1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 #include <linux/bsearch.h> 24 #include <linux/sort.h> 25 #include <linux/perf_event.h> 26 27 #include "disasm.h" 28 29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 30 #define BPF_PROG_TYPE(_id, _name) \ 31 [_id] = & _name ## _verifier_ops, 32 #define BPF_MAP_TYPE(_id, _ops) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 }; 37 38 /* bpf_check() is a static code analyzer that walks eBPF program 39 * instruction by instruction and updates register/stack state. 40 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 41 * 42 * The first pass is depth-first-search to check that the program is a DAG. 43 * It rejects the following programs: 44 * - larger than BPF_MAXINSNS insns 45 * - if loop is present (detected via back-edge) 46 * - unreachable insns exist (shouldn't be a forest. program = one function) 47 * - out of bounds or malformed jumps 48 * The second pass is all possible path descent from the 1st insn. 49 * Since it's analyzing all pathes through the program, the length of the 50 * analysis is limited to 64k insn, which may be hit even if total number of 51 * insn is less then 4K, but there are too many branches that change stack/regs. 52 * Number of 'branches to be analyzed' is limited to 1k 53 * 54 * On entry to each instruction, each register has a type, and the instruction 55 * changes the types of the registers depending on instruction semantics. 56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 57 * copied to R1. 58 * 59 * All registers are 64-bit. 60 * R0 - return register 61 * R1-R5 argument passing registers 62 * R6-R9 callee saved registers 63 * R10 - frame pointer read-only 64 * 65 * At the start of BPF program the register R1 contains a pointer to bpf_context 66 * and has type PTR_TO_CTX. 67 * 68 * Verifier tracks arithmetic operations on pointers in case: 69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 71 * 1st insn copies R10 (which has FRAME_PTR) type into R1 72 * and 2nd arithmetic instruction is pattern matched to recognize 73 * that it wants to construct a pointer to some element within stack. 74 * So after 2nd insn, the register R1 has type PTR_TO_STACK 75 * (and -20 constant is saved for further stack bounds checking). 76 * Meaning that this reg is a pointer to stack plus known immediate constant. 77 * 78 * Most of the time the registers have SCALAR_VALUE type, which 79 * means the register has some value, but it's not a valid pointer. 80 * (like pointer plus pointer becomes SCALAR_VALUE type) 81 * 82 * When verifier sees load or store instructions the type of base register 83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer 84 * types recognized by check_mem_access() function. 85 * 86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 87 * and the range of [ptr, ptr + map's value_size) is accessible. 88 * 89 * registers used to pass values to function calls are checked against 90 * function argument constraints. 91 * 92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 93 * It means that the register type passed to this function must be 94 * PTR_TO_STACK and it will be used inside the function as 95 * 'pointer to map element key' 96 * 97 * For example the argument constraints for bpf_map_lookup_elem(): 98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 99 * .arg1_type = ARG_CONST_MAP_PTR, 100 * .arg2_type = ARG_PTR_TO_MAP_KEY, 101 * 102 * ret_type says that this function returns 'pointer to map elem value or null' 103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 104 * 2nd argument should be a pointer to stack, which will be used inside 105 * the helper function as a pointer to map element key. 106 * 107 * On the kernel side the helper function looks like: 108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 109 * { 110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 111 * void *key = (void *) (unsigned long) r2; 112 * void *value; 113 * 114 * here kernel can access 'key' and 'map' pointers safely, knowing that 115 * [key, key + map->key_size) bytes are valid and were initialized on 116 * the stack of eBPF program. 117 * } 118 * 119 * Corresponding eBPF program may look like: 120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 124 * here verifier looks at prototype of map_lookup_elem() and sees: 125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 127 * 128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 130 * and were initialized prior to this call. 131 * If it's ok, then verifier allows this BPF_CALL insn and looks at 132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 134 * returns ether pointer to map value or NULL. 135 * 136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 137 * insn, the register holding that pointer in the true branch changes state to 138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 139 * branch. See check_cond_jmp_op(). 140 * 141 * After the call R0 is set to return type of the function and registers R1-R5 142 * are set to NOT_INIT to indicate that they are no longer readable. 143 */ 144 145 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 146 struct bpf_verifier_stack_elem { 147 /* verifer state is 'st' 148 * before processing instruction 'insn_idx' 149 * and after processing instruction 'prev_insn_idx' 150 */ 151 struct bpf_verifier_state st; 152 int insn_idx; 153 int prev_insn_idx; 154 struct bpf_verifier_stack_elem *next; 155 }; 156 157 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 158 #define BPF_COMPLEXITY_LIMIT_STACK 1024 159 160 #define BPF_MAP_PTR_UNPRIV 1UL 161 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 162 POISON_POINTER_DELTA)) 163 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 164 165 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 166 { 167 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 168 } 169 170 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 171 { 172 return aux->map_state & BPF_MAP_PTR_UNPRIV; 173 } 174 175 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 176 const struct bpf_map *map, bool unpriv) 177 { 178 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 179 unpriv |= bpf_map_ptr_unpriv(aux); 180 aux->map_state = (unsigned long)map | 181 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 182 } 183 184 struct bpf_call_arg_meta { 185 struct bpf_map *map_ptr; 186 bool raw_mode; 187 bool pkt_access; 188 int regno; 189 int access_size; 190 s64 msize_smax_value; 191 u64 msize_umax_value; 192 }; 193 194 static DEFINE_MUTEX(bpf_verifier_lock); 195 196 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 197 va_list args) 198 { 199 unsigned int n; 200 201 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 202 203 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 204 "verifier log line truncated - local buffer too short\n"); 205 206 n = min(log->len_total - log->len_used - 1, n); 207 log->kbuf[n] = '\0'; 208 209 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 210 log->len_used += n; 211 else 212 log->ubuf = NULL; 213 } 214 215 /* log_level controls verbosity level of eBPF verifier. 216 * bpf_verifier_log_write() is used to dump the verification trace to the log, 217 * so the user can figure out what's wrong with the program 218 */ 219 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 220 const char *fmt, ...) 221 { 222 va_list args; 223 224 if (!bpf_verifier_log_needed(&env->log)) 225 return; 226 227 va_start(args, fmt); 228 bpf_verifier_vlog(&env->log, fmt, args); 229 va_end(args); 230 } 231 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 232 233 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 234 { 235 struct bpf_verifier_env *env = private_data; 236 va_list args; 237 238 if (!bpf_verifier_log_needed(&env->log)) 239 return; 240 241 va_start(args, fmt); 242 bpf_verifier_vlog(&env->log, fmt, args); 243 va_end(args); 244 } 245 246 static bool type_is_pkt_pointer(enum bpf_reg_type type) 247 { 248 return type == PTR_TO_PACKET || 249 type == PTR_TO_PACKET_META; 250 } 251 252 /* string representation of 'enum bpf_reg_type' */ 253 static const char * const reg_type_str[] = { 254 [NOT_INIT] = "?", 255 [SCALAR_VALUE] = "inv", 256 [PTR_TO_CTX] = "ctx", 257 [CONST_PTR_TO_MAP] = "map_ptr", 258 [PTR_TO_MAP_VALUE] = "map_value", 259 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 260 [PTR_TO_STACK] = "fp", 261 [PTR_TO_PACKET] = "pkt", 262 [PTR_TO_PACKET_META] = "pkt_meta", 263 [PTR_TO_PACKET_END] = "pkt_end", 264 [PTR_TO_FLOW_KEYS] = "flow_keys", 265 }; 266 267 static char slot_type_char[] = { 268 [STACK_INVALID] = '?', 269 [STACK_SPILL] = 'r', 270 [STACK_MISC] = 'm', 271 [STACK_ZERO] = '0', 272 }; 273 274 static void print_liveness(struct bpf_verifier_env *env, 275 enum bpf_reg_liveness live) 276 { 277 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN)) 278 verbose(env, "_"); 279 if (live & REG_LIVE_READ) 280 verbose(env, "r"); 281 if (live & REG_LIVE_WRITTEN) 282 verbose(env, "w"); 283 } 284 285 static struct bpf_func_state *func(struct bpf_verifier_env *env, 286 const struct bpf_reg_state *reg) 287 { 288 struct bpf_verifier_state *cur = env->cur_state; 289 290 return cur->frame[reg->frameno]; 291 } 292 293 static void print_verifier_state(struct bpf_verifier_env *env, 294 const struct bpf_func_state *state) 295 { 296 const struct bpf_reg_state *reg; 297 enum bpf_reg_type t; 298 int i; 299 300 if (state->frameno) 301 verbose(env, " frame%d:", state->frameno); 302 for (i = 0; i < MAX_BPF_REG; i++) { 303 reg = &state->regs[i]; 304 t = reg->type; 305 if (t == NOT_INIT) 306 continue; 307 verbose(env, " R%d", i); 308 print_liveness(env, reg->live); 309 verbose(env, "=%s", reg_type_str[t]); 310 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 311 tnum_is_const(reg->var_off)) { 312 /* reg->off should be 0 for SCALAR_VALUE */ 313 verbose(env, "%lld", reg->var_off.value + reg->off); 314 if (t == PTR_TO_STACK) 315 verbose(env, ",call_%d", func(env, reg)->callsite); 316 } else { 317 verbose(env, "(id=%d", reg->id); 318 if (t != SCALAR_VALUE) 319 verbose(env, ",off=%d", reg->off); 320 if (type_is_pkt_pointer(t)) 321 verbose(env, ",r=%d", reg->range); 322 else if (t == CONST_PTR_TO_MAP || 323 t == PTR_TO_MAP_VALUE || 324 t == PTR_TO_MAP_VALUE_OR_NULL) 325 verbose(env, ",ks=%d,vs=%d", 326 reg->map_ptr->key_size, 327 reg->map_ptr->value_size); 328 if (tnum_is_const(reg->var_off)) { 329 /* Typically an immediate SCALAR_VALUE, but 330 * could be a pointer whose offset is too big 331 * for reg->off 332 */ 333 verbose(env, ",imm=%llx", reg->var_off.value); 334 } else { 335 if (reg->smin_value != reg->umin_value && 336 reg->smin_value != S64_MIN) 337 verbose(env, ",smin_value=%lld", 338 (long long)reg->smin_value); 339 if (reg->smax_value != reg->umax_value && 340 reg->smax_value != S64_MAX) 341 verbose(env, ",smax_value=%lld", 342 (long long)reg->smax_value); 343 if (reg->umin_value != 0) 344 verbose(env, ",umin_value=%llu", 345 (unsigned long long)reg->umin_value); 346 if (reg->umax_value != U64_MAX) 347 verbose(env, ",umax_value=%llu", 348 (unsigned long long)reg->umax_value); 349 if (!tnum_is_unknown(reg->var_off)) { 350 char tn_buf[48]; 351 352 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 353 verbose(env, ",var_off=%s", tn_buf); 354 } 355 } 356 verbose(env, ")"); 357 } 358 } 359 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 360 char types_buf[BPF_REG_SIZE + 1]; 361 bool valid = false; 362 int j; 363 364 for (j = 0; j < BPF_REG_SIZE; j++) { 365 if (state->stack[i].slot_type[j] != STACK_INVALID) 366 valid = true; 367 types_buf[j] = slot_type_char[ 368 state->stack[i].slot_type[j]]; 369 } 370 types_buf[BPF_REG_SIZE] = 0; 371 if (!valid) 372 continue; 373 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 374 print_liveness(env, state->stack[i].spilled_ptr.live); 375 if (state->stack[i].slot_type[0] == STACK_SPILL) 376 verbose(env, "=%s", 377 reg_type_str[state->stack[i].spilled_ptr.type]); 378 else 379 verbose(env, "=%s", types_buf); 380 } 381 verbose(env, "\n"); 382 } 383 384 static int copy_stack_state(struct bpf_func_state *dst, 385 const struct bpf_func_state *src) 386 { 387 if (!src->stack) 388 return 0; 389 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) { 390 /* internal bug, make state invalid to reject the program */ 391 memset(dst, 0, sizeof(*dst)); 392 return -EFAULT; 393 } 394 memcpy(dst->stack, src->stack, 395 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE)); 396 return 0; 397 } 398 399 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 400 * make it consume minimal amount of memory. check_stack_write() access from 401 * the program calls into realloc_func_state() to grow the stack size. 402 * Note there is a non-zero parent pointer inside each reg of bpf_verifier_state 403 * which this function copies over. It points to corresponding reg in previous 404 * bpf_verifier_state which is never reallocated 405 */ 406 static int realloc_func_state(struct bpf_func_state *state, int size, 407 bool copy_old) 408 { 409 u32 old_size = state->allocated_stack; 410 struct bpf_stack_state *new_stack; 411 int slot = size / BPF_REG_SIZE; 412 413 if (size <= old_size || !size) { 414 if (copy_old) 415 return 0; 416 state->allocated_stack = slot * BPF_REG_SIZE; 417 if (!size && old_size) { 418 kfree(state->stack); 419 state->stack = NULL; 420 } 421 return 0; 422 } 423 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state), 424 GFP_KERNEL); 425 if (!new_stack) 426 return -ENOMEM; 427 if (copy_old) { 428 if (state->stack) 429 memcpy(new_stack, state->stack, 430 sizeof(*new_stack) * (old_size / BPF_REG_SIZE)); 431 memset(new_stack + old_size / BPF_REG_SIZE, 0, 432 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE); 433 } 434 state->allocated_stack = slot * BPF_REG_SIZE; 435 kfree(state->stack); 436 state->stack = new_stack; 437 return 0; 438 } 439 440 static void free_func_state(struct bpf_func_state *state) 441 { 442 if (!state) 443 return; 444 kfree(state->stack); 445 kfree(state); 446 } 447 448 static void free_verifier_state(struct bpf_verifier_state *state, 449 bool free_self) 450 { 451 int i; 452 453 for (i = 0; i <= state->curframe; i++) { 454 free_func_state(state->frame[i]); 455 state->frame[i] = NULL; 456 } 457 if (free_self) 458 kfree(state); 459 } 460 461 /* copy verifier state from src to dst growing dst stack space 462 * when necessary to accommodate larger src stack 463 */ 464 static int copy_func_state(struct bpf_func_state *dst, 465 const struct bpf_func_state *src) 466 { 467 int err; 468 469 err = realloc_func_state(dst, src->allocated_stack, false); 470 if (err) 471 return err; 472 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack)); 473 return copy_stack_state(dst, src); 474 } 475 476 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 477 const struct bpf_verifier_state *src) 478 { 479 struct bpf_func_state *dst; 480 int i, err; 481 482 /* if dst has more stack frames then src frame, free them */ 483 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 484 free_func_state(dst_state->frame[i]); 485 dst_state->frame[i] = NULL; 486 } 487 dst_state->curframe = src->curframe; 488 for (i = 0; i <= src->curframe; i++) { 489 dst = dst_state->frame[i]; 490 if (!dst) { 491 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 492 if (!dst) 493 return -ENOMEM; 494 dst_state->frame[i] = dst; 495 } 496 err = copy_func_state(dst, src->frame[i]); 497 if (err) 498 return err; 499 } 500 return 0; 501 } 502 503 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 504 int *insn_idx) 505 { 506 struct bpf_verifier_state *cur = env->cur_state; 507 struct bpf_verifier_stack_elem *elem, *head = env->head; 508 int err; 509 510 if (env->head == NULL) 511 return -ENOENT; 512 513 if (cur) { 514 err = copy_verifier_state(cur, &head->st); 515 if (err) 516 return err; 517 } 518 if (insn_idx) 519 *insn_idx = head->insn_idx; 520 if (prev_insn_idx) 521 *prev_insn_idx = head->prev_insn_idx; 522 elem = head->next; 523 free_verifier_state(&head->st, false); 524 kfree(head); 525 env->head = elem; 526 env->stack_size--; 527 return 0; 528 } 529 530 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 531 int insn_idx, int prev_insn_idx) 532 { 533 struct bpf_verifier_state *cur = env->cur_state; 534 struct bpf_verifier_stack_elem *elem; 535 int err; 536 537 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 538 if (!elem) 539 goto err; 540 541 elem->insn_idx = insn_idx; 542 elem->prev_insn_idx = prev_insn_idx; 543 elem->next = env->head; 544 env->head = elem; 545 env->stack_size++; 546 err = copy_verifier_state(&elem->st, cur); 547 if (err) 548 goto err; 549 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 550 verbose(env, "BPF program is too complex\n"); 551 goto err; 552 } 553 return &elem->st; 554 err: 555 free_verifier_state(env->cur_state, true); 556 env->cur_state = NULL; 557 /* pop all elements and return */ 558 while (!pop_stack(env, NULL, NULL)); 559 return NULL; 560 } 561 562 #define CALLER_SAVED_REGS 6 563 static const int caller_saved[CALLER_SAVED_REGS] = { 564 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 565 }; 566 567 static void __mark_reg_not_init(struct bpf_reg_state *reg); 568 569 /* Mark the unknown part of a register (variable offset or scalar value) as 570 * known to have the value @imm. 571 */ 572 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 573 { 574 /* Clear id, off, and union(map_ptr, range) */ 575 memset(((u8 *)reg) + sizeof(reg->type), 0, 576 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 577 reg->var_off = tnum_const(imm); 578 reg->smin_value = (s64)imm; 579 reg->smax_value = (s64)imm; 580 reg->umin_value = imm; 581 reg->umax_value = imm; 582 } 583 584 /* Mark the 'variable offset' part of a register as zero. This should be 585 * used only on registers holding a pointer type. 586 */ 587 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 588 { 589 __mark_reg_known(reg, 0); 590 } 591 592 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 593 { 594 __mark_reg_known(reg, 0); 595 reg->type = SCALAR_VALUE; 596 } 597 598 static void mark_reg_known_zero(struct bpf_verifier_env *env, 599 struct bpf_reg_state *regs, u32 regno) 600 { 601 if (WARN_ON(regno >= MAX_BPF_REG)) { 602 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 603 /* Something bad happened, let's kill all regs */ 604 for (regno = 0; regno < MAX_BPF_REG; regno++) 605 __mark_reg_not_init(regs + regno); 606 return; 607 } 608 __mark_reg_known_zero(regs + regno); 609 } 610 611 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 612 { 613 return type_is_pkt_pointer(reg->type); 614 } 615 616 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 617 { 618 return reg_is_pkt_pointer(reg) || 619 reg->type == PTR_TO_PACKET_END; 620 } 621 622 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 623 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 624 enum bpf_reg_type which) 625 { 626 /* The register can already have a range from prior markings. 627 * This is fine as long as it hasn't been advanced from its 628 * origin. 629 */ 630 return reg->type == which && 631 reg->id == 0 && 632 reg->off == 0 && 633 tnum_equals_const(reg->var_off, 0); 634 } 635 636 /* Attempts to improve min/max values based on var_off information */ 637 static void __update_reg_bounds(struct bpf_reg_state *reg) 638 { 639 /* min signed is max(sign bit) | min(other bits) */ 640 reg->smin_value = max_t(s64, reg->smin_value, 641 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 642 /* max signed is min(sign bit) | max(other bits) */ 643 reg->smax_value = min_t(s64, reg->smax_value, 644 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 645 reg->umin_value = max(reg->umin_value, reg->var_off.value); 646 reg->umax_value = min(reg->umax_value, 647 reg->var_off.value | reg->var_off.mask); 648 } 649 650 /* Uses signed min/max values to inform unsigned, and vice-versa */ 651 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 652 { 653 /* Learn sign from signed bounds. 654 * If we cannot cross the sign boundary, then signed and unsigned bounds 655 * are the same, so combine. This works even in the negative case, e.g. 656 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 657 */ 658 if (reg->smin_value >= 0 || reg->smax_value < 0) { 659 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 660 reg->umin_value); 661 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 662 reg->umax_value); 663 return; 664 } 665 /* Learn sign from unsigned bounds. Signed bounds cross the sign 666 * boundary, so we must be careful. 667 */ 668 if ((s64)reg->umax_value >= 0) { 669 /* Positive. We can't learn anything from the smin, but smax 670 * is positive, hence safe. 671 */ 672 reg->smin_value = reg->umin_value; 673 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 674 reg->umax_value); 675 } else if ((s64)reg->umin_value < 0) { 676 /* Negative. We can't learn anything from the smax, but smin 677 * is negative, hence safe. 678 */ 679 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 680 reg->umin_value); 681 reg->smax_value = reg->umax_value; 682 } 683 } 684 685 /* Attempts to improve var_off based on unsigned min/max information */ 686 static void __reg_bound_offset(struct bpf_reg_state *reg) 687 { 688 reg->var_off = tnum_intersect(reg->var_off, 689 tnum_range(reg->umin_value, 690 reg->umax_value)); 691 } 692 693 /* Reset the min/max bounds of a register */ 694 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 695 { 696 reg->smin_value = S64_MIN; 697 reg->smax_value = S64_MAX; 698 reg->umin_value = 0; 699 reg->umax_value = U64_MAX; 700 } 701 702 /* Mark a register as having a completely unknown (scalar) value. */ 703 static void __mark_reg_unknown(struct bpf_reg_state *reg) 704 { 705 /* 706 * Clear type, id, off, and union(map_ptr, range) and 707 * padding between 'type' and union 708 */ 709 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 710 reg->type = SCALAR_VALUE; 711 reg->var_off = tnum_unknown; 712 reg->frameno = 0; 713 __mark_reg_unbounded(reg); 714 } 715 716 static void mark_reg_unknown(struct bpf_verifier_env *env, 717 struct bpf_reg_state *regs, u32 regno) 718 { 719 if (WARN_ON(regno >= MAX_BPF_REG)) { 720 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 721 /* Something bad happened, let's kill all regs except FP */ 722 for (regno = 0; regno < BPF_REG_FP; regno++) 723 __mark_reg_not_init(regs + regno); 724 return; 725 } 726 __mark_reg_unknown(regs + regno); 727 } 728 729 static void __mark_reg_not_init(struct bpf_reg_state *reg) 730 { 731 __mark_reg_unknown(reg); 732 reg->type = NOT_INIT; 733 } 734 735 static void mark_reg_not_init(struct bpf_verifier_env *env, 736 struct bpf_reg_state *regs, u32 regno) 737 { 738 if (WARN_ON(regno >= MAX_BPF_REG)) { 739 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 740 /* Something bad happened, let's kill all regs except FP */ 741 for (regno = 0; regno < BPF_REG_FP; regno++) 742 __mark_reg_not_init(regs + regno); 743 return; 744 } 745 __mark_reg_not_init(regs + regno); 746 } 747 748 static void init_reg_state(struct bpf_verifier_env *env, 749 struct bpf_func_state *state) 750 { 751 struct bpf_reg_state *regs = state->regs; 752 int i; 753 754 for (i = 0; i < MAX_BPF_REG; i++) { 755 mark_reg_not_init(env, regs, i); 756 regs[i].live = REG_LIVE_NONE; 757 regs[i].parent = NULL; 758 } 759 760 /* frame pointer */ 761 regs[BPF_REG_FP].type = PTR_TO_STACK; 762 mark_reg_known_zero(env, regs, BPF_REG_FP); 763 regs[BPF_REG_FP].frameno = state->frameno; 764 765 /* 1st arg to a function */ 766 regs[BPF_REG_1].type = PTR_TO_CTX; 767 mark_reg_known_zero(env, regs, BPF_REG_1); 768 } 769 770 #define BPF_MAIN_FUNC (-1) 771 static void init_func_state(struct bpf_verifier_env *env, 772 struct bpf_func_state *state, 773 int callsite, int frameno, int subprogno) 774 { 775 state->callsite = callsite; 776 state->frameno = frameno; 777 state->subprogno = subprogno; 778 init_reg_state(env, state); 779 } 780 781 enum reg_arg_type { 782 SRC_OP, /* register is used as source operand */ 783 DST_OP, /* register is used as destination operand */ 784 DST_OP_NO_MARK /* same as above, check only, don't mark */ 785 }; 786 787 static int cmp_subprogs(const void *a, const void *b) 788 { 789 return ((struct bpf_subprog_info *)a)->start - 790 ((struct bpf_subprog_info *)b)->start; 791 } 792 793 static int find_subprog(struct bpf_verifier_env *env, int off) 794 { 795 struct bpf_subprog_info *p; 796 797 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 798 sizeof(env->subprog_info[0]), cmp_subprogs); 799 if (!p) 800 return -ENOENT; 801 return p - env->subprog_info; 802 803 } 804 805 static int add_subprog(struct bpf_verifier_env *env, int off) 806 { 807 int insn_cnt = env->prog->len; 808 int ret; 809 810 if (off >= insn_cnt || off < 0) { 811 verbose(env, "call to invalid destination\n"); 812 return -EINVAL; 813 } 814 ret = find_subprog(env, off); 815 if (ret >= 0) 816 return 0; 817 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 818 verbose(env, "too many subprograms\n"); 819 return -E2BIG; 820 } 821 env->subprog_info[env->subprog_cnt++].start = off; 822 sort(env->subprog_info, env->subprog_cnt, 823 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 824 return 0; 825 } 826 827 static int check_subprogs(struct bpf_verifier_env *env) 828 { 829 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 830 struct bpf_subprog_info *subprog = env->subprog_info; 831 struct bpf_insn *insn = env->prog->insnsi; 832 int insn_cnt = env->prog->len; 833 834 /* Add entry function. */ 835 ret = add_subprog(env, 0); 836 if (ret < 0) 837 return ret; 838 839 /* determine subprog starts. The end is one before the next starts */ 840 for (i = 0; i < insn_cnt; i++) { 841 if (insn[i].code != (BPF_JMP | BPF_CALL)) 842 continue; 843 if (insn[i].src_reg != BPF_PSEUDO_CALL) 844 continue; 845 if (!env->allow_ptr_leaks) { 846 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 847 return -EPERM; 848 } 849 if (bpf_prog_is_dev_bound(env->prog->aux)) { 850 verbose(env, "function calls in offloaded programs are not supported yet\n"); 851 return -EINVAL; 852 } 853 ret = add_subprog(env, i + insn[i].imm + 1); 854 if (ret < 0) 855 return ret; 856 } 857 858 /* Add a fake 'exit' subprog which could simplify subprog iteration 859 * logic. 