == BPF_READ && value_regno >= 0) 6822 mark_reg_unknown(env, regs, value_regno); 6823 } else if (type_is_sk_pointer(reg->type)) { 6824 if (t == BPF_WRITE) { 6825 verbose(env, "R%d cannot write into %s\n", 6826 regno, reg_type_str(env, reg->type)); 6827 return -EACCES; 6828 } 6829 err = check_sock_access(env, insn_idx, regno, off, size, t); 6830 if (!err && value_regno >= 0) 6831 mark_reg_unknown(env, regs, value_regno); 6832 } else if (reg->type == PTR_TO_TP_BUFFER) { 6833 err = check_tp_buffer_access(env, reg, regno, off, size); 6834 if (!err && t == BPF_READ && value_regno >= 0) 6835 mark_reg_unknown(env, regs, value_regno); 6836 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6837 !type_may_be_null(reg->type)) { 6838 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6839 value_regno); 6840 } else if (reg->type == CONST_PTR_TO_MAP) { 6841 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6842 value_regno); 6843 } else if (base_type(reg->type) == PTR_TO_BUF) { 6844 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6845 u32 *max_access; 6846 6847 if (rdonly_mem) { 6848 if (t == BPF_WRITE) { 6849 verbose(env, "R%d cannot write into %s\n", 6850 regno, reg_type_str(env, reg->type)); 6851 return -EACCES; 6852 } 6853 max_access = &env->prog->aux->max_rdonly_access; 6854 } else { 6855 max_access = &env->prog->aux->max_rdwr_access; 6856 } 6857 6858 err = check_buffer_access(env, reg, regno, off, size, false, 6859 max_access); 6860 6861 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6862 mark_reg_unknown(env, regs, value_regno); 6863 } else { 6864 verbose(env, "R%d invalid mem access '%s'\n", regno, 6865 reg_type_str(env, reg->type)); 6866 return -EACCES; 6867 } 6868 6869 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6870 regs[value_regno].type == SCALAR_VALUE) { 6871 if (!is_ldsx) 6872 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6873 coerce_reg_to_size(®s[value_regno], size); 6874 else 6875 coerce_reg_to_size_sx(®s[value_regno], size); 6876 } 6877 return err; 6878 } 6879 6880 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6881 { 6882 int load_reg; 6883 int err; 6884 6885 switch (insn->imm) { 6886 case BPF_ADD: 6887 case BPF_ADD | BPF_FETCH: 6888 case BPF_AND: 6889 case BPF_AND | BPF_FETCH: 6890 case BPF_OR: 6891 case BPF_OR | BPF_FETCH: 6892 case BPF_XOR: 6893 case BPF_XOR | BPF_FETCH: 6894 case BPF_XCHG: 6895 case BPF_CMPXCHG: 6896 break; 6897 default: 6898 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6899 return -EINVAL; 6900 } 6901 6902 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6903 verbose(env, "invalid atomic operand size\n"); 6904 return -EINVAL; 6905 } 6906 6907 /* check src1 operand */ 6908 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6909 if (err) 6910 return err; 6911 6912 /* check src2 operand */ 6913 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6914 if (err) 6915 return err; 6916 6917 if (insn->imm == BPF_CMPXCHG) { 6918 /* Check comparison of R0 with memory location */ 6919 const u32 aux_reg = BPF_REG_0; 6920 6921 err = check_reg_arg(env, aux_reg, SRC_OP); 6922 if (err) 6923 return err; 6924 6925 if (is_pointer_value(env, aux_reg)) { 6926 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6927 return -EACCES; 6928 } 6929 } 6930 6931 if (is_pointer_value(env, insn->src_reg)) { 6932 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6933 return -EACCES; 6934 } 6935 6936 if (is_ctx_reg(env, insn->dst_reg) || 6937 is_pkt_reg(env, insn->dst_reg) || 6938 is_flow_key_reg(env, insn->dst_reg) || 6939 is_sk_reg(env, insn->dst_reg)) { 6940 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6941 insn->dst_reg, 6942 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6943 return -EACCES; 6944 } 6945 6946 if (insn->imm & BPF_FETCH) { 6947 if (insn->imm == BPF_CMPXCHG) 6948 load_reg = BPF_REG_0; 6949 else 6950 load_reg = insn->src_reg; 6951 6952 /* check and record load of old value */ 6953 err = check_reg_arg(env, load_reg, DST_OP); 6954 if (err) 6955 return err; 6956 } else { 6957 /* This instruction accesses a memory location but doesn't 6958 * actually load it into a register. 6959 */ 6960 load_reg = -1; 6961 } 6962 6963 /* Check whether we can read the memory, with second call for fetch 6964 * case to simulate the register fill. 6965 */ 6966 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6967 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 6968 if (!err && load_reg >= 0) 6969 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6970 BPF_SIZE(insn->code), BPF_READ, load_reg, 6971 true, false); 6972 if (err) 6973 return err; 6974 6975 /* Check whether we can write into the same memory. */ 6976 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6977 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 6978 if (err) 6979 return err; 6980 return 0; 6981 } 6982 6983 /* When register 'regno' is used to read the stack (either directly or through 6984 * a helper function) make sure that it's within stack boundary and, depending 6985 * on the access type and privileges, that all elements of the stack are 6986 * initialized. 6987 * 6988 * 'off' includes 'regno->off', but not its dynamic part (if any). 6989 * 6990 * All registers that have been spilled on the stack in the slots within the 6991 * read offsets are marked as read. 6992 */ 6993 static int check_stack_range_initialized( 6994 struct bpf_verifier_env *env, int regno, int off, 6995 int access_size, bool zero_size_allowed, 6996 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 6997 { 6998 struct bpf_reg_state *reg = reg_state(env, regno); 6999 struct bpf_func_state *state = func(env, reg); 7000 int err, min_off, max_off, i, j, slot, spi; 7001 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 7002 enum bpf_access_type bounds_check_type; 7003 /* Some accesses can write anything into the stack, others are 7004 * read-only. 7005 */ 7006 bool clobber = false; 7007 7008 if (access_size == 0 && !zero_size_allowed) { 7009 verbose(env, "invalid zero-sized read\n"); 7010 return -EACCES; 7011 } 7012 7013 if (type == ACCESS_HELPER) { 7014 /* The bounds checks for writes are more permissive than for 7015 * reads. However, if raw_mode is not set, we'll do extra 7016 * checks below. 7017 */ 7018 bounds_check_type = BPF_WRITE; 7019 clobber = true; 7020 } else { 7021 bounds_check_type = BPF_READ; 7022 } 7023 err = check_stack_access_within_bounds(env, regno, off, access_size, 7024 type, bounds_check_type); 7025 if (err) 7026 return err; 7027 7028 7029 if (tnum_is_const(reg->var_off)) { 7030 min_off = max_off = reg->var_off.value + off; 7031 } else { 7032 /* Variable offset is prohibited for unprivileged mode for 7033 * simplicity since it requires corresponding support in 7034 * Spectre masking for stack ALU. 7035 * See also retrieve_ptr_limit(). 7036 */ 7037 if (!env->bypass_spec_v1) { 7038 char tn_buf[48]; 7039 7040 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7041 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 7042 regno, err_extra, tn_buf); 7043 return -EACCES; 7044 } 7045 /* Only initialized buffer on stack is allowed to be accessed 7046 * with variable offset. With uninitialized buffer it's hard to 7047 * guarantee that whole memory is marked as initialized on 7048 * helper return since specific bounds are unknown what may 7049 * cause uninitialized stack leaking. 7050 */ 7051 if (meta && meta->raw_mode) 7052 meta = NULL; 7053 7054 min_off = reg->smin_value + off; 7055 max_off = reg->smax_value + off; 7056 } 7057 7058 if (meta && meta->raw_mode) { 7059 /* Ensure we won't be overwriting dynptrs when simulating byte 7060 * by byte access in check_helper_call using meta.access_size. 7061 * This would be a problem if we have a helper in the future 7062 * which takes: 7063 * 7064 * helper(uninit_mem, len, dynptr) 7065 * 7066 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7067 * may end up writing to dynptr itself when touching memory from 7068 * arg 1. This can be relaxed on a case by case basis for known 7069 * safe cases, but reject due to the possibilitiy of aliasing by 7070 * default. 7071 */ 7072 for (i = min_off; i < max_off + access_size; i++) { 7073 int stack_off = -i - 1; 7074 7075 spi = __get_spi(i); 7076 /* raw_mode may write past allocated_stack */ 7077 if (state->allocated_stack <= stack_off) 7078 continue; 7079 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7080 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7081 return -EACCES; 7082 } 7083 } 7084 meta->access_size = access_size; 7085 meta->regno = regno; 7086 return 0; 7087 } 7088 7089 for (i = min_off; i < max_off + access_size; i++) { 7090 u8 *stype; 7091 7092 slot = -i - 1; 7093 spi = slot / BPF_REG_SIZE; 7094 if (state->allocated_stack <= slot) { 7095 verbose(env, "verifier bug: allocated_stack too small"); 7096 return -EFAULT; 7097 } 7098 7099 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7100 if (*stype == STACK_MISC) 7101 goto mark; 7102 if ((*stype == STACK_ZERO) || 7103 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7104 if (clobber) { 7105 /* helper can write anything into the stack */ 7106 *stype = STACK_MISC; 7107 } 7108 goto mark; 7109 } 7110 7111 if (is_spilled_reg(&state->stack[spi]) && 7112 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7113 env->allow_ptr_leaks)) { 7114 if (clobber) { 7115 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7116 for (j = 0; j < BPF_REG_SIZE; j++) 7117 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7118 } 7119 goto mark; 7120 } 7121 7122 if (tnum_is_const(reg->var_off)) { 7123 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7124 err_extra, regno, min_off, i - min_off, access_size); 7125 } else { 7126 char tn_buf[48]; 7127 7128 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7129 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7130 err_extra, regno, tn_buf, i - min_off, access_size); 7131 } 7132 return -EACCES; 7133 mark: 7134 /* reading any byte out of 8-byte 'spill_slot' will cause 7135 * the whole slot to be marked as 'read' 7136 */ 7137 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7138 state->stack[spi].spilled_ptr.parent, 7139 REG_LIVE_READ64); 7140 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7141 * be sure that whether stack slot is written to or not. Hence, 7142 * we must still conservatively propagate reads upwards even if 7143 * helper may write to the entire memory range. 7144 */ 7145 } 7146 return 0; 7147 } 7148 7149 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7150 int access_size, bool zero_size_allowed, 7151 struct bpf_call_arg_meta *meta) 7152 { 7153 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7154 u32 *max_access; 7155 7156 switch (base_type(reg->type)) { 7157 case PTR_TO_PACKET: 7158 case PTR_TO_PACKET_META: 7159 return check_packet_access(env, regno, reg->off, access_size, 7160 zero_size_allowed); 7161 case PTR_TO_MAP_KEY: 7162 if (meta && meta->raw_mode) { 7163 verbose(env, "R%d cannot write into %s\n", regno, 7164 reg_type_str(env, reg->type)); 7165 return -EACCES; 7166 } 7167 return check_mem_region_access(env, regno, reg->off, access_size, 7168 reg->map_ptr->key_size, false); 7169 case PTR_TO_MAP_VALUE: 7170 if (check_map_access_type(env, regno, reg->off, access_size, 7171 meta && meta->raw_mode ? BPF_WRITE : 7172 BPF_READ)) 7173 return -EACCES; 7174 return check_map_access(env, regno, reg->off, access_size, 7175 zero_size_allowed, ACCESS_HELPER); 7176 case PTR_TO_MEM: 7177 if (type_is_rdonly_mem(reg->type)) { 7178 if (meta && meta->raw_mode) { 7179 verbose(env, "R%d cannot write into %s\n", regno, 7180 reg_type_str(env, reg->type)); 7181 return -EACCES; 7182 } 7183 } 7184 return check_mem_region_access(env, regno, reg->off, 7185 access_size, reg->mem_size, 7186 zero_size_allowed); 7187 case PTR_TO_BUF: 7188 if (type_is_rdonly_mem(reg->type)) { 7189 if (meta && meta->raw_mode) { 7190 verbose(env, "R%d cannot write into %s\n", regno, 7191 reg_type_str(env, reg->type)); 7192 return -EACCES; 7193 } 7194 7195 max_access = &env->prog->aux->max_rdonly_access; 7196 } else { 7197 max_access = &env->prog->aux->max_rdwr_access; 7198 } 7199 return check_buffer_access(env, reg, regno, reg->off, 7200 access_size, zero_size_allowed, 7201 max_access); 7202 case PTR_TO_STACK: 7203 return check_stack_range_initialized( 7204 env, 7205 regno, reg->off, access_size, 7206 zero_size_allowed, ACCESS_HELPER, meta); 7207 case PTR_TO_BTF_ID: 7208 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7209 access_size, BPF_READ, -1); 7210 case PTR_TO_CTX: 7211 /* in case the function doesn't know how to access the context, 7212 * (because we are in a program of type SYSCALL for example), we 7213 * can not statically check its size. 7214 * Dynamically check it now. 7215 */ 7216 if (!env->ops->convert_ctx_access) { 7217 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7218 int offset = access_size - 1; 7219 7220 /* Allow zero-byte read from PTR_TO_CTX */ 7221 if (access_size == 0) 7222 return zero_size_allowed ? 0 : -EACCES; 7223 7224 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7225 atype, -1, false, false); 7226 } 7227 7228 fallthrough; 7229 default: /* scalar_value or invalid ptr */ 7230 /* Allow zero-byte read from NULL, regardless of pointer type */ 7231 if (zero_size_allowed && access_size == 0 && 7232 register_is_null(reg)) 7233 return 0; 7234 7235 verbose(env, "R%d type=%s ", regno, 7236 reg_type_str(env, reg->type)); 7237 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7238 return -EACCES; 7239 } 7240 } 7241 7242 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 7243 * size. 7244 * 7245 * @regno is the register containing the access size. regno-1 is the register 7246 * containing the pointer. 7247 */ 7248 static int check_mem_size_reg(struct bpf_verifier_env *env, 7249 struct bpf_reg_state *reg, u32 regno, 7250 bool zero_size_allowed, 7251 struct bpf_call_arg_meta *meta) 7252 { 7253 int err; 7254 7255 /* This is used to refine r0 return value bounds for helpers 7256 * that enforce this value as an upper bound on return values. 7257 * See do_refine_retval_range() for helpers that can refine 7258 * the return value. C type of helper is u32 so we pull register 7259 * bound from umax_value however, if negative verifier errors 7260 * out. Only upper bounds can be learned because retval is an 7261 * int type and negative retvals are allowed. 7262 */ 7263 meta->msize_max_value = reg->umax_value; 7264 7265 /* The register is SCALAR_VALUE; the access check 7266 * happens using its boundaries. 7267 */ 7268 if (!tnum_is_const(reg->var_off)) 7269 /* For unprivileged variable accesses, disable raw 7270 * mode so that the program is required to 7271 * initialize all the memory that the helper could 7272 * just partially fill up. 7273 */ 7274 meta = NULL; 7275 7276 if (reg->smin_value < 0) { 7277 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7278 regno); 7279 return -EACCES; 7280 } 7281 7282 if (reg->umin_value == 0) { 7283 err = check_helper_mem_access(env, regno - 1, 0, 7284 zero_size_allowed, 7285 meta); 7286 if (err) 7287 return err; 7288 } 7289 7290 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7291 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7292 regno); 7293 return -EACCES; 7294 } 7295 err = check_helper_mem_access(env, regno - 1, 7296 reg->umax_value, 7297 zero_size_allowed, meta); 7298 if (!err) 7299 err = mark_chain_precision(env, regno); 7300 return err; 7301 } 7302 7303 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7304 u32 regno, u32 mem_size) 7305 { 7306 bool may_be_null = type_may_be_null(reg->type); 7307 struct bpf_reg_state saved_reg; 7308 struct bpf_call_arg_meta meta; 7309 int err; 7310 7311 if (register_is_null(reg)) 7312 return 0; 7313 7314 memset(&meta, 0, sizeof(meta)); 7315 /* Assuming that the register contains a value check if the memory 7316 * access is safe. Temporarily save and restore the register's state as 7317 * the conversion shouldn't be visible to a caller. 7318 */ 7319 if (may_be_null) { 7320 saved_reg = *reg; 7321 mark_ptr_not_null_reg(reg); 7322 } 7323 7324 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7325 /* Check access for BPF_WRITE */ 7326 meta.raw_mode = true; 7327 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7328 7329 if (may_be_null) 7330 *reg = saved_reg; 7331 7332 return err; 7333 } 7334 7335 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7336 u32 regno) 7337 { 7338 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7339 bool may_be_null = type_may_be_null(mem_reg->type); 7340 struct bpf_reg_state saved_reg; 7341 struct bpf_call_arg_meta meta; 7342 int err; 7343 7344 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7345 7346 memset(&meta, 0, sizeof(meta)); 7347 7348 if (may_be_null) { 7349 saved_reg = *mem_reg; 7350 mark_ptr_not_null_reg(mem_reg); 7351 } 7352 7353 err = check_mem_size_reg(env, reg, regno, true, &meta); 7354 /* Check access for BPF_WRITE */ 7355 meta.raw_mode = true; 7356 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7357 7358 if (may_be_null) 7359 *mem_reg = saved_reg; 7360 return err; 7361 } 7362 7363 /* Implementation details: 7364 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7365 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7366 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7367 * Two separate bpf_obj_new will also have different reg->id. 7368 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7369 * clears reg->id after value_or_null->value transition, since the verifier only 7370 * cares about the range of access to valid map value pointer and doesn't care 7371 * about actual address of the map element. 7372 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7373 * reg->id > 0 after value_or_null->value transition. By doing so 7374 * two bpf_map_lookups will be considered two different pointers that 7375 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7376 * returned from bpf_obj_new. 7377 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7378 * dead-locks. 7379 * Since only one bpf_spin_lock is allowed the checks are simpler than 7380 * reg_is_refcounted() logic. The verifier needs to remember only 7381 * one spin_lock instead of array of acquired_refs. 7382 * cur_state->active_lock remembers which map value element or allocated 7383 * object got locked and clears it after bpf_spin_unlock. 7384 */ 7385 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7386 bool is_lock) 7387 { 7388 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7389 struct bpf_verifier_state *cur = env->cur_state; 7390 bool is_const = tnum_is_const(reg->var_off); 7391 u64 val = reg->var_off.value; 7392 struct bpf_map *map = NULL; 7393 struct btf *btf = NULL; 7394 struct btf_record *rec; 7395 7396 if (!is_const) { 7397 verbose(env, 7398 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7399 regno); 7400 return -EINVAL; 7401 } 7402 if (reg->type == PTR_TO_MAP_VALUE) { 7403 map = reg->map_ptr; 7404 if (!map->btf) { 7405 verbose(env, 7406 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7407 map->name); 7408 return -EINVAL; 7409 } 7410 } else { 7411 btf = reg->btf; 7412 } 7413 7414 rec = reg_btf_record(reg); 7415 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7416 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7417 map ? map->name : "kptr"); 7418 return -EINVAL; 7419 } 7420 if (rec->spin_lock_off != val + reg->off) { 7421 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7422 val + reg->off, rec->spin_lock_off); 7423 return -EINVAL; 7424 } 7425 if (is_lock) { 7426 if (cur->active_lock.ptr) { 7427 verbose(env, 7428 "Locking two bpf_spin_locks are not allowed\n"); 7429 return -EINVAL; 7430 } 7431 if (map) 7432 cur->active_lock.ptr = map; 7433 else 7434 cur->active_lock.ptr = btf; 7435 cur->active_lock.id = reg->id; 7436 } else { 7437 void *ptr; 7438 7439 if (map) 7440 ptr = map; 7441 else 7442 ptr = btf; 7443 7444 if (!cur->active_lock.ptr) { 7445 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7446 return -EINVAL; 7447 } 7448 if (cur->active_lock.ptr != ptr || 7449 cur->active_lock.id != reg->id) { 7450 verbose(env, "bpf_spin_unlock of different lock\n"); 7451 return -EINVAL; 7452 } 7453 7454 invalidate_non_owning_refs(env); 7455 7456 cur->active_lock.ptr = NULL; 7457 cur->active_lock.id = 0; 7458 } 7459 return 0; 7460 } 7461 7462 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7463 struct bpf_call_arg_meta *meta) 7464 { 7465 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7466 bool is_const = tnum_is_const(reg->var_off); 7467 struct bpf_map *map = reg->map_ptr; 7468 u64 val = reg->var_off.value; 7469 7470 if (!is_const) { 7471 verbose(env, 7472 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7473 regno); 7474 return -EINVAL; 7475 } 7476 if (!map->btf) { 7477 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7478 map->name); 7479 return -EINVAL; 7480 } 7481 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7482 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7483 return -EINVAL; 7484 } 7485 if (map->record->timer_off != val + reg->off) { 7486 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7487 val + reg->off, map->record->timer_off); 7488 return -EINVAL; 7489 } 7490 if (meta->map_ptr) { 7491 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7492 return -EFAULT; 7493 } 7494 meta->map_uid = reg->map_uid; 7495 meta->map_ptr = map; 7496 return 0; 7497 } 7498 7499 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7500 struct bpf_call_arg_meta *meta) 7501 { 7502 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7503 struct bpf_map *map_ptr = reg->map_ptr; 7504 struct btf_field *kptr_field; 7505 u32 kptr_off; 7506 7507 if (!tnum_is_const(reg->var_off)) { 7508 verbose(env, 7509 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7510 regno); 7511 return -EINVAL; 7512 } 7513 if (!map_ptr->btf) { 7514 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7515 map_ptr->name); 7516 return -EINVAL; 7517 } 7518 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7519 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7520 return -EINVAL; 7521 } 7522 7523 meta->map_ptr = map_ptr; 7524 kptr_off = reg->off + reg->var_off.value; 7525 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7526 if (!kptr_field) { 7527 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7528 return -EACCES; 7529 } 7530 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 7531 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7532 return -EACCES; 7533 } 7534 meta->kptr_field = kptr_field; 7535 return 0; 7536 } 7537 7538 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7539 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7540 * 7541 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7542 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7543 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7544 * 7545 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7546 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7547 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7548 * mutate the view of the dynptr and also possibly destroy it. In the latter 7549 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7550 * memory that dynptr points to. 7551 * 7552 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7553 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7554 * readonly dynptr view yet, hence only the first case is tracked and checked. 7555 * 7556 * This is consistent with how C applies the const modifier to a struct object, 7557 * where the pointer itself inside bpf_dynptr becomes const but not what it 7558 * points to. 7559 * 7560 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7561 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7562 */ 7563 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7564 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7565 { 7566 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7567 int err; 7568 7569 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7570 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7571 */ 7572 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7573 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7574 return -EFAULT; 7575 } 7576 7577 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7578 * constructing a mutable bpf_dynptr object. 7579 * 7580 * Currently, this is only possible with PTR_TO_STACK 7581 * pointing to a region of at least 16 bytes which doesn't 7582 * contain an existing bpf_dynptr. 7583 * 7584 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7585 * mutated or destroyed. However, the memory it points to 7586 * may be mutated. 7587 * 7588 * None - Points to a initialized dynptr that can be mutated and 7589 * destroyed, including mutation of the memory it points 7590 * to. 7591 */ 7592 if (arg_type & MEM_UNINIT) { 7593 int i; 7594 7595 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7596 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7597 return -EINVAL; 7598 } 7599 7600 /* we write BPF_DW bits (8 bytes) at a time */ 7601 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7602 err = check_mem_access(env, insn_idx, regno, 7603 i, BPF_DW, BPF_WRITE, -1, false, false); 7604 if (err) 7605 return err; 7606 } 7607 7608 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7609 } else /* MEM_RDONLY and None case from above */ { 7610 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7611 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7612 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7613 return -EINVAL; 7614 } 7615 7616 if (!is_dynptr_reg_valid_init(env, reg)) { 7617 verbose(env, 7618 "Expected an initialized dynptr as arg #%d\n", 7619 regno); 7620 return -EINVAL; 7621 } 7622 7623 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7624 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7625 verbose(env, 7626 "Expected a dynptr of type %s as arg #%d\n", 7627 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7628 return -EINVAL; 7629 } 7630 7631 err = mark_dynptr_read(env, reg); 7632 } 7633 return err; 7634 } 7635 7636 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7637 { 7638 struct bpf_func_state *state = func(env, reg); 7639 7640 return state->stack[spi].spilled_ptr.ref_obj_id; 7641 } 7642 7643 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7644 { 7645 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7646 } 7647 7648 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7649 { 7650 return meta->kfunc_flags & KF_ITER_NEW; 7651 } 7652 7653 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7654 { 7655 return meta->kfunc_flags & KF_ITER_NEXT; 7656 } 7657 7658 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7659 { 7660 return meta->kfunc_flags & KF_ITER_DESTROY; 7661 } 7662 7663 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7664 { 7665 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7666 * kfunc is iter state pointer 7667 */ 7668 return arg == 0 && is_iter_kfunc(meta); 7669 } 7670 7671 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7672 struct bpf_kfunc_call_arg_meta *meta) 7673 { 7674 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7675 const struct btf_type *t; 7676 const struct btf_param *arg; 7677 int spi, err, i, nr_slots; 7678 u32 btf_id; 7679 7680 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7681 arg = &btf_params(meta->func_proto)[0]; 7682 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7683 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7684 nr_slots = t->size / BPF_REG_SIZE; 7685 7686 if (is_iter_new_kfunc(meta)) { 7687 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7688 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7689 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7690 iter_type_str(meta->btf, btf_id), regno); 7691 return -EINVAL; 7692 } 7693 7694 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7695 err = check_mem_access(env, insn_idx, regno, 7696 i, BPF_DW, BPF_WRITE, -1, false, false); 7697 if (err) 7698 return err; 7699 } 7700 7701 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 7702 if (err) 7703 return err; 7704 } else { 7705 /* iter_next() or iter_destroy() expect initialized iter state*/ 7706 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 7707 switch (err) { 7708 case 0: 7709 break; 7710 case -EINVAL: 7711 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7712 iter_type_str(meta->btf, btf_id), regno); 7713 return err; 7714 case -EPROTO: 7715 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 7716 return err; 7717 default: 7718 return err; 7719 } 7720 7721 spi = iter_get_spi(env, reg, nr_slots); 7722 if (spi < 0) 7723 return spi; 7724 7725 err = mark_iter_read(env, reg, spi, nr_slots); 7726 if (err) 7727 return err; 7728 7729 /* remember meta->iter info for process_iter_next_call() */ 7730 meta->iter.spi = spi; 7731 meta->iter.frameno = reg->frameno; 7732 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7733 7734 if (is_iter_destroy_kfunc(meta)) { 7735 err = unmark_stack_slots_iter(env, reg, nr_slots); 7736 if (err) 7737 return err; 7738 } 7739 } 7740 7741 return 0; 7742 } 7743 7744 /* Look for a previous loop entry at insn_idx: nearest parent state 7745 * stopped at insn_idx with callsites matching those in cur->frame. 7746 */ 7747 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 7748 struct bpf_verifier_state *cur, 7749 int insn_idx) 7750 { 7751 struct bpf_verifier_state_list *sl; 7752 struct bpf_verifier_state *st; 7753 7754 /* Explored states are pushed in stack order, most recent states come first */ 7755 sl = *explored_state(env, insn_idx); 7756 for (; sl; sl = sl->next) { 7757 /* If st->branches != 0 state is a part of current DFS verification path, 7758 * hence cur & st for a loop. 7759 */ 7760 st = &sl->state; 7761 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 7762 st->dfs_depth < cur->dfs_depth) 7763 return st; 7764 } 7765 7766 return NULL; 7767 } 7768 7769 static void reset_idmap_scratch(struct bpf_verifier_env *env); 7770 static bool regs_exact(const struct bpf_reg_state *rold, 7771 const struct bpf_reg_state *rcur, 7772 struct bpf_idmap *idmap); 7773 7774 static void maybe_widen_reg(struct bpf_verifier_env *env, 7775 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7776 struct bpf_idmap *idmap) 7777 { 7778 if (rold->type != SCALAR_VALUE) 7779 return; 7780 if (rold->type != rcur->type) 7781 return; 7782 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 7783 return; 7784 __mark_reg_unknown(env, rcur); 7785 } 7786 7787 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 7788 struct bpf_verifier_state *old, 7789 struct bpf_verifier_state *cur) 7790 { 7791 struct bpf_func_state *fold, *fcur; 7792 int i, fr; 7793 7794 reset_idmap_scratch(env); 7795 for (fr = old->curframe; fr >= 0; fr--) { 7796 fold = old->frame[fr]; 7797 fcur = cur->frame[fr]; 7798 7799 for (i = 0; i < MAX_BPF_REG; i++) 7800 maybe_widen_reg(env, 7801 &fold->regs[i], 7802 &fcur->regs[i], 7803 &env->idmap_scratch); 7804 7805 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 7806 if (!is_spilled_reg(&fold->stack[i]) || 7807 !is_spilled_reg(&fcur->stack[i])) 7808 continue; 7809 7810 maybe_widen_reg(env, 7811 &fold->stack[i].spilled_ptr, 7812 &fcur->stack[i].spilled_ptr, 7813 &env->idmap_scratch); 7814 } 7815 } 7816 return 0; 7817 } 7818 7819 /* process_iter_next_call() is called when verifier gets to iterator's next 7820 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7821 * to it as just "iter_next()" in comments below. 7822 * 7823 * BPF verifier relies on a crucial contract for any iter_next() 7824 * implementation: it should *eventually* return NULL, and once that happens 7825 * it should keep returning NULL. That is, once iterator exhausts elements to 7826 * iterate, it should never reset or spuriously return new elements. 7827 * 7828 * With the assumption of such contract, process_iter_next_call() simulates 7829 * a fork in the verifier state to validate loop logic correctness and safety 7830 * without having to simulate infinite amount of iterations. 7831 * 7832 * In current state, we first assume that iter_next() returned NULL and 7833 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7834 * conditions we should not form an infinite loop and should eventually reach 7835 * exit. 7836 * 7837 * Besides that, we also fork current state and enqueue it for later 7838 * verification. In a forked state we keep iterator state as ACTIVE 7839 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7840 * also bump iteration depth to prevent erroneous infinite loop detection 7841 * later on (see iter_active_depths_differ() comment for details). In this 7842 * state we assume that we'll eventually loop back to another iter_next() 7843 * calls (it could be in exactly same location or in some other instruction, 7844 * it doesn't matter, we don't make any unnecessary assumptions about this, 7845 * everything revolves around iterator state in a stack slot, not which 7846 * instruction is calling iter_next()). When that happens, we either will come 7847 * to iter_next() with equivalent state and can conclude that next iteration 7848 * will proceed in exactly the same way as we just verified, so it's safe to 7849 * assume that loop converges. If not, we'll go on another iteration 7850 * simulation with a different input state, until all possible starting states 7851 * are validated or we reach maximum number of instructions limit. 7852 * 7853 * This way, we will either exhaustively discover all possible input states 7854 * that iterator loop can start with and eventually will converge, or we'll 7855 * effectively regress into bounded loop simulation logic and either reach 7856 * maximum number of instructions if loop is not provably convergent, or there 7857 * is some statically known limit on number of iterations (e.g., if there is 7858 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7859 * 7860 * Iteration convergence logic in is_state_visited() relies on exact 7861 * states comparison, which ignores read and precision marks. 7862 * This is necessary because read and precision marks are not finalized 7863 * while in the loop. Exact comparison might preclude convergence for 7864 * simple programs like below: 7865 * 7866 * i = 0; 7867 * while(iter_next(&it)) 7868 * i++; 7869 * 7870 * At each iteration step i++ would produce a new distinct state and 7871 * eventually instruction processing limit would be reached. 7872 * 7873 * To avoid such behavior speculatively forget (widen) range for 7874 * imprecise scalar registers, if those registers were not precise at the 7875 * end of the previous iteration and do not match exactly. 7876 * 7877 * This is a conservative heuristic that allows to verify wide range of programs, 7878 * however it precludes verification of programs that conjure an 7879 * imprecise value on the first loop iteration and use it as precise on a second. 7880 * For example, the following safe program would fail to verify: 7881 * 7882 * struct bpf_num_iter it; 7883 * int arr[10]; 7884 * int i = 0, a = 0; 7885 * bpf_iter_num_new(&it, 0, 10); 7886 * while (bpf_iter_num_next(&it)) { 7887 * if (a == 0) { 7888 * a = 1; 7889 * i = 7; // Because i changed verifier would forget 7890 * // it's range on second loop entry. 7891 * } else { 7892 * arr[i] = 42; // This would fail to verify. 7893 * } 7894 * } 7895 * bpf_iter_num_destroy(&it); 7896 */ 7897 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7898 struct bpf_kfunc_call_arg_meta *meta) 7899 { 7900 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 7901 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7902 struct bpf_reg_state *cur_iter, *queued_iter; 7903 int iter_frameno = meta->iter.frameno; 7904 int iter_spi = meta->iter.spi; 7905 7906 BTF_TYPE_EMIT(struct bpf_iter); 7907 7908 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7909 7910 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7911 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7912 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7913 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7914 return -EFAULT; 7915 } 7916 7917 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7918 /* Because iter_next() call is a checkpoint is_state_visitied() 7919 * should guarantee parent state with same call sites and insn_idx. 7920 */ 7921 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 7922 !same_callsites(cur_st->parent, cur_st)) { 7923 verbose(env, "bug: bad parent state for iter next call"); 7924 return -EFAULT; 7925 } 7926 /* Note cur_st->parent in the call below, it is necessary to skip 7927 * checkpoint created for cur_st by is_state_visited() 7928 * right at this instruction. 7929 */ 7930 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 7931 /* branch out active iter state */ 7932 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7933 if (!queued_st) 7934 return -ENOMEM; 7935 7936 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7937 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7938 queued_iter->iter.depth++; 7939 if (prev_st) 7940 widen_imprecise_scalars(env, prev_st, queued_st); 7941 7942 queued_fr = queued_st->frame[queued_st->curframe]; 7943 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7944 } 7945 7946 /* switch to DRAINED state, but keep the depth unchanged */ 7947 /* mark current iter state as drained and assume returned NULL */ 7948 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7949 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 7950 7951 return 0; 7952 } 7953 7954 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7955 { 7956 return type == ARG_CONST_SIZE || 7957 type == ARG_CONST_SIZE_OR_ZERO; 7958 } 7959 7960 static bool arg_type_is_release(enum bpf_arg_type type) 7961 { 7962 return type & OBJ_RELEASE; 7963 } 7964 7965 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7966 { 7967 return base_type(type) == ARG_PTR_TO_DYNPTR; 7968 } 7969 7970 static int int_ptr_type_to_size(enum bpf_arg_type type) 7971 { 7972 if (type == ARG_PTR_TO_INT) 7973 return sizeof(u32); 7974 else if (type == ARG_PTR_TO_LONG) 7975 return sizeof(u64); 7976 7977 return -EINVAL; 7978 } 7979 7980 static int resolve_map_arg_type(struct bpf_verifier_env *env, 7981 const struct bpf_call_arg_meta *meta, 7982 enum bpf_arg_type *arg_type) 7983 { 7984 if (!meta->map_ptr) { 7985 /* kernel subsystem misconfigured verifier */ 7986 verbose(env, "invalid map_ptr to access map->type\n"); 7987 return -EACCES; 7988 } 7989 7990 switch (meta->map_ptr->map_type) { 7991 case BPF_MAP_TYPE_SOCKMAP: 7992 case BPF_MAP_TYPE_SOCKHASH: 7993 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 7994 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 7995 } else { 7996 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 7997 return -EINVAL; 7998 } 7999 break; 8000 case BPF_MAP_TYPE_BLOOM_FILTER: 8001 if (meta->func_id == BPF_FUNC_map_peek_elem) 8002 *arg_type = ARG_PTR_TO_MAP_VALUE; 8003 break; 8004 default: 8005 break; 8006 } 8007 return 0; 8008 } 8009 8010 struct bpf_reg_types { 8011 const enum bpf_reg_type types[10]; 8012 u32 *btf_id; 8013 }; 8014 8015 static const struct bpf_reg_types sock_types = { 8016 .types = { 8017 PTR_TO_SOCK_COMMON, 8018 PTR_TO_SOCKET, 8019 PTR_TO_TCP_SOCK, 8020 PTR_TO_XDP_SOCK, 8021 }, 8022 }; 8023 8024 #ifdef CONFIG_NET 8025 static const struct bpf_reg_types btf_id_sock_common_types = { 8026 .types = { 8027 PTR_TO_SOCK_COMMON, 8028 PTR_TO_SOCKET, 8029 PTR_TO_TCP_SOCK, 8030 PTR_TO_XDP_SOCK, 8031 PTR_TO_BTF_ID, 8032 PTR_TO_BTF_ID | PTR_TRUSTED, 8033 }, 8034 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8035 }; 8036 #endif 8037 8038 static const struct bpf_reg_types mem_types = { 8039 .types = { 8040 PTR_TO_STACK, 8041 PTR_TO_PACKET, 8042 PTR_TO_PACKET_META, 8043 PTR_TO_MAP_KEY, 8044 PTR_TO_MAP_VALUE, 8045 PTR_TO_MEM, 8046 PTR_TO_MEM | MEM_RINGBUF, 8047 PTR_TO_BUF, 8048 PTR_TO_BTF_ID | PTR_TRUSTED, 8049 }, 8050 }; 8051 8052 static const struct bpf_reg_types int_ptr_types = { 8053 .types = { 8054 PTR_TO_STACK, 8055 PTR_TO_PACKET, 8056 PTR_TO_PACKET_META, 8057 PTR_TO_MAP_KEY, 8058 PTR_TO_MAP_VALUE, 8059 }, 8060 }; 8061 8062 static const struct bpf_reg_types spin_lock_types = { 8063 .types = { 8064 PTR_TO_MAP_VALUE, 8065 PTR_TO_BTF_ID | MEM_ALLOC, 8066 } 8067 }; 8068 8069 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8070 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8071 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8072 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8073 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8074 static const struct bpf_reg_types btf_ptr_types = { 8075 .types = { 8076 PTR_TO_BTF_ID, 8077 PTR_TO_BTF_ID | PTR_TRUSTED, 8078 PTR_TO_BTF_ID | MEM_RCU, 8079 }, 8080 }; 8081 static const struct bpf_reg_types percpu_btf_ptr_types = { 8082 .types = { 8083 PTR_TO_BTF_ID | MEM_PERCPU, 8084 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 8085 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8086 } 8087 }; 8088 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8089 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8090 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8091 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8092 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8093 static const struct bpf_reg_types dynptr_types = { 8094 .types = { 8095 PTR_TO_STACK, 8096 CONST_PTR_TO_DYNPTR, 8097 } 8098 }; 8099 8100 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8101 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8102 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8103 [ARG_CONST_SIZE] = &scalar_types, 8104 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8105 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8106 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8107 [ARG_PTR_TO_CTX] = &context_types, 8108 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8109 #ifdef CONFIG_NET 8110 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8111 #endif 8112 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8113 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8114 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8115 [ARG_PTR_TO_MEM] = &mem_types, 8116 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8117 [ARG_PTR_TO_INT] = &int_ptr_types, 8118 [ARG_PTR_TO_LONG] = &int_ptr_types, 8119 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8120 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8121 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8122 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8123 [ARG_PTR_TO_TIMER] = &timer_types, 8124 [ARG_PTR_TO_KPTR] = &kptr_types, 8125 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8126 }; 8127 8128 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8129 enum bpf_arg_type arg_type, 8130 const u32 *arg_btf_id, 8131 struct bpf_call_arg_meta *meta) 8132 { 8133 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8134 enum bpf_reg_type expected, type = reg->type; 8135 const struct bpf_reg_types *compatible; 8136 int i, j; 8137 8138 compatible = compatible_reg_types[base_type(arg_type)]; 8139 if (!compatible) { 8140 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8141 return -EFAULT; 8142 } 8143 8144 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8145 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8146 * 8147 * Same for MAYBE_NULL: 8148 * 8149 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8150 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8151 * 8152 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8153 * 8154 * Therefore we fold these flags depending on the arg_type before comparison. 8155 */ 8156 if (arg_type & MEM_RDONLY) 8157 type &= ~MEM_RDONLY; 8158 if (arg_type & PTR_MAYBE_NULL) 8159 type &= ~PTR_MAYBE_NULL; 8160 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8161 type &= ~DYNPTR_TYPE_FLAG_MASK; 8162 8163 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) { 8164 type &= ~MEM_ALLOC; 8165 type &= ~MEM_PERCPU; 8166 } 8167 8168 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8169 expected = compatible->types[i]; 8170 if (expected == NOT_INIT) 8171 break; 8172 8173 if (type == expected) 8174 goto found; 8175 } 8176 8177 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8178 for (j = 0; j + 1 < i; j++) 8179 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8180 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8181 return -EACCES; 8182 8183 found: 8184 if (base_type(reg->type) != PTR_TO_BTF_ID) 8185 return 0; 8186 8187 if (compatible == &mem_types) { 8188 if (!(arg_type & MEM_RDONLY)) { 8189 verbose(env, 8190 "%s() may write into memory pointed by R%d type=%s\n", 8191 func_id_name(meta->func_id), 8192 regno, reg_type_str(env, reg->type)); 8193 return -EACCES; 8194 } 8195 return 0; 8196 } 8197 8198 switch ((int)reg->type) { 8199 case PTR_TO_BTF_ID: 8200 case PTR_TO_BTF_ID | PTR_TRUSTED: 8201 case PTR_TO_BTF_ID | MEM_RCU: 8202 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8203 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8204 { 8205 /* For bpf_sk_release, it needs to match against first member 8206 * 'struct sock_common', hence make an exception for it. This 8207 * allows bpf_sk_release to work for multiple socket types. 8208 */ 8209 bool strict_type_match = arg_type_is_release(arg_type) && 8210 meta->func_id != BPF_FUNC_sk_release; 8211 8212 if (type_may_be_null(reg->type) && 8213 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8214 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8215 return -EACCES; 8216 } 8217 8218 if (!arg_btf_id) { 8219 if (!compatible->btf_id) { 8220 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8221 return -EFAULT; 8222 } 8223 arg_btf_id = compatible->btf_id; 8224 } 8225 8226 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8227 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8228 return -EACCES; 8229 } else { 8230 if (arg_btf_id == BPF_PTR_POISON) { 8231 verbose(env, "verifier internal error:"); 8232 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8233 regno); 8234 return -EACCES; 8235 } 8236 8237 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8238 btf_vmlinux, *arg_btf_id, 8239 strict_type_match)) { 8240 verbose(env, "R%d is of type %s but %s is expected\n", 8241 regno, btf_type_name(reg->btf, reg->btf_id), 8242 btf_type_name(btf_vmlinux, *arg_btf_id)); 8243 return -EACCES; 8244 } 8245 } 8246 break; 8247 } 8248 case PTR_TO_BTF_ID | MEM_ALLOC: 8249 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 8250 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8251 meta->func_id != BPF_FUNC_kptr_xchg) { 8252 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8253 return -EFAULT; 8254 } 8255 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8256 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8257 return -EACCES; 8258 } 8259 break; 8260 case PTR_TO_BTF_ID | MEM_PERCPU: 8261 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 8262 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8263 /* Handled by helper specific checks */ 8264 break; 8265 default: 8266 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8267 return -EFAULT; 8268 } 8269 return 0; 8270 } 8271 8272 static struct btf_field * 8273 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8274 { 8275 struct btf_field *field; 8276 struct btf_record *rec; 8277 8278 rec = reg_btf_record(reg); 8279 if (!rec) 8280 return NULL; 8281 8282 field = btf_record_find(rec, off, fields); 8283 if (!field) 8284 return NULL; 8285 8286 return field; 8287 } 8288 8289 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 8290 const struct bpf_reg_state *reg, int regno, 8291 enum bpf_arg_type arg_type) 8292 { 8293 u32 type = reg->type; 8294 8295 /* When referenced register is passed to release function, its fixed 8296 * offset must be 0. 8297 * 8298 * We will check arg_type_is_release reg has ref_obj_id when storing 8299 * meta->release_regno. 8300 */ 8301 if (arg_type_is_release(arg_type)) { 8302 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8303 * may not directly point to the object being released, but to 8304 * dynptr pointing to such object, which might be at some offset 8305 * on the stack. In that case, we simply to fallback to the 8306 * default handling. 8307 */ 8308 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8309 return 0; 8310 8311 /* Doing check_ptr_off_reg check for the offset will catch this 8312 * because fixed_off_ok is false, but checking here allows us 8313 * to give the user a better error message. 8314 */ 8315 if (reg->off) { 8316 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8317 regno); 8318 return -EINVAL; 8319 } 8320 return __check_ptr_off_reg(env, reg, regno, false); 8321 } 8322 8323 switch (type) { 8324 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8325 case PTR_TO_STACK: 8326 case PTR_TO_PACKET: 8327 case PTR_TO_PACKET_META: 8328 case PTR_TO_MAP_KEY: 8329 case PTR_TO_MAP_VALUE: 8330 case PTR_TO_MEM: 8331 case PTR_TO_MEM | MEM_RDONLY: 8332 case PTR_TO_MEM | MEM_RINGBUF: 8333 case PTR_TO_BUF: 8334 case PTR_TO_BUF | MEM_RDONLY: 8335 case SCALAR_VALUE: 8336 return 0; 8337 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8338 * fixed offset. 8339 */ 8340 case PTR_TO_BTF_ID: 8341 case PTR_TO_BTF_ID | MEM_ALLOC: 8342 case PTR_TO_BTF_ID | PTR_TRUSTED: 8343 case PTR_TO_BTF_ID | MEM_RCU: 8344 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8345 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8346 /* When referenced PTR_TO_BTF_ID is passed to release function, 8347 * its fixed offset must be 0. In the other cases, fixed offset 8348 * can be non-zero. This was already checked above. So pass 8349 * fixed_off_ok as true to allow fixed offset for all other 8350 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8351 * still need to do checks instead of returning. 8352 */ 8353 return __check_ptr_off_reg(env, reg, regno, true); 8354 default: 8355 return __check_ptr_off_reg(env, reg, regno, false); 8356 } 8357 } 8358 8359 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8360 const struct bpf_func_proto *fn, 8361 struct bpf_reg_state *regs) 8362 { 8363 struct bpf_reg_state *state = NULL; 8364 int i; 8365 8366 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8367 if (arg_type_is_dynptr(fn->arg_type[i])) { 8368 if (state) { 8369 verbose(env, "verifier internal error: multiple dynptr args\n"); 8370 return NULL; 8371 } 8372 state = ®s[BPF_REG_1 + i]; 8373 } 8374 8375 if (!state) 8376 verbose(env, "verifier internal error: no dynptr arg found\n"); 8377 8378 return state; 8379 } 8380 8381 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8382 { 8383 struct bpf_func_state *state = func(env, reg); 8384 int spi; 8385 8386 if (reg->type == CONST_PTR_TO_DYNPTR) 8387 return reg->id; 8388 spi = dynptr_get_spi(env, reg); 8389 if (spi < 0) 8390 return spi; 8391 return state->stack[spi].spilled_ptr.id; 8392 } 8393 8394 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8395 { 8396 struct bpf_func_state *state = func(env, reg); 8397 int spi; 8398 8399 if (reg->type == CONST_PTR_TO_DYNPTR) 8400 return reg->ref_obj_id; 8401 spi = dynptr_get_spi(env, reg); 8402 if (spi < 0) 8403 return spi; 8404 return state->stack[spi].spilled_ptr.ref_obj_id; 8405 } 8406 8407 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8408 struct bpf_reg_state *reg) 8409 { 8410 struct bpf_func_state *state = func(env, reg); 8411 int spi; 8412 8413 if (reg->type == CONST_PTR_TO_DYNPTR) 8414 return reg->dynptr.type; 8415 8416 spi = __get_spi(reg->off); 8417 if (spi < 0) { 8418 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8419 return BPF_DYNPTR_TYPE_INVALID; 8420 } 8421 8422 return state->stack[spi].spilled_ptr.dynptr.type; 8423 } 8424 8425 static int check_reg_const_str(struct bpf_verifier_env *env, 8426 struct bpf_reg_state *reg, u32 regno) 8427 { 8428 struct bpf_map *map = reg->map_ptr; 8429 int err; 8430 int map_off; 8431 u64 map_addr; 8432 char *str_ptr; 8433 8434 if (reg->type != PTR_TO_MAP_VALUE) 8435 return -EINVAL; 8436 8437 if (!bpf_map_is_rdonly(map)) { 8438 verbose(env, "R%d does not point to a readonly map'\n", regno); 8439 return -EACCES; 8440 } 8441 8442 if (!tnum_is_const(reg->var_off)) { 8443 verbose(env, "R%d is not a constant address'\n", regno); 8444 return -EACCES; 8445 } 8446 8447 if (!map->ops->map_direct_value_addr) { 8448 verbose(env, "no direct value access support for this map type\n"); 8449 return -EACCES; 8450 } 8451 8452 err = check_map_access(env, regno, reg->off, 8453 map->value_size - reg->off, false, 8454 ACCESS_HELPER); 8455 if (err) 8456 return err; 8457 8458 map_off = reg->off + reg->var_off.value; 8459 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8460 if (err) { 8461 verbose(env, "direct value access on string failed\n"); 8462 return err; 8463 } 8464 8465 str_ptr = (char *)(long)(map_addr); 8466 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8467 verbose(env, "string is not zero-terminated\n"); 8468 return -EINVAL; 8469 } 8470 return 0; 8471 } 8472 8473 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8474 struct bpf_call_arg_meta *meta, 8475 const struct bpf_func_proto *fn, 8476 int insn_idx) 8477 { 8478 u32 regno = BPF_REG_1 + arg; 8479 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8480 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8481 enum bpf_reg_type type = reg->type; 8482 u32 *arg_btf_id = NULL; 8483 int err = 0; 8484 8485 if (arg_type == ARG_DONTCARE) 8486 return 0; 8487 8488 err = check_reg_arg(env, regno, SRC_OP); 8489 if (err) 8490 return err; 8491 8492 if (arg_type == ARG_ANYTHING) { 8493 if (is_pointer_value(env, regno)) { 8494 verbose(env, "R%d leaks addr into helper function\n", 8495 regno); 8496 return -EACCES; 8497 } 8498 return 0; 8499 } 8500 8501 if (type_is_pkt_pointer(type) && 8502 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8503 verbose(env, "helper access to the packet is not allowed\n"); 8504 return -EACCES; 8505 } 8506 8507 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8508 err = resolve_map_arg_type(env, meta, &arg_type); 8509 if (err) 8510 return err; 8511 } 8512 8513 if (register_is_null(reg) && type_may_be_null(arg_type)) 8514 /* A NULL register has a SCALAR_VALUE type, so skip 8515 * type checking. 8516 */ 8517 goto skip_type_check; 8518 8519 /* arg_btf_id and arg_size are in a union. */ 8520 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8521 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8522 arg_btf_id = fn->arg_btf_id[arg]; 8523 8524 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8525 if (err) 8526 return err; 8527 8528 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8529 if (err) 8530 return err; 8531 8532 skip_type_check: 8533 if (arg_type_is_release(arg_type)) { 8534 if (arg_type_is_dynptr(arg_type)) { 8535 struct bpf_func_state *state = func(env, reg); 8536 int spi; 8537 8538 /* Only dynptr created on stack can be released, thus 8539 * the get_spi and stack state checks for spilled_ptr 8540 * should only be done before process_dynptr_func for 8541 * PTR_TO_STACK. 8542 */ 8543 if (reg->type == PTR_TO_STACK) { 8544 spi = dynptr_get_spi(env, reg); 8545 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8546 verbose(env, "arg %d is an unacquired reference\n", regno); 8547 return -EINVAL; 8548 } 8549 } else { 8550 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8551 return -EINVAL; 8552 } 8553 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8554 verbose(env, "R%d must be referenced when passed to release function\n", 8555 regno); 8556 return -EINVAL; 8557 } 8558 if (meta->release_regno) { 8559 verbose(env, "verifier internal error: more than one release argument\n"); 8560 return -EFAULT; 8561 } 8562 meta->release_regno = regno; 8563 } 8564 8565 if (reg->ref_obj_id) { 8566 if (meta->ref_obj_id) { 8567 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8568 regno, reg->ref_obj_id, 8569 meta->ref_obj_id); 8570 return -EFAULT; 8571 } 8572 meta->ref_obj_id = reg->ref_obj_id; 8573 } 8574 8575 switch (base_type(arg_type)) { 8576 case ARG_CONST_MAP_PTR: 8577 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8578 if (meta->map_ptr) { 8579 /* Use map_uid (which is unique id of inner map) to reject: 8580 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8581 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8582 * if (inner_map1 && inner_map2) { 8583 * timer = bpf_map_lookup_elem(inner_map1); 8584 * if (timer) 8585 * // mismatch would have been allowed 8586 * bpf_timer_init(timer, inner_map2); 8587 * } 8588 * 8589 * Comparing map_ptr is enough to distinguish normal and outer maps. 8590 */ 8591 if (meta->map_ptr != reg->map_ptr || 8592 meta->map_uid != reg->map_uid) { 8593 verbose(env, 8594 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8595 meta->map_uid, reg->map_uid); 8596 return -EINVAL; 8597 } 8598 } 8599 meta->map_ptr = reg->map_ptr; 8600 meta->map_uid = reg->map_uid; 8601 break; 8602 case ARG_PTR_TO_MAP_KEY: 8603 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8604 * check that [key, key + map->key_size) are within 8605 * stack limits and initialized 8606 */ 8607 if (!meta->map_ptr) { 8608 /* in function declaration map_ptr must come before 8609 * map_key, so that it's verified and known before 8610 * we have to check map_key here. Otherwise it means 8611 * that kernel subsystem misconfigured verifier 8612 */ 8613 verbose(env, "invalid map_ptr to access map->key\n"); 8614 return -EACCES; 8615 } 8616 err = check_helper_mem_access(env, regno, 8617 meta->map_ptr->key_size, false, 8618 NULL); 8619 break; 8620 case ARG_PTR_TO_MAP_VALUE: 8621 if (type_may_be_null(arg_type) && register_is_null(reg)) 8622 return 0; 8623 8624 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8625 * check [value, value + map->value_size) validity 8626 */ 8627 if (!meta->map_ptr) { 8628 /* kernel subsystem misconfigured verifier */ 8629 verbose(env, "invalid map_ptr to access map->value\n"); 8630 return -EACCES; 8631 } 8632 meta->raw_mode = arg_type & MEM_UNINIT; 8633 err = check_helper_mem_access(env, regno, 8634 meta->map_ptr->value_size, false, 8635 meta); 8636 break; 8637 case ARG_PTR_TO_PERCPU_BTF_ID: 8638 if (!reg->btf_id) { 8639 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8640 return -EACCES; 8641 } 8642 meta->ret_btf = reg->btf; 8643 meta->ret_btf_id = reg->btf_id; 8644 break; 8645 case ARG_PTR_TO_SPIN_LOCK: 8646 if (in_rbtree_lock_required_cb(env)) { 8647 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8648 return -EACCES; 8649 } 8650 if (meta->func_id == BPF_FUNC_spin_lock) { 8651 err = process_spin_lock(env, regno, true); 8652 if (err) 8653 return err; 8654 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8655 err = process_spin_lock(env, regno, false); 8656 if (err) 8657 return err; 8658 } else { 8659 verbose(env, "verifier internal error\n"); 8660 return -EFAULT; 8661 } 8662 break; 8663 case ARG_PTR_TO_TIMER: 8664 err = process_timer_func(env, regno, meta); 8665 if (err) 8666 return err; 8667 break; 8668 case ARG_PTR_TO_FUNC: 8669 meta->subprogno = reg->subprogno; 8670 break; 8671 case ARG_PTR_TO_MEM: 8672 /* The access to this pointer is only checked when we hit the 8673 * next is_mem_size argument below. 