xref: /linux/kernel/bpf/verifier.c (revision 900897591b2bf01154db8f59f6ecf8d60e60f15e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 
25 #include "disasm.h"
26 
27 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
28 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
29 	[_id] = & _name ## _verifier_ops,
30 #define BPF_MAP_TYPE(_id, _ops)
31 #include <linux/bpf_types.h>
32 #undef BPF_PROG_TYPE
33 #undef BPF_MAP_TYPE
34 };
35 
36 /* bpf_check() is a static code analyzer that walks eBPF program
37  * instruction by instruction and updates register/stack state.
38  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
39  *
40  * The first pass is depth-first-search to check that the program is a DAG.
41  * It rejects the following programs:
42  * - larger than BPF_MAXINSNS insns
43  * - if loop is present (detected via back-edge)
44  * - unreachable insns exist (shouldn't be a forest. program = one function)
45  * - out of bounds or malformed jumps
46  * The second pass is all possible path descent from the 1st insn.
47  * Since it's analyzing all pathes through the program, the length of the
48  * analysis is limited to 64k insn, which may be hit even if total number of
49  * insn is less then 4K, but there are too many branches that change stack/regs.
50  * Number of 'branches to be analyzed' is limited to 1k
51  *
52  * On entry to each instruction, each register has a type, and the instruction
53  * changes the types of the registers depending on instruction semantics.
54  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
55  * copied to R1.
56  *
57  * All registers are 64-bit.
58  * R0 - return register
59  * R1-R5 argument passing registers
60  * R6-R9 callee saved registers
61  * R10 - frame pointer read-only
62  *
63  * At the start of BPF program the register R1 contains a pointer to bpf_context
64  * and has type PTR_TO_CTX.
65  *
66  * Verifier tracks arithmetic operations on pointers in case:
67  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
68  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
69  * 1st insn copies R10 (which has FRAME_PTR) type into R1
70  * and 2nd arithmetic instruction is pattern matched to recognize
71  * that it wants to construct a pointer to some element within stack.
72  * So after 2nd insn, the register R1 has type PTR_TO_STACK
73  * (and -20 constant is saved for further stack bounds checking).
74  * Meaning that this reg is a pointer to stack plus known immediate constant.
75  *
76  * Most of the time the registers have SCALAR_VALUE type, which
77  * means the register has some value, but it's not a valid pointer.
78  * (like pointer plus pointer becomes SCALAR_VALUE type)
79  *
80  * When verifier sees load or store instructions the type of base register
81  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
82  * four pointer types recognized by check_mem_access() function.
83  *
84  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
85  * and the range of [ptr, ptr + map's value_size) is accessible.
86  *
87  * registers used to pass values to function calls are checked against
88  * function argument constraints.
89  *
90  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
91  * It means that the register type passed to this function must be
92  * PTR_TO_STACK and it will be used inside the function as
93  * 'pointer to map element key'
94  *
95  * For example the argument constraints for bpf_map_lookup_elem():
96  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
97  *   .arg1_type = ARG_CONST_MAP_PTR,
98  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
99  *
100  * ret_type says that this function returns 'pointer to map elem value or null'
101  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
102  * 2nd argument should be a pointer to stack, which will be used inside
103  * the helper function as a pointer to map element key.
104  *
105  * On the kernel side the helper function looks like:
106  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
107  * {
108  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
109  *    void *key = (void *) (unsigned long) r2;
110  *    void *value;
111  *
112  *    here kernel can access 'key' and 'map' pointers safely, knowing that
113  *    [key, key + map->key_size) bytes are valid and were initialized on
114  *    the stack of eBPF program.
115  * }
116  *
117  * Corresponding eBPF program may look like:
118  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
119  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
120  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
121  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
122  * here verifier looks at prototype of map_lookup_elem() and sees:
123  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
124  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
125  *
126  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
127  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
128  * and were initialized prior to this call.
129  * If it's ok, then verifier allows this BPF_CALL insn and looks at
130  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
131  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
132  * returns ether pointer to map value or NULL.
133  *
134  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
135  * insn, the register holding that pointer in the true branch changes state to
136  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
137  * branch. See check_cond_jmp_op().
138  *
139  * After the call R0 is set to return type of the function and registers R1-R5
140  * are set to NOT_INIT to indicate that they are no longer readable.
141  *
142  * The following reference types represent a potential reference to a kernel
143  * resource which, after first being allocated, must be checked and freed by
144  * the BPF program:
145  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
146  *
147  * When the verifier sees a helper call return a reference type, it allocates a
148  * pointer id for the reference and stores it in the current function state.
