1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 25 #include "disasm.h" 26 27 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 28 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 29 [_id] = & _name ## _verifier_ops, 30 #define BPF_MAP_TYPE(_id, _ops) 31 #define BPF_LINK_TYPE(_id, _name) 32 #include <linux/bpf_types.h> 33 #undef BPF_PROG_TYPE 34 #undef BPF_MAP_TYPE 35 #undef BPF_LINK_TYPE 36 }; 37 38 /* bpf_check() is a static code analyzer that walks eBPF program 39 * instruction by instruction and updates register/stack state. 40 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 41 * 42 * The first pass is depth-first-search to check that the program is a DAG. 43 * It rejects the following programs: 44 * - larger than BPF_MAXINSNS insns 45 * - if loop is present (detected via back-edge) 46 * - unreachable insns exist (shouldn't be a forest. program = one function) 47 * - out of bounds or malformed jumps 48 * The second pass is all possible path descent from the 1st insn. 49 * Since it's analyzing all pathes through the program, the length of the 50 * analysis is limited to 64k insn, which may be hit even if total number of 51 * insn is less then 4K, but there are too many branches that change stack/regs. 52 * Number of 'branches to be analyzed' is limited to 1k 53 * 54 * On entry to each instruction, each register has a type, and the instruction 55 * changes the types of the registers depending on instruction semantics. 56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 57 * copied to R1. 58 * 59 * All registers are 64-bit. 60 * R0 - return register 61 * R1-R5 argument passing registers 62 * R6-R9 callee saved registers 63 * R10 - frame pointer read-only 64 * 65 * At the start of BPF program the register R1 contains a pointer to bpf_context 66 * and has type PTR_TO_CTX. 67 * 68 * Verifier tracks arithmetic operations on pointers in case: 69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 71 * 1st insn copies R10 (which has FRAME_PTR) type into R1 72 * and 2nd arithmetic instruction is pattern matched to recognize 73 * that it wants to construct a pointer to some element within stack. 74 * So after 2nd insn, the register R1 has type PTR_TO_STACK 75 * (and -20 constant is saved for further stack bounds checking). 76 * Meaning that this reg is a pointer to stack plus known immediate constant. 77 * 78 * Most of the time the registers have SCALAR_VALUE type, which 79 * means the register has some value, but it's not a valid pointer. 80 * (like pointer plus pointer becomes SCALAR_VALUE type) 81 * 82 * When verifier sees load or store instructions the type of base register 83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 84 * four pointer types recognized by check_mem_access() function. 85 * 86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 87 * and the range of [ptr, ptr + map's value_size) is accessible. 88 * 89 * registers used to pass values to function calls are checked against 90 * function argument constraints. 91 * 92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 93 * It means that the register type passed to this function must be 94 * PTR_TO_STACK and it will be used inside the function as 95 * 'pointer to map element key' 96 * 97 * For example the argument constraints for bpf_map_lookup_elem(): 98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 99 * .arg1_type = ARG_CONST_MAP_PTR, 100 * .arg2_type = ARG_PTR_TO_MAP_KEY, 101 * 102 * ret_type says that this function returns 'pointer to map elem value or null' 103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 104 * 2nd argument should be a pointer to stack, which will be used inside 105 * the helper function as a pointer to map element key. 106 * 107 * On the kernel side the helper function looks like: 108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 109 * { 110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 111 * void *key = (void *) (unsigned long) r2; 112 * void *value; 113 * 114 * here kernel can access 'key' and 'map' pointers safely, knowing that 115 * [key, key + map->key_size) bytes are valid and were initialized on 116 * the stack of eBPF program. 117 * } 118 * 119 * Corresponding eBPF program may look like: 120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 124 * here verifier looks at prototype of map_lookup_elem() and sees: 125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 127 * 128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 130 * and were initialized prior to this call. 131 * If it's ok, then verifier allows this BPF_CALL insn and looks at 132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 134 * returns ether pointer to map value or NULL. 135 * 136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 137 * insn, the register holding that pointer in the true branch changes state to 138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 139 * branch. See check_cond_jmp_op(). 140 * 141 * After the call R0 is set to return type of the function and registers R1-R5 142 * are set to NOT_INIT to indicate that they are no longer readable. 143 * 144 * The following reference types represent a potential reference to a kernel 145 * resource which, after first being allocated, must be checked and freed by 146 * the BPF program: 147 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 148 * 149 * When the verifier sees a helper call return a reference type, it allocates a 150 * pointer id for the reference and stores it in the current function state. 151 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 152 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 153 * passes through a NULL-check conditional. For the branch wherein the state is 154 * changed to CONST_IMM, the verifier releases the reference. 155 * 156 * For each helper function that allocates a reference, such as 157 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 158 * bpf_sk_release(). When a reference type passes into the release function, 159 * the verifier also releases the reference. If any unchecked or unreleased 160 * reference remains at the end of the program, the verifier rejects it. 161 */ 162 163 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 164 struct bpf_verifier_stack_elem { 165 /* verifer state is 'st' 166 * before processing instruction 'insn_idx' 167 * and after processing instruction 'prev_insn_idx' 168 */ 169 struct bpf_verifier_state st; 170 int insn_idx; 171 int prev_insn_idx; 172 struct bpf_verifier_stack_elem *next; 173 /* length of verifier log at the time this state was pushed on stack */ 174 u32 log_pos; 175 }; 176 177 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 178 #define BPF_COMPLEXITY_LIMIT_STATES 64 179 180 #define BPF_MAP_KEY_POISON (1ULL << 63) 181 #define BPF_MAP_KEY_SEEN (1ULL << 62) 182 183 #define BPF_MAP_PTR_UNPRIV 1UL 184 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 185 POISON_POINTER_DELTA)) 186 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 187 188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 189 { 190 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 191 } 192 193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 194 { 195 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 196 } 197 198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 199 const struct bpf_map *map, bool unpriv) 200 { 201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 202 unpriv |= bpf_map_ptr_unpriv(aux); 203 aux->map_ptr_state = (unsigned long)map | 204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 205 } 206 207 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 208 { 209 return aux->map_key_state & BPF_MAP_KEY_POISON; 210 } 211 212 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 213 { 214 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 215 } 216 217 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 218 { 219 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 220 } 221 222 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 223 { 224 bool poisoned = bpf_map_key_poisoned(aux); 225 226 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 227 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 228 } 229 230 struct bpf_call_arg_meta { 231 struct bpf_map *map_ptr; 232 bool raw_mode; 233 bool pkt_access; 234 int regno; 235 int access_size; 236 u64 msize_max_value; 237 int ref_obj_id; 238 int func_id; 239 u32 btf_id; 240 }; 241 242 struct btf *btf_vmlinux; 243 244 static DEFINE_MUTEX(bpf_verifier_lock); 245 246 static const struct bpf_line_info * 247 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 248 { 249 const struct bpf_line_info *linfo; 250 const struct bpf_prog *prog; 251 u32 i, nr_linfo; 252 253 prog = env->prog; 254 nr_linfo = prog->aux->nr_linfo; 255 256 if (!nr_linfo || insn_off >= prog->len) 257 return NULL; 258 259 linfo = prog->aux->linfo; 260 for (i = 1; i < nr_linfo; i++) 261 if (insn_off < linfo[i].insn_off) 262 break; 263 264 return &linfo[i - 1]; 265 } 266 267 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 268 va_list args) 269 { 270 unsigned int n; 271 272 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 273 274 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 275 "verifier log line truncated - local buffer too short\n"); 276 277 n = min(log->len_total - log->len_used - 1, n); 278 log->kbuf[n] = '\0'; 279 280 if (log->level == BPF_LOG_KERNEL) { 281 pr_err("BPF:%s\n", log->kbuf); 282 return; 283 } 284 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 285 log->len_used += n; 286 else 287 log->ubuf = NULL; 288 } 289 290 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 291 { 292 char zero = 0; 293 294 if (!bpf_verifier_log_needed(log)) 295 return; 296 297 log->len_used = new_pos; 298 if (put_user(zero, log->ubuf + new_pos)) 299 log->ubuf = NULL; 300 } 301 302 /* log_level controls verbosity level of eBPF verifier. 303 * bpf_verifier_log_write() is used to dump the verification trace to the log, 304 * so the user can figure out what's wrong with the program 305 */ 306 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 307 const char *fmt, ...) 308 { 309 va_list args; 310 311 if (!bpf_verifier_log_needed(&env->log)) 312 return; 313 314 va_start(args, fmt); 315 bpf_verifier_vlog(&env->log, fmt, args); 316 va_end(args); 317 } 318 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 319 320 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 321 { 322 struct bpf_verifier_env *env = private_data; 323 va_list args; 324 325 if (!bpf_verifier_log_needed(&env->log)) 326 return; 327 328 va_start(args, fmt); 329 bpf_verifier_vlog(&env->log, fmt, args); 330 va_end(args); 331 } 332 333 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 334 const char *fmt, ...) 335 { 336 va_list args; 337 338 if (!bpf_verifier_log_needed(log)) 339 return; 340 341 va_start(args, fmt); 342 bpf_verifier_vlog(log, fmt, args); 343 va_end(args); 344 } 345 346 static const char *ltrim(const char *s) 347 { 348 while (isspace(*s)) 349 s++; 350 351 return s; 352 } 353 354 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 355 u32 insn_off, 356 const char *prefix_fmt, ...) 357 { 358 const struct bpf_line_info *linfo; 359 360 if (!bpf_verifier_log_needed(&env->log)) 361 return; 362 363 linfo = find_linfo(env, insn_off); 364 if (!linfo || linfo == env->prev_linfo) 365 return; 366 367 if (prefix_fmt) { 368 va_list args; 369 370 va_start(args, prefix_fmt); 371 bpf_verifier_vlog(&env->log, prefix_fmt, args); 372 va_end(args); 373 } 374 375 verbose(env, "%s\n", 376 ltrim(btf_name_by_offset(env->prog->aux->btf, 377 linfo->line_off))); 378 379 env->prev_linfo = linfo; 380 } 381 382 static bool type_is_pkt_pointer(enum bpf_reg_type type) 383 { 384 return type == PTR_TO_PACKET || 385 type == PTR_TO_PACKET_META; 386 } 387 388 static bool type_is_sk_pointer(enum bpf_reg_type type) 389 { 390 return type == PTR_TO_SOCKET || 391 type == PTR_TO_SOCK_COMMON || 392 type == PTR_TO_TCP_SOCK || 393 type == PTR_TO_XDP_SOCK; 394 } 395 396 static bool reg_type_may_be_null(enum bpf_reg_type type) 397 { 398 return type == PTR_TO_MAP_VALUE_OR_NULL || 399 type == PTR_TO_SOCKET_OR_NULL || 400 type == PTR_TO_SOCK_COMMON_OR_NULL || 401 type == PTR_TO_TCP_SOCK_OR_NULL || 402 type == PTR_TO_BTF_ID_OR_NULL; 403 } 404 405 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 406 { 407 return reg->type == PTR_TO_MAP_VALUE && 408 map_value_has_spin_lock(reg->map_ptr); 409 } 410 411 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 412 { 413 return type == PTR_TO_SOCKET || 414 type == PTR_TO_SOCKET_OR_NULL || 415 type == PTR_TO_TCP_SOCK || 416 type == PTR_TO_TCP_SOCK_OR_NULL; 417 } 418 419 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 420 { 421 return type == ARG_PTR_TO_SOCK_COMMON; 422 } 423 424 /* Determine whether the function releases some resources allocated by another 425 * function call. The first reference type argument will be assumed to be 426 * released by release_reference(). 427 */ 428 static bool is_release_function(enum bpf_func_id func_id) 429 { 430 return func_id == BPF_FUNC_sk_release; 431 } 432 433 static bool may_be_acquire_function(enum bpf_func_id func_id) 434 { 435 return func_id == BPF_FUNC_sk_lookup_tcp || 436 func_id == BPF_FUNC_sk_lookup_udp || 437 func_id == BPF_FUNC_skc_lookup_tcp || 438 func_id == BPF_FUNC_map_lookup_elem; 439 } 440 441 static bool is_acquire_function(enum bpf_func_id func_id, 442 const struct bpf_map *map) 443 { 444 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 445 446 if (func_id == BPF_FUNC_sk_lookup_tcp || 447 func_id == BPF_FUNC_sk_lookup_udp || 448 func_id == BPF_FUNC_skc_lookup_tcp) 449 return true; 450 451 if (func_id == BPF_FUNC_map_lookup_elem && 452 (map_type == BPF_MAP_TYPE_SOCKMAP || 453 map_type == BPF_MAP_TYPE_SOCKHASH)) 454 return true; 455 456 return false; 457 } 458 459 static bool is_ptr_cast_function(enum bpf_func_id func_id) 460 { 461 return func_id == BPF_FUNC_tcp_sock || 462 func_id == BPF_FUNC_sk_fullsock; 463 } 464 465 /* string representation of 'enum bpf_reg_type' */ 466 static const char * const reg_type_str[] = { 467 [NOT_INIT] = "?", 468 [SCALAR_VALUE] = "inv", 469 [PTR_TO_CTX] = "ctx", 470 [CONST_PTR_TO_MAP] = "map_ptr", 471 [PTR_TO_MAP_VALUE] = "map_value", 472 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 473 [PTR_TO_STACK] = "fp", 474 [PTR_TO_PACKET] = "pkt", 475 [PTR_TO_PACKET_META] = "pkt_meta", 476 [PTR_TO_PACKET_END] = "pkt_end", 477 [PTR_TO_FLOW_KEYS] = "flow_keys", 478 [PTR_TO_SOCKET] = "sock", 479 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 480 [PTR_TO_SOCK_COMMON] = "sock_common", 481 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 482 [PTR_TO_TCP_SOCK] = "tcp_sock", 483 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 484 [PTR_TO_TP_BUFFER] = "tp_buffer", 485 [PTR_TO_XDP_SOCK] = "xdp_sock", 486 [PTR_TO_BTF_ID] = "ptr_", 487 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 488 }; 489 490 static char slot_type_char[] = { 491 [STACK_INVALID] = '?', 492 [STACK_SPILL] = 'r', 493 [STACK_MISC] = 'm', 494 [STACK_ZERO] = '0', 495 }; 496 497 static void print_liveness(struct bpf_verifier_env *env, 498 enum bpf_reg_liveness live) 499 { 500 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 501 verbose(env, "_"); 502 if (live & REG_LIVE_READ) 503 verbose(env, "r"); 504 if (live & REG_LIVE_WRITTEN) 505 verbose(env, "w"); 506 if (live & REG_LIVE_DONE) 507 verbose(env, "D"); 508 } 509 510 static struct bpf_func_state *func(struct bpf_verifier_env *env, 511 const struct bpf_reg_state *reg) 512 { 513 struct bpf_verifier_state *cur = env->cur_state; 514 515 return cur->frame[reg->frameno]; 516 } 517 518 const char *kernel_type_name(u32 id) 519 { 520 return btf_name_by_offset(btf_vmlinux, 521 btf_type_by_id(btf_vmlinux, id)->name_off); 522 } 523 524 static void print_verifier_state(struct bpf_verifier_env *env, 525 const struct bpf_func_state *state) 526 { 527 const struct bpf_reg_state *reg; 528 enum bpf_reg_type t; 529 int i; 530 531 if (state->frameno) 532 verbose(env, " frame%d:", state->frameno); 533 for (i = 0; i < MAX_BPF_REG; i++) { 534 reg = &state->regs[i]; 535 t = reg->type; 536 if (t == NOT_INIT) 537 continue; 538 verbose(env, " R%d", i); 539 print_liveness(env, reg->live); 540 verbose(env, "=%s", reg_type_str[t]); 541 if (t == SCALAR_VALUE && reg->precise) 542 verbose(env, "P"); 543 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 544 tnum_is_const(reg->var_off)) { 545 /* reg->off should be 0 for SCALAR_VALUE */ 546 verbose(env, "%lld", reg->var_off.value + reg->off); 547 } else { 548 if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL) 549 verbose(env, "%s", kernel_type_name(reg->btf_id)); 550 verbose(env, "(id=%d", reg->id); 551 if (reg_type_may_be_refcounted_or_null(t)) 552 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 553 if (t != SCALAR_VALUE) 554 verbose(env, ",off=%d", reg->off); 555 if (type_is_pkt_pointer(t)) 556 verbose(env, ",r=%d", reg->range); 557 else if (t == CONST_PTR_TO_MAP || 558 t == PTR_TO_MAP_VALUE || 559 t == PTR_TO_MAP_VALUE_OR_NULL) 560 verbose(env, ",ks=%d,vs=%d", 561 reg->map_ptr->key_size, 562 reg->map_ptr->value_size); 563 if (tnum_is_const(reg->var_off)) { 564 /* Typically an immediate SCALAR_VALUE, but 565 * could be a pointer whose offset is too big 566 * for reg->off 567 */ 568 verbose(env, ",imm=%llx", reg->var_off.value); 569 } else { 570 if (reg->smin_value != reg->umin_value && 571 reg->smin_value != S64_MIN) 572 verbose(env, ",smin_value=%lld", 573 (long long)reg->smin_value); 574 if (reg->smax_value != reg->umax_value && 575 reg->smax_value != S64_MAX) 576 verbose(env, ",smax_value=%lld", 577 (long long)reg->smax_value); 578 if (reg->umin_value != 0) 579 verbose(env, ",umin_value=%llu", 580 (unsigned long long)reg->umin_value); 581 if (reg->umax_value != U64_MAX) 582 verbose(env, ",umax_value=%llu", 583 (unsigned long long)reg->umax_value); 584 if (!tnum_is_unknown(reg->var_off)) { 585 char tn_buf[48]; 586 587 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 588 verbose(env, ",var_off=%s", tn_buf); 589 } 590 if (reg->s32_min_value != reg->smin_value && 591 reg->s32_min_value != S32_MIN) 592 verbose(env, ",s32_min_value=%d", 593 (int)(reg->s32_min_value)); 594 if (reg->s32_max_value != reg->smax_value && 595 reg->s32_max_value != S32_MAX) 596 verbose(env, ",s32_max_value=%d", 597 (int)(reg->s32_max_value)); 598 if (reg->u32_min_value != reg->umin_value && 599 reg->u32_min_value != U32_MIN) 600 verbose(env, ",u32_min_value=%d", 601 (int)(reg->u32_min_value)); 602 if (reg->u32_max_value != reg->umax_value && 603 reg->u32_max_value != U32_MAX) 604 verbose(env, ",u32_max_value=%d", 605 (int)(reg->u32_max_value)); 606 } 607 verbose(env, ")"); 608 } 609 } 610 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 611 char types_buf[BPF_REG_SIZE + 1]; 612 bool valid = false; 613 int j; 614 615 for (j = 0; j < BPF_REG_SIZE; j++) { 616 if (state->stack[i].slot_type[j] != STACK_INVALID) 617 valid = true; 618 types_buf[j] = slot_type_char[ 619 state->stack[i].slot_type[j]]; 620 } 621 types_buf[BPF_REG_SIZE] = 0; 622 if (!valid) 623 continue; 624 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 625 print_liveness(env, state->stack[i].spilled_ptr.live); 626 if (state->stack[i].slot_type[0] == STACK_SPILL) { 627 reg = &state->stack[i].spilled_ptr; 628 t = reg->type; 629 verbose(env, "=%s", reg_type_str[t]); 630 if (t == SCALAR_VALUE && reg->precise) 631 verbose(env, "P"); 632 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 633 verbose(env, "%lld", reg->var_off.value + reg->off); 634 } else { 635 verbose(env, "=%s", types_buf); 636 } 637 } 638 if (state->acquired_refs && state->refs[0].id) { 639 verbose(env, " refs=%d", state->refs[0].id); 640 for (i = 1; i < state->acquired_refs; i++) 641 if (state->refs[i].id) 642 verbose(env, ",%d", state->refs[i].id); 643 } 644 verbose(env, "\n"); 645 } 646 647 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 648 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 649 const struct bpf_func_state *src) \ 650 { \ 651 if (!src->FIELD) \ 652 return 0; \ 653 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 654 /* internal bug, make state invalid to reject the program */ \ 655 memset(dst, 0, sizeof(*dst)); \ 656 return -EFAULT; \ 657 } \ 658 memcpy(dst->FIELD, src->FIELD, \ 659 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 660 return 0; \ 661 } 662 /* copy_reference_state() */ 663 COPY_STATE_FN(reference, acquired_refs, refs, 1) 664 /* copy_stack_state() */ 665 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 666 #undef COPY_STATE_FN 667 668 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 669 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 670 bool copy_old) \ 671 { \ 672 u32 old_size = state->COUNT; \ 673 struct bpf_##NAME##_state *new_##FIELD; \ 674 int slot = size / SIZE; \ 675 \ 676 if (size <= old_size || !size) { \ 677 if (copy_old) \ 678 return 0; \ 679 state->COUNT = slot * SIZE; \ 680 if (!size && old_size) { \ 681 kfree(state->FIELD); \ 682 state->FIELD = NULL; \ 683 } \ 684 return 0; \ 685 } \ 686 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 687 GFP_KERNEL); \ 688 if (!new_##FIELD) \ 689 return -ENOMEM; \ 690 if (copy_old) { \ 691 if (state->FIELD) \ 692 memcpy(new_##FIELD, state->FIELD, \ 693 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 694 memset(new_##FIELD + old_size / SIZE, 0, \ 695 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 696 } \ 697 state->COUNT = slot * SIZE; \ 698 kfree(state->FIELD); \ 699 state->FIELD = new_##FIELD; \ 700 return 0; \ 701 } 702 /* realloc_reference_state() */ 703 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 704 /* realloc_stack_state() */ 705 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 706 #undef REALLOC_STATE_FN 707 708 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 709 * make it consume minimal amount of memory. check_stack_write() access from 710 * the program calls into realloc_func_state() to grow the stack size. 711 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 712 * which realloc_stack_state() copies over. It points to previous 713 * bpf_verifier_state which is never reallocated. 714 */ 715 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 716 int refs_size, bool copy_old) 717 { 718 int err = realloc_reference_state(state, refs_size, copy_old); 719 if (err) 720 return err; 721 return realloc_stack_state(state, stack_size, copy_old); 722 } 723 724 /* Acquire a pointer id from the env and update the state->refs to include 725 * this new pointer reference. 726 * On success, returns a valid pointer id to associate with the register 727 * On failure, returns a negative errno. 728 */ 729 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 730 { 731 struct bpf_func_state *state = cur_func(env); 732 int new_ofs = state->acquired_refs; 733 int id, err; 734 735 err = realloc_reference_state(state, state->acquired_refs + 1, true); 736 if (err) 737 return err; 738 id = ++env->id_gen; 739 state->refs[new_ofs].id = id; 740 state->refs[new_ofs].insn_idx = insn_idx; 741 742 return id; 743 } 744 745 /* release function corresponding to acquire_reference_state(). Idempotent. */ 746 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 747 { 748 int i, last_idx; 749 750 last_idx = state->acquired_refs - 1; 751 for (i = 0; i < state->acquired_refs; i++) { 752 if (state->refs[i].id == ptr_id) { 753 if (last_idx && i != last_idx) 754 memcpy(&state->refs[i], &state->refs[last_idx], 755 sizeof(*state->refs)); 756 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 757 state->acquired_refs--; 758 return 0; 759 } 760 } 761 return -EINVAL; 762 } 763 764 static int transfer_reference_state(struct bpf_func_state *dst, 765 struct bpf_func_state *src) 766 { 767 int err = realloc_reference_state(dst, src->acquired_refs, false); 768 if (err) 769 return err; 770 err = copy_reference_state(dst, src); 771 if (err) 772 return err; 773 return 0; 774 } 775 776 static void free_func_state(struct bpf_func_state *state) 777 { 778 if (!state) 779 return; 780 kfree(state->refs); 781 kfree(state->stack); 782 kfree(state); 783 } 784 785 static void clear_jmp_history(struct bpf_verifier_state *state) 786 { 787 kfree(state->jmp_history); 788 state->jmp_history = NULL; 789 state->jmp_history_cnt = 0; 790 } 791 792 static void free_verifier_state(struct bpf_verifier_state *state, 793 bool free_self) 794 { 795 int i; 796 797 for (i = 0; i <= state->curframe; i++) { 798 free_func_state(state->frame[i]); 799 state->frame[i] = NULL; 800 } 801 clear_jmp_history(state); 802 if (free_self) 803 kfree(state); 804 } 805 806 /* copy verifier state from src to dst growing dst stack space 807 * when necessary to accommodate larger src stack 808 */ 809 static int copy_func_state(struct bpf_func_state *dst, 810 const struct bpf_func_state *src) 811 { 812 int err; 813 814 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 815 false); 816 if (err) 817 return err; 818 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 819 err = copy_reference_state(dst, src); 820 if (err) 821 return err; 822 return copy_stack_state(dst, src); 823 } 824 825 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 826 const struct bpf_verifier_state *src) 827 { 828 struct bpf_func_state *dst; 829 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 830 int i, err; 831 832 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 833 kfree(dst_state->jmp_history); 834 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 835 if (!dst_state->jmp_history) 836 return -ENOMEM; 837 } 838 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 839 dst_state->jmp_history_cnt = src->jmp_history_cnt; 840 841 /* if dst has more stack frames then src frame, free them */ 842 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 843 free_func_state(dst_state->frame[i]); 844 dst_state->frame[i] = NULL; 845 } 846 dst_state->speculative = src->speculative; 847 dst_state->curframe = src->curframe; 848 dst_state->active_spin_lock = src->active_spin_lock; 849 dst_state->branches = src->branches; 850 dst_state->parent = src->parent; 851 dst_state->first_insn_idx = src->first_insn_idx; 852 dst_state->last_insn_idx = src->last_insn_idx; 853 for (i = 0; i <= src->curframe; i++) { 854 dst = dst_state->frame[i]; 855 if (!dst) { 856 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 857 if (!dst) 858 return -ENOMEM; 859 dst_state->frame[i] = dst; 860 } 861 err = copy_func_state(dst, src->frame[i]); 862 if (err) 863 return err; 864 } 865 return 0; 866 } 867 868 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 869 { 870 while (st) { 871 u32 br = --st->branches; 872 873 /* WARN_ON(br > 1) technically makes sense here, 874 * but see comment in push_stack(), hence: 875 */ 876 WARN_ONCE((int)br < 0, 877 "BUG update_branch_counts:branches_to_explore=%d\n", 878 br); 879 if (br) 880 break; 881 st = st->parent; 882 } 883 } 884 885 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 886 int *insn_idx, bool pop_log) 887 { 888 struct bpf_verifier_state *cur = env->cur_state; 889 struct bpf_verifier_stack_elem *elem, *head = env->head; 890 int err; 891 892 if (env->head == NULL) 893 return -ENOENT; 894 895 if (cur) { 896 err = copy_verifier_state(cur, &head->st); 897 if (err) 898 return err; 899 } 900 if (pop_log) 901 bpf_vlog_reset(&env->log, head->log_pos); 902 if (insn_idx) 903 *insn_idx = head->insn_idx; 904 if (prev_insn_idx) 905 *prev_insn_idx = head->prev_insn_idx; 906 elem = head->next; 907 free_verifier_state(&head->st, false); 908 kfree(head); 909 env->head = elem; 910 env->stack_size--; 911 return 0; 912 } 913 914 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 915 int insn_idx, int prev_insn_idx, 916 bool speculative) 917 { 918 struct bpf_verifier_state *cur = env->cur_state; 919 struct bpf_verifier_stack_elem *elem; 920 int err; 921 922 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 923 if (!elem) 924 goto err; 925 926 elem->insn_idx = insn_idx; 927 elem->prev_insn_idx = prev_insn_idx; 928 elem->next = env->head; 929 elem->log_pos = env->log.len_used; 930 env->head = elem; 931 env->stack_size++; 932 err = copy_verifier_state(&elem->st, cur); 933 if (err) 934 goto err; 935 elem->st.speculative |= speculative; 936 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 937 verbose(env, "The sequence of %d jumps is too complex.\n", 938 env->stack_size); 939 goto err; 940 } 941 if (elem->st.parent) { 942 ++elem->st.parent->branches; 943 /* WARN_ON(branches > 2) technically makes sense here, 944 * but 945 * 1. speculative states will bump 'branches' for non-branch 946 * instructions 947 * 2. is_state_visited() heuristics may decide not to create 948 * a new state for a sequence of branches and all such current 949 * and cloned states will be pointing to a single parent state 950 * which might have large 'branches' count. 951 */ 952 } 953 return &elem->st; 954 err: 955 free_verifier_state(env->cur_state, true); 956 env->cur_state = NULL; 957 /* pop all elements and return */ 958 while (!pop_stack(env, NULL, NULL, false)); 959 return NULL; 960 } 961 962 #define CALLER_SAVED_REGS 6 963 static const int caller_saved[CALLER_SAVED_REGS] = { 964 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 965 }; 966 967 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 968 struct bpf_reg_state *reg); 969 970 /* Mark the unknown part of a register (variable offset or scalar value) as 971 * known to have the value @imm. 972 */ 973 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 974 { 975 /* Clear id, off, and union(map_ptr, range) */ 976 memset(((u8 *)reg) + sizeof(reg->type), 0, 977 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 978 reg->var_off = tnum_const(imm); 979 reg->smin_value = (s64)imm; 980 reg->smax_value = (s64)imm; 981 reg->umin_value = imm; 982 reg->umax_value = imm; 983 984 reg->s32_min_value = (s32)imm; 985 reg->s32_max_value = (s32)imm; 986 reg->u32_min_value = (u32)imm; 987 reg->u32_max_value = (u32)imm; 988 } 989 990 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 991 { 992 reg->var_off = tnum_const_subreg(reg->var_off, imm); 993 reg->s32_min_value = (s32)imm; 994 reg->s32_max_value = (s32)imm; 995 reg->u32_min_value = (u32)imm; 996 reg->u32_max_value = (u32)imm; 997 } 998 999 /* Mark the 'variable offset' part of a register as zero. This should be 1000 * used only on registers holding a pointer type. 1001 */ 1002 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1003 { 1004 __mark_reg_known(reg, 0); 1005 } 1006 1007 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1008 { 1009 __mark_reg_known(reg, 0); 1010 reg->type = SCALAR_VALUE; 1011 } 1012 1013 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1014 struct bpf_reg_state *regs, u32 regno) 1015 { 1016 if (WARN_ON(regno >= MAX_BPF_REG)) { 1017 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1018 /* Something bad happened, let's kill all regs */ 1019 for (regno = 0; regno < MAX_BPF_REG; regno++) 1020 __mark_reg_not_init(env, regs + regno); 1021 return; 1022 } 1023 __mark_reg_known_zero(regs + regno); 1024 } 1025 1026 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1027 { 1028 return type_is_pkt_pointer(reg->type); 1029 } 1030 1031 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1032 { 1033 return reg_is_pkt_pointer(reg) || 1034 reg->type == PTR_TO_PACKET_END; 1035 } 1036 1037 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1038 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1039 enum bpf_reg_type which) 1040 { 1041 /* The register can already have a range from prior markings. 1042 * This is fine as long as it hasn't been advanced from its 1043 * origin. 1044 */ 1045 return reg->type == which && 1046 reg->id == 0 && 1047 reg->off == 0 && 1048 tnum_equals_const(reg->var_off, 0); 1049 } 1050 1051 /* Reset the min/max bounds of a register */ 1052 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1053 { 1054 reg->smin_value = S64_MIN; 1055 reg->smax_value = S64_MAX; 1056 reg->umin_value = 0; 1057 reg->umax_value = U64_MAX; 1058 1059 reg->s32_min_value = S32_MIN; 1060 reg->s32_max_value = S32_MAX; 1061 reg->u32_min_value = 0; 1062 reg->u32_max_value = U32_MAX; 1063 } 1064 1065 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1066 { 1067 reg->smin_value = S64_MIN; 1068 reg->smax_value = S64_MAX; 1069 reg->umin_value = 0; 1070 reg->umax_value = U64_MAX; 1071 } 1072 1073 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1074 { 1075 reg->s32_min_value = S32_MIN; 1076 reg->s32_max_value = S32_MAX; 1077 reg->u32_min_value = 0; 1078 reg->u32_max_value = U32_MAX; 1079 } 1080 1081 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1082 { 1083 struct tnum var32_off = tnum_subreg(reg->var_off); 1084 1085 /* min signed is max(sign bit) | min(other bits) */ 1086 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1087 var32_off.value | (var32_off.mask & S32_MIN)); 1088 /* max signed is min(sign bit) | max(other bits) */ 1089 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1090 var32_off.value | (var32_off.mask & S32_MAX)); 1091 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1092 reg->u32_max_value = min(reg->u32_max_value, 1093 (u32)(var32_off.value | var32_off.mask)); 1094 } 1095 1096 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1097 { 1098 /* min signed is max(sign bit) | min(other bits) */ 1099 reg->smin_value = max_t(s64, reg->smin_value, 1100 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1101 /* max signed is min(sign bit) | max(other bits) */ 1102 reg->smax_value = min_t(s64, reg->smax_value, 1103 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1104 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1105 reg->umax_value = min(reg->umax_value, 1106 reg->var_off.value | reg->var_off.mask); 1107 } 1108 1109 static void __update_reg_bounds(struct bpf_reg_state *reg) 1110 { 1111 __update_reg32_bounds(reg); 1112 __update_reg64_bounds(reg); 1113 } 1114 1115 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1116 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1117 { 1118 /* Learn sign from signed bounds. 1119 * If we cannot cross the sign boundary, then signed and unsigned bounds 1120 * are the same, so combine. This works even in the negative case, e.g. 1121 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1122 */ 1123 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1124 reg->s32_min_value = reg->u32_min_value = 1125 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1126 reg->s32_max_value = reg->u32_max_value = 1127 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1128 return; 1129 } 1130 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1131 * boundary, so we must be careful. 1132 */ 1133 if ((s32)reg->u32_max_value >= 0) { 1134 /* Positive. We can't learn anything from the smin, but smax 1135 * is positive, hence safe. 1136 */ 1137 reg->s32_min_value = reg->u32_min_value; 1138 reg->s32_max_value = reg->u32_max_value = 1139 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1140 } else if ((s32)reg->u32_min_value < 0) { 1141 /* Negative. We can't learn anything from the smax, but smin 1142 * is negative, hence safe. 1143 */ 1144 reg->s32_min_value = reg->u32_min_value = 1145 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1146 reg->s32_max_value = reg->u32_max_value; 1147 } 1148 } 1149 1150 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1151 { 1152 /* Learn sign from signed bounds. 1153 * If we cannot cross the sign boundary, then signed and unsigned bounds 1154 * are the same, so combine. This works even in the negative case, e.g. 1155 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1156 */ 1157 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1158 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1159 reg->umin_value); 1160 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1161 reg->umax_value); 1162 return; 1163 } 1164 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1165 * boundary, so we must be careful. 1166 */ 1167 if ((s64)reg->umax_value >= 0) { 1168 /* Positive. We can't learn anything from the smin, but smax 1169 * is positive, hence safe. 1170 */ 1171 reg->smin_value = reg->umin_value; 1172 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1173 reg->umax_value); 1174 } else if ((s64)reg->umin_value < 0) { 1175 /* Negative. We can't learn anything from the smax, but smin 1176 * is negative, hence safe. 1177 */ 1178 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1179 reg->umin_value); 1180 reg->smax_value = reg->umax_value; 1181 } 1182 } 1183 1184 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1185 { 1186 __reg32_deduce_bounds(reg); 1187 __reg64_deduce_bounds(reg); 1188 } 1189 1190 /* Attempts to improve var_off based on unsigned min/max information */ 1191 static void __reg_bound_offset(struct bpf_reg_state *reg) 1192 { 1193 struct tnum var64_off = tnum_intersect(reg->var_off, 1194 tnum_range(reg->umin_value, 1195 reg->umax_value)); 1196 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1197 tnum_range(reg->u32_min_value, 1198 reg->u32_max_value)); 1199 1200 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1201 } 1202 1203 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1204 { 1205 reg->umin_value = reg->u32_min_value; 1206 reg->umax_value = reg->u32_max_value; 1207 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1208 * but must be positive otherwise set to worse case bounds 1209 * and refine later from tnum. 1210 */ 1211 if (reg->s32_min_value > 0) 1212 reg->smin_value = reg->s32_min_value; 1213 else 1214 reg->smin_value = 0; 1215 if (reg->s32_max_value > 0) 1216 reg->smax_value = reg->s32_max_value; 1217 else 1218 reg->smax_value = U32_MAX; 1219 } 1220 1221 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1222 { 1223 /* special case when 64-bit register has upper 32-bit register 1224 * zeroed. Typically happens after zext or <<32, >>32 sequence 1225 * allowing us to use 32-bit bounds directly, 1226 */ 1227 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1228 __reg_assign_32_into_64(reg); 1229 } else { 1230 /* Otherwise the best we can do is push lower 32bit known and 1231 * unknown bits into register (var_off set from jmp logic) 1232 * then learn as much as possible from the 64-bit tnum 1233 * known and unknown bits. The previous smin/smax bounds are 1234 * invalid here because of jmp32 compare so mark them unknown 1235 * so they do not impact tnum bounds calculation. 1236 */ 1237 __mark_reg64_unbounded(reg); 1238 __update_reg_bounds(reg); 1239 } 1240 1241 /* Intersecting with the old var_off might have improved our bounds 1242 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1243 * then new var_off is (0; 0x7f...fc) which improves our umax. 1244 */ 1245 __reg_deduce_bounds(reg); 1246 __reg_bound_offset(reg); 1247 __update_reg_bounds(reg); 1248 } 1249 1250 static bool __reg64_bound_s32(s64 a) 1251 { 1252 if (a > S32_MIN && a < S32_MAX) 1253 return true; 1254 return false; 1255 } 1256 1257 static bool __reg64_bound_u32(u64 a) 1258 { 1259 if (a > U32_MIN && a < U32_MAX) 1260 return true; 1261 return false; 1262 } 1263 1264 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1265 { 1266 __mark_reg32_unbounded(reg); 1267 1268 if (__reg64_bound_s32(reg->smin_value)) 1269 reg->s32_min_value = (s32)reg->smin_value; 1270 if (__reg64_bound_s32(reg->smax_value)) 1271 reg->s32_max_value = (s32)reg->smax_value; 1272 if (__reg64_bound_u32(reg->umin_value)) 1273 reg->u32_min_value = (u32)reg->umin_value; 1274 if (__reg64_bound_u32(reg->umax_value)) 1275 reg->u32_max_value = (u32)reg->umax_value; 1276 1277 /* Intersecting with the old var_off might have improved our bounds 1278 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1279 * then new var_off is (0; 0x7f...fc) which improves our umax. 1280 */ 1281 __reg_deduce_bounds(reg); 1282 __reg_bound_offset(reg); 1283 __update_reg_bounds(reg); 1284 } 1285 1286 /* Mark a register as having a completely unknown (scalar) value. */ 1287 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1288 struct bpf_reg_state *reg) 1289 { 1290 /* 1291 * Clear type, id, off, and union(map_ptr, range) and 1292 * padding between 'type' and union 1293 */ 1294 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1295 reg->type = SCALAR_VALUE; 1296 reg->var_off = tnum_unknown; 1297 reg->frameno = 0; 1298 reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks; 1299 __mark_reg_unbounded(reg); 1300 } 1301 1302 static void mark_reg_unknown(struct bpf_verifier_env *env, 1303 struct bpf_reg_state *regs, u32 regno) 1304 { 1305 if (WARN_ON(regno >= MAX_BPF_REG)) { 1306 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1307 /* Something bad happened, let's kill all regs except FP */ 1308 for (regno = 0; regno < BPF_REG_FP; regno++) 1309 __mark_reg_not_init(env, regs + regno); 1310 return; 1311 } 1312 __mark_reg_unknown(env, regs + regno); 1313 } 1314 1315 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1316 struct bpf_reg_state *reg) 1317 { 1318 __mark_reg_unknown(env, reg); 1319 reg->type = NOT_INIT; 1320 } 1321 1322 static void mark_reg_not_init(struct bpf_verifier_env *env, 1323 struct bpf_reg_state *regs, u32 regno) 1324 { 1325 if (WARN_ON(regno >= MAX_BPF_REG)) { 1326 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1327 /* Something bad happened, let's kill all regs except FP */ 1328 for (regno = 0; regno < BPF_REG_FP; regno++) 1329 __mark_reg_not_init(env, regs + regno); 1330 return; 1331 } 1332 __mark_reg_not_init(env, regs + regno); 1333 } 1334 1335 #define DEF_NOT_SUBREG (0) 1336 static void init_reg_state(struct bpf_verifier_env *env, 1337 struct bpf_func_state *state) 1338 { 1339 struct bpf_reg_state *regs = state->regs; 1340 int i; 1341 1342 for (i = 0; i < MAX_BPF_REG; i++) { 1343 mark_reg_not_init(env, regs, i); 1344 regs[i].live = REG_LIVE_NONE; 1345 regs[i].parent = NULL; 1346 regs[i].subreg_def = DEF_NOT_SUBREG; 1347 } 1348 1349 /* frame pointer */ 1350 regs[BPF_REG_FP].type = PTR_TO_STACK; 1351 mark_reg_known_zero(env, regs, BPF_REG_FP); 1352 regs[BPF_REG_FP].frameno = state->frameno; 1353 } 1354 1355 #define BPF_MAIN_FUNC (-1) 1356 static void init_func_state(struct bpf_verifier_env *env, 1357 struct bpf_func_state *state, 1358 int callsite, int frameno, int subprogno) 1359 { 1360 state->callsite = callsite; 1361 state->frameno = frameno; 1362 state->subprogno = subprogno; 1363 init_reg_state(env, state); 1364 } 1365 1366 enum reg_arg_type { 1367 SRC_OP, /* register is used as source operand */ 1368 DST_OP, /* register is used as destination operand */ 1369 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1370 }; 1371 1372 static int cmp_subprogs(const void *a, const void *b) 1373 { 1374 return ((struct bpf_subprog_info *)a)->start - 1375 ((struct bpf_subprog_info *)b)->start; 1376 } 1377 1378 static int find_subprog(struct bpf_verifier_env *env, int off) 1379 { 1380 struct bpf_subprog_info *p; 1381 1382 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1383 sizeof(env->subprog_info[0]), cmp_subprogs); 1384 if (!p) 1385 return -ENOENT; 1386 return p - env->subprog_info; 1387 1388 } 1389 1390 static int add_subprog(struct bpf_verifier_env *env, int off) 1391 { 1392 int insn_cnt = env->prog->len; 1393 int ret; 1394 1395 if (off >= insn_cnt || off < 0) { 1396 verbose(env, "call to invalid destination\n"); 1397 return -EINVAL; 1398 } 1399 ret = find_subprog(env, off); 1400 if (ret >= 0) 1401 return 0; 1402 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1403 verbose(env, "too many subprograms\n"); 1404 return -E2BIG; 1405 } 1406 env->subprog_info[env->subprog_cnt++].start = off; 1407 sort(env->subprog_info, env->subprog_cnt, 1408 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1409 return 0; 1410 } 1411 1412 static int check_subprogs(struct bpf_verifier_env *env) 1413 { 1414 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1415 struct bpf_subprog_info *subprog = env->subprog_info; 1416 struct bpf_insn *insn = env->prog->insnsi; 1417 int insn_cnt = env->prog->len; 1418 1419 /* Add entry function. */ 1420 ret = add_subprog(env, 0); 1421 if (ret < 0) 1422 return ret; 1423 1424 /* determine subprog starts. The end is one before the next starts */ 1425 for (i = 0; i < insn_cnt; i++) { 1426 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1427 continue; 1428 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1429 continue; 1430 if (!env->allow_ptr_leaks) { 1431 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1432 return -EPERM; 1433 } 1434 ret = add_subprog(env, i + insn[i].imm + 1); 1435 if (ret < 0) 1436 return ret; 1437 } 1438 1439 /* Add a fake 'exit' subprog which could simplify subprog iteration 1440 * logic. 