8674 */ 8675 meta->raw_mode = arg_type & MEM_UNINIT; 8676 if (arg_type & MEM_FIXED_SIZE) { 8677 err = check_helper_mem_access(env, regno, 8678 fn->arg_size[arg], false, 8679 meta); 8680 } 8681 break; 8682 case ARG_CONST_SIZE: 8683 err = check_mem_size_reg(env, reg, regno, false, meta); 8684 break; 8685 case ARG_CONST_SIZE_OR_ZERO: 8686 err = check_mem_size_reg(env, reg, regno, true, meta); 8687 break; 8688 case ARG_PTR_TO_DYNPTR: 8689 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8690 if (err) 8691 return err; 8692 break; 8693 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8694 if (!tnum_is_const(reg->var_off)) { 8695 verbose(env, "R%d is not a known constant'\n", 8696 regno); 8697 return -EACCES; 8698 } 8699 meta->mem_size = reg->var_off.value; 8700 err = mark_chain_precision(env, regno); 8701 if (err) 8702 return err; 8703 break; 8704 case ARG_PTR_TO_INT: 8705 case ARG_PTR_TO_LONG: 8706 { 8707 int size = int_ptr_type_to_size(arg_type); 8708 8709 err = check_helper_mem_access(env, regno, size, false, meta); 8710 if (err) 8711 return err; 8712 err = check_ptr_alignment(env, reg, 0, size, true); 8713 break; 8714 } 8715 case ARG_PTR_TO_CONST_STR: 8716 { 8717 err = check_reg_const_str(env, reg, regno); 8718 if (err) 8719 return err; 8720 break; 8721 } 8722 case ARG_PTR_TO_KPTR: 8723 err = process_kptr_func(env, regno, meta); 8724 if (err) 8725 return err; 8726 break; 8727 } 8728 8729 return err; 8730 } 8731 8732 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8733 { 8734 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8735 enum bpf_prog_type type = resolve_prog_type(env->prog); 8736 8737 if (func_id != BPF_FUNC_map_update_elem) 8738 return false; 8739 8740 /* It's not possible to get access to a locked struct sock in these 8741 * contexts, so updating is safe. 8742 */ 8743 switch (type) { 8744 case BPF_PROG_TYPE_TRACING: 8745 if (eatype == BPF_TRACE_ITER) 8746 return true; 8747 break; 8748 case BPF_PROG_TYPE_SOCKET_FILTER: 8749 case BPF_PROG_TYPE_SCHED_CLS: 8750 case BPF_PROG_TYPE_SCHED_ACT: 8751 case BPF_PROG_TYPE_XDP: 8752 case BPF_PROG_TYPE_SK_REUSEPORT: 8753 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8754 case BPF_PROG_TYPE_SK_LOOKUP: 8755 return true; 8756 default: 8757 break; 8758 } 8759 8760 verbose(env, "cannot update sockmap in this context\n"); 8761 return false; 8762 } 8763 8764 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8765 { 8766 return env->prog->jit_requested && 8767 bpf_jit_supports_subprog_tailcalls(); 8768 } 8769 8770 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8771 struct bpf_map *map, int func_id) 8772 { 8773 if (!map) 8774 return 0; 8775 8776 /* We need a two way check, first is from map perspective ... */ 8777 switch (map->map_type) { 8778 case BPF_MAP_TYPE_PROG_ARRAY: 8779 if (func_id != BPF_FUNC_tail_call) 8780 goto error; 8781 break; 8782 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8783 if (func_id != BPF_FUNC_perf_event_read && 8784 func_id != BPF_FUNC_perf_event_output && 8785 func_id != BPF_FUNC_skb_output && 8786 func_id != BPF_FUNC_perf_event_read_value && 8787 func_id != BPF_FUNC_xdp_output) 8788 goto error; 8789 break; 8790 case BPF_MAP_TYPE_RINGBUF: 8791 if (func_id != BPF_FUNC_ringbuf_output && 8792 func_id != BPF_FUNC_ringbuf_reserve && 8793 func_id != BPF_FUNC_ringbuf_query && 8794 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8795 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8796 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8797 goto error; 8798 break; 8799 case BPF_MAP_TYPE_USER_RINGBUF: 8800 if (func_id != BPF_FUNC_user_ringbuf_drain) 8801 goto error; 8802 break; 8803 case BPF_MAP_TYPE_STACK_TRACE: 8804 if (func_id != BPF_FUNC_get_stackid) 8805 goto error; 8806 break; 8807 case BPF_MAP_TYPE_CGROUP_ARRAY: 8808 if (func_id != BPF_FUNC_skb_under_cgroup && 8809 func_id != BPF_FUNC_current_task_under_cgroup) 8810 goto error; 8811 break; 8812 case BPF_MAP_TYPE_CGROUP_STORAGE: 8813 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8814 if (func_id != BPF_FUNC_get_local_storage) 8815 goto error; 8816 break; 8817 case BPF_MAP_TYPE_DEVMAP: 8818 case BPF_MAP_TYPE_DEVMAP_HASH: 8819 if (func_id != BPF_FUNC_redirect_map && 8820 func_id != BPF_FUNC_map_lookup_elem) 8821 goto error; 8822 break; 8823 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8824 * appear. 8825 */ 8826 case BPF_MAP_TYPE_CPUMAP: 8827 if (func_id != BPF_FUNC_redirect_map) 8828 goto error; 8829 break; 8830 case BPF_MAP_TYPE_XSKMAP: 8831 if (func_id != BPF_FUNC_redirect_map && 8832 func_id != BPF_FUNC_map_lookup_elem) 8833 goto error; 8834 break; 8835 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8836 case BPF_MAP_TYPE_HASH_OF_MAPS: 8837 if (func_id != BPF_FUNC_map_lookup_elem) 8838 goto error; 8839 break; 8840 case BPF_MAP_TYPE_SOCKMAP: 8841 if (func_id != BPF_FUNC_sk_redirect_map && 8842 func_id != BPF_FUNC_sock_map_update && 8843 func_id != BPF_FUNC_map_delete_elem && 8844 func_id != BPF_FUNC_msg_redirect_map && 8845 func_id != BPF_FUNC_sk_select_reuseport && 8846 func_id != BPF_FUNC_map_lookup_elem && 8847 !may_update_sockmap(env, func_id)) 8848 goto error; 8849 break; 8850 case BPF_MAP_TYPE_SOCKHASH: 8851 if (func_id != BPF_FUNC_sk_redirect_hash && 8852 func_id != BPF_FUNC_sock_hash_update && 8853 func_id != BPF_FUNC_map_delete_elem && 8854 func_id != BPF_FUNC_msg_redirect_hash && 8855 func_id != BPF_FUNC_sk_select_reuseport && 8856 func_id != BPF_FUNC_map_lookup_elem && 8857 !may_update_sockmap(env, func_id)) 8858 goto error; 8859 break; 8860 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8861 if (func_id != BPF_FUNC_sk_select_reuseport) 8862 goto error; 8863 break; 8864 case BPF_MAP_TYPE_QUEUE: 8865 case BPF_MAP_TYPE_STACK: 8866 if (func_id != BPF_FUNC_map_peek_elem && 8867 func_id != BPF_FUNC_map_pop_elem && 8868 func_id != BPF_FUNC_map_push_elem) 8869 goto error; 8870 break; 8871 case BPF_MAP_TYPE_SK_STORAGE: 8872 if (func_id != BPF_FUNC_sk_storage_get && 8873 func_id != BPF_FUNC_sk_storage_delete && 8874 func_id != BPF_FUNC_kptr_xchg) 8875 goto error; 8876 break; 8877 case BPF_MAP_TYPE_INODE_STORAGE: 8878 if (func_id != BPF_FUNC_inode_storage_get && 8879 func_id != BPF_FUNC_inode_storage_delete && 8880 func_id != BPF_FUNC_kptr_xchg) 8881 goto error; 8882 break; 8883 case BPF_MAP_TYPE_TASK_STORAGE: 8884 if (func_id != BPF_FUNC_task_storage_get && 8885 func_id != BPF_FUNC_task_storage_delete && 8886 func_id != BPF_FUNC_kptr_xchg) 8887 goto error; 8888 break; 8889 case BPF_MAP_TYPE_CGRP_STORAGE: 8890 if (func_id != BPF_FUNC_cgrp_storage_get && 8891 func_id != BPF_FUNC_cgrp_storage_delete && 8892 func_id != BPF_FUNC_kptr_xchg) 8893 goto error; 8894 break; 8895 case BPF_MAP_TYPE_BLOOM_FILTER: 8896 if (func_id != BPF_FUNC_map_peek_elem && 8897 func_id != BPF_FUNC_map_push_elem) 8898 goto error; 8899 break; 8900 default: 8901 break; 8902 } 8903 8904 /* ... and second from the function itself. */ 8905 switch (func_id) { 8906 case BPF_FUNC_tail_call: 8907 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8908 goto error; 8909 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8910 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8911 return -EINVAL; 8912 } 8913 break; 8914 case BPF_FUNC_perf_event_read: 8915 case BPF_FUNC_perf_event_output: 8916 case BPF_FUNC_perf_event_read_value: 8917 case BPF_FUNC_skb_output: 8918 case BPF_FUNC_xdp_output: 8919 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8920 goto error; 8921 break; 8922 case BPF_FUNC_ringbuf_output: 8923 case BPF_FUNC_ringbuf_reserve: 8924 case BPF_FUNC_ringbuf_query: 8925 case BPF_FUNC_ringbuf_reserve_dynptr: 8926 case BPF_FUNC_ringbuf_submit_dynptr: 8927 case BPF_FUNC_ringbuf_discard_dynptr: 8928 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8929 goto error; 8930 break; 8931 case BPF_FUNC_user_ringbuf_drain: 8932 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8933 goto error; 8934 break; 8935 case BPF_FUNC_get_stackid: 8936 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8937 goto error; 8938 break; 8939 case BPF_FUNC_current_task_under_cgroup: 8940 case BPF_FUNC_skb_under_cgroup: 8941 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8942 goto error; 8943 break; 8944 case BPF_FUNC_redirect_map: 8945 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8946 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8947 map->map_type != BPF_MAP_TYPE_CPUMAP && 8948 map->map_type != BPF_MAP_TYPE_XSKMAP) 8949 goto error; 8950 break; 8951 case BPF_FUNC_sk_redirect_map: 8952 case BPF_FUNC_msg_redirect_map: 8953 case BPF_FUNC_sock_map_update: 8954 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8955 goto error; 8956 break; 8957 case BPF_FUNC_sk_redirect_hash: 8958 case BPF_FUNC_msg_redirect_hash: 8959 case BPF_FUNC_sock_hash_update: 8960 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8961 goto error; 8962 break; 8963 case BPF_FUNC_get_local_storage: 8964 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8965 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8966 goto error; 8967 break; 8968 case BPF_FUNC_sk_select_reuseport: 8969 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8970 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8971 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8972 goto error; 8973 break; 8974 case BPF_FUNC_map_pop_elem: 8975 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8976 map->map_type != BPF_MAP_TYPE_STACK) 8977 goto error; 8978 break; 8979 case BPF_FUNC_map_peek_elem: 8980 case BPF_FUNC_map_push_elem: 8981 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8982 map->map_type != BPF_MAP_TYPE_STACK && 8983 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8984 goto error; 8985 break; 8986 case BPF_FUNC_map_lookup_percpu_elem: 8987 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8988 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8989 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8990 goto error; 8991 break; 8992 case BPF_FUNC_sk_storage_get: 8993 case BPF_FUNC_sk_storage_delete: 8994 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8995 goto error; 8996 break; 8997 case BPF_FUNC_inode_storage_get: 8998 case BPF_FUNC_inode_storage_delete: 8999 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 9000 goto error; 9001 break; 9002 case BPF_FUNC_task_storage_get: 9003 case BPF_FUNC_task_storage_delete: 9004 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 9005 goto error; 9006 break; 9007 case BPF_FUNC_cgrp_storage_get: 9008 case BPF_FUNC_cgrp_storage_delete: 9009 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9010 goto error; 9011 break; 9012 default: 9013 break; 9014 } 9015 9016 return 0; 9017 error: 9018 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9019 map->map_type, func_id_name(func_id), func_id); 9020 return -EINVAL; 9021 } 9022 9023 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9024 { 9025 int count = 0; 9026 9027 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 9028 count++; 9029 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 9030 count++; 9031 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 9032 count++; 9033 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 9034 count++; 9035 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 9036 count++; 9037 9038 /* We only support one arg being in raw mode at the moment, 9039 * which is sufficient for the helper functions we have 9040 * right now. 9041 */ 9042 return count <= 1; 9043 } 9044 9045 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9046 { 9047 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9048 bool has_size = fn->arg_size[arg] != 0; 9049 bool is_next_size = false; 9050 9051 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9052 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9053 9054 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9055 return is_next_size; 9056 9057 return has_size == is_next_size || is_next_size == is_fixed; 9058 } 9059 9060 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9061 { 9062 /* bpf_xxx(..., buf, len) call will access 'len' 9063 * bytes from memory 'buf'. Both arg types need 9064 * to be paired, so make sure there's no buggy 9065 * helper function specification. 9066 */ 9067 if (arg_type_is_mem_size(fn->arg1_type) || 9068 check_args_pair_invalid(fn, 0) || 9069 check_args_pair_invalid(fn, 1) || 9070 check_args_pair_invalid(fn, 2) || 9071 check_args_pair_invalid(fn, 3) || 9072 check_args_pair_invalid(fn, 4)) 9073 return false; 9074 9075 return true; 9076 } 9077 9078 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9079 { 9080 int i; 9081 9082 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9083 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9084 return !!fn->arg_btf_id[i]; 9085 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9086 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9087 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9088 /* arg_btf_id and arg_size are in a union. */ 9089 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9090 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9091 return false; 9092 } 9093 9094 return true; 9095 } 9096 9097 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9098 { 9099 return check_raw_mode_ok(fn) && 9100 check_arg_pair_ok(fn) && 9101 check_btf_id_ok(fn) ? 0 : -EINVAL; 9102 } 9103 9104 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9105 * are now invalid, so turn them into unknown SCALAR_VALUE. 9106 * 9107 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9108 * since these slices point to packet data. 9109 */ 9110 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9111 { 9112 struct bpf_func_state *state; 9113 struct bpf_reg_state *reg; 9114 9115 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9116 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9117 mark_reg_invalid(env, reg); 9118 })); 9119 } 9120 9121 enum { 9122 AT_PKT_END = -1, 9123 BEYOND_PKT_END = -2, 9124 }; 9125 9126 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9127 { 9128 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9129 struct bpf_reg_state *reg = &state->regs[regn]; 9130 9131 if (reg->type != PTR_TO_PACKET) 9132 /* PTR_TO_PACKET_META is not supported yet */ 9133 return; 9134 9135 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9136 * How far beyond pkt_end it goes is unknown. 9137 * if (!range_open) it's the case of pkt >= pkt_end 9138 * if (range_open) it's the case of pkt > pkt_end 9139 * hence this pointer is at least 1 byte bigger than pkt_end 9140 */ 9141 if (range_open) 9142 reg->range = BEYOND_PKT_END; 9143 else 9144 reg->range = AT_PKT_END; 9145 } 9146 9147 /* The pointer with the specified id has released its reference to kernel 9148 * resources. Identify all copies of the same pointer and clear the reference. 9149 */ 9150 static int release_reference(struct bpf_verifier_env *env, 9151 int ref_obj_id) 9152 { 9153 struct bpf_func_state *state; 9154 struct bpf_reg_state *reg; 9155 int err; 9156 9157 err = release_reference_state(cur_func(env), ref_obj_id); 9158 if (err) 9159 return err; 9160 9161 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9162 if (reg->ref_obj_id == ref_obj_id) 9163 mark_reg_invalid(env, reg); 9164 })); 9165 9166 return 0; 9167 } 9168 9169 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9170 { 9171 struct bpf_func_state *unused; 9172 struct bpf_reg_state *reg; 9173 9174 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9175 if (type_is_non_owning_ref(reg->type)) 9176 mark_reg_invalid(env, reg); 9177 })); 9178 } 9179 9180 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9181 struct bpf_reg_state *regs) 9182 { 9183 int i; 9184 9185 /* after the call registers r0 - r5 were scratched */ 9186 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9187 mark_reg_not_init(env, regs, caller_saved[i]); 9188 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9189 } 9190 } 9191 9192 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9193 struct bpf_func_state *caller, 9194 struct bpf_func_state *callee, 9195 int insn_idx); 9196 9197 static int set_callee_state(struct bpf_verifier_env *env, 9198 struct bpf_func_state *caller, 9199 struct bpf_func_state *callee, int insn_idx); 9200 9201 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9202 set_callee_state_fn set_callee_state_cb, 9203 struct bpf_verifier_state *state) 9204 { 9205 struct bpf_func_state *caller, *callee; 9206 int err; 9207 9208 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9209 verbose(env, "the call stack of %d frames is too deep\n", 9210 state->curframe + 2); 9211 return -E2BIG; 9212 } 9213 9214 if (state->frame[state->curframe + 1]) { 9215 verbose(env, "verifier bug. Frame %d already allocated\n", 9216 state->curframe + 1); 9217 return -EFAULT; 9218 } 9219 9220 caller = state->frame[state->curframe]; 9221 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9222 if (!callee) 9223 return -ENOMEM; 9224 state->frame[state->curframe + 1] = callee; 9225 9226 /* callee cannot access r0, r6 - r9 for reading and has to write 9227 * into its own stack before reading from it. 9228 * callee can read/write into caller's stack 9229 */ 9230 init_func_state(env, callee, 9231 /* remember the callsite, it will be used by bpf_exit */ 9232 callsite, 9233 state->curframe + 1 /* frameno within this callchain */, 9234 subprog /* subprog number within this prog */); 9235 /* Transfer references to the callee */ 9236 err = copy_reference_state(callee, caller); 9237 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9238 if (err) 9239 goto err_out; 9240 9241 /* only increment it after check_reg_arg() finished */ 9242 state->curframe++; 9243 9244 return 0; 9245 9246 err_out: 9247 free_func_state(callee); 9248 state->frame[state->curframe + 1] = NULL; 9249 return err; 9250 } 9251 9252 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 9253 const struct btf *btf, 9254 struct bpf_reg_state *regs) 9255 { 9256 struct bpf_subprog_info *sub = subprog_info(env, subprog); 9257 struct bpf_verifier_log *log = &env->log; 9258 u32 i; 9259 int ret; 9260 9261 ret = btf_prepare_func_args(env, subprog); 9262 if (ret) 9263 return ret; 9264 9265 /* check that BTF function arguments match actual types that the 9266 * verifier sees. 9267 */ 9268 for (i = 0; i < sub->arg_cnt; i++) { 9269 u32 regno = i + 1; 9270 struct bpf_reg_state *reg = ®s[regno]; 9271 struct bpf_subprog_arg_info *arg = &sub->args[i]; 9272 9273 if (arg->arg_type == ARG_ANYTHING) { 9274 if (reg->type != SCALAR_VALUE) { 9275 bpf_log(log, "R%d is not a scalar\n", regno); 9276 return -EINVAL; 9277 } 9278 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 9279 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9280 if (ret < 0) 9281 return ret; 9282 /* If function expects ctx type in BTF check that caller 9283 * is passing PTR_TO_CTX. 9284 */ 9285 if (reg->type != PTR_TO_CTX) { 9286 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 9287 return -EINVAL; 9288 } 9289 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 9290 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9291 if (ret < 0) 9292 return ret; 9293 if (check_mem_reg(env, reg, regno, arg->mem_size)) 9294 return -EINVAL; 9295 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 9296 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 9297 return -EINVAL; 9298 } 9299 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 9300 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 9301 if (ret) 9302 return ret; 9303 } else { 9304 bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n", 9305 i, arg->arg_type); 9306 return -EFAULT; 9307 } 9308 } 9309 9310 return 0; 9311 } 9312 9313 /* Compare BTF of a function call with given bpf_reg_state. 9314 * Returns: 9315 * EFAULT - there is a verifier bug. Abort verification. 9316 * EINVAL - there is a type mismatch or BTF is not available. 9317 * 0 - BTF matches with what bpf_reg_state expects. 9318 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 9319 */ 9320 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 9321 struct bpf_reg_state *regs) 9322 { 9323 struct bpf_prog *prog = env->prog; 9324 struct btf *btf = prog->aux->btf; 9325 u32 btf_id; 9326 int err; 9327 9328 if (!prog->aux->func_info) 9329 return -EINVAL; 9330 9331 btf_id = prog->aux->func_info[subprog].type_id; 9332 if (!btf_id) 9333 return -EFAULT; 9334 9335 if (prog->aux->func_info_aux[subprog].unreliable) 9336 return -EINVAL; 9337 9338 err = btf_check_func_arg_match(env, subprog, btf, regs); 9339 /* Compiler optimizations can remove arguments from static functions 9340 * or mismatched type can be passed into a global function. 9341 * In such cases mark the function as unreliable from BTF point of view. 9342 */ 9343 if (err) 9344 prog->aux->func_info_aux[subprog].unreliable = true; 9345 return err; 9346 } 9347 9348 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9349 int insn_idx, int subprog, 9350 set_callee_state_fn set_callee_state_cb) 9351 { 9352 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9353 struct bpf_func_state *caller, *callee; 9354 int err; 9355 9356 caller = state->frame[state->curframe]; 9357 err = btf_check_subprog_call(env, subprog, caller->regs); 9358 if (err == -EFAULT) 9359 return err; 9360 9361 /* set_callee_state is used for direct subprog calls, but we are 9362 * interested in validating only BPF helpers that can call subprogs as 9363 * callbacks 9364 */ 9365 env->subprog_info[subprog].is_cb = true; 9366 if (bpf_pseudo_kfunc_call(insn) && 9367 !is_sync_callback_calling_kfunc(insn->imm)) { 9368 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9369 func_id_name(insn->imm), insn->imm); 9370 return -EFAULT; 9371 } else if (!bpf_pseudo_kfunc_call(insn) && 9372 !is_callback_calling_function(insn->imm)) { /* helper */ 9373 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9374 func_id_name(insn->imm), insn->imm); 9375 return -EFAULT; 9376 } 9377 9378 if (insn->code == (BPF_JMP | BPF_CALL) && 9379 insn->src_reg == 0 && 9380 insn->imm == BPF_FUNC_timer_set_callback) { 9381 struct bpf_verifier_state *async_cb; 9382 9383 /* there is no real recursion here. timer callbacks are async */ 9384 env->subprog_info[subprog].is_async_cb = true; 9385 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9386 insn_idx, subprog); 9387 if (!async_cb) 9388 return -EFAULT; 9389 callee = async_cb->frame[0]; 9390 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9391 9392 /* Convert bpf_timer_set_callback() args into timer callback args */ 9393 err = set_callee_state_cb(env, caller, callee, insn_idx); 9394 if (err) 9395 return err; 9396 9397 return 0; 9398 } 9399 9400 /* for callback functions enqueue entry to callback and 9401 * proceed with next instruction within current frame. 9402 */ 9403 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9404 if (!callback_state) 9405 return -ENOMEM; 9406 9407 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9408 callback_state); 9409 if (err) 9410 return err; 9411 9412 callback_state->callback_unroll_depth++; 9413 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9414 caller->callback_depth = 0; 9415 return 0; 9416 } 9417 9418 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9419 int *insn_idx) 9420 { 9421 struct bpf_verifier_state *state = env->cur_state; 9422 struct bpf_func_state *caller; 9423 int err, subprog, target_insn; 9424 9425 target_insn = *insn_idx + insn->imm + 1; 9426 subprog = find_subprog(env, target_insn); 9427 if (subprog < 0) { 9428 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9429 return -EFAULT; 9430 } 9431 9432 caller = state->frame[state->curframe]; 9433 err = btf_check_subprog_call(env, subprog, caller->regs); 9434 if (err == -EFAULT) 9435 return err; 9436 if (subprog_is_global(env, subprog)) { 9437 const char *sub_name = subprog_name(env, subprog); 9438 9439 if (err) { 9440 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 9441 subprog, sub_name); 9442 return err; 9443 } 9444 9445 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 9446 subprog, sub_name); 9447 /* mark global subprog for verifying after main prog */ 9448 subprog_aux(env, subprog)->called = true; 9449 clear_caller_saved_regs(env, caller->regs); 9450 9451 /* All global functions return a 64-bit SCALAR_VALUE */ 9452 mark_reg_unknown(env, caller->regs, BPF_REG_0); 9453 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9454 9455 /* continue with next insn after call */ 9456 return 0; 9457 } 9458 9459 /* for regular function entry setup new frame and continue 9460 * from that frame. 9461 */ 9462 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 9463 if (err) 9464 return err; 9465 9466 clear_caller_saved_regs(env, caller->regs); 9467 9468 /* and go analyze first insn of the callee */ 9469 *insn_idx = env->subprog_info[subprog].start - 1; 9470 9471 if (env->log.level & BPF_LOG_LEVEL) { 9472 verbose(env, "caller:\n"); 9473 print_verifier_state(env, caller, true); 9474 verbose(env, "callee:\n"); 9475 print_verifier_state(env, state->frame[state->curframe], true); 9476 } 9477 9478 return 0; 9479 } 9480 9481 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9482 struct bpf_func_state *caller, 9483 struct bpf_func_state *callee) 9484 { 9485 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9486 * void *callback_ctx, u64 flags); 9487 * callback_fn(struct bpf_map *map, void *key, void *value, 9488 * void *callback_ctx); 9489 */ 9490 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9491 9492 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9493 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9494 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9495 9496 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9497 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9498 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9499 9500 /* pointer to stack or null */ 9501 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9502 9503 /* unused */ 9504 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9505 return 0; 9506 } 9507 9508 static int set_callee_state(struct bpf_verifier_env *env, 9509 struct bpf_func_state *caller, 9510 struct bpf_func_state *callee, int insn_idx) 9511 { 9512 int i; 9513 9514 /* copy r1 - r5 args that callee can access. The copy includes parent 9515 * pointers, which connects us up to the liveness chain 9516 */ 9517 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9518 callee->regs[i] = caller->regs[i]; 9519 return 0; 9520 } 9521 9522 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9523 struct bpf_func_state *caller, 9524 struct bpf_func_state *callee, 9525 int insn_idx) 9526 { 9527 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9528 struct bpf_map *map; 9529 int err; 9530 9531 if (bpf_map_ptr_poisoned(insn_aux)) { 9532 verbose(env, "tail_call abusing map_ptr\n"); 9533 return -EINVAL; 9534 } 9535 9536 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9537 if (!map->ops->map_set_for_each_callback_args || 9538 !map->ops->map_for_each_callback) { 9539 verbose(env, "callback function not allowed for map\n"); 9540 return -ENOTSUPP; 9541 } 9542 9543 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9544 if (err) 9545 return err; 9546 9547 callee->in_callback_fn = true; 9548 callee->callback_ret_range = retval_range(0, 1); 9549 return 0; 9550 } 9551 9552 static int set_loop_callback_state(struct bpf_verifier_env *env, 9553 struct bpf_func_state *caller, 9554 struct bpf_func_state *callee, 9555 int insn_idx) 9556 { 9557 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9558 * u64 flags); 9559 * callback_fn(u32 index, void *callback_ctx); 9560 */ 9561 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9562 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9563 9564 /* unused */ 9565 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9566 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9567 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9568 9569 callee->in_callback_fn = true; 9570 callee->callback_ret_range = retval_range(0, 1); 9571 return 0; 9572 } 9573 9574 static int set_timer_callback_state(struct bpf_verifier_env *env, 9575 struct bpf_func_state *caller, 9576 struct bpf_func_state *callee, 9577 int insn_idx) 9578 { 9579 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9580 9581 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9582 * callback_fn(struct bpf_map *map, void *key, void *value); 9583 */ 9584 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9585 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9586 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9587 9588 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9589 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9590 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9591 9592 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9593 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9594 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9595 9596 /* unused */ 9597 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9598 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9599 callee->in_async_callback_fn = true; 9600 callee->callback_ret_range = retval_range(0, 1); 9601 return 0; 9602 } 9603 9604 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9605 struct bpf_func_state *caller, 9606 struct bpf_func_state *callee, 9607 int insn_idx) 9608 { 9609 /* bpf_find_vma(struct task_struct *task, u64 addr, 9610 * void *callback_fn, void *callback_ctx, u64 flags) 9611 * (callback_fn)(struct task_struct *task, 9612 * struct vm_area_struct *vma, void *callback_ctx); 9613 */ 9614 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9615 9616 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9617 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9618 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9619 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 9620 9621 /* pointer to stack or null */ 9622 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9623 9624 /* unused */ 9625 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9626 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9627 callee->in_callback_fn = true; 9628 callee->callback_ret_range = retval_range(0, 1); 9629 return 0; 9630 } 9631 9632 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9633 struct bpf_func_state *caller, 9634 struct bpf_func_state *callee, 9635 int insn_idx) 9636 { 9637 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9638 * callback_ctx, u64 flags); 9639 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9640 */ 9641 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9642 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9643 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9644 9645 /* unused */ 9646 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9647 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9648 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9649 9650 callee->in_callback_fn = true; 9651 callee->callback_ret_range = retval_range(0, 1); 9652 return 0; 9653 } 9654 9655 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9656 struct bpf_func_state *caller, 9657 struct bpf_func_state *callee, 9658 int insn_idx) 9659 { 9660 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9661 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9662 * 9663 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9664 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9665 * by this point, so look at 'root' 9666 */ 9667 struct btf_field *field; 9668 9669 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9670 BPF_RB_ROOT); 9671 if (!field || !field->graph_root.value_btf_id) 9672 return -EFAULT; 9673 9674 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9675 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9676 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9677 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9678 9679 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9680 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9681 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9682 callee->in_callback_fn = true; 9683 callee->callback_ret_range = retval_range(0, 1); 9684 return 0; 9685 } 9686 9687 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9688 9689 /* Are we currently verifying the callback for a rbtree helper that must 9690 * be called with lock held? If so, no need to complain about unreleased 9691 * lock 9692 */ 9693 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9694 { 9695 struct bpf_verifier_state *state = env->cur_state; 9696 struct bpf_insn *insn = env->prog->insnsi; 9697 struct bpf_func_state *callee; 9698 int kfunc_btf_id; 9699 9700 if (!state->curframe) 9701 return false; 9702 9703 callee = state->frame[state->curframe]; 9704 9705 if (!callee->in_callback_fn) 9706 return false; 9707 9708 kfunc_btf_id = insn[callee->callsite].imm; 9709 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9710 } 9711 9712 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg) 9713 { 9714 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 9715 } 9716 9717 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9718 { 9719 struct bpf_verifier_state *state = env->cur_state, *prev_st; 9720 struct bpf_func_state *caller, *callee; 9721 struct bpf_reg_state *r0; 9722 bool in_callback_fn; 9723 int err; 9724 9725 callee = state->frame[state->curframe]; 9726 r0 = &callee->regs[BPF_REG_0]; 9727 if (r0->type == PTR_TO_STACK) { 9728 /* technically it's ok to return caller's stack pointer 9729 * (or caller's caller's pointer) back to the caller, 9730 * since these pointers are valid. Only current stack 9731 * pointer will be invalid as soon as function exits, 9732 * but let's be conservative 9733 */ 9734 verbose(env, "cannot return stack pointer to the caller\n"); 9735 return -EINVAL; 9736 } 9737 9738 caller = state->frame[state->curframe - 1]; 9739 if (callee->in_callback_fn) { 9740 if (r0->type != SCALAR_VALUE) { 9741 verbose(env, "R0 not a scalar value\n"); 9742 return -EACCES; 9743 } 9744 9745 /* we are going to rely on register's precise value */ 9746 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 9747 err = err ?: mark_chain_precision(env, BPF_REG_0); 9748 if (err) 9749 return err; 9750 9751 /* enforce R0 return value range */ 9752 if (!retval_range_within(callee->callback_ret_range, r0)) { 9753 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 9754 "At callback return", "R0"); 9755 return -EINVAL; 9756 } 9757 if (!calls_callback(env, callee->callsite)) { 9758 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 9759 *insn_idx, callee->callsite); 9760 return -EFAULT; 9761 } 9762 } else { 9763 /* return to the caller whatever r0 had in the callee */ 9764 caller->regs[BPF_REG_0] = *r0; 9765 } 9766 9767 /* callback_fn frame should have released its own additions to parent's 9768 * reference state at this point, or check_reference_leak would 9769 * complain, hence it must be the same as the caller. There is no need 9770 * to copy it back. 9771 */ 9772 if (!callee->in_callback_fn) { 9773 /* Transfer references to the caller */ 9774 err = copy_reference_state(caller, callee); 9775 if (err) 9776 return err; 9777 } 9778 9779 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 9780 * there function call logic would reschedule callback visit. If iteration 9781 * converges is_state_visited() would prune that visit eventually. 9782 */ 9783 in_callback_fn = callee->in_callback_fn; 9784 if (in_callback_fn) 9785 *insn_idx = callee->callsite; 9786 else 9787 *insn_idx = callee->callsite + 1; 9788 9789 if (env->log.level & BPF_LOG_LEVEL) { 9790 verbose(env, "returning from callee:\n"); 9791 print_verifier_state(env, callee, true); 9792 verbose(env, "to caller at %d:\n", *insn_idx); 9793 print_verifier_state(env, caller, true); 9794 } 9795 /* clear everything in the callee. In case of exceptional exits using 9796 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 9797 free_func_state(callee); 9798 state->frame[state->curframe--] = NULL; 9799 9800 /* for callbacks widen imprecise scalars to make programs like below verify: 9801 * 9802 * struct ctx { int i; } 9803 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 9804 * ... 9805 * struct ctx = { .i = 0; } 9806 * bpf_loop(100, cb, &ctx, 0); 9807 * 9808 * This is similar to what is done in process_iter_next_call() for open 9809 * coded iterators. 9810 */ 9811 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 9812 if (prev_st) { 9813 err = widen_imprecise_scalars(env, prev_st, state); 9814 if (err) 9815 return err; 9816 } 9817 return 0; 9818 } 9819 9820 static int do_refine_retval_range(struct bpf_verifier_env *env, 9821 struct bpf_reg_state *regs, int ret_type, 9822 int func_id, 9823 struct bpf_call_arg_meta *meta) 9824 { 9825 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9826 9827 if (ret_type != RET_INTEGER) 9828 return 0; 9829 9830 switch (func_id) { 9831 case BPF_FUNC_get_stack: 9832 case BPF_FUNC_get_task_stack: 9833 case BPF_FUNC_probe_read_str: 9834 case BPF_FUNC_probe_read_kernel_str: 9835 case BPF_FUNC_probe_read_user_str: 9836 ret_reg->smax_value = meta->msize_max_value; 9837 ret_reg->s32_max_value = meta->msize_max_value; 9838 ret_reg->smin_value = -MAX_ERRNO; 9839 ret_reg->s32_min_value = -MAX_ERRNO; 9840 reg_bounds_sync(ret_reg); 9841 break; 9842 case BPF_FUNC_get_smp_processor_id: 9843 ret_reg->umax_value = nr_cpu_ids - 1; 9844 ret_reg->u32_max_value = nr_cpu_ids - 1; 9845 ret_reg->smax_value = nr_cpu_ids - 1; 9846 ret_reg->s32_max_value = nr_cpu_ids - 1; 9847 ret_reg->umin_value = 0; 9848 ret_reg->u32_min_value = 0; 9849 ret_reg->smin_value = 0; 9850 ret_reg->s32_min_value = 0; 9851 reg_bounds_sync(ret_reg); 9852 break; 9853 } 9854 9855 return reg_bounds_sanity_check(env, ret_reg, "retval"); 9856 } 9857 9858 static int 9859 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9860 int func_id, int insn_idx) 9861 { 9862 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9863 struct bpf_map *map = meta->map_ptr; 9864 9865 if (func_id != BPF_FUNC_tail_call && 9866 func_id != BPF_FUNC_map_lookup_elem && 9867 func_id != BPF_FUNC_map_update_elem && 9868 func_id != BPF_FUNC_map_delete_elem && 9869 func_id != BPF_FUNC_map_push_elem && 9870 func_id != BPF_FUNC_map_pop_elem && 9871 func_id != BPF_FUNC_map_peek_elem && 9872 func_id != BPF_FUNC_for_each_map_elem && 9873 func_id != BPF_FUNC_redirect_map && 9874 func_id != BPF_FUNC_map_lookup_percpu_elem) 9875 return 0; 9876 9877 if (map == NULL) { 9878 verbose(env, "kernel subsystem misconfigured verifier\n"); 9879 return -EINVAL; 9880 } 9881 9882 /* In case of read-only, some additional restrictions 9883 * need to be applied in order to prevent altering the 9884 * state of the map from program side. 9885 */ 9886 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9887 (func_id == BPF_FUNC_map_delete_elem || 9888 func_id == BPF_FUNC_map_update_elem || 9889 func_id == BPF_FUNC_map_push_elem || 9890 func_id == BPF_FUNC_map_pop_elem)) { 9891 verbose(env, "write into map forbidden\n"); 9892 return -EACCES; 9893 } 9894 9895 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9896 bpf_map_ptr_store(aux, meta->map_ptr, 9897 !meta->map_ptr->bypass_spec_v1); 9898 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9899 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9900 !meta->map_ptr->bypass_spec_v1); 9901 return 0; 9902 } 9903 9904 static int 9905 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9906 int func_id, int insn_idx) 9907 { 9908 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9909 struct bpf_reg_state *regs = cur_regs(env), *reg; 9910 struct bpf_map *map = meta->map_ptr; 9911 u64 val, max; 9912 int err; 9913 9914 if (func_id != BPF_FUNC_tail_call) 9915 return 0; 9916 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9917 verbose(env, "kernel subsystem misconfigured verifier\n"); 9918 return -EINVAL; 9919 } 9920 9921 reg = ®s[BPF_REG_3]; 9922 val = reg->var_off.value; 9923 max = map->max_entries; 9924 9925 if (!(is_reg_const(reg, false) && val < max)) { 9926 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9927 return 0; 9928 } 9929 9930 err = mark_chain_precision(env, BPF_REG_3); 9931 if (err) 9932 return err; 9933 if (bpf_map_key_unseen(aux)) 9934 bpf_map_key_store(aux, val); 9935 else if (!bpf_map_key_poisoned(aux) && 9936 bpf_map_key_immediate(aux) != val) 9937 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9938 return 0; 9939 } 9940 9941 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 9942 { 9943 struct bpf_func_state *state = cur_func(env); 9944 bool refs_lingering = false; 9945 int i; 9946 9947 if (!exception_exit && state->frameno && !state->in_callback_fn) 9948 return 0; 9949 9950 for (i = 0; i < state->acquired_refs; i++) { 9951 if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9952 continue; 9953 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9954 state->refs[i].id, state->refs[i].insn_idx); 9955 refs_lingering = true; 9956 } 9957 return refs_lingering ? -EINVAL : 0; 9958 } 9959 9960 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9961 struct bpf_reg_state *regs) 9962 { 9963 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9964 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9965 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9966 struct bpf_bprintf_data data = {}; 9967 int err, fmt_map_off, num_args; 9968 u64 fmt_addr; 9969 char *fmt; 9970 9971 /* data must be an array of u64 */ 9972 if (data_len_reg->var_off.value % 8) 9973 return -EINVAL; 9974 num_args = data_len_reg->var_off.value / 8; 9975 9976 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9977 * and map_direct_value_addr is set. 9978 */ 9979 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9980 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9981 fmt_map_off); 9982 if (err) { 9983 verbose(env, "verifier bug\n"); 9984 return -EFAULT; 9985 } 9986 fmt = (char *)(long)fmt_addr + fmt_map_off; 9987 9988 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9989 * can focus on validating the format specifiers. 9990 */ 9991 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9992 if (err < 0) 9993 verbose(env, "Invalid format string\n"); 9994 9995 return err; 9996 } 9997 9998 static int check_get_func_ip(struct bpf_verifier_env *env) 9999 { 10000 enum bpf_prog_type type = resolve_prog_type(env->prog); 10001 int func_id = BPF_FUNC_get_func_ip; 10002 10003 if (type == BPF_PROG_TYPE_TRACING) { 10004 if (!bpf_prog_has_trampoline(env->prog)) { 10005 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 10006 func_id_name(func_id), func_id); 10007 return -ENOTSUPP; 10008 } 10009 return 0; 10010 } else if (type == BPF_PROG_TYPE_KPROBE) { 10011 return 0; 10012 } 10013 10014 verbose(env, "func %s#%d not supported for program type %d\n", 10015 func_id_name(func_id), func_id, type); 10016 return -ENOTSUPP; 10017 } 10018 10019 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 10020 { 10021 return &env->insn_aux_data[env->insn_idx]; 10022 } 10023 10024 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 10025 { 10026 struct bpf_reg_state *regs = cur_regs(env); 10027 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 10028 bool reg_is_null = register_is_null(reg); 10029 10030 if (reg_is_null) 10031 mark_chain_precision(env, BPF_REG_4); 10032 10033 return reg_is_null; 10034 } 10035 10036 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 10037 { 10038 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 10039 10040 if (!state->initialized) { 10041 state->initialized = 1; 10042 state->fit_for_inline = loop_flag_is_zero(env); 10043 state->callback_subprogno = subprogno; 10044 return; 10045 } 10046 10047 if (!state->fit_for_inline) 10048 return; 10049 10050 state->fit_for_inline = (loop_flag_is_zero(env) && 10051 state->callback_subprogno == subprogno); 10052 } 10053 10054 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10055 int *insn_idx_p) 10056 { 10057 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10058 bool returns_cpu_specific_alloc_ptr = false; 10059 const struct bpf_func_proto *fn = NULL; 10060 enum bpf_return_type ret_type; 10061 enum bpf_type_flag ret_flag; 10062 struct bpf_reg_state *regs; 10063 struct bpf_call_arg_meta meta; 10064 int insn_idx = *insn_idx_p; 10065 bool changes_data; 10066 int i, err, func_id; 10067 10068 /* find function prototype */ 10069 func_id = insn->imm; 10070 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 10071 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 10072 func_id); 10073 return -EINVAL; 10074 } 10075 10076 if (env->ops->get_func_proto) 10077 fn = env->ops->get_func_proto(func_id, env->prog); 10078 if (!fn) { 10079 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 10080 func_id); 10081 return -EINVAL; 10082 } 10083 10084 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 10085 if (!env->prog->gpl_compatible && fn->gpl_only) { 10086 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 10087 return -EINVAL; 10088 } 10089 10090 if (fn->allowed && !fn->allowed(env->prog)) { 10091 verbose(env, "helper call is not allowed in probe\n"); 10092 return -EINVAL; 10093 } 10094 10095 if (!env->prog->aux->sleepable && fn->might_sleep) { 10096 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 10097 return -EINVAL; 10098 } 10099 10100 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 10101 changes_data = bpf_helper_changes_pkt_data(fn->func); 10102 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 10103 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 10104 func_id_name(func_id), func_id); 10105 return -EINVAL; 10106 } 10107 10108 memset(&meta, 0, sizeof(meta)); 10109 meta.pkt_access = fn->pkt_access; 10110 10111 err = check_func_proto(fn, func_id); 10112 if (err) { 10113 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 10114 func_id_name(func_id), func_id); 10115 return err; 10116 } 10117 10118 if (env->cur_state->active_rcu_lock) { 10119 if (fn->might_sleep) { 10120 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10121 func_id_name(func_id), func_id); 10122 return -EINVAL; 10123 } 10124 10125 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 10126 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10127 } 10128 10129 meta.func_id = func_id; 10130 /* check args */ 10131 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 10132 err = check_func_arg(env, i, &meta, fn, insn_idx); 10133 if (err) 10134 return err; 10135 } 10136 10137 err = record_func_map(env, &meta, func_id, insn_idx); 10138 if (err) 10139 return err; 10140 10141 err = record_func_key(env, &meta, func_id, insn_idx); 10142 if (err) 10143 return err; 10144 10145 /* Mark slots with STACK_MISC in case of raw mode, stack offset 10146 * is inferred from register state. 10147 */ 10148 for (i = 0; i < meta.access_size; i++) { 10149 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 10150 BPF_WRITE, -1, false, false); 10151 if (err) 10152 return err; 10153 } 10154 10155 regs = cur_regs(env); 10156 10157 if (meta.release_regno) { 10158 err = -EINVAL; 10159 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10160 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10161 * is safe to do directly. 10162 */ 10163 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10164 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10165 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10166 return -EFAULT; 10167 } 10168 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10169 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 10170 u32 ref_obj_id = meta.ref_obj_id; 10171 bool in_rcu = in_rcu_cs(env); 10172 struct bpf_func_state *state; 10173 struct bpf_reg_state *reg; 10174 10175 err = release_reference_state(cur_func(env), ref_obj_id); 10176 if (!err) { 10177 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10178 if (reg->ref_obj_id == ref_obj_id) { 10179 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 10180 reg->ref_obj_id = 0; 10181 reg->type &= ~MEM_ALLOC; 10182 reg->type |= MEM_RCU; 10183 } else { 10184 mark_reg_invalid(env, reg); 10185 } 10186 } 10187 })); 10188 } 10189 } else if (meta.ref_obj_id) { 10190 err = release_reference(env, meta.ref_obj_id); 10191 } else if (register_is_null(®s[meta.release_regno])) { 10192 /* meta.ref_obj_id can only be 0 if register that is meant to be 10193 * released is NULL, which must be > R0. 10194 */ 10195 err = 0; 10196 } 10197 if (err) { 10198 verbose(env, "func %s#%d reference has not been acquired before\n", 10199 func_id_name(func_id), func_id); 10200 return err; 10201 } 10202 } 10203 10204 switch (func_id) { 10205 case BPF_FUNC_tail_call: 10206 err = check_reference_leak(env, false); 10207 if (err) { 10208 verbose(env, "tail_call would lead to reference leak\n"); 10209 return err; 10210 } 10211 break; 10212 case BPF_FUNC_get_local_storage: 10213 /* check that flags argument in get_local_storage(map, flags) is 0, 10214 * this is required because get_local_storage() can't return an error. 10215 */ 10216 if (!register_is_null(®s[BPF_REG_2])) { 10217 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10218 return -EINVAL; 10219 } 10220 break; 10221 case BPF_FUNC_for_each_map_elem: 10222 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10223 set_map_elem_callback_state); 10224 break; 10225 case BPF_FUNC_timer_set_callback: 10226 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10227 set_timer_callback_state); 10228 break; 10229 case BPF_FUNC_find_vma: 10230 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10231 set_find_vma_callback_state); 10232 break; 10233 case BPF_FUNC_snprintf: 10234 err = check_bpf_snprintf_call(env, regs); 10235 break; 10236 case BPF_FUNC_loop: 10237 update_loop_inline_state(env, meta.subprogno); 10238 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10239 * is finished, thus mark it precise. 10240 */ 10241 err = mark_chain_precision(env, BPF_REG_1); 10242 if (err) 10243 return err; 10244 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10245 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10246 set_loop_callback_state); 10247 } else { 10248 cur_func(env)->callback_depth = 0; 10249 if (env->log.level & BPF_LOG_LEVEL2) 10250 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10251 env->cur_state->curframe); 10252 } 10253 break; 10254 case BPF_FUNC_dynptr_from_mem: 10255 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10256 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10257 reg_type_str(env, regs[BPF_REG_1].type)); 10258 return -EACCES; 10259 } 10260 break; 10261 case BPF_FUNC_set_retval: 10262 if (prog_type == BPF_PROG_TYPE_LSM && 10263 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10264 if (!env->prog->aux->attach_func_proto->type) { 10265 /* Make sure programs that attach to void 10266 * hooks don't try to modify return value. 10267 */ 10268 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10269 return -EINVAL; 10270 } 10271 } 10272 break; 10273 case BPF_FUNC_dynptr_data: 10274 { 10275 struct bpf_reg_state *reg; 10276 int id, ref_obj_id; 10277 10278 reg = get_dynptr_arg_reg(env, fn, regs); 10279 if (!reg) 10280 return -EFAULT; 10281 10282 10283 if (meta.dynptr_id) { 10284 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10285 return -EFAULT; 10286 } 10287 if (meta.ref_obj_id) { 10288 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10289 return -EFAULT; 10290 } 10291 10292 id = dynptr_id(env, reg); 10293 if (id < 0) { 10294 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10295 return id; 10296 } 10297 10298 ref_obj_id = dynptr_ref_obj_id(env, reg); 10299 if (ref_obj_id < 0) { 10300 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10301 return ref_obj_id; 10302 } 10303 10304 meta.dynptr_id = id; 10305 meta.ref_obj_id = ref_obj_id; 10306 10307 break; 10308 } 10309 case BPF_FUNC_dynptr_write: 10310 { 10311 enum bpf_dynptr_type dynptr_type; 10312 struct bpf_reg_state *reg; 10313 10314 reg = get_dynptr_arg_reg(env, fn, regs); 10315 if (!reg) 10316 return -EFAULT; 10317 10318 dynptr_type = dynptr_get_type(env, reg); 10319 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10320 return -EFAULT; 10321 10322 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10323 /* this will trigger clear_all_pkt_pointers(), which will 10324 * invalidate all dynptr slices associated with the skb 10325 */ 10326 changes_data = true; 10327 10328 break; 10329 } 10330 case BPF_FUNC_per_cpu_ptr: 10331 case BPF_FUNC_this_cpu_ptr: 10332 { 10333 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 10334 const struct btf_type *type; 10335 10336 if (reg->type & MEM_RCU) { 10337 type = btf_type_by_id(reg->btf, reg->btf_id); 10338 if (!type || !btf_type_is_struct(type)) { 10339 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 10340 return -EFAULT; 10341 } 10342 returns_cpu_specific_alloc_ptr = true; 10343 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 10344 } 10345 break; 10346 } 10347 case BPF_FUNC_user_ringbuf_drain: 10348 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10349 set_user_ringbuf_callback_state); 10350 break; 10351 } 10352 10353 if (err) 10354 return err; 10355 10356 /* reset caller saved regs */ 10357 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10358 mark_reg_not_init(env, regs, caller_saved[i]); 10359 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10360 } 10361 10362 /* helper call returns 64-bit value. */ 10363 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10364 10365 /* update return register (already marked as written above) */ 10366 ret_type = fn->ret_type; 10367 ret_flag = type_flag(ret_type); 10368 10369 switch (base_type(ret_type)) { 10370 case RET_INTEGER: 10371 /* sets type to SCALAR_VALUE */ 10372 mark_reg_unknown(env, regs, BPF_REG_0); 10373 break; 10374 case RET_VOID: 10375 regs[BPF_REG_0].type = NOT_INIT; 10376 break; 10377 case RET_PTR_TO_MAP_VALUE: 10378 /* There is no offset yet applied, variable or fixed */ 10379 mark_reg_known_zero(env, regs, BPF_REG_0); 10380 /* remember map_ptr, so that check_map_access() 10381 * can check 'value_size' boundary of memory access 10382 * to map element returned from bpf_map_lookup_elem() 10383 */ 10384 if (meta.map_ptr == NULL) { 10385 verbose(env, 10386 "kernel subsystem misconfigured verifier\n"); 10387 return -EINVAL; 10388 } 10389 regs[BPF_REG_0].map_ptr = meta.map_ptr; 10390 regs[BPF_REG_0].map_uid = meta.map_uid; 10391 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 10392 if (!type_may_be_null(ret_type) && 10393 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 10394 regs[BPF_REG_0].id = ++env->id_gen; 10395 } 10396 break; 10397 case RET_PTR_TO_SOCKET: 10398 mark_reg_known_zero(env, regs, BPF_REG_0); 10399 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 10400 break; 10401 case RET_PTR_TO_SOCK_COMMON: 10402 mark_reg_known_zero(env, regs, BPF_REG_0); 10403 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 10404 break; 10405 case RET_PTR_TO_TCP_SOCK: 10406 mark_reg_known_zero(env, regs, BPF_REG_0); 10407 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 10408 break; 10409 case RET_PTR_TO_MEM: 10410 mark_reg_known_zero(env, regs, BPF_REG_0); 10411 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10412 regs[BPF_REG_0].mem_size = meta.mem_size; 10413 break; 10414 case RET_PTR_TO_MEM_OR_BTF_ID: 10415 { 10416 const struct btf_type *t; 10417 10418 mark_reg_known_zero(env, regs, BPF_REG_0); 10419 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 10420 if (!btf_type_is_struct(t)) { 10421 u32 tsize; 10422 const struct btf_type *ret; 10423 const char *tname; 10424 10425 /* resolve the type size of ksym. */ 10426 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 10427 if (IS_ERR(ret)) { 10428 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 10429 verbose(env, "unable to resolve the size of type '%s': %ld\n", 10430 tname, PTR_ERR(ret)); 10431 return -EINVAL; 10432 } 10433 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10434 regs[BPF_REG_0].mem_size = tsize; 10435 } else { 10436 if (returns_cpu_specific_alloc_ptr) { 10437 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 10438 } else { 10439 /* MEM_RDONLY may be carried from ret_flag, but it 10440 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 10441 * it will confuse the check of PTR_TO_BTF_ID in 10442 * check_mem_access(). 