'subprog_cnt' should not be increased. 860 */ 861 subprog[env->subprog_cnt].start = insn_cnt; 862 863 if (env->log.level > 1) 864 for (i = 0; i < env->subprog_cnt; i++) 865 verbose(env, "func#%d @%d\n", i, subprog[i].start); 866 867 /* now check that all jumps are within the same subprog */ 868 subprog_start = subprog[cur_subprog].start; 869 subprog_end = subprog[cur_subprog + 1].start; 870 for (i = 0; i < insn_cnt; i++) { 871 u8 code = insn[i].code; 872 873 if (BPF_CLASS(code) != BPF_JMP) 874 goto next; 875 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 876 goto next; 877 off = i + insn[i].off + 1; 878 if (off < subprog_start || off >= subprog_end) { 879 verbose(env, "jump out of range from insn %d to %d\n", i, off); 880 return -EINVAL; 881 } 882 next: 883 if (i == subprog_end - 1) { 884 /* to avoid fall-through from one subprog into another 885 * the last insn of the subprog should be either exit 886 * or unconditional jump back 887 */ 888 if (code != (BPF_JMP | BPF_EXIT) && 889 code != (BPF_JMP | BPF_JA)) { 890 verbose(env, "last insn is not an exit or jmp\n"); 891 return -EINVAL; 892 } 893 subprog_start = subprog_end; 894 cur_subprog++; 895 if (cur_subprog < env->subprog_cnt) 896 subprog_end = subprog[cur_subprog + 1].start; 897 } 898 } 899 return 0; 900 } 901 902 /* Parentage chain of this register (or stack slot) should take care of all 903 * issues like callee-saved registers, stack slot allocation time, etc. 904 */ 905 static int mark_reg_read(struct bpf_verifier_env *env, 906 const struct bpf_reg_state *state, 907 struct bpf_reg_state *parent) 908 { 909 bool writes = parent == state->parent; /* Observe write marks */ 910 911 while (parent) { 912 /* if read wasn't screened by an earlier write ... */ 913 if (writes && state->live & REG_LIVE_WRITTEN) 914 break; 915 /* ... then we depend on parent's value */ 916 parent->live |= REG_LIVE_READ; 917 state = parent; 918 parent = state->parent; 919 writes = true; 920 } 921 return 0; 922 } 923 924 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 925 enum reg_arg_type t) 926 { 927 struct bpf_verifier_state *vstate = env->cur_state; 928 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 929 struct bpf_reg_state *regs = state->regs; 930 931 if (regno >= MAX_BPF_REG) { 932 verbose(env, "R%d is invalid\n", regno); 933 return -EINVAL; 934 } 935 936 if (t == SRC_OP) { 937 /* check whether register used as source operand can be read */ 938 if (regs[regno].type == NOT_INIT) { 939 verbose(env, "R%d !read_ok\n", regno); 940 return -EACCES; 941 } 942 /* We don't need to worry about FP liveness because it's read-only */ 943 if (regno != BPF_REG_FP) 944 return mark_reg_read(env, ®s[regno], 945 regs[regno].parent); 946 } else { 947 /* check whether register used as dest operand can be written to */ 948 if (regno == BPF_REG_FP) { 949 verbose(env, "frame pointer is read only\n"); 950 return -EACCES; 951 } 952 regs[regno].live |= REG_LIVE_WRITTEN; 953 if (t == DST_OP) 954 mark_reg_unknown(env, regs, regno); 955 } 956 return 0; 957 } 958 959 static bool is_spillable_regtype(enum bpf_reg_type type) 960 { 961 switch (type) { 962 case PTR_TO_MAP_VALUE: 963 case PTR_TO_MAP_VALUE_OR_NULL: 964 case PTR_TO_STACK: 965 case PTR_TO_CTX: 966 case PTR_TO_PACKET: 967 case PTR_TO_PACKET_META: 968 case PTR_TO_PACKET_END: 969 case PTR_TO_FLOW_KEYS: 970 case CONST_PTR_TO_MAP: 971 return true; 972 default: 973 return false; 974 } 975 } 976 977 /* Does this register contain a constant zero? */ 978 static bool register_is_null(struct bpf_reg_state *reg) 979 { 980 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 981 } 982 983 /* check_stack_read/write functions track spill/fill of registers, 984 * stack boundary and alignment are checked in check_mem_access() 985 */ 986 static int check_stack_write(struct bpf_verifier_env *env, 987 struct bpf_func_state *state, /* func where register points to */ 988 int off, int size, int value_regno, int insn_idx) 989 { 990 struct bpf_func_state *cur; /* state of the current function */ 991 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 992 enum bpf_reg_type type; 993 994 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 995 true); 996 if (err) 997 return err; 998 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 999 * so it's aligned access and [off, off + size) are within stack limits 1000 */ 1001 if (!env->allow_ptr_leaks && 1002 state->stack[spi].slot_type[0] == STACK_SPILL && 1003 size != BPF_REG_SIZE) { 1004 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1005 return -EACCES; 1006 } 1007 1008 cur = env->cur_state->frame[env->cur_state->curframe]; 1009 if (value_regno >= 0 && 1010 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1011 1012 /* register containing pointer is being spilled into stack */ 1013 if (size != BPF_REG_SIZE) { 1014 verbose(env, "invalid size of register spill\n"); 1015 return -EACCES; 1016 } 1017 1018 if (state != cur && type == PTR_TO_STACK) { 1019 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1020 return -EINVAL; 1021 } 1022 1023 /* save register state */ 1024 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1025 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1026 1027 for (i = 0; i < BPF_REG_SIZE; i++) { 1028 if (state->stack[spi].slot_type[i] == STACK_MISC && 1029 !env->allow_ptr_leaks) { 1030 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1031 int soff = (-spi - 1) * BPF_REG_SIZE; 1032 1033 /* detected reuse of integer stack slot with a pointer 1034 * which means either llvm is reusing stack slot or 1035 * an attacker is trying to exploit CVE-2018-3639 1036 * (speculative store bypass) 1037 * Have to sanitize that slot with preemptive 1038 * store of zero. 1039 */ 1040 if (*poff && *poff != soff) { 1041 /* disallow programs where single insn stores 1042 * into two different stack slots, since verifier 1043 * cannot sanitize them 1044 */ 1045 verbose(env, 1046 "insn %d cannot access two stack slots fp%d and fp%d", 1047 insn_idx, *poff, soff); 1048 return -EINVAL; 1049 } 1050 *poff = soff; 1051 } 1052 state->stack[spi].slot_type[i] = STACK_SPILL; 1053 } 1054 } else { 1055 u8 type = STACK_MISC; 1056 1057 /* regular write of data into stack destroys any spilled ptr */ 1058 state->stack[spi].spilled_ptr.type = NOT_INIT; 1059 1060 /* only mark the slot as written if all 8 bytes were written 1061 * otherwise read propagation may incorrectly stop too soon 1062 * when stack slots are partially written. 1063 * This heuristic means that read propagation will be 1064 * conservative, since it will add reg_live_read marks 1065 * to stack slots all the way to first state when programs 1066 * writes+reads less than 8 bytes 1067 */ 1068 if (size == BPF_REG_SIZE) 1069 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1070 1071 /* when we zero initialize stack slots mark them as such */ 1072 if (value_regno >= 0 && 1073 register_is_null(&cur->regs[value_regno])) 1074 type = STACK_ZERO; 1075 1076 for (i = 0; i < size; i++) 1077 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1078 type; 1079 } 1080 return 0; 1081 } 1082 1083 static int check_stack_read(struct bpf_verifier_env *env, 1084 struct bpf_func_state *reg_state /* func where register points to */, 1085 int off, int size, int value_regno) 1086 { 1087 struct bpf_verifier_state *vstate = env->cur_state; 1088 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1089 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1090 u8 *stype; 1091 1092 if (reg_state->allocated_stack <= slot) { 1093 verbose(env, "invalid read from stack off %d+0 size %d\n", 1094 off, size); 1095 return -EACCES; 1096 } 1097 stype = reg_state->stack[spi].slot_type; 1098 1099 if (stype[0] == STACK_SPILL) { 1100 if (size != BPF_REG_SIZE) { 1101 verbose(env, "invalid size of register spill\n"); 1102 return -EACCES; 1103 } 1104 for (i = 1; i < BPF_REG_SIZE; i++) { 1105 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1106 verbose(env, "corrupted spill memory\n"); 1107 return -EACCES; 1108 } 1109 } 1110 1111 if (value_regno >= 0) { 1112 /* restore register state from stack */ 1113 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1114 /* mark reg as written since spilled pointer state likely 1115 * has its liveness marks cleared by is_state_visited() 1116 * which resets stack/reg liveness for state transitions 1117 */ 1118 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1119 } 1120 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1121 reg_state->stack[spi].spilled_ptr.parent); 1122 return 0; 1123 } else { 1124 int zeros = 0; 1125 1126 for (i = 0; i < size; i++) { 1127 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1128 continue; 1129 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1130 zeros++; 1131 continue; 1132 } 1133 verbose(env, "invalid read from stack off %d+%d size %d\n", 1134 off, i, size); 1135 return -EACCES; 1136 } 1137 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1138 reg_state->stack[spi].spilled_ptr.parent); 1139 if (value_regno >= 0) { 1140 if (zeros == size) { 1141 /* any size read into register is zero extended, 1142 * so the whole register == const_zero 1143 */ 1144 __mark_reg_const_zero(&state->regs[value_regno]); 1145 } else { 1146 /* have read misc data from the stack */ 1147 mark_reg_unknown(env, state->regs, value_regno); 1148 } 1149 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1150 } 1151 return 0; 1152 } 1153 } 1154 1155 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1156 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1157 int size, bool zero_size_allowed) 1158 { 1159 struct bpf_reg_state *regs = cur_regs(env); 1160 struct bpf_map *map = regs[regno].map_ptr; 1161 1162 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1163 off + size > map->value_size) { 1164 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1165 map->value_size, off, size); 1166 return -EACCES; 1167 } 1168 return 0; 1169 } 1170 1171 /* check read/write into a map element with possible variable offset */ 1172 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1173 int off, int size, bool zero_size_allowed) 1174 { 1175 struct bpf_verifier_state *vstate = env->cur_state; 1176 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1177 struct bpf_reg_state *reg = &state->regs[regno]; 1178 int err; 1179 1180 /* We may have adjusted the register to this map value, so we 1181 * need to try adding each of min_value and max_value to off 1182 * to make sure our theoretical access will be safe. 1183 */ 1184 if (env->log.level) 1185 print_verifier_state(env, state); 1186 /* The minimum value is only important with signed 1187 * comparisons where we can't assume the floor of a 1188 * value is 0. If we are using signed variables for our 1189 * index'es we need to make sure that whatever we use 1190 * will have a set floor within our range. 1191 */ 1192 if (reg->smin_value < 0) { 1193 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1194 regno); 1195 return -EACCES; 1196 } 1197 err = __check_map_access(env, regno, reg->smin_value + off, size, 1198 zero_size_allowed); 1199 if (err) { 1200 verbose(env, "R%d min value is outside of the array range\n", 1201 regno); 1202 return err; 1203 } 1204 1205 /* If we haven't set a max value then we need to bail since we can't be 1206 * sure we won't do bad things. 1207 * If reg->umax_value + off could overflow, treat that as unbounded too. 1208 */ 1209 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1210 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1211 regno); 1212 return -EACCES; 1213 } 1214 err = __check_map_access(env, regno, reg->umax_value + off, size, 1215 zero_size_allowed); 1216 if (err) 1217 verbose(env, "R%d max value is outside of the array range\n", 1218 regno); 1219 return err; 1220 } 1221 1222 #define MAX_PACKET_OFF 0xffff 1223 1224 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1225 const struct bpf_call_arg_meta *meta, 1226 enum bpf_access_type t) 1227 { 1228 switch (env->prog->type) { 1229 case BPF_PROG_TYPE_LWT_IN: 1230 case BPF_PROG_TYPE_LWT_OUT: 1231 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1232 case BPF_PROG_TYPE_SK_REUSEPORT: 1233 /* dst_input() and dst_output() can't write for now */ 1234 if (t == BPF_WRITE) 1235 return false; 1236 /* fallthrough */ 1237 case BPF_PROG_TYPE_SCHED_CLS: 1238 case BPF_PROG_TYPE_SCHED_ACT: 1239 case BPF_PROG_TYPE_XDP: 1240 case BPF_PROG_TYPE_LWT_XMIT: 1241 case BPF_PROG_TYPE_SK_SKB: 1242 case BPF_PROG_TYPE_SK_MSG: 1243 case BPF_PROG_TYPE_FLOW_DISSECTOR: 1244 if (meta) 1245 return meta->pkt_access; 1246 1247 env->seen_direct_write = true; 1248 return true; 1249 default: 1250 return false; 1251 } 1252 } 1253 1254 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1255 int off, int size, bool zero_size_allowed) 1256 { 1257 struct bpf_reg_state *regs = cur_regs(env); 1258 struct bpf_reg_state *reg = ®s[regno]; 1259 1260 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1261 (u64)off + size > reg->range) { 1262 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1263 off, size, regno, reg->id, reg->off, reg->range); 1264 return -EACCES; 1265 } 1266 return 0; 1267 } 1268 1269 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1270 int size, bool zero_size_allowed) 1271 { 1272 struct bpf_reg_state *regs = cur_regs(env); 1273 struct bpf_reg_state *reg = ®s[regno]; 1274 int err; 1275 1276 /* We may have added a variable offset to the packet pointer; but any 1277 * reg->range we have comes after that. We are only checking the fixed 1278 * offset. 1279 */ 1280 1281 /* We don't allow negative numbers, because we aren't tracking enough 1282 * detail to prove they're safe. 1283 */ 1284 if (reg->smin_value < 0) { 1285 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1286 regno); 1287 return -EACCES; 1288 } 1289 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1290 if (err) { 1291 verbose(env, "R%d offset is outside of the packet\n", regno); 1292 return err; 1293 } 1294 return err; 1295 } 1296 1297 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1298 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1299 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1300 { 1301 struct bpf_insn_access_aux info = { 1302 .reg_type = *reg_type, 1303 }; 1304 1305 if (env->ops->is_valid_access && 1306 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1307 /* A non zero info.ctx_field_size indicates that this field is a 1308 * candidate for later verifier transformation to load the whole 1309 * field and then apply a mask when accessed with a narrower 1310 * access than actual ctx access size. A zero info.ctx_field_size 1311 * will only allow for whole field access and rejects any other 1312 * type of narrower access. 1313 */ 1314 *reg_type = info.reg_type; 1315 1316 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1317 /* remember the offset of last byte accessed in ctx */ 1318 if (env->prog->aux->max_ctx_offset < off + size) 1319 env->prog->aux->max_ctx_offset = off + size; 1320 return 0; 1321 } 1322 1323 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1324 return -EACCES; 1325 } 1326 1327 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 1328 int size) 1329 { 1330 if (size < 0 || off < 0 || 1331 (u64)off + size > sizeof(struct bpf_flow_keys)) { 1332 verbose(env, "invalid access to flow keys off=%d size=%d\n", 1333 off, size); 1334 return -EACCES; 1335 } 1336 return 0; 1337 } 1338 1339 static bool __is_pointer_value(bool allow_ptr_leaks, 1340 const struct bpf_reg_state *reg) 1341 { 1342 if (allow_ptr_leaks) 1343 return false; 1344 1345 return reg->type != SCALAR_VALUE; 1346 } 1347 1348 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1349 { 1350 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno); 1351 } 1352 1353 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1354 { 1355 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1356 1357 return reg->type == PTR_TO_CTX; 1358 } 1359 1360 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1361 { 1362 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1363 1364 return type_is_pkt_pointer(reg->type); 1365 } 1366 1367 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1368 const struct bpf_reg_state *reg, 1369 int off, int size, bool strict) 1370 { 1371 struct tnum reg_off; 1372 int ip_align; 1373 1374 /* Byte size accesses are always allowed. */ 1375 if (!strict || size == 1) 1376 return 0; 1377 1378 /* For platforms that do not have a Kconfig enabling 1379 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1380 * NET_IP_ALIGN is universally set to '2'. And on platforms 1381 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1382 * to this code only in strict mode where we want to emulate 1383 * the NET_IP_ALIGN==2 checking. Therefore use an 1384 * unconditional IP align value of '2'. 1385 */ 1386 ip_align = 2; 1387 1388 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1389 if (!tnum_is_aligned(reg_off, size)) { 1390 char tn_buf[48]; 1391 1392 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1393 verbose(env, 1394 "misaligned packet access off %d+%s+%d+%d size %d\n", 1395 ip_align, tn_buf, reg->off, off, size); 1396 return -EACCES; 1397 } 1398 1399 return 0; 1400 } 1401 1402 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1403 const struct bpf_reg_state *reg, 1404 const char *pointer_desc, 1405 int off, int size, bool strict) 1406 { 1407 struct tnum reg_off; 1408 1409 /* Byte size accesses are always allowed. */ 1410 if (!strict || size == 1) 1411 return 0; 1412 1413 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1414 if (!tnum_is_aligned(reg_off, size)) { 1415 char tn_buf[48]; 1416 1417 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1418 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1419 pointer_desc, tn_buf, reg->off, off, size); 1420 return -EACCES; 1421 } 1422 1423 return 0; 1424 } 1425 1426 static int check_ptr_alignment(struct bpf_verifier_env *env, 1427 const struct bpf_reg_state *reg, int off, 1428 int size, bool strict_alignment_once) 1429 { 1430 bool strict = env->strict_alignment || strict_alignment_once; 1431 const char *pointer_desc = ""; 1432 1433 switch (reg->type) { 1434 case PTR_TO_PACKET: 1435 case PTR_TO_PACKET_META: 1436 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1437 * right in front, treat it the very same way. 1438 */ 1439 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1440 case PTR_TO_FLOW_KEYS: 1441 pointer_desc = "flow keys "; 1442 break; 1443 case PTR_TO_MAP_VALUE: 1444 pointer_desc = "value "; 1445 break; 1446 case PTR_TO_CTX: 1447 pointer_desc = "context "; 1448 break; 1449 case PTR_TO_STACK: 1450 pointer_desc = "stack "; 1451 /* The stack spill tracking logic in check_stack_write() 1452 * and check_stack_read() relies on stack accesses being 1453 * aligned. 1454 */ 1455 strict = true; 1456 break; 1457 default: 1458 break; 1459 } 1460 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1461 strict); 1462 } 1463 1464 static int update_stack_depth(struct bpf_verifier_env *env, 1465 const struct bpf_func_state *func, 1466 int off) 1467 { 1468 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1469 1470 if (stack >= -off) 1471 return 0; 1472 1473 /* update known max for given subprogram */ 1474 env->subprog_info[func->subprogno].stack_depth = -off; 1475 return 0; 1476 } 1477 1478 /* starting from main bpf function walk all instructions of the function 1479 * and recursively walk all callees that given function can call. 1480 * Ignore jump and exit insns. 