xref: /linux/kernel/bpf/verifier.c (revision 90eea4086d5ed31936889a44d536bf77afa4ca8a)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of version 2 of the GNU General Public
7  * License as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  * General Public License for more details.
13  */
14 #include <uapi/linux/btf.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/bpf.h>
19 #include <linux/btf.h>
20 #include <linux/bpf_verifier.h>
21 #include <linux/filter.h>
22 #include <net/netlink.h>
23 #include <linux/file.h>
24 #include <linux/vmalloc.h>
25 #include <linux/stringify.h>
26 #include <linux/bsearch.h>
27 #include <linux/sort.h>
28 #include <linux/perf_event.h>
29 #include <linux/ctype.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #include <linux/bpf_types.h>
38 #undef BPF_PROG_TYPE
39 #undef BPF_MAP_TYPE
40 };
41 
42 /* bpf_check() is a static code analyzer that walks eBPF program
43  * instruction by instruction and updates register/stack state.
44  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45  *
46  * The first pass is depth-first-search to check that the program is a DAG.
47  * It rejects the following programs:
48  * - larger than BPF_MAXINSNS insns
49  * - if loop is present (detected via back-edge)
50  * - unreachable insns exist (shouldn't be a forest. program = one function)
51  * - out of bounds or malformed jumps
52  * The second pass is all possible path descent from the 1st insn.
53  * Since it's analyzing all pathes through the program, the length of the
54  * analysis is limited to 64k insn, which may be hit even if total number of
55  * insn is less then 4K, but there are too many branches that change stack/regs.
56  * Number of 'branches to be analyzed' is limited to 1k
57  *
58  * On entry to each instruction, each register has a type, and the instruction
59  * changes the types of the registers depending on instruction semantics.
60  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61  * copied to R1.
62  *
63  * All registers are 64-bit.
64  * R0 - return register
65  * R1-R5 argument passing registers
66  * R6-R9 callee saved registers
67  * R10 - frame pointer read-only
68  *
69  * At the start of BPF program the register R1 contains a pointer to bpf_context
70  * and has type PTR_TO_CTX.
71  *
72  * Verifier tracks arithmetic operations on pointers in case:
73  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75  * 1st insn copies R10 (which has FRAME_PTR) type into R1
76  * and 2nd arithmetic instruction is pattern matched to recognize
77  * that it wants to construct a pointer to some element within stack.
78  * So after 2nd insn, the register R1 has type PTR_TO_STACK
79  * (and -20 constant is saved for further stack bounds checking).
80  * Meaning that this reg is a pointer to stack plus known immediate constant.
81  *
82  * Most of the time the registers have SCALAR_VALUE type, which
83  * means the register has some value, but it's not a valid pointer.
84  * (like pointer plus pointer becomes SCALAR_VALUE type)
85  *
86  * When verifier sees load or store instructions the type of base register
87  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88  * four pointer types recognized by check_mem_access() function.
89  *
90  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91  * and the range of [ptr, ptr + map's value_size) is accessible.
92  *
93  * registers used to pass values to function calls are checked against
94  * function argument constraints.
95  *
96  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97  * It means that the register type passed to this function must be
98  * PTR_TO_STACK and it will be used inside the function as
99  * 'pointer to map element key'
100  *
101  * For example the argument constraints for bpf_map_lookup_elem():
102  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103  *   .arg1_type = ARG_CONST_MAP_PTR,
104  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
105  *
106  * ret_type says that this function returns 'pointer to map elem value or null'
107  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108  * 2nd argument should be a pointer to stack, which will be used inside
109  * the helper function as a pointer to map element key.
110  *
111  * On the kernel side the helper function looks like:
112  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113  * {
114  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115  *    void *key = (void *) (unsigned long) r2;
116  *    void *value;
117  *
118  *    here kernel can access 'key' and 'map' pointers safely, knowing that
119  *    [key, key + map->key_size) bytes are valid and were initialized on
120  *    the stack of eBPF program.
121  * }
122  *
123  * Corresponding eBPF program may look like:
124  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
125  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
127  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128  * here verifier looks at prototype of map_lookup_elem() and sees:
129  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131  *
132  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134  * and were initialized prior to this call.
135  * If it's ok, then verifier allows this BPF_CALL insn and looks at
136  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138  * returns ether pointer to map value or NULL.
139  *
140  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141  * insn, the register holding that pointer in the true branch changes state to
142  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143  * branch. See check_cond_jmp_op().
144  *
145  * After the call R0 is set to return type of the function and registers R1-R5
146  * are set to NOT_INIT to indicate that they are no longer readable.
147  *
148  * The following reference types represent a potential reference to a kernel
149  * resource which, after first being allocated, must be checked and freed by
150  * the BPF program:
151  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152  *
153  * When the verifier sees a helper call return a reference type, it allocates a
154  * pointer id for the reference and stores it in the current function state.
155  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157  * passes through a NULL-check conditional. For the branch wherein the state is
158  * changed to CONST_IMM, the verifier releases the reference.
159  *
160  * For each helper function that allocates a reference, such as
161  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162  * bpf_sk_release(). When a reference type passes into the release function,
163  * the verifier also releases the reference. If any unchecked or unreleased
164  * reference remains at the end of the program, the verifier rejects it.
165  */
166 
167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
168 struct bpf_verifier_stack_elem {
169 	/* verifer state is 'st'
170 	 * before processing instruction 'insn_idx'
171 	 * and after processing instruction 'prev_insn_idx'
172 	 */
173 	struct bpf_verifier_state st;
174 	int insn_idx;
175 	int prev_insn_idx;
176 	struct bpf_verifier_stack_elem *next;
177 };
178 
179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
180 #define BPF_COMPLEXITY_LIMIT_STATES	64
181 
182 #define BPF_MAP_PTR_UNPRIV	1UL
183 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
184 					  POISON_POINTER_DELTA))
185 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
186 
187 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
188 {
189 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
190 }
191 
192 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
193 {
194 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
195 }
196 
197 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
198 			      const struct bpf_map *map, bool unpriv)
199 {
200 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
201 	unpriv |= bpf_map_ptr_unpriv(aux);
202 	aux->map_state = (unsigned long)map |
203 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
204 }
205 
206 struct bpf_call_arg_meta {
207 	struct bpf_map *map_ptr;
208 	bool raw_mode;
209 	bool pkt_access;
210 	int regno;
211 	int access_size;
212 	s64 msize_smax_value;
213 	u64 msize_umax_value;
214 	int ref_obj_id;
215 	int func_id;
216 };
217 
218 static DEFINE_MUTEX(bpf_verifier_lock);
219 
220 static const struct bpf_line_info *
221 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
222 {
223 	const struct bpf_line_info *linfo;
224 	const struct bpf_prog *prog;
225 	u32 i, nr_linfo;
226 
227 	prog = env->prog;
228 	nr_linfo = prog->aux->nr_linfo;
229 
230 	if (!nr_linfo || insn_off >= prog->len)
231 		return NULL;
232 
233 	linfo = prog->aux->linfo;
234 	for (i = 1; i < nr_linfo; i++)
235 		if (insn_off < linfo[i].insn_off)
236 			break;
237 
238 	return &linfo[i - 1];
239 }
240 
241 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
242 		       va_list args)
243 {
244 	unsigned int n;
245 
246 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
247 
248 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
249 		  "verifier log line truncated - local buffer too short\n");
250 
251 	n = min(log->len_total - log->len_used - 1, n);
252 	log->kbuf[n] = '\0';
253 
254 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
255 		log->len_used += n;
256 	else
257 		log->ubuf = NULL;
258 }
259 
260 /* log_level controls verbosity level of eBPF verifier.
261  * bpf_verifier_log_write() is used to dump the verification trace to the log,
262  * so the user can figure out what's wrong with the program
263  */
264 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
265 					   const char *fmt, ...)
266 {
267 	va_list args;
268 
269 	if (!bpf_verifier_log_needed(&env->log))
270 		return;
271 
272 	va_start(args, fmt);
273 	bpf_verifier_vlog(&env->log, fmt, args);
274 	va_end(args);
275 }
276 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
277 
278 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
279 {
280 	struct bpf_verifier_env *env = private_data;
281 	va_list args;
282 
283 	if (!bpf_verifier_log_needed(&env->log))
284 		return;
285 
286 	va_start(args, fmt);
287 	bpf_verifier_vlog(&env->log, fmt, args);
288 	va_end(args);
289 }
290 
291 static const char *ltrim(const char *s)
292 {
293 	while (isspace(*s))
294 		s++;
295 
296 	return s;
297 }
298 
299 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
300 					 u32 insn_off,
301 					 const char *prefix_fmt, ...)
302 {
303 	const struct bpf_line_info *linfo;
304 
305 	if (!bpf_verifier_log_needed(&env->log))
306 		return;
307 
308 	linfo = find_linfo(env, insn_off);
309 	if (!linfo || linfo == env->prev_linfo)
310 		return;
311 
312 	if (prefix_fmt) {
313 		va_list args;
314 
315 		va_start(args, prefix_fmt);
316 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
317 		va_end(args);
318 	}
319 
320 	verbose(env, "%s\n",
321 		ltrim(btf_name_by_offset(env->prog->aux->btf,
322 					 linfo->line_off)));
323 
324 	env->prev_linfo = linfo;
325 }
326 
327 static bool type_is_pkt_pointer(enum bpf_reg_type type)
328 {
329 	return type == PTR_TO_PACKET ||
330 	       type == PTR_TO_PACKET_META;
331 }
332 
333 static bool type_is_sk_pointer(enum bpf_reg_type type)
334 {
335 	return type == PTR_TO_SOCKET ||
336 		type == PTR_TO_SOCK_COMMON ||
337 		type == PTR_TO_TCP_SOCK;
338 }
339 
340 static bool reg_type_may_be_null(enum bpf_reg_type type)
341 {
342 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
343 	       type == PTR_TO_SOCKET_OR_NULL ||
344 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
345 	       type == PTR_TO_TCP_SOCK_OR_NULL;
346 }
347 
348 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
349 {
350 	return reg->type == PTR_TO_MAP_VALUE &&
351 		map_value_has_spin_lock(reg->map_ptr);
352 }
353 
354 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
355 {
356 	return type == PTR_TO_SOCKET ||
357 		type == PTR_TO_SOCKET_OR_NULL ||
358 		type == PTR_TO_TCP_SOCK ||
359 		type == PTR_TO_TCP_SOCK_OR_NULL;
360 }
361 
362 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
363 {
364 	return type == ARG_PTR_TO_SOCK_COMMON;
365 }
366 
367 /* Determine whether the function releases some resources allocated by another
368  * function call. The first reference type argument will be assumed to be
369  * released by release_reference().
370  */
371 static bool is_release_function(enum bpf_func_id func_id)
372 {
373 	return func_id == BPF_FUNC_sk_release;
374 }
375 
376 static bool is_acquire_function(enum bpf_func_id func_id)
377 {
378 	return func_id == BPF_FUNC_sk_lookup_tcp ||
379 		func_id == BPF_FUNC_sk_lookup_udp ||
380 		func_id == BPF_FUNC_skc_lookup_tcp;
381 }
382 
383 static bool is_ptr_cast_function(enum bpf_func_id func_id)
384 {
385 	return func_id == BPF_FUNC_tcp_sock ||
386 		func_id == BPF_FUNC_sk_fullsock;
387 }
388 
389 /* string representation of 'enum bpf_reg_type' */
390 static const char * const reg_type_str[] = {
391 	[NOT_INIT]		= "?",
392 	[SCALAR_VALUE]		= "inv",
393 	[PTR_TO_CTX]		= "ctx",
394 	[CONST_PTR_TO_MAP]	= "map_ptr",
395 	[PTR_TO_MAP_VALUE]	= "map_value",
396 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
397 	[PTR_TO_STACK]		= "fp",
398 	[PTR_TO_PACKET]		= "pkt",
399 	[PTR_TO_PACKET_META]	= "pkt_meta",
400 	[PTR_TO_PACKET_END]	= "pkt_end",
401 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
402 	[PTR_TO_SOCKET]		= "sock",
403 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
404 	[PTR_TO_SOCK_COMMON]	= "sock_common",
405 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
406 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
407 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
408 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
409 };
410 
411 static char slot_type_char[] = {
412 	[STACK_INVALID]	= '?',
413 	[STACK_SPILL]	= 'r',
414 	[STACK_MISC]	= 'm',
415 	[STACK_ZERO]	= '0',
416 };
417 
418 static void print_liveness(struct bpf_verifier_env *env,
419 			   enum bpf_reg_liveness live)
420 {
421 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
422 	    verbose(env, "_");
423 	if (live & REG_LIVE_READ)
424 		verbose(env, "r");
425 	if (live & REG_LIVE_WRITTEN)
426 		verbose(env, "w");
427 	if (live & REG_LIVE_DONE)
428 		verbose(env, "D");
429 }
430 
431 static struct bpf_func_state *func(struct bpf_verifier_env *env,
432 				   const struct bpf_reg_state *reg)
433 {
434 	struct bpf_verifier_state *cur = env->cur_state;
435 
436 	return cur->frame[reg->frameno];
437 }
438 
439 static void print_verifier_state(struct bpf_verifier_env *env,
440 				 const struct bpf_func_state *state)
441 {
442 	const struct bpf_reg_state *reg;
443 	enum bpf_reg_type t;
444 	int i;
445 
446 	if (state->frameno)
447 		verbose(env, " frame%d:", state->frameno);
448 	for (i = 0; i < MAX_BPF_REG; i++) {
449 		reg = &state->regs[i];
450 		t = reg->type;
451 		if (t == NOT_INIT)
452 			continue;
453 		verbose(env, " R%d", i);
454 		print_liveness(env, reg->live);
455 		verbose(env, "=%s", reg_type_str[t]);
456 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
457 		    tnum_is_const(reg->var_off)) {
458 			/* reg->off should be 0 for SCALAR_VALUE */
459 			verbose(env, "%lld", reg->var_off.value + reg->off);
460 			if (t == PTR_TO_STACK)
461 				verbose(env, ",call_%d", func(env, reg)->callsite);
462 		} else {
463 			verbose(env, "(id=%d", reg->id);
464 			if (reg_type_may_be_refcounted_or_null(t))
465 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
466 			if (t != SCALAR_VALUE)
467 				verbose(env, ",off=%d", reg->off);
468 			if (type_is_pkt_pointer(t))
469 				verbose(env, ",r=%d", reg->range);
470 			else if (t == CONST_PTR_TO_MAP ||
471 				 t == PTR_TO_MAP_VALUE ||
472 				 t == PTR_TO_MAP_VALUE_OR_NULL)
473 				verbose(env, ",ks=%d,vs=%d",
474 					reg->map_ptr->key_size,
475 					reg->map_ptr->value_size);
476 			if (tnum_is_const(reg->var_off)) {
477 				/* Typically an immediate SCALAR_VALUE, but
478 				 * could be a pointer whose offset is too big
479 				 * for reg->off
480 				 */
481 				verbose(env, ",imm=%llx", reg->var_off.value);
482 			} else {
483 				if (reg->smin_value != reg->umin_value &&
484 				    reg->smin_value != S64_MIN)
485 					verbose(env, ",smin_value=%lld",
486 						(long long)reg->smin_value);
487 				if (reg->smax_value != reg->umax_value &&
488 				    reg->smax_value != S64_MAX)
489 					verbose(env, ",smax_value=%lld",
490 						(long long)reg->smax_value);
491 				if (reg->umin_value != 0)
492 					verbose(env, ",umin_value=%llu",
493 						(unsigned long long)reg->umin_value);
494 				if (reg->umax_value != U64_MAX)
495 					verbose(env, ",umax_value=%llu",
496 						(unsigned long long)reg->umax_value);
497 				if (!tnum_is_unknown(reg->var_off)) {
498 					char tn_buf[48];
499 
500 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
501 					verbose(env, ",var_off=%s", tn_buf);
502 				}
503 			}
504 			verbose(env, ")");
505 		}
506 	}
507 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
508 		char types_buf[BPF_REG_SIZE + 1];
509 		bool valid = false;
510 		int j;
511 
512 		for (j = 0; j < BPF_REG_SIZE; j++) {
513 			if (state->stack[i].slot_type[j] != STACK_INVALID)
514 				valid = true;
515 			types_buf[j] = slot_type_char[
516 					state->stack[i].slot_type[j]];
517 		}
518 		types_buf[BPF_REG_SIZE] = 0;
519 		if (!valid)
520 			continue;
521 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
522 		print_liveness(env, state->stack[i].spilled_ptr.live);
523 		if (state->stack[i].slot_type[0] == STACK_SPILL)
524 			verbose(env, "=%s",
525 				reg_type_str[state->stack[i].spilled_ptr.type]);
526 		else
527 			verbose(env, "=%s", types_buf);
528 	}
529 	if (state->acquired_refs && state->refs[0].id) {
530 		verbose(env, " refs=%d", state->refs[0].id);
531 		for (i = 1; i < state->acquired_refs; i++)
532 			if (state->refs[i].id)
533 				verbose(env, ",%d", state->refs[i].id);
534 	}
535 	verbose(env, "\n");
536 }
537 
538 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
539 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
540 			       const struct bpf_func_state *src)	\
541 {									\
542 	if (!src->FIELD)						\
543 		return 0;						\
544 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
545 		/* internal bug, make state invalid to reject the program */ \
546 		memset(dst, 0, sizeof(*dst));				\
547 		return -EFAULT;						\
548 	}								\
549 	memcpy(dst->FIELD, src->FIELD,					\
550 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
551 	return 0;							\
552 }
553 /* copy_reference_state() */
554 COPY_STATE_FN(reference, acquired_refs, refs, 1)
555 /* copy_stack_state() */
556 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
557 #undef COPY_STATE_FN
558 
559 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
560 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
561 				  bool copy_old)			\
562 {									\
563 	u32 old_size = state->COUNT;					\
564 	struct bpf_##NAME##_state *new_##FIELD;				\
565 	int slot = size / SIZE;						\
566 									\
567 	if (size <= old_size || !size) {				\
568 		if (copy_old)						\
569 			return 0;					\
570 		state->COUNT = slot * SIZE;				\
571 		if (!size && old_size) {				\
572 			kfree(state->FIELD);				\
573 			state->FIELD = NULL;				\
574 		}							\
575 		return 0;						\
576 	}								\
577 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
578 				    GFP_KERNEL);			\
579 	if (!new_##FIELD)						\
580 		return -ENOMEM;						\
581 	if (copy_old) {							\
582 		if (state->FIELD)					\
583 			memcpy(new_##FIELD, state->FIELD,		\
584 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
585 		memset(new_##FIELD + old_size / SIZE, 0,		\
586 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
587 	}								\
588 	state->COUNT = slot * SIZE;					\
589 	kfree(state->FIELD);						\
590 	state->FIELD = new_##FIELD;					\
591 	return 0;							\
592 }
593 /* realloc_reference_state() */
594 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
595 /* realloc_stack_state() */
596 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
597 #undef REALLOC_STATE_FN
598 
599 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
600  * make it consume minimal amount of memory. check_stack_write() access from
601  * the program calls into realloc_func_state() to grow the stack size.
602  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
603  * which realloc_stack_state() copies over. It points to previous
604  * bpf_verifier_state which is never reallocated.
605  */
606 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
607 			      int refs_size, bool copy_old)
608 {
609 	int err = realloc_reference_state(state, refs_size, copy_old);
610 	if (err)
611 		return err;
612 	return realloc_stack_state(state, stack_size, copy_old);
613 }
614 
615 /* Acquire a pointer id from the env and update the state->refs to include
616  * this new pointer reference.
617  * On success, returns a valid pointer id to associate with the register
618  * On failure, returns a negative errno.
619  */
620 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
621 {
622 	struct bpf_func_state *state = cur_func(env);
623 	int new_ofs = state->acquired_refs;
624 	int id, err;
625 
626 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
627 	if (err)
628 		return err;
629 	id = ++env->id_gen;
630 	state->refs[new_ofs].id = id;
631 	state->refs[new_ofs].insn_idx = insn_idx;
632 
633 	return id;
634 }
635 
636 /* release function corresponding to acquire_reference_state(). Idempotent. */
637 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
638 {
639 	int i, last_idx;
640 
641 	last_idx = state->acquired_refs - 1;
642 	for (i = 0; i < state->acquired_refs; i++) {
643 		if (state->refs[i].id == ptr_id) {
644 			if (last_idx && i != last_idx)
645 				memcpy(&state->refs[i], &state->refs[last_idx],
646 				       sizeof(*state->refs));
647 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
648 			state->acquired_refs--;
649 			return 0;
650 		}
651 	}
652 	return -EINVAL;
653 }
654 
655 static int transfer_reference_state(struct bpf_func_state *dst,
656 				    struct bpf_func_state *src)
657 {
658 	int err = realloc_reference_state(dst, src->acquired_refs, false);
659 	if (err)
660 		return err;
661 	err = copy_reference_state(dst, src);
662 	if (err)
663 		return err;
664 	return 0;
665 }
666 
667 static void free_func_state(struct bpf_func_state *state)
668 {
669 	if (!state)
670 		return;
671 	kfree(state->refs);
672 	kfree(state->stack);
673 	kfree(state);
674 }
675 
676 static void free_verifier_state(struct bpf_verifier_state *state,
677 				bool free_self)
678 {
679 	int i;
680 
681 	for (i = 0; i <= state->curframe; i++) {
682 		free_func_state(state->frame[i]);
683 		state->frame[i] = NULL;
684 	}
685 	if (free_self)
686 		kfree(state);
687 }
688 
689 /* copy verifier state from src to dst growing dst stack space
690  * when necessary to accommodate larger src stack
691  */
692 static int copy_func_state(struct bpf_func_state *dst,
693 			   const struct bpf_func_state *src)
694 {
695 	int err;
696 
697 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
698 				 false);
699 	if (err)
700 		return err;
701 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
702 	err = copy_reference_state(dst, src);
703 	if (err)
704 		return err;
705 	return copy_stack_state(dst, src);
706 }
707 
708 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
709 			       const struct bpf_verifier_state *src)
710 {
711 	struct bpf_func_state *dst;
712 	int i, err;
713 
714 	/* if dst has more stack frames then src frame, free them */
715 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
716 		free_func_state(dst_state->frame[i]);
717 		dst_state->frame[i] = NULL;
718 	}
719 	dst_state->speculative = src->speculative;
720 	dst_state->curframe = src->curframe;
721 	dst_state->active_spin_lock = src->active_spin_lock;
722 	for (i = 0; i <= src->curframe; i++) {
723 		dst = dst_state->frame[i];
724 		if (!dst) {
725 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
726 			if (!dst)
727 				return -ENOMEM;
728 			dst_state->frame[i] = dst;
729 		}
730 		err = copy_func_state(dst, src->frame[i]);
731 		if (err)
732 			return err;
733 	}
734 	return 0;
735 }
736 
737 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
738 		     int *insn_idx)
739 {
740 	struct bpf_verifier_state *cur = env->cur_state;
741 	struct bpf_verifier_stack_elem *elem, *head = env->head;
742 	int err;
743 
744 	if (env->head == NULL)
745 		return -ENOENT;
746 
747 	if (cur) {
748 		err = copy_verifier_state(cur, &head->st);
749 		if (err)
750 			return err;
751 	}
752 	if (insn_idx)
753 		*insn_idx = head->insn_idx;
754 	if (prev_insn_idx)
755 		*prev_insn_idx = head->prev_insn_idx;
756 	elem = head->next;
757 	free_verifier_state(&head->st, false);
758 	kfree(head);
759 	env->head = elem;
760 	env->stack_size--;
761 	return 0;
762 }
763 
764 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
765 					     int insn_idx, int prev_insn_idx,
766 					     bool speculative)
767 {
768 	struct bpf_verifier_state *cur = env->cur_state;
769 	struct bpf_verifier_stack_elem *elem;
770 	int err;
771 
772 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
773 	if (!elem)
774 		goto err;
775 
776 	elem->insn_idx = insn_idx;
777 	elem->prev_insn_idx = prev_insn_idx;
778 	elem->next = env->head;
779 	env->head = elem;
780 	env->stack_size++;
781 	err = copy_verifier_state(&elem->st, cur);
782 	if (err)
783 		goto err;
784 	elem->st.speculative |= speculative;
785 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
786 		verbose(env, "The sequence of %d jumps is too complex.\n",
787 			env->stack_size);
788 		goto err;
789 	}
790 	return &elem->st;
791 err:
792 	free_verifier_state(env->cur_state, true);
793 	env->cur_state = NULL;
794 	/* pop all elements and return */
795 	while (!pop_stack(env, NULL, NULL));
796 	return NULL;
797 }
798 
799 #define CALLER_SAVED_REGS 6
800 static const int caller_saved[CALLER_SAVED_REGS] = {
801 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
802 };
803 
804 static void __mark_reg_not_init(struct bpf_reg_state *reg);
805 
806 /* Mark the unknown part of a register (variable offset or scalar value) as
807  * known to have the value @imm.
808  */
809 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
810 {
811 	/* Clear id, off, and union(map_ptr, range) */
812 	memset(((u8 *)reg) + sizeof(reg->type), 0,
813 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
814 	reg->var_off = tnum_const(imm);
815 	reg->smin_value = (s64)imm;
816 	reg->smax_value = (s64)imm;
817 	reg->umin_value = imm;
818 	reg->umax_value = imm;
819 }
820 
821 /* Mark the 'variable offset' part of a register as zero.  This should be
822  * used only on registers holding a pointer type.
823  */
824 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
825 {
826 	__mark_reg_known(reg, 0);
827 }
828 
829 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
830 {
831 	__mark_reg_known(reg, 0);
832 	reg->type = SCALAR_VALUE;
833 }
834 
835 static void mark_reg_known_zero(struct bpf_verifier_env *env,
836 				struct bpf_reg_state *regs, u32 regno)
837 {
838 	if (WARN_ON(regno >= MAX_BPF_REG)) {
839 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
840 		/* Something bad happened, let's kill all regs */
841 		for (regno = 0; regno < MAX_BPF_REG; regno++)
842 			__mark_reg_not_init(regs + regno);
843 		return;
844 	}
845 	__mark_reg_known_zero(regs + regno);
846 }
847 
848 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
849 {
850 	return type_is_pkt_pointer(reg->type);
851 }
852 
853 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
854 {
855 	return reg_is_pkt_pointer(reg) ||
856 	       reg->type == PTR_TO_PACKET_END;
857 }
858 
859 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
860 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
861 				    enum bpf_reg_type which)
862 {
863 	/* The register can already have a range from prior markings.
864 	 * This is fine as long as it hasn't been advanced from its
865 	 * origin.
866 	 */
867 	return reg->type == which &&
868 	       reg->id == 0 &&
869 	       reg->off == 0 &&
870 	       tnum_equals_const(reg->var_off, 0);
871 }
872 
873 /* Attempts to improve min/max values based on var_off information */
874 static void __update_reg_bounds(struct bpf_reg_state *reg)
875 {
876 	/* min signed is max(sign bit) | min(other bits) */
877 	reg->smin_value = max_t(s64, reg->smin_value,
878 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
879 	/* max signed is min(sign bit) | max(other bits) */
880 	reg->smax_value = min_t(s64, reg->smax_value,
881 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
882 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
883 	reg->umax_value = min(reg->umax_value,
884 			      reg->var_off.value | reg->var_off.mask);
885 }
886 
887 /* Uses signed min/max values to inform unsigned, and vice-versa */
888 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
889 {
890 	/* Learn sign from signed bounds.
891 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
892 	 * are the same, so combine.  This works even in the negative case, e.g.
893 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
894 	 */
895 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
896 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
897 							  reg->umin_value);
898 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
899 							  reg->umax_value);
900 		return;
901 	}
902 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
903 	 * boundary, so we must be careful.
904 	 */
905 	if ((s64)reg->umax_value >= 0) {
906 		/* Positive.  We can't learn anything from the smin, but smax
907 		 * is positive, hence safe.
908 		 */
909 		reg->smin_value = reg->umin_value;
910 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
911 							  reg->umax_value);
912 	} else if ((s64)reg->umin_value < 0) {
913 		/* Negative.  We can't learn anything from the smax, but smin
914 		 * is negative, hence safe.
915 		 */
916 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
917 							  reg->umin_value);
918 		reg->smax_value = reg->umax_value;
919 	}
920 }
921 
922 /* Attempts to improve var_off based on unsigned min/max information */
923 static void __reg_bound_offset(struct bpf_reg_state *reg)
924 {
925 	reg->var_off = tnum_intersect(reg->var_off,
926 				      tnum_range(reg->umin_value,
927 						 reg->umax_value));
928 }
929 
930 /* Reset the min/max bounds of a register */
931 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
932 {
933 	reg->smin_value = S64_MIN;
934 	reg->smax_value = S64_MAX;
935 	reg->umin_value = 0;
936 	reg->umax_value = U64_MAX;
937 }
938 
939 /* Mark a register as having a completely unknown (scalar) value. */
940 static void __mark_reg_unknown(struct bpf_reg_state *reg)
941 {
942 	/*
943 	 * Clear type, id, off, and union(map_ptr, range) and
944 	 * padding between 'type' and union
945 	 */
946 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
947 	reg->type = SCALAR_VALUE;
948 	reg->var_off = tnum_unknown;
949 	reg->frameno = 0;
950 	__mark_reg_unbounded(reg);
951 }
952 
953 static void mark_reg_unknown(struct bpf_verifier_env *env,
954 			     struct bpf_reg_state *regs, u32 regno)
955 {
956 	if (WARN_ON(regno >= MAX_BPF_REG)) {
957 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
958 		/* Something bad happened, let's kill all regs except FP */
959 		for (regno = 0; regno < BPF_REG_FP; regno++)
960 			__mark_reg_not_init(regs + regno);
961 		return;
962 	}
963 	__mark_reg_unknown(regs + regno);
964 }
965 
966 static void __mark_reg_not_init(struct bpf_reg_state *reg)
967 {
968 	__mark_reg_unknown(reg);
969 	reg->type = NOT_INIT;
970 }
971 
972 static void mark_reg_not_init(struct bpf_verifier_env *env,
973 			      struct bpf_reg_state *regs, u32 regno)
974 {
975 	if (WARN_ON(regno >= MAX_BPF_REG)) {
976 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
977 		/* Something bad happened, let's kill all regs except FP */
978 		for (regno = 0; regno < BPF_REG_FP; regno++)
979 			__mark_reg_not_init(regs + regno);
980 		return;
981 	}
982 	__mark_reg_not_init(regs + regno);
983 }
984 
985 static void init_reg_state(struct bpf_verifier_env *env,
986 			   struct bpf_func_state *state)
987 {
988 	struct bpf_reg_state *regs = state->regs;
989 	int i;
990 
991 	for (i = 0; i < MAX_BPF_REG; i++) {
992 		mark_reg_not_init(env, regs, i);
993 		regs[i].live = REG_LIVE_NONE;
994 		regs[i].parent = NULL;
995 	}
996 
997 	/* frame pointer */
998 	regs[BPF_REG_FP].type = PTR_TO_STACK;
999 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1000 	regs[BPF_REG_FP].frameno = state->frameno;
1001 
1002 	/* 1st arg to a function */
1003 	regs[BPF_REG_1].type = PTR_TO_CTX;
1004 	mark_reg_known_zero(env, regs, BPF_REG_1);
1005 }
1006 
1007 #define BPF_MAIN_FUNC (-1)
1008 static void init_func_state(struct bpf_verifier_env *env,
1009 			    struct bpf_func_state *state,
1010 			    int callsite, int frameno, int subprogno)
1011 {
1012 	state->callsite = callsite;
1013 	state->frameno = frameno;
1014 	state->subprogno = subprogno;
1015 	init_reg_state(env, state);
1016 }
1017 
1018 enum reg_arg_type {
1019 	SRC_OP,		/* register is used as source operand */
1020 	DST_OP,		/* register is used as destination operand */
1021 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1022 };
1023 
1024 static int cmp_subprogs(const void *a, const void *b)
1025 {
1026 	return ((struct bpf_subprog_info *)a)->start -
1027 	       ((struct bpf_subprog_info *)b)->start;
1028 }
1029 
1030 static int find_subprog(struct bpf_verifier_env *env, int off)
1031 {
1032 	struct bpf_subprog_info *p;
1033 
1034 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1035 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1036 	if (!p)
1037 		return -ENOENT;
1038 	return p - env->subprog_info;
1039 
1040 }
1041 
1042 static int add_subprog(struct bpf_verifier_env *env, int off)
1043 {
1044 	int insn_cnt = env->prog->len;
1045 	int ret;
1046 
1047 	if (off >= insn_cnt || off < 0) {
1048 		verbose(env, "call to invalid destination\n");
1049 		return -EINVAL;
1050 	}
1051 	ret = find_subprog(env, off);
1052 	if (ret >= 0)
1053 		return 0;
1054 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1055 		verbose(env, "too many subprograms\n");
1056 		return -E2BIG;
1057 	}
1058 	env->subprog_info[env->subprog_cnt++].start = off;
1059 	sort(env->subprog_info, env->subprog_cnt,
1060 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1061 	return 0;
1062 }
1063 
1064 static int check_subprogs(struct bpf_verifier_env *env)
1065 {
1066 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1067 	struct bpf_subprog_info *subprog = env->subprog_info;
1068 	struct bpf_insn *insn = env->prog->insnsi;
1069 	int insn_cnt = env->prog->len;
1070 
1071 	/* Add entry function. */
1072 	ret = add_subprog(env, 0);
1073 	if (ret < 0)
1074 		return ret;
1075 
1076 	/* determine subprog starts. The end is one before the next starts */
1077 	for (i = 0; i < insn_cnt; i++) {
1078 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1079 			continue;
1080 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1081 			continue;
1082 		if (!env->allow_ptr_leaks) {
1083 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1084 			return -EPERM;
1085 		}
1086 		ret = add_subprog(env, i + insn[i].imm + 1);
1087 		if (ret < 0)
1088 			return ret;
1089 	}
1090 
1091 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1092 	 * logic. 'subprog_cnt' should not be increased.