'subprog_cnt' should not be increased. 1441 */ 1442 subprog[env->subprog_cnt].start = insn_cnt; 1443 1444 if (env->log.level & BPF_LOG_LEVEL2) 1445 for (i = 0; i < env->subprog_cnt; i++) 1446 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1447 1448 /* now check that all jumps are within the same subprog */ 1449 subprog_start = subprog[cur_subprog].start; 1450 subprog_end = subprog[cur_subprog + 1].start; 1451 for (i = 0; i < insn_cnt; i++) { 1452 u8 code = insn[i].code; 1453 1454 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1455 goto next; 1456 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1457 goto next; 1458 off = i + insn[i].off + 1; 1459 if (off < subprog_start || off >= subprog_end) { 1460 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1461 return -EINVAL; 1462 } 1463 next: 1464 if (i == subprog_end - 1) { 1465 /* to avoid fall-through from one subprog into another 1466 * the last insn of the subprog should be either exit 1467 * or unconditional jump back 1468 */ 1469 if (code != (BPF_JMP | BPF_EXIT) && 1470 code != (BPF_JMP | BPF_JA)) { 1471 verbose(env, "last insn is not an exit or jmp\n"); 1472 return -EINVAL; 1473 } 1474 subprog_start = subprog_end; 1475 cur_subprog++; 1476 if (cur_subprog < env->subprog_cnt) 1477 subprog_end = subprog[cur_subprog + 1].start; 1478 } 1479 } 1480 return 0; 1481 } 1482 1483 /* Parentage chain of this register (or stack slot) should take care of all 1484 * issues like callee-saved registers, stack slot allocation time, etc. 1485 */ 1486 static int mark_reg_read(struct bpf_verifier_env *env, 1487 const struct bpf_reg_state *state, 1488 struct bpf_reg_state *parent, u8 flag) 1489 { 1490 bool writes = parent == state->parent; /* Observe write marks */ 1491 int cnt = 0; 1492 1493 while (parent) { 1494 /* if read wasn't screened by an earlier write ... */ 1495 if (writes && state->live & REG_LIVE_WRITTEN) 1496 break; 1497 if (parent->live & REG_LIVE_DONE) { 1498 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1499 reg_type_str[parent->type], 1500 parent->var_off.value, parent->off); 1501 return -EFAULT; 1502 } 1503 /* The first condition is more likely to be true than the 1504 * second, checked it first. 1505 */ 1506 if ((parent->live & REG_LIVE_READ) == flag || 1507 parent->live & REG_LIVE_READ64) 1508 /* The parentage chain never changes and 1509 * this parent was already marked as LIVE_READ. 1510 * There is no need to keep walking the chain again and 1511 * keep re-marking all parents as LIVE_READ. 1512 * This case happens when the same register is read 1513 * multiple times without writes into it in-between. 1514 * Also, if parent has the stronger REG_LIVE_READ64 set, 1515 * then no need to set the weak REG_LIVE_READ32. 1516 */ 1517 break; 1518 /* ... then we depend on parent's value */ 1519 parent->live |= flag; 1520 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1521 if (flag == REG_LIVE_READ64) 1522 parent->live &= ~REG_LIVE_READ32; 1523 state = parent; 1524 parent = state->parent; 1525 writes = true; 1526 cnt++; 1527 } 1528 1529 if (env->longest_mark_read_walk < cnt) 1530 env->longest_mark_read_walk = cnt; 1531 return 0; 1532 } 1533 1534 /* This function is supposed to be used by the following 32-bit optimization 1535 * code only. It returns TRUE if the source or destination register operates 1536 * on 64-bit, otherwise return FALSE. 1537 */ 1538 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1539 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1540 { 1541 u8 code, class, op; 1542 1543 code = insn->code; 1544 class = BPF_CLASS(code); 1545 op = BPF_OP(code); 1546 if (class == BPF_JMP) { 1547 /* BPF_EXIT for "main" will reach here. Return TRUE 1548 * conservatively. 1549 */ 1550 if (op == BPF_EXIT) 1551 return true; 1552 if (op == BPF_CALL) { 1553 /* BPF to BPF call will reach here because of marking 1554 * caller saved clobber with DST_OP_NO_MARK for which we 1555 * don't care the register def because they are anyway 1556 * marked as NOT_INIT already. 1557 */ 1558 if (insn->src_reg == BPF_PSEUDO_CALL) 1559 return false; 1560 /* Helper call will reach here because of arg type 1561 * check, conservatively return TRUE. 1562 */ 1563 if (t == SRC_OP) 1564 return true; 1565 1566 return false; 1567 } 1568 } 1569 1570 if (class == BPF_ALU64 || class == BPF_JMP || 1571 /* BPF_END always use BPF_ALU class. */ 1572 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1573 return true; 1574 1575 if (class == BPF_ALU || class == BPF_JMP32) 1576 return false; 1577 1578 if (class == BPF_LDX) { 1579 if (t != SRC_OP) 1580 return BPF_SIZE(code) == BPF_DW; 1581 /* LDX source must be ptr. */ 1582 return true; 1583 } 1584 1585 if (class == BPF_STX) { 1586 if (reg->type != SCALAR_VALUE) 1587 return true; 1588 return BPF_SIZE(code) == BPF_DW; 1589 } 1590 1591 if (class == BPF_LD) { 1592 u8 mode = BPF_MODE(code); 1593 1594 /* LD_IMM64 */ 1595 if (mode == BPF_IMM) 1596 return true; 1597 1598 /* Both LD_IND and LD_ABS return 32-bit data. */ 1599 if (t != SRC_OP) 1600 return false; 1601 1602 /* Implicit ctx ptr. */ 1603 if (regno == BPF_REG_6) 1604 return true; 1605 1606 /* Explicit source could be any width. */ 1607 return true; 1608 } 1609 1610 if (class == BPF_ST) 1611 /* The only source register for BPF_ST is a ptr. */ 1612 return true; 1613 1614 /* Conservatively return true at default. */ 1615 return true; 1616 } 1617 1618 /* Return TRUE if INSN doesn't have explicit value define. */ 1619 static bool insn_no_def(struct bpf_insn *insn) 1620 { 1621 u8 class = BPF_CLASS(insn->code); 1622 1623 return (class == BPF_JMP || class == BPF_JMP32 || 1624 class == BPF_STX || class == BPF_ST); 1625 } 1626 1627 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1628 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1629 { 1630 if (insn_no_def(insn)) 1631 return false; 1632 1633 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1634 } 1635 1636 static void mark_insn_zext(struct bpf_verifier_env *env, 1637 struct bpf_reg_state *reg) 1638 { 1639 s32 def_idx = reg->subreg_def; 1640 1641 if (def_idx == DEF_NOT_SUBREG) 1642 return; 1643 1644 env->insn_aux_data[def_idx - 1].zext_dst = true; 1645 /* The dst will be zero extended, so won't be sub-register anymore. */ 1646 reg->subreg_def = DEF_NOT_SUBREG; 1647 } 1648 1649 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1650 enum reg_arg_type t) 1651 { 1652 struct bpf_verifier_state *vstate = env->cur_state; 1653 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1654 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1655 struct bpf_reg_state *reg, *regs = state->regs; 1656 bool rw64; 1657 1658 if (regno >= MAX_BPF_REG) { 1659 verbose(env, "R%d is invalid\n", regno); 1660 return -EINVAL; 1661 } 1662 1663 reg = ®s[regno]; 1664 rw64 = is_reg64(env, insn, regno, reg, t); 1665 if (t == SRC_OP) { 1666 /* check whether register used as source operand can be read */ 1667 if (reg->type == NOT_INIT) { 1668 verbose(env, "R%d !read_ok\n", regno); 1669 return -EACCES; 1670 } 1671 /* We don't need to worry about FP liveness because it's read-only */ 1672 if (regno == BPF_REG_FP) 1673 return 0; 1674 1675 if (rw64) 1676 mark_insn_zext(env, reg); 1677 1678 return mark_reg_read(env, reg, reg->parent, 1679 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1680 } else { 1681 /* check whether register used as dest operand can be written to */ 1682 if (regno == BPF_REG_FP) { 1683 verbose(env, "frame pointer is read only\n"); 1684 return -EACCES; 1685 } 1686 reg->live |= REG_LIVE_WRITTEN; 1687 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1688 if (t == DST_OP) 1689 mark_reg_unknown(env, regs, regno); 1690 } 1691 return 0; 1692 } 1693 1694 /* for any branch, call, exit record the history of jmps in the given state */ 1695 static int push_jmp_history(struct bpf_verifier_env *env, 1696 struct bpf_verifier_state *cur) 1697 { 1698 u32 cnt = cur->jmp_history_cnt; 1699 struct bpf_idx_pair *p; 1700 1701 cnt++; 1702 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1703 if (!p) 1704 return -ENOMEM; 1705 p[cnt - 1].idx = env->insn_idx; 1706 p[cnt - 1].prev_idx = env->prev_insn_idx; 1707 cur->jmp_history = p; 1708 cur->jmp_history_cnt = cnt; 1709 return 0; 1710 } 1711 1712 /* Backtrack one insn at a time. If idx is not at the top of recorded 1713 * history then previous instruction came from straight line execution. 1714 */ 1715 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1716 u32 *history) 1717 { 1718 u32 cnt = *history; 1719 1720 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1721 i = st->jmp_history[cnt - 1].prev_idx; 1722 (*history)--; 1723 } else { 1724 i--; 1725 } 1726 return i; 1727 } 1728 1729 /* For given verifier state backtrack_insn() is called from the last insn to 1730 * the first insn. Its purpose is to compute a bitmask of registers and 1731 * stack slots that needs precision in the parent verifier state. 1732 */ 1733 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1734 u32 *reg_mask, u64 *stack_mask) 1735 { 1736 const struct bpf_insn_cbs cbs = { 1737 .cb_print = verbose, 1738 .private_data = env, 1739 }; 1740 struct bpf_insn *insn = env->prog->insnsi + idx; 1741 u8 class = BPF_CLASS(insn->code); 1742 u8 opcode = BPF_OP(insn->code); 1743 u8 mode = BPF_MODE(insn->code); 1744 u32 dreg = 1u << insn->dst_reg; 1745 u32 sreg = 1u << insn->src_reg; 1746 u32 spi; 1747 1748 if (insn->code == 0) 1749 return 0; 1750 if (env->log.level & BPF_LOG_LEVEL) { 1751 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1752 verbose(env, "%d: ", idx); 1753 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1754 } 1755 1756 if (class == BPF_ALU || class == BPF_ALU64) { 1757 if (!(*reg_mask & dreg)) 1758 return 0; 1759 if (opcode == BPF_MOV) { 1760 if (BPF_SRC(insn->code) == BPF_X) { 1761 /* dreg = sreg 1762 * dreg needs precision after this insn 1763 * sreg needs precision before this insn 1764 */ 1765 *reg_mask &= ~dreg; 1766 *reg_mask |= sreg; 1767 } else { 1768 /* dreg = K 1769 * dreg needs precision after this insn. 1770 * Corresponding register is already marked 1771 * as precise=true in this verifier state. 1772 * No further markings in parent are necessary 1773 */ 1774 *reg_mask &= ~dreg; 1775 } 1776 } else { 1777 if (BPF_SRC(insn->code) == BPF_X) { 1778 /* dreg += sreg 1779 * both dreg and sreg need precision 1780 * before this insn 1781 */ 1782 *reg_mask |= sreg; 1783 } /* else dreg += K 1784 * dreg still needs precision before this insn 1785 */ 1786 } 1787 } else if (class == BPF_LDX) { 1788 if (!(*reg_mask & dreg)) 1789 return 0; 1790 *reg_mask &= ~dreg; 1791 1792 /* scalars can only be spilled into stack w/o losing precision. 1793 * Load from any other memory can be zero extended. 1794 * The desire to keep that precision is already indicated 1795 * by 'precise' mark in corresponding register of this state. 1796 * No further tracking necessary. 1797 */ 1798 if (insn->src_reg != BPF_REG_FP) 1799 return 0; 1800 if (BPF_SIZE(insn->code) != BPF_DW) 1801 return 0; 1802 1803 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1804 * that [fp - off] slot contains scalar that needs to be 1805 * tracked with precision 1806 */ 1807 spi = (-insn->off - 1) / BPF_REG_SIZE; 1808 if (spi >= 64) { 1809 verbose(env, "BUG spi %d\n", spi); 1810 WARN_ONCE(1, "verifier backtracking bug"); 1811 return -EFAULT; 1812 } 1813 *stack_mask |= 1ull << spi; 1814 } else if (class == BPF_STX || class == BPF_ST) { 1815 if (*reg_mask & dreg) 1816 /* stx & st shouldn't be using _scalar_ dst_reg 1817 * to access memory. It means backtracking 1818 * encountered a case of pointer subtraction. 1819 */ 1820 return -ENOTSUPP; 1821 /* scalars can only be spilled into stack */ 1822 if (insn->dst_reg != BPF_REG_FP) 1823 return 0; 1824 if (BPF_SIZE(insn->code) != BPF_DW) 1825 return 0; 1826 spi = (-insn->off - 1) / BPF_REG_SIZE; 1827 if (spi >= 64) { 1828 verbose(env, "BUG spi %d\n", spi); 1829 WARN_ONCE(1, "verifier backtracking bug"); 1830 return -EFAULT; 1831 } 1832 if (!(*stack_mask & (1ull << spi))) 1833 return 0; 1834 *stack_mask &= ~(1ull << spi); 1835 if (class == BPF_STX) 1836 *reg_mask |= sreg; 1837 } else if (class == BPF_JMP || class == BPF_JMP32) { 1838 if (opcode == BPF_CALL) { 1839 if (insn->src_reg == BPF_PSEUDO_CALL) 1840 return -ENOTSUPP; 1841 /* regular helper call sets R0 */ 1842 *reg_mask &= ~1; 1843 if (*reg_mask & 0x3f) { 1844 /* if backtracing was looking for registers R1-R5 1845 * they should have been found already. 1846 */ 1847 verbose(env, "BUG regs %x\n", *reg_mask); 1848 WARN_ONCE(1, "verifier backtracking bug"); 1849 return -EFAULT; 1850 } 1851 } else if (opcode == BPF_EXIT) { 1852 return -ENOTSUPP; 1853 } 1854 } else if (class == BPF_LD) { 1855 if (!(*reg_mask & dreg)) 1856 return 0; 1857 *reg_mask &= ~dreg; 1858 /* It's ld_imm64 or ld_abs or ld_ind. 1859 * For ld_imm64 no further tracking of precision 1860 * into parent is necessary 1861 */ 1862 if (mode == BPF_IND || mode == BPF_ABS) 1863 /* to be analyzed */ 1864 return -ENOTSUPP; 1865 } 1866 return 0; 1867 } 1868 1869 /* the scalar precision tracking algorithm: 1870 * . at the start all registers have precise=false. 1871 * . scalar ranges are tracked as normal through alu and jmp insns. 1872 * . once precise value of the scalar register is used in: 1873 * . ptr + scalar alu 1874 * . if (scalar cond K|scalar) 1875 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1876 * backtrack through the verifier states and mark all registers and 1877 * stack slots with spilled constants that these scalar regisers 1878 * should be precise. 1879 * . during state pruning two registers (or spilled stack slots) 1880 * are equivalent if both are not precise. 1881 * 1882 * Note the verifier cannot simply walk register parentage chain, 1883 * since many different registers and stack slots could have been 1884 * used to compute single precise scalar. 1885 * 1886 * The approach of starting with precise=true for all registers and then 1887 * backtrack to mark a register as not precise when the verifier detects 1888 * that program doesn't care about specific value (e.g., when helper 1889 * takes register as ARG_ANYTHING parameter) is not safe. 1890 * 1891 * It's ok to walk single parentage chain of the verifier states. 1892 * It's possible that this backtracking will go all the way till 1st insn. 1893 * All other branches will be explored for needing precision later. 1894 * 1895 * The backtracking needs to deal with cases like: 1896 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1897 * r9 -= r8 1898 * r5 = r9 1899 * if r5 > 0x79f goto pc+7 1900 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1901 * r5 += 1 1902 * ... 1903 * call bpf_perf_event_output#25 1904 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1905 * 1906 * and this case: 1907 * r6 = 1 1908 * call foo // uses callee's r6 inside to compute r0 1909 * r0 += r6 1910 * if r0 == 0 goto 1911 * 1912 * to track above reg_mask/stack_mask needs to be independent for each frame. 1913 * 1914 * Also if parent's curframe > frame where backtracking started, 1915 * the verifier need to mark registers in both frames, otherwise callees 1916 * may incorrectly prune callers. This is similar to 1917 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1918 * 1919 * For now backtracking falls back into conservative marking. 1920 */ 1921 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1922 struct bpf_verifier_state *st) 1923 { 1924 struct bpf_func_state *func; 1925 struct bpf_reg_state *reg; 1926 int i, j; 1927 1928 /* big hammer: mark all scalars precise in this path. 1929 * pop_stack may still get !precise scalars. 1930 */ 1931 for (; st; st = st->parent) 1932 for (i = 0; i <= st->curframe; i++) { 1933 func = st->frame[i]; 1934 for (j = 0; j < BPF_REG_FP; j++) { 1935 reg = &func->regs[j]; 1936 if (reg->type != SCALAR_VALUE) 1937 continue; 1938 reg->precise = true; 1939 } 1940 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1941 if (func->stack[j].slot_type[0] != STACK_SPILL) 1942 continue; 1943 reg = &func->stack[j].spilled_ptr; 1944 if (reg->type != SCALAR_VALUE) 1945 continue; 1946 reg->precise = true; 1947 } 1948 } 1949 } 1950 1951 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1952 int spi) 1953 { 1954 struct bpf_verifier_state *st = env->cur_state; 1955 int first_idx = st->first_insn_idx; 1956 int last_idx = env->insn_idx; 1957 struct bpf_func_state *func; 1958 struct bpf_reg_state *reg; 1959 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1960 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1961 bool skip_first = true; 1962 bool new_marks = false; 1963 int i, err; 1964 1965 if (!env->allow_ptr_leaks) 1966 /* backtracking is root only for now */ 1967 return 0; 1968 1969 func = st->frame[st->curframe]; 1970 if (regno >= 0) { 1971 reg = &func->regs[regno]; 1972 if (reg->type != SCALAR_VALUE) { 1973 WARN_ONCE(1, "backtracing misuse"); 1974 return -EFAULT; 1975 } 1976 if (!reg->precise) 1977 new_marks = true; 1978 else 1979 reg_mask = 0; 1980 reg->precise = true; 1981 } 1982 1983 while (spi >= 0) { 1984 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 1985 stack_mask = 0; 1986 break; 1987 } 1988 reg = &func->stack[spi].spilled_ptr; 1989 if (reg->type != SCALAR_VALUE) { 1990 stack_mask = 0; 1991 break; 1992 } 1993 if (!reg->precise) 1994 new_marks = true; 1995 else 1996 stack_mask = 0; 1997 reg->precise = true; 1998 break; 1999 } 2000 2001 if (!new_marks) 2002 return 0; 2003 if (!reg_mask && !stack_mask) 2004 return 0; 2005 for (;;) { 2006 DECLARE_BITMAP(mask, 64); 2007 u32 history = st->jmp_history_cnt; 2008 2009 if (env->log.level & BPF_LOG_LEVEL) 2010 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2011 for (i = last_idx;;) { 2012 if (skip_first) { 2013 err = 0; 2014 skip_first = false; 2015 } else { 2016 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2017 } 2018 if (err == -ENOTSUPP) { 2019 mark_all_scalars_precise(env, st); 2020 return 0; 2021 } else if (err) { 2022 return err; 2023 } 2024 if (!reg_mask && !stack_mask) 2025 /* Found assignment(s) into tracked register in this state. 2026 * Since this state is already marked, just return. 2027 * Nothing to be tracked further in the parent state. 2028 */ 2029 return 0; 2030 if (i == first_idx) 2031 break; 2032 i = get_prev_insn_idx(st, i, &history); 2033 if (i >= env->prog->len) { 2034 /* This can happen if backtracking reached insn 0 2035 * and there are still reg_mask or stack_mask 2036 * to backtrack. 2037 * It means the backtracking missed the spot where 2038 * particular register was initialized with a constant. 2039 */ 2040 verbose(env, "BUG backtracking idx %d\n", i); 2041 WARN_ONCE(1, "verifier backtracking bug"); 2042 return -EFAULT; 2043 } 2044 } 2045 st = st->parent; 2046 if (!st) 2047 break; 2048 2049 new_marks = false; 2050 func = st->frame[st->curframe]; 2051 bitmap_from_u64(mask, reg_mask); 2052 for_each_set_bit(i, mask, 32) { 2053 reg = &func->regs[i]; 2054 if (reg->type != SCALAR_VALUE) { 2055 reg_mask &= ~(1u << i); 2056 continue; 2057 } 2058 if (!reg->precise) 2059 new_marks = true; 2060 reg->precise = true; 2061 } 2062 2063 bitmap_from_u64(mask, stack_mask); 2064 for_each_set_bit(i, mask, 64) { 2065 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2066 /* the sequence of instructions: 2067 * 2: (bf) r3 = r10 2068 * 3: (7b) *(u64 *)(r3 -8) = r0 2069 * 4: (79) r4 = *(u64 *)(r10 -8) 2070 * doesn't contain jmps. It's backtracked 2071 * as a single block. 2072 * During backtracking insn 3 is not recognized as 2073 * stack access, so at the end of backtracking 2074 * stack slot fp-8 is still marked in stack_mask. 2075 * However the parent state may not have accessed 2076 * fp-8 and it's "unallocated" stack space. 2077 * In such case fallback to conservative. 2078 */ 2079 mark_all_scalars_precise(env, st); 2080 return 0; 2081 } 2082 2083 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2084 stack_mask &= ~(1ull << i); 2085 continue; 2086 } 2087 reg = &func->stack[i].spilled_ptr; 2088 if (reg->type != SCALAR_VALUE) { 2089 stack_mask &= ~(1ull << i); 2090 continue; 2091 } 2092 if (!reg->precise) 2093 new_marks = true; 2094 reg->precise = true; 2095 } 2096 if (env->log.level & BPF_LOG_LEVEL) { 2097 print_verifier_state(env, func); 2098 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2099 new_marks ? "didn't have" : "already had", 2100 reg_mask, stack_mask); 2101 } 2102 2103 if (!reg_mask && !stack_mask) 2104 break; 2105 if (!new_marks) 2106 break; 2107 2108 last_idx = st->last_insn_idx; 2109 first_idx = st->first_insn_idx; 2110 } 2111 return 0; 2112 } 2113 2114 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2115 { 2116 return __mark_chain_precision(env, regno, -1); 2117 } 2118 2119 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2120 { 2121 return __mark_chain_precision(env, -1, spi); 2122 } 2123 2124 static bool is_spillable_regtype(enum bpf_reg_type type) 2125 { 2126 switch (type) { 2127 case PTR_TO_MAP_VALUE: 2128 case PTR_TO_MAP_VALUE_OR_NULL: 2129 case PTR_TO_STACK: 2130 case PTR_TO_CTX: 2131 case PTR_TO_PACKET: 2132 case PTR_TO_PACKET_META: 2133 case PTR_TO_PACKET_END: 2134 case PTR_TO_FLOW_KEYS: 2135 case CONST_PTR_TO_MAP: 2136 case PTR_TO_SOCKET: 2137 case PTR_TO_SOCKET_OR_NULL: 2138 case PTR_TO_SOCK_COMMON: 2139 case PTR_TO_SOCK_COMMON_OR_NULL: 2140 case PTR_TO_TCP_SOCK: 2141 case PTR_TO_TCP_SOCK_OR_NULL: 2142 case PTR_TO_XDP_SOCK: 2143 case PTR_TO_BTF_ID: 2144 case PTR_TO_BTF_ID_OR_NULL: 2145 return true; 2146 default: 2147 return false; 2148 } 2149 } 2150 2151 /* Does this register contain a constant zero? */ 2152 static bool register_is_null(struct bpf_reg_state *reg) 2153 { 2154 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2155 } 2156 2157 static bool register_is_const(struct bpf_reg_state *reg) 2158 { 2159 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2160 } 2161 2162 static bool __is_pointer_value(bool allow_ptr_leaks, 2163 const struct bpf_reg_state *reg) 2164 { 2165 if (allow_ptr_leaks) 2166 return false; 2167 2168 return reg->type != SCALAR_VALUE; 2169 } 2170 2171 static void save_register_state(struct bpf_func_state *state, 2172 int spi, struct bpf_reg_state *reg) 2173 { 2174 int i; 2175 2176 state->stack[spi].spilled_ptr = *reg; 2177 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2178 2179 for (i = 0; i < BPF_REG_SIZE; i++) 2180 state->stack[spi].slot_type[i] = STACK_SPILL; 2181 } 2182 2183 /* check_stack_read/write functions track spill/fill of registers, 2184 * stack boundary and alignment are checked in check_mem_access() 2185 */ 2186 static int check_stack_write(struct bpf_verifier_env *env, 2187 struct bpf_func_state *state, /* func where register points to */ 2188 int off, int size, int value_regno, int insn_idx) 2189 { 2190 struct bpf_func_state *cur; /* state of the current function */ 2191 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2192 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2193 struct bpf_reg_state *reg = NULL; 2194 2195 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2196 state->acquired_refs, true); 2197 if (err) 2198 return err; 2199 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2200 * so it's aligned access and [off, off + size) are within stack limits 2201 */ 2202 if (!env->allow_ptr_leaks && 2203 state->stack[spi].slot_type[0] == STACK_SPILL && 2204 size != BPF_REG_SIZE) { 2205 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2206 return -EACCES; 2207 } 2208 2209 cur = env->cur_state->frame[env->cur_state->curframe]; 2210 if (value_regno >= 0) 2211 reg = &cur->regs[value_regno]; 2212 2213 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 2214 !register_is_null(reg) && env->allow_ptr_leaks) { 2215 if (dst_reg != BPF_REG_FP) { 2216 /* The backtracking logic can only recognize explicit 2217 * stack slot address like [fp - 8]. Other spill of 2218 * scalar via different register has to be conervative. 2219 * Backtrack from here and mark all registers as precise 2220 * that contributed into 'reg' being a constant. 2221 */ 2222 err = mark_chain_precision(env, value_regno); 2223 if (err) 2224 return err; 2225 } 2226 save_register_state(state, spi, reg); 2227 } else if (reg && is_spillable_regtype(reg->type)) { 2228 /* register containing pointer is being spilled into stack */ 2229 if (size != BPF_REG_SIZE) { 2230 verbose_linfo(env, insn_idx, "; "); 2231 verbose(env, "invalid size of register spill\n"); 2232 return -EACCES; 2233 } 2234 2235 if (state != cur && reg->type == PTR_TO_STACK) { 2236 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2237 return -EINVAL; 2238 } 2239 2240 if (!env->allow_ptr_leaks) { 2241 bool sanitize = false; 2242 2243 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2244 register_is_const(&state->stack[spi].spilled_ptr)) 2245 sanitize = true; 2246 for (i = 0; i < BPF_REG_SIZE; i++) 2247 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2248 sanitize = true; 2249 break; 2250 } 2251 if (sanitize) { 2252 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2253 int soff = (-spi - 1) * BPF_REG_SIZE; 2254 2255 /* detected reuse of integer stack slot with a pointer 2256 * which means either llvm is reusing stack slot or 2257 * an attacker is trying to exploit CVE-2018-3639 2258 * (speculative store bypass) 2259 * Have to sanitize that slot with preemptive 2260 * store of zero. 2261 */ 2262 if (*poff && *poff != soff) { 2263 /* disallow programs where single insn stores 2264 * into two different stack slots, since verifier 2265 * cannot sanitize them 2266 */ 2267 verbose(env, 2268 "insn %d cannot access two stack slots fp%d and fp%d", 2269 insn_idx, *poff, soff); 2270 return -EINVAL; 2271 } 2272 *poff = soff; 2273 } 2274 } 2275 save_register_state(state, spi, reg); 2276 } else { 2277 u8 type = STACK_MISC; 2278 2279 /* regular write of data into stack destroys any spilled ptr */ 2280 state->stack[spi].spilled_ptr.type = NOT_INIT; 2281 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2282 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2283 for (i = 0; i < BPF_REG_SIZE; i++) 2284 state->stack[spi].slot_type[i] = STACK_MISC; 2285 2286 /* only mark the slot as written if all 8 bytes were written 2287 * otherwise read propagation may incorrectly stop too soon 2288 * when stack slots are partially written. 2289 * This heuristic means that read propagation will be 2290 * conservative, since it will add reg_live_read marks 2291 * to stack slots all the way to first state when programs 2292 * writes+reads less than 8 bytes 2293 */ 2294 if (size == BPF_REG_SIZE) 2295 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2296 2297 /* when we zero initialize stack slots mark them as such */ 2298 if (reg && register_is_null(reg)) { 2299 /* backtracking doesn't work for STACK_ZERO yet. */ 2300 err = mark_chain_precision(env, value_regno); 2301 if (err) 2302 return err; 2303 type = STACK_ZERO; 2304 } 2305 2306 /* Mark slots affected by this stack write. */ 2307 for (i = 0; i < size; i++) 2308 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2309 type; 2310 } 2311 return 0; 2312 } 2313 2314 static int check_stack_read(struct bpf_verifier_env *env, 2315 struct bpf_func_state *reg_state /* func where register points to */, 2316 int off, int size, int value_regno) 2317 { 2318 struct bpf_verifier_state *vstate = env->cur_state; 2319 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2320 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2321 struct bpf_reg_state *reg; 2322 u8 *stype; 2323 2324 if (reg_state->allocated_stack <= slot) { 2325 verbose(env, "invalid read from stack off %d+0 size %d\n", 2326 off, size); 2327 return -EACCES; 2328 } 2329 stype = reg_state->stack[spi].slot_type; 2330 reg = ®_state->stack[spi].spilled_ptr; 2331 2332 if (stype[0] == STACK_SPILL) { 2333 if (size != BPF_REG_SIZE) { 2334 if (reg->type != SCALAR_VALUE) { 2335 verbose_linfo(env, env->insn_idx, "; "); 2336 verbose(env, "invalid size of register fill\n"); 2337 return -EACCES; 2338 } 2339 if (value_regno >= 0) { 2340 mark_reg_unknown(env, state->regs, value_regno); 2341 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2342 } 2343 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2344 return 0; 2345 } 2346 for (i = 1; i < BPF_REG_SIZE; i++) { 2347 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2348 verbose(env, "corrupted spill memory\n"); 2349 return -EACCES; 2350 } 2351 } 2352 2353 if (value_regno >= 0) { 2354 /* restore register state from stack */ 2355 state->regs[value_regno] = *reg; 2356 /* mark reg as written since spilled pointer state likely 2357 * has its liveness marks cleared by is_state_visited() 2358 * which resets stack/reg liveness for state transitions 2359 */ 2360 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2361 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2362 /* If value_regno==-1, the caller is asking us whether 2363 * it is acceptable to use this value as a SCALAR_VALUE 2364 * (e.g. for XADD). 2365 * We must not allow unprivileged callers to do that 2366 * with spilled pointers. 2367 */ 2368 verbose(env, "leaking pointer from stack off %d\n", 2369 off); 2370 return -EACCES; 2371 } 2372 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2373 } else { 2374 int zeros = 0; 2375 2376 for (i = 0; i < size; i++) { 2377 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2378 continue; 2379 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2380 zeros++; 2381 continue; 2382 } 2383 verbose(env, "invalid read from stack off %d+%d size %d\n", 2384 off, i, size); 2385 return -EACCES; 2386 } 2387 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2388 if (value_regno >= 0) { 2389 if (zeros == size) { 2390 /* any size read into register is zero extended, 2391 * so the whole register == const_zero 2392 */ 2393 __mark_reg_const_zero(&state->regs[value_regno]); 2394 /* backtracking doesn't support STACK_ZERO yet, 2395 * so mark it precise here, so that later 2396 * backtracking can stop here. 2397 * Backtracking may not need this if this register 2398 * doesn't participate in pointer adjustment. 2399 * Forward propagation of precise flag is not 2400 * necessary either. This mark is only to stop 2401 * backtracking. Any register that contributed 2402 * to const 0 was marked precise before spill. 2403 */ 2404 state->regs[value_regno].precise = true; 2405 } else { 2406 /* have read misc data from the stack */ 2407 mark_reg_unknown(env, state->regs, value_regno); 2408 } 2409 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2410 } 2411 } 2412 return 0; 2413 } 2414 2415 static int check_stack_access(struct bpf_verifier_env *env, 2416 const struct bpf_reg_state *reg, 2417 int off, int size) 2418 { 2419 /* Stack accesses must be at a fixed offset, so that we 2420 * can determine what type of data were returned. See 2421 * check_stack_read(). 2422 */ 2423 if (!tnum_is_const(reg->var_off)) { 2424 char tn_buf[48]; 2425 2426 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2427 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2428 tn_buf, off, size); 2429 return -EACCES; 2430 } 2431 2432 if (off >= 0 || off < -MAX_BPF_STACK) { 2433 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2434 return -EACCES; 2435 } 2436 2437 return 0; 2438 } 2439 2440 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2441 int off, int size, enum bpf_access_type type) 2442 { 2443 struct bpf_reg_state *regs = cur_regs(env); 2444 struct bpf_map *map = regs[regno].map_ptr; 2445 u32 cap = bpf_map_flags_to_cap(map); 2446 2447 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2448 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2449 map->value_size, off, size); 2450 return -EACCES; 2451 } 2452 2453 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2454 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2455 map->value_size, off, size); 2456 return -EACCES; 2457 } 2458 2459 return 0; 2460 } 2461 2462 /* check read/write into map element returned by bpf_map_lookup_elem() */ 2463 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 2464 int size, bool zero_size_allowed) 2465 { 2466 struct bpf_reg_state *regs = cur_regs(env); 2467 struct bpf_map *map = regs[regno].map_ptr; 2468 2469 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2470 off + size > map->value_size) { 2471 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2472 map->value_size, off, size); 2473 return -EACCES; 2474 } 2475 return 0; 2476 } 2477 2478 /* check read/write into a map element with possible variable offset */ 2479 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2480 int off, int size, bool zero_size_allowed) 2481 { 2482 struct bpf_verifier_state *vstate = env->cur_state; 2483 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2484 struct bpf_reg_state *reg = &state->regs[regno]; 2485 int err; 2486 2487 /* We may have adjusted the register to this map value, so we 2488 * need to try adding each of min_value and max_value to off 2489 * to make sure our theoretical access will be safe. 2490 */ 2491 if (env->log.level & BPF_LOG_LEVEL) 2492 print_verifier_state(env, state); 2493 2494 /* The minimum value is only important with signed 2495 * comparisons where we can't assume the floor of a 2496 * value is 0. If we are using signed variables for our 2497 * index'es we need to make sure that whatever we use 2498 * will have a set floor within our range. 2499 */ 2500 if (reg->smin_value < 0 && 2501 (reg->smin_value == S64_MIN || 2502 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2503 reg->smin_value + off < 0)) { 2504 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2505 regno); 2506 return -EACCES; 2507 } 2508 err = __check_map_access(env, regno, reg->smin_value + off, size, 2509 zero_size_allowed); 2510 if (err) { 2511 verbose(env, "R%d min value is outside of the array range\n", 2512 regno); 2513 return err; 2514 } 2515 2516 /* If we haven't set a max value then we need to bail since we can't be 2517 * sure we won't do bad things. 2518 * If reg->umax_value + off could overflow, treat that as unbounded too. 2519 */ 2520 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2521 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 2522 regno); 2523 return -EACCES; 2524 } 2525 err = __check_map_access(env, regno, reg->umax_value + off, size, 2526 zero_size_allowed); 2527 if (err) 2528 verbose(env, "R%d max value is outside of the array range\n", 2529 regno); 2530 2531 if (map_value_has_spin_lock(reg->map_ptr)) { 2532 u32 lock = reg->map_ptr->spin_lock_off; 2533 2534 /* if any part of struct bpf_spin_lock can be touched by 2535 * load/store reject this program. 2536 * To check that [x1, x2) overlaps with [y1, y2) 2537 * it is sufficient to check x1 < y2 && y1 < x2. 2538 */ 2539 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2540 lock < reg->umax_value + off + size) { 2541 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2542 return -EACCES; 2543 } 2544 } 2545 return err; 2546 } 2547 2548 #define MAX_PACKET_OFF 0xffff 2549 2550 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2551 const struct bpf_call_arg_meta *meta, 2552 enum bpf_access_type t) 2553 { 2554 switch (env->prog->type) { 2555 /* Program types only with direct read access go here! */ 2556 case BPF_PROG_TYPE_LWT_IN: 2557 case BPF_PROG_TYPE_LWT_OUT: 2558 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2559 case BPF_PROG_TYPE_SK_REUSEPORT: 2560 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2561 case BPF_PROG_TYPE_CGROUP_SKB: 2562 if (t == BPF_WRITE) 2563 return false; 2564 /* fallthrough */ 2565 2566 /* Program types with direct read + write access go here! */ 2567 case BPF_PROG_TYPE_SCHED_CLS: 2568 case BPF_PROG_TYPE_SCHED_ACT: 2569 case BPF_PROG_TYPE_XDP: 2570 case BPF_PROG_TYPE_LWT_XMIT: 2571 case BPF_PROG_TYPE_SK_SKB: 2572 case BPF_PROG_TYPE_SK_MSG: 2573 if (meta) 2574 return meta->pkt_access; 2575 2576 env->seen_direct_write = true; 2577 return true; 2578 2579 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2580 if (t == BPF_WRITE) 2581 env->seen_direct_write = true; 2582 2583 return true; 2584 2585 default: 2586 return false; 2587 } 2588 } 2589 2590 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 2591 int off, int size, bool zero_size_allowed) 2592 { 2593 struct bpf_reg_state *regs = cur_regs(env); 2594 struct bpf_reg_state *reg = ®s[regno]; 2595 2596 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2597 (u64)off + size > reg->range) { 2598 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2599 off, size, regno, reg->id, reg->off, reg->range); 2600 return -EACCES; 2601 } 2602 return 0; 2603 } 2604 2605 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2606 int size, bool zero_size_allowed) 2607 { 2608 struct bpf_reg_state *regs = cur_regs(env); 2609 struct bpf_reg_state *reg = ®s[regno]; 2610 int err; 2611 2612 /* We may have added a variable offset to the packet pointer; but any 2613 * reg->range we have comes after that. We are only checking the fixed 2614 * offset. 2615 */ 2616 2617 /* We don't allow negative numbers, because we aren't tracking enough 2618 * detail to prove they're safe. 2619 */ 2620 if (reg->smin_value < 0) { 2621 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2622 regno); 2623 return -EACCES; 2624 } 2625 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 2626 if (err) { 2627 verbose(env, "R%d offset is outside of the packet\n", regno); 2628 return err; 2629 } 2630 2631 /* __check_packet_access has made sure "off + size - 1" is within u16. 2632 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2633 * otherwise find_good_pkt_pointers would have refused to set range info 2634 * that __check_packet_access would have rejected this pkt access. 2635 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2636 */ 2637 env->prog->aux->max_pkt_offset = 2638 max_t(u32, env->prog->aux->max_pkt_offset, 2639 off + reg->umax_value + size - 1); 2640 2641 return err; 2642 } 2643 2644 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2645 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2646 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2647 u32 *btf_id) 2648 { 2649 struct bpf_insn_access_aux info = { 2650 .reg_type = *reg_type, 2651 .log = &env->log, 2652 }; 2653 2654 if (env->ops->is_valid_access && 2655 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2656 /* A non zero info.ctx_field_size indicates that this field is a 2657 * candidate for later verifier transformation to load the whole 2658 * field and then apply a mask when accessed with a narrower 2659 * access than actual ctx access size. A zero info.ctx_field_size 2660 * will only allow for whole field access and rejects any other 2661 * type of narrower access. 2662 */ 2663 *reg_type = info.reg_type; 2664 2665 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) 2666 *btf_id = info.btf_id; 2667 else 2668 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2669 /* remember the offset of last byte accessed in ctx */ 2670 if (env->prog->aux->max_ctx_offset < off + size) 2671 env->prog->aux->max_ctx_offset = off + size; 2672 return 0; 2673 } 2674 2675 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2676 return -EACCES; 2677 } 2678 2679 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2680 int size) 2681 { 2682 if (size < 0 || off < 0 || 2683 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2684 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2685 off, size); 2686 return -EACCES; 2687 } 2688 return 0; 2689 } 2690 2691 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2692 u32 regno, int off, int size, 2693 enum bpf_access_type t) 2694 { 2695 struct bpf_reg_state *regs = cur_regs(env); 2696 struct bpf_reg_state *reg = ®s[regno]; 2697 struct bpf_insn_access_aux info = {}; 2698 bool valid; 2699 2700 if (reg->smin_value < 0) { 2701 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2702 regno); 2703 return -EACCES; 2704 } 2705 2706 switch (reg->type) { 2707 case PTR_TO_SOCK_COMMON: 2708 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2709 break; 2710 case PTR_TO_SOCKET: 2711 valid = bpf_sock_is_valid_access(off, size, t, &info); 2712 break; 2713 case PTR_TO_TCP_SOCK: 2714 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2715 break; 2716 case PTR_TO_XDP_SOCK: 2717 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2718 break; 2719 default: 2720 valid = false; 2721 } 2722 2723 2724 if (valid) { 2725 env->insn_aux_data[insn_idx].ctx_field_size = 2726 info.ctx_field_size; 2727 return 0; 2728 } 2729 2730 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2731 regno, reg_type_str[reg->type], off, size); 2732 2733 return -EACCES; 2734 } 2735 2736 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2737 { 2738 return cur_regs(env) + regno; 2739 } 2740 2741 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2742 { 2743 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2744 } 2745 2746 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2747 { 2748 const struct bpf_reg_state *reg = reg_state(env, regno); 2749 2750 return reg->type == PTR_TO_CTX; 2751 } 2752 2753 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2754 { 2755 const struct bpf_reg_state *reg = reg_state(env, regno); 2756 2757 return type_is_sk_pointer(reg->type); 2758 } 2759 2760 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2761 { 2762 const struct bpf_reg_state *reg = reg_state(env, regno); 2763 2764 return type_is_pkt_pointer(reg->type); 2765 } 2766 2767 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2768 { 2769 const struct bpf_reg_state *reg = reg_state(env, regno); 2770 2771 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2772 return reg->type == PTR_TO_FLOW_KEYS; 2773 } 2774 2775 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2776 const struct bpf_reg_state *reg, 2777 int off, int size, bool strict) 2778 { 2779 struct tnum reg_off; 2780 int ip_align; 2781 2782 /* Byte size accesses are always allowed. */ 2783 if (!strict || size == 1) 2784 return 0; 2785 2786 /* For platforms that do not have a Kconfig enabling 2787 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2788 * NET_IP_ALIGN is universally set to '2'. And on platforms 2789 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2790 * to this code only in strict mode where we want to emulate 2791 * the NET_IP_ALIGN==2 checking. Therefore use an 2792 * unconditional IP align value of '2'. 