10443 */ 10444 ret_flag &= ~MEM_RDONLY; 10445 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10446 } 10447 10448 regs[BPF_REG_0].btf = meta.ret_btf; 10449 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 10450 } 10451 break; 10452 } 10453 case RET_PTR_TO_BTF_ID: 10454 { 10455 struct btf *ret_btf; 10456 int ret_btf_id; 10457 10458 mark_reg_known_zero(env, regs, BPF_REG_0); 10459 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10460 if (func_id == BPF_FUNC_kptr_xchg) { 10461 ret_btf = meta.kptr_field->kptr.btf; 10462 ret_btf_id = meta.kptr_field->kptr.btf_id; 10463 if (!btf_is_kernel(ret_btf)) { 10464 regs[BPF_REG_0].type |= MEM_ALLOC; 10465 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 10466 regs[BPF_REG_0].type |= MEM_PERCPU; 10467 } 10468 } else { 10469 if (fn->ret_btf_id == BPF_PTR_POISON) { 10470 verbose(env, "verifier internal error:"); 10471 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 10472 func_id_name(func_id)); 10473 return -EINVAL; 10474 } 10475 ret_btf = btf_vmlinux; 10476 ret_btf_id = *fn->ret_btf_id; 10477 } 10478 if (ret_btf_id == 0) { 10479 verbose(env, "invalid return type %u of func %s#%d\n", 10480 base_type(ret_type), func_id_name(func_id), 10481 func_id); 10482 return -EINVAL; 10483 } 10484 regs[BPF_REG_0].btf = ret_btf; 10485 regs[BPF_REG_0].btf_id = ret_btf_id; 10486 break; 10487 } 10488 default: 10489 verbose(env, "unknown return type %u of func %s#%d\n", 10490 base_type(ret_type), func_id_name(func_id), func_id); 10491 return -EINVAL; 10492 } 10493 10494 if (type_may_be_null(regs[BPF_REG_0].type)) 10495 regs[BPF_REG_0].id = ++env->id_gen; 10496 10497 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 10498 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 10499 func_id_name(func_id), func_id); 10500 return -EFAULT; 10501 } 10502 10503 if (is_dynptr_ref_function(func_id)) 10504 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 10505 10506 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 10507 /* For release_reference() */ 10508 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10509 } else if (is_acquire_function(func_id, meta.map_ptr)) { 10510 int id = acquire_reference_state(env, insn_idx); 10511 10512 if (id < 0) 10513 return id; 10514 /* For mark_ptr_or_null_reg() */ 10515 regs[BPF_REG_0].id = id; 10516 /* For release_reference() */ 10517 regs[BPF_REG_0].ref_obj_id = id; 10518 } 10519 10520 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 10521 if (err) 10522 return err; 10523 10524 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 10525 if (err) 10526 return err; 10527 10528 if ((func_id == BPF_FUNC_get_stack || 10529 func_id == BPF_FUNC_get_task_stack) && 10530 !env->prog->has_callchain_buf) { 10531 const char *err_str; 10532 10533 #ifdef CONFIG_PERF_EVENTS 10534 err = get_callchain_buffers(sysctl_perf_event_max_stack); 10535 err_str = "cannot get callchain buffer for func %s#%d\n"; 10536 #else 10537 err = -ENOTSUPP; 10538 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 10539 #endif 10540 if (err) { 10541 verbose(env, err_str, func_id_name(func_id), func_id); 10542 return err; 10543 } 10544 10545 env->prog->has_callchain_buf = true; 10546 } 10547 10548 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 10549 env->prog->call_get_stack = true; 10550 10551 if (func_id == BPF_FUNC_get_func_ip) { 10552 if (check_get_func_ip(env)) 10553 return -ENOTSUPP; 10554 env->prog->call_get_func_ip = true; 10555 } 10556 10557 if (changes_data) 10558 clear_all_pkt_pointers(env); 10559 return 0; 10560 } 10561 10562 /* mark_btf_func_reg_size() is used when the reg size is determined by 10563 * the BTF func_proto's return value size and argument. 10564 */ 10565 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 10566 size_t reg_size) 10567 { 10568 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10569 10570 if (regno == BPF_REG_0) { 10571 /* Function return value */ 10572 reg->live |= REG_LIVE_WRITTEN; 10573 reg->subreg_def = reg_size == sizeof(u64) ? 10574 DEF_NOT_SUBREG : env->insn_idx + 1; 10575 } else { 10576 /* Function argument */ 10577 if (reg_size == sizeof(u64)) { 10578 mark_insn_zext(env, reg); 10579 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10580 } else { 10581 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10582 } 10583 } 10584 } 10585 10586 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10587 { 10588 return meta->kfunc_flags & KF_ACQUIRE; 10589 } 10590 10591 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10592 { 10593 return meta->kfunc_flags & KF_RELEASE; 10594 } 10595 10596 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10597 { 10598 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10599 } 10600 10601 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10602 { 10603 return meta->kfunc_flags & KF_SLEEPABLE; 10604 } 10605 10606 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10607 { 10608 return meta->kfunc_flags & KF_DESTRUCTIVE; 10609 } 10610 10611 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10612 { 10613 return meta->kfunc_flags & KF_RCU; 10614 } 10615 10616 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 10617 { 10618 return meta->kfunc_flags & KF_RCU_PROTECTED; 10619 } 10620 10621 static bool __kfunc_param_match_suffix(const struct btf *btf, 10622 const struct btf_param *arg, 10623 const char *suffix) 10624 { 10625 int suffix_len = strlen(suffix), len; 10626 const char *param_name; 10627 10628 /* In the future, this can be ported to use BTF tagging */ 10629 param_name = btf_name_by_offset(btf, arg->name_off); 10630 if (str_is_empty(param_name)) 10631 return false; 10632 len = strlen(param_name); 10633 if (len < suffix_len) 10634 return false; 10635 param_name += len - suffix_len; 10636 return !strncmp(param_name, suffix, suffix_len); 10637 } 10638 10639 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10640 const struct btf_param *arg, 10641 const struct bpf_reg_state *reg) 10642 { 10643 const struct btf_type *t; 10644 10645 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10646 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10647 return false; 10648 10649 return __kfunc_param_match_suffix(btf, arg, "__sz"); 10650 } 10651 10652 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10653 const struct btf_param *arg, 10654 const struct bpf_reg_state *reg) 10655 { 10656 const struct btf_type *t; 10657 10658 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10659 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10660 return false; 10661 10662 return __kfunc_param_match_suffix(btf, arg, "__szk"); 10663 } 10664 10665 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10666 { 10667 return __kfunc_param_match_suffix(btf, arg, "__opt"); 10668 } 10669 10670 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10671 { 10672 return __kfunc_param_match_suffix(btf, arg, "__k"); 10673 } 10674 10675 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10676 { 10677 return __kfunc_param_match_suffix(btf, arg, "__ign"); 10678 } 10679 10680 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10681 { 10682 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 10683 } 10684 10685 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10686 { 10687 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 10688 } 10689 10690 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10691 { 10692 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 10693 } 10694 10695 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 10696 { 10697 return __kfunc_param_match_suffix(btf, arg, "__nullable"); 10698 } 10699 10700 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 10701 { 10702 return __kfunc_param_match_suffix(btf, arg, "__str"); 10703 } 10704 10705 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10706 const struct btf_param *arg, 10707 const char *name) 10708 { 10709 int len, target_len = strlen(name); 10710 const char *param_name; 10711 10712 param_name = btf_name_by_offset(btf, arg->name_off); 10713 if (str_is_empty(param_name)) 10714 return false; 10715 len = strlen(param_name); 10716 if (len != target_len) 10717 return false; 10718 if (strcmp(param_name, name)) 10719 return false; 10720 10721 return true; 10722 } 10723 10724 enum { 10725 KF_ARG_DYNPTR_ID, 10726 KF_ARG_LIST_HEAD_ID, 10727 KF_ARG_LIST_NODE_ID, 10728 KF_ARG_RB_ROOT_ID, 10729 KF_ARG_RB_NODE_ID, 10730 }; 10731 10732 BTF_ID_LIST(kf_arg_btf_ids) 10733 BTF_ID(struct, bpf_dynptr_kern) 10734 BTF_ID(struct, bpf_list_head) 10735 BTF_ID(struct, bpf_list_node) 10736 BTF_ID(struct, bpf_rb_root) 10737 BTF_ID(struct, bpf_rb_node) 10738 10739 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10740 const struct btf_param *arg, int type) 10741 { 10742 const struct btf_type *t; 10743 u32 res_id; 10744 10745 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10746 if (!t) 10747 return false; 10748 if (!btf_type_is_ptr(t)) 10749 return false; 10750 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10751 if (!t) 10752 return false; 10753 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10754 } 10755 10756 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10757 { 10758 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10759 } 10760 10761 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10762 { 10763 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10764 } 10765 10766 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10767 { 10768 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10769 } 10770 10771 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10772 { 10773 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10774 } 10775 10776 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10777 { 10778 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10779 } 10780 10781 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10782 const struct btf_param *arg) 10783 { 10784 const struct btf_type *t; 10785 10786 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10787 if (!t) 10788 return false; 10789 10790 return true; 10791 } 10792 10793 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10794 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10795 const struct btf *btf, 10796 const struct btf_type *t, int rec) 10797 { 10798 const struct btf_type *member_type; 10799 const struct btf_member *member; 10800 u32 i; 10801 10802 if (!btf_type_is_struct(t)) 10803 return false; 10804 10805 for_each_member(i, t, member) { 10806 const struct btf_array *array; 10807 10808 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10809 if (btf_type_is_struct(member_type)) { 10810 if (rec >= 3) { 10811 verbose(env, "max struct nesting depth exceeded\n"); 10812 return false; 10813 } 10814 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10815 return false; 10816 continue; 10817 } 10818 if (btf_type_is_array(member_type)) { 10819 array = btf_array(member_type); 10820 if (!array->nelems) 10821 return false; 10822 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10823 if (!btf_type_is_scalar(member_type)) 10824 return false; 10825 continue; 10826 } 10827 if (!btf_type_is_scalar(member_type)) 10828 return false; 10829 } 10830 return true; 10831 } 10832 10833 enum kfunc_ptr_arg_type { 10834 KF_ARG_PTR_TO_CTX, 10835 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10836 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10837 KF_ARG_PTR_TO_DYNPTR, 10838 KF_ARG_PTR_TO_ITER, 10839 KF_ARG_PTR_TO_LIST_HEAD, 10840 KF_ARG_PTR_TO_LIST_NODE, 10841 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10842 KF_ARG_PTR_TO_MEM, 10843 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10844 KF_ARG_PTR_TO_CALLBACK, 10845 KF_ARG_PTR_TO_RB_ROOT, 10846 KF_ARG_PTR_TO_RB_NODE, 10847 KF_ARG_PTR_TO_NULL, 10848 KF_ARG_PTR_TO_CONST_STR, 10849 }; 10850 10851 enum special_kfunc_type { 10852 KF_bpf_obj_new_impl, 10853 KF_bpf_obj_drop_impl, 10854 KF_bpf_refcount_acquire_impl, 10855 KF_bpf_list_push_front_impl, 10856 KF_bpf_list_push_back_impl, 10857 KF_bpf_list_pop_front, 10858 KF_bpf_list_pop_back, 10859 KF_bpf_cast_to_kern_ctx, 10860 KF_bpf_rdonly_cast, 10861 KF_bpf_rcu_read_lock, 10862 KF_bpf_rcu_read_unlock, 10863 KF_bpf_rbtree_remove, 10864 KF_bpf_rbtree_add_impl, 10865 KF_bpf_rbtree_first, 10866 KF_bpf_dynptr_from_skb, 10867 KF_bpf_dynptr_from_xdp, 10868 KF_bpf_dynptr_slice, 10869 KF_bpf_dynptr_slice_rdwr, 10870 KF_bpf_dynptr_clone, 10871 KF_bpf_percpu_obj_new_impl, 10872 KF_bpf_percpu_obj_drop_impl, 10873 KF_bpf_throw, 10874 KF_bpf_iter_css_task_new, 10875 }; 10876 10877 BTF_SET_START(special_kfunc_set) 10878 BTF_ID(func, bpf_obj_new_impl) 10879 BTF_ID(func, bpf_obj_drop_impl) 10880 BTF_ID(func, bpf_refcount_acquire_impl) 10881 BTF_ID(func, bpf_list_push_front_impl) 10882 BTF_ID(func, bpf_list_push_back_impl) 10883 BTF_ID(func, bpf_list_pop_front) 10884 BTF_ID(func, bpf_list_pop_back) 10885 BTF_ID(func, bpf_cast_to_kern_ctx) 10886 BTF_ID(func, bpf_rdonly_cast) 10887 BTF_ID(func, bpf_rbtree_remove) 10888 BTF_ID(func, bpf_rbtree_add_impl) 10889 BTF_ID(func, bpf_rbtree_first) 10890 BTF_ID(func, bpf_dynptr_from_skb) 10891 BTF_ID(func, bpf_dynptr_from_xdp) 10892 BTF_ID(func, bpf_dynptr_slice) 10893 BTF_ID(func, bpf_dynptr_slice_rdwr) 10894 BTF_ID(func, bpf_dynptr_clone) 10895 BTF_ID(func, bpf_percpu_obj_new_impl) 10896 BTF_ID(func, bpf_percpu_obj_drop_impl) 10897 BTF_ID(func, bpf_throw) 10898 #ifdef CONFIG_CGROUPS 10899 BTF_ID(func, bpf_iter_css_task_new) 10900 #endif 10901 BTF_SET_END(special_kfunc_set) 10902 10903 BTF_ID_LIST(special_kfunc_list) 10904 BTF_ID(func, bpf_obj_new_impl) 10905 BTF_ID(func, bpf_obj_drop_impl) 10906 BTF_ID(func, bpf_refcount_acquire_impl) 10907 BTF_ID(func, bpf_list_push_front_impl) 10908 BTF_ID(func, bpf_list_push_back_impl) 10909 BTF_ID(func, bpf_list_pop_front) 10910 BTF_ID(func, bpf_list_pop_back) 10911 BTF_ID(func, bpf_cast_to_kern_ctx) 10912 BTF_ID(func, bpf_rdonly_cast) 10913 BTF_ID(func, bpf_rcu_read_lock) 10914 BTF_ID(func, bpf_rcu_read_unlock) 10915 BTF_ID(func, bpf_rbtree_remove) 10916 BTF_ID(func, bpf_rbtree_add_impl) 10917 BTF_ID(func, bpf_rbtree_first) 10918 BTF_ID(func, bpf_dynptr_from_skb) 10919 BTF_ID(func, bpf_dynptr_from_xdp) 10920 BTF_ID(func, bpf_dynptr_slice) 10921 BTF_ID(func, bpf_dynptr_slice_rdwr) 10922 BTF_ID(func, bpf_dynptr_clone) 10923 BTF_ID(func, bpf_percpu_obj_new_impl) 10924 BTF_ID(func, bpf_percpu_obj_drop_impl) 10925 BTF_ID(func, bpf_throw) 10926 #ifdef CONFIG_CGROUPS 10927 BTF_ID(func, bpf_iter_css_task_new) 10928 #else 10929 BTF_ID_UNUSED 10930 #endif 10931 10932 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10933 { 10934 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10935 meta->arg_owning_ref) { 10936 return false; 10937 } 10938 10939 return meta->kfunc_flags & KF_RET_NULL; 10940 } 10941 10942 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10943 { 10944 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10945 } 10946 10947 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10948 { 10949 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10950 } 10951 10952 static enum kfunc_ptr_arg_type 10953 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10954 struct bpf_kfunc_call_arg_meta *meta, 10955 const struct btf_type *t, const struct btf_type *ref_t, 10956 const char *ref_tname, const struct btf_param *args, 10957 int argno, int nargs) 10958 { 10959 u32 regno = argno + 1; 10960 struct bpf_reg_state *regs = cur_regs(env); 10961 struct bpf_reg_state *reg = ®s[regno]; 10962 bool arg_mem_size = false; 10963 10964 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10965 return KF_ARG_PTR_TO_CTX; 10966 10967 /* In this function, we verify the kfunc's BTF as per the argument type, 10968 * leaving the rest of the verification with respect to the register 10969 * type to our caller. When a set of conditions hold in the BTF type of 10970 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10971 */ 10972 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10973 return KF_ARG_PTR_TO_CTX; 10974 10975 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10976 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10977 10978 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10979 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10980 10981 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10982 return KF_ARG_PTR_TO_DYNPTR; 10983 10984 if (is_kfunc_arg_iter(meta, argno)) 10985 return KF_ARG_PTR_TO_ITER; 10986 10987 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10988 return KF_ARG_PTR_TO_LIST_HEAD; 10989 10990 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10991 return KF_ARG_PTR_TO_LIST_NODE; 10992 10993 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10994 return KF_ARG_PTR_TO_RB_ROOT; 10995 10996 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10997 return KF_ARG_PTR_TO_RB_NODE; 10998 10999 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 11000 return KF_ARG_PTR_TO_CONST_STR; 11001 11002 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 11003 if (!btf_type_is_struct(ref_t)) { 11004 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 11005 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 11006 return -EINVAL; 11007 } 11008 return KF_ARG_PTR_TO_BTF_ID; 11009 } 11010 11011 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 11012 return KF_ARG_PTR_TO_CALLBACK; 11013 11014 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 11015 return KF_ARG_PTR_TO_NULL; 11016 11017 if (argno + 1 < nargs && 11018 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 11019 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 11020 arg_mem_size = true; 11021 11022 /* This is the catch all argument type of register types supported by 11023 * check_helper_mem_access. However, we only allow when argument type is 11024 * pointer to scalar, or struct composed (recursively) of scalars. When 11025 * arg_mem_size is true, the pointer can be void *. 11026 */ 11027 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 11028 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 11029 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 11030 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 11031 return -EINVAL; 11032 } 11033 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 11034 } 11035 11036 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 11037 struct bpf_reg_state *reg, 11038 const struct btf_type *ref_t, 11039 const char *ref_tname, u32 ref_id, 11040 struct bpf_kfunc_call_arg_meta *meta, 11041 int argno) 11042 { 11043 const struct btf_type *reg_ref_t; 11044 bool strict_type_match = false; 11045 const struct btf *reg_btf; 11046 const char *reg_ref_tname; 11047 u32 reg_ref_id; 11048 11049 if (base_type(reg->type) == PTR_TO_BTF_ID) { 11050 reg_btf = reg->btf; 11051 reg_ref_id = reg->btf_id; 11052 } else { 11053 reg_btf = btf_vmlinux; 11054 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 11055 } 11056 11057 /* Enforce strict type matching for calls to kfuncs that are acquiring 11058 * or releasing a reference, or are no-cast aliases. We do _not_ 11059 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 11060 * as we want to enable BPF programs to pass types that are bitwise 11061 * equivalent without forcing them to explicitly cast with something 11062 * like bpf_cast_to_kern_ctx(). 11063 * 11064 * For example, say we had a type like the following: 11065 * 11066 * struct bpf_cpumask { 11067 * cpumask_t cpumask; 11068 * refcount_t usage; 11069 * }; 11070 * 11071 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 11072 * to a struct cpumask, so it would be safe to pass a struct 11073 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 11074 * 11075 * The philosophy here is similar to how we allow scalars of different 11076 * types to be passed to kfuncs as long as the size is the same. The 11077 * only difference here is that we're simply allowing 11078 * btf_struct_ids_match() to walk the struct at the 0th offset, and 11079 * resolve types. 11080 */ 11081 if (is_kfunc_acquire(meta) || 11082 (is_kfunc_release(meta) && reg->ref_obj_id) || 11083 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 11084 strict_type_match = true; 11085 11086 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 11087 11088 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 11089 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 11090 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 11091 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 11092 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 11093 btf_type_str(reg_ref_t), reg_ref_tname); 11094 return -EINVAL; 11095 } 11096 return 0; 11097 } 11098 11099 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11100 { 11101 struct bpf_verifier_state *state = env->cur_state; 11102 struct btf_record *rec = reg_btf_record(reg); 11103 11104 if (!state->active_lock.ptr) { 11105 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 11106 return -EFAULT; 11107 } 11108 11109 if (type_flag(reg->type) & NON_OWN_REF) { 11110 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 11111 return -EFAULT; 11112 } 11113 11114 reg->type |= NON_OWN_REF; 11115 if (rec->refcount_off >= 0) 11116 reg->type |= MEM_RCU; 11117 11118 return 0; 11119 } 11120 11121 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 11122 { 11123 struct bpf_func_state *state, *unused; 11124 struct bpf_reg_state *reg; 11125 int i; 11126 11127 state = cur_func(env); 11128 11129 if (!ref_obj_id) { 11130 verbose(env, "verifier internal error: ref_obj_id is zero for " 11131 "owning -> non-owning conversion\n"); 11132 return -EFAULT; 11133 } 11134 11135 for (i = 0; i < state->acquired_refs; i++) { 11136 if (state->refs[i].id != ref_obj_id) 11137 continue; 11138 11139 /* Clear ref_obj_id here so release_reference doesn't clobber 11140 * the whole reg 11141 */ 11142 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 11143 if (reg->ref_obj_id == ref_obj_id) { 11144 reg->ref_obj_id = 0; 11145 ref_set_non_owning(env, reg); 11146 } 11147 })); 11148 return 0; 11149 } 11150 11151 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 11152 return -EFAULT; 11153 } 11154 11155 /* Implementation details: 11156 * 11157 * Each register points to some region of memory, which we define as an 11158 * allocation. Each allocation may embed a bpf_spin_lock which protects any 11159 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 11160 * allocation. The lock and the data it protects are colocated in the same 11161 * memory region. 11162 * 11163 * Hence, everytime a register holds a pointer value pointing to such 11164 * allocation, the verifier preserves a unique reg->id for it. 11165 * 11166 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 11167 * bpf_spin_lock is called. 11168 * 11169 * To enable this, lock state in the verifier captures two values: 11170 * active_lock.ptr = Register's type specific pointer 11171 * active_lock.id = A unique ID for each register pointer value 11172 * 11173 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 11174 * supported register types. 11175 * 11176 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 11177 * allocated objects is the reg->btf pointer. 11178 * 11179 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 11180 * can establish the provenance of the map value statically for each distinct 11181 * lookup into such maps. They always contain a single map value hence unique 11182 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 11183 * 11184 * So, in case of global variables, they use array maps with max_entries = 1, 11185 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 11186 * into the same map value as max_entries is 1, as described above). 11187 * 11188 * In case of inner map lookups, the inner map pointer has same map_ptr as the 11189 * outer map pointer (in verifier context), but each lookup into an inner map 11190 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 11191 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 11192 * will get different reg->id assigned to each lookup, hence different 11193 * active_lock.id. 11194 * 11195 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 11196 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 11197 * returned from bpf_obj_new. Each allocation receives a new reg->id. 11198 */ 11199 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11200 { 11201 void *ptr; 11202 u32 id; 11203 11204 switch ((int)reg->type) { 11205 case PTR_TO_MAP_VALUE: 11206 ptr = reg->map_ptr; 11207 break; 11208 case PTR_TO_BTF_ID | MEM_ALLOC: 11209 ptr = reg->btf; 11210 break; 11211 default: 11212 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11213 return -EFAULT; 11214 } 11215 id = reg->id; 11216 11217 if (!env->cur_state->active_lock.ptr) 11218 return -EINVAL; 11219 if (env->cur_state->active_lock.ptr != ptr || 11220 env->cur_state->active_lock.id != id) { 11221 verbose(env, "held lock and object are not in the same allocation\n"); 11222 return -EINVAL; 11223 } 11224 return 0; 11225 } 11226 11227 static bool is_bpf_list_api_kfunc(u32 btf_id) 11228 { 11229 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11230 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11231 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11232 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11233 } 11234 11235 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11236 { 11237 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11238 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11239 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11240 } 11241 11242 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11243 { 11244 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11245 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11246 } 11247 11248 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11249 { 11250 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11251 } 11252 11253 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 11254 { 11255 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 11256 insn->imm == special_kfunc_list[KF_bpf_throw]; 11257 } 11258 11259 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11260 { 11261 return is_bpf_rbtree_api_kfunc(btf_id); 11262 } 11263 11264 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11265 enum btf_field_type head_field_type, 11266 u32 kfunc_btf_id) 11267 { 11268 bool ret; 11269 11270 switch (head_field_type) { 11271 case BPF_LIST_HEAD: 11272 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11273 break; 11274 case BPF_RB_ROOT: 11275 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11276 break; 11277 default: 11278 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11279 btf_field_type_name(head_field_type)); 11280 return false; 11281 } 11282 11283 if (!ret) 11284 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11285 btf_field_type_name(head_field_type)); 11286 return ret; 11287 } 11288 11289 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11290 enum btf_field_type node_field_type, 11291 u32 kfunc_btf_id) 11292 { 11293 bool ret; 11294 11295 switch (node_field_type) { 11296 case BPF_LIST_NODE: 11297 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11298 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11299 break; 11300 case BPF_RB_NODE: 11301 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11302 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11303 break; 11304 default: 11305 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11306 btf_field_type_name(node_field_type)); 11307 return false; 11308 } 11309 11310 if (!ret) 11311 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11312 btf_field_type_name(node_field_type)); 11313 return ret; 11314 } 11315 11316 static int 11317 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11318 struct bpf_reg_state *reg, u32 regno, 11319 struct bpf_kfunc_call_arg_meta *meta, 11320 enum btf_field_type head_field_type, 11321 struct btf_field **head_field) 11322 { 11323 const char *head_type_name; 11324 struct btf_field *field; 11325 struct btf_record *rec; 11326 u32 head_off; 11327 11328 if (meta->btf != btf_vmlinux) { 11329 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11330 return -EFAULT; 11331 } 11332 11333 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 11334 return -EFAULT; 11335 11336 head_type_name = btf_field_type_name(head_field_type); 11337 if (!tnum_is_const(reg->var_off)) { 11338 verbose(env, 11339 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11340 regno, head_type_name); 11341 return -EINVAL; 11342 } 11343 11344 rec = reg_btf_record(reg); 11345 head_off = reg->off + reg->var_off.value; 11346 field = btf_record_find(rec, head_off, head_field_type); 11347 if (!field) { 11348 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 11349 return -EINVAL; 11350 } 11351 11352 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 11353 if (check_reg_allocation_locked(env, reg)) { 11354 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 11355 rec->spin_lock_off, head_type_name); 11356 return -EINVAL; 11357 } 11358 11359 if (*head_field) { 11360 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 11361 return -EFAULT; 11362 } 11363 *head_field = field; 11364 return 0; 11365 } 11366 11367 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 11368 struct bpf_reg_state *reg, u32 regno, 11369 struct bpf_kfunc_call_arg_meta *meta) 11370 { 11371 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 11372 &meta->arg_list_head.field); 11373 } 11374 11375 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 11376 struct bpf_reg_state *reg, u32 regno, 11377 struct bpf_kfunc_call_arg_meta *meta) 11378 { 11379 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 11380 &meta->arg_rbtree_root.field); 11381 } 11382 11383 static int 11384 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 11385 struct bpf_reg_state *reg, u32 regno, 11386 struct bpf_kfunc_call_arg_meta *meta, 11387 enum btf_field_type head_field_type, 11388 enum btf_field_type node_field_type, 11389 struct btf_field **node_field) 11390 { 11391 const char *node_type_name; 11392 const struct btf_type *et, *t; 11393 struct btf_field *field; 11394 u32 node_off; 11395 11396 if (meta->btf != btf_vmlinux) { 11397 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11398 return -EFAULT; 11399 } 11400 11401 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 11402 return -EFAULT; 11403 11404 node_type_name = btf_field_type_name(node_field_type); 11405 if (!tnum_is_const(reg->var_off)) { 11406 verbose(env, 11407 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11408 regno, node_type_name); 11409 return -EINVAL; 11410 } 11411 11412 node_off = reg->off + reg->var_off.value; 11413 field = reg_find_field_offset(reg, node_off, node_field_type); 11414 if (!field || field->offset != node_off) { 11415 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 11416 return -EINVAL; 11417 } 11418 11419 field = *node_field; 11420 11421 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 11422 t = btf_type_by_id(reg->btf, reg->btf_id); 11423 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 11424 field->graph_root.value_btf_id, true)) { 11425 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 11426 "in struct %s, but arg is at offset=%d in struct %s\n", 11427 btf_field_type_name(head_field_type), 11428 btf_field_type_name(node_field_type), 11429 field->graph_root.node_offset, 11430 btf_name_by_offset(field->graph_root.btf, et->name_off), 11431 node_off, btf_name_by_offset(reg->btf, t->name_off)); 11432 return -EINVAL; 11433 } 11434 meta->arg_btf = reg->btf; 11435 meta->arg_btf_id = reg->btf_id; 11436 11437 if (node_off != field->graph_root.node_offset) { 11438 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 11439 node_off, btf_field_type_name(node_field_type), 11440 field->graph_root.node_offset, 11441 btf_name_by_offset(field->graph_root.btf, et->name_off)); 11442 return -EINVAL; 11443 } 11444 11445 return 0; 11446 } 11447 11448 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 11449 struct bpf_reg_state *reg, u32 regno, 11450 struct bpf_kfunc_call_arg_meta *meta) 11451 { 11452 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11453 BPF_LIST_HEAD, BPF_LIST_NODE, 11454 &meta->arg_list_head.field); 11455 } 11456 11457 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 11458 struct bpf_reg_state *reg, u32 regno, 11459 struct bpf_kfunc_call_arg_meta *meta) 11460 { 11461 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11462 BPF_RB_ROOT, BPF_RB_NODE, 11463 &meta->arg_rbtree_root.field); 11464 } 11465 11466 /* 11467 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 11468 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 11469 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 11470 * them can only be attached to some specific hook points. 11471 */ 11472 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 11473 { 11474 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 11475 11476 switch (prog_type) { 11477 case BPF_PROG_TYPE_LSM: 11478 return true; 11479 case BPF_PROG_TYPE_TRACING: 11480 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 11481 return true; 11482 fallthrough; 11483 default: 11484 return env->prog->aux->sleepable; 11485 } 11486 } 11487 11488 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 11489 int insn_idx) 11490 { 11491 const char *func_name = meta->func_name, *ref_tname; 11492 const struct btf *btf = meta->btf; 11493 const struct btf_param *args; 11494 struct btf_record *rec; 11495 u32 i, nargs; 11496 int ret; 11497 11498 args = (const struct btf_param *)(meta->func_proto + 1); 11499 nargs = btf_type_vlen(meta->func_proto); 11500 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 11501 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 11502 MAX_BPF_FUNC_REG_ARGS); 11503 return -EINVAL; 11504 } 11505 11506 /* Check that BTF function arguments match actual types that the 11507 * verifier sees. 11508 */ 11509 for (i = 0; i < nargs; i++) { 11510 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 11511 const struct btf_type *t, *ref_t, *resolve_ret; 11512 enum bpf_arg_type arg_type = ARG_DONTCARE; 11513 u32 regno = i + 1, ref_id, type_size; 11514 bool is_ret_buf_sz = false; 11515 int kf_arg_type; 11516 11517 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 11518 11519 if (is_kfunc_arg_ignore(btf, &args[i])) 11520 continue; 11521 11522 if (btf_type_is_scalar(t)) { 11523 if (reg->type != SCALAR_VALUE) { 11524 verbose(env, "R%d is not a scalar\n", regno); 11525 return -EINVAL; 11526 } 11527 11528 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 11529 if (meta->arg_constant.found) { 11530 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11531 return -EFAULT; 11532 } 11533 if (!tnum_is_const(reg->var_off)) { 11534 verbose(env, "R%d must be a known constant\n", regno); 11535 return -EINVAL; 11536 } 11537 ret = mark_chain_precision(env, regno); 11538 if (ret < 0) 11539 return ret; 11540 meta->arg_constant.found = true; 11541 meta->arg_constant.value = reg->var_off.value; 11542 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 11543 meta->r0_rdonly = true; 11544 is_ret_buf_sz = true; 11545 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 11546 is_ret_buf_sz = true; 11547 } 11548 11549 if (is_ret_buf_sz) { 11550 if (meta->r0_size) { 11551 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 11552 return -EINVAL; 11553 } 11554 11555 if (!tnum_is_const(reg->var_off)) { 11556 verbose(env, "R%d is not a const\n", regno); 11557 return -EINVAL; 11558 } 11559 11560 meta->r0_size = reg->var_off.value; 11561 ret = mark_chain_precision(env, regno); 11562 if (ret) 11563 return ret; 11564 } 11565 continue; 11566 } 11567 11568 if (!btf_type_is_ptr(t)) { 11569 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 11570 return -EINVAL; 11571 } 11572 11573 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 11574 (register_is_null(reg) || type_may_be_null(reg->type)) && 11575 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 11576 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 11577 return -EACCES; 11578 } 11579 11580 if (reg->ref_obj_id) { 11581 if (is_kfunc_release(meta) && meta->ref_obj_id) { 11582 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 11583 regno, reg->ref_obj_id, 11584 meta->ref_obj_id); 11585 return -EFAULT; 11586 } 11587 meta->ref_obj_id = reg->ref_obj_id; 11588 if (is_kfunc_release(meta)) 11589 meta->release_regno = regno; 11590 } 11591 11592 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 11593 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 11594 11595 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 11596 if (kf_arg_type < 0) 11597 return kf_arg_type; 11598 11599 switch (kf_arg_type) { 11600 case KF_ARG_PTR_TO_NULL: 11601 continue; 11602 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11603 case KF_ARG_PTR_TO_BTF_ID: 11604 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 11605 break; 11606 11607 if (!is_trusted_reg(reg)) { 11608 if (!is_kfunc_rcu(meta)) { 11609 verbose(env, "R%d must be referenced or trusted\n", regno); 11610 return -EINVAL; 11611 } 11612 if (!is_rcu_reg(reg)) { 11613 verbose(env, "R%d must be a rcu pointer\n", regno); 11614 return -EINVAL; 11615 } 11616 } 11617 11618 fallthrough; 11619 case KF_ARG_PTR_TO_CTX: 11620 /* Trusted arguments have the same offset checks as release arguments */ 11621 arg_type |= OBJ_RELEASE; 11622 break; 11623 case KF_ARG_PTR_TO_DYNPTR: 11624 case KF_ARG_PTR_TO_ITER: 11625 case KF_ARG_PTR_TO_LIST_HEAD: 11626 case KF_ARG_PTR_TO_LIST_NODE: 11627 case KF_ARG_PTR_TO_RB_ROOT: 11628 case KF_ARG_PTR_TO_RB_NODE: 11629 case KF_ARG_PTR_TO_MEM: 11630 case KF_ARG_PTR_TO_MEM_SIZE: 11631 case KF_ARG_PTR_TO_CALLBACK: 11632 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11633 case KF_ARG_PTR_TO_CONST_STR: 11634 /* Trusted by default */ 11635 break; 11636 default: 11637 WARN_ON_ONCE(1); 11638 return -EFAULT; 11639 } 11640 11641 if (is_kfunc_release(meta) && reg->ref_obj_id) 11642 arg_type |= OBJ_RELEASE; 11643 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 11644 if (ret < 0) 11645 return ret; 11646 11647 switch (kf_arg_type) { 11648 case KF_ARG_PTR_TO_CTX: 11649 if (reg->type != PTR_TO_CTX) { 11650 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 11651 return -EINVAL; 11652 } 11653 11654 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11655 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11656 if (ret < 0) 11657 return -EINVAL; 11658 meta->ret_btf_id = ret; 11659 } 11660 break; 11661 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11662 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 11663 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 11664 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 11665 return -EINVAL; 11666 } 11667 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 11668 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 11669 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 11670 return -EINVAL; 11671 } 11672 } else { 11673 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11674 return -EINVAL; 11675 } 11676 if (!reg->ref_obj_id) { 11677 verbose(env, "allocated object must be referenced\n"); 11678 return -EINVAL; 11679 } 11680 if (meta->btf == btf_vmlinux) { 11681 meta->arg_btf = reg->btf; 11682 meta->arg_btf_id = reg->btf_id; 11683 } 11684 break; 11685 case KF_ARG_PTR_TO_DYNPTR: 11686 { 11687 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11688 int clone_ref_obj_id = 0; 11689 11690 if (reg->type != PTR_TO_STACK && 11691 reg->type != CONST_PTR_TO_DYNPTR) { 11692 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11693 return -EINVAL; 11694 } 11695 11696 if (reg->type == CONST_PTR_TO_DYNPTR) 11697 dynptr_arg_type |= MEM_RDONLY; 11698 11699 if (is_kfunc_arg_uninit(btf, &args[i])) 11700 dynptr_arg_type |= MEM_UNINIT; 11701 11702 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11703 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11704 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11705 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11706 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11707 (dynptr_arg_type & MEM_UNINIT)) { 11708 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11709 11710 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11711 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11712 return -EFAULT; 11713 } 11714 11715 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11716 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11717 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11718 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11719 return -EFAULT; 11720 } 11721 } 11722 11723 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11724 if (ret < 0) 11725 return ret; 11726 11727 if (!(dynptr_arg_type & MEM_UNINIT)) { 11728 int id = dynptr_id(env, reg); 11729 11730 if (id < 0) { 11731 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11732 return id; 11733 } 11734 meta->initialized_dynptr.id = id; 11735 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11736 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11737 } 11738 11739 break; 11740 } 11741 case KF_ARG_PTR_TO_ITER: 11742 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 11743 if (!check_css_task_iter_allowlist(env)) { 11744 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 11745 return -EINVAL; 11746 } 11747 } 11748 ret = process_iter_arg(env, regno, insn_idx, meta); 11749 if (ret < 0) 11750 return ret; 11751 break; 11752 case KF_ARG_PTR_TO_LIST_HEAD: 11753 if (reg->type != PTR_TO_MAP_VALUE && 11754 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11755 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11756 return -EINVAL; 11757 } 11758 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11759 verbose(env, "allocated object must be referenced\n"); 11760 return -EINVAL; 11761 } 11762 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11763 if (ret < 0) 11764 return ret; 11765 break; 11766 case KF_ARG_PTR_TO_RB_ROOT: 11767 if (reg->type != PTR_TO_MAP_VALUE && 11768 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11769 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11770 return -EINVAL; 11771 } 11772 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11773 verbose(env, "allocated object must be referenced\n"); 11774 return -EINVAL; 11775 } 11776 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11777 if (ret < 0) 11778 return ret; 11779 break; 11780 case KF_ARG_PTR_TO_LIST_NODE: 11781 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11782 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11783 return -EINVAL; 11784 } 11785 if (!reg->ref_obj_id) { 11786 verbose(env, "allocated object must be referenced\n"); 11787 return -EINVAL; 11788 } 11789 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11790 if (ret < 0) 11791 return ret; 11792 break; 11793 case KF_ARG_PTR_TO_RB_NODE: 11794 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11795 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11796 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11797 return -EINVAL; 11798 } 11799 if (in_rbtree_lock_required_cb(env)) { 11800 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11801 return -EINVAL; 11802 } 11803 } else { 11804 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11805 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11806 return -EINVAL; 11807 } 11808 if (!reg->ref_obj_id) { 11809 verbose(env, "allocated object must be referenced\n"); 11810 return -EINVAL; 11811 } 11812 } 11813 11814 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11815 if (ret < 0) 11816 return ret; 11817 break; 11818 case KF_ARG_PTR_TO_BTF_ID: 11819 /* Only base_type is checked, further checks are done here */ 11820 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11821 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11822 !reg2btf_ids[base_type(reg->type)]) { 11823 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11824 verbose(env, "expected %s or socket\n", 11825 reg_type_str(env, base_type(reg->type) | 11826 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11827 return -EINVAL; 11828 } 11829 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11830 if (ret < 0) 11831 return ret; 11832 break; 11833 case KF_ARG_PTR_TO_MEM: 11834 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11835 if (IS_ERR(resolve_ret)) { 11836 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11837 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11838 return -EINVAL; 11839 } 11840 ret = check_mem_reg(env, reg, regno, type_size); 11841 if (ret < 0) 11842 return ret; 11843 break; 11844 case KF_ARG_PTR_TO_MEM_SIZE: 11845 { 11846 struct bpf_reg_state *buff_reg = ®s[regno]; 11847 const struct btf_param *buff_arg = &args[i]; 11848 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11849 const struct btf_param *size_arg = &args[i + 1]; 11850 11851 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11852 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11853 if (ret < 0) { 11854 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11855 return ret; 11856 } 11857 } 11858 11859 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11860 if (meta->arg_constant.found) { 11861 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11862 return -EFAULT; 11863 } 11864 if (!tnum_is_const(size_reg->var_off)) { 11865 verbose(env, "R%d must be a known constant\n", regno + 1); 11866 return -EINVAL; 11867 } 11868 meta->arg_constant.found = true; 11869 meta->arg_constant.value = size_reg->var_off.value; 11870 } 11871 11872 /* Skip next '__sz' or '__szk' argument */ 11873 i++; 11874 break; 11875 } 11876 case KF_ARG_PTR_TO_CALLBACK: 11877 if (reg->type != PTR_TO_FUNC) { 11878 verbose(env, "arg%d expected pointer to func\n", i); 11879 return -EINVAL; 11880 } 11881 meta->subprogno = reg->subprogno; 11882 break; 11883 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11884 if (!type_is_ptr_alloc_obj(reg->type)) { 11885 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11886 return -EINVAL; 11887 } 11888 if (!type_is_non_owning_ref(reg->type)) 11889 meta->arg_owning_ref = true; 11890 11891 rec = reg_btf_record(reg); 11892 if (!rec) { 11893 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11894 return -EFAULT; 11895 } 11896 11897 if (rec->refcount_off < 0) { 11898 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11899 return -EINVAL; 11900 } 11901 11902 meta->arg_btf = reg->btf; 11903 meta->arg_btf_id = reg->btf_id; 11904 break; 11905 case KF_ARG_PTR_TO_CONST_STR: 11906 if (reg->type != PTR_TO_MAP_VALUE) { 11907 verbose(env, "arg#%d doesn't point to a const string\n", i); 11908 return -EINVAL; 11909 } 11910 ret = check_reg_const_str(env, reg, regno); 11911 if (ret) 11912 return ret; 11913 break; 11914 } 11915 } 11916 11917 if (is_kfunc_release(meta) && !meta->release_regno) { 11918 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11919 func_name); 11920 return -EINVAL; 11921 } 11922 11923 return 0; 11924 } 11925 11926 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11927 struct bpf_insn *insn, 11928 struct bpf_kfunc_call_arg_meta *meta, 11929 const char **kfunc_name) 11930 { 11931 const struct btf_type *func, *func_proto; 11932 u32 func_id, *kfunc_flags; 11933 const char *func_name; 11934 struct btf *desc_btf; 11935 11936 if (kfunc_name) 11937 *kfunc_name = NULL; 11938 11939 if (!insn->imm) 11940 return -EINVAL; 11941 11942 desc_btf = find_kfunc_desc_btf(env, insn->off); 11943 if (IS_ERR(desc_btf)) 11944 return PTR_ERR(desc_btf); 11945 11946 func_id = insn->imm; 11947 func = btf_type_by_id(desc_btf, func_id); 11948 func_name = btf_name_by_offset(desc_btf, func->name_off); 11949 if (kfunc_name) 11950 *kfunc_name = func_name; 11951 func_proto = btf_type_by_id(desc_btf, func->type); 11952 11953 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11954 if (!kfunc_flags) { 11955 return -EACCES; 11956 } 11957 11958 memset(meta, 0, sizeof(*meta)); 11959 meta->btf = desc_btf; 11960 meta->func_id = func_id; 11961 meta->kfunc_flags = *kfunc_flags; 11962 meta->func_proto = func_proto; 11963 meta->func_name = func_name; 11964 11965 return 0; 11966 } 11967 11968 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 11969 11970 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11971 int *insn_idx_p) 11972 { 11973 const struct btf_type *t, *ptr_type; 11974 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11975 struct bpf_reg_state *regs = cur_regs(env); 11976 const char *func_name, *ptr_type_name; 11977 bool sleepable, rcu_lock, rcu_unlock; 11978 struct bpf_kfunc_call_arg_meta meta; 11979 struct bpf_insn_aux_data *insn_aux; 11980 int err, insn_idx = *insn_idx_p; 11981 const struct btf_param *args; 11982 const struct btf_type *ret_t; 11983 struct btf *desc_btf; 11984 11985 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11986 if (!insn->imm) 11987 return 0; 11988 11989 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11990 if (err == -EACCES && func_name) 11991 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11992 if (err) 11993 return err; 11994 desc_btf = meta.btf; 11995 insn_aux = &env->insn_aux_data[insn_idx]; 11996 11997 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11998 11999 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 12000 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 12001 return -EACCES; 12002 } 12003 12004 sleepable = is_kfunc_sleepable(&meta); 12005 if (sleepable && !env->prog->aux->sleepable) { 12006 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 12007 return -EACCES; 12008 } 12009 12010 /* Check the arguments */ 12011 err = check_kfunc_args(env, &meta, insn_idx); 12012 if (err < 0) 12013 return err; 12014 12015 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12016 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 12017 set_rbtree_add_callback_state); 12018 if (err) { 12019 verbose(env, "kfunc %s#%d failed callback verification\n", 12020 func_name, meta.func_id); 12021 return err; 12022 } 12023 } 12024 12025 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 12026 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 12027 12028 if (env->cur_state->active_rcu_lock) { 12029 struct bpf_func_state *state; 12030 struct bpf_reg_state *reg; 12031 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 12032 12033 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 12034 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 12035 return -EACCES; 12036 } 12037 12038 if (rcu_lock) { 12039 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 12040 return -EINVAL; 12041 } else if (rcu_unlock) { 12042 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 12043 if (reg->type & MEM_RCU) { 12044 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 12045 reg->type |= PTR_UNTRUSTED; 12046 } 12047 })); 12048 env->cur_state->active_rcu_lock = false; 12049 } else if (sleepable) { 12050 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 12051 return -EACCES; 12052 } 12053 } else if (rcu_lock) { 12054 env->cur_state->active_rcu_lock = true; 12055 } else if (rcu_unlock) { 12056 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 12057 return -EINVAL; 12058 } 12059 12060 /* In case of release function, we get register number of refcounted 12061 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 12062 */ 12063 if (meta.release_regno) { 12064 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 12065 if (err) { 12066 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12067 func_name, meta.func_id); 12068 return err; 12069 } 12070 } 12071 12072 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12073 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12074 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12075 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 12076 insn_aux->insert_off = regs[BPF_REG_2].off; 12077 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 12078 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 12079 if (err) { 12080 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 12081 func_name, meta.func_id); 12082 return err; 12083 } 12084 12085 err = release_reference(env, release_ref_obj_id); 12086 if (err) { 12087 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12088 func_name, meta.func_id); 12089 return err; 12090 } 12091 } 12092 12093 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 12094 if (!bpf_jit_supports_exceptions()) { 12095 verbose(env, "JIT does not support calling kfunc %s#%d\n", 12096 func_name, meta.func_id); 12097 return -ENOTSUPP; 12098 } 12099 env->seen_exception = true; 12100 12101 /* In the case of the default callback, the cookie value passed 12102 * to bpf_throw becomes the return value of the program. 12103 */ 12104 if (!env->exception_callback_subprog) { 12105 err = check_return_code(env, BPF_REG_1, "R1"); 12106 if (err < 0) 12107 return err; 12108 } 12109 } 12110 12111 for (i = 0; i < CALLER_SAVED_REGS; i++) 12112 mark_reg_not_init(env, regs, caller_saved[i]); 12113 12114 /* Check return type */ 12115 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 12116 12117 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 12118 /* Only exception is bpf_obj_new_impl */ 12119 if (meta.btf != btf_vmlinux || 12120 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 12121 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 12122 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 12123 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 12124 return -EINVAL; 12125 } 12126 } 12127 12128 if (btf_type_is_scalar(t)) { 12129 mark_reg_unknown(env, regs, BPF_REG_0); 12130 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 12131 } else if (btf_type_is_ptr(t)) { 12132 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 12133 12134 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12135 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 12136 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12137 struct btf_struct_meta *struct_meta; 12138 struct btf *ret_btf; 12139 u32 ret_btf_id; 12140 12141 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 12142 return -ENOMEM; 12143 12144 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12145 if (!bpf_global_percpu_ma_set) { 12146 mutex_lock(&bpf_percpu_ma_lock); 12147 if (!bpf_global_percpu_ma_set) { 12148 err = bpf_mem_alloc_init(&bpf_global_percpu_ma, 0, true); 12149 if (!err) 12150 bpf_global_percpu_ma_set = true; 12151 } 12152 mutex_unlock(&bpf_percpu_ma_lock); 12153 if (err) 12154 return err; 12155 } 12156 } 12157 12158 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 12159 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 12160 return -EINVAL; 12161 } 12162 12163 ret_btf = env->prog->aux->btf; 12164 ret_btf_id = meta.arg_constant.value; 12165 12166 /* This may be NULL due to user not supplying a BTF */ 12167 if (!ret_btf) { 12168 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 12169 return -EINVAL; 12170 } 12171 12172 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 12173 if (!ret_t || !