1093 	 */
1094 	subprog[env->subprog_cnt].start = insn_cnt;
1095 
1096 	if (env->log.level & BPF_LOG_LEVEL2)
1097 		for (i = 0; i < env->subprog_cnt; i++)
1098 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1099 
1100 	/* now check that all jumps are within the same subprog */
1101 	subprog_start = subprog[cur_subprog].start;
1102 	subprog_end = subprog[cur_subprog + 1].start;
1103 	for (i = 0; i < insn_cnt; i++) {
1104 		u8 code = insn[i].code;
1105 
1106 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1107 			goto next;
1108 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1109 			goto next;
1110 		off = i + insn[i].off + 1;
1111 		if (off < subprog_start || off >= subprog_end) {
1112 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1113 			return -EINVAL;
1114 		}
1115 next:
1116 		if (i == subprog_end - 1) {
1117 			/* to avoid fall-through from one subprog into another
1118 			 * the last insn of the subprog should be either exit
1119 			 * or unconditional jump back
1120 			 */
1121 			if (code != (BPF_JMP | BPF_EXIT) &&
1122 			    code != (BPF_JMP | BPF_JA)) {
1123 				verbose(env, "last insn is not an exit or jmp\n");
1124 				return -EINVAL;
1125 			}
1126 			subprog_start = subprog_end;
1127 			cur_subprog++;
1128 			if (cur_subprog < env->subprog_cnt)
1129 				subprog_end = subprog[cur_subprog + 1].start;
1130 		}
1131 	}
1132 	return 0;
1133 }
1134 
1135 /* Parentage chain of this register (or stack slot) should take care of all
1136  * issues like callee-saved registers, stack slot allocation time, etc.
1137  */
1138 static int mark_reg_read(struct bpf_verifier_env *env,
1139 			 const struct bpf_reg_state *state,
1140 			 struct bpf_reg_state *parent)
1141 {
1142 	bool writes = parent == state->parent; /* Observe write marks */
1143 	int cnt = 0;
1144 
1145 	while (parent) {
1146 		/* if read wasn't screened by an earlier write ... */
1147 		if (writes && state->live & REG_LIVE_WRITTEN)
1148 			break;
1149 		if (parent->live & REG_LIVE_DONE) {
1150 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1151 				reg_type_str[parent->type],
1152 				parent->var_off.value, parent->off);
1153 			return -EFAULT;
1154 		}
1155 		if (parent->live & REG_LIVE_READ)
1156 			/* The parentage chain never changes and
1157 			 * this parent was already marked as LIVE_READ.
1158 			 * There is no need to keep walking the chain again and
1159 			 * keep re-marking all parents as LIVE_READ.
1160 			 * This case happens when the same register is read
1161 			 * multiple times without writes into it in-between.
1162 			 */
1163 			break;
1164 		/* ... then we depend on parent's value */
1165 		parent->live |= REG_LIVE_READ;
1166 		state = parent;
1167 		parent = state->parent;
1168 		writes = true;
1169 		cnt++;
1170 	}
1171 
1172 	if (env->longest_mark_read_walk < cnt)
1173 		env->longest_mark_read_walk = cnt;
1174 	return 0;
1175 }
1176 
1177 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1178 			 enum reg_arg_type t)
1179 {
1180 	struct bpf_verifier_state *vstate = env->cur_state;
1181 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1182 	struct bpf_reg_state *reg, *regs = state->regs;
1183 
1184 	if (regno >= MAX_BPF_REG) {
1185 		verbose(env, "R%d is invalid\n", regno);
1186 		return -EINVAL;
1187 	}
1188 
1189 	reg = &regs[regno];
1190 	if (t == SRC_OP) {
1191 		/* check whether register used as source operand can be read */
1192 		if (reg->type == NOT_INIT) {
1193 			verbose(env, "R%d !read_ok\n", regno);
1194 			return -EACCES;
1195 		}
1196 		/* We don't need to worry about FP liveness because it's read-only */
1197 		if (regno == BPF_REG_FP)
1198 			return 0;
1199 
1200 		return mark_reg_read(env, reg, reg->parent);
1201 	} else {
1202 		/* check whether register used as dest operand can be written to */
1203 		if (regno == BPF_REG_FP) {
1204 			verbose(env, "frame pointer is read only\n");
1205 			return -EACCES;
1206 		}
1207 		reg->live |= REG_LIVE_WRITTEN;
1208 		if (t == DST_OP)
1209 			mark_reg_unknown(env, regs, regno);
1210 	}
1211 	return 0;
1212 }
1213 
1214 static bool is_spillable_regtype(enum bpf_reg_type type)
1215 {
1216 	switch (type) {
1217 	case PTR_TO_MAP_VALUE:
1218 	case PTR_TO_MAP_VALUE_OR_NULL:
1219 	case PTR_TO_STACK:
1220 	case PTR_TO_CTX:
1221 	case PTR_TO_PACKET:
1222 	case PTR_TO_PACKET_META:
1223 	case PTR_TO_PACKET_END:
1224 	case PTR_TO_FLOW_KEYS:
1225 	case CONST_PTR_TO_MAP:
1226 	case PTR_TO_SOCKET:
1227 	case PTR_TO_SOCKET_OR_NULL:
1228 	case PTR_TO_SOCK_COMMON:
1229 	case PTR_TO_SOCK_COMMON_OR_NULL:
1230 	case PTR_TO_TCP_SOCK:
1231 	case PTR_TO_TCP_SOCK_OR_NULL:
1232 		return true;
1233 	default:
1234 		return false;
1235 	}
1236 }
1237 
1238 /* Does this register contain a constant zero? */
1239 static bool register_is_null(struct bpf_reg_state *reg)
1240 {
1241 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1242 }
1243 
1244 /* check_stack_read/write functions track spill/fill of registers,
1245  * stack boundary and alignment are checked in check_mem_access()
1246  */
1247 static int check_stack_write(struct bpf_verifier_env *env,
1248 			     struct bpf_func_state *state, /* func where register points to */
1249 			     int off, int size, int value_regno, int insn_idx)
1250 {
1251 	struct bpf_func_state *cur; /* state of the current function */
1252 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1253 	enum bpf_reg_type type;
1254 
1255 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1256 				 state->acquired_refs, true);
1257 	if (err)
1258 		return err;
1259 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1260 	 * so it's aligned access and [off, off + size) are within stack limits
1261 	 */
1262 	if (!env->allow_ptr_leaks &&
1263 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1264 	    size != BPF_REG_SIZE) {
1265 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1266 		return -EACCES;
1267 	}
1268 
1269 	cur = env->cur_state->frame[env->cur_state->curframe];
1270 	if (value_regno >= 0 &&
1271 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1272 
1273 		/* register containing pointer is being spilled into stack */
1274 		if (size != BPF_REG_SIZE) {
1275 			verbose(env, "invalid size of register spill\n");
1276 			return -EACCES;
1277 		}
1278 
1279 		if (state != cur && type == PTR_TO_STACK) {
1280 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1281 			return -EINVAL;
1282 		}
1283 
1284 		/* save register state */
1285 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1286 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1287 
1288 		for (i = 0; i < BPF_REG_SIZE; i++) {
1289 			if (state->stack[spi].slot_type[i] == STACK_MISC &&
1290 			    !env->allow_ptr_leaks) {
1291 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1292 				int soff = (-spi - 1) * BPF_REG_SIZE;
1293 
1294 				/* detected reuse of integer stack slot with a pointer
1295 				 * which means either llvm is reusing stack slot or
1296 				 * an attacker is trying to exploit CVE-2018-3639
1297 				 * (speculative store bypass)
1298 				 * Have to sanitize that slot with preemptive
1299 				 * store of zero.
1300 				 */
1301 				if (*poff && *poff != soff) {
1302 					/* disallow programs where single insn stores
1303 					 * into two different stack slots, since verifier
1304 					 * cannot sanitize them
1305 					 */
1306 					verbose(env,
1307 						"insn %d cannot access two stack slots fp%d and fp%d",
1308 						insn_idx, *poff, soff);
1309 					return -EINVAL;
1310 				}
1311 				*poff = soff;
1312 			}
1313 			state->stack[spi].slot_type[i] = STACK_SPILL;
1314 		}
1315 	} else {
1316 		u8 type = STACK_MISC;
1317 
1318 		/* regular write of data into stack destroys any spilled ptr */
1319 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1320 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1321 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
1322 			for (i = 0; i < BPF_REG_SIZE; i++)
1323 				state->stack[spi].slot_type[i] = STACK_MISC;
1324 
1325 		/* only mark the slot as written if all 8 bytes were written
1326 		 * otherwise read propagation may incorrectly stop too soon
1327 		 * when stack slots are partially written.
1328 		 * This heuristic means that read propagation will be
1329 		 * conservative, since it will add reg_live_read marks
1330 		 * to stack slots all the way to first state when programs
1331 		 * writes+reads less than 8 bytes
1332 		 */
1333 		if (size == BPF_REG_SIZE)
1334 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1335 
1336 		/* when we zero initialize stack slots mark them as such */
1337 		if (value_regno >= 0 &&
1338 		    register_is_null(&cur->regs[value_regno]))
1339 			type = STACK_ZERO;
1340 
1341 		/* Mark slots affected by this stack write. */
1342 		for (i = 0; i < size; i++)
1343 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1344 				type;
1345 	}
1346 	return 0;
1347 }
1348 
1349 static int check_stack_read(struct bpf_verifier_env *env,
1350 			    struct bpf_func_state *reg_state /* func where register points to */,
1351 			    int off, int size, int value_regno)
1352 {
1353 	struct bpf_verifier_state *vstate = env->cur_state;
1354 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1355 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1356 	u8 *stype;
1357 
1358 	if (reg_state->allocated_stack <= slot) {
1359 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1360 			off, size);
1361 		return -EACCES;
1362 	}
1363 	stype = reg_state->stack[spi].slot_type;
1364 
1365 	if (stype[0] == STACK_SPILL) {
1366 		if (size != BPF_REG_SIZE) {
1367 			verbose(env, "invalid size of register spill\n");
1368 			return -EACCES;
1369 		}
1370 		for (i = 1; i < BPF_REG_SIZE; i++) {
1371 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1372 				verbose(env, "corrupted spill memory\n");
1373 				return -EACCES;
1374 			}
1375 		}
1376 
1377 		if (value_regno >= 0) {
1378 			/* restore register state from stack */
1379 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1380 			/* mark reg as written since spilled pointer state likely
1381 			 * has its liveness marks cleared by is_state_visited()
1382 			 * which resets stack/reg liveness for state transitions
1383 			 */
1384 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1385 		}
1386 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1387 			      reg_state->stack[spi].spilled_ptr.parent);
1388 		return 0;
1389 	} else {
1390 		int zeros = 0;
1391 
1392 		for (i = 0; i < size; i++) {
1393 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1394 				continue;
1395 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1396 				zeros++;
1397 				continue;
1398 			}
1399 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1400 				off, i, size);
1401 			return -EACCES;
1402 		}
1403 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1404 			      reg_state->stack[spi].spilled_ptr.parent);
1405 		if (value_regno >= 0) {
1406 			if (zeros == size) {
1407 				/* any size read into register is zero extended,
1408 				 * so the whole register == const_zero
1409 				 */
1410 				__mark_reg_const_zero(&state->regs[value_regno]);
1411 			} else {
1412 				/* have read misc data from the stack */
1413 				mark_reg_unknown(env, state->regs, value_regno);
1414 			}
1415 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1416 		}
1417 		return 0;
1418 	}
1419 }
1420 
1421 static int check_stack_access(struct bpf_verifier_env *env,
1422 			      const struct bpf_reg_state *reg,
1423 			      int off, int size)
1424 {
1425 	/* Stack accesses must be at a fixed offset, so that we
1426 	 * can determine what type of data were returned. See
1427 	 * check_stack_read().
1428 	 */
1429 	if (!tnum_is_const(reg->var_off)) {
1430 		char tn_buf[48];
1431 
1432 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1433 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
1434 			tn_buf, off, size);
1435 		return -EACCES;
1436 	}
1437 
1438 	if (off >= 0 || off < -MAX_BPF_STACK) {
1439 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
1440 		return -EACCES;
1441 	}
1442 
1443 	return 0;
1444 }
1445 
1446 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
1447 				 int off, int size, enum bpf_access_type type)
1448 {
1449 	struct bpf_reg_state *regs = cur_regs(env);
1450 	struct bpf_map *map = regs[regno].map_ptr;
1451 	u32 cap = bpf_map_flags_to_cap(map);
1452 
1453 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
1454 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
1455 			map->value_size, off, size);
1456 		return -EACCES;
1457 	}
1458 
1459 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
1460 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
1461 			map->value_size, off, size);
1462 		return -EACCES;
1463 	}
1464 
1465 	return 0;
1466 }
1467 
1468 /* check read/write into map element returned by bpf_map_lookup_elem() */
1469 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1470 			      int size, bool zero_size_allowed)
1471 {
1472 	struct bpf_reg_state *regs = cur_regs(env);
1473 	struct bpf_map *map = regs[regno].map_ptr;
1474 
1475 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1476 	    off + size > map->value_size) {
1477 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1478 			map->value_size, off, size);
1479 		return -EACCES;
1480 	}
1481 	return 0;
1482 }
1483 
1484 /* check read/write into a map element with possible variable offset */
1485 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1486 			    int off, int size, bool zero_size_allowed)
1487 {
1488 	struct bpf_verifier_state *vstate = env->cur_state;
1489 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1490 	struct bpf_reg_state *reg = &state->regs[regno];
1491 	int err;
1492 
1493 	/* We may have adjusted the register to this map value, so we
1494 	 * need to try adding each of min_value and max_value to off
1495 	 * to make sure our theoretical access will be safe.
1496 	 */
1497 	if (env->log.level & BPF_LOG_LEVEL)
1498 		print_verifier_state(env, state);
1499 
1500 	/* The minimum value is only important with signed
1501 	 * comparisons where we can't assume the floor of a
1502 	 * value is 0.  If we are using signed variables for our
1503 	 * index'es we need to make sure that whatever we use
1504 	 * will have a set floor within our range.
1505 	 */
1506 	if (reg->smin_value < 0 &&
1507 	    (reg->smin_value == S64_MIN ||
1508 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1509 	      reg->smin_value + off < 0)) {
1510 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1511 			regno);
1512 		return -EACCES;
1513 	}
1514 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1515 				 zero_size_allowed);
1516 	if (err) {
1517 		verbose(env, "R%d min value is outside of the array range\n",
1518 			regno);
1519 		return err;
1520 	}
1521 
1522 	/* If we haven't set a max value then we need to bail since we can't be
1523 	 * sure we won't do bad things.
1524 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1525 	 */
1526 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1527 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1528 			regno);
1529 		return -EACCES;
1530 	}
1531 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1532 				 zero_size_allowed);
1533 	if (err)
1534 		verbose(env, "R%d max value is outside of the array range\n",
1535 			regno);
1536 
1537 	if (map_value_has_spin_lock(reg->map_ptr)) {
1538 		u32 lock = reg->map_ptr->spin_lock_off;
1539 
1540 		/* if any part of struct bpf_spin_lock can be touched by
1541 		 * load/store reject this program.
1542 		 * To check that [x1, x2) overlaps with [y1, y2)
1543 		 * it is sufficient to check x1 < y2 && y1 < x2.
1544 		 */
1545 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
1546 		     lock < reg->umax_value + off + size) {
1547 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
1548 			return -EACCES;
1549 		}
1550 	}
1551 	return err;
1552 }
1553 
1554 #define MAX_PACKET_OFF 0xffff
1555 
1556 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1557 				       const struct bpf_call_arg_meta *meta,
1558 				       enum bpf_access_type t)
1559 {
1560 	switch (env->prog->type) {
1561 	/* Program types only with direct read access go here! */
1562 	case BPF_PROG_TYPE_LWT_IN:
1563 	case BPF_PROG_TYPE_LWT_OUT:
1564 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1565 	case BPF_PROG_TYPE_SK_REUSEPORT:
1566 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
1567 	case BPF_PROG_TYPE_CGROUP_SKB:
1568 		if (t == BPF_WRITE)
1569 			return false;
1570 		/* fallthrough */
1571 
1572 	/* Program types with direct read + write access go here! */
1573 	case BPF_PROG_TYPE_SCHED_CLS:
1574 	case BPF_PROG_TYPE_SCHED_ACT:
1575 	case BPF_PROG_TYPE_XDP:
1576 	case BPF_PROG_TYPE_LWT_XMIT:
1577 	case BPF_PROG_TYPE_SK_SKB:
1578 	case BPF_PROG_TYPE_SK_MSG:
1579 		if (meta)
1580 			return meta->pkt_access;
1581 
1582 		env->seen_direct_write = true;
1583 		return true;
1584 	default:
1585 		return false;
1586 	}
1587 }
1588 
1589 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1590 				 int off, int size, bool zero_size_allowed)
1591 {
1592 	struct bpf_reg_state *regs = cur_regs(env);
1593 	struct bpf_reg_state *reg = &regs[regno];
1594 
1595 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1596 	    (u64)off + size > reg->range) {
1597 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1598 			off, size, regno, reg->id, reg->off, reg->range);
1599 		return -EACCES;
1600 	}
1601 	return 0;
1602 }
1603 
1604 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1605 			       int size, bool zero_size_allowed)
1606 {
1607 	struct bpf_reg_state *regs = cur_regs(env);
1608 	struct bpf_reg_state *reg = &regs[regno];
1609 	int err;
1610 
1611 	/* We may have added a variable offset to the packet pointer; but any
1612 	 * reg->range we have comes after that.  We are only checking the fixed
1613 	 * offset.
1614 	 */
1615 
1616 	/* We don't allow negative numbers, because we aren't tracking enough
1617 	 * detail to prove they're safe.
1618 	 */
1619 	if (reg->smin_value < 0) {
1620 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1621 			regno);
1622 		return -EACCES;
1623 	}
1624 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1625 	if (err) {
1626 		verbose(env, "R%d offset is outside of the packet\n", regno);
1627 		return err;
1628 	}
1629 
1630 	/* __check_packet_access has made sure "off + size - 1" is within u16.
1631 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1632 	 * otherwise find_good_pkt_pointers would have refused to set range info
1633 	 * that __check_packet_access would have rejected this pkt access.
1634 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1635 	 */
1636 	env->prog->aux->max_pkt_offset =
1637 		max_t(u32, env->prog->aux->max_pkt_offset,
1638 		      off + reg->umax_value + size - 1);
1639 
1640 	return err;
1641 }
1642 
1643 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1644 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1645 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1646 {
1647 	struct bpf_insn_access_aux info = {
1648 		.reg_type = *reg_type,
1649 	};
1650 
1651 	if (env->ops->is_valid_access &&
1652 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1653 		/* A non zero info.ctx_field_size indicates that this field is a
1654 		 * candidate for later verifier transformation to load the whole
1655 		 * field and then apply a mask when accessed with a narrower
1656 		 * access than actual ctx access size. A zero info.ctx_field_size
1657 		 * will only allow for whole field access and rejects any other
1658 		 * type of narrower access.
1659 		 */
1660 		*reg_type = info.reg_type;
1661 
1662 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1663 		/* remember the offset of last byte accessed in ctx */
1664 		if (env->prog->aux->max_ctx_offset < off + size)
1665 			env->prog->aux->max_ctx_offset = off + size;
1666 		return 0;
1667 	}
1668 
1669 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1670 	return -EACCES;
1671 }
1672 
1673 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1674 				  int size)
1675 {
1676 	if (size < 0 || off < 0 ||
1677 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
1678 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
1679 			off, size);
1680 		return -EACCES;
1681 	}
1682 	return 0;
1683 }
1684 
1685 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
1686 			     u32 regno, int off, int size,
1687 			     enum bpf_access_type t)
1688 {
1689 	struct bpf_reg_state *regs = cur_regs(env);
1690 	struct bpf_reg_state *reg = &regs[regno];
1691 	struct bpf_insn_access_aux info = {};
1692 	bool valid;
1693 
1694 	if (reg->smin_value < 0) {
1695 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1696 			regno);
1697 		return -EACCES;
1698 	}
1699 
1700 	switch (reg->type) {
1701 	case PTR_TO_SOCK_COMMON:
1702 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
1703 		break;
1704 	case PTR_TO_SOCKET:
1705 		valid = bpf_sock_is_valid_access(off, size, t, &info);
1706 		break;
1707 	case PTR_TO_TCP_SOCK:
1708 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
1709 		break;
1710 	default:
1711 		valid = false;
1712 	}
1713 
1714 
1715 	if (valid) {
1716 		env->insn_aux_data[insn_idx].ctx_field_size =
1717 			info.ctx_field_size;
1718 		return 0;
1719 	}
1720 
1721 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
1722 		regno, reg_type_str[reg->type], off, size);
1723 
1724 	return -EACCES;
1725 }
1726 
1727 static bool __is_pointer_value(bool allow_ptr_leaks,
1728 			       const struct bpf_reg_state *reg)
1729 {
1730 	if (allow_ptr_leaks)
1731 		return false;
1732 
1733 	return reg->type != SCALAR_VALUE;
1734 }
1735 
1736 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1737 {
1738 	return cur_regs(env) + regno;
1739 }
1740 
1741 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1742 {
1743 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1744 }
1745 
1746 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1747 {
1748 	const struct bpf_reg_state *reg = reg_state(env, regno);
1749 
1750 	return reg->type == PTR_TO_CTX;
1751 }
1752 
1753 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
1754 {
1755 	const struct bpf_reg_state *reg = reg_state(env, regno);
1756 
1757 	return type_is_sk_pointer(reg->type);
1758 }
1759 
1760 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1761 {
1762 	const struct bpf_reg_state *reg = reg_state(env, regno);
1763 
1764 	return type_is_pkt_pointer(reg->type);
1765 }
1766 
1767 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1768 {
1769 	const struct bpf_reg_state *reg = reg_state(env, regno);
1770 
1771 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1772 	return reg->type == PTR_TO_FLOW_KEYS;
1773 }
1774 
1775 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1776 				   const struct bpf_reg_state *reg,
1777 				   int off, int size, bool strict)
1778 {
1779 	struct tnum reg_off;
1780 	int ip_align;
1781 
1782 	/* Byte size accesses are always allowed. */
1783 	if (!strict || size == 1)
1784 		return 0;
1785 
1786 	/* For platforms that do not have a Kconfig enabling
1787 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1788 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1789 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1790 	 * to this code only in strict mode where we want to emulate
1791 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1792 	 * unconditional IP align value of '2'.
1793 	 */
1794 	ip_align = 2;
1795 
1796 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1797 	if (!tnum_is_aligned(reg_off, size)) {
1798 		char tn_buf[48];
1799 
1800 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1801 		verbose(env,
1802 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1803 			ip_align, tn_buf, reg->off, off, size);
1804 		return -EACCES;
1805 	}
1806 
1807 	return 0;
1808 }
1809 
1810 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1811 				       const struct bpf_reg_state *reg,
1812 				       const char *pointer_desc,
1813 				       int off, int size, bool strict)
1814 {
1815 	struct tnum reg_off;
1816 
1817 	/* Byte size accesses are always allowed. */
1818 	if (!strict || size == 1)
1819 		return 0;
1820 
1821 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1822 	if (!tnum_is_aligned(reg_off, size)) {
1823 		char tn_buf[48];
1824 
1825 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1826 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1827 			pointer_desc, tn_buf, reg->off, off, size);
1828 		return -EACCES;
1829 	}
1830 
1831 	return 0;
1832 }
1833 
1834 static int check_ptr_alignment(struct bpf_verifier_env *env,
1835 			       const struct bpf_reg_state *reg, int off,
1836 			       int size, bool strict_alignment_once)
1837 {
1838 	bool strict = env->strict_alignment || strict_alignment_once;
1839 	const char *pointer_desc = "";
1840 
1841 	switch (reg->type) {
1842 	case PTR_TO_PACKET:
1843 	case PTR_TO_PACKET_META:
1844 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1845 		 * right in front, treat it the very same way.
1846 		 */
1847 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1848 	case PTR_TO_FLOW_KEYS:
1849 		pointer_desc = "flow keys ";
1850 		break;
1851 	case PTR_TO_MAP_VALUE:
1852 		pointer_desc = "value ";
1853 		break;
1854 	case PTR_TO_CTX:
1855 		pointer_desc = "context ";
1856 		break;
1857 	case PTR_TO_STACK:
1858 		pointer_desc = "stack ";
1859 		/* The stack spill tracking logic in check_stack_write()
1860 		 * and check_stack_read() relies on stack accesses being
1861 		 * aligned.
1862 		 */
1863 		strict = true;
1864 		break;
1865 	case PTR_TO_SOCKET:
1866 		pointer_desc = "sock ";
1867 		break;
1868 	case PTR_TO_SOCK_COMMON:
1869 		pointer_desc = "sock_common ";
1870 		break;
1871 	case PTR_TO_TCP_SOCK:
1872 		pointer_desc = "tcp_sock ";
1873 		break;
1874 	default:
1875 		break;
1876 	}
1877 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1878 					   strict);
1879 }
1880 
1881 static int update_stack_depth(struct bpf_verifier_env *env,
1882 			      const struct bpf_func_state *func,
1883 			      int off)
1884 {
1885 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1886 
1887 	if (stack >= -off)
1888 		return 0;
1889 
1890 	/* update known max for given subprogram */
1891 	env->subprog_info[func->subprogno].stack_depth = -off;
1892 	return 0;
1893 }
1894 
1895 /* starting from main bpf function walk all instructions of the function
1896  * and recursively walk all callees that given function can call.
1897  * Ignore jump and exit insns.
1898  * Since recursion is prevented by check_cfg() this algorithm
1899  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1900  */
1901 static int check_max_stack_depth(struct bpf_verifier_env *env)
1902 {
1903 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1904 	struct bpf_subprog_info *subprog = env->subprog_info;
1905 	struct bpf_insn *insn = env->prog->insnsi;
1906 	int ret_insn[MAX_CALL_FRAMES];
1907 	int ret_prog[MAX_CALL_FRAMES];
1908 
1909 process_func:
1910 	/* round up to 32-bytes, since this is granularity
1911 	 * of interpreter stack size
1912 	 */
1913 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1914 	if (depth > MAX_BPF_STACK) {
1915 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1916 			frame + 1, depth);
1917 		return -EACCES;
1918 	}
1919 continue_func:
1920 	subprog_end = subprog[idx + 1].start;
1921 	for (; i < subprog_end; i++) {
1922 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1923 			continue;
1924 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1925 			continue;
1926 		/* remember insn and function to return to */
1927 		ret_insn[frame] = i + 1;
1928 		ret_prog[frame] = idx;
1929 
1930 		/* find the callee */
1931 		i = i + insn[i].imm + 1;
1932 		idx = find_subprog(env, i);
1933 		if (idx < 0) {
1934 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1935 				  i);
1936 			return -EFAULT;
1937 		}
1938 		frame++;
1939 		if (frame >= MAX_CALL_FRAMES) {
1940 			verbose(env, "the call stack of %d frames is too deep !\n",
1941 				frame);
1942 			return -E2BIG;
1943 		}
1944 		goto process_func;
1945 	}
1946 	/* end of for() loop means the last insn of the 'subprog'
1947 	 * was reached. Doesn't matter whether it was JA or EXIT
1948 	 */
1949 	if (frame == 0)
1950 		return 0;
1951 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1952 	frame--;
1953 	i = ret_insn[frame];
1954 	idx = ret_prog[frame];
1955 	goto continue_func;
1956 }
1957 
1958 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1959 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1960 				  const struct bpf_insn *insn, int idx)
1961 {
1962 	int start = idx + insn->imm + 1, subprog;
1963 
1964 	subprog = find_subprog(env, start);
1965 	if (subprog < 0) {
1966 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1967 			  start);
1968 		return -EFAULT;
1969 	}
1970 	return env->subprog_info[subprog].stack_depth;
1971 }
1972 #endif
1973 
1974 static int check_ctx_reg(struct bpf_verifier_env *env,
1975 			 const struct bpf_reg_state *reg, int regno)
1976 {
1977 	/* Access to ctx or passing it to a helper is only allowed in
1978 	 * its original, unmodified form.
1979 	 */
1980 
1981 	if (reg->off) {
1982 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1983 			regno, reg->off);
1984 		return -EACCES;
1985 	}
1986 
1987 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1988 		char tn_buf[48];
1989 
1990 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1991 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1992 		return -EACCES;
1993 	}
1994 
1995 	return 0;
1996 }
1997 
1998 static int check_tp_buffer_access(struct bpf_verifier_env *env,
1999 				  const struct bpf_reg_state *reg,
2000 				  int regno, int off, int size)
2001 {
2002 	if (off < 0) {
2003 		verbose(env,
2004 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
2005 			regno, off, size);
2006 		return -EACCES;
2007 	}
2008 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2009 		char tn_buf[48];
2010 
2011 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2012 		verbose(env,
2013 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
2014 			regno, off, tn_buf);
2015 		return -EACCES;
2016 	}
2017 	if (off + size > env->prog->aux->max_tp_access)
2018 		env->prog->aux->max_tp_access = off + size;
2019 
2020 	return 0;
2021 }
2022 
2023 
2024 /* truncate register to smaller size (in bytes)
2025  * must be called with size < BPF_REG_SIZE
2026  */
2027 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2028 {
2029 	u64 mask;
2030 
2031 	/* clear high bits in bit representation */
2032 	reg->var_off = tnum_cast(reg->var_off, size);
2033 
2034 	/* fix arithmetic bounds */
2035 	mask = ((u64)1 << (size * 8)) - 1;
2036 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2037 		reg->umin_value &= mask;
2038 		reg->umax_value &= mask;
2039 	} else {
2040 		reg->umin_value = 0;
2041 		reg->umax_value = mask;
2042 	}
2043 	reg->smin_value = reg->umin_value;
2044 	reg->smax_value = reg->umax_value;
2045 }
2046 
2047 /* check whether memory at (regno + off) is accessible for t = (read | write)
2048  * if t==write, value_regno is a register which value is stored into memory
2049  * if t==read, value_regno is a register which will receive the value from memory
2050  * if t==write && value_regno==-1, some unknown value is stored into memory
2051  * if t==read && value_regno==-1, don't care what we read from memory
2052  */
2053 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2054 			    int off, int bpf_size, enum bpf_access_type t,
2055 			    int value_regno, bool strict_alignment_once)
2056 {
2057 	struct bpf_reg_state *regs = cur_regs(env);
2058 	struct bpf_reg_state *reg = regs + regno;
2059 	struct bpf_func_state *state;
2060 	int size, err = 0;
2061 
2062 	size = bpf_size_to_bytes(bpf_size);
2063 	if (size < 0)
2064 		return size;
2065 
2066 	/* alignment checks will add in reg->off themselves */
2067 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2068 	if (err)
2069 		return err;
2070 
2071 	/* for access checks, reg->off is just part of off */
2072 	off += reg->off;
2073 
2074 	if (reg->type == PTR_TO_MAP_VALUE) {
2075 		if (t == BPF_WRITE && value_regno >= 0 &&
2076 		    is_pointer_value(env, value_regno)) {
2077 			verbose(env, "R%d leaks addr into map\n", value_regno);
2078 			return -EACCES;
2079 		}
2080 		err = check_map_access_type(env, regno, off, size, t);
2081 		if (err)
2082 			return err;
2083 		err = check_map_access(env, regno, off, size, false);
2084 		if (!err && t == BPF_READ && value_regno >= 0)
2085 			mark_reg_unknown(env, regs, value_regno);
2086 
2087 	} else if (reg->type == PTR_TO_CTX) {
2088 		enum bpf_reg_type reg_type = SCALAR_VALUE;
2089 
2090 		if (t == BPF_WRITE && value_regno >= 0 &&
2091 		    is_pointer_value(env, value_regno)) {
2092 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
2093 			return -EACCES;
2094 		}
2095 
2096 		err = check_ctx_reg(env, reg, regno);
2097 		if (err < 0)
2098 			return err;
2099 
2100 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2101 		if (!err && t == BPF_READ && value_regno >= 0) {
2102 			/* ctx access returns either a scalar, or a
2103 			 * PTR_TO_PACKET[_META,_END]. In the latter
2104 			 * case, we know the offset is zero.
2105 			 */
2106 			if (reg_type == SCALAR_VALUE) {
2107 				mark_reg_unknown(env, regs, value_regno);
2108 			} else {
2109 				mark_reg_known_zero(env, regs,
2110 						    value_regno);
2111 				if (reg_type_may_be_null(reg_type))
2112 					regs[value_regno].id = ++env->id_gen;
2113 			}
2114 			regs[value_regno].type = reg_type;
2115 		}
2116 
2117 	} else if (reg->type == PTR_TO_STACK) {
2118 		off += reg->var_off.value;
2119 		err = check_stack_access(env, reg, off, size);
2120 		if (err)
2121 			return err;
2122 
2123 		state = func(env, reg);
2124 		err = update_stack_depth(env, state, off);
2125 		if (err)
2126 			return err;
2127 
2128 		if (t == BPF_WRITE)
2129 			err = check_stack_write(env, state, off, size,
2130 						value_regno, insn_idx);
2131 		else
2132 			err = check_stack_read(env, state, off, size,
2133 					       value_regno);
2134 	} else if (reg_is_pkt_pointer(reg)) {
2135 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2136 			verbose(env, "cannot write into packet\n");
2137 			return -EACCES;
2138 		}
2139 		if (t == BPF_WRITE && value_regno >= 0 &&
2140 		    is_pointer_value(env, value_regno)) {
2141 			verbose(env, "R%d leaks addr into packet\n",
2142 				value_regno);
2143 			return -EACCES;
2144 		}
2145 		err = check_packet_access(env, regno, off, size, false);
2146 		if (!err && t == BPF_READ && value_regno >= 0)
2147 			mark_reg_unknown(env, regs, value_regno);
2148 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
2149 		if (t == BPF_WRITE && value_regno >= 0 &&
2150 		    is_pointer_value(env, value_regno)) {
2151 			verbose(env, "R%d leaks addr into flow keys\n",
2152 				value_regno);
2153 			return -EACCES;
2154 		}
2155 
2156 		err = check_flow_keys_access(env, off, size);
2157 		if (!err && t == BPF_READ && value_regno >= 0)
2158 			mark_reg_unknown(env, regs, value_regno);
2159 	} else if (type_is_sk_pointer(reg->type)) {
2160 		if (t == BPF_WRITE) {
2161 			verbose(env, "R%d cannot write into %s\n",
2162 				regno, reg_type_str[reg->type]);
2163 			return -EACCES;
2164 		}
2165 		err = check_sock_access(env, insn_idx, regno, off, size, t);
2166 		if (!err && value_regno >= 0)
2167 			mark_reg_unknown(env, regs, value_regno);
2168 	} else if (reg->type == PTR_TO_TP_BUFFER) {
2169 		err = check_tp_buffer_access(env, reg, regno, off, size);
2170 		if (!err && t == BPF_READ && value_regno >= 0)
2171 			mark_reg_unknown(env, regs, value_regno);
2172 	} else {
2173 		verbose(env, "R%d invalid mem access '%s'\n", regno,
2174 			reg_type_str[reg->type]);
2175 		return -EACCES;
2176 	}
2177 
2178 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2179 	    regs[value_regno].type == SCALAR_VALUE) {
2180 		/* b/h/w load zero-extends, mark upper bits as known 0 */
2181 		coerce_reg_to_size(&regs[value_regno], size);
2182 	}
2183 	return err;
2184 }
2185 
2186 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2187 {
2188 	int err;
2189 
2190 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2191 	    insn->imm != 0) {
2192 		verbose(env, "BPF_XADD uses reserved fields\n");
2193 		return -EINVAL;
2194 	}
2195 
2196 	/* check src1 operand */
2197 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
2198 	if (err)
2199 		return err;
2200 
2201 	/* check src2 operand */
2202 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2203 	if (err)
2204 		return err;
2205 
2206 	if (is_pointer_value(env, insn->src_reg)) {
2207 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2208 		return -EACCES;
2209 	}
2210 
2211 	if (is_ctx_reg(env, insn->dst_reg) ||
2212 	    is_pkt_reg(env, insn->dst_reg) ||
2213 	    is_flow_key_reg(env, insn->dst_reg) ||
2214 	    is_sk_reg(env, insn->dst_reg)) {
2215 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2216 			insn->dst_reg,
2217 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
2218 		return -EACCES;
2219 	}
2220 
2221 	/* check whether atomic_add can read the memory */
2222 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2223 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
2224 	if (err)
2225 		return err;
2226 
2227 	/* check whether atomic_add can write into the same memory */
2228 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2229 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2230 }
2231 
2232 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2233 				  int off, int access_size,
2234 				  bool zero_size_allowed)
2235 {
2236 	struct bpf_reg_state *reg = reg_state(env, regno);
2237 
2238 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2239 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2240 		if (tnum_is_const(reg->var_off)) {
2241 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2242 				regno, off, access_size);
2243 		} else {
2244 			char tn_buf[48];
2245 
2246 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2247 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2248 				regno, tn_buf, access_size);
2249 		}
2250 		return -EACCES;
2251 	}
2252 	return 0;
2253 }
2254 
2255 /* when register 'regno' is passed into function that will read 'access_size'
2256  * bytes from that pointer, make sure that it's within stack boundary
2257  * and all elements of stack are initialized.