2793 */ 2794 ip_align = 2; 2795 2796 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2797 if (!tnum_is_aligned(reg_off, size)) { 2798 char tn_buf[48]; 2799 2800 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2801 verbose(env, 2802 "misaligned packet access off %d+%s+%d+%d size %d\n", 2803 ip_align, tn_buf, reg->off, off, size); 2804 return -EACCES; 2805 } 2806 2807 return 0; 2808 } 2809 2810 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2811 const struct bpf_reg_state *reg, 2812 const char *pointer_desc, 2813 int off, int size, bool strict) 2814 { 2815 struct tnum reg_off; 2816 2817 /* Byte size accesses are always allowed. */ 2818 if (!strict || size == 1) 2819 return 0; 2820 2821 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2822 if (!tnum_is_aligned(reg_off, size)) { 2823 char tn_buf[48]; 2824 2825 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2826 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2827 pointer_desc, tn_buf, reg->off, off, size); 2828 return -EACCES; 2829 } 2830 2831 return 0; 2832 } 2833 2834 static int check_ptr_alignment(struct bpf_verifier_env *env, 2835 const struct bpf_reg_state *reg, int off, 2836 int size, bool strict_alignment_once) 2837 { 2838 bool strict = env->strict_alignment || strict_alignment_once; 2839 const char *pointer_desc = ""; 2840 2841 switch (reg->type) { 2842 case PTR_TO_PACKET: 2843 case PTR_TO_PACKET_META: 2844 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2845 * right in front, treat it the very same way. 2846 */ 2847 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2848 case PTR_TO_FLOW_KEYS: 2849 pointer_desc = "flow keys "; 2850 break; 2851 case PTR_TO_MAP_VALUE: 2852 pointer_desc = "value "; 2853 break; 2854 case PTR_TO_CTX: 2855 pointer_desc = "context "; 2856 break; 2857 case PTR_TO_STACK: 2858 pointer_desc = "stack "; 2859 /* The stack spill tracking logic in check_stack_write() 2860 * and check_stack_read() relies on stack accesses being 2861 * aligned. 2862 */ 2863 strict = true; 2864 break; 2865 case PTR_TO_SOCKET: 2866 pointer_desc = "sock "; 2867 break; 2868 case PTR_TO_SOCK_COMMON: 2869 pointer_desc = "sock_common "; 2870 break; 2871 case PTR_TO_TCP_SOCK: 2872 pointer_desc = "tcp_sock "; 2873 break; 2874 case PTR_TO_XDP_SOCK: 2875 pointer_desc = "xdp_sock "; 2876 break; 2877 default: 2878 break; 2879 } 2880 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2881 strict); 2882 } 2883 2884 static int update_stack_depth(struct bpf_verifier_env *env, 2885 const struct bpf_func_state *func, 2886 int off) 2887 { 2888 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2889 2890 if (stack >= -off) 2891 return 0; 2892 2893 /* update known max for given subprogram */ 2894 env->subprog_info[func->subprogno].stack_depth = -off; 2895 return 0; 2896 } 2897 2898 /* starting from main bpf function walk all instructions of the function 2899 * and recursively walk all callees that given function can call. 2900 * Ignore jump and exit insns. 2901 * Since recursion is prevented by check_cfg() this algorithm 2902 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2903 */ 2904 static int check_max_stack_depth(struct bpf_verifier_env *env) 2905 { 2906 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2907 struct bpf_subprog_info *subprog = env->subprog_info; 2908 struct bpf_insn *insn = env->prog->insnsi; 2909 int ret_insn[MAX_CALL_FRAMES]; 2910 int ret_prog[MAX_CALL_FRAMES]; 2911 2912 process_func: 2913 /* round up to 32-bytes, since this is granularity 2914 * of interpreter stack size 2915 */ 2916 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2917 if (depth > MAX_BPF_STACK) { 2918 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2919 frame + 1, depth); 2920 return -EACCES; 2921 } 2922 continue_func: 2923 subprog_end = subprog[idx + 1].start; 2924 for (; i < subprog_end; i++) { 2925 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2926 continue; 2927 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2928 continue; 2929 /* remember insn and function to return to */ 2930 ret_insn[frame] = i + 1; 2931 ret_prog[frame] = idx; 2932 2933 /* find the callee */ 2934 i = i + insn[i].imm + 1; 2935 idx = find_subprog(env, i); 2936 if (idx < 0) { 2937 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2938 i); 2939 return -EFAULT; 2940 } 2941 frame++; 2942 if (frame >= MAX_CALL_FRAMES) { 2943 verbose(env, "the call stack of %d frames is too deep !\n", 2944 frame); 2945 return -E2BIG; 2946 } 2947 goto process_func; 2948 } 2949 /* end of for() loop means the last insn of the 'subprog' 2950 * was reached. Doesn't matter whether it was JA or EXIT 2951 */ 2952 if (frame == 0) 2953 return 0; 2954 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2955 frame--; 2956 i = ret_insn[frame]; 2957 idx = ret_prog[frame]; 2958 goto continue_func; 2959 } 2960 2961 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2962 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2963 const struct bpf_insn *insn, int idx) 2964 { 2965 int start = idx + insn->imm + 1, subprog; 2966 2967 subprog = find_subprog(env, start); 2968 if (subprog < 0) { 2969 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2970 start); 2971 return -EFAULT; 2972 } 2973 return env->subprog_info[subprog].stack_depth; 2974 } 2975 #endif 2976 2977 int check_ctx_reg(struct bpf_verifier_env *env, 2978 const struct bpf_reg_state *reg, int regno) 2979 { 2980 /* Access to ctx or passing it to a helper is only allowed in 2981 * its original, unmodified form. 2982 */ 2983 2984 if (reg->off) { 2985 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2986 regno, reg->off); 2987 return -EACCES; 2988 } 2989 2990 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2991 char tn_buf[48]; 2992 2993 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2994 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2995 return -EACCES; 2996 } 2997 2998 return 0; 2999 } 3000 3001 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3002 const struct bpf_reg_state *reg, 3003 int regno, int off, int size) 3004 { 3005 if (off < 0) { 3006 verbose(env, 3007 "R%d invalid tracepoint buffer access: off=%d, size=%d", 3008 regno, off, size); 3009 return -EACCES; 3010 } 3011 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3012 char tn_buf[48]; 3013 3014 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3015 verbose(env, 3016 "R%d invalid variable buffer offset: off=%d, var_off=%s", 3017 regno, off, tn_buf); 3018 return -EACCES; 3019 } 3020 if (off + size > env->prog->aux->max_tp_access) 3021 env->prog->aux->max_tp_access = off + size; 3022 3023 return 0; 3024 } 3025 3026 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3027 static void zext_32_to_64(struct bpf_reg_state *reg) 3028 { 3029 reg->var_off = tnum_subreg(reg->var_off); 3030 __reg_assign_32_into_64(reg); 3031 } 3032 3033 /* truncate register to smaller size (in bytes) 3034 * must be called with size < BPF_REG_SIZE 3035 */ 3036 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3037 { 3038 u64 mask; 3039 3040 /* clear high bits in bit representation */ 3041 reg->var_off = tnum_cast(reg->var_off, size); 3042 3043 /* fix arithmetic bounds */ 3044 mask = ((u64)1 << (size * 8)) - 1; 3045 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3046 reg->umin_value &= mask; 3047 reg->umax_value &= mask; 3048 } else { 3049 reg->umin_value = 0; 3050 reg->umax_value = mask; 3051 } 3052 reg->smin_value = reg->umin_value; 3053 reg->smax_value = reg->umax_value; 3054 3055 /* If size is smaller than 32bit register the 32bit register 3056 * values are also truncated so we push 64-bit bounds into 3057 * 32-bit bounds. Above were truncated < 32-bits already. 3058 */ 3059 if (size >= 4) 3060 return; 3061 __reg_combine_64_into_32(reg); 3062 } 3063 3064 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3065 { 3066 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3067 } 3068 3069 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3070 { 3071 void *ptr; 3072 u64 addr; 3073 int err; 3074 3075 err = map->ops->map_direct_value_addr(map, &addr, off); 3076 if (err) 3077 return err; 3078 ptr = (void *)(long)addr + off; 3079 3080 switch (size) { 3081 case sizeof(u8): 3082 *val = (u64)*(u8 *)ptr; 3083 break; 3084 case sizeof(u16): 3085 *val = (u64)*(u16 *)ptr; 3086 break; 3087 case sizeof(u32): 3088 *val = (u64)*(u32 *)ptr; 3089 break; 3090 case sizeof(u64): 3091 *val = *(u64 *)ptr; 3092 break; 3093 default: 3094 return -EINVAL; 3095 } 3096 return 0; 3097 } 3098 3099 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3100 struct bpf_reg_state *regs, 3101 int regno, int off, int size, 3102 enum bpf_access_type atype, 3103 int value_regno) 3104 { 3105 struct bpf_reg_state *reg = regs + regno; 3106 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 3107 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3108 u32 btf_id; 3109 int ret; 3110 3111 if (off < 0) { 3112 verbose(env, 3113 "R%d is ptr_%s invalid negative access: off=%d\n", 3114 regno, tname, off); 3115 return -EACCES; 3116 } 3117 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3118 char tn_buf[48]; 3119 3120 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3121 verbose(env, 3122 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3123 regno, tname, off, tn_buf); 3124 return -EACCES; 3125 } 3126 3127 if (env->ops->btf_struct_access) { 3128 ret = env->ops->btf_struct_access(&env->log, t, off, size, 3129 atype, &btf_id); 3130 } else { 3131 if (atype != BPF_READ) { 3132 verbose(env, "only read is supported\n"); 3133 return -EACCES; 3134 } 3135 3136 ret = btf_struct_access(&env->log, t, off, size, atype, 3137 &btf_id); 3138 } 3139 3140 if (ret < 0) 3141 return ret; 3142 3143 if (atype == BPF_READ && value_regno >= 0) { 3144 if (ret == SCALAR_VALUE) { 3145 mark_reg_unknown(env, regs, value_regno); 3146 return 0; 3147 } 3148 mark_reg_known_zero(env, regs, value_regno); 3149 regs[value_regno].type = PTR_TO_BTF_ID; 3150 regs[value_regno].btf_id = btf_id; 3151 } 3152 3153 return 0; 3154 } 3155 3156 /* check whether memory at (regno + off) is accessible for t = (read | write) 3157 * if t==write, value_regno is a register which value is stored into memory 3158 * if t==read, value_regno is a register which will receive the value from memory 3159 * if t==write && value_regno==-1, some unknown value is stored into memory 3160 * if t==read && value_regno==-1, don't care what we read from memory 3161 */ 3162 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 3163 int off, int bpf_size, enum bpf_access_type t, 3164 int value_regno, bool strict_alignment_once) 3165 { 3166 struct bpf_reg_state *regs = cur_regs(env); 3167 struct bpf_reg_state *reg = regs + regno; 3168 struct bpf_func_state *state; 3169 int size, err = 0; 3170 3171 size = bpf_size_to_bytes(bpf_size); 3172 if (size < 0) 3173 return size; 3174 3175 /* alignment checks will add in reg->off themselves */ 3176 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3177 if (err) 3178 return err; 3179 3180 /* for access checks, reg->off is just part of off */ 3181 off += reg->off; 3182 3183 if (reg->type == PTR_TO_MAP_VALUE) { 3184 if (t == BPF_WRITE && value_regno >= 0 && 3185 is_pointer_value(env, value_regno)) { 3186 verbose(env, "R%d leaks addr into map\n", value_regno); 3187 return -EACCES; 3188 } 3189 err = check_map_access_type(env, regno, off, size, t); 3190 if (err) 3191 return err; 3192 err = check_map_access(env, regno, off, size, false); 3193 if (!err && t == BPF_READ && value_regno >= 0) { 3194 struct bpf_map *map = reg->map_ptr; 3195 3196 /* if map is read-only, track its contents as scalars */ 3197 if (tnum_is_const(reg->var_off) && 3198 bpf_map_is_rdonly(map) && 3199 map->ops->map_direct_value_addr) { 3200 int map_off = off + reg->var_off.value; 3201 u64 val = 0; 3202 3203 err = bpf_map_direct_read(map, map_off, size, 3204 &val); 3205 if (err) 3206 return err; 3207 3208 regs[value_regno].type = SCALAR_VALUE; 3209 __mark_reg_known(®s[value_regno], val); 3210 } else { 3211 mark_reg_unknown(env, regs, value_regno); 3212 } 3213 } 3214 } else if (reg->type == PTR_TO_CTX) { 3215 enum bpf_reg_type reg_type = SCALAR_VALUE; 3216 u32 btf_id = 0; 3217 3218 if (t == BPF_WRITE && value_regno >= 0 && 3219 is_pointer_value(env, value_regno)) { 3220 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3221 return -EACCES; 3222 } 3223 3224 err = check_ctx_reg(env, reg, regno); 3225 if (err < 0) 3226 return err; 3227 3228 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 3229 if (err) 3230 verbose_linfo(env, insn_idx, "; "); 3231 if (!err && t == BPF_READ && value_regno >= 0) { 3232 /* ctx access returns either a scalar, or a 3233 * PTR_TO_PACKET[_META,_END]. In the latter 3234 * case, we know the offset is zero. 3235 */ 3236 if (reg_type == SCALAR_VALUE) { 3237 mark_reg_unknown(env, regs, value_regno); 3238 } else { 3239 mark_reg_known_zero(env, regs, 3240 value_regno); 3241 if (reg_type_may_be_null(reg_type)) 3242 regs[value_regno].id = ++env->id_gen; 3243 /* A load of ctx field could have different 3244 * actual load size with the one encoded in the 3245 * insn. When the dst is PTR, it is for sure not 3246 * a sub-register. 3247 */ 3248 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3249 if (reg_type == PTR_TO_BTF_ID || 3250 reg_type == PTR_TO_BTF_ID_OR_NULL) 3251 regs[value_regno].btf_id = btf_id; 3252 } 3253 regs[value_regno].type = reg_type; 3254 } 3255 3256 } else if (reg->type == PTR_TO_STACK) { 3257 off += reg->var_off.value; 3258 err = check_stack_access(env, reg, off, size); 3259 if (err) 3260 return err; 3261 3262 state = func(env, reg); 3263 err = update_stack_depth(env, state, off); 3264 if (err) 3265 return err; 3266 3267 if (t == BPF_WRITE) 3268 err = check_stack_write(env, state, off, size, 3269 value_regno, insn_idx); 3270 else 3271 err = check_stack_read(env, state, off, size, 3272 value_regno); 3273 } else if (reg_is_pkt_pointer(reg)) { 3274 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3275 verbose(env, "cannot write into packet\n"); 3276 return -EACCES; 3277 } 3278 if (t == BPF_WRITE && value_regno >= 0 && 3279 is_pointer_value(env, value_regno)) { 3280 verbose(env, "R%d leaks addr into packet\n", 3281 value_regno); 3282 return -EACCES; 3283 } 3284 err = check_packet_access(env, regno, off, size, false); 3285 if (!err && t == BPF_READ && value_regno >= 0) 3286 mark_reg_unknown(env, regs, value_regno); 3287 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3288 if (t == BPF_WRITE && value_regno >= 0 && 3289 is_pointer_value(env, value_regno)) { 3290 verbose(env, "R%d leaks addr into flow keys\n", 3291 value_regno); 3292 return -EACCES; 3293 } 3294 3295 err = check_flow_keys_access(env, off, size); 3296 if (!err && t == BPF_READ && value_regno >= 0) 3297 mark_reg_unknown(env, regs, value_regno); 3298 } else if (type_is_sk_pointer(reg->type)) { 3299 if (t == BPF_WRITE) { 3300 verbose(env, "R%d cannot write into %s\n", 3301 regno, reg_type_str[reg->type]); 3302 return -EACCES; 3303 } 3304 err = check_sock_access(env, insn_idx, regno, off, size, t); 3305 if (!err && value_regno >= 0) 3306 mark_reg_unknown(env, regs, value_regno); 3307 } else if (reg->type == PTR_TO_TP_BUFFER) { 3308 err = check_tp_buffer_access(env, reg, regno, off, size); 3309 if (!err && t == BPF_READ && value_regno >= 0) 3310 mark_reg_unknown(env, regs, value_regno); 3311 } else if (reg->type == PTR_TO_BTF_ID) { 3312 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3313 value_regno); 3314 } else { 3315 verbose(env, "R%d invalid mem access '%s'\n", regno, 3316 reg_type_str[reg->type]); 3317 return -EACCES; 3318 } 3319 3320 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3321 regs[value_regno].type == SCALAR_VALUE) { 3322 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3323 coerce_reg_to_size(®s[value_regno], size); 3324 } 3325 return err; 3326 } 3327 3328 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3329 { 3330 int err; 3331 3332 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3333 insn->imm != 0) { 3334 verbose(env, "BPF_XADD uses reserved fields\n"); 3335 return -EINVAL; 3336 } 3337 3338 /* check src1 operand */ 3339 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3340 if (err) 3341 return err; 3342 3343 /* check src2 operand */ 3344 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3345 if (err) 3346 return err; 3347 3348 if (is_pointer_value(env, insn->src_reg)) { 3349 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3350 return -EACCES; 3351 } 3352 3353 if (is_ctx_reg(env, insn->dst_reg) || 3354 is_pkt_reg(env, insn->dst_reg) || 3355 is_flow_key_reg(env, insn->dst_reg) || 3356 is_sk_reg(env, insn->dst_reg)) { 3357 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3358 insn->dst_reg, 3359 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3360 return -EACCES; 3361 } 3362 3363 /* check whether atomic_add can read the memory */ 3364 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3365 BPF_SIZE(insn->code), BPF_READ, -1, true); 3366 if (err) 3367 return err; 3368 3369 /* check whether atomic_add can write into the same memory */ 3370 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3371 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3372 } 3373 3374 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3375 int off, int access_size, 3376 bool zero_size_allowed) 3377 { 3378 struct bpf_reg_state *reg = reg_state(env, regno); 3379 3380 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3381 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3382 if (tnum_is_const(reg->var_off)) { 3383 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3384 regno, off, access_size); 3385 } else { 3386 char tn_buf[48]; 3387 3388 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3389 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3390 regno, tn_buf, access_size); 3391 } 3392 return -EACCES; 3393 } 3394 return 0; 3395 } 3396 3397 /* when register 'regno' is passed into function that will read 'access_size' 3398 * bytes from that pointer, make sure that it's within stack boundary 3399 * and all elements of stack are initialized. 3400 * Unlike most pointer bounds-checking functions, this one doesn't take an 3401 * 'off' argument, so it has to add in reg->off itself. 3402 */ 3403 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3404 int access_size, bool zero_size_allowed, 3405 struct bpf_call_arg_meta *meta) 3406 { 3407 struct bpf_reg_state *reg = reg_state(env, regno); 3408 struct bpf_func_state *state = func(env, reg); 3409 int err, min_off, max_off, i, j, slot, spi; 3410 3411 if (reg->type != PTR_TO_STACK) { 3412 /* Allow zero-byte read from NULL, regardless of pointer type */ 3413 if (zero_size_allowed && access_size == 0 && 3414 register_is_null(reg)) 3415 return 0; 3416 3417 verbose(env, "R%d type=%s expected=%s\n", regno, 3418 reg_type_str[reg->type], 3419 reg_type_str[PTR_TO_STACK]); 3420 return -EACCES; 3421 } 3422 3423 if (tnum_is_const(reg->var_off)) { 3424 min_off = max_off = reg->var_off.value + reg->off; 3425 err = __check_stack_boundary(env, regno, min_off, access_size, 3426 zero_size_allowed); 3427 if (err) 3428 return err; 3429 } else { 3430 /* Variable offset is prohibited for unprivileged mode for 3431 * simplicity since it requires corresponding support in 3432 * Spectre masking for stack ALU. 3433 * See also retrieve_ptr_limit(). 3434 */ 3435 if (!env->allow_ptr_leaks) { 3436 char tn_buf[48]; 3437 3438 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3439 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3440 regno, tn_buf); 3441 return -EACCES; 3442 } 3443 /* Only initialized buffer on stack is allowed to be accessed 3444 * with variable offset. With uninitialized buffer it's hard to 3445 * guarantee that whole memory is marked as initialized on 3446 * helper return since specific bounds are unknown what may 3447 * cause uninitialized stack leaking. 3448 */ 3449 if (meta && meta->raw_mode) 3450 meta = NULL; 3451 3452 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3453 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3454 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3455 regno); 3456 return -EACCES; 3457 } 3458 min_off = reg->smin_value + reg->off; 3459 max_off = reg->smax_value + reg->off; 3460 err = __check_stack_boundary(env, regno, min_off, access_size, 3461 zero_size_allowed); 3462 if (err) { 3463 verbose(env, "R%d min value is outside of stack bound\n", 3464 regno); 3465 return err; 3466 } 3467 err = __check_stack_boundary(env, regno, max_off, access_size, 3468 zero_size_allowed); 3469 if (err) { 3470 verbose(env, "R%d max value is outside of stack bound\n", 3471 regno); 3472 return err; 3473 } 3474 } 3475 3476 if (meta && meta->raw_mode) { 3477 meta->access_size = access_size; 3478 meta->regno = regno; 3479 return 0; 3480 } 3481 3482 for (i = min_off; i < max_off + access_size; i++) { 3483 u8 *stype; 3484 3485 slot = -i - 1; 3486 spi = slot / BPF_REG_SIZE; 3487 if (state->allocated_stack <= slot) 3488 goto err; 3489 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3490 if (*stype == STACK_MISC) 3491 goto mark; 3492 if (*stype == STACK_ZERO) { 3493 /* helper can write anything into the stack */ 3494 *stype = STACK_MISC; 3495 goto mark; 3496 } 3497 3498 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3499 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 3500 goto mark; 3501 3502 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3503 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3504 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3505 for (j = 0; j < BPF_REG_SIZE; j++) 3506 state->stack[spi].slot_type[j] = STACK_MISC; 3507 goto mark; 3508 } 3509 3510 err: 3511 if (tnum_is_const(reg->var_off)) { 3512 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3513 min_off, i - min_off, access_size); 3514 } else { 3515 char tn_buf[48]; 3516 3517 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3518 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3519 tn_buf, i - min_off, access_size); 3520 } 3521 return -EACCES; 3522 mark: 3523 /* reading any byte out of 8-byte 'spill_slot' will cause 3524 * the whole slot to be marked as 'read' 3525 */ 3526 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3527 state->stack[spi].spilled_ptr.parent, 3528 REG_LIVE_READ64); 3529 } 3530 return update_stack_depth(env, state, min_off); 3531 } 3532 3533 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3534 int access_size, bool zero_size_allowed, 3535 struct bpf_call_arg_meta *meta) 3536 { 3537 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3538 3539 switch (reg->type) { 3540 case PTR_TO_PACKET: 3541 case PTR_TO_PACKET_META: 3542 return check_packet_access(env, regno, reg->off, access_size, 3543 zero_size_allowed); 3544 case PTR_TO_MAP_VALUE: 3545 if (check_map_access_type(env, regno, reg->off, access_size, 3546 meta && meta->raw_mode ? BPF_WRITE : 3547 BPF_READ)) 3548 return -EACCES; 3549 return check_map_access(env, regno, reg->off, access_size, 3550 zero_size_allowed); 3551 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3552 return check_stack_boundary(env, regno, access_size, 3553 zero_size_allowed, meta); 3554 } 3555 } 3556 3557 /* Implementation details: 3558 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3559 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3560 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3561 * value_or_null->value transition, since the verifier only cares about 3562 * the range of access to valid map value pointer and doesn't care about actual 3563 * address of the map element. 3564 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3565 * reg->id > 0 after value_or_null->value transition. By doing so 3566 * two bpf_map_lookups will be considered two different pointers that 3567 * point to different bpf_spin_locks. 3568 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3569 * dead-locks. 3570 * Since only one bpf_spin_lock is allowed the checks are simpler than 3571 * reg_is_refcounted() logic. The verifier needs to remember only 3572 * one spin_lock instead of array of acquired_refs. 3573 * cur_state->active_spin_lock remembers which map value element got locked 3574 * and clears it after bpf_spin_unlock. 3575 */ 3576 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3577 bool is_lock) 3578 { 3579 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3580 struct bpf_verifier_state *cur = env->cur_state; 3581 bool is_const = tnum_is_const(reg->var_off); 3582 struct bpf_map *map = reg->map_ptr; 3583 u64 val = reg->var_off.value; 3584 3585 if (reg->type != PTR_TO_MAP_VALUE) { 3586 verbose(env, "R%d is not a pointer to map_value\n", regno); 3587 return -EINVAL; 3588 } 3589 if (!is_const) { 3590 verbose(env, 3591 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3592 regno); 3593 return -EINVAL; 3594 } 3595 if (!map->btf) { 3596 verbose(env, 3597 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3598 map->name); 3599 return -EINVAL; 3600 } 3601 if (!map_value_has_spin_lock(map)) { 3602 if (map->spin_lock_off == -E2BIG) 3603 verbose(env, 3604 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3605 map->name); 3606 else if (map->spin_lock_off == -ENOENT) 3607 verbose(env, 3608 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3609 map->name); 3610 else 3611 verbose(env, 3612 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3613 map->name); 3614 return -EINVAL; 3615 } 3616 if (map->spin_lock_off != val + reg->off) { 3617 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3618 val + reg->off); 3619 return -EINVAL; 3620 } 3621 if (is_lock) { 3622 if (cur->active_spin_lock) { 3623 verbose(env, 3624 "Locking two bpf_spin_locks are not allowed\n"); 3625 return -EINVAL; 3626 } 3627 cur->active_spin_lock = reg->id; 3628 } else { 3629 if (!cur->active_spin_lock) { 3630 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3631 return -EINVAL; 3632 } 3633 if (cur->active_spin_lock != reg->id) { 3634 verbose(env, "bpf_spin_unlock of different lock\n"); 3635 return -EINVAL; 3636 } 3637 cur->active_spin_lock = 0; 3638 } 3639 return 0; 3640 } 3641 3642 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3643 { 3644 return type == ARG_PTR_TO_MEM || 3645 type == ARG_PTR_TO_MEM_OR_NULL || 3646 type == ARG_PTR_TO_UNINIT_MEM; 3647 } 3648 3649 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3650 { 3651 return type == ARG_CONST_SIZE || 3652 type == ARG_CONST_SIZE_OR_ZERO; 3653 } 3654 3655 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3656 { 3657 return type == ARG_PTR_TO_INT || 3658 type == ARG_PTR_TO_LONG; 3659 } 3660 3661 static int int_ptr_type_to_size(enum bpf_arg_type type) 3662 { 3663 if (type == ARG_PTR_TO_INT) 3664 return sizeof(u32); 3665 else if (type == ARG_PTR_TO_LONG) 3666 return sizeof(u64); 3667 3668 return -EINVAL; 3669 } 3670 3671 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3672 enum bpf_arg_type arg_type, 3673 struct bpf_call_arg_meta *meta) 3674 { 3675 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3676 enum bpf_reg_type expected_type, type = reg->type; 3677 int err = 0; 3678 3679 if (arg_type == ARG_DONTCARE) 3680 return 0; 3681 3682 err = check_reg_arg(env, regno, SRC_OP); 3683 if (err) 3684 return err; 3685 3686 if (arg_type == ARG_ANYTHING) { 3687 if (is_pointer_value(env, regno)) { 3688 verbose(env, "R%d leaks addr into helper function\n", 3689 regno); 3690 return -EACCES; 3691 } 3692 return 0; 3693 } 3694 3695 if (type_is_pkt_pointer(type) && 3696 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3697 verbose(env, "helper access to the packet is not allowed\n"); 3698 return -EACCES; 3699 } 3700 3701 if (arg_type == ARG_PTR_TO_MAP_KEY || 3702 arg_type == ARG_PTR_TO_MAP_VALUE || 3703 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3704 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3705 expected_type = PTR_TO_STACK; 3706 if (register_is_null(reg) && 3707 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3708 /* final test in check_stack_boundary() */; 3709 else if (!type_is_pkt_pointer(type) && 3710 type != PTR_TO_MAP_VALUE && 3711 type != expected_type) 3712 goto err_type; 3713 } else if (arg_type == ARG_CONST_SIZE || 3714 arg_type == ARG_CONST_SIZE_OR_ZERO) { 3715 expected_type = SCALAR_VALUE; 3716 if (type != expected_type) 3717 goto err_type; 3718 } else if (arg_type == ARG_CONST_MAP_PTR) { 3719 expected_type = CONST_PTR_TO_MAP; 3720 if (type != expected_type) 3721 goto err_type; 3722 } else if (arg_type == ARG_PTR_TO_CTX || 3723 arg_type == ARG_PTR_TO_CTX_OR_NULL) { 3724 expected_type = PTR_TO_CTX; 3725 if (!(register_is_null(reg) && 3726 arg_type == ARG_PTR_TO_CTX_OR_NULL)) { 3727 if (type != expected_type) 3728 goto err_type; 3729 err = check_ctx_reg(env, reg, regno); 3730 if (err < 0) 3731 return err; 3732 } 3733 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3734 expected_type = PTR_TO_SOCK_COMMON; 3735 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3736 if (!type_is_sk_pointer(type)) 3737 goto err_type; 3738 if (reg->ref_obj_id) { 3739 if (meta->ref_obj_id) { 3740 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3741 regno, reg->ref_obj_id, 3742 meta->ref_obj_id); 3743 return -EFAULT; 3744 } 3745 meta->ref_obj_id = reg->ref_obj_id; 3746 } 3747 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3748 expected_type = PTR_TO_SOCKET; 3749 if (type != expected_type) 3750 goto err_type; 3751 } else if (arg_type == ARG_PTR_TO_BTF_ID) { 3752 expected_type = PTR_TO_BTF_ID; 3753 if (type != expected_type) 3754 goto err_type; 3755 if (reg->btf_id != meta->btf_id) { 3756 verbose(env, "Helper has type %s got %s in R%d\n", 3757 kernel_type_name(meta->btf_id), 3758 kernel_type_name(reg->btf_id), regno); 3759 3760 return -EACCES; 3761 } 3762 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) { 3763 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 3764 regno); 3765 return -EACCES; 3766 } 3767 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3768 if (meta->func_id == BPF_FUNC_spin_lock) { 3769 if (process_spin_lock(env, regno, true)) 3770 return -EACCES; 3771 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3772 if (process_spin_lock(env, regno, false)) 3773 return -EACCES; 3774 } else { 3775 verbose(env, "verifier internal error\n"); 3776 return -EFAULT; 3777 } 3778 } else if (arg_type_is_mem_ptr(arg_type)) { 3779 expected_type = PTR_TO_STACK; 3780 /* One exception here. In case function allows for NULL to be 3781 * passed in as argument, it's a SCALAR_VALUE type. Final test 3782 * happens during stack boundary checking. 3783 */ 3784 if (register_is_null(reg) && 3785 arg_type == ARG_PTR_TO_MEM_OR_NULL) 3786 /* final test in check_stack_boundary() */; 3787 else if (!type_is_pkt_pointer(type) && 3788 type != PTR_TO_MAP_VALUE && 3789 type != expected_type) 3790 goto err_type; 3791 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3792 } else if (arg_type_is_int_ptr(arg_type)) { 3793 expected_type = PTR_TO_STACK; 3794 if (!type_is_pkt_pointer(type) && 3795 type != PTR_TO_MAP_VALUE && 3796 type != expected_type) 3797 goto err_type; 3798 } else { 3799 verbose(env, "unsupported arg_type %d\n", arg_type); 3800 return -EFAULT; 3801 } 3802 3803 if (arg_type == ARG_CONST_MAP_PTR) { 3804 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3805 meta->map_ptr = reg->map_ptr; 3806 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3807 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3808 * check that [key, key + map->key_size) are within 3809 * stack limits and initialized 3810 */ 3811 if (!meta->map_ptr) { 3812 /* in function declaration map_ptr must come before 3813 * map_key, so that it's verified and known before 3814 * we have to check map_key here. Otherwise it means 3815 * that kernel subsystem misconfigured verifier 3816 */ 3817 verbose(env, "invalid map_ptr to access map->key\n"); 3818 return -EACCES; 3819 } 3820 err = check_helper_mem_access(env, regno, 3821 meta->map_ptr->key_size, false, 3822 NULL); 3823 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3824 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3825 !register_is_null(reg)) || 3826 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3827 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3828 * check [value, value + map->value_size) validity 3829 */ 3830 if (!meta->map_ptr) { 3831 /* kernel subsystem misconfigured verifier */ 3832 verbose(env, "invalid map_ptr to access map->value\n"); 3833 return -EACCES; 3834 } 3835 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3836 err = check_helper_mem_access(env, regno, 3837 meta->map_ptr->value_size, false, 3838 meta); 3839 } else if (arg_type_is_mem_size(arg_type)) { 3840 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3841 3842 /* This is used to refine r0 return value bounds for helpers 3843 * that enforce this value as an upper bound on return values. 3844 * See do_refine_retval_range() for helpers that can refine 3845 * the return value. C type of helper is u32 so we pull register 3846 * bound from umax_value however, if negative verifier errors 3847 * out. Only upper bounds can be learned because retval is an 3848 * int type and negative retvals are allowed. 3849 */ 3850 meta->msize_max_value = reg->umax_value; 3851 3852 /* The register is SCALAR_VALUE; the access check 3853 * happens using its boundaries. 3854 */ 3855 if (!tnum_is_const(reg->var_off)) 3856 /* For unprivileged variable accesses, disable raw 3857 * mode so that the program is required to 3858 * initialize all the memory that the helper could 3859 * just partially fill up. 3860 */ 3861 meta = NULL; 3862 3863 if (reg->smin_value < 0) { 3864 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3865 regno); 3866 return -EACCES; 3867 } 3868 3869 if (reg->umin_value == 0) { 3870 err = check_helper_mem_access(env, regno - 1, 0, 3871 zero_size_allowed, 3872 meta); 3873 if (err) 3874 return err; 3875 } 3876 3877 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3878 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3879 regno); 3880 return -EACCES; 3881 } 3882 err = check_helper_mem_access(env, regno - 1, 3883 reg->umax_value, 3884 zero_size_allowed, meta); 3885 if (!err) 3886 err = mark_chain_precision(env, regno); 3887 } else if (arg_type_is_int_ptr(arg_type)) { 3888 int size = int_ptr_type_to_size(arg_type); 3889 3890 err = check_helper_mem_access(env, regno, size, false, meta); 3891 if (err) 3892 return err; 3893 err = check_ptr_alignment(env, reg, 0, size, true); 3894 } 3895 3896 return err; 3897 err_type: 3898 verbose(env, "R%d type=%s expected=%s\n", regno, 3899 reg_type_str[type], reg_type_str[expected_type]); 3900 return -EACCES; 3901 } 3902 3903 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3904 struct bpf_map *map, int func_id) 3905 { 3906 if (!map) 3907 return 0; 3908 3909 /* We need a two way check, first is from map perspective ... */ 3910 switch (map->map_type) { 3911 case BPF_MAP_TYPE_PROG_ARRAY: 3912 if (func_id != BPF_FUNC_tail_call) 3913 goto error; 3914 break; 3915 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 3916 if (func_id != BPF_FUNC_perf_event_read && 3917 func_id != BPF_FUNC_perf_event_output && 3918 func_id != BPF_FUNC_skb_output && 3919 func_id != BPF_FUNC_perf_event_read_value && 3920 func_id != BPF_FUNC_xdp_output) 3921 goto error; 3922 break; 3923 case BPF_MAP_TYPE_STACK_TRACE: 3924 if (func_id != BPF_FUNC_get_stackid) 3925 goto error; 3926 break; 3927 case BPF_MAP_TYPE_CGROUP_ARRAY: 3928 if (func_id != BPF_FUNC_skb_under_cgroup && 3929 func_id != BPF_FUNC_current_task_under_cgroup) 3930 goto error; 3931 break; 3932 case BPF_MAP_TYPE_CGROUP_STORAGE: 3933 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 3934 if (func_id != BPF_FUNC_get_local_storage) 3935 goto error; 3936 break; 3937 case BPF_MAP_TYPE_DEVMAP: 3938 case BPF_MAP_TYPE_DEVMAP_HASH: 3939 if (func_id != BPF_FUNC_redirect_map && 3940 func_id != BPF_FUNC_map_lookup_elem) 3941 goto error; 3942 break; 3943 /* Restrict bpf side of cpumap and xskmap, open when use-cases 3944 * appear. 3945 */ 3946 case BPF_MAP_TYPE_CPUMAP: 3947 if (func_id != BPF_FUNC_redirect_map) 3948 goto error; 3949 break; 3950 case BPF_MAP_TYPE_XSKMAP: 3951 if (func_id != BPF_FUNC_redirect_map && 3952 func_id != BPF_FUNC_map_lookup_elem) 3953 goto error; 3954 break; 3955 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 3956 case BPF_MAP_TYPE_HASH_OF_MAPS: 3957 if (func_id != BPF_FUNC_map_lookup_elem) 3958 goto error; 3959 break; 3960 case BPF_MAP_TYPE_SOCKMAP: 3961 if (func_id != BPF_FUNC_sk_redirect_map && 3962 func_id != BPF_FUNC_sock_map_update && 3963 func_id != BPF_FUNC_map_delete_elem && 3964 func_id != BPF_FUNC_msg_redirect_map && 3965 func_id != BPF_FUNC_sk_select_reuseport && 3966 func_id != BPF_FUNC_map_lookup_elem) 3967 goto error; 3968 break; 3969 case BPF_MAP_TYPE_SOCKHASH: 3970 if (func_id != BPF_FUNC_sk_redirect_hash && 3971 func_id != BPF_FUNC_sock_hash_update && 3972 func_id != BPF_FUNC_map_delete_elem && 3973 func_id != BPF_FUNC_msg_redirect_hash && 3974 func_id != BPF_FUNC_sk_select_reuseport && 3975 func_id != BPF_FUNC_map_lookup_elem) 3976 goto error; 3977 break; 3978 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 3979 if (func_id != BPF_FUNC_sk_select_reuseport) 3980 goto error; 3981 break; 3982 case BPF_MAP_TYPE_QUEUE: 3983 case BPF_MAP_TYPE_STACK: 3984 if (func_id != BPF_FUNC_map_peek_elem && 3985 func_id != BPF_FUNC_map_pop_elem && 3986 func_id != BPF_FUNC_map_push_elem) 3987 goto error; 3988 break; 3989 case BPF_MAP_TYPE_SK_STORAGE: 3990 if (func_id != BPF_FUNC_sk_storage_get && 3991 func_id != BPF_FUNC_sk_storage_delete) 3992 goto error; 3993 break; 3994 default: 3995 break; 3996 } 3997 3998 /* ... and second from the function itself. */ 3999 switch (func_id) { 4000 case BPF_FUNC_tail_call: 4001 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 4002 goto error; 4003 if (env->subprog_cnt > 1) { 4004 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 4005 return -EINVAL; 4006 } 4007 break; 4008 case BPF_FUNC_perf_event_read: 4009 case BPF_FUNC_perf_event_output: 4010 case BPF_FUNC_perf_event_read_value: 4011 case BPF_FUNC_skb_output: 4012 case BPF_FUNC_xdp_output: 4013 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 4014 goto error; 4015 break; 4016 case BPF_FUNC_get_stackid: 4017 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 4018 goto error; 4019 break; 4020 case BPF_FUNC_current_task_under_cgroup: 4021 case BPF_FUNC_skb_under_cgroup: 4022 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 4023 goto error; 4024 break; 4025 case BPF_FUNC_redirect_map: 4026 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 4027 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 4028 map->map_type != BPF_MAP_TYPE_CPUMAP && 4029 map->map_type != BPF_MAP_TYPE_XSKMAP) 4030 goto error; 4031 break; 4032 case BPF_FUNC_sk_redirect_map: 4033 case BPF_FUNC_msg_redirect_map: 4034 case BPF_FUNC_sock_map_update: 4035 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 4036 goto error; 4037 break; 4038 case BPF_FUNC_sk_redirect_hash: 4039 case BPF_FUNC_msg_redirect_hash: 4040 case BPF_FUNC_sock_hash_update: 4041 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 4042 goto error; 4043 break; 4044 case BPF_FUNC_get_local_storage: 4045 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 4046 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 4047 goto error; 4048 break; 4049 case BPF_FUNC_sk_select_reuseport: 4050 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 4051 map->map_type != BPF_MAP_TYPE_SOCKMAP && 4052 map->map_type != BPF_MAP_TYPE_SOCKHASH) 4053 goto error; 4054 break; 4055 case BPF_FUNC_map_peek_elem: 4056 case BPF_FUNC_map_pop_elem: 4057 case BPF_FUNC_map_push_elem: 4058 if (map->map_type != BPF_MAP_TYPE_QUEUE && 4059 map->map_type != BPF_MAP_TYPE_STACK) 4060 goto error; 4061 break; 4062 case BPF_FUNC_sk_storage_get: 4063 case BPF_FUNC_sk_storage_delete: 4064 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 4065 goto error; 4066 break; 4067 default: 4068 break; 4069 } 4070 4071 return 0; 4072 error: 4073 verbose(env, "cannot pass map_type %d into func %s#%d\n", 4074 map->map_type, func_id_name(func_id), func_id); 4075 return -EINVAL; 4076 } 4077 4078 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 4079 { 4080 int count = 0; 4081 4082 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 4083 count++; 4084 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 4085 count++; 4086 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 4087 count++; 4088 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 4089 count++; 4090 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 4091 count++; 4092 4093 /* We only support one arg being in raw mode at the moment, 4094 * which is sufficient for the helper functions we have 4095 * right now. 4096 */ 4097 return count <= 1; 4098 } 4099 4100 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 4101 enum bpf_arg_type arg_next) 4102 { 4103 return (arg_type_is_mem_ptr(arg_curr) && 4104 !arg_type_is_mem_size(arg_next)) || 4105 (!arg_type_is_mem_ptr(arg_curr) && 4106 arg_type_is_mem_size(arg_next)); 4107 } 4108 4109 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 4110 { 4111 /* bpf_xxx(..., buf, len) call will access 'len' 4112 * bytes from memory 'buf'. Both arg types need 4113 * to be paired, so make sure there's no buggy 4114 * helper function specification. 