1481 * Since recursion is prevented by check_cfg() this algorithm 1482 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1483 */ 1484 static int check_max_stack_depth(struct bpf_verifier_env *env) 1485 { 1486 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1487 struct bpf_subprog_info *subprog = env->subprog_info; 1488 struct bpf_insn *insn = env->prog->insnsi; 1489 int ret_insn[MAX_CALL_FRAMES]; 1490 int ret_prog[MAX_CALL_FRAMES]; 1491 1492 process_func: 1493 /* round up to 32-bytes, since this is granularity 1494 * of interpreter stack size 1495 */ 1496 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1497 if (depth > MAX_BPF_STACK) { 1498 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1499 frame + 1, depth); 1500 return -EACCES; 1501 } 1502 continue_func: 1503 subprog_end = subprog[idx + 1].start; 1504 for (; i < subprog_end; i++) { 1505 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1506 continue; 1507 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1508 continue; 1509 /* remember insn and function to return to */ 1510 ret_insn[frame] = i + 1; 1511 ret_prog[frame] = idx; 1512 1513 /* find the callee */ 1514 i = i + insn[i].imm + 1; 1515 idx = find_subprog(env, i); 1516 if (idx < 0) { 1517 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1518 i); 1519 return -EFAULT; 1520 } 1521 frame++; 1522 if (frame >= MAX_CALL_FRAMES) { 1523 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1524 return -EFAULT; 1525 } 1526 goto process_func; 1527 } 1528 /* end of for() loop means the last insn of the 'subprog' 1529 * was reached. Doesn't matter whether it was JA or EXIT 1530 */ 1531 if (frame == 0) 1532 return 0; 1533 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1534 frame--; 1535 i = ret_insn[frame]; 1536 idx = ret_prog[frame]; 1537 goto continue_func; 1538 } 1539 1540 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1541 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1542 const struct bpf_insn *insn, int idx) 1543 { 1544 int start = idx + insn->imm + 1, subprog; 1545 1546 subprog = find_subprog(env, start); 1547 if (subprog < 0) { 1548 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1549 start); 1550 return -EFAULT; 1551 } 1552 return env->subprog_info[subprog].stack_depth; 1553 } 1554 #endif 1555 1556 static int check_ctx_reg(struct bpf_verifier_env *env, 1557 const struct bpf_reg_state *reg, int regno) 1558 { 1559 /* Access to ctx or passing it to a helper is only allowed in 1560 * its original, unmodified form. 1561 */ 1562 1563 if (reg->off) { 1564 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1565 regno, reg->off); 1566 return -EACCES; 1567 } 1568 1569 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1570 char tn_buf[48]; 1571 1572 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1573 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1574 return -EACCES; 1575 } 1576 1577 return 0; 1578 } 1579 1580 /* truncate register to smaller size (in bytes) 1581 * must be called with size < BPF_REG_SIZE 1582 */ 1583 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1584 { 1585 u64 mask; 1586 1587 /* clear high bits in bit representation */ 1588 reg->var_off = tnum_cast(reg->var_off, size); 1589 1590 /* fix arithmetic bounds */ 1591 mask = ((u64)1 << (size * 8)) - 1; 1592 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1593 reg->umin_value &= mask; 1594 reg->umax_value &= mask; 1595 } else { 1596 reg->umin_value = 0; 1597 reg->umax_value = mask; 1598 } 1599 reg->smin_value = reg->umin_value; 1600 reg->smax_value = reg->umax_value; 1601 } 1602 1603 /* check whether memory at (regno + off) is accessible for t = (read | write) 1604 * if t==write, value_regno is a register which value is stored into memory 1605 * if t==read, value_regno is a register which will receive the value from memory 1606 * if t==write && value_regno==-1, some unknown value is stored into memory 1607 * if t==read && value_regno==-1, don't care what we read from memory 1608 */ 1609 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1610 int off, int bpf_size, enum bpf_access_type t, 1611 int value_regno, bool strict_alignment_once) 1612 { 1613 struct bpf_reg_state *regs = cur_regs(env); 1614 struct bpf_reg_state *reg = regs + regno; 1615 struct bpf_func_state *state; 1616 int size, err = 0; 1617 1618 size = bpf_size_to_bytes(bpf_size); 1619 if (size < 0) 1620 return size; 1621 1622 /* alignment checks will add in reg->off themselves */ 1623 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1624 if (err) 1625 return err; 1626 1627 /* for access checks, reg->off is just part of off */ 1628 off += reg->off; 1629 1630 if (reg->type == PTR_TO_MAP_VALUE) { 1631 if (t == BPF_WRITE && value_regno >= 0 && 1632 is_pointer_value(env, value_regno)) { 1633 verbose(env, "R%d leaks addr into map\n", value_regno); 1634 return -EACCES; 1635 } 1636 1637 err = check_map_access(env, regno, off, size, false); 1638 if (!err && t == BPF_READ && value_regno >= 0) 1639 mark_reg_unknown(env, regs, value_regno); 1640 1641 } else if (reg->type == PTR_TO_CTX) { 1642 enum bpf_reg_type reg_type = SCALAR_VALUE; 1643 1644 if (t == BPF_WRITE && value_regno >= 0 && 1645 is_pointer_value(env, value_regno)) { 1646 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1647 return -EACCES; 1648 } 1649 1650 err = check_ctx_reg(env, reg, regno); 1651 if (err < 0) 1652 return err; 1653 1654 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1655 if (!err && t == BPF_READ && value_regno >= 0) { 1656 /* ctx access returns either a scalar, or a 1657 * PTR_TO_PACKET[_META,_END]. In the latter 1658 * case, we know the offset is zero. 1659 */ 1660 if (reg_type == SCALAR_VALUE) 1661 mark_reg_unknown(env, regs, value_regno); 1662 else 1663 mark_reg_known_zero(env, regs, 1664 value_regno); 1665 regs[value_regno].type = reg_type; 1666 } 1667 1668 } else if (reg->type == PTR_TO_STACK) { 1669 /* stack accesses must be at a fixed offset, so that we can 1670 * determine what type of data were returned. 1671 * See check_stack_read(). 1672 */ 1673 if (!tnum_is_const(reg->var_off)) { 1674 char tn_buf[48]; 1675 1676 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1677 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1678 tn_buf, off, size); 1679 return -EACCES; 1680 } 1681 off += reg->var_off.value; 1682 if (off >= 0 || off < -MAX_BPF_STACK) { 1683 verbose(env, "invalid stack off=%d size=%d\n", off, 1684 size); 1685 return -EACCES; 1686 } 1687 1688 state = func(env, reg); 1689 err = update_stack_depth(env, state, off); 1690 if (err) 1691 return err; 1692 1693 if (t == BPF_WRITE) 1694 err = check_stack_write(env, state, off, size, 1695 value_regno, insn_idx); 1696 else 1697 err = check_stack_read(env, state, off, size, 1698 value_regno); 1699 } else if (reg_is_pkt_pointer(reg)) { 1700 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1701 verbose(env, "cannot write into packet\n"); 1702 return -EACCES; 1703 } 1704 if (t == BPF_WRITE && value_regno >= 0 && 1705 is_pointer_value(env, value_regno)) { 1706 verbose(env, "R%d leaks addr into packet\n", 1707 value_regno); 1708 return -EACCES; 1709 } 1710 err = check_packet_access(env, regno, off, size, false); 1711 if (!err && t == BPF_READ && value_regno >= 0) 1712 mark_reg_unknown(env, regs, value_regno); 1713 } else if (reg->type == PTR_TO_FLOW_KEYS) { 1714 if (t == BPF_WRITE && value_regno >= 0 && 1715 is_pointer_value(env, value_regno)) { 1716 verbose(env, "R%d leaks addr into flow keys\n", 1717 value_regno); 1718 return -EACCES; 1719 } 1720 1721 err = check_flow_keys_access(env, off, size); 1722 if (!err && t == BPF_READ && value_regno >= 0) 1723 mark_reg_unknown(env, regs, value_regno); 1724 } else { 1725 verbose(env, "R%d invalid mem access '%s'\n", regno, 1726 reg_type_str[reg->type]); 1727 return -EACCES; 1728 } 1729 1730 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1731 regs[value_regno].type == SCALAR_VALUE) { 1732 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1733 coerce_reg_to_size(®s[value_regno], size); 1734 } 1735 return err; 1736 } 1737 1738 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1739 { 1740 int err; 1741 1742 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1743 insn->imm != 0) { 1744 verbose(env, "BPF_XADD uses reserved fields\n"); 1745 return -EINVAL; 1746 } 1747 1748 /* check src1 operand */ 1749 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1750 if (err) 1751 return err; 1752 1753 /* check src2 operand */ 1754 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1755 if (err) 1756 return err; 1757 1758 if (is_pointer_value(env, insn->src_reg)) { 1759 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1760 return -EACCES; 1761 } 1762 1763 if (is_ctx_reg(env, insn->dst_reg) || 1764 is_pkt_reg(env, insn->dst_reg)) { 1765 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 1766 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ? 1767 "context" : "packet"); 1768 return -EACCES; 1769 } 1770 1771 /* check whether atomic_add can read the memory */ 1772 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1773 BPF_SIZE(insn->code), BPF_READ, -1, true); 1774 if (err) 1775 return err; 1776 1777 /* check whether atomic_add can write into the same memory */ 1778 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1779 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 1780 } 1781 1782 /* when register 'regno' is passed into function that will read 'access_size' 1783 * bytes from that pointer, make sure that it's within stack boundary 1784 * and all elements of stack are initialized. 1785 * Unlike most pointer bounds-checking functions, this one doesn't take an 1786 * 'off' argument, so it has to add in reg->off itself. 1787 */ 1788 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1789 int access_size, bool zero_size_allowed, 1790 struct bpf_call_arg_meta *meta) 1791 { 1792 struct bpf_reg_state *reg = cur_regs(env) + regno; 1793 struct bpf_func_state *state = func(env, reg); 1794 int off, i, slot, spi; 1795 1796 if (reg->type != PTR_TO_STACK) { 1797 /* Allow zero-byte read from NULL, regardless of pointer type */ 1798 if (zero_size_allowed && access_size == 0 && 1799 register_is_null(reg)) 1800 return 0; 1801 1802 verbose(env, "R%d type=%s expected=%s\n", regno, 1803 reg_type_str[reg->type], 1804 reg_type_str[PTR_TO_STACK]); 1805 return -EACCES; 1806 } 1807 1808 /* Only allow fixed-offset stack reads */ 1809 if (!tnum_is_const(reg->var_off)) { 1810 char tn_buf[48]; 1811 1812 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1813 verbose(env, "invalid variable stack read R%d var_off=%s\n", 1814 regno, tn_buf); 1815 return -EACCES; 1816 } 1817 off = reg->off + reg->var_off.value; 1818 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1819 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 1820 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 1821 regno, off, access_size); 1822 return -EACCES; 1823 } 1824 1825 if (meta && meta->raw_mode) { 1826 meta->access_size = access_size; 1827 meta->regno = regno; 1828 return 0; 1829 } 1830 1831 for (i = 0; i < access_size; i++) { 1832 u8 *stype; 1833 1834 slot = -(off + i) - 1; 1835 spi = slot / BPF_REG_SIZE; 1836 if (state->allocated_stack <= slot) 1837 goto err; 1838 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 1839 if (*stype == STACK_MISC) 1840 goto mark; 1841 if (*stype == STACK_ZERO) { 1842 /* helper can write anything into the stack */ 1843 *stype = STACK_MISC; 1844 goto mark; 1845 } 1846 err: 1847 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 1848 off, i, access_size); 1849 return -EACCES; 1850 mark: 1851 /* reading any byte out of 8-byte 'spill_slot' will cause 1852 * the whole slot to be marked as 'read' 1853 */ 1854 mark_reg_read(env, &state->stack[spi].spilled_ptr, 1855 state->stack[spi].spilled_ptr.parent); 1856 } 1857 return update_stack_depth(env, state, off); 1858 } 1859 1860 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1861 int access_size, bool zero_size_allowed, 1862 struct bpf_call_arg_meta *meta) 1863 { 1864 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1865 1866 switch (reg->type) { 1867 case PTR_TO_PACKET: 1868 case PTR_TO_PACKET_META: 1869 return check_packet_access(env, regno, reg->off, access_size, 1870 zero_size_allowed); 1871 case PTR_TO_FLOW_KEYS: 1872 return check_flow_keys_access(env, reg->off, access_size); 1873 case PTR_TO_MAP_VALUE: 1874 return check_map_access(env, regno, reg->off, access_size, 1875 zero_size_allowed); 1876 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1877 return check_stack_boundary(env, regno, access_size, 1878 zero_size_allowed, meta); 1879 } 1880 } 1881 1882 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 1883 { 1884 return type == ARG_PTR_TO_MEM || 1885 type == ARG_PTR_TO_MEM_OR_NULL || 1886 type == ARG_PTR_TO_UNINIT_MEM; 1887 } 1888 1889 static bool arg_type_is_mem_size(enum bpf_arg_type type) 1890 { 1891 return type == ARG_CONST_SIZE || 1892 type == ARG_CONST_SIZE_OR_ZERO; 1893 } 1894 1895 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1896 enum bpf_arg_type arg_type, 1897 struct bpf_call_arg_meta *meta) 1898 { 1899 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1900 enum bpf_reg_type expected_type, type = reg->type; 1901 int err = 0; 1902 1903 if (arg_type == ARG_DONTCARE) 1904 return 0; 1905 1906 err = check_reg_arg(env, regno, SRC_OP); 1907 if (err) 1908 return err; 1909 1910 if (arg_type == ARG_ANYTHING) { 1911 if (is_pointer_value(env, regno)) { 1912 verbose(env, "R%d leaks addr into helper function\n", 1913 regno); 1914 return -EACCES; 1915 } 1916 return 0; 1917 } 1918 1919 if (type_is_pkt_pointer(type) && 1920 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1921 verbose(env, "helper access to the packet is not allowed\n"); 1922 return -EACCES; 1923 } 1924 1925 if (arg_type == ARG_PTR_TO_MAP_KEY || 1926 arg_type == ARG_PTR_TO_MAP_VALUE) { 1927 expected_type = PTR_TO_STACK; 1928 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 1929 type != expected_type) 1930 goto err_type; 1931 } else if (arg_type == ARG_CONST_SIZE || 1932 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1933 expected_type = SCALAR_VALUE; 1934 if (type != expected_type) 1935 goto err_type; 1936 } else if (arg_type == ARG_CONST_MAP_PTR) { 1937 expected_type = CONST_PTR_TO_MAP; 1938 if (type != expected_type) 1939 goto err_type; 1940 } else if (arg_type == ARG_PTR_TO_CTX) { 1941 expected_type = PTR_TO_CTX; 1942 if (type != expected_type) 1943 goto err_type; 1944 err = check_ctx_reg(env, reg, regno); 1945 if (err < 0) 1946 return err; 1947 } else if (arg_type_is_mem_ptr(arg_type)) { 1948 expected_type = PTR_TO_STACK; 1949 /* One exception here. In case function allows for NULL to be 1950 * passed in as argument, it's a SCALAR_VALUE type. Final test 1951 * happens during stack boundary checking. 1952 */ 1953 if (register_is_null(reg) && 1954 arg_type == ARG_PTR_TO_MEM_OR_NULL) 1955 /* final test in check_stack_boundary() */; 1956 else if (!type_is_pkt_pointer(type) && 1957 type != PTR_TO_MAP_VALUE && 1958 type != expected_type) 1959 goto err_type; 1960 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 1961 } else { 1962 verbose(env, "unsupported arg_type %d\n", arg_type); 1963 return -EFAULT; 1964 } 1965 1966 if (arg_type == ARG_CONST_MAP_PTR) { 1967 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 1968 meta->map_ptr = reg->map_ptr; 1969 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 1970 /* bpf_map_xxx(..., map_ptr, ..., key) call: 1971 * check that [key, key + map->key_size) are within 1972 * stack limits and initialized 1973 */ 1974 if (!meta->map_ptr) { 1975 /* in function declaration map_ptr must come before 1976 * map_key, so that it's verified and known before 1977 * we have to check map_key here. Otherwise it means 1978 * that kernel subsystem misconfigured verifier 1979 */ 1980 verbose(env, "invalid map_ptr to access map->key\n"); 1981 return -EACCES; 1982 } 1983 err = check_helper_mem_access(env, regno, 1984 meta->map_ptr->key_size, false, 1985 NULL); 1986 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 1987 /* bpf_map_xxx(..., map_ptr, ..., value) call: 1988 * check [value, value + map->value_size) validity 1989 */ 1990 if (!meta->map_ptr) { 1991 /* kernel subsystem misconfigured verifier */ 1992 verbose(env, "invalid map_ptr to access map->value\n"); 1993 return -EACCES; 1994 } 1995 err = check_helper_mem_access(env, regno, 1996 meta->map_ptr->value_size, false, 1997 NULL); 1998 } else if (arg_type_is_mem_size(arg_type)) { 1999 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2000 2001 /* remember the mem_size which may be used later 2002 * to refine return values. 2003 */ 2004 meta->msize_smax_value = reg->smax_value; 2005 meta->msize_umax_value = reg->umax_value; 2006 2007 /* The register is SCALAR_VALUE; the access check 2008 * happens using its boundaries. 2009 */ 2010 if (!tnum_is_const(reg->var_off)) 2011 /* For unprivileged variable accesses, disable raw 2012 * mode so that the program is required to 2013 * initialize all the memory that the helper could 2014 * just partially fill up. 2015 */ 2016 meta = NULL; 2017 2018 if (reg->smin_value < 0) { 2019 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2020 regno); 2021 return -EACCES; 2022 } 2023 2024 if (reg->umin_value == 0) { 2025 err = check_helper_mem_access(env, regno - 1, 0, 2026 zero_size_allowed, 2027 meta); 2028 if (err) 2029 return err; 2030 } 2031 2032 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2033 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2034 regno); 2035 return -EACCES; 2036 } 2037 err = check_helper_mem_access(env, regno - 1, 2038 reg->umax_value, 2039 zero_size_allowed, meta); 2040 } 2041 2042 return err; 2043 err_type: 2044 verbose(env, "R%d type=%s expected=%s\n", regno, 2045 reg_type_str[type], reg_type_str[expected_type]); 2046 return -EACCES; 2047 } 2048 2049 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2050 struct bpf_map *map, int func_id) 2051 { 2052 if (!map) 2053 return 0; 2054 2055 /* We need a two way check, first is from map perspective ... */ 2056 switch (map->map_type) { 2057 case BPF_MAP_TYPE_PROG_ARRAY: 2058 if (func_id != BPF_FUNC_tail_call) 2059 goto error; 2060 break; 2061 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2062 if (func_id != BPF_FUNC_perf_event_read && 2063 func_id != BPF_FUNC_perf_event_output && 2064 func_id != BPF_FUNC_perf_event_read_value) 2065 goto error; 2066 break; 2067 case BPF_MAP_TYPE_STACK_TRACE: 2068 if (func_id != BPF_FUNC_get_stackid) 2069 goto error; 2070 break; 2071 case BPF_MAP_TYPE_CGROUP_ARRAY: 2072 if (func_id != BPF_FUNC_skb_under_cgroup && 2073 func_id != BPF_FUNC_current_task_under_cgroup) 2074 goto error; 2075 break; 2076 case BPF_MAP_TYPE_CGROUP_STORAGE: 2077 if (func_id != BPF_FUNC_get_local_storage) 2078 goto error; 2079 break; 2080 /* devmap returns a pointer to a live net_device ifindex that we cannot 2081 * allow to be modified from bpf side. So do not allow lookup elements 2082 * for now. 2083 */ 2084 case BPF_MAP_TYPE_DEVMAP: 2085 if (func_id != BPF_FUNC_redirect_map) 2086 goto error; 2087 break; 2088 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2089 * appear. 2090 */ 2091 case BPF_MAP_TYPE_CPUMAP: 2092 case BPF_MAP_TYPE_XSKMAP: 2093 if (func_id != BPF_FUNC_redirect_map) 2094 goto error; 2095 break; 2096 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2097 case BPF_MAP_TYPE_HASH_OF_MAPS: 2098 if (func_id != BPF_FUNC_map_lookup_elem) 2099 goto error; 2100 break; 2101 case BPF_MAP_TYPE_SOCKMAP: 2102 if (func_id != BPF_FUNC_sk_redirect_map && 2103 func_id != BPF_FUNC_sock_map_update && 2104 func_id != BPF_FUNC_map_delete_elem && 2105 func_id != BPF_FUNC_msg_redirect_map) 2106 goto error; 2107 break; 2108 case BPF_MAP_TYPE_SOCKHASH: 2109 if (func_id != BPF_FUNC_sk_redirect_hash && 2110 func_id != BPF_FUNC_sock_hash_update && 2111 func_id != BPF_FUNC_map_delete_elem && 2112 func_id != BPF_FUNC_msg_redirect_hash) 2113 goto error; 2114 break; 2115 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2116 if (func_id != BPF_FUNC_sk_select_reuseport) 2117 goto error; 2118 break; 2119 default: 2120 break; 2121 } 2122 2123 /* ... and second from the function itself. */ 2124 switch (func_id) { 2125 case BPF_FUNC_tail_call: 2126 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2127 goto error; 2128 if (env->subprog_cnt > 1) { 2129 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2130 return -EINVAL; 2131 } 2132 break; 2133 case BPF_FUNC_perf_event_read: 2134 case BPF_FUNC_perf_event_output: 2135 case BPF_FUNC_perf_event_read_value: 2136 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2137 goto error; 2138 break; 2139 case BPF_FUNC_get_stackid: 2140 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2141 goto error; 2142 break; 2143 case BPF_FUNC_current_task_under_cgroup: 2144 case BPF_FUNC_skb_under_cgroup: 2145 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2146 goto error; 2147 break; 2148 case BPF_FUNC_redirect_map: 2149 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2150 map->map_type != BPF_MAP_TYPE_CPUMAP && 2151 map->map_type != BPF_MAP_TYPE_XSKMAP) 2152 goto error; 2153 break; 2154 case BPF_FUNC_sk_redirect_map: 2155 case BPF_FUNC_msg_redirect_map: 2156 case BPF_FUNC_sock_map_update: 2157 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2158 goto error; 2159 break; 2160 case BPF_FUNC_sk_redirect_hash: 2161 case BPF_FUNC_msg_redirect_hash: 2162 case BPF_FUNC_sock_hash_update: 2163 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2164 goto error; 2165 break; 2166 case BPF_FUNC_get_local_storage: 2167 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE) 2168 goto error; 2169 break; 2170 case BPF_FUNC_sk_select_reuseport: 2171 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2172 goto error; 2173 break; 2174 default: 2175 break; 2176 } 2177 2178 return 0; 2179 error: 2180 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2181 map->map_type, func_id_name(func_id), func_id); 2182 return -EINVAL; 2183 } 2184 2185 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2186 { 2187 int count = 0; 2188 2189 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2190 count++; 2191 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2192 count++; 2193 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2194 count++; 2195 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2196 count++; 2197 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2198 count++; 2199 2200 /* We only support one arg being in raw mode at the moment, 2201 * which is sufficient for the helper functions we have 2202 * right now. 2203 */ 2204 return count <= 1; 2205 } 2206 2207 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2208 enum bpf_arg_type arg_next) 2209 { 2210 return (arg_type_is_mem_ptr(arg_curr) && 2211 !arg_type_is_mem_size(arg_next)) || 2212 (!arg_type_is_mem_ptr(arg_curr) && 2213 arg_type_is_mem_size(arg_next)); 2214 } 2215 2216 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2217 { 2218 /* bpf_xxx(..., buf, len) call will access 'len' 2219 * bytes from memory 'buf'. Both arg types need 2220 * to be paired, so make sure there's no buggy 2221 * helper function specification. 2222 */ 2223 if (arg_type_is_mem_size(fn->arg1_type) || 2224 arg_type_is_mem_ptr(fn->arg5_type) || 2225 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2226 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2227 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2228 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2229 return false; 2230 2231 return true; 2232 } 2233 2234 static int check_func_proto(const struct bpf_func_proto *fn) 2235 { 2236 return check_raw_mode_ok(fn) && 2237 check_arg_pair_ok(fn) ? 0 : -EINVAL; 2238 } 2239 2240 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2241 * are now invalid, so turn them into unknown SCALAR_VALUE. 