2258  * Unlike most pointer bounds-checking functions, this one doesn't take an
2259  * 'off' argument, so it has to add in reg->off itself.
2260  */
2261 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2262 				int access_size, bool zero_size_allowed,
2263 				struct bpf_call_arg_meta *meta)
2264 {
2265 	struct bpf_reg_state *reg = reg_state(env, regno);
2266 	struct bpf_func_state *state = func(env, reg);
2267 	int err, min_off, max_off, i, slot, spi;
2268 
2269 	if (reg->type != PTR_TO_STACK) {
2270 		/* Allow zero-byte read from NULL, regardless of pointer type */
2271 		if (zero_size_allowed && access_size == 0 &&
2272 		    register_is_null(reg))
2273 			return 0;
2274 
2275 		verbose(env, "R%d type=%s expected=%s\n", regno,
2276 			reg_type_str[reg->type],
2277 			reg_type_str[PTR_TO_STACK]);
2278 		return -EACCES;
2279 	}
2280 
2281 	if (tnum_is_const(reg->var_off)) {
2282 		min_off = max_off = reg->var_off.value + reg->off;
2283 		err = __check_stack_boundary(env, regno, min_off, access_size,
2284 					     zero_size_allowed);
2285 		if (err)
2286 			return err;
2287 	} else {
2288 		/* Variable offset is prohibited for unprivileged mode for
2289 		 * simplicity since it requires corresponding support in
2290 		 * Spectre masking for stack ALU.
2291 		 * See also retrieve_ptr_limit().
2292 		 */
2293 		if (!env->allow_ptr_leaks) {
2294 			char tn_buf[48];
2295 
2296 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2297 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2298 				regno, tn_buf);
2299 			return -EACCES;
2300 		}
2301 		/* Only initialized buffer on stack is allowed to be accessed
2302 		 * with variable offset. With uninitialized buffer it's hard to
2303 		 * guarantee that whole memory is marked as initialized on
2304 		 * helper return since specific bounds are unknown what may
2305 		 * cause uninitialized stack leaking.
2306 		 */
2307 		if (meta && meta->raw_mode)
2308 			meta = NULL;
2309 
2310 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
2311 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
2312 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
2313 				regno);
2314 			return -EACCES;
2315 		}
2316 		min_off = reg->smin_value + reg->off;
2317 		max_off = reg->smax_value + reg->off;
2318 		err = __check_stack_boundary(env, regno, min_off, access_size,
2319 					     zero_size_allowed);
2320 		if (err) {
2321 			verbose(env, "R%d min value is outside of stack bound\n",
2322 				regno);
2323 			return err;
2324 		}
2325 		err = __check_stack_boundary(env, regno, max_off, access_size,
2326 					     zero_size_allowed);
2327 		if (err) {
2328 			verbose(env, "R%d max value is outside of stack bound\n",
2329 				regno);
2330 			return err;
2331 		}
2332 	}
2333 
2334 	if (meta && meta->raw_mode) {
2335 		meta->access_size = access_size;
2336 		meta->regno = regno;
2337 		return 0;
2338 	}
2339 
2340 	for (i = min_off; i < max_off + access_size; i++) {
2341 		u8 *stype;
2342 
2343 		slot = -i - 1;
2344 		spi = slot / BPF_REG_SIZE;
2345 		if (state->allocated_stack <= slot)
2346 			goto err;
2347 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2348 		if (*stype == STACK_MISC)
2349 			goto mark;
2350 		if (*stype == STACK_ZERO) {
2351 			/* helper can write anything into the stack */
2352 			*stype = STACK_MISC;
2353 			goto mark;
2354 		}
2355 err:
2356 		if (tnum_is_const(reg->var_off)) {
2357 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2358 				min_off, i - min_off, access_size);
2359 		} else {
2360 			char tn_buf[48];
2361 
2362 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2363 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
2364 				tn_buf, i - min_off, access_size);
2365 		}
2366 		return -EACCES;
2367 mark:
2368 		/* reading any byte out of 8-byte 'spill_slot' will cause
2369 		 * the whole slot to be marked as 'read'
2370 		 */
2371 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
2372 			      state->stack[spi].spilled_ptr.parent);
2373 	}
2374 	return update_stack_depth(env, state, min_off);
2375 }
2376 
2377 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2378 				   int access_size, bool zero_size_allowed,
2379 				   struct bpf_call_arg_meta *meta)
2380 {
2381 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2382 
2383 	switch (reg->type) {
2384 	case PTR_TO_PACKET:
2385 	case PTR_TO_PACKET_META:
2386 		return check_packet_access(env, regno, reg->off, access_size,
2387 					   zero_size_allowed);
2388 	case PTR_TO_MAP_VALUE:
2389 		if (check_map_access_type(env, regno, reg->off, access_size,
2390 					  meta && meta->raw_mode ? BPF_WRITE :
2391 					  BPF_READ))
2392 			return -EACCES;
2393 		return check_map_access(env, regno, reg->off, access_size,
2394 					zero_size_allowed);
2395 	default: /* scalar_value|ptr_to_stack or invalid ptr */
2396 		return check_stack_boundary(env, regno, access_size,
2397 					    zero_size_allowed, meta);
2398 	}
2399 }
2400 
2401 /* Implementation details:
2402  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2403  * Two bpf_map_lookups (even with the same key) will have different reg->id.
2404  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2405  * value_or_null->value transition, since the verifier only cares about
2406  * the range of access to valid map value pointer and doesn't care about actual
2407  * address of the map element.
2408  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2409  * reg->id > 0 after value_or_null->value transition. By doing so
2410  * two bpf_map_lookups will be considered two different pointers that
2411  * point to different bpf_spin_locks.
2412  * The verifier allows taking only one bpf_spin_lock at a time to avoid
2413  * dead-locks.
2414  * Since only one bpf_spin_lock is allowed the checks are simpler than
2415  * reg_is_refcounted() logic. The verifier needs to remember only
2416  * one spin_lock instead of array of acquired_refs.
2417  * cur_state->active_spin_lock remembers which map value element got locked
2418  * and clears it after bpf_spin_unlock.
2419  */
2420 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
2421 			     bool is_lock)
2422 {
2423 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2424 	struct bpf_verifier_state *cur = env->cur_state;
2425 	bool is_const = tnum_is_const(reg->var_off);
2426 	struct bpf_map *map = reg->map_ptr;
2427 	u64 val = reg->var_off.value;
2428 
2429 	if (reg->type != PTR_TO_MAP_VALUE) {
2430 		verbose(env, "R%d is not a pointer to map_value\n", regno);
2431 		return -EINVAL;
2432 	}
2433 	if (!is_const) {
2434 		verbose(env,
2435 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2436 			regno);
2437 		return -EINVAL;
2438 	}
2439 	if (!map->btf) {
2440 		verbose(env,
2441 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
2442 			map->name);
2443 		return -EINVAL;
2444 	}
2445 	if (!map_value_has_spin_lock(map)) {
2446 		if (map->spin_lock_off == -E2BIG)
2447 			verbose(env,
2448 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
2449 				map->name);
2450 		else if (map->spin_lock_off == -ENOENT)
2451 			verbose(env,
2452 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
2453 				map->name);
2454 		else
2455 			verbose(env,
2456 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2457 				map->name);
2458 		return -EINVAL;
2459 	}
2460 	if (map->spin_lock_off != val + reg->off) {
2461 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2462 			val + reg->off);
2463 		return -EINVAL;
2464 	}
2465 	if (is_lock) {
2466 		if (cur->active_spin_lock) {
2467 			verbose(env,
2468 				"Locking two bpf_spin_locks are not allowed\n");
2469 			return -EINVAL;
2470 		}
2471 		cur->active_spin_lock = reg->id;
2472 	} else {
2473 		if (!cur->active_spin_lock) {
2474 			verbose(env, "bpf_spin_unlock without taking a lock\n");
2475 			return -EINVAL;
2476 		}
2477 		if (cur->active_spin_lock != reg->id) {
2478 			verbose(env, "bpf_spin_unlock of different lock\n");
2479 			return -EINVAL;
2480 		}
2481 		cur->active_spin_lock = 0;
2482 	}
2483 	return 0;
2484 }
2485 
2486 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2487 {
2488 	return type == ARG_PTR_TO_MEM ||
2489 	       type == ARG_PTR_TO_MEM_OR_NULL ||
2490 	       type == ARG_PTR_TO_UNINIT_MEM;
2491 }
2492 
2493 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2494 {
2495 	return type == ARG_CONST_SIZE ||
2496 	       type == ARG_CONST_SIZE_OR_ZERO;
2497 }
2498 
2499 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
2500 {
2501 	return type == ARG_PTR_TO_INT ||
2502 	       type == ARG_PTR_TO_LONG;
2503 }
2504 
2505 static int int_ptr_type_to_size(enum bpf_arg_type type)
2506 {
2507 	if (type == ARG_PTR_TO_INT)
2508 		return sizeof(u32);
2509 	else if (type == ARG_PTR_TO_LONG)
2510 		return sizeof(u64);
2511 
2512 	return -EINVAL;
2513 }
2514 
2515 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2516 			  enum bpf_arg_type arg_type,
2517 			  struct bpf_call_arg_meta *meta)
2518 {
2519 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2520 	enum bpf_reg_type expected_type, type = reg->type;
2521 	int err = 0;
2522 
2523 	if (arg_type == ARG_DONTCARE)
2524 		return 0;
2525 
2526 	err = check_reg_arg(env, regno, SRC_OP);
2527 	if (err)
2528 		return err;
2529 
2530 	if (arg_type == ARG_ANYTHING) {
2531 		if (is_pointer_value(env, regno)) {
2532 			verbose(env, "R%d leaks addr into helper function\n",
2533 				regno);
2534 			return -EACCES;
2535 		}
2536 		return 0;
2537 	}
2538 
2539 	if (type_is_pkt_pointer(type) &&
2540 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2541 		verbose(env, "helper access to the packet is not allowed\n");
2542 		return -EACCES;
2543 	}
2544 
2545 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
2546 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
2547 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
2548 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
2549 		expected_type = PTR_TO_STACK;
2550 		if (register_is_null(reg) &&
2551 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
2552 			/* final test in check_stack_boundary() */;
2553 		else if (!type_is_pkt_pointer(type) &&
2554 			 type != PTR_TO_MAP_VALUE &&
2555 			 type != expected_type)
2556 			goto err_type;
2557 	} else if (arg_type == ARG_CONST_SIZE ||
2558 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
2559 		expected_type = SCALAR_VALUE;
2560 		if (type != expected_type)
2561 			goto err_type;
2562 	} else if (arg_type == ARG_CONST_MAP_PTR) {
2563 		expected_type = CONST_PTR_TO_MAP;
2564 		if (type != expected_type)
2565 			goto err_type;
2566 	} else if (arg_type == ARG_PTR_TO_CTX) {
2567 		expected_type = PTR_TO_CTX;
2568 		if (type != expected_type)
2569 			goto err_type;
2570 		err = check_ctx_reg(env, reg, regno);
2571 		if (err < 0)
2572 			return err;
2573 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
2574 		expected_type = PTR_TO_SOCK_COMMON;
2575 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
2576 		if (!type_is_sk_pointer(type))
2577 			goto err_type;
2578 		if (reg->ref_obj_id) {
2579 			if (meta->ref_obj_id) {
2580 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
2581 					regno, reg->ref_obj_id,
2582 					meta->ref_obj_id);
2583 				return -EFAULT;
2584 			}
2585 			meta->ref_obj_id = reg->ref_obj_id;
2586 		}
2587 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
2588 		expected_type = PTR_TO_SOCKET;
2589 		if (type != expected_type)
2590 			goto err_type;
2591 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
2592 		if (meta->func_id == BPF_FUNC_spin_lock) {
2593 			if (process_spin_lock(env, regno, true))
2594 				return -EACCES;
2595 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
2596 			if (process_spin_lock(env, regno, false))
2597 				return -EACCES;
2598 		} else {
2599 			verbose(env, "verifier internal error\n");
2600 			return -EFAULT;
2601 		}
2602 	} else if (arg_type_is_mem_ptr(arg_type)) {
2603 		expected_type = PTR_TO_STACK;
2604 		/* One exception here. In case function allows for NULL to be
2605 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
2606 		 * happens during stack boundary checking.
2607 		 */
2608 		if (register_is_null(reg) &&
2609 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
2610 			/* final test in check_stack_boundary() */;
2611 		else if (!type_is_pkt_pointer(type) &&
2612 			 type != PTR_TO_MAP_VALUE &&
2613 			 type != expected_type)
2614 			goto err_type;
2615 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2616 	} else if (arg_type_is_int_ptr(arg_type)) {
2617 		expected_type = PTR_TO_STACK;
2618 		if (!type_is_pkt_pointer(type) &&
2619 		    type != PTR_TO_MAP_VALUE &&
2620 		    type != expected_type)
2621 			goto err_type;
2622 	} else {
2623 		verbose(env, "unsupported arg_type %d\n", arg_type);
2624 		return -EFAULT;
2625 	}
2626 
2627 	if (arg_type == ARG_CONST_MAP_PTR) {
2628 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2629 		meta->map_ptr = reg->map_ptr;
2630 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2631 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
2632 		 * check that [key, key + map->key_size) are within
2633 		 * stack limits and initialized
2634 		 */
2635 		if (!meta->map_ptr) {
2636 			/* in function declaration map_ptr must come before
2637 			 * map_key, so that it's verified and known before
2638 			 * we have to check map_key here. Otherwise it means
2639 			 * that kernel subsystem misconfigured verifier
2640 			 */
2641 			verbose(env, "invalid map_ptr to access map->key\n");
2642 			return -EACCES;
2643 		}
2644 		err = check_helper_mem_access(env, regno,
2645 					      meta->map_ptr->key_size, false,
2646 					      NULL);
2647 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2648 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
2649 		    !register_is_null(reg)) ||
2650 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2651 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
2652 		 * check [value, value + map->value_size) validity
2653 		 */
2654 		if (!meta->map_ptr) {
2655 			/* kernel subsystem misconfigured verifier */
2656 			verbose(env, "invalid map_ptr to access map->value\n");
2657 			return -EACCES;
2658 		}
2659 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2660 		err = check_helper_mem_access(env, regno,
2661 					      meta->map_ptr->value_size, false,
2662 					      meta);
2663 	} else if (arg_type_is_mem_size(arg_type)) {
2664 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2665 
2666 		/* remember the mem_size which may be used later
2667 		 * to refine return values.
2668 		 */
2669 		meta->msize_smax_value = reg->smax_value;
2670 		meta->msize_umax_value = reg->umax_value;
2671 
2672 		/* The register is SCALAR_VALUE; the access check
2673 		 * happens using its boundaries.
2674 		 */
2675 		if (!tnum_is_const(reg->var_off))
2676 			/* For unprivileged variable accesses, disable raw
2677 			 * mode so that the program is required to
2678 			 * initialize all the memory that the helper could
2679 			 * just partially fill up.
2680 			 */
2681 			meta = NULL;
2682 
2683 		if (reg->smin_value < 0) {
2684 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2685 				regno);
2686 			return -EACCES;
2687 		}
2688 
2689 		if (reg->umin_value == 0) {
2690 			err = check_helper_mem_access(env, regno - 1, 0,
2691 						      zero_size_allowed,
2692 						      meta);
2693 			if (err)
2694 				return err;
2695 		}
2696 
2697 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2698 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2699 				regno);
2700 			return -EACCES;
2701 		}
2702 		err = check_helper_mem_access(env, regno - 1,
2703 					      reg->umax_value,
2704 					      zero_size_allowed, meta);
2705 	} else if (arg_type_is_int_ptr(arg_type)) {
2706 		int size = int_ptr_type_to_size(arg_type);
2707 
2708 		err = check_helper_mem_access(env, regno, size, false, meta);
2709 		if (err)
2710 			return err;
2711 		err = check_ptr_alignment(env, reg, 0, size, true);
2712 	}
2713 
2714 	return err;
2715 err_type:
2716 	verbose(env, "R%d type=%s expected=%s\n", regno,
2717 		reg_type_str[type], reg_type_str[expected_type]);
2718 	return -EACCES;
2719 }
2720 
2721 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2722 					struct bpf_map *map, int func_id)
2723 {
2724 	if (!map)
2725 		return 0;
2726 
2727 	/* We need a two way check, first is from map perspective ... */
2728 	switch (map->map_type) {
2729 	case BPF_MAP_TYPE_PROG_ARRAY:
2730 		if (func_id != BPF_FUNC_tail_call)
2731 			goto error;
2732 		break;
2733 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2734 		if (func_id != BPF_FUNC_perf_event_read &&
2735 		    func_id != BPF_FUNC_perf_event_output &&
2736 		    func_id != BPF_FUNC_perf_event_read_value)
2737 			goto error;
2738 		break;
2739 	case BPF_MAP_TYPE_STACK_TRACE:
2740 		if (func_id != BPF_FUNC_get_stackid)
2741 			goto error;
2742 		break;
2743 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2744 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2745 		    func_id != BPF_FUNC_current_task_under_cgroup)
2746 			goto error;
2747 		break;
2748 	case BPF_MAP_TYPE_CGROUP_STORAGE:
2749 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2750 		if (func_id != BPF_FUNC_get_local_storage)
2751 			goto error;
2752 		break;
2753 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2754 	 * allow to be modified from bpf side. So do not allow lookup elements
2755 	 * for now.
2756 	 */
2757 	case BPF_MAP_TYPE_DEVMAP:
2758 		if (func_id != BPF_FUNC_redirect_map)
2759 			goto error;
2760 		break;
2761 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2762 	 * appear.
2763 	 */
2764 	case BPF_MAP_TYPE_CPUMAP:
2765 	case BPF_MAP_TYPE_XSKMAP:
2766 		if (func_id != BPF_FUNC_redirect_map)
2767 			goto error;
2768 		break;
2769 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2770 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2771 		if (func_id != BPF_FUNC_map_lookup_elem)
2772 			goto error;
2773 		break;
2774 	case BPF_MAP_TYPE_SOCKMAP:
2775 		if (func_id != BPF_FUNC_sk_redirect_map &&
2776 		    func_id != BPF_FUNC_sock_map_update &&
2777 		    func_id != BPF_FUNC_map_delete_elem &&
2778 		    func_id != BPF_FUNC_msg_redirect_map)
2779 			goto error;
2780 		break;
2781 	case BPF_MAP_TYPE_SOCKHASH:
2782 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2783 		    func_id != BPF_FUNC_sock_hash_update &&
2784 		    func_id != BPF_FUNC_map_delete_elem &&
2785 		    func_id != BPF_FUNC_msg_redirect_hash)
2786 			goto error;
2787 		break;
2788 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2789 		if (func_id != BPF_FUNC_sk_select_reuseport)
2790 			goto error;
2791 		break;
2792 	case BPF_MAP_TYPE_QUEUE:
2793 	case BPF_MAP_TYPE_STACK:
2794 		if (func_id != BPF_FUNC_map_peek_elem &&
2795 		    func_id != BPF_FUNC_map_pop_elem &&
2796 		    func_id != BPF_FUNC_map_push_elem)
2797 			goto error;
2798 		break;
2799 	case BPF_MAP_TYPE_SK_STORAGE:
2800 		if (func_id != BPF_FUNC_sk_storage_get &&
2801 		    func_id != BPF_FUNC_sk_storage_delete)
2802 			goto error;
2803 		break;
2804 	default:
2805 		break;
2806 	}
2807 
2808 	/* ... and second from the function itself. */
2809 	switch (func_id) {
2810 	case BPF_FUNC_tail_call:
2811 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2812 			goto error;
2813 		if (env->subprog_cnt > 1) {
2814 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2815 			return -EINVAL;
2816 		}
2817 		break;
2818 	case BPF_FUNC_perf_event_read:
2819 	case BPF_FUNC_perf_event_output:
2820 	case BPF_FUNC_perf_event_read_value:
2821 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2822 			goto error;
2823 		break;
2824 	case BPF_FUNC_get_stackid:
2825 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2826 			goto error;
2827 		break;
2828 	case BPF_FUNC_current_task_under_cgroup:
2829 	case BPF_FUNC_skb_under_cgroup:
2830 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2831 			goto error;
2832 		break;
2833 	case BPF_FUNC_redirect_map:
2834 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2835 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2836 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2837 			goto error;
2838 		break;
2839 	case BPF_FUNC_sk_redirect_map:
2840 	case BPF_FUNC_msg_redirect_map:
2841 	case BPF_FUNC_sock_map_update:
2842 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2843 			goto error;
2844 		break;
2845 	case BPF_FUNC_sk_redirect_hash:
2846 	case BPF_FUNC_msg_redirect_hash:
2847 	case BPF_FUNC_sock_hash_update:
2848 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2849 			goto error;
2850 		break;
2851 	case BPF_FUNC_get_local_storage:
2852 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2853 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2854 			goto error;
2855 		break;
2856 	case BPF_FUNC_sk_select_reuseport:
2857 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2858 			goto error;
2859 		break;
2860 	case BPF_FUNC_map_peek_elem:
2861 	case BPF_FUNC_map_pop_elem:
2862 	case BPF_FUNC_map_push_elem:
2863 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2864 		    map->map_type != BPF_MAP_TYPE_STACK)
2865 			goto error;
2866 		break;
2867 	case BPF_FUNC_sk_storage_get:
2868 	case BPF_FUNC_sk_storage_delete:
2869 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
2870 			goto error;
2871 		break;
2872 	default:
2873 		break;
2874 	}
2875 
2876 	return 0;
2877 error:
2878 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2879 		map->map_type, func_id_name(func_id), func_id);
2880 	return -EINVAL;
2881 }
2882 
2883 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2884 {
2885 	int count = 0;
2886 
2887 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2888 		count++;
2889 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2890 		count++;
2891 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2892 		count++;
2893 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2894 		count++;
2895 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2896 		count++;
2897 
2898 	/* We only support one arg being in raw mode at the moment,
2899 	 * which is sufficient for the helper functions we have
2900 	 * right now.
2901 	 */
2902 	return count <= 1;
2903 }
2904 
2905 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2906 				    enum bpf_arg_type arg_next)
2907 {
2908 	return (arg_type_is_mem_ptr(arg_curr) &&
2909 	        !arg_type_is_mem_size(arg_next)) ||
2910 	       (!arg_type_is_mem_ptr(arg_curr) &&
2911 		arg_type_is_mem_size(arg_next));
2912 }
2913 
2914 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2915 {
2916 	/* bpf_xxx(..., buf, len) call will access 'len'
2917 	 * bytes from memory 'buf'. Both arg types need
2918 	 * to be paired, so make sure there's no buggy
2919 	 * helper function specification.
2920 	 */
2921 	if (arg_type_is_mem_size(fn->arg1_type) ||
2922 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2923 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2924 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2925 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2926 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2927 		return false;
2928 
2929 	return true;
2930 }
2931 
2932 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
2933 {
2934 	int count = 0;
2935 
2936 	if (arg_type_may_be_refcounted(fn->arg1_type))
2937 		count++;
2938 	if (arg_type_may_be_refcounted(fn->arg2_type))
2939 		count++;
2940 	if (arg_type_may_be_refcounted(fn->arg3_type))
2941 		count++;
2942 	if (arg_type_may_be_refcounted(fn->arg4_type))
2943 		count++;
2944 	if (arg_type_may_be_refcounted(fn->arg5_type))
2945 		count++;
2946 
2947 	/* A reference acquiring function cannot acquire
2948 	 * another refcounted ptr.
2949 	 */
2950 	if (is_acquire_function(func_id) && count)
2951 		return false;
2952 
2953 	/* We only support one arg being unreferenced at the moment,
2954 	 * which is sufficient for the helper functions we have right now.
2955 	 */
2956 	return count <= 1;
2957 }
2958 
2959 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
2960 {
2961 	return check_raw_mode_ok(fn) &&
2962 	       check_arg_pair_ok(fn) &&
2963 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
2964 }
2965 
2966 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2967  * are now invalid, so turn them into unknown SCALAR_VALUE.
2968  */
2969 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2970 				     struct bpf_func_state *state)
2971 {
2972 	struct bpf_reg_state *regs = state->regs, *reg;
2973 	int i;
2974 
2975 	for (i = 0; i < MAX_BPF_REG; i++)
2976 		if (reg_is_pkt_pointer_any(&regs[i]))
2977 			mark_reg_unknown(env, regs, i);
2978 
2979 	bpf_for_each_spilled_reg(i, state, reg) {
2980 		if (!reg)
2981 			continue;
2982 		if (reg_is_pkt_pointer_any(reg))
2983 			__mark_reg_unknown(reg);
2984 	}
2985 }
2986 
2987 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2988 {
2989 	struct bpf_verifier_state *vstate = env->cur_state;
2990 	int i;
2991 
2992 	for (i = 0; i <= vstate->curframe; i++)
2993 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2994 }
2995 
2996 static void release_reg_references(struct bpf_verifier_env *env,
2997 				   struct bpf_func_state *state,
2998 				   int ref_obj_id)
2999 {
3000 	struct bpf_reg_state *regs = state->regs, *reg;
3001 	int i;
3002 
3003 	for (i = 0; i < MAX_BPF_REG; i++)
3004 		if (regs[i].ref_obj_id == ref_obj_id)
3005 			mark_reg_unknown(env, regs, i);
3006 
3007 	bpf_for_each_spilled_reg(i, state, reg) {
3008 		if (!reg)
3009 			continue;
3010 		if (reg->ref_obj_id == ref_obj_id)
3011 			__mark_reg_unknown(reg);
3012 	}
3013 }
3014 
3015 /* The pointer with the specified id has released its reference to kernel
3016  * resources. Identify all copies of the same pointer and clear the reference.
3017  */
3018 static int release_reference(struct bpf_verifier_env *env,
3019 			     int ref_obj_id)
3020 {
3021 	struct bpf_verifier_state *vstate = env->cur_state;
3022 	int err;
3023 	int i;
3024 
3025 	err = release_reference_state(cur_func(env), ref_obj_id);
3026 	if (err)
3027 		return err;
3028 
3029 	for (i = 0; i <= vstate->curframe; i++)
3030 		release_reg_references(env, vstate->frame[i], ref_obj_id);
3031 
3032 	return 0;
3033 }
3034 
3035 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3036 			   int *insn_idx)
3037 {
3038 	struct bpf_verifier_state *state = env->cur_state;
3039 	struct bpf_func_state *caller, *callee;
3040 	int i, err, subprog, target_insn;
3041 
3042 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3043 		verbose(env, "the call stack of %d frames is too deep\n",
3044 			state->curframe + 2);
3045 		return -E2BIG;
3046 	}
3047 
3048 	target_insn = *insn_idx + insn->imm;
3049 	subprog = find_subprog(env, target_insn + 1);
3050 	if (subprog < 0) {
3051 		verbose(env, "verifier bug. No program starts at insn %d\n",
3052 			target_insn + 1);
3053 		return -EFAULT;
3054 	}
3055 
3056 	caller = state->frame[state->curframe];
3057 	if (state->frame[state->curframe + 1]) {
3058 		verbose(env, "verifier bug. Frame %d already allocated\n",
3059 			state->curframe + 1);
3060 		return -EFAULT;
3061 	}
3062 
3063 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3064 	if (!callee)
3065 		return -ENOMEM;
3066 	state->frame[state->curframe + 1] = callee;
3067 
3068 	/* callee cannot access r0, r6 - r9 for reading and has to write
3069 	 * into its own stack before reading from it.
3070 	 * callee can read/write into caller's stack
3071 	 */
3072 	init_func_state(env, callee,
3073 			/* remember the callsite, it will be used by bpf_exit */
3074 			*insn_idx /* callsite */,
3075 			state->curframe + 1 /* frameno within this callchain */,
3076 			subprog /* subprog number within this prog */);
3077 
3078 	/* Transfer references to the callee */
3079 	err = transfer_reference_state(callee, caller);
3080 	if (err)
3081 		return err;
3082 
3083 	/* copy r1 - r5 args that callee can access.  The copy includes parent
3084 	 * pointers, which connects us up to the liveness chain
3085 	 */
3086 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3087 		callee->regs[i] = caller->regs[i];
3088 
3089 	/* after the call registers r0 - r5 were scratched */
3090 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3091 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
3092 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3093 	}
3094 
3095 	/* only increment it after check_reg_arg() finished */
3096 	state->curframe++;
3097 
3098 	/* and go analyze first insn of the callee */
3099 	*insn_idx = target_insn;
3100 
3101 	if (env->log.level & BPF_LOG_LEVEL) {
3102 		verbose(env, "caller:\n");
3103 		print_verifier_state(env, caller);
3104 		verbose(env, "callee:\n");
3105 		print_verifier_state(env, callee);
3106 	}
3107 	return 0;
3108 }
3109 
3110 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3111 {
3112 	struct bpf_verifier_state *state = env->cur_state;
3113 	struct bpf_func_state *caller, *callee;
3114 	struct bpf_reg_state *r0;
3115 	int err;
3116 
3117 	callee = state->frame[state->curframe];
3118 	r0 = &callee->regs[BPF_REG_0];
3119 	if (r0->type == PTR_TO_STACK) {
3120 		/* technically it's ok to return caller's stack pointer
3121 		 * (or caller's caller's pointer) back to the caller,
3122 		 * since these pointers are valid. Only current stack
3123 		 * pointer will be invalid as soon as function exits,
3124 		 * but let's be conservative
3125 		 */
3126 		verbose(env, "cannot return stack pointer to the caller\n");
3127 		return -EINVAL;
3128 	}
3129 
3130 	state->curframe--;
3131 	caller = state->frame[state->curframe];
3132 	/* return to the caller whatever r0 had in the callee */
3133 	caller->regs[BPF_REG_0] = *r0;
3134 
3135 	/* Transfer references to the caller */
3136 	err = transfer_reference_state(caller, callee);
3137 	if (err)
3138 		return err;
3139 
3140 	*insn_idx = callee->callsite + 1;
3141 	if (env->log.level & BPF_LOG_LEVEL) {
3142 		verbose(env, "returning from callee:\n");
3143 		print_verifier_state(env, callee);
3144 		verbose(env, "to caller at %d:\n", *insn_idx);
3145 		print_verifier_state(env, caller);
3146 	}
3147 	/* clear everything in the callee */
3148 	free_func_state(callee);
3149 	state->frame[state->curframe + 1] = NULL;
3150 	return 0;
3151 }
3152 
3153 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3154 				   int func_id,
3155 				   struct bpf_call_arg_meta *meta)
3156 {
3157 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3158 
3159 	if (ret_type != RET_INTEGER ||
3160 	    (func_id != BPF_FUNC_get_stack &&
3161 	     func_id != BPF_FUNC_probe_read_str))
3162 		return;
3163 
3164 	ret_reg->smax_value = meta->msize_smax_value;
3165 	ret_reg->umax_value = meta->msize_umax_value;
3166 	__reg_deduce_bounds(ret_reg);
3167 	__reg_bound_offset(ret_reg);
3168 }
3169 
3170 static int
3171 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3172 		int func_id, int insn_idx)
3173 {
3174 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
3175 	struct bpf_map *map = meta->map_ptr;
3176 
3177 	if (func_id != BPF_FUNC_tail_call &&
3178 	    func_id != BPF_FUNC_map_lookup_elem &&
3179 	    func_id != BPF_FUNC_map_update_elem &&
3180 	    func_id != BPF_FUNC_map_delete_elem &&
3181 	    func_id != BPF_FUNC_map_push_elem &&
3182 	    func_id != BPF_FUNC_map_pop_elem &&
3183 	    func_id != BPF_FUNC_map_peek_elem)
3184 		return 0;
3185 
3186 	if (map == NULL) {
3187 		verbose(env, "kernel subsystem misconfigured verifier\n");
3188 		return -EINVAL;
3189 	}
3190 
3191 	/* In case of read-only, some additional restrictions
3192 	 * need to be applied in order to prevent altering the
3193 	 * state of the map from program side.