4115 */ 4116 if (arg_type_is_mem_size(fn->arg1_type) || 4117 arg_type_is_mem_ptr(fn->arg5_type) || 4118 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 4119 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 4120 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 4121 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 4122 return false; 4123 4124 return true; 4125 } 4126 4127 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 4128 { 4129 int count = 0; 4130 4131 if (arg_type_may_be_refcounted(fn->arg1_type)) 4132 count++; 4133 if (arg_type_may_be_refcounted(fn->arg2_type)) 4134 count++; 4135 if (arg_type_may_be_refcounted(fn->arg3_type)) 4136 count++; 4137 if (arg_type_may_be_refcounted(fn->arg4_type)) 4138 count++; 4139 if (arg_type_may_be_refcounted(fn->arg5_type)) 4140 count++; 4141 4142 /* A reference acquiring function cannot acquire 4143 * another refcounted ptr. 4144 */ 4145 if (may_be_acquire_function(func_id) && count) 4146 return false; 4147 4148 /* We only support one arg being unreferenced at the moment, 4149 * which is sufficient for the helper functions we have right now. 4150 */ 4151 return count <= 1; 4152 } 4153 4154 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 4155 { 4156 return check_raw_mode_ok(fn) && 4157 check_arg_pair_ok(fn) && 4158 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 4159 } 4160 4161 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 4162 * are now invalid, so turn them into unknown SCALAR_VALUE. 4163 */ 4164 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 4165 struct bpf_func_state *state) 4166 { 4167 struct bpf_reg_state *regs = state->regs, *reg; 4168 int i; 4169 4170 for (i = 0; i < MAX_BPF_REG; i++) 4171 if (reg_is_pkt_pointer_any(®s[i])) 4172 mark_reg_unknown(env, regs, i); 4173 4174 bpf_for_each_spilled_reg(i, state, reg) { 4175 if (!reg) 4176 continue; 4177 if (reg_is_pkt_pointer_any(reg)) 4178 __mark_reg_unknown(env, reg); 4179 } 4180 } 4181 4182 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 4183 { 4184 struct bpf_verifier_state *vstate = env->cur_state; 4185 int i; 4186 4187 for (i = 0; i <= vstate->curframe; i++) 4188 __clear_all_pkt_pointers(env, vstate->frame[i]); 4189 } 4190 4191 static void release_reg_references(struct bpf_verifier_env *env, 4192 struct bpf_func_state *state, 4193 int ref_obj_id) 4194 { 4195 struct bpf_reg_state *regs = state->regs, *reg; 4196 int i; 4197 4198 for (i = 0; i < MAX_BPF_REG; i++) 4199 if (regs[i].ref_obj_id == ref_obj_id) 4200 mark_reg_unknown(env, regs, i); 4201 4202 bpf_for_each_spilled_reg(i, state, reg) { 4203 if (!reg) 4204 continue; 4205 if (reg->ref_obj_id == ref_obj_id) 4206 __mark_reg_unknown(env, reg); 4207 } 4208 } 4209 4210 /* The pointer with the specified id has released its reference to kernel 4211 * resources. Identify all copies of the same pointer and clear the reference. 4212 */ 4213 static int release_reference(struct bpf_verifier_env *env, 4214 int ref_obj_id) 4215 { 4216 struct bpf_verifier_state *vstate = env->cur_state; 4217 int err; 4218 int i; 4219 4220 err = release_reference_state(cur_func(env), ref_obj_id); 4221 if (err) 4222 return err; 4223 4224 for (i = 0; i <= vstate->curframe; i++) 4225 release_reg_references(env, vstate->frame[i], ref_obj_id); 4226 4227 return 0; 4228 } 4229 4230 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 4231 struct bpf_reg_state *regs) 4232 { 4233 int i; 4234 4235 /* after the call registers r0 - r5 were scratched */ 4236 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4237 mark_reg_not_init(env, regs, caller_saved[i]); 4238 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4239 } 4240 } 4241 4242 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 4243 int *insn_idx) 4244 { 4245 struct bpf_verifier_state *state = env->cur_state; 4246 struct bpf_func_info_aux *func_info_aux; 4247 struct bpf_func_state *caller, *callee; 4248 int i, err, subprog, target_insn; 4249 bool is_global = false; 4250 4251 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 4252 verbose(env, "the call stack of %d frames is too deep\n", 4253 state->curframe + 2); 4254 return -E2BIG; 4255 } 4256 4257 target_insn = *insn_idx + insn->imm; 4258 subprog = find_subprog(env, target_insn + 1); 4259 if (subprog < 0) { 4260 verbose(env, "verifier bug. No program starts at insn %d\n", 4261 target_insn + 1); 4262 return -EFAULT; 4263 } 4264 4265 caller = state->frame[state->curframe]; 4266 if (state->frame[state->curframe + 1]) { 4267 verbose(env, "verifier bug. Frame %d already allocated\n", 4268 state->curframe + 1); 4269 return -EFAULT; 4270 } 4271 4272 func_info_aux = env->prog->aux->func_info_aux; 4273 if (func_info_aux) 4274 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 4275 err = btf_check_func_arg_match(env, subprog, caller->regs); 4276 if (err == -EFAULT) 4277 return err; 4278 if (is_global) { 4279 if (err) { 4280 verbose(env, "Caller passes invalid args into func#%d\n", 4281 subprog); 4282 return err; 4283 } else { 4284 if (env->log.level & BPF_LOG_LEVEL) 4285 verbose(env, 4286 "Func#%d is global and valid. Skipping.\n", 4287 subprog); 4288 clear_caller_saved_regs(env, caller->regs); 4289 4290 /* All global functions return SCALAR_VALUE */ 4291 mark_reg_unknown(env, caller->regs, BPF_REG_0); 4292 4293 /* continue with next insn after call */ 4294 return 0; 4295 } 4296 } 4297 4298 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 4299 if (!callee) 4300 return -ENOMEM; 4301 state->frame[state->curframe + 1] = callee; 4302 4303 /* callee cannot access r0, r6 - r9 for reading and has to write 4304 * into its own stack before reading from it. 4305 * callee can read/write into caller's stack 4306 */ 4307 init_func_state(env, callee, 4308 /* remember the callsite, it will be used by bpf_exit */ 4309 *insn_idx /* callsite */, 4310 state->curframe + 1 /* frameno within this callchain */, 4311 subprog /* subprog number within this prog */); 4312 4313 /* Transfer references to the callee */ 4314 err = transfer_reference_state(callee, caller); 4315 if (err) 4316 return err; 4317 4318 /* copy r1 - r5 args that callee can access. The copy includes parent 4319 * pointers, which connects us up to the liveness chain 4320 */ 4321 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4322 callee->regs[i] = caller->regs[i]; 4323 4324 clear_caller_saved_regs(env, caller->regs); 4325 4326 /* only increment it after check_reg_arg() finished */ 4327 state->curframe++; 4328 4329 /* and go analyze first insn of the callee */ 4330 *insn_idx = target_insn; 4331 4332 if (env->log.level & BPF_LOG_LEVEL) { 4333 verbose(env, "caller:\n"); 4334 print_verifier_state(env, caller); 4335 verbose(env, "callee:\n"); 4336 print_verifier_state(env, callee); 4337 } 4338 return 0; 4339 } 4340 4341 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4342 { 4343 struct bpf_verifier_state *state = env->cur_state; 4344 struct bpf_func_state *caller, *callee; 4345 struct bpf_reg_state *r0; 4346 int err; 4347 4348 callee = state->frame[state->curframe]; 4349 r0 = &callee->regs[BPF_REG_0]; 4350 if (r0->type == PTR_TO_STACK) { 4351 /* technically it's ok to return caller's stack pointer 4352 * (or caller's caller's pointer) back to the caller, 4353 * since these pointers are valid. Only current stack 4354 * pointer will be invalid as soon as function exits, 4355 * but let's be conservative 4356 */ 4357 verbose(env, "cannot return stack pointer to the caller\n"); 4358 return -EINVAL; 4359 } 4360 4361 state->curframe--; 4362 caller = state->frame[state->curframe]; 4363 /* return to the caller whatever r0 had in the callee */ 4364 caller->regs[BPF_REG_0] = *r0; 4365 4366 /* Transfer references to the caller */ 4367 err = transfer_reference_state(caller, callee); 4368 if (err) 4369 return err; 4370 4371 *insn_idx = callee->callsite + 1; 4372 if (env->log.level & BPF_LOG_LEVEL) { 4373 verbose(env, "returning from callee:\n"); 4374 print_verifier_state(env, callee); 4375 verbose(env, "to caller at %d:\n", *insn_idx); 4376 print_verifier_state(env, caller); 4377 } 4378 /* clear everything in the callee */ 4379 free_func_state(callee); 4380 state->frame[state->curframe + 1] = NULL; 4381 return 0; 4382 } 4383 4384 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4385 int func_id, 4386 struct bpf_call_arg_meta *meta) 4387 { 4388 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4389 4390 if (ret_type != RET_INTEGER || 4391 (func_id != BPF_FUNC_get_stack && 4392 func_id != BPF_FUNC_probe_read_str)) 4393 return; 4394 4395 ret_reg->smax_value = meta->msize_max_value; 4396 ret_reg->s32_max_value = meta->msize_max_value; 4397 __reg_deduce_bounds(ret_reg); 4398 __reg_bound_offset(ret_reg); 4399 __update_reg_bounds(ret_reg); 4400 } 4401 4402 static int 4403 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4404 int func_id, int insn_idx) 4405 { 4406 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4407 struct bpf_map *map = meta->map_ptr; 4408 4409 if (func_id != BPF_FUNC_tail_call && 4410 func_id != BPF_FUNC_map_lookup_elem && 4411 func_id != BPF_FUNC_map_update_elem && 4412 func_id != BPF_FUNC_map_delete_elem && 4413 func_id != BPF_FUNC_map_push_elem && 4414 func_id != BPF_FUNC_map_pop_elem && 4415 func_id != BPF_FUNC_map_peek_elem) 4416 return 0; 4417 4418 if (map == NULL) { 4419 verbose(env, "kernel subsystem misconfigured verifier\n"); 4420 return -EINVAL; 4421 } 4422 4423 /* In case of read-only, some additional restrictions 4424 * need to be applied in order to prevent altering the 4425 * state of the map from program side. 4426 */ 4427 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4428 (func_id == BPF_FUNC_map_delete_elem || 4429 func_id == BPF_FUNC_map_update_elem || 4430 func_id == BPF_FUNC_map_push_elem || 4431 func_id == BPF_FUNC_map_pop_elem)) { 4432 verbose(env, "write into map forbidden\n"); 4433 return -EACCES; 4434 } 4435 4436 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4437 bpf_map_ptr_store(aux, meta->map_ptr, 4438 meta->map_ptr->unpriv_array); 4439 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4440 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4441 meta->map_ptr->unpriv_array); 4442 return 0; 4443 } 4444 4445 static int 4446 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4447 int func_id, int insn_idx) 4448 { 4449 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4450 struct bpf_reg_state *regs = cur_regs(env), *reg; 4451 struct bpf_map *map = meta->map_ptr; 4452 struct tnum range; 4453 u64 val; 4454 int err; 4455 4456 if (func_id != BPF_FUNC_tail_call) 4457 return 0; 4458 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4459 verbose(env, "kernel subsystem misconfigured verifier\n"); 4460 return -EINVAL; 4461 } 4462 4463 range = tnum_range(0, map->max_entries - 1); 4464 reg = ®s[BPF_REG_3]; 4465 4466 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 4467 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4468 return 0; 4469 } 4470 4471 err = mark_chain_precision(env, BPF_REG_3); 4472 if (err) 4473 return err; 4474 4475 val = reg->var_off.value; 4476 if (bpf_map_key_unseen(aux)) 4477 bpf_map_key_store(aux, val); 4478 else if (!bpf_map_key_poisoned(aux) && 4479 bpf_map_key_immediate(aux) != val) 4480 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4481 return 0; 4482 } 4483 4484 static int check_reference_leak(struct bpf_verifier_env *env) 4485 { 4486 struct bpf_func_state *state = cur_func(env); 4487 int i; 4488 4489 for (i = 0; i < state->acquired_refs; i++) { 4490 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 4491 state->refs[i].id, state->refs[i].insn_idx); 4492 } 4493 return state->acquired_refs ? -EINVAL : 0; 4494 } 4495 4496 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 4497 { 4498 const struct bpf_func_proto *fn = NULL; 4499 struct bpf_reg_state *regs; 4500 struct bpf_call_arg_meta meta; 4501 bool changes_data; 4502 int i, err; 4503 4504 /* find function prototype */ 4505 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 4506 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 4507 func_id); 4508 return -EINVAL; 4509 } 4510 4511 if (env->ops->get_func_proto) 4512 fn = env->ops->get_func_proto(func_id, env->prog); 4513 if (!fn) { 4514 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 4515 func_id); 4516 return -EINVAL; 4517 } 4518 4519 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 4520 if (!env->prog->gpl_compatible && fn->gpl_only) { 4521 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 4522 return -EINVAL; 4523 } 4524 4525 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 4526 changes_data = bpf_helper_changes_pkt_data(fn->func); 4527 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 4528 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 4529 func_id_name(func_id), func_id); 4530 return -EINVAL; 4531 } 4532 4533 memset(&meta, 0, sizeof(meta)); 4534 meta.pkt_access = fn->pkt_access; 4535 4536 err = check_func_proto(fn, func_id); 4537 if (err) { 4538 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 4539 func_id_name(func_id), func_id); 4540 return err; 4541 } 4542 4543 meta.func_id = func_id; 4544 /* check args */ 4545 for (i = 0; i < 5; i++) { 4546 err = btf_resolve_helper_id(&env->log, fn, i); 4547 if (err > 0) 4548 meta.btf_id = err; 4549 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta); 4550 if (err) 4551 return err; 4552 } 4553 4554 err = record_func_map(env, &meta, func_id, insn_idx); 4555 if (err) 4556 return err; 4557 4558 err = record_func_key(env, &meta, func_id, insn_idx); 4559 if (err) 4560 return err; 4561 4562 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4563 * is inferred from register state. 4564 */ 4565 for (i = 0; i < meta.access_size; i++) { 4566 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4567 BPF_WRITE, -1, false); 4568 if (err) 4569 return err; 4570 } 4571 4572 if (func_id == BPF_FUNC_tail_call) { 4573 err = check_reference_leak(env); 4574 if (err) { 4575 verbose(env, "tail_call would lead to reference leak\n"); 4576 return err; 4577 } 4578 } else if (is_release_function(func_id)) { 4579 err = release_reference(env, meta.ref_obj_id); 4580 if (err) { 4581 verbose(env, "func %s#%d reference has not been acquired before\n", 4582 func_id_name(func_id), func_id); 4583 return err; 4584 } 4585 } 4586 4587 regs = cur_regs(env); 4588 4589 /* check that flags argument in get_local_storage(map, flags) is 0, 4590 * this is required because get_local_storage() can't return an error. 4591 */ 4592 if (func_id == BPF_FUNC_get_local_storage && 4593 !register_is_null(®s[BPF_REG_2])) { 4594 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4595 return -EINVAL; 4596 } 4597 4598 /* reset caller saved regs */ 4599 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4600 mark_reg_not_init(env, regs, caller_saved[i]); 4601 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4602 } 4603 4604 /* helper call returns 64-bit value. */ 4605 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4606 4607 /* update return register (already marked as written above) */ 4608 if (fn->ret_type == RET_INTEGER) { 4609 /* sets type to SCALAR_VALUE */ 4610 mark_reg_unknown(env, regs, BPF_REG_0); 4611 } else if (fn->ret_type == RET_VOID) { 4612 regs[BPF_REG_0].type = NOT_INIT; 4613 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4614 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4615 /* There is no offset yet applied, variable or fixed */ 4616 mark_reg_known_zero(env, regs, BPF_REG_0); 4617 /* remember map_ptr, so that check_map_access() 4618 * can check 'value_size' boundary of memory access 4619 * to map element returned from bpf_map_lookup_elem() 4620 */ 4621 if (meta.map_ptr == NULL) { 4622 verbose(env, 4623 "kernel subsystem misconfigured verifier\n"); 4624 return -EINVAL; 4625 } 4626 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4627 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4628 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4629 if (map_value_has_spin_lock(meta.map_ptr)) 4630 regs[BPF_REG_0].id = ++env->id_gen; 4631 } else { 4632 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4633 regs[BPF_REG_0].id = ++env->id_gen; 4634 } 4635 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4636 mark_reg_known_zero(env, regs, BPF_REG_0); 4637 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4638 regs[BPF_REG_0].id = ++env->id_gen; 4639 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4640 mark_reg_known_zero(env, regs, BPF_REG_0); 4641 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4642 regs[BPF_REG_0].id = ++env->id_gen; 4643 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4644 mark_reg_known_zero(env, regs, BPF_REG_0); 4645 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4646 regs[BPF_REG_0].id = ++env->id_gen; 4647 } else { 4648 verbose(env, "unknown return type %d of func %s#%d\n", 4649 fn->ret_type, func_id_name(func_id), func_id); 4650 return -EINVAL; 4651 } 4652 4653 if (is_ptr_cast_function(func_id)) { 4654 /* For release_reference() */ 4655 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4656 } else if (is_acquire_function(func_id, meta.map_ptr)) { 4657 int id = acquire_reference_state(env, insn_idx); 4658 4659 if (id < 0) 4660 return id; 4661 /* For mark_ptr_or_null_reg() */ 4662 regs[BPF_REG_0].id = id; 4663 /* For release_reference() */ 4664 regs[BPF_REG_0].ref_obj_id = id; 4665 } 4666 4667 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4668 4669 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4670 if (err) 4671 return err; 4672 4673 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4674 const char *err_str; 4675 4676 #ifdef CONFIG_PERF_EVENTS 4677 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4678 err_str = "cannot get callchain buffer for func %s#%d\n"; 4679 #else 4680 err = -ENOTSUPP; 4681 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4682 #endif 4683 if (err) { 4684 verbose(env, err_str, func_id_name(func_id), func_id); 4685 return err; 4686 } 4687 4688 env->prog->has_callchain_buf = true; 4689 } 4690 4691 if (changes_data) 4692 clear_all_pkt_pointers(env); 4693 return 0; 4694 } 4695 4696 static bool signed_add_overflows(s64 a, s64 b) 4697 { 4698 /* Do the add in u64, where overflow is well-defined */ 4699 s64 res = (s64)((u64)a + (u64)b); 4700 4701 if (b < 0) 4702 return res > a; 4703 return res < a; 4704 } 4705 4706 static bool signed_add32_overflows(s64 a, s64 b) 4707 { 4708 /* Do the add in u32, where overflow is well-defined */ 4709 s32 res = (s32)((u32)a + (u32)b); 4710 4711 if (b < 0) 4712 return res > a; 4713 return res < a; 4714 } 4715 4716 static bool signed_sub_overflows(s32 a, s32 b) 4717 { 4718 /* Do the sub in u64, where overflow is well-defined */ 4719 s64 res = (s64)((u64)a - (u64)b); 4720 4721 if (b < 0) 4722 return res < a; 4723 return res > a; 4724 } 4725 4726 static bool signed_sub32_overflows(s32 a, s32 b) 4727 { 4728 /* Do the sub in u64, where overflow is well-defined */ 4729 s32 res = (s32)((u32)a - (u32)b); 4730 4731 if (b < 0) 4732 return res < a; 4733 return res > a; 4734 } 4735 4736 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4737 const struct bpf_reg_state *reg, 4738 enum bpf_reg_type type) 4739 { 4740 bool known = tnum_is_const(reg->var_off); 4741 s64 val = reg->var_off.value; 4742 s64 smin = reg->smin_value; 4743 4744 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4745 verbose(env, "math between %s pointer and %lld is not allowed\n", 4746 reg_type_str[type], val); 4747 return false; 4748 } 4749 4750 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4751 verbose(env, "%s pointer offset %d is not allowed\n", 4752 reg_type_str[type], reg->off); 4753 return false; 4754 } 4755 4756 if (smin == S64_MIN) { 4757 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4758 reg_type_str[type]); 4759 return false; 4760 } 4761 4762 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4763 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4764 smin, reg_type_str[type]); 4765 return false; 4766 } 4767 4768 return true; 4769 } 4770 4771 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4772 { 4773 return &env->insn_aux_data[env->insn_idx]; 4774 } 4775 4776 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4777 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4778 { 4779 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4780 (opcode == BPF_SUB && !off_is_neg); 4781 u32 off; 4782 4783 switch (ptr_reg->type) { 4784 case PTR_TO_STACK: 4785 /* Indirect variable offset stack access is prohibited in 4786 * unprivileged mode so it's not handled here. 4787 */ 4788 off = ptr_reg->off + ptr_reg->var_off.value; 4789 if (mask_to_left) 4790 *ptr_limit = MAX_BPF_STACK + off; 4791 else 4792 *ptr_limit = -off; 4793 return 0; 4794 case PTR_TO_MAP_VALUE: 4795 if (mask_to_left) { 4796 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4797 } else { 4798 off = ptr_reg->smin_value + ptr_reg->off; 4799 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4800 } 4801 return 0; 4802 default: 4803 return -EINVAL; 4804 } 4805 } 4806 4807 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4808 const struct bpf_insn *insn) 4809 { 4810 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 4811 } 4812 4813 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4814 u32 alu_state, u32 alu_limit) 4815 { 4816 /* If we arrived here from different branches with different 4817 * state or limits to sanitize, then this won't work. 4818 */ 4819 if (aux->alu_state && 4820 (aux->alu_state != alu_state || 4821 aux->alu_limit != alu_limit)) 4822 return -EACCES; 4823 4824 /* Corresponding fixup done in fixup_bpf_calls(). */ 4825 aux->alu_state = alu_state; 4826 aux->alu_limit = alu_limit; 4827 return 0; 4828 } 4829 4830 static int sanitize_val_alu(struct bpf_verifier_env *env, 4831 struct bpf_insn *insn) 4832 { 4833 struct bpf_insn_aux_data *aux = cur_aux(env); 4834 4835 if (can_skip_alu_sanitation(env, insn)) 4836 return 0; 4837 4838 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4839 } 4840 4841 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4842 struct bpf_insn *insn, 4843 const struct bpf_reg_state *ptr_reg, 4844 struct bpf_reg_state *dst_reg, 4845 bool off_is_neg) 4846 { 4847 struct bpf_verifier_state *vstate = env->cur_state; 4848 struct bpf_insn_aux_data *aux = cur_aux(env); 4849 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4850 u8 opcode = BPF_OP(insn->code); 4851 u32 alu_state, alu_limit; 4852 struct bpf_reg_state tmp; 4853 bool ret; 4854 4855 if (can_skip_alu_sanitation(env, insn)) 4856 return 0; 4857 4858 /* We already marked aux for masking from non-speculative 4859 * paths, thus we got here in the first place. We only care 4860 * to explore bad access from here. 4861 */ 4862 if (vstate->speculative) 4863 goto do_sim; 4864 4865 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4866 alu_state |= ptr_is_dst_reg ? 4867 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4868 4869 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4870 return 0; 4871 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4872 return -EACCES; 4873 do_sim: 4874 /* Simulate and find potential out-of-bounds access under 4875 * speculative execution from truncation as a result of 4876 * masking when off was not within expected range. If off 4877 * sits in dst, then we temporarily need to move ptr there 4878 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4879 * for cases where we use K-based arithmetic in one direction 4880 * and truncated reg-based in the other in order to explore 4881 * bad access. 4882 */ 4883 if (!ptr_is_dst_reg) { 4884 tmp = *dst_reg; 4885 *dst_reg = *ptr_reg; 4886 } 4887 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4888 if (!ptr_is_dst_reg && ret) 4889 *dst_reg = tmp; 4890 return !ret ? -EFAULT : 0; 4891 } 4892 4893 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 4894 * Caller should also handle BPF_MOV case separately. 4895 * If we return -EACCES, caller may want to try again treating pointer as a 4896 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 4897 */ 4898 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 4899 struct bpf_insn *insn, 4900 const struct bpf_reg_state *ptr_reg, 4901 const struct bpf_reg_state *off_reg) 4902 { 4903 struct bpf_verifier_state *vstate = env->cur_state; 4904 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4905 struct bpf_reg_state *regs = state->regs, *dst_reg; 4906 bool known = tnum_is_const(off_reg->var_off); 4907 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 4908 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 4909 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 4910 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 4911 u32 dst = insn->dst_reg, src = insn->src_reg; 4912 u8 opcode = BPF_OP(insn->code); 4913 int ret; 4914 4915 dst_reg = ®s[dst]; 4916 4917 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 4918 smin_val > smax_val || umin_val > umax_val) { 4919 /* Taint dst register if offset had invalid bounds derived from 4920 * e.g. dead branches. 4921 */ 4922 __mark_reg_unknown(env, dst_reg); 4923 return 0; 4924 } 4925 4926 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4927 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 4928 verbose(env, 4929 "R%d 32-bit pointer arithmetic prohibited\n", 4930 dst); 4931 return -EACCES; 4932 } 4933 4934 switch (ptr_reg->type) { 4935 case PTR_TO_MAP_VALUE_OR_NULL: 4936 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 4937 dst, reg_type_str[ptr_reg->type]); 4938 return -EACCES; 4939 case CONST_PTR_TO_MAP: 4940 case PTR_TO_PACKET_END: 4941 case PTR_TO_SOCKET: 4942 case PTR_TO_SOCKET_OR_NULL: 4943 case PTR_TO_SOCK_COMMON: 4944 case PTR_TO_SOCK_COMMON_OR_NULL: 4945 case PTR_TO_TCP_SOCK: 4946 case PTR_TO_TCP_SOCK_OR_NULL: 4947 case PTR_TO_XDP_SOCK: 4948 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 4949 dst, reg_type_str[ptr_reg->type]); 4950 return -EACCES; 4951 case PTR_TO_MAP_VALUE: 4952 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 4953 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 4954 off_reg == dst_reg ? dst : src); 4955 return -EACCES; 4956 } 4957 /* fall-through */ 4958 default: 4959 break; 4960 } 4961 4962 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 4963 * The id may be overwritten later if we create a new variable offset. 4964 */ 4965 dst_reg->type = ptr_reg->type; 4966 dst_reg->id = ptr_reg->id; 4967 4968 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 4969 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 4970 return -EINVAL; 4971 4972 /* pointer types do not carry 32-bit bounds at the moment. */ 4973 __mark_reg32_unbounded(dst_reg); 4974 4975 switch (opcode) { 4976 case BPF_ADD: 4977 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4978 if (ret < 0) { 4979 verbose(env, "R%d tried to add from different maps or paths\n", dst); 4980 return ret; 4981 } 4982 /* We can take a fixed offset as long as it doesn't overflow 4983 * the s32 'off' field 4984 */ 4985 if (known && (ptr_reg->off + smin_val == 4986 (s64)(s32)(ptr_reg->off + smin_val))) { 4987 /* pointer += K. Accumulate it into fixed offset */ 4988 dst_reg->smin_value = smin_ptr; 4989 dst_reg->smax_value = smax_ptr; 4990 dst_reg->umin_value = umin_ptr; 4991 dst_reg->umax_value = umax_ptr; 4992 dst_reg->var_off = ptr_reg->var_off; 4993 dst_reg->off = ptr_reg->off + smin_val; 4994 dst_reg->raw = ptr_reg->raw; 4995 break; 4996 } 4997 /* A new variable offset is created. Note that off_reg->off 4998 * == 0, since it's a scalar. 4999 * dst_reg gets the pointer type and since some positive 5000 * integer value was added to the pointer, give it a new 'id' 5001 * if it's a PTR_TO_PACKET. 5002 * this creates a new 'base' pointer, off_reg (variable) gets 5003 * added into the variable offset, and we copy the fixed offset 5004 * from ptr_reg. 5005 */ 5006 if (signed_add_overflows(smin_ptr, smin_val) || 5007 signed_add_overflows(smax_ptr, smax_val)) { 5008 dst_reg->smin_value = S64_MIN; 5009 dst_reg->smax_value = S64_MAX; 5010 } else { 5011 dst_reg->smin_value = smin_ptr + smin_val; 5012 dst_reg->smax_value = smax_ptr + smax_val; 5013 } 5014 if (umin_ptr + umin_val < umin_ptr || 5015 umax_ptr + umax_val < umax_ptr) { 5016 dst_reg->umin_value = 0; 5017 dst_reg->umax_value = U64_MAX; 5018 } else { 5019 dst_reg->umin_value = umin_ptr + umin_val; 5020 dst_reg->umax_value = umax_ptr + umax_val; 5021 } 5022 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 5023 dst_reg->off = ptr_reg->off; 5024 dst_reg->raw = ptr_reg->raw; 5025 if (reg_is_pkt_pointer(ptr_reg)) { 5026 dst_reg->id = ++env->id_gen; 5027 /* something was added to pkt_ptr, set range to zero */ 5028 dst_reg->raw = 0; 5029 } 5030 break; 5031 case BPF_SUB: 5032 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5033 if (ret < 0) { 5034 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 5035 return ret; 5036 } 5037 if (dst_reg == off_reg) { 5038 /* scalar -= pointer. Creates an unknown scalar */ 5039 verbose(env, "R%d tried to subtract pointer from scalar\n", 5040 dst); 5041 return -EACCES; 5042 } 5043 /* We don't allow subtraction from FP, because (according to 5044 * test_verifier.c test "invalid fp arithmetic", JITs might not 5045 * be able to deal with it. 5046 */ 5047 if (ptr_reg->type == PTR_TO_STACK) { 5048 verbose(env, "R%d subtraction from stack pointer prohibited\n", 5049 dst); 5050 return -EACCES; 5051 } 5052 if (known && (ptr_reg->off - smin_val == 5053 (s64)(s32)(ptr_reg->off - smin_val))) { 5054 /* pointer -= K. Subtract it from fixed offset */ 5055 dst_reg->smin_value = smin_ptr; 5056 dst_reg->smax_value = smax_ptr; 5057 dst_reg->umin_value = umin_ptr; 5058 dst_reg->umax_value = umax_ptr; 5059 dst_reg->var_off = ptr_reg->var_off; 5060 dst_reg->id = ptr_reg->id; 5061 dst_reg->off = ptr_reg->off - smin_val; 5062 dst_reg->raw = ptr_reg->raw; 5063 break; 5064 } 5065 /* A new variable offset is created. If the subtrahend is known 5066 * nonnegative, then any reg->range we had before is still good. 5067 */ 5068 if (signed_sub_overflows(smin_ptr, smax_val) || 5069 signed_sub_overflows(smax_ptr, smin_val)) { 5070 /* Overflow possible, we know nothing */ 5071 dst_reg->smin_value = S64_MIN; 5072 dst_reg->smax_value = S64_MAX; 5073 } else { 5074 dst_reg->smin_value = smin_ptr - smax_val; 5075 dst_reg->smax_value = smax_ptr - smin_val; 5076 } 5077 if (umin_ptr < umax_val) { 5078 /* Overflow possible, we know nothing */ 5079 dst_reg->umin_value = 0; 5080 dst_reg->umax_value = U64_MAX; 5081 } else { 5082 /* Cannot overflow (as long as bounds are consistent) */ 5083 dst_reg->umin_value = umin_ptr - umax_val; 5084 dst_reg->umax_value = umax_ptr - umin_val; 5085 } 5086 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 5087 dst_reg->off = ptr_reg->off; 5088 dst_reg->raw = ptr_reg->raw; 5089 if (reg_is_pkt_pointer(ptr_reg)) { 5090 dst_reg->id = ++env->id_gen; 5091 /* something was added to pkt_ptr, set range to zero */ 5092 if (smin_val < 0) 5093 dst_reg->raw = 0; 5094 } 5095 break; 5096 case BPF_AND: 5097 case BPF_OR: 5098 case BPF_XOR: 5099 /* bitwise ops on pointers are troublesome, prohibit. */ 5100 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 5101 dst, bpf_alu_string[opcode >> 4]); 5102 return -EACCES; 5103 default: 5104 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 5105 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 5106 dst, bpf_alu_string[opcode >> 4]); 5107 return -EACCES; 5108 } 5109 5110 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 5111 return -EINVAL; 5112 5113 __update_reg_bounds(dst_reg); 5114 __reg_deduce_bounds(dst_reg); 5115 __reg_bound_offset(dst_reg); 5116 5117 /* For unprivileged we require that resulting offset must be in bounds 5118 * in order to be able to sanitize access later on. 5119 */ 5120 if (!env->allow_ptr_leaks) { 5121 if (dst_reg->type == PTR_TO_MAP_VALUE && 5122 check_map_access(env, dst, dst_reg->off, 1, false)) { 5123 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 5124 "prohibited for !root\n", dst); 5125 return -EACCES; 5126 } else if (dst_reg->type == PTR_TO_STACK && 5127 check_stack_access(env, dst_reg, dst_reg->off + 5128 dst_reg->var_off.value, 1)) { 5129 verbose(env, "R%d stack pointer arithmetic goes out of range, " 5130 "prohibited for !root\n", dst); 5131 return -EACCES; 5132 } 5133 } 5134 5135 return 0; 5136 } 5137 5138 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 5139 struct bpf_reg_state *src_reg) 5140 { 5141 s32 smin_val = src_reg->s32_min_value; 5142 s32 smax_val = src_reg->s32_max_value; 5143 u32 umin_val = src_reg->u32_min_value; 5144 u32 umax_val = src_reg->u32_max_value; 5145 5146 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 5147 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 5148 dst_reg->s32_min_value = S32_MIN; 5149 dst_reg->s32_max_value = S32_MAX; 5150 } else { 5151 dst_reg->s32_min_value += smin_val; 5152 dst_reg->s32_max_value += smax_val; 5153 } 5154 if (dst_reg->u32_min_value + umin_val < umin_val || 5155 dst_reg->u32_max_value + umax_val < umax_val) { 5156 dst_reg->u32_min_value = 0; 5157 dst_reg->u32_max_value = U32_MAX; 5158 } else { 5159 dst_reg->u32_min_value += umin_val; 5160 dst_reg->u32_max_value += umax_val; 5161 } 5162 } 5163 5164 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 5165 struct bpf_reg_state *src_reg) 5166 { 5167 s64 smin_val = src_reg->smin_value; 5168 s64 smax_val = src_reg->smax_value; 5169 u64 umin_val = src_reg->umin_value; 5170 u64 umax_val = src_reg->umax_value; 5171 5172 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 5173 signed_add_overflows(dst_reg->smax_value, smax_val)) { 5174 dst_reg->smin_value = S64_MIN; 5175 dst_reg->smax_value = S64_MAX; 5176 } else { 5177 dst_reg->smin_value += smin_val; 5178 dst_reg->smax_value += smax_val; 5179 } 5180 if (dst_reg->umin_value + umin_val < umin_val || 5181 dst_reg->umax_value + umax_val < umax_val) { 5182 dst_reg->umin_value = 0; 5183 dst_reg->umax_value = U64_MAX; 5184 } else { 5185 dst_reg->umin_value += umin_val; 5186 dst_reg->umax_value += umax_val; 5187 } 5188 } 5189 5190 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 5191 struct bpf_reg_state *src_reg) 5192 { 5193 s32 smin_val = src_reg->s32_min_value; 5194 s32 smax_val = src_reg->s32_max_value; 5195 u32 umin_val = src_reg->u32_min_value; 5196 u32 umax_val = src_reg->u32_max_value; 5197 5198 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 5199 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 5200 /* Overflow possible, we know nothing */ 5201 dst_reg->s32_min_value = S32_MIN; 5202 dst_reg->s32_max_value = S32_MAX; 5203 } else { 5204 dst_reg->s32_min_value -= smax_val; 5205 dst_reg->s32_max_value -= smin_val; 5206 } 5207 if (dst_reg->u32_min_value < umax_val) { 5208 /* Overflow possible, we know nothing */ 5209 dst_reg->u32_min_value = 0; 5210 dst_reg->u32_max_value = U32_MAX; 5211 } else { 5212 /* Cannot overflow (as long as bounds are consistent) */ 5213 dst_reg->u32_min_value -= umax_val; 5214 dst_reg->u32_max_value -= umin_val; 5215 } 5216 } 5217 5218 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 5219 struct bpf_reg_state *src_reg) 5220 { 5221 s64 smin_val = src_reg->smin_value; 5222 s64 smax_val = src_reg->smax_value; 5223 u64 umin_val = src_reg->umin_value; 5224 u64 umax_val = src_reg->umax_value; 5225 5226 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 5227 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 5228 /* Overflow possible, we know nothing */ 5229 dst_reg->smin_value = S64_MIN; 5230 dst_reg->smax_value = S64_MAX; 5231 } else { 5232 dst_reg->smin_value -= smax_val; 5233 dst_reg->smax_value -= smin_val; 5234 } 5235 if (dst_reg->umin_value < umax_val) { 5236 /* Overflow possible, we know nothing */ 5237 dst_reg->umin_value = 0; 5238 dst_reg->umax_value = U64_MAX; 5239 } else { 5240 /* Cannot overflow (as long as bounds are consistent) */ 5241 dst_reg->umin_value -= umax_val; 5242 dst_reg->umax_value -= umin_val; 5243 } 5244 } 5245 5246 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 5247 struct bpf_reg_state *src_reg) 5248 { 5249 s32 smin_val = src_reg->s32_min_value; 5250 u32 umin_val = src_reg->u32_min_value; 5251 u32 umax_val = src_reg->u32_max_value; 5252 5253 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 5254 /* Ain't nobody got time to multiply that sign */ 5255 __mark_reg32_unbounded(dst_reg); 5256 return; 5257 } 5258 /* Both values are positive, so we can work with unsigned and 5259 * copy the result to signed (unless it exceeds S32_MAX). 5260 */ 5261 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 5262 /* Potential overflow, we know nothing */ 5263 __mark_reg32_unbounded(dst_reg); 5264 return; 5265 } 5266 dst_reg->u32_min_value *= umin_val; 5267 dst_reg->u32_max_value *= umax_val; 5268 if (dst_reg->u32_max_value > S32_MAX) { 5269 /* Overflow possible, we know nothing */ 5270 dst_reg->s32_min_value = S32_MIN; 5271 dst_reg->s32_max_value = S32_MAX; 5272 } else { 5273 dst_reg->s32_min_value = dst_reg->u32_min_value; 5274 dst_reg->s32_max_value = dst_reg->u32_max_value; 5275 } 5276 } 5277 5278 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 5279 struct bpf_reg_state *src_reg) 5280 { 5281 s64 smin_val = src_reg->smin_value; 5282 u64 umin_val = src_reg->umin_value; 5283 u64 umax_val = src_reg->umax_value; 5284 5285 if (smin_val < 0 || dst_reg->smin_value < 0) { 5286 /* Ain't nobody got time to multiply that sign */ 5287 __mark_reg64_unbounded(dst_reg); 5288 return; 5289 } 5290 /* Both values are positive, so we can work with unsigned and 5291 * copy the result to signed (unless it exceeds S64_MAX). 5292 */ 5293 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 5294 /* Potential overflow, we know nothing */ 5295 __mark_reg64_unbounded(dst_reg); 5296 return; 5297 } 5298 dst_reg->umin_value *= umin_val; 5299 dst_reg->umax_value *= umax_val; 5300 if (dst_reg->umax_value > S64_MAX) { 5301 /* Overflow possible, we know nothing */ 5302 dst_reg->smin_value = S64_MIN; 5303 dst_reg->smax_value = S64_MAX; 5304 } else { 5305 dst_reg->smin_value = dst_reg->umin_value; 5306 dst_reg->smax_value = dst_reg->umax_value; 5307 } 5308 } 5309 5310 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 5311 struct bpf_reg_state *src_reg) 5312 { 5313 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5314 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5315 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5316 s32 smin_val = src_reg->s32_min_value; 5317 u32 umax_val = src_reg->u32_max_value; 5318 5319 /* Assuming scalar64_min_max_and will be called so its safe 5320 * to skip updating register for known 32-bit case. 5321 */ 5322 if (src_known && dst_known) 5323 return; 5324 5325 /* We get our minimum from the var_off, since that's inherently 5326 * bitwise. Our maximum is the minimum of the operands' maxima. 5327 */ 5328 dst_reg->u32_min_value = var32_off.value; 5329 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 5330 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5331 /* Lose signed bounds when ANDing negative numbers, 5332 * ain't nobody got time for that. 5333 */ 5334 dst_reg->s32_min_value = S32_MIN; 5335 dst_reg->s32_max_value = S32_MAX; 5336 } else { 5337 /* ANDing two positives gives a positive, so safe to 5338 * cast result into s64. 5339 */ 5340 dst_reg->s32_min_value = dst_reg->u32_min_value; 5341 dst_reg->s32_max_value = dst_reg->u32_max_value; 5342 } 5343 5344 } 5345 5346 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 5347 struct bpf_reg_state *src_reg) 5348 { 5349 bool src_known = tnum_is_const(src_reg->var_off); 5350 bool dst_known = tnum_is_const(dst_reg->var_off); 5351 s64 smin_val = src_reg->smin_value; 5352 u64 umax_val = src_reg->umax_value; 5353 5354 if (src_known && dst_known) { 5355 __mark_reg_known(dst_reg, dst_reg->var_off.value & 5356 src_reg->var_off.value); 5357 return; 5358 } 5359 5360 /* We get our minimum from the var_off, since that's inherently 5361 * bitwise. Our maximum is the minimum of the operands' maxima. 5362 */ 5363 dst_reg->umin_value = dst_reg->var_off.value; 5364 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 5365 if (dst_reg->smin_value < 0 || smin_val < 0) { 5366 /* Lose signed bounds when ANDing negative numbers, 5367 * ain't nobody got time for that. 5368 */ 5369 dst_reg->smin_value = S64_MIN; 5370 dst_reg->smax_value = S64_MAX; 5371 } else { 5372 /* ANDing two positives gives a positive, so safe to 5373 * cast result into s64. 5374 */ 5375 dst_reg->smin_value = dst_reg->umin_value; 5376 dst_reg->smax_value = dst_reg->umax_value; 5377 } 5378 /* We may learn something more from the var_off */ 5379 __update_reg_bounds(dst_reg); 5380 } 5381 5382 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 5383 struct bpf_reg_state *src_reg) 5384 { 5385 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5386 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5387 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5388 s32 smin_val = src_reg->smin_value; 5389 u32 umin_val = src_reg->umin_value; 5390 5391 /* Assuming scalar64_min_max_or will be called so it is safe 5392 * to skip updating register for known case. 5393 */ 5394 if (src_known && dst_known) 5395 return; 5396 5397 /* We get our maximum from the var_off, and our minimum is the 5398 * maximum of the operands' minima 5399 */ 5400 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 5401 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 5402 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5403 /* Lose signed bounds when ORing negative numbers, 5404 * ain't nobody got time for that. 5405 */ 5406 dst_reg->s32_min_value = S32_MIN; 5407 dst_reg->s32_max_value = S32_MAX; 5408 } else { 5409 /* ORing two positives gives a positive, so safe to 5410 * cast result into s64. 5411 */ 5412 dst_reg->s32_min_value = dst_reg->umin_value; 5413 dst_reg->s32_max_value = dst_reg->umax_value; 5414 } 5415 } 5416 5417 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 5418 struct bpf_reg_state *src_reg) 5419 { 5420 bool src_known = tnum_is_const(src_reg->var_off); 5421 bool dst_known = tnum_is_const(dst_reg->var_off); 5422 s64 smin_val = src_reg->smin_value; 5423 u64 umin_val = src_reg->umin_value; 5424 5425 if (src_known && dst_known) { 5426 __mark_reg_known(dst_reg, dst_reg->var_off.value | 5427 src_reg->var_off.value); 5428 return; 5429 } 5430 5431 /* We get our maximum from the var_off, and our minimum is the 5432 * maximum of the operands' minima 5433 */ 5434 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 5435 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 5436 if (dst_reg->smin_value < 0 || smin_val < 0) { 5437 /* Lose signed bounds when ORing negative numbers, 5438 * ain't nobody got time for that. 5439 */ 5440 dst_reg->smin_value = S64_MIN; 5441 dst_reg->smax_value = S64_MAX; 5442 } else { 5443 /* ORing two positives gives a positive, so safe to 5444 * cast result into s64. 