2242 */ 2243 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2244 struct bpf_func_state *state) 2245 { 2246 struct bpf_reg_state *regs = state->regs, *reg; 2247 int i; 2248 2249 for (i = 0; i < MAX_BPF_REG; i++) 2250 if (reg_is_pkt_pointer_any(®s[i])) 2251 mark_reg_unknown(env, regs, i); 2252 2253 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 2254 if (state->stack[i].slot_type[0] != STACK_SPILL) 2255 continue; 2256 reg = &state->stack[i].spilled_ptr; 2257 if (reg_is_pkt_pointer_any(reg)) 2258 __mark_reg_unknown(reg); 2259 } 2260 } 2261 2262 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2263 { 2264 struct bpf_verifier_state *vstate = env->cur_state; 2265 int i; 2266 2267 for (i = 0; i <= vstate->curframe; i++) 2268 __clear_all_pkt_pointers(env, vstate->frame[i]); 2269 } 2270 2271 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2272 int *insn_idx) 2273 { 2274 struct bpf_verifier_state *state = env->cur_state; 2275 struct bpf_func_state *caller, *callee; 2276 int i, subprog, target_insn; 2277 2278 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2279 verbose(env, "the call stack of %d frames is too deep\n", 2280 state->curframe + 2); 2281 return -E2BIG; 2282 } 2283 2284 target_insn = *insn_idx + insn->imm; 2285 subprog = find_subprog(env, target_insn + 1); 2286 if (subprog < 0) { 2287 verbose(env, "verifier bug. No program starts at insn %d\n", 2288 target_insn + 1); 2289 return -EFAULT; 2290 } 2291 2292 caller = state->frame[state->curframe]; 2293 if (state->frame[state->curframe + 1]) { 2294 verbose(env, "verifier bug. Frame %d already allocated\n", 2295 state->curframe + 1); 2296 return -EFAULT; 2297 } 2298 2299 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2300 if (!callee) 2301 return -ENOMEM; 2302 state->frame[state->curframe + 1] = callee; 2303 2304 /* callee cannot access r0, r6 - r9 for reading and has to write 2305 * into its own stack before reading from it. 2306 * callee can read/write into caller's stack 2307 */ 2308 init_func_state(env, callee, 2309 /* remember the callsite, it will be used by bpf_exit */ 2310 *insn_idx /* callsite */, 2311 state->curframe + 1 /* frameno within this callchain */, 2312 subprog /* subprog number within this prog */); 2313 2314 /* copy r1 - r5 args that callee can access. The copy includes parent 2315 * pointers, which connects us up to the liveness chain 2316 */ 2317 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2318 callee->regs[i] = caller->regs[i]; 2319 2320 /* after the call registers r0 - r5 were scratched */ 2321 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2322 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2323 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2324 } 2325 2326 /* only increment it after check_reg_arg() finished */ 2327 state->curframe++; 2328 2329 /* and go analyze first insn of the callee */ 2330 *insn_idx = target_insn; 2331 2332 if (env->log.level) { 2333 verbose(env, "caller:\n"); 2334 print_verifier_state(env, caller); 2335 verbose(env, "callee:\n"); 2336 print_verifier_state(env, callee); 2337 } 2338 return 0; 2339 } 2340 2341 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2342 { 2343 struct bpf_verifier_state *state = env->cur_state; 2344 struct bpf_func_state *caller, *callee; 2345 struct bpf_reg_state *r0; 2346 2347 callee = state->frame[state->curframe]; 2348 r0 = &callee->regs[BPF_REG_0]; 2349 if (r0->type == PTR_TO_STACK) { 2350 /* technically it's ok to return caller's stack pointer 2351 * (or caller's caller's pointer) back to the caller, 2352 * since these pointers are valid. Only current stack 2353 * pointer will be invalid as soon as function exits, 2354 * but let's be conservative 2355 */ 2356 verbose(env, "cannot return stack pointer to the caller\n"); 2357 return -EINVAL; 2358 } 2359 2360 state->curframe--; 2361 caller = state->frame[state->curframe]; 2362 /* return to the caller whatever r0 had in the callee */ 2363 caller->regs[BPF_REG_0] = *r0; 2364 2365 *insn_idx = callee->callsite + 1; 2366 if (env->log.level) { 2367 verbose(env, "returning from callee:\n"); 2368 print_verifier_state(env, callee); 2369 verbose(env, "to caller at %d:\n", *insn_idx); 2370 print_verifier_state(env, caller); 2371 } 2372 /* clear everything in the callee */ 2373 free_func_state(callee); 2374 state->frame[state->curframe + 1] = NULL; 2375 return 0; 2376 } 2377 2378 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2379 int func_id, 2380 struct bpf_call_arg_meta *meta) 2381 { 2382 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2383 2384 if (ret_type != RET_INTEGER || 2385 (func_id != BPF_FUNC_get_stack && 2386 func_id != BPF_FUNC_probe_read_str)) 2387 return; 2388 2389 ret_reg->smax_value = meta->msize_smax_value; 2390 ret_reg->umax_value = meta->msize_umax_value; 2391 __reg_deduce_bounds(ret_reg); 2392 __reg_bound_offset(ret_reg); 2393 } 2394 2395 static int 2396 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 2397 int func_id, int insn_idx) 2398 { 2399 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 2400 2401 if (func_id != BPF_FUNC_tail_call && 2402 func_id != BPF_FUNC_map_lookup_elem && 2403 func_id != BPF_FUNC_map_update_elem && 2404 func_id != BPF_FUNC_map_delete_elem) 2405 return 0; 2406 2407 if (meta->map_ptr == NULL) { 2408 verbose(env, "kernel subsystem misconfigured verifier\n"); 2409 return -EINVAL; 2410 } 2411 2412 if (!BPF_MAP_PTR(aux->map_state)) 2413 bpf_map_ptr_store(aux, meta->map_ptr, 2414 meta->map_ptr->unpriv_array); 2415 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 2416 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 2417 meta->map_ptr->unpriv_array); 2418 return 0; 2419 } 2420 2421 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2422 { 2423 const struct bpf_func_proto *fn = NULL; 2424 struct bpf_reg_state *regs; 2425 struct bpf_call_arg_meta meta; 2426 bool changes_data; 2427 int i, err; 2428 2429 /* find function prototype */ 2430 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2431 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2432 func_id); 2433 return -EINVAL; 2434 } 2435 2436 if (env->ops->get_func_proto) 2437 fn = env->ops->get_func_proto(func_id, env->prog); 2438 if (!fn) { 2439 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2440 func_id); 2441 return -EINVAL; 2442 } 2443 2444 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2445 if (!env->prog->gpl_compatible && fn->gpl_only) { 2446 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 2447 return -EINVAL; 2448 } 2449 2450 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2451 changes_data = bpf_helper_changes_pkt_data(fn->func); 2452 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2453 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2454 func_id_name(func_id), func_id); 2455 return -EINVAL; 2456 } 2457 2458 memset(&meta, 0, sizeof(meta)); 2459 meta.pkt_access = fn->pkt_access; 2460 2461 err = check_func_proto(fn); 2462 if (err) { 2463 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2464 func_id_name(func_id), func_id); 2465 return err; 2466 } 2467 2468 /* check args */ 2469 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2470 if (err) 2471 return err; 2472 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2473 if (err) 2474 return err; 2475 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2476 if (err) 2477 return err; 2478 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2479 if (err) 2480 return err; 2481 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2482 if (err) 2483 return err; 2484 2485 err = record_func_map(env, &meta, func_id, insn_idx); 2486 if (err) 2487 return err; 2488 2489 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2490 * is inferred from register state. 2491 */ 2492 for (i = 0; i < meta.access_size; i++) { 2493 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2494 BPF_WRITE, -1, false); 2495 if (err) 2496 return err; 2497 } 2498 2499 regs = cur_regs(env); 2500 2501 /* check that flags argument in get_local_storage(map, flags) is 0, 2502 * this is required because get_local_storage() can't return an error. 2503 */ 2504 if (func_id == BPF_FUNC_get_local_storage && 2505 !register_is_null(®s[BPF_REG_2])) { 2506 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 2507 return -EINVAL; 2508 } 2509 2510 /* reset caller saved regs */ 2511 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2512 mark_reg_not_init(env, regs, caller_saved[i]); 2513 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2514 } 2515 2516 /* update return register (already marked as written above) */ 2517 if (fn->ret_type == RET_INTEGER) { 2518 /* sets type to SCALAR_VALUE */ 2519 mark_reg_unknown(env, regs, BPF_REG_0); 2520 } else if (fn->ret_type == RET_VOID) { 2521 regs[BPF_REG_0].type = NOT_INIT; 2522 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 2523 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2524 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) 2525 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 2526 else 2527 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2528 /* There is no offset yet applied, variable or fixed */ 2529 mark_reg_known_zero(env, regs, BPF_REG_0); 2530 /* remember map_ptr, so that check_map_access() 2531 * can check 'value_size' boundary of memory access 2532 * to map element returned from bpf_map_lookup_elem() 2533 */ 2534 if (meta.map_ptr == NULL) { 2535 verbose(env, 2536 "kernel subsystem misconfigured verifier\n"); 2537 return -EINVAL; 2538 } 2539 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2540 regs[BPF_REG_0].id = ++env->id_gen; 2541 } else { 2542 verbose(env, "unknown return type %d of func %s#%d\n", 2543 fn->ret_type, func_id_name(func_id), func_id); 2544 return -EINVAL; 2545 } 2546 2547 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 2548 2549 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2550 if (err) 2551 return err; 2552 2553 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 2554 const char *err_str; 2555 2556 #ifdef CONFIG_PERF_EVENTS 2557 err = get_callchain_buffers(sysctl_perf_event_max_stack); 2558 err_str = "cannot get callchain buffer for func %s#%d\n"; 2559 #else 2560 err = -ENOTSUPP; 2561 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 2562 #endif 2563 if (err) { 2564 verbose(env, err_str, func_id_name(func_id), func_id); 2565 return err; 2566 } 2567 2568 env->prog->has_callchain_buf = true; 2569 } 2570 2571 if (changes_data) 2572 clear_all_pkt_pointers(env); 2573 return 0; 2574 } 2575 2576 static bool signed_add_overflows(s64 a, s64 b) 2577 { 2578 /* Do the add in u64, where overflow is well-defined */ 2579 s64 res = (s64)((u64)a + (u64)b); 2580 2581 if (b < 0) 2582 return res > a; 2583 return res < a; 2584 } 2585 2586 static bool signed_sub_overflows(s64 a, s64 b) 2587 { 2588 /* Do the sub in u64, where overflow is well-defined */ 2589 s64 res = (s64)((u64)a - (u64)b); 2590 2591 if (b < 0) 2592 return res < a; 2593 return res > a; 2594 } 2595 2596 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 2597 const struct bpf_reg_state *reg, 2598 enum bpf_reg_type type) 2599 { 2600 bool known = tnum_is_const(reg->var_off); 2601 s64 val = reg->var_off.value; 2602 s64 smin = reg->smin_value; 2603 2604 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 2605 verbose(env, "math between %s pointer and %lld is not allowed\n", 2606 reg_type_str[type], val); 2607 return false; 2608 } 2609 2610 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 2611 verbose(env, "%s pointer offset %d is not allowed\n", 2612 reg_type_str[type], reg->off); 2613 return false; 2614 } 2615 2616 if (smin == S64_MIN) { 2617 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 2618 reg_type_str[type]); 2619 return false; 2620 } 2621 2622 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 2623 verbose(env, "value %lld makes %s pointer be out of bounds\n", 2624 smin, reg_type_str[type]); 2625 return false; 2626 } 2627 2628 return true; 2629 } 2630 2631 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 2632 * Caller should also handle BPF_MOV case separately. 2633 * If we return -EACCES, caller may want to try again treating pointer as a 2634 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 2635 */ 2636 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 2637 struct bpf_insn *insn, 2638 const struct bpf_reg_state *ptr_reg, 2639 const struct bpf_reg_state *off_reg) 2640 { 2641 struct bpf_verifier_state *vstate = env->cur_state; 2642 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2643 struct bpf_reg_state *regs = state->regs, *dst_reg; 2644 bool known = tnum_is_const(off_reg->var_off); 2645 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 2646 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 2647 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 2648 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 2649 u8 opcode = BPF_OP(insn->code); 2650 u32 dst = insn->dst_reg; 2651 2652 dst_reg = ®s[dst]; 2653 2654 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 2655 smin_val > smax_val || umin_val > umax_val) { 2656 /* Taint dst register if offset had invalid bounds derived from 2657 * e.g. dead branches. 2658 */ 2659 __mark_reg_unknown(dst_reg); 2660 return 0; 2661 } 2662 2663 if (BPF_CLASS(insn->code) != BPF_ALU64) { 2664 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 2665 verbose(env, 2666 "R%d 32-bit pointer arithmetic prohibited\n", 2667 dst); 2668 return -EACCES; 2669 } 2670 2671 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2672 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", 2673 dst); 2674 return -EACCES; 2675 } 2676 if (ptr_reg->type == CONST_PTR_TO_MAP) { 2677 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", 2678 dst); 2679 return -EACCES; 2680 } 2681 if (ptr_reg->type == PTR_TO_PACKET_END) { 2682 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", 2683 dst); 2684 return -EACCES; 2685 } 2686 2687 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 2688 * The id may be overwritten later if we create a new variable offset. 2689 */ 2690 dst_reg->type = ptr_reg->type; 2691 dst_reg->id = ptr_reg->id; 2692 2693 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 2694 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 2695 return -EINVAL; 2696 2697 switch (opcode) { 2698 case BPF_ADD: 2699 /* We can take a fixed offset as long as it doesn't overflow 2700 * the s32 'off' field 2701 */ 2702 if (known && (ptr_reg->off + smin_val == 2703 (s64)(s32)(ptr_reg->off + smin_val))) { 2704 /* pointer += K. Accumulate it into fixed offset */ 2705 dst_reg->smin_value = smin_ptr; 2706 dst_reg->smax_value = smax_ptr; 2707 dst_reg->umin_value = umin_ptr; 2708 dst_reg->umax_value = umax_ptr; 2709 dst_reg->var_off = ptr_reg->var_off; 2710 dst_reg->off = ptr_reg->off + smin_val; 2711 dst_reg->range = ptr_reg->range; 2712 break; 2713 } 2714 /* A new variable offset is created. Note that off_reg->off 2715 * == 0, since it's a scalar. 2716 * dst_reg gets the pointer type and since some positive 2717 * integer value was added to the pointer, give it a new 'id' 2718 * if it's a PTR_TO_PACKET. 2719 * this creates a new 'base' pointer, off_reg (variable) gets 2720 * added into the variable offset, and we copy the fixed offset 2721 * from ptr_reg. 2722 */ 2723 if (signed_add_overflows(smin_ptr, smin_val) || 2724 signed_add_overflows(smax_ptr, smax_val)) { 2725 dst_reg->smin_value = S64_MIN; 2726 dst_reg->smax_value = S64_MAX; 2727 } else { 2728 dst_reg->smin_value = smin_ptr + smin_val; 2729 dst_reg->smax_value = smax_ptr + smax_val; 2730 } 2731 if (umin_ptr + umin_val < umin_ptr || 2732 umax_ptr + umax_val < umax_ptr) { 2733 dst_reg->umin_value = 0; 2734 dst_reg->umax_value = U64_MAX; 2735 } else { 2736 dst_reg->umin_value = umin_ptr + umin_val; 2737 dst_reg->umax_value = umax_ptr + umax_val; 2738 } 2739 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 2740 dst_reg->off = ptr_reg->off; 2741 if (reg_is_pkt_pointer(ptr_reg)) { 2742 dst_reg->id = ++env->id_gen; 2743 /* something was added to pkt_ptr, set range to zero */ 2744 dst_reg->range = 0; 2745 } 2746 break; 2747 case BPF_SUB: 2748 if (dst_reg == off_reg) { 2749 /* scalar -= pointer. Creates an unknown scalar */ 2750 verbose(env, "R%d tried to subtract pointer from scalar\n", 2751 dst); 2752 return -EACCES; 2753 } 2754 /* We don't allow subtraction from FP, because (according to 2755 * test_verifier.c test "invalid fp arithmetic", JITs might not 2756 * be able to deal with it. 2757 */ 2758 if (ptr_reg->type == PTR_TO_STACK) { 2759 verbose(env, "R%d subtraction from stack pointer prohibited\n", 2760 dst); 2761 return -EACCES; 2762 } 2763 if (known && (ptr_reg->off - smin_val == 2764 (s64)(s32)(ptr_reg->off - smin_val))) { 2765 /* pointer -= K. Subtract it from fixed offset */ 2766 dst_reg->smin_value = smin_ptr; 2767 dst_reg->smax_value = smax_ptr; 2768 dst_reg->umin_value = umin_ptr; 2769 dst_reg->umax_value = umax_ptr; 2770 dst_reg->var_off = ptr_reg->var_off; 2771 dst_reg->id = ptr_reg->id; 2772 dst_reg->off = ptr_reg->off - smin_val; 2773 dst_reg->range = ptr_reg->range; 2774 break; 2775 } 2776 /* A new variable offset is created. If the subtrahend is known 2777 * nonnegative, then any reg->range we had before is still good. 2778 */ 2779 if (signed_sub_overflows(smin_ptr, smax_val) || 2780 signed_sub_overflows(smax_ptr, smin_val)) { 2781 /* Overflow possible, we know nothing */ 2782 dst_reg->smin_value = S64_MIN; 2783 dst_reg->smax_value = S64_MAX; 2784 } else { 2785 dst_reg->smin_value = smin_ptr - smax_val; 2786 dst_reg->smax_value = smax_ptr - smin_val; 2787 } 2788 if (umin_ptr < umax_val) { 2789 /* Overflow possible, we know nothing */ 2790 dst_reg->umin_value = 0; 2791 dst_reg->umax_value = U64_MAX; 2792 } else { 2793 /* Cannot overflow (as long as bounds are consistent) */ 2794 dst_reg->umin_value = umin_ptr - umax_val; 2795 dst_reg->umax_value = umax_ptr - umin_val; 2796 } 2797 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 2798 dst_reg->off = ptr_reg->off; 2799 if (reg_is_pkt_pointer(ptr_reg)) { 2800 dst_reg->id = ++env->id_gen; 2801 /* something was added to pkt_ptr, set range to zero */ 2802 if (smin_val < 0) 2803 dst_reg->range = 0; 2804 } 2805 break; 2806 case BPF_AND: 2807 case BPF_OR: 2808 case BPF_XOR: 2809 /* bitwise ops on pointers are troublesome, prohibit. */ 2810 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 2811 dst, bpf_alu_string[opcode >> 4]); 2812 return -EACCES; 2813 default: 2814 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 2815 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 2816 dst, bpf_alu_string[opcode >> 4]); 2817 return -EACCES; 2818 } 2819 2820 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 2821 return -EINVAL; 2822 2823 __update_reg_bounds(dst_reg); 2824 __reg_deduce_bounds(dst_reg); 2825 __reg_bound_offset(dst_reg); 2826 return 0; 2827 } 2828 2829 /* WARNING: This function does calculations on 64-bit values, but the actual 2830 * execution may occur on 32-bit values. Therefore, things like bitshifts 2831 * need extra checks in the 32-bit case. 2832 */ 2833 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 2834 struct bpf_insn *insn, 2835 struct bpf_reg_state *dst_reg, 2836 struct bpf_reg_state src_reg) 2837 { 2838 struct bpf_reg_state *regs = cur_regs(env); 2839 u8 opcode = BPF_OP(insn->code); 2840 bool src_known, dst_known; 2841 s64 smin_val, smax_val; 2842 u64 umin_val, umax_val; 2843 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 2844 2845 if (insn_bitness == 32) { 2846 /* Relevant for 32-bit RSH: Information can propagate towards 2847 * LSB, so it isn't sufficient to only truncate the output to 2848 * 32 bits. 2849 */ 2850 coerce_reg_to_size(dst_reg, 4); 2851 coerce_reg_to_size(&src_reg, 4); 2852 } 2853 2854 smin_val = src_reg.smin_value; 2855 smax_val = src_reg.smax_value; 2856 umin_val = src_reg.umin_value; 2857 umax_val = src_reg.umax_value; 2858 src_known = tnum_is_const(src_reg.var_off); 2859 dst_known = tnum_is_const(dst_reg->var_off); 2860 2861 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 2862 smin_val > smax_val || umin_val > umax_val) { 2863 /* Taint dst register if offset had invalid bounds derived from 2864 * e.g. dead branches. 2865 */ 2866 __mark_reg_unknown(dst_reg); 2867 return 0; 2868 } 2869 2870 if (!src_known && 2871 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 2872 __mark_reg_unknown(dst_reg); 2873 return 0; 2874 } 2875 2876 switch (opcode) { 2877 case BPF_ADD: 2878 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 2879 signed_add_overflows(dst_reg->smax_value, smax_val)) { 2880 dst_reg->smin_value = S64_MIN; 2881 dst_reg->smax_value = S64_MAX; 2882 } else { 2883 dst_reg->smin_value += smin_val; 2884 dst_reg->smax_value += smax_val; 2885 } 2886 if (dst_reg->umin_value + umin_val < umin_val || 2887 dst_reg->umax_value + umax_val < umax_val) { 2888 dst_reg->umin_value = 0; 2889 dst_reg->umax_value = U64_MAX; 2890 } else { 2891 dst_reg->umin_value += umin_val; 2892 dst_reg->umax_value += umax_val; 2893 } 2894 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 2895 break; 2896 case BPF_SUB: 2897 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 2898 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 2899 /* Overflow possible, we know nothing */ 2900 dst_reg->smin_value = S64_MIN; 2901 dst_reg->smax_value = S64_MAX; 2902 } else { 2903 dst_reg->smin_value -= smax_val; 2904 dst_reg->smax_value -= smin_val; 2905 } 2906 if (dst_reg->umin_value < umax_val) { 2907 /* Overflow possible, we know nothing */ 2908 dst_reg->umin_value = 0; 2909 dst_reg->umax_value = U64_MAX; 2910 } else { 2911 /* Cannot overflow (as long as bounds are consistent) */ 2912 dst_reg->umin_value -= umax_val; 2913 dst_reg->umax_value -= umin_val; 2914 } 2915 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 2916 break; 2917 case BPF_MUL: 2918 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 2919 if (smin_val < 0 || dst_reg->smin_value < 0) { 2920 /* Ain't nobody got time to multiply that sign */ 2921 __mark_reg_unbounded(dst_reg); 2922 __update_reg_bounds(dst_reg); 2923 break; 2924 } 2925 /* Both values are positive, so we can work with unsigned and 2926 * copy the result to signed (unless it exceeds S64_MAX). 2927 */ 2928 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 2929 /* Potential overflow, we know nothing */ 2930 __mark_reg_unbounded(dst_reg); 2931 /* (except what we can learn from the var_off) */ 2932 __update_reg_bounds(dst_reg); 2933 break; 2934 } 2935 dst_reg->umin_value *= umin_val; 2936 dst_reg->umax_value *= umax_val; 2937 if (dst_reg->umax_value > S64_MAX) { 2938 /* Overflow possible, we know nothing */ 2939 dst_reg->smin_value = S64_MIN; 2940 dst_reg->smax_value = S64_MAX; 2941 } else { 2942 dst_reg->smin_value = dst_reg->umin_value; 2943 dst_reg->smax_value = dst_reg->umax_value; 2944 } 2945 break; 2946 case BPF_AND: 2947 if (src_known && dst_known) { 2948 __mark_reg_known(dst_reg, dst_reg->var_off.value & 2949 src_reg.var_off.value); 2950 break; 2951 } 2952 /* We get our minimum from the var_off, since that's inherently 2953 * bitwise. Our maximum is the minimum of the operands' maxima. 2954 */ 2955 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 2956 dst_reg->umin_value = dst_reg->var_off.value; 2957 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 2958 if (dst_reg->smin_value < 0 || smin_val < 0) { 2959 /* Lose signed bounds when ANDing negative numbers, 2960 * ain't nobody got time for that. 2961 */ 2962 dst_reg->smin_value = S64_MIN; 2963 dst_reg->smax_value = S64_MAX; 2964 } else { 2965 /* ANDing two positives gives a positive, so safe to 2966 * cast result into s64. 2967 */ 2968 dst_reg->smin_value = dst_reg->umin_value; 2969 dst_reg->smax_value = dst_reg->umax_value; 2970 } 2971 /* We may learn something more from the var_off */ 2972 __update_reg_bounds(dst_reg); 2973 break; 2974 case BPF_OR: 2975 if (src_known && dst_known) { 2976 __mark_reg_known(dst_reg, dst_reg->var_off.value | 2977 src_reg.var_off.value); 2978 break; 2979 } 2980 /* We get our maximum from the var_off, and our minimum is the 2981 * maximum of the operands' minima 2982 */ 2983 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 2984 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 2985 dst_reg->umax_value = dst_reg->var_off.value | 2986 dst_reg->var_off.mask; 2987 if (dst_reg->smin_value < 0 || smin_val < 0) { 2988 /* Lose signed bounds when ORing negative numbers, 2989 * ain't nobody got time for that. 2990 */ 2991 dst_reg->smin_value = S64_MIN; 2992 dst_reg->smax_value = S64_MAX; 2993 } else { 2994 /* ORing two positives gives a positive, so safe to 2995 * cast result into s64. 