__btf_type_is_struct(ret_t)) { 12174 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 12175 return -EINVAL; 12176 } 12177 12178 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 12179 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12180 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 12181 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 12182 return -EINVAL; 12183 } 12184 12185 if (struct_meta) { 12186 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 12187 return -EINVAL; 12188 } 12189 } 12190 12191 mark_reg_known_zero(env, regs, BPF_REG_0); 12192 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12193 regs[BPF_REG_0].btf = ret_btf; 12194 regs[BPF_REG_0].btf_id = ret_btf_id; 12195 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 12196 regs[BPF_REG_0].type |= MEM_PERCPU; 12197 12198 insn_aux->obj_new_size = ret_t->size; 12199 insn_aux->kptr_struct_meta = struct_meta; 12200 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 12201 mark_reg_known_zero(env, regs, BPF_REG_0); 12202 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12203 regs[BPF_REG_0].btf = meta.arg_btf; 12204 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 12205 12206 insn_aux->kptr_struct_meta = 12207 btf_find_struct_meta(meta.arg_btf, 12208 meta.arg_btf_id); 12209 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 12210 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 12211 struct btf_field *field = meta.arg_list_head.field; 12212 12213 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12214 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12215 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12216 struct btf_field *field = meta.arg_rbtree_root.field; 12217 12218 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12219 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 12220 mark_reg_known_zero(env, regs, BPF_REG_0); 12221 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 12222 regs[BPF_REG_0].btf = desc_btf; 12223 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 12224 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 12225 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 12226 if (!ret_t || !btf_type_is_struct(ret_t)) { 12227 verbose(env, 12228 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 12229 return -EINVAL; 12230 } 12231 12232 mark_reg_known_zero(env, regs, BPF_REG_0); 12233 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 12234 regs[BPF_REG_0].btf = desc_btf; 12235 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 12236 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 12237 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 12238 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 12239 12240 mark_reg_known_zero(env, regs, BPF_REG_0); 12241 12242 if (!meta.arg_constant.found) { 12243 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 12244 return -EFAULT; 12245 } 12246 12247 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 12248 12249 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 12250 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 12251 12252 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 12253 regs[BPF_REG_0].type |= MEM_RDONLY; 12254 } else { 12255 /* this will set env->seen_direct_write to true */ 12256 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 12257 verbose(env, "the prog does not allow writes to packet data\n"); 12258 return -EINVAL; 12259 } 12260 } 12261 12262 if (!meta.initialized_dynptr.id) { 12263 verbose(env, "verifier internal error: no dynptr id\n"); 12264 return -EFAULT; 12265 } 12266 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 12267 12268 /* we don't need to set BPF_REG_0's ref obj id 12269 * because packet slices are not refcounted (see 12270 * dynptr_type_refcounted) 12271 */ 12272 } else { 12273 verbose(env, "kernel function %s unhandled dynamic return type\n", 12274 meta.func_name); 12275 return -EFAULT; 12276 } 12277 } else if (!__btf_type_is_struct(ptr_type)) { 12278 if (!meta.r0_size) { 12279 __u32 sz; 12280 12281 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 12282 meta.r0_size = sz; 12283 meta.r0_rdonly = true; 12284 } 12285 } 12286 if (!meta.r0_size) { 12287 ptr_type_name = btf_name_by_offset(desc_btf, 12288 ptr_type->name_off); 12289 verbose(env, 12290 "kernel function %s returns pointer type %s %s is not supported\n", 12291 func_name, 12292 btf_type_str(ptr_type), 12293 ptr_type_name); 12294 return -EINVAL; 12295 } 12296 12297 mark_reg_known_zero(env, regs, BPF_REG_0); 12298 regs[BPF_REG_0].type = PTR_TO_MEM; 12299 regs[BPF_REG_0].mem_size = meta.r0_size; 12300 12301 if (meta.r0_rdonly) 12302 regs[BPF_REG_0].type |= MEM_RDONLY; 12303 12304 /* Ensures we don't access the memory after a release_reference() */ 12305 if (meta.ref_obj_id) 12306 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 12307 } else { 12308 mark_reg_known_zero(env, regs, BPF_REG_0); 12309 regs[BPF_REG_0].btf = desc_btf; 12310 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 12311 regs[BPF_REG_0].btf_id = ptr_type_id; 12312 } 12313 12314 if (is_kfunc_ret_null(&meta)) { 12315 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 12316 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 12317 regs[BPF_REG_0].id = ++env->id_gen; 12318 } 12319 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 12320 if (is_kfunc_acquire(&meta)) { 12321 int id = acquire_reference_state(env, insn_idx); 12322 12323 if (id < 0) 12324 return id; 12325 if (is_kfunc_ret_null(&meta)) 12326 regs[BPF_REG_0].id = id; 12327 regs[BPF_REG_0].ref_obj_id = id; 12328 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12329 ref_set_non_owning(env, ®s[BPF_REG_0]); 12330 } 12331 12332 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 12333 regs[BPF_REG_0].id = ++env->id_gen; 12334 } else if (btf_type_is_void(t)) { 12335 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12336 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 12337 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 12338 insn_aux->kptr_struct_meta = 12339 btf_find_struct_meta(meta.arg_btf, 12340 meta.arg_btf_id); 12341 } 12342 } 12343 } 12344 12345 nargs = btf_type_vlen(meta.func_proto); 12346 args = (const struct btf_param *)(meta.func_proto + 1); 12347 for (i = 0; i < nargs; i++) { 12348 u32 regno = i + 1; 12349 12350 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 12351 if (btf_type_is_ptr(t)) 12352 mark_btf_func_reg_size(env, regno, sizeof(void *)); 12353 else 12354 /* scalar. ensured by btf_check_kfunc_arg_match() */ 12355 mark_btf_func_reg_size(env, regno, t->size); 12356 } 12357 12358 if (is_iter_next_kfunc(&meta)) { 12359 err = process_iter_next_call(env, insn_idx, &meta); 12360 if (err) 12361 return err; 12362 } 12363 12364 return 0; 12365 } 12366 12367 static bool signed_add_overflows(s64 a, s64 b) 12368 { 12369 /* Do the add in u64, where overflow is well-defined */ 12370 s64 res = (s64)((u64)a + (u64)b); 12371 12372 if (b < 0) 12373 return res > a; 12374 return res < a; 12375 } 12376 12377 static bool signed_add32_overflows(s32 a, s32 b) 12378 { 12379 /* Do the add in u32, where overflow is well-defined */ 12380 s32 res = (s32)((u32)a + (u32)b); 12381 12382 if (b < 0) 12383 return res > a; 12384 return res < a; 12385 } 12386 12387 static bool signed_sub_overflows(s64 a, s64 b) 12388 { 12389 /* Do the sub in u64, where overflow is well-defined */ 12390 s64 res = (s64)((u64)a - (u64)b); 12391 12392 if (b < 0) 12393 return res < a; 12394 return res > a; 12395 } 12396 12397 static bool signed_sub32_overflows(s32 a, s32 b) 12398 { 12399 /* Do the sub in u32, where overflow is well-defined */ 12400 s32 res = (s32)((u32)a - (u32)b); 12401 12402 if (b < 0) 12403 return res < a; 12404 return res > a; 12405 } 12406 12407 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 12408 const struct bpf_reg_state *reg, 12409 enum bpf_reg_type type) 12410 { 12411 bool known = tnum_is_const(reg->var_off); 12412 s64 val = reg->var_off.value; 12413 s64 smin = reg->smin_value; 12414 12415 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 12416 verbose(env, "math between %s pointer and %lld is not allowed\n", 12417 reg_type_str(env, type), val); 12418 return false; 12419 } 12420 12421 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 12422 verbose(env, "%s pointer offset %d is not allowed\n", 12423 reg_type_str(env, type), reg->off); 12424 return false; 12425 } 12426 12427 if (smin == S64_MIN) { 12428 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 12429 reg_type_str(env, type)); 12430 return false; 12431 } 12432 12433 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 12434 verbose(env, "value %lld makes %s pointer be out of bounds\n", 12435 smin, reg_type_str(env, type)); 12436 return false; 12437 } 12438 12439 return true; 12440 } 12441 12442 enum { 12443 REASON_BOUNDS = -1, 12444 REASON_TYPE = -2, 12445 REASON_PATHS = -3, 12446 REASON_LIMIT = -4, 12447 REASON_STACK = -5, 12448 }; 12449 12450 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 12451 u32 *alu_limit, bool mask_to_left) 12452 { 12453 u32 max = 0, ptr_limit = 0; 12454 12455 switch (ptr_reg->type) { 12456 case PTR_TO_STACK: 12457 /* Offset 0 is out-of-bounds, but acceptable start for the 12458 * left direction, see BPF_REG_FP. Also, unknown scalar 12459 * offset where we would need to deal with min/max bounds is 12460 * currently prohibited for unprivileged. 12461 */ 12462 max = MAX_BPF_STACK + mask_to_left; 12463 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 12464 break; 12465 case PTR_TO_MAP_VALUE: 12466 max = ptr_reg->map_ptr->value_size; 12467 ptr_limit = (mask_to_left ? 12468 ptr_reg->smin_value : 12469 ptr_reg->umax_value) + ptr_reg->off; 12470 break; 12471 default: 12472 return REASON_TYPE; 12473 } 12474 12475 if (ptr_limit >= max) 12476 return REASON_LIMIT; 12477 *alu_limit = ptr_limit; 12478 return 0; 12479 } 12480 12481 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 12482 const struct bpf_insn *insn) 12483 { 12484 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 12485 } 12486 12487 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 12488 u32 alu_state, u32 alu_limit) 12489 { 12490 /* If we arrived here from different branches with different 12491 * state or limits to sanitize, then this won't work. 12492 */ 12493 if (aux->alu_state && 12494 (aux->alu_state != alu_state || 12495 aux->alu_limit != alu_limit)) 12496 return REASON_PATHS; 12497 12498 /* Corresponding fixup done in do_misc_fixups(). */ 12499 aux->alu_state = alu_state; 12500 aux->alu_limit = alu_limit; 12501 return 0; 12502 } 12503 12504 static int sanitize_val_alu(struct bpf_verifier_env *env, 12505 struct bpf_insn *insn) 12506 { 12507 struct bpf_insn_aux_data *aux = cur_aux(env); 12508 12509 if (can_skip_alu_sanitation(env, insn)) 12510 return 0; 12511 12512 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 12513 } 12514 12515 static bool sanitize_needed(u8 opcode) 12516 { 12517 return opcode == BPF_ADD || opcode == BPF_SUB; 12518 } 12519 12520 struct bpf_sanitize_info { 12521 struct bpf_insn_aux_data aux; 12522 bool mask_to_left; 12523 }; 12524 12525 static struct bpf_verifier_state * 12526 sanitize_speculative_path(struct bpf_verifier_env *env, 12527 const struct bpf_insn *insn, 12528 u32 next_idx, u32 curr_idx) 12529 { 12530 struct bpf_verifier_state *branch; 12531 struct bpf_reg_state *regs; 12532 12533 branch = push_stack(env, next_idx, curr_idx, true); 12534 if (branch && insn) { 12535 regs = branch->frame[branch->curframe]->regs; 12536 if (BPF_SRC(insn->code) == BPF_K) { 12537 mark_reg_unknown(env, regs, insn->dst_reg); 12538 } else if (BPF_SRC(insn->code) == BPF_X) { 12539 mark_reg_unknown(env, regs, insn->dst_reg); 12540 mark_reg_unknown(env, regs, insn->src_reg); 12541 } 12542 } 12543 return branch; 12544 } 12545 12546 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 12547 struct bpf_insn *insn, 12548 const struct bpf_reg_state *ptr_reg, 12549 const struct bpf_reg_state *off_reg, 12550 struct bpf_reg_state *dst_reg, 12551 struct bpf_sanitize_info *info, 12552 const bool commit_window) 12553 { 12554 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 12555 struct bpf_verifier_state *vstate = env->cur_state; 12556 bool off_is_imm = tnum_is_const(off_reg->var_off); 12557 bool off_is_neg = off_reg->smin_value < 0; 12558 bool ptr_is_dst_reg = ptr_reg == dst_reg; 12559 u8 opcode = BPF_OP(insn->code); 12560 u32 alu_state, alu_limit; 12561 struct bpf_reg_state tmp; 12562 bool ret; 12563 int err; 12564 12565 if (can_skip_alu_sanitation(env, insn)) 12566 return 0; 12567 12568 /* We already marked aux for masking from non-speculative 12569 * paths, thus we got here in the first place. We only care 12570 * to explore bad access from here. 12571 */ 12572 if (vstate->speculative) 12573 goto do_sim; 12574 12575 if (!commit_window) { 12576 if (!tnum_is_const(off_reg->var_off) && 12577 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 12578 return REASON_BOUNDS; 12579 12580 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 12581 (opcode == BPF_SUB && !off_is_neg); 12582 } 12583 12584 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 12585 if (err < 0) 12586 return err; 12587 12588 if (commit_window) { 12589 /* In commit phase we narrow the masking window based on 12590 * the observed pointer move after the simulated operation. 12591 */ 12592 alu_state = info->aux.alu_state; 12593 alu_limit = abs(info->aux.alu_limit - alu_limit); 12594 } else { 12595 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 12596 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 12597 alu_state |= ptr_is_dst_reg ? 12598 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 12599 12600 /* Limit pruning on unknown scalars to enable deep search for 12601 * potential masking differences from other program paths. 12602 */ 12603 if (!off_is_imm) 12604 env->explore_alu_limits = true; 12605 } 12606 12607 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 12608 if (err < 0) 12609 return err; 12610 do_sim: 12611 /* If we're in commit phase, we're done here given we already 12612 * pushed the truncated dst_reg into the speculative verification 12613 * stack. 12614 * 12615 * Also, when register is a known constant, we rewrite register-based 12616 * operation to immediate-based, and thus do not need masking (and as 12617 * a consequence, do not need to simulate the zero-truncation either). 12618 */ 12619 if (commit_window || off_is_imm) 12620 return 0; 12621 12622 /* Simulate and find potential out-of-bounds access under 12623 * speculative execution from truncation as a result of 12624 * masking when off was not within expected range. If off 12625 * sits in dst, then we temporarily need to move ptr there 12626 * to simulate dst (== 0) +/-= ptr. Needed, for example, 12627 * for cases where we use K-based arithmetic in one direction 12628 * and truncated reg-based in the other in order to explore 12629 * bad access. 12630 */ 12631 if (!ptr_is_dst_reg) { 12632 tmp = *dst_reg; 12633 copy_register_state(dst_reg, ptr_reg); 12634 } 12635 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 12636 env->insn_idx); 12637 if (!ptr_is_dst_reg && ret) 12638 *dst_reg = tmp; 12639 return !ret ? REASON_STACK : 0; 12640 } 12641 12642 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 12643 { 12644 struct bpf_verifier_state *vstate = env->cur_state; 12645 12646 /* If we simulate paths under speculation, we don't update the 12647 * insn as 'seen' such that when we verify unreachable paths in 12648 * the non-speculative domain, sanitize_dead_code() can still 12649 * rewrite/sanitize them. 12650 */ 12651 if (!vstate->speculative) 12652 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 12653 } 12654 12655 static int sanitize_err(struct bpf_verifier_env *env, 12656 const struct bpf_insn *insn, int reason, 12657 const struct bpf_reg_state *off_reg, 12658 const struct bpf_reg_state *dst_reg) 12659 { 12660 static const char *err = "pointer arithmetic with it prohibited for !root"; 12661 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 12662 u32 dst = insn->dst_reg, src = insn->src_reg; 12663 12664 switch (reason) { 12665 case REASON_BOUNDS: 12666 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 12667 off_reg == dst_reg ? dst : src, err); 12668 break; 12669 case REASON_TYPE: 12670 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 12671 off_reg == dst_reg ? src : dst, err); 12672 break; 12673 case REASON_PATHS: 12674 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 12675 dst, op, err); 12676 break; 12677 case REASON_LIMIT: 12678 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 12679 dst, op, err); 12680 break; 12681 case REASON_STACK: 12682 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 12683 dst, err); 12684 break; 12685 default: 12686 verbose(env, "verifier internal error: unknown reason (%d)\n", 12687 reason); 12688 break; 12689 } 12690 12691 return -EACCES; 12692 } 12693 12694 /* check that stack access falls within stack limits and that 'reg' doesn't 12695 * have a variable offset. 12696 * 12697 * Variable offset is prohibited for unprivileged mode for simplicity since it 12698 * requires corresponding support in Spectre masking for stack ALU. See also 12699 * retrieve_ptr_limit(). 12700 * 12701 * 12702 * 'off' includes 'reg->off'. 12703 */ 12704 static int check_stack_access_for_ptr_arithmetic( 12705 struct bpf_verifier_env *env, 12706 int regno, 12707 const struct bpf_reg_state *reg, 12708 int off) 12709 { 12710 if (!tnum_is_const(reg->var_off)) { 12711 char tn_buf[48]; 12712 12713 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 12714 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 12715 regno, tn_buf, off); 12716 return -EACCES; 12717 } 12718 12719 if (off >= 0 || off < -MAX_BPF_STACK) { 12720 verbose(env, "R%d stack pointer arithmetic goes out of range, " 12721 "prohibited for !root; off=%d\n", regno, off); 12722 return -EACCES; 12723 } 12724 12725 return 0; 12726 } 12727 12728 static int sanitize_check_bounds(struct bpf_verifier_env *env, 12729 const struct bpf_insn *insn, 12730 const struct bpf_reg_state *dst_reg) 12731 { 12732 u32 dst = insn->dst_reg; 12733 12734 /* For unprivileged we require that resulting offset must be in bounds 12735 * in order to be able to sanitize access later on. 12736 */ 12737 if (env->bypass_spec_v1) 12738 return 0; 12739 12740 switch (dst_reg->type) { 12741 case PTR_TO_STACK: 12742 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12743 dst_reg->off + dst_reg->var_off.value)) 12744 return -EACCES; 12745 break; 12746 case PTR_TO_MAP_VALUE: 12747 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12748 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12749 "prohibited for !root\n", dst); 12750 return -EACCES; 12751 } 12752 break; 12753 default: 12754 break; 12755 } 12756 12757 return 0; 12758 } 12759 12760 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12761 * Caller should also handle BPF_MOV case separately. 12762 * If we return -EACCES, caller may want to try again treating pointer as a 12763 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12764 */ 12765 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12766 struct bpf_insn *insn, 12767 const struct bpf_reg_state *ptr_reg, 12768 const struct bpf_reg_state *off_reg) 12769 { 12770 struct bpf_verifier_state *vstate = env->cur_state; 12771 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12772 struct bpf_reg_state *regs = state->regs, *dst_reg; 12773 bool known = tnum_is_const(off_reg->var_off); 12774 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12775 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12776 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12777 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12778 struct bpf_sanitize_info info = {}; 12779 u8 opcode = BPF_OP(insn->code); 12780 u32 dst = insn->dst_reg; 12781 int ret; 12782 12783 dst_reg = ®s[dst]; 12784 12785 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12786 smin_val > smax_val || umin_val > umax_val) { 12787 /* Taint dst register if offset had invalid bounds derived from 12788 * e.g. dead branches. 12789 */ 12790 __mark_reg_unknown(env, dst_reg); 12791 return 0; 12792 } 12793 12794 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12795 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12796 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12797 __mark_reg_unknown(env, dst_reg); 12798 return 0; 12799 } 12800 12801 verbose(env, 12802 "R%d 32-bit pointer arithmetic prohibited\n", 12803 dst); 12804 return -EACCES; 12805 } 12806 12807 if (ptr_reg->type & PTR_MAYBE_NULL) { 12808 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12809 dst, reg_type_str(env, ptr_reg->type)); 12810 return -EACCES; 12811 } 12812 12813 switch (base_type(ptr_reg->type)) { 12814 case CONST_PTR_TO_MAP: 12815 /* smin_val represents the known value */ 12816 if (known && smin_val == 0 && opcode == BPF_ADD) 12817 break; 12818 fallthrough; 12819 case PTR_TO_PACKET_END: 12820 case PTR_TO_SOCKET: 12821 case PTR_TO_SOCK_COMMON: 12822 case PTR_TO_TCP_SOCK: 12823 case PTR_TO_XDP_SOCK: 12824 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12825 dst, reg_type_str(env, ptr_reg->type)); 12826 return -EACCES; 12827 default: 12828 break; 12829 } 12830 12831 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12832 * The id may be overwritten later if we create a new variable offset. 12833 */ 12834 dst_reg->type = ptr_reg->type; 12835 dst_reg->id = ptr_reg->id; 12836 12837 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12838 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12839 return -EINVAL; 12840 12841 /* pointer types do not carry 32-bit bounds at the moment. */ 12842 __mark_reg32_unbounded(dst_reg); 12843 12844 if (sanitize_needed(opcode)) { 12845 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12846 &info, false); 12847 if (ret < 0) 12848 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12849 } 12850 12851 switch (opcode) { 12852 case BPF_ADD: 12853 /* We can take a fixed offset as long as it doesn't overflow 12854 * the s32 'off' field 12855 */ 12856 if (known && (ptr_reg->off + smin_val == 12857 (s64)(s32)(ptr_reg->off + smin_val))) { 12858 /* pointer += K. Accumulate it into fixed offset */ 12859 dst_reg->smin_value = smin_ptr; 12860 dst_reg->smax_value = smax_ptr; 12861 dst_reg->umin_value = umin_ptr; 12862 dst_reg->umax_value = umax_ptr; 12863 dst_reg->var_off = ptr_reg->var_off; 12864 dst_reg->off = ptr_reg->off + smin_val; 12865 dst_reg->raw = ptr_reg->raw; 12866 break; 12867 } 12868 /* A new variable offset is created. Note that off_reg->off 12869 * == 0, since it's a scalar. 12870 * dst_reg gets the pointer type and since some positive 12871 * integer value was added to the pointer, give it a new 'id' 12872 * if it's a PTR_TO_PACKET. 12873 * this creates a new 'base' pointer, off_reg (variable) gets 12874 * added into the variable offset, and we copy the fixed offset 12875 * from ptr_reg. 12876 */ 12877 if (signed_add_overflows(smin_ptr, smin_val) || 12878 signed_add_overflows(smax_ptr, smax_val)) { 12879 dst_reg->smin_value = S64_MIN; 12880 dst_reg->smax_value = S64_MAX; 12881 } else { 12882 dst_reg->smin_value = smin_ptr + smin_val; 12883 dst_reg->smax_value = smax_ptr + smax_val; 12884 } 12885 if (umin_ptr + umin_val < umin_ptr || 12886 umax_ptr + umax_val < umax_ptr) { 12887 dst_reg->umin_value = 0; 12888 dst_reg->umax_value = U64_MAX; 12889 } else { 12890 dst_reg->umin_value = umin_ptr + umin_val; 12891 dst_reg->umax_value = umax_ptr + umax_val; 12892 } 12893 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12894 dst_reg->off = ptr_reg->off; 12895 dst_reg->raw = ptr_reg->raw; 12896 if (reg_is_pkt_pointer(ptr_reg)) { 12897 dst_reg->id = ++env->id_gen; 12898 /* something was added to pkt_ptr, set range to zero */ 12899 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12900 } 12901 break; 12902 case BPF_SUB: 12903 if (dst_reg == off_reg) { 12904 /* scalar -= pointer. Creates an unknown scalar */ 12905 verbose(env, "R%d tried to subtract pointer from scalar\n", 12906 dst); 12907 return -EACCES; 12908 } 12909 /* We don't allow subtraction from FP, because (according to 12910 * test_verifier.c test "invalid fp arithmetic", JITs might not 12911 * be able to deal with it. 12912 */ 12913 if (ptr_reg->type == PTR_TO_STACK) { 12914 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12915 dst); 12916 return -EACCES; 12917 } 12918 if (known && (ptr_reg->off - smin_val == 12919 (s64)(s32)(ptr_reg->off - smin_val))) { 12920 /* pointer -= K. Subtract it from fixed offset */ 12921 dst_reg->smin_value = smin_ptr; 12922 dst_reg->smax_value = smax_ptr; 12923 dst_reg->umin_value = umin_ptr; 12924 dst_reg->umax_value = umax_ptr; 12925 dst_reg->var_off = ptr_reg->var_off; 12926 dst_reg->id = ptr_reg->id; 12927 dst_reg->off = ptr_reg->off - smin_val; 12928 dst_reg->raw = ptr_reg->raw; 12929 break; 12930 } 12931 /* A new variable offset is created. If the subtrahend is known 12932 * nonnegative, then any reg->range we had before is still good. 12933 */ 12934 if (signed_sub_overflows(smin_ptr, smax_val) || 12935 signed_sub_overflows(smax_ptr, smin_val)) { 12936 /* Overflow possible, we know nothing */ 12937 dst_reg->smin_value = S64_MIN; 12938 dst_reg->smax_value = S64_MAX; 12939 } else { 12940 dst_reg->smin_value = smin_ptr - smax_val; 12941 dst_reg->smax_value = smax_ptr - smin_val; 12942 } 12943 if (umin_ptr < umax_val) { 12944 /* Overflow possible, we know nothing */ 12945 dst_reg->umin_value = 0; 12946 dst_reg->umax_value = U64_MAX; 12947 } else { 12948 /* Cannot overflow (as long as bounds are consistent) */ 12949 dst_reg->umin_value = umin_ptr - umax_val; 12950 dst_reg->umax_value = umax_ptr - umin_val; 12951 } 12952 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12953 dst_reg->off = ptr_reg->off; 12954 dst_reg->raw = ptr_reg->raw; 12955 if (reg_is_pkt_pointer(ptr_reg)) { 12956 dst_reg->id = ++env->id_gen; 12957 /* something was added to pkt_ptr, set range to zero */ 12958 if (smin_val < 0) 12959 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12960 } 12961 break; 12962 case BPF_AND: 12963 case BPF_OR: 12964 case BPF_XOR: 12965 /* bitwise ops on pointers are troublesome, prohibit. */ 12966 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12967 dst, bpf_alu_string[opcode >> 4]); 12968 return -EACCES; 12969 default: 12970 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12971 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12972 dst, bpf_alu_string[opcode >> 4]); 12973 return -EACCES; 12974 } 12975 12976 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12977 return -EINVAL; 12978 reg_bounds_sync(dst_reg); 12979 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12980 return -EACCES; 12981 if (sanitize_needed(opcode)) { 12982 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12983 &info, true); 12984 if (ret < 0) 12985 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12986 } 12987 12988 return 0; 12989 } 12990 12991 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12992 struct bpf_reg_state *src_reg) 12993 { 12994 s32 smin_val = src_reg->s32_min_value; 12995 s32 smax_val = src_reg->s32_max_value; 12996 u32 umin_val = src_reg->u32_min_value; 12997 u32 umax_val = src_reg->u32_max_value; 12998 12999 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 13000 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 13001 dst_reg->s32_min_value = S32_MIN; 13002 dst_reg->s32_max_value = S32_MAX; 13003 } else { 13004 dst_reg->s32_min_value += smin_val; 13005 dst_reg->s32_max_value += smax_val; 13006 } 13007 if (dst_reg->u32_min_value + umin_val < umin_val || 13008 dst_reg->u32_max_value + umax_val < umax_val) { 13009 dst_reg->u32_min_value = 0; 13010 dst_reg->u32_max_value = U32_MAX; 13011 } else { 13012 dst_reg->u32_min_value += umin_val; 13013 dst_reg->u32_max_value += umax_val; 13014 } 13015 } 13016 13017 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 13018 struct bpf_reg_state *src_reg) 13019 { 13020 s64 smin_val = src_reg->smin_value; 13021 s64 smax_val = src_reg->smax_value; 13022 u64 umin_val = src_reg->umin_value; 13023 u64 umax_val = src_reg->umax_value; 13024 13025 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 13026 signed_add_overflows(dst_reg->smax_value, smax_val)) { 13027 dst_reg->smin_value = S64_MIN; 13028 dst_reg->smax_value = S64_MAX; 13029 } else { 13030 dst_reg->smin_value += smin_val; 13031 dst_reg->smax_value += smax_val; 13032 } 13033 if (dst_reg->umin_value + umin_val < umin_val || 13034 dst_reg->umax_value + umax_val < umax_val) { 13035 dst_reg->umin_value = 0; 13036 dst_reg->umax_value = U64_MAX; 13037 } else { 13038 dst_reg->umin_value += umin_val; 13039 dst_reg->umax_value += umax_val; 13040 } 13041 } 13042 13043 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 13044 struct bpf_reg_state *src_reg) 13045 { 13046 s32 smin_val = src_reg->s32_min_value; 13047 s32 smax_val = src_reg->s32_max_value; 13048 u32 umin_val = src_reg->u32_min_value; 13049 u32 umax_val = src_reg->u32_max_value; 13050 13051 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 13052 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 13053 /* Overflow possible, we know nothing */ 13054 dst_reg->s32_min_value = S32_MIN; 13055 dst_reg->s32_max_value = S32_MAX; 13056 } else { 13057 dst_reg->s32_min_value -= smax_val; 13058 dst_reg->s32_max_value -= smin_val; 13059 } 13060 if (dst_reg->u32_min_value < umax_val) { 13061 /* Overflow possible, we know nothing */ 13062 dst_reg->u32_min_value = 0; 13063 dst_reg->u32_max_value = U32_MAX; 13064 } else { 13065 /* Cannot overflow (as long as bounds are consistent) */ 13066 dst_reg->u32_min_value -= umax_val; 13067 dst_reg->u32_max_value -= umin_val; 13068 } 13069 } 13070 13071 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 13072 struct bpf_reg_state *src_reg) 13073 { 13074 s64 smin_val = src_reg->smin_value; 13075 s64 smax_val = src_reg->smax_value; 13076 u64 umin_val = src_reg->umin_value; 13077 u64 umax_val = src_reg->umax_value; 13078 13079 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 13080 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 13081 /* Overflow possible, we know nothing */ 13082 dst_reg->smin_value = S64_MIN; 13083 dst_reg->smax_value = S64_MAX; 13084 } else { 13085 dst_reg->smin_value -= smax_val; 13086 dst_reg->smax_value -= smin_val; 13087 } 13088 if (dst_reg->umin_value < umax_val) { 13089 /* Overflow possible, we know nothing */ 13090 dst_reg->umin_value = 0; 13091 dst_reg->umax_value = U64_MAX; 13092 } else { 13093 /* Cannot overflow (as long as bounds are consistent) */ 13094 dst_reg->umin_value -= umax_val; 13095 dst_reg->umax_value -= umin_val; 13096 } 13097 } 13098 13099 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 13100 struct bpf_reg_state *src_reg) 13101 { 13102 s32 smin_val = src_reg->s32_min_value; 13103 u32 umin_val = src_reg->u32_min_value; 13104 u32 umax_val = src_reg->u32_max_value; 13105 13106 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 13107 /* Ain't nobody got time to multiply that sign */ 13108 __mark_reg32_unbounded(dst_reg); 13109 return; 13110 } 13111 /* Both values are positive, so we can work with unsigned and 13112 * copy the result to signed (unless it exceeds S32_MAX). 13113 */ 13114 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 13115 /* Potential overflow, we know nothing */ 13116 __mark_reg32_unbounded(dst_reg); 13117 return; 13118 } 13119 dst_reg->u32_min_value *= umin_val; 13120 dst_reg->u32_max_value *= umax_val; 13121 if (dst_reg->u32_max_value > S32_MAX) { 13122 /* Overflow possible, we know nothing */ 13123 dst_reg->s32_min_value = S32_MIN; 13124 dst_reg->s32_max_value = S32_MAX; 13125 } else { 13126 dst_reg->s32_min_value = dst_reg->u32_min_value; 13127 dst_reg->s32_max_value = dst_reg->u32_max_value; 13128 } 13129 } 13130 13131 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 13132 struct bpf_reg_state *src_reg) 13133 { 13134 s64 smin_val = src_reg->smin_value; 13135 u64 umin_val = src_reg->umin_value; 13136 u64 umax_val = src_reg->umax_value; 13137 13138 if (smin_val < 0 || dst_reg->smin_value < 0) { 13139 /* Ain't nobody got time to multiply that sign */ 13140 __mark_reg64_unbounded(dst_reg); 13141 return; 13142 } 13143 /* Both values are positive, so we can work with unsigned and 13144 * copy the result to signed (unless it exceeds S64_MAX). 13145 */ 13146 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 13147 /* Potential overflow, we know nothing */ 13148 __mark_reg64_unbounded(dst_reg); 13149 return; 13150 } 13151 dst_reg->umin_value *= umin_val; 13152 dst_reg->umax_value *= umax_val; 13153 if (dst_reg->umax_value > S64_MAX) { 13154 /* Overflow possible, we know nothing */ 13155 dst_reg->smin_value = S64_MIN; 13156 dst_reg->smax_value = S64_MAX; 13157 } else { 13158 dst_reg->smin_value = dst_reg->umin_value; 13159 dst_reg->smax_value = dst_reg->umax_value; 13160 } 13161 } 13162 13163 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 13164 struct bpf_reg_state *src_reg) 13165 { 13166 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13167 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13168 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13169 s32 smin_val = src_reg->s32_min_value; 13170 u32 umax_val = src_reg->u32_max_value; 13171 13172 if (src_known && dst_known) { 13173 __mark_reg32_known(dst_reg, var32_off.value); 13174 return; 13175 } 13176 13177 /* We get our minimum from the var_off, since that's inherently 13178 * bitwise. Our maximum is the minimum of the operands' maxima. 13179 */ 13180 dst_reg->u32_min_value = var32_off.value; 13181 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 13182 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 13183 /* Lose signed bounds when ANDing negative numbers, 13184 * ain't nobody got time for that. 13185 */ 13186 dst_reg->s32_min_value = S32_MIN; 13187 dst_reg->s32_max_value = S32_MAX; 13188 } else { 13189 /* ANDing two positives gives a positive, so safe to 13190 * cast result into s64. 13191 */ 13192 dst_reg->s32_min_value = dst_reg->u32_min_value; 13193 dst_reg->s32_max_value = dst_reg->u32_max_value; 13194 } 13195 } 13196 13197 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 13198 struct bpf_reg_state *src_reg) 13199 { 13200 bool src_known = tnum_is_const(src_reg->var_off); 13201 bool dst_known = tnum_is_const(dst_reg->var_off); 13202 s64 smin_val = src_reg->smin_value; 13203 u64 umax_val = src_reg->umax_value; 13204 13205 if (src_known && dst_known) { 13206 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13207 return; 13208 } 13209 13210 /* We get our minimum from the var_off, since that's inherently 13211 * bitwise. Our maximum is the minimum of the operands' maxima. 13212 */ 13213 dst_reg->umin_value = dst_reg->var_off.value; 13214 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 13215 if (dst_reg->smin_value < 0 || smin_val < 0) { 13216 /* Lose signed bounds when ANDing negative numbers, 13217 * ain't nobody got time for that. 13218 */ 13219 dst_reg->smin_value = S64_MIN; 13220 dst_reg->smax_value = S64_MAX; 13221 } else { 13222 /* ANDing two positives gives a positive, so safe to 13223 * cast result into s64. 13224 */ 13225 dst_reg->smin_value = dst_reg->umin_value; 13226 dst_reg->smax_value = dst_reg->umax_value; 13227 } 13228 /* We may learn something more from the var_off */ 13229 __update_reg_bounds(dst_reg); 13230 } 13231 13232 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 13233 struct bpf_reg_state *src_reg) 13234 { 13235 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13236 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13237 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13238 s32 smin_val = src_reg->s32_min_value; 13239 u32 umin_val = src_reg->u32_min_value; 13240 13241 if (src_known && dst_known) { 13242 __mark_reg32_known(dst_reg, var32_off.value); 13243 return; 13244 } 13245 13246 /* We get our maximum from the var_off, and our minimum is the 13247 * maximum of the operands' minima 13248 */ 13249 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 13250 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13251 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 13252 /* Lose signed bounds when ORing negative numbers, 13253 * ain't nobody got time for that. 13254 */ 13255 dst_reg->s32_min_value = S32_MIN; 13256 dst_reg->s32_max_value = S32_MAX; 13257 } else { 13258 /* ORing two positives gives a positive, so safe to 13259 * cast result into s64. 13260 */ 13261 dst_reg->s32_min_value = dst_reg->u32_min_value; 13262 dst_reg->s32_max_value = dst_reg->u32_max_value; 13263 } 13264 } 13265 13266 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 13267 struct bpf_reg_state *src_reg) 13268 { 13269 bool src_known = tnum_is_const(src_reg->var_off); 13270 bool dst_known = tnum_is_const(dst_reg->var_off); 13271 s64 smin_val = src_reg->smin_value; 13272 u64 umin_val = src_reg->umin_value; 13273 13274 if (src_known && dst_known) { 13275 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13276 return; 13277 } 13278 13279 /* We get our maximum from the var_off, and our minimum is the 13280 * maximum of the operands' minima 13281 */ 13282 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 13283 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13284 if (dst_reg->smin_value < 0 || smin_val < 0) { 13285 /* Lose signed bounds when ORing negative numbers, 13286 * ain't nobody got time for that. 13287 */ 13288 dst_reg->smin_value = S64_MIN; 13289 dst_reg->smax_value = S64_MAX; 13290 } else { 13291 /* ORing two positives gives a positive, so safe to 13292 * cast result into s64. 13293 */ 13294 dst_reg->smin_value = dst_reg->umin_value; 13295 dst_reg->smax_value = dst_reg->umax_value; 13296 } 13297 /* We may learn something more from the var_off */ 13298 __update_reg_bounds(dst_reg); 13299 } 13300 13301 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 13302 struct bpf_reg_state *src_reg) 13303 { 13304 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13305 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13306 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13307 s32 smin_val = src_reg->s32_min_value; 13308 13309 if (src_known && dst_known) { 13310 __mark_reg32_known(dst_reg, var32_off.value); 13311 return; 13312 } 13313 13314 /* We get both minimum and maximum from the var32_off. */ 13315 dst_reg->u32_min_value = var32_off.value; 13316 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13317 13318 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 13319 /* XORing two positive sign numbers gives a positive, 13320 * so safe to cast u32 result into s32. 13321 */ 13322 dst_reg->s32_min_value = dst_reg->u32_min_value; 13323 dst_reg->s32_max_value = dst_reg->u32_max_value; 13324 } else { 13325 dst_reg->s32_min_value = S32_MIN; 13326 dst_reg->s32_max_value = S32_MAX; 13327 } 13328 } 13329 13330 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 13331 struct bpf_reg_state *src_reg) 13332 { 13333 bool src_known = tnum_is_const(src_reg->var_off); 13334 bool dst_known = tnum_is_const(dst_reg->var_off); 13335 s64 smin_val = src_reg->smin_value; 13336 13337 if (src_known && dst_known) { 13338 /* dst_reg->var_off.value has been updated earlier */ 13339 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13340 return; 13341 } 13342 13343 /* We get both minimum and maximum from the var_off. */ 13344 dst_reg->umin_value = dst_reg->var_off.value; 13345 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13346 13347 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 13348 /* XORing two positive sign numbers gives a positive, 13349 * so safe to cast u64 result into s64. 13350 */ 13351 dst_reg->smin_value = dst_reg->umin_value; 13352 dst_reg->smax_value = dst_reg->umax_value; 13353 } else { 13354 dst_reg->smin_value = S64_MIN; 13355 dst_reg->smax_value = S64_MAX; 13356 } 13357 13358 __update_reg_bounds(dst_reg); 13359 } 13360 13361 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13362 u64 umin_val, u64 umax_val) 13363 { 13364 /* We lose all sign bit information (except what we can pick 13365 * up from var_off) 13366 */ 13367 dst_reg->s32_min_value = S32_MIN; 13368 dst_reg->s32_max_value = S32_MAX; 13369 /* If we might shift our top bit out, then we know nothing */ 13370 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 13371 dst_reg->u32_min_value = 0; 13372 dst_reg->u32_max_value = U32_MAX; 13373 } else { 13374 dst_reg->u32_min_value <<= umin_val; 13375 dst_reg->u32_max_value <<= umax_val; 13376 } 13377 } 13378 13379 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13380 struct bpf_reg_state *src_reg) 13381 { 13382 u32 umax_val = src_reg->u32_max_value; 13383 u32 umin_val = src_reg->u32_min_value; 13384 /* u32 alu operation will zext upper bits */ 13385 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13386 13387 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13388 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 13389 /* Not required but being careful mark reg64 bounds as unknown so 13390 * that we are forced to pick them up from tnum and zext later and 13391 * if some path skips this step we are still safe. 13392 */ 13393 __mark_reg64_unbounded(dst_reg); 13394 __update_reg32_bounds(dst_reg); 13395 } 13396 13397 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 13398 u64 umin_val, u64 umax_val) 13399 { 13400 /* Special case <<32 because it is a common compiler pattern to sign 13401 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 13402 * positive we know this shift will also be positive so we can track 13403 * bounds correctly. Otherwise we lose all sign bit information except 13404 * what we can pick up from var_off. Perhaps we can generalize this 13405 * later to shifts of any length. 13406 */ 13407 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 13408 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 13409 else 13410 dst_reg->smax_value = S64_MAX; 13411 13412 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 13413 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 13414 else 13415 dst_reg->smin_value = S64_MIN; 13416 13417 /* If we might shift our top bit out, then we know nothing */ 13418 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 13419 dst_reg->umin_value = 0; 13420 dst_reg->umax_value = U64_MAX; 13421 } else { 13422 dst_reg->umin_value <<= umin_val; 13423 dst_reg->umax_value <<= umax_val; 13424 } 13425 } 13426 13427 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 13428 struct bpf_reg_state *src_reg) 13429 { 13430 u64 umax_val = src_reg->umax_value; 13431 u64 umin_val = src_reg->umin_value; 13432 13433 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 13434 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 13435 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13436 13437 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 13438 /* We may learn something more from the var_off */ 13439 __update_reg_bounds(dst_reg); 13440 } 13441 13442 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 13443 struct bpf_reg_state *src_reg) 13444 { 13445 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13446 u32 umax_val = src_reg->u32_max_value; 13447 u32 umin_val = src_reg->u32_min_value; 13448 13449 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13450 * be negative, then either: 13451 * 1) src_reg might be zero, so the sign bit of the result is 13452 * unknown, so we lose our signed bounds 13453 * 2) it's known negative, thus the unsigned bounds capture the 13454 * signed bounds 13455 * 3) the signed bounds cross zero, so they tell us nothing 13456 * about the result 13457 * If the value in dst_reg is known nonnegative, then again the 13458 * unsigned bounds capture the signed bounds. 13459 * Thus, in all cases it suffices to blow away our signed bounds 13460 * and rely on inferring new ones from the unsigned bounds and 13461 * var_off of the result. 13462 */ 13463 dst_reg->s32_min_value = S32_MIN; 13464 dst_reg->s32_max_value = S32_MAX; 13465 13466 dst_reg->var_off = tnum_rshift(subreg, umin_val); 13467 dst_reg->u32_min_value >>= umax_val; 13468 dst_reg->u32_max_value >>= umin_val; 13469 13470 __mark_reg64_unbounded(dst_reg); 13471 __update_reg32_bounds(dst_reg); 13472 } 13473 13474 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 13475 struct bpf_reg_state *src_reg) 13476 { 13477 u64 umax_val = src_reg->umax_value; 13478 u64 umin_val = src_reg->umin_value; 13479 13480 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13481 * be negative, then either: 13482 * 1) src_reg might be zero, so the sign bit of the result is 13483 * unknown, so we lose our signed bounds 13484 * 2) it's known negative, thus the unsigned bounds capture the 13485 * signed bounds 13486 * 3) the signed bounds cross zero, so they tell us nothing 13487 * about the result 13488 * If the value in dst_reg is known nonnegative, then again the 13489 * unsigned bounds capture the signed bounds. 13490 * Thus, in all cases it suffices to blow away our signed bounds 13491 * and rely on inferring new ones from the unsigned bounds and 13492 * var_off of the result. 13493 */ 13494 dst_reg->smin_value = S64_MIN; 13495 dst_reg->smax_value = S64_MAX; 13496 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 13497 dst_reg->umin_value >>= umax_val; 13498 dst_reg->umax_value >>= umin_val; 13499 13500 /* Its not easy to operate on alu32 bounds here because it depends 13501 * on bits being shifted in. Take easy way out and mark unbounded 13502 * so we can recalculate later from tnum. 13503 */ 13504 __mark_reg32_unbounded(dst_reg); 13505 __update_reg_bounds(dst_reg); 13506 } 13507 13508 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 13509 struct bpf_reg_state *src_reg) 13510 { 13511 u64 umin_val = src_reg->u32_min_value; 13512 13513 /* Upon reaching here, src_known is true and 13514 * umax_val is equal to umin_val. 13515 */ 13516 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 13517 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 13518 13519 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 13520 13521 /* blow away the dst_reg umin_value/umax_value and rely on 13522 * dst_reg var_off to refine the result. 13523 */ 13524 dst_reg->u32_min_value = 0; 13525 dst_reg->u32_max_value = U32_MAX; 13526 13527 __mark_reg64_unbounded(dst_reg); 13528 __update_reg32_bounds(dst_reg); 13529 } 13530 13531 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 13532 struct bpf_reg_state *src_reg) 13533 { 13534 u64 umin_val = src_reg->umin_value; 13535 13536 /* Upon reaching here, src_known is true and umax_val is equal 13537 * to umin_val. 13538 */ 13539 dst_reg->smin_value >>= umin_val; 13540 dst_reg->smax_value >>= umin_val; 13541 13542 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 13543 13544 /* blow away the dst_reg umin_value/umax_value and rely on 13545 * dst_reg var_off to refine the result. 13546 */ 13547 dst_reg->umin_value = 0; 13548 dst_reg->umax_value = U64_MAX; 13549 13550 /* Its not easy to operate on alu32 bounds here because it depends 13551 * on bits being shifted in from upper 32-bits. Take easy way out 13552 * and mark unbounded so we can recalculate later from tnum. 13553 */ 13554 __mark_reg32_unbounded(dst_reg); 13555 __update_reg_bounds(dst_reg); 13556 } 13557 13558 /* WARNING: This function does calculations on 64-bit values, but the actual 13559 * execution may occur on 32-bit values. Therefore, things like bitshifts 13560 * need extra checks in the 32-bit case. 13561 */ 13562 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 13563 struct bpf_insn *insn, 13564 struct bpf_reg_state *dst_reg, 13565 struct bpf_reg_state src_reg) 13566 { 13567 struct bpf_reg_state *regs = cur_regs(env); 13568 u8 opcode = BPF_OP(insn->code); 13569 bool src_known; 13570 s64 smin_val, smax_val; 13571 u64 umin_val, umax_val; 13572 s32 s32_min_val, s32_max_val; 13573 u32 u32_min_val, u32_max_val; 13574 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 13575 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 13576 int ret; 13577 13578 smin_val = src_reg.smin_value; 13579 smax_val = src_reg.smax_value; 13580 umin_val = src_reg.umin_value; 13581 umax_val = src_reg.umax_value; 13582 13583 s32_min_val = src_reg.s32_min_value; 13584 s32_max_val = src_reg.s32_max_value; 13585 u32_min_val = src_reg.u32_min_value; 13586 u32_max_val = src_reg.u32_max_value; 13587 13588 if (alu32) { 13589 src_known = tnum_subreg_is_const(src_reg.var_off); 13590 if ((src_known && 13591 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 13592 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 13593 /* Taint dst register if offset had invalid bounds 13594 * derived from e.g. dead branches. 13595 */ 13596 __mark_reg_unknown(env, dst_reg); 13597 return 0; 13598 } 13599 } else { 13600 src_known = tnum_is_const(src_reg.var_off); 13601 if ((src_known && 13602 (smin_val != smax_val || umin_val != umax_val)) || 13603 smin_val > smax_val || umin_val > umax_val) { 13604 /* Taint dst register if offset had invalid bounds 13605 * derived from e.g. dead branches. 13606 */ 13607 __mark_reg_unknown(env, dst_reg); 13608 return 0; 13609 } 13610 } 13611 13612 if (!src_known && 13613 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 13614 __mark_reg_unknown(env, dst_reg); 13615 return 0; 13616 } 13617 13618 if (sanitize_needed(opcode)) { 13619 ret = sanitize_val_alu(env, insn); 13620 if (ret < 0) 13621 return sanitize_err(env, insn, ret, NULL, NULL); 13622 } 13623 13624 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 13625 * There are two classes of instructions: The first class we track both 13626 * alu32 and alu64 sign/unsigned bounds independently this provides the 13627 * greatest amount of precision when alu operations are mixed with jmp32 13628 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 13629 * and BPF_OR. This is possible because these ops have fairly easy to 13630 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 13631 * See alu32 verifier tests for examples. The second class of 13632 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 13633 * with regards to tracking sign/unsigned bounds because the bits may 13634 * cross subreg boundaries in the alu64 case. When this happens we mark 13635 * the reg unbounded in the subreg bound space and use the resulting 13636 * tnum to calculate an approximation of the sign/unsigned bounds. 13637 */ 13638 switch (opcode) { 13639 case BPF_ADD: 13640 scalar32_min_max_add(dst_reg, &src_reg); 13641 scalar_min_max_add(dst_reg, &src_reg); 13642 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 13643 break; 13644 case BPF_SUB: 13645 scalar32_min_max_sub(dst_reg, &src_reg); 13646 scalar_min_max_sub(dst_reg, &src_reg); 13647 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 13648 break; 13649 case BPF_MUL: 13650 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 13651 scalar32_min_max_mul(dst_reg, &src_reg); 13652 scalar_min_max_mul(dst_reg, &src_reg); 13653 break; 13654 case BPF_AND: 13655 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 13656 scalar32_min_max_and(dst_reg, &src_reg); 13657 scalar_min_max_and(dst_reg, &src_reg); 13658 break; 13659 case BPF_OR: 13660 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 13661 scalar32_min_max_or(dst_reg, &src_reg); 13662 scalar_min_max_or(dst_reg, &src_reg); 13663 break; 13664 case BPF_XOR: 13665 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 13666 scalar32_min_max_xor(dst_reg, &src_reg); 13667 scalar_min_max_xor(dst_reg, &src_reg); 13668 break; 13669 case BPF_LSH: 13670 if (umax_val >= insn_bitness) { 13671 /* Shifts greater than 31 or 63 are undefined. 13672 * This includes shifts by a negative number. 13673 */ 13674 mark_reg_unknown(env, regs, insn->dst_reg); 13675 break; 13676 } 13677 if (alu32) 13678 scalar32_min_max_lsh(dst_reg, &src_reg); 13679 else 13680 scalar_min_max_lsh(dst_reg, &src_reg); 13681 break; 13682 case BPF_RSH: 13683 if (umax_val >= insn_bitness) { 13684 /* Shifts greater than 31 or 63 are undefined. 13685 * This includes shifts by a negative number. 13686 */ 13687 mark_reg_unknown(env, regs, insn->dst_reg); 13688 break; 13689 } 13690 if (alu32) 13691 scalar32_min_max_rsh(dst_reg, &src_reg); 13692 else 13693 scalar_min_max_rsh(dst_reg, &src_reg); 13694 break; 13695 case BPF_ARSH: 13696 if (umax_val >= insn_bitness) { 13697 /* Shifts greater than 31 or 63 are undefined. 13698 * This includes shifts by a negative number. 13699 */ 13700 mark_reg_unknown(env, regs, insn->dst_reg); 13701 break; 13702 } 13703 if (alu32) 13704 scalar32_min_max_arsh(dst_reg, &src_reg); 13705 else 13706 scalar_min_max_arsh(dst_reg, &src_reg); 13707 break; 13708 default: 13709 mark_reg_unknown(env, regs, insn->dst_reg); 13710 break; 13711 } 13712 13713 /* ALU32 ops are zero extended into 64bit register */ 13714 if (alu32) 13715 zext_32_to_64(dst_reg); 13716 reg_bounds_sync(dst_reg); 13717 return 0; 13718 } 13719 13720 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 13721 * and var_off. 13722 */ 13723 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 13724 struct bpf_insn *insn) 13725 { 13726 struct bpf_verifier_state *vstate = env->cur_state; 13727 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13728 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 13729 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 13730 u8 opcode = BPF_OP(insn->code); 13731 int err; 13732 13733 dst_reg = ®s[insn->dst_reg]; 13734 src_reg = NULL; 13735 if (dst_reg->type != SCALAR_VALUE) 13736 ptr_reg = dst_reg; 13737 else 13738 /* Make sure ID is cleared otherwise dst_reg min/max could be 13739 * incorrectly propagated into other registers by find_equal_scalars() 13740 */ 13741 dst_reg->id = 0; 13742 if (BPF_SRC(insn->code) == BPF_X) { 13743 src_reg = ®s[insn->src_reg]; 13744 if (src_reg->type != SCALAR_VALUE) { 13745 if (dst_reg->type != SCALAR_VALUE) { 13746 /* Combining two pointers by any ALU op yields 13747 * an arbitrary scalar. Disallow all math except 13748 * pointer subtraction 13749 */ 13750 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13751 mark_reg_unknown(env, regs, insn->dst_reg); 13752 return 0; 13753 } 13754 verbose(env, "R%d pointer %s pointer prohibited\n", 13755 insn->dst_reg, 13756 bpf_alu_string[opcode >> 4]); 13757 return -EACCES; 13758 } else { 13759 /* scalar += pointer 13760 * This is legal, but we have to reverse our 13761 * src/dest handling in computing the range 13762 */ 13763 err = mark_chain_precision(env, insn->dst_reg); 13764 if (err) 13765 return err; 13766 return adjust_ptr_min_max_vals(env, insn, 13767 src_reg, dst_reg); 13768 } 13769 } else if (ptr_reg) { 13770 /* pointer += scalar */ 13771 err = mark_chain_precision(env, insn->src_reg); 13772 if (err) 13773 return err; 13774 return adjust_ptr_min_max_vals(env, insn, 13775 dst_reg, src_reg); 13776 } else if (dst_reg->precise) { 13777 /* if dst_reg is precise, src_reg should be precise as well */ 13778 err = mark_chain_precision(env, insn->src_reg); 13779 if (err) 13780 return err; 13781 } 13782 } else { 13783 /* Pretend the src is a reg with a known value, since we only 13784 * need to be able to read from this state. 13785 */ 13786 off_reg.type = SCALAR_VALUE; 13787 __mark_reg_known(&off_reg, insn->imm); 13788 src_reg = &off_reg; 13789 if (ptr_reg) /* pointer += K */ 13790 return adjust_ptr_min_max_vals(env, insn, 13791 ptr_reg, src_reg); 13792 } 13793 13794 /* Got here implies adding two SCALAR_VALUEs */ 13795 if (WARN_ON_ONCE(ptr_reg)) { 13796 print_verifier_state(env, state, true); 13797 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13798 return -EINVAL; 13799 } 13800 if (WARN_ON(!src_reg)) { 13801 print_verifier_state(env, state, true); 13802 verbose(env, "verifier internal error: no src_reg\n"); 13803 return -EINVAL; 13804 } 13805 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13806 } 13807 13808 /* check validity of 32-bit and 64-bit arithmetic operations */ 13809 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13810 { 13811 struct bpf_reg_state *regs = cur_regs(env); 13812 u8 opcode = BPF_OP(insn->code); 13813 int err; 13814 13815 if (opcode == BPF_END || opcode == BPF_NEG) { 13816 if (opcode == BPF_NEG) { 13817 if (BPF_SRC(insn->code) != BPF_K || 13818 insn->src_reg != BPF_REG_0 || 13819 insn->off != 0 || insn->imm != 0) { 13820 verbose(env, "BPF_NEG uses reserved fields\n"); 13821 return -EINVAL; 13822 } 13823 } else { 13824 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13825 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13826 (BPF_CLASS(insn->code) == BPF_ALU64 && 13827 BPF_SRC(insn->code) != BPF_TO_LE)) { 13828 verbose(env, "BPF_END uses reserved fields\n"); 13829 return -EINVAL; 13830 } 13831 } 13832 13833 /* check src operand */ 13834 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13835 if (err) 13836 return err; 13837 13838 if (is_pointer_value(env, insn->dst_reg)) { 13839 verbose(env, "R%d pointer arithmetic prohibited\n", 13840 insn->dst_reg); 13841 return -EACCES; 13842 } 13843 13844 /* check dest operand */ 13845 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13846 if (err) 13847 return err; 13848 13849 } else if (opcode == BPF_MOV) { 13850 13851 if (BPF_SRC(insn->code) == BPF_X) { 13852 if (insn->imm != 0) { 13853 verbose(env, "BPF_MOV uses reserved fields\n"); 13854 return -EINVAL; 13855 } 13856 13857 if (BPF_CLASS(insn->code) == BPF_ALU) { 13858 if (insn->off != 0 && insn->off != 8 && insn->off != 16) { 13859 verbose(env, "BPF_MOV uses reserved fields\n"); 13860 return -EINVAL; 13861 } 13862 } else { 13863 if (insn->off != 0 && insn->off != 8 && insn->off != 16 && 13864 insn->off != 32) { 13865 verbose(env, "BPF_MOV uses reserved fields\n"); 13866 return -EINVAL; 13867 } 13868 } 13869 13870 /* check src operand */ 13871 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13872 if (err) 13873 return err; 13874 } else { 13875 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13876 verbose(env, "BPF_MOV uses reserved fields\n"); 13877 return -EINVAL; 13878 } 13879 } 13880 13881 /* check dest operand, mark as required later */ 13882 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13883 if (err) 13884 return err; 13885 13886 if (BPF_SRC(insn->code) == BPF_X) { 13887 struct bpf_reg_state *src_reg = regs + insn->src_reg; 13888 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 13889 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 13890 !tnum_is_const(src_reg->var_off); 13891 13892 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13893 if (insn->off == 0) { 13894 /* case: R1 = R2 13895 * copy register state to dest reg 13896 */ 13897 if (need_id) 13898 /* Assign src and dst registers the same ID 13899 * that will be used by find_equal_scalars() 13900 * to propagate min/max range. 