3194 	 */
3195 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3196 	    (func_id == BPF_FUNC_map_delete_elem ||
3197 	     func_id == BPF_FUNC_map_update_elem ||
3198 	     func_id == BPF_FUNC_map_push_elem ||
3199 	     func_id == BPF_FUNC_map_pop_elem)) {
3200 		verbose(env, "write into map forbidden\n");
3201 		return -EACCES;
3202 	}
3203 
3204 	if (!BPF_MAP_PTR(aux->map_state))
3205 		bpf_map_ptr_store(aux, meta->map_ptr,
3206 				  meta->map_ptr->unpriv_array);
3207 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3208 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3209 				  meta->map_ptr->unpriv_array);
3210 	return 0;
3211 }
3212 
3213 static int check_reference_leak(struct bpf_verifier_env *env)
3214 {
3215 	struct bpf_func_state *state = cur_func(env);
3216 	int i;
3217 
3218 	for (i = 0; i < state->acquired_refs; i++) {
3219 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3220 			state->refs[i].id, state->refs[i].insn_idx);
3221 	}
3222 	return state->acquired_refs ? -EINVAL : 0;
3223 }
3224 
3225 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
3226 {
3227 	const struct bpf_func_proto *fn = NULL;
3228 	struct bpf_reg_state *regs;
3229 	struct bpf_call_arg_meta meta;
3230 	bool changes_data;
3231 	int i, err;
3232 
3233 	/* find function prototype */
3234 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
3235 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3236 			func_id);
3237 		return -EINVAL;
3238 	}
3239 
3240 	if (env->ops->get_func_proto)
3241 		fn = env->ops->get_func_proto(func_id, env->prog);
3242 	if (!fn) {
3243 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3244 			func_id);
3245 		return -EINVAL;
3246 	}
3247 
3248 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
3249 	if (!env->prog->gpl_compatible && fn->gpl_only) {
3250 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
3251 		return -EINVAL;
3252 	}
3253 
3254 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
3255 	changes_data = bpf_helper_changes_pkt_data(fn->func);
3256 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3257 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3258 			func_id_name(func_id), func_id);
3259 		return -EINVAL;
3260 	}
3261 
3262 	memset(&meta, 0, sizeof(meta));
3263 	meta.pkt_access = fn->pkt_access;
3264 
3265 	err = check_func_proto(fn, func_id);
3266 	if (err) {
3267 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
3268 			func_id_name(func_id), func_id);
3269 		return err;
3270 	}
3271 
3272 	meta.func_id = func_id;
3273 	/* check args */
3274 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
3275 	if (err)
3276 		return err;
3277 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
3278 	if (err)
3279 		return err;
3280 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
3281 	if (err)
3282 		return err;
3283 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
3284 	if (err)
3285 		return err;
3286 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
3287 	if (err)
3288 		return err;
3289 
3290 	err = record_func_map(env, &meta, func_id, insn_idx);
3291 	if (err)
3292 		return err;
3293 
3294 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
3295 	 * is inferred from register state.
3296 	 */
3297 	for (i = 0; i < meta.access_size; i++) {
3298 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3299 				       BPF_WRITE, -1, false);
3300 		if (err)
3301 			return err;
3302 	}
3303 
3304 	if (func_id == BPF_FUNC_tail_call) {
3305 		err = check_reference_leak(env);
3306 		if (err) {
3307 			verbose(env, "tail_call would lead to reference leak\n");
3308 			return err;
3309 		}
3310 	} else if (is_release_function(func_id)) {
3311 		err = release_reference(env, meta.ref_obj_id);
3312 		if (err) {
3313 			verbose(env, "func %s#%d reference has not been acquired before\n",
3314 				func_id_name(func_id), func_id);
3315 			return err;
3316 		}
3317 	}
3318 
3319 	regs = cur_regs(env);
3320 
3321 	/* check that flags argument in get_local_storage(map, flags) is 0,
3322 	 * this is required because get_local_storage() can't return an error.
3323 	 */
3324 	if (func_id == BPF_FUNC_get_local_storage &&
3325 	    !register_is_null(&regs[BPF_REG_2])) {
3326 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3327 		return -EINVAL;
3328 	}
3329 
3330 	/* reset caller saved regs */
3331 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3332 		mark_reg_not_init(env, regs, caller_saved[i]);
3333 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3334 	}
3335 
3336 	/* update return register (already marked as written above) */
3337 	if (fn->ret_type == RET_INTEGER) {
3338 		/* sets type to SCALAR_VALUE */
3339 		mark_reg_unknown(env, regs, BPF_REG_0);
3340 	} else if (fn->ret_type == RET_VOID) {
3341 		regs[BPF_REG_0].type = NOT_INIT;
3342 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
3343 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3344 		/* There is no offset yet applied, variable or fixed */
3345 		mark_reg_known_zero(env, regs, BPF_REG_0);
3346 		/* remember map_ptr, so that check_map_access()
3347 		 * can check 'value_size' boundary of memory access
3348 		 * to map element returned from bpf_map_lookup_elem()
3349 		 */
3350 		if (meta.map_ptr == NULL) {
3351 			verbose(env,
3352 				"kernel subsystem misconfigured verifier\n");
3353 			return -EINVAL;
3354 		}
3355 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
3356 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3357 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
3358 			if (map_value_has_spin_lock(meta.map_ptr))
3359 				regs[BPF_REG_0].id = ++env->id_gen;
3360 		} else {
3361 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
3362 			regs[BPF_REG_0].id = ++env->id_gen;
3363 		}
3364 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
3365 		mark_reg_known_zero(env, regs, BPF_REG_0);
3366 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
3367 		regs[BPF_REG_0].id = ++env->id_gen;
3368 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
3369 		mark_reg_known_zero(env, regs, BPF_REG_0);
3370 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
3371 		regs[BPF_REG_0].id = ++env->id_gen;
3372 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
3373 		mark_reg_known_zero(env, regs, BPF_REG_0);
3374 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
3375 		regs[BPF_REG_0].id = ++env->id_gen;
3376 	} else {
3377 		verbose(env, "unknown return type %d of func %s#%d\n",
3378 			fn->ret_type, func_id_name(func_id), func_id);
3379 		return -EINVAL;
3380 	}
3381 
3382 	if (is_ptr_cast_function(func_id)) {
3383 		/* For release_reference() */
3384 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
3385 	} else if (is_acquire_function(func_id)) {
3386 		int id = acquire_reference_state(env, insn_idx);
3387 
3388 		if (id < 0)
3389 			return id;
3390 		/* For mark_ptr_or_null_reg() */
3391 		regs[BPF_REG_0].id = id;
3392 		/* For release_reference() */
3393 		regs[BPF_REG_0].ref_obj_id = id;
3394 	}
3395 
3396 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
3397 
3398 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
3399 	if (err)
3400 		return err;
3401 
3402 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
3403 		const char *err_str;
3404 
3405 #ifdef CONFIG_PERF_EVENTS
3406 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
3407 		err_str = "cannot get callchain buffer for func %s#%d\n";
3408 #else
3409 		err = -ENOTSUPP;
3410 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3411 #endif
3412 		if (err) {
3413 			verbose(env, err_str, func_id_name(func_id), func_id);
3414 			return err;
3415 		}
3416 
3417 		env->prog->has_callchain_buf = true;
3418 	}
3419 
3420 	if (changes_data)
3421 		clear_all_pkt_pointers(env);
3422 	return 0;
3423 }
3424 
3425 static bool signed_add_overflows(s64 a, s64 b)
3426 {
3427 	/* Do the add in u64, where overflow is well-defined */
3428 	s64 res = (s64)((u64)a + (u64)b);
3429 
3430 	if (b < 0)
3431 		return res > a;
3432 	return res < a;
3433 }
3434 
3435 static bool signed_sub_overflows(s64 a, s64 b)
3436 {
3437 	/* Do the sub in u64, where overflow is well-defined */
3438 	s64 res = (s64)((u64)a - (u64)b);
3439 
3440 	if (b < 0)
3441 		return res < a;
3442 	return res > a;
3443 }
3444 
3445 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3446 				  const struct bpf_reg_state *reg,
3447 				  enum bpf_reg_type type)
3448 {
3449 	bool known = tnum_is_const(reg->var_off);
3450 	s64 val = reg->var_off.value;
3451 	s64 smin = reg->smin_value;
3452 
3453 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3454 		verbose(env, "math between %s pointer and %lld is not allowed\n",
3455 			reg_type_str[type], val);
3456 		return false;
3457 	}
3458 
3459 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3460 		verbose(env, "%s pointer offset %d is not allowed\n",
3461 			reg_type_str[type], reg->off);
3462 		return false;
3463 	}
3464 
3465 	if (smin == S64_MIN) {
3466 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3467 			reg_type_str[type]);
3468 		return false;
3469 	}
3470 
3471 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3472 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
3473 			smin, reg_type_str[type]);
3474 		return false;
3475 	}
3476 
3477 	return true;
3478 }
3479 
3480 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
3481 {
3482 	return &env->insn_aux_data[env->insn_idx];
3483 }
3484 
3485 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
3486 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
3487 {
3488 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
3489 			    (opcode == BPF_SUB && !off_is_neg);
3490 	u32 off;
3491 
3492 	switch (ptr_reg->type) {
3493 	case PTR_TO_STACK:
3494 		/* Indirect variable offset stack access is prohibited in
3495 		 * unprivileged mode so it's not handled here.
3496 		 */
3497 		off = ptr_reg->off + ptr_reg->var_off.value;
3498 		if (mask_to_left)
3499 			*ptr_limit = MAX_BPF_STACK + off;
3500 		else
3501 			*ptr_limit = -off;
3502 		return 0;
3503 	case PTR_TO_MAP_VALUE:
3504 		if (mask_to_left) {
3505 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
3506 		} else {
3507 			off = ptr_reg->smin_value + ptr_reg->off;
3508 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
3509 		}
3510 		return 0;
3511 	default:
3512 		return -EINVAL;
3513 	}
3514 }
3515 
3516 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
3517 				    const struct bpf_insn *insn)
3518 {
3519 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
3520 }
3521 
3522 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
3523 				       u32 alu_state, u32 alu_limit)
3524 {
3525 	/* If we arrived here from different branches with different
3526 	 * state or limits to sanitize, then this won't work.
3527 	 */
3528 	if (aux->alu_state &&
3529 	    (aux->alu_state != alu_state ||
3530 	     aux->alu_limit != alu_limit))
3531 		return -EACCES;
3532 
3533 	/* Corresponding fixup done in fixup_bpf_calls(). */
3534 	aux->alu_state = alu_state;
3535 	aux->alu_limit = alu_limit;
3536 	return 0;
3537 }
3538 
3539 static int sanitize_val_alu(struct bpf_verifier_env *env,
3540 			    struct bpf_insn *insn)
3541 {
3542 	struct bpf_insn_aux_data *aux = cur_aux(env);
3543 
3544 	if (can_skip_alu_sanitation(env, insn))
3545 		return 0;
3546 
3547 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
3548 }
3549 
3550 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
3551 			    struct bpf_insn *insn,
3552 			    const struct bpf_reg_state *ptr_reg,
3553 			    struct bpf_reg_state *dst_reg,
3554 			    bool off_is_neg)
3555 {
3556 	struct bpf_verifier_state *vstate = env->cur_state;
3557 	struct bpf_insn_aux_data *aux = cur_aux(env);
3558 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
3559 	u8 opcode = BPF_OP(insn->code);
3560 	u32 alu_state, alu_limit;
3561 	struct bpf_reg_state tmp;
3562 	bool ret;
3563 
3564 	if (can_skip_alu_sanitation(env, insn))
3565 		return 0;
3566 
3567 	/* We already marked aux for masking from non-speculative
3568 	 * paths, thus we got here in the first place. We only care
3569 	 * to explore bad access from here.
3570 	 */
3571 	if (vstate->speculative)
3572 		goto do_sim;
3573 
3574 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
3575 	alu_state |= ptr_is_dst_reg ?
3576 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
3577 
3578 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
3579 		return 0;
3580 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
3581 		return -EACCES;
3582 do_sim:
3583 	/* Simulate and find potential out-of-bounds access under
3584 	 * speculative execution from truncation as a result of
3585 	 * masking when off was not within expected range. If off
3586 	 * sits in dst, then we temporarily need to move ptr there
3587 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3588 	 * for cases where we use K-based arithmetic in one direction
3589 	 * and truncated reg-based in the other in order to explore
3590 	 * bad access.
3591 	 */
3592 	if (!ptr_is_dst_reg) {
3593 		tmp = *dst_reg;
3594 		*dst_reg = *ptr_reg;
3595 	}
3596 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
3597 	if (!ptr_is_dst_reg && ret)
3598 		*dst_reg = tmp;
3599 	return !ret ? -EFAULT : 0;
3600 }
3601 
3602 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
3603  * Caller should also handle BPF_MOV case separately.
3604  * If we return -EACCES, caller may want to try again treating pointer as a
3605  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
3606  */
3607 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3608 				   struct bpf_insn *insn,
3609 				   const struct bpf_reg_state *ptr_reg,
3610 				   const struct bpf_reg_state *off_reg)
3611 {
3612 	struct bpf_verifier_state *vstate = env->cur_state;
3613 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3614 	struct bpf_reg_state *regs = state->regs, *dst_reg;
3615 	bool known = tnum_is_const(off_reg->var_off);
3616 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3617 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3618 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3619 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3620 	u32 dst = insn->dst_reg, src = insn->src_reg;
3621 	u8 opcode = BPF_OP(insn->code);
3622 	int ret;
3623 
3624 	dst_reg = &regs[dst];
3625 
3626 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3627 	    smin_val > smax_val || umin_val > umax_val) {
3628 		/* Taint dst register if offset had invalid bounds derived from
3629 		 * e.g. dead branches.
3630 		 */
3631 		__mark_reg_unknown(dst_reg);
3632 		return 0;
3633 	}
3634 
3635 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3636 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
3637 		verbose(env,
3638 			"R%d 32-bit pointer arithmetic prohibited\n",
3639 			dst);
3640 		return -EACCES;
3641 	}
3642 
3643 	switch (ptr_reg->type) {
3644 	case PTR_TO_MAP_VALUE_OR_NULL:
3645 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3646 			dst, reg_type_str[ptr_reg->type]);
3647 		return -EACCES;
3648 	case CONST_PTR_TO_MAP:
3649 	case PTR_TO_PACKET_END:
3650 	case PTR_TO_SOCKET:
3651 	case PTR_TO_SOCKET_OR_NULL:
3652 	case PTR_TO_SOCK_COMMON:
3653 	case PTR_TO_SOCK_COMMON_OR_NULL:
3654 	case PTR_TO_TCP_SOCK:
3655 	case PTR_TO_TCP_SOCK_OR_NULL:
3656 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3657 			dst, reg_type_str[ptr_reg->type]);
3658 		return -EACCES;
3659 	case PTR_TO_MAP_VALUE:
3660 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
3661 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3662 				off_reg == dst_reg ? dst : src);
3663 			return -EACCES;
3664 		}
3665 		/* fall-through */
3666 	default:
3667 		break;
3668 	}
3669 
3670 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3671 	 * The id may be overwritten later if we create a new variable offset.
3672 	 */
3673 	dst_reg->type = ptr_reg->type;
3674 	dst_reg->id = ptr_reg->id;
3675 
3676 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3677 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3678 		return -EINVAL;
3679 
3680 	switch (opcode) {
3681 	case BPF_ADD:
3682 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3683 		if (ret < 0) {
3684 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
3685 			return ret;
3686 		}
3687 		/* We can take a fixed offset as long as it doesn't overflow
3688 		 * the s32 'off' field
3689 		 */
3690 		if (known && (ptr_reg->off + smin_val ==
3691 			      (s64)(s32)(ptr_reg->off + smin_val))) {
3692 			/* pointer += K.  Accumulate it into fixed offset */
3693 			dst_reg->smin_value = smin_ptr;
3694 			dst_reg->smax_value = smax_ptr;
3695 			dst_reg->umin_value = umin_ptr;
3696 			dst_reg->umax_value = umax_ptr;
3697 			dst_reg->var_off = ptr_reg->var_off;
3698 			dst_reg->off = ptr_reg->off + smin_val;
3699 			dst_reg->raw = ptr_reg->raw;
3700 			break;
3701 		}
3702 		/* A new variable offset is created.  Note that off_reg->off
3703 		 * == 0, since it's a scalar.
3704 		 * dst_reg gets the pointer type and since some positive
3705 		 * integer value was added to the pointer, give it a new 'id'
3706 		 * if it's a PTR_TO_PACKET.
3707 		 * this creates a new 'base' pointer, off_reg (variable) gets
3708 		 * added into the variable offset, and we copy the fixed offset
3709 		 * from ptr_reg.
3710 		 */
3711 		if (signed_add_overflows(smin_ptr, smin_val) ||
3712 		    signed_add_overflows(smax_ptr, smax_val)) {
3713 			dst_reg->smin_value = S64_MIN;
3714 			dst_reg->smax_value = S64_MAX;
3715 		} else {
3716 			dst_reg->smin_value = smin_ptr + smin_val;
3717 			dst_reg->smax_value = smax_ptr + smax_val;
3718 		}
3719 		if (umin_ptr + umin_val < umin_ptr ||
3720 		    umax_ptr + umax_val < umax_ptr) {
3721 			dst_reg->umin_value = 0;
3722 			dst_reg->umax_value = U64_MAX;
3723 		} else {
3724 			dst_reg->umin_value = umin_ptr + umin_val;
3725 			dst_reg->umax_value = umax_ptr + umax_val;
3726 		}
3727 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3728 		dst_reg->off = ptr_reg->off;
3729 		dst_reg->raw = ptr_reg->raw;
3730 		if (reg_is_pkt_pointer(ptr_reg)) {
3731 			dst_reg->id = ++env->id_gen;
3732 			/* something was added to pkt_ptr, set range to zero */
3733 			dst_reg->raw = 0;
3734 		}
3735 		break;
3736 	case BPF_SUB:
3737 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3738 		if (ret < 0) {
3739 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
3740 			return ret;
3741 		}
3742 		if (dst_reg == off_reg) {
3743 			/* scalar -= pointer.  Creates an unknown scalar */
3744 			verbose(env, "R%d tried to subtract pointer from scalar\n",
3745 				dst);
3746 			return -EACCES;
3747 		}
3748 		/* We don't allow subtraction from FP, because (according to
3749 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
3750 		 * be able to deal with it.
3751 		 */
3752 		if (ptr_reg->type == PTR_TO_STACK) {
3753 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
3754 				dst);
3755 			return -EACCES;
3756 		}
3757 		if (known && (ptr_reg->off - smin_val ==
3758 			      (s64)(s32)(ptr_reg->off - smin_val))) {
3759 			/* pointer -= K.  Subtract it from fixed offset */
3760 			dst_reg->smin_value = smin_ptr;
3761 			dst_reg->smax_value = smax_ptr;
3762 			dst_reg->umin_value = umin_ptr;
3763 			dst_reg->umax_value = umax_ptr;
3764 			dst_reg->var_off = ptr_reg->var_off;
3765 			dst_reg->id = ptr_reg->id;
3766 			dst_reg->off = ptr_reg->off - smin_val;
3767 			dst_reg->raw = ptr_reg->raw;
3768 			break;
3769 		}
3770 		/* A new variable offset is created.  If the subtrahend is known
3771 		 * nonnegative, then any reg->range we had before is still good.
3772 		 */
3773 		if (signed_sub_overflows(smin_ptr, smax_val) ||
3774 		    signed_sub_overflows(smax_ptr, smin_val)) {
3775 			/* Overflow possible, we know nothing */
3776 			dst_reg->smin_value = S64_MIN;
3777 			dst_reg->smax_value = S64_MAX;
3778 		} else {
3779 			dst_reg->smin_value = smin_ptr - smax_val;
3780 			dst_reg->smax_value = smax_ptr - smin_val;
3781 		}
3782 		if (umin_ptr < umax_val) {
3783 			/* Overflow possible, we know nothing */
3784 			dst_reg->umin_value = 0;
3785 			dst_reg->umax_value = U64_MAX;
3786 		} else {
3787 			/* Cannot overflow (as long as bounds are consistent) */
3788 			dst_reg->umin_value = umin_ptr - umax_val;
3789 			dst_reg->umax_value = umax_ptr - umin_val;
3790 		}
3791 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3792 		dst_reg->off = ptr_reg->off;
3793 		dst_reg->raw = ptr_reg->raw;
3794 		if (reg_is_pkt_pointer(ptr_reg)) {
3795 			dst_reg->id = ++env->id_gen;
3796 			/* something was added to pkt_ptr, set range to zero */
3797 			if (smin_val < 0)
3798 				dst_reg->raw = 0;
3799 		}
3800 		break;
3801 	case BPF_AND:
3802 	case BPF_OR:
3803 	case BPF_XOR:
3804 		/* bitwise ops on pointers are troublesome, prohibit. */
3805 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3806 			dst, bpf_alu_string[opcode >> 4]);
3807 		return -EACCES;
3808 	default:
3809 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
3810 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3811 			dst, bpf_alu_string[opcode >> 4]);
3812 		return -EACCES;
3813 	}
3814 
3815 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3816 		return -EINVAL;
3817 
3818 	__update_reg_bounds(dst_reg);
3819 	__reg_deduce_bounds(dst_reg);
3820 	__reg_bound_offset(dst_reg);
3821 
3822 	/* For unprivileged we require that resulting offset must be in bounds
3823 	 * in order to be able to sanitize access later on.
3824 	 */
3825 	if (!env->allow_ptr_leaks) {
3826 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
3827 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
3828 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3829 				"prohibited for !root\n", dst);
3830 			return -EACCES;
3831 		} else if (dst_reg->type == PTR_TO_STACK &&
3832 			   check_stack_access(env, dst_reg, dst_reg->off +
3833 					      dst_reg->var_off.value, 1)) {
3834 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
3835 				"prohibited for !root\n", dst);
3836 			return -EACCES;
3837 		}
3838 	}
3839 
3840 	return 0;
3841 }
3842 
3843 /* WARNING: This function does calculations on 64-bit values, but the actual
3844  * execution may occur on 32-bit values. Therefore, things like bitshifts
3845  * need extra checks in the 32-bit case.
3846  */
3847 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3848 				      struct bpf_insn *insn,
3849 				      struct bpf_reg_state *dst_reg,
3850 				      struct bpf_reg_state src_reg)
3851 {
3852 	struct bpf_reg_state *regs = cur_regs(env);
3853 	u8 opcode = BPF_OP(insn->code);
3854 	bool src_known, dst_known;
3855 	s64 smin_val, smax_val;
3856 	u64 umin_val, umax_val;
3857 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3858 	u32 dst = insn->dst_reg;
3859 	int ret;
3860 
3861 	if (insn_bitness == 32) {
3862 		/* Relevant for 32-bit RSH: Information can propagate towards
3863 		 * LSB, so it isn't sufficient to only truncate the output to
3864 		 * 32 bits.
3865 		 */
3866 		coerce_reg_to_size(dst_reg, 4);
3867 		coerce_reg_to_size(&src_reg, 4);
3868 	}
3869 
3870 	smin_val = src_reg.smin_value;
3871 	smax_val = src_reg.smax_value;
3872 	umin_val = src_reg.umin_value;
3873 	umax_val = src_reg.umax_value;
3874 	src_known = tnum_is_const(src_reg.var_off);
3875 	dst_known = tnum_is_const(dst_reg->var_off);
3876 
3877 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3878 	    smin_val > smax_val || umin_val > umax_val) {
3879 		/* Taint dst register if offset had invalid bounds derived from
3880 		 * e.g. dead branches.
3881 		 */
3882 		__mark_reg_unknown(dst_reg);
3883 		return 0;
3884 	}
3885 
3886 	if (!src_known &&
3887 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3888 		__mark_reg_unknown(dst_reg);
3889 		return 0;
3890 	}
3891 
3892 	switch (opcode) {
3893 	case BPF_ADD:
3894 		ret = sanitize_val_alu(env, insn);
3895 		if (ret < 0) {
3896 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
3897 			return ret;
3898 		}
3899 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3900 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
3901 			dst_reg->smin_value = S64_MIN;
3902 			dst_reg->smax_value = S64_MAX;
3903 		} else {
3904 			dst_reg->smin_value += smin_val;
3905 			dst_reg->smax_value += smax_val;
3906 		}
3907 		if (dst_reg->umin_value + umin_val < umin_val ||
3908 		    dst_reg->umax_value + umax_val < umax_val) {
3909 			dst_reg->umin_value = 0;
3910 			dst_reg->umax_value = U64_MAX;
3911 		} else {
3912 			dst_reg->umin_value += umin_val;
3913 			dst_reg->umax_value += umax_val;
3914 		}
3915 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3916 		break;
3917 	case BPF_SUB:
3918 		ret = sanitize_val_alu(env, insn);
3919 		if (ret < 0) {
3920 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
3921 			return ret;
3922 		}
3923 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3924 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3925 			/* Overflow possible, we know nothing */
3926 			dst_reg->smin_value = S64_MIN;
3927 			dst_reg->smax_value = S64_MAX;
3928 		} else {
3929 			dst_reg->smin_value -= smax_val;
3930 			dst_reg->smax_value -= smin_val;
3931 		}
3932 		if (dst_reg->umin_value < umax_val) {
3933 			/* Overflow possible, we know nothing */
3934 			dst_reg->umin_value = 0;
3935 			dst_reg->umax_value = U64_MAX;
3936 		} else {
3937 			/* Cannot overflow (as long as bounds are consistent) */
3938 			dst_reg->umin_value -= umax_val;
3939 			dst_reg->umax_value -= umin_val;
3940 		}
3941 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3942 		break;
3943 	case BPF_MUL:
3944 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3945 		if (smin_val < 0 || dst_reg->smin_value < 0) {
3946 			/* Ain't nobody got time to multiply that sign */
3947 			__mark_reg_unbounded(dst_reg);
3948 			__update_reg_bounds(dst_reg);
3949 			break;
3950 		}
3951 		/* Both values are positive, so we can work with unsigned and
3952 		 * copy the result to signed (unless it exceeds S64_MAX).
3953 		 */
3954 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3955 			/* Potential overflow, we know nothing */
3956 			__mark_reg_unbounded(dst_reg);
3957 			/* (except what we can learn from the var_off) */
3958 			__update_reg_bounds(dst_reg);
3959 			break;
3960 		}
3961 		dst_reg->umin_value *= umin_val;
3962 		dst_reg->umax_value *= umax_val;
3963 		if (dst_reg->umax_value > S64_MAX) {
3964 			/* Overflow possible, we know nothing */
3965 			dst_reg->smin_value = S64_MIN;
3966 			dst_reg->smax_value = S64_MAX;
3967 		} else {
3968 			dst_reg->smin_value = dst_reg->umin_value;
3969 			dst_reg->smax_value = dst_reg->umax_value;
3970 		}
3971 		break;
3972 	case BPF_AND:
3973 		if (src_known && dst_known) {
3974 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
3975 						  src_reg.var_off.value);
3976 			break;
3977 		}
3978 		/* We get our minimum from the var_off, since that's inherently
3979 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
3980 		 */
3981 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3982 		dst_reg->umin_value = dst_reg->var_off.value;
3983 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3984 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3985 			/* Lose signed bounds when ANDing negative numbers,
3986 			 * ain't nobody got time for that.
3987 			 */
3988 			dst_reg->smin_value = S64_MIN;
3989 			dst_reg->smax_value = S64_MAX;
3990 		} else {
3991 			/* ANDing two positives gives a positive, so safe to
3992 			 * cast result into s64.
3993 			 */
3994 			dst_reg->smin_value = dst_reg->umin_value;
3995 			dst_reg->smax_value = dst_reg->umax_value;
3996 		}
3997 		/* We may learn something more from the var_off */
3998 		__update_reg_bounds(dst_reg);
3999 		break;
4000 	case BPF_OR:
4001 		if (src_known && dst_known) {
4002 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
4003 						  src_reg.var_off.value);
4004 			break;
4005 		}
4006 		/* We get our maximum from the var_off, and our minimum is the
4007 		 * maximum of the operands' minima
4008 		 */
4009 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
4010 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4011 		dst_reg->umax_value = dst_reg->var_off.value |
4012 				      dst_reg->var_off.mask;
4013 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4014 			/* Lose signed bounds when ORing negative numbers,
4015 			 * ain't nobody got time for that.
4016 			 */
4017 			dst_reg->smin_value = S64_MIN;
4018 			dst_reg->smax_value = S64_MAX;
4019 		} else {
4020 			/* ORing two positives gives a positive, so safe to
4021 			 * cast result into s64.
4022 			 */
4023 			dst_reg->smin_value = dst_reg->umin_value;
4024 			dst_reg->smax_value = dst_reg->umax_value;
4025 		}
4026 		/* We may learn something more from the var_off */
4027 		__update_reg_bounds(dst_reg);
4028 		break;
4029 	case BPF_LSH:
4030 		if (umax_val >= insn_bitness) {
4031 			/* Shifts greater than 31 or 63 are undefined.
4032 			 * This includes shifts by a negative number.
4033 			 */
4034 			mark_reg_unknown(env, regs, insn->dst_reg);
4035 			break;
4036 		}
4037 		/* We lose all sign bit information (except what we can pick
4038 		 * up from var_off)
4039 		 */
4040 		dst_reg->smin_value = S64_MIN;
4041 		dst_reg->smax_value = S64_MAX;
4042 		/* If we might shift our top bit out, then we know nothing */
4043 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4044 			dst_reg->umin_value = 0;
4045 			dst_reg->umax_value = U64_MAX;
4046 		} else {
4047 			dst_reg->umin_value <<= umin_val;
4048 			dst_reg->umax_value <<= umax_val;
4049 		}
4050 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
4051 		/* We may learn something more from the var_off */
4052 		__update_reg_bounds(dst_reg);
4053 		break;
4054 	case BPF_RSH:
4055 		if (umax_val >= insn_bitness) {
4056 			/* Shifts greater than 31 or 63 are undefined.
4057 			 * This includes shifts by a negative number.
4058 			 */
4059 			mark_reg_unknown(env, regs, insn->dst_reg);
4060 			break;
4061 		}
4062 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
4063 		 * be negative, then either:
4064 		 * 1) src_reg might be zero, so the sign bit of the result is
4065 		 *    unknown, so we lose our signed bounds
4066 		 * 2) it's known negative, thus the unsigned bounds capture the
4067 		 *    signed bounds
4068 		 * 3) the signed bounds cross zero, so they tell us nothing
4069 		 *    about the result
4070 		 * If the value in dst_reg is known nonnegative, then again the
4071 		 * unsigned bounts capture the signed bounds.
4072 		 * Thus, in all cases it suffices to blow away our signed bounds
4073 		 * and rely on inferring new ones from the unsigned bounds and
4074 		 * var_off of the result.
4075 		 */
4076 		dst_reg->smin_value = S64_MIN;
4077 		dst_reg->smax_value = S64_MAX;
4078 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
4079 		dst_reg->umin_value >>= umax_val;
4080 		dst_reg->umax_value >>= umin_val;
4081 		/* We may learn something more from the var_off */
4082 		__update_reg_bounds(dst_reg);
4083 		break;
4084 	case BPF_ARSH:
4085 		if (umax_val >= insn_bitness) {
4086 			/* Shifts greater than 31 or 63 are undefined.
4087 			 * This includes shifts by a negative number.
4088 			 */
4089 			mark_reg_unknown(env, regs, insn->dst_reg);
4090 			break;
4091 		}
4092 
4093 		/* Upon reaching here, src_known is true and
4094 		 * umax_val is equal to umin_val.
4095 		 */
4096 		dst_reg->smin_value >>= umin_val;
4097 		dst_reg->smax_value >>= umin_val;
4098 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4099 
4100 		/* blow away the dst_reg umin_value/umax_value and rely on
4101 		 * dst_reg var_off to refine the result.
4102 		 */
4103 		dst_reg->umin_value = 0;
4104 		dst_reg->umax_value = U64_MAX;
4105 		__update_reg_bounds(dst_reg);
4106 		break;
4107 	default:
4108 		mark_reg_unknown(env, regs, insn->dst_reg);
4109 		break;
4110 	}
4111 
4112 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4113 		/* 32-bit ALU ops are (32,32)->32 */
4114 		coerce_reg_to_size(dst_reg, 4);
4115 	}
4116 
4117 	__reg_deduce_bounds(dst_reg);
4118 	__reg_bound_offset(dst_reg);
4119 	return 0;
4120 }
4121 
4122 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4123  * and var_off.
4124  */
4125 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4126 				   struct bpf_insn *insn)
4127 {
4128 	struct bpf_verifier_state *vstate = env->cur_state;
4129 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4130 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
4131 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4132 	u8 opcode = BPF_OP(insn->code);
4133 
4134 	dst_reg = &regs[insn->dst_reg];
4135 	src_reg = NULL;
4136 	if (dst_reg->type != SCALAR_VALUE)
4137 		ptr_reg = dst_reg;
4138 	if (BPF_SRC(insn->code) == BPF_X) {
4139 		src_reg = &regs[insn->src_reg];
4140 		if (src_reg->type != SCALAR_VALUE) {
4141 			if (dst_reg->type != SCALAR_VALUE) {
4142 				/* Combining two pointers by any ALU op yields
4143 				 * an arbitrary scalar. Disallow all math except
4144 				 * pointer subtraction
4145 				 */
4146 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
4147 					mark_reg_unknown(env, regs, insn->dst_reg);
4148 					return 0;
4149 				}
4150 				verbose(env, "R%d pointer %s pointer prohibited\n",
4151 					insn->dst_reg,
4152 					bpf_alu_string[opcode >> 4]);
4153 				return -EACCES;
4154 			} else {
4155 				/* scalar += pointer
4156 				 * This is legal, but we have to reverse our
4157 				 * src/dest handling in computing the range
4158 				 */
4159 				return adjust_ptr_min_max_vals(env, insn,
4160 							       src_reg, dst_reg);
4161 			}
4162 		} else if (ptr_reg) {
4163 			/* pointer += scalar */
4164 			return adjust_ptr_min_max_vals(env, insn,
4165 						       dst_reg, src_reg);
4166 		}
4167 	} else {
4168 		/* Pretend the src is a reg with a known value, since we only
4169 		 * need to be able to read from this state.