2996 */ 2997 dst_reg->smin_value = dst_reg->umin_value; 2998 dst_reg->smax_value = dst_reg->umax_value; 2999 } 3000 /* We may learn something more from the var_off */ 3001 __update_reg_bounds(dst_reg); 3002 break; 3003 case BPF_LSH: 3004 if (umax_val >= insn_bitness) { 3005 /* Shifts greater than 31 or 63 are undefined. 3006 * This includes shifts by a negative number. 3007 */ 3008 mark_reg_unknown(env, regs, insn->dst_reg); 3009 break; 3010 } 3011 /* We lose all sign bit information (except what we can pick 3012 * up from var_off) 3013 */ 3014 dst_reg->smin_value = S64_MIN; 3015 dst_reg->smax_value = S64_MAX; 3016 /* If we might shift our top bit out, then we know nothing */ 3017 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 3018 dst_reg->umin_value = 0; 3019 dst_reg->umax_value = U64_MAX; 3020 } else { 3021 dst_reg->umin_value <<= umin_val; 3022 dst_reg->umax_value <<= umax_val; 3023 } 3024 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 3025 /* We may learn something more from the var_off */ 3026 __update_reg_bounds(dst_reg); 3027 break; 3028 case BPF_RSH: 3029 if (umax_val >= insn_bitness) { 3030 /* Shifts greater than 31 or 63 are undefined. 3031 * This includes shifts by a negative number. 3032 */ 3033 mark_reg_unknown(env, regs, insn->dst_reg); 3034 break; 3035 } 3036 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 3037 * be negative, then either: 3038 * 1) src_reg might be zero, so the sign bit of the result is 3039 * unknown, so we lose our signed bounds 3040 * 2) it's known negative, thus the unsigned bounds capture the 3041 * signed bounds 3042 * 3) the signed bounds cross zero, so they tell us nothing 3043 * about the result 3044 * If the value in dst_reg is known nonnegative, then again the 3045 * unsigned bounts capture the signed bounds. 3046 * Thus, in all cases it suffices to blow away our signed bounds 3047 * and rely on inferring new ones from the unsigned bounds and 3048 * var_off of the result. 3049 */ 3050 dst_reg->smin_value = S64_MIN; 3051 dst_reg->smax_value = S64_MAX; 3052 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 3053 dst_reg->umin_value >>= umax_val; 3054 dst_reg->umax_value >>= umin_val; 3055 /* We may learn something more from the var_off */ 3056 __update_reg_bounds(dst_reg); 3057 break; 3058 case BPF_ARSH: 3059 if (umax_val >= insn_bitness) { 3060 /* Shifts greater than 31 or 63 are undefined. 3061 * This includes shifts by a negative number. 3062 */ 3063 mark_reg_unknown(env, regs, insn->dst_reg); 3064 break; 3065 } 3066 3067 /* Upon reaching here, src_known is true and 3068 * umax_val is equal to umin_val. 3069 */ 3070 dst_reg->smin_value >>= umin_val; 3071 dst_reg->smax_value >>= umin_val; 3072 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 3073 3074 /* blow away the dst_reg umin_value/umax_value and rely on 3075 * dst_reg var_off to refine the result. 3076 */ 3077 dst_reg->umin_value = 0; 3078 dst_reg->umax_value = U64_MAX; 3079 __update_reg_bounds(dst_reg); 3080 break; 3081 default: 3082 mark_reg_unknown(env, regs, insn->dst_reg); 3083 break; 3084 } 3085 3086 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3087 /* 32-bit ALU ops are (32,32)->32 */ 3088 coerce_reg_to_size(dst_reg, 4); 3089 } 3090 3091 __reg_deduce_bounds(dst_reg); 3092 __reg_bound_offset(dst_reg); 3093 return 0; 3094 } 3095 3096 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3097 * and var_off. 3098 */ 3099 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3100 struct bpf_insn *insn) 3101 { 3102 struct bpf_verifier_state *vstate = env->cur_state; 3103 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3104 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3105 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3106 u8 opcode = BPF_OP(insn->code); 3107 3108 dst_reg = ®s[insn->dst_reg]; 3109 src_reg = NULL; 3110 if (dst_reg->type != SCALAR_VALUE) 3111 ptr_reg = dst_reg; 3112 if (BPF_SRC(insn->code) == BPF_X) { 3113 src_reg = ®s[insn->src_reg]; 3114 if (src_reg->type != SCALAR_VALUE) { 3115 if (dst_reg->type != SCALAR_VALUE) { 3116 /* Combining two pointers by any ALU op yields 3117 * an arbitrary scalar. Disallow all math except 3118 * pointer subtraction 3119 */ 3120 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 3121 mark_reg_unknown(env, regs, insn->dst_reg); 3122 return 0; 3123 } 3124 verbose(env, "R%d pointer %s pointer prohibited\n", 3125 insn->dst_reg, 3126 bpf_alu_string[opcode >> 4]); 3127 return -EACCES; 3128 } else { 3129 /* scalar += pointer 3130 * This is legal, but we have to reverse our 3131 * src/dest handling in computing the range 3132 */ 3133 return adjust_ptr_min_max_vals(env, insn, 3134 src_reg, dst_reg); 3135 } 3136 } else if (ptr_reg) { 3137 /* pointer += scalar */ 3138 return adjust_ptr_min_max_vals(env, insn, 3139 dst_reg, src_reg); 3140 } 3141 } else { 3142 /* Pretend the src is a reg with a known value, since we only 3143 * need to be able to read from this state. 3144 */ 3145 off_reg.type = SCALAR_VALUE; 3146 __mark_reg_known(&off_reg, insn->imm); 3147 src_reg = &off_reg; 3148 if (ptr_reg) /* pointer += K */ 3149 return adjust_ptr_min_max_vals(env, insn, 3150 ptr_reg, src_reg); 3151 } 3152 3153 /* Got here implies adding two SCALAR_VALUEs */ 3154 if (WARN_ON_ONCE(ptr_reg)) { 3155 print_verifier_state(env, state); 3156 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3157 return -EINVAL; 3158 } 3159 if (WARN_ON(!src_reg)) { 3160 print_verifier_state(env, state); 3161 verbose(env, "verifier internal error: no src_reg\n"); 3162 return -EINVAL; 3163 } 3164 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3165 } 3166 3167 /* check validity of 32-bit and 64-bit arithmetic operations */ 3168 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3169 { 3170 struct bpf_reg_state *regs = cur_regs(env); 3171 u8 opcode = BPF_OP(insn->code); 3172 int err; 3173 3174 if (opcode == BPF_END || opcode == BPF_NEG) { 3175 if (opcode == BPF_NEG) { 3176 if (BPF_SRC(insn->code) != 0 || 3177 insn->src_reg != BPF_REG_0 || 3178 insn->off != 0 || insn->imm != 0) { 3179 verbose(env, "BPF_NEG uses reserved fields\n"); 3180 return -EINVAL; 3181 } 3182 } else { 3183 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3184 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3185 BPF_CLASS(insn->code) == BPF_ALU64) { 3186 verbose(env, "BPF_END uses reserved fields\n"); 3187 return -EINVAL; 3188 } 3189 } 3190 3191 /* check src operand */ 3192 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3193 if (err) 3194 return err; 3195 3196 if (is_pointer_value(env, insn->dst_reg)) { 3197 verbose(env, "R%d pointer arithmetic prohibited\n", 3198 insn->dst_reg); 3199 return -EACCES; 3200 } 3201 3202 /* check dest operand */ 3203 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3204 if (err) 3205 return err; 3206 3207 } else if (opcode == BPF_MOV) { 3208 3209 if (BPF_SRC(insn->code) == BPF_X) { 3210 if (insn->imm != 0 || insn->off != 0) { 3211 verbose(env, "BPF_MOV uses reserved fields\n"); 3212 return -EINVAL; 3213 } 3214 3215 /* check src operand */ 3216 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3217 if (err) 3218 return err; 3219 } else { 3220 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3221 verbose(env, "BPF_MOV uses reserved fields\n"); 3222 return -EINVAL; 3223 } 3224 } 3225 3226 /* check dest operand, mark as required later */ 3227 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3228 if (err) 3229 return err; 3230 3231 if (BPF_SRC(insn->code) == BPF_X) { 3232 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3233 /* case: R1 = R2 3234 * copy register state to dest reg 3235 */ 3236 regs[insn->dst_reg] = regs[insn->src_reg]; 3237 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 3238 } else { 3239 /* R1 = (u32) R2 */ 3240 if (is_pointer_value(env, insn->src_reg)) { 3241 verbose(env, 3242 "R%d partial copy of pointer\n", 3243 insn->src_reg); 3244 return -EACCES; 3245 } 3246 mark_reg_unknown(env, regs, insn->dst_reg); 3247 coerce_reg_to_size(®s[insn->dst_reg], 4); 3248 } 3249 } else { 3250 /* case: R = imm 3251 * remember the value we stored into this reg 3252 */ 3253 /* clear any state __mark_reg_known doesn't set */ 3254 mark_reg_unknown(env, regs, insn->dst_reg); 3255 regs[insn->dst_reg].type = SCALAR_VALUE; 3256 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3257 __mark_reg_known(regs + insn->dst_reg, 3258 insn->imm); 3259 } else { 3260 __mark_reg_known(regs + insn->dst_reg, 3261 (u32)insn->imm); 3262 } 3263 } 3264 3265 } else if (opcode > BPF_END) { 3266 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3267 return -EINVAL; 3268 3269 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3270 3271 if (BPF_SRC(insn->code) == BPF_X) { 3272 if (insn->imm != 0 || insn->off != 0) { 3273 verbose(env, "BPF_ALU uses reserved fields\n"); 3274 return -EINVAL; 3275 } 3276 /* check src1 operand */ 3277 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3278 if (err) 3279 return err; 3280 } else { 3281 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3282 verbose(env, "BPF_ALU uses reserved fields\n"); 3283 return -EINVAL; 3284 } 3285 } 3286 3287 /* check src2 operand */ 3288 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3289 if (err) 3290 return err; 3291 3292 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3293 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3294 verbose(env, "div by zero\n"); 3295 return -EINVAL; 3296 } 3297 3298 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) { 3299 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n"); 3300 return -EINVAL; 3301 } 3302 3303 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3304 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3305 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3306 3307 if (insn->imm < 0 || insn->imm >= size) { 3308 verbose(env, "invalid shift %d\n", insn->imm); 3309 return -EINVAL; 3310 } 3311 } 3312 3313 /* check dest operand */ 3314 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3315 if (err) 3316 return err; 3317 3318 return adjust_reg_min_max_vals(env, insn); 3319 } 3320 3321 return 0; 3322 } 3323 3324 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3325 struct bpf_reg_state *dst_reg, 3326 enum bpf_reg_type type, 3327 bool range_right_open) 3328 { 3329 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3330 struct bpf_reg_state *regs = state->regs, *reg; 3331 u16 new_range; 3332 int i, j; 3333 3334 if (dst_reg->off < 0 || 3335 (dst_reg->off == 0 && range_right_open)) 3336 /* This doesn't give us any range */ 3337 return; 3338 3339 if (dst_reg->umax_value > MAX_PACKET_OFF || 3340 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3341 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3342 * than pkt_end, but that's because it's also less than pkt. 3343 */ 3344 return; 3345 3346 new_range = dst_reg->off; 3347 if (range_right_open) 3348 new_range--; 3349 3350 /* Examples for register markings: 3351 * 3352 * pkt_data in dst register: 3353 * 3354 * r2 = r3; 3355 * r2 += 8; 3356 * if (r2 > pkt_end) goto <handle exception> 3357 * <access okay> 3358 * 3359 * r2 = r3; 3360 * r2 += 8; 3361 * if (r2 < pkt_end) goto <access okay> 3362 * <handle exception> 3363 * 3364 * Where: 3365 * r2 == dst_reg, pkt_end == src_reg 3366 * r2=pkt(id=n,off=8,r=0) 3367 * r3=pkt(id=n,off=0,r=0) 3368 * 3369 * pkt_data in src register: 3370 * 3371 * r2 = r3; 3372 * r2 += 8; 3373 * if (pkt_end >= r2) goto <access okay> 3374 * <handle exception> 3375 * 3376 * r2 = r3; 3377 * r2 += 8; 3378 * if (pkt_end <= r2) goto <handle exception> 3379 * <access okay> 3380 * 3381 * Where: 3382 * pkt_end == dst_reg, r2 == src_reg 3383 * r2=pkt(id=n,off=8,r=0) 3384 * r3=pkt(id=n,off=0,r=0) 3385 * 3386 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 3387 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 3388 * and [r3, r3 + 8-1) respectively is safe to access depending on 3389 * the check. 3390 */ 3391 3392 /* If our ids match, then we must have the same max_value. And we 3393 * don't care about the other reg's fixed offset, since if it's too big 3394 * the range won't allow anything. 3395 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 3396 */ 3397 for (i = 0; i < MAX_BPF_REG; i++) 3398 if (regs[i].type == type && regs[i].id == dst_reg->id) 3399 /* keep the maximum range already checked */ 3400 regs[i].range = max(regs[i].range, new_range); 3401 3402 for (j = 0; j <= vstate->curframe; j++) { 3403 state = vstate->frame[j]; 3404 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3405 if (state->stack[i].slot_type[0] != STACK_SPILL) 3406 continue; 3407 reg = &state->stack[i].spilled_ptr; 3408 if (reg->type == type && reg->id == dst_reg->id) 3409 reg->range = max(reg->range, new_range); 3410 } 3411 } 3412 } 3413 3414 /* Adjusts the register min/max values in the case that the dst_reg is the 3415 * variable register that we are working on, and src_reg is a constant or we're 3416 * simply doing a BPF_K check. 3417 * In JEQ/JNE cases we also adjust the var_off values. 3418 */ 3419 static void reg_set_min_max(struct bpf_reg_state *true_reg, 3420 struct bpf_reg_state *false_reg, u64 val, 3421 u8 opcode) 3422 { 3423 /* If the dst_reg is a pointer, we can't learn anything about its 3424 * variable offset from the compare (unless src_reg were a pointer into 3425 * the same object, but we don't bother with that. 3426 * Since false_reg and true_reg have the same type by construction, we 3427 * only need to check one of them for pointerness. 3428 */ 3429 if (__is_pointer_value(false, false_reg)) 3430 return; 3431 3432 switch (opcode) { 3433 case BPF_JEQ: 3434 /* If this is false then we know nothing Jon Snow, but if it is 3435 * true then we know for sure. 3436 */ 3437 __mark_reg_known(true_reg, val); 3438 break; 3439 case BPF_JNE: 3440 /* If this is true we know nothing Jon Snow, but if it is false 3441 * we know the value for sure; 3442 */ 3443 __mark_reg_known(false_reg, val); 3444 break; 3445 case BPF_JGT: 3446 false_reg->umax_value = min(false_reg->umax_value, val); 3447 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3448 break; 3449 case BPF_JSGT: 3450 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3451 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3452 break; 3453 case BPF_JLT: 3454 false_reg->umin_value = max(false_reg->umin_value, val); 3455 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3456 break; 3457 case BPF_JSLT: 3458 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3459 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3460 break; 3461 case BPF_JGE: 3462 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3463 true_reg->umin_value = max(true_reg->umin_value, val); 3464 break; 3465 case BPF_JSGE: 3466 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3467 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3468 break; 3469 case BPF_JLE: 3470 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3471 true_reg->umax_value = min(true_reg->umax_value, val); 3472 break; 3473 case BPF_JSLE: 3474 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3475 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3476 break; 3477 default: 3478 break; 3479 } 3480 3481 __reg_deduce_bounds(false_reg); 3482 __reg_deduce_bounds(true_reg); 3483 /* We might have learned some bits from the bounds. */ 3484 __reg_bound_offset(false_reg); 3485 __reg_bound_offset(true_reg); 3486 /* Intersecting with the old var_off might have improved our bounds 3487 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3488 * then new var_off is (0; 0x7f...fc) which improves our umax. 3489 */ 3490 __update_reg_bounds(false_reg); 3491 __update_reg_bounds(true_reg); 3492 } 3493 3494 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 3495 * the variable reg. 3496 */ 3497 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 3498 struct bpf_reg_state *false_reg, u64 val, 3499 u8 opcode) 3500 { 3501 if (__is_pointer_value(false, false_reg)) 3502 return; 3503 3504 switch (opcode) { 3505 case BPF_JEQ: 3506 /* If this is false then we know nothing Jon Snow, but if it is 3507 * true then we know for sure. 3508 */ 3509 __mark_reg_known(true_reg, val); 3510 break; 3511 case BPF_JNE: 3512 /* If this is true we know nothing Jon Snow, but if it is false 3513 * we know the value for sure; 3514 */ 3515 __mark_reg_known(false_reg, val); 3516 break; 3517 case BPF_JGT: 3518 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3519 false_reg->umin_value = max(false_reg->umin_value, val); 3520 break; 3521 case BPF_JSGT: 3522 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3523 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3524 break; 3525 case BPF_JLT: 3526 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3527 false_reg->umax_value = min(false_reg->umax_value, val); 3528 break; 3529 case BPF_JSLT: 3530 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3531 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3532 break; 3533 case BPF_JGE: 3534 true_reg->umax_value = min(true_reg->umax_value, val); 3535 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3536 break; 3537 case BPF_JSGE: 3538 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3539 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3540 break; 3541 case BPF_JLE: 3542 true_reg->umin_value = max(true_reg->umin_value, val); 3543 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3544 break; 3545 case BPF_JSLE: 3546 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3547 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3548 break; 3549 default: 3550 break; 3551 } 3552 3553 __reg_deduce_bounds(false_reg); 3554 __reg_deduce_bounds(true_reg); 3555 /* We might have learned some bits from the bounds. */ 3556 __reg_bound_offset(false_reg); 3557 __reg_bound_offset(true_reg); 3558 /* Intersecting with the old var_off might have improved our bounds 3559 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3560 * then new var_off is (0; 0x7f...fc) which improves our umax. 3561 */ 3562 __update_reg_bounds(false_reg); 3563 __update_reg_bounds(true_reg); 3564 } 3565 3566 /* Regs are known to be equal, so intersect their min/max/var_off */ 3567 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 3568 struct bpf_reg_state *dst_reg) 3569 { 3570 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 3571 dst_reg->umin_value); 3572 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 3573 dst_reg->umax_value); 3574 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 3575 dst_reg->smin_value); 3576 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 3577 dst_reg->smax_value); 3578 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 3579 dst_reg->var_off); 3580 /* We might have learned new bounds from the var_off. */ 3581 __update_reg_bounds(src_reg); 3582 __update_reg_bounds(dst_reg); 3583 /* We might have learned something about the sign bit. */ 3584 __reg_deduce_bounds(src_reg); 3585 __reg_deduce_bounds(dst_reg); 3586 /* We might have learned some bits from the bounds. */ 3587 __reg_bound_offset(src_reg); 3588 __reg_bound_offset(dst_reg); 3589 /* Intersecting with the old var_off might have improved our bounds 3590 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3591 * then new var_off is (0; 0x7f...fc) which improves our umax. 3592 */ 3593 __update_reg_bounds(src_reg); 3594 __update_reg_bounds(dst_reg); 3595 } 3596 3597 static void reg_combine_min_max(struct bpf_reg_state *true_src, 3598 struct bpf_reg_state *true_dst, 3599 struct bpf_reg_state *false_src, 3600 struct bpf_reg_state *false_dst, 3601 u8 opcode) 3602 { 3603 switch (opcode) { 3604 case BPF_JEQ: 3605 __reg_combine_min_max(true_src, true_dst); 3606 break; 3607 case BPF_JNE: 3608 __reg_combine_min_max(false_src, false_dst); 3609 break; 3610 } 3611 } 3612 3613 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 3614 bool is_null) 3615 { 3616 struct bpf_reg_state *reg = ®s[regno]; 3617 3618 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 3619 /* Old offset (both fixed and variable parts) should 3620 * have been known-zero, because we don't allow pointer 3621 * arithmetic on pointers that might be NULL. 3622 */ 3623 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 3624 !tnum_equals_const(reg->var_off, 0) || 3625 reg->off)) { 3626 __mark_reg_known_zero(reg); 3627 reg->off = 0; 3628 } 3629 if (is_null) { 3630 reg->type = SCALAR_VALUE; 3631 } else if (reg->map_ptr->inner_map_meta) { 3632 reg->type = CONST_PTR_TO_MAP; 3633 reg->map_ptr = reg->map_ptr->inner_map_meta; 3634 } else { 3635 reg->type = PTR_TO_MAP_VALUE; 3636 } 3637 /* We don't need id from this point onwards anymore, thus we 3638 * should better reset it, so that state pruning has chances 3639 * to take effect. 3640 */ 3641 reg->id = 0; 3642 } 3643 } 3644 3645 /* The logic is similar to find_good_pkt_pointers(), both could eventually 3646 * be folded together at some point. 