5445 */ 5446 dst_reg->smin_value = dst_reg->umin_value; 5447 dst_reg->smax_value = dst_reg->umax_value; 5448 } 5449 /* We may learn something more from the var_off */ 5450 __update_reg_bounds(dst_reg); 5451 } 5452 5453 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5454 u64 umin_val, u64 umax_val) 5455 { 5456 /* We lose all sign bit information (except what we can pick 5457 * up from var_off) 5458 */ 5459 dst_reg->s32_min_value = S32_MIN; 5460 dst_reg->s32_max_value = S32_MAX; 5461 /* If we might shift our top bit out, then we know nothing */ 5462 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 5463 dst_reg->u32_min_value = 0; 5464 dst_reg->u32_max_value = U32_MAX; 5465 } else { 5466 dst_reg->u32_min_value <<= umin_val; 5467 dst_reg->u32_max_value <<= umax_val; 5468 } 5469 } 5470 5471 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5472 struct bpf_reg_state *src_reg) 5473 { 5474 u32 umax_val = src_reg->u32_max_value; 5475 u32 umin_val = src_reg->u32_min_value; 5476 /* u32 alu operation will zext upper bits */ 5477 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5478 5479 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5480 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 5481 /* Not required but being careful mark reg64 bounds as unknown so 5482 * that we are forced to pick them up from tnum and zext later and 5483 * if some path skips this step we are still safe. 5484 */ 5485 __mark_reg64_unbounded(dst_reg); 5486 __update_reg32_bounds(dst_reg); 5487 } 5488 5489 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 5490 u64 umin_val, u64 umax_val) 5491 { 5492 /* Special case <<32 because it is a common compiler pattern to sign 5493 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 5494 * positive we know this shift will also be positive so we can track 5495 * bounds correctly. Otherwise we lose all sign bit information except 5496 * what we can pick up from var_off. Perhaps we can generalize this 5497 * later to shifts of any length. 5498 */ 5499 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 5500 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 5501 else 5502 dst_reg->smax_value = S64_MAX; 5503 5504 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 5505 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 5506 else 5507 dst_reg->smin_value = S64_MIN; 5508 5509 /* If we might shift our top bit out, then we know nothing */ 5510 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 5511 dst_reg->umin_value = 0; 5512 dst_reg->umax_value = U64_MAX; 5513 } else { 5514 dst_reg->umin_value <<= umin_val; 5515 dst_reg->umax_value <<= umax_val; 5516 } 5517 } 5518 5519 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 5520 struct bpf_reg_state *src_reg) 5521 { 5522 u64 umax_val = src_reg->umax_value; 5523 u64 umin_val = src_reg->umin_value; 5524 5525 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 5526 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 5527 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5528 5529 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 5530 /* We may learn something more from the var_off */ 5531 __update_reg_bounds(dst_reg); 5532 } 5533 5534 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 5535 struct bpf_reg_state *src_reg) 5536 { 5537 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5538 u32 umax_val = src_reg->u32_max_value; 5539 u32 umin_val = src_reg->u32_min_value; 5540 5541 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5542 * be negative, then either: 5543 * 1) src_reg might be zero, so the sign bit of the result is 5544 * unknown, so we lose our signed bounds 5545 * 2) it's known negative, thus the unsigned bounds capture the 5546 * signed bounds 5547 * 3) the signed bounds cross zero, so they tell us nothing 5548 * about the result 5549 * If the value in dst_reg is known nonnegative, then again the 5550 * unsigned bounts capture the signed bounds. 5551 * Thus, in all cases it suffices to blow away our signed bounds 5552 * and rely on inferring new ones from the unsigned bounds and 5553 * var_off of the result. 5554 */ 5555 dst_reg->s32_min_value = S32_MIN; 5556 dst_reg->s32_max_value = S32_MAX; 5557 5558 dst_reg->var_off = tnum_rshift(subreg, umin_val); 5559 dst_reg->u32_min_value >>= umax_val; 5560 dst_reg->u32_max_value >>= umin_val; 5561 5562 __mark_reg64_unbounded(dst_reg); 5563 __update_reg32_bounds(dst_reg); 5564 } 5565 5566 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 5567 struct bpf_reg_state *src_reg) 5568 { 5569 u64 umax_val = src_reg->umax_value; 5570 u64 umin_val = src_reg->umin_value; 5571 5572 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5573 * be negative, then either: 5574 * 1) src_reg might be zero, so the sign bit of the result is 5575 * unknown, so we lose our signed bounds 5576 * 2) it's known negative, thus the unsigned bounds capture the 5577 * signed bounds 5578 * 3) the signed bounds cross zero, so they tell us nothing 5579 * about the result 5580 * If the value in dst_reg is known nonnegative, then again the 5581 * unsigned bounts capture the signed bounds. 5582 * Thus, in all cases it suffices to blow away our signed bounds 5583 * and rely on inferring new ones from the unsigned bounds and 5584 * var_off of the result. 5585 */ 5586 dst_reg->smin_value = S64_MIN; 5587 dst_reg->smax_value = S64_MAX; 5588 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 5589 dst_reg->umin_value >>= umax_val; 5590 dst_reg->umax_value >>= umin_val; 5591 5592 /* Its not easy to operate on alu32 bounds here because it depends 5593 * on bits being shifted in. Take easy way out and mark unbounded 5594 * so we can recalculate later from tnum. 5595 */ 5596 __mark_reg32_unbounded(dst_reg); 5597 __update_reg_bounds(dst_reg); 5598 } 5599 5600 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 5601 struct bpf_reg_state *src_reg) 5602 { 5603 u64 umin_val = src_reg->u32_min_value; 5604 5605 /* Upon reaching here, src_known is true and 5606 * umax_val is equal to umin_val. 5607 */ 5608 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 5609 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 5610 5611 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 5612 5613 /* blow away the dst_reg umin_value/umax_value and rely on 5614 * dst_reg var_off to refine the result. 5615 */ 5616 dst_reg->u32_min_value = 0; 5617 dst_reg->u32_max_value = U32_MAX; 5618 5619 __mark_reg64_unbounded(dst_reg); 5620 __update_reg32_bounds(dst_reg); 5621 } 5622 5623 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 5624 struct bpf_reg_state *src_reg) 5625 { 5626 u64 umin_val = src_reg->umin_value; 5627 5628 /* Upon reaching here, src_known is true and umax_val is equal 5629 * to umin_val. 5630 */ 5631 dst_reg->smin_value >>= umin_val; 5632 dst_reg->smax_value >>= umin_val; 5633 5634 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 5635 5636 /* blow away the dst_reg umin_value/umax_value and rely on 5637 * dst_reg var_off to refine the result. 5638 */ 5639 dst_reg->umin_value = 0; 5640 dst_reg->umax_value = U64_MAX; 5641 5642 /* Its not easy to operate on alu32 bounds here because it depends 5643 * on bits being shifted in from upper 32-bits. Take easy way out 5644 * and mark unbounded so we can recalculate later from tnum. 5645 */ 5646 __mark_reg32_unbounded(dst_reg); 5647 __update_reg_bounds(dst_reg); 5648 } 5649 5650 /* WARNING: This function does calculations on 64-bit values, but the actual 5651 * execution may occur on 32-bit values. Therefore, things like bitshifts 5652 * need extra checks in the 32-bit case. 5653 */ 5654 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 5655 struct bpf_insn *insn, 5656 struct bpf_reg_state *dst_reg, 5657 struct bpf_reg_state src_reg) 5658 { 5659 struct bpf_reg_state *regs = cur_regs(env); 5660 u8 opcode = BPF_OP(insn->code); 5661 bool src_known; 5662 s64 smin_val, smax_val; 5663 u64 umin_val, umax_val; 5664 s32 s32_min_val, s32_max_val; 5665 u32 u32_min_val, u32_max_val; 5666 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 5667 u32 dst = insn->dst_reg; 5668 int ret; 5669 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 5670 5671 smin_val = src_reg.smin_value; 5672 smax_val = src_reg.smax_value; 5673 umin_val = src_reg.umin_value; 5674 umax_val = src_reg.umax_value; 5675 5676 s32_min_val = src_reg.s32_min_value; 5677 s32_max_val = src_reg.s32_max_value; 5678 u32_min_val = src_reg.u32_min_value; 5679 u32_max_val = src_reg.u32_max_value; 5680 5681 if (alu32) { 5682 src_known = tnum_subreg_is_const(src_reg.var_off); 5683 if ((src_known && 5684 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 5685 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 5686 /* Taint dst register if offset had invalid bounds 5687 * derived from e.g. dead branches. 5688 */ 5689 __mark_reg_unknown(env, dst_reg); 5690 return 0; 5691 } 5692 } else { 5693 src_known = tnum_is_const(src_reg.var_off); 5694 if ((src_known && 5695 (smin_val != smax_val || umin_val != umax_val)) || 5696 smin_val > smax_val || umin_val > umax_val) { 5697 /* Taint dst register if offset had invalid bounds 5698 * derived from e.g. dead branches. 5699 */ 5700 __mark_reg_unknown(env, dst_reg); 5701 return 0; 5702 } 5703 } 5704 5705 if (!src_known && 5706 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 5707 __mark_reg_unknown(env, dst_reg); 5708 return 0; 5709 } 5710 5711 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 5712 * There are two classes of instructions: The first class we track both 5713 * alu32 and alu64 sign/unsigned bounds independently this provides the 5714 * greatest amount of precision when alu operations are mixed with jmp32 5715 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 5716 * and BPF_OR. This is possible because these ops have fairly easy to 5717 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 5718 * See alu32 verifier tests for examples. The second class of 5719 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 5720 * with regards to tracking sign/unsigned bounds because the bits may 5721 * cross subreg boundaries in the alu64 case. When this happens we mark 5722 * the reg unbounded in the subreg bound space and use the resulting 5723 * tnum to calculate an approximation of the sign/unsigned bounds. 5724 */ 5725 switch (opcode) { 5726 case BPF_ADD: 5727 ret = sanitize_val_alu(env, insn); 5728 if (ret < 0) { 5729 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 5730 return ret; 5731 } 5732 scalar32_min_max_add(dst_reg, &src_reg); 5733 scalar_min_max_add(dst_reg, &src_reg); 5734 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 5735 break; 5736 case BPF_SUB: 5737 ret = sanitize_val_alu(env, insn); 5738 if (ret < 0) { 5739 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 5740 return ret; 5741 } 5742 scalar32_min_max_sub(dst_reg, &src_reg); 5743 scalar_min_max_sub(dst_reg, &src_reg); 5744 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 5745 break; 5746 case BPF_MUL: 5747 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 5748 scalar32_min_max_mul(dst_reg, &src_reg); 5749 scalar_min_max_mul(dst_reg, &src_reg); 5750 break; 5751 case BPF_AND: 5752 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 5753 scalar32_min_max_and(dst_reg, &src_reg); 5754 scalar_min_max_and(dst_reg, &src_reg); 5755 break; 5756 case BPF_OR: 5757 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 5758 scalar32_min_max_or(dst_reg, &src_reg); 5759 scalar_min_max_or(dst_reg, &src_reg); 5760 break; 5761 case BPF_LSH: 5762 if (umax_val >= insn_bitness) { 5763 /* Shifts greater than 31 or 63 are undefined. 5764 * This includes shifts by a negative number. 5765 */ 5766 mark_reg_unknown(env, regs, insn->dst_reg); 5767 break; 5768 } 5769 if (alu32) 5770 scalar32_min_max_lsh(dst_reg, &src_reg); 5771 else 5772 scalar_min_max_lsh(dst_reg, &src_reg); 5773 break; 5774 case BPF_RSH: 5775 if (umax_val >= insn_bitness) { 5776 /* Shifts greater than 31 or 63 are undefined. 5777 * This includes shifts by a negative number. 5778 */ 5779 mark_reg_unknown(env, regs, insn->dst_reg); 5780 break; 5781 } 5782 if (alu32) 5783 scalar32_min_max_rsh(dst_reg, &src_reg); 5784 else 5785 scalar_min_max_rsh(dst_reg, &src_reg); 5786 break; 5787 case BPF_ARSH: 5788 if (umax_val >= insn_bitness) { 5789 /* Shifts greater than 31 or 63 are undefined. 5790 * This includes shifts by a negative number. 5791 */ 5792 mark_reg_unknown(env, regs, insn->dst_reg); 5793 break; 5794 } 5795 if (alu32) 5796 scalar32_min_max_arsh(dst_reg, &src_reg); 5797 else 5798 scalar_min_max_arsh(dst_reg, &src_reg); 5799 break; 5800 default: 5801 mark_reg_unknown(env, regs, insn->dst_reg); 5802 break; 5803 } 5804 5805 /* ALU32 ops are zero extended into 64bit register */ 5806 if (alu32) 5807 zext_32_to_64(dst_reg); 5808 5809 __update_reg_bounds(dst_reg); 5810 __reg_deduce_bounds(dst_reg); 5811 __reg_bound_offset(dst_reg); 5812 return 0; 5813 } 5814 5815 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 5816 * and var_off. 5817 */ 5818 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 5819 struct bpf_insn *insn) 5820 { 5821 struct bpf_verifier_state *vstate = env->cur_state; 5822 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5823 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 5824 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 5825 u8 opcode = BPF_OP(insn->code); 5826 int err; 5827 5828 dst_reg = ®s[insn->dst_reg]; 5829 src_reg = NULL; 5830 if (dst_reg->type != SCALAR_VALUE) 5831 ptr_reg = dst_reg; 5832 if (BPF_SRC(insn->code) == BPF_X) { 5833 src_reg = ®s[insn->src_reg]; 5834 if (src_reg->type != SCALAR_VALUE) { 5835 if (dst_reg->type != SCALAR_VALUE) { 5836 /* Combining two pointers by any ALU op yields 5837 * an arbitrary scalar. Disallow all math except 5838 * pointer subtraction 5839 */ 5840 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5841 mark_reg_unknown(env, regs, insn->dst_reg); 5842 return 0; 5843 } 5844 verbose(env, "R%d pointer %s pointer prohibited\n", 5845 insn->dst_reg, 5846 bpf_alu_string[opcode >> 4]); 5847 return -EACCES; 5848 } else { 5849 /* scalar += pointer 5850 * This is legal, but we have to reverse our 5851 * src/dest handling in computing the range 5852 */ 5853 err = mark_chain_precision(env, insn->dst_reg); 5854 if (err) 5855 return err; 5856 return adjust_ptr_min_max_vals(env, insn, 5857 src_reg, dst_reg); 5858 } 5859 } else if (ptr_reg) { 5860 /* pointer += scalar */ 5861 err = mark_chain_precision(env, insn->src_reg); 5862 if (err) 5863 return err; 5864 return adjust_ptr_min_max_vals(env, insn, 5865 dst_reg, src_reg); 5866 } 5867 } else { 5868 /* Pretend the src is a reg with a known value, since we only 5869 * need to be able to read from this state. 5870 */ 5871 off_reg.type = SCALAR_VALUE; 5872 __mark_reg_known(&off_reg, insn->imm); 5873 src_reg = &off_reg; 5874 if (ptr_reg) /* pointer += K */ 5875 return adjust_ptr_min_max_vals(env, insn, 5876 ptr_reg, src_reg); 5877 } 5878 5879 /* Got here implies adding two SCALAR_VALUEs */ 5880 if (WARN_ON_ONCE(ptr_reg)) { 5881 print_verifier_state(env, state); 5882 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 5883 return -EINVAL; 5884 } 5885 if (WARN_ON(!src_reg)) { 5886 print_verifier_state(env, state); 5887 verbose(env, "verifier internal error: no src_reg\n"); 5888 return -EINVAL; 5889 } 5890 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 5891 } 5892 5893 /* check validity of 32-bit and 64-bit arithmetic operations */ 5894 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 5895 { 5896 struct bpf_reg_state *regs = cur_regs(env); 5897 u8 opcode = BPF_OP(insn->code); 5898 int err; 5899 5900 if (opcode == BPF_END || opcode == BPF_NEG) { 5901 if (opcode == BPF_NEG) { 5902 if (BPF_SRC(insn->code) != 0 || 5903 insn->src_reg != BPF_REG_0 || 5904 insn->off != 0 || insn->imm != 0) { 5905 verbose(env, "BPF_NEG uses reserved fields\n"); 5906 return -EINVAL; 5907 } 5908 } else { 5909 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 5910 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 5911 BPF_CLASS(insn->code) == BPF_ALU64) { 5912 verbose(env, "BPF_END uses reserved fields\n"); 5913 return -EINVAL; 5914 } 5915 } 5916 5917 /* check src operand */ 5918 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5919 if (err) 5920 return err; 5921 5922 if (is_pointer_value(env, insn->dst_reg)) { 5923 verbose(env, "R%d pointer arithmetic prohibited\n", 5924 insn->dst_reg); 5925 return -EACCES; 5926 } 5927 5928 /* check dest operand */ 5929 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5930 if (err) 5931 return err; 5932 5933 } else if (opcode == BPF_MOV) { 5934 5935 if (BPF_SRC(insn->code) == BPF_X) { 5936 if (insn->imm != 0 || insn->off != 0) { 5937 verbose(env, "BPF_MOV uses reserved fields\n"); 5938 return -EINVAL; 5939 } 5940 5941 /* check src operand */ 5942 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5943 if (err) 5944 return err; 5945 } else { 5946 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5947 verbose(env, "BPF_MOV uses reserved fields\n"); 5948 return -EINVAL; 5949 } 5950 } 5951 5952 /* check dest operand, mark as required later */ 5953 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5954 if (err) 5955 return err; 5956 5957 if (BPF_SRC(insn->code) == BPF_X) { 5958 struct bpf_reg_state *src_reg = regs + insn->src_reg; 5959 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 5960 5961 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5962 /* case: R1 = R2 5963 * copy register state to dest reg 5964 */ 5965 *dst_reg = *src_reg; 5966 dst_reg->live |= REG_LIVE_WRITTEN; 5967 dst_reg->subreg_def = DEF_NOT_SUBREG; 5968 } else { 5969 /* R1 = (u32) R2 */ 5970 if (is_pointer_value(env, insn->src_reg)) { 5971 verbose(env, 5972 "R%d partial copy of pointer\n", 5973 insn->src_reg); 5974 return -EACCES; 5975 } else if (src_reg->type == SCALAR_VALUE) { 5976 *dst_reg = *src_reg; 5977 dst_reg->live |= REG_LIVE_WRITTEN; 5978 dst_reg->subreg_def = env->insn_idx + 1; 5979 } else { 5980 mark_reg_unknown(env, regs, 5981 insn->dst_reg); 5982 } 5983 zext_32_to_64(dst_reg); 5984 } 5985 } else { 5986 /* case: R = imm 5987 * remember the value we stored into this reg 5988 */ 5989 /* clear any state __mark_reg_known doesn't set */ 5990 mark_reg_unknown(env, regs, insn->dst_reg); 5991 regs[insn->dst_reg].type = SCALAR_VALUE; 5992 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5993 __mark_reg_known(regs + insn->dst_reg, 5994 insn->imm); 5995 } else { 5996 __mark_reg_known(regs + insn->dst_reg, 5997 (u32)insn->imm); 5998 } 5999 } 6000 6001 } else if (opcode > BPF_END) { 6002 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 6003 return -EINVAL; 6004 6005 } else { /* all other ALU ops: and, sub, xor, add, ... */ 6006 6007 if (BPF_SRC(insn->code) == BPF_X) { 6008 if (insn->imm != 0 || insn->off != 0) { 6009 verbose(env, "BPF_ALU uses reserved fields\n"); 6010 return -EINVAL; 6011 } 6012 /* check src1 operand */ 6013 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6014 if (err) 6015 return err; 6016 } else { 6017 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6018 verbose(env, "BPF_ALU uses reserved fields\n"); 6019 return -EINVAL; 6020 } 6021 } 6022 6023 /* check src2 operand */ 6024 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6025 if (err) 6026 return err; 6027 6028 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 6029 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 6030 verbose(env, "div by zero\n"); 6031 return -EINVAL; 6032 } 6033 6034 if ((opcode == BPF_LSH || opcode == BPF_RSH || 6035 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 6036 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 6037 6038 if (insn->imm < 0 || insn->imm >= size) { 6039 verbose(env, "invalid shift %d\n", insn->imm); 6040 return -EINVAL; 6041 } 6042 } 6043 6044 /* check dest operand */ 6045 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6046 if (err) 6047 return err; 6048 6049 return adjust_reg_min_max_vals(env, insn); 6050 } 6051 6052 return 0; 6053 } 6054 6055 static void __find_good_pkt_pointers(struct bpf_func_state *state, 6056 struct bpf_reg_state *dst_reg, 6057 enum bpf_reg_type type, u16 new_range) 6058 { 6059 struct bpf_reg_state *reg; 6060 int i; 6061 6062 for (i = 0; i < MAX_BPF_REG; i++) { 6063 reg = &state->regs[i]; 6064 if (reg->type == type && reg->id == dst_reg->id) 6065 /* keep the maximum range already checked */ 6066 reg->range = max(reg->range, new_range); 6067 } 6068 6069 bpf_for_each_spilled_reg(i, state, reg) { 6070 if (!reg) 6071 continue; 6072 if (reg->type == type && reg->id == dst_reg->id) 6073 reg->range = max(reg->range, new_range); 6074 } 6075 } 6076 6077 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 6078 struct bpf_reg_state *dst_reg, 6079 enum bpf_reg_type type, 6080 bool range_right_open) 6081 { 6082 u16 new_range; 6083 int i; 6084 6085 if (dst_reg->off < 0 || 6086 (dst_reg->off == 0 && range_right_open)) 6087 /* This doesn't give us any range */ 6088 return; 6089 6090 if (dst_reg->umax_value > MAX_PACKET_OFF || 6091 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 6092 /* Risk of overflow. For instance, ptr + (1<<63) may be less 6093 * than pkt_end, but that's because it's also less than pkt. 6094 */ 6095 return; 6096 6097 new_range = dst_reg->off; 6098 if (range_right_open) 6099 new_range--; 6100 6101 /* Examples for register markings: 6102 * 6103 * pkt_data in dst register: 6104 * 6105 * r2 = r3; 6106 * r2 += 8; 6107 * if (r2 > pkt_end) goto <handle exception> 6108 * <access okay> 6109 * 6110 * r2 = r3; 6111 * r2 += 8; 6112 * if (r2 < pkt_end) goto <access okay> 6113 * <handle exception> 6114 * 6115 * Where: 6116 * r2 == dst_reg, pkt_end == src_reg 6117 * r2=pkt(id=n,off=8,r=0) 6118 * r3=pkt(id=n,off=0,r=0) 6119 * 6120 * pkt_data in src register: 6121 * 6122 * r2 = r3; 6123 * r2 += 8; 6124 * if (pkt_end >= r2) goto <access okay> 6125 * <handle exception> 6126 * 6127 * r2 = r3; 6128 * r2 += 8; 6129 * if (pkt_end <= r2) goto <handle exception> 6130 * <access okay> 6131 * 6132 * Where: 6133 * pkt_end == dst_reg, r2 == src_reg 6134 * r2=pkt(id=n,off=8,r=0) 6135 * r3=pkt(id=n,off=0,r=0) 6136 * 6137 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 6138 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 6139 * and [r3, r3 + 8-1) respectively is safe to access depending on 6140 * the check. 6141 */ 6142 6143 /* If our ids match, then we must have the same max_value. And we 6144 * don't care about the other reg's fixed offset, since if it's too big 6145 * the range won't allow anything. 6146 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 6147 */ 6148 for (i = 0; i <= vstate->curframe; i++) 6149 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 6150 new_range); 6151 } 6152 6153 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 6154 { 6155 struct tnum subreg = tnum_subreg(reg->var_off); 6156 s32 sval = (s32)val; 6157 6158 switch (opcode) { 6159 case BPF_JEQ: 6160 if (tnum_is_const(subreg)) 6161 return !!tnum_equals_const(subreg, val); 6162 break; 6163 case BPF_JNE: 6164 if (tnum_is_const(subreg)) 6165 return !tnum_equals_const(subreg, val); 6166 break; 6167 case BPF_JSET: 6168 if ((~subreg.mask & subreg.value) & val) 6169 return 1; 6170 if (!((subreg.mask | subreg.value) & val)) 6171 return 0; 6172 break; 6173 case BPF_JGT: 6174 if (reg->u32_min_value > val) 6175 return 1; 6176 else if (reg->u32_max_value <= val) 6177 return 0; 6178 break; 6179 case BPF_JSGT: 6180 if (reg->s32_min_value > sval) 6181 return 1; 6182 else if (reg->s32_max_value < sval) 6183 return 0; 6184 break; 6185 case BPF_JLT: 6186 if (reg->u32_max_value < val) 6187 return 1; 6188 else if (reg->u32_min_value >= val) 6189 return 0; 6190 break; 6191 case BPF_JSLT: 6192 if (reg->s32_max_value < sval) 6193 return 1; 6194 else if (reg->s32_min_value >= sval) 6195 return 0; 6196 break; 6197 case BPF_JGE: 6198 if (reg->u32_min_value >= val) 6199 return 1; 6200 else if (reg->u32_max_value < val) 6201 return 0; 6202 break; 6203 case BPF_JSGE: 6204 if (reg->s32_min_value >= sval) 6205 return 1; 6206 else if (reg->s32_max_value < sval) 6207 return 0; 6208 break; 6209 case BPF_JLE: 6210 if (reg->u32_max_value <= val) 6211 return 1; 6212 else if (reg->u32_min_value > val) 6213 return 0; 6214 break; 6215 case BPF_JSLE: 6216 if (reg->s32_max_value <= sval) 6217 return 1; 6218 else if (reg->s32_min_value > sval) 6219 return 0; 6220 break; 6221 } 6222 6223 return -1; 6224 } 6225 6226 6227 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 6228 { 6229 s64 sval = (s64)val; 6230 6231 switch (opcode) { 6232 case BPF_JEQ: 6233 if (tnum_is_const(reg->var_off)) 6234 return !!tnum_equals_const(reg->var_off, val); 6235 break; 6236 case BPF_JNE: 6237 if (tnum_is_const(reg->var_off)) 6238 return !tnum_equals_const(reg->var_off, val); 6239 break; 6240 case BPF_JSET: 6241 if ((~reg->var_off.mask & reg->var_off.value) & val) 6242 return 1; 6243 if (!((reg->var_off.mask | reg->var_off.value) & val)) 6244 return 0; 6245 break; 6246 case BPF_JGT: 6247 if (reg->umin_value > val) 6248 return 1; 6249 else if (reg->umax_value <= val) 6250 return 0; 6251 break; 6252 case BPF_JSGT: 6253 if (reg->smin_value > sval) 6254 return 1; 6255 else if (reg->smax_value < sval) 6256 return 0; 6257 break; 6258 case BPF_JLT: 6259 if (reg->umax_value < val) 6260 return 1; 6261 else if (reg->umin_value >= val) 6262 return 0; 6263 break; 6264 case BPF_JSLT: 6265 if (reg->smax_value < sval) 6266 return 1; 6267 else if (reg->smin_value >= sval) 6268 return 0; 6269 break; 6270 case BPF_JGE: 6271 if (reg->umin_value >= val) 6272 return 1; 6273 else if (reg->umax_value < val) 6274 return 0; 6275 break; 6276 case BPF_JSGE: 6277 if (reg->smin_value >= sval) 6278 return 1; 6279 else if (reg->smax_value < sval) 6280 return 0; 6281 break; 6282 case BPF_JLE: 6283 if (reg->umax_value <= val) 6284 return 1; 6285 else if (reg->umin_value > val) 6286 return 0; 6287 break; 6288 case BPF_JSLE: 6289 if (reg->smax_value <= sval) 6290 return 1; 6291 else if (reg->smin_value > sval) 6292 return 0; 6293 break; 6294 } 6295 6296 return -1; 6297 } 6298 6299 /* compute branch direction of the expression "if (reg opcode val) goto target;" 6300 * and return: 6301 * 1 - branch will be taken and "goto target" will be executed 6302 * 0 - branch will not be taken and fall-through to next insn 6303 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 6304 * range [0,10] 6305 */ 6306 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 6307 bool is_jmp32) 6308 { 6309 if (__is_pointer_value(false, reg)) 6310 return -1; 6311 6312 if (is_jmp32) 6313 return is_branch32_taken(reg, val, opcode); 6314 return is_branch64_taken(reg, val, opcode); 6315 } 6316 6317 /* Adjusts the register min/max values in the case that the dst_reg is the 6318 * variable register that we are working on, and src_reg is a constant or we're 6319 * simply doing a BPF_K check. 6320 * In JEQ/JNE cases we also adjust the var_off values. 6321 */ 6322 static void reg_set_min_max(struct bpf_reg_state *true_reg, 6323 struct bpf_reg_state *false_reg, 6324 u64 val, u32 val32, 6325 u8 opcode, bool is_jmp32) 6326 { 6327 struct tnum false_32off = tnum_subreg(false_reg->var_off); 6328 struct tnum false_64off = false_reg->var_off; 6329 struct tnum true_32off = tnum_subreg(true_reg->var_off); 6330 struct tnum true_64off = true_reg->var_off; 6331 s64 sval = (s64)val; 6332 s32 sval32 = (s32)val32; 6333 6334 /* If the dst_reg is a pointer, we can't learn anything about its 6335 * variable offset from the compare (unless src_reg were a pointer into 6336 * the same object, but we don't bother with that. 6337 * Since false_reg and true_reg have the same type by construction, we 6338 * only need to check one of them for pointerness. 6339 */ 6340 if (__is_pointer_value(false, false_reg)) 6341 return; 6342 6343 switch (opcode) { 6344 case BPF_JEQ: 6345 case BPF_JNE: 6346 { 6347 struct bpf_reg_state *reg = 6348 opcode == BPF_JEQ ? true_reg : false_reg; 6349 6350 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 6351 * if it is true we know the value for sure. Likewise for 6352 * BPF_JNE. 6353 */ 6354 if (is_jmp32) 6355 __mark_reg32_known(reg, val32); 6356 else 6357 __mark_reg_known(reg, val); 6358 break; 6359 } 6360 case BPF_JSET: 6361 if (is_jmp32) { 6362 false_32off = tnum_and(false_32off, tnum_const(~val32)); 6363 if (is_power_of_2(val32)) 6364 true_32off = tnum_or(true_32off, 6365 tnum_const(val32)); 6366 } else { 6367 false_64off = tnum_and(false_64off, tnum_const(~val)); 6368 if (is_power_of_2(val)) 6369 true_64off = tnum_or(true_64off, 6370 tnum_const(val)); 6371 } 6372 break; 6373 case BPF_JGE: 6374 case BPF_JGT: 6375 { 6376 if (is_jmp32) { 6377 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 6378 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 6379 6380 false_reg->u32_max_value = min(false_reg->u32_max_value, 6381 false_umax); 6382 true_reg->u32_min_value = max(true_reg->u32_min_value, 6383 true_umin); 6384 } else { 6385 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 6386 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 6387 6388 false_reg->umax_value = min(false_reg->umax_value, false_umax); 6389 true_reg->umin_value = max(true_reg->umin_value, true_umin); 6390 } 6391 break; 6392 } 6393 case BPF_JSGE: 6394 case BPF_JSGT: 6395 { 6396 if (is_jmp32) { 6397 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 6398 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 6399 6400 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 6401 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 6402 } else { 6403 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 6404 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 6405 6406 false_reg->smax_value = min(false_reg->smax_value, false_smax); 6407 true_reg->smin_value = max(true_reg->smin_value, true_smin); 6408 } 6409 break; 6410 } 6411 case BPF_JLE: 6412 case BPF_JLT: 6413 { 6414 if (is_jmp32) { 6415 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 6416 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 6417 6418 false_reg->u32_min_value = max(false_reg->u32_min_value, 6419 false_umin); 6420 true_reg->u32_max_value = min(true_reg->u32_max_value, 6421 true_umax); 6422 } else { 6423 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 6424 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 6425 6426 false_reg->umin_value = max(false_reg->umin_value, false_umin); 6427 true_reg->umax_value = min(true_reg->umax_value, true_umax); 6428 } 6429 break; 6430 } 6431 case BPF_JSLE: 6432 case BPF_JSLT: 6433 { 6434 if (is_jmp32) { 6435 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 6436 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 6437 6438 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 6439 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 6440 } else { 6441 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 6442 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 6443 6444 false_reg->smin_value = max(false_reg->smin_value, false_smin); 6445 true_reg->smax_value = min(true_reg->smax_value, true_smax); 6446 } 6447 break; 6448 } 6449 default: 6450 return; 6451 } 6452 6453 if (is_jmp32) { 6454 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 6455 tnum_subreg(false_32off)); 6456 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 6457 tnum_subreg(true_32off)); 6458 __reg_combine_32_into_64(false_reg); 6459 __reg_combine_32_into_64(true_reg); 6460 } else { 6461 false_reg->var_off = false_64off; 6462 true_reg->var_off = true_64off; 6463 __reg_combine_64_into_32(false_reg); 6464 __reg_combine_64_into_32(true_reg); 6465 } 6466 } 6467 6468 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 6469 * the variable reg. 6470 */ 6471 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 6472 struct bpf_reg_state *false_reg, 6473 u64 val, u32 val32, 6474 u8 opcode, bool is_jmp32) 6475 { 6476 /* How can we transform "a <op> b" into "b <op> a"? */ 6477 static const u8 opcode_flip[16] = { 6478 /* these stay the same */ 6479 [BPF_JEQ >> 4] = BPF_JEQ, 6480 [BPF_JNE >> 4] = BPF_JNE, 6481 [BPF_JSET >> 4] = BPF_JSET, 6482 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 6483 [BPF_JGE >> 4] = BPF_JLE, 6484 [BPF_JGT >> 4] = BPF_JLT, 6485 [BPF_JLE >> 4] = BPF_JGE, 6486 [BPF_JLT >> 4] = BPF_JGT, 6487 [BPF_JSGE >> 4] = BPF_JSLE, 6488 [BPF_JSGT >> 4] = BPF_JSLT, 6489 [BPF_JSLE >> 4] = BPF_JSGE, 6490 [BPF_JSLT >> 4] = BPF_JSGT 6491 }; 6492 opcode = opcode_flip[opcode >> 4]; 6493 /* This uses zero as "not present in table"; luckily the zero opcode, 6494 * BPF_JA, can't get here. 6495 */ 6496 if (opcode) 6497 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 6498 } 6499 6500 /* Regs are known to be equal, so intersect their min/max/var_off */ 6501 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 6502 struct bpf_reg_state *dst_reg) 6503 { 6504 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 6505 dst_reg->umin_value); 6506 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 6507 dst_reg->umax_value); 6508 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 6509 dst_reg->smin_value); 6510 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 6511 dst_reg->smax_value); 6512 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 6513 dst_reg->var_off); 6514 /* We might have learned new bounds from the var_off. */ 6515 __update_reg_bounds(src_reg); 6516 __update_reg_bounds(dst_reg); 6517 /* We might have learned something about the sign bit. */ 6518 __reg_deduce_bounds(src_reg); 6519 __reg_deduce_bounds(dst_reg); 6520 /* We might have learned some bits from the bounds. */ 6521 __reg_bound_offset(src_reg); 6522 __reg_bound_offset(dst_reg); 6523 /* Intersecting with the old var_off might have improved our bounds 6524 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 6525 * then new var_off is (0; 0x7f...fc) which improves our umax. 6526 */ 6527 __update_reg_bounds(src_reg); 6528 __update_reg_bounds(dst_reg); 6529 } 6530 6531 static void reg_combine_min_max(struct bpf_reg_state *true_src, 6532 struct bpf_reg_state *true_dst, 6533 struct bpf_reg_state *false_src, 6534 struct bpf_reg_state *false_dst, 6535 u8 opcode) 6536 { 6537 switch (opcode) { 6538 case BPF_JEQ: 6539 __reg_combine_min_max(true_src, true_dst); 6540 break; 6541 case BPF_JNE: 6542 __reg_combine_min_max(false_src, false_dst); 6543 break; 6544 } 6545 } 6546 6547 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 6548 struct bpf_reg_state *reg, u32 id, 6549 bool is_null) 6550 { 6551 if (reg_type_may_be_null(reg->type) && reg->id == id) { 6552 /* Old offset (both fixed and variable parts) should 6553 * have been known-zero, because we don't allow pointer 6554 * arithmetic on pointers that might be NULL. 6555 */ 6556 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 6557 !tnum_equals_const(reg->var_off, 0) || 6558 reg->off)) { 6559 __mark_reg_known_zero(reg); 6560 reg->off = 0; 6561 } 6562 if (is_null) { 6563 reg->type = SCALAR_VALUE; 6564 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 6565 const struct bpf_map *map = reg->map_ptr; 6566 6567 if (map->inner_map_meta) { 6568 reg->type = CONST_PTR_TO_MAP; 6569 reg->map_ptr = map->inner_map_meta; 6570 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 6571 reg->type = PTR_TO_XDP_SOCK; 6572 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 6573 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 6574 reg->type = PTR_TO_SOCKET; 6575 } else { 6576 reg->type = PTR_TO_MAP_VALUE; 6577 } 6578 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 6579 reg->type = PTR_TO_SOCKET; 6580 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 6581 reg->type = PTR_TO_SOCK_COMMON; 6582 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 6583 reg->type = PTR_TO_TCP_SOCK; 6584 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) { 6585 reg->type = PTR_TO_BTF_ID; 6586 } 6587 if (is_null) { 6588 /* We don't need id and ref_obj_id from this point 6589 * onwards anymore, thus we should better reset it, 6590 * so that state pruning has chances to take effect. 6591 */ 6592 reg->id = 0; 6593 reg->ref_obj_id = 0; 6594 } else if (!reg_may_point_to_spin_lock(reg)) { 6595 /* For not-NULL ptr, reg->ref_obj_id will be reset 6596 * in release_reg_references(). 6597 * 6598 * reg->id is still used by spin_lock ptr. Other 6599 * than spin_lock ptr type, reg->id can be reset. 6600 */ 6601 reg->id = 0; 6602 } 6603 } 6604 } 6605 6606 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 6607 bool is_null) 6608 { 6609 struct bpf_reg_state *reg; 6610 int i; 6611 6612 for (i = 0; i < MAX_BPF_REG; i++) 6613 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 6614 6615 bpf_for_each_spilled_reg(i, state, reg) { 6616 if (!reg) 6617 continue; 6618 mark_ptr_or_null_reg(state, reg, id, is_null); 6619 } 6620 } 6621 6622 /* The logic is similar to find_good_pkt_pointers(), both could eventually 6623 * be folded together at some point. 6624 */ 6625 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 6626 bool is_null) 6627 { 6628 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6629 struct bpf_reg_state *regs = state->regs; 6630 u32 ref_obj_id = regs[regno].ref_obj_id; 6631 u32 id = regs[regno].id; 6632 int i; 6633 6634 if (ref_obj_id && ref_obj_id == id && is_null) 6635 /* regs[regno] is in the " == NULL" branch. 6636 * No one could have freed the reference state before 6637 * doing the NULL check. 6638 */ 6639 WARN_ON_ONCE(release_reference_state(state, id)); 6640 6641 for (i = 0; i <= vstate->curframe; i++) 6642 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 6643 } 6644 6645 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 6646 struct bpf_reg_state *dst_reg, 6647 struct bpf_reg_state *src_reg, 6648 struct bpf_verifier_state *this_branch, 6649 struct bpf_verifier_state *other_branch) 6650 { 6651 if (BPF_SRC(insn->code) != BPF_X) 6652 return false; 6653 6654 /* Pointers are always 64-bit. */ 6655 if (BPF_CLASS(insn->code) == BPF_JMP32) 6656 return false; 6657 6658 switch (BPF_OP(insn->code)) { 6659 case BPF_JGT: 6660 if ((dst_reg->type == PTR_TO_PACKET && 6661 src_reg->type == PTR_TO_PACKET_END) || 6662 (dst_reg->type == PTR_TO_PACKET_META && 6663 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6664 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 6665 find_good_pkt_pointers(this_branch, dst_reg, 6666 dst_reg->type, false); 6667 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6668 src_reg->type == PTR_TO_PACKET) || 6669 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6670 src_reg->type == PTR_TO_PACKET_META)) { 6671 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 6672 find_good_pkt_pointers(other_branch, src_reg, 6673 src_reg->type, true); 6674 } else { 6675 return false; 6676 } 6677 break; 6678 case BPF_JLT: 6679 if ((dst_reg->type == PTR_TO_PACKET && 6680 src_reg->type == PTR_TO_PACKET_END) || 6681 (dst_reg->type == PTR_TO_PACKET_META && 6682 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6683 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 6684 find_good_pkt_pointers(other_branch, dst_reg, 6685 dst_reg->type, true); 6686 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6687 src_reg->type == PTR_TO_PACKET) || 6688 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6689 src_reg->type == PTR_TO_PACKET_META)) { 6690 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 6691 find_good_pkt_pointers(this_branch, src_reg, 6692 src_reg->type, false); 6693 } else { 6694 return false; 6695 } 6696 break; 6697 case BPF_JGE: 6698 if ((dst_reg->type == PTR_TO_PACKET && 6699 src_reg->type == PTR_TO_PACKET_END) || 6700 (dst_reg->type == PTR_TO_PACKET_META && 6701 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6702 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 6703 find_good_pkt_pointers(this_branch, dst_reg, 6704 dst_reg->type, true); 6705 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6706 src_reg->type == PTR_TO_PACKET) || 6707 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6708 src_reg->type == PTR_TO_PACKET_META)) { 6709 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 6710 find_good_pkt_pointers(other_branch, src_reg, 6711 src_reg->type, false); 6712 } else { 6713 return false; 6714 } 6715 break; 6716 case BPF_JLE: 6717 if ((dst_reg->type == PTR_TO_PACKET && 6718 src_reg->type == PTR_TO_PACKET_END) || 6719 (dst_reg->type == PTR_TO_PACKET_META && 6720 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6721 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 6722 find_good_pkt_pointers(other_branch, dst_reg, 6723 dst_reg->type, false); 6724 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6725 src_reg->type == PTR_TO_PACKET) || 6726 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6727 src_reg->type == PTR_TO_PACKET_META)) { 6728 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 6729 find_good_pkt_pointers(this_branch, src_reg, 6730 src_reg->type, true); 6731 } else { 6732 return false; 6733 } 6734 break; 6735 default: 6736 return false; 6737 } 6738 6739 return true; 6740 } 6741 6742 static int check_cond_jmp_op(struct bpf_verifier_env *env, 6743 struct bpf_insn *insn, int *insn_idx) 6744 { 6745 struct bpf_verifier_state *this_branch = env->cur_state; 6746 struct bpf_verifier_state *other_branch; 6747 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 6748 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 6749 u8 opcode = BPF_OP(insn->code); 6750 bool is_jmp32; 6751 int pred = -1; 6752 int err; 6753 6754 /* Only conditional jumps are expected to reach here. */ 6755 if (opcode == BPF_JA || opcode > BPF_JSLE) { 6756 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 6757 return -EINVAL; 6758 } 6759 6760 if (BPF_SRC(insn->code) == BPF_X) { 6761 if (insn->imm != 0) { 6762 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6763 return -EINVAL; 6764 } 6765 6766 /* check src1 operand */ 6767 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6768 if (err) 6769 return err; 6770 6771 if (is_pointer_value(env, insn->src_reg)) { 6772 verbose(env, "R%d pointer comparison prohibited\n", 6773 insn->src_reg); 6774 return -EACCES; 6775 } 6776 src_reg = ®s[insn->src_reg]; 6777 } else { 6778 if (insn->src_reg != BPF_REG_0) { 6779 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6780 return -EINVAL; 6781 } 6782 } 6783 6784 /* check src2 operand */ 6785 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6786 if (err) 6787 return err; 6788 6789 dst_reg = ®s[insn->dst_reg]; 6790 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 6791 6792 if (BPF_SRC(insn->code) == BPF_K) { 6793 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 6794 } else if (src_reg->type == SCALAR_VALUE && 6795 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 6796 pred = is_branch_taken(dst_reg, 6797 tnum_subreg(src_reg->var_off).value, 6798 opcode, 6799 is_jmp32); 6800 } else if (src_reg->type == SCALAR_VALUE && 6801 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 6802 pred = is_branch_taken(dst_reg, 6803 src_reg->var_off.value, 6804 opcode, 6805 is_jmp32); 6806 } 6807 6808 if (pred >= 0) { 6809 err = mark_chain_precision(env, insn->dst_reg); 6810 if (BPF_SRC(insn->code) == BPF_X && !err) 6811 err = mark_chain_precision(env, insn->src_reg); 6812 if (err) 6813 return err; 6814 } 6815 if (pred == 1) { 6816 /* only follow the goto, ignore fall-through */ 6817 *insn_idx += insn->off; 6818 return 0; 6819 } else if (pred == 0) { 6820 /* only follow fall-through branch, since 6821 * that's where the program will go 6822 */ 6823 return 0; 6824 } 6825 6826 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 6827 false); 6828 if (!other_branch) 6829 return -EFAULT; 6830 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 6831 6832 /* detect if we are comparing against a constant value so we can adjust 6833 * our min/max values for our dst register. 