4170 		 */
4171 		off_reg.type = SCALAR_VALUE;
4172 		__mark_reg_known(&off_reg, insn->imm);
4173 		src_reg = &off_reg;
4174 		if (ptr_reg) /* pointer += K */
4175 			return adjust_ptr_min_max_vals(env, insn,
4176 						       ptr_reg, src_reg);
4177 	}
4178 
4179 	/* Got here implies adding two SCALAR_VALUEs */
4180 	if (WARN_ON_ONCE(ptr_reg)) {
4181 		print_verifier_state(env, state);
4182 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
4183 		return -EINVAL;
4184 	}
4185 	if (WARN_ON(!src_reg)) {
4186 		print_verifier_state(env, state);
4187 		verbose(env, "verifier internal error: no src_reg\n");
4188 		return -EINVAL;
4189 	}
4190 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
4191 }
4192 
4193 /* check validity of 32-bit and 64-bit arithmetic operations */
4194 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
4195 {
4196 	struct bpf_reg_state *regs = cur_regs(env);
4197 	u8 opcode = BPF_OP(insn->code);
4198 	int err;
4199 
4200 	if (opcode == BPF_END || opcode == BPF_NEG) {
4201 		if (opcode == BPF_NEG) {
4202 			if (BPF_SRC(insn->code) != 0 ||
4203 			    insn->src_reg != BPF_REG_0 ||
4204 			    insn->off != 0 || insn->imm != 0) {
4205 				verbose(env, "BPF_NEG uses reserved fields\n");
4206 				return -EINVAL;
4207 			}
4208 		} else {
4209 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
4210 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4211 			    BPF_CLASS(insn->code) == BPF_ALU64) {
4212 				verbose(env, "BPF_END uses reserved fields\n");
4213 				return -EINVAL;
4214 			}
4215 		}
4216 
4217 		/* check src operand */
4218 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4219 		if (err)
4220 			return err;
4221 
4222 		if (is_pointer_value(env, insn->dst_reg)) {
4223 			verbose(env, "R%d pointer arithmetic prohibited\n",
4224 				insn->dst_reg);
4225 			return -EACCES;
4226 		}
4227 
4228 		/* check dest operand */
4229 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
4230 		if (err)
4231 			return err;
4232 
4233 	} else if (opcode == BPF_MOV) {
4234 
4235 		if (BPF_SRC(insn->code) == BPF_X) {
4236 			if (insn->imm != 0 || insn->off != 0) {
4237 				verbose(env, "BPF_MOV uses reserved fields\n");
4238 				return -EINVAL;
4239 			}
4240 
4241 			/* check src operand */
4242 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4243 			if (err)
4244 				return err;
4245 		} else {
4246 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4247 				verbose(env, "BPF_MOV uses reserved fields\n");
4248 				return -EINVAL;
4249 			}
4250 		}
4251 
4252 		/* check dest operand, mark as required later */
4253 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4254 		if (err)
4255 			return err;
4256 
4257 		if (BPF_SRC(insn->code) == BPF_X) {
4258 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
4259 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4260 
4261 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4262 				/* case: R1 = R2
4263 				 * copy register state to dest reg
4264 				 */
4265 				*dst_reg = *src_reg;
4266 				dst_reg->live |= REG_LIVE_WRITTEN;
4267 			} else {
4268 				/* R1 = (u32) R2 */
4269 				if (is_pointer_value(env, insn->src_reg)) {
4270 					verbose(env,
4271 						"R%d partial copy of pointer\n",
4272 						insn->src_reg);
4273 					return -EACCES;
4274 				} else if (src_reg->type == SCALAR_VALUE) {
4275 					*dst_reg = *src_reg;
4276 					dst_reg->live |= REG_LIVE_WRITTEN;
4277 				} else {
4278 					mark_reg_unknown(env, regs,
4279 							 insn->dst_reg);
4280 				}
4281 				coerce_reg_to_size(dst_reg, 4);
4282 			}
4283 		} else {
4284 			/* case: R = imm
4285 			 * remember the value we stored into this reg
4286 			 */
4287 			/* clear any state __mark_reg_known doesn't set */
4288 			mark_reg_unknown(env, regs, insn->dst_reg);
4289 			regs[insn->dst_reg].type = SCALAR_VALUE;
4290 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4291 				__mark_reg_known(regs + insn->dst_reg,
4292 						 insn->imm);
4293 			} else {
4294 				__mark_reg_known(regs + insn->dst_reg,
4295 						 (u32)insn->imm);
4296 			}
4297 		}
4298 
4299 	} else if (opcode > BPF_END) {
4300 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
4301 		return -EINVAL;
4302 
4303 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
4304 
4305 		if (BPF_SRC(insn->code) == BPF_X) {
4306 			if (insn->imm != 0 || insn->off != 0) {
4307 				verbose(env, "BPF_ALU uses reserved fields\n");
4308 				return -EINVAL;
4309 			}
4310 			/* check src1 operand */
4311 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4312 			if (err)
4313 				return err;
4314 		} else {
4315 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4316 				verbose(env, "BPF_ALU uses reserved fields\n");
4317 				return -EINVAL;
4318 			}
4319 		}
4320 
4321 		/* check src2 operand */
4322 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4323 		if (err)
4324 			return err;
4325 
4326 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
4327 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
4328 			verbose(env, "div by zero\n");
4329 			return -EINVAL;
4330 		}
4331 
4332 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
4333 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
4334 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
4335 
4336 			if (insn->imm < 0 || insn->imm >= size) {
4337 				verbose(env, "invalid shift %d\n", insn->imm);
4338 				return -EINVAL;
4339 			}
4340 		}
4341 
4342 		/* check dest operand */
4343 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4344 		if (err)
4345 			return err;
4346 
4347 		return adjust_reg_min_max_vals(env, insn);
4348 	}
4349 
4350 	return 0;
4351 }
4352 
4353 static void __find_good_pkt_pointers(struct bpf_func_state *state,
4354 				     struct bpf_reg_state *dst_reg,
4355 				     enum bpf_reg_type type, u16 new_range)
4356 {
4357 	struct bpf_reg_state *reg;
4358 	int i;
4359 
4360 	for (i = 0; i < MAX_BPF_REG; i++) {
4361 		reg = &state->regs[i];
4362 		if (reg->type == type && reg->id == dst_reg->id)
4363 			/* keep the maximum range already checked */
4364 			reg->range = max(reg->range, new_range);
4365 	}
4366 
4367 	bpf_for_each_spilled_reg(i, state, reg) {
4368 		if (!reg)
4369 			continue;
4370 		if (reg->type == type && reg->id == dst_reg->id)
4371 			reg->range = max(reg->range, new_range);
4372 	}
4373 }
4374 
4375 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
4376 				   struct bpf_reg_state *dst_reg,
4377 				   enum bpf_reg_type type,
4378 				   bool range_right_open)
4379 {
4380 	u16 new_range;
4381 	int i;
4382 
4383 	if (dst_reg->off < 0 ||
4384 	    (dst_reg->off == 0 && range_right_open))
4385 		/* This doesn't give us any range */
4386 		return;
4387 
4388 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
4389 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
4390 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
4391 		 * than pkt_end, but that's because it's also less than pkt.
4392 		 */
4393 		return;
4394 
4395 	new_range = dst_reg->off;
4396 	if (range_right_open)
4397 		new_range--;
4398 
4399 	/* Examples for register markings:
4400 	 *
4401 	 * pkt_data in dst register:
4402 	 *
4403 	 *   r2 = r3;
4404 	 *   r2 += 8;
4405 	 *   if (r2 > pkt_end) goto <handle exception>
4406 	 *   <access okay>
4407 	 *
4408 	 *   r2 = r3;
4409 	 *   r2 += 8;
4410 	 *   if (r2 < pkt_end) goto <access okay>
4411 	 *   <handle exception>
4412 	 *
4413 	 *   Where:
4414 	 *     r2 == dst_reg, pkt_end == src_reg
4415 	 *     r2=pkt(id=n,off=8,r=0)
4416 	 *     r3=pkt(id=n,off=0,r=0)
4417 	 *
4418 	 * pkt_data in src register:
4419 	 *
4420 	 *   r2 = r3;
4421 	 *   r2 += 8;
4422 	 *   if (pkt_end >= r2) goto <access okay>
4423 	 *   <handle exception>
4424 	 *
4425 	 *   r2 = r3;
4426 	 *   r2 += 8;
4427 	 *   if (pkt_end <= r2) goto <handle exception>
4428 	 *   <access okay>
4429 	 *
4430 	 *   Where:
4431 	 *     pkt_end == dst_reg, r2 == src_reg
4432 	 *     r2=pkt(id=n,off=8,r=0)
4433 	 *     r3=pkt(id=n,off=0,r=0)
4434 	 *
4435 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
4436 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4437 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
4438 	 * the check.
4439 	 */
4440 
4441 	/* If our ids match, then we must have the same max_value.  And we
4442 	 * don't care about the other reg's fixed offset, since if it's too big
4443 	 * the range won't allow anything.
4444 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4445 	 */
4446 	for (i = 0; i <= vstate->curframe; i++)
4447 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
4448 					 new_range);
4449 }
4450 
4451 /* compute branch direction of the expression "if (reg opcode val) goto target;"
4452  * and return:
4453  *  1 - branch will be taken and "goto target" will be executed
4454  *  0 - branch will not be taken and fall-through to next insn
4455  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4456  */
4457 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
4458 			   bool is_jmp32)
4459 {
4460 	struct bpf_reg_state reg_lo;
4461 	s64 sval;
4462 
4463 	if (__is_pointer_value(false, reg))
4464 		return -1;
4465 
4466 	if (is_jmp32) {
4467 		reg_lo = *reg;
4468 		reg = &reg_lo;
4469 		/* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4470 		 * could truncate high bits and update umin/umax according to
4471 		 * information of low bits.
4472 		 */
4473 		coerce_reg_to_size(reg, 4);
4474 		/* smin/smax need special handling. For example, after coerce,
4475 		 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4476 		 * used as operand to JMP32. It is a negative number from s32's
4477 		 * point of view, while it is a positive number when seen as
4478 		 * s64. The smin/smax are kept as s64, therefore, when used with
4479 		 * JMP32, they need to be transformed into s32, then sign
4480 		 * extended back to s64.
4481 		 *
4482 		 * Also, smin/smax were copied from umin/umax. If umin/umax has
4483 		 * different sign bit, then min/max relationship doesn't
4484 		 * maintain after casting into s32, for this case, set smin/smax
4485 		 * to safest range.
4486 		 */
4487 		if ((reg->umax_value ^ reg->umin_value) &
4488 		    (1ULL << 31)) {
4489 			reg->smin_value = S32_MIN;
4490 			reg->smax_value = S32_MAX;
4491 		}
4492 		reg->smin_value = (s64)(s32)reg->smin_value;
4493 		reg->smax_value = (s64)(s32)reg->smax_value;
4494 
4495 		val = (u32)val;
4496 		sval = (s64)(s32)val;
4497 	} else {
4498 		sval = (s64)val;
4499 	}
4500 
4501 	switch (opcode) {
4502 	case BPF_JEQ:
4503 		if (tnum_is_const(reg->var_off))
4504 			return !!tnum_equals_const(reg->var_off, val);
4505 		break;
4506 	case BPF_JNE:
4507 		if (tnum_is_const(reg->var_off))
4508 			return !tnum_equals_const(reg->var_off, val);
4509 		break;
4510 	case BPF_JSET:
4511 		if ((~reg->var_off.mask & reg->var_off.value) & val)
4512 			return 1;
4513 		if (!((reg->var_off.mask | reg->var_off.value) & val))
4514 			return 0;
4515 		break;
4516 	case BPF_JGT:
4517 		if (reg->umin_value > val)
4518 			return 1;
4519 		else if (reg->umax_value <= val)
4520 			return 0;
4521 		break;
4522 	case BPF_JSGT:
4523 		if (reg->smin_value > sval)
4524 			return 1;
4525 		else if (reg->smax_value < sval)
4526 			return 0;
4527 		break;
4528 	case BPF_JLT:
4529 		if (reg->umax_value < val)
4530 			return 1;
4531 		else if (reg->umin_value >= val)
4532 			return 0;
4533 		break;
4534 	case BPF_JSLT:
4535 		if (reg->smax_value < sval)
4536 			return 1;
4537 		else if (reg->smin_value >= sval)
4538 			return 0;
4539 		break;
4540 	case BPF_JGE:
4541 		if (reg->umin_value >= val)
4542 			return 1;
4543 		else if (reg->umax_value < val)
4544 			return 0;
4545 		break;
4546 	case BPF_JSGE:
4547 		if (reg->smin_value >= sval)
4548 			return 1;
4549 		else if (reg->smax_value < sval)
4550 			return 0;
4551 		break;
4552 	case BPF_JLE:
4553 		if (reg->umax_value <= val)
4554 			return 1;
4555 		else if (reg->umin_value > val)
4556 			return 0;
4557 		break;
4558 	case BPF_JSLE:
4559 		if (reg->smax_value <= sval)
4560 			return 1;
4561 		else if (reg->smin_value > sval)
4562 			return 0;
4563 		break;
4564 	}
4565 
4566 	return -1;
4567 }
4568 
4569 /* Generate min value of the high 32-bit from TNUM info. */
4570 static u64 gen_hi_min(struct tnum var)
4571 {
4572 	return var.value & ~0xffffffffULL;
4573 }
4574 
4575 /* Generate max value of the high 32-bit from TNUM info. */
4576 static u64 gen_hi_max(struct tnum var)
4577 {
4578 	return (var.value | var.mask) & ~0xffffffffULL;
4579 }
4580 
4581 /* Return true if VAL is compared with a s64 sign extended from s32, and they
4582  * are with the same signedness.
4583  */
4584 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
4585 {
4586 	return ((s32)sval >= 0 &&
4587 		reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
4588 	       ((s32)sval < 0 &&
4589 		reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
4590 }
4591 
4592 /* Adjusts the register min/max values in the case that the dst_reg is the
4593  * variable register that we are working on, and src_reg is a constant or we're
4594  * simply doing a BPF_K check.
4595  * In JEQ/JNE cases we also adjust the var_off values.
4596  */
4597 static void reg_set_min_max(struct bpf_reg_state *true_reg,
4598 			    struct bpf_reg_state *false_reg, u64 val,
4599 			    u8 opcode, bool is_jmp32)
4600 {
4601 	s64 sval;
4602 
4603 	/* If the dst_reg is a pointer, we can't learn anything about its
4604 	 * variable offset from the compare (unless src_reg were a pointer into
4605 	 * the same object, but we don't bother with that.
4606 	 * Since false_reg and true_reg have the same type by construction, we
4607 	 * only need to check one of them for pointerness.
4608 	 */
4609 	if (__is_pointer_value(false, false_reg))
4610 		return;
4611 
4612 	val = is_jmp32 ? (u32)val : val;
4613 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4614 
4615 	switch (opcode) {
4616 	case BPF_JEQ:
4617 	case BPF_JNE:
4618 	{
4619 		struct bpf_reg_state *reg =
4620 			opcode == BPF_JEQ ? true_reg : false_reg;
4621 
4622 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4623 		 * if it is true we know the value for sure. Likewise for
4624 		 * BPF_JNE.
4625 		 */
4626 		if (is_jmp32) {
4627 			u64 old_v = reg->var_off.value;
4628 			u64 hi_mask = ~0xffffffffULL;
4629 
4630 			reg->var_off.value = (old_v & hi_mask) | val;
4631 			reg->var_off.mask &= hi_mask;
4632 		} else {
4633 			__mark_reg_known(reg, val);
4634 		}
4635 		break;
4636 	}
4637 	case BPF_JSET:
4638 		false_reg->var_off = tnum_and(false_reg->var_off,
4639 					      tnum_const(~val));
4640 		if (is_power_of_2(val))
4641 			true_reg->var_off = tnum_or(true_reg->var_off,
4642 						    tnum_const(val));
4643 		break;
4644 	case BPF_JGE:
4645 	case BPF_JGT:
4646 	{
4647 		u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
4648 		u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
4649 
4650 		if (is_jmp32) {
4651 			false_umax += gen_hi_max(false_reg->var_off);
4652 			true_umin += gen_hi_min(true_reg->var_off);
4653 		}
4654 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4655 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4656 		break;
4657 	}
4658 	case BPF_JSGE:
4659 	case BPF_JSGT:
4660 	{
4661 		s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
4662 		s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
4663 
4664 		/* If the full s64 was not sign-extended from s32 then don't
4665 		 * deduct further info.
4666 		 */
4667 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4668 			break;
4669 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4670 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4671 		break;
4672 	}
4673 	case BPF_JLE:
4674 	case BPF_JLT:
4675 	{
4676 		u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
4677 		u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
4678 
4679 		if (is_jmp32) {
4680 			false_umin += gen_hi_min(false_reg->var_off);
4681 			true_umax += gen_hi_max(true_reg->var_off);
4682 		}
4683 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4684 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4685 		break;
4686 	}
4687 	case BPF_JSLE:
4688 	case BPF_JSLT:
4689 	{
4690 		s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
4691 		s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4692 
4693 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4694 			break;
4695 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4696 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4697 		break;
4698 	}
4699 	default:
4700 		break;
4701 	}
4702 
4703 	__reg_deduce_bounds(false_reg);
4704 	__reg_deduce_bounds(true_reg);
4705 	/* We might have learned some bits from the bounds. */
4706 	__reg_bound_offset(false_reg);
4707 	__reg_bound_offset(true_reg);
4708 	/* Intersecting with the old var_off might have improved our bounds
4709 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4710 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4711 	 */
4712 	__update_reg_bounds(false_reg);
4713 	__update_reg_bounds(true_reg);
4714 }
4715 
4716 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
4717  * the variable reg.
4718  */
4719 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4720 				struct bpf_reg_state *false_reg, u64 val,
4721 				u8 opcode, bool is_jmp32)
4722 {
4723 	s64 sval;
4724 
4725 	if (__is_pointer_value(false, false_reg))
4726 		return;
4727 
4728 	val = is_jmp32 ? (u32)val : val;
4729 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4730 
4731 	switch (opcode) {
4732 	case BPF_JEQ:
4733 	case BPF_JNE:
4734 	{
4735 		struct bpf_reg_state *reg =
4736 			opcode == BPF_JEQ ? true_reg : false_reg;
4737 
4738 		if (is_jmp32) {
4739 			u64 old_v = reg->var_off.value;
4740 			u64 hi_mask = ~0xffffffffULL;
4741 
4742 			reg->var_off.value = (old_v & hi_mask) | val;
4743 			reg->var_off.mask &= hi_mask;
4744 		} else {
4745 			__mark_reg_known(reg, val);
4746 		}
4747 		break;
4748 	}
4749 	case BPF_JSET:
4750 		false_reg->var_off = tnum_and(false_reg->var_off,
4751 					      tnum_const(~val));
4752 		if (is_power_of_2(val))
4753 			true_reg->var_off = tnum_or(true_reg->var_off,
4754 						    tnum_const(val));
4755 		break;
4756 	case BPF_JGE:
4757 	case BPF_JGT:
4758 	{
4759 		u64 false_umin = opcode == BPF_JGT ? val    : val + 1;
4760 		u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4761 
4762 		if (is_jmp32) {
4763 			false_umin += gen_hi_min(false_reg->var_off);
4764 			true_umax += gen_hi_max(true_reg->var_off);
4765 		}
4766 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4767 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4768 		break;
4769 	}
4770 	case BPF_JSGE:
4771 	case BPF_JSGT:
4772 	{
4773 		s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
4774 		s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4775 
4776 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4777 			break;
4778 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4779 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4780 		break;
4781 	}
4782 	case BPF_JLE:
4783 	case BPF_JLT:
4784 	{
4785 		u64 false_umax = opcode == BPF_JLT ? val    : val - 1;
4786 		u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4787 
4788 		if (is_jmp32) {
4789 			false_umax += gen_hi_max(false_reg->var_off);
4790 			true_umin += gen_hi_min(true_reg->var_off);
4791 		}
4792 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4793 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4794 		break;
4795 	}
4796 	case BPF_JSLE:
4797 	case BPF_JSLT:
4798 	{
4799 		s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
4800 		s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4801 
4802 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4803 			break;
4804 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4805 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4806 		break;
4807 	}
4808 	default:
4809 		break;
4810 	}
4811 
4812 	__reg_deduce_bounds(false_reg);
4813 	__reg_deduce_bounds(true_reg);
4814 	/* We might have learned some bits from the bounds. */
4815 	__reg_bound_offset(false_reg);
4816 	__reg_bound_offset(true_reg);
4817 	/* Intersecting with the old var_off might have improved our bounds
4818 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4819 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4820 	 */
4821 	__update_reg_bounds(false_reg);
4822 	__update_reg_bounds(true_reg);
4823 }
4824 
4825 /* Regs are known to be equal, so intersect their min/max/var_off */
4826 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4827 				  struct bpf_reg_state *dst_reg)
4828 {
4829 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4830 							dst_reg->umin_value);
4831 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4832 							dst_reg->umax_value);
4833 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4834 							dst_reg->smin_value);
4835 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4836 							dst_reg->smax_value);
4837 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4838 							     dst_reg->var_off);
4839 	/* We might have learned new bounds from the var_off. */
4840 	__update_reg_bounds(src_reg);
4841 	__update_reg_bounds(dst_reg);
4842 	/* We might have learned something about the sign bit. */
4843 	__reg_deduce_bounds(src_reg);
4844 	__reg_deduce_bounds(dst_reg);
4845 	/* We might have learned some bits from the bounds. */
4846 	__reg_bound_offset(src_reg);
4847 	__reg_bound_offset(dst_reg);
4848 	/* Intersecting with the old var_off might have improved our bounds
4849 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4850 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4851 	 */
4852 	__update_reg_bounds(src_reg);
4853 	__update_reg_bounds(dst_reg);
4854 }
4855 
4856 static void reg_combine_min_max(struct bpf_reg_state *true_src,
4857 				struct bpf_reg_state *true_dst,
4858 				struct bpf_reg_state *false_src,
4859 				struct bpf_reg_state *false_dst,
4860 				u8 opcode)
4861 {
4862 	switch (opcode) {
4863 	case BPF_JEQ:
4864 		__reg_combine_min_max(true_src, true_dst);
4865 		break;
4866 	case BPF_JNE:
4867 		__reg_combine_min_max(false_src, false_dst);
4868 		break;
4869 	}
4870 }
4871 
4872 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4873 				 struct bpf_reg_state *reg, u32 id,
4874 				 bool is_null)
4875 {
4876 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
4877 		/* Old offset (both fixed and variable parts) should
4878 		 * have been known-zero, because we don't allow pointer
4879 		 * arithmetic on pointers that might be NULL.
4880 		 */
4881 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4882 				 !tnum_equals_const(reg->var_off, 0) ||
4883 				 reg->off)) {
4884 			__mark_reg_known_zero(reg);
4885 			reg->off = 0;
4886 		}
4887 		if (is_null) {
4888 			reg->type = SCALAR_VALUE;
4889 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4890 			if (reg->map_ptr->inner_map_meta) {
4891 				reg->type = CONST_PTR_TO_MAP;
4892 				reg->map_ptr = reg->map_ptr->inner_map_meta;
4893 			} else {
4894 				reg->type = PTR_TO_MAP_VALUE;
4895 			}
4896 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4897 			reg->type = PTR_TO_SOCKET;
4898 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
4899 			reg->type = PTR_TO_SOCK_COMMON;
4900 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
4901 			reg->type = PTR_TO_TCP_SOCK;
4902 		}
4903 		if (is_null) {
4904 			/* We don't need id and ref_obj_id from this point
4905 			 * onwards anymore, thus we should better reset it,
4906 			 * so that state pruning has chances to take effect.
4907 			 */
4908 			reg->id = 0;
4909 			reg->ref_obj_id = 0;
4910 		} else if (!reg_may_point_to_spin_lock(reg)) {
4911 			/* For not-NULL ptr, reg->ref_obj_id will be reset
4912 			 * in release_reg_references().
4913 			 *
4914 			 * reg->id is still used by spin_lock ptr. Other
4915 			 * than spin_lock ptr type, reg->id can be reset.
4916 			 */
4917 			reg->id = 0;
4918 		}
4919 	}
4920 }
4921 
4922 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
4923 				    bool is_null)
4924 {
4925 	struct bpf_reg_state *reg;
4926 	int i;
4927 
4928 	for (i = 0; i < MAX_BPF_REG; i++)
4929 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
4930 
4931 	bpf_for_each_spilled_reg(i, state, reg) {
4932 		if (!reg)
4933 			continue;
4934 		mark_ptr_or_null_reg(state, reg, id, is_null);
4935 	}
4936 }
4937 
4938 /* The logic is similar to find_good_pkt_pointers(), both could eventually
4939  * be folded together at some point.
4940  */
4941 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4942 				  bool is_null)
4943 {
4944 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4945 	struct bpf_reg_state *regs = state->regs;
4946 	u32 ref_obj_id = regs[regno].ref_obj_id;
4947 	u32 id = regs[regno].id;
4948 	int i;
4949 
4950 	if (ref_obj_id && ref_obj_id == id && is_null)
4951 		/* regs[regno] is in the " == NULL" branch.
4952 		 * No one could have freed the reference state before
4953 		 * doing the NULL check.
4954 		 */
4955 		WARN_ON_ONCE(release_reference_state(state, id));
4956 
4957 	for (i = 0; i <= vstate->curframe; i++)
4958 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
4959 }
4960 
4961 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4962 				   struct bpf_reg_state *dst_reg,
4963 				   struct bpf_reg_state *src_reg,
4964 				   struct bpf_verifier_state *this_branch,
4965 				   struct bpf_verifier_state *other_branch)
4966 {
4967 	if (BPF_SRC(insn->code) != BPF_X)
4968 		return false;
4969 
4970 	/* Pointers are always 64-bit. */
4971 	if (BPF_CLASS(insn->code) == BPF_JMP32)
4972 		return false;
4973 
4974 	switch (BPF_OP(insn->code)) {
4975 	case BPF_JGT:
4976 		if ((dst_reg->type == PTR_TO_PACKET &&
4977 		     src_reg->type == PTR_TO_PACKET_END) ||
4978 		    (dst_reg->type == PTR_TO_PACKET_META &&
4979 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4980 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4981 			find_good_pkt_pointers(this_branch, dst_reg,
4982 					       dst_reg->type, false);
4983 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4984 			    src_reg->type == PTR_TO_PACKET) ||
4985 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4986 			    src_reg->type == PTR_TO_PACKET_META)) {
4987 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
4988 			find_good_pkt_pointers(other_branch, src_reg,
4989 					       src_reg->type, true);
4990 		} else {
4991 			return false;
4992 		}
4993 		break;
4994 	case BPF_JLT:
4995 		if ((dst_reg->type == PTR_TO_PACKET &&
4996 		     src_reg->type == PTR_TO_PACKET_END) ||
4997 		    (dst_reg->type == PTR_TO_PACKET_META &&
4998 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4999 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5000 			find_good_pkt_pointers(other_branch, dst_reg,
5001 					       dst_reg->type, true);
5002 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5003 			    src_reg->type == PTR_TO_PACKET) ||
5004 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5005 			    src_reg->type == PTR_TO_PACKET_META)) {
5006 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
5007 			find_good_pkt_pointers(this_branch, src_reg,
5008 					       src_reg->type, false);
5009 		} else {
5010 			return false;
5011 		}
5012 		break;
5013 	case BPF_JGE:
5014 		if ((dst_reg->type == PTR_TO_PACKET &&
5015 		     src_reg->type == PTR_TO_PACKET_END) ||
5016 		    (dst_reg->type == PTR_TO_PACKET_META &&
5017 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5018 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5019 			find_good_pkt_pointers(this_branch, dst_reg,
5020 					       dst_reg->type, true);
5021 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5022 			    src_reg->type == PTR_TO_PACKET) ||
5023 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5024 			    src_reg->type == PTR_TO_PACKET_META)) {
5025 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5026 			find_good_pkt_pointers(other_branch, src_reg,
5027 					       src_reg->type, false);
5028 		} else {
5029 			return false;
5030 		}
5031 		break;
5032 	case BPF_JLE:
5033 		if ((dst_reg->type == PTR_TO_PACKET &&
5034 		     src_reg->type == PTR_TO_PACKET_END) ||
5035 		    (dst_reg->type == PTR_TO_PACKET_META &&
5036 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5037 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5038 			find_good_pkt_pointers(other_branch, dst_reg,
5039 					       dst_reg->type, false);
5040 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5041 			    src_reg->type == PTR_TO_PACKET) ||
5042 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5043 			    src_reg->type == PTR_TO_PACKET_META)) {
5044 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5045 			find_good_pkt_pointers(this_branch, src_reg,
5046 					       src_reg->type, true);
5047 		} else {
5048 			return false;
5049 		}
5050 		break;
5051 	default:
5052 		return false;
5053 	}
5054 
5055 	return true;
5056 }
5057 
5058 static int check_cond_jmp_op(struct bpf_verifier_env *env,
5059 			     struct bpf_insn *insn, int *insn_idx)
5060 {
5061 	struct bpf_verifier_state *this_branch = env->cur_state;
5062 	struct bpf_verifier_state *other_branch;
5063 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
5064 	struct bpf_reg_state *dst_reg, *other_branch_regs;
5065 	u8 opcode = BPF_OP(insn->code);
5066 	bool is_jmp32;
5067 	int err;
5068 
5069 	/* Only conditional jumps are expected to reach here. */
5070 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
5071 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
5072 		return -EINVAL;
5073 	}
5074 
5075 	if (BPF_SRC(insn->code) == BPF_X) {
5076 		if (insn->imm != 0) {
5077 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5078 			return -EINVAL;
5079 		}
5080 
5081 		/* check src1 operand */
5082 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
5083 		if (err)
5084 			return err;
5085 
5086 		if (is_pointer_value(env, insn->src_reg)) {
5087 			verbose(env, "R%d pointer comparison prohibited\n",
5088 				insn->src_reg);
5089 			return -EACCES;
5090 		}
5091 	} else {
5092 		if (insn->src_reg != BPF_REG_0) {
5093 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5094 			return -EINVAL;
5095 		}
5096 	}
5097 
5098 	/* check src2 operand */
5099 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5100 	if (err)
5101 		return err;
5102 
5103 	dst_reg = &regs[insn->dst_reg];
5104 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
5105 
5106 	if (BPF_SRC(insn->code) == BPF_K) {
5107 		int pred = is_branch_taken(dst_reg, insn->imm, opcode,
5108 					   is_jmp32);
5109 
5110 		if (pred == 1) {
5111 			 /* only follow the goto, ignore fall-through */
5112 			*insn_idx += insn->off;
5113 			return 0;
5114 		} else if (pred == 0) {
5115 			/* only follow fall-through branch, since
5116 			 * that's where the program will go
5117 			 */
5118 			return 0;
5119 		}
5120 	}
5121 
5122 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5123 				  false);
5124 	if (!other_branch)
5125 		return -EFAULT;
5126 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
5127 
5128 	/* detect if we are comparing against a constant value so we can adjust
5129 	 * our min/max values for our dst register.
5130 	 * this is only legit if both are scalars (or pointers to the same
5131 	 * object, I suppose, but we don't support that right now), because
5132 	 * otherwise the different base pointers mean the offsets aren't
5133 	 * comparable.
5134 	 */
5135 	if (BPF_SRC(insn->code) == BPF_X) {
5136 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5137 		struct bpf_reg_state lo_reg0 = *dst_reg;
5138 		struct bpf_reg_state lo_reg1 = *src_reg;
5139 		struct bpf_reg_state *src_lo, *dst_lo;
5140 
5141 		dst_lo = &lo_reg0;
5142 		src_lo = &lo_reg1;
5143 		coerce_reg_to_size(dst_lo, 4);
5144 		coerce_reg_to_size(src_lo, 4);
5145 
5146 		if (dst_reg->type == SCALAR_VALUE &&
5147 		    src_reg->type == SCALAR_VALUE) {
5148 			if (tnum_is_const(src_reg->var_off) ||
5149 			    (is_jmp32 && tnum_is_const(src_lo->var_off)))
5150 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
5151 						dst_reg,
5152 						is_jmp32
5153 						? src_lo->var_off.value
5154 						: src_reg->var_off.value,
5155 						opcode, is_jmp32);
5156 			else if (tnum_is_const(dst_reg->var_off) ||
5157 				 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
5158 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
5159 						    src_reg,
5160 						    is_jmp32
5161 						    ? dst_lo->var_off.value
5162 						    : dst_reg->var_off.value,
5163 						    opcode, is_jmp32);
5164 			else if (!is_jmp32 &&
5165 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
5166 				/* Comparing for equality, we can combine knowledge */
5167 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
5168 						    &other_branch_regs[insn->dst_reg],
5169 						    src_reg, dst_reg, opcode);
5170 		}
5171 	} else if (dst_reg->type == SCALAR_VALUE) {
5172 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
5173 					dst_reg, insn->imm, opcode, is_jmp32);
5174 	}
5175 
5176 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5177 	 * NOTE: these optimizations below are related with pointer comparison
5178 	 *       which will never be JMP32.
5179 	 */
5180 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
5181 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
5182 	    reg_type_may_be_null(dst_reg->type)) {
5183 		/* Mark all identical registers in each branch as either
5184 		 * safe or unknown depending R == 0 or R != 0 conditional.
5185 		 */
5186 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5187 				      opcode == BPF_JNE);
5188 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5189 				      opcode == BPF_JEQ);
5190 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5191 					   this_branch, other_branch) &&
5192 		   is_pointer_value(env, insn->dst_reg)) {
5193 		verbose(env, "R%d pointer comparison prohibited\n",
5194 			insn->dst_reg);
5195 		return -EACCES;
5196 	}
5197 	if (env->log.level & BPF_LOG_LEVEL)
5198 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
5199 	return 0;
5200 }
5201 
5202 /* verify BPF_LD_IMM64 instruction */
5203 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
5204 {
5205 	struct bpf_insn_aux_data *aux = cur_aux(env);
5206 	struct bpf_reg_state *regs = cur_regs(env);
5207 	struct bpf_map *map;
5208 	int err;
5209 
5210 	if (BPF_SIZE(insn->code) != BPF_DW) {
5211 		verbose(env, "invalid BPF_LD_IMM insn\n");
5212 		return -EINVAL;
5213 	}
5214 	if (insn->off != 0) {
5215 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
5216 		return -EINVAL;
5217 	}
5218 
5219 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
5220 	if (err)
5221 		return err;
5222 
5223 	if (insn->src_reg == 0) {
5224 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5225 
5226 		regs[insn->dst_reg].type = SCALAR_VALUE;
5227 		__mark_reg_known(&regs[insn->dst_reg], imm);
5228 		return 0;
5229 	}
5230 
5231 	map = env->used_maps[aux->map_index];
5232 	mark_reg_known_zero(env, regs, insn->dst_reg);
5233 	regs[insn->dst_reg].map_ptr = map;
5234 
5235 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5236 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5237 		regs[insn->dst_reg].off = aux->map_off;
5238 		if (map_value_has_spin_lock(map))
5239 			regs[insn->dst_reg].id = ++env->id_gen;
5240 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5241 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5242 	} else {
5243 		verbose(env, "bpf verifier is misconfigured\n");
5244 		return -EINVAL;
5245 	}
5246 
5247 	return 0;
5248 }
5249 
5250 static bool may_access_skb(enum bpf_prog_type type)
5251 {
5252 	switch (type) {
5253 	case BPF_PROG_TYPE_SOCKET_FILTER:
5254 	case BPF_PROG_TYPE_SCHED_CLS:
5255 	case BPF_PROG_TYPE_SCHED_ACT:
5256 		return true;
5257 	default:
5258 		return false;
5259 	}
5260 }
5261 
5262 /* verify safety of LD_ABS|LD_IND instructions:
5263  * - they can only appear in the programs where ctx == skb
5264  * - since they are wrappers of function calls, they scratch R1-R5 registers,
5265  *   preserve R6-R9, and store return value into R0
5266  *
5267  * Implicit input:
5268  *   ctx == skb == R6 == CTX
5269  *
5270  * Explicit input:
5271  *   SRC == any register
5272  *   IMM == 32-bit immediate
5273  *
5274  * Output:
5275  *   R0 - 8/16/32-bit skb data converted to cpu endianness
5276  */
5277 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
5278 {
5279 	struct bpf_reg_state *regs = cur_regs(env);
5280 	u8 mode = BPF_MODE(insn->code);
5281 	int i, err;
5282 
5283 	if (!may_access_skb(env->prog->type)) {
5284 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
5285 		return -EINVAL;
5286 	}
5287 
5288 	if (!env->ops->gen_ld_abs) {
5289 		verbose(env, "bpf verifier is misconfigured\n");
5290 		return -EINVAL;
5291 	}
5292 
5293 	if (env->subprog_cnt > 1) {
5294 		/* when program has LD_ABS insn JITs and interpreter assume
5295 		 * that r1 == ctx == skb which is not the case for callees
5296 		 * that can have arbitrary arguments. It's problematic
5297 		 * for main prog as well since JITs would need to analyze
5298 		 * all functions in order to make proper register save/restore
5299 		 * decisions in the main prog. Hence disallow LD_ABS with calls
5300 		 */
5301 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5302 		return -EINVAL;
5303 	}
5304 
5305 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
5306 	    BPF_SIZE(insn->code) == BPF_DW ||
5307 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
5308 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
5309 		return -EINVAL;
5310 	}
5311 
5312 	/* check whether implicit source operand (register R6) is readable */
5313 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
5314 	if (err)
5315 		return err;
5316 
5317 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
5318 	 * gen_ld_abs() may terminate the program at runtime, leading to
5319 	 * reference leak.