3647 */ 3648 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno, 3649 bool is_null) 3650 { 3651 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3652 struct bpf_reg_state *regs = state->regs; 3653 u32 id = regs[regno].id; 3654 int i, j; 3655 3656 for (i = 0; i < MAX_BPF_REG; i++) 3657 mark_map_reg(regs, i, id, is_null); 3658 3659 for (j = 0; j <= vstate->curframe; j++) { 3660 state = vstate->frame[j]; 3661 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3662 if (state->stack[i].slot_type[0] != STACK_SPILL) 3663 continue; 3664 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null); 3665 } 3666 } 3667 } 3668 3669 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 3670 struct bpf_reg_state *dst_reg, 3671 struct bpf_reg_state *src_reg, 3672 struct bpf_verifier_state *this_branch, 3673 struct bpf_verifier_state *other_branch) 3674 { 3675 if (BPF_SRC(insn->code) != BPF_X) 3676 return false; 3677 3678 switch (BPF_OP(insn->code)) { 3679 case BPF_JGT: 3680 if ((dst_reg->type == PTR_TO_PACKET && 3681 src_reg->type == PTR_TO_PACKET_END) || 3682 (dst_reg->type == PTR_TO_PACKET_META && 3683 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3684 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 3685 find_good_pkt_pointers(this_branch, dst_reg, 3686 dst_reg->type, false); 3687 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3688 src_reg->type == PTR_TO_PACKET) || 3689 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3690 src_reg->type == PTR_TO_PACKET_META)) { 3691 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 3692 find_good_pkt_pointers(other_branch, src_reg, 3693 src_reg->type, true); 3694 } else { 3695 return false; 3696 } 3697 break; 3698 case BPF_JLT: 3699 if ((dst_reg->type == PTR_TO_PACKET && 3700 src_reg->type == PTR_TO_PACKET_END) || 3701 (dst_reg->type == PTR_TO_PACKET_META && 3702 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3703 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 3704 find_good_pkt_pointers(other_branch, dst_reg, 3705 dst_reg->type, true); 3706 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3707 src_reg->type == PTR_TO_PACKET) || 3708 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3709 src_reg->type == PTR_TO_PACKET_META)) { 3710 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 3711 find_good_pkt_pointers(this_branch, src_reg, 3712 src_reg->type, false); 3713 } else { 3714 return false; 3715 } 3716 break; 3717 case BPF_JGE: 3718 if ((dst_reg->type == PTR_TO_PACKET && 3719 src_reg->type == PTR_TO_PACKET_END) || 3720 (dst_reg->type == PTR_TO_PACKET_META && 3721 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3722 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 3723 find_good_pkt_pointers(this_branch, dst_reg, 3724 dst_reg->type, true); 3725 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3726 src_reg->type == PTR_TO_PACKET) || 3727 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3728 src_reg->type == PTR_TO_PACKET_META)) { 3729 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 3730 find_good_pkt_pointers(other_branch, src_reg, 3731 src_reg->type, false); 3732 } else { 3733 return false; 3734 } 3735 break; 3736 case BPF_JLE: 3737 if ((dst_reg->type == PTR_TO_PACKET && 3738 src_reg->type == PTR_TO_PACKET_END) || 3739 (dst_reg->type == PTR_TO_PACKET_META && 3740 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3741 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 3742 find_good_pkt_pointers(other_branch, dst_reg, 3743 dst_reg->type, false); 3744 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3745 src_reg->type == PTR_TO_PACKET) || 3746 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3747 src_reg->type == PTR_TO_PACKET_META)) { 3748 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 3749 find_good_pkt_pointers(this_branch, src_reg, 3750 src_reg->type, true); 3751 } else { 3752 return false; 3753 } 3754 break; 3755 default: 3756 return false; 3757 } 3758 3759 return true; 3760 } 3761 3762 static int check_cond_jmp_op(struct bpf_verifier_env *env, 3763 struct bpf_insn *insn, int *insn_idx) 3764 { 3765 struct bpf_verifier_state *this_branch = env->cur_state; 3766 struct bpf_verifier_state *other_branch; 3767 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 3768 struct bpf_reg_state *dst_reg, *other_branch_regs; 3769 u8 opcode = BPF_OP(insn->code); 3770 int err; 3771 3772 if (opcode > BPF_JSLE) { 3773 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 3774 return -EINVAL; 3775 } 3776 3777 if (BPF_SRC(insn->code) == BPF_X) { 3778 if (insn->imm != 0) { 3779 verbose(env, "BPF_JMP uses reserved fields\n"); 3780 return -EINVAL; 3781 } 3782 3783 /* check src1 operand */ 3784 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3785 if (err) 3786 return err; 3787 3788 if (is_pointer_value(env, insn->src_reg)) { 3789 verbose(env, "R%d pointer comparison prohibited\n", 3790 insn->src_reg); 3791 return -EACCES; 3792 } 3793 } else { 3794 if (insn->src_reg != BPF_REG_0) { 3795 verbose(env, "BPF_JMP uses reserved fields\n"); 3796 return -EINVAL; 3797 } 3798 } 3799 3800 /* check src2 operand */ 3801 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3802 if (err) 3803 return err; 3804 3805 dst_reg = ®s[insn->dst_reg]; 3806 3807 /* detect if R == 0 where R was initialized to zero earlier */ 3808 if (BPF_SRC(insn->code) == BPF_K && 3809 (opcode == BPF_JEQ || opcode == BPF_JNE) && 3810 dst_reg->type == SCALAR_VALUE && 3811 tnum_is_const(dst_reg->var_off)) { 3812 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) || 3813 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) { 3814 /* if (imm == imm) goto pc+off; 3815 * only follow the goto, ignore fall-through 3816 */ 3817 *insn_idx += insn->off; 3818 return 0; 3819 } else { 3820 /* if (imm != imm) goto pc+off; 3821 * only follow fall-through branch, since 3822 * that's where the program will go 3823 */ 3824 return 0; 3825 } 3826 } 3827 3828 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 3829 if (!other_branch) 3830 return -EFAULT; 3831 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 3832 3833 /* detect if we are comparing against a constant value so we can adjust 3834 * our min/max values for our dst register. 3835 * this is only legit if both are scalars (or pointers to the same 3836 * object, I suppose, but we don't support that right now), because 3837 * otherwise the different base pointers mean the offsets aren't 3838 * comparable. 3839 */ 3840 if (BPF_SRC(insn->code) == BPF_X) { 3841 if (dst_reg->type == SCALAR_VALUE && 3842 regs[insn->src_reg].type == SCALAR_VALUE) { 3843 if (tnum_is_const(regs[insn->src_reg].var_off)) 3844 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3845 dst_reg, regs[insn->src_reg].var_off.value, 3846 opcode); 3847 else if (tnum_is_const(dst_reg->var_off)) 3848 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 3849 ®s[insn->src_reg], 3850 dst_reg->var_off.value, opcode); 3851 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 3852 /* Comparing for equality, we can combine knowledge */ 3853 reg_combine_min_max(&other_branch_regs[insn->src_reg], 3854 &other_branch_regs[insn->dst_reg], 3855 ®s[insn->src_reg], 3856 ®s[insn->dst_reg], opcode); 3857 } 3858 } else if (dst_reg->type == SCALAR_VALUE) { 3859 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3860 dst_reg, insn->imm, opcode); 3861 } 3862 3863 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 3864 if (BPF_SRC(insn->code) == BPF_K && 3865 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 3866 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 3867 /* Mark all identical map registers in each branch as either 3868 * safe or unknown depending R == 0 or R != 0 conditional. 3869 */ 3870 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 3871 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); 3872 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 3873 this_branch, other_branch) && 3874 is_pointer_value(env, insn->dst_reg)) { 3875 verbose(env, "R%d pointer comparison prohibited\n", 3876 insn->dst_reg); 3877 return -EACCES; 3878 } 3879 if (env->log.level) 3880 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 3881 return 0; 3882 } 3883 3884 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 3885 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 3886 { 3887 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 3888 3889 return (struct bpf_map *) (unsigned long) imm64; 3890 } 3891 3892 /* verify BPF_LD_IMM64 instruction */ 3893 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 3894 { 3895 struct bpf_reg_state *regs = cur_regs(env); 3896 int err; 3897 3898 if (BPF_SIZE(insn->code) != BPF_DW) { 3899 verbose(env, "invalid BPF_LD_IMM insn\n"); 3900 return -EINVAL; 3901 } 3902 if (insn->off != 0) { 3903 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 3904 return -EINVAL; 3905 } 3906 3907 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3908 if (err) 3909 return err; 3910 3911 if (insn->src_reg == 0) { 3912 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 3913 3914 regs[insn->dst_reg].type = SCALAR_VALUE; 3915 __mark_reg_known(®s[insn->dst_reg], imm); 3916 return 0; 3917 } 3918 3919 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 3920 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 3921 3922 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 3923 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 3924 return 0; 3925 } 3926 3927 static bool may_access_skb(enum bpf_prog_type type) 3928 { 3929 switch (type) { 3930 case BPF_PROG_TYPE_SOCKET_FILTER: 3931 case BPF_PROG_TYPE_SCHED_CLS: 3932 case BPF_PROG_TYPE_SCHED_ACT: 3933 return true; 3934 default: 3935 return false; 3936 } 3937 } 3938 3939 /* verify safety of LD_ABS|LD_IND instructions: 3940 * - they can only appear in the programs where ctx == skb 3941 * - since they are wrappers of function calls, they scratch R1-R5 registers, 3942 * preserve R6-R9, and store return value into R0 3943 * 3944 * Implicit input: 3945 * ctx == skb == R6 == CTX 3946 * 3947 * Explicit input: 3948 * SRC == any register 3949 * IMM == 32-bit immediate 3950 * 3951 * Output: 3952 * R0 - 8/16/32-bit skb data converted to cpu endianness 3953 */ 3954 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 3955 { 3956 struct bpf_reg_state *regs = cur_regs(env); 3957 u8 mode = BPF_MODE(insn->code); 3958 int i, err; 3959 3960 if (!may_access_skb(env->prog->type)) { 3961 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 3962 return -EINVAL; 3963 } 3964 3965 if (!env->ops->gen_ld_abs) { 3966 verbose(env, "bpf verifier is misconfigured\n"); 3967 return -EINVAL; 3968 } 3969 3970 if (env->subprog_cnt > 1) { 3971 /* when program has LD_ABS insn JITs and interpreter assume 3972 * that r1 == ctx == skb which is not the case for callees 3973 * that can have arbitrary arguments. It's problematic 3974 * for main prog as well since JITs would need to analyze 3975 * all functions in order to make proper register save/restore 3976 * decisions in the main prog. Hence disallow LD_ABS with calls 3977 */ 3978 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 3979 return -EINVAL; 3980 } 3981 3982 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 3983 BPF_SIZE(insn->code) == BPF_DW || 3984 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 3985 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 3986 return -EINVAL; 3987 } 3988 3989 /* check whether implicit source operand (register R6) is readable */ 3990 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 3991 if (err) 3992 return err; 3993 3994 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 3995 verbose(env, 3996 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 3997 return -EINVAL; 3998 } 3999 4000 if (mode == BPF_IND) { 4001 /* check explicit source operand */ 4002 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4003 if (err) 4004 return err; 4005 } 4006 4007 /* reset caller saved regs to unreadable */ 4008 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4009 mark_reg_not_init(env, regs, caller_saved[i]); 4010 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4011 } 4012 4013 /* mark destination R0 register as readable, since it contains 4014 * the value fetched from the packet. 4015 * Already marked as written above. 4016 */ 4017 mark_reg_unknown(env, regs, BPF_REG_0); 4018 return 0; 4019 } 4020 4021 static int check_return_code(struct bpf_verifier_env *env) 4022 { 4023 struct bpf_reg_state *reg; 4024 struct tnum range = tnum_range(0, 1); 4025 4026 switch (env->prog->type) { 4027 case BPF_PROG_TYPE_CGROUP_SKB: 4028 case BPF_PROG_TYPE_CGROUP_SOCK: 4029 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 4030 case BPF_PROG_TYPE_SOCK_OPS: 4031 case BPF_PROG_TYPE_CGROUP_DEVICE: 4032 break; 4033 default: 4034 return 0; 4035 } 4036 4037 reg = cur_regs(env) + BPF_REG_0; 4038 if (reg->type != SCALAR_VALUE) { 4039 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 4040 reg_type_str[reg->type]); 4041 return -EINVAL; 4042 } 4043 4044 if (!tnum_in(range, reg->var_off)) { 4045 verbose(env, "At program exit the register R0 "); 4046 if (!tnum_is_unknown(reg->var_off)) { 4047 char tn_buf[48]; 4048 4049 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4050 verbose(env, "has value %s", tn_buf); 4051 } else { 4052 verbose(env, "has unknown scalar value"); 4053 } 4054 verbose(env, " should have been 0 or 1\n"); 4055 return -EINVAL; 4056 } 4057 return 0; 4058 } 4059 4060 /* non-recursive DFS pseudo code 4061 * 1 procedure DFS-iterative(G,v): 4062 * 2 label v as discovered 4063 * 3 let S be a stack 4064 * 4 S.push(v) 4065 * 5 while S is not empty 4066 * 6 t <- S.pop() 4067 * 7 if t is what we're looking for: 4068 * 8 return t 4069 * 9 for all edges e in G.adjacentEdges(t) do 4070 * 10 if edge e is already labelled 4071 * 11 continue with the next edge 4072 * 12 w <- G.adjacentVertex(t,e) 4073 * 13 if vertex w is not discovered and not explored 4074 * 14 label e as tree-edge 4075 * 15 label w as discovered 4076 * 16 S.push(w) 4077 * 17 continue at 5 4078 * 18 else if vertex w is discovered 4079 * 19 label e as back-edge 4080 * 20 else 4081 * 21 // vertex w is explored 4082 * 22 label e as forward- or cross-edge 4083 * 23 label t as explored 4084 * 24 S.pop() 4085 * 4086 * convention: 4087 * 0x10 - discovered 4088 * 0x11 - discovered and fall-through edge labelled 4089 * 0x12 - discovered and fall-through and branch edges labelled 4090 * 0x20 - explored 4091 */ 4092 4093 enum { 4094 DISCOVERED = 0x10, 4095 EXPLORED = 0x20, 4096 FALLTHROUGH = 1, 4097 BRANCH = 2, 4098 }; 4099 4100 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 4101 4102 static int *insn_stack; /* stack of insns to process */ 4103 static int cur_stack; /* current stack index */ 4104 static int *insn_state; 4105 4106 /* t, w, e - match pseudo-code above: 4107 * t - index of current instruction 4108 * w - next instruction 4109 * e - edge 4110 */ 4111 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 4112 { 4113 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 4114 return 0; 4115 4116 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 4117 return 0; 4118 4119 if (w < 0 || w >= env->prog->len) { 4120 verbose(env, "jump out of range from insn %d to %d\n", t, w); 4121 return -EINVAL; 4122 } 4123 4124 if (e == BRANCH) 4125 /* mark branch target for state pruning */ 4126 env->explored_states[w] = STATE_LIST_MARK; 4127 4128 if (insn_state[w] == 0) { 4129 /* tree-edge */ 4130 insn_state[t] = DISCOVERED | e; 4131 insn_state[w] = DISCOVERED; 4132 if (cur_stack >= env->prog->len) 4133 return -E2BIG; 4134 insn_stack[cur_stack++] = w; 4135 return 1; 4136 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 4137 verbose(env, "back-edge from insn %d to %d\n", t, w); 4138 return -EINVAL; 4139 } else if (insn_state[w] == EXPLORED) { 4140 /* forward- or cross-edge */ 4141 insn_state[t] = DISCOVERED | e; 4142 } else { 4143 verbose(env, "insn state internal bug\n"); 4144 return -EFAULT; 4145 } 4146 return 0; 4147 } 4148 4149 /* non-recursive depth-first-search to detect loops in BPF program 4150 * loop == back-edge in directed graph 4151 */ 4152 static int check_cfg(struct bpf_verifier_env *env) 4153 { 4154 struct bpf_insn *insns = env->prog->insnsi; 4155 int insn_cnt = env->prog->len; 4156 int ret = 0; 4157 int i, t; 4158 4159 ret = check_subprogs(env); 4160 if (ret < 0) 4161 return ret; 4162 4163 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4164 if (!insn_state) 4165 return -ENOMEM; 4166 4167 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4168 if (!insn_stack) { 4169 kfree(insn_state); 4170 return -ENOMEM; 4171 } 4172 4173 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4174 insn_stack[0] = 0; /* 0 is the first instruction */ 4175 cur_stack = 1; 4176 4177 peek_stack: 4178 if (cur_stack == 0) 4179 goto check_state; 4180 t = insn_stack[cur_stack - 1]; 4181 4182 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4183 u8 opcode = BPF_OP(insns[t].code); 4184 4185 if (opcode == BPF_EXIT) { 4186 goto mark_explored; 4187 } else if (opcode == BPF_CALL) { 4188 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4189 if (ret == 1) 4190 goto peek_stack; 4191 else if (ret < 0) 4192 goto err_free; 4193 if (t + 1 < insn_cnt) 4194 env->explored_states[t + 1] = STATE_LIST_MARK; 4195 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4196 env->explored_states[t] = STATE_LIST_MARK; 4197 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4198 if (ret == 1) 4199 goto peek_stack; 4200 else if (ret < 0) 4201 goto err_free; 4202 } 4203 } else if (opcode == BPF_JA) { 4204 if (BPF_SRC(insns[t].code) != BPF_K) { 4205 ret = -EINVAL; 4206 goto err_free; 4207 } 4208 /* unconditional jump with single edge */ 4209 ret = push_insn(t, t + insns[t].off + 1, 4210 FALLTHROUGH, env); 4211 if (ret == 1) 4212 goto peek_stack; 4213 else if (ret < 0) 4214 goto err_free; 4215 /* tell verifier to check for equivalent states 4216 * after every call and jump 4217 */ 4218 if (t + 1 < insn_cnt) 4219 env->explored_states[t + 1] = STATE_LIST_MARK; 4220 } else { 4221 /* conditional jump with two edges */ 4222 env->explored_states[t] = STATE_LIST_MARK; 4223 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4224 if (ret == 1) 4225 goto peek_stack; 4226 else if (ret < 0) 4227 goto err_free; 4228 4229 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4230 if (ret == 1) 4231 goto peek_stack; 4232 else if (ret < 0) 4233 goto err_free; 4234 } 4235 } else { 4236 /* all other non-branch instructions with single 4237 * fall-through edge 4238 */ 4239 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4240 if (ret == 1) 4241 goto peek_stack; 4242 else if (ret < 0) 4243 goto err_free; 4244 } 4245 4246 mark_explored: 4247 insn_state[t] = EXPLORED; 4248 if (cur_stack-- <= 0) { 4249 verbose(env, "pop stack internal bug\n"); 4250 ret = -EFAULT; 4251 goto err_free; 4252 } 4253 goto peek_stack; 4254 4255 check_state: 4256 for (i = 0; i < insn_cnt; i++) { 4257 if (insn_state[i] != EXPLORED) { 4258 verbose(env, "unreachable insn %d\n", i); 4259 ret = -EINVAL; 4260 goto err_free; 4261 } 4262 } 4263 ret = 0; /* cfg looks good */ 4264 4265 err_free: 4266 kfree(insn_state); 4267 kfree(insn_stack); 4268 return ret; 4269 } 4270 4271 /* check %cur's range satisfies %old's */ 4272 static bool range_within(struct bpf_reg_state *old, 4273 struct bpf_reg_state *cur) 4274 { 4275 return old->umin_value <= cur->umin_value && 4276 old->umax_value >= cur->umax_value && 4277 old->smin_value <= cur->smin_value && 4278 old->smax_value >= cur->smax_value; 4279 } 4280 4281 /* Maximum number of register states that can exist at once */ 4282 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 4283 struct idpair { 4284 u32 old; 4285 u32 cur; 4286 }; 4287 4288 /* If in the old state two registers had the same id, then they need to have 4289 * the same id in the new state as well. But that id could be different from 4290 * the old state, so we need to track the mapping from old to new ids. 4291 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 4292 * regs with old id 5 must also have new id 9 for the new state to be safe. But 4293 * regs with a different old id could still have new id 9, we don't care about 4294 * that. 4295 * So we look through our idmap to see if this old id has been seen before. If 4296 * so, we require the new id to match; otherwise, we add the id pair to the map. 4297 */ 4298 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 4299 { 4300 unsigned int i; 4301 4302 for (i = 0; i < ID_MAP_SIZE; i++) { 4303 if (!idmap[i].old) { 4304 /* Reached an empty slot; haven't seen this id before */ 4305 idmap[i].old = old_id; 4306 idmap[i].cur = cur_id; 4307 return true; 4308 } 4309 if (idmap[i].old == old_id) 4310 return idmap[i].cur == cur_id; 4311 } 4312 /* We ran out of idmap slots, which should be impossible */ 4313 WARN_ON_ONCE(1); 4314 return false; 4315 } 4316 4317 /* Returns true if (rold safe implies rcur safe) */ 4318 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 4319 struct idpair *idmap) 4320 { 4321 bool equal; 4322 4323 if (!(rold->live & REG_LIVE_READ)) 4324 /* explored state didn't use this */ 4325 return true; 4326 4327 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 4328 4329 if (rold->type == PTR_TO_STACK) 4330 /* two stack pointers are equal only if they're pointing to 4331 * the same stack frame, since fp-8 in foo != fp-8 in bar 4332 */ 4333 return equal && rold->frameno == rcur->frameno; 4334 4335 if (equal) 4336 return true; 4337 4338 if (rold->type == NOT_INIT) 4339 /* explored state can't have used this */ 4340 return true; 4341 if (rcur->type == NOT_INIT) 4342 return false; 4343 switch (rold->type) { 4344 case SCALAR_VALUE: 4345 if (rcur->type == SCALAR_VALUE) { 4346 /* new val must satisfy old val knowledge */ 4347 return range_within(rold, rcur) && 4348 tnum_in(rold->var_off, rcur->var_off); 4349 } else { 4350 /* We're trying to use a pointer in place of a scalar. 4351 * Even if the scalar was unbounded, this could lead to 4352 * pointer leaks because scalars are allowed to leak 4353 * while pointers are not. We could make this safe in 4354 * special cases if root is calling us, but it's 4355 * probably not worth the hassle. 4356 */ 4357 return false; 4358 } 4359 case PTR_TO_MAP_VALUE: 4360 /* If the new min/max/var_off satisfy the old ones and 4361 * everything else matches, we are OK. 4362 * We don't care about the 'id' value, because nothing 4363 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 4364 */ 4365 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 4366 range_within(rold, rcur) && 4367 tnum_in(rold->var_off, rcur->var_off); 4368 case PTR_TO_MAP_VALUE_OR_NULL: 4369 /* a PTR_TO_MAP_VALUE could be safe to use as a 4370 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 4371 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 4372 * checked, doing so could have affected others with the same 4373 * id, and we can't check for that because we lost the id when 4374 * we converted to a PTR_TO_MAP_VALUE. 4375 */ 4376 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 4377 return false; 4378 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 4379 return false; 4380 /* Check our ids match any regs they're supposed to */ 4381 return check_ids(rold->id, rcur->id, idmap); 4382 case PTR_TO_PACKET_META: 4383 case PTR_TO_PACKET: 4384 if (rcur->type != rold->type) 4385 return false; 4386 /* We must have at least as much range as the old ptr 4387 * did, so that any accesses which were safe before are 4388 * still safe. This is true even if old range < old off, 4389 * since someone could have accessed through (ptr - k), or 4390 * even done ptr -= k in a register, to get a safe access. 4391 */ 4392 if (rold->range > rcur->range) 4393 return false; 4394 /* If the offsets don't match, we can't trust our alignment; 4395 * nor can we be sure that we won't fall out of range. 4396 */ 4397 if (rold->off != rcur->off) 4398 return false; 4399 /* id relations must be preserved */ 4400 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 4401 return false; 4402 /* new val must satisfy old val knowledge */ 4403 return range_within(rold, rcur) && 4404 tnum_in(rold->var_off, rcur->var_off); 4405 case PTR_TO_CTX: 4406 case CONST_PTR_TO_MAP: 4407 case PTR_TO_PACKET_END: 4408 case PTR_TO_FLOW_KEYS: 4409 /* Only valid matches are exact, which memcmp() above 4410 * would have accepted 4411 */ 4412 default: 4413 /* Don't know what's going on, just say it's not safe */ 4414 return false; 4415 } 4416 4417 /* Shouldn't get here; if we do, say it's not safe */ 4418 WARN_ON_ONCE(1); 4419 return false; 4420 } 4421 4422 static bool stacksafe(struct bpf_func_state *old, 4423 struct bpf_func_state *cur, 4424 struct idpair *idmap) 4425 { 4426 int i, spi; 4427 4428 /* if explored stack has more populated slots than current stack 4429 * such stacks are not equivalent 4430 */ 4431 if (old->allocated_stack > cur->allocated_stack) 4432 return false; 4433 4434 /* walk slots of the explored stack and ignore any additional 4435 * slots in the current stack, since explored(safe) state 4436 * didn't use them 4437 */ 4438 for (i = 0; i < old->allocated_stack; i++) { 4439 spi = i / BPF_REG_SIZE; 4440 4441 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) 4442 /* explored state didn't use this */ 4443 continue; 4444 4445 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 4446 continue; 4447 /* if old state was safe with misc data in the stack 4448 * it will be safe with zero-initialized stack. 