6834 * this is only legit if both are scalars (or pointers to the same 6835 * object, I suppose, but we don't support that right now), because 6836 * otherwise the different base pointers mean the offsets aren't 6837 * comparable. 6838 */ 6839 if (BPF_SRC(insn->code) == BPF_X) { 6840 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 6841 6842 if (dst_reg->type == SCALAR_VALUE && 6843 src_reg->type == SCALAR_VALUE) { 6844 if (tnum_is_const(src_reg->var_off) || 6845 (is_jmp32 && 6846 tnum_is_const(tnum_subreg(src_reg->var_off)))) 6847 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6848 dst_reg, 6849 src_reg->var_off.value, 6850 tnum_subreg(src_reg->var_off).value, 6851 opcode, is_jmp32); 6852 else if (tnum_is_const(dst_reg->var_off) || 6853 (is_jmp32 && 6854 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 6855 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 6856 src_reg, 6857 dst_reg->var_off.value, 6858 tnum_subreg(dst_reg->var_off).value, 6859 opcode, is_jmp32); 6860 else if (!is_jmp32 && 6861 (opcode == BPF_JEQ || opcode == BPF_JNE)) 6862 /* Comparing for equality, we can combine knowledge */ 6863 reg_combine_min_max(&other_branch_regs[insn->src_reg], 6864 &other_branch_regs[insn->dst_reg], 6865 src_reg, dst_reg, opcode); 6866 } 6867 } else if (dst_reg->type == SCALAR_VALUE) { 6868 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6869 dst_reg, insn->imm, (u32)insn->imm, 6870 opcode, is_jmp32); 6871 } 6872 6873 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 6874 * NOTE: these optimizations below are related with pointer comparison 6875 * which will never be JMP32. 6876 */ 6877 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 6878 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 6879 reg_type_may_be_null(dst_reg->type)) { 6880 /* Mark all identical registers in each branch as either 6881 * safe or unknown depending R == 0 or R != 0 conditional. 6882 */ 6883 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 6884 opcode == BPF_JNE); 6885 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 6886 opcode == BPF_JEQ); 6887 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 6888 this_branch, other_branch) && 6889 is_pointer_value(env, insn->dst_reg)) { 6890 verbose(env, "R%d pointer comparison prohibited\n", 6891 insn->dst_reg); 6892 return -EACCES; 6893 } 6894 if (env->log.level & BPF_LOG_LEVEL) 6895 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 6896 return 0; 6897 } 6898 6899 /* verify BPF_LD_IMM64 instruction */ 6900 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 6901 { 6902 struct bpf_insn_aux_data *aux = cur_aux(env); 6903 struct bpf_reg_state *regs = cur_regs(env); 6904 struct bpf_map *map; 6905 int err; 6906 6907 if (BPF_SIZE(insn->code) != BPF_DW) { 6908 verbose(env, "invalid BPF_LD_IMM insn\n"); 6909 return -EINVAL; 6910 } 6911 if (insn->off != 0) { 6912 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 6913 return -EINVAL; 6914 } 6915 6916 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6917 if (err) 6918 return err; 6919 6920 if (insn->src_reg == 0) { 6921 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 6922 6923 regs[insn->dst_reg].type = SCALAR_VALUE; 6924 __mark_reg_known(®s[insn->dst_reg], imm); 6925 return 0; 6926 } 6927 6928 map = env->used_maps[aux->map_index]; 6929 mark_reg_known_zero(env, regs, insn->dst_reg); 6930 regs[insn->dst_reg].map_ptr = map; 6931 6932 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 6933 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 6934 regs[insn->dst_reg].off = aux->map_off; 6935 if (map_value_has_spin_lock(map)) 6936 regs[insn->dst_reg].id = ++env->id_gen; 6937 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 6938 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 6939 } else { 6940 verbose(env, "bpf verifier is misconfigured\n"); 6941 return -EINVAL; 6942 } 6943 6944 return 0; 6945 } 6946 6947 static bool may_access_skb(enum bpf_prog_type type) 6948 { 6949 switch (type) { 6950 case BPF_PROG_TYPE_SOCKET_FILTER: 6951 case BPF_PROG_TYPE_SCHED_CLS: 6952 case BPF_PROG_TYPE_SCHED_ACT: 6953 return true; 6954 default: 6955 return false; 6956 } 6957 } 6958 6959 /* verify safety of LD_ABS|LD_IND instructions: 6960 * - they can only appear in the programs where ctx == skb 6961 * - since they are wrappers of function calls, they scratch R1-R5 registers, 6962 * preserve R6-R9, and store return value into R0 6963 * 6964 * Implicit input: 6965 * ctx == skb == R6 == CTX 6966 * 6967 * Explicit input: 6968 * SRC == any register 6969 * IMM == 32-bit immediate 6970 * 6971 * Output: 6972 * R0 - 8/16/32-bit skb data converted to cpu endianness 6973 */ 6974 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 6975 { 6976 struct bpf_reg_state *regs = cur_regs(env); 6977 static const int ctx_reg = BPF_REG_6; 6978 u8 mode = BPF_MODE(insn->code); 6979 int i, err; 6980 6981 if (!may_access_skb(env->prog->type)) { 6982 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 6983 return -EINVAL; 6984 } 6985 6986 if (!env->ops->gen_ld_abs) { 6987 verbose(env, "bpf verifier is misconfigured\n"); 6988 return -EINVAL; 6989 } 6990 6991 if (env->subprog_cnt > 1) { 6992 /* when program has LD_ABS insn JITs and interpreter assume 6993 * that r1 == ctx == skb which is not the case for callees 6994 * that can have arbitrary arguments. It's problematic 6995 * for main prog as well since JITs would need to analyze 6996 * all functions in order to make proper register save/restore 6997 * decisions in the main prog. Hence disallow LD_ABS with calls 6998 */ 6999 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 7000 return -EINVAL; 7001 } 7002 7003 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 7004 BPF_SIZE(insn->code) == BPF_DW || 7005 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 7006 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 7007 return -EINVAL; 7008 } 7009 7010 /* check whether implicit source operand (register R6) is readable */ 7011 err = check_reg_arg(env, ctx_reg, SRC_OP); 7012 if (err) 7013 return err; 7014 7015 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 7016 * gen_ld_abs() may terminate the program at runtime, leading to 7017 * reference leak. 7018 */ 7019 err = check_reference_leak(env); 7020 if (err) { 7021 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 7022 return err; 7023 } 7024 7025 if (env->cur_state->active_spin_lock) { 7026 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 7027 return -EINVAL; 7028 } 7029 7030 if (regs[ctx_reg].type != PTR_TO_CTX) { 7031 verbose(env, 7032 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 7033 return -EINVAL; 7034 } 7035 7036 if (mode == BPF_IND) { 7037 /* check explicit source operand */ 7038 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7039 if (err) 7040 return err; 7041 } 7042 7043 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 7044 if (err < 0) 7045 return err; 7046 7047 /* reset caller saved regs to unreadable */ 7048 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7049 mark_reg_not_init(env, regs, caller_saved[i]); 7050 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7051 } 7052 7053 /* mark destination R0 register as readable, since it contains 7054 * the value fetched from the packet. 7055 * Already marked as written above. 7056 */ 7057 mark_reg_unknown(env, regs, BPF_REG_0); 7058 /* ld_abs load up to 32-bit skb data. */ 7059 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 7060 return 0; 7061 } 7062 7063 static int check_return_code(struct bpf_verifier_env *env) 7064 { 7065 struct tnum enforce_attach_type_range = tnum_unknown; 7066 const struct bpf_prog *prog = env->prog; 7067 struct bpf_reg_state *reg; 7068 struct tnum range = tnum_range(0, 1); 7069 int err; 7070 7071 /* LSM and struct_ops func-ptr's return type could be "void" */ 7072 if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS || 7073 env->prog->type == BPF_PROG_TYPE_LSM) && 7074 !prog->aux->attach_func_proto->type) 7075 return 0; 7076 7077 /* eBPF calling convetion is such that R0 is used 7078 * to return the value from eBPF program. 7079 * Make sure that it's readable at this time 7080 * of bpf_exit, which means that program wrote 7081 * something into it earlier 7082 */ 7083 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7084 if (err) 7085 return err; 7086 7087 if (is_pointer_value(env, BPF_REG_0)) { 7088 verbose(env, "R0 leaks addr as return value\n"); 7089 return -EACCES; 7090 } 7091 7092 switch (env->prog->type) { 7093 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 7094 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 7095 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG) 7096 range = tnum_range(1, 1); 7097 break; 7098 case BPF_PROG_TYPE_CGROUP_SKB: 7099 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 7100 range = tnum_range(0, 3); 7101 enforce_attach_type_range = tnum_range(2, 3); 7102 } 7103 break; 7104 case BPF_PROG_TYPE_CGROUP_SOCK: 7105 case BPF_PROG_TYPE_SOCK_OPS: 7106 case BPF_PROG_TYPE_CGROUP_DEVICE: 7107 case BPF_PROG_TYPE_CGROUP_SYSCTL: 7108 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 7109 break; 7110 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7111 if (!env->prog->aux->attach_btf_id) 7112 return 0; 7113 range = tnum_const(0); 7114 break; 7115 case BPF_PROG_TYPE_TRACING: 7116 if (env->prog->expected_attach_type != BPF_TRACE_ITER) 7117 return 0; 7118 break; 7119 default: 7120 return 0; 7121 } 7122 7123 reg = cur_regs(env) + BPF_REG_0; 7124 if (reg->type != SCALAR_VALUE) { 7125 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 7126 reg_type_str[reg->type]); 7127 return -EINVAL; 7128 } 7129 7130 if (!tnum_in(range, reg->var_off)) { 7131 char tn_buf[48]; 7132 7133 verbose(env, "At program exit the register R0 "); 7134 if (!tnum_is_unknown(reg->var_off)) { 7135 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7136 verbose(env, "has value %s", tn_buf); 7137 } else { 7138 verbose(env, "has unknown scalar value"); 7139 } 7140 tnum_strn(tn_buf, sizeof(tn_buf), range); 7141 verbose(env, " should have been in %s\n", tn_buf); 7142 return -EINVAL; 7143 } 7144 7145 if (!tnum_is_unknown(enforce_attach_type_range) && 7146 tnum_in(enforce_attach_type_range, reg->var_off)) 7147 env->prog->enforce_expected_attach_type = 1; 7148 return 0; 7149 } 7150 7151 /* non-recursive DFS pseudo code 7152 * 1 procedure DFS-iterative(G,v): 7153 * 2 label v as discovered 7154 * 3 let S be a stack 7155 * 4 S.push(v) 7156 * 5 while S is not empty 7157 * 6 t <- S.pop() 7158 * 7 if t is what we're looking for: 7159 * 8 return t 7160 * 9 for all edges e in G.adjacentEdges(t) do 7161 * 10 if edge e is already labelled 7162 * 11 continue with the next edge 7163 * 12 w <- G.adjacentVertex(t,e) 7164 * 13 if vertex w is not discovered and not explored 7165 * 14 label e as tree-edge 7166 * 15 label w as discovered 7167 * 16 S.push(w) 7168 * 17 continue at 5 7169 * 18 else if vertex w is discovered 7170 * 19 label e as back-edge 7171 * 20 else 7172 * 21 // vertex w is explored 7173 * 22 label e as forward- or cross-edge 7174 * 23 label t as explored 7175 * 24 S.pop() 7176 * 7177 * convention: 7178 * 0x10 - discovered 7179 * 0x11 - discovered and fall-through edge labelled 7180 * 0x12 - discovered and fall-through and branch edges labelled 7181 * 0x20 - explored 7182 */ 7183 7184 enum { 7185 DISCOVERED = 0x10, 7186 EXPLORED = 0x20, 7187 FALLTHROUGH = 1, 7188 BRANCH = 2, 7189 }; 7190 7191 static u32 state_htab_size(struct bpf_verifier_env *env) 7192 { 7193 return env->prog->len; 7194 } 7195 7196 static struct bpf_verifier_state_list **explored_state( 7197 struct bpf_verifier_env *env, 7198 int idx) 7199 { 7200 struct bpf_verifier_state *cur = env->cur_state; 7201 struct bpf_func_state *state = cur->frame[cur->curframe]; 7202 7203 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 7204 } 7205 7206 static void init_explored_state(struct bpf_verifier_env *env, int idx) 7207 { 7208 env->insn_aux_data[idx].prune_point = true; 7209 } 7210 7211 /* t, w, e - match pseudo-code above: 7212 * t - index of current instruction 7213 * w - next instruction 7214 * e - edge 7215 */ 7216 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 7217 bool loop_ok) 7218 { 7219 int *insn_stack = env->cfg.insn_stack; 7220 int *insn_state = env->cfg.insn_state; 7221 7222 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 7223 return 0; 7224 7225 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 7226 return 0; 7227 7228 if (w < 0 || w >= env->prog->len) { 7229 verbose_linfo(env, t, "%d: ", t); 7230 verbose(env, "jump out of range from insn %d to %d\n", t, w); 7231 return -EINVAL; 7232 } 7233 7234 if (e == BRANCH) 7235 /* mark branch target for state pruning */ 7236 init_explored_state(env, w); 7237 7238 if (insn_state[w] == 0) { 7239 /* tree-edge */ 7240 insn_state[t] = DISCOVERED | e; 7241 insn_state[w] = DISCOVERED; 7242 if (env->cfg.cur_stack >= env->prog->len) 7243 return -E2BIG; 7244 insn_stack[env->cfg.cur_stack++] = w; 7245 return 1; 7246 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 7247 if (loop_ok && env->allow_ptr_leaks) 7248 return 0; 7249 verbose_linfo(env, t, "%d: ", t); 7250 verbose_linfo(env, w, "%d: ", w); 7251 verbose(env, "back-edge from insn %d to %d\n", t, w); 7252 return -EINVAL; 7253 } else if (insn_state[w] == EXPLORED) { 7254 /* forward- or cross-edge */ 7255 insn_state[t] = DISCOVERED | e; 7256 } else { 7257 verbose(env, "insn state internal bug\n"); 7258 return -EFAULT; 7259 } 7260 return 0; 7261 } 7262 7263 /* non-recursive depth-first-search to detect loops in BPF program 7264 * loop == back-edge in directed graph 7265 */ 7266 static int check_cfg(struct bpf_verifier_env *env) 7267 { 7268 struct bpf_insn *insns = env->prog->insnsi; 7269 int insn_cnt = env->prog->len; 7270 int *insn_stack, *insn_state; 7271 int ret = 0; 7272 int i, t; 7273 7274 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7275 if (!insn_state) 7276 return -ENOMEM; 7277 7278 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7279 if (!insn_stack) { 7280 kvfree(insn_state); 7281 return -ENOMEM; 7282 } 7283 7284 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 7285 insn_stack[0] = 0; /* 0 is the first instruction */ 7286 env->cfg.cur_stack = 1; 7287 7288 peek_stack: 7289 if (env->cfg.cur_stack == 0) 7290 goto check_state; 7291 t = insn_stack[env->cfg.cur_stack - 1]; 7292 7293 if (BPF_CLASS(insns[t].code) == BPF_JMP || 7294 BPF_CLASS(insns[t].code) == BPF_JMP32) { 7295 u8 opcode = BPF_OP(insns[t].code); 7296 7297 if (opcode == BPF_EXIT) { 7298 goto mark_explored; 7299 } else if (opcode == BPF_CALL) { 7300 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7301 if (ret == 1) 7302 goto peek_stack; 7303 else if (ret < 0) 7304 goto err_free; 7305 if (t + 1 < insn_cnt) 7306 init_explored_state(env, t + 1); 7307 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 7308 init_explored_state(env, t); 7309 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 7310 env, false); 7311 if (ret == 1) 7312 goto peek_stack; 7313 else if (ret < 0) 7314 goto err_free; 7315 } 7316 } else if (opcode == BPF_JA) { 7317 if (BPF_SRC(insns[t].code) != BPF_K) { 7318 ret = -EINVAL; 7319 goto err_free; 7320 } 7321 /* unconditional jump with single edge */ 7322 ret = push_insn(t, t + insns[t].off + 1, 7323 FALLTHROUGH, env, true); 7324 if (ret == 1) 7325 goto peek_stack; 7326 else if (ret < 0) 7327 goto err_free; 7328 /* unconditional jmp is not a good pruning point, 7329 * but it's marked, since backtracking needs 7330 * to record jmp history in is_state_visited(). 7331 */ 7332 init_explored_state(env, t + insns[t].off + 1); 7333 /* tell verifier to check for equivalent states 7334 * after every call and jump 7335 */ 7336 if (t + 1 < insn_cnt) 7337 init_explored_state(env, t + 1); 7338 } else { 7339 /* conditional jump with two edges */ 7340 init_explored_state(env, t); 7341 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 7342 if (ret == 1) 7343 goto peek_stack; 7344 else if (ret < 0) 7345 goto err_free; 7346 7347 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 7348 if (ret == 1) 7349 goto peek_stack; 7350 else if (ret < 0) 7351 goto err_free; 7352 } 7353 } else { 7354 /* all other non-branch instructions with single 7355 * fall-through edge 7356 */ 7357 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7358 if (ret == 1) 7359 goto peek_stack; 7360 else if (ret < 0) 7361 goto err_free; 7362 } 7363 7364 mark_explored: 7365 insn_state[t] = EXPLORED; 7366 if (env->cfg.cur_stack-- <= 0) { 7367 verbose(env, "pop stack internal bug\n"); 7368 ret = -EFAULT; 7369 goto err_free; 7370 } 7371 goto peek_stack; 7372 7373 check_state: 7374 for (i = 0; i < insn_cnt; i++) { 7375 if (insn_state[i] != EXPLORED) { 7376 verbose(env, "unreachable insn %d\n", i); 7377 ret = -EINVAL; 7378 goto err_free; 7379 } 7380 } 7381 ret = 0; /* cfg looks good */ 7382 7383 err_free: 7384 kvfree(insn_state); 7385 kvfree(insn_stack); 7386 env->cfg.insn_state = env->cfg.insn_stack = NULL; 7387 return ret; 7388 } 7389 7390 /* The minimum supported BTF func info size */ 7391 #define MIN_BPF_FUNCINFO_SIZE 8 7392 #define MAX_FUNCINFO_REC_SIZE 252 7393 7394 static int check_btf_func(struct bpf_verifier_env *env, 7395 const union bpf_attr *attr, 7396 union bpf_attr __user *uattr) 7397 { 7398 u32 i, nfuncs, urec_size, min_size; 7399 u32 krec_size = sizeof(struct bpf_func_info); 7400 struct bpf_func_info *krecord; 7401 struct bpf_func_info_aux *info_aux = NULL; 7402 const struct btf_type *type; 7403 struct bpf_prog *prog; 7404 const struct btf *btf; 7405 void __user *urecord; 7406 u32 prev_offset = 0; 7407 int ret = 0; 7408 7409 nfuncs = attr->func_info_cnt; 7410 if (!nfuncs) 7411 return 0; 7412 7413 if (nfuncs != env->subprog_cnt) { 7414 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 7415 return -EINVAL; 7416 } 7417 7418 urec_size = attr->func_info_rec_size; 7419 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 7420 urec_size > MAX_FUNCINFO_REC_SIZE || 7421 urec_size % sizeof(u32)) { 7422 verbose(env, "invalid func info rec size %u\n", urec_size); 7423 return -EINVAL; 7424 } 7425 7426 prog = env->prog; 7427 btf = prog->aux->btf; 7428 7429 urecord = u64_to_user_ptr(attr->func_info); 7430 min_size = min_t(u32, krec_size, urec_size); 7431 7432 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 7433 if (!krecord) 7434 return -ENOMEM; 7435 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 7436 if (!info_aux) 7437 goto err_free; 7438 7439 for (i = 0; i < nfuncs; i++) { 7440 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 7441 if (ret) { 7442 if (ret == -E2BIG) { 7443 verbose(env, "nonzero tailing record in func info"); 7444 /* set the size kernel expects so loader can zero 7445 * out the rest of the record. 7446 */ 7447 if (put_user(min_size, &uattr->func_info_rec_size)) 7448 ret = -EFAULT; 7449 } 7450 goto err_free; 7451 } 7452 7453 if (copy_from_user(&krecord[i], urecord, min_size)) { 7454 ret = -EFAULT; 7455 goto err_free; 7456 } 7457 7458 /* check insn_off */ 7459 if (i == 0) { 7460 if (krecord[i].insn_off) { 7461 verbose(env, 7462 "nonzero insn_off %u for the first func info record", 7463 krecord[i].insn_off); 7464 ret = -EINVAL; 7465 goto err_free; 7466 } 7467 } else if (krecord[i].insn_off <= prev_offset) { 7468 verbose(env, 7469 "same or smaller insn offset (%u) than previous func info record (%u)", 7470 krecord[i].insn_off, prev_offset); 7471 ret = -EINVAL; 7472 goto err_free; 7473 } 7474 7475 if (env->subprog_info[i].start != krecord[i].insn_off) { 7476 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 7477 ret = -EINVAL; 7478 goto err_free; 7479 } 7480 7481 /* check type_id */ 7482 type = btf_type_by_id(btf, krecord[i].type_id); 7483 if (!type || !btf_type_is_func(type)) { 7484 verbose(env, "invalid type id %d in func info", 7485 krecord[i].type_id); 7486 ret = -EINVAL; 7487 goto err_free; 7488 } 7489 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 7490 prev_offset = krecord[i].insn_off; 7491 urecord += urec_size; 7492 } 7493 7494 prog->aux->func_info = krecord; 7495 prog->aux->func_info_cnt = nfuncs; 7496 prog->aux->func_info_aux = info_aux; 7497 return 0; 7498 7499 err_free: 7500 kvfree(krecord); 7501 kfree(info_aux); 7502 return ret; 7503 } 7504 7505 static void adjust_btf_func(struct bpf_verifier_env *env) 7506 { 7507 struct bpf_prog_aux *aux = env->prog->aux; 7508 int i; 7509 7510 if (!aux->func_info) 7511 return; 7512 7513 for (i = 0; i < env->subprog_cnt; i++) 7514 aux->func_info[i].insn_off = env->subprog_info[i].start; 7515 } 7516 7517 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 7518 sizeof(((struct bpf_line_info *)(0))->line_col)) 7519 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 7520 7521 static int check_btf_line(struct bpf_verifier_env *env, 7522 const union bpf_attr *attr, 7523 union bpf_attr __user *uattr) 7524 { 7525 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 7526 struct bpf_subprog_info *sub; 7527 struct bpf_line_info *linfo; 7528 struct bpf_prog *prog; 7529 const struct btf *btf; 7530 void __user *ulinfo; 7531 int err; 7532 7533 nr_linfo = attr->line_info_cnt; 7534 if (!nr_linfo) 7535 return 0; 7536 7537 rec_size = attr->line_info_rec_size; 7538 if (rec_size < MIN_BPF_LINEINFO_SIZE || 7539 rec_size > MAX_LINEINFO_REC_SIZE || 7540 rec_size & (sizeof(u32) - 1)) 7541 return -EINVAL; 7542 7543 /* Need to zero it in case the userspace may 7544 * pass in a smaller bpf_line_info object. 7545 */ 7546 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 7547 GFP_KERNEL | __GFP_NOWARN); 7548 if (!linfo) 7549 return -ENOMEM; 7550 7551 prog = env->prog; 7552 btf = prog->aux->btf; 7553 7554 s = 0; 7555 sub = env->subprog_info; 7556 ulinfo = u64_to_user_ptr(attr->line_info); 7557 expected_size = sizeof(struct bpf_line_info); 7558 ncopy = min_t(u32, expected_size, rec_size); 7559 for (i = 0; i < nr_linfo; i++) { 7560 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 7561 if (err) { 7562 if (err == -E2BIG) { 7563 verbose(env, "nonzero tailing record in line_info"); 7564 if (put_user(expected_size, 7565 &uattr->line_info_rec_size)) 7566 err = -EFAULT; 7567 } 7568 goto err_free; 7569 } 7570 7571 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 7572 err = -EFAULT; 7573 goto err_free; 7574 } 7575 7576 /* 7577 * Check insn_off to ensure 7578 * 1) strictly increasing AND 7579 * 2) bounded by prog->len 7580 * 7581 * The linfo[0].insn_off == 0 check logically falls into 7582 * the later "missing bpf_line_info for func..." case 7583 * because the first linfo[0].insn_off must be the 7584 * first sub also and the first sub must have 7585 * subprog_info[0].start == 0. 7586 */ 7587 if ((i && linfo[i].insn_off <= prev_offset) || 7588 linfo[i].insn_off >= prog->len) { 7589 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 7590 i, linfo[i].insn_off, prev_offset, 7591 prog->len); 7592 err = -EINVAL; 7593 goto err_free; 7594 } 7595 7596 if (!prog->insnsi[linfo[i].insn_off].code) { 7597 verbose(env, 7598 "Invalid insn code at line_info[%u].insn_off\n", 7599 i); 7600 err = -EINVAL; 7601 goto err_free; 7602 } 7603 7604 if (!btf_name_by_offset(btf, linfo[i].line_off) || 7605 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 7606 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 7607 err = -EINVAL; 7608 goto err_free; 7609 } 7610 7611 if (s != env->subprog_cnt) { 7612 if (linfo[i].insn_off == sub[s].start) { 7613 sub[s].linfo_idx = i; 7614 s++; 7615 } else if (sub[s].start < linfo[i].insn_off) { 7616 verbose(env, "missing bpf_line_info for func#%u\n", s); 7617 err = -EINVAL; 7618 goto err_free; 7619 } 7620 } 7621 7622 prev_offset = linfo[i].insn_off; 7623 ulinfo += rec_size; 7624 } 7625 7626 if (s != env->subprog_cnt) { 7627 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 7628 env->subprog_cnt - s, s); 7629 err = -EINVAL; 7630 goto err_free; 7631 } 7632 7633 prog->aux->linfo = linfo; 7634 prog->aux->nr_linfo = nr_linfo; 7635 7636 return 0; 7637 7638 err_free: 7639 kvfree(linfo); 7640 return err; 7641 } 7642 7643 static int check_btf_info(struct bpf_verifier_env *env, 7644 const union bpf_attr *attr, 7645 union bpf_attr __user *uattr) 7646 { 7647 struct btf *btf; 7648 int err; 7649 7650 if (!attr->func_info_cnt && !attr->line_info_cnt) 7651 return 0; 7652 7653 btf = btf_get_by_fd(attr->prog_btf_fd); 7654 if (IS_ERR(btf)) 7655 return PTR_ERR(btf); 7656 env->prog->aux->btf = btf; 7657 7658 err = check_btf_func(env, attr, uattr); 7659 if (err) 7660 return err; 7661 7662 err = check_btf_line(env, attr, uattr); 7663 if (err) 7664 return err; 7665 7666 return 0; 7667 } 7668 7669 /* check %cur's range satisfies %old's */ 7670 static bool range_within(struct bpf_reg_state *old, 7671 struct bpf_reg_state *cur) 7672 { 7673 return old->umin_value <= cur->umin_value && 7674 old->umax_value >= cur->umax_value && 7675 old->smin_value <= cur->smin_value && 7676 old->smax_value >= cur->smax_value; 7677 } 7678 7679 /* Maximum number of register states that can exist at once */ 7680 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 7681 struct idpair { 7682 u32 old; 7683 u32 cur; 7684 }; 7685 7686 /* If in the old state two registers had the same id, then they need to have 7687 * the same id in the new state as well. But that id could be different from 7688 * the old state, so we need to track the mapping from old to new ids. 7689 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 7690 * regs with old id 5 must also have new id 9 for the new state to be safe. But 7691 * regs with a different old id could still have new id 9, we don't care about 7692 * that. 7693 * So we look through our idmap to see if this old id has been seen before. If 7694 * so, we require the new id to match; otherwise, we add the id pair to the map. 7695 */ 7696 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 7697 { 7698 unsigned int i; 7699 7700 for (i = 0; i < ID_MAP_SIZE; i++) { 7701 if (!idmap[i].old) { 7702 /* Reached an empty slot; haven't seen this id before */ 7703 idmap[i].old = old_id; 7704 idmap[i].cur = cur_id; 7705 return true; 7706 } 7707 if (idmap[i].old == old_id) 7708 return idmap[i].cur == cur_id; 7709 } 7710 /* We ran out of idmap slots, which should be impossible */ 7711 WARN_ON_ONCE(1); 7712 return false; 7713 } 7714 7715 static void clean_func_state(struct bpf_verifier_env *env, 7716 struct bpf_func_state *st) 7717 { 7718 enum bpf_reg_liveness live; 7719 int i, j; 7720 7721 for (i = 0; i < BPF_REG_FP; i++) { 7722 live = st->regs[i].live; 7723 /* liveness must not touch this register anymore */ 7724 st->regs[i].live |= REG_LIVE_DONE; 7725 if (!(live & REG_LIVE_READ)) 7726 /* since the register is unused, clear its state 7727 * to make further comparison simpler 7728 */ 7729 __mark_reg_not_init(env, &st->regs[i]); 7730 } 7731 7732 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 7733 live = st->stack[i].spilled_ptr.live; 7734 /* liveness must not touch this stack slot anymore */ 7735 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 7736 if (!(live & REG_LIVE_READ)) { 7737 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 7738 for (j = 0; j < BPF_REG_SIZE; j++) 7739 st->stack[i].slot_type[j] = STACK_INVALID; 7740 } 7741 } 7742 } 7743 7744 static void clean_verifier_state(struct bpf_verifier_env *env, 7745 struct bpf_verifier_state *st) 7746 { 7747 int i; 7748 7749 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 7750 /* all regs in this state in all frames were already marked */ 7751 return; 7752 7753 for (i = 0; i <= st->curframe; i++) 7754 clean_func_state(env, st->frame[i]); 7755 } 7756 7757 /* the parentage chains form a tree. 7758 * the verifier states are added to state lists at given insn and 7759 * pushed into state stack for future exploration. 7760 * when the verifier reaches bpf_exit insn some of the verifer states 7761 * stored in the state lists have their final liveness state already, 7762 * but a lot of states will get revised from liveness point of view when 7763 * the verifier explores other branches. 7764 * Example: 7765 * 1: r0 = 1 7766 * 2: if r1 == 100 goto pc+1 7767 * 3: r0 = 2 7768 * 4: exit 7769 * when the verifier reaches exit insn the register r0 in the state list of 7770 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 7771 * of insn 2 and goes exploring further. At the insn 4 it will walk the 7772 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 7773 * 7774 * Since the verifier pushes the branch states as it sees them while exploring 7775 * the program the condition of walking the branch instruction for the second 7776 * time means that all states below this branch were already explored and 7777 * their final liveness markes are already propagated. 7778 * Hence when the verifier completes the search of state list in is_state_visited() 7779 * we can call this clean_live_states() function to mark all liveness states 7780 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 7781 * will not be used. 7782 * This function also clears the registers and stack for states that !READ 7783 * to simplify state merging. 7784 * 7785 * Important note here that walking the same branch instruction in the callee 7786 * doesn't meant that the states are DONE. The verifier has to compare 7787 * the callsites 7788 */ 7789 static void clean_live_states(struct bpf_verifier_env *env, int insn, 7790 struct bpf_verifier_state *cur) 7791 { 7792 struct bpf_verifier_state_list *sl; 7793 int i; 7794 7795 sl = *explored_state(env, insn); 7796 while (sl) { 7797 if (sl->state.branches) 7798 goto next; 7799 if (sl->state.insn_idx != insn || 7800 sl->state.curframe != cur->curframe) 7801 goto next; 7802 for (i = 0; i <= cur->curframe; i++) 7803 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 7804 goto next; 7805 clean_verifier_state(env, &sl->state); 7806 next: 7807 sl = sl->next; 7808 } 7809 } 7810 7811 /* Returns true if (rold safe implies rcur safe) */ 7812 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7813 struct idpair *idmap) 7814 { 7815 bool equal; 7816 7817 if (!(rold->live & REG_LIVE_READ)) 7818 /* explored state didn't use this */ 7819 return true; 7820 7821 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 7822 7823 if (rold->type == PTR_TO_STACK) 7824 /* two stack pointers are equal only if they're pointing to 7825 * the same stack frame, since fp-8 in foo != fp-8 in bar 7826 */ 7827 return equal && rold->frameno == rcur->frameno; 7828 7829 if (equal) 7830 return true; 7831 7832 if (rold->type == NOT_INIT) 7833 /* explored state can't have used this */ 7834 return true; 7835 if (rcur->type == NOT_INIT) 7836 return false; 7837 switch (rold->type) { 7838 case SCALAR_VALUE: 7839 if (rcur->type == SCALAR_VALUE) { 7840 if (!rold->precise && !rcur->precise) 7841 return true; 7842 /* new val must satisfy old val knowledge */ 7843 return range_within(rold, rcur) && 7844 tnum_in(rold->var_off, rcur->var_off); 7845 } else { 7846 /* We're trying to use a pointer in place of a scalar. 7847 * Even if the scalar was unbounded, this could lead to 7848 * pointer leaks because scalars are allowed to leak 7849 * while pointers are not. We could make this safe in 7850 * special cases if root is calling us, but it's 7851 * probably not worth the hassle. 7852 */ 7853 return false; 7854 } 7855 case PTR_TO_MAP_VALUE: 7856 /* If the new min/max/var_off satisfy the old ones and 7857 * everything else matches, we are OK. 7858 * 'id' is not compared, since it's only used for maps with 7859 * bpf_spin_lock inside map element and in such cases if 7860 * the rest of the prog is valid for one map element then 7861 * it's valid for all map elements regardless of the key 7862 * used in bpf_map_lookup() 7863 */ 7864 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 7865 range_within(rold, rcur) && 7866 tnum_in(rold->var_off, rcur->var_off); 7867 case PTR_TO_MAP_VALUE_OR_NULL: 7868 /* a PTR_TO_MAP_VALUE could be safe to use as a 7869 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 7870 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 7871 * checked, doing so could have affected others with the same 7872 * id, and we can't check for that because we lost the id when 7873 * we converted to a PTR_TO_MAP_VALUE. 7874 */ 7875 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 7876 return false; 7877 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 7878 return false; 7879 /* Check our ids match any regs they're supposed to */ 7880 return check_ids(rold->id, rcur->id, idmap); 7881 case PTR_TO_PACKET_META: 7882 case PTR_TO_PACKET: 7883 if (rcur->type != rold->type) 7884 return false; 7885 /* We must have at least as much range as the old ptr 7886 * did, so that any accesses which were safe before are 7887 * still safe. This is true even if old range < old off, 7888 * since someone could have accessed through (ptr - k), or 7889 * even done ptr -= k in a register, to get a safe access. 7890 */ 7891 if (rold->range > rcur->range) 7892 return false; 7893 /* If the offsets don't match, we can't trust our alignment; 7894 * nor can we be sure that we won't fall out of range. 7895 */ 7896 if (rold->off != rcur->off) 7897 return false; 7898 /* id relations must be preserved */ 7899 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 7900 return false; 7901 /* new val must satisfy old val knowledge */ 7902 return range_within(rold, rcur) && 7903 tnum_in(rold->var_off, rcur->var_off); 7904 case PTR_TO_CTX: 7905 case CONST_PTR_TO_MAP: 7906 case PTR_TO_PACKET_END: 7907 case PTR_TO_FLOW_KEYS: 7908 case PTR_TO_SOCKET: 7909 case PTR_TO_SOCKET_OR_NULL: 7910 case PTR_TO_SOCK_COMMON: 7911 case PTR_TO_SOCK_COMMON_OR_NULL: 7912 case PTR_TO_TCP_SOCK: 7913 case PTR_TO_TCP_SOCK_OR_NULL: 7914 case PTR_TO_XDP_SOCK: 7915 /* Only valid matches are exact, which memcmp() above 7916 * would have accepted 7917 */ 7918 default: 7919 /* Don't know what's going on, just say it's not safe */ 7920 return false; 7921 } 7922 7923 /* Shouldn't get here; if we do, say it's not safe */ 7924 WARN_ON_ONCE(1); 7925 return false; 7926 } 7927 7928 static bool stacksafe(struct bpf_func_state *old, 7929 struct bpf_func_state *cur, 7930 struct idpair *idmap) 7931 { 7932 int i, spi; 7933 7934 /* walk slots of the explored stack and ignore any additional 7935 * slots in the current stack, since explored(safe) state 7936 * didn't use them 7937 */ 7938 for (i = 0; i < old->allocated_stack; i++) { 7939 spi = i / BPF_REG_SIZE; 7940 7941 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 7942 i += BPF_REG_SIZE - 1; 7943 /* explored state didn't use this */ 7944 continue; 7945 } 7946 7947 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 7948 continue; 7949 7950 /* explored stack has more populated slots than current stack 7951 * and these slots were used 7952 */ 7953 if (i >= cur->allocated_stack) 7954 return false; 7955 7956 /* if old state was safe with misc data in the stack 7957 * it will be safe with zero-initialized stack. 7958 * The opposite is not true 7959 */ 7960 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 7961 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 7962 continue; 7963 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 7964 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 7965 /* Ex: old explored (safe) state has STACK_SPILL in 7966 * this stack slot, but current has has STACK_MISC -> 7967 * this verifier states are not equivalent, 7968 * return false to continue verification of this path 7969 */ 7970 return false; 7971 if (i % BPF_REG_SIZE) 7972 continue; 7973 if (old->stack[spi].slot_type[0] != STACK_SPILL) 7974 continue; 7975 if (!regsafe(&old->stack[spi].spilled_ptr, 7976 &cur->stack[spi].spilled_ptr, 7977 idmap)) 7978 /* when explored and current stack slot are both storing 7979 * spilled registers, check that stored pointers types 7980 * are the same as well. 7981 * Ex: explored safe path could have stored 7982 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 7983 * but current path has stored: 7984 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 7985 * such verifier states are not equivalent. 7986 * return false to continue verification of this path 7987 */ 7988 return false; 7989 } 7990 return true; 7991 } 7992 7993 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 7994 { 7995 if (old->acquired_refs != cur->acquired_refs) 7996 return false; 7997 return !memcmp(old->refs, cur->refs, 7998 sizeof(*old->refs) * old->acquired_refs); 7999 } 8000 8001 /* compare two verifier states 8002 * 8003 * all states stored in state_list are known to be valid, since 8004 * verifier reached 'bpf_exit' instruction through them 8005 * 8006 * this function is called when verifier exploring different branches of 8007 * execution popped from the state stack. If it sees an old state that has 8008 * more strict register state and more strict stack state then this execution 8009 * branch doesn't need to be explored further, since verifier already 8010 * concluded that more strict state leads to valid finish. 8011 * 8012 * Therefore two states are equivalent if register state is more conservative 8013 * and explored stack state is more conservative than the current one. 8014 * Example: 8015 * explored current 8016 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 8017 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 8018 * 8019 * In other words if current stack state (one being explored) has more 8020 * valid slots than old one that already passed validation, it means 8021 * the verifier can stop exploring and conclude that current state is valid too 8022 * 8023 * Similarly with registers. If explored state has register type as invalid 8024 * whereas register type in current state is meaningful, it means that 8025 * the current state will reach 'bpf_exit' instruction safely 8026 */ 8027 static bool func_states_equal(struct bpf_func_state *old, 8028 struct bpf_func_state *cur) 8029 { 8030 struct idpair *idmap; 8031 bool ret = false; 8032 int i; 8033 8034 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 8035 /* If we failed to allocate the idmap, just say it's not safe */ 8036 if (!idmap) 8037 return false; 8038 8039 for (i = 0; i < MAX_BPF_REG; i++) { 8040 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 8041 goto out_free; 8042 } 8043 8044 if (!stacksafe(old, cur, idmap)) 8045 goto out_free; 8046 8047 if (!refsafe(old, cur)) 8048 goto out_free; 8049 ret = true; 8050 out_free: 8051 kfree(idmap); 8052 return ret; 8053 } 8054 8055 static bool states_equal(struct bpf_verifier_env *env, 8056 struct bpf_verifier_state *old, 8057 struct bpf_verifier_state *cur) 8058 { 8059 int i; 8060 8061 if (old->curframe != cur->curframe) 8062 return false; 8063 8064 /* Verification state from speculative execution simulation 8065 * must never prune a non-speculative execution one. 8066 */ 8067 if (old->speculative && !cur->speculative) 8068 return false; 8069 8070 if (old->active_spin_lock != cur->active_spin_lock) 8071 return false; 8072 8073 /* for states to be equal callsites have to be the same 8074 * and all frame states need to be equivalent 8075 */ 8076 for (i = 0; i <= old->curframe; i++) { 8077 if (old->frame[i]->callsite != cur->frame[i]->callsite) 8078 return false; 8079 if (!func_states_equal(old->frame[i], cur->frame[i])) 8080 return false; 8081 } 8082 return true; 8083 } 8084 8085 /* Return 0 if no propagation happened. Return negative error code if error 8086 * happened. Otherwise, return the propagated bit. 8087 */ 8088 static int propagate_liveness_reg(struct bpf_verifier_env *env, 8089 struct bpf_reg_state *reg, 8090 struct bpf_reg_state *parent_reg) 8091 { 8092 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 8093 u8 flag = reg->live & REG_LIVE_READ; 8094 int err; 8095 8096 /* When comes here, read flags of PARENT_REG or REG could be any of 8097 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 8098 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 8099 */ 8100 if (parent_flag == REG_LIVE_READ64 || 8101 /* Or if there is no read flag from REG. */ 8102 !flag || 8103 /* Or if the read flag from REG is the same as PARENT_REG. */ 8104 parent_flag == flag) 8105 return 0; 8106 8107 err = mark_reg_read(env, reg, parent_reg, flag); 8108 if (err) 8109 return err; 8110 8111 return flag; 8112 } 8113 8114 /* A write screens off any subsequent reads; but write marks come from the 8115 * straight-line code between a state and its parent. When we arrive at an 8116 * equivalent state (jump target or such) we didn't arrive by the straight-line 8117 * code, so read marks in the state must propagate to the parent regardless 8118 * of the state's write marks. That's what 'parent == state->parent' comparison 8119 * in mark_reg_read() is for. 8120 */ 8121 static int propagate_liveness(struct bpf_verifier_env *env, 8122 const struct bpf_verifier_state *vstate, 8123 struct bpf_verifier_state *vparent) 8124 { 8125 struct bpf_reg_state *state_reg, *parent_reg; 8126 struct bpf_func_state *state, *parent; 8127 int i, frame, err = 0; 8128 8129 if (vparent->curframe != vstate->curframe) { 8130 WARN(1, "propagate_live: parent frame %d current frame %d\n", 8131 vparent->curframe, vstate->curframe); 8132 return -EFAULT; 8133 } 8134 /* Propagate read liveness of registers... */ 8135 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 8136 for (frame = 0; frame <= vstate->curframe; frame++) { 8137 parent = vparent->frame[frame]; 8138 state = vstate->frame[frame]; 8139 parent_reg = parent->regs; 8140 state_reg = state->regs; 8141 /* We don't need to worry about FP liveness, it's read-only */ 8142 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 8143 err = propagate_liveness_reg(env, &state_reg[i], 8144 &parent_reg[i]); 8145 if (err < 0) 8146 return err; 8147 if (err == REG_LIVE_READ64) 8148 mark_insn_zext(env, &parent_reg[i]); 8149 } 8150 8151 /* Propagate stack slots. */ 8152 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 8153 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 8154 parent_reg = &parent->stack[i].spilled_ptr; 8155 state_reg = &state->stack[i].spilled_ptr; 8156 err = propagate_liveness_reg(env, state_reg, 8157 parent_reg); 8158 if (err < 0) 8159 return err; 8160 } 8161 } 8162 return 0; 8163 } 8164 8165 /* find precise scalars in the previous equivalent state and 8166 * propagate them into the current state 8167 */ 8168 static int propagate_precision(struct bpf_verifier_env *env, 8169 const struct bpf_verifier_state *old) 8170 { 8171 struct bpf_reg_state *state_reg; 8172 struct bpf_func_state *state; 8173 int i, err = 0; 8174 8175 state = old->frame[old->curframe]; 8176 state_reg = state->regs; 8177 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 8178 if (state_reg->type != SCALAR_VALUE || 8179 !state_reg->precise) 8180 continue; 8181 if (env->log.level & BPF_LOG_LEVEL2) 8182 verbose(env, "propagating r%d\n", i); 8183 err = mark_chain_precision(env, i); 8184 if (err < 0) 8185 return err; 8186 } 8187 8188 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 8189 if (state->stack[i].slot_type[0] != STACK_SPILL) 8190 continue; 8191 state_reg = &state->stack[i].spilled_ptr; 8192 if (state_reg->type != SCALAR_VALUE || 8193 !state_reg->precise) 8194 continue; 8195 if (env->log.level & BPF_LOG_LEVEL2) 8196 verbose(env, "propagating fp%d\n", 8197 (-i - 1) * BPF_REG_SIZE); 8198 err = mark_chain_precision_stack(env, i); 8199 if (err < 0) 8200 return err; 8201 } 8202 return 0; 8203 } 8204 8205 static bool states_maybe_looping(struct bpf_verifier_state *old, 8206 struct bpf_verifier_state *cur) 8207 { 8208 struct bpf_func_state *fold, *fcur; 8209 int i, fr = cur->curframe; 8210 8211 if (old->curframe != fr) 8212 return false; 8213 8214 fold = old->frame[fr]; 8215 fcur = cur->frame[fr]; 8216 for (i = 0; i < MAX_BPF_REG; i++) 8217 if (memcmp(&fold->regs[i], &fcur->regs[i], 8218 offsetof(struct bpf_reg_state, parent))) 8219 return false; 8220 return true; 8221 } 8222 8223 8224 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 8225 { 8226 struct bpf_verifier_state_list *new_sl; 8227 struct bpf_verifier_state_list *sl, **pprev; 8228 struct bpf_verifier_state *cur = env->cur_state, *new; 8229 int i, j, err, states_cnt = 0; 8230 bool add_new_state = env->test_state_freq ? true : false; 8231 8232 cur->last_insn_idx = env->prev_insn_idx; 8233 if (!env->insn_aux_data[insn_idx].prune_point) 8234 /* this 'insn_idx' instruction wasn't marked, so we will not 8235 * be doing state search here 8236 */ 8237 return 0; 8238 8239 /* bpf progs typically have pruning point every 4 instructions 8240 * http://vger.kernel.org/bpfconf2019.html#session-1 8241 * Do not add new state for future pruning if the verifier hasn't seen 8242 * at least 2 jumps and at least 8 instructions. 