5320 	 */
5321 	err = check_reference_leak(env);
5322 	if (err) {
5323 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
5324 		return err;
5325 	}
5326 
5327 	if (env->cur_state->active_spin_lock) {
5328 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
5329 		return -EINVAL;
5330 	}
5331 
5332 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
5333 		verbose(env,
5334 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
5335 		return -EINVAL;
5336 	}
5337 
5338 	if (mode == BPF_IND) {
5339 		/* check explicit source operand */
5340 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
5341 		if (err)
5342 			return err;
5343 	}
5344 
5345 	/* reset caller saved regs to unreadable */
5346 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5347 		mark_reg_not_init(env, regs, caller_saved[i]);
5348 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5349 	}
5350 
5351 	/* mark destination R0 register as readable, since it contains
5352 	 * the value fetched from the packet.
5353 	 * Already marked as written above.
5354 	 */
5355 	mark_reg_unknown(env, regs, BPF_REG_0);
5356 	return 0;
5357 }
5358 
5359 static int check_return_code(struct bpf_verifier_env *env)
5360 {
5361 	struct bpf_reg_state *reg;
5362 	struct tnum range = tnum_range(0, 1);
5363 
5364 	switch (env->prog->type) {
5365 	case BPF_PROG_TYPE_CGROUP_SKB:
5366 	case BPF_PROG_TYPE_CGROUP_SOCK:
5367 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
5368 	case BPF_PROG_TYPE_SOCK_OPS:
5369 	case BPF_PROG_TYPE_CGROUP_DEVICE:
5370 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
5371 		break;
5372 	default:
5373 		return 0;
5374 	}
5375 
5376 	reg = cur_regs(env) + BPF_REG_0;
5377 	if (reg->type != SCALAR_VALUE) {
5378 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
5379 			reg_type_str[reg->type]);
5380 		return -EINVAL;
5381 	}
5382 
5383 	if (!tnum_in(range, reg->var_off)) {
5384 		verbose(env, "At program exit the register R0 ");
5385 		if (!tnum_is_unknown(reg->var_off)) {
5386 			char tn_buf[48];
5387 
5388 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5389 			verbose(env, "has value %s", tn_buf);
5390 		} else {
5391 			verbose(env, "has unknown scalar value");
5392 		}
5393 		verbose(env, " should have been 0 or 1\n");
5394 		return -EINVAL;
5395 	}
5396 	return 0;
5397 }
5398 
5399 /* non-recursive DFS pseudo code
5400  * 1  procedure DFS-iterative(G,v):
5401  * 2      label v as discovered
5402  * 3      let S be a stack
5403  * 4      S.push(v)
5404  * 5      while S is not empty
5405  * 6            t <- S.pop()
5406  * 7            if t is what we're looking for:
5407  * 8                return t
5408  * 9            for all edges e in G.adjacentEdges(t) do
5409  * 10               if edge e is already labelled
5410  * 11                   continue with the next edge
5411  * 12               w <- G.adjacentVertex(t,e)
5412  * 13               if vertex w is not discovered and not explored
5413  * 14                   label e as tree-edge
5414  * 15                   label w as discovered
5415  * 16                   S.push(w)
5416  * 17                   continue at 5
5417  * 18               else if vertex w is discovered
5418  * 19                   label e as back-edge
5419  * 20               else
5420  * 21                   // vertex w is explored
5421  * 22                   label e as forward- or cross-edge
5422  * 23           label t as explored
5423  * 24           S.pop()
5424  *
5425  * convention:
5426  * 0x10 - discovered
5427  * 0x11 - discovered and fall-through edge labelled
5428  * 0x12 - discovered and fall-through and branch edges labelled
5429  * 0x20 - explored
5430  */
5431 
5432 enum {
5433 	DISCOVERED = 0x10,
5434 	EXPLORED = 0x20,
5435 	FALLTHROUGH = 1,
5436 	BRANCH = 2,
5437 };
5438 
5439 static u32 state_htab_size(struct bpf_verifier_env *env)
5440 {
5441 	return env->prog->len;
5442 }
5443 
5444 static struct bpf_verifier_state_list **explored_state(
5445 					struct bpf_verifier_env *env,
5446 					int idx)
5447 {
5448 	struct bpf_verifier_state *cur = env->cur_state;
5449 	struct bpf_func_state *state = cur->frame[cur->curframe];
5450 
5451 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5452 }
5453 
5454 static void init_explored_state(struct bpf_verifier_env *env, int idx)
5455 {
5456 	env->insn_aux_data[idx].prune_point = true;
5457 }
5458 
5459 /* t, w, e - match pseudo-code above:
5460  * t - index of current instruction
5461  * w - next instruction
5462  * e - edge
5463  */
5464 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
5465 {
5466 	int *insn_stack = env->cfg.insn_stack;
5467 	int *insn_state = env->cfg.insn_state;
5468 
5469 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
5470 		return 0;
5471 
5472 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
5473 		return 0;
5474 
5475 	if (w < 0 || w >= env->prog->len) {
5476 		verbose_linfo(env, t, "%d: ", t);
5477 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
5478 		return -EINVAL;
5479 	}
5480 
5481 	if (e == BRANCH)
5482 		/* mark branch target for state pruning */
5483 		init_explored_state(env, w);
5484 
5485 	if (insn_state[w] == 0) {
5486 		/* tree-edge */
5487 		insn_state[t] = DISCOVERED | e;
5488 		insn_state[w] = DISCOVERED;
5489 		if (env->cfg.cur_stack >= env->prog->len)
5490 			return -E2BIG;
5491 		insn_stack[env->cfg.cur_stack++] = w;
5492 		return 1;
5493 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
5494 		verbose_linfo(env, t, "%d: ", t);
5495 		verbose_linfo(env, w, "%d: ", w);
5496 		verbose(env, "back-edge from insn %d to %d\n", t, w);
5497 		return -EINVAL;
5498 	} else if (insn_state[w] == EXPLORED) {
5499 		/* forward- or cross-edge */
5500 		insn_state[t] = DISCOVERED | e;
5501 	} else {
5502 		verbose(env, "insn state internal bug\n");
5503 		return -EFAULT;
5504 	}
5505 	return 0;
5506 }
5507 
5508 /* non-recursive depth-first-search to detect loops in BPF program
5509  * loop == back-edge in directed graph
5510  */
5511 static int check_cfg(struct bpf_verifier_env *env)
5512 {
5513 	struct bpf_insn *insns = env->prog->insnsi;
5514 	int insn_cnt = env->prog->len;
5515 	int *insn_stack, *insn_state;
5516 	int ret = 0;
5517 	int i, t;
5518 
5519 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5520 	if (!insn_state)
5521 		return -ENOMEM;
5522 
5523 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5524 	if (!insn_stack) {
5525 		kvfree(insn_state);
5526 		return -ENOMEM;
5527 	}
5528 
5529 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
5530 	insn_stack[0] = 0; /* 0 is the first instruction */
5531 	env->cfg.cur_stack = 1;
5532 
5533 peek_stack:
5534 	if (env->cfg.cur_stack == 0)
5535 		goto check_state;
5536 	t = insn_stack[env->cfg.cur_stack - 1];
5537 
5538 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
5539 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
5540 		u8 opcode = BPF_OP(insns[t].code);
5541 
5542 		if (opcode == BPF_EXIT) {
5543 			goto mark_explored;
5544 		} else if (opcode == BPF_CALL) {
5545 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5546 			if (ret == 1)
5547 				goto peek_stack;
5548 			else if (ret < 0)
5549 				goto err_free;
5550 			if (t + 1 < insn_cnt)
5551 				init_explored_state(env, t + 1);
5552 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5553 				init_explored_state(env, t);
5554 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
5555 				if (ret == 1)
5556 					goto peek_stack;
5557 				else if (ret < 0)
5558 					goto err_free;
5559 			}
5560 		} else if (opcode == BPF_JA) {
5561 			if (BPF_SRC(insns[t].code) != BPF_K) {
5562 				ret = -EINVAL;
5563 				goto err_free;
5564 			}
5565 			/* unconditional jump with single edge */
5566 			ret = push_insn(t, t + insns[t].off + 1,
5567 					FALLTHROUGH, env);
5568 			if (ret == 1)
5569 				goto peek_stack;
5570 			else if (ret < 0)
5571 				goto err_free;
5572 			/* tell verifier to check for equivalent states
5573 			 * after every call and jump
5574 			 */
5575 			if (t + 1 < insn_cnt)
5576 				init_explored_state(env, t + 1);
5577 		} else {
5578 			/* conditional jump with two edges */
5579 			init_explored_state(env, t);
5580 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5581 			if (ret == 1)
5582 				goto peek_stack;
5583 			else if (ret < 0)
5584 				goto err_free;
5585 
5586 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
5587 			if (ret == 1)
5588 				goto peek_stack;
5589 			else if (ret < 0)
5590 				goto err_free;
5591 		}
5592 	} else {
5593 		/* all other non-branch instructions with single
5594 		 * fall-through edge
5595 		 */
5596 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
5597 		if (ret == 1)
5598 			goto peek_stack;
5599 		else if (ret < 0)
5600 			goto err_free;
5601 	}
5602 
5603 mark_explored:
5604 	insn_state[t] = EXPLORED;
5605 	if (env->cfg.cur_stack-- <= 0) {
5606 		verbose(env, "pop stack internal bug\n");
5607 		ret = -EFAULT;
5608 		goto err_free;
5609 	}
5610 	goto peek_stack;
5611 
5612 check_state:
5613 	for (i = 0; i < insn_cnt; i++) {
5614 		if (insn_state[i] != EXPLORED) {
5615 			verbose(env, "unreachable insn %d\n", i);
5616 			ret = -EINVAL;
5617 			goto err_free;
5618 		}
5619 	}
5620 	ret = 0; /* cfg looks good */
5621 
5622 err_free:
5623 	kvfree(insn_state);
5624 	kvfree(insn_stack);
5625 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
5626 	return ret;
5627 }
5628 
5629 /* The minimum supported BTF func info size */
5630 #define MIN_BPF_FUNCINFO_SIZE	8
5631 #define MAX_FUNCINFO_REC_SIZE	252
5632 
5633 static int check_btf_func(struct bpf_verifier_env *env,
5634 			  const union bpf_attr *attr,
5635 			  union bpf_attr __user *uattr)
5636 {
5637 	u32 i, nfuncs, urec_size, min_size;
5638 	u32 krec_size = sizeof(struct bpf_func_info);
5639 	struct bpf_func_info *krecord;
5640 	const struct btf_type *type;
5641 	struct bpf_prog *prog;
5642 	const struct btf *btf;
5643 	void __user *urecord;
5644 	u32 prev_offset = 0;
5645 	int ret = 0;
5646 
5647 	nfuncs = attr->func_info_cnt;
5648 	if (!nfuncs)
5649 		return 0;
5650 
5651 	if (nfuncs != env->subprog_cnt) {
5652 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
5653 		return -EINVAL;
5654 	}
5655 
5656 	urec_size = attr->func_info_rec_size;
5657 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
5658 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
5659 	    urec_size % sizeof(u32)) {
5660 		verbose(env, "invalid func info rec size %u\n", urec_size);
5661 		return -EINVAL;
5662 	}
5663 
5664 	prog = env->prog;
5665 	btf = prog->aux->btf;
5666 
5667 	urecord = u64_to_user_ptr(attr->func_info);
5668 	min_size = min_t(u32, krec_size, urec_size);
5669 
5670 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
5671 	if (!krecord)
5672 		return -ENOMEM;
5673 
5674 	for (i = 0; i < nfuncs; i++) {
5675 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
5676 		if (ret) {
5677 			if (ret == -E2BIG) {
5678 				verbose(env, "nonzero tailing record in func info");
5679 				/* set the size kernel expects so loader can zero
5680 				 * out the rest of the record.
5681 				 */
5682 				if (put_user(min_size, &uattr->func_info_rec_size))
5683 					ret = -EFAULT;
5684 			}
5685 			goto err_free;
5686 		}
5687 
5688 		if (copy_from_user(&krecord[i], urecord, min_size)) {
5689 			ret = -EFAULT;
5690 			goto err_free;
5691 		}
5692 
5693 		/* check insn_off */
5694 		if (i == 0) {
5695 			if (krecord[i].insn_off) {
5696 				verbose(env,
5697 					"nonzero insn_off %u for the first func info record",
5698 					krecord[i].insn_off);
5699 				ret = -EINVAL;
5700 				goto err_free;
5701 			}
5702 		} else if (krecord[i].insn_off <= prev_offset) {
5703 			verbose(env,
5704 				"same or smaller insn offset (%u) than previous func info record (%u)",
5705 				krecord[i].insn_off, prev_offset);
5706 			ret = -EINVAL;
5707 			goto err_free;
5708 		}
5709 
5710 		if (env->subprog_info[i].start != krecord[i].insn_off) {
5711 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
5712 			ret = -EINVAL;
5713 			goto err_free;
5714 		}
5715 
5716 		/* check type_id */
5717 		type = btf_type_by_id(btf, krecord[i].type_id);
5718 		if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
5719 			verbose(env, "invalid type id %d in func info",
5720 				krecord[i].type_id);
5721 			ret = -EINVAL;
5722 			goto err_free;
5723 		}
5724 
5725 		prev_offset = krecord[i].insn_off;
5726 		urecord += urec_size;
5727 	}
5728 
5729 	prog->aux->func_info = krecord;
5730 	prog->aux->func_info_cnt = nfuncs;
5731 	return 0;
5732 
5733 err_free:
5734 	kvfree(krecord);
5735 	return ret;
5736 }
5737 
5738 static void adjust_btf_func(struct bpf_verifier_env *env)
5739 {
5740 	int i;
5741 
5742 	if (!env->prog->aux->func_info)
5743 		return;
5744 
5745 	for (i = 0; i < env->subprog_cnt; i++)
5746 		env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
5747 }
5748 
5749 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
5750 		sizeof(((struct bpf_line_info *)(0))->line_col))
5751 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
5752 
5753 static int check_btf_line(struct bpf_verifier_env *env,
5754 			  const union bpf_attr *attr,
5755 			  union bpf_attr __user *uattr)
5756 {
5757 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
5758 	struct bpf_subprog_info *sub;
5759 	struct bpf_line_info *linfo;
5760 	struct bpf_prog *prog;
5761 	const struct btf *btf;
5762 	void __user *ulinfo;
5763 	int err;
5764 
5765 	nr_linfo = attr->line_info_cnt;
5766 	if (!nr_linfo)
5767 		return 0;
5768 
5769 	rec_size = attr->line_info_rec_size;
5770 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
5771 	    rec_size > MAX_LINEINFO_REC_SIZE ||
5772 	    rec_size & (sizeof(u32) - 1))
5773 		return -EINVAL;
5774 
5775 	/* Need to zero it in case the userspace may
5776 	 * pass in a smaller bpf_line_info object.
5777 	 */
5778 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
5779 			 GFP_KERNEL | __GFP_NOWARN);
5780 	if (!linfo)
5781 		return -ENOMEM;
5782 
5783 	prog = env->prog;
5784 	btf = prog->aux->btf;
5785 
5786 	s = 0;
5787 	sub = env->subprog_info;
5788 	ulinfo = u64_to_user_ptr(attr->line_info);
5789 	expected_size = sizeof(struct bpf_line_info);
5790 	ncopy = min_t(u32, expected_size, rec_size);
5791 	for (i = 0; i < nr_linfo; i++) {
5792 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
5793 		if (err) {
5794 			if (err == -E2BIG) {
5795 				verbose(env, "nonzero tailing record in line_info");
5796 				if (put_user(expected_size,
5797 					     &uattr->line_info_rec_size))
5798 					err = -EFAULT;
5799 			}
5800 			goto err_free;
5801 		}
5802 
5803 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5804 			err = -EFAULT;
5805 			goto err_free;
5806 		}
5807 
5808 		/*
5809 		 * Check insn_off to ensure
5810 		 * 1) strictly increasing AND
5811 		 * 2) bounded by prog->len
5812 		 *
5813 		 * The linfo[0].insn_off == 0 check logically falls into
5814 		 * the later "missing bpf_line_info for func..." case
5815 		 * because the first linfo[0].insn_off must be the
5816 		 * first sub also and the first sub must have
5817 		 * subprog_info[0].start == 0.
5818 		 */
5819 		if ((i && linfo[i].insn_off <= prev_offset) ||
5820 		    linfo[i].insn_off >= prog->len) {
5821 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5822 				i, linfo[i].insn_off, prev_offset,
5823 				prog->len);
5824 			err = -EINVAL;
5825 			goto err_free;
5826 		}
5827 
5828 		if (!prog->insnsi[linfo[i].insn_off].code) {
5829 			verbose(env,
5830 				"Invalid insn code at line_info[%u].insn_off\n",
5831 				i);
5832 			err = -EINVAL;
5833 			goto err_free;
5834 		}
5835 
5836 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5837 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
5838 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5839 			err = -EINVAL;
5840 			goto err_free;
5841 		}
5842 
5843 		if (s != env->subprog_cnt) {
5844 			if (linfo[i].insn_off == sub[s].start) {
5845 				sub[s].linfo_idx = i;
5846 				s++;
5847 			} else if (sub[s].start < linfo[i].insn_off) {
5848 				verbose(env, "missing bpf_line_info for func#%u\n", s);
5849 				err = -EINVAL;
5850 				goto err_free;
5851 			}
5852 		}
5853 
5854 		prev_offset = linfo[i].insn_off;
5855 		ulinfo += rec_size;
5856 	}
5857 
5858 	if (s != env->subprog_cnt) {
5859 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
5860 			env->subprog_cnt - s, s);
5861 		err = -EINVAL;
5862 		goto err_free;
5863 	}
5864 
5865 	prog->aux->linfo = linfo;
5866 	prog->aux->nr_linfo = nr_linfo;
5867 
5868 	return 0;
5869 
5870 err_free:
5871 	kvfree(linfo);
5872 	return err;
5873 }
5874 
5875 static int check_btf_info(struct bpf_verifier_env *env,
5876 			  const union bpf_attr *attr,
5877 			  union bpf_attr __user *uattr)
5878 {
5879 	struct btf *btf;
5880 	int err;
5881 
5882 	if (!attr->func_info_cnt && !attr->line_info_cnt)
5883 		return 0;
5884 
5885 	btf = btf_get_by_fd(attr->prog_btf_fd);
5886 	if (IS_ERR(btf))
5887 		return PTR_ERR(btf);
5888 	env->prog->aux->btf = btf;
5889 
5890 	err = check_btf_func(env, attr, uattr);
5891 	if (err)
5892 		return err;
5893 
5894 	err = check_btf_line(env, attr, uattr);
5895 	if (err)
5896 		return err;
5897 
5898 	return 0;
5899 }
5900 
5901 /* check %cur's range satisfies %old's */
5902 static bool range_within(struct bpf_reg_state *old,
5903 			 struct bpf_reg_state *cur)
5904 {
5905 	return old->umin_value <= cur->umin_value &&
5906 	       old->umax_value >= cur->umax_value &&
5907 	       old->smin_value <= cur->smin_value &&
5908 	       old->smax_value >= cur->smax_value;
5909 }
5910 
5911 /* Maximum number of register states that can exist at once */
5912 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5913 struct idpair {
5914 	u32 old;
5915 	u32 cur;
5916 };
5917 
5918 /* If in the old state two registers had the same id, then they need to have
5919  * the same id in the new state as well.  But that id could be different from
5920  * the old state, so we need to track the mapping from old to new ids.
5921  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5922  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
5923  * regs with a different old id could still have new id 9, we don't care about
5924  * that.
5925  * So we look through our idmap to see if this old id has been seen before.  If
5926  * so, we require the new id to match; otherwise, we add the id pair to the map.
5927  */
5928 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
5929 {
5930 	unsigned int i;
5931 
5932 	for (i = 0; i < ID_MAP_SIZE; i++) {
5933 		if (!idmap[i].old) {
5934 			/* Reached an empty slot; haven't seen this id before */
5935 			idmap[i].old = old_id;
5936 			idmap[i].cur = cur_id;
5937 			return true;
5938 		}
5939 		if (idmap[i].old == old_id)
5940 			return idmap[i].cur == cur_id;
5941 	}
5942 	/* We ran out of idmap slots, which should be impossible */
5943 	WARN_ON_ONCE(1);
5944 	return false;
5945 }
5946 
5947 static void clean_func_state(struct bpf_verifier_env *env,
5948 			     struct bpf_func_state *st)
5949 {
5950 	enum bpf_reg_liveness live;
5951 	int i, j;
5952 
5953 	for (i = 0; i < BPF_REG_FP; i++) {
5954 		live = st->regs[i].live;
5955 		/* liveness must not touch this register anymore */
5956 		st->regs[i].live |= REG_LIVE_DONE;
5957 		if (!(live & REG_LIVE_READ))
5958 			/* since the register is unused, clear its state
5959 			 * to make further comparison simpler
5960 			 */
5961 			__mark_reg_not_init(&st->regs[i]);
5962 	}
5963 
5964 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
5965 		live = st->stack[i].spilled_ptr.live;
5966 		/* liveness must not touch this stack slot anymore */
5967 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
5968 		if (!(live & REG_LIVE_READ)) {
5969 			__mark_reg_not_init(&st->stack[i].spilled_ptr);
5970 			for (j = 0; j < BPF_REG_SIZE; j++)
5971 				st->stack[i].slot_type[j] = STACK_INVALID;
5972 		}
5973 	}
5974 }
5975 
5976 static void clean_verifier_state(struct bpf_verifier_env *env,
5977 				 struct bpf_verifier_state *st)
5978 {
5979 	int i;
5980 
5981 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
5982 		/* all regs in this state in all frames were already marked */
5983 		return;
5984 
5985 	for (i = 0; i <= st->curframe; i++)
5986 		clean_func_state(env, st->frame[i]);
5987 }
5988 
5989 /* the parentage chains form a tree.
5990  * the verifier states are added to state lists at given insn and
5991  * pushed into state stack for future exploration.
5992  * when the verifier reaches bpf_exit insn some of the verifer states
5993  * stored in the state lists have their final liveness state already,
5994  * but a lot of states will get revised from liveness point of view when
5995  * the verifier explores other branches.
5996  * Example:
5997  * 1: r0 = 1
5998  * 2: if r1 == 100 goto pc+1
5999  * 3: r0 = 2
6000  * 4: exit
6001  * when the verifier reaches exit insn the register r0 in the state list of
6002  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
6003  * of insn 2 and goes exploring further. At the insn 4 it will walk the
6004  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
6005  *
6006  * Since the verifier pushes the branch states as it sees them while exploring
6007  * the program the condition of walking the branch instruction for the second
6008  * time means that all states below this branch were already explored and
6009  * their final liveness markes are already propagated.
6010  * Hence when the verifier completes the search of state list in is_state_visited()
6011  * we can call this clean_live_states() function to mark all liveness states
6012  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
6013  * will not be used.
6014  * This function also clears the registers and stack for states that !READ
6015  * to simplify state merging.
6016  *
6017  * Important note here that walking the same branch instruction in the callee
6018  * doesn't meant that the states are DONE. The verifier has to compare
6019  * the callsites
6020  */
6021 static void clean_live_states(struct bpf_verifier_env *env, int insn,
6022 			      struct bpf_verifier_state *cur)
6023 {
6024 	struct bpf_verifier_state_list *sl;
6025 	int i;
6026 
6027 	sl = *explored_state(env, insn);
6028 	while (sl) {
6029 		if (sl->state.insn_idx != insn ||
6030 		    sl->state.curframe != cur->curframe)
6031 			goto next;
6032 		for (i = 0; i <= cur->curframe; i++)
6033 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6034 				goto next;
6035 		clean_verifier_state(env, &sl->state);
6036 next:
6037 		sl = sl->next;
6038 	}
6039 }
6040 
6041 /* Returns true if (rold safe implies rcur safe) */
6042 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6043 		    struct idpair *idmap)
6044 {
6045 	bool equal;
6046 
6047 	if (!(rold->live & REG_LIVE_READ))
6048 		/* explored state didn't use this */
6049 		return true;
6050 
6051 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
6052 
6053 	if (rold->type == PTR_TO_STACK)
6054 		/* two stack pointers are equal only if they're pointing to
6055 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
6056 		 */
6057 		return equal && rold->frameno == rcur->frameno;
6058 
6059 	if (equal)
6060 		return true;
6061 
6062 	if (rold->type == NOT_INIT)
6063 		/* explored state can't have used this */
6064 		return true;
6065 	if (rcur->type == NOT_INIT)
6066 		return false;
6067 	switch (rold->type) {
6068 	case SCALAR_VALUE:
6069 		if (rcur->type == SCALAR_VALUE) {
6070 			/* new val must satisfy old val knowledge */
6071 			return range_within(rold, rcur) &&
6072 			       tnum_in(rold->var_off, rcur->var_off);
6073 		} else {
6074 			/* We're trying to use a pointer in place of a scalar.
6075 			 * Even if the scalar was unbounded, this could lead to
6076 			 * pointer leaks because scalars are allowed to leak
6077 			 * while pointers are not. We could make this safe in
6078 			 * special cases if root is calling us, but it's
6079 			 * probably not worth the hassle.
6080 			 */
6081 			return false;
6082 		}
6083 	case PTR_TO_MAP_VALUE:
6084 		/* If the new min/max/var_off satisfy the old ones and
6085 		 * everything else matches, we are OK.
6086 		 * 'id' is not compared, since it's only used for maps with
6087 		 * bpf_spin_lock inside map element and in such cases if
6088 		 * the rest of the prog is valid for one map element then
6089 		 * it's valid for all map elements regardless of the key
6090 		 * used in bpf_map_lookup()
6091 		 */
6092 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6093 		       range_within(rold, rcur) &&
6094 		       tnum_in(rold->var_off, rcur->var_off);
6095 	case PTR_TO_MAP_VALUE_OR_NULL:
6096 		/* a PTR_TO_MAP_VALUE could be safe to use as a
6097 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6098 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6099 		 * checked, doing so could have affected others with the same
6100 		 * id, and we can't check for that because we lost the id when
6101 		 * we converted to a PTR_TO_MAP_VALUE.
6102 		 */
6103 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6104 			return false;
6105 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6106 			return false;
6107 		/* Check our ids match any regs they're supposed to */
6108 		return check_ids(rold->id, rcur->id, idmap);
6109 	case PTR_TO_PACKET_META:
6110 	case PTR_TO_PACKET:
6111 		if (rcur->type != rold->type)
6112 			return false;
6113 		/* We must have at least as much range as the old ptr
6114 		 * did, so that any accesses which were safe before are
6115 		 * still safe.  This is true even if old range < old off,
6116 		 * since someone could have accessed through (ptr - k), or
6117 		 * even done ptr -= k in a register, to get a safe access.
6118 		 */
6119 		if (rold->range > rcur->range)
6120 			return false;
6121 		/* If the offsets don't match, we can't trust our alignment;
6122 		 * nor can we be sure that we won't fall out of range.
6123 		 */
6124 		if (rold->off != rcur->off)
6125 			return false;
6126 		/* id relations must be preserved */
6127 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6128 			return false;
6129 		/* new val must satisfy old val knowledge */
6130 		return range_within(rold, rcur) &&
6131 		       tnum_in(rold->var_off, rcur->var_off);
6132 	case PTR_TO_CTX:
6133 	case CONST_PTR_TO_MAP:
6134 	case PTR_TO_PACKET_END:
6135 	case PTR_TO_FLOW_KEYS:
6136 	case PTR_TO_SOCKET:
6137 	case PTR_TO_SOCKET_OR_NULL:
6138 	case PTR_TO_SOCK_COMMON:
6139 	case PTR_TO_SOCK_COMMON_OR_NULL:
6140 	case PTR_TO_TCP_SOCK:
6141 	case PTR_TO_TCP_SOCK_OR_NULL:
6142 		/* Only valid matches are exact, which memcmp() above
6143 		 * would have accepted
6144 		 */
6145 	default:
6146 		/* Don't know what's going on, just say it's not safe */
6147 		return false;
6148 	}
6149 
6150 	/* Shouldn't get here; if we do, say it's not safe */
6151 	WARN_ON_ONCE(1);
6152 	return false;
6153 }
6154 
6155 static bool stacksafe(struct bpf_func_state *old,
6156 		      struct bpf_func_state *cur,
6157 		      struct idpair *idmap)
6158 {
6159 	int i, spi;
6160 
6161 	/* walk slots of the explored stack and ignore any additional
6162 	 * slots in the current stack, since explored(safe) state
6163 	 * didn't use them
6164 	 */
6165 	for (i = 0; i < old->allocated_stack; i++) {
6166 		spi = i / BPF_REG_SIZE;
6167 
6168 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6169 			i += BPF_REG_SIZE - 1;
6170 			/* explored state didn't use this */
6171 			continue;
6172 		}
6173 
6174 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6175 			continue;
6176 
6177 		/* explored stack has more populated slots than current stack
6178 		 * and these slots were used
6179 		 */
6180 		if (i >= cur->allocated_stack)
6181 			return false;
6182 
6183 		/* if old state was safe with misc data in the stack
6184 		 * it will be safe with zero-initialized stack.
6185 		 * The opposite is not true
6186 		 */
6187 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6188 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6189 			continue;
6190 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6191 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6192 			/* Ex: old explored (safe) state has STACK_SPILL in
6193 			 * this stack slot, but current has has STACK_MISC ->
6194 			 * this verifier states are not equivalent,
6195 			 * return false to continue verification of this path
6196 			 */
6197 			return false;
6198 		if (i % BPF_REG_SIZE)
6199 			continue;
6200 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
6201 			continue;
6202 		if (!regsafe(&old->stack[spi].spilled_ptr,
6203 			     &cur->stack[spi].spilled_ptr,
6204 			     idmap))
6205 			/* when explored and current stack slot are both storing
6206 			 * spilled registers, check that stored pointers types
6207 			 * are the same as well.
6208 			 * Ex: explored safe path could have stored
6209 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6210 			 * but current path has stored:
6211 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6212 			 * such verifier states are not equivalent.
6213 			 * return false to continue verification of this path
6214 			 */
6215 			return false;
6216 	}
6217 	return true;
6218 }
6219 
6220 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6221 {
6222 	if (old->acquired_refs != cur->acquired_refs)
6223 		return false;
6224 	return !memcmp(old->refs, cur->refs,
6225 		       sizeof(*old->refs) * old->acquired_refs);
6226 }
6227 
6228 /* compare two verifier states
6229  *
6230  * all states stored in state_list are known to be valid, since
6231  * verifier reached 'bpf_exit' instruction through them
6232  *
6233  * this function is called when verifier exploring different branches of
6234  * execution popped from the state stack. If it sees an old state that has
6235  * more strict register state and more strict stack state then this execution
6236  * branch doesn't need to be explored further, since verifier already
6237  * concluded that more strict state leads to valid finish.
6238  *
6239  * Therefore two states are equivalent if register state is more conservative
6240  * and explored stack state is more conservative than the current one.
6241  * Example:
6242  *       explored                   current
6243  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
6244  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
6245  *
6246  * In other words if current stack state (one being explored) has more
6247  * valid slots than old one that already passed validation, it means
6248  * the verifier can stop exploring and conclude that current state is valid too
6249  *
6250  * Similarly with registers. If explored state has register type as invalid
6251  * whereas register type in current state is meaningful, it means that
6252  * the current state will reach 'bpf_exit' instruction safely
6253  */
6254 static bool func_states_equal(struct bpf_func_state *old,
6255 			      struct bpf_func_state *cur)
6256 {
6257 	struct idpair *idmap;
6258 	bool ret = false;
6259 	int i;
6260 
6261 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
6262 	/* If we failed to allocate the idmap, just say it's not safe */
6263 	if (!idmap)
6264 		return false;
6265 
6266 	for (i = 0; i < MAX_BPF_REG; i++) {
6267 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
6268 			goto out_free;
6269 	}
6270 
6271 	if (!stacksafe(old, cur, idmap))
6272 		goto out_free;
6273 
6274 	if (!refsafe(old, cur))
6275 		goto out_free;
6276 	ret = true;
6277 out_free:
6278 	kfree(idmap);
6279 	return ret;
6280 }
6281 
6282 static bool states_equal(struct bpf_verifier_env *env,
6283 			 struct bpf_verifier_state *old,
6284 			 struct bpf_verifier_state *cur)
6285 {
6286 	int i;
6287 
6288 	if (old->curframe != cur->curframe)
6289 		return false;
6290 
6291 	/* Verification state from speculative execution simulation
6292 	 * must never prune a non-speculative execution one.