13901 */ 13902 src_reg->id = ++env->id_gen; 13903 copy_register_state(dst_reg, src_reg); 13904 dst_reg->live |= REG_LIVE_WRITTEN; 13905 dst_reg->subreg_def = DEF_NOT_SUBREG; 13906 } else { 13907 /* case: R1 = (s8, s16 s32)R2 */ 13908 if (is_pointer_value(env, insn->src_reg)) { 13909 verbose(env, 13910 "R%d sign-extension part of pointer\n", 13911 insn->src_reg); 13912 return -EACCES; 13913 } else if (src_reg->type == SCALAR_VALUE) { 13914 bool no_sext; 13915 13916 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13917 if (no_sext && need_id) 13918 src_reg->id = ++env->id_gen; 13919 copy_register_state(dst_reg, src_reg); 13920 if (!no_sext) 13921 dst_reg->id = 0; 13922 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 13923 dst_reg->live |= REG_LIVE_WRITTEN; 13924 dst_reg->subreg_def = DEF_NOT_SUBREG; 13925 } else { 13926 mark_reg_unknown(env, regs, insn->dst_reg); 13927 } 13928 } 13929 } else { 13930 /* R1 = (u32) R2 */ 13931 if (is_pointer_value(env, insn->src_reg)) { 13932 verbose(env, 13933 "R%d partial copy of pointer\n", 13934 insn->src_reg); 13935 return -EACCES; 13936 } else if (src_reg->type == SCALAR_VALUE) { 13937 if (insn->off == 0) { 13938 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 13939 13940 if (is_src_reg_u32 && need_id) 13941 src_reg->id = ++env->id_gen; 13942 copy_register_state(dst_reg, src_reg); 13943 /* Make sure ID is cleared if src_reg is not in u32 13944 * range otherwise dst_reg min/max could be incorrectly 13945 * propagated into src_reg by find_equal_scalars() 13946 */ 13947 if (!is_src_reg_u32) 13948 dst_reg->id = 0; 13949 dst_reg->live |= REG_LIVE_WRITTEN; 13950 dst_reg->subreg_def = env->insn_idx + 1; 13951 } else { 13952 /* case: W1 = (s8, s16)W2 */ 13953 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13954 13955 if (no_sext && need_id) 13956 src_reg->id = ++env->id_gen; 13957 copy_register_state(dst_reg, src_reg); 13958 if (!no_sext) 13959 dst_reg->id = 0; 13960 dst_reg->live |= REG_LIVE_WRITTEN; 13961 dst_reg->subreg_def = env->insn_idx + 1; 13962 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 13963 } 13964 } else { 13965 mark_reg_unknown(env, regs, 13966 insn->dst_reg); 13967 } 13968 zext_32_to_64(dst_reg); 13969 reg_bounds_sync(dst_reg); 13970 } 13971 } else { 13972 /* case: R = imm 13973 * remember the value we stored into this reg 13974 */ 13975 /* clear any state __mark_reg_known doesn't set */ 13976 mark_reg_unknown(env, regs, insn->dst_reg); 13977 regs[insn->dst_reg].type = SCALAR_VALUE; 13978 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13979 __mark_reg_known(regs + insn->dst_reg, 13980 insn->imm); 13981 } else { 13982 __mark_reg_known(regs + insn->dst_reg, 13983 (u32)insn->imm); 13984 } 13985 } 13986 13987 } else if (opcode > BPF_END) { 13988 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13989 return -EINVAL; 13990 13991 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13992 13993 if (BPF_SRC(insn->code) == BPF_X) { 13994 if (insn->imm != 0 || insn->off > 1 || 13995 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13996 verbose(env, "BPF_ALU uses reserved fields\n"); 13997 return -EINVAL; 13998 } 13999 /* check src1 operand */ 14000 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14001 if (err) 14002 return err; 14003 } else { 14004 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 14005 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14006 verbose(env, "BPF_ALU uses reserved fields\n"); 14007 return -EINVAL; 14008 } 14009 } 14010 14011 /* check src2 operand */ 14012 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14013 if (err) 14014 return err; 14015 14016 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 14017 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 14018 verbose(env, "div by zero\n"); 14019 return -EINVAL; 14020 } 14021 14022 if ((opcode == BPF_LSH || opcode == BPF_RSH || 14023 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 14024 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 14025 14026 if (insn->imm < 0 || insn->imm >= size) { 14027 verbose(env, "invalid shift %d\n", insn->imm); 14028 return -EINVAL; 14029 } 14030 } 14031 14032 /* check dest operand */ 14033 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14034 err = err ?: adjust_reg_min_max_vals(env, insn); 14035 if (err) 14036 return err; 14037 } 14038 14039 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 14040 } 14041 14042 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 14043 struct bpf_reg_state *dst_reg, 14044 enum bpf_reg_type type, 14045 bool range_right_open) 14046 { 14047 struct bpf_func_state *state; 14048 struct bpf_reg_state *reg; 14049 int new_range; 14050 14051 if (dst_reg->off < 0 || 14052 (dst_reg->off == 0 && range_right_open)) 14053 /* This doesn't give us any range */ 14054 return; 14055 14056 if (dst_reg->umax_value > MAX_PACKET_OFF || 14057 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 14058 /* Risk of overflow. For instance, ptr + (1<<63) may be less 14059 * than pkt_end, but that's because it's also less than pkt. 14060 */ 14061 return; 14062 14063 new_range = dst_reg->off; 14064 if (range_right_open) 14065 new_range++; 14066 14067 /* Examples for register markings: 14068 * 14069 * pkt_data in dst register: 14070 * 14071 * r2 = r3; 14072 * r2 += 8; 14073 * if (r2 > pkt_end) goto <handle exception> 14074 * <access okay> 14075 * 14076 * r2 = r3; 14077 * r2 += 8; 14078 * if (r2 < pkt_end) goto <access okay> 14079 * <handle exception> 14080 * 14081 * Where: 14082 * r2 == dst_reg, pkt_end == src_reg 14083 * r2=pkt(id=n,off=8,r=0) 14084 * r3=pkt(id=n,off=0,r=0) 14085 * 14086 * pkt_data in src register: 14087 * 14088 * r2 = r3; 14089 * r2 += 8; 14090 * if (pkt_end >= r2) goto <access okay> 14091 * <handle exception> 14092 * 14093 * r2 = r3; 14094 * r2 += 8; 14095 * if (pkt_end <= r2) goto <handle exception> 14096 * <access okay> 14097 * 14098 * Where: 14099 * pkt_end == dst_reg, r2 == src_reg 14100 * r2=pkt(id=n,off=8,r=0) 14101 * r3=pkt(id=n,off=0,r=0) 14102 * 14103 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 14104 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 14105 * and [r3, r3 + 8-1) respectively is safe to access depending on 14106 * the check. 14107 */ 14108 14109 /* If our ids match, then we must have the same max_value. And we 14110 * don't care about the other reg's fixed offset, since if it's too big 14111 * the range won't allow anything. 14112 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 14113 */ 14114 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14115 if (reg->type == type && reg->id == dst_reg->id) 14116 /* keep the maximum range already checked */ 14117 reg->range = max(reg->range, new_range); 14118 })); 14119 } 14120 14121 /* 14122 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 14123 */ 14124 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14125 u8 opcode, bool is_jmp32) 14126 { 14127 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 14128 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 14129 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 14130 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 14131 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 14132 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 14133 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 14134 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 14135 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 14136 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 14137 14138 switch (opcode) { 14139 case BPF_JEQ: 14140 /* constants, umin/umax and smin/smax checks would be 14141 * redundant in this case because they all should match 14142 */ 14143 if (tnum_is_const(t1) && tnum_is_const(t2)) 14144 return t1.value == t2.value; 14145 /* non-overlapping ranges */ 14146 if (umin1 > umax2 || umax1 < umin2) 14147 return 0; 14148 if (smin1 > smax2 || smax1 < smin2) 14149 return 0; 14150 if (!is_jmp32) { 14151 /* if 64-bit ranges are inconclusive, see if we can 14152 * utilize 32-bit subrange knowledge to eliminate 14153 * branches that can't be taken a priori 14154 */ 14155 if (reg1->u32_min_value > reg2->u32_max_value || 14156 reg1->u32_max_value < reg2->u32_min_value) 14157 return 0; 14158 if (reg1->s32_min_value > reg2->s32_max_value || 14159 reg1->s32_max_value < reg2->s32_min_value) 14160 return 0; 14161 } 14162 break; 14163 case BPF_JNE: 14164 /* constants, umin/umax and smin/smax checks would be 14165 * redundant in this case because they all should match 14166 */ 14167 if (tnum_is_const(t1) && tnum_is_const(t2)) 14168 return t1.value != t2.value; 14169 /* non-overlapping ranges */ 14170 if (umin1 > umax2 || umax1 < umin2) 14171 return 1; 14172 if (smin1 > smax2 || smax1 < smin2) 14173 return 1; 14174 if (!is_jmp32) { 14175 /* if 64-bit ranges are inconclusive, see if we can 14176 * utilize 32-bit subrange knowledge to eliminate 14177 * branches that can't be taken a priori 14178 */ 14179 if (reg1->u32_min_value > reg2->u32_max_value || 14180 reg1->u32_max_value < reg2->u32_min_value) 14181 return 1; 14182 if (reg1->s32_min_value > reg2->s32_max_value || 14183 reg1->s32_max_value < reg2->s32_min_value) 14184 return 1; 14185 } 14186 break; 14187 case BPF_JSET: 14188 if (!is_reg_const(reg2, is_jmp32)) { 14189 swap(reg1, reg2); 14190 swap(t1, t2); 14191 } 14192 if (!is_reg_const(reg2, is_jmp32)) 14193 return -1; 14194 if ((~t1.mask & t1.value) & t2.value) 14195 return 1; 14196 if (!((t1.mask | t1.value) & t2.value)) 14197 return 0; 14198 break; 14199 case BPF_JGT: 14200 if (umin1 > umax2) 14201 return 1; 14202 else if (umax1 <= umin2) 14203 return 0; 14204 break; 14205 case BPF_JSGT: 14206 if (smin1 > smax2) 14207 return 1; 14208 else if (smax1 <= smin2) 14209 return 0; 14210 break; 14211 case BPF_JLT: 14212 if (umax1 < umin2) 14213 return 1; 14214 else if (umin1 >= umax2) 14215 return 0; 14216 break; 14217 case BPF_JSLT: 14218 if (smax1 < smin2) 14219 return 1; 14220 else if (smin1 >= smax2) 14221 return 0; 14222 break; 14223 case BPF_JGE: 14224 if (umin1 >= umax2) 14225 return 1; 14226 else if (umax1 < umin2) 14227 return 0; 14228 break; 14229 case BPF_JSGE: 14230 if (smin1 >= smax2) 14231 return 1; 14232 else if (smax1 < smin2) 14233 return 0; 14234 break; 14235 case BPF_JLE: 14236 if (umax1 <= umin2) 14237 return 1; 14238 else if (umin1 > umax2) 14239 return 0; 14240 break; 14241 case BPF_JSLE: 14242 if (smax1 <= smin2) 14243 return 1; 14244 else if (smin1 > smax2) 14245 return 0; 14246 break; 14247 } 14248 14249 return -1; 14250 } 14251 14252 static int flip_opcode(u32 opcode) 14253 { 14254 /* How can we transform "a <op> b" into "b <op> a"? */ 14255 static const u8 opcode_flip[16] = { 14256 /* these stay the same */ 14257 [BPF_JEQ >> 4] = BPF_JEQ, 14258 [BPF_JNE >> 4] = BPF_JNE, 14259 [BPF_JSET >> 4] = BPF_JSET, 14260 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 14261 [BPF_JGE >> 4] = BPF_JLE, 14262 [BPF_JGT >> 4] = BPF_JLT, 14263 [BPF_JLE >> 4] = BPF_JGE, 14264 [BPF_JLT >> 4] = BPF_JGT, 14265 [BPF_JSGE >> 4] = BPF_JSLE, 14266 [BPF_JSGT >> 4] = BPF_JSLT, 14267 [BPF_JSLE >> 4] = BPF_JSGE, 14268 [BPF_JSLT >> 4] = BPF_JSGT 14269 }; 14270 return opcode_flip[opcode >> 4]; 14271 } 14272 14273 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 14274 struct bpf_reg_state *src_reg, 14275 u8 opcode) 14276 { 14277 struct bpf_reg_state *pkt; 14278 14279 if (src_reg->type == PTR_TO_PACKET_END) { 14280 pkt = dst_reg; 14281 } else if (dst_reg->type == PTR_TO_PACKET_END) { 14282 pkt = src_reg; 14283 opcode = flip_opcode(opcode); 14284 } else { 14285 return -1; 14286 } 14287 14288 if (pkt->range >= 0) 14289 return -1; 14290 14291 switch (opcode) { 14292 case BPF_JLE: 14293 /* pkt <= pkt_end */ 14294 fallthrough; 14295 case BPF_JGT: 14296 /* pkt > pkt_end */ 14297 if (pkt->range == BEYOND_PKT_END) 14298 /* pkt has at last one extra byte beyond pkt_end */ 14299 return opcode == BPF_JGT; 14300 break; 14301 case BPF_JLT: 14302 /* pkt < pkt_end */ 14303 fallthrough; 14304 case BPF_JGE: 14305 /* pkt >= pkt_end */ 14306 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 14307 return opcode == BPF_JGE; 14308 break; 14309 } 14310 return -1; 14311 } 14312 14313 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 14314 * and return: 14315 * 1 - branch will be taken and "goto target" will be executed 14316 * 0 - branch will not be taken and fall-through to next insn 14317 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 14318 * range [0,10] 14319 */ 14320 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14321 u8 opcode, bool is_jmp32) 14322 { 14323 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 14324 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 14325 14326 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 14327 u64 val; 14328 14329 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 14330 if (!is_reg_const(reg2, is_jmp32)) { 14331 opcode = flip_opcode(opcode); 14332 swap(reg1, reg2); 14333 } 14334 /* and ensure that reg2 is a constant */ 14335 if (!is_reg_const(reg2, is_jmp32)) 14336 return -1; 14337 14338 if (!reg_not_null(reg1)) 14339 return -1; 14340 14341 /* If pointer is valid tests against zero will fail so we can 14342 * use this to direct branch taken. 14343 */ 14344 val = reg_const_value(reg2, is_jmp32); 14345 if (val != 0) 14346 return -1; 14347 14348 switch (opcode) { 14349 case BPF_JEQ: 14350 return 0; 14351 case BPF_JNE: 14352 return 1; 14353 default: 14354 return -1; 14355 } 14356 } 14357 14358 /* now deal with two scalars, but not necessarily constants */ 14359 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 14360 } 14361 14362 /* Opcode that corresponds to a *false* branch condition. 14363 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 14364 */ 14365 static u8 rev_opcode(u8 opcode) 14366 { 14367 switch (opcode) { 14368 case BPF_JEQ: return BPF_JNE; 14369 case BPF_JNE: return BPF_JEQ; 14370 /* JSET doesn't have it's reverse opcode in BPF, so add 14371 * BPF_X flag to denote the reverse of that operation 14372 */ 14373 case BPF_JSET: return BPF_JSET | BPF_X; 14374 case BPF_JSET | BPF_X: return BPF_JSET; 14375 case BPF_JGE: return BPF_JLT; 14376 case BPF_JGT: return BPF_JLE; 14377 case BPF_JLE: return BPF_JGT; 14378 case BPF_JLT: return BPF_JGE; 14379 case BPF_JSGE: return BPF_JSLT; 14380 case BPF_JSGT: return BPF_JSLE; 14381 case BPF_JSLE: return BPF_JSGT; 14382 case BPF_JSLT: return BPF_JSGE; 14383 default: return 0; 14384 } 14385 } 14386 14387 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 14388 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14389 u8 opcode, bool is_jmp32) 14390 { 14391 struct tnum t; 14392 u64 val; 14393 14394 again: 14395 switch (opcode) { 14396 case BPF_JEQ: 14397 if (is_jmp32) { 14398 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 14399 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 14400 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 14401 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 14402 reg2->u32_min_value = reg1->u32_min_value; 14403 reg2->u32_max_value = reg1->u32_max_value; 14404 reg2->s32_min_value = reg1->s32_min_value; 14405 reg2->s32_max_value = reg1->s32_max_value; 14406 14407 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 14408 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14409 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 14410 } else { 14411 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 14412 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 14413 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 14414 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 14415 reg2->umin_value = reg1->umin_value; 14416 reg2->umax_value = reg1->umax_value; 14417 reg2->smin_value = reg1->smin_value; 14418 reg2->smax_value = reg1->smax_value; 14419 14420 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 14421 reg2->var_off = reg1->var_off; 14422 } 14423 break; 14424 case BPF_JNE: 14425 if (!is_reg_const(reg2, is_jmp32)) 14426 swap(reg1, reg2); 14427 if (!is_reg_const(reg2, is_jmp32)) 14428 break; 14429 14430 /* try to recompute the bound of reg1 if reg2 is a const and 14431 * is exactly the edge of reg1. 14432 */ 14433 val = reg_const_value(reg2, is_jmp32); 14434 if (is_jmp32) { 14435 /* u32_min_value is not equal to 0xffffffff at this point, 14436 * because otherwise u32_max_value is 0xffffffff as well, 14437 * in such a case both reg1 and reg2 would be constants, 14438 * jump would be predicted and reg_set_min_max() won't 14439 * be called. 14440 * 14441 * Same reasoning works for all {u,s}{min,max}{32,64} cases 14442 * below. 14443 */ 14444 if (reg1->u32_min_value == (u32)val) 14445 reg1->u32_min_value++; 14446 if (reg1->u32_max_value == (u32)val) 14447 reg1->u32_max_value--; 14448 if (reg1->s32_min_value == (s32)val) 14449 reg1->s32_min_value++; 14450 if (reg1->s32_max_value == (s32)val) 14451 reg1->s32_max_value--; 14452 } else { 14453 if (reg1->umin_value == (u64)val) 14454 reg1->umin_value++; 14455 if (reg1->umax_value == (u64)val) 14456 reg1->umax_value--; 14457 if (reg1->smin_value == (s64)val) 14458 reg1->smin_value++; 14459 if (reg1->smax_value == (s64)val) 14460 reg1->smax_value--; 14461 } 14462 break; 14463 case BPF_JSET: 14464 if (!is_reg_const(reg2, is_jmp32)) 14465 swap(reg1, reg2); 14466 if (!is_reg_const(reg2, is_jmp32)) 14467 break; 14468 val = reg_const_value(reg2, is_jmp32); 14469 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 14470 * requires single bit to learn something useful. E.g., if we 14471 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 14472 * are actually set? We can learn something definite only if 14473 * it's a single-bit value to begin with. 14474 * 14475 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 14476 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 14477 * bit 1 is set, which we can readily use in adjustments. 14478 */ 14479 if (!is_power_of_2(val)) 14480 break; 14481 if (is_jmp32) { 14482 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 14483 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14484 } else { 14485 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 14486 } 14487 break; 14488 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 14489 if (!is_reg_const(reg2, is_jmp32)) 14490 swap(reg1, reg2); 14491 if (!is_reg_const(reg2, is_jmp32)) 14492 break; 14493 val = reg_const_value(reg2, is_jmp32); 14494 if (is_jmp32) { 14495 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 14496 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14497 } else { 14498 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 14499 } 14500 break; 14501 case BPF_JLE: 14502 if (is_jmp32) { 14503 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 14504 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 14505 } else { 14506 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 14507 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 14508 } 14509 break; 14510 case BPF_JLT: 14511 if (is_jmp32) { 14512 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 14513 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 14514 } else { 14515 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 14516 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 14517 } 14518 break; 14519 case BPF_JSLE: 14520 if (is_jmp32) { 14521 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 14522 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 14523 } else { 14524 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 14525 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 14526 } 14527 break; 14528 case BPF_JSLT: 14529 if (is_jmp32) { 14530 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 14531 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 14532 } else { 14533 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 14534 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 14535 } 14536 break; 14537 case BPF_JGE: 14538 case BPF_JGT: 14539 case BPF_JSGE: 14540 case BPF_JSGT: 14541 /* just reuse LE/LT logic above */ 14542 opcode = flip_opcode(opcode); 14543 swap(reg1, reg2); 14544 goto again; 14545 default: 14546 return; 14547 } 14548 } 14549 14550 /* Adjusts the register min/max values in the case that the dst_reg and 14551 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 14552 * check, in which case we havea fake SCALAR_VALUE representing insn->imm). 14553 * Technically we can do similar adjustments for pointers to the same object, 14554 * but we don't support that right now. 14555 */ 14556 static int reg_set_min_max(struct bpf_verifier_env *env, 14557 struct bpf_reg_state *true_reg1, 14558 struct bpf_reg_state *true_reg2, 14559 struct bpf_reg_state *false_reg1, 14560 struct bpf_reg_state *false_reg2, 14561 u8 opcode, bool is_jmp32) 14562 { 14563 int err; 14564 14565 /* If either register is a pointer, we can't learn anything about its 14566 * variable offset from the compare (unless they were a pointer into 14567 * the same object, but we don't bother with that). 14568 */ 14569 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 14570 return 0; 14571 14572 /* fallthrough (FALSE) branch */ 14573 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 14574 reg_bounds_sync(false_reg1); 14575 reg_bounds_sync(false_reg2); 14576 14577 /* jump (TRUE) branch */ 14578 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 14579 reg_bounds_sync(true_reg1); 14580 reg_bounds_sync(true_reg2); 14581 14582 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 14583 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 14584 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 14585 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 14586 return err; 14587 } 14588 14589 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 14590 struct bpf_reg_state *reg, u32 id, 14591 bool is_null) 14592 { 14593 if (type_may_be_null(reg->type) && reg->id == id && 14594 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 14595 /* Old offset (both fixed and variable parts) should have been 14596 * known-zero, because we don't allow pointer arithmetic on 14597 * pointers that might be NULL. If we see this happening, don't 14598 * convert the register. 14599 * 14600 * But in some cases, some helpers that return local kptrs 14601 * advance offset for the returned pointer. In those cases, it 14602 * is fine to expect to see reg->off. 14603 */ 14604 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 14605 return; 14606 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 14607 WARN_ON_ONCE(reg->off)) 14608 return; 14609 14610 if (is_null) { 14611 reg->type = SCALAR_VALUE; 14612 /* We don't need id and ref_obj_id from this point 14613 * onwards anymore, thus we should better reset it, 14614 * so that state pruning has chances to take effect. 14615 */ 14616 reg->id = 0; 14617 reg->ref_obj_id = 0; 14618 14619 return; 14620 } 14621 14622 mark_ptr_not_null_reg(reg); 14623 14624 if (!reg_may_point_to_spin_lock(reg)) { 14625 /* For not-NULL ptr, reg->ref_obj_id will be reset 14626 * in release_reference(). 14627 * 14628 * reg->id is still used by spin_lock ptr. Other 14629 * than spin_lock ptr type, reg->id can be reset. 14630 */ 14631 reg->id = 0; 14632 } 14633 } 14634 } 14635 14636 /* The logic is similar to find_good_pkt_pointers(), both could eventually 14637 * be folded together at some point. 14638 */ 14639 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 14640 bool is_null) 14641 { 14642 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14643 struct bpf_reg_state *regs = state->regs, *reg; 14644 u32 ref_obj_id = regs[regno].ref_obj_id; 14645 u32 id = regs[regno].id; 14646 14647 if (ref_obj_id && ref_obj_id == id && is_null) 14648 /* regs[regno] is in the " == NULL" branch. 14649 * No one could have freed the reference state before 14650 * doing the NULL check. 14651 */ 14652 WARN_ON_ONCE(release_reference_state(state, id)); 14653 14654 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14655 mark_ptr_or_null_reg(state, reg, id, is_null); 14656 })); 14657 } 14658 14659 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 14660 struct bpf_reg_state *dst_reg, 14661 struct bpf_reg_state *src_reg, 14662 struct bpf_verifier_state *this_branch, 14663 struct bpf_verifier_state *other_branch) 14664 { 14665 if (BPF_SRC(insn->code) != BPF_X) 14666 return false; 14667 14668 /* Pointers are always 64-bit. */ 14669 if (BPF_CLASS(insn->code) == BPF_JMP32) 14670 return false; 14671 14672 switch (BPF_OP(insn->code)) { 14673 case BPF_JGT: 14674 if ((dst_reg->type == PTR_TO_PACKET && 14675 src_reg->type == PTR_TO_PACKET_END) || 14676 (dst_reg->type == PTR_TO_PACKET_META && 14677 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14678 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 14679 find_good_pkt_pointers(this_branch, dst_reg, 14680 dst_reg->type, false); 14681 mark_pkt_end(other_branch, insn->dst_reg, true); 14682 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14683 src_reg->type == PTR_TO_PACKET) || 14684 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14685 src_reg->type == PTR_TO_PACKET_META)) { 14686 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 14687 find_good_pkt_pointers(other_branch, src_reg, 14688 src_reg->type, true); 14689 mark_pkt_end(this_branch, insn->src_reg, false); 14690 } else { 14691 return false; 14692 } 14693 break; 14694 case BPF_JLT: 14695 if ((dst_reg->type == PTR_TO_PACKET && 14696 src_reg->type == PTR_TO_PACKET_END) || 14697 (dst_reg->type == PTR_TO_PACKET_META && 14698 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14699 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 14700 find_good_pkt_pointers(other_branch, dst_reg, 14701 dst_reg->type, true); 14702 mark_pkt_end(this_branch, insn->dst_reg, false); 14703 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14704 src_reg->type == PTR_TO_PACKET) || 14705 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14706 src_reg->type == PTR_TO_PACKET_META)) { 14707 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 14708 find_good_pkt_pointers(this_branch, src_reg, 14709 src_reg->type, false); 14710 mark_pkt_end(other_branch, insn->src_reg, true); 14711 } else { 14712 return false; 14713 } 14714 break; 14715 case BPF_JGE: 14716 if ((dst_reg->type == PTR_TO_PACKET && 14717 src_reg->type == PTR_TO_PACKET_END) || 14718 (dst_reg->type == PTR_TO_PACKET_META && 14719 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14720 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 14721 find_good_pkt_pointers(this_branch, dst_reg, 14722 dst_reg->type, true); 14723 mark_pkt_end(other_branch, insn->dst_reg, false); 14724 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14725 src_reg->type == PTR_TO_PACKET) || 14726 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14727 src_reg->type == PTR_TO_PACKET_META)) { 14728 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 14729 find_good_pkt_pointers(other_branch, src_reg, 14730 src_reg->type, false); 14731 mark_pkt_end(this_branch, insn->src_reg, true); 14732 } else { 14733 return false; 14734 } 14735 break; 14736 case BPF_JLE: 14737 if ((dst_reg->type == PTR_TO_PACKET && 14738 src_reg->type == PTR_TO_PACKET_END) || 14739 (dst_reg->type == PTR_TO_PACKET_META && 14740 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14741 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 14742 find_good_pkt_pointers(other_branch, dst_reg, 14743 dst_reg->type, false); 14744 mark_pkt_end(this_branch, insn->dst_reg, true); 14745 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14746 src_reg->type == PTR_TO_PACKET) || 14747 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14748 src_reg->type == PTR_TO_PACKET_META)) { 14749 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 14750 find_good_pkt_pointers(this_branch, src_reg, 14751 src_reg->type, true); 14752 mark_pkt_end(other_branch, insn->src_reg, false); 14753 } else { 14754 return false; 14755 } 14756 break; 14757 default: 14758 return false; 14759 } 14760 14761 return true; 14762 } 14763 14764 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14765 struct bpf_reg_state *known_reg) 14766 { 14767 struct bpf_func_state *state; 14768 struct bpf_reg_state *reg; 14769 14770 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14771 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14772 copy_register_state(reg, known_reg); 14773 })); 14774 } 14775 14776 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14777 struct bpf_insn *insn, int *insn_idx) 14778 { 14779 struct bpf_verifier_state *this_branch = env->cur_state; 14780 struct bpf_verifier_state *other_branch; 14781 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14782 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14783 struct bpf_reg_state *eq_branch_regs; 14784 struct bpf_reg_state fake_reg = {}; 14785 u8 opcode = BPF_OP(insn->code); 14786 bool is_jmp32; 14787 int pred = -1; 14788 int err; 14789 14790 /* Only conditional jumps are expected to reach here. */ 14791 if (opcode == BPF_JA || opcode > BPF_JSLE) { 14792 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14793 return -EINVAL; 14794 } 14795 14796 /* check src2 operand */ 14797 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14798 if (err) 14799 return err; 14800 14801 dst_reg = ®s[insn->dst_reg]; 14802 if (BPF_SRC(insn->code) == BPF_X) { 14803 if (insn->imm != 0) { 14804 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14805 return -EINVAL; 14806 } 14807 14808 /* check src1 operand */ 14809 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14810 if (err) 14811 return err; 14812 14813 src_reg = ®s[insn->src_reg]; 14814 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 14815 is_pointer_value(env, insn->src_reg)) { 14816 verbose(env, "R%d pointer comparison prohibited\n", 14817 insn->src_reg); 14818 return -EACCES; 14819 } 14820 } else { 14821 if (insn->src_reg != BPF_REG_0) { 14822 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14823 return -EINVAL; 14824 } 14825 src_reg = &fake_reg; 14826 src_reg->type = SCALAR_VALUE; 14827 __mark_reg_known(src_reg, insn->imm); 14828 } 14829 14830 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 14831 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 14832 if (pred >= 0) { 14833 /* If we get here with a dst_reg pointer type it is because 14834 * above is_branch_taken() special cased the 0 comparison. 14835 */ 14836 if (!__is_pointer_value(false, dst_reg)) 14837 err = mark_chain_precision(env, insn->dst_reg); 14838 if (BPF_SRC(insn->code) == BPF_X && !err && 14839 !__is_pointer_value(false, src_reg)) 14840 err = mark_chain_precision(env, insn->src_reg); 14841 if (err) 14842 return err; 14843 } 14844 14845 if (pred == 1) { 14846 /* Only follow the goto, ignore fall-through. If needed, push 14847 * the fall-through branch for simulation under speculative 14848 * execution. 14849 */ 14850 if (!env->bypass_spec_v1 && 14851 !sanitize_speculative_path(env, insn, *insn_idx + 1, 14852 *insn_idx)) 14853 return -EFAULT; 14854 if (env->log.level & BPF_LOG_LEVEL) 14855 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14856 *insn_idx += insn->off; 14857 return 0; 14858 } else if (pred == 0) { 14859 /* Only follow the fall-through branch, since that's where the 14860 * program will go. If needed, push the goto branch for 14861 * simulation under speculative execution. 14862 */ 14863 if (!env->bypass_spec_v1 && 14864 !sanitize_speculative_path(env, insn, 14865 *insn_idx + insn->off + 1, 14866 *insn_idx)) 14867 return -EFAULT; 14868 if (env->log.level & BPF_LOG_LEVEL) 14869 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14870 return 0; 14871 } 14872 14873 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 14874 false); 14875 if (!other_branch) 14876 return -EFAULT; 14877 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 14878 14879 if (BPF_SRC(insn->code) == BPF_X) { 14880 err = reg_set_min_max(env, 14881 &other_branch_regs[insn->dst_reg], 14882 &other_branch_regs[insn->src_reg], 14883 dst_reg, src_reg, opcode, is_jmp32); 14884 } else /* BPF_SRC(insn->code) == BPF_K */ { 14885 err = reg_set_min_max(env, 14886 &other_branch_regs[insn->dst_reg], 14887 src_reg /* fake one */, 14888 dst_reg, src_reg /* same fake one */, 14889 opcode, is_jmp32); 14890 } 14891 if (err) 14892 return err; 14893 14894 if (BPF_SRC(insn->code) == BPF_X && 14895 src_reg->type == SCALAR_VALUE && src_reg->id && 14896 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 14897 find_equal_scalars(this_branch, src_reg); 14898 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 14899 } 14900 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 14901 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 14902 find_equal_scalars(this_branch, dst_reg); 14903 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 14904 } 14905 14906 /* if one pointer register is compared to another pointer 14907 * register check if PTR_MAYBE_NULL could be lifted. 14908 * E.g. register A - maybe null 14909 * register B - not null 14910 * for JNE A, B, ... - A is not null in the false branch; 14911 * for JEQ A, B, ... - A is not null in the true branch. 14912 * 14913 * Since PTR_TO_BTF_ID points to a kernel struct that does 14914 * not need to be null checked by the BPF program, i.e., 14915 * could be null even without PTR_MAYBE_NULL marking, so 14916 * only propagate nullness when neither reg is that type. 14917 */ 14918 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 14919 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 14920 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 14921 base_type(src_reg->type) != PTR_TO_BTF_ID && 14922 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 14923 eq_branch_regs = NULL; 14924 switch (opcode) { 14925 case BPF_JEQ: 14926 eq_branch_regs = other_branch_regs; 14927 break; 14928 case BPF_JNE: 14929 eq_branch_regs = regs; 14930 break; 14931 default: 14932 /* do nothing */ 14933 break; 14934 } 14935 if (eq_branch_regs) { 14936 if (type_may_be_null(src_reg->type)) 14937 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14938 else 14939 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14940 } 14941 } 14942 14943 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 14944 * NOTE: these optimizations below are related with pointer comparison 14945 * which will never be JMP32. 14946 */ 14947 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14948 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14949 type_may_be_null(dst_reg->type)) { 14950 /* Mark all identical registers in each branch as either 14951 * safe or unknown depending R == 0 or R != 0 conditional. 14952 */ 14953 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14954 opcode == BPF_JNE); 14955 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14956 opcode == BPF_JEQ); 14957 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14958 this_branch, other_branch) && 14959 is_pointer_value(env, insn->dst_reg)) { 14960 verbose(env, "R%d pointer comparison prohibited\n", 14961 insn->dst_reg); 14962 return -EACCES; 14963 } 14964 if (env->log.level & BPF_LOG_LEVEL) 14965 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14966 return 0; 14967 } 14968 14969 /* verify BPF_LD_IMM64 instruction */ 14970 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14971 { 14972 struct bpf_insn_aux_data *aux = cur_aux(env); 14973 struct bpf_reg_state *regs = cur_regs(env); 14974 struct bpf_reg_state *dst_reg; 14975 struct bpf_map *map; 14976 int err; 14977 14978 if (BPF_SIZE(insn->code) != BPF_DW) { 14979 verbose(env, "invalid BPF_LD_IMM insn\n"); 14980 return -EINVAL; 14981 } 14982 if (insn->off != 0) { 14983 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14984 return -EINVAL; 14985 } 14986 14987 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14988 if (err) 14989 return err; 14990 14991 dst_reg = ®s[insn->dst_reg]; 14992 if (insn->src_reg == 0) { 14993 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14994 14995 dst_reg->type = SCALAR_VALUE; 14996 __mark_reg_known(®s[insn->dst_reg], imm); 14997 return 0; 14998 } 14999 15000 /* All special src_reg cases are listed below. From this point onwards 15001 * we either succeed and assign a corresponding dst_reg->type after 15002 * zeroing the offset, or fail and reject the program. 15003 */ 15004 mark_reg_known_zero(env, regs, insn->dst_reg); 15005 15006 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 15007 dst_reg->type = aux->btf_var.reg_type; 15008 switch (base_type(dst_reg->type)) { 15009 case PTR_TO_MEM: 15010 dst_reg->mem_size = aux->btf_var.mem_size; 15011 break; 15012 case PTR_TO_BTF_ID: 15013 dst_reg->btf = aux->btf_var.btf; 15014 dst_reg->btf_id = aux->btf_var.btf_id; 15015 break; 15016 default: 15017 verbose(env, "bpf verifier is misconfigured\n"); 15018 return -EFAULT; 15019 } 15020 return 0; 15021 } 15022 15023 if (insn->src_reg == BPF_PSEUDO_FUNC) { 15024 struct bpf_prog_aux *aux = env->prog->aux; 15025 u32 subprogno = find_subprog(env, 15026 env->insn_idx + insn->imm + 1); 15027 15028 if (!aux->func_info) { 15029 verbose(env, "missing btf func_info\n"); 15030 return -EINVAL; 15031 } 15032 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 15033 verbose(env, "callback function not static\n"); 15034 return -EINVAL; 15035 } 15036 15037 dst_reg->type = PTR_TO_FUNC; 15038 dst_reg->subprogno = subprogno; 15039 return 0; 15040 } 15041 15042 map = env->used_maps[aux->map_index]; 15043 dst_reg->map_ptr = map; 15044 15045 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 15046 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 15047 dst_reg->type = PTR_TO_MAP_VALUE; 15048 dst_reg->off = aux->map_off; 15049 WARN_ON_ONCE(map->max_entries != 1); 15050 /* We want reg->id to be same (0) as map_value is not distinct */ 15051 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 15052 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 15053 dst_reg->type = CONST_PTR_TO_MAP; 15054 } else { 15055 verbose(env, "bpf verifier is misconfigured\n"); 15056 return -EINVAL; 15057 } 15058 15059 return 0; 15060 } 15061 15062 static bool may_access_skb(enum bpf_prog_type type) 15063 { 15064 switch (type) { 15065 case BPF_PROG_TYPE_SOCKET_FILTER: 15066 case BPF_PROG_TYPE_SCHED_CLS: 15067 case BPF_PROG_TYPE_SCHED_ACT: 15068 return true; 15069 default: 15070 return false; 15071 } 15072 } 15073 15074 /* verify safety of LD_ABS|LD_IND instructions: 15075 * - they can only appear in the programs where ctx == skb 15076 * - since they are wrappers of function calls, they scratch R1-R5 registers, 15077 * preserve R6-R9, and store return value into R0 15078 * 15079 * Implicit input: 15080 * ctx == skb == R6 == CTX 15081 * 15082 * Explicit input: 15083 * SRC == any register 15084 * IMM == 32-bit immediate 15085 * 15086 * Output: 15087 * R0 - 8/16/32-bit skb data converted to cpu endianness 15088 */ 15089 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 15090 { 15091 struct bpf_reg_state *regs = cur_regs(env); 15092 static const int ctx_reg = BPF_REG_6; 15093 u8 mode = BPF_MODE(insn->code); 15094 int i, err; 15095 15096 if (!may_access_skb(resolve_prog_type(env->prog))) { 15097 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 15098 return -EINVAL; 15099 } 15100 15101 if (!env->ops->gen_ld_abs) { 15102 verbose(env, "bpf verifier is misconfigured\n"); 15103 return -EINVAL; 15104 } 15105 15106 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 15107 BPF_SIZE(insn->code) == BPF_DW || 15108 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 15109 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 15110 return -EINVAL; 15111 } 15112 15113 /* check whether implicit source operand (register R6) is readable */ 15114 err = check_reg_arg(env, ctx_reg, SRC_OP); 15115 if (err) 15116 return err; 15117 15118 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 15119 * gen_ld_abs() may terminate the program at runtime, leading to 15120 * reference leak. 15121 */ 15122 err = check_reference_leak(env, false); 15123 if (err) { 15124 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 15125 return err; 15126 } 15127 15128 if (env->cur_state->active_lock.ptr) { 15129 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 15130 return -EINVAL; 15131 } 15132 15133 if (env->cur_state->active_rcu_lock) { 15134 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 15135 return -EINVAL; 15136 } 15137 15138 if (regs[ctx_reg].type != PTR_TO_CTX) { 15139 verbose(env, 15140 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 15141 return -EINVAL; 15142 } 15143 15144 if (mode == BPF_IND) { 15145 /* check explicit source operand */ 15146 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15147 if (err) 15148 return err; 15149 } 15150 15151 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 15152 if (err < 0) 15153 return err; 15154 15155 /* reset caller saved regs to unreadable */ 15156 for (i = 0; i < CALLER_SAVED_REGS; i++) { 15157 mark_reg_not_init(env, regs, caller_saved[i]); 15158 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 15159 } 15160 15161 /* mark destination R0 register as readable, since it contains 15162 * the value fetched from the packet. 15163 * Already marked as written above. 15164 */ 15165 mark_reg_unknown(env, regs, BPF_REG_0); 15166 /* ld_abs load up to 32-bit skb data. */ 15167 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 15168 return 0; 15169 } 15170 15171 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 15172 { 15173 const char *exit_ctx = "At program exit"; 15174 struct tnum enforce_attach_type_range = tnum_unknown; 15175 const struct bpf_prog *prog = env->prog; 15176 struct bpf_reg_state *reg; 15177 struct bpf_retval_range range = retval_range(0, 1); 15178 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 15179 int err; 15180 struct bpf_func_state *frame = env->cur_state->frame[0]; 15181 const bool is_subprog = frame->subprogno; 15182 15183 /* LSM and struct_ops func-ptr's return type could be "void" */ 15184 if (!is_subprog || frame->in_exception_callback_fn) { 15185 switch (prog_type) { 15186 case BPF_PROG_TYPE_LSM: 15187 if (prog->expected_attach_type == BPF_LSM_CGROUP) 15188 /* See below, can be 0 or 0-1 depending on hook. */ 15189 break; 15190 fallthrough; 15191 case BPF_PROG_TYPE_STRUCT_OPS: 15192 if (!prog->aux->attach_func_proto->type) 15193 return 0; 15194 break; 15195 default: 15196 break; 15197 } 15198 } 15199 15200 /* eBPF calling convention is such that R0 is used 15201 * to return the value from eBPF program. 15202 * Make sure that it's readable at this time 15203 * of bpf_exit, which means that program wrote 15204 * something into it earlier 15205 */ 15206 err = check_reg_arg(env, regno, SRC_OP); 15207 if (err) 15208 return err; 15209 15210 if (is_pointer_value(env, regno)) { 15211 verbose(env, "R%d leaks addr as return value\n", regno); 15212 return -EACCES; 15213 } 15214 15215 reg = cur_regs(env) + regno; 15216 15217 if (frame->in_async_callback_fn) { 15218 /* enforce return zero from async callbacks like timer */ 15219 exit_ctx = "At async callback return"; 15220 range = retval_range(0, 0); 15221 goto enforce_retval; 15222 } 15223 15224 if (is_subprog && !frame->in_exception_callback_fn) { 15225 if (reg->type != SCALAR_VALUE) { 15226 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 15227 regno, reg_type_str(env, reg->type)); 15228 return -EINVAL; 15229 } 15230 return 0; 15231 } 15232 15233 switch (prog_type) { 15234 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 15235 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 15236 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 15237 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 15238 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 15239 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 15240 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 15241 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 15242 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 15243 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 15244 range = retval_range(1, 1); 15245 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 15246 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 15247 range = retval_range(0, 3); 15248 break; 15249 case BPF_PROG_TYPE_CGROUP_SKB: 15250 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 15251 range = retval_range(0, 3); 15252 enforce_attach_type_range = tnum_range(2, 3); 15253 } 15254 break; 15255 case BPF_PROG_TYPE_CGROUP_SOCK: 15256 case BPF_PROG_TYPE_SOCK_OPS: 15257 case BPF_PROG_TYPE_CGROUP_DEVICE: 15258 case BPF_PROG_TYPE_CGROUP_SYSCTL: 15259 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 15260 break; 15261 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15262 if (!env->prog->aux->attach_btf_id) 15263 return 0; 15264 range = retval_range(0, 0); 15265 break; 15266 case BPF_PROG_TYPE_TRACING: 15267 switch (env->prog->expected_attach_type) { 15268 case BPF_TRACE_FENTRY: 15269 case BPF_TRACE_FEXIT: 15270 range = retval_range(0, 0); 15271 break; 15272 case BPF_TRACE_RAW_TP: 15273 case BPF_MODIFY_RETURN: 15274 return 0; 15275 case BPF_TRACE_ITER: 15276 break; 15277 default: 15278 return -ENOTSUPP; 15279 } 15280 break; 15281 case BPF_PROG_TYPE_SK_LOOKUP: 15282 range = retval_range(SK_DROP, SK_PASS); 15283 break; 15284 15285 case BPF_PROG_TYPE_LSM: 15286 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 15287 /* Regular BPF_PROG_TYPE_LSM programs can return 15288 * any value. 15289 */ 15290 return 0; 15291 } 15292 if (!env->prog->aux->attach_func_proto->type) { 15293 /* Make sure programs that attach to void 15294 * hooks don't try to modify return value. 15295 */ 15296 range = retval_range(1, 1); 15297 } 15298 break; 15299 15300 case BPF_PROG_TYPE_NETFILTER: 15301 range = retval_range(NF_DROP, NF_ACCEPT); 15302 break; 15303 case BPF_PROG_TYPE_EXT: 15304 /* freplace program can return anything as its return value 15305 * depends on the to-be-replaced kernel func or bpf program. 15306 */ 15307 default: 15308 return 0; 15309 } 15310 15311 enforce_retval: 15312 if (reg->type != SCALAR_VALUE) { 15313 verbose(env, "%s the register R%d is not a known value (%s)\n", 15314 exit_ctx, regno, reg_type_str(env, reg->type)); 15315 return -EINVAL; 15316 } 15317 15318 err = mark_chain_precision(env, regno); 15319 if (err) 15320 return err; 15321 15322 if (!retval_range_within(range, reg)) { 15323 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 15324 if (!is_subprog && 15325 prog->expected_attach_type == BPF_LSM_CGROUP && 15326 prog_type == BPF_PROG_TYPE_LSM && 15327 !prog->aux->attach_func_proto->type) 15328 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 15329 return -EINVAL; 15330 } 15331 15332 if (!tnum_is_unknown(enforce_attach_type_range) && 15333 tnum_in(enforce_attach_type_range, reg->var_off)) 15334 env->prog->enforce_expected_attach_type = 1; 15335 return 0; 15336 } 15337 15338 /* non-recursive DFS pseudo code 15339 * 1 procedure DFS-iterative(G,v): 15340 * 2 label v as discovered 15341 * 3 let S be a stack 15342 * 4 S.push(v) 15343 * 5 while S is not empty 15344 * 6 t <- S.peek() 15345 * 7 if t is what we're looking for: 15346 * 8 return t 15347 * 9 for all edges e in G.adjacentEdges(t) do 15348 * 10 if edge e is already labelled 15349 * 11 continue with the next edge 15350 * 12 w <- G.adjacentVertex(t,e) 15351 * 13 if vertex w is not discovered and not explored 15352 * 14 label e as tree-edge 15353 * 15 label w as discovered 15354 * 16 S.push(w) 15355 * 17 continue at 5 15356 * 18 else if vertex w is discovered 15357 * 19 label e as back-edge 15358 * 20 else 15359 * 21 // vertex w is explored 15360 * 22 label e as forward- or cross-edge 15361 * 23 label t as explored 15362 * 24 S.pop() 15363 * 15364 * convention: 15365 * 0x10 - discovered 15366 * 0x11 - discovered and fall-through edge labelled 15367 * 0x12 - discovered and fall-through and branch edges labelled 15368 * 0x20 - explored 15369 */ 15370 15371 enum { 15372 DISCOVERED = 0x10, 15373 EXPLORED = 0x20, 15374 FALLTHROUGH = 1, 15375 BRANCH = 2, 15376 }; 15377 15378 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 15379 { 15380 env->insn_aux_data[idx].prune_point = true; 15381 } 15382 15383 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 15384 { 15385 return env->insn_aux_data[insn_idx].prune_point; 15386 } 15387 15388 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 15389 { 15390 env->insn_aux_data[idx].force_checkpoint = true; 15391 } 15392 15393 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 15394 { 15395 return env->insn_aux_data[insn_idx].force_checkpoint; 15396 } 15397 15398 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 15399 { 15400 env->insn_aux_data[idx].calls_callback = true; 15401 } 15402 15403 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 15404 { 15405 return env->insn_aux_data[insn_idx].calls_callback; 15406 } 15407 15408 enum { 15409 DONE_EXPLORING = 0, 15410 KEEP_EXPLORING = 1, 15411 }; 15412 15413 /* t, w, e - match pseudo-code above: 15414 * t - index of current instruction 15415 * w - next instruction 15416 * e - edge 15417 */ 15418 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 15419 { 15420 int *insn_stack = env->cfg.insn_stack; 15421 int *insn_state = env->cfg.insn_state; 15422 15423 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 15424 return DONE_EXPLORING; 15425 15426 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 15427 return DONE_EXPLORING; 15428 15429 if (w < 0 || w >= env->prog->len) { 15430 verbose_linfo(env, t, "%d: ", t); 15431 verbose(env, "jump out of range from insn %d to %d\n", t, w); 15432 return -EINVAL; 15433 } 15434 15435 if (e == BRANCH) { 15436 /* mark branch target for state pruning */ 15437 mark_prune_point(env, w); 15438 mark_jmp_point(env, w); 15439 } 15440 15441 if (insn_state[w] == 0) { 15442 /* tree-edge */ 15443 insn_state[t] = DISCOVERED | e; 15444 insn_state[w] = DISCOVERED; 15445 if (env->cfg.cur_stack >= env->prog->len) 15446 return -E2BIG; 15447 insn_stack[env->cfg.cur_stack++] = w; 15448 return KEEP_EXPLORING; 15449 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 15450 if (env->bpf_capable) 15451 return DONE_EXPLORING; 15452 verbose_linfo(env, t, "%d: ", t); 15453 verbose_linfo(env, w, "%d: ", w); 15454 verbose(env, "back-edge from insn %d to %d\n", t, w); 15455 return -EINVAL; 15456 } else if (insn_state[w] == EXPLORED) { 15457 /* forward- or cross-edge */ 15458 insn_state[t] = DISCOVERED | e; 15459 } else { 15460 verbose(env, "insn state internal bug\n"); 15461 return -EFAULT; 15462 } 15463 return DONE_EXPLORING; 15464 } 15465 15466 static int visit_func_call_insn(int t, struct bpf_insn *insns, 15467 struct bpf_verifier_env *env, 15468 bool visit_callee) 15469 { 15470 int ret, insn_sz; 15471 15472 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 15473 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 15474 if (ret) 15475 return ret; 15476 15477 mark_prune_point(env, t + insn_sz); 15478 /* when we exit from subprog, we need to record non-linear history */ 15479 mark_jmp_point(env, t + insn_sz); 15480 15481 if (visit_callee) { 15482 mark_prune_point(env, t); 15483 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 15484 } 15485 return ret; 15486 } 15487 15488 /* Visits the instruction at index t and returns one of the following: 15489 * < 0 - an error occurred 15490 * DONE_EXPLORING - the instruction was fully explored 15491 * KEEP_EXPLORING - there is still work to be done before it is fully explored 15492 */ 15493 static int visit_insn(int t, struct bpf_verifier_env *env) 15494 { 15495 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 15496 int ret, off, insn_sz; 15497 15498 if (bpf_pseudo_func(insn)) 15499 return visit_func_call_insn(t, insns, env, true); 15500 15501 /* All non-branch instructions have a single fall-through edge. */ 15502 if (BPF_CLASS(insn->code) != BPF_JMP && 15503 BPF_CLASS(insn->code) != BPF_JMP32) { 15504 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 15505 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 15506 } 15507 15508 switch (BPF_OP(insn->code)) { 15509 case BPF_EXIT: 15510 return DONE_EXPLORING; 15511 15512 case BPF_CALL: 15513 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 15514 /* Mark this call insn as a prune point to trigger 15515 * is_state_visited() check before call itself is 15516 * processed by __check_func_call(). Otherwise new 15517 * async state will be pushed for further exploration. 15518 */ 15519 mark_prune_point(env, t); 15520 /* For functions that invoke callbacks it is not known how many times 15521 * callback would be called. Verifier models callback calling functions 15522 * by repeatedly visiting callback bodies and returning to origin call 15523 * instruction. 15524 * In order to stop such iteration verifier needs to identify when a 15525 * state identical some state from a previous iteration is reached. 15526 * Check below forces creation of checkpoint before callback calling 15527 * instruction to allow search for such identical states. 15528 */ 15529 if (is_sync_callback_calling_insn(insn)) { 15530 mark_calls_callback(env, t); 15531 mark_force_checkpoint(env, t); 15532 mark_prune_point(env, t); 15533 mark_jmp_point(env, t); 15534 } 15535 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15536 struct bpf_kfunc_call_arg_meta meta; 15537 15538 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 15539 if (ret == 0 && is_iter_next_kfunc(&meta)) { 15540 mark_prune_point(env, t); 15541 /* Checking and saving state checkpoints at iter_next() call 15542 * is crucial for fast convergence of open-coded iterator loop 15543 * logic, so we need to force it. If we don't do that, 15544 * is_state_visited() might skip saving a checkpoint, causing 15545 * unnecessarily long sequence of not checkpointed 15546 * instructions and jumps, leading to exhaustion of jump 15547 * history buffer, and potentially other undesired outcomes. 15548 * It is expected that with correct open-coded iterators 15549 * convergence will happen quickly, so we don't run a risk of 15550 * exhausting memory. 15551 */ 15552 mark_force_checkpoint(env, t); 15553 } 15554 } 15555 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 15556 15557 case BPF_JA: 15558 if (BPF_SRC(insn->code) != BPF_K) 15559 return -EINVAL; 15560 15561 if (BPF_CLASS(insn->code) == BPF_JMP) 15562 off = insn->off; 15563 else 15564 off = insn->imm; 15565 15566 /* unconditional jump with single edge */ 15567 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 15568 if (ret) 15569 return ret; 15570 15571 mark_prune_point(env, t + off + 1); 15572 mark_jmp_point(env, t + off + 1); 15573 15574 return ret; 15575 15576 default: 15577 /* conditional jump with two edges */ 15578 mark_prune_point(env, t); 15579 15580 ret = push_insn(t, t + 1, FALLTHROUGH, env); 15581 if (ret) 15582 return ret; 15583 15584 return push_insn(t, t + insn->off + 1, BRANCH, env); 15585 } 15586 } 15587 15588 /* non-recursive depth-first-search to detect loops in BPF program 15589 * loop == back-edge in directed graph 15590 */ 15591 static int check_cfg(struct bpf_verifier_env *env) 15592 { 15593 int insn_cnt = env->prog->len; 15594 int *insn_stack, *insn_state; 15595 int ex_insn_beg, i, ret = 0; 15596 bool ex_done = false; 15597 15598 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15599 if (!insn_state) 15600 return -ENOMEM; 15601 15602 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15603 if (!insn_stack) { 15604 kvfree(insn_state); 15605 return -ENOMEM; 15606 } 15607 15608 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 15609 insn_stack[0] = 0; /* 0 is the first instruction */ 15610 env->cfg.cur_stack = 1; 15611 15612 walk_cfg: 15613 while (env->cfg.cur_stack > 0) { 15614 int t = insn_stack[env->cfg.cur_stack - 1]; 15615 15616 ret = visit_insn(t, env); 15617 switch (ret) { 15618 case DONE_EXPLORING: 15619 insn_state[t] = EXPLORED; 15620 env->cfg.cur_stack--; 15621 break; 15622 case KEEP_EXPLORING: 15623 break; 15624 default: 15625 if (ret > 0) { 15626 verbose(env, "visit_insn internal bug\n"); 15627 ret = -EFAULT; 15628 } 15629 goto err_free; 15630 } 15631 } 15632 15633 if (env->cfg.cur_stack < 0) { 15634 verbose(env, "pop stack internal bug\n"); 15635 ret = -EFAULT; 15636 goto err_free; 15637 } 15638 15639 if (env->exception_callback_subprog && !ex_done) { 15640 ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start; 15641 15642 insn_state[ex_insn_beg] = DISCOVERED; 15643 insn_stack[0] = ex_insn_beg; 15644 env->cfg.cur_stack = 1; 15645 ex_done = true; 15646 goto walk_cfg; 15647 } 15648 15649 for (i = 0; i < insn_cnt; i++) { 15650 struct bpf_insn *insn = &env->prog->insnsi[i]; 15651 15652 if (insn_state[i] != EXPLORED) { 15653 verbose(env, "unreachable insn %d\n", i); 15654 ret = -EINVAL; 15655 goto err_free; 15656 } 15657 if (bpf_is_ldimm64(insn)) { 15658 if (insn_state[i + 1] != 0) { 15659 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 15660 ret = -EINVAL; 15661 goto err_free; 15662 } 15663 i++; /* skip second half of ldimm64 */ 15664 } 15665 } 15666 ret = 0; /* cfg looks good */ 15667 15668 err_free: 15669 kvfree(insn_state); 15670 kvfree(insn_stack); 15671 env->cfg.insn_state = env->cfg.insn_stack = NULL; 15672 return ret; 15673 } 15674 15675 static int check_abnormal_return(struct bpf_verifier_env *env) 15676 { 15677 int i; 15678 15679 for (i = 1; i < env->subprog_cnt; i++) { 15680 if (env->subprog_info[i].has_ld_abs) { 15681 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 15682 return -EINVAL; 15683 } 15684 if (env->subprog_info[i].has_tail_call) { 15685 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 15686 return -EINVAL; 15687 } 15688 } 15689 return 0; 15690 } 15691 15692 /* The minimum supported BTF func info size */ 15693 #define MIN_BPF_FUNCINFO_SIZE 8 15694 #define MAX_FUNCINFO_REC_SIZE 252 15695 15696 static int check_btf_func_early(struct bpf_verifier_env *env, 15697 const union bpf_attr *attr, 15698 bpfptr_t uattr) 15699 { 15700 u32 krec_size = sizeof(struct bpf_func_info); 15701 const struct btf_type *type, *func_proto; 15702 u32 i, nfuncs, urec_size, min_size; 15703 struct bpf_func_info *krecord; 15704 struct bpf_prog *prog; 15705 const struct btf *btf; 15706 u32 prev_offset = 0; 15707 bpfptr_t urecord; 15708 int ret = -ENOMEM; 15709 15710 nfuncs = attr->func_info_cnt; 15711 if (!nfuncs) { 15712 if (check_abnormal_return(env)) 15713 return -EINVAL; 15714 return 0; 15715 } 15716 15717 urec_size = attr->func_info_rec_size; 15718 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 15719 urec_size > MAX_FUNCINFO_REC_SIZE || 15720 urec_size % sizeof(u32)) { 15721 verbose(env, "invalid func info rec size %u\n", urec_size); 15722 return -EINVAL; 15723 } 15724 15725 prog = env->prog; 15726 btf = prog->aux->btf; 15727 15728 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15729 min_size = min_t(u32, krec_size, urec_size); 15730 15731 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15732 if (!krecord) 15733 return -ENOMEM; 15734 15735 for (i = 0; i < nfuncs; i++) { 15736 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15737 if (ret) { 15738 if (ret == -E2BIG) { 15739 verbose(env, "nonzero tailing record in func info"); 15740 /* set the size kernel expects so loader can zero 15741 * out the rest of the record. 