8243 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 8244 * In tests that amounts to up to 50% reduction into total verifier 8245 * memory consumption and 20% verifier time speedup. 8246 */ 8247 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 8248 env->insn_processed - env->prev_insn_processed >= 8) 8249 add_new_state = true; 8250 8251 pprev = explored_state(env, insn_idx); 8252 sl = *pprev; 8253 8254 clean_live_states(env, insn_idx, cur); 8255 8256 while (sl) { 8257 states_cnt++; 8258 if (sl->state.insn_idx != insn_idx) 8259 goto next; 8260 if (sl->state.branches) { 8261 if (states_maybe_looping(&sl->state, cur) && 8262 states_equal(env, &sl->state, cur)) { 8263 verbose_linfo(env, insn_idx, "; "); 8264 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 8265 return -EINVAL; 8266 } 8267 /* if the verifier is processing a loop, avoid adding new state 8268 * too often, since different loop iterations have distinct 8269 * states and may not help future pruning. 8270 * This threshold shouldn't be too low to make sure that 8271 * a loop with large bound will be rejected quickly. 8272 * The most abusive loop will be: 8273 * r1 += 1 8274 * if r1 < 1000000 goto pc-2 8275 * 1M insn_procssed limit / 100 == 10k peak states. 8276 * This threshold shouldn't be too high either, since states 8277 * at the end of the loop are likely to be useful in pruning. 8278 */ 8279 if (env->jmps_processed - env->prev_jmps_processed < 20 && 8280 env->insn_processed - env->prev_insn_processed < 100) 8281 add_new_state = false; 8282 goto miss; 8283 } 8284 if (states_equal(env, &sl->state, cur)) { 8285 sl->hit_cnt++; 8286 /* reached equivalent register/stack state, 8287 * prune the search. 8288 * Registers read by the continuation are read by us. 8289 * If we have any write marks in env->cur_state, they 8290 * will prevent corresponding reads in the continuation 8291 * from reaching our parent (an explored_state). Our 8292 * own state will get the read marks recorded, but 8293 * they'll be immediately forgotten as we're pruning 8294 * this state and will pop a new one. 8295 */ 8296 err = propagate_liveness(env, &sl->state, cur); 8297 8298 /* if previous state reached the exit with precision and 8299 * current state is equivalent to it (except precsion marks) 8300 * the precision needs to be propagated back in 8301 * the current state. 8302 */ 8303 err = err ? : push_jmp_history(env, cur); 8304 err = err ? : propagate_precision(env, &sl->state); 8305 if (err) 8306 return err; 8307 return 1; 8308 } 8309 miss: 8310 /* when new state is not going to be added do not increase miss count. 8311 * Otherwise several loop iterations will remove the state 8312 * recorded earlier. The goal of these heuristics is to have 8313 * states from some iterations of the loop (some in the beginning 8314 * and some at the end) to help pruning. 8315 */ 8316 if (add_new_state) 8317 sl->miss_cnt++; 8318 /* heuristic to determine whether this state is beneficial 8319 * to keep checking from state equivalence point of view. 8320 * Higher numbers increase max_states_per_insn and verification time, 8321 * but do not meaningfully decrease insn_processed. 8322 */ 8323 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 8324 /* the state is unlikely to be useful. Remove it to 8325 * speed up verification 8326 */ 8327 *pprev = sl->next; 8328 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 8329 u32 br = sl->state.branches; 8330 8331 WARN_ONCE(br, 8332 "BUG live_done but branches_to_explore %d\n", 8333 br); 8334 free_verifier_state(&sl->state, false); 8335 kfree(sl); 8336 env->peak_states--; 8337 } else { 8338 /* cannot free this state, since parentage chain may 8339 * walk it later. Add it for free_list instead to 8340 * be freed at the end of verification 8341 */ 8342 sl->next = env->free_list; 8343 env->free_list = sl; 8344 } 8345 sl = *pprev; 8346 continue; 8347 } 8348 next: 8349 pprev = &sl->next; 8350 sl = *pprev; 8351 } 8352 8353 if (env->max_states_per_insn < states_cnt) 8354 env->max_states_per_insn = states_cnt; 8355 8356 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 8357 return push_jmp_history(env, cur); 8358 8359 if (!add_new_state) 8360 return push_jmp_history(env, cur); 8361 8362 /* There were no equivalent states, remember the current one. 8363 * Technically the current state is not proven to be safe yet, 8364 * but it will either reach outer most bpf_exit (which means it's safe) 8365 * or it will be rejected. When there are no loops the verifier won't be 8366 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 8367 * again on the way to bpf_exit. 8368 * When looping the sl->state.branches will be > 0 and this state 8369 * will not be considered for equivalence until branches == 0. 8370 */ 8371 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 8372 if (!new_sl) 8373 return -ENOMEM; 8374 env->total_states++; 8375 env->peak_states++; 8376 env->prev_jmps_processed = env->jmps_processed; 8377 env->prev_insn_processed = env->insn_processed; 8378 8379 /* add new state to the head of linked list */ 8380 new = &new_sl->state; 8381 err = copy_verifier_state(new, cur); 8382 if (err) { 8383 free_verifier_state(new, false); 8384 kfree(new_sl); 8385 return err; 8386 } 8387 new->insn_idx = insn_idx; 8388 WARN_ONCE(new->branches != 1, 8389 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 8390 8391 cur->parent = new; 8392 cur->first_insn_idx = insn_idx; 8393 clear_jmp_history(cur); 8394 new_sl->next = *explored_state(env, insn_idx); 8395 *explored_state(env, insn_idx) = new_sl; 8396 /* connect new state to parentage chain. Current frame needs all 8397 * registers connected. Only r6 - r9 of the callers are alive (pushed 8398 * to the stack implicitly by JITs) so in callers' frames connect just 8399 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 8400 * the state of the call instruction (with WRITTEN set), and r0 comes 8401 * from callee with its full parentage chain, anyway. 8402 */ 8403 /* clear write marks in current state: the writes we did are not writes 8404 * our child did, so they don't screen off its reads from us. 8405 * (There are no read marks in current state, because reads always mark 8406 * their parent and current state never has children yet. Only 8407 * explored_states can get read marks.) 8408 */ 8409 for (j = 0; j <= cur->curframe; j++) { 8410 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 8411 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 8412 for (i = 0; i < BPF_REG_FP; i++) 8413 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 8414 } 8415 8416 /* all stack frames are accessible from callee, clear them all */ 8417 for (j = 0; j <= cur->curframe; j++) { 8418 struct bpf_func_state *frame = cur->frame[j]; 8419 struct bpf_func_state *newframe = new->frame[j]; 8420 8421 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 8422 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 8423 frame->stack[i].spilled_ptr.parent = 8424 &newframe->stack[i].spilled_ptr; 8425 } 8426 } 8427 return 0; 8428 } 8429 8430 /* Return true if it's OK to have the same insn return a different type. */ 8431 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 8432 { 8433 switch (type) { 8434 case PTR_TO_CTX: 8435 case PTR_TO_SOCKET: 8436 case PTR_TO_SOCKET_OR_NULL: 8437 case PTR_TO_SOCK_COMMON: 8438 case PTR_TO_SOCK_COMMON_OR_NULL: 8439 case PTR_TO_TCP_SOCK: 8440 case PTR_TO_TCP_SOCK_OR_NULL: 8441 case PTR_TO_XDP_SOCK: 8442 case PTR_TO_BTF_ID: 8443 case PTR_TO_BTF_ID_OR_NULL: 8444 return false; 8445 default: 8446 return true; 8447 } 8448 } 8449 8450 /* If an instruction was previously used with particular pointer types, then we 8451 * need to be careful to avoid cases such as the below, where it may be ok 8452 * for one branch accessing the pointer, but not ok for the other branch: 8453 * 8454 * R1 = sock_ptr 8455 * goto X; 8456 * ... 8457 * R1 = some_other_valid_ptr; 8458 * goto X; 8459 * ... 8460 * R2 = *(u32 *)(R1 + 0); 8461 */ 8462 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 8463 { 8464 return src != prev && (!reg_type_mismatch_ok(src) || 8465 !reg_type_mismatch_ok(prev)); 8466 } 8467 8468 static int do_check(struct bpf_verifier_env *env) 8469 { 8470 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 8471 struct bpf_verifier_state *state = env->cur_state; 8472 struct bpf_insn *insns = env->prog->insnsi; 8473 struct bpf_reg_state *regs; 8474 int insn_cnt = env->prog->len; 8475 bool do_print_state = false; 8476 int prev_insn_idx = -1; 8477 8478 for (;;) { 8479 struct bpf_insn *insn; 8480 u8 class; 8481 int err; 8482 8483 env->prev_insn_idx = prev_insn_idx; 8484 if (env->insn_idx >= insn_cnt) { 8485 verbose(env, "invalid insn idx %d insn_cnt %d\n", 8486 env->insn_idx, insn_cnt); 8487 return -EFAULT; 8488 } 8489 8490 insn = &insns[env->insn_idx]; 8491 class = BPF_CLASS(insn->code); 8492 8493 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 8494 verbose(env, 8495 "BPF program is too large. Processed %d insn\n", 8496 env->insn_processed); 8497 return -E2BIG; 8498 } 8499 8500 err = is_state_visited(env, env->insn_idx); 8501 if (err < 0) 8502 return err; 8503 if (err == 1) { 8504 /* found equivalent state, can prune the search */ 8505 if (env->log.level & BPF_LOG_LEVEL) { 8506 if (do_print_state) 8507 verbose(env, "\nfrom %d to %d%s: safe\n", 8508 env->prev_insn_idx, env->insn_idx, 8509 env->cur_state->speculative ? 8510 " (speculative execution)" : ""); 8511 else 8512 verbose(env, "%d: safe\n", env->insn_idx); 8513 } 8514 goto process_bpf_exit; 8515 } 8516 8517 if (signal_pending(current)) 8518 return -EAGAIN; 8519 8520 if (need_resched()) 8521 cond_resched(); 8522 8523 if (env->log.level & BPF_LOG_LEVEL2 || 8524 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 8525 if (env->log.level & BPF_LOG_LEVEL2) 8526 verbose(env, "%d:", env->insn_idx); 8527 else 8528 verbose(env, "\nfrom %d to %d%s:", 8529 env->prev_insn_idx, env->insn_idx, 8530 env->cur_state->speculative ? 8531 " (speculative execution)" : ""); 8532 print_verifier_state(env, state->frame[state->curframe]); 8533 do_print_state = false; 8534 } 8535 8536 if (env->log.level & BPF_LOG_LEVEL) { 8537 const struct bpf_insn_cbs cbs = { 8538 .cb_print = verbose, 8539 .private_data = env, 8540 }; 8541 8542 verbose_linfo(env, env->insn_idx, "; "); 8543 verbose(env, "%d: ", env->insn_idx); 8544 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 8545 } 8546 8547 if (bpf_prog_is_dev_bound(env->prog->aux)) { 8548 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 8549 env->prev_insn_idx); 8550 if (err) 8551 return err; 8552 } 8553 8554 regs = cur_regs(env); 8555 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8556 prev_insn_idx = env->insn_idx; 8557 8558 if (class == BPF_ALU || class == BPF_ALU64) { 8559 err = check_alu_op(env, insn); 8560 if (err) 8561 return err; 8562 8563 } else if (class == BPF_LDX) { 8564 enum bpf_reg_type *prev_src_type, src_reg_type; 8565 8566 /* check for reserved fields is already done */ 8567 8568 /* check src operand */ 8569 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8570 if (err) 8571 return err; 8572 8573 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8574 if (err) 8575 return err; 8576 8577 src_reg_type = regs[insn->src_reg].type; 8578 8579 /* check that memory (src_reg + off) is readable, 8580 * the state of dst_reg will be updated by this func 8581 */ 8582 err = check_mem_access(env, env->insn_idx, insn->src_reg, 8583 insn->off, BPF_SIZE(insn->code), 8584 BPF_READ, insn->dst_reg, false); 8585 if (err) 8586 return err; 8587 8588 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8589 8590 if (*prev_src_type == NOT_INIT) { 8591 /* saw a valid insn 8592 * dst_reg = *(u32 *)(src_reg + off) 8593 * save type to validate intersecting paths 8594 */ 8595 *prev_src_type = src_reg_type; 8596 8597 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 8598 /* ABuser program is trying to use the same insn 8599 * dst_reg = *(u32*) (src_reg + off) 8600 * with different pointer types: 8601 * src_reg == ctx in one branch and 8602 * src_reg == stack|map in some other branch. 8603 * Reject it. 8604 */ 8605 verbose(env, "same insn cannot be used with different pointers\n"); 8606 return -EINVAL; 8607 } 8608 8609 } else if (class == BPF_STX) { 8610 enum bpf_reg_type *prev_dst_type, dst_reg_type; 8611 8612 if (BPF_MODE(insn->code) == BPF_XADD) { 8613 err = check_xadd(env, env->insn_idx, insn); 8614 if (err) 8615 return err; 8616 env->insn_idx++; 8617 continue; 8618 } 8619 8620 /* check src1 operand */ 8621 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8622 if (err) 8623 return err; 8624 /* check src2 operand */ 8625 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8626 if (err) 8627 return err; 8628 8629 dst_reg_type = regs[insn->dst_reg].type; 8630 8631 /* check that memory (dst_reg + off) is writeable */ 8632 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8633 insn->off, BPF_SIZE(insn->code), 8634 BPF_WRITE, insn->src_reg, false); 8635 if (err) 8636 return err; 8637 8638 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8639 8640 if (*prev_dst_type == NOT_INIT) { 8641 *prev_dst_type = dst_reg_type; 8642 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 8643 verbose(env, "same insn cannot be used with different pointers\n"); 8644 return -EINVAL; 8645 } 8646 8647 } else if (class == BPF_ST) { 8648 if (BPF_MODE(insn->code) != BPF_MEM || 8649 insn->src_reg != BPF_REG_0) { 8650 verbose(env, "BPF_ST uses reserved fields\n"); 8651 return -EINVAL; 8652 } 8653 /* check src operand */ 8654 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8655 if (err) 8656 return err; 8657 8658 if (is_ctx_reg(env, insn->dst_reg)) { 8659 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 8660 insn->dst_reg, 8661 reg_type_str[reg_state(env, insn->dst_reg)->type]); 8662 return -EACCES; 8663 } 8664 8665 /* check that memory (dst_reg + off) is writeable */ 8666 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8667 insn->off, BPF_SIZE(insn->code), 8668 BPF_WRITE, -1, false); 8669 if (err) 8670 return err; 8671 8672 } else if (class == BPF_JMP || class == BPF_JMP32) { 8673 u8 opcode = BPF_OP(insn->code); 8674 8675 env->jmps_processed++; 8676 if (opcode == BPF_CALL) { 8677 if (BPF_SRC(insn->code) != BPF_K || 8678 insn->off != 0 || 8679 (insn->src_reg != BPF_REG_0 && 8680 insn->src_reg != BPF_PSEUDO_CALL) || 8681 insn->dst_reg != BPF_REG_0 || 8682 class == BPF_JMP32) { 8683 verbose(env, "BPF_CALL uses reserved fields\n"); 8684 return -EINVAL; 8685 } 8686 8687 if (env->cur_state->active_spin_lock && 8688 (insn->src_reg == BPF_PSEUDO_CALL || 8689 insn->imm != BPF_FUNC_spin_unlock)) { 8690 verbose(env, "function calls are not allowed while holding a lock\n"); 8691 return -EINVAL; 8692 } 8693 if (insn->src_reg == BPF_PSEUDO_CALL) 8694 err = check_func_call(env, insn, &env->insn_idx); 8695 else 8696 err = check_helper_call(env, insn->imm, env->insn_idx); 8697 if (err) 8698 return err; 8699 8700 } else if (opcode == BPF_JA) { 8701 if (BPF_SRC(insn->code) != BPF_K || 8702 insn->imm != 0 || 8703 insn->src_reg != BPF_REG_0 || 8704 insn->dst_reg != BPF_REG_0 || 8705 class == BPF_JMP32) { 8706 verbose(env, "BPF_JA uses reserved fields\n"); 8707 return -EINVAL; 8708 } 8709 8710 env->insn_idx += insn->off + 1; 8711 continue; 8712 8713 } else if (opcode == BPF_EXIT) { 8714 if (BPF_SRC(insn->code) != BPF_K || 8715 insn->imm != 0 || 8716 insn->src_reg != BPF_REG_0 || 8717 insn->dst_reg != BPF_REG_0 || 8718 class == BPF_JMP32) { 8719 verbose(env, "BPF_EXIT uses reserved fields\n"); 8720 return -EINVAL; 8721 } 8722 8723 if (env->cur_state->active_spin_lock) { 8724 verbose(env, "bpf_spin_unlock is missing\n"); 8725 return -EINVAL; 8726 } 8727 8728 if (state->curframe) { 8729 /* exit from nested function */ 8730 err = prepare_func_exit(env, &env->insn_idx); 8731 if (err) 8732 return err; 8733 do_print_state = true; 8734 continue; 8735 } 8736 8737 err = check_reference_leak(env); 8738 if (err) 8739 return err; 8740 8741 err = check_return_code(env); 8742 if (err) 8743 return err; 8744 process_bpf_exit: 8745 update_branch_counts(env, env->cur_state); 8746 err = pop_stack(env, &prev_insn_idx, 8747 &env->insn_idx, pop_log); 8748 if (err < 0) { 8749 if (err != -ENOENT) 8750 return err; 8751 break; 8752 } else { 8753 do_print_state = true; 8754 continue; 8755 } 8756 } else { 8757 err = check_cond_jmp_op(env, insn, &env->insn_idx); 8758 if (err) 8759 return err; 8760 } 8761 } else if (class == BPF_LD) { 8762 u8 mode = BPF_MODE(insn->code); 8763 8764 if (mode == BPF_ABS || mode == BPF_IND) { 8765 err = check_ld_abs(env, insn); 8766 if (err) 8767 return err; 8768 8769 } else if (mode == BPF_IMM) { 8770 err = check_ld_imm(env, insn); 8771 if (err) 8772 return err; 8773 8774 env->insn_idx++; 8775 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8776 } else { 8777 verbose(env, "invalid BPF_LD mode\n"); 8778 return -EINVAL; 8779 } 8780 } else { 8781 verbose(env, "unknown insn class %d\n", class); 8782 return -EINVAL; 8783 } 8784 8785 env->insn_idx++; 8786 } 8787 8788 return 0; 8789 } 8790 8791 static int check_map_prealloc(struct bpf_map *map) 8792 { 8793 return (map->map_type != BPF_MAP_TYPE_HASH && 8794 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8795 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 8796 !(map->map_flags & BPF_F_NO_PREALLOC); 8797 } 8798 8799 static bool is_tracing_prog_type(enum bpf_prog_type type) 8800 { 8801 switch (type) { 8802 case BPF_PROG_TYPE_KPROBE: 8803 case BPF_PROG_TYPE_TRACEPOINT: 8804 case BPF_PROG_TYPE_PERF_EVENT: 8805 case BPF_PROG_TYPE_RAW_TRACEPOINT: 8806 return true; 8807 default: 8808 return false; 8809 } 8810 } 8811 8812 static bool is_preallocated_map(struct bpf_map *map) 8813 { 8814 if (!check_map_prealloc(map)) 8815 return false; 8816 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 8817 return false; 8818 return true; 8819 } 8820 8821 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 8822 struct bpf_map *map, 8823 struct bpf_prog *prog) 8824 8825 { 8826 /* 8827 * Validate that trace type programs use preallocated hash maps. 8828 * 8829 * For programs attached to PERF events this is mandatory as the 8830 * perf NMI can hit any arbitrary code sequence. 8831 * 8832 * All other trace types using preallocated hash maps are unsafe as 8833 * well because tracepoint or kprobes can be inside locked regions 8834 * of the memory allocator or at a place where a recursion into the 8835 * memory allocator would see inconsistent state. 8836 * 8837 * On RT enabled kernels run-time allocation of all trace type 8838 * programs is strictly prohibited due to lock type constraints. On 8839 * !RT kernels it is allowed for backwards compatibility reasons for 8840 * now, but warnings are emitted so developers are made aware of 8841 * the unsafety and can fix their programs before this is enforced. 8842 */ 8843 if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) { 8844 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 8845 verbose(env, "perf_event programs can only use preallocated hash map\n"); 8846 return -EINVAL; 8847 } 8848 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 8849 verbose(env, "trace type programs can only use preallocated hash map\n"); 8850 return -EINVAL; 8851 } 8852 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 8853 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 8854 } 8855 8856 if ((is_tracing_prog_type(prog->type) || 8857 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 8858 map_value_has_spin_lock(map)) { 8859 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 8860 return -EINVAL; 8861 } 8862 8863 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 8864 !bpf_offload_prog_map_match(prog, map)) { 8865 verbose(env, "offload device mismatch between prog and map\n"); 8866 return -EINVAL; 8867 } 8868 8869 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 8870 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 8871 return -EINVAL; 8872 } 8873 8874 return 0; 8875 } 8876 8877 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 8878 { 8879 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 8880 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 8881 } 8882 8883 /* look for pseudo eBPF instructions that access map FDs and 8884 * replace them with actual map pointers 8885 */ 8886 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 8887 { 8888 struct bpf_insn *insn = env->prog->insnsi; 8889 int insn_cnt = env->prog->len; 8890 int i, j, err; 8891 8892 err = bpf_prog_calc_tag(env->prog); 8893 if (err) 8894 return err; 8895 8896 for (i = 0; i < insn_cnt; i++, insn++) { 8897 if (BPF_CLASS(insn->code) == BPF_LDX && 8898 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 8899 verbose(env, "BPF_LDX uses reserved fields\n"); 8900 return -EINVAL; 8901 } 8902 8903 if (BPF_CLASS(insn->code) == BPF_STX && 8904 ((BPF_MODE(insn->code) != BPF_MEM && 8905 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 8906 verbose(env, "BPF_STX uses reserved fields\n"); 8907 return -EINVAL; 8908 } 8909 8910 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 8911 struct bpf_insn_aux_data *aux; 8912 struct bpf_map *map; 8913 struct fd f; 8914 u64 addr; 8915 8916 if (i == insn_cnt - 1 || insn[1].code != 0 || 8917 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 8918 insn[1].off != 0) { 8919 verbose(env, "invalid bpf_ld_imm64 insn\n"); 8920 return -EINVAL; 8921 } 8922 8923 if (insn[0].src_reg == 0) 8924 /* valid generic load 64-bit imm */ 8925 goto next_insn; 8926 8927 /* In final convert_pseudo_ld_imm64() step, this is 8928 * converted into regular 64-bit imm load insn. 8929 */ 8930 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 8931 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 8932 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 8933 insn[1].imm != 0)) { 8934 verbose(env, 8935 "unrecognized bpf_ld_imm64 insn\n"); 8936 return -EINVAL; 8937 } 8938 8939 f = fdget(insn[0].imm); 8940 map = __bpf_map_get(f); 8941 if (IS_ERR(map)) { 8942 verbose(env, "fd %d is not pointing to valid bpf_map\n", 8943 insn[0].imm); 8944 return PTR_ERR(map); 8945 } 8946 8947 err = check_map_prog_compatibility(env, map, env->prog); 8948 if (err) { 8949 fdput(f); 8950 return err; 8951 } 8952 8953 aux = &env->insn_aux_data[i]; 8954 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 8955 addr = (unsigned long)map; 8956 } else { 8957 u32 off = insn[1].imm; 8958 8959 if (off >= BPF_MAX_VAR_OFF) { 8960 verbose(env, "direct value offset of %u is not allowed\n", off); 8961 fdput(f); 8962 return -EINVAL; 8963 } 8964 8965 if (!map->ops->map_direct_value_addr) { 8966 verbose(env, "no direct value access support for this map type\n"); 8967 fdput(f); 8968 return -EINVAL; 8969 } 8970 8971 err = map->ops->map_direct_value_addr(map, &addr, off); 8972 if (err) { 8973 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 8974 map->value_size, off); 8975 fdput(f); 8976 return err; 8977 } 8978 8979 aux->map_off = off; 8980 addr += off; 8981 } 8982 8983 insn[0].imm = (u32)addr; 8984 insn[1].imm = addr >> 32; 8985 8986 /* check whether we recorded this map already */ 8987 for (j = 0; j < env->used_map_cnt; j++) { 8988 if (env->used_maps[j] == map) { 8989 aux->map_index = j; 8990 fdput(f); 8991 goto next_insn; 8992 } 8993 } 8994 8995 if (env->used_map_cnt >= MAX_USED_MAPS) { 8996 fdput(f); 8997 return -E2BIG; 8998 } 8999 9000 /* hold the map. If the program is rejected by verifier, 9001 * the map will be released by release_maps() or it 9002 * will be used by the valid program until it's unloaded 9003 * and all maps are released in free_used_maps() 9004 */ 9005 bpf_map_inc(map); 9006 9007 aux->map_index = env->used_map_cnt; 9008 env->used_maps[env->used_map_cnt++] = map; 9009 9010 if (bpf_map_is_cgroup_storage(map) && 9011 bpf_cgroup_storage_assign(env->prog->aux, map)) { 9012 verbose(env, "only one cgroup storage of each type is allowed\n"); 9013 fdput(f); 9014 return -EBUSY; 9015 } 9016 9017 fdput(f); 9018 next_insn: 9019 insn++; 9020 i++; 9021 continue; 9022 } 9023 9024 /* Basic sanity check before we invest more work here. */ 9025 if (!bpf_opcode_in_insntable(insn->code)) { 9026 verbose(env, "unknown opcode %02x\n", insn->code); 9027 return -EINVAL; 9028 } 9029 } 9030 9031 /* now all pseudo BPF_LD_IMM64 instructions load valid 9032 * 'struct bpf_map *' into a register instead of user map_fd. 9033 * These pointers will be used later by verifier to validate map access. 9034 */ 9035 return 0; 9036 } 9037 9038 /* drop refcnt of maps used by the rejected program */ 9039 static void release_maps(struct bpf_verifier_env *env) 9040 { 9041 __bpf_free_used_maps(env->prog->aux, env->used_maps, 9042 env->used_map_cnt); 9043 } 9044 9045 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 9046 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 9047 { 9048 struct bpf_insn *insn = env->prog->insnsi; 9049 int insn_cnt = env->prog->len; 9050 int i; 9051 9052 for (i = 0; i < insn_cnt; i++, insn++) 9053 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 9054 insn->src_reg = 0; 9055 } 9056 9057 /* single env->prog->insni[off] instruction was replaced with the range 9058 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 9059 * [0, off) and [off, end) to new locations, so the patched range stays zero 9060 */ 9061 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 9062 struct bpf_prog *new_prog, u32 off, u32 cnt) 9063 { 9064 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 9065 struct bpf_insn *insn = new_prog->insnsi; 9066 u32 prog_len; 9067 int i; 9068 9069 /* aux info at OFF always needs adjustment, no matter fast path 9070 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 9071 * original insn at old prog. 9072 */ 9073 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 9074 9075 if (cnt == 1) 9076 return 0; 9077 prog_len = new_prog->len; 9078 new_data = vzalloc(array_size(prog_len, 9079 sizeof(struct bpf_insn_aux_data))); 9080 if (!new_data) 9081 return -ENOMEM; 9082 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 9083 memcpy(new_data + off + cnt - 1, old_data + off, 9084 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 9085 for (i = off; i < off + cnt - 1; i++) { 9086 new_data[i].seen = env->pass_cnt; 9087 new_data[i].zext_dst = insn_has_def32(env, insn + i); 9088 } 9089 env->insn_aux_data = new_data; 9090 vfree(old_data); 9091 return 0; 9092 } 9093 9094 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 9095 { 9096 int i; 9097 9098 if (len == 1) 9099 return; 9100 /* NOTE: fake 'exit' subprog should be updated as well. */ 9101 for (i = 0; i <= env->subprog_cnt; i++) { 9102 if (env->subprog_info[i].start <= off) 9103 continue; 9104 env->subprog_info[i].start += len - 1; 9105 } 9106 } 9107 9108 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 9109 const struct bpf_insn *patch, u32 len) 9110 { 9111 struct bpf_prog *new_prog; 9112 9113 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 9114 if (IS_ERR(new_prog)) { 9115 if (PTR_ERR(new_prog) == -ERANGE) 9116 verbose(env, 9117 "insn %d cannot be patched due to 16-bit range\n", 9118 env->insn_aux_data[off].orig_idx); 9119 return NULL; 9120 } 9121 if (adjust_insn_aux_data(env, new_prog, off, len)) 9122 return NULL; 9123 adjust_subprog_starts(env, off, len); 9124 return new_prog; 9125 } 9126 9127 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 9128 u32 off, u32 cnt) 9129 { 9130 int i, j; 9131 9132 /* find first prog starting at or after off (first to remove) */ 9133 for (i = 0; i < env->subprog_cnt; i++) 9134 if (env->subprog_info[i].start >= off) 9135 break; 9136 /* find first prog starting at or after off + cnt (first to stay) */ 9137 for (j = i; j < env->subprog_cnt; j++) 9138 if (env->subprog_info[j].start >= off + cnt) 9139 break; 9140 /* if j doesn't start exactly at off + cnt, we are just removing 9141 * the front of previous prog 9142 */ 9143 if (env->subprog_info[j].start != off + cnt) 9144 j--; 9145 9146 if (j > i) { 9147 struct bpf_prog_aux *aux = env->prog->aux; 9148 int move; 9149 9150 /* move fake 'exit' subprog as well */ 9151 move = env->subprog_cnt + 1 - j; 9152 9153 memmove(env->subprog_info + i, 9154 env->subprog_info + j, 9155 sizeof(*env->subprog_info) * move); 9156 env->subprog_cnt -= j - i; 9157 9158 /* remove func_info */ 9159 if (aux->func_info) { 9160 move = aux->func_info_cnt - j; 9161 9162 memmove(aux->func_info + i, 9163 aux->func_info + j, 9164 sizeof(*aux->func_info) * move); 9165 aux->func_info_cnt -= j - i; 9166 /* func_info->insn_off is set after all code rewrites, 9167 * in adjust_btf_func() - no need to adjust 9168 */ 9169 } 9170 } else { 9171 /* convert i from "first prog to remove" to "first to adjust" */ 9172 if (env->subprog_info[i].start == off) 9173 i++; 9174 } 9175 9176 /* update fake 'exit' subprog as well */ 9177 for (; i <= env->subprog_cnt; i++) 9178 env->subprog_info[i].start -= cnt; 9179 9180 return 0; 9181 } 9182 9183 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 9184 u32 cnt) 9185 { 9186 struct bpf_prog *prog = env->prog; 9187 u32 i, l_off, l_cnt, nr_linfo; 9188 struct bpf_line_info *linfo; 9189 9190 nr_linfo = prog->aux->nr_linfo; 9191 if (!nr_linfo) 9192 return 0; 9193 9194 linfo = prog->aux->linfo; 9195 9196 /* find first line info to remove, count lines to be removed */ 9197 for (i = 0; i < nr_linfo; i++) 9198 if (linfo[i].insn_off >= off) 9199 break; 9200 9201 l_off = i; 9202 l_cnt = 0; 9203 for (; i < nr_linfo; i++) 9204 if (linfo[i].insn_off < off + cnt) 9205 l_cnt++; 9206 else 9207 break; 9208 9209 /* First live insn doesn't match first live linfo, it needs to "inherit" 9210 * last removed linfo. prog is already modified, so prog->len == off 9211 * means no live instructions after (tail of the program was removed). 9212 */ 9213 if (prog->len != off && l_cnt && 9214 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 9215 l_cnt--; 9216 linfo[--i].insn_off = off + cnt; 9217 } 9218 9219 /* remove the line info which refer to the removed instructions */ 9220 if (l_cnt) { 9221 memmove(linfo + l_off, linfo + i, 9222 sizeof(*linfo) * (nr_linfo - i)); 9223 9224 prog->aux->nr_linfo -= l_cnt; 9225 nr_linfo = prog->aux->nr_linfo; 9226 } 9227 9228 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 9229 for (i = l_off; i < nr_linfo; i++) 9230 linfo[i].insn_off -= cnt; 9231 9232 /* fix up all subprogs (incl. 'exit') which start >= off */ 9233 for (i = 0; i <= env->subprog_cnt; i++) 9234 if (env->subprog_info[i].linfo_idx > l_off) { 9235 /* program may have started in the removed region but 9236 * may not be fully removed 9237 */ 9238 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 9239 env->subprog_info[i].linfo_idx -= l_cnt; 9240 else 9241 env->subprog_info[i].linfo_idx = l_off; 9242 } 9243 9244 return 0; 9245 } 9246 9247 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 9248 { 9249 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9250 unsigned int orig_prog_len = env->prog->len; 9251 int err; 9252 9253 if (bpf_prog_is_dev_bound(env->prog->aux)) 9254 bpf_prog_offload_remove_insns(env, off, cnt); 9255 9256 err = bpf_remove_insns(env->prog, off, cnt); 9257 if (err) 9258 return err; 9259 9260 err = adjust_subprog_starts_after_remove(env, off, cnt); 9261 if (err) 9262 return err; 9263 9264 err = bpf_adj_linfo_after_remove(env, off, cnt); 9265 if (err) 9266 return err; 9267 9268 memmove(aux_data + off, aux_data + off + cnt, 9269 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 9270 9271 return 0; 9272 } 9273 9274 /* The verifier does more data flow analysis than llvm and will not 9275 * explore branches that are dead at run time. Malicious programs can 9276 * have dead code too. Therefore replace all dead at-run-time code 9277 * with 'ja -1'. 9278 * 9279 * Just nops are not optimal, e.g. if they would sit at the end of the 9280 * program and through another bug we would manage to jump there, then 9281 * we'd execute beyond program memory otherwise. Returning exception 9282 * code also wouldn't work since we can have subprogs where the dead 9283 * code could be located. 9284 */ 9285 static void sanitize_dead_code(struct bpf_verifier_env *env) 9286 { 9287 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9288 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 9289 struct bpf_insn *insn = env->prog->insnsi; 9290 const int insn_cnt = env->prog->len; 9291 int i; 9292 9293 for (i = 0; i < insn_cnt; i++) { 9294 if (aux_data[i].seen) 9295 continue; 9296 memcpy(insn + i, &trap, sizeof(trap)); 9297 } 9298 } 9299 9300 static bool insn_is_cond_jump(u8 code) 9301 { 9302 u8 op; 9303 9304 if (BPF_CLASS(code) == BPF_JMP32) 9305 return true; 9306 9307 if (BPF_CLASS(code) != BPF_JMP) 9308 return false; 9309 9310 op = BPF_OP(code); 9311 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 9312 } 9313 9314 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 9315 { 9316 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9317 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9318 struct bpf_insn *insn = env->prog->insnsi; 9319 const int insn_cnt = env->prog->len; 9320 int i; 9321 9322 for (i = 0; i < insn_cnt; i++, insn++) { 9323 if (!insn_is_cond_jump(insn->code)) 9324 continue; 9325 9326 if (!aux_data[i + 1].seen) 9327 ja.off = insn->off; 9328 else if (!aux_data[i + 1 + insn->off].seen) 9329 ja.off = 0; 9330 else 9331 continue; 9332 9333 if (bpf_prog_is_dev_bound(env->prog->aux)) 9334 bpf_prog_offload_replace_insn(env, i, &ja); 9335 9336 memcpy(insn, &ja, sizeof(ja)); 9337 } 9338 } 9339 9340 static int opt_remove_dead_code(struct bpf_verifier_env *env) 9341 { 9342 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9343 int insn_cnt = env->prog->len; 9344 int i, err; 9345 9346 for (i = 0; i < insn_cnt; i++) { 9347 int j; 9348 9349 j = 0; 9350 while (i + j < insn_cnt && !aux_data[i + j].seen) 9351 j++; 9352 if (!j) 9353 continue; 9354 9355 err = verifier_remove_insns(env, i, j); 9356 if (err) 9357 return err; 9358 insn_cnt = env->prog->len; 9359 } 9360 9361 return 0; 9362 } 9363 9364 static int opt_remove_nops(struct bpf_verifier_env *env) 9365 { 9366 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9367 struct bpf_insn *insn = env->prog->insnsi; 9368 int insn_cnt = env->prog->len; 9369 int i, err; 9370 9371 for (i = 0; i < insn_cnt; i++) { 9372 if (memcmp(&insn[i], &ja, sizeof(ja))) 9373 continue; 9374 9375 err = verifier_remove_insns(env, i, 1); 9376 if (err) 9377 return err; 9378 insn_cnt--; 9379 i--; 9380 } 9381 9382 return 0; 9383 } 9384 9385 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 9386 const union bpf_attr *attr) 9387 { 9388 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 9389 struct bpf_insn_aux_data *aux = env->insn_aux_data; 9390 int i, patch_len, delta = 0, len = env->prog->len; 9391 struct bpf_insn *insns = env->prog->insnsi; 9392 struct bpf_prog *new_prog; 9393 bool rnd_hi32; 9394 9395 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 9396 zext_patch[1] = BPF_ZEXT_REG(0); 9397 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 9398 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 9399 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 9400 for (i = 0; i < len; i++) { 9401 int adj_idx = i + delta; 9402 struct bpf_insn insn; 9403 9404 insn = insns[adj_idx]; 9405 if (!aux[adj_idx].zext_dst) { 9406 u8 code, class; 9407 u32 imm_rnd; 9408 9409 if (!rnd_hi32) 9410 continue; 9411 9412 code = insn.code; 9413 class = BPF_CLASS(code); 9414 if (insn_no_def(&insn)) 9415 continue; 9416 9417 /* NOTE: arg "reg" (the fourth one) is only used for 9418 * BPF_STX which has been ruled out in above 9419 * check, it is safe to pass NULL here. 9420 */ 9421 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 9422 if (class == BPF_LD && 9423 BPF_MODE(code) == BPF_IMM) 9424 i++; 9425 continue; 9426 } 9427 9428 /* ctx load could be transformed into wider load. */ 9429 if (class == BPF_LDX && 9430 aux[adj_idx].ptr_type == PTR_TO_CTX) 9431 continue; 9432 9433 imm_rnd = get_random_int(); 9434 rnd_hi32_patch[0] = insn; 9435 rnd_hi32_patch[1].imm = imm_rnd; 9436 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 9437 patch = rnd_hi32_patch; 9438 patch_len = 4; 9439 goto apply_patch_buffer; 9440 } 9441 9442 if (!bpf_jit_needs_zext()) 9443 continue; 9444 9445 zext_patch[0] = insn; 9446 zext_patch[1].dst_reg = insn.dst_reg; 9447 zext_patch[1].src_reg = insn.dst_reg; 9448 patch = zext_patch; 9449 patch_len = 2; 9450 apply_patch_buffer: 9451 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 9452 if (!new_prog) 9453 return -ENOMEM; 9454 env->prog = new_prog; 9455 insns = new_prog->insnsi; 9456 aux = env->insn_aux_data; 9457 delta += patch_len - 1; 9458 } 9459 9460 return 0; 9461 } 9462 9463 /* convert load instructions that access fields of a context type into a 9464 * sequence of instructions that access fields of the underlying structure: 9465 * struct __sk_buff -> struct sk_buff 9466 * struct bpf_sock_ops -> struct sock 9467 */ 9468 static int convert_ctx_accesses(struct bpf_verifier_env *env) 9469 { 9470 const struct bpf_verifier_ops *ops = env->ops; 9471 int i, cnt, size, ctx_field_size, delta = 0; 9472 const int insn_cnt = env->prog->len; 9473 struct bpf_insn insn_buf[16], *insn; 9474 u32 target_size, size_default, off; 9475 struct bpf_prog *new_prog; 9476 enum bpf_access_type type; 9477 bool is_narrower_load; 9478 9479 if (ops->gen_prologue || env->seen_direct_write) { 9480 if (!ops->gen_prologue) { 9481 verbose(env, "bpf verifier is misconfigured\n"); 9482 return -EINVAL; 9483 } 9484 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 9485 env->prog); 9486 if (cnt >= ARRAY_SIZE(insn_buf)) { 9487 verbose(env, "bpf verifier is misconfigured\n"); 9488 return -EINVAL; 9489 } else if (cnt) { 9490 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 9491 if (!new_prog) 9492 return -ENOMEM; 9493 9494 env->prog = new_prog; 9495 delta += cnt - 1; 9496 } 9497 } 9498 9499 if (bpf_prog_is_dev_bound(env->prog->aux)) 9500 return 0; 9501 9502 insn = env->prog->insnsi + delta; 9503 9504 for (i = 0; i < insn_cnt; i++, insn++) { 9505 bpf_convert_ctx_access_t convert_ctx_access; 9506 9507 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 9508 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 9509 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 9510 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 9511 type = BPF_READ; 9512 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 9513 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 9514 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 9515 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 9516 type = BPF_WRITE; 9517 else 9518 continue; 9519 9520 if (type == BPF_WRITE && 9521 env->insn_aux_data[i + delta].sanitize_stack_off) { 9522 struct bpf_insn patch[] = { 9523 /* Sanitize suspicious stack slot with zero. 9524 * There are no memory dependencies for this store, 9525 * since it's only using frame pointer and immediate 9526 * constant of zero 9527 */ 9528 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 9529 env->insn_aux_data[i + delta].sanitize_stack_off, 9530 0), 9531 /* the original STX instruction will immediately 9532 * overwrite the same stack slot with appropriate value 9533 */ 9534 *insn, 9535 }; 9536 9537 cnt = ARRAY_SIZE(patch); 9538 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 9539 if (!new_prog) 9540 return -ENOMEM; 9541 9542 delta += cnt - 1; 9543 env->prog = new_prog; 9544 insn = new_prog->insnsi + i + delta; 9545 continue; 9546 } 9547 9548 switch (env->insn_aux_data[i + delta].ptr_type) { 9549 case PTR_TO_CTX: 9550 if (!ops->convert_ctx_access) 9551 continue; 9552 convert_ctx_access = ops->convert_ctx_access; 9553 break; 9554 case PTR_TO_SOCKET: 9555 case PTR_TO_SOCK_COMMON: 9556 convert_ctx_access = bpf_sock_convert_ctx_access; 9557 break; 9558 case PTR_TO_TCP_SOCK: 9559 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 9560 break; 9561 case PTR_TO_XDP_SOCK: 9562 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 9563 break; 9564 case PTR_TO_BTF_ID: 9565 if (type == BPF_READ) { 9566 insn->code = BPF_LDX | BPF_PROBE_MEM | 9567 BPF_SIZE((insn)->code); 9568 env->prog->aux->num_exentries++; 9569 } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9570 verbose(env, "Writes through BTF pointers are not allowed\n"); 9571 return -EINVAL; 9572 } 9573 continue; 9574 default: 9575 continue; 9576 } 9577 9578 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 9579 size = BPF_LDST_BYTES(insn); 9580 9581 /* If the read access is a narrower load of the field, 9582 * convert to a 4/8-byte load, to minimum program type specific 9583 * convert_ctx_access changes. If conversion is successful, 9584 * we will apply proper mask to the result. 