6293 	 */
6294 	if (old->speculative && !cur->speculative)
6295 		return false;
6296 
6297 	if (old->active_spin_lock != cur->active_spin_lock)
6298 		return false;
6299 
6300 	/* for states to be equal callsites have to be the same
6301 	 * and all frame states need to be equivalent
6302 	 */
6303 	for (i = 0; i <= old->curframe; i++) {
6304 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
6305 			return false;
6306 		if (!func_states_equal(old->frame[i], cur->frame[i]))
6307 			return false;
6308 	}
6309 	return true;
6310 }
6311 
6312 static int propagate_liveness_reg(struct bpf_verifier_env *env,
6313 				  struct bpf_reg_state *reg,
6314 				  struct bpf_reg_state *parent_reg)
6315 {
6316 	int err;
6317 
6318 	if (parent_reg->live & REG_LIVE_READ || !(reg->live & REG_LIVE_READ))
6319 		return 0;
6320 
6321 	err = mark_reg_read(env, reg, parent_reg);
6322 	if (err)
6323 		return err;
6324 
6325 	return 0;
6326 }
6327 
6328 /* A write screens off any subsequent reads; but write marks come from the
6329  * straight-line code between a state and its parent.  When we arrive at an
6330  * equivalent state (jump target or such) we didn't arrive by the straight-line
6331  * code, so read marks in the state must propagate to the parent regardless
6332  * of the state's write marks. That's what 'parent == state->parent' comparison
6333  * in mark_reg_read() is for.
6334  */
6335 static int propagate_liveness(struct bpf_verifier_env *env,
6336 			      const struct bpf_verifier_state *vstate,
6337 			      struct bpf_verifier_state *vparent)
6338 {
6339 	struct bpf_reg_state *state_reg, *parent_reg;
6340 	struct bpf_func_state *state, *parent;
6341 	int i, frame, err = 0;
6342 
6343 	if (vparent->curframe != vstate->curframe) {
6344 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
6345 		     vparent->curframe, vstate->curframe);
6346 		return -EFAULT;
6347 	}
6348 	/* Propagate read liveness of registers... */
6349 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
6350 	for (frame = 0; frame <= vstate->curframe; frame++) {
6351 		parent = vparent->frame[frame];
6352 		state = vstate->frame[frame];
6353 		parent_reg = parent->regs;
6354 		state_reg = state->regs;
6355 		/* We don't need to worry about FP liveness, it's read-only */
6356 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
6357 			err = propagate_liveness_reg(env, &state_reg[i],
6358 						     &parent_reg[i]);
6359 			if (err)
6360 				return err;
6361 		}
6362 
6363 		/* Propagate stack slots. */
6364 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
6365 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
6366 			parent_reg = &parent->stack[i].spilled_ptr;
6367 			state_reg = &state->stack[i].spilled_ptr;
6368 			err = propagate_liveness_reg(env, state_reg,
6369 						     parent_reg);
6370 			if (err)
6371 				return err;
6372 		}
6373 	}
6374 	return err;
6375 }
6376 
6377 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
6378 {
6379 	struct bpf_verifier_state_list *new_sl;
6380 	struct bpf_verifier_state_list *sl, **pprev;
6381 	struct bpf_verifier_state *cur = env->cur_state, *new;
6382 	int i, j, err, states_cnt = 0;
6383 
6384 	if (!env->insn_aux_data[insn_idx].prune_point)
6385 		/* this 'insn_idx' instruction wasn't marked, so we will not
6386 		 * be doing state search here
6387 		 */
6388 		return 0;
6389 
6390 	pprev = explored_state(env, insn_idx);
6391 	sl = *pprev;
6392 
6393 	clean_live_states(env, insn_idx, cur);
6394 
6395 	while (sl) {
6396 		states_cnt++;
6397 		if (sl->state.insn_idx != insn_idx)
6398 			goto next;
6399 		if (states_equal(env, &sl->state, cur)) {
6400 			sl->hit_cnt++;
6401 			/* reached equivalent register/stack state,
6402 			 * prune the search.
6403 			 * Registers read by the continuation are read by us.
6404 			 * If we have any write marks in env->cur_state, they
6405 			 * will prevent corresponding reads in the continuation
6406 			 * from reaching our parent (an explored_state).  Our
6407 			 * own state will get the read marks recorded, but
6408 			 * they'll be immediately forgotten as we're pruning
6409 			 * this state and will pop a new one.
6410 			 */
6411 			err = propagate_liveness(env, &sl->state, cur);
6412 			if (err)
6413 				return err;
6414 			return 1;
6415 		}
6416 		sl->miss_cnt++;
6417 		/* heuristic to determine whether this state is beneficial
6418 		 * to keep checking from state equivalence point of view.
6419 		 * Higher numbers increase max_states_per_insn and verification time,
6420 		 * but do not meaningfully decrease insn_processed.
6421 		 */
6422 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
6423 			/* the state is unlikely to be useful. Remove it to
6424 			 * speed up verification
6425 			 */
6426 			*pprev = sl->next;
6427 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
6428 				free_verifier_state(&sl->state, false);
6429 				kfree(sl);
6430 				env->peak_states--;
6431 			} else {
6432 				/* cannot free this state, since parentage chain may
6433 				 * walk it later. Add it for free_list instead to
6434 				 * be freed at the end of verification
6435 				 */
6436 				sl->next = env->free_list;
6437 				env->free_list = sl;
6438 			}
6439 			sl = *pprev;
6440 			continue;
6441 		}
6442 next:
6443 		pprev = &sl->next;
6444 		sl = *pprev;
6445 	}
6446 
6447 	if (env->max_states_per_insn < states_cnt)
6448 		env->max_states_per_insn = states_cnt;
6449 
6450 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
6451 		return 0;
6452 
6453 	/* there were no equivalent states, remember current one.
6454 	 * technically the current state is not proven to be safe yet,
6455 	 * but it will either reach outer most bpf_exit (which means it's safe)
6456 	 * or it will be rejected. Since there are no loops, we won't be
6457 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6458 	 * again on the way to bpf_exit
6459 	 */
6460 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
6461 	if (!new_sl)
6462 		return -ENOMEM;
6463 	env->total_states++;
6464 	env->peak_states++;
6465 
6466 	/* add new state to the head of linked list */
6467 	new = &new_sl->state;
6468 	err = copy_verifier_state(new, cur);
6469 	if (err) {
6470 		free_verifier_state(new, false);
6471 		kfree(new_sl);
6472 		return err;
6473 	}
6474 	new->insn_idx = insn_idx;
6475 	new_sl->next = *explored_state(env, insn_idx);
6476 	*explored_state(env, insn_idx) = new_sl;
6477 	/* connect new state to parentage chain. Current frame needs all
6478 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
6479 	 * to the stack implicitly by JITs) so in callers' frames connect just
6480 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6481 	 * the state of the call instruction (with WRITTEN set), and r0 comes
6482 	 * from callee with its full parentage chain, anyway.
6483 	 */
6484 	for (j = 0; j <= cur->curframe; j++)
6485 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
6486 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
6487 	/* clear write marks in current state: the writes we did are not writes
6488 	 * our child did, so they don't screen off its reads from us.
6489 	 * (There are no read marks in current state, because reads always mark
6490 	 * their parent and current state never has children yet.  Only
6491 	 * explored_states can get read marks.)
6492 	 */
6493 	for (i = 0; i < BPF_REG_FP; i++)
6494 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
6495 
6496 	/* all stack frames are accessible from callee, clear them all */
6497 	for (j = 0; j <= cur->curframe; j++) {
6498 		struct bpf_func_state *frame = cur->frame[j];
6499 		struct bpf_func_state *newframe = new->frame[j];
6500 
6501 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
6502 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
6503 			frame->stack[i].spilled_ptr.parent =
6504 						&newframe->stack[i].spilled_ptr;
6505 		}
6506 	}
6507 	return 0;
6508 }
6509 
6510 /* Return true if it's OK to have the same insn return a different type. */
6511 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
6512 {
6513 	switch (type) {
6514 	case PTR_TO_CTX:
6515 	case PTR_TO_SOCKET:
6516 	case PTR_TO_SOCKET_OR_NULL:
6517 	case PTR_TO_SOCK_COMMON:
6518 	case PTR_TO_SOCK_COMMON_OR_NULL:
6519 	case PTR_TO_TCP_SOCK:
6520 	case PTR_TO_TCP_SOCK_OR_NULL:
6521 		return false;
6522 	default:
6523 		return true;
6524 	}
6525 }
6526 
6527 /* If an instruction was previously used with particular pointer types, then we
6528  * need to be careful to avoid cases such as the below, where it may be ok
6529  * for one branch accessing the pointer, but not ok for the other branch:
6530  *
6531  * R1 = sock_ptr
6532  * goto X;
6533  * ...
6534  * R1 = some_other_valid_ptr;
6535  * goto X;
6536  * ...
6537  * R2 = *(u32 *)(R1 + 0);
6538  */
6539 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
6540 {
6541 	return src != prev && (!reg_type_mismatch_ok(src) ||
6542 			       !reg_type_mismatch_ok(prev));
6543 }
6544 
6545 static int do_check(struct bpf_verifier_env *env)
6546 {
6547 	struct bpf_verifier_state *state;
6548 	struct bpf_insn *insns = env->prog->insnsi;
6549 	struct bpf_reg_state *regs;
6550 	int insn_cnt = env->prog->len;
6551 	bool do_print_state = false;
6552 
6553 	env->prev_linfo = NULL;
6554 
6555 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
6556 	if (!state)
6557 		return -ENOMEM;
6558 	state->curframe = 0;
6559 	state->speculative = false;
6560 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
6561 	if (!state->frame[0]) {
6562 		kfree(state);
6563 		return -ENOMEM;
6564 	}
6565 	env->cur_state = state;
6566 	init_func_state(env, state->frame[0],
6567 			BPF_MAIN_FUNC /* callsite */,
6568 			0 /* frameno */,
6569 			0 /* subprogno, zero == main subprog */);
6570 
6571 	for (;;) {
6572 		struct bpf_insn *insn;
6573 		u8 class;
6574 		int err;
6575 
6576 		if (env->insn_idx >= insn_cnt) {
6577 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
6578 				env->insn_idx, insn_cnt);
6579 			return -EFAULT;
6580 		}
6581 
6582 		insn = &insns[env->insn_idx];
6583 		class = BPF_CLASS(insn->code);
6584 
6585 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
6586 			verbose(env,
6587 				"BPF program is too large. Processed %d insn\n",
6588 				env->insn_processed);
6589 			return -E2BIG;
6590 		}
6591 
6592 		err = is_state_visited(env, env->insn_idx);
6593 		if (err < 0)
6594 			return err;
6595 		if (err == 1) {
6596 			/* found equivalent state, can prune the search */
6597 			if (env->log.level & BPF_LOG_LEVEL) {
6598 				if (do_print_state)
6599 					verbose(env, "\nfrom %d to %d%s: safe\n",
6600 						env->prev_insn_idx, env->insn_idx,
6601 						env->cur_state->speculative ?
6602 						" (speculative execution)" : "");
6603 				else
6604 					verbose(env, "%d: safe\n", env->insn_idx);
6605 			}
6606 			goto process_bpf_exit;
6607 		}
6608 
6609 		if (signal_pending(current))
6610 			return -EAGAIN;
6611 
6612 		if (need_resched())
6613 			cond_resched();
6614 
6615 		if (env->log.level & BPF_LOG_LEVEL2 ||
6616 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
6617 			if (env->log.level & BPF_LOG_LEVEL2)
6618 				verbose(env, "%d:", env->insn_idx);
6619 			else
6620 				verbose(env, "\nfrom %d to %d%s:",
6621 					env->prev_insn_idx, env->insn_idx,
6622 					env->cur_state->speculative ?
6623 					" (speculative execution)" : "");
6624 			print_verifier_state(env, state->frame[state->curframe]);
6625 			do_print_state = false;
6626 		}
6627 
6628 		if (env->log.level & BPF_LOG_LEVEL) {
6629 			const struct bpf_insn_cbs cbs = {
6630 				.cb_print	= verbose,
6631 				.private_data	= env,
6632 			};
6633 
6634 			verbose_linfo(env, env->insn_idx, "; ");
6635 			verbose(env, "%d: ", env->insn_idx);
6636 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
6637 		}
6638 
6639 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
6640 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
6641 							   env->prev_insn_idx);
6642 			if (err)
6643 				return err;
6644 		}
6645 
6646 		regs = cur_regs(env);
6647 		env->insn_aux_data[env->insn_idx].seen = true;
6648 
6649 		if (class == BPF_ALU || class == BPF_ALU64) {
6650 			err = check_alu_op(env, insn);
6651 			if (err)
6652 				return err;
6653 
6654 		} else if (class == BPF_LDX) {
6655 			enum bpf_reg_type *prev_src_type, src_reg_type;
6656 
6657 			/* check for reserved fields is already done */
6658 
6659 			/* check src operand */
6660 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6661 			if (err)
6662 				return err;
6663 
6664 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6665 			if (err)
6666 				return err;
6667 
6668 			src_reg_type = regs[insn->src_reg].type;
6669 
6670 			/* check that memory (src_reg + off) is readable,
6671 			 * the state of dst_reg will be updated by this func
6672 			 */
6673 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
6674 					       insn->off, BPF_SIZE(insn->code),
6675 					       BPF_READ, insn->dst_reg, false);
6676 			if (err)
6677 				return err;
6678 
6679 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6680 
6681 			if (*prev_src_type == NOT_INIT) {
6682 				/* saw a valid insn
6683 				 * dst_reg = *(u32 *)(src_reg + off)
6684 				 * save type to validate intersecting paths
6685 				 */
6686 				*prev_src_type = src_reg_type;
6687 
6688 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
6689 				/* ABuser program is trying to use the same insn
6690 				 * dst_reg = *(u32*) (src_reg + off)
6691 				 * with different pointer types:
6692 				 * src_reg == ctx in one branch and
6693 				 * src_reg == stack|map in some other branch.
6694 				 * Reject it.
6695 				 */
6696 				verbose(env, "same insn cannot be used with different pointers\n");
6697 				return -EINVAL;
6698 			}
6699 
6700 		} else if (class == BPF_STX) {
6701 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
6702 
6703 			if (BPF_MODE(insn->code) == BPF_XADD) {
6704 				err = check_xadd(env, env->insn_idx, insn);
6705 				if (err)
6706 					return err;
6707 				env->insn_idx++;
6708 				continue;
6709 			}
6710 
6711 			/* check src1 operand */
6712 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6713 			if (err)
6714 				return err;
6715 			/* check src2 operand */
6716 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6717 			if (err)
6718 				return err;
6719 
6720 			dst_reg_type = regs[insn->dst_reg].type;
6721 
6722 			/* check that memory (dst_reg + off) is writeable */
6723 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6724 					       insn->off, BPF_SIZE(insn->code),
6725 					       BPF_WRITE, insn->src_reg, false);
6726 			if (err)
6727 				return err;
6728 
6729 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6730 
6731 			if (*prev_dst_type == NOT_INIT) {
6732 				*prev_dst_type = dst_reg_type;
6733 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
6734 				verbose(env, "same insn cannot be used with different pointers\n");
6735 				return -EINVAL;
6736 			}
6737 
6738 		} else if (class == BPF_ST) {
6739 			if (BPF_MODE(insn->code) != BPF_MEM ||
6740 			    insn->src_reg != BPF_REG_0) {
6741 				verbose(env, "BPF_ST uses reserved fields\n");
6742 				return -EINVAL;
6743 			}
6744 			/* check src operand */
6745 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6746 			if (err)
6747 				return err;
6748 
6749 			if (is_ctx_reg(env, insn->dst_reg)) {
6750 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
6751 					insn->dst_reg,
6752 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
6753 				return -EACCES;
6754 			}
6755 
6756 			/* check that memory (dst_reg + off) is writeable */
6757 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6758 					       insn->off, BPF_SIZE(insn->code),
6759 					       BPF_WRITE, -1, false);
6760 			if (err)
6761 				return err;
6762 
6763 		} else if (class == BPF_JMP || class == BPF_JMP32) {
6764 			u8 opcode = BPF_OP(insn->code);
6765 
6766 			if (opcode == BPF_CALL) {
6767 				if (BPF_SRC(insn->code) != BPF_K ||
6768 				    insn->off != 0 ||
6769 				    (insn->src_reg != BPF_REG_0 &&
6770 				     insn->src_reg != BPF_PSEUDO_CALL) ||
6771 				    insn->dst_reg != BPF_REG_0 ||
6772 				    class == BPF_JMP32) {
6773 					verbose(env, "BPF_CALL uses reserved fields\n");
6774 					return -EINVAL;
6775 				}
6776 
6777 				if (env->cur_state->active_spin_lock &&
6778 				    (insn->src_reg == BPF_PSEUDO_CALL ||
6779 				     insn->imm != BPF_FUNC_spin_unlock)) {
6780 					verbose(env, "function calls are not allowed while holding a lock\n");
6781 					return -EINVAL;
6782 				}
6783 				if (insn->src_reg == BPF_PSEUDO_CALL)
6784 					err = check_func_call(env, insn, &env->insn_idx);
6785 				else
6786 					err = check_helper_call(env, insn->imm, env->insn_idx);
6787 				if (err)
6788 					return err;
6789 
6790 			} else if (opcode == BPF_JA) {
6791 				if (BPF_SRC(insn->code) != BPF_K ||
6792 				    insn->imm != 0 ||
6793 				    insn->src_reg != BPF_REG_0 ||
6794 				    insn->dst_reg != BPF_REG_0 ||
6795 				    class == BPF_JMP32) {
6796 					verbose(env, "BPF_JA uses reserved fields\n");
6797 					return -EINVAL;
6798 				}
6799 
6800 				env->insn_idx += insn->off + 1;
6801 				continue;
6802 
6803 			} else if (opcode == BPF_EXIT) {
6804 				if (BPF_SRC(insn->code) != BPF_K ||
6805 				    insn->imm != 0 ||
6806 				    insn->src_reg != BPF_REG_0 ||
6807 				    insn->dst_reg != BPF_REG_0 ||
6808 				    class == BPF_JMP32) {
6809 					verbose(env, "BPF_EXIT uses reserved fields\n");
6810 					return -EINVAL;
6811 				}
6812 
6813 				if (env->cur_state->active_spin_lock) {
6814 					verbose(env, "bpf_spin_unlock is missing\n");
6815 					return -EINVAL;
6816 				}
6817 
6818 				if (state->curframe) {
6819 					/* exit from nested function */
6820 					env->prev_insn_idx = env->insn_idx;
6821 					err = prepare_func_exit(env, &env->insn_idx);
6822 					if (err)
6823 						return err;
6824 					do_print_state = true;
6825 					continue;
6826 				}
6827 
6828 				err = check_reference_leak(env);
6829 				if (err)
6830 					return err;
6831 
6832 				/* eBPF calling convetion is such that R0 is used
6833 				 * to return the value from eBPF program.
6834 				 * Make sure that it's readable at this time
6835 				 * of bpf_exit, which means that program wrote
6836 				 * something into it earlier
6837 				 */
6838 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
6839 				if (err)
6840 					return err;
6841 
6842 				if (is_pointer_value(env, BPF_REG_0)) {
6843 					verbose(env, "R0 leaks addr as return value\n");
6844 					return -EACCES;
6845 				}
6846 
6847 				err = check_return_code(env);
6848 				if (err)
6849 					return err;
6850 process_bpf_exit:
6851 				err = pop_stack(env, &env->prev_insn_idx,
6852 						&env->insn_idx);
6853 				if (err < 0) {
6854 					if (err != -ENOENT)
6855 						return err;
6856 					break;
6857 				} else {
6858 					do_print_state = true;
6859 					continue;
6860 				}
6861 			} else {
6862 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
6863 				if (err)
6864 					return err;
6865 			}
6866 		} else if (class == BPF_LD) {
6867 			u8 mode = BPF_MODE(insn->code);
6868 
6869 			if (mode == BPF_ABS || mode == BPF_IND) {
6870 				err = check_ld_abs(env, insn);
6871 				if (err)
6872 					return err;
6873 
6874 			} else if (mode == BPF_IMM) {
6875 				err = check_ld_imm(env, insn);
6876 				if (err)
6877 					return err;
6878 
6879 				env->insn_idx++;
6880 				env->insn_aux_data[env->insn_idx].seen = true;
6881 			} else {
6882 				verbose(env, "invalid BPF_LD mode\n");
6883 				return -EINVAL;
6884 			}
6885 		} else {
6886 			verbose(env, "unknown insn class %d\n", class);
6887 			return -EINVAL;
6888 		}
6889 
6890 		env->insn_idx++;
6891 	}
6892 
6893 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
6894 	return 0;
6895 }
6896 
6897 static int check_map_prealloc(struct bpf_map *map)
6898 {
6899 	return (map->map_type != BPF_MAP_TYPE_HASH &&
6900 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6901 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
6902 		!(map->map_flags & BPF_F_NO_PREALLOC);
6903 }
6904 
6905 static bool is_tracing_prog_type(enum bpf_prog_type type)
6906 {
6907 	switch (type) {
6908 	case BPF_PROG_TYPE_KPROBE:
6909 	case BPF_PROG_TYPE_TRACEPOINT:
6910 	case BPF_PROG_TYPE_PERF_EVENT:
6911 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6912 		return true;
6913 	default:
6914 		return false;
6915 	}
6916 }
6917 
6918 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
6919 					struct bpf_map *map,
6920 					struct bpf_prog *prog)
6921 
6922 {
6923 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
6924 	 * preallocated hash maps, since doing memory allocation
6925 	 * in overflow_handler can crash depending on where nmi got
6926 	 * triggered.
6927 	 */
6928 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
6929 		if (!check_map_prealloc(map)) {
6930 			verbose(env, "perf_event programs can only use preallocated hash map\n");
6931 			return -EINVAL;
6932 		}
6933 		if (map->inner_map_meta &&
6934 		    !check_map_prealloc(map->inner_map_meta)) {
6935 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
6936 			return -EINVAL;
6937 		}
6938 	}
6939 
6940 	if ((is_tracing_prog_type(prog->type) ||
6941 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
6942 	    map_value_has_spin_lock(map)) {
6943 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
6944 		return -EINVAL;
6945 	}
6946 
6947 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
6948 	    !bpf_offload_prog_map_match(prog, map)) {
6949 		verbose(env, "offload device mismatch between prog and map\n");
6950 		return -EINVAL;
6951 	}
6952 
6953 	return 0;
6954 }
6955 
6956 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
6957 {
6958 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
6959 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
6960 }
6961 
6962 /* look for pseudo eBPF instructions that access map FDs and
6963  * replace them with actual map pointers
6964  */
6965 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
6966 {
6967 	struct bpf_insn *insn = env->prog->insnsi;
6968 	int insn_cnt = env->prog->len;
6969 	int i, j, err;
6970 
6971 	err = bpf_prog_calc_tag(env->prog);
6972 	if (err)
6973 		return err;
6974 
6975 	for (i = 0; i < insn_cnt; i++, insn++) {
6976 		if (BPF_CLASS(insn->code) == BPF_LDX &&
6977 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
6978 			verbose(env, "BPF_LDX uses reserved fields\n");
6979 			return -EINVAL;
6980 		}
6981 
6982 		if (BPF_CLASS(insn->code) == BPF_STX &&
6983 		    ((BPF_MODE(insn->code) != BPF_MEM &&
6984 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
6985 			verbose(env, "BPF_STX uses reserved fields\n");
6986 			return -EINVAL;
6987 		}
6988 
6989 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
6990 			struct bpf_insn_aux_data *aux;
6991 			struct bpf_map *map;
6992 			struct fd f;
6993 			u64 addr;
6994 
6995 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
6996 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
6997 			    insn[1].off != 0) {
6998 				verbose(env, "invalid bpf_ld_imm64 insn\n");
6999 				return -EINVAL;
7000 			}
7001 
7002 			if (insn[0].src_reg == 0)
7003 				/* valid generic load 64-bit imm */
7004 				goto next_insn;
7005 
7006 			/* In final convert_pseudo_ld_imm64() step, this is
7007 			 * converted into regular 64-bit imm load insn.
7008 			 */
7009 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
7010 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
7011 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
7012 			     insn[1].imm != 0)) {
7013 				verbose(env,
7014 					"unrecognized bpf_ld_imm64 insn\n");
7015 				return -EINVAL;
7016 			}
7017 
7018 			f = fdget(insn[0].imm);
7019 			map = __bpf_map_get(f);
7020 			if (IS_ERR(map)) {
7021 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
7022 					insn[0].imm);
7023 				return PTR_ERR(map);
7024 			}
7025 
7026 			err = check_map_prog_compatibility(env, map, env->prog);
7027 			if (err) {
7028 				fdput(f);
7029 				return err;
7030 			}
7031 
7032 			aux = &env->insn_aux_data[i];
7033 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7034 				addr = (unsigned long)map;
7035 			} else {
7036 				u32 off = insn[1].imm;
7037 
7038 				if (off >= BPF_MAX_VAR_OFF) {
7039 					verbose(env, "direct value offset of %u is not allowed\n", off);
7040 					fdput(f);
7041 					return -EINVAL;
7042 				}
7043 
7044 				if (!map->ops->map_direct_value_addr) {
7045 					verbose(env, "no direct value access support for this map type\n");
7046 					fdput(f);
7047 					return -EINVAL;
7048 				}
7049 
7050 				err = map->ops->map_direct_value_addr(map, &addr, off);
7051 				if (err) {
7052 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
7053 						map->value_size, off);
7054 					fdput(f);
7055 					return err;
7056 				}
7057 
7058 				aux->map_off = off;
7059 				addr += off;
7060 			}
7061 
7062 			insn[0].imm = (u32)addr;
7063 			insn[1].imm = addr >> 32;
7064 
7065 			/* check whether we recorded this map already */
7066 			for (j = 0; j < env->used_map_cnt; j++) {
7067 				if (env->used_maps[j] == map) {
7068 					aux->map_index = j;
7069 					fdput(f);
7070 					goto next_insn;
7071 				}
7072 			}
7073 
7074 			if (env->used_map_cnt >= MAX_USED_MAPS) {
7075 				fdput(f);
7076 				return -E2BIG;
7077 			}
7078 
7079 			/* hold the map. If the program is rejected by verifier,
7080 			 * the map will be released by release_maps() or it
7081 			 * will be used by the valid program until it's unloaded
7082 			 * and all maps are released in free_used_maps()
7083 			 */
7084 			map = bpf_map_inc(map, false);
7085 			if (IS_ERR(map)) {
7086 				fdput(f);
7087 				return PTR_ERR(map);
7088 			}
7089 
7090 			aux->map_index = env->used_map_cnt;
7091 			env->used_maps[env->used_map_cnt++] = map;
7092 
7093 			if (bpf_map_is_cgroup_storage(map) &&
7094 			    bpf_cgroup_storage_assign(env->prog, map)) {
7095 				verbose(env, "only one cgroup storage of each type is allowed\n");
7096 				fdput(f);
7097 				return -EBUSY;
7098 			}
7099 
7100 			fdput(f);
7101 next_insn:
7102 			insn++;
7103 			i++;
7104 			continue;
7105 		}
7106 
7107 		/* Basic sanity check before we invest more work here. */
7108 		if (!bpf_opcode_in_insntable(insn->code)) {
7109 			verbose(env, "unknown opcode %02x\n", insn->code);
7110 			return -EINVAL;
7111 		}
7112 	}
7113 
7114 	/* now all pseudo BPF_LD_IMM64 instructions load valid
7115 	 * 'struct bpf_map *' into a register instead of user map_fd.
7116 	 * These pointers will be used later by verifier to validate map access.
7117 	 */
7118 	return 0;
7119 }
7120 
7121 /* drop refcnt of maps used by the rejected program */
7122 static void release_maps(struct bpf_verifier_env *env)
7123 {
7124 	enum bpf_cgroup_storage_type stype;
7125 	int i;
7126 
7127 	for_each_cgroup_storage_type(stype) {
7128 		if (!env->prog->aux->cgroup_storage[stype])
7129 			continue;
7130 		bpf_cgroup_storage_release(env->prog,
7131 			env->prog->aux->cgroup_storage[stype]);
7132 	}
7133 
7134 	for (i = 0; i < env->used_map_cnt; i++)
7135 		bpf_map_put(env->used_maps[i]);
7136 }
7137 
7138 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
7139 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
7140 {
7141 	struct bpf_insn *insn = env->prog->insnsi;
7142 	int insn_cnt = env->prog->len;
7143 	int i;
7144 
7145 	for (i = 0; i < insn_cnt; i++, insn++)
7146 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
7147 			insn->src_reg = 0;
7148 }
7149 
7150 /* single env->prog->insni[off] instruction was replaced with the range
7151  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
7152  * [0, off) and [off, end) to new locations, so the patched range stays zero
7153  */
7154 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
7155 				u32 off, u32 cnt)
7156 {
7157 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
7158 	int i;
7159 
7160 	if (cnt == 1)
7161 		return 0;
7162 	new_data = vzalloc(array_size(prog_len,
7163 				      sizeof(struct bpf_insn_aux_data)));
7164 	if (!new_data)
7165 		return -ENOMEM;
7166 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
7167 	memcpy(new_data + off + cnt - 1, old_data + off,
7168 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
7169 	for (i = off; i < off + cnt - 1; i++)
7170 		new_data[i].seen = true;
7171 	env->insn_aux_data = new_data;
7172 	vfree(old_data);
7173 	return 0;
7174 }
7175 
7176 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
7177 {
7178 	int i;
7179 
7180 	if (len == 1)
7181 		return;
7182 	/* NOTE: fake 'exit' subprog should be updated as well. */
7183 	for (i = 0; i <= env->subprog_cnt; i++) {
7184 		if (env->subprog_info[i].start <= off)
7185 			continue;
7186 		env->subprog_info[i].start += len - 1;
7187 	}
7188 }
7189 
7190 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
7191 					    const struct bpf_insn *patch, u32 len)
7192 {
7193 	struct bpf_prog *new_prog;
7194 
7195 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
7196 	if (IS_ERR(new_prog)) {
7197 		if (PTR_ERR(new_prog) == -ERANGE)
7198 			verbose(env,
7199 				"insn %d cannot be patched due to 16-bit range\n",
7200 				env->insn_aux_data[off].orig_idx);
7201 		return NULL;
7202 	}
7203 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
7204 		return NULL;
7205 	adjust_subprog_starts(env, off, len);
7206 	return new_prog;
7207 }
7208 
7209 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
7210 					      u32 off, u32 cnt)
7211 {
7212 	int i, j;
7213 
7214 	/* find first prog starting at or after off (first to remove) */
7215 	for (i = 0; i < env->subprog_cnt; i++)
7216 		if (env->subprog_info[i].start >= off)
7217 			break;
7218 	/* find first prog starting at or after off + cnt (first to stay) */
7219 	for (j = i; j < env->subprog_cnt; j++)
7220 		if (env->subprog_info[j].start >= off + cnt)
7221 			break;
7222 	/* if j doesn't start exactly at off + cnt, we are just removing
7223 	 * the front of previous prog
7224 	 */
7225 	if (env->subprog_info[j].start != off + cnt)
7226 		j--;
7227 
7228 	if (j > i) {
7229 		struct bpf_prog_aux *aux = env->prog->aux;
7230 		int move;
7231 
7232 		/* move fake 'exit' subprog as well */
7233 		move = env->subprog_cnt + 1 - j;
7234 
7235 		memmove(env->subprog_info + i,
7236 			env->subprog_info + j,
7237 			sizeof(*env->subprog_info) * move);
7238 		env->subprog_cnt -= j - i;
7239 
7240 		/* remove func_info */
7241 		if (aux->func_info) {
7242 			move = aux->func_info_cnt - j;
7243 
7244 			memmove(aux->func_info + i,
7245 				aux->func_info + j,
7246 				sizeof(*aux->func_info) * move);
7247 			aux->func_info_cnt -= j - i;
7248 			/* func_info->insn_off is set after all code rewrites,
7249 			 * in adjust_btf_func() - no need to adjust
7250 			 */
7251 		}
7252 	} else {
7253 		/* convert i from "first prog to remove" to "first to adjust" */
7254 		if (env->subprog_info[i].start == off)
7255 			i++;
7256 	}
7257 
7258 	/* update fake 'exit' subprog as well */
7259 	for (; i <= env->subprog_cnt; i++)
7260 		env->subprog_info[i].start -= cnt;
7261 
7262 	return 0;
7263 }
7264 
7265 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
7266 				      u32 cnt)
7267 {
7268 	struct bpf_prog *prog = env->prog;
7269 	u32 i, l_off, l_cnt, nr_linfo;
7270 	struct bpf_line_info *linfo;
7271 
7272 	nr_linfo = prog->aux->nr_linfo;
7273 	if (!nr_linfo)
7274 		return 0;
7275 
7276 	linfo = prog->aux->linfo;
7277 
7278 	/* find first line info to remove, count lines to be removed */
7279 	for (i = 0; i < nr_linfo; i++)
7280 		if (linfo[i].insn_off >= off)
7281 			break;
7282 
7283 	l_off = i;
7284 	l_cnt = 0;
7285 	for (; i < nr_linfo; i++)
7286 		if (linfo[i].insn_off < off + cnt)
7287 			l_cnt++;
7288 		else
7289 			break;
7290 
7291 	/* First live insn doesn't match first live linfo, it needs to "inherit"
7292 	 * last removed linfo.  prog is already modified, so prog->len == off
7293 	 * means no live instructions after (tail of the program was removed).