15742 */ 15743 if (copy_to_bpfptr_offset(uattr, 15744 offsetof(union bpf_attr, func_info_rec_size), 15745 &min_size, sizeof(min_size))) 15746 ret = -EFAULT; 15747 } 15748 goto err_free; 15749 } 15750 15751 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15752 ret = -EFAULT; 15753 goto err_free; 15754 } 15755 15756 /* check insn_off */ 15757 ret = -EINVAL; 15758 if (i == 0) { 15759 if (krecord[i].insn_off) { 15760 verbose(env, 15761 "nonzero insn_off %u for the first func info record", 15762 krecord[i].insn_off); 15763 goto err_free; 15764 } 15765 } else if (krecord[i].insn_off <= prev_offset) { 15766 verbose(env, 15767 "same or smaller insn offset (%u) than previous func info record (%u)", 15768 krecord[i].insn_off, prev_offset); 15769 goto err_free; 15770 } 15771 15772 /* check type_id */ 15773 type = btf_type_by_id(btf, krecord[i].type_id); 15774 if (!type || !btf_type_is_func(type)) { 15775 verbose(env, "invalid type id %d in func info", 15776 krecord[i].type_id); 15777 goto err_free; 15778 } 15779 15780 func_proto = btf_type_by_id(btf, type->type); 15781 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15782 /* btf_func_check() already verified it during BTF load */ 15783 goto err_free; 15784 15785 prev_offset = krecord[i].insn_off; 15786 bpfptr_add(&urecord, urec_size); 15787 } 15788 15789 prog->aux->func_info = krecord; 15790 prog->aux->func_info_cnt = nfuncs; 15791 return 0; 15792 15793 err_free: 15794 kvfree(krecord); 15795 return ret; 15796 } 15797 15798 static int check_btf_func(struct bpf_verifier_env *env, 15799 const union bpf_attr *attr, 15800 bpfptr_t uattr) 15801 { 15802 const struct btf_type *type, *func_proto, *ret_type; 15803 u32 i, nfuncs, urec_size; 15804 struct bpf_func_info *krecord; 15805 struct bpf_func_info_aux *info_aux = NULL; 15806 struct bpf_prog *prog; 15807 const struct btf *btf; 15808 bpfptr_t urecord; 15809 bool scalar_return; 15810 int ret = -ENOMEM; 15811 15812 nfuncs = attr->func_info_cnt; 15813 if (!nfuncs) { 15814 if (check_abnormal_return(env)) 15815 return -EINVAL; 15816 return 0; 15817 } 15818 if (nfuncs != env->subprog_cnt) { 15819 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 15820 return -EINVAL; 15821 } 15822 15823 urec_size = attr->func_info_rec_size; 15824 15825 prog = env->prog; 15826 btf = prog->aux->btf; 15827 15828 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15829 15830 krecord = prog->aux->func_info; 15831 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 15832 if (!info_aux) 15833 return -ENOMEM; 15834 15835 for (i = 0; i < nfuncs; i++) { 15836 /* check insn_off */ 15837 ret = -EINVAL; 15838 15839 if (env->subprog_info[i].start != krecord[i].insn_off) { 15840 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 15841 goto err_free; 15842 } 15843 15844 /* Already checked type_id */ 15845 type = btf_type_by_id(btf, krecord[i].type_id); 15846 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 15847 /* Already checked func_proto */ 15848 func_proto = btf_type_by_id(btf, type->type); 15849 15850 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 15851 scalar_return = 15852 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 15853 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 15854 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 15855 goto err_free; 15856 } 15857 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 15858 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 15859 goto err_free; 15860 } 15861 15862 bpfptr_add(&urecord, urec_size); 15863 } 15864 15865 prog->aux->func_info_aux = info_aux; 15866 return 0; 15867 15868 err_free: 15869 kfree(info_aux); 15870 return ret; 15871 } 15872 15873 static void adjust_btf_func(struct bpf_verifier_env *env) 15874 { 15875 struct bpf_prog_aux *aux = env->prog->aux; 15876 int i; 15877 15878 if (!aux->func_info) 15879 return; 15880 15881 /* func_info is not available for hidden subprogs */ 15882 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 15883 aux->func_info[i].insn_off = env->subprog_info[i].start; 15884 } 15885 15886 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 15887 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 15888 15889 static int check_btf_line(struct bpf_verifier_env *env, 15890 const union bpf_attr *attr, 15891 bpfptr_t uattr) 15892 { 15893 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 15894 struct bpf_subprog_info *sub; 15895 struct bpf_line_info *linfo; 15896 struct bpf_prog *prog; 15897 const struct btf *btf; 15898 bpfptr_t ulinfo; 15899 int err; 15900 15901 nr_linfo = attr->line_info_cnt; 15902 if (!nr_linfo) 15903 return 0; 15904 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 15905 return -EINVAL; 15906 15907 rec_size = attr->line_info_rec_size; 15908 if (rec_size < MIN_BPF_LINEINFO_SIZE || 15909 rec_size > MAX_LINEINFO_REC_SIZE || 15910 rec_size & (sizeof(u32) - 1)) 15911 return -EINVAL; 15912 15913 /* Need to zero it in case the userspace may 15914 * pass in a smaller bpf_line_info object. 15915 */ 15916 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 15917 GFP_KERNEL | __GFP_NOWARN); 15918 if (!linfo) 15919 return -ENOMEM; 15920 15921 prog = env->prog; 15922 btf = prog->aux->btf; 15923 15924 s = 0; 15925 sub = env->subprog_info; 15926 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 15927 expected_size = sizeof(struct bpf_line_info); 15928 ncopy = min_t(u32, expected_size, rec_size); 15929 for (i = 0; i < nr_linfo; i++) { 15930 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 15931 if (err) { 15932 if (err == -E2BIG) { 15933 verbose(env, "nonzero tailing record in line_info"); 15934 if (copy_to_bpfptr_offset(uattr, 15935 offsetof(union bpf_attr, line_info_rec_size), 15936 &expected_size, sizeof(expected_size))) 15937 err = -EFAULT; 15938 } 15939 goto err_free; 15940 } 15941 15942 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 15943 err = -EFAULT; 15944 goto err_free; 15945 } 15946 15947 /* 15948 * Check insn_off to ensure 15949 * 1) strictly increasing AND 15950 * 2) bounded by prog->len 15951 * 15952 * The linfo[0].insn_off == 0 check logically falls into 15953 * the later "missing bpf_line_info for func..." case 15954 * because the first linfo[0].insn_off must be the 15955 * first sub also and the first sub must have 15956 * subprog_info[0].start == 0. 15957 */ 15958 if ((i && linfo[i].insn_off <= prev_offset) || 15959 linfo[i].insn_off >= prog->len) { 15960 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 15961 i, linfo[i].insn_off, prev_offset, 15962 prog->len); 15963 err = -EINVAL; 15964 goto err_free; 15965 } 15966 15967 if (!prog->insnsi[linfo[i].insn_off].code) { 15968 verbose(env, 15969 "Invalid insn code at line_info[%u].insn_off\n", 15970 i); 15971 err = -EINVAL; 15972 goto err_free; 15973 } 15974 15975 if (!btf_name_by_offset(btf, linfo[i].line_off) || 15976 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 15977 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 15978 err = -EINVAL; 15979 goto err_free; 15980 } 15981 15982 if (s != env->subprog_cnt) { 15983 if (linfo[i].insn_off == sub[s].start) { 15984 sub[s].linfo_idx = i; 15985 s++; 15986 } else if (sub[s].start < linfo[i].insn_off) { 15987 verbose(env, "missing bpf_line_info for func#%u\n", s); 15988 err = -EINVAL; 15989 goto err_free; 15990 } 15991 } 15992 15993 prev_offset = linfo[i].insn_off; 15994 bpfptr_add(&ulinfo, rec_size); 15995 } 15996 15997 if (s != env->subprog_cnt) { 15998 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 15999 env->subprog_cnt - s, s); 16000 err = -EINVAL; 16001 goto err_free; 16002 } 16003 16004 prog->aux->linfo = linfo; 16005 prog->aux->nr_linfo = nr_linfo; 16006 16007 return 0; 16008 16009 err_free: 16010 kvfree(linfo); 16011 return err; 16012 } 16013 16014 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 16015 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 16016 16017 static int check_core_relo(struct bpf_verifier_env *env, 16018 const union bpf_attr *attr, 16019 bpfptr_t uattr) 16020 { 16021 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 16022 struct bpf_core_relo core_relo = {}; 16023 struct bpf_prog *prog = env->prog; 16024 const struct btf *btf = prog->aux->btf; 16025 struct bpf_core_ctx ctx = { 16026 .log = &env->log, 16027 .btf = btf, 16028 }; 16029 bpfptr_t u_core_relo; 16030 int err; 16031 16032 nr_core_relo = attr->core_relo_cnt; 16033 if (!nr_core_relo) 16034 return 0; 16035 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 16036 return -EINVAL; 16037 16038 rec_size = attr->core_relo_rec_size; 16039 if (rec_size < MIN_CORE_RELO_SIZE || 16040 rec_size > MAX_CORE_RELO_SIZE || 16041 rec_size % sizeof(u32)) 16042 return -EINVAL; 16043 16044 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 16045 expected_size = sizeof(struct bpf_core_relo); 16046 ncopy = min_t(u32, expected_size, rec_size); 16047 16048 /* Unlike func_info and line_info, copy and apply each CO-RE 16049 * relocation record one at a time. 16050 */ 16051 for (i = 0; i < nr_core_relo; i++) { 16052 /* future proofing when sizeof(bpf_core_relo) changes */ 16053 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 16054 if (err) { 16055 if (err == -E2BIG) { 16056 verbose(env, "nonzero tailing record in core_relo"); 16057 if (copy_to_bpfptr_offset(uattr, 16058 offsetof(union bpf_attr, core_relo_rec_size), 16059 &expected_size, sizeof(expected_size))) 16060 err = -EFAULT; 16061 } 16062 break; 16063 } 16064 16065 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 16066 err = -EFAULT; 16067 break; 16068 } 16069 16070 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 16071 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 16072 i, core_relo.insn_off, prog->len); 16073 err = -EINVAL; 16074 break; 16075 } 16076 16077 err = bpf_core_apply(&ctx, &core_relo, i, 16078 &prog->insnsi[core_relo.insn_off / 8]); 16079 if (err) 16080 break; 16081 bpfptr_add(&u_core_relo, rec_size); 16082 } 16083 return err; 16084 } 16085 16086 static int check_btf_info_early(struct bpf_verifier_env *env, 16087 const union bpf_attr *attr, 16088 bpfptr_t uattr) 16089 { 16090 struct btf *btf; 16091 int err; 16092 16093 if (!attr->func_info_cnt && !attr->line_info_cnt) { 16094 if (check_abnormal_return(env)) 16095 return -EINVAL; 16096 return 0; 16097 } 16098 16099 btf = btf_get_by_fd(attr->prog_btf_fd); 16100 if (IS_ERR(btf)) 16101 return PTR_ERR(btf); 16102 if (btf_is_kernel(btf)) { 16103 btf_put(btf); 16104 return -EACCES; 16105 } 16106 env->prog->aux->btf = btf; 16107 16108 err = check_btf_func_early(env, attr, uattr); 16109 if (err) 16110 return err; 16111 return 0; 16112 } 16113 16114 static int check_btf_info(struct bpf_verifier_env *env, 16115 const union bpf_attr *attr, 16116 bpfptr_t uattr) 16117 { 16118 int err; 16119 16120 if (!attr->func_info_cnt && !attr->line_info_cnt) { 16121 if (check_abnormal_return(env)) 16122 return -EINVAL; 16123 return 0; 16124 } 16125 16126 err = check_btf_func(env, attr, uattr); 16127 if (err) 16128 return err; 16129 16130 err = check_btf_line(env, attr, uattr); 16131 if (err) 16132 return err; 16133 16134 err = check_core_relo(env, attr, uattr); 16135 if (err) 16136 return err; 16137 16138 return 0; 16139 } 16140 16141 /* check %cur's range satisfies %old's */ 16142 static bool range_within(struct bpf_reg_state *old, 16143 struct bpf_reg_state *cur) 16144 { 16145 return old->umin_value <= cur->umin_value && 16146 old->umax_value >= cur->umax_value && 16147 old->smin_value <= cur->smin_value && 16148 old->smax_value >= cur->smax_value && 16149 old->u32_min_value <= cur->u32_min_value && 16150 old->u32_max_value >= cur->u32_max_value && 16151 old->s32_min_value <= cur->s32_min_value && 16152 old->s32_max_value >= cur->s32_max_value; 16153 } 16154 16155 /* If in the old state two registers had the same id, then they need to have 16156 * the same id in the new state as well. But that id could be different from 16157 * the old state, so we need to track the mapping from old to new ids. 16158 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 16159 * regs with old id 5 must also have new id 9 for the new state to be safe. But 16160 * regs with a different old id could still have new id 9, we don't care about 16161 * that. 16162 * So we look through our idmap to see if this old id has been seen before. If 16163 * so, we require the new id to match; otherwise, we add the id pair to the map. 16164 */ 16165 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 16166 { 16167 struct bpf_id_pair *map = idmap->map; 16168 unsigned int i; 16169 16170 /* either both IDs should be set or both should be zero */ 16171 if (!!old_id != !!cur_id) 16172 return false; 16173 16174 if (old_id == 0) /* cur_id == 0 as well */ 16175 return true; 16176 16177 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 16178 if (!map[i].old) { 16179 /* Reached an empty slot; haven't seen this id before */ 16180 map[i].old = old_id; 16181 map[i].cur = cur_id; 16182 return true; 16183 } 16184 if (map[i].old == old_id) 16185 return map[i].cur == cur_id; 16186 if (map[i].cur == cur_id) 16187 return false; 16188 } 16189 /* We ran out of idmap slots, which should be impossible */ 16190 WARN_ON_ONCE(1); 16191 return false; 16192 } 16193 16194 /* Similar to check_ids(), but allocate a unique temporary ID 16195 * for 'old_id' or 'cur_id' of zero. 16196 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 16197 */ 16198 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 16199 { 16200 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 16201 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 16202 16203 return check_ids(old_id, cur_id, idmap); 16204 } 16205 16206 static void clean_func_state(struct bpf_verifier_env *env, 16207 struct bpf_func_state *st) 16208 { 16209 enum bpf_reg_liveness live; 16210 int i, j; 16211 16212 for (i = 0; i < BPF_REG_FP; i++) { 16213 live = st->regs[i].live; 16214 /* liveness must not touch this register anymore */ 16215 st->regs[i].live |= REG_LIVE_DONE; 16216 if (!(live & REG_LIVE_READ)) 16217 /* since the register is unused, clear its state 16218 * to make further comparison simpler 16219 */ 16220 __mark_reg_not_init(env, &st->regs[i]); 16221 } 16222 16223 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 16224 live = st->stack[i].spilled_ptr.live; 16225 /* liveness must not touch this stack slot anymore */ 16226 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 16227 if (!(live & REG_LIVE_READ)) { 16228 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 16229 for (j = 0; j < BPF_REG_SIZE; j++) 16230 st->stack[i].slot_type[j] = STACK_INVALID; 16231 } 16232 } 16233 } 16234 16235 static void clean_verifier_state(struct bpf_verifier_env *env, 16236 struct bpf_verifier_state *st) 16237 { 16238 int i; 16239 16240 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 16241 /* all regs in this state in all frames were already marked */ 16242 return; 16243 16244 for (i = 0; i <= st->curframe; i++) 16245 clean_func_state(env, st->frame[i]); 16246 } 16247 16248 /* the parentage chains form a tree. 16249 * the verifier states are added to state lists at given insn and 16250 * pushed into state stack for future exploration. 16251 * when the verifier reaches bpf_exit insn some of the verifer states 16252 * stored in the state lists have their final liveness state already, 16253 * but a lot of states will get revised from liveness point of view when 16254 * the verifier explores other branches. 16255 * Example: 16256 * 1: r0 = 1 16257 * 2: if r1 == 100 goto pc+1 16258 * 3: r0 = 2 16259 * 4: exit 16260 * when the verifier reaches exit insn the register r0 in the state list of 16261 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 16262 * of insn 2 and goes exploring further. At the insn 4 it will walk the 16263 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 16264 * 16265 * Since the verifier pushes the branch states as it sees them while exploring 16266 * the program the condition of walking the branch instruction for the second 16267 * time means that all states below this branch were already explored and 16268 * their final liveness marks are already propagated. 16269 * Hence when the verifier completes the search of state list in is_state_visited() 16270 * we can call this clean_live_states() function to mark all liveness states 16271 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 16272 * will not be used. 16273 * This function also clears the registers and stack for states that !READ 16274 * to simplify state merging. 16275 * 16276 * Important note here that walking the same branch instruction in the callee 16277 * doesn't meant that the states are DONE. The verifier has to compare 16278 * the callsites 16279 */ 16280 static void clean_live_states(struct bpf_verifier_env *env, int insn, 16281 struct bpf_verifier_state *cur) 16282 { 16283 struct bpf_verifier_state_list *sl; 16284 16285 sl = *explored_state(env, insn); 16286 while (sl) { 16287 if (sl->state.branches) 16288 goto next; 16289 if (sl->state.insn_idx != insn || 16290 !same_callsites(&sl->state, cur)) 16291 goto next; 16292 clean_verifier_state(env, &sl->state); 16293 next: 16294 sl = sl->next; 16295 } 16296 } 16297 16298 static bool regs_exact(const struct bpf_reg_state *rold, 16299 const struct bpf_reg_state *rcur, 16300 struct bpf_idmap *idmap) 16301 { 16302 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16303 check_ids(rold->id, rcur->id, idmap) && 16304 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16305 } 16306 16307 /* Returns true if (rold safe implies rcur safe) */ 16308 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 16309 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact) 16310 { 16311 if (exact) 16312 return regs_exact(rold, rcur, idmap); 16313 16314 if (!(rold->live & REG_LIVE_READ)) 16315 /* explored state didn't use this */ 16316 return true; 16317 if (rold->type == NOT_INIT) 16318 /* explored state can't have used this */ 16319 return true; 16320 if (rcur->type == NOT_INIT) 16321 return false; 16322 16323 /* Enforce that register types have to match exactly, including their 16324 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 16325 * rule. 16326 * 16327 * One can make a point that using a pointer register as unbounded 16328 * SCALAR would be technically acceptable, but this could lead to 16329 * pointer leaks because scalars are allowed to leak while pointers 16330 * are not. We could make this safe in special cases if root is 16331 * calling us, but it's probably not worth the hassle. 16332 * 16333 * Also, register types that are *not* MAYBE_NULL could technically be 16334 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 16335 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 16336 * to the same map). 16337 * However, if the old MAYBE_NULL register then got NULL checked, 16338 * doing so could have affected others with the same id, and we can't 16339 * check for that because we lost the id when we converted to 16340 * a non-MAYBE_NULL variant. 16341 * So, as a general rule we don't allow mixing MAYBE_NULL and 16342 * non-MAYBE_NULL registers as well. 16343 */ 16344 if (rold->type != rcur->type) 16345 return false; 16346 16347 switch (base_type(rold->type)) { 16348 case SCALAR_VALUE: 16349 if (env->explore_alu_limits) { 16350 /* explore_alu_limits disables tnum_in() and range_within() 16351 * logic and requires everything to be strict 16352 */ 16353 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16354 check_scalar_ids(rold->id, rcur->id, idmap); 16355 } 16356 if (!rold->precise) 16357 return true; 16358 /* Why check_ids() for scalar registers? 16359 * 16360 * Consider the following BPF code: 16361 * 1: r6 = ... unbound scalar, ID=a ... 16362 * 2: r7 = ... unbound scalar, ID=b ... 16363 * 3: if (r6 > r7) goto +1 16364 * 4: r6 = r7 16365 * 5: if (r6 > X) goto ... 16366 * 6: ... memory operation using r7 ... 16367 * 16368 * First verification path is [1-6]: 16369 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 16370 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 16371 * r7 <= X, because r6 and r7 share same id. 16372 * Next verification path is [1-4, 6]. 16373 * 16374 * Instruction (6) would be reached in two states: 16375 * I. r6{.id=b}, r7{.id=b} via path 1-6; 16376 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 16377 * 16378 * Use check_ids() to distinguish these states. 16379 * --- 16380 * Also verify that new value satisfies old value range knowledge. 16381 */ 16382 return range_within(rold, rcur) && 16383 tnum_in(rold->var_off, rcur->var_off) && 16384 check_scalar_ids(rold->id, rcur->id, idmap); 16385 case PTR_TO_MAP_KEY: 16386 case PTR_TO_MAP_VALUE: 16387 case PTR_TO_MEM: 16388 case PTR_TO_BUF: 16389 case PTR_TO_TP_BUFFER: 16390 /* If the new min/max/var_off satisfy the old ones and 16391 * everything else matches, we are OK. 16392 */ 16393 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 16394 range_within(rold, rcur) && 16395 tnum_in(rold->var_off, rcur->var_off) && 16396 check_ids(rold->id, rcur->id, idmap) && 16397 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16398 case PTR_TO_PACKET_META: 16399 case PTR_TO_PACKET: 16400 /* We must have at least as much range as the old ptr 16401 * did, so that any accesses which were safe before are 16402 * still safe. This is true even if old range < old off, 16403 * since someone could have accessed through (ptr - k), or 16404 * even done ptr -= k in a register, to get a safe access. 16405 */ 16406 if (rold->range > rcur->range) 16407 return false; 16408 /* If the offsets don't match, we can't trust our alignment; 16409 * nor can we be sure that we won't fall out of range. 16410 */ 16411 if (rold->off != rcur->off) 16412 return false; 16413 /* id relations must be preserved */ 16414 if (!check_ids(rold->id, rcur->id, idmap)) 16415 return false; 16416 /* new val must satisfy old val knowledge */ 16417 return range_within(rold, rcur) && 16418 tnum_in(rold->var_off, rcur->var_off); 16419 case PTR_TO_STACK: 16420 /* two stack pointers are equal only if they're pointing to 16421 * the same stack frame, since fp-8 in foo != fp-8 in bar 16422 */ 16423 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 16424 default: 16425 return regs_exact(rold, rcur, idmap); 16426 } 16427 } 16428 16429 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 16430 struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact) 16431 { 16432 int i, spi; 16433 16434 /* walk slots of the explored stack and ignore any additional 16435 * slots in the current stack, since explored(safe) state 16436 * didn't use them 16437 */ 16438 for (i = 0; i < old->allocated_stack; i++) { 16439 struct bpf_reg_state *old_reg, *cur_reg; 16440 16441 spi = i / BPF_REG_SIZE; 16442 16443 if (exact && 16444 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16445 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16446 return false; 16447 16448 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) { 16449 i += BPF_REG_SIZE - 1; 16450 /* explored state didn't use this */ 16451 continue; 16452 } 16453 16454 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 16455 continue; 16456 16457 if (env->allow_uninit_stack && 16458 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 16459 continue; 16460 16461 /* explored stack has more populated slots than current stack 16462 * and these slots were used 16463 */ 16464 if (i >= cur->allocated_stack) 16465 return false; 16466 16467 /* if old state was safe with misc data in the stack 16468 * it will be safe with zero-initialized stack. 16469 * The opposite is not true 16470 */ 16471 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 16472 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 16473 continue; 16474 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16475 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16476 /* Ex: old explored (safe) state has STACK_SPILL in 16477 * this stack slot, but current has STACK_MISC -> 16478 * this verifier states are not equivalent, 16479 * return false to continue verification of this path 16480 */ 16481 return false; 16482 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 16483 continue; 16484 /* Both old and cur are having same slot_type */ 16485 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 16486 case STACK_SPILL: 16487 /* when explored and current stack slot are both storing 16488 * spilled registers, check that stored pointers types 16489 * are the same as well. 16490 * Ex: explored safe path could have stored 16491 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 16492 * but current path has stored: 16493 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 16494 * such verifier states are not equivalent. 16495 * return false to continue verification of this path 16496 */ 16497 if (!regsafe(env, &old->stack[spi].spilled_ptr, 16498 &cur->stack[spi].spilled_ptr, idmap, exact)) 16499 return false; 16500 break; 16501 case STACK_DYNPTR: 16502 old_reg = &old->stack[spi].spilled_ptr; 16503 cur_reg = &cur->stack[spi].spilled_ptr; 16504 if (old_reg->dynptr.type != cur_reg->dynptr.type || 16505 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 16506 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16507 return false; 16508 break; 16509 case STACK_ITER: 16510 old_reg = &old->stack[spi].spilled_ptr; 16511 cur_reg = &cur->stack[spi].spilled_ptr; 16512 /* iter.depth is not compared between states as it 16513 * doesn't matter for correctness and would otherwise 16514 * prevent convergence; we maintain it only to prevent 16515 * infinite loop check triggering, see 16516 * iter_active_depths_differ() 16517 */ 16518 if (old_reg->iter.btf != cur_reg->iter.btf || 16519 old_reg->iter.btf_id != cur_reg->iter.btf_id || 16520 old_reg->iter.state != cur_reg->iter.state || 16521 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 16522 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16523 return false; 16524 break; 16525 case STACK_MISC: 16526 case STACK_ZERO: 16527 case STACK_INVALID: 16528 continue; 16529 /* Ensure that new unhandled slot types return false by default */ 16530 default: 16531 return false; 16532 } 16533 } 16534 return true; 16535 } 16536 16537 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 16538 struct bpf_idmap *idmap) 16539 { 16540 int i; 16541 16542 if (old->acquired_refs != cur->acquired_refs) 16543 return false; 16544 16545 for (i = 0; i < old->acquired_refs; i++) { 16546 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 16547 return false; 16548 } 16549 16550 return true; 16551 } 16552 16553 /* compare two verifier states 16554 * 16555 * all states stored in state_list are known to be valid, since 16556 * verifier reached 'bpf_exit' instruction through them 16557 * 16558 * this function is called when verifier exploring different branches of 16559 * execution popped from the state stack. If it sees an old state that has 16560 * more strict register state and more strict stack state then this execution 16561 * branch doesn't need to be explored further, since verifier already 16562 * concluded that more strict state leads to valid finish. 16563 * 16564 * Therefore two states are equivalent if register state is more conservative 16565 * and explored stack state is more conservative than the current one. 16566 * Example: 16567 * explored current 16568 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 16569 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 16570 * 16571 * In other words if current stack state (one being explored) has more 16572 * valid slots than old one that already passed validation, it means 16573 * the verifier can stop exploring and conclude that current state is valid too 16574 * 16575 * Similarly with registers. If explored state has register type as invalid 16576 * whereas register type in current state is meaningful, it means that 16577 * the current state will reach 'bpf_exit' instruction safely 16578 */ 16579 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 16580 struct bpf_func_state *cur, bool exact) 16581 { 16582 int i; 16583 16584 for (i = 0; i < MAX_BPF_REG; i++) 16585 if (!regsafe(env, &old->regs[i], &cur->regs[i], 16586 &env->idmap_scratch, exact)) 16587 return false; 16588 16589 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 16590 return false; 16591 16592 if (!refsafe(old, cur, &env->idmap_scratch)) 16593 return false; 16594 16595 return true; 16596 } 16597 16598 static void reset_idmap_scratch(struct bpf_verifier_env *env) 16599 { 16600 env->idmap_scratch.tmp_id_gen = env->id_gen; 16601 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 16602 } 16603 16604 static bool states_equal(struct bpf_verifier_env *env, 16605 struct bpf_verifier_state *old, 16606 struct bpf_verifier_state *cur, 16607 bool exact) 16608 { 16609 int i; 16610 16611 if (old->curframe != cur->curframe) 16612 return false; 16613 16614 reset_idmap_scratch(env); 16615 16616 /* Verification state from speculative execution simulation 16617 * must never prune a non-speculative execution one. 16618 */ 16619 if (old->speculative && !cur->speculative) 16620 return false; 16621 16622 if (old->active_lock.ptr != cur->active_lock.ptr) 16623 return false; 16624 16625 /* Old and cur active_lock's have to be either both present 16626 * or both absent. 16627 */ 16628 if (!!old->active_lock.id != !!cur->active_lock.id) 16629 return false; 16630 16631 if (old->active_lock.id && 16632 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 16633 return false; 16634 16635 if (old->active_rcu_lock != cur->active_rcu_lock) 16636 return false; 16637 16638 /* for states to be equal callsites have to be the same 16639 * and all frame states need to be equivalent 16640 */ 16641 for (i = 0; i <= old->curframe; i++) { 16642 if (old->frame[i]->callsite != cur->frame[i]->callsite) 16643 return false; 16644 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 16645 return false; 16646 } 16647 return true; 16648 } 16649 16650 /* Return 0 if no propagation happened. Return negative error code if error 16651 * happened. Otherwise, return the propagated bit. 16652 */ 16653 static int propagate_liveness_reg(struct bpf_verifier_env *env, 16654 struct bpf_reg_state *reg, 16655 struct bpf_reg_state *parent_reg) 16656 { 16657 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 16658 u8 flag = reg->live & REG_LIVE_READ; 16659 int err; 16660 16661 /* When comes here, read flags of PARENT_REG or REG could be any of 16662 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 16663 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 16664 */ 16665 if (parent_flag == REG_LIVE_READ64 || 16666 /* Or if there is no read flag from REG. */ 16667 !flag || 16668 /* Or if the read flag from REG is the same as PARENT_REG. */ 16669 parent_flag == flag) 16670 return 0; 16671 16672 err = mark_reg_read(env, reg, parent_reg, flag); 16673 if (err) 16674 return err; 16675 16676 return flag; 16677 } 16678 16679 /* A write screens off any subsequent reads; but write marks come from the 16680 * straight-line code between a state and its parent. When we arrive at an 16681 * equivalent state (jump target or such) we didn't arrive by the straight-line 16682 * code, so read marks in the state must propagate to the parent regardless 16683 * of the state's write marks. That's what 'parent == state->parent' comparison 16684 * in mark_reg_read() is for. 16685 */ 16686 static int propagate_liveness(struct bpf_verifier_env *env, 16687 const struct bpf_verifier_state *vstate, 16688 struct bpf_verifier_state *vparent) 16689 { 16690 struct bpf_reg_state *state_reg, *parent_reg; 16691 struct bpf_func_state *state, *parent; 16692 int i, frame, err = 0; 16693 16694 if (vparent->curframe != vstate->curframe) { 16695 WARN(1, "propagate_live: parent frame %d current frame %d\n", 16696 vparent->curframe, vstate->curframe); 16697 return -EFAULT; 16698 } 16699 /* Propagate read liveness of registers... */ 16700 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 16701 for (frame = 0; frame <= vstate->curframe; frame++) { 16702 parent = vparent->frame[frame]; 16703 state = vstate->frame[frame]; 16704 parent_reg = parent->regs; 16705 state_reg = state->regs; 16706 /* We don't need to worry about FP liveness, it's read-only */ 16707 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 16708 err = propagate_liveness_reg(env, &state_reg[i], 16709 &parent_reg[i]); 16710 if (err < 0) 16711 return err; 16712 if (err == REG_LIVE_READ64) 16713 mark_insn_zext(env, &parent_reg[i]); 16714 } 16715 16716 /* Propagate stack slots. */ 16717 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 16718 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 16719 parent_reg = &parent->stack[i].spilled_ptr; 16720 state_reg = &state->stack[i].spilled_ptr; 16721 err = propagate_liveness_reg(env, state_reg, 16722 parent_reg); 16723 if (err < 0) 16724 return err; 16725 } 16726 } 16727 return 0; 16728 } 16729 16730 /* find precise scalars in the previous equivalent state and 16731 * propagate them into the current state 16732 */ 16733 static int propagate_precision(struct bpf_verifier_env *env, 16734 const struct bpf_verifier_state *old) 16735 { 16736 struct bpf_reg_state *state_reg; 16737 struct bpf_func_state *state; 16738 int i, err = 0, fr; 16739 bool first; 16740 16741 for (fr = old->curframe; fr >= 0; fr--) { 16742 state = old->frame[fr]; 16743 state_reg = state->regs; 16744 first = true; 16745 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 16746 if (state_reg->type != SCALAR_VALUE || 16747 !state_reg->precise || 16748 !(state_reg->live & REG_LIVE_READ)) 16749 continue; 16750 if (env->log.level & BPF_LOG_LEVEL2) { 16751 if (first) 16752 verbose(env, "frame %d: propagating r%d", fr, i); 16753 else 16754 verbose(env, ",r%d", i); 16755 } 16756 bt_set_frame_reg(&env->bt, fr, i); 16757 first = false; 16758 } 16759 16760 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16761 if (!is_spilled_reg(&state->stack[i])) 16762 continue; 16763 state_reg = &state->stack[i].spilled_ptr; 16764 if (state_reg->type != SCALAR_VALUE || 16765 !state_reg->precise || 16766 !(state_reg->live & REG_LIVE_READ)) 16767 continue; 16768 if (env->log.level & BPF_LOG_LEVEL2) { 16769 if (first) 16770 verbose(env, "frame %d: propagating fp%d", 16771 fr, (-i - 1) * BPF_REG_SIZE); 16772 else 16773 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 16774 } 16775 bt_set_frame_slot(&env->bt, fr, i); 16776 first = false; 16777 } 16778 if (!first) 16779 verbose(env, "\n"); 16780 } 16781 16782 err = mark_chain_precision_batch(env); 16783 if (err < 0) 16784 return err; 16785 16786 return 0; 16787 } 16788 16789 static bool states_maybe_looping(struct bpf_verifier_state *old, 16790 struct bpf_verifier_state *cur) 16791 { 16792 struct bpf_func_state *fold, *fcur; 16793 int i, fr = cur->curframe; 16794 16795 if (old->curframe != fr) 16796 return false; 16797 16798 fold = old->frame[fr]; 16799 fcur = cur->frame[fr]; 16800 for (i = 0; i < MAX_BPF_REG; i++) 16801 if (memcmp(&fold->regs[i], &fcur->regs[i], 16802 offsetof(struct bpf_reg_state, parent))) 16803 return false; 16804 return true; 16805 } 16806 16807 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 16808 { 16809 return env->insn_aux_data[insn_idx].is_iter_next; 16810 } 16811 16812 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 16813 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 16814 * states to match, which otherwise would look like an infinite loop. So while 16815 * iter_next() calls are taken care of, we still need to be careful and 16816 * prevent erroneous and too eager declaration of "ininite loop", when 16817 * iterators are involved. 16818 * 16819 * Here's a situation in pseudo-BPF assembly form: 16820 * 16821 * 0: again: ; set up iter_next() call args 16822 * 1: r1 = &it ; <CHECKPOINT HERE> 16823 * 2: call bpf_iter_num_next ; this is iter_next() call 16824 * 3: if r0 == 0 goto done 16825 * 4: ... something useful here ... 16826 * 5: goto again ; another iteration 16827 * 6: done: 16828 * 7: r1 = &it 16829 * 8: call bpf_iter_num_destroy ; clean up iter state 16830 * 9: exit 16831 * 16832 * This is a typical loop. Let's assume that we have a prune point at 1:, 16833 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 16834 * again`, assuming other heuristics don't get in a way). 16835 * 16836 * When we first time come to 1:, let's say we have some state X. We proceed 16837 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 16838 * Now we come back to validate that forked ACTIVE state. We proceed through 16839 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 16840 * are converging. But the problem is that we don't know that yet, as this 16841 * convergence has to happen at iter_next() call site only. So if nothing is 16842 * done, at 1: verifier will use bounded loop logic and declare infinite 16843 * looping (and would be *technically* correct, if not for iterator's 16844 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 16845 * don't want that. So what we do in process_iter_next_call() when we go on 16846 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 16847 * a different iteration. So when we suspect an infinite loop, we additionally 16848 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 16849 * pretend we are not looping and wait for next iter_next() call. 16850 * 16851 * This only applies to ACTIVE state. In DRAINED state we don't expect to 16852 * loop, because that would actually mean infinite loop, as DRAINED state is 16853 * "sticky", and so we'll keep returning into the same instruction with the 16854 * same state (at least in one of possible code paths). 16855 * 16856 * This approach allows to keep infinite loop heuristic even in the face of 16857 * active iterator. E.g., C snippet below is and will be detected as 16858 * inifintely looping: 16859 * 16860 * struct bpf_iter_num it; 16861 * int *p, x; 16862 * 16863 * bpf_iter_num_new(&it, 0, 10); 16864 * while ((p = bpf_iter_num_next(&t))) { 16865 * x = p; 16866 * while (x--) {} // <<-- infinite loop here 16867 * } 16868 * 16869 */ 16870 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 16871 { 16872 struct bpf_reg_state *slot, *cur_slot; 16873 struct bpf_func_state *state; 16874 int i, fr; 16875 16876 for (fr = old->curframe; fr >= 0; fr--) { 16877 state = old->frame[fr]; 16878 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16879 if (state->stack[i].slot_type[0] != STACK_ITER) 16880 continue; 16881 16882 slot = &state->stack[i].spilled_ptr; 16883 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 16884 continue; 16885 16886 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 16887 if (cur_slot->iter.depth != slot->iter.depth) 16888 return true; 16889 } 16890 } 16891 return false; 16892 } 16893 16894 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 16895 { 16896 struct bpf_verifier_state_list *new_sl; 16897 struct bpf_verifier_state_list *sl, **pprev; 16898 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 16899 int i, j, n, err, states_cnt = 0; 16900 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 16901 bool add_new_state = force_new_state; 16902 bool force_exact; 16903 16904 /* bpf progs typically have pruning point every 4 instructions 16905 * http://vger.kernel.org/bpfconf2019.html#session-1 16906 * Do not add new state for future pruning if the verifier hasn't seen 16907 * at least 2 jumps and at least 8 instructions. 16908 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 16909 * In tests that amounts to up to 50% reduction into total verifier 16910 * memory consumption and 20% verifier time speedup. 16911 */ 16912 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 16913 env->insn_processed - env->prev_insn_processed >= 8) 16914 add_new_state = true; 16915 16916 pprev = explored_state(env, insn_idx); 16917 sl = *pprev; 16918 16919 clean_live_states(env, insn_idx, cur); 16920 16921 while (sl) { 16922 states_cnt++; 16923 if (sl->state.insn_idx != insn_idx) 16924 goto next; 16925 16926 if (sl->state.branches) { 16927 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 16928 16929 if (frame->in_async_callback_fn && 16930 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 16931 /* Different async_entry_cnt means that the verifier is 16932 * processing another entry into async callback. 16933 * Seeing the same state is not an indication of infinite 16934 * loop or infinite recursion. 16935 * But finding the same state doesn't mean that it's safe 16936 * to stop processing the current state. The previous state 16937 * hasn't yet reached bpf_exit, since state.branches > 0. 16938 * Checking in_async_callback_fn alone is not enough either. 16939 * Since the verifier still needs to catch infinite loops 16940 * inside async callbacks. 16941 */ 16942 goto skip_inf_loop_check; 16943 } 16944 /* BPF open-coded iterators loop detection is special. 16945 * states_maybe_looping() logic is too simplistic in detecting 16946 * states that *might* be equivalent, because it doesn't know 16947 * about ID remapping, so don't even perform it. 16948 * See process_iter_next_call() and iter_active_depths_differ() 16949 * for overview of the logic. When current and one of parent 16950 * states are detected as equivalent, it's a good thing: we prove 16951 * convergence and can stop simulating further iterations. 16952 * It's safe to assume that iterator loop will finish, taking into 16953 * account iter_next() contract of eventually returning 16954 * sticky NULL result. 16955 * 16956 * Note, that states have to be compared exactly in this case because 16957 * read and precision marks might not be finalized inside the loop. 16958 * E.g. as in the program below: 16959 * 16960 * 1. r7 = -16 16961 * 2. r6 = bpf_get_prandom_u32() 16962 * 3. while (bpf_iter_num_next(&fp[-8])) { 16963 * 4. if (r6 != 42) { 16964 * 5. r7 = -32 16965 * 6. r6 = bpf_get_prandom_u32() 16966 * 7. continue 16967 * 8. } 16968 * 9. r0 = r10 16969 * 10. r0 += r7 16970 * 11. r8 = *(u64 *)(r0 + 0) 16971 * 12. r6 = bpf_get_prandom_u32() 16972 * 13. } 16973 * 16974 * Here verifier would first visit path 1-3, create a checkpoint at 3 16975 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 16976 * not have read or precision mark for r7 yet, thus inexact states 16977 * comparison would discard current state with r7=-32 16978 * => unsafe memory access at 11 would not be caught. 16979 */ 16980 if (is_iter_next_insn(env, insn_idx)) { 16981 if (states_equal(env, &sl->state, cur, true)) { 16982 struct bpf_func_state *cur_frame; 16983 struct bpf_reg_state *iter_state, *iter_reg; 16984 int spi; 16985 16986 cur_frame = cur->frame[cur->curframe]; 16987 /* btf_check_iter_kfuncs() enforces that 16988 * iter state pointer is always the first arg 16989 */ 16990 iter_reg = &cur_frame->regs[BPF_REG_1]; 16991 /* current state is valid due to states_equal(), 16992 * so we can assume valid iter and reg state, 16993 * no need for extra (re-)validations 16994 */ 16995 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 16996 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 16997 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 16998 update_loop_entry(cur, &sl->state); 16999 goto hit; 17000 } 17001 } 17002 goto skip_inf_loop_check; 17003 } 17004 if (calls_callback(env, insn_idx)) { 17005 if (states_equal(env, &sl->state, cur, true)) 17006 goto hit; 17007 goto skip_inf_loop_check; 17008 } 17009 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 17010 if (states_maybe_looping(&sl->state, cur) && 17011 states_equal(env, &sl->state, cur, false) && 17012 !iter_active_depths_differ(&sl->state, cur) && 17013 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 17014 verbose_linfo(env, insn_idx, "; "); 17015 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 17016 verbose(env, "cur state:"); 17017 print_verifier_state(env, cur->frame[cur->curframe], true); 17018 verbose(env, "old state:"); 17019 print_verifier_state(env, sl->state.frame[cur->curframe], true); 17020 return -EINVAL; 17021 } 17022 /* if the verifier is processing a loop, avoid adding new state 17023 * too often, since different loop iterations have distinct 17024 * states and may not help future pruning. 17025 * This threshold shouldn't be too low to make sure that 17026 * a loop with large bound will be rejected quickly. 17027 * The most abusive loop will be: 17028 * r1 += 1 17029 * if r1 < 1000000 goto pc-2 17030 * 1M insn_procssed limit / 100 == 10k peak states. 17031 * This threshold shouldn't be too high either, since states 17032 * at the end of the loop are likely to be useful in pruning. 17033 */ 17034 skip_inf_loop_check: 17035 if (!force_new_state && 17036 env->jmps_processed - env->prev_jmps_processed < 20 && 17037 env->insn_processed - env->prev_insn_processed < 100) 17038 add_new_state = false; 17039 goto miss; 17040 } 17041 /* If sl->state is a part of a loop and this loop's entry is a part of 17042 * current verification path then states have to be compared exactly. 17043 * 'force_exact' is needed to catch the following case: 17044 * 17045 * initial Here state 'succ' was processed first, 17046 * | it was eventually tracked to produce a 17047 * V state identical to 'hdr'. 17048 * .---------> hdr All branches from 'succ' had been explored 17049 * | | and thus 'succ' has its .branches == 0. 17050 * | V 17051 * | .------... Suppose states 'cur' and 'succ' correspond 17052 * | | | to the same instruction + callsites. 17053 * | V V In such case it is necessary to check 17054 * | ... ... if 'succ' and 'cur' are states_equal(). 17055 * | | | If 'succ' and 'cur' are a part of the 17056 * | V V same loop exact flag has to be set. 17057 * | succ <- cur To check if that is the case, verify 17058 * | | if loop entry of 'succ' is in current 17059 * | V DFS path. 17060 * | ... 17061 * | | 17062 * '----' 17063 * 17064 * Additional details are in the comment before get_loop_entry(). 17065 */ 17066 loop_entry = get_loop_entry(&sl->state); 17067 force_exact = loop_entry && loop_entry->branches > 0; 17068 if (states_equal(env, &sl->state, cur, force_exact)) { 17069 if (force_exact) 17070 update_loop_entry(cur, loop_entry); 17071 hit: 17072 sl->hit_cnt++; 17073 /* reached equivalent register/stack state, 17074 * prune the search. 17075 * Registers read by the continuation are read by us. 17076 * If we have any write marks in env->cur_state, they 17077 * will prevent corresponding reads in the continuation 17078 * from reaching our parent (an explored_state). Our 17079 * own state will get the read marks recorded, but 17080 * they'll be immediately forgotten as we're pruning 17081 * this state and will pop a new one. 17082 */ 17083 err = propagate_liveness(env, &sl->state, cur); 17084 17085 /* if previous state reached the exit with precision and 17086 * current state is equivalent to it (except precsion marks) 17087 * the precision needs to be propagated back in 17088 * the current state. 17089 */ 17090 if (is_jmp_point(env, env->insn_idx)) 17091 err = err ? : push_jmp_history(env, cur, 0); 17092 err = err ? : propagate_precision(env, &sl->state); 17093 if (err) 17094 return err; 17095 return 1; 17096 } 17097 miss: 17098 /* when new state is not going to be added do not increase miss count. 17099 * Otherwise several loop iterations will remove the state 17100 * recorded earlier. The goal of these heuristics is to have 17101 * states from some iterations of the loop (some in the beginning 17102 * and some at the end) to help pruning. 17103 */ 17104 if (add_new_state) 17105 sl->miss_cnt++; 17106 /* heuristic to determine whether this state is beneficial 17107 * to keep checking from state equivalence point of view. 17108 * Higher numbers increase max_states_per_insn and verification time, 17109 * but do not meaningfully decrease insn_processed. 17110 * 'n' controls how many times state could miss before eviction. 17111 * Use bigger 'n' for checkpoints because evicting checkpoint states 17112 * too early would hinder iterator convergence. 17113 */ 17114 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 17115 if (sl->miss_cnt > sl->hit_cnt * n + n) { 17116 /* the state is unlikely to be useful. Remove it to 17117 * speed up verification 17118 */ 17119 *pprev = sl->next; 17120 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 17121 !sl->state.used_as_loop_entry) { 17122 u32 br = sl->state.branches; 17123 17124 WARN_ONCE(br, 17125 "BUG live_done but branches_to_explore %d\n", 17126 br); 17127 free_verifier_state(&sl->state, false); 17128 kfree(sl); 17129 env->peak_states--; 17130 } else { 17131 /* cannot free this state, since parentage chain may 17132 * walk it later. Add it for free_list instead to 17133 * be freed at the end of verification 17134 */ 17135 sl->next = env->free_list; 17136 env->free_list = sl; 17137 } 17138 sl = *pprev; 17139 continue; 17140 } 17141 next: 17142 pprev = &sl->next; 17143 sl = *pprev; 17144 } 17145 17146 if (env->max_states_per_insn < states_cnt) 17147 env->max_states_per_insn = states_cnt; 17148 17149 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 17150 return 0; 17151 17152 if (!add_new_state) 17153 return 0; 17154 17155 /* There were no equivalent states, remember the current one. 17156 * Technically the current state is not proven to be safe yet, 17157 * but it will either reach outer most bpf_exit (which means it's safe) 17158 * or it will be rejected. When there are no loops the verifier won't be 17159 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 17160 * again on the way to bpf_exit. 17161 * When looping the sl->state.branches will be > 0 and this state 17162 * will not be considered for equivalence until branches == 0. 17163 */ 17164 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 17165 if (!new_sl) 17166 return -ENOMEM; 17167 env->total_states++; 17168 env->peak_states++; 17169 env->prev_jmps_processed = env->jmps_processed; 17170 env->prev_insn_processed = env->insn_processed; 17171 17172 /* forget precise markings we inherited, see __mark_chain_precision */ 17173 if (env->bpf_capable) 17174 mark_all_scalars_imprecise(env, cur); 17175 17176 /* add new state to the head of linked list */ 17177 new = &new_sl->state; 17178 err = copy_verifier_state(new, cur); 17179 if (err) { 17180 free_verifier_state(new, false); 17181 kfree(new_sl); 17182 return err; 17183 } 17184 new->insn_idx = insn_idx; 17185 WARN_ONCE(new->branches != 1, 17186 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 17187 17188 cur->parent = new; 17189 cur->first_insn_idx = insn_idx; 17190 cur->dfs_depth = new->dfs_depth + 1; 17191 clear_jmp_history(cur); 17192 new_sl->next = *explored_state(env, insn_idx); 17193 *explored_state(env, insn_idx) = new_sl; 17194 /* connect new state to parentage chain. Current frame needs all 17195 * registers connected. Only r6 - r9 of the callers are alive (pushed 17196 * to the stack implicitly by JITs) so in callers' frames connect just 17197 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 17198 * the state of the call instruction (with WRITTEN set), and r0 comes 17199 * from callee with its full parentage chain, anyway. 17200 */ 17201 /* clear write marks in current state: the writes we did are not writes 17202 * our child did, so they don't screen off its reads from us. 17203 * (There are no read marks in current state, because reads always mark 17204 * their parent and current state never has children yet. Only 17205 * explored_states can get read marks.) 17206 */ 17207 for (j = 0; j <= cur->curframe; j++) { 17208 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 17209 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 17210 for (i = 0; i < BPF_REG_FP; i++) 17211 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 17212 } 17213 17214 /* all stack frames are accessible from callee, clear them all */ 17215 for (j = 0; j <= cur->curframe; j++) { 17216 struct bpf_func_state *frame = cur->frame[j]; 17217 struct bpf_func_state *newframe = new->frame[j]; 17218 17219 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 17220 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 17221 frame->stack[i].spilled_ptr.parent = 17222 &newframe->stack[i].spilled_ptr; 17223 } 17224 } 17225 return 0; 17226 } 17227 17228 /* Return true if it's OK to have the same insn return a different type. */ 17229 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 17230 { 17231 switch (base_type(type)) { 17232 case PTR_TO_CTX: 17233 case PTR_TO_SOCKET: 17234 case PTR_TO_SOCK_COMMON: 17235 case PTR_TO_TCP_SOCK: 17236 case PTR_TO_XDP_SOCK: 17237 case PTR_TO_BTF_ID: 17238 return false; 17239 default: 17240 return true; 17241 } 17242 } 17243 17244 /* If an instruction was previously used with particular pointer types, then we 17245 * need to be careful to avoid cases such as the below, where it may be ok 17246 * for one branch accessing the pointer, but not ok for the other branch: 17247 * 17248 * R1 = sock_ptr 17249 * goto X; 17250 * ... 17251 * R1 = some_other_valid_ptr; 17252 * goto X; 17253 * ... 17254 * R2 = *(u32 *)(R1 + 0); 17255 */ 17256 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 17257 { 17258 return src != prev && (!reg_type_mismatch_ok(src) || 17259 !reg_type_mismatch_ok(prev)); 17260 } 17261 17262 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 17263 bool allow_trust_missmatch) 17264 { 17265 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 17266 17267 if (*prev_type == NOT_INIT) { 17268 /* Saw a valid insn 17269 * dst_reg = *(u32 *)(src_reg + off) 17270 * save type to validate intersecting paths 17271 */ 17272 *prev_type = type; 17273 } else if (reg_type_mismatch(type, *prev_type)) { 17274 /* Abuser program is trying to use the same insn 17275 * dst_reg = *(u32*) (src_reg + off) 17276 * with different pointer types: 17277 * src_reg == ctx in one branch and 17278 * src_reg == stack|map in some other branch. 17279 * Reject it. 17280 */ 17281 if (allow_trust_missmatch && 17282 base_type(type) == PTR_TO_BTF_ID && 17283 base_type(*prev_type) == PTR_TO_BTF_ID) { 17284 /* 17285 * Have to support a use case when one path through 17286 * the program yields TRUSTED pointer while another 17287 * is UNTRUSTED. Fallback to UNTRUSTED to generate 17288 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 17289 */ 17290 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 17291 } else { 17292 verbose(env, "same insn cannot be used with different pointers\n"); 17293 return -EINVAL; 17294 } 17295 } 17296 17297 return 0; 17298 } 17299 17300 static int do_check(struct bpf_verifier_env *env) 17301 { 17302 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 17303 struct bpf_verifier_state *state = env->cur_state; 17304 struct bpf_insn *insns = env->prog->insnsi; 17305 struct bpf_reg_state *regs; 17306 int insn_cnt = env->prog->len; 17307 bool do_print_state = false; 17308 int prev_insn_idx = -1; 17309 17310 for (;;) { 17311 bool exception_exit = false; 17312 struct bpf_insn *insn; 17313 u8 class; 17314 int err; 17315 17316 /* reset current history entry on each new instruction */ 17317 env->cur_hist_ent = NULL; 17318 17319 env->prev_insn_idx = prev_insn_idx; 17320 if (env->insn_idx >= insn_cnt) { 17321 verbose(env, "invalid insn idx %d insn_cnt %d\n", 17322 env->insn_idx, insn_cnt); 17323 return -EFAULT; 17324 } 17325 17326 insn = &insns[env->insn_idx]; 17327 class = BPF_CLASS(insn->code); 17328 17329 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 17330 verbose(env, 17331 "BPF program is too large. Processed %d insn\n", 17332 env->insn_processed); 17333 return -E2BIG; 17334 } 17335 17336 state->last_insn_idx = env->prev_insn_idx; 17337 17338 if (is_prune_point(env, env->insn_idx)) { 17339 err = is_state_visited(env, env->insn_idx); 17340 if (err < 0) 17341 return err; 17342 if (err == 1) { 17343 /* found equivalent state, can prune the search */ 17344 if (env->log.level & BPF_LOG_LEVEL) { 17345 if (do_print_state) 17346 verbose(env, "\nfrom %d to %d%s: safe\n", 17347 env->prev_insn_idx, env->insn_idx, 17348 env->cur_state->speculative ? 