9585 */ 9586 is_narrower_load = size < ctx_field_size; 9587 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 9588 off = insn->off; 9589 if (is_narrower_load) { 9590 u8 size_code; 9591 9592 if (type == BPF_WRITE) { 9593 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 9594 return -EINVAL; 9595 } 9596 9597 size_code = BPF_H; 9598 if (ctx_field_size == 4) 9599 size_code = BPF_W; 9600 else if (ctx_field_size == 8) 9601 size_code = BPF_DW; 9602 9603 insn->off = off & ~(size_default - 1); 9604 insn->code = BPF_LDX | BPF_MEM | size_code; 9605 } 9606 9607 target_size = 0; 9608 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 9609 &target_size); 9610 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 9611 (ctx_field_size && !target_size)) { 9612 verbose(env, "bpf verifier is misconfigured\n"); 9613 return -EINVAL; 9614 } 9615 9616 if (is_narrower_load && size < target_size) { 9617 u8 shift = bpf_ctx_narrow_access_offset( 9618 off, size, size_default) * 8; 9619 if (ctx_field_size <= 4) { 9620 if (shift) 9621 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 9622 insn->dst_reg, 9623 shift); 9624 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 9625 (1 << size * 8) - 1); 9626 } else { 9627 if (shift) 9628 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 9629 insn->dst_reg, 9630 shift); 9631 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 9632 (1ULL << size * 8) - 1); 9633 } 9634 } 9635 9636 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9637 if (!new_prog) 9638 return -ENOMEM; 9639 9640 delta += cnt - 1; 9641 9642 /* keep walking new program and skip insns we just inserted */ 9643 env->prog = new_prog; 9644 insn = new_prog->insnsi + i + delta; 9645 } 9646 9647 return 0; 9648 } 9649 9650 static int jit_subprogs(struct bpf_verifier_env *env) 9651 { 9652 struct bpf_prog *prog = env->prog, **func, *tmp; 9653 int i, j, subprog_start, subprog_end = 0, len, subprog; 9654 struct bpf_insn *insn; 9655 void *old_bpf_func; 9656 int err; 9657 9658 if (env->subprog_cnt <= 1) 9659 return 0; 9660 9661 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9662 if (insn->code != (BPF_JMP | BPF_CALL) || 9663 insn->src_reg != BPF_PSEUDO_CALL) 9664 continue; 9665 /* Upon error here we cannot fall back to interpreter but 9666 * need a hard reject of the program. Thus -EFAULT is 9667 * propagated in any case. 9668 */ 9669 subprog = find_subprog(env, i + insn->imm + 1); 9670 if (subprog < 0) { 9671 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 9672 i + insn->imm + 1); 9673 return -EFAULT; 9674 } 9675 /* temporarily remember subprog id inside insn instead of 9676 * aux_data, since next loop will split up all insns into funcs 9677 */ 9678 insn->off = subprog; 9679 /* remember original imm in case JIT fails and fallback 9680 * to interpreter will be needed 9681 */ 9682 env->insn_aux_data[i].call_imm = insn->imm; 9683 /* point imm to __bpf_call_base+1 from JITs point of view */ 9684 insn->imm = 1; 9685 } 9686 9687 err = bpf_prog_alloc_jited_linfo(prog); 9688 if (err) 9689 goto out_undo_insn; 9690 9691 err = -ENOMEM; 9692 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 9693 if (!func) 9694 goto out_undo_insn; 9695 9696 for (i = 0; i < env->subprog_cnt; i++) { 9697 subprog_start = subprog_end; 9698 subprog_end = env->subprog_info[i + 1].start; 9699 9700 len = subprog_end - subprog_start; 9701 /* BPF_PROG_RUN doesn't call subprogs directly, 9702 * hence main prog stats include the runtime of subprogs. 9703 * subprogs don't have IDs and not reachable via prog_get_next_id 9704 * func[i]->aux->stats will never be accessed and stays NULL 9705 */ 9706 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 9707 if (!func[i]) 9708 goto out_free; 9709 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 9710 len * sizeof(struct bpf_insn)); 9711 func[i]->type = prog->type; 9712 func[i]->len = len; 9713 if (bpf_prog_calc_tag(func[i])) 9714 goto out_free; 9715 func[i]->is_func = 1; 9716 func[i]->aux->func_idx = i; 9717 /* the btf and func_info will be freed only at prog->aux */ 9718 func[i]->aux->btf = prog->aux->btf; 9719 func[i]->aux->func_info = prog->aux->func_info; 9720 9721 /* Use bpf_prog_F_tag to indicate functions in stack traces. 9722 * Long term would need debug info to populate names 9723 */ 9724 func[i]->aux->name[0] = 'F'; 9725 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 9726 func[i]->jit_requested = 1; 9727 func[i]->aux->linfo = prog->aux->linfo; 9728 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 9729 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 9730 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 9731 func[i] = bpf_int_jit_compile(func[i]); 9732 if (!func[i]->jited) { 9733 err = -ENOTSUPP; 9734 goto out_free; 9735 } 9736 cond_resched(); 9737 } 9738 /* at this point all bpf functions were successfully JITed 9739 * now populate all bpf_calls with correct addresses and 9740 * run last pass of JIT 9741 */ 9742 for (i = 0; i < env->subprog_cnt; i++) { 9743 insn = func[i]->insnsi; 9744 for (j = 0; j < func[i]->len; j++, insn++) { 9745 if (insn->code != (BPF_JMP | BPF_CALL) || 9746 insn->src_reg != BPF_PSEUDO_CALL) 9747 continue; 9748 subprog = insn->off; 9749 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 9750 __bpf_call_base; 9751 } 9752 9753 /* we use the aux data to keep a list of the start addresses 9754 * of the JITed images for each function in the program 9755 * 9756 * for some architectures, such as powerpc64, the imm field 9757 * might not be large enough to hold the offset of the start 9758 * address of the callee's JITed image from __bpf_call_base 9759 * 9760 * in such cases, we can lookup the start address of a callee 9761 * by using its subprog id, available from the off field of 9762 * the call instruction, as an index for this list 9763 */ 9764 func[i]->aux->func = func; 9765 func[i]->aux->func_cnt = env->subprog_cnt; 9766 } 9767 for (i = 0; i < env->subprog_cnt; i++) { 9768 old_bpf_func = func[i]->bpf_func; 9769 tmp = bpf_int_jit_compile(func[i]); 9770 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 9771 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 9772 err = -ENOTSUPP; 9773 goto out_free; 9774 } 9775 cond_resched(); 9776 } 9777 9778 /* finally lock prog and jit images for all functions and 9779 * populate kallsysm 9780 */ 9781 for (i = 0; i < env->subprog_cnt; i++) { 9782 bpf_prog_lock_ro(func[i]); 9783 bpf_prog_kallsyms_add(func[i]); 9784 } 9785 9786 /* Last step: make now unused interpreter insns from main 9787 * prog consistent for later dump requests, so they can 9788 * later look the same as if they were interpreted only. 9789 */ 9790 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9791 if (insn->code != (BPF_JMP | BPF_CALL) || 9792 insn->src_reg != BPF_PSEUDO_CALL) 9793 continue; 9794 insn->off = env->insn_aux_data[i].call_imm; 9795 subprog = find_subprog(env, i + insn->off + 1); 9796 insn->imm = subprog; 9797 } 9798 9799 prog->jited = 1; 9800 prog->bpf_func = func[0]->bpf_func; 9801 prog->aux->func = func; 9802 prog->aux->func_cnt = env->subprog_cnt; 9803 bpf_prog_free_unused_jited_linfo(prog); 9804 return 0; 9805 out_free: 9806 for (i = 0; i < env->subprog_cnt; i++) 9807 if (func[i]) 9808 bpf_jit_free(func[i]); 9809 kfree(func); 9810 out_undo_insn: 9811 /* cleanup main prog to be interpreted */ 9812 prog->jit_requested = 0; 9813 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9814 if (insn->code != (BPF_JMP | BPF_CALL) || 9815 insn->src_reg != BPF_PSEUDO_CALL) 9816 continue; 9817 insn->off = 0; 9818 insn->imm = env->insn_aux_data[i].call_imm; 9819 } 9820 bpf_prog_free_jited_linfo(prog); 9821 return err; 9822 } 9823 9824 static int fixup_call_args(struct bpf_verifier_env *env) 9825 { 9826 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9827 struct bpf_prog *prog = env->prog; 9828 struct bpf_insn *insn = prog->insnsi; 9829 int i, depth; 9830 #endif 9831 int err = 0; 9832 9833 if (env->prog->jit_requested && 9834 !bpf_prog_is_dev_bound(env->prog->aux)) { 9835 err = jit_subprogs(env); 9836 if (err == 0) 9837 return 0; 9838 if (err == -EFAULT) 9839 return err; 9840 } 9841 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9842 for (i = 0; i < prog->len; i++, insn++) { 9843 if (insn->code != (BPF_JMP | BPF_CALL) || 9844 insn->src_reg != BPF_PSEUDO_CALL) 9845 continue; 9846 depth = get_callee_stack_depth(env, insn, i); 9847 if (depth < 0) 9848 return depth; 9849 bpf_patch_call_args(insn, depth); 9850 } 9851 err = 0; 9852 #endif 9853 return err; 9854 } 9855 9856 /* fixup insn->imm field of bpf_call instructions 9857 * and inline eligible helpers as explicit sequence of BPF instructions 9858 * 9859 * this function is called after eBPF program passed verification 9860 */ 9861 static int fixup_bpf_calls(struct bpf_verifier_env *env) 9862 { 9863 struct bpf_prog *prog = env->prog; 9864 bool expect_blinding = bpf_jit_blinding_enabled(prog); 9865 struct bpf_insn *insn = prog->insnsi; 9866 const struct bpf_func_proto *fn; 9867 const int insn_cnt = prog->len; 9868 const struct bpf_map_ops *ops; 9869 struct bpf_insn_aux_data *aux; 9870 struct bpf_insn insn_buf[16]; 9871 struct bpf_prog *new_prog; 9872 struct bpf_map *map_ptr; 9873 int i, ret, cnt, delta = 0; 9874 9875 for (i = 0; i < insn_cnt; i++, insn++) { 9876 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 9877 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9878 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 9879 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9880 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 9881 struct bpf_insn mask_and_div[] = { 9882 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9883 /* Rx div 0 -> 0 */ 9884 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 9885 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 9886 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 9887 *insn, 9888 }; 9889 struct bpf_insn mask_and_mod[] = { 9890 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9891 /* Rx mod 0 -> Rx */ 9892 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 9893 *insn, 9894 }; 9895 struct bpf_insn *patchlet; 9896 9897 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9898 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9899 patchlet = mask_and_div + (is64 ? 1 : 0); 9900 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 9901 } else { 9902 patchlet = mask_and_mod + (is64 ? 1 : 0); 9903 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 9904 } 9905 9906 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 9907 if (!new_prog) 9908 return -ENOMEM; 9909 9910 delta += cnt - 1; 9911 env->prog = prog = new_prog; 9912 insn = new_prog->insnsi + i + delta; 9913 continue; 9914 } 9915 9916 if (BPF_CLASS(insn->code) == BPF_LD && 9917 (BPF_MODE(insn->code) == BPF_ABS || 9918 BPF_MODE(insn->code) == BPF_IND)) { 9919 cnt = env->ops->gen_ld_abs(insn, insn_buf); 9920 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9921 verbose(env, "bpf verifier is misconfigured\n"); 9922 return -EINVAL; 9923 } 9924 9925 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9926 if (!new_prog) 9927 return -ENOMEM; 9928 9929 delta += cnt - 1; 9930 env->prog = prog = new_prog; 9931 insn = new_prog->insnsi + i + delta; 9932 continue; 9933 } 9934 9935 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 9936 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 9937 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 9938 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 9939 struct bpf_insn insn_buf[16]; 9940 struct bpf_insn *patch = &insn_buf[0]; 9941 bool issrc, isneg; 9942 u32 off_reg; 9943 9944 aux = &env->insn_aux_data[i + delta]; 9945 if (!aux->alu_state || 9946 aux->alu_state == BPF_ALU_NON_POINTER) 9947 continue; 9948 9949 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 9950 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 9951 BPF_ALU_SANITIZE_SRC; 9952 9953 off_reg = issrc ? insn->src_reg : insn->dst_reg; 9954 if (isneg) 9955 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9956 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 9957 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 9958 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 9959 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 9960 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 9961 if (issrc) { 9962 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 9963 off_reg); 9964 insn->src_reg = BPF_REG_AX; 9965 } else { 9966 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 9967 BPF_REG_AX); 9968 } 9969 if (isneg) 9970 insn->code = insn->code == code_add ? 9971 code_sub : code_add; 9972 *patch++ = *insn; 9973 if (issrc && isneg) 9974 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9975 cnt = patch - insn_buf; 9976 9977 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9978 if (!new_prog) 9979 return -ENOMEM; 9980 9981 delta += cnt - 1; 9982 env->prog = prog = new_prog; 9983 insn = new_prog->insnsi + i + delta; 9984 continue; 9985 } 9986 9987 if (insn->code != (BPF_JMP | BPF_CALL)) 9988 continue; 9989 if (insn->src_reg == BPF_PSEUDO_CALL) 9990 continue; 9991 9992 if (insn->imm == BPF_FUNC_get_route_realm) 9993 prog->dst_needed = 1; 9994 if (insn->imm == BPF_FUNC_get_prandom_u32) 9995 bpf_user_rnd_init_once(); 9996 if (insn->imm == BPF_FUNC_override_return) 9997 prog->kprobe_override = 1; 9998 if (insn->imm == BPF_FUNC_tail_call) { 9999 /* If we tail call into other programs, we 10000 * cannot make any assumptions since they can 10001 * be replaced dynamically during runtime in 10002 * the program array. 10003 */ 10004 prog->cb_access = 1; 10005 env->prog->aux->stack_depth = MAX_BPF_STACK; 10006 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 10007 10008 /* mark bpf_tail_call as different opcode to avoid 10009 * conditional branch in the interpeter for every normal 10010 * call and to prevent accidental JITing by JIT compiler 10011 * that doesn't support bpf_tail_call yet 10012 */ 10013 insn->imm = 0; 10014 insn->code = BPF_JMP | BPF_TAIL_CALL; 10015 10016 aux = &env->insn_aux_data[i + delta]; 10017 if (env->allow_ptr_leaks && !expect_blinding && 10018 prog->jit_requested && 10019 !bpf_map_key_poisoned(aux) && 10020 !bpf_map_ptr_poisoned(aux) && 10021 !bpf_map_ptr_unpriv(aux)) { 10022 struct bpf_jit_poke_descriptor desc = { 10023 .reason = BPF_POKE_REASON_TAIL_CALL, 10024 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 10025 .tail_call.key = bpf_map_key_immediate(aux), 10026 }; 10027 10028 ret = bpf_jit_add_poke_descriptor(prog, &desc); 10029 if (ret < 0) { 10030 verbose(env, "adding tail call poke descriptor failed\n"); 10031 return ret; 10032 } 10033 10034 insn->imm = ret + 1; 10035 continue; 10036 } 10037 10038 if (!bpf_map_ptr_unpriv(aux)) 10039 continue; 10040 10041 /* instead of changing every JIT dealing with tail_call 10042 * emit two extra insns: 10043 * if (index >= max_entries) goto out; 10044 * index &= array->index_mask; 10045 * to avoid out-of-bounds cpu speculation 10046 */ 10047 if (bpf_map_ptr_poisoned(aux)) { 10048 verbose(env, "tail_call abusing map_ptr\n"); 10049 return -EINVAL; 10050 } 10051 10052 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10053 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 10054 map_ptr->max_entries, 2); 10055 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 10056 container_of(map_ptr, 10057 struct bpf_array, 10058 map)->index_mask); 10059 insn_buf[2] = *insn; 10060 cnt = 3; 10061 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10062 if (!new_prog) 10063 return -ENOMEM; 10064 10065 delta += cnt - 1; 10066 env->prog = prog = new_prog; 10067 insn = new_prog->insnsi + i + delta; 10068 continue; 10069 } 10070 10071 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 10072 * and other inlining handlers are currently limited to 64 bit 10073 * only. 10074 */ 10075 if (prog->jit_requested && BITS_PER_LONG == 64 && 10076 (insn->imm == BPF_FUNC_map_lookup_elem || 10077 insn->imm == BPF_FUNC_map_update_elem || 10078 insn->imm == BPF_FUNC_map_delete_elem || 10079 insn->imm == BPF_FUNC_map_push_elem || 10080 insn->imm == BPF_FUNC_map_pop_elem || 10081 insn->imm == BPF_FUNC_map_peek_elem)) { 10082 aux = &env->insn_aux_data[i + delta]; 10083 if (bpf_map_ptr_poisoned(aux)) 10084 goto patch_call_imm; 10085 10086 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10087 ops = map_ptr->ops; 10088 if (insn->imm == BPF_FUNC_map_lookup_elem && 10089 ops->map_gen_lookup) { 10090 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 10091 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10092 verbose(env, "bpf verifier is misconfigured\n"); 10093 return -EINVAL; 10094 } 10095 10096 new_prog = bpf_patch_insn_data(env, i + delta, 10097 insn_buf, cnt); 10098 if (!new_prog) 10099 return -ENOMEM; 10100 10101 delta += cnt - 1; 10102 env->prog = prog = new_prog; 10103 insn = new_prog->insnsi + i + delta; 10104 continue; 10105 } 10106 10107 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 10108 (void *(*)(struct bpf_map *map, void *key))NULL)); 10109 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 10110 (int (*)(struct bpf_map *map, void *key))NULL)); 10111 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 10112 (int (*)(struct bpf_map *map, void *key, void *value, 10113 u64 flags))NULL)); 10114 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 10115 (int (*)(struct bpf_map *map, void *value, 10116 u64 flags))NULL)); 10117 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 10118 (int (*)(struct bpf_map *map, void *value))NULL)); 10119 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 10120 (int (*)(struct bpf_map *map, void *value))NULL)); 10121 10122 switch (insn->imm) { 10123 case BPF_FUNC_map_lookup_elem: 10124 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 10125 __bpf_call_base; 10126 continue; 10127 case BPF_FUNC_map_update_elem: 10128 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 10129 __bpf_call_base; 10130 continue; 10131 case BPF_FUNC_map_delete_elem: 10132 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 10133 __bpf_call_base; 10134 continue; 10135 case BPF_FUNC_map_push_elem: 10136 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 10137 __bpf_call_base; 10138 continue; 10139 case BPF_FUNC_map_pop_elem: 10140 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 10141 __bpf_call_base; 10142 continue; 10143 case BPF_FUNC_map_peek_elem: 10144 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 10145 __bpf_call_base; 10146 continue; 10147 } 10148 10149 goto patch_call_imm; 10150 } 10151 10152 if (prog->jit_requested && BITS_PER_LONG == 64 && 10153 insn->imm == BPF_FUNC_jiffies64) { 10154 struct bpf_insn ld_jiffies_addr[2] = { 10155 BPF_LD_IMM64(BPF_REG_0, 10156 (unsigned long)&jiffies), 10157 }; 10158 10159 insn_buf[0] = ld_jiffies_addr[0]; 10160 insn_buf[1] = ld_jiffies_addr[1]; 10161 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 10162 BPF_REG_0, 0); 10163 cnt = 3; 10164 10165 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 10166 cnt); 10167 if (!new_prog) 10168 return -ENOMEM; 10169 10170 delta += cnt - 1; 10171 env->prog = prog = new_prog; 10172 insn = new_prog->insnsi + i + delta; 10173 continue; 10174 } 10175 10176 patch_call_imm: 10177 fn = env->ops->get_func_proto(insn->imm, env->prog); 10178 /* all functions that have prototype and verifier allowed 10179 * programs to call them, must be real in-kernel functions 10180 */ 10181 if (!fn->func) { 10182 verbose(env, 10183 "kernel subsystem misconfigured func %s#%d\n", 10184 func_id_name(insn->imm), insn->imm); 10185 return -EFAULT; 10186 } 10187 insn->imm = fn->func - __bpf_call_base; 10188 } 10189 10190 /* Since poke tab is now finalized, publish aux to tracker. */ 10191 for (i = 0; i < prog->aux->size_poke_tab; i++) { 10192 map_ptr = prog->aux->poke_tab[i].tail_call.map; 10193 if (!map_ptr->ops->map_poke_track || 10194 !map_ptr->ops->map_poke_untrack || 10195 !map_ptr->ops->map_poke_run) { 10196 verbose(env, "bpf verifier is misconfigured\n"); 10197 return -EINVAL; 10198 } 10199 10200 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 10201 if (ret < 0) { 10202 verbose(env, "tracking tail call prog failed\n"); 10203 return ret; 10204 } 10205 } 10206 10207 return 0; 10208 } 10209 10210 static void free_states(struct bpf_verifier_env *env) 10211 { 10212 struct bpf_verifier_state_list *sl, *sln; 10213 int i; 10214 10215 sl = env->free_list; 10216 while (sl) { 10217 sln = sl->next; 10218 free_verifier_state(&sl->state, false); 10219 kfree(sl); 10220 sl = sln; 10221 } 10222 env->free_list = NULL; 10223 10224 if (!env->explored_states) 10225 return; 10226 10227 for (i = 0; i < state_htab_size(env); i++) { 10228 sl = env->explored_states[i]; 10229 10230 while (sl) { 10231 sln = sl->next; 10232 free_verifier_state(&sl->state, false); 10233 kfree(sl); 10234 sl = sln; 10235 } 10236 env->explored_states[i] = NULL; 10237 } 10238 } 10239 10240 /* The verifier is using insn_aux_data[] to store temporary data during 10241 * verification and to store information for passes that run after the 10242 * verification like dead code sanitization. do_check_common() for subprogram N 10243 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 10244 * temporary data after do_check_common() finds that subprogram N cannot be 10245 * verified independently. pass_cnt counts the number of times 10246 * do_check_common() was run and insn->aux->seen tells the pass number 10247 * insn_aux_data was touched. These variables are compared to clear temporary 10248 * data from failed pass. For testing and experiments do_check_common() can be 10249 * run multiple times even when prior attempt to verify is unsuccessful. 10250 */ 10251 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 10252 { 10253 struct bpf_insn *insn = env->prog->insnsi; 10254 struct bpf_insn_aux_data *aux; 10255 int i, class; 10256 10257 for (i = 0; i < env->prog->len; i++) { 10258 class = BPF_CLASS(insn[i].code); 10259 if (class != BPF_LDX && class != BPF_STX) 10260 continue; 10261 aux = &env->insn_aux_data[i]; 10262 if (aux->seen != env->pass_cnt) 10263 continue; 10264 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 10265 } 10266 } 10267 10268 static int do_check_common(struct bpf_verifier_env *env, int subprog) 10269 { 10270 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 10271 struct bpf_verifier_state *state; 10272 struct bpf_reg_state *regs; 10273 int ret, i; 10274 10275 env->prev_linfo = NULL; 10276 env->pass_cnt++; 10277 10278 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 10279 if (!state) 10280 return -ENOMEM; 10281 state->curframe = 0; 10282 state->speculative = false; 10283 state->branches = 1; 10284 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 10285 if (!state->frame[0]) { 10286 kfree(state); 10287 return -ENOMEM; 10288 } 10289 env->cur_state = state; 10290 init_func_state(env, state->frame[0], 10291 BPF_MAIN_FUNC /* callsite */, 10292 0 /* frameno */, 10293 subprog); 10294 10295 regs = state->frame[state->curframe]->regs; 10296 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 10297 ret = btf_prepare_func_args(env, subprog, regs); 10298 if (ret) 10299 goto out; 10300 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 10301 if (regs[i].type == PTR_TO_CTX) 10302 mark_reg_known_zero(env, regs, i); 10303 else if (regs[i].type == SCALAR_VALUE) 10304 mark_reg_unknown(env, regs, i); 10305 } 10306 } else { 10307 /* 1st arg to a function */ 10308 regs[BPF_REG_1].type = PTR_TO_CTX; 10309 mark_reg_known_zero(env, regs, BPF_REG_1); 10310 ret = btf_check_func_arg_match(env, subprog, regs); 10311 if (ret == -EFAULT) 10312 /* unlikely verifier bug. abort. 10313 * ret == 0 and ret < 0 are sadly acceptable for 10314 * main() function due to backward compatibility. 10315 * Like socket filter program may be written as: 10316 * int bpf_prog(struct pt_regs *ctx) 10317 * and never dereference that ctx in the program. 10318 * 'struct pt_regs' is a type mismatch for socket 10319 * filter that should be using 'struct __sk_buff'. 10320 */ 10321 goto out; 10322 } 10323 10324 ret = do_check(env); 10325 out: 10326 /* check for NULL is necessary, since cur_state can be freed inside 10327 * do_check() under memory pressure. 10328 */ 10329 if (env->cur_state) { 10330 free_verifier_state(env->cur_state, true); 10331 env->cur_state = NULL; 10332 } 10333 while (!pop_stack(env, NULL, NULL, false)); 10334 if (!ret && pop_log) 10335 bpf_vlog_reset(&env->log, 0); 10336 free_states(env); 10337 if (ret) 10338 /* clean aux data in case subprog was rejected */ 10339 sanitize_insn_aux_data(env); 10340 return ret; 10341 } 10342 10343 /* Verify all global functions in a BPF program one by one based on their BTF. 10344 * All global functions must pass verification. Otherwise the whole program is rejected. 10345 * Consider: 10346 * int bar(int); 10347 * int foo(int f) 10348 * { 10349 * return bar(f); 10350 * } 10351 * int bar(int b) 10352 * { 10353 * ... 10354 * } 10355 * foo() will be verified first for R1=any_scalar_value. During verification it 10356 * will be assumed that bar() already verified successfully and call to bar() 10357 * from foo() will be checked for type match only. Later bar() will be verified 10358 * independently to check that it's safe for R1=any_scalar_value. 10359 */ 10360 static int do_check_subprogs(struct bpf_verifier_env *env) 10361 { 10362 struct bpf_prog_aux *aux = env->prog->aux; 10363 int i, ret; 10364 10365 if (!aux->func_info) 10366 return 0; 10367 10368 for (i = 1; i < env->subprog_cnt; i++) { 10369 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 10370 continue; 10371 env->insn_idx = env->subprog_info[i].start; 10372 WARN_ON_ONCE(env->insn_idx == 0); 10373 ret = do_check_common(env, i); 10374 if (ret) { 10375 return ret; 10376 } else if (env->log.level & BPF_LOG_LEVEL) { 10377 verbose(env, 10378 "Func#%d is safe for any args that match its prototype\n", 10379 i); 10380 } 10381 } 10382 return 0; 10383 } 10384 10385 static int do_check_main(struct bpf_verifier_env *env) 10386 { 10387 int ret; 10388 10389 env->insn_idx = 0; 10390 ret = do_check_common(env, 0); 10391 if (!ret) 10392 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 10393 return ret; 10394 } 10395 10396 10397 static void print_verification_stats(struct bpf_verifier_env *env) 10398 { 10399 int i; 10400 10401 if (env->log.level & BPF_LOG_STATS) { 10402 verbose(env, "verification time %lld usec\n", 10403 div_u64(env->verification_time, 1000)); 10404 verbose(env, "stack depth "); 10405 for (i = 0; i < env->subprog_cnt; i++) { 10406 u32 depth = env->subprog_info[i].stack_depth; 10407 10408 verbose(env, "%d", depth); 10409 if (i + 1 < env->subprog_cnt) 10410 verbose(env, "+"); 10411 } 10412 verbose(env, "\n"); 10413 } 10414 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 10415 "total_states %d peak_states %d mark_read %d\n", 10416 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 10417 env->max_states_per_insn, env->total_states, 10418 env->peak_states, env->longest_mark_read_walk); 10419 } 10420 10421 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 10422 { 10423 const struct btf_type *t, *func_proto; 10424 const struct bpf_struct_ops *st_ops; 10425 const struct btf_member *member; 10426 struct bpf_prog *prog = env->prog; 10427 u32 btf_id, member_idx; 10428 const char *mname; 10429 10430 btf_id = prog->aux->attach_btf_id; 10431 st_ops = bpf_struct_ops_find(btf_id); 10432 if (!st_ops) { 10433 verbose(env, "attach_btf_id %u is not a supported struct\n", 10434 btf_id); 10435 return -ENOTSUPP; 10436 } 10437 10438 t = st_ops->type; 10439 member_idx = prog->expected_attach_type; 10440 if (member_idx >= btf_type_vlen(t)) { 10441 verbose(env, "attach to invalid member idx %u of struct %s\n", 10442 member_idx, st_ops->name); 10443 return -EINVAL; 10444 } 10445 10446 member = &btf_type_member(t)[member_idx]; 10447 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 10448 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 10449 NULL); 10450 if (!func_proto) { 10451 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 10452 mname, member_idx, st_ops->name); 10453 return -EINVAL; 10454 } 10455 10456 if (st_ops->check_member) { 10457 int err = st_ops->check_member(t, member); 10458 10459 if (err) { 10460 verbose(env, "attach to unsupported member %s of struct %s\n", 10461 mname, st_ops->name); 10462 return err; 10463 } 10464 } 10465 10466 prog->aux->attach_func_proto = func_proto; 10467 prog->aux->attach_func_name = mname; 10468 env->ops = st_ops->verifier_ops; 10469 10470 return 0; 10471 } 10472 #define SECURITY_PREFIX "security_" 10473 10474 static int check_attach_modify_return(struct bpf_verifier_env *env) 10475 { 10476 struct bpf_prog *prog = env->prog; 10477 unsigned long addr = (unsigned long) prog->aux->trampoline->func.addr; 10478 10479 /* This is expected to be cleaned up in the future with the KRSI effort 10480 * introducing the LSM_HOOK macro for cleaning up lsm_hooks.h. 10481 */ 10482 if (within_error_injection_list(addr) || 10483 !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name, 10484 sizeof(SECURITY_PREFIX) - 1)) 10485 return 0; 10486 10487 verbose(env, "fmod_ret attach_btf_id %u (%s) is not modifiable\n", 10488 prog->aux->attach_btf_id, prog->aux->attach_func_name); 10489 10490 return -EINVAL; 10491 } 10492 10493 static int check_attach_btf_id(struct bpf_verifier_env *env) 10494 { 10495 struct bpf_prog *prog = env->prog; 10496 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 10497 struct bpf_prog *tgt_prog = prog->aux->linked_prog; 10498 u32 btf_id = prog->aux->attach_btf_id; 10499 const char prefix[] = "btf_trace_"; 10500 struct btf_func_model fmodel; 10501 int ret = 0, subprog = -1, i; 10502 struct bpf_trampoline *tr; 10503 const struct btf_type *t; 10504 bool conservative = true; 10505 const char *tname; 10506 struct btf *btf; 10507 long addr; 10508 u64 key; 10509 10510 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 10511 return check_struct_ops_btf_id(env); 10512 10513 if (prog->type != BPF_PROG_TYPE_TRACING && 10514 prog->type != BPF_PROG_TYPE_LSM && 10515 !prog_extension) 10516 return 0; 10517 10518 if (!btf_id) { 10519 verbose(env, "Tracing programs must provide btf_id\n"); 10520 return -EINVAL; 10521 } 10522 btf = bpf_prog_get_target_btf(prog); 10523 if (!btf) { 10524 verbose(env, 10525 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 10526 return -EINVAL; 10527 } 10528 t = btf_type_by_id(btf, btf_id); 10529 if (!t) { 10530 verbose(env, "attach_btf_id %u is invalid\n", btf_id); 10531 return -EINVAL; 10532 } 10533 tname = btf_name_by_offset(btf, t->name_off); 10534 if (!tname) { 10535 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id); 10536 return -EINVAL; 10537 } 10538 if (tgt_prog) { 10539 struct bpf_prog_aux *aux = tgt_prog->aux; 10540 10541 for (i = 0; i < aux->func_info_cnt; i++) 10542 if (aux->func_info[i].type_id == btf_id) { 10543 subprog = i; 10544 break; 10545 } 10546 if (subprog == -1) { 10547 verbose(env, "Subprog %s doesn't exist\n", tname); 10548 return -EINVAL; 10549 } 10550 conservative = aux->func_info_aux[subprog].unreliable; 10551 if (prog_extension) { 10552 if (conservative) { 10553 verbose(env, 10554 "Cannot replace static functions\n"); 10555 return -EINVAL; 10556 } 10557 if (!prog->jit_requested) { 10558 verbose(env, 10559 "Extension programs should be JITed\n"); 10560 return -EINVAL; 10561 } 10562 env->ops = bpf_verifier_ops[tgt_prog->type]; 10563 prog->expected_attach_type = tgt_prog->expected_attach_type; 10564 } 10565 if (!tgt_prog->jited) { 10566 verbose(env, "Can attach to only JITed progs\n"); 10567 return -EINVAL; 10568 } 10569 if (tgt_prog->type == prog->type) { 10570 /* Cannot fentry/fexit another fentry/fexit program. 10571 * Cannot attach program extension to another extension. 10572 * It's ok to attach fentry/fexit to extension program. 10573 */ 10574 verbose(env, "Cannot recursively attach\n"); 10575 return -EINVAL; 10576 } 10577 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 10578 prog_extension && 10579 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 10580 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 10581 /* Program extensions can extend all program types 10582 * except fentry/fexit. The reason is the following. 10583 * The fentry/fexit programs are used for performance 10584 * analysis, stats and can be attached to any program 10585 * type except themselves. When extension program is 10586 * replacing XDP function it is necessary to allow 10587 * performance analysis of all functions. Both original 10588 * XDP program and its program extension. Hence 10589 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 10590 * allowed. If extending of fentry/fexit was allowed it 10591 * would be possible to create long call chain 10592 * fentry->extension->fentry->extension beyond 10593 * reasonable stack size. Hence extending fentry is not 10594 * allowed. 10595 */ 10596 verbose(env, "Cannot extend fentry/fexit\n"); 10597 return -EINVAL; 10598 } 10599 key = ((u64)aux->id) << 32 | btf_id; 10600 } else { 10601 if (prog_extension) { 10602 verbose(env, "Cannot replace kernel functions\n"); 10603 return -EINVAL; 10604 } 10605 key = btf_id; 10606 } 10607 10608 switch (prog->expected_attach_type) { 10609 case BPF_TRACE_RAW_TP: 10610 if (tgt_prog) { 10611 verbose(env, 10612 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 10613 return -EINVAL; 10614 } 10615 if (!btf_type_is_typedef(t)) { 10616 verbose(env, "attach_btf_id %u is not a typedef\n", 10617 btf_id); 10618 return -EINVAL; 10619 } 10620 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 10621 verbose(env, "attach_btf_id %u points to wrong type name %s\n", 10622 btf_id, tname); 10623 return -EINVAL; 10624 } 10625 tname += sizeof(prefix) - 1; 10626 t = btf_type_by_id(btf, t->type); 10627 if (!btf_type_is_ptr(t)) 10628 /* should never happen in valid vmlinux build */ 10629 return -EINVAL; 10630 t = btf_type_by_id(btf, t->type); 10631 if (!btf_type_is_func_proto(t)) 10632 /* should never happen in valid vmlinux build */ 10633 return -EINVAL; 10634 10635 /* remember two read only pointers that are valid for 10636 * the life time of the kernel 10637 */ 10638 prog->aux->attach_func_name = tname; 10639 prog->aux->attach_func_proto = t; 10640 prog->aux->attach_btf_trace = true; 10641 return 0; 10642 case BPF_TRACE_ITER: 10643 if (!btf_type_is_func(t)) { 10644 verbose(env, "attach_btf_id %u is not a function\n", 10645 btf_id); 10646 return -EINVAL; 10647 } 10648 t = btf_type_by_id(btf, t->type); 10649 if (!btf_type_is_func_proto(t)) 10650 return -EINVAL; 10651 prog->aux->attach_func_name = tname; 10652 prog->aux->attach_func_proto = t; 10653 if (!bpf_iter_prog_supported(prog)) 10654 return -EINVAL; 10655 prog->aux->btf_id_or_null_non0_off = true; 10656 ret = btf_distill_func_proto(&env->log, btf, t, 10657 tname, &fmodel); 10658 return ret; 10659 default: 10660 if (!prog_extension) 10661 return -EINVAL; 10662 /* fallthrough */ 10663 case BPF_MODIFY_RETURN: 10664 case BPF_LSM_MAC: 10665 case BPF_TRACE_FENTRY: 10666 case BPF_TRACE_FEXIT: 10667 prog->aux->attach_func_name = tname; 10668 if (prog->type == BPF_PROG_TYPE_LSM) { 10669 ret = bpf_lsm_verify_prog(&env->log, prog); 10670 if (ret < 0) 10671 return ret; 10672 } 10673 10674 if (!btf_type_is_func(t)) { 10675 verbose(env, "attach_btf_id %u is not a function\n", 10676 btf_id); 10677 return -EINVAL; 10678 } 10679 if (prog_extension && 10680 btf_check_type_match(env, prog, btf, t)) 10681 return -EINVAL; 10682 t = btf_type_by_id(btf, t->type); 10683 if (!btf_type_is_func_proto(t)) 10684 return -EINVAL; 10685 tr = bpf_trampoline_lookup(key); 10686 if (!tr) 10687 return -ENOMEM; 10688 /* t is either vmlinux type or another program's type */ 10689 prog->aux->attach_func_proto = t; 10690 mutex_lock(&tr->mutex); 10691 if (tr->func.addr) { 10692 prog->aux->trampoline = tr; 10693 goto out; 10694 } 10695 if (tgt_prog && conservative) { 10696 prog->aux->attach_func_proto = NULL; 10697 t = NULL; 10698 } 10699 ret = btf_distill_func_proto(&env->log, btf, t, 10700 tname, &tr->func.model); 10701 if (ret < 0) 10702 goto out; 10703 if (tgt_prog) { 10704 if (subprog == 0) 10705 addr = (long) tgt_prog->bpf_func; 10706 else 10707 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 10708 } else { 10709 addr = kallsyms_lookup_name(tname); 10710 if (!addr) { 10711 verbose(env, 10712 "The address of function %s cannot be found\n", 10713 tname); 10714 ret = -ENOENT; 10715 goto out; 10716 } 10717 } 10718 tr->func.addr = (void *)addr; 10719 prog->aux->trampoline = tr; 10720 10721 if (prog->expected_attach_type == BPF_MODIFY_RETURN) 10722 ret = check_attach_modify_return(env); 10723 out: 10724 mutex_unlock(&tr->mutex); 10725 if (ret) 10726 bpf_trampoline_put(tr); 10727 return ret; 10728 } 10729 } 10730 10731 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 10732 union bpf_attr __user *uattr) 10733 { 10734 u64 start_time = ktime_get_ns(); 10735 struct bpf_verifier_env *env; 10736 struct bpf_verifier_log *log; 10737 int i, len, ret = -EINVAL; 10738 bool is_priv; 10739 10740 /* no program is valid */ 10741 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 10742 return -EINVAL; 10743 10744 /* 'struct bpf_verifier_env' can be global, but since it's not small, 10745 * allocate/free it every time bpf_check() is called 10746 */ 10747 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 10748 if (!env) 10749 return -ENOMEM; 10750 log = &env->log; 10751 10752 len = (*prog)->len; 10753 env->insn_aux_data = 10754 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 10755 ret = -ENOMEM; 10756 if (!env->insn_aux_data) 10757 goto err_free_env; 10758 for (i = 0; i < len; i++) 10759 env->insn_aux_data[i].orig_idx = i; 10760 env->prog = *prog; 10761 env->ops = bpf_verifier_ops[env->prog->type]; 10762 is_priv = capable(CAP_SYS_ADMIN); 10763 10764 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 10765 mutex_lock(&bpf_verifier_lock); 10766 if (!btf_vmlinux) 10767 btf_vmlinux = btf_parse_vmlinux(); 10768 mutex_unlock(&bpf_verifier_lock); 10769 } 10770 10771 /* grab the mutex to protect few globals used by verifier */ 10772 if (!is_priv) 10773 mutex_lock(&bpf_verifier_lock); 10774 10775 if (attr->log_level || attr->log_buf || attr->log_size) { 10776 /* user requested verbose verifier output 10777 * and supplied buffer to store the verification trace 10778 */ 10779 log->level = attr->log_level; 10780 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 10781 log->len_total = attr->log_size; 10782 10783 ret = -EINVAL; 10784 /* log attributes have to be sane */ 10785 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 10786 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 10787 goto err_unlock; 10788 } 10789 10790 if (IS_ERR(btf_vmlinux)) { 10791 /* Either gcc or pahole or kernel are broken. */ 10792 verbose(env, "in-kernel BTF is malformed\n"); 10793 ret = PTR_ERR(btf_vmlinux); 10794 goto skip_full_check; 10795 } 10796 10797 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 10798 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 10799 env->strict_alignment = true; 10800 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 10801 env->strict_alignment = false; 10802 10803 env->allow_ptr_leaks = is_priv; 10804 10805 if (is_priv) 10806 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 10807 10808 ret = replace_map_fd_with_map_ptr(env); 10809 if (ret < 0) 10810 goto skip_full_check; 10811 10812 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10813 ret = bpf_prog_offload_verifier_prep(env->prog); 10814 if (ret) 10815 goto skip_full_check; 10816 } 10817 10818 env->explored_states = kvcalloc(state_htab_size(env), 10819 sizeof(struct bpf_verifier_state_list *), 10820 GFP_USER); 10821 ret = -ENOMEM; 10822 if (!env->explored_states) 10823 goto skip_full_check; 10824 10825 ret = check_subprogs(env); 10826 if (ret < 0) 10827 goto skip_full_check; 10828 10829 ret = check_btf_info(env, attr, uattr); 10830 if (ret < 0) 10831 goto skip_full_check; 10832 10833 ret = check_attach_btf_id(env); 10834 if (ret) 10835 goto skip_full_check; 10836 10837 ret = check_cfg(env); 10838 if (ret < 0) 10839 goto skip_full_check; 10840 10841 ret = do_check_subprogs(env); 10842 ret = ret ?: do_check_main(env); 10843 10844 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 10845 ret = bpf_prog_offload_finalize(env); 10846 10847 skip_full_check: 10848 kvfree(env->explored_states); 10849 10850 if (ret == 0) 10851 ret = check_max_stack_depth(env); 10852 10853 /* instruction rewrites happen after this point */ 10854 if (is_priv) { 10855 if (ret == 0) 10856 opt_hard_wire_dead_code_branches(env); 10857 if (ret == 0) 10858 ret = opt_remove_dead_code(env); 10859 if (ret == 0) 10860 ret = opt_remove_nops(env); 10861 } else { 10862 if (ret == 0) 10863 sanitize_dead_code(env); 10864 } 10865 10866 if (ret == 0) 10867 /* program is valid, convert *(u32*)(ctx + off) accesses */ 10868 ret = convert_ctx_accesses(env); 10869 10870 if (ret == 0) 10871 ret = fixup_bpf_calls(env); 10872 10873 /* do 32-bit optimization after insn patching has done so those patched 10874 * insns could be handled correctly. 10875 */ 10876 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 10877 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 10878 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 10879 : false; 10880 } 10881 10882 if (ret == 0) 10883 ret = fixup_call_args(env); 10884 10885 env->verification_time = ktime_get_ns() - start_time; 10886 print_verification_stats(env); 10887 10888 if (log->level && bpf_verifier_log_full(log)) 10889 ret = -ENOSPC; 10890 if (log->level && !log->ubuf) { 10891 ret = -EFAULT; 10892 goto err_release_maps; 10893 } 10894 10895 if (ret == 0 && env->used_map_cnt) { 10896 /* if program passed verifier, update used_maps in bpf_prog_info */ 10897 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 10898 sizeof(env->used_maps[0]), 10899 GFP_KERNEL); 10900 10901 if (!env->prog->aux->used_maps) { 10902 ret = -ENOMEM; 10903 goto err_release_maps; 10904 } 10905 10906 memcpy(env->prog->aux->used_maps, env->used_maps, 10907 sizeof(env->used_maps[0]) * env->used_map_cnt); 10908 env->prog->aux->used_map_cnt = env->used_map_cnt; 10909 10910 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 10911 * bpf_ld_imm64 instructions 10912 */ 10913 convert_pseudo_ld_imm64(env); 10914 } 10915 10916 if (ret == 0) 10917 adjust_btf_func(env); 10918 10919 err_release_maps: 10920 if (!env->prog->aux->used_maps) 10921 /* if we didn't copy map pointers into bpf_prog_info, release 10922 * them now. Otherwise free_used_maps() will release them. 10923 */ 10924 release_maps(env); 10925 10926 /* extension progs temporarily inherit the attach_type of their targets 10927 for verification purposes, so set it back to zero before returning 10928 */ 10929 if (env->prog->type == BPF_PROG_TYPE_EXT) 10930 env->prog->expected_attach_type = 0; 10931 10932 *prog = env->prog; 10933 err_unlock: 10934 if (!is_priv) 10935 mutex_unlock(&bpf_verifier_lock); 10936 vfree(env->insn_aux_data); 10937 err_free_env: 10938 kfree(env); 10939 return ret; 10940 } 10941