7294 	 */
7295 	if (prog->len != off && l_cnt &&
7296 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
7297 		l_cnt--;
7298 		linfo[--i].insn_off = off + cnt;
7299 	}
7300 
7301 	/* remove the line info which refer to the removed instructions */
7302 	if (l_cnt) {
7303 		memmove(linfo + l_off, linfo + i,
7304 			sizeof(*linfo) * (nr_linfo - i));
7305 
7306 		prog->aux->nr_linfo -= l_cnt;
7307 		nr_linfo = prog->aux->nr_linfo;
7308 	}
7309 
7310 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
7311 	for (i = l_off; i < nr_linfo; i++)
7312 		linfo[i].insn_off -= cnt;
7313 
7314 	/* fix up all subprogs (incl. 'exit') which start >= off */
7315 	for (i = 0; i <= env->subprog_cnt; i++)
7316 		if (env->subprog_info[i].linfo_idx > l_off) {
7317 			/* program may have started in the removed region but
7318 			 * may not be fully removed
7319 			 */
7320 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
7321 				env->subprog_info[i].linfo_idx -= l_cnt;
7322 			else
7323 				env->subprog_info[i].linfo_idx = l_off;
7324 		}
7325 
7326 	return 0;
7327 }
7328 
7329 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
7330 {
7331 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7332 	unsigned int orig_prog_len = env->prog->len;
7333 	int err;
7334 
7335 	if (bpf_prog_is_dev_bound(env->prog->aux))
7336 		bpf_prog_offload_remove_insns(env, off, cnt);
7337 
7338 	err = bpf_remove_insns(env->prog, off, cnt);
7339 	if (err)
7340 		return err;
7341 
7342 	err = adjust_subprog_starts_after_remove(env, off, cnt);
7343 	if (err)
7344 		return err;
7345 
7346 	err = bpf_adj_linfo_after_remove(env, off, cnt);
7347 	if (err)
7348 		return err;
7349 
7350 	memmove(aux_data + off,	aux_data + off + cnt,
7351 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
7352 
7353 	return 0;
7354 }
7355 
7356 /* The verifier does more data flow analysis than llvm and will not
7357  * explore branches that are dead at run time. Malicious programs can
7358  * have dead code too. Therefore replace all dead at-run-time code
7359  * with 'ja -1'.
7360  *
7361  * Just nops are not optimal, e.g. if they would sit at the end of the
7362  * program and through another bug we would manage to jump there, then
7363  * we'd execute beyond program memory otherwise. Returning exception
7364  * code also wouldn't work since we can have subprogs where the dead
7365  * code could be located.
7366  */
7367 static void sanitize_dead_code(struct bpf_verifier_env *env)
7368 {
7369 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7370 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
7371 	struct bpf_insn *insn = env->prog->insnsi;
7372 	const int insn_cnt = env->prog->len;
7373 	int i;
7374 
7375 	for (i = 0; i < insn_cnt; i++) {
7376 		if (aux_data[i].seen)
7377 			continue;
7378 		memcpy(insn + i, &trap, sizeof(trap));
7379 	}
7380 }
7381 
7382 static bool insn_is_cond_jump(u8 code)
7383 {
7384 	u8 op;
7385 
7386 	if (BPF_CLASS(code) == BPF_JMP32)
7387 		return true;
7388 
7389 	if (BPF_CLASS(code) != BPF_JMP)
7390 		return false;
7391 
7392 	op = BPF_OP(code);
7393 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
7394 }
7395 
7396 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
7397 {
7398 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7399 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7400 	struct bpf_insn *insn = env->prog->insnsi;
7401 	const int insn_cnt = env->prog->len;
7402 	int i;
7403 
7404 	for (i = 0; i < insn_cnt; i++, insn++) {
7405 		if (!insn_is_cond_jump(insn->code))
7406 			continue;
7407 
7408 		if (!aux_data[i + 1].seen)
7409 			ja.off = insn->off;
7410 		else if (!aux_data[i + 1 + insn->off].seen)
7411 			ja.off = 0;
7412 		else
7413 			continue;
7414 
7415 		if (bpf_prog_is_dev_bound(env->prog->aux))
7416 			bpf_prog_offload_replace_insn(env, i, &ja);
7417 
7418 		memcpy(insn, &ja, sizeof(ja));
7419 	}
7420 }
7421 
7422 static int opt_remove_dead_code(struct bpf_verifier_env *env)
7423 {
7424 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7425 	int insn_cnt = env->prog->len;
7426 	int i, err;
7427 
7428 	for (i = 0; i < insn_cnt; i++) {
7429 		int j;
7430 
7431 		j = 0;
7432 		while (i + j < insn_cnt && !aux_data[i + j].seen)
7433 			j++;
7434 		if (!j)
7435 			continue;
7436 
7437 		err = verifier_remove_insns(env, i, j);
7438 		if (err)
7439 			return err;
7440 		insn_cnt = env->prog->len;
7441 	}
7442 
7443 	return 0;
7444 }
7445 
7446 static int opt_remove_nops(struct bpf_verifier_env *env)
7447 {
7448 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7449 	struct bpf_insn *insn = env->prog->insnsi;
7450 	int insn_cnt = env->prog->len;
7451 	int i, err;
7452 
7453 	for (i = 0; i < insn_cnt; i++) {
7454 		if (memcmp(&insn[i], &ja, sizeof(ja)))
7455 			continue;
7456 
7457 		err = verifier_remove_insns(env, i, 1);
7458 		if (err)
7459 			return err;
7460 		insn_cnt--;
7461 		i--;
7462 	}
7463 
7464 	return 0;
7465 }
7466 
7467 /* convert load instructions that access fields of a context type into a
7468  * sequence of instructions that access fields of the underlying structure:
7469  *     struct __sk_buff    -> struct sk_buff
7470  *     struct bpf_sock_ops -> struct sock
7471  */
7472 static int convert_ctx_accesses(struct bpf_verifier_env *env)
7473 {
7474 	const struct bpf_verifier_ops *ops = env->ops;
7475 	int i, cnt, size, ctx_field_size, delta = 0;
7476 	const int insn_cnt = env->prog->len;
7477 	struct bpf_insn insn_buf[16], *insn;
7478 	u32 target_size, size_default, off;
7479 	struct bpf_prog *new_prog;
7480 	enum bpf_access_type type;
7481 	bool is_narrower_load;
7482 
7483 	if (ops->gen_prologue || env->seen_direct_write) {
7484 		if (!ops->gen_prologue) {
7485 			verbose(env, "bpf verifier is misconfigured\n");
7486 			return -EINVAL;
7487 		}
7488 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
7489 					env->prog);
7490 		if (cnt >= ARRAY_SIZE(insn_buf)) {
7491 			verbose(env, "bpf verifier is misconfigured\n");
7492 			return -EINVAL;
7493 		} else if (cnt) {
7494 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
7495 			if (!new_prog)
7496 				return -ENOMEM;
7497 
7498 			env->prog = new_prog;
7499 			delta += cnt - 1;
7500 		}
7501 	}
7502 
7503 	if (bpf_prog_is_dev_bound(env->prog->aux))
7504 		return 0;
7505 
7506 	insn = env->prog->insnsi + delta;
7507 
7508 	for (i = 0; i < insn_cnt; i++, insn++) {
7509 		bpf_convert_ctx_access_t convert_ctx_access;
7510 
7511 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
7512 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
7513 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
7514 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
7515 			type = BPF_READ;
7516 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
7517 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
7518 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
7519 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
7520 			type = BPF_WRITE;
7521 		else
7522 			continue;
7523 
7524 		if (type == BPF_WRITE &&
7525 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
7526 			struct bpf_insn patch[] = {
7527 				/* Sanitize suspicious stack slot with zero.
7528 				 * There are no memory dependencies for this store,
7529 				 * since it's only using frame pointer and immediate
7530 				 * constant of zero
7531 				 */
7532 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
7533 					   env->insn_aux_data[i + delta].sanitize_stack_off,
7534 					   0),
7535 				/* the original STX instruction will immediately
7536 				 * overwrite the same stack slot with appropriate value
7537 				 */
7538 				*insn,
7539 			};
7540 
7541 			cnt = ARRAY_SIZE(patch);
7542 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
7543 			if (!new_prog)
7544 				return -ENOMEM;
7545 
7546 			delta    += cnt - 1;
7547 			env->prog = new_prog;
7548 			insn      = new_prog->insnsi + i + delta;
7549 			continue;
7550 		}
7551 
7552 		switch (env->insn_aux_data[i + delta].ptr_type) {
7553 		case PTR_TO_CTX:
7554 			if (!ops->convert_ctx_access)
7555 				continue;
7556 			convert_ctx_access = ops->convert_ctx_access;
7557 			break;
7558 		case PTR_TO_SOCKET:
7559 		case PTR_TO_SOCK_COMMON:
7560 			convert_ctx_access = bpf_sock_convert_ctx_access;
7561 			break;
7562 		case PTR_TO_TCP_SOCK:
7563 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
7564 			break;
7565 		default:
7566 			continue;
7567 		}
7568 
7569 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
7570 		size = BPF_LDST_BYTES(insn);
7571 
7572 		/* If the read access is a narrower load of the field,
7573 		 * convert to a 4/8-byte load, to minimum program type specific
7574 		 * convert_ctx_access changes. If conversion is successful,
7575 		 * we will apply proper mask to the result.
7576 		 */
7577 		is_narrower_load = size < ctx_field_size;
7578 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
7579 		off = insn->off;
7580 		if (is_narrower_load) {
7581 			u8 size_code;
7582 
7583 			if (type == BPF_WRITE) {
7584 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
7585 				return -EINVAL;
7586 			}
7587 
7588 			size_code = BPF_H;
7589 			if (ctx_field_size == 4)
7590 				size_code = BPF_W;
7591 			else if (ctx_field_size == 8)
7592 				size_code = BPF_DW;
7593 
7594 			insn->off = off & ~(size_default - 1);
7595 			insn->code = BPF_LDX | BPF_MEM | size_code;
7596 		}
7597 
7598 		target_size = 0;
7599 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
7600 					 &target_size);
7601 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
7602 		    (ctx_field_size && !target_size)) {
7603 			verbose(env, "bpf verifier is misconfigured\n");
7604 			return -EINVAL;
7605 		}
7606 
7607 		if (is_narrower_load && size < target_size) {
7608 			u8 shift = (off & (size_default - 1)) * 8;
7609 
7610 			if (ctx_field_size <= 4) {
7611 				if (shift)
7612 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
7613 									insn->dst_reg,
7614 									shift);
7615 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
7616 								(1 << size * 8) - 1);
7617 			} else {
7618 				if (shift)
7619 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
7620 									insn->dst_reg,
7621 									shift);
7622 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
7623 								(1ULL << size * 8) - 1);
7624 			}
7625 		}
7626 
7627 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7628 		if (!new_prog)
7629 			return -ENOMEM;
7630 
7631 		delta += cnt - 1;
7632 
7633 		/* keep walking new program and skip insns we just inserted */
7634 		env->prog = new_prog;
7635 		insn      = new_prog->insnsi + i + delta;
7636 	}
7637 
7638 	return 0;
7639 }
7640 
7641 static int jit_subprogs(struct bpf_verifier_env *env)
7642 {
7643 	struct bpf_prog *prog = env->prog, **func, *tmp;
7644 	int i, j, subprog_start, subprog_end = 0, len, subprog;
7645 	struct bpf_insn *insn;
7646 	void *old_bpf_func;
7647 	int err;
7648 
7649 	if (env->subprog_cnt <= 1)
7650 		return 0;
7651 
7652 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7653 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7654 		    insn->src_reg != BPF_PSEUDO_CALL)
7655 			continue;
7656 		/* Upon error here we cannot fall back to interpreter but
7657 		 * need a hard reject of the program. Thus -EFAULT is
7658 		 * propagated in any case.
7659 		 */
7660 		subprog = find_subprog(env, i + insn->imm + 1);
7661 		if (subprog < 0) {
7662 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7663 				  i + insn->imm + 1);
7664 			return -EFAULT;
7665 		}
7666 		/* temporarily remember subprog id inside insn instead of
7667 		 * aux_data, since next loop will split up all insns into funcs
7668 		 */
7669 		insn->off = subprog;
7670 		/* remember original imm in case JIT fails and fallback
7671 		 * to interpreter will be needed
7672 		 */
7673 		env->insn_aux_data[i].call_imm = insn->imm;
7674 		/* point imm to __bpf_call_base+1 from JITs point of view */
7675 		insn->imm = 1;
7676 	}
7677 
7678 	err = bpf_prog_alloc_jited_linfo(prog);
7679 	if (err)
7680 		goto out_undo_insn;
7681 
7682 	err = -ENOMEM;
7683 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
7684 	if (!func)
7685 		goto out_undo_insn;
7686 
7687 	for (i = 0; i < env->subprog_cnt; i++) {
7688 		subprog_start = subprog_end;
7689 		subprog_end = env->subprog_info[i + 1].start;
7690 
7691 		len = subprog_end - subprog_start;
7692 		/* BPF_PROG_RUN doesn't call subprogs directly,
7693 		 * hence main prog stats include the runtime of subprogs.
7694 		 * subprogs don't have IDs and not reachable via prog_get_next_id
7695 		 * func[i]->aux->stats will never be accessed and stays NULL
7696 		 */
7697 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
7698 		if (!func[i])
7699 			goto out_free;
7700 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
7701 		       len * sizeof(struct bpf_insn));
7702 		func[i]->type = prog->type;
7703 		func[i]->len = len;
7704 		if (bpf_prog_calc_tag(func[i]))
7705 			goto out_free;
7706 		func[i]->is_func = 1;
7707 		func[i]->aux->func_idx = i;
7708 		/* the btf and func_info will be freed only at prog->aux */
7709 		func[i]->aux->btf = prog->aux->btf;
7710 		func[i]->aux->func_info = prog->aux->func_info;
7711 
7712 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
7713 		 * Long term would need debug info to populate names
7714 		 */
7715 		func[i]->aux->name[0] = 'F';
7716 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
7717 		func[i]->jit_requested = 1;
7718 		func[i]->aux->linfo = prog->aux->linfo;
7719 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
7720 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
7721 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
7722 		func[i] = bpf_int_jit_compile(func[i]);
7723 		if (!func[i]->jited) {
7724 			err = -ENOTSUPP;
7725 			goto out_free;
7726 		}
7727 		cond_resched();
7728 	}
7729 	/* at this point all bpf functions were successfully JITed
7730 	 * now populate all bpf_calls with correct addresses and
7731 	 * run last pass of JIT
7732 	 */
7733 	for (i = 0; i < env->subprog_cnt; i++) {
7734 		insn = func[i]->insnsi;
7735 		for (j = 0; j < func[i]->len; j++, insn++) {
7736 			if (insn->code != (BPF_JMP | BPF_CALL) ||
7737 			    insn->src_reg != BPF_PSEUDO_CALL)
7738 				continue;
7739 			subprog = insn->off;
7740 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
7741 				    __bpf_call_base;
7742 		}
7743 
7744 		/* we use the aux data to keep a list of the start addresses
7745 		 * of the JITed images for each function in the program
7746 		 *
7747 		 * for some architectures, such as powerpc64, the imm field
7748 		 * might not be large enough to hold the offset of the start
7749 		 * address of the callee's JITed image from __bpf_call_base
7750 		 *
7751 		 * in such cases, we can lookup the start address of a callee
7752 		 * by using its subprog id, available from the off field of
7753 		 * the call instruction, as an index for this list
7754 		 */
7755 		func[i]->aux->func = func;
7756 		func[i]->aux->func_cnt = env->subprog_cnt;
7757 	}
7758 	for (i = 0; i < env->subprog_cnt; i++) {
7759 		old_bpf_func = func[i]->bpf_func;
7760 		tmp = bpf_int_jit_compile(func[i]);
7761 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
7762 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
7763 			err = -ENOTSUPP;
7764 			goto out_free;
7765 		}
7766 		cond_resched();
7767 	}
7768 
7769 	/* finally lock prog and jit images for all functions and
7770 	 * populate kallsysm
7771 	 */
7772 	for (i = 0; i < env->subprog_cnt; i++) {
7773 		bpf_prog_lock_ro(func[i]);
7774 		bpf_prog_kallsyms_add(func[i]);
7775 	}
7776 
7777 	/* Last step: make now unused interpreter insns from main
7778 	 * prog consistent for later dump requests, so they can
7779 	 * later look the same as if they were interpreted only.
7780 	 */
7781 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7782 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7783 		    insn->src_reg != BPF_PSEUDO_CALL)
7784 			continue;
7785 		insn->off = env->insn_aux_data[i].call_imm;
7786 		subprog = find_subprog(env, i + insn->off + 1);
7787 		insn->imm = subprog;
7788 	}
7789 
7790 	prog->jited = 1;
7791 	prog->bpf_func = func[0]->bpf_func;
7792 	prog->aux->func = func;
7793 	prog->aux->func_cnt = env->subprog_cnt;
7794 	bpf_prog_free_unused_jited_linfo(prog);
7795 	return 0;
7796 out_free:
7797 	for (i = 0; i < env->subprog_cnt; i++)
7798 		if (func[i])
7799 			bpf_jit_free(func[i]);
7800 	kfree(func);
7801 out_undo_insn:
7802 	/* cleanup main prog to be interpreted */
7803 	prog->jit_requested = 0;
7804 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7805 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7806 		    insn->src_reg != BPF_PSEUDO_CALL)
7807 			continue;
7808 		insn->off = 0;
7809 		insn->imm = env->insn_aux_data[i].call_imm;
7810 	}
7811 	bpf_prog_free_jited_linfo(prog);
7812 	return err;
7813 }
7814 
7815 static int fixup_call_args(struct bpf_verifier_env *env)
7816 {
7817 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7818 	struct bpf_prog *prog = env->prog;
7819 	struct bpf_insn *insn = prog->insnsi;
7820 	int i, depth;
7821 #endif
7822 	int err = 0;
7823 
7824 	if (env->prog->jit_requested &&
7825 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
7826 		err = jit_subprogs(env);
7827 		if (err == 0)
7828 			return 0;
7829 		if (err == -EFAULT)
7830 			return err;
7831 	}
7832 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7833 	for (i = 0; i < prog->len; i++, insn++) {
7834 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7835 		    insn->src_reg != BPF_PSEUDO_CALL)
7836 			continue;
7837 		depth = get_callee_stack_depth(env, insn, i);
7838 		if (depth < 0)
7839 			return depth;
7840 		bpf_patch_call_args(insn, depth);
7841 	}
7842 	err = 0;
7843 #endif
7844 	return err;
7845 }
7846 
7847 /* fixup insn->imm field of bpf_call instructions
7848  * and inline eligible helpers as explicit sequence of BPF instructions
7849  *
7850  * this function is called after eBPF program passed verification
7851  */
7852 static int fixup_bpf_calls(struct bpf_verifier_env *env)
7853 {
7854 	struct bpf_prog *prog = env->prog;
7855 	struct bpf_insn *insn = prog->insnsi;
7856 	const struct bpf_func_proto *fn;
7857 	const int insn_cnt = prog->len;
7858 	const struct bpf_map_ops *ops;
7859 	struct bpf_insn_aux_data *aux;
7860 	struct bpf_insn insn_buf[16];
7861 	struct bpf_prog *new_prog;
7862 	struct bpf_map *map_ptr;
7863 	int i, cnt, delta = 0;
7864 
7865 	for (i = 0; i < insn_cnt; i++, insn++) {
7866 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
7867 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7868 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
7869 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7870 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
7871 			struct bpf_insn mask_and_div[] = {
7872 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7873 				/* Rx div 0 -> 0 */
7874 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
7875 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
7876 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
7877 				*insn,
7878 			};
7879 			struct bpf_insn mask_and_mod[] = {
7880 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7881 				/* Rx mod 0 -> Rx */
7882 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
7883 				*insn,
7884 			};
7885 			struct bpf_insn *patchlet;
7886 
7887 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7888 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7889 				patchlet = mask_and_div + (is64 ? 1 : 0);
7890 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
7891 			} else {
7892 				patchlet = mask_and_mod + (is64 ? 1 : 0);
7893 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
7894 			}
7895 
7896 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
7897 			if (!new_prog)
7898 				return -ENOMEM;
7899 
7900 			delta    += cnt - 1;
7901 			env->prog = prog = new_prog;
7902 			insn      = new_prog->insnsi + i + delta;
7903 			continue;
7904 		}
7905 
7906 		if (BPF_CLASS(insn->code) == BPF_LD &&
7907 		    (BPF_MODE(insn->code) == BPF_ABS ||
7908 		     BPF_MODE(insn->code) == BPF_IND)) {
7909 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
7910 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7911 				verbose(env, "bpf verifier is misconfigured\n");
7912 				return -EINVAL;
7913 			}
7914 
7915 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7916 			if (!new_prog)
7917 				return -ENOMEM;
7918 
7919 			delta    += cnt - 1;
7920 			env->prog = prog = new_prog;
7921 			insn      = new_prog->insnsi + i + delta;
7922 			continue;
7923 		}
7924 
7925 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
7926 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
7927 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
7928 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
7929 			struct bpf_insn insn_buf[16];
7930 			struct bpf_insn *patch = &insn_buf[0];
7931 			bool issrc, isneg;
7932 			u32 off_reg;
7933 
7934 			aux = &env->insn_aux_data[i + delta];
7935 			if (!aux->alu_state ||
7936 			    aux->alu_state == BPF_ALU_NON_POINTER)
7937 				continue;
7938 
7939 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
7940 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
7941 				BPF_ALU_SANITIZE_SRC;
7942 
7943 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
7944 			if (isneg)
7945 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7946 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
7947 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
7948 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
7949 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
7950 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
7951 			if (issrc) {
7952 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
7953 							 off_reg);
7954 				insn->src_reg = BPF_REG_AX;
7955 			} else {
7956 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
7957 							 BPF_REG_AX);
7958 			}
7959 			if (isneg)
7960 				insn->code = insn->code == code_add ?
7961 					     code_sub : code_add;
7962 			*patch++ = *insn;
7963 			if (issrc && isneg)
7964 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7965 			cnt = patch - insn_buf;
7966 
7967 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7968 			if (!new_prog)
7969 				return -ENOMEM;
7970 
7971 			delta    += cnt - 1;
7972 			env->prog = prog = new_prog;
7973 			insn      = new_prog->insnsi + i + delta;
7974 			continue;
7975 		}
7976 
7977 		if (insn->code != (BPF_JMP | BPF_CALL))
7978 			continue;
7979 		if (insn->src_reg == BPF_PSEUDO_CALL)
7980 			continue;
7981 
7982 		if (insn->imm == BPF_FUNC_get_route_realm)
7983 			prog->dst_needed = 1;
7984 		if (insn->imm == BPF_FUNC_get_prandom_u32)
7985 			bpf_user_rnd_init_once();
7986 		if (insn->imm == BPF_FUNC_override_return)
7987 			prog->kprobe_override = 1;
7988 		if (insn->imm == BPF_FUNC_tail_call) {
7989 			/* If we tail call into other programs, we
7990 			 * cannot make any assumptions since they can
7991 			 * be replaced dynamically during runtime in
7992 			 * the program array.
7993 			 */
7994 			prog->cb_access = 1;
7995 			env->prog->aux->stack_depth = MAX_BPF_STACK;
7996 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7997 
7998 			/* mark bpf_tail_call as different opcode to avoid
7999 			 * conditional branch in the interpeter for every normal
8000 			 * call and to prevent accidental JITing by JIT compiler
8001 			 * that doesn't support bpf_tail_call yet
8002 			 */
8003 			insn->imm = 0;
8004 			insn->code = BPF_JMP | BPF_TAIL_CALL;
8005 
8006 			aux = &env->insn_aux_data[i + delta];
8007 			if (!bpf_map_ptr_unpriv(aux))
8008 				continue;
8009 
8010 			/* instead of changing every JIT dealing with tail_call
8011 			 * emit two extra insns:
8012 			 * if (index >= max_entries) goto out;
8013 			 * index &= array->index_mask;
8014 			 * to avoid out-of-bounds cpu speculation
8015 			 */
8016 			if (bpf_map_ptr_poisoned(aux)) {
8017 				verbose(env, "tail_call abusing map_ptr\n");
8018 				return -EINVAL;
8019 			}
8020 
8021 			map_ptr = BPF_MAP_PTR(aux->map_state);
8022 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
8023 						  map_ptr->max_entries, 2);
8024 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
8025 						    container_of(map_ptr,
8026 								 struct bpf_array,
8027 								 map)->index_mask);
8028 			insn_buf[2] = *insn;
8029 			cnt = 3;
8030 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8031 			if (!new_prog)
8032 				return -ENOMEM;
8033 
8034 			delta    += cnt - 1;
8035 			env->prog = prog = new_prog;
8036 			insn      = new_prog->insnsi + i + delta;
8037 			continue;
8038 		}
8039 
8040 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
8041 		 * and other inlining handlers are currently limited to 64 bit
8042 		 * only.
8043 		 */
8044 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
8045 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
8046 		     insn->imm == BPF_FUNC_map_update_elem ||
8047 		     insn->imm == BPF_FUNC_map_delete_elem ||
8048 		     insn->imm == BPF_FUNC_map_push_elem   ||
8049 		     insn->imm == BPF_FUNC_map_pop_elem    ||
8050 		     insn->imm == BPF_FUNC_map_peek_elem)) {
8051 			aux = &env->insn_aux_data[i + delta];
8052 			if (bpf_map_ptr_poisoned(aux))
8053 				goto patch_call_imm;
8054 
8055 			map_ptr = BPF_MAP_PTR(aux->map_state);
8056 			ops = map_ptr->ops;
8057 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
8058 			    ops->map_gen_lookup) {
8059 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
8060 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8061 					verbose(env, "bpf verifier is misconfigured\n");
8062 					return -EINVAL;
8063 				}
8064 
8065 				new_prog = bpf_patch_insn_data(env, i + delta,
8066 							       insn_buf, cnt);
8067 				if (!new_prog)
8068 					return -ENOMEM;
8069 
8070 				delta    += cnt - 1;
8071 				env->prog = prog = new_prog;
8072 				insn      = new_prog->insnsi + i + delta;
8073 				continue;
8074 			}
8075 
8076 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
8077 				     (void *(*)(struct bpf_map *map, void *key))NULL));
8078 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
8079 				     (int (*)(struct bpf_map *map, void *key))NULL));
8080 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
8081 				     (int (*)(struct bpf_map *map, void *key, void *value,
8082 					      u64 flags))NULL));
8083 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
8084 				     (int (*)(struct bpf_map *map, void *value,
8085 					      u64 flags))NULL));
8086 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
8087 				     (int (*)(struct bpf_map *map, void *value))NULL));
8088 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
8089 				     (int (*)(struct bpf_map *map, void *value))NULL));
8090 
8091 			switch (insn->imm) {
8092 			case BPF_FUNC_map_lookup_elem:
8093 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
8094 					    __bpf_call_base;
8095 				continue;
8096 			case BPF_FUNC_map_update_elem:
8097 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
8098 					    __bpf_call_base;
8099 				continue;
8100 			case BPF_FUNC_map_delete_elem:
8101 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
8102 					    __bpf_call_base;
8103 				continue;
8104 			case BPF_FUNC_map_push_elem:
8105 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
8106 					    __bpf_call_base;
8107 				continue;
8108 			case BPF_FUNC_map_pop_elem:
8109 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
8110 					    __bpf_call_base;
8111 				continue;
8112 			case BPF_FUNC_map_peek_elem:
8113 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
8114 					    __bpf_call_base;
8115 				continue;
8116 			}
8117 
8118 			goto patch_call_imm;
8119 		}
8120 
8121 patch_call_imm:
8122 		fn = env->ops->get_func_proto(insn->imm, env->prog);
8123 		/* all functions that have prototype and verifier allowed
8124 		 * programs to call them, must be real in-kernel functions
8125 		 */
8126 		if (!fn->func) {
8127 			verbose(env,
8128 				"kernel subsystem misconfigured func %s#%d\n",
8129 				func_id_name(insn->imm), insn->imm);
8130 			return -EFAULT;
8131 		}
8132 		insn->imm = fn->func - __bpf_call_base;
8133 	}
8134 
8135 	return 0;
8136 }
8137 
8138 static void free_states(struct bpf_verifier_env *env)
8139 {
8140 	struct bpf_verifier_state_list *sl, *sln;
8141 	int i;
8142 
8143 	sl = env->free_list;
8144 	while (sl) {
8145 		sln = sl->next;
8146 		free_verifier_state(&sl->state, false);
8147 		kfree(sl);
8148 		sl = sln;
8149 	}
8150 
8151 	if (!env->explored_states)
8152 		return;
8153 
8154 	for (i = 0; i < state_htab_size(env); i++) {
8155 		sl = env->explored_states[i];
8156 
8157 		while (sl) {
8158 			sln = sl->next;
8159 			free_verifier_state(&sl->state, false);
8160 			kfree(sl);
8161 			sl = sln;
8162 		}
8163 	}
8164 
8165 	kvfree(env->explored_states);
8166 }
8167 
8168 static void print_verification_stats(struct bpf_verifier_env *env)
8169 {
8170 	int i;
8171 
8172 	if (env->log.level & BPF_LOG_STATS) {
8173 		verbose(env, "verification time %lld usec\n",
8174 			div_u64(env->verification_time, 1000));
8175 		verbose(env, "stack depth ");
8176 		for (i = 0; i < env->subprog_cnt; i++) {
8177 			u32 depth = env->subprog_info[i].stack_depth;
8178 
8179 			verbose(env, "%d", depth);
8180 			if (i + 1 < env->subprog_cnt)
8181 				verbose(env, "+");
8182 		}
8183 		verbose(env, "\n");
8184 	}
8185 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
8186 		"total_states %d peak_states %d mark_read %d\n",
8187 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
8188 		env->max_states_per_insn, env->total_states,
8189 		env->peak_states, env->longest_mark_read_walk);
8190 }
8191 
8192 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
8193 	      union bpf_attr __user *uattr)
8194 {
8195 	u64 start_time = ktime_get_ns();
8196 	struct bpf_verifier_env *env;
8197 	struct bpf_verifier_log *log;
8198 	int i, len, ret = -EINVAL;
8199 	bool is_priv;
8200 
8201 	/* no program is valid */
8202 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
8203 		return -EINVAL;
8204 
8205 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
8206 	 * allocate/free it every time bpf_check() is called
8207 	 */
8208 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
8209 	if (!env)
8210 		return -ENOMEM;
8211 	log = &env->log;
8212 
8213 	len = (*prog)->len;
8214 	env->insn_aux_data =
8215 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
8216 	ret = -ENOMEM;
8217 	if (!env->insn_aux_data)
8218 		goto err_free_env;
8219 	for (i = 0; i < len; i++)
8220 		env->insn_aux_data[i].orig_idx = i;
8221 	env->prog = *prog;
8222 	env->ops = bpf_verifier_ops[env->prog->type];
8223 	is_priv = capable(CAP_SYS_ADMIN);
8224 
8225 	/* grab the mutex to protect few globals used by verifier */
8226 	if (!is_priv)
8227 		mutex_lock(&bpf_verifier_lock);
8228 
8229 	if (attr->log_level || attr->log_buf || attr->log_size) {
8230 		/* user requested verbose verifier output
8231 		 * and supplied buffer to store the verification trace
8232 		 */
8233 		log->level = attr->log_level;
8234 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
8235 		log->len_total = attr->log_size;
8236 
8237 		ret = -EINVAL;
8238 		/* log attributes have to be sane */
8239 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
8240 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
8241 			goto err_unlock;
8242 	}
8243 
8244 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
8245 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
8246 		env->strict_alignment = true;
8247 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
8248 		env->strict_alignment = false;
8249 
8250 	env->allow_ptr_leaks = is_priv;
8251 
8252 	ret = replace_map_fd_with_map_ptr(env);
8253 	if (ret < 0)
8254 		goto skip_full_check;
8255 
8256 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
8257 		ret = bpf_prog_offload_verifier_prep(env->prog);
8258 		if (ret)
8259 			goto skip_full_check;
8260 	}
8261 
8262 	env->explored_states = kvcalloc(state_htab_size(env),
8263 				       sizeof(struct bpf_verifier_state_list *),
8264 				       GFP_USER);
8265 	ret = -ENOMEM;
8266 	if (!env->explored_states)
8267 		goto skip_full_check;
8268 
8269 	ret = check_subprogs(env);
8270 	if (ret < 0)
8271 		goto skip_full_check;
8272 
8273 	ret = check_btf_info(env, attr, uattr);
8274 	if (ret < 0)
8275 		goto skip_full_check;
8276 
8277 	ret = check_cfg(env);
8278 	if (ret < 0)
8279 		goto skip_full_check;
8280 
8281 	ret = do_check(env);
8282 	if (env->cur_state) {
8283 		free_verifier_state(env->cur_state, true);
8284 		env->cur_state = NULL;
8285 	}
8286 
8287 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
8288 		ret = bpf_prog_offload_finalize(env);
8289 
8290 skip_full_check:
8291 	while (!pop_stack(env, NULL, NULL));
8292 	free_states(env);
8293 
8294 	if (ret == 0)
8295 		ret = check_max_stack_depth(env);
8296 
8297 	/* instruction rewrites happen after this point */
8298 	if (is_priv) {
8299 		if (ret == 0)
8300 			opt_hard_wire_dead_code_branches(env);
8301 		if (ret == 0)
8302 			ret = opt_remove_dead_code(env);
8303 		if (ret == 0)
8304 			ret = opt_remove_nops(env);
8305 	} else {
8306 		if (ret == 0)
8307 			sanitize_dead_code(env);
8308 	}
8309 
8310 	if (ret == 0)
8311 		/* program is valid, convert *(u32*)(ctx + off) accesses */
8312 		ret = convert_ctx_accesses(env);
8313 
8314 	if (ret == 0)
8315 		ret = fixup_bpf_calls(env);
8316 
8317 	if (ret == 0)
8318 		ret = fixup_call_args(env);
8319 
8320 	env->verification_time = ktime_get_ns() - start_time;
8321 	print_verification_stats(env);
8322 
8323 	if (log->level && bpf_verifier_log_full(log))
8324 		ret = -ENOSPC;
8325 	if (log->level && !log->ubuf) {
8326 		ret = -EFAULT;
8327 		goto err_release_maps;
8328 	}
8329 
8330 	if (ret == 0 && env->used_map_cnt) {
8331 		/* if program passed verifier, update used_maps in bpf_prog_info */
8332 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
8333 							  sizeof(env->used_maps[0]),
8334 							  GFP_KERNEL);
8335 
8336 		if (!env->prog->aux->used_maps) {
8337 			ret = -ENOMEM;
8338 			goto err_release_maps;
8339 		}
8340 
8341 		memcpy(env->prog->aux->used_maps, env->used_maps,
8342 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
8343 		env->prog->aux->used_map_cnt = env->used_map_cnt;
8344 
8345 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
8346 		 * bpf_ld_imm64 instructions
8347 		 */
8348 		convert_pseudo_ld_imm64(env);
8349 	}
8350 
8351 	if (ret == 0)
8352 		adjust_btf_func(env);
8353 
8354 err_release_maps:
8355 	if (!env->prog->aux->used_maps)
8356 		/* if we didn't copy map pointers into bpf_prog_info, release
8357 		 * them now. Otherwise free_used_maps() will release them.
8358 		 */
8359 		release_maps(env);
8360 	*prog = env->prog;
8361 err_unlock:
8362 	if (!is_priv)
8363 		mutex_unlock(&bpf_verifier_lock);
8364 	vfree(env->insn_aux_data);
8365 err_free_env:
8366 	kfree(env);
8367 	return ret;
8368 }
8369