17349 " (speculative execution)" : ""); 17350 else 17351 verbose(env, "%d: safe\n", env->insn_idx); 17352 } 17353 goto process_bpf_exit; 17354 } 17355 } 17356 17357 if (is_jmp_point(env, env->insn_idx)) { 17358 err = push_jmp_history(env, state, 0); 17359 if (err) 17360 return err; 17361 } 17362 17363 if (signal_pending(current)) 17364 return -EAGAIN; 17365 17366 if (need_resched()) 17367 cond_resched(); 17368 17369 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 17370 verbose(env, "\nfrom %d to %d%s:", 17371 env->prev_insn_idx, env->insn_idx, 17372 env->cur_state->speculative ? 17373 " (speculative execution)" : ""); 17374 print_verifier_state(env, state->frame[state->curframe], true); 17375 do_print_state = false; 17376 } 17377 17378 if (env->log.level & BPF_LOG_LEVEL) { 17379 const struct bpf_insn_cbs cbs = { 17380 .cb_call = disasm_kfunc_name, 17381 .cb_print = verbose, 17382 .private_data = env, 17383 }; 17384 17385 if (verifier_state_scratched(env)) 17386 print_insn_state(env, state->frame[state->curframe]); 17387 17388 verbose_linfo(env, env->insn_idx, "; "); 17389 env->prev_log_pos = env->log.end_pos; 17390 verbose(env, "%d: ", env->insn_idx); 17391 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 17392 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 17393 env->prev_log_pos = env->log.end_pos; 17394 } 17395 17396 if (bpf_prog_is_offloaded(env->prog->aux)) { 17397 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 17398 env->prev_insn_idx); 17399 if (err) 17400 return err; 17401 } 17402 17403 regs = cur_regs(env); 17404 sanitize_mark_insn_seen(env); 17405 prev_insn_idx = env->insn_idx; 17406 17407 if (class == BPF_ALU || class == BPF_ALU64) { 17408 err = check_alu_op(env, insn); 17409 if (err) 17410 return err; 17411 17412 } else if (class == BPF_LDX) { 17413 enum bpf_reg_type src_reg_type; 17414 17415 /* check for reserved fields is already done */ 17416 17417 /* check src operand */ 17418 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17419 if (err) 17420 return err; 17421 17422 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 17423 if (err) 17424 return err; 17425 17426 src_reg_type = regs[insn->src_reg].type; 17427 17428 /* check that memory (src_reg + off) is readable, 17429 * the state of dst_reg will be updated by this func 17430 */ 17431 err = check_mem_access(env, env->insn_idx, insn->src_reg, 17432 insn->off, BPF_SIZE(insn->code), 17433 BPF_READ, insn->dst_reg, false, 17434 BPF_MODE(insn->code) == BPF_MEMSX); 17435 err = err ?: save_aux_ptr_type(env, src_reg_type, true); 17436 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx"); 17437 if (err) 17438 return err; 17439 } else if (class == BPF_STX) { 17440 enum bpf_reg_type dst_reg_type; 17441 17442 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 17443 err = check_atomic(env, env->insn_idx, insn); 17444 if (err) 17445 return err; 17446 env->insn_idx++; 17447 continue; 17448 } 17449 17450 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 17451 verbose(env, "BPF_STX uses reserved fields\n"); 17452 return -EINVAL; 17453 } 17454 17455 /* check src1 operand */ 17456 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17457 if (err) 17458 return err; 17459 /* check src2 operand */ 17460 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17461 if (err) 17462 return err; 17463 17464 dst_reg_type = regs[insn->dst_reg].type; 17465 17466 /* check that memory (dst_reg + off) is writeable */ 17467 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17468 insn->off, BPF_SIZE(insn->code), 17469 BPF_WRITE, insn->src_reg, false, false); 17470 if (err) 17471 return err; 17472 17473 err = save_aux_ptr_type(env, dst_reg_type, false); 17474 if (err) 17475 return err; 17476 } else if (class == BPF_ST) { 17477 enum bpf_reg_type dst_reg_type; 17478 17479 if (BPF_MODE(insn->code) != BPF_MEM || 17480 insn->src_reg != BPF_REG_0) { 17481 verbose(env, "BPF_ST uses reserved fields\n"); 17482 return -EINVAL; 17483 } 17484 /* check src operand */ 17485 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17486 if (err) 17487 return err; 17488 17489 dst_reg_type = regs[insn->dst_reg].type; 17490 17491 /* check that memory (dst_reg + off) is writeable */ 17492 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17493 insn->off, BPF_SIZE(insn->code), 17494 BPF_WRITE, -1, false, false); 17495 if (err) 17496 return err; 17497 17498 err = save_aux_ptr_type(env, dst_reg_type, false); 17499 if (err) 17500 return err; 17501 } else if (class == BPF_JMP || class == BPF_JMP32) { 17502 u8 opcode = BPF_OP(insn->code); 17503 17504 env->jmps_processed++; 17505 if (opcode == BPF_CALL) { 17506 if (BPF_SRC(insn->code) != BPF_K || 17507 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 17508 && insn->off != 0) || 17509 (insn->src_reg != BPF_REG_0 && 17510 insn->src_reg != BPF_PSEUDO_CALL && 17511 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 17512 insn->dst_reg != BPF_REG_0 || 17513 class == BPF_JMP32) { 17514 verbose(env, "BPF_CALL uses reserved fields\n"); 17515 return -EINVAL; 17516 } 17517 17518 if (env->cur_state->active_lock.ptr) { 17519 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 17520 (insn->src_reg == BPF_PSEUDO_CALL) || 17521 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 17522 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 17523 verbose(env, "function calls are not allowed while holding a lock\n"); 17524 return -EINVAL; 17525 } 17526 } 17527 if (insn->src_reg == BPF_PSEUDO_CALL) { 17528 err = check_func_call(env, insn, &env->insn_idx); 17529 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 17530 err = check_kfunc_call(env, insn, &env->insn_idx); 17531 if (!err && is_bpf_throw_kfunc(insn)) { 17532 exception_exit = true; 17533 goto process_bpf_exit_full; 17534 } 17535 } else { 17536 err = check_helper_call(env, insn, &env->insn_idx); 17537 } 17538 if (err) 17539 return err; 17540 17541 mark_reg_scratched(env, BPF_REG_0); 17542 } else if (opcode == BPF_JA) { 17543 if (BPF_SRC(insn->code) != BPF_K || 17544 insn->src_reg != BPF_REG_0 || 17545 insn->dst_reg != BPF_REG_0 || 17546 (class == BPF_JMP && insn->imm != 0) || 17547 (class == BPF_JMP32 && insn->off != 0)) { 17548 verbose(env, "BPF_JA uses reserved fields\n"); 17549 return -EINVAL; 17550 } 17551 17552 if (class == BPF_JMP) 17553 env->insn_idx += insn->off + 1; 17554 else 17555 env->insn_idx += insn->imm + 1; 17556 continue; 17557 17558 } else if (opcode == BPF_EXIT) { 17559 if (BPF_SRC(insn->code) != BPF_K || 17560 insn->imm != 0 || 17561 insn->src_reg != BPF_REG_0 || 17562 insn->dst_reg != BPF_REG_0 || 17563 class == BPF_JMP32) { 17564 verbose(env, "BPF_EXIT uses reserved fields\n"); 17565 return -EINVAL; 17566 } 17567 process_bpf_exit_full: 17568 if (env->cur_state->active_lock.ptr && 17569 !in_rbtree_lock_required_cb(env)) { 17570 verbose(env, "bpf_spin_unlock is missing\n"); 17571 return -EINVAL; 17572 } 17573 17574 if (env->cur_state->active_rcu_lock && 17575 !in_rbtree_lock_required_cb(env)) { 17576 verbose(env, "bpf_rcu_read_unlock is missing\n"); 17577 return -EINVAL; 17578 } 17579 17580 /* We must do check_reference_leak here before 17581 * prepare_func_exit to handle the case when 17582 * state->curframe > 0, it may be a callback 17583 * function, for which reference_state must 17584 * match caller reference state when it exits. 17585 */ 17586 err = check_reference_leak(env, exception_exit); 17587 if (err) 17588 return err; 17589 17590 /* The side effect of the prepare_func_exit 17591 * which is being skipped is that it frees 17592 * bpf_func_state. Typically, process_bpf_exit 17593 * will only be hit with outermost exit. 17594 * copy_verifier_state in pop_stack will handle 17595 * freeing of any extra bpf_func_state left over 17596 * from not processing all nested function 17597 * exits. We also skip return code checks as 17598 * they are not needed for exceptional exits. 17599 */ 17600 if (exception_exit) 17601 goto process_bpf_exit; 17602 17603 if (state->curframe) { 17604 /* exit from nested function */ 17605 err = prepare_func_exit(env, &env->insn_idx); 17606 if (err) 17607 return err; 17608 do_print_state = true; 17609 continue; 17610 } 17611 17612 err = check_return_code(env, BPF_REG_0, "R0"); 17613 if (err) 17614 return err; 17615 process_bpf_exit: 17616 mark_verifier_state_scratched(env); 17617 update_branch_counts(env, env->cur_state); 17618 err = pop_stack(env, &prev_insn_idx, 17619 &env->insn_idx, pop_log); 17620 if (err < 0) { 17621 if (err != -ENOENT) 17622 return err; 17623 break; 17624 } else { 17625 do_print_state = true; 17626 continue; 17627 } 17628 } else { 17629 err = check_cond_jmp_op(env, insn, &env->insn_idx); 17630 if (err) 17631 return err; 17632 } 17633 } else if (class == BPF_LD) { 17634 u8 mode = BPF_MODE(insn->code); 17635 17636 if (mode == BPF_ABS || mode == BPF_IND) { 17637 err = check_ld_abs(env, insn); 17638 if (err) 17639 return err; 17640 17641 } else if (mode == BPF_IMM) { 17642 err = check_ld_imm(env, insn); 17643 if (err) 17644 return err; 17645 17646 env->insn_idx++; 17647 sanitize_mark_insn_seen(env); 17648 } else { 17649 verbose(env, "invalid BPF_LD mode\n"); 17650 return -EINVAL; 17651 } 17652 } else { 17653 verbose(env, "unknown insn class %d\n", class); 17654 return -EINVAL; 17655 } 17656 17657 env->insn_idx++; 17658 } 17659 17660 return 0; 17661 } 17662 17663 static int find_btf_percpu_datasec(struct btf *btf) 17664 { 17665 const struct btf_type *t; 17666 const char *tname; 17667 int i, n; 17668 17669 /* 17670 * Both vmlinux and module each have their own ".data..percpu" 17671 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 17672 * types to look at only module's own BTF types. 17673 */ 17674 n = btf_nr_types(btf); 17675 if (btf_is_module(btf)) 17676 i = btf_nr_types(btf_vmlinux); 17677 else 17678 i = 1; 17679 17680 for(; i < n; i++) { 17681 t = btf_type_by_id(btf, i); 17682 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 17683 continue; 17684 17685 tname = btf_name_by_offset(btf, t->name_off); 17686 if (!strcmp(tname, ".data..percpu")) 17687 return i; 17688 } 17689 17690 return -ENOENT; 17691 } 17692 17693 /* replace pseudo btf_id with kernel symbol address */ 17694 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 17695 struct bpf_insn *insn, 17696 struct bpf_insn_aux_data *aux) 17697 { 17698 const struct btf_var_secinfo *vsi; 17699 const struct btf_type *datasec; 17700 struct btf_mod_pair *btf_mod; 17701 const struct btf_type *t; 17702 const char *sym_name; 17703 bool percpu = false; 17704 u32 type, id = insn->imm; 17705 struct btf *btf; 17706 s32 datasec_id; 17707 u64 addr; 17708 int i, btf_fd, err; 17709 17710 btf_fd = insn[1].imm; 17711 if (btf_fd) { 17712 btf = btf_get_by_fd(btf_fd); 17713 if (IS_ERR(btf)) { 17714 verbose(env, "invalid module BTF object FD specified.\n"); 17715 return -EINVAL; 17716 } 17717 } else { 17718 if (!btf_vmlinux) { 17719 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 17720 return -EINVAL; 17721 } 17722 btf = btf_vmlinux; 17723 btf_get(btf); 17724 } 17725 17726 t = btf_type_by_id(btf, id); 17727 if (!t) { 17728 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 17729 err = -ENOENT; 17730 goto err_put; 17731 } 17732 17733 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 17734 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 17735 err = -EINVAL; 17736 goto err_put; 17737 } 17738 17739 sym_name = btf_name_by_offset(btf, t->name_off); 17740 addr = kallsyms_lookup_name(sym_name); 17741 if (!addr) { 17742 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 17743 sym_name); 17744 err = -ENOENT; 17745 goto err_put; 17746 } 17747 insn[0].imm = (u32)addr; 17748 insn[1].imm = addr >> 32; 17749 17750 if (btf_type_is_func(t)) { 17751 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17752 aux->btf_var.mem_size = 0; 17753 goto check_btf; 17754 } 17755 17756 datasec_id = find_btf_percpu_datasec(btf); 17757 if (datasec_id > 0) { 17758 datasec = btf_type_by_id(btf, datasec_id); 17759 for_each_vsi(i, datasec, vsi) { 17760 if (vsi->type == id) { 17761 percpu = true; 17762 break; 17763 } 17764 } 17765 } 17766 17767 type = t->type; 17768 t = btf_type_skip_modifiers(btf, type, NULL); 17769 if (percpu) { 17770 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 17771 aux->btf_var.btf = btf; 17772 aux->btf_var.btf_id = type; 17773 } else if (!btf_type_is_struct(t)) { 17774 const struct btf_type *ret; 17775 const char *tname; 17776 u32 tsize; 17777 17778 /* resolve the type size of ksym. */ 17779 ret = btf_resolve_size(btf, t, &tsize); 17780 if (IS_ERR(ret)) { 17781 tname = btf_name_by_offset(btf, t->name_off); 17782 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 17783 tname, PTR_ERR(ret)); 17784 err = -EINVAL; 17785 goto err_put; 17786 } 17787 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17788 aux->btf_var.mem_size = tsize; 17789 } else { 17790 aux->btf_var.reg_type = PTR_TO_BTF_ID; 17791 aux->btf_var.btf = btf; 17792 aux->btf_var.btf_id = type; 17793 } 17794 check_btf: 17795 /* check whether we recorded this BTF (and maybe module) already */ 17796 for (i = 0; i < env->used_btf_cnt; i++) { 17797 if (env->used_btfs[i].btf == btf) { 17798 btf_put(btf); 17799 return 0; 17800 } 17801 } 17802 17803 if (env->used_btf_cnt >= MAX_USED_BTFS) { 17804 err = -E2BIG; 17805 goto err_put; 17806 } 17807 17808 btf_mod = &env->used_btfs[env->used_btf_cnt]; 17809 btf_mod->btf = btf; 17810 btf_mod->module = NULL; 17811 17812 /* if we reference variables from kernel module, bump its refcount */ 17813 if (btf_is_module(btf)) { 17814 btf_mod->module = btf_try_get_module(btf); 17815 if (!btf_mod->module) { 17816 err = -ENXIO; 17817 goto err_put; 17818 } 17819 } 17820 17821 env->used_btf_cnt++; 17822 17823 return 0; 17824 err_put: 17825 btf_put(btf); 17826 return err; 17827 } 17828 17829 static bool is_tracing_prog_type(enum bpf_prog_type type) 17830 { 17831 switch (type) { 17832 case BPF_PROG_TYPE_KPROBE: 17833 case BPF_PROG_TYPE_TRACEPOINT: 17834 case BPF_PROG_TYPE_PERF_EVENT: 17835 case BPF_PROG_TYPE_RAW_TRACEPOINT: 17836 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 17837 return true; 17838 default: 17839 return false; 17840 } 17841 } 17842 17843 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 17844 struct bpf_map *map, 17845 struct bpf_prog *prog) 17846 17847 { 17848 enum bpf_prog_type prog_type = resolve_prog_type(prog); 17849 17850 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 17851 btf_record_has_field(map->record, BPF_RB_ROOT)) { 17852 if (is_tracing_prog_type(prog_type)) { 17853 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 17854 return -EINVAL; 17855 } 17856 } 17857 17858 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 17859 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 17860 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 17861 return -EINVAL; 17862 } 17863 17864 if (is_tracing_prog_type(prog_type)) { 17865 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 17866 return -EINVAL; 17867 } 17868 } 17869 17870 if (btf_record_has_field(map->record, BPF_TIMER)) { 17871 if (is_tracing_prog_type(prog_type)) { 17872 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 17873 return -EINVAL; 17874 } 17875 } 17876 17877 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 17878 !bpf_offload_prog_map_match(prog, map)) { 17879 verbose(env, "offload device mismatch between prog and map\n"); 17880 return -EINVAL; 17881 } 17882 17883 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 17884 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 17885 return -EINVAL; 17886 } 17887 17888 if (prog->aux->sleepable) 17889 switch (map->map_type) { 17890 case BPF_MAP_TYPE_HASH: 17891 case BPF_MAP_TYPE_LRU_HASH: 17892 case BPF_MAP_TYPE_ARRAY: 17893 case BPF_MAP_TYPE_PERCPU_HASH: 17894 case BPF_MAP_TYPE_PERCPU_ARRAY: 17895 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 17896 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 17897 case BPF_MAP_TYPE_HASH_OF_MAPS: 17898 case BPF_MAP_TYPE_RINGBUF: 17899 case BPF_MAP_TYPE_USER_RINGBUF: 17900 case BPF_MAP_TYPE_INODE_STORAGE: 17901 case BPF_MAP_TYPE_SK_STORAGE: 17902 case BPF_MAP_TYPE_TASK_STORAGE: 17903 case BPF_MAP_TYPE_CGRP_STORAGE: 17904 break; 17905 default: 17906 verbose(env, 17907 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 17908 return -EINVAL; 17909 } 17910 17911 return 0; 17912 } 17913 17914 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 17915 { 17916 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 17917 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 17918 } 17919 17920 /* find and rewrite pseudo imm in ld_imm64 instructions: 17921 * 17922 * 1. if it accesses map FD, replace it with actual map pointer. 17923 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 17924 * 17925 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 17926 */ 17927 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 17928 { 17929 struct bpf_insn *insn = env->prog->insnsi; 17930 int insn_cnt = env->prog->len; 17931 int i, j, err; 17932 17933 err = bpf_prog_calc_tag(env->prog); 17934 if (err) 17935 return err; 17936 17937 for (i = 0; i < insn_cnt; i++, insn++) { 17938 if (BPF_CLASS(insn->code) == BPF_LDX && 17939 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 17940 insn->imm != 0)) { 17941 verbose(env, "BPF_LDX uses reserved fields\n"); 17942 return -EINVAL; 17943 } 17944 17945 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 17946 struct bpf_insn_aux_data *aux; 17947 struct bpf_map *map; 17948 struct fd f; 17949 u64 addr; 17950 u32 fd; 17951 17952 if (i == insn_cnt - 1 || insn[1].code != 0 || 17953 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 17954 insn[1].off != 0) { 17955 verbose(env, "invalid bpf_ld_imm64 insn\n"); 17956 return -EINVAL; 17957 } 17958 17959 if (insn[0].src_reg == 0) 17960 /* valid generic load 64-bit imm */ 17961 goto next_insn; 17962 17963 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 17964 aux = &env->insn_aux_data[i]; 17965 err = check_pseudo_btf_id(env, insn, aux); 17966 if (err) 17967 return err; 17968 goto next_insn; 17969 } 17970 17971 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 17972 aux = &env->insn_aux_data[i]; 17973 aux->ptr_type = PTR_TO_FUNC; 17974 goto next_insn; 17975 } 17976 17977 /* In final convert_pseudo_ld_imm64() step, this is 17978 * converted into regular 64-bit imm load insn. 17979 */ 17980 switch (insn[0].src_reg) { 17981 case BPF_PSEUDO_MAP_VALUE: 17982 case BPF_PSEUDO_MAP_IDX_VALUE: 17983 break; 17984 case BPF_PSEUDO_MAP_FD: 17985 case BPF_PSEUDO_MAP_IDX: 17986 if (insn[1].imm == 0) 17987 break; 17988 fallthrough; 17989 default: 17990 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 17991 return -EINVAL; 17992 } 17993 17994 switch (insn[0].src_reg) { 17995 case BPF_PSEUDO_MAP_IDX_VALUE: 17996 case BPF_PSEUDO_MAP_IDX: 17997 if (bpfptr_is_null(env->fd_array)) { 17998 verbose(env, "fd_idx without fd_array is invalid\n"); 17999 return -EPROTO; 18000 } 18001 if (copy_from_bpfptr_offset(&fd, env->fd_array, 18002 insn[0].imm * sizeof(fd), 18003 sizeof(fd))) 18004 return -EFAULT; 18005 break; 18006 default: 18007 fd = insn[0].imm; 18008 break; 18009 } 18010 18011 f = fdget(fd); 18012 map = __bpf_map_get(f); 18013 if (IS_ERR(map)) { 18014 verbose(env, "fd %d is not pointing to valid bpf_map\n", 18015 insn[0].imm); 18016 return PTR_ERR(map); 18017 } 18018 18019 err = check_map_prog_compatibility(env, map, env->prog); 18020 if (err) { 18021 fdput(f); 18022 return err; 18023 } 18024 18025 aux = &env->insn_aux_data[i]; 18026 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 18027 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 18028 addr = (unsigned long)map; 18029 } else { 18030 u32 off = insn[1].imm; 18031 18032 if (off >= BPF_MAX_VAR_OFF) { 18033 verbose(env, "direct value offset of %u is not allowed\n", off); 18034 fdput(f); 18035 return -EINVAL; 18036 } 18037 18038 if (!map->ops->map_direct_value_addr) { 18039 verbose(env, "no direct value access support for this map type\n"); 18040 fdput(f); 18041 return -EINVAL; 18042 } 18043 18044 err = map->ops->map_direct_value_addr(map, &addr, off); 18045 if (err) { 18046 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 18047 map->value_size, off); 18048 fdput(f); 18049 return err; 18050 } 18051 18052 aux->map_off = off; 18053 addr += off; 18054 } 18055 18056 insn[0].imm = (u32)addr; 18057 insn[1].imm = addr >> 32; 18058 18059 /* check whether we recorded this map already */ 18060 for (j = 0; j < env->used_map_cnt; j++) { 18061 if (env->used_maps[j] == map) { 18062 aux->map_index = j; 18063 fdput(f); 18064 goto next_insn; 18065 } 18066 } 18067 18068 if (env->used_map_cnt >= MAX_USED_MAPS) { 18069 fdput(f); 18070 return -E2BIG; 18071 } 18072 18073 if (env->prog->aux->sleepable) 18074 atomic64_inc(&map->sleepable_refcnt); 18075 /* hold the map. If the program is rejected by verifier, 18076 * the map will be released by release_maps() or it 18077 * will be used by the valid program until it's unloaded 18078 * and all maps are released in bpf_free_used_maps() 18079 */ 18080 bpf_map_inc(map); 18081 18082 aux->map_index = env->used_map_cnt; 18083 env->used_maps[env->used_map_cnt++] = map; 18084 18085 if (bpf_map_is_cgroup_storage(map) && 18086 bpf_cgroup_storage_assign(env->prog->aux, map)) { 18087 verbose(env, "only one cgroup storage of each type is allowed\n"); 18088 fdput(f); 18089 return -EBUSY; 18090 } 18091 18092 fdput(f); 18093 next_insn: 18094 insn++; 18095 i++; 18096 continue; 18097 } 18098 18099 /* Basic sanity check before we invest more work here. */ 18100 if (!bpf_opcode_in_insntable(insn->code)) { 18101 verbose(env, "unknown opcode %02x\n", insn->code); 18102 return -EINVAL; 18103 } 18104 } 18105 18106 /* now all pseudo BPF_LD_IMM64 instructions load valid 18107 * 'struct bpf_map *' into a register instead of user map_fd. 18108 * These pointers will be used later by verifier to validate map access. 18109 */ 18110 return 0; 18111 } 18112 18113 /* drop refcnt of maps used by the rejected program */ 18114 static void release_maps(struct bpf_verifier_env *env) 18115 { 18116 __bpf_free_used_maps(env->prog->aux, env->used_maps, 18117 env->used_map_cnt); 18118 } 18119 18120 /* drop refcnt of maps used by the rejected program */ 18121 static void release_btfs(struct bpf_verifier_env *env) 18122 { 18123 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 18124 env->used_btf_cnt); 18125 } 18126 18127 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 18128 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 18129 { 18130 struct bpf_insn *insn = env->prog->insnsi; 18131 int insn_cnt = env->prog->len; 18132 int i; 18133 18134 for (i = 0; i < insn_cnt; i++, insn++) { 18135 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 18136 continue; 18137 if (insn->src_reg == BPF_PSEUDO_FUNC) 18138 continue; 18139 insn->src_reg = 0; 18140 } 18141 } 18142 18143 /* single env->prog->insni[off] instruction was replaced with the range 18144 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 18145 * [0, off) and [off, end) to new locations, so the patched range stays zero 18146 */ 18147 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 18148 struct bpf_insn_aux_data *new_data, 18149 struct bpf_prog *new_prog, u32 off, u32 cnt) 18150 { 18151 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 18152 struct bpf_insn *insn = new_prog->insnsi; 18153 u32 old_seen = old_data[off].seen; 18154 u32 prog_len; 18155 int i; 18156 18157 /* aux info at OFF always needs adjustment, no matter fast path 18158 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 18159 * original insn at old prog. 18160 */ 18161 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 18162 18163 if (cnt == 1) 18164 return; 18165 prog_len = new_prog->len; 18166 18167 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 18168 memcpy(new_data + off + cnt - 1, old_data + off, 18169 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 18170 for (i = off; i < off + cnt - 1; i++) { 18171 /* Expand insni[off]'s seen count to the patched range. */ 18172 new_data[i].seen = old_seen; 18173 new_data[i].zext_dst = insn_has_def32(env, insn + i); 18174 } 18175 env->insn_aux_data = new_data; 18176 vfree(old_data); 18177 } 18178 18179 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 18180 { 18181 int i; 18182 18183 if (len == 1) 18184 return; 18185 /* NOTE: fake 'exit' subprog should be updated as well. */ 18186 for (i = 0; i <= env->subprog_cnt; i++) { 18187 if (env->subprog_info[i].start <= off) 18188 continue; 18189 env->subprog_info[i].start += len - 1; 18190 } 18191 } 18192 18193 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 18194 { 18195 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 18196 int i, sz = prog->aux->size_poke_tab; 18197 struct bpf_jit_poke_descriptor *desc; 18198 18199 for (i = 0; i < sz; i++) { 18200 desc = &tab[i]; 18201 if (desc->insn_idx <= off) 18202 continue; 18203 desc->insn_idx += len - 1; 18204 } 18205 } 18206 18207 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 18208 const struct bpf_insn *patch, u32 len) 18209 { 18210 struct bpf_prog *new_prog; 18211 struct bpf_insn_aux_data *new_data = NULL; 18212 18213 if (len > 1) { 18214 new_data = vzalloc(array_size(env->prog->len + len - 1, 18215 sizeof(struct bpf_insn_aux_data))); 18216 if (!new_data) 18217 return NULL; 18218 } 18219 18220 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 18221 if (IS_ERR(new_prog)) { 18222 if (PTR_ERR(new_prog) == -ERANGE) 18223 verbose(env, 18224 "insn %d cannot be patched due to 16-bit range\n", 18225 env->insn_aux_data[off].orig_idx); 18226 vfree(new_data); 18227 return NULL; 18228 } 18229 adjust_insn_aux_data(env, new_data, new_prog, off, len); 18230 adjust_subprog_starts(env, off, len); 18231 adjust_poke_descs(new_prog, off, len); 18232 return new_prog; 18233 } 18234 18235 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 18236 u32 off, u32 cnt) 18237 { 18238 int i, j; 18239 18240 /* find first prog starting at or after off (first to remove) */ 18241 for (i = 0; i < env->subprog_cnt; i++) 18242 if (env->subprog_info[i].start >= off) 18243 break; 18244 /* find first prog starting at or after off + cnt (first to stay) */ 18245 for (j = i; j < env->subprog_cnt; j++) 18246 if (env->subprog_info[j].start >= off + cnt) 18247 break; 18248 /* if j doesn't start exactly at off + cnt, we are just removing 18249 * the front of previous prog 18250 */ 18251 if (env->subprog_info[j].start != off + cnt) 18252 j--; 18253 18254 if (j > i) { 18255 struct bpf_prog_aux *aux = env->prog->aux; 18256 int move; 18257 18258 /* move fake 'exit' subprog as well */ 18259 move = env->subprog_cnt + 1 - j; 18260 18261 memmove(env->subprog_info + i, 18262 env->subprog_info + j, 18263 sizeof(*env->subprog_info) * move); 18264 env->subprog_cnt -= j - i; 18265 18266 /* remove func_info */ 18267 if (aux->func_info) { 18268 move = aux->func_info_cnt - j; 18269 18270 memmove(aux->func_info + i, 18271 aux->func_info + j, 18272 sizeof(*aux->func_info) * move); 18273 aux->func_info_cnt -= j - i; 18274 /* func_info->insn_off is set after all code rewrites, 18275 * in adjust_btf_func() - no need to adjust 18276 */ 18277 } 18278 } else { 18279 /* convert i from "first prog to remove" to "first to adjust" */ 18280 if (env->subprog_info[i].start == off) 18281 i++; 18282 } 18283 18284 /* update fake 'exit' subprog as well */ 18285 for (; i <= env->subprog_cnt; i++) 18286 env->subprog_info[i].start -= cnt; 18287 18288 return 0; 18289 } 18290 18291 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 18292 u32 cnt) 18293 { 18294 struct bpf_prog *prog = env->prog; 18295 u32 i, l_off, l_cnt, nr_linfo; 18296 struct bpf_line_info *linfo; 18297 18298 nr_linfo = prog->aux->nr_linfo; 18299 if (!nr_linfo) 18300 return 0; 18301 18302 linfo = prog->aux->linfo; 18303 18304 /* find first line info to remove, count lines to be removed */ 18305 for (i = 0; i < nr_linfo; i++) 18306 if (linfo[i].insn_off >= off) 18307 break; 18308 18309 l_off = i; 18310 l_cnt = 0; 18311 for (; i < nr_linfo; i++) 18312 if (linfo[i].insn_off < off + cnt) 18313 l_cnt++; 18314 else 18315 break; 18316 18317 /* First live insn doesn't match first live linfo, it needs to "inherit" 18318 * last removed linfo. prog is already modified, so prog->len == off 18319 * means no live instructions after (tail of the program was removed). 18320 */ 18321 if (prog->len != off && l_cnt && 18322 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 18323 l_cnt--; 18324 linfo[--i].insn_off = off + cnt; 18325 } 18326 18327 /* remove the line info which refer to the removed instructions */ 18328 if (l_cnt) { 18329 memmove(linfo + l_off, linfo + i, 18330 sizeof(*linfo) * (nr_linfo - i)); 18331 18332 prog->aux->nr_linfo -= l_cnt; 18333 nr_linfo = prog->aux->nr_linfo; 18334 } 18335 18336 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 18337 for (i = l_off; i < nr_linfo; i++) 18338 linfo[i].insn_off -= cnt; 18339 18340 /* fix up all subprogs (incl. 'exit') which start >= off */ 18341 for (i = 0; i <= env->subprog_cnt; i++) 18342 if (env->subprog_info[i].linfo_idx > l_off) { 18343 /* program may have started in the removed region but 18344 * may not be fully removed 18345 */ 18346 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 18347 env->subprog_info[i].linfo_idx -= l_cnt; 18348 else 18349 env->subprog_info[i].linfo_idx = l_off; 18350 } 18351 18352 return 0; 18353 } 18354 18355 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 18356 { 18357 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18358 unsigned int orig_prog_len = env->prog->len; 18359 int err; 18360 18361 if (bpf_prog_is_offloaded(env->prog->aux)) 18362 bpf_prog_offload_remove_insns(env, off, cnt); 18363 18364 err = bpf_remove_insns(env->prog, off, cnt); 18365 if (err) 18366 return err; 18367 18368 err = adjust_subprog_starts_after_remove(env, off, cnt); 18369 if (err) 18370 return err; 18371 18372 err = bpf_adj_linfo_after_remove(env, off, cnt); 18373 if (err) 18374 return err; 18375 18376 memmove(aux_data + off, aux_data + off + cnt, 18377 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 18378 18379 return 0; 18380 } 18381 18382 /* The verifier does more data flow analysis than llvm and will not 18383 * explore branches that are dead at run time. Malicious programs can 18384 * have dead code too. Therefore replace all dead at-run-time code 18385 * with 'ja -1'. 18386 * 18387 * Just nops are not optimal, e.g. if they would sit at the end of the 18388 * program and through another bug we would manage to jump there, then 18389 * we'd execute beyond program memory otherwise. Returning exception 18390 * code also wouldn't work since we can have subprogs where the dead 18391 * code could be located. 18392 */ 18393 static void sanitize_dead_code(struct bpf_verifier_env *env) 18394 { 18395 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18396 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 18397 struct bpf_insn *insn = env->prog->insnsi; 18398 const int insn_cnt = env->prog->len; 18399 int i; 18400 18401 for (i = 0; i < insn_cnt; i++) { 18402 if (aux_data[i].seen) 18403 continue; 18404 memcpy(insn + i, &trap, sizeof(trap)); 18405 aux_data[i].zext_dst = false; 18406 } 18407 } 18408 18409 static bool insn_is_cond_jump(u8 code) 18410 { 18411 u8 op; 18412 18413 op = BPF_OP(code); 18414 if (BPF_CLASS(code) == BPF_JMP32) 18415 return op != BPF_JA; 18416 18417 if (BPF_CLASS(code) != BPF_JMP) 18418 return false; 18419 18420 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 18421 } 18422 18423 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 18424 { 18425 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18426 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18427 struct bpf_insn *insn = env->prog->insnsi; 18428 const int insn_cnt = env->prog->len; 18429 int i; 18430 18431 for (i = 0; i < insn_cnt; i++, insn++) { 18432 if (!insn_is_cond_jump(insn->code)) 18433 continue; 18434 18435 if (!aux_data[i + 1].seen) 18436 ja.off = insn->off; 18437 else if (!aux_data[i + 1 + insn->off].seen) 18438 ja.off = 0; 18439 else 18440 continue; 18441 18442 if (bpf_prog_is_offloaded(env->prog->aux)) 18443 bpf_prog_offload_replace_insn(env, i, &ja); 18444 18445 memcpy(insn, &ja, sizeof(ja)); 18446 } 18447 } 18448 18449 static int opt_remove_dead_code(struct bpf_verifier_env *env) 18450 { 18451 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18452 int insn_cnt = env->prog->len; 18453 int i, err; 18454 18455 for (i = 0; i < insn_cnt; i++) { 18456 int j; 18457 18458 j = 0; 18459 while (i + j < insn_cnt && !aux_data[i + j].seen) 18460 j++; 18461 if (!j) 18462 continue; 18463 18464 err = verifier_remove_insns(env, i, j); 18465 if (err) 18466 return err; 18467 insn_cnt = env->prog->len; 18468 } 18469 18470 return 0; 18471 } 18472 18473 static int opt_remove_nops(struct bpf_verifier_env *env) 18474 { 18475 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18476 struct bpf_insn *insn = env->prog->insnsi; 18477 int insn_cnt = env->prog->len; 18478 int i, err; 18479 18480 for (i = 0; i < insn_cnt; i++) { 18481 if (memcmp(&insn[i], &ja, sizeof(ja))) 18482 continue; 18483 18484 err = verifier_remove_insns(env, i, 1); 18485 if (err) 18486 return err; 18487 insn_cnt--; 18488 i--; 18489 } 18490 18491 return 0; 18492 } 18493 18494 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 18495 const union bpf_attr *attr) 18496 { 18497 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 18498 struct bpf_insn_aux_data *aux = env->insn_aux_data; 18499 int i, patch_len, delta = 0, len = env->prog->len; 18500 struct bpf_insn *insns = env->prog->insnsi; 18501 struct bpf_prog *new_prog; 18502 bool rnd_hi32; 18503 18504 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 18505 zext_patch[1] = BPF_ZEXT_REG(0); 18506 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 18507 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 18508 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 18509 for (i = 0; i < len; i++) { 18510 int adj_idx = i + delta; 18511 struct bpf_insn insn; 18512 int load_reg; 18513 18514 insn = insns[adj_idx]; 18515 load_reg = insn_def_regno(&insn); 18516 if (!aux[adj_idx].zext_dst) { 18517 u8 code, class; 18518 u32 imm_rnd; 18519 18520 if (!rnd_hi32) 18521 continue; 18522 18523 code = insn.code; 18524 class = BPF_CLASS(code); 18525 if (load_reg == -1) 18526 continue; 18527 18528 /* NOTE: arg "reg" (the fourth one) is only used for 18529 * BPF_STX + SRC_OP, so it is safe to pass NULL 18530 * here. 18531 */ 18532 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 18533 if (class == BPF_LD && 18534 BPF_MODE(code) == BPF_IMM) 18535 i++; 18536 continue; 18537 } 18538 18539 /* ctx load could be transformed into wider load. */ 18540 if (class == BPF_LDX && 18541 aux[adj_idx].ptr_type == PTR_TO_CTX) 18542 continue; 18543 18544 imm_rnd = get_random_u32(); 18545 rnd_hi32_patch[0] = insn; 18546 rnd_hi32_patch[1].imm = imm_rnd; 18547 rnd_hi32_patch[3].dst_reg = load_reg; 18548 patch = rnd_hi32_patch; 18549 patch_len = 4; 18550 goto apply_patch_buffer; 18551 } 18552 18553 /* Add in an zero-extend instruction if a) the JIT has requested 18554 * it or b) it's a CMPXCHG. 18555 * 18556 * The latter is because: BPF_CMPXCHG always loads a value into 18557 * R0, therefore always zero-extends. However some archs' 18558 * equivalent instruction only does this load when the 18559 * comparison is successful. This detail of CMPXCHG is 18560 * orthogonal to the general zero-extension behaviour of the 18561 * CPU, so it's treated independently of bpf_jit_needs_zext. 18562 */ 18563 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 18564 continue; 18565 18566 /* Zero-extension is done by the caller. */ 18567 if (bpf_pseudo_kfunc_call(&insn)) 18568 continue; 18569 18570 if (WARN_ON(load_reg == -1)) { 18571 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 18572 return -EFAULT; 18573 } 18574 18575 zext_patch[0] = insn; 18576 zext_patch[1].dst_reg = load_reg; 18577 zext_patch[1].src_reg = load_reg; 18578 patch = zext_patch; 18579 patch_len = 2; 18580 apply_patch_buffer: 18581 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 18582 if (!new_prog) 18583 return -ENOMEM; 18584 env->prog = new_prog; 18585 insns = new_prog->insnsi; 18586 aux = env->insn_aux_data; 18587 delta += patch_len - 1; 18588 } 18589 18590 return 0; 18591 } 18592 18593 /* convert load instructions that access fields of a context type into a 18594 * sequence of instructions that access fields of the underlying structure: 18595 * struct __sk_buff -> struct sk_buff 18596 * struct bpf_sock_ops -> struct sock 18597 */ 18598 static int convert_ctx_accesses(struct bpf_verifier_env *env) 18599 { 18600 const struct bpf_verifier_ops *ops = env->ops; 18601 int i, cnt, size, ctx_field_size, delta = 0; 18602 const int insn_cnt = env->prog->len; 18603 struct bpf_insn insn_buf[16], *insn; 18604 u32 target_size, size_default, off; 18605 struct bpf_prog *new_prog; 18606 enum bpf_access_type type; 18607 bool is_narrower_load; 18608 18609 if (ops->gen_prologue || env->seen_direct_write) { 18610 if (!ops->gen_prologue) { 18611 verbose(env, "bpf verifier is misconfigured\n"); 18612 return -EINVAL; 18613 } 18614 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 18615 env->prog); 18616 if (cnt >= ARRAY_SIZE(insn_buf)) { 18617 verbose(env, "bpf verifier is misconfigured\n"); 18618 return -EINVAL; 18619 } else if (cnt) { 18620 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 18621 if (!new_prog) 18622 return -ENOMEM; 18623 18624 env->prog = new_prog; 18625 delta += cnt - 1; 18626 } 18627 } 18628 18629 if (bpf_prog_is_offloaded(env->prog->aux)) 18630 return 0; 18631 18632 insn = env->prog->insnsi + delta; 18633 18634 for (i = 0; i < insn_cnt; i++, insn++) { 18635 bpf_convert_ctx_access_t convert_ctx_access; 18636 u8 mode; 18637 18638 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 18639 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 18640 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 18641 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 18642 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 18643 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 18644 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 18645 type = BPF_READ; 18646 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 18647 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 18648 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 18649 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 18650 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 18651 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 18652 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 18653 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 18654 type = BPF_WRITE; 18655 } else { 18656 continue; 18657 } 18658 18659 if (type == BPF_WRITE && 18660 env->insn_aux_data[i + delta].sanitize_stack_spill) { 18661 struct bpf_insn patch[] = { 18662 *insn, 18663 BPF_ST_NOSPEC(), 18664 }; 18665 18666 cnt = ARRAY_SIZE(patch); 18667 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 18668 if (!new_prog) 18669 return -ENOMEM; 18670 18671 delta += cnt - 1; 18672 env->prog = new_prog; 18673 insn = new_prog->insnsi + i + delta; 18674 continue; 18675 } 18676 18677 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 18678 case PTR_TO_CTX: 18679 if (!ops->convert_ctx_access) 18680 continue; 18681 convert_ctx_access = ops->convert_ctx_access; 18682 break; 18683 case PTR_TO_SOCKET: 18684 case PTR_TO_SOCK_COMMON: 18685 convert_ctx_access = bpf_sock_convert_ctx_access; 18686 break; 18687 case PTR_TO_TCP_SOCK: 18688 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 18689 break; 18690 case PTR_TO_XDP_SOCK: 18691 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 18692 break; 18693 case PTR_TO_BTF_ID: 18694 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 18695 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 18696 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 18697 * be said once it is marked PTR_UNTRUSTED, hence we must handle 18698 * any faults for loads into such types. BPF_WRITE is disallowed 18699 * for this case. 18700 */ 18701 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 18702 if (type == BPF_READ) { 18703 if (BPF_MODE(insn->code) == BPF_MEM) 18704 insn->code = BPF_LDX | BPF_PROBE_MEM | 18705 BPF_SIZE((insn)->code); 18706 else 18707 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 18708 BPF_SIZE((insn)->code); 18709 env->prog->aux->num_exentries++; 18710 } 18711 continue; 18712 default: 18713 continue; 18714 } 18715 18716 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 18717 size = BPF_LDST_BYTES(insn); 18718 mode = BPF_MODE(insn->code); 18719 18720 /* If the read access is a narrower load of the field, 18721 * convert to a 4/8-byte load, to minimum program type specific 18722 * convert_ctx_access changes. If conversion is successful, 18723 * we will apply proper mask to the result. 18724 */ 18725 is_narrower_load = size < ctx_field_size; 18726 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 18727 off = insn->off; 18728 if (is_narrower_load) { 18729 u8 size_code; 18730 18731 if (type == BPF_WRITE) { 18732 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 18733 return -EINVAL; 18734 } 18735 18736 size_code = BPF_H; 18737 if (ctx_field_size == 4) 18738 size_code = BPF_W; 18739 else if (ctx_field_size == 8) 18740 size_code = BPF_DW; 18741 18742 insn->off = off & ~(size_default - 1); 18743 insn->code = BPF_LDX | BPF_MEM | size_code; 18744 } 18745 18746 target_size = 0; 18747 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 18748 &target_size); 18749 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 18750 (ctx_field_size && !target_size)) { 18751 verbose(env, "bpf verifier is misconfigured\n"); 18752 return -EINVAL; 18753 } 18754 18755 if (is_narrower_load && size < target_size) { 18756 u8 shift = bpf_ctx_narrow_access_offset( 18757 off, size, size_default) * 8; 18758 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 18759 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 18760 return -EINVAL; 18761 } 18762 if (ctx_field_size <= 4) { 18763 if (shift) 18764 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 18765 insn->dst_reg, 18766 shift); 18767 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18768 (1 << size * 8) - 1); 18769 } else { 18770 if (shift) 18771 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 18772 insn->dst_reg, 18773 shift); 18774 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18775 (1ULL << size * 8) - 1); 18776 } 18777 } 18778 if (mode == BPF_MEMSX) 18779 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 18780 insn->dst_reg, insn->dst_reg, 18781 size * 8, 0); 18782 18783 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18784 if (!new_prog) 18785 return -ENOMEM; 18786 18787 delta += cnt - 1; 18788 18789 /* keep walking new program and skip insns we just inserted */ 18790 env->prog = new_prog; 18791 insn = new_prog->insnsi + i + delta; 18792 } 18793 18794 return 0; 18795 } 18796 18797 static int jit_subprogs(struct bpf_verifier_env *env) 18798 { 18799 struct bpf_prog *prog = env->prog, **func, *tmp; 18800 int i, j, subprog_start, subprog_end = 0, len, subprog; 18801 struct bpf_map *map_ptr; 18802 struct bpf_insn *insn; 18803 void *old_bpf_func; 18804 int err, num_exentries; 18805 18806 if (env->subprog_cnt <= 1) 18807 return 0; 18808 18809 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18810 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 18811 continue; 18812 18813 /* Upon error here we cannot fall back to interpreter but 18814 * need a hard reject of the program. Thus -EFAULT is 18815 * propagated in any case. 18816 */ 18817 subprog = find_subprog(env, i + insn->imm + 1); 18818 if (subprog < 0) { 18819 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 18820 i + insn->imm + 1); 18821 return -EFAULT; 18822 } 18823 /* temporarily remember subprog id inside insn instead of 18824 * aux_data, since next loop will split up all insns into funcs 18825 */ 18826 insn->off = subprog; 18827 /* remember original imm in case JIT fails and fallback 18828 * to interpreter will be needed 18829 */ 18830 env->insn_aux_data[i].call_imm = insn->imm; 18831 /* point imm to __bpf_call_base+1 from JITs point of view */ 18832 insn->imm = 1; 18833 if (bpf_pseudo_func(insn)) 18834 /* jit (e.g. x86_64) may emit fewer instructions 18835 * if it learns a u32 imm is the same as a u64 imm. 18836 * Force a non zero here. 18837 */ 18838 insn[1].imm = 1; 18839 } 18840 18841 err = bpf_prog_alloc_jited_linfo(prog); 18842 if (err) 18843 goto out_undo_insn; 18844 18845 err = -ENOMEM; 18846 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 18847 if (!func) 18848 goto out_undo_insn; 18849 18850 for (i = 0; i < env->subprog_cnt; i++) { 18851 subprog_start = subprog_end; 18852 subprog_end = env->subprog_info[i + 1].start; 18853 18854 len = subprog_end - subprog_start; 18855 /* bpf_prog_run() doesn't call subprogs directly, 18856 * hence main prog stats include the runtime of subprogs. 18857 * subprogs don't have IDs and not reachable via prog_get_next_id 18858 * func[i]->stats will never be accessed and stays NULL 18859 */ 18860 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 18861 if (!func[i]) 18862 goto out_free; 18863 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 18864 len * sizeof(struct bpf_insn)); 18865 func[i]->type = prog->type; 18866 func[i]->len = len; 18867 if (bpf_prog_calc_tag(func[i])) 18868 goto out_free; 18869 func[i]->is_func = 1; 18870 func[i]->aux->func_idx = i; 18871 /* Below members will be freed only at prog->aux */ 18872 func[i]->aux->btf = prog->aux->btf; 18873 func[i]->aux->func_info = prog->aux->func_info; 18874 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 18875 func[i]->aux->poke_tab = prog->aux->poke_tab; 18876 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 18877 18878 for (j = 0; j < prog->aux->size_poke_tab; j++) { 18879 struct bpf_jit_poke_descriptor *poke; 18880 18881 poke = &prog->aux->poke_tab[j]; 18882 if (poke->insn_idx < subprog_end && 18883 poke->insn_idx >= subprog_start) 18884 poke->aux = func[i]->aux; 18885 } 18886 18887 func[i]->aux->name[0] = 'F'; 18888 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 18889 func[i]->jit_requested = 1; 18890 func[i]->blinding_requested = prog->blinding_requested; 18891 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 18892 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 18893 func[i]->aux->linfo = prog->aux->linfo; 18894 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 18895 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 18896 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 18897 num_exentries = 0; 18898 insn = func[i]->insnsi; 18899 for (j = 0; j < func[i]->len; j++, insn++) { 18900 if (BPF_CLASS(insn->code) == BPF_LDX && 18901 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 18902 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 18903 num_exentries++; 18904 } 18905 func[i]->aux->num_exentries = num_exentries; 18906 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 18907 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 18908 if (!i) 18909 func[i]->aux->exception_boundary = env->seen_exception; 18910 func[i] = bpf_int_jit_compile(func[i]); 18911 if (!func[i]->jited) { 18912 err = -ENOTSUPP; 18913 goto out_free; 18914 } 18915 cond_resched(); 18916 } 18917 18918 /* at this point all bpf functions were successfully JITed 18919 * now populate all bpf_calls with correct addresses and 18920 * run last pass of JIT 18921 */ 18922 for (i = 0; i < env->subprog_cnt; i++) { 18923 insn = func[i]->insnsi; 18924 for (j = 0; j < func[i]->len; j++, insn++) { 18925 if (bpf_pseudo_func(insn)) { 18926 subprog = insn->off; 18927 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 18928 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 18929 continue; 18930 } 18931 if (!bpf_pseudo_call(insn)) 18932 continue; 18933 subprog = insn->off; 18934 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 18935 } 18936 18937 /* we use the aux data to keep a list of the start addresses 18938 * of the JITed images for each function in the program 18939 * 18940 * for some architectures, such as powerpc64, the imm field 18941 * might not be large enough to hold the offset of the start 18942 * address of the callee's JITed image from __bpf_call_base 18943 * 18944 * in such cases, we can lookup the start address of a callee 18945 * by using its subprog id, available from the off field of 18946 * the call instruction, as an index for this list 18947 */ 18948 func[i]->aux->func = func; 18949 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 18950 func[i]->aux->real_func_cnt = env->subprog_cnt; 18951 } 18952 for (i = 0; i < env->subprog_cnt; i++) { 18953 old_bpf_func = func[i]->bpf_func; 18954 tmp = bpf_int_jit_compile(func[i]); 18955 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 18956 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 18957 err = -ENOTSUPP; 18958 goto out_free; 18959 } 18960 cond_resched(); 18961 } 18962 18963 /* finally lock prog and jit images for all functions and 18964 * populate kallsysm. Begin at the first subprogram, since 18965 * bpf_prog_load will add the kallsyms for the main program. 18966 */ 18967 for (i = 1; i < env->subprog_cnt; i++) { 18968 bpf_prog_lock_ro(func[i]); 18969 bpf_prog_kallsyms_add(func[i]); 18970 } 18971 18972 /* Last step: make now unused interpreter insns from main 18973 * prog consistent for later dump requests, so they can 18974 * later look the same as if they were interpreted only. 18975 */ 18976 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18977 if (bpf_pseudo_func(insn)) { 18978 insn[0].imm = env->insn_aux_data[i].call_imm; 18979 insn[1].imm = insn->off; 18980 insn->off = 0; 18981 continue; 18982 } 18983 if (!bpf_pseudo_call(insn)) 18984 continue; 18985 insn->off = env->insn_aux_data[i].call_imm; 18986 subprog = find_subprog(env, i + insn->off + 1); 18987 insn->imm = subprog; 18988 } 18989 18990 prog->jited = 1; 18991 prog->bpf_func = func[0]->bpf_func; 18992 prog->jited_len = func[0]->jited_len; 18993 prog->aux->extable = func[0]->aux->extable; 18994 prog->aux->num_exentries = func[0]->aux->num_exentries; 18995 prog->aux->func = func; 18996 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 18997 prog->aux->real_func_cnt = env->subprog_cnt; 18998 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 18999 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 19000 bpf_prog_jit_attempt_done(prog); 19001 return 0; 19002 out_free: 19003 /* We failed JIT'ing, so at this point we need to unregister poke 19004 * descriptors from subprogs, so that kernel is not attempting to 19005 * patch it anymore as we're freeing the subprog JIT memory. 19006 */ 19007 for (i = 0; i < prog->aux->size_poke_tab; i++) { 19008 map_ptr = prog->aux->poke_tab[i].tail_call.map; 19009 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 19010 } 19011 /* At this point we're guaranteed that poke descriptors are not 19012 * live anymore. We can just unlink its descriptor table as it's 19013 * released with the main prog. 19014 */ 19015 for (i = 0; i < env->subprog_cnt; i++) { 19016 if (!func[i]) 19017 continue; 19018 func[i]->aux->poke_tab = NULL; 19019 bpf_jit_free(func[i]); 19020 } 19021 kfree(func); 19022 out_undo_insn: 19023 /* cleanup main prog to be interpreted */ 19024 prog->jit_requested = 0; 19025 prog->blinding_requested = 0; 19026 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 19027 if (!bpf_pseudo_call(insn)) 19028 continue; 19029 insn->off = 0; 19030 insn->imm = env->insn_aux_data[i].call_imm; 19031 } 19032 bpf_prog_jit_attempt_done(prog); 19033 return err; 19034 } 19035 19036 static int fixup_call_args(struct bpf_verifier_env *env) 19037 { 19038 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 19039 struct bpf_prog *prog = env->prog; 19040 struct bpf_insn *insn = prog->insnsi; 19041 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 19042 int i, depth; 19043 #endif 19044 int err = 0; 19045 19046 if (env->prog->jit_requested && 19047 !bpf_prog_is_offloaded(env->prog->aux)) { 19048 err = jit_subprogs(env); 19049 if (err == 0) 19050 return 0; 19051 if (err == -EFAULT) 19052 return err; 19053 } 19054 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 19055 if (has_kfunc_call) { 19056 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 19057 return -EINVAL; 19058 } 19059 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 19060 /* When JIT fails the progs with bpf2bpf calls and tail_calls 19061 * have to be rejected, since interpreter doesn't support them yet. 19062 */ 19063 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 19064 return -EINVAL; 19065 } 19066 for (i = 0; i < prog->len; i++, insn++) { 19067 if (bpf_pseudo_func(insn)) { 19068 /* When JIT fails the progs with callback calls 19069 * have to be rejected, since interpreter doesn't support them yet. 19070 */ 19071 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 19072 return -EINVAL; 19073 } 19074 19075 if (!bpf_pseudo_call(insn)) 19076 continue; 19077 depth = get_callee_stack_depth(env, insn, i); 19078 if (depth < 0) 19079 return depth; 19080 bpf_patch_call_args(insn, depth); 19081 } 19082 err = 0; 19083 #endif 19084 return err; 19085 } 19086 19087 /* replace a generic kfunc with a specialized version if necessary */ 19088 static void specialize_kfunc(struct bpf_verifier_env *env, 19089 u32 func_id, u16 offset, unsigned long *addr) 19090 { 19091 struct bpf_prog *prog = env->prog; 19092 bool seen_direct_write; 19093 void *xdp_kfunc; 19094 bool is_rdonly; 19095 19096 if (bpf_dev_bound_kfunc_id(func_id)) { 19097 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 19098 if (xdp_kfunc) { 19099 *addr = (unsigned long)xdp_kfunc; 19100 return; 19101 } 19102 /* fallback to default kfunc when not supported by netdev */ 19103 } 19104 19105 if (offset) 19106 return; 19107 19108 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 19109 seen_direct_write = env->seen_direct_write; 19110 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 19111 19112 if (is_rdonly) 19113 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 19114 19115 /* restore env->seen_direct_write to its original value, since 19116 * may_access_direct_pkt_data mutates it 19117 */ 19118 env->seen_direct_write = seen_direct_write; 19119 } 19120 } 19121 19122 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 19123 u16 struct_meta_reg, 19124 u16 node_offset_reg, 19125 struct bpf_insn *insn, 19126 struct bpf_insn *insn_buf, 19127 int *cnt) 19128 { 19129 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 19130 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 19131 19132 insn_buf[0] = addr[0]; 19133 insn_buf[1] = addr[1]; 19134 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 19135 insn_buf[3] = *insn; 19136 *cnt = 4; 19137 } 19138 19139 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 19140 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 19141 { 19142 const struct bpf_kfunc_desc *desc; 19143 19144 if (!insn->imm) { 19145 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 19146 return -EINVAL; 19147 } 19148 19149 *cnt = 0; 19150 19151 /* insn->imm has the btf func_id. Replace it with an offset relative to 19152 * __bpf_call_base, unless the JIT needs to call functions that are 19153 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 19154 */ 19155 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 19156 if (!desc) { 19157 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 19158 insn->imm); 19159 return -EFAULT; 19160 } 19161 19162 if (!bpf_jit_supports_far_kfunc_call()) 19163 insn->imm = BPF_CALL_IMM(desc->addr); 19164 if (insn->off) 19165 return 0; 19166 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 19167 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 19168 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19169 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 19170 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 19171 19172 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 19173 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 19174 insn_idx); 19175 return -EFAULT; 19176 } 19177 19178 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 19179 insn_buf[1] = addr[0]; 19180 insn_buf[2] = addr[1]; 19181 insn_buf[3] = *insn; 19182 *cnt = 4; 19183 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 19184 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 19185 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 19186 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19187 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 19188 19189 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 19190 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 19191 insn_idx); 19192 return -EFAULT; 19193 } 19194 19195 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 19196 !kptr_struct_meta) { 19197 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 19198 insn_idx); 19199 return -EFAULT; 19200 } 19201 19202 insn_buf[0] = addr[0]; 19203 insn_buf[1] = addr[1]; 19204 insn_buf[2] = *insn; 19205 *cnt = 3; 19206 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 19207 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 19208 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 19209 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19210 int struct_meta_reg = BPF_REG_3; 19211 int node_offset_reg = BPF_REG_4; 19212 19213 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 19214 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 19215 struct_meta_reg = BPF_REG_4; 19216 node_offset_reg = BPF_REG_5; 19217 } 19218 19219 if (!kptr_struct_meta) { 19220 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 19221 insn_idx); 19222 return -EFAULT; 19223 } 19224 19225 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 19226 node_offset_reg, insn, insn_buf, cnt); 19227 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 19228 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 19229 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 19230 *cnt = 1; 19231 } 19232 return 0; 19233 } 19234 19235 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 19236 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 19237 { 19238 struct bpf_subprog_info *info = env->subprog_info; 19239 int cnt = env->subprog_cnt; 19240 struct bpf_prog *prog; 19241 19242 /* We only reserve one slot for hidden subprogs in subprog_info. */ 19243 if (env->hidden_subprog_cnt) { 19244 verbose(env, "verifier internal error: only one hidden subprog supported\n"); 19245 return -EFAULT; 19246 } 19247 /* We're not patching any existing instruction, just appending the new 19248 * ones for the hidden subprog. Hence all of the adjustment operations 19249 * in bpf_patch_insn_data are no-ops. 19250 */ 19251 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 19252 if (!prog) 19253 return -ENOMEM; 19254 env->prog = prog; 19255 info[cnt + 1].start = info[cnt].start; 19256 info[cnt].start = prog->len - len + 1; 19257 env->subprog_cnt++; 19258 env->hidden_subprog_cnt++; 19259 return 0; 19260 } 19261 19262 /* Do various post-verification rewrites in a single program pass. 19263 * These rewrites simplify JIT and interpreter implementations. 