4449 * The opposite is not true 4450 */ 4451 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 4452 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 4453 continue; 4454 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 4455 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 4456 /* Ex: old explored (safe) state has STACK_SPILL in 4457 * this stack slot, but current has has STACK_MISC -> 4458 * this verifier states are not equivalent, 4459 * return false to continue verification of this path 4460 */ 4461 return false; 4462 if (i % BPF_REG_SIZE) 4463 continue; 4464 if (old->stack[spi].slot_type[0] != STACK_SPILL) 4465 continue; 4466 if (!regsafe(&old->stack[spi].spilled_ptr, 4467 &cur->stack[spi].spilled_ptr, 4468 idmap)) 4469 /* when explored and current stack slot are both storing 4470 * spilled registers, check that stored pointers types 4471 * are the same as well. 4472 * Ex: explored safe path could have stored 4473 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 4474 * but current path has stored: 4475 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 4476 * such verifier states are not equivalent. 4477 * return false to continue verification of this path 4478 */ 4479 return false; 4480 } 4481 return true; 4482 } 4483 4484 /* compare two verifier states 4485 * 4486 * all states stored in state_list are known to be valid, since 4487 * verifier reached 'bpf_exit' instruction through them 4488 * 4489 * this function is called when verifier exploring different branches of 4490 * execution popped from the state stack. If it sees an old state that has 4491 * more strict register state and more strict stack state then this execution 4492 * branch doesn't need to be explored further, since verifier already 4493 * concluded that more strict state leads to valid finish. 4494 * 4495 * Therefore two states are equivalent if register state is more conservative 4496 * and explored stack state is more conservative than the current one. 4497 * Example: 4498 * explored current 4499 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 4500 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 4501 * 4502 * In other words if current stack state (one being explored) has more 4503 * valid slots than old one that already passed validation, it means 4504 * the verifier can stop exploring and conclude that current state is valid too 4505 * 4506 * Similarly with registers. If explored state has register type as invalid 4507 * whereas register type in current state is meaningful, it means that 4508 * the current state will reach 'bpf_exit' instruction safely 4509 */ 4510 static bool func_states_equal(struct bpf_func_state *old, 4511 struct bpf_func_state *cur) 4512 { 4513 struct idpair *idmap; 4514 bool ret = false; 4515 int i; 4516 4517 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 4518 /* If we failed to allocate the idmap, just say it's not safe */ 4519 if (!idmap) 4520 return false; 4521 4522 for (i = 0; i < MAX_BPF_REG; i++) { 4523 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 4524 goto out_free; 4525 } 4526 4527 if (!stacksafe(old, cur, idmap)) 4528 goto out_free; 4529 ret = true; 4530 out_free: 4531 kfree(idmap); 4532 return ret; 4533 } 4534 4535 static bool states_equal(struct bpf_verifier_env *env, 4536 struct bpf_verifier_state *old, 4537 struct bpf_verifier_state *cur) 4538 { 4539 int i; 4540 4541 if (old->curframe != cur->curframe) 4542 return false; 4543 4544 /* for states to be equal callsites have to be the same 4545 * and all frame states need to be equivalent 4546 */ 4547 for (i = 0; i <= old->curframe; i++) { 4548 if (old->frame[i]->callsite != cur->frame[i]->callsite) 4549 return false; 4550 if (!func_states_equal(old->frame[i], cur->frame[i])) 4551 return false; 4552 } 4553 return true; 4554 } 4555 4556 /* A write screens off any subsequent reads; but write marks come from the 4557 * straight-line code between a state and its parent. When we arrive at an 4558 * equivalent state (jump target or such) we didn't arrive by the straight-line 4559 * code, so read marks in the state must propagate to the parent regardless 4560 * of the state's write marks. That's what 'parent == state->parent' comparison 4561 * in mark_reg_read() is for. 4562 */ 4563 static int propagate_liveness(struct bpf_verifier_env *env, 4564 const struct bpf_verifier_state *vstate, 4565 struct bpf_verifier_state *vparent) 4566 { 4567 int i, frame, err = 0; 4568 struct bpf_func_state *state, *parent; 4569 4570 if (vparent->curframe != vstate->curframe) { 4571 WARN(1, "propagate_live: parent frame %d current frame %d\n", 4572 vparent->curframe, vstate->curframe); 4573 return -EFAULT; 4574 } 4575 /* Propagate read liveness of registers... */ 4576 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 4577 /* We don't need to worry about FP liveness because it's read-only */ 4578 for (i = 0; i < BPF_REG_FP; i++) { 4579 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 4580 continue; 4581 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 4582 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i], 4583 &vparent->frame[vstate->curframe]->regs[i]); 4584 if (err) 4585 return err; 4586 } 4587 } 4588 4589 /* ... and stack slots */ 4590 for (frame = 0; frame <= vstate->curframe; frame++) { 4591 state = vstate->frame[frame]; 4592 parent = vparent->frame[frame]; 4593 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 4594 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 4595 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 4596 continue; 4597 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 4598 mark_reg_read(env, &state->stack[i].spilled_ptr, 4599 &parent->stack[i].spilled_ptr); 4600 } 4601 } 4602 return err; 4603 } 4604 4605 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 4606 { 4607 struct bpf_verifier_state_list *new_sl; 4608 struct bpf_verifier_state_list *sl; 4609 struct bpf_verifier_state *cur = env->cur_state, *new; 4610 int i, j, err; 4611 4612 sl = env->explored_states[insn_idx]; 4613 if (!sl) 4614 /* this 'insn_idx' instruction wasn't marked, so we will not 4615 * be doing state search here 4616 */ 4617 return 0; 4618 4619 while (sl != STATE_LIST_MARK) { 4620 if (states_equal(env, &sl->state, cur)) { 4621 /* reached equivalent register/stack state, 4622 * prune the search. 4623 * Registers read by the continuation are read by us. 4624 * If we have any write marks in env->cur_state, they 4625 * will prevent corresponding reads in the continuation 4626 * from reaching our parent (an explored_state). Our 4627 * own state will get the read marks recorded, but 4628 * they'll be immediately forgotten as we're pruning 4629 * this state and will pop a new one. 4630 */ 4631 err = propagate_liveness(env, &sl->state, cur); 4632 if (err) 4633 return err; 4634 return 1; 4635 } 4636 sl = sl->next; 4637 } 4638 4639 /* there were no equivalent states, remember current one. 4640 * technically the current state is not proven to be safe yet, 4641 * but it will either reach outer most bpf_exit (which means it's safe) 4642 * or it will be rejected. Since there are no loops, we won't be 4643 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 4644 * again on the way to bpf_exit 4645 */ 4646 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 4647 if (!new_sl) 4648 return -ENOMEM; 4649 4650 /* add new state to the head of linked list */ 4651 new = &new_sl->state; 4652 err = copy_verifier_state(new, cur); 4653 if (err) { 4654 free_verifier_state(new, false); 4655 kfree(new_sl); 4656 return err; 4657 } 4658 new_sl->next = env->explored_states[insn_idx]; 4659 env->explored_states[insn_idx] = new_sl; 4660 /* connect new state to parentage chain */ 4661 for (i = 0; i < BPF_REG_FP; i++) 4662 cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i]; 4663 /* clear write marks in current state: the writes we did are not writes 4664 * our child did, so they don't screen off its reads from us. 4665 * (There are no read marks in current state, because reads always mark 4666 * their parent and current state never has children yet. Only 4667 * explored_states can get read marks.) 4668 */ 4669 for (i = 0; i < BPF_REG_FP; i++) 4670 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 4671 4672 /* all stack frames are accessible from callee, clear them all */ 4673 for (j = 0; j <= cur->curframe; j++) { 4674 struct bpf_func_state *frame = cur->frame[j]; 4675 struct bpf_func_state *newframe = new->frame[j]; 4676 4677 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 4678 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 4679 frame->stack[i].spilled_ptr.parent = 4680 &newframe->stack[i].spilled_ptr; 4681 } 4682 } 4683 return 0; 4684 } 4685 4686 static int do_check(struct bpf_verifier_env *env) 4687 { 4688 struct bpf_verifier_state *state; 4689 struct bpf_insn *insns = env->prog->insnsi; 4690 struct bpf_reg_state *regs; 4691 int insn_cnt = env->prog->len, i; 4692 int insn_idx, prev_insn_idx = 0; 4693 int insn_processed = 0; 4694 bool do_print_state = false; 4695 4696 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 4697 if (!state) 4698 return -ENOMEM; 4699 state->curframe = 0; 4700 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 4701 if (!state->frame[0]) { 4702 kfree(state); 4703 return -ENOMEM; 4704 } 4705 env->cur_state = state; 4706 init_func_state(env, state->frame[0], 4707 BPF_MAIN_FUNC /* callsite */, 4708 0 /* frameno */, 4709 0 /* subprogno, zero == main subprog */); 4710 insn_idx = 0; 4711 for (;;) { 4712 struct bpf_insn *insn; 4713 u8 class; 4714 int err; 4715 4716 if (insn_idx >= insn_cnt) { 4717 verbose(env, "invalid insn idx %d insn_cnt %d\n", 4718 insn_idx, insn_cnt); 4719 return -EFAULT; 4720 } 4721 4722 insn = &insns[insn_idx]; 4723 class = BPF_CLASS(insn->code); 4724 4725 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 4726 verbose(env, 4727 "BPF program is too large. Processed %d insn\n", 4728 insn_processed); 4729 return -E2BIG; 4730 } 4731 4732 err = is_state_visited(env, insn_idx); 4733 if (err < 0) 4734 return err; 4735 if (err == 1) { 4736 /* found equivalent state, can prune the search */ 4737 if (env->log.level) { 4738 if (do_print_state) 4739 verbose(env, "\nfrom %d to %d: safe\n", 4740 prev_insn_idx, insn_idx); 4741 else 4742 verbose(env, "%d: safe\n", insn_idx); 4743 } 4744 goto process_bpf_exit; 4745 } 4746 4747 if (need_resched()) 4748 cond_resched(); 4749 4750 if (env->log.level > 1 || (env->log.level && do_print_state)) { 4751 if (env->log.level > 1) 4752 verbose(env, "%d:", insn_idx); 4753 else 4754 verbose(env, "\nfrom %d to %d:", 4755 prev_insn_idx, insn_idx); 4756 print_verifier_state(env, state->frame[state->curframe]); 4757 do_print_state = false; 4758 } 4759 4760 if (env->log.level) { 4761 const struct bpf_insn_cbs cbs = { 4762 .cb_print = verbose, 4763 .private_data = env, 4764 }; 4765 4766 verbose(env, "%d: ", insn_idx); 4767 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 4768 } 4769 4770 if (bpf_prog_is_dev_bound(env->prog->aux)) { 4771 err = bpf_prog_offload_verify_insn(env, insn_idx, 4772 prev_insn_idx); 4773 if (err) 4774 return err; 4775 } 4776 4777 regs = cur_regs(env); 4778 env->insn_aux_data[insn_idx].seen = true; 4779 if (class == BPF_ALU || class == BPF_ALU64) { 4780 err = check_alu_op(env, insn); 4781 if (err) 4782 return err; 4783 4784 } else if (class == BPF_LDX) { 4785 enum bpf_reg_type *prev_src_type, src_reg_type; 4786 4787 /* check for reserved fields is already done */ 4788 4789 /* check src operand */ 4790 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4791 if (err) 4792 return err; 4793 4794 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4795 if (err) 4796 return err; 4797 4798 src_reg_type = regs[insn->src_reg].type; 4799 4800 /* check that memory (src_reg + off) is readable, 4801 * the state of dst_reg will be updated by this func 4802 */ 4803 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 4804 BPF_SIZE(insn->code), BPF_READ, 4805 insn->dst_reg, false); 4806 if (err) 4807 return err; 4808 4809 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 4810 4811 if (*prev_src_type == NOT_INIT) { 4812 /* saw a valid insn 4813 * dst_reg = *(u32 *)(src_reg + off) 4814 * save type to validate intersecting paths 4815 */ 4816 *prev_src_type = src_reg_type; 4817 4818 } else if (src_reg_type != *prev_src_type && 4819 (src_reg_type == PTR_TO_CTX || 4820 *prev_src_type == PTR_TO_CTX)) { 4821 /* ABuser program is trying to use the same insn 4822 * dst_reg = *(u32*) (src_reg + off) 4823 * with different pointer types: 4824 * src_reg == ctx in one branch and 4825 * src_reg == stack|map in some other branch. 4826 * Reject it. 4827 */ 4828 verbose(env, "same insn cannot be used with different pointers\n"); 4829 return -EINVAL; 4830 } 4831 4832 } else if (class == BPF_STX) { 4833 enum bpf_reg_type *prev_dst_type, dst_reg_type; 4834 4835 if (BPF_MODE(insn->code) == BPF_XADD) { 4836 err = check_xadd(env, insn_idx, insn); 4837 if (err) 4838 return err; 4839 insn_idx++; 4840 continue; 4841 } 4842 4843 /* check src1 operand */ 4844 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4845 if (err) 4846 return err; 4847 /* check src2 operand */ 4848 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4849 if (err) 4850 return err; 4851 4852 dst_reg_type = regs[insn->dst_reg].type; 4853 4854 /* check that memory (dst_reg + off) is writeable */ 4855 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4856 BPF_SIZE(insn->code), BPF_WRITE, 4857 insn->src_reg, false); 4858 if (err) 4859 return err; 4860 4861 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 4862 4863 if (*prev_dst_type == NOT_INIT) { 4864 *prev_dst_type = dst_reg_type; 4865 } else if (dst_reg_type != *prev_dst_type && 4866 (dst_reg_type == PTR_TO_CTX || 4867 *prev_dst_type == PTR_TO_CTX)) { 4868 verbose(env, "same insn cannot be used with different pointers\n"); 4869 return -EINVAL; 4870 } 4871 4872 } else if (class == BPF_ST) { 4873 if (BPF_MODE(insn->code) != BPF_MEM || 4874 insn->src_reg != BPF_REG_0) { 4875 verbose(env, "BPF_ST uses reserved fields\n"); 4876 return -EINVAL; 4877 } 4878 /* check src operand */ 4879 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4880 if (err) 4881 return err; 4882 4883 if (is_ctx_reg(env, insn->dst_reg)) { 4884 verbose(env, "BPF_ST stores into R%d context is not allowed\n", 4885 insn->dst_reg); 4886 return -EACCES; 4887 } 4888 4889 /* check that memory (dst_reg + off) is writeable */ 4890 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4891 BPF_SIZE(insn->code), BPF_WRITE, 4892 -1, false); 4893 if (err) 4894 return err; 4895 4896 } else if (class == BPF_JMP) { 4897 u8 opcode = BPF_OP(insn->code); 4898 4899 if (opcode == BPF_CALL) { 4900 if (BPF_SRC(insn->code) != BPF_K || 4901 insn->off != 0 || 4902 (insn->src_reg != BPF_REG_0 && 4903 insn->src_reg != BPF_PSEUDO_CALL) || 4904 insn->dst_reg != BPF_REG_0) { 4905 verbose(env, "BPF_CALL uses reserved fields\n"); 4906 return -EINVAL; 4907 } 4908 4909 if (insn->src_reg == BPF_PSEUDO_CALL) 4910 err = check_func_call(env, insn, &insn_idx); 4911 else 4912 err = check_helper_call(env, insn->imm, insn_idx); 4913 if (err) 4914 return err; 4915 4916 } else if (opcode == BPF_JA) { 4917 if (BPF_SRC(insn->code) != BPF_K || 4918 insn->imm != 0 || 4919 insn->src_reg != BPF_REG_0 || 4920 insn->dst_reg != BPF_REG_0) { 4921 verbose(env, "BPF_JA uses reserved fields\n"); 4922 return -EINVAL; 4923 } 4924 4925 insn_idx += insn->off + 1; 4926 continue; 4927 4928 } else if (opcode == BPF_EXIT) { 4929 if (BPF_SRC(insn->code) != BPF_K || 4930 insn->imm != 0 || 4931 insn->src_reg != BPF_REG_0 || 4932 insn->dst_reg != BPF_REG_0) { 4933 verbose(env, "BPF_EXIT uses reserved fields\n"); 4934 return -EINVAL; 4935 } 4936 4937 if (state->curframe) { 4938 /* exit from nested function */ 4939 prev_insn_idx = insn_idx; 4940 err = prepare_func_exit(env, &insn_idx); 4941 if (err) 4942 return err; 4943 do_print_state = true; 4944 continue; 4945 } 4946 4947 /* eBPF calling convetion is such that R0 is used 4948 * to return the value from eBPF program. 4949 * Make sure that it's readable at this time 4950 * of bpf_exit, which means that program wrote 4951 * something into it earlier 4952 */ 4953 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4954 if (err) 4955 return err; 4956 4957 if (is_pointer_value(env, BPF_REG_0)) { 4958 verbose(env, "R0 leaks addr as return value\n"); 4959 return -EACCES; 4960 } 4961 4962 err = check_return_code(env); 4963 if (err) 4964 return err; 4965 process_bpf_exit: 4966 err = pop_stack(env, &prev_insn_idx, &insn_idx); 4967 if (err < 0) { 4968 if (err != -ENOENT) 4969 return err; 4970 break; 4971 } else { 4972 do_print_state = true; 4973 continue; 4974 } 4975 } else { 4976 err = check_cond_jmp_op(env, insn, &insn_idx); 4977 if (err) 4978 return err; 4979 } 4980 } else if (class == BPF_LD) { 4981 u8 mode = BPF_MODE(insn->code); 4982 4983 if (mode == BPF_ABS || mode == BPF_IND) { 4984 err = check_ld_abs(env, insn); 4985 if (err) 4986 return err; 4987 4988 } else if (mode == BPF_IMM) { 4989 err = check_ld_imm(env, insn); 4990 if (err) 4991 return err; 4992 4993 insn_idx++; 4994 env->insn_aux_data[insn_idx].seen = true; 4995 } else { 4996 verbose(env, "invalid BPF_LD mode\n"); 4997 return -EINVAL; 4998 } 4999 } else { 5000 verbose(env, "unknown insn class %d\n", class); 5001 return -EINVAL; 5002 } 5003 5004 insn_idx++; 5005 } 5006 5007 verbose(env, "processed %d insns (limit %d), stack depth ", 5008 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 5009 for (i = 0; i < env->subprog_cnt; i++) { 5010 u32 depth = env->subprog_info[i].stack_depth; 5011 5012 verbose(env, "%d", depth); 5013 if (i + 1 < env->subprog_cnt) 5014 verbose(env, "+"); 5015 } 5016 verbose(env, "\n"); 5017 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 5018 return 0; 5019 } 5020 5021 static int check_map_prealloc(struct bpf_map *map) 5022 { 5023 return (map->map_type != BPF_MAP_TYPE_HASH && 5024 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 5025 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 5026 !(map->map_flags & BPF_F_NO_PREALLOC); 5027 } 5028 5029 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 5030 struct bpf_map *map, 5031 struct bpf_prog *prog) 5032 5033 { 5034 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 5035 * preallocated hash maps, since doing memory allocation 5036 * in overflow_handler can crash depending on where nmi got 5037 * triggered. 5038 */ 5039 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 5040 if (!check_map_prealloc(map)) { 5041 verbose(env, "perf_event programs can only use preallocated hash map\n"); 5042 return -EINVAL; 5043 } 5044 if (map->inner_map_meta && 5045 !check_map_prealloc(map->inner_map_meta)) { 5046 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 5047 return -EINVAL; 5048 } 5049 } 5050 5051 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 5052 !bpf_offload_prog_map_match(prog, map)) { 5053 verbose(env, "offload device mismatch between prog and map\n"); 5054 return -EINVAL; 5055 } 5056 5057 return 0; 5058 } 5059 5060 /* look for pseudo eBPF instructions that access map FDs and 5061 * replace them with actual map pointers 5062 */ 5063 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 5064 { 5065 struct bpf_insn *insn = env->prog->insnsi; 5066 int insn_cnt = env->prog->len; 5067 int i, j, err; 5068 5069 err = bpf_prog_calc_tag(env->prog); 5070 if (err) 5071 return err; 5072 5073 for (i = 0; i < insn_cnt; i++, insn++) { 5074 if (BPF_CLASS(insn->code) == BPF_LDX && 5075 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 5076 verbose(env, "BPF_LDX uses reserved fields\n"); 5077 return -EINVAL; 5078 } 5079 5080 if (BPF_CLASS(insn->code) == BPF_STX && 5081 ((BPF_MODE(insn->code) != BPF_MEM && 5082 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 5083 verbose(env, "BPF_STX uses reserved fields\n"); 5084 return -EINVAL; 5085 } 5086 5087 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 5088 struct bpf_map *map; 5089 struct fd f; 5090 5091 if (i == insn_cnt - 1 || insn[1].code != 0 || 5092 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 5093 insn[1].off != 0) { 5094 verbose(env, "invalid bpf_ld_imm64 insn\n"); 5095 return -EINVAL; 5096 } 5097 5098 if (insn->src_reg == 0) 5099 /* valid generic load 64-bit imm */ 5100 goto next_insn; 5101 5102 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 5103 verbose(env, 5104 "unrecognized bpf_ld_imm64 insn\n"); 5105 return -EINVAL; 5106 } 5107 5108 f = fdget(insn->imm); 5109 map = __bpf_map_get(f); 5110 if (IS_ERR(map)) { 5111 verbose(env, "fd %d is not pointing to valid bpf_map\n", 5112 insn->imm); 5113 return PTR_ERR(map); 5114 } 5115 5116 err = check_map_prog_compatibility(env, map, env->prog); 5117 if (err) { 5118 fdput(f); 5119 return err; 5120 } 5121 5122 /* store map pointer inside BPF_LD_IMM64 instruction */ 5123 insn[0].imm = (u32) (unsigned long) map; 5124 insn[1].imm = ((u64) (unsigned long) map) >> 32; 5125 5126 /* check whether we recorded this map already */ 5127 for (j = 0; j < env->used_map_cnt; j++) 5128 if (env->used_maps[j] == map) { 5129 fdput(f); 5130 goto next_insn; 5131 } 5132 5133 if (env->used_map_cnt >= MAX_USED_MAPS) { 5134 fdput(f); 5135 return -E2BIG; 5136 } 5137 5138 /* hold the map. If the program is rejected by verifier, 5139 * the map will be released by release_maps() or it 5140 * will be used by the valid program until it's unloaded 5141 * and all maps are released in free_used_maps() 5142 */ 5143 map = bpf_map_inc(map, false); 5144 if (IS_ERR(map)) { 5145 fdput(f); 5146 return PTR_ERR(map); 5147 } 5148 env->used_maps[env->used_map_cnt++] = map; 5149 5150 if (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE && 5151 bpf_cgroup_storage_assign(env->prog, map)) { 5152 verbose(env, 5153 "only one cgroup storage is allowed\n"); 5154 fdput(f); 5155 return -EBUSY; 5156 } 5157 5158 fdput(f); 5159 next_insn: 5160 insn++; 5161 i++; 5162 continue; 5163 } 5164 5165 /* Basic sanity check before we invest more work here. */ 5166 if (!bpf_opcode_in_insntable(insn->code)) { 5167 verbose(env, "unknown opcode %02x\n", insn->code); 5168 return -EINVAL; 5169 } 5170 } 5171 5172 /* now all pseudo BPF_LD_IMM64 instructions load valid 5173 * 'struct bpf_map *' into a register instead of user map_fd. 5174 * These pointers will be used later by verifier to validate map access. 5175 */ 5176 return 0; 5177 } 5178 5179 /* drop refcnt of maps used by the rejected program */ 5180 static void release_maps(struct bpf_verifier_env *env) 5181 { 5182 int i; 5183 5184 if (env->prog->aux->cgroup_storage) 5185 bpf_cgroup_storage_release(env->prog, 5186 env->prog->aux->cgroup_storage); 5187 5188 for (i = 0; i < env->used_map_cnt; i++) 5189 bpf_map_put(env->used_maps[i]); 5190 } 5191 5192 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 5193 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 5194 { 5195 struct bpf_insn *insn = env->prog->insnsi; 5196 int insn_cnt = env->prog->len; 5197 int i; 5198 5199 for (i = 0; i < insn_cnt; i++, insn++) 5200 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 5201 insn->src_reg = 0; 5202 } 5203 5204 /* single env->prog->insni[off] instruction was replaced with the range 5205 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 5206 * [0, off) and [off, end) to new locations, so the patched range stays zero 5207 */ 5208 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 5209 u32 off, u32 cnt) 5210 { 5211 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 5212 int i; 5213 5214 if (cnt == 1) 5215 return 0; 5216 new_data = vzalloc(array_size(prog_len, 5217 sizeof(struct bpf_insn_aux_data))); 5218 if (!new_data) 5219 return -ENOMEM; 5220 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 5221 memcpy(new_data + off + cnt - 1, old_data + off, 5222 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 5223 for (i = off; i < off + cnt - 1; i++) 5224 new_data[i].seen = true; 5225 env->insn_aux_data = new_data; 5226 vfree(old_data); 5227 return 0; 5228 } 5229 5230 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 5231 { 5232 int i; 5233 5234 if (len == 1) 5235 return; 5236 /* NOTE: fake 'exit' subprog should be updated as well. */ 5237 for (i = 0; i <= env->subprog_cnt; i++) { 5238 if (env->subprog_info[i].start < off) 5239 continue; 5240 env->subprog_info[i].start += len - 1; 5241 } 5242 } 5243 5244 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 5245 const struct bpf_insn *patch, u32 len) 5246 { 5247 struct bpf_prog *new_prog; 5248 5249 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 5250 if (!new_prog) 5251 return NULL; 5252 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 5253 return NULL; 5254 adjust_subprog_starts(env, off, len); 5255 return new_prog; 5256 } 5257 5258 /* The verifier does more data flow analysis than llvm and will not 5259 * explore branches that are dead at run time. Malicious programs can 5260 * have dead code too. Therefore replace all dead at-run-time code 5261 * with 'ja -1'. 