19264 */ 19265 static int do_misc_fixups(struct bpf_verifier_env *env) 19266 { 19267 struct bpf_prog *prog = env->prog; 19268 enum bpf_attach_type eatype = prog->expected_attach_type; 19269 enum bpf_prog_type prog_type = resolve_prog_type(prog); 19270 struct bpf_insn *insn = prog->insnsi; 19271 const struct bpf_func_proto *fn; 19272 const int insn_cnt = prog->len; 19273 const struct bpf_map_ops *ops; 19274 struct bpf_insn_aux_data *aux; 19275 struct bpf_insn insn_buf[16]; 19276 struct bpf_prog *new_prog; 19277 struct bpf_map *map_ptr; 19278 int i, ret, cnt, delta = 0; 19279 19280 if (env->seen_exception && !env->exception_callback_subprog) { 19281 struct bpf_insn patch[] = { 19282 env->prog->insnsi[insn_cnt - 1], 19283 BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), 19284 BPF_EXIT_INSN(), 19285 }; 19286 19287 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); 19288 if (ret < 0) 19289 return ret; 19290 prog = env->prog; 19291 insn = prog->insnsi; 19292 19293 env->exception_callback_subprog = env->subprog_cnt - 1; 19294 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 19295 mark_subprog_exc_cb(env, env->exception_callback_subprog); 19296 } 19297 19298 for (i = 0; i < insn_cnt; i++, insn++) { 19299 /* Make divide-by-zero exceptions impossible. */ 19300 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 19301 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 19302 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 19303 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 19304 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 19305 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 19306 struct bpf_insn *patchlet; 19307 struct bpf_insn chk_and_div[] = { 19308 /* [R,W]x div 0 -> 0 */ 19309 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 19310 BPF_JNE | BPF_K, insn->src_reg, 19311 0, 2, 0), 19312 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 19313 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 19314 *insn, 19315 }; 19316 struct bpf_insn chk_and_mod[] = { 19317 /* [R,W]x mod 0 -> [R,W]x */ 19318 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 19319 BPF_JEQ | BPF_K, insn->src_reg, 19320 0, 1 + (is64 ? 0 : 1), 0), 19321 *insn, 19322 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 19323 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 19324 }; 19325 19326 patchlet = isdiv ? chk_and_div : chk_and_mod; 19327 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 19328 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 19329 19330 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 19331 if (!new_prog) 19332 return -ENOMEM; 19333 19334 delta += cnt - 1; 19335 env->prog = prog = new_prog; 19336 insn = new_prog->insnsi + i + delta; 19337 continue; 19338 } 19339 19340 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 19341 if (BPF_CLASS(insn->code) == BPF_LD && 19342 (BPF_MODE(insn->code) == BPF_ABS || 19343 BPF_MODE(insn->code) == BPF_IND)) { 19344 cnt = env->ops->gen_ld_abs(insn, insn_buf); 19345 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19346 verbose(env, "bpf verifier is misconfigured\n"); 19347 return -EINVAL; 19348 } 19349 19350 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19351 if (!new_prog) 19352 return -ENOMEM; 19353 19354 delta += cnt - 1; 19355 env->prog = prog = new_prog; 19356 insn = new_prog->insnsi + i + delta; 19357 continue; 19358 } 19359 19360 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 19361 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 19362 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 19363 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 19364 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 19365 struct bpf_insn *patch = &insn_buf[0]; 19366 bool issrc, isneg, isimm; 19367 u32 off_reg; 19368 19369 aux = &env->insn_aux_data[i + delta]; 19370 if (!aux->alu_state || 19371 aux->alu_state == BPF_ALU_NON_POINTER) 19372 continue; 19373 19374 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 19375 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 19376 BPF_ALU_SANITIZE_SRC; 19377 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 19378 19379 off_reg = issrc ? insn->src_reg : insn->dst_reg; 19380 if (isimm) { 19381 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 19382 } else { 19383 if (isneg) 19384 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 19385 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 19386 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 19387 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 19388 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 19389 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 19390 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 19391 } 19392 if (!issrc) 19393 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 19394 insn->src_reg = BPF_REG_AX; 19395 if (isneg) 19396 insn->code = insn->code == code_add ? 19397 code_sub : code_add; 19398 *patch++ = *insn; 19399 if (issrc && isneg && !isimm) 19400 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 19401 cnt = patch - insn_buf; 19402 19403 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19404 if (!new_prog) 19405 return -ENOMEM; 19406 19407 delta += cnt - 1; 19408 env->prog = prog = new_prog; 19409 insn = new_prog->insnsi + i + delta; 19410 continue; 19411 } 19412 19413 if (insn->code != (BPF_JMP | BPF_CALL)) 19414 continue; 19415 if (insn->src_reg == BPF_PSEUDO_CALL) 19416 continue; 19417 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 19418 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 19419 if (ret) 19420 return ret; 19421 if (cnt == 0) 19422 continue; 19423 19424 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19425 if (!new_prog) 19426 return -ENOMEM; 19427 19428 delta += cnt - 1; 19429 env->prog = prog = new_prog; 19430 insn = new_prog->insnsi + i + delta; 19431 continue; 19432 } 19433 19434 if (insn->imm == BPF_FUNC_get_route_realm) 19435 prog->dst_needed = 1; 19436 if (insn->imm == BPF_FUNC_get_prandom_u32) 19437 bpf_user_rnd_init_once(); 19438 if (insn->imm == BPF_FUNC_override_return) 19439 prog->kprobe_override = 1; 19440 if (insn->imm == BPF_FUNC_tail_call) { 19441 /* If we tail call into other programs, we 19442 * cannot make any assumptions since they can 19443 * be replaced dynamically during runtime in 19444 * the program array. 19445 */ 19446 prog->cb_access = 1; 19447 if (!allow_tail_call_in_subprogs(env)) 19448 prog->aux->stack_depth = MAX_BPF_STACK; 19449 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 19450 19451 /* mark bpf_tail_call as different opcode to avoid 19452 * conditional branch in the interpreter for every normal 19453 * call and to prevent accidental JITing by JIT compiler 19454 * that doesn't support bpf_tail_call yet 19455 */ 19456 insn->imm = 0; 19457 insn->code = BPF_JMP | BPF_TAIL_CALL; 19458 19459 aux = &env->insn_aux_data[i + delta]; 19460 if (env->bpf_capable && !prog->blinding_requested && 19461 prog->jit_requested && 19462 !bpf_map_key_poisoned(aux) && 19463 !bpf_map_ptr_poisoned(aux) && 19464 !bpf_map_ptr_unpriv(aux)) { 19465 struct bpf_jit_poke_descriptor desc = { 19466 .reason = BPF_POKE_REASON_TAIL_CALL, 19467 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 19468 .tail_call.key = bpf_map_key_immediate(aux), 19469 .insn_idx = i + delta, 19470 }; 19471 19472 ret = bpf_jit_add_poke_descriptor(prog, &desc); 19473 if (ret < 0) { 19474 verbose(env, "adding tail call poke descriptor failed\n"); 19475 return ret; 19476 } 19477 19478 insn->imm = ret + 1; 19479 continue; 19480 } 19481 19482 if (!bpf_map_ptr_unpriv(aux)) 19483 continue; 19484 19485 /* instead of changing every JIT dealing with tail_call 19486 * emit two extra insns: 19487 * if (index >= max_entries) goto out; 19488 * index &= array->index_mask; 19489 * to avoid out-of-bounds cpu speculation 19490 */ 19491 if (bpf_map_ptr_poisoned(aux)) { 19492 verbose(env, "tail_call abusing map_ptr\n"); 19493 return -EINVAL; 19494 } 19495 19496 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19497 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 19498 map_ptr->max_entries, 2); 19499 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 19500 container_of(map_ptr, 19501 struct bpf_array, 19502 map)->index_mask); 19503 insn_buf[2] = *insn; 19504 cnt = 3; 19505 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19506 if (!new_prog) 19507 return -ENOMEM; 19508 19509 delta += cnt - 1; 19510 env->prog = prog = new_prog; 19511 insn = new_prog->insnsi + i + delta; 19512 continue; 19513 } 19514 19515 if (insn->imm == BPF_FUNC_timer_set_callback) { 19516 /* The verifier will process callback_fn as many times as necessary 19517 * with different maps and the register states prepared by 19518 * set_timer_callback_state will be accurate. 19519 * 19520 * The following use case is valid: 19521 * map1 is shared by prog1, prog2, prog3. 19522 * prog1 calls bpf_timer_init for some map1 elements 19523 * prog2 calls bpf_timer_set_callback for some map1 elements. 19524 * Those that were not bpf_timer_init-ed will return -EINVAL. 19525 * prog3 calls bpf_timer_start for some map1 elements. 19526 * Those that were not both bpf_timer_init-ed and 19527 * bpf_timer_set_callback-ed will return -EINVAL. 19528 */ 19529 struct bpf_insn ld_addrs[2] = { 19530 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 19531 }; 19532 19533 insn_buf[0] = ld_addrs[0]; 19534 insn_buf[1] = ld_addrs[1]; 19535 insn_buf[2] = *insn; 19536 cnt = 3; 19537 19538 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19539 if (!new_prog) 19540 return -ENOMEM; 19541 19542 delta += cnt - 1; 19543 env->prog = prog = new_prog; 19544 insn = new_prog->insnsi + i + delta; 19545 goto patch_call_imm; 19546 } 19547 19548 if (is_storage_get_function(insn->imm)) { 19549 if (!env->prog->aux->sleepable || 19550 env->insn_aux_data[i + delta].storage_get_func_atomic) 19551 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 19552 else 19553 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 19554 insn_buf[1] = *insn; 19555 cnt = 2; 19556 19557 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19558 if (!new_prog) 19559 return -ENOMEM; 19560 19561 delta += cnt - 1; 19562 env->prog = prog = new_prog; 19563 insn = new_prog->insnsi + i + delta; 19564 goto patch_call_imm; 19565 } 19566 19567 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 19568 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 19569 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 19570 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 19571 */ 19572 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 19573 insn_buf[1] = *insn; 19574 cnt = 2; 19575 19576 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19577 if (!new_prog) 19578 return -ENOMEM; 19579 19580 delta += cnt - 1; 19581 env->prog = prog = new_prog; 19582 insn = new_prog->insnsi + i + delta; 19583 goto patch_call_imm; 19584 } 19585 19586 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 19587 * and other inlining handlers are currently limited to 64 bit 19588 * only. 19589 */ 19590 if (prog->jit_requested && BITS_PER_LONG == 64 && 19591 (insn->imm == BPF_FUNC_map_lookup_elem || 19592 insn->imm == BPF_FUNC_map_update_elem || 19593 insn->imm == BPF_FUNC_map_delete_elem || 19594 insn->imm == BPF_FUNC_map_push_elem || 19595 insn->imm == BPF_FUNC_map_pop_elem || 19596 insn->imm == BPF_FUNC_map_peek_elem || 19597 insn->imm == BPF_FUNC_redirect_map || 19598 insn->imm == BPF_FUNC_for_each_map_elem || 19599 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 19600 aux = &env->insn_aux_data[i + delta]; 19601 if (bpf_map_ptr_poisoned(aux)) 19602 goto patch_call_imm; 19603 19604 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19605 ops = map_ptr->ops; 19606 if (insn->imm == BPF_FUNC_map_lookup_elem && 19607 ops->map_gen_lookup) { 19608 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 19609 if (cnt == -EOPNOTSUPP) 19610 goto patch_map_ops_generic; 19611 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19612 verbose(env, "bpf verifier is misconfigured\n"); 19613 return -EINVAL; 19614 } 19615 19616 new_prog = bpf_patch_insn_data(env, i + delta, 19617 insn_buf, cnt); 19618 if (!new_prog) 19619 return -ENOMEM; 19620 19621 delta += cnt - 1; 19622 env->prog = prog = new_prog; 19623 insn = new_prog->insnsi + i + delta; 19624 continue; 19625 } 19626 19627 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 19628 (void *(*)(struct bpf_map *map, void *key))NULL)); 19629 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 19630 (long (*)(struct bpf_map *map, void *key))NULL)); 19631 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 19632 (long (*)(struct bpf_map *map, void *key, void *value, 19633 u64 flags))NULL)); 19634 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 19635 (long (*)(struct bpf_map *map, void *value, 19636 u64 flags))NULL)); 19637 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 19638 (long (*)(struct bpf_map *map, void *value))NULL)); 19639 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 19640 (long (*)(struct bpf_map *map, void *value))NULL)); 19641 BUILD_BUG_ON(!__same_type(ops->map_redirect, 19642 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 19643 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 19644 (long (*)(struct bpf_map *map, 19645 bpf_callback_t callback_fn, 19646 void *callback_ctx, 19647 u64 flags))NULL)); 19648 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 19649 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 19650 19651 patch_map_ops_generic: 19652 switch (insn->imm) { 19653 case BPF_FUNC_map_lookup_elem: 19654 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 19655 continue; 19656 case BPF_FUNC_map_update_elem: 19657 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 19658 continue; 19659 case BPF_FUNC_map_delete_elem: 19660 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 19661 continue; 19662 case BPF_FUNC_map_push_elem: 19663 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 19664 continue; 19665 case BPF_FUNC_map_pop_elem: 19666 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 19667 continue; 19668 case BPF_FUNC_map_peek_elem: 19669 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 19670 continue; 19671 case BPF_FUNC_redirect_map: 19672 insn->imm = BPF_CALL_IMM(ops->map_redirect); 19673 continue; 19674 case BPF_FUNC_for_each_map_elem: 19675 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 19676 continue; 19677 case BPF_FUNC_map_lookup_percpu_elem: 19678 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 19679 continue; 19680 } 19681 19682 goto patch_call_imm; 19683 } 19684 19685 /* Implement bpf_jiffies64 inline. */ 19686 if (prog->jit_requested && BITS_PER_LONG == 64 && 19687 insn->imm == BPF_FUNC_jiffies64) { 19688 struct bpf_insn ld_jiffies_addr[2] = { 19689 BPF_LD_IMM64(BPF_REG_0, 19690 (unsigned long)&jiffies), 19691 }; 19692 19693 insn_buf[0] = ld_jiffies_addr[0]; 19694 insn_buf[1] = ld_jiffies_addr[1]; 19695 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 19696 BPF_REG_0, 0); 19697 cnt = 3; 19698 19699 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 19700 cnt); 19701 if (!new_prog) 19702 return -ENOMEM; 19703 19704 delta += cnt - 1; 19705 env->prog = prog = new_prog; 19706 insn = new_prog->insnsi + i + delta; 19707 continue; 19708 } 19709 19710 /* Implement bpf_get_func_arg inline. */ 19711 if (prog_type == BPF_PROG_TYPE_TRACING && 19712 insn->imm == BPF_FUNC_get_func_arg) { 19713 /* Load nr_args from ctx - 8 */ 19714 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19715 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 19716 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 19717 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 19718 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 19719 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19720 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 19721 insn_buf[7] = BPF_JMP_A(1); 19722 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 19723 cnt = 9; 19724 19725 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19726 if (!new_prog) 19727 return -ENOMEM; 19728 19729 delta += cnt - 1; 19730 env->prog = prog = new_prog; 19731 insn = new_prog->insnsi + i + delta; 19732 continue; 19733 } 19734 19735 /* Implement bpf_get_func_ret inline. */ 19736 if (prog_type == BPF_PROG_TYPE_TRACING && 19737 insn->imm == BPF_FUNC_get_func_ret) { 19738 if (eatype == BPF_TRACE_FEXIT || 19739 eatype == BPF_MODIFY_RETURN) { 19740 /* Load nr_args from ctx - 8 */ 19741 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19742 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 19743 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 19744 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19745 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 19746 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 19747 cnt = 6; 19748 } else { 19749 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 19750 cnt = 1; 19751 } 19752 19753 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19754 if (!new_prog) 19755 return -ENOMEM; 19756 19757 delta += cnt - 1; 19758 env->prog = prog = new_prog; 19759 insn = new_prog->insnsi + i + delta; 19760 continue; 19761 } 19762 19763 /* Implement get_func_arg_cnt inline. */ 19764 if (prog_type == BPF_PROG_TYPE_TRACING && 19765 insn->imm == BPF_FUNC_get_func_arg_cnt) { 19766 /* Load nr_args from ctx - 8 */ 19767 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19768 19769 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19770 if (!new_prog) 19771 return -ENOMEM; 19772 19773 env->prog = prog = new_prog; 19774 insn = new_prog->insnsi + i + delta; 19775 continue; 19776 } 19777 19778 /* Implement bpf_get_func_ip inline. */ 19779 if (prog_type == BPF_PROG_TYPE_TRACING && 19780 insn->imm == BPF_FUNC_get_func_ip) { 19781 /* Load IP address from ctx - 16 */ 19782 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 19783 19784 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19785 if (!new_prog) 19786 return -ENOMEM; 19787 19788 env->prog = prog = new_prog; 19789 insn = new_prog->insnsi + i + delta; 19790 continue; 19791 } 19792 19793 patch_call_imm: 19794 fn = env->ops->get_func_proto(insn->imm, env->prog); 19795 /* all functions that have prototype and verifier allowed 19796 * programs to call them, must be real in-kernel functions 19797 */ 19798 if (!fn->func) { 19799 verbose(env, 19800 "kernel subsystem misconfigured func %s#%d\n", 19801 func_id_name(insn->imm), insn->imm); 19802 return -EFAULT; 19803 } 19804 insn->imm = fn->func - __bpf_call_base; 19805 } 19806 19807 /* Since poke tab is now finalized, publish aux to tracker. */ 19808 for (i = 0; i < prog->aux->size_poke_tab; i++) { 19809 map_ptr = prog->aux->poke_tab[i].tail_call.map; 19810 if (!map_ptr->ops->map_poke_track || 19811 !map_ptr->ops->map_poke_untrack || 19812 !map_ptr->ops->map_poke_run) { 19813 verbose(env, "bpf verifier is misconfigured\n"); 19814 return -EINVAL; 19815 } 19816 19817 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 19818 if (ret < 0) { 19819 verbose(env, "tracking tail call prog failed\n"); 19820 return ret; 19821 } 19822 } 19823 19824 sort_kfunc_descs_by_imm_off(env->prog); 19825 19826 return 0; 19827 } 19828 19829 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 19830 int position, 19831 s32 stack_base, 19832 u32 callback_subprogno, 19833 u32 *cnt) 19834 { 19835 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 19836 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 19837 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 19838 int reg_loop_max = BPF_REG_6; 19839 int reg_loop_cnt = BPF_REG_7; 19840 int reg_loop_ctx = BPF_REG_8; 19841 19842 struct bpf_prog *new_prog; 19843 u32 callback_start; 19844 u32 call_insn_offset; 19845 s32 callback_offset; 19846 19847 /* This represents an inlined version of bpf_iter.c:bpf_loop, 19848 * be careful to modify this code in sync. 19849 */ 19850 struct bpf_insn insn_buf[] = { 19851 /* Return error and jump to the end of the patch if 19852 * expected number of iterations is too big. 19853 */ 19854 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 19855 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 19856 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 19857 /* spill R6, R7, R8 to use these as loop vars */ 19858 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 19859 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 19860 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 19861 /* initialize loop vars */ 19862 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 19863 BPF_MOV32_IMM(reg_loop_cnt, 0), 19864 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 19865 /* loop header, 19866 * if reg_loop_cnt >= reg_loop_max skip the loop body 19867 */ 19868 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 19869 /* callback call, 19870 * correct callback offset would be set after patching 19871 */ 19872 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 19873 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 19874 BPF_CALL_REL(0), 19875 /* increment loop counter */ 19876 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 19877 /* jump to loop header if callback returned 0 */ 19878 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 19879 /* return value of bpf_loop, 19880 * set R0 to the number of iterations 19881 */ 19882 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 19883 /* restore original values of R6, R7, R8 */ 19884 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 19885 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 19886 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 19887 }; 19888 19889 *cnt = ARRAY_SIZE(insn_buf); 19890 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 19891 if (!new_prog) 19892 return new_prog; 19893 19894 /* callback start is known only after patching */ 19895 callback_start = env->subprog_info[callback_subprogno].start; 19896 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 19897 call_insn_offset = position + 12; 19898 callback_offset = callback_start - call_insn_offset - 1; 19899 new_prog->insnsi[call_insn_offset].imm = callback_offset; 19900 19901 return new_prog; 19902 } 19903 19904 static bool is_bpf_loop_call(struct bpf_insn *insn) 19905 { 19906 return insn->code == (BPF_JMP | BPF_CALL) && 19907 insn->src_reg == 0 && 19908 insn->imm == BPF_FUNC_loop; 19909 } 19910 19911 /* For all sub-programs in the program (including main) check 19912 * insn_aux_data to see if there are bpf_loop calls that require 19913 * inlining. If such calls are found the calls are replaced with a 19914 * sequence of instructions produced by `inline_bpf_loop` function and 19915 * subprog stack_depth is increased by the size of 3 registers. 19916 * This stack space is used to spill values of the R6, R7, R8. These 19917 * registers are used to store the loop bound, counter and context 19918 * variables. 19919 */ 19920 static int optimize_bpf_loop(struct bpf_verifier_env *env) 19921 { 19922 struct bpf_subprog_info *subprogs = env->subprog_info; 19923 int i, cur_subprog = 0, cnt, delta = 0; 19924 struct bpf_insn *insn = env->prog->insnsi; 19925 int insn_cnt = env->prog->len; 19926 u16 stack_depth = subprogs[cur_subprog].stack_depth; 19927 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19928 u16 stack_depth_extra = 0; 19929 19930 for (i = 0; i < insn_cnt; i++, insn++) { 19931 struct bpf_loop_inline_state *inline_state = 19932 &env->insn_aux_data[i + delta].loop_inline_state; 19933 19934 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 19935 struct bpf_prog *new_prog; 19936 19937 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 19938 new_prog = inline_bpf_loop(env, 19939 i + delta, 19940 -(stack_depth + stack_depth_extra), 19941 inline_state->callback_subprogno, 19942 &cnt); 19943 if (!new_prog) 19944 return -ENOMEM; 19945 19946 delta += cnt - 1; 19947 env->prog = new_prog; 19948 insn = new_prog->insnsi + i + delta; 19949 } 19950 19951 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 19952 subprogs[cur_subprog].stack_depth += stack_depth_extra; 19953 cur_subprog++; 19954 stack_depth = subprogs[cur_subprog].stack_depth; 19955 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19956 stack_depth_extra = 0; 19957 } 19958 } 19959 19960 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19961 19962 return 0; 19963 } 19964 19965 static void free_states(struct bpf_verifier_env *env) 19966 { 19967 struct bpf_verifier_state_list *sl, *sln; 19968 int i; 19969 19970 sl = env->free_list; 19971 while (sl) { 19972 sln = sl->next; 19973 free_verifier_state(&sl->state, false); 19974 kfree(sl); 19975 sl = sln; 19976 } 19977 env->free_list = NULL; 19978 19979 if (!env->explored_states) 19980 return; 19981 19982 for (i = 0; i < state_htab_size(env); i++) { 19983 sl = env->explored_states[i]; 19984 19985 while (sl) { 19986 sln = sl->next; 19987 free_verifier_state(&sl->state, false); 19988 kfree(sl); 19989 sl = sln; 19990 } 19991 env->explored_states[i] = NULL; 19992 } 19993 } 19994 19995 static int do_check_common(struct bpf_verifier_env *env, int subprog) 19996 { 19997 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19998 struct bpf_subprog_info *sub = subprog_info(env, subprog); 19999 struct bpf_verifier_state *state; 20000 struct bpf_reg_state *regs; 20001 int ret, i; 20002 20003 env->prev_linfo = NULL; 20004 env->pass_cnt++; 20005 20006 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 20007 if (!state) 20008 return -ENOMEM; 20009 state->curframe = 0; 20010 state->speculative = false; 20011 state->branches = 1; 20012 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 20013 if (!state->frame[0]) { 20014 kfree(state); 20015 return -ENOMEM; 20016 } 20017 env->cur_state = state; 20018 init_func_state(env, state->frame[0], 20019 BPF_MAIN_FUNC /* callsite */, 20020 0 /* frameno */, 20021 subprog); 20022 state->first_insn_idx = env->subprog_info[subprog].start; 20023 state->last_insn_idx = -1; 20024 20025 20026 regs = state->frame[state->curframe]->regs; 20027 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 20028 const char *sub_name = subprog_name(env, subprog); 20029 struct bpf_subprog_arg_info *arg; 20030 struct bpf_reg_state *reg; 20031 20032 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 20033 ret = btf_prepare_func_args(env, subprog); 20034 if (ret) 20035 goto out; 20036 20037 if (subprog_is_exc_cb(env, subprog)) { 20038 state->frame[0]->in_exception_callback_fn = true; 20039 /* We have already ensured that the callback returns an integer, just 20040 * like all global subprogs. We need to determine it only has a single 20041 * scalar argument. 20042 */ 20043 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 20044 verbose(env, "exception cb only supports single integer argument\n"); 20045 ret = -EINVAL; 20046 goto out; 20047 } 20048 } 20049 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 20050 arg = &sub->args[i - BPF_REG_1]; 20051 reg = ®s[i]; 20052 20053 if (arg->arg_type == ARG_PTR_TO_CTX) { 20054 reg->type = PTR_TO_CTX; 20055 mark_reg_known_zero(env, regs, i); 20056 } else if (arg->arg_type == ARG_ANYTHING) { 20057 reg->type = SCALAR_VALUE; 20058 mark_reg_unknown(env, regs, i); 20059 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 20060 /* assume unspecial LOCAL dynptr type */ 20061 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 20062 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 20063 reg->type = PTR_TO_MEM; 20064 if (arg->arg_type & PTR_MAYBE_NULL) 20065 reg->type |= PTR_MAYBE_NULL; 20066 mark_reg_known_zero(env, regs, i); 20067 reg->mem_size = arg->mem_size; 20068 reg->id = ++env->id_gen; 20069 } else { 20070 WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n", 20071 i - BPF_REG_1, arg->arg_type); 20072 ret = -EFAULT; 20073 goto out; 20074 } 20075 } 20076 } else { 20077 /* if main BPF program has associated BTF info, validate that 20078 * it's matching expected signature, and otherwise mark BTF 20079 * info for main program as unreliable 20080 */ 20081 if (env->prog->aux->func_info_aux) { 20082 ret = btf_prepare_func_args(env, 0); 20083 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 20084 env->prog->aux->func_info_aux[0].unreliable = true; 20085 } 20086 20087 /* 1st arg to a function */ 20088 regs[BPF_REG_1].type = PTR_TO_CTX; 20089 mark_reg_known_zero(env, regs, BPF_REG_1); 20090 } 20091 20092 ret = do_check(env); 20093 out: 20094 /* check for NULL is necessary, since cur_state can be freed inside 20095 * do_check() under memory pressure. 20096 */ 20097 if (env->cur_state) { 20098 free_verifier_state(env->cur_state, true); 20099 env->cur_state = NULL; 20100 } 20101 while (!pop_stack(env, NULL, NULL, false)); 20102 if (!ret && pop_log) 20103 bpf_vlog_reset(&env->log, 0); 20104 free_states(env); 20105 return ret; 20106 } 20107 20108 /* Lazily verify all global functions based on their BTF, if they are called 20109 * from main BPF program or any of subprograms transitively. 20110 * BPF global subprogs called from dead code are not validated. 20111 * All callable global functions must pass verification. 20112 * Otherwise the whole program is rejected. 20113 * Consider: 20114 * int bar(int); 20115 * int foo(int f) 20116 * { 20117 * return bar(f); 20118 * } 20119 * int bar(int b) 20120 * { 20121 * ... 20122 * } 20123 * foo() will be verified first for R1=any_scalar_value. During verification it 20124 * will be assumed that bar() already verified successfully and call to bar() 20125 * from foo() will be checked for type match only. Later bar() will be verified 20126 * independently to check that it's safe for R1=any_scalar_value. 20127 */ 20128 static int do_check_subprogs(struct bpf_verifier_env *env) 20129 { 20130 struct bpf_prog_aux *aux = env->prog->aux; 20131 struct bpf_func_info_aux *sub_aux; 20132 int i, ret, new_cnt; 20133 20134 if (!aux->func_info) 20135 return 0; 20136 20137 /* exception callback is presumed to be always called */ 20138 if (env->exception_callback_subprog) 20139 subprog_aux(env, env->exception_callback_subprog)->called = true; 20140 20141 again: 20142 new_cnt = 0; 20143 for (i = 1; i < env->subprog_cnt; i++) { 20144 if (!subprog_is_global(env, i)) 20145 continue; 20146 20147 sub_aux = subprog_aux(env, i); 20148 if (!sub_aux->called || sub_aux->verified) 20149 continue; 20150 20151 env->insn_idx = env->subprog_info[i].start; 20152 WARN_ON_ONCE(env->insn_idx == 0); 20153 ret = do_check_common(env, i); 20154 if (ret) { 20155 return ret; 20156 } else if (env->log.level & BPF_LOG_LEVEL) { 20157 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 20158 i, subprog_name(env, i)); 20159 } 20160 20161 /* We verified new global subprog, it might have called some 20162 * more global subprogs that we haven't verified yet, so we 20163 * need to do another pass over subprogs to verify those. 20164 */ 20165 sub_aux->verified = true; 20166 new_cnt++; 20167 } 20168 20169 /* We can't loop forever as we verify at least one global subprog on 20170 * each pass. 20171 */ 20172 if (new_cnt) 20173 goto again; 20174 20175 return 0; 20176 } 20177 20178 static int do_check_main(struct bpf_verifier_env *env) 20179 { 20180 int ret; 20181 20182 env->insn_idx = 0; 20183 ret = do_check_common(env, 0); 20184 if (!ret) 20185 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 20186 return ret; 20187 } 20188 20189 20190 static void print_verification_stats(struct bpf_verifier_env *env) 20191 { 20192 int i; 20193 20194 if (env->log.level & BPF_LOG_STATS) { 20195 verbose(env, "verification time %lld usec\n", 20196 div_u64(env->verification_time, 1000)); 20197 verbose(env, "stack depth "); 20198 for (i = 0; i < env->subprog_cnt; i++) { 20199 u32 depth = env->subprog_info[i].stack_depth; 20200 20201 verbose(env, "%d", depth); 20202 if (i + 1 < env->subprog_cnt) 20203 verbose(env, "+"); 20204 } 20205 verbose(env, "\n"); 20206 } 20207 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 20208 "total_states %d peak_states %d mark_read %d\n", 20209 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 20210 env->max_states_per_insn, env->total_states, 20211 env->peak_states, env->longest_mark_read_walk); 20212 } 20213 20214 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 20215 { 20216 const struct btf_type *t, *func_proto; 20217 const struct bpf_struct_ops *st_ops; 20218 const struct btf_member *member; 20219 struct bpf_prog *prog = env->prog; 20220 u32 btf_id, member_idx; 20221 const char *mname; 20222 20223 if (!prog->gpl_compatible) { 20224 verbose(env, "struct ops programs must have a GPL compatible license\n"); 20225 return -EINVAL; 20226 } 20227 20228 btf_id = prog->aux->attach_btf_id; 20229 st_ops = bpf_struct_ops_find(btf_id); 20230 if (!st_ops) { 20231 verbose(env, "attach_btf_id %u is not a supported struct\n", 20232 btf_id); 20233 return -ENOTSUPP; 20234 } 20235 20236 t = st_ops->type; 20237 member_idx = prog->expected_attach_type; 20238 if (member_idx >= btf_type_vlen(t)) { 20239 verbose(env, "attach to invalid member idx %u of struct %s\n", 20240 member_idx, st_ops->name); 20241 return -EINVAL; 20242 } 20243 20244 member = &btf_type_member(t)[member_idx]; 20245 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 20246 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 20247 NULL); 20248 if (!func_proto) { 20249 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 20250 mname, member_idx, st_ops->name); 20251 return -EINVAL; 20252 } 20253 20254 if (st_ops->check_member) { 20255 int err = st_ops->check_member(t, member, prog); 20256 20257 if (err) { 20258 verbose(env, "attach to unsupported member %s of struct %s\n", 20259 mname, st_ops->name); 20260 return err; 20261 } 20262 } 20263 20264 prog->aux->attach_func_proto = func_proto; 20265 prog->aux->attach_func_name = mname; 20266 env->ops = st_ops->verifier_ops; 20267 20268 return 0; 20269 } 20270 #define SECURITY_PREFIX "security_" 20271 20272 static int check_attach_modify_return(unsigned long addr, const char *func_name) 20273 { 20274 if (within_error_injection_list(addr) || 20275 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 20276 return 0; 20277 20278 return -EINVAL; 20279 } 20280 20281 /* list of non-sleepable functions that are otherwise on 20282 * ALLOW_ERROR_INJECTION list 20283 */ 20284 BTF_SET_START(btf_non_sleepable_error_inject) 20285 /* Three functions below can be called from sleepable and non-sleepable context. 20286 * Assume non-sleepable from bpf safety point of view. 20287 */ 20288 BTF_ID(func, __filemap_add_folio) 20289 BTF_ID(func, should_fail_alloc_page) 20290 BTF_ID(func, should_failslab) 20291 BTF_SET_END(btf_non_sleepable_error_inject) 20292 20293 static int check_non_sleepable_error_inject(u32 btf_id) 20294 { 20295 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 20296 } 20297 20298 int bpf_check_attach_target(struct bpf_verifier_log *log, 20299 const struct bpf_prog *prog, 20300 const struct bpf_prog *tgt_prog, 20301 u32 btf_id, 20302 struct bpf_attach_target_info *tgt_info) 20303 { 20304 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 20305 const char prefix[] = "btf_trace_"; 20306 int ret = 0, subprog = -1, i; 20307 const struct btf_type *t; 20308 bool conservative = true; 20309 const char *tname; 20310 struct btf *btf; 20311 long addr = 0; 20312 struct module *mod = NULL; 20313 20314 if (!btf_id) { 20315 bpf_log(log, "Tracing programs must provide btf_id\n"); 20316 return -EINVAL; 20317 } 20318 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 20319 if (!btf) { 20320 bpf_log(log, 20321 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 20322 return -EINVAL; 20323 } 20324 t = btf_type_by_id(btf, btf_id); 20325 if (!t) { 20326 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 20327 return -EINVAL; 20328 } 20329 tname = btf_name_by_offset(btf, t->name_off); 20330 if (!tname) { 20331 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 20332 return -EINVAL; 20333 } 20334 if (tgt_prog) { 20335 struct bpf_prog_aux *aux = tgt_prog->aux; 20336 20337 if (bpf_prog_is_dev_bound(prog->aux) && 20338 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 20339 bpf_log(log, "Target program bound device mismatch"); 20340 return -EINVAL; 20341 } 20342 20343 for (i = 0; i < aux->func_info_cnt; i++) 20344 if (aux->func_info[i].type_id == btf_id) { 20345 subprog = i; 20346 break; 20347 } 20348 if (subprog == -1) { 20349 bpf_log(log, "Subprog %s doesn't exist\n", tname); 20350 return -EINVAL; 20351 } 20352 if (aux->func && aux->func[subprog]->aux->exception_cb) { 20353 bpf_log(log, 20354 "%s programs cannot attach to exception callback\n", 20355 prog_extension ? "Extension" : "FENTRY/FEXIT"); 20356 return -EINVAL; 20357 } 20358 conservative = aux->func_info_aux[subprog].unreliable; 20359 if (prog_extension) { 20360 if (conservative) { 20361 bpf_log(log, 20362 "Cannot replace static functions\n"); 20363 return -EINVAL; 20364 } 20365 if (!prog->jit_requested) { 20366 bpf_log(log, 20367 "Extension programs should be JITed\n"); 20368 return -EINVAL; 20369 } 20370 } 20371 if (!tgt_prog->jited) { 20372 bpf_log(log, "Can attach to only JITed progs\n"); 20373 return -EINVAL; 20374 } 20375 if (tgt_prog->type == prog->type) { 20376 /* Cannot fentry/fexit another fentry/fexit program. 20377 * Cannot attach program extension to another extension. 20378 * It's ok to attach fentry/fexit to extension program. 20379 */ 20380 bpf_log(log, "Cannot recursively attach\n"); 20381 return -EINVAL; 20382 } 20383 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 20384 prog_extension && 20385 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 20386 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 20387 /* Program extensions can extend all program types 20388 * except fentry/fexit. The reason is the following. 20389 * The fentry/fexit programs are used for performance 20390 * analysis, stats and can be attached to any program 20391 * type except themselves. When extension program is 20392 * replacing XDP function it is necessary to allow 20393 * performance analysis of all functions. Both original 20394 * XDP program and its program extension. Hence 20395 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 20396 * allowed. If extending of fentry/fexit was allowed it 20397 * would be possible to create long call chain 20398 * fentry->extension->fentry->extension beyond 20399 * reasonable stack size. Hence extending fentry is not 20400 * allowed. 20401 */ 20402 bpf_log(log, "Cannot extend fentry/fexit\n"); 20403 return -EINVAL; 20404 } 20405 } else { 20406 if (prog_extension) { 20407 bpf_log(log, "Cannot replace kernel functions\n"); 20408 return -EINVAL; 20409 } 20410 } 20411 20412 switch (prog->expected_attach_type) { 20413 case BPF_TRACE_RAW_TP: 20414 if (tgt_prog) { 20415 bpf_log(log, 20416 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 20417 return -EINVAL; 20418 } 20419 if (!btf_type_is_typedef(t)) { 20420 bpf_log(log, "attach_btf_id %u is not a typedef\n", 20421 btf_id); 20422 return -EINVAL; 20423 } 20424 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 20425 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 20426 btf_id, tname); 20427 return -EINVAL; 20428 } 20429 tname += sizeof(prefix) - 1; 20430 t = btf_type_by_id(btf, t->type); 20431 if (!btf_type_is_ptr(t)) 20432 /* should never happen in valid vmlinux build */ 20433 return -EINVAL; 20434 t = btf_type_by_id(btf, t->type); 20435 if (!btf_type_is_func_proto(t)) 20436 /* should never happen in valid vmlinux build */ 20437 return -EINVAL; 20438 20439 break; 20440 case BPF_TRACE_ITER: 20441 if (!btf_type_is_func(t)) { 20442 bpf_log(log, "attach_btf_id %u is not a function\n", 20443 btf_id); 20444 return -EINVAL; 20445 } 20446 t = btf_type_by_id(btf, t->type); 20447 if (!btf_type_is_func_proto(t)) 20448 return -EINVAL; 20449 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 20450 if (ret) 20451 return ret; 20452 break; 20453 default: 20454 if (!prog_extension) 20455 return -EINVAL; 20456 fallthrough; 20457 case BPF_MODIFY_RETURN: 20458 case BPF_LSM_MAC: 20459 case BPF_LSM_CGROUP: 20460 case BPF_TRACE_FENTRY: 20461 case BPF_TRACE_FEXIT: 20462 if (!btf_type_is_func(t)) { 20463 bpf_log(log, "attach_btf_id %u is not a function\n", 20464 btf_id); 20465 return -EINVAL; 20466 } 20467 if (prog_extension && 20468 btf_check_type_match(log, prog, btf, t)) 20469 return -EINVAL; 20470 t = btf_type_by_id(btf, t->type); 20471 if (!btf_type_is_func_proto(t)) 20472 return -EINVAL; 20473 20474 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 20475 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 20476 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 20477 return -EINVAL; 20478 20479 if (tgt_prog && conservative) 20480 t = NULL; 20481 20482 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 20483 if (ret < 0) 20484 return ret; 20485 20486 if (tgt_prog) { 20487 if (subprog == 0) 20488 addr = (long) tgt_prog->bpf_func; 20489 else 20490 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 20491 } else { 20492 if (btf_is_module(btf)) { 20493 mod = btf_try_get_module(btf); 20494 if (mod) 20495 addr = find_kallsyms_symbol_value(mod, tname); 20496 else 20497 addr = 0; 20498 } else { 20499 addr = kallsyms_lookup_name(tname); 20500 } 20501 if (!addr) { 20502 module_put(mod); 20503 bpf_log(log, 20504 "The address of function %s cannot be found\n", 20505 tname); 20506 return -ENOENT; 20507 } 20508 } 20509 20510 if (prog->aux->sleepable) { 20511 ret = -EINVAL; 20512 switch (prog->type) { 20513 case BPF_PROG_TYPE_TRACING: 20514 20515 /* fentry/fexit/fmod_ret progs can be sleepable if they are 20516 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 20517 */ 20518 if (!check_non_sleepable_error_inject(btf_id) && 20519 within_error_injection_list(addr)) 20520 ret = 0; 20521 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 20522 * in the fmodret id set with the KF_SLEEPABLE flag. 20523 */ 20524 else { 20525 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 20526 prog); 20527 20528 if (flags && (*flags & KF_SLEEPABLE)) 20529 ret = 0; 20530 } 20531 break; 20532 case BPF_PROG_TYPE_LSM: 20533 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 20534 * Only some of them are sleepable. 20535 */ 20536 if (bpf_lsm_is_sleepable_hook(btf_id)) 20537 ret = 0; 20538 break; 20539 default: 20540 break; 20541 } 20542 if (ret) { 20543 module_put(mod); 20544 bpf_log(log, "%s is not sleepable\n", tname); 20545 return ret; 20546 } 20547 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 20548 if (tgt_prog) { 20549 module_put(mod); 20550 bpf_log(log, "can't modify return codes of BPF programs\n"); 20551 return -EINVAL; 20552 } 20553 ret = -EINVAL; 20554 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 20555 !check_attach_modify_return(addr, tname)) 20556 ret = 0; 20557 if (ret) { 20558 module_put(mod); 20559 bpf_log(log, "%s() is not modifiable\n", tname); 20560 return ret; 20561 } 20562 } 20563 20564 break; 20565 } 20566 tgt_info->tgt_addr = addr; 20567 tgt_info->tgt_name = tname; 20568 tgt_info->tgt_type = t; 20569 tgt_info->tgt_mod = mod; 20570 return 0; 20571 } 20572 20573 BTF_SET_START(btf_id_deny) 20574 BTF_ID_UNUSED 20575 #ifdef CONFIG_SMP 20576 BTF_ID(func, migrate_disable) 20577 BTF_ID(func, migrate_enable) 20578 #endif 20579 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 20580 BTF_ID(func, rcu_read_unlock_strict) 20581 #endif 20582 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 20583 BTF_ID(func, preempt_count_add) 20584 BTF_ID(func, preempt_count_sub) 20585 #endif 20586 #ifdef CONFIG_PREEMPT_RCU 20587 BTF_ID(func, __rcu_read_lock) 20588 BTF_ID(func, __rcu_read_unlock) 20589 #endif 20590 BTF_SET_END(btf_id_deny) 20591 20592 static bool can_be_sleepable(struct bpf_prog *prog) 20593 { 20594 if (prog->type == BPF_PROG_TYPE_TRACING) { 20595 switch (prog->expected_attach_type) { 20596 case BPF_TRACE_FENTRY: 20597 case BPF_TRACE_FEXIT: 20598 case BPF_MODIFY_RETURN: 20599 case BPF_TRACE_ITER: 20600 return true; 20601 default: 20602 return false; 20603 } 20604 } 20605 return prog->type == BPF_PROG_TYPE_LSM || 20606 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 20607 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 20608 } 20609 20610 static int check_attach_btf_id(struct bpf_verifier_env *env) 20611 { 20612 struct bpf_prog *prog = env->prog; 20613 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 20614 struct bpf_attach_target_info tgt_info = {}; 20615 u32 btf_id = prog->aux->attach_btf_id; 20616 struct bpf_trampoline *tr; 20617 int ret; 20618 u64 key; 20619 20620 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 20621 if (prog->aux->sleepable) 20622 /* attach_btf_id checked to be zero already */ 20623 return 0; 20624 verbose(env, "Syscall programs can only be sleepable\n"); 20625 return -EINVAL; 20626 } 20627 20628 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 20629 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 20630 return -EINVAL; 20631 } 20632 20633 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 20634 return check_struct_ops_btf_id(env); 20635 20636 if (prog->type != BPF_PROG_TYPE_TRACING && 20637 prog->type != BPF_PROG_TYPE_LSM && 20638 prog->type != BPF_PROG_TYPE_EXT) 20639 return 0; 20640 20641 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 20642 if (ret) 20643 return ret; 20644 20645 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 20646 /* to make freplace equivalent to their targets, they need to 20647 * inherit env->ops and expected_attach_type for the rest of the 20648 * verification 20649 */ 20650 env->ops = bpf_verifier_ops[tgt_prog->type]; 20651 prog->expected_attach_type = tgt_prog->expected_attach_type; 20652 } 20653 20654 /* store info about the attachment target that will be used later */ 20655 prog->aux->attach_func_proto = tgt_info.tgt_type; 20656 prog->aux->attach_func_name = tgt_info.tgt_name; 20657 prog->aux->mod = tgt_info.tgt_mod; 20658 20659 if (tgt_prog) { 20660 prog->aux->saved_dst_prog_type = tgt_prog->type; 20661 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 20662 } 20663 20664 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 20665 prog->aux->attach_btf_trace = true; 20666 return 0; 20667 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 20668 if (!bpf_iter_prog_supported(prog)) 20669 return -EINVAL; 20670 return 0; 20671 } 20672 20673 if (prog->type == BPF_PROG_TYPE_LSM) { 20674 ret = bpf_lsm_verify_prog(&env->log, prog); 20675 if (ret < 0) 20676 return ret; 20677 } else if (prog->type == BPF_PROG_TYPE_TRACING && 20678 btf_id_set_contains(&btf_id_deny, btf_id)) { 20679 return -EINVAL; 20680 } 20681 20682 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 20683 tr = bpf_trampoline_get(key, &tgt_info); 20684 if (!tr) 20685 return -ENOMEM; 20686 20687 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 20688 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 20689 20690 prog->aux->dst_trampoline = tr; 20691 return 0; 20692 } 20693 20694 struct btf *bpf_get_btf_vmlinux(void) 20695 { 20696 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 20697 mutex_lock(&bpf_verifier_lock); 20698 if (!btf_vmlinux) 20699 btf_vmlinux = btf_parse_vmlinux(); 20700 mutex_unlock(&bpf_verifier_lock); 20701 } 20702 return btf_vmlinux; 20703 } 20704 20705 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 20706 { 20707 u64 start_time = ktime_get_ns(); 20708 struct bpf_verifier_env *env; 20709 int i, len, ret = -EINVAL, err; 20710 u32 log_true_size; 20711 bool is_priv; 20712 20713 /* no program is valid */ 20714 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 20715 return -EINVAL; 20716 20717 /* 'struct bpf_verifier_env' can be global, but since it's not small, 20718 * allocate/free it every time bpf_check() is called 20719 */ 20720 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 20721 if (!env) 20722 return -ENOMEM; 20723 20724 env->bt.env = env; 20725 20726 len = (*prog)->len; 20727 env->insn_aux_data = 20728 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 20729 ret = -ENOMEM; 20730 if (!env->insn_aux_data) 20731 goto err_free_env; 20732 for (i = 0; i < len; i++) 20733 env->insn_aux_data[i].orig_idx = i; 20734 env->prog = *prog; 20735 env->ops = bpf_verifier_ops[env->prog->type]; 20736 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 20737 is_priv = bpf_capable(); 20738 20739 bpf_get_btf_vmlinux(); 20740 20741 /* grab the mutex to protect few globals used by verifier */ 20742 if (!is_priv) 20743 mutex_lock(&bpf_verifier_lock); 20744 20745 /* user could have requested verbose verifier output 20746 * and supplied buffer to store the verification trace 20747 */ 20748 ret = bpf_vlog_init(&env->log, attr->log_level, 20749 (char __user *) (unsigned long) attr->log_buf, 20750 attr->log_size); 20751 if (ret) 20752 goto err_unlock; 20753 20754 mark_verifier_state_clean(env); 20755 20756 if (IS_ERR(btf_vmlinux)) { 20757 /* Either gcc or pahole or kernel are broken. */ 20758 verbose(env, "in-kernel BTF is malformed\n"); 20759 ret = PTR_ERR(btf_vmlinux); 20760 goto skip_full_check; 20761 } 20762 20763 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 20764 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 20765 env->strict_alignment = true; 20766 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 20767 env->strict_alignment = false; 20768 20769 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 20770 env->allow_uninit_stack = bpf_allow_uninit_stack(); 20771 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 20772 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 20773 env->bpf_capable = bpf_capable(); 20774 20775 if (is_priv) 20776 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 20777 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 20778 20779 env->explored_states = kvcalloc(state_htab_size(env), 20780 sizeof(struct bpf_verifier_state_list *), 20781 GFP_USER); 20782 ret = -ENOMEM; 20783 if (!env->explored_states) 20784 goto skip_full_check; 20785 20786 ret = check_btf_info_early(env, attr, uattr); 20787 if (ret < 0) 20788 goto skip_full_check; 20789 20790 ret = add_subprog_and_kfunc(env); 20791 if (ret < 0) 20792 goto skip_full_check; 20793 20794 ret = check_subprogs(env); 20795 if (ret < 0) 20796 goto skip_full_check; 20797 20798 ret = check_btf_info(env, attr, uattr); 20799 if (ret < 0) 20800 goto skip_full_check; 20801 20802 ret = check_attach_btf_id(env); 20803 if (ret) 20804 goto skip_full_check; 20805 20806 ret = resolve_pseudo_ldimm64(env); 20807 if (ret < 0) 20808 goto skip_full_check; 20809 20810 if (bpf_prog_is_offloaded(env->prog->aux)) { 20811 ret = bpf_prog_offload_verifier_prep(env->prog); 20812 if (ret) 20813 goto skip_full_check; 20814 } 20815 20816 ret = check_cfg(env); 20817 if (ret < 0) 20818 goto skip_full_check; 20819 20820 ret = do_check_main(env); 20821 ret = ret ?: do_check_subprogs(env); 20822 20823 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 20824 ret = bpf_prog_offload_finalize(env); 20825 20826 skip_full_check: 20827 kvfree(env->explored_states); 20828 20829 if (ret == 0) 20830 ret = check_max_stack_depth(env); 20831 20832 /* instruction rewrites happen after this point */ 20833 if (ret == 0) 20834 ret = optimize_bpf_loop(env); 20835 20836 if (is_priv) { 20837 if (ret == 0) 20838 opt_hard_wire_dead_code_branches(env); 20839 if (ret == 0) 20840 ret = opt_remove_dead_code(env); 20841 if (ret == 0) 20842 ret = opt_remove_nops(env); 20843 } else { 20844 if (ret == 0) 20845 sanitize_dead_code(env); 20846 } 20847 20848 if (ret == 0) 20849 /* program is valid, convert *(u32*)(ctx + off) accesses */ 20850 ret = convert_ctx_accesses(env); 20851 20852 if (ret == 0) 20853 ret = do_misc_fixups(env); 20854 20855 /* do 32-bit optimization after insn patching has done so those patched 20856 * insns could be handled correctly. 20857 */ 20858 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 20859 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 20860 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 20861 : false; 20862 } 20863 20864 if (ret == 0) 20865 ret = fixup_call_args(env); 20866 20867 env->verification_time = ktime_get_ns() - start_time; 20868 print_verification_stats(env); 20869 env->prog->aux->verified_insns = env->insn_processed; 20870 20871 /* preserve original error even if log finalization is successful */ 20872 err = bpf_vlog_finalize(&env->log, &log_true_size); 20873 if (err) 20874 ret = err; 20875 20876 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 20877 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 20878 &log_true_size, sizeof(log_true_size))) { 20879 ret = -EFAULT; 20880 goto err_release_maps; 20881 } 20882 20883 if (ret) 20884 goto err_release_maps; 20885 20886 if (env->used_map_cnt) { 20887 /* if program passed verifier, update used_maps in bpf_prog_info */ 20888 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 20889 sizeof(env->used_maps[0]), 20890 GFP_KERNEL); 20891 20892 if (!env->prog->aux->used_maps) { 20893 ret = -ENOMEM; 20894 goto err_release_maps; 20895 } 20896 20897 memcpy(env->prog->aux->used_maps, env->used_maps, 20898 sizeof(env->used_maps[0]) * env->used_map_cnt); 20899 env->prog->aux->used_map_cnt = env->used_map_cnt; 20900 } 20901 if (env->used_btf_cnt) { 20902 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 20903 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 20904 sizeof(env->used_btfs[0]), 20905 GFP_KERNEL); 20906 if (!env->prog->aux->used_btfs) { 20907 ret = -ENOMEM; 20908 goto err_release_maps; 20909 } 20910 20911 memcpy(env->prog->aux->used_btfs, env->used_btfs, 20912 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 20913 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 20914 } 20915 if (env->used_map_cnt || env->used_btf_cnt) { 20916 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 20917 * bpf_ld_imm64 instructions 20918 */ 20919 convert_pseudo_ld_imm64(env); 20920 } 20921 20922 adjust_btf_func(env); 20923 20924 err_release_maps: 20925 if (!env->prog->aux->used_maps) 20926 /* if we didn't copy map pointers into bpf_prog_info, release 20927 * them now. Otherwise free_used_maps() will release them. 20928 */ 20929 release_maps(env); 20930 if (!env->prog->aux->used_btfs) 20931 release_btfs(env); 20932 20933 /* extension progs temporarily inherit the attach_type of their targets 20934 for verification purposes, so set it back to zero before returning 20935 */ 20936 if (env->prog->type == BPF_PROG_TYPE_EXT) 20937 env->prog->expected_attach_type = 0; 20938 20939 *prog = env->prog; 20940 err_unlock: 20941 if (!is_priv) 20942 mutex_unlock(&bpf_verifier_lock); 20943 vfree(env->insn_aux_data); 20944 err_free_env: 20945 kfree(env); 20946 return ret; 20947 } 20948