5262 * 5263 * Just nops are not optimal, e.g. if they would sit at the end of the 5264 * program and through another bug we would manage to jump there, then 5265 * we'd execute beyond program memory otherwise. Returning exception 5266 * code also wouldn't work since we can have subprogs where the dead 5267 * code could be located. 5268 */ 5269 static void sanitize_dead_code(struct bpf_verifier_env *env) 5270 { 5271 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 5272 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 5273 struct bpf_insn *insn = env->prog->insnsi; 5274 const int insn_cnt = env->prog->len; 5275 int i; 5276 5277 for (i = 0; i < insn_cnt; i++) { 5278 if (aux_data[i].seen) 5279 continue; 5280 memcpy(insn + i, &trap, sizeof(trap)); 5281 } 5282 } 5283 5284 /* convert load instructions that access fields of 'struct __sk_buff' 5285 * into sequence of instructions that access fields of 'struct sk_buff' 5286 */ 5287 static int convert_ctx_accesses(struct bpf_verifier_env *env) 5288 { 5289 const struct bpf_verifier_ops *ops = env->ops; 5290 int i, cnt, size, ctx_field_size, delta = 0; 5291 const int insn_cnt = env->prog->len; 5292 struct bpf_insn insn_buf[16], *insn; 5293 struct bpf_prog *new_prog; 5294 enum bpf_access_type type; 5295 bool is_narrower_load; 5296 u32 target_size; 5297 5298 if (ops->gen_prologue) { 5299 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 5300 env->prog); 5301 if (cnt >= ARRAY_SIZE(insn_buf)) { 5302 verbose(env, "bpf verifier is misconfigured\n"); 5303 return -EINVAL; 5304 } else if (cnt) { 5305 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 5306 if (!new_prog) 5307 return -ENOMEM; 5308 5309 env->prog = new_prog; 5310 delta += cnt - 1; 5311 } 5312 } 5313 5314 if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux)) 5315 return 0; 5316 5317 insn = env->prog->insnsi + delta; 5318 5319 for (i = 0; i < insn_cnt; i++, insn++) { 5320 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 5321 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 5322 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 5323 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 5324 type = BPF_READ; 5325 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 5326 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 5327 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 5328 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 5329 type = BPF_WRITE; 5330 else 5331 continue; 5332 5333 if (type == BPF_WRITE && 5334 env->insn_aux_data[i + delta].sanitize_stack_off) { 5335 struct bpf_insn patch[] = { 5336 /* Sanitize suspicious stack slot with zero. 5337 * There are no memory dependencies for this store, 5338 * since it's only using frame pointer and immediate 5339 * constant of zero 5340 */ 5341 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 5342 env->insn_aux_data[i + delta].sanitize_stack_off, 5343 0), 5344 /* the original STX instruction will immediately 5345 * overwrite the same stack slot with appropriate value 5346 */ 5347 *insn, 5348 }; 5349 5350 cnt = ARRAY_SIZE(patch); 5351 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 5352 if (!new_prog) 5353 return -ENOMEM; 5354 5355 delta += cnt - 1; 5356 env->prog = new_prog; 5357 insn = new_prog->insnsi + i + delta; 5358 continue; 5359 } 5360 5361 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 5362 continue; 5363 5364 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 5365 size = BPF_LDST_BYTES(insn); 5366 5367 /* If the read access is a narrower load of the field, 5368 * convert to a 4/8-byte load, to minimum program type specific 5369 * convert_ctx_access changes. If conversion is successful, 5370 * we will apply proper mask to the result. 5371 */ 5372 is_narrower_load = size < ctx_field_size; 5373 if (is_narrower_load) { 5374 u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 5375 u32 off = insn->off; 5376 u8 size_code; 5377 5378 if (type == BPF_WRITE) { 5379 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 5380 return -EINVAL; 5381 } 5382 5383 size_code = BPF_H; 5384 if (ctx_field_size == 4) 5385 size_code = BPF_W; 5386 else if (ctx_field_size == 8) 5387 size_code = BPF_DW; 5388 5389 insn->off = off & ~(size_default - 1); 5390 insn->code = BPF_LDX | BPF_MEM | size_code; 5391 } 5392 5393 target_size = 0; 5394 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 5395 &target_size); 5396 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 5397 (ctx_field_size && !target_size)) { 5398 verbose(env, "bpf verifier is misconfigured\n"); 5399 return -EINVAL; 5400 } 5401 5402 if (is_narrower_load && size < target_size) { 5403 if (ctx_field_size <= 4) 5404 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 5405 (1 << size * 8) - 1); 5406 else 5407 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 5408 (1 << size * 8) - 1); 5409 } 5410 5411 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5412 if (!new_prog) 5413 return -ENOMEM; 5414 5415 delta += cnt - 1; 5416 5417 /* keep walking new program and skip insns we just inserted */ 5418 env->prog = new_prog; 5419 insn = new_prog->insnsi + i + delta; 5420 } 5421 5422 return 0; 5423 } 5424 5425 static int jit_subprogs(struct bpf_verifier_env *env) 5426 { 5427 struct bpf_prog *prog = env->prog, **func, *tmp; 5428 int i, j, subprog_start, subprog_end = 0, len, subprog; 5429 struct bpf_insn *insn; 5430 void *old_bpf_func; 5431 int err = -ENOMEM; 5432 5433 if (env->subprog_cnt <= 1) 5434 return 0; 5435 5436 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5437 if (insn->code != (BPF_JMP | BPF_CALL) || 5438 insn->src_reg != BPF_PSEUDO_CALL) 5439 continue; 5440 /* Upon error here we cannot fall back to interpreter but 5441 * need a hard reject of the program. Thus -EFAULT is 5442 * propagated in any case. 5443 */ 5444 subprog = find_subprog(env, i + insn->imm + 1); 5445 if (subprog < 0) { 5446 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5447 i + insn->imm + 1); 5448 return -EFAULT; 5449 } 5450 /* temporarily remember subprog id inside insn instead of 5451 * aux_data, since next loop will split up all insns into funcs 5452 */ 5453 insn->off = subprog; 5454 /* remember original imm in case JIT fails and fallback 5455 * to interpreter will be needed 5456 */ 5457 env->insn_aux_data[i].call_imm = insn->imm; 5458 /* point imm to __bpf_call_base+1 from JITs point of view */ 5459 insn->imm = 1; 5460 } 5461 5462 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 5463 if (!func) 5464 goto out_undo_insn; 5465 5466 for (i = 0; i < env->subprog_cnt; i++) { 5467 subprog_start = subprog_end; 5468 subprog_end = env->subprog_info[i + 1].start; 5469 5470 len = subprog_end - subprog_start; 5471 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 5472 if (!func[i]) 5473 goto out_free; 5474 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 5475 len * sizeof(struct bpf_insn)); 5476 func[i]->type = prog->type; 5477 func[i]->len = len; 5478 if (bpf_prog_calc_tag(func[i])) 5479 goto out_free; 5480 func[i]->is_func = 1; 5481 /* Use bpf_prog_F_tag to indicate functions in stack traces. 5482 * Long term would need debug info to populate names 5483 */ 5484 func[i]->aux->name[0] = 'F'; 5485 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 5486 func[i]->jit_requested = 1; 5487 func[i] = bpf_int_jit_compile(func[i]); 5488 if (!func[i]->jited) { 5489 err = -ENOTSUPP; 5490 goto out_free; 5491 } 5492 cond_resched(); 5493 } 5494 /* at this point all bpf functions were successfully JITed 5495 * now populate all bpf_calls with correct addresses and 5496 * run last pass of JIT 5497 */ 5498 for (i = 0; i < env->subprog_cnt; i++) { 5499 insn = func[i]->insnsi; 5500 for (j = 0; j < func[i]->len; j++, insn++) { 5501 if (insn->code != (BPF_JMP | BPF_CALL) || 5502 insn->src_reg != BPF_PSEUDO_CALL) 5503 continue; 5504 subprog = insn->off; 5505 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5506 func[subprog]->bpf_func - 5507 __bpf_call_base; 5508 } 5509 5510 /* we use the aux data to keep a list of the start addresses 5511 * of the JITed images for each function in the program 5512 * 5513 * for some architectures, such as powerpc64, the imm field 5514 * might not be large enough to hold the offset of the start 5515 * address of the callee's JITed image from __bpf_call_base 5516 * 5517 * in such cases, we can lookup the start address of a callee 5518 * by using its subprog id, available from the off field of 5519 * the call instruction, as an index for this list 5520 */ 5521 func[i]->aux->func = func; 5522 func[i]->aux->func_cnt = env->subprog_cnt; 5523 } 5524 for (i = 0; i < env->subprog_cnt; i++) { 5525 old_bpf_func = func[i]->bpf_func; 5526 tmp = bpf_int_jit_compile(func[i]); 5527 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 5528 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 5529 err = -ENOTSUPP; 5530 goto out_free; 5531 } 5532 cond_resched(); 5533 } 5534 5535 /* finally lock prog and jit images for all functions and 5536 * populate kallsysm 5537 */ 5538 for (i = 0; i < env->subprog_cnt; i++) { 5539 bpf_prog_lock_ro(func[i]); 5540 bpf_prog_kallsyms_add(func[i]); 5541 } 5542 5543 /* Last step: make now unused interpreter insns from main 5544 * prog consistent for later dump requests, so they can 5545 * later look the same as if they were interpreted only. 5546 */ 5547 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5548 if (insn->code != (BPF_JMP | BPF_CALL) || 5549 insn->src_reg != BPF_PSEUDO_CALL) 5550 continue; 5551 insn->off = env->insn_aux_data[i].call_imm; 5552 subprog = find_subprog(env, i + insn->off + 1); 5553 insn->imm = subprog; 5554 } 5555 5556 prog->jited = 1; 5557 prog->bpf_func = func[0]->bpf_func; 5558 prog->aux->func = func; 5559 prog->aux->func_cnt = env->subprog_cnt; 5560 return 0; 5561 out_free: 5562 for (i = 0; i < env->subprog_cnt; i++) 5563 if (func[i]) 5564 bpf_jit_free(func[i]); 5565 kfree(func); 5566 out_undo_insn: 5567 /* cleanup main prog to be interpreted */ 5568 prog->jit_requested = 0; 5569 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5570 if (insn->code != (BPF_JMP | BPF_CALL) || 5571 insn->src_reg != BPF_PSEUDO_CALL) 5572 continue; 5573 insn->off = 0; 5574 insn->imm = env->insn_aux_data[i].call_imm; 5575 } 5576 return err; 5577 } 5578 5579 static int fixup_call_args(struct bpf_verifier_env *env) 5580 { 5581 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5582 struct bpf_prog *prog = env->prog; 5583 struct bpf_insn *insn = prog->insnsi; 5584 int i, depth; 5585 #endif 5586 int err; 5587 5588 err = 0; 5589 if (env->prog->jit_requested) { 5590 err = jit_subprogs(env); 5591 if (err == 0) 5592 return 0; 5593 if (err == -EFAULT) 5594 return err; 5595 } 5596 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5597 for (i = 0; i < prog->len; i++, insn++) { 5598 if (insn->code != (BPF_JMP | BPF_CALL) || 5599 insn->src_reg != BPF_PSEUDO_CALL) 5600 continue; 5601 depth = get_callee_stack_depth(env, insn, i); 5602 if (depth < 0) 5603 return depth; 5604 bpf_patch_call_args(insn, depth); 5605 } 5606 err = 0; 5607 #endif 5608 return err; 5609 } 5610 5611 /* fixup insn->imm field of bpf_call instructions 5612 * and inline eligible helpers as explicit sequence of BPF instructions 5613 * 5614 * this function is called after eBPF program passed verification 5615 */ 5616 static int fixup_bpf_calls(struct bpf_verifier_env *env) 5617 { 5618 struct bpf_prog *prog = env->prog; 5619 struct bpf_insn *insn = prog->insnsi; 5620 const struct bpf_func_proto *fn; 5621 const int insn_cnt = prog->len; 5622 const struct bpf_map_ops *ops; 5623 struct bpf_insn_aux_data *aux; 5624 struct bpf_insn insn_buf[16]; 5625 struct bpf_prog *new_prog; 5626 struct bpf_map *map_ptr; 5627 int i, cnt, delta = 0; 5628 5629 for (i = 0; i < insn_cnt; i++, insn++) { 5630 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 5631 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5632 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 5633 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5634 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 5635 struct bpf_insn mask_and_div[] = { 5636 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5637 /* Rx div 0 -> 0 */ 5638 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 5639 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 5640 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 5641 *insn, 5642 }; 5643 struct bpf_insn mask_and_mod[] = { 5644 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5645 /* Rx mod 0 -> Rx */ 5646 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 5647 *insn, 5648 }; 5649 struct bpf_insn *patchlet; 5650 5651 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5652 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5653 patchlet = mask_and_div + (is64 ? 1 : 0); 5654 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 5655 } else { 5656 patchlet = mask_and_mod + (is64 ? 1 : 0); 5657 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 5658 } 5659 5660 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 5661 if (!new_prog) 5662 return -ENOMEM; 5663 5664 delta += cnt - 1; 5665 env->prog = prog = new_prog; 5666 insn = new_prog->insnsi + i + delta; 5667 continue; 5668 } 5669 5670 if (BPF_CLASS(insn->code) == BPF_LD && 5671 (BPF_MODE(insn->code) == BPF_ABS || 5672 BPF_MODE(insn->code) == BPF_IND)) { 5673 cnt = env->ops->gen_ld_abs(insn, insn_buf); 5674 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 5675 verbose(env, "bpf verifier is misconfigured\n"); 5676 return -EINVAL; 5677 } 5678 5679 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5680 if (!new_prog) 5681 return -ENOMEM; 5682 5683 delta += cnt - 1; 5684 env->prog = prog = new_prog; 5685 insn = new_prog->insnsi + i + delta; 5686 continue; 5687 } 5688 5689 if (insn->code != (BPF_JMP | BPF_CALL)) 5690 continue; 5691 if (insn->src_reg == BPF_PSEUDO_CALL) 5692 continue; 5693 5694 if (insn->imm == BPF_FUNC_get_route_realm) 5695 prog->dst_needed = 1; 5696 if (insn->imm == BPF_FUNC_get_prandom_u32) 5697 bpf_user_rnd_init_once(); 5698 if (insn->imm == BPF_FUNC_override_return) 5699 prog->kprobe_override = 1; 5700 if (insn->imm == BPF_FUNC_tail_call) { 5701 /* If we tail call into other programs, we 5702 * cannot make any assumptions since they can 5703 * be replaced dynamically during runtime in 5704 * the program array. 5705 */ 5706 prog->cb_access = 1; 5707 env->prog->aux->stack_depth = MAX_BPF_STACK; 5708 5709 /* mark bpf_tail_call as different opcode to avoid 5710 * conditional branch in the interpeter for every normal 5711 * call and to prevent accidental JITing by JIT compiler 5712 * that doesn't support bpf_tail_call yet 5713 */ 5714 insn->imm = 0; 5715 insn->code = BPF_JMP | BPF_TAIL_CALL; 5716 5717 aux = &env->insn_aux_data[i + delta]; 5718 if (!bpf_map_ptr_unpriv(aux)) 5719 continue; 5720 5721 /* instead of changing every JIT dealing with tail_call 5722 * emit two extra insns: 5723 * if (index >= max_entries) goto out; 5724 * index &= array->index_mask; 5725 * to avoid out-of-bounds cpu speculation 5726 */ 5727 if (bpf_map_ptr_poisoned(aux)) { 5728 verbose(env, "tail_call abusing map_ptr\n"); 5729 return -EINVAL; 5730 } 5731 5732 map_ptr = BPF_MAP_PTR(aux->map_state); 5733 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 5734 map_ptr->max_entries, 2); 5735 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 5736 container_of(map_ptr, 5737 struct bpf_array, 5738 map)->index_mask); 5739 insn_buf[2] = *insn; 5740 cnt = 3; 5741 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5742 if (!new_prog) 5743 return -ENOMEM; 5744 5745 delta += cnt - 1; 5746 env->prog = prog = new_prog; 5747 insn = new_prog->insnsi + i + delta; 5748 continue; 5749 } 5750 5751 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 5752 * and other inlining handlers are currently limited to 64 bit 5753 * only. 5754 */ 5755 if (prog->jit_requested && BITS_PER_LONG == 64 && 5756 (insn->imm == BPF_FUNC_map_lookup_elem || 5757 insn->imm == BPF_FUNC_map_update_elem || 5758 insn->imm == BPF_FUNC_map_delete_elem)) { 5759 aux = &env->insn_aux_data[i + delta]; 5760 if (bpf_map_ptr_poisoned(aux)) 5761 goto patch_call_imm; 5762 5763 map_ptr = BPF_MAP_PTR(aux->map_state); 5764 ops = map_ptr->ops; 5765 if (insn->imm == BPF_FUNC_map_lookup_elem && 5766 ops->map_gen_lookup) { 5767 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 5768 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 5769 verbose(env, "bpf verifier is misconfigured\n"); 5770 return -EINVAL; 5771 } 5772 5773 new_prog = bpf_patch_insn_data(env, i + delta, 5774 insn_buf, cnt); 5775 if (!new_prog) 5776 return -ENOMEM; 5777 5778 delta += cnt - 1; 5779 env->prog = prog = new_prog; 5780 insn = new_prog->insnsi + i + delta; 5781 continue; 5782 } 5783 5784 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 5785 (void *(*)(struct bpf_map *map, void *key))NULL)); 5786 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 5787 (int (*)(struct bpf_map *map, void *key))NULL)); 5788 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 5789 (int (*)(struct bpf_map *map, void *key, void *value, 5790 u64 flags))NULL)); 5791 switch (insn->imm) { 5792 case BPF_FUNC_map_lookup_elem: 5793 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 5794 __bpf_call_base; 5795 continue; 5796 case BPF_FUNC_map_update_elem: 5797 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 5798 __bpf_call_base; 5799 continue; 5800 case BPF_FUNC_map_delete_elem: 5801 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 5802 __bpf_call_base; 5803 continue; 5804 } 5805 5806 goto patch_call_imm; 5807 } 5808 5809 patch_call_imm: 5810 fn = env->ops->get_func_proto(insn->imm, env->prog); 5811 /* all functions that have prototype and verifier allowed 5812 * programs to call them, must be real in-kernel functions 5813 */ 5814 if (!fn->func) { 5815 verbose(env, 5816 "kernel subsystem misconfigured func %s#%d\n", 5817 func_id_name(insn->imm), insn->imm); 5818 return -EFAULT; 5819 } 5820 insn->imm = fn->func - __bpf_call_base; 5821 } 5822 5823 return 0; 5824 } 5825 5826 static void free_states(struct bpf_verifier_env *env) 5827 { 5828 struct bpf_verifier_state_list *sl, *sln; 5829 int i; 5830 5831 if (!env->explored_states) 5832 return; 5833 5834 for (i = 0; i < env->prog->len; i++) { 5835 sl = env->explored_states[i]; 5836 5837 if (sl) 5838 while (sl != STATE_LIST_MARK) { 5839 sln = sl->next; 5840 free_verifier_state(&sl->state, false); 5841 kfree(sl); 5842 sl = sln; 5843 } 5844 } 5845 5846 kfree(env->explored_states); 5847 } 5848 5849 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 5850 { 5851 struct bpf_verifier_env *env; 5852 struct bpf_verifier_log *log; 5853 int ret = -EINVAL; 5854 5855 /* no program is valid */ 5856 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 5857 return -EINVAL; 5858 5859 /* 'struct bpf_verifier_env' can be global, but since it's not small, 5860 * allocate/free it every time bpf_check() is called 5861 */ 5862 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 5863 if (!env) 5864 return -ENOMEM; 5865 log = &env->log; 5866 5867 env->insn_aux_data = 5868 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), 5869 (*prog)->len)); 5870 ret = -ENOMEM; 5871 if (!env->insn_aux_data) 5872 goto err_free_env; 5873 env->prog = *prog; 5874 env->ops = bpf_verifier_ops[env->prog->type]; 5875 5876 /* grab the mutex to protect few globals used by verifier */ 5877 mutex_lock(&bpf_verifier_lock); 5878 5879 if (attr->log_level || attr->log_buf || attr->log_size) { 5880 /* user requested verbose verifier output 5881 * and supplied buffer to store the verification trace 5882 */ 5883 log->level = attr->log_level; 5884 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 5885 log->len_total = attr->log_size; 5886 5887 ret = -EINVAL; 5888 /* log attributes have to be sane */ 5889 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 5890 !log->level || !log->ubuf) 5891 goto err_unlock; 5892 } 5893 5894 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 5895 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 5896 env->strict_alignment = true; 5897 5898 ret = replace_map_fd_with_map_ptr(env); 5899 if (ret < 0) 5900 goto skip_full_check; 5901 5902 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5903 ret = bpf_prog_offload_verifier_prep(env); 5904 if (ret) 5905 goto skip_full_check; 5906 } 5907 5908 env->explored_states = kcalloc(env->prog->len, 5909 sizeof(struct bpf_verifier_state_list *), 5910 GFP_USER); 5911 ret = -ENOMEM; 5912 if (!env->explored_states) 5913 goto skip_full_check; 5914 5915 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 5916 5917 ret = check_cfg(env); 5918 if (ret < 0) 5919 goto skip_full_check; 5920 5921 ret = do_check(env); 5922 if (env->cur_state) { 5923 free_verifier_state(env->cur_state, true); 5924 env->cur_state = NULL; 5925 } 5926 5927 skip_full_check: 5928 while (!pop_stack(env, NULL, NULL)); 5929 free_states(env); 5930 5931 if (ret == 0) 5932 sanitize_dead_code(env); 5933 5934 if (ret == 0) 5935 ret = check_max_stack_depth(env); 5936 5937 if (ret == 0) 5938 /* program is valid, convert *(u32*)(ctx + off) accesses */ 5939 ret = convert_ctx_accesses(env); 5940 5941 if (ret == 0) 5942 ret = fixup_bpf_calls(env); 5943 5944 if (ret == 0) 5945 ret = fixup_call_args(env); 5946 5947 if (log->level && bpf_verifier_log_full(log)) 5948 ret = -ENOSPC; 5949 if (log->level && !log->ubuf) { 5950 ret = -EFAULT; 5951 goto err_release_maps; 5952 } 5953 5954 if (ret == 0 && env->used_map_cnt) { 5955 /* if program passed verifier, update used_maps in bpf_prog_info */ 5956 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 5957 sizeof(env->used_maps[0]), 5958 GFP_KERNEL); 5959 5960 if (!env->prog->aux->used_maps) { 5961 ret = -ENOMEM; 5962 goto err_release_maps; 5963 } 5964 5965 memcpy(env->prog->aux->used_maps, env->used_maps, 5966 sizeof(env->used_maps[0]) * env->used_map_cnt); 5967 env->prog->aux->used_map_cnt = env->used_map_cnt; 5968 5969 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 5970 * bpf_ld_imm64 instructions 5971 */ 5972 convert_pseudo_ld_imm64(env); 5973 } 5974 5975 err_release_maps: 5976 if (!env->prog->aux->used_maps) 5977 /* if we didn't copy map pointers into bpf_prog_info, release 5978 * them now. Otherwise free_used_maps() will release them. 5979 */ 5980 release_maps(env); 5981 *prog = env->prog; 5982 err_unlock: 5983 mutex_unlock(&bpf_verifier_lock); 5984 vfree(env->insn_aux_data); 5985 err_free_env: 5986 kfree(env); 5987 return ret; 5988 } 5989