149  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
150  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
151  * passes through a NULL-check conditional. For the branch wherein the state is
152  * changed to CONST_IMM, the verifier releases the reference.
153  *
154  * For each helper function that allocates a reference, such as
155  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
156  * bpf_sk_release(). When a reference type passes into the release function,
157  * the verifier also releases the reference. If any unchecked or unreleased
158  * reference remains at the end of the program, the verifier rejects it.
159  */
160 
161 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
162 struct bpf_verifier_stack_elem {
163 	/* verifer state is 'st'
164 	 * before processing instruction 'insn_idx'
165 	 * and after processing instruction 'prev_insn_idx'
166 	 */
167 	struct bpf_verifier_state st;
168 	int insn_idx;
169 	int prev_insn_idx;
170 	struct bpf_verifier_stack_elem *next;
171 };
172 
173 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
174 #define BPF_COMPLEXITY_LIMIT_STATES	64
175 
176 #define BPF_MAP_KEY_POISON	(1ULL << 63)
177 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
178 
179 #define BPF_MAP_PTR_UNPRIV	1UL
180 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
181 					  POISON_POINTER_DELTA))
182 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
183 
184 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
185 {
186 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
187 }
188 
189 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
190 {
191 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
192 }
193 
194 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
195 			      const struct bpf_map *map, bool unpriv)
196 {
197 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
198 	unpriv |= bpf_map_ptr_unpriv(aux);
199 	aux->map_ptr_state = (unsigned long)map |
200 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
201 }
202 
203 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
204 {
205 	return aux->map_key_state & BPF_MAP_KEY_POISON;
206 }
207 
208 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
209 {
210 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
211 }
212 
213 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
214 {
215 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
216 }
217 
218 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
219 {
220 	bool poisoned = bpf_map_key_poisoned(aux);
221 
222 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
223 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
224 }
225 
226 struct bpf_call_arg_meta {
227 	struct bpf_map *map_ptr;
228 	bool raw_mode;
229 	bool pkt_access;
230 	int regno;
231 	int access_size;
232 	u64 msize_max_value;
233 	int ref_obj_id;
234 	int func_id;
235 	u32 btf_id;
236 };
237 
238 struct btf *btf_vmlinux;
239 
240 static DEFINE_MUTEX(bpf_verifier_lock);
241 
242 static const struct bpf_line_info *
243 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
244 {
245 	const struct bpf_line_info *linfo;
246 	const struct bpf_prog *prog;
247 	u32 i, nr_linfo;
248 
249 	prog = env->prog;
250 	nr_linfo = prog->aux->nr_linfo;
251 
252 	if (!nr_linfo || insn_off >= prog->len)
253 		return NULL;
254 
255 	linfo = prog->aux->linfo;
256 	for (i = 1; i < nr_linfo; i++)
257 		if (insn_off < linfo[i].insn_off)
258 			break;
259 
260 	return &linfo[i - 1];
261 }
262 
263 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
264 		       va_list args)
265 {
266 	unsigned int n;
267 
268 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
269 
270 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
271 		  "verifier log line truncated - local buffer too short\n");
272 
273 	n = min(log->len_total - log->len_used - 1, n);
274 	log->kbuf[n] = '\0';
275 
276 	if (log->level == BPF_LOG_KERNEL) {
277 		pr_err("BPF:%s\n", log->kbuf);
278 		return;
279 	}
280 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
281 		log->len_used += n;
282 	else
283 		log->ubuf = NULL;
284 }
285 
286 /* log_level controls verbosity level of eBPF verifier.
287  * bpf_verifier_log_write() is used to dump the verification trace to the log,
288  * so the user can figure out what's wrong with the program
289  */
290 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
291 					   const char *fmt, ...)
292 {
293 	va_list args;
294 
295 	if (!bpf_verifier_log_needed(&env->log))
296 		return;
297 
298 	va_start(args, fmt);
299 	bpf_verifier_vlog(&env->log, fmt, args);
300 	va_end(args);
301 }
302 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
303 
304 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
305 {
306 	struct bpf_verifier_env *env = private_data;
307 	va_list args;
308 
309 	if (!bpf_verifier_log_needed(&env->log))
310 		return;
311 
312 	va_start(args, fmt);
313 	bpf_verifier_vlog(&env->log, fmt, args);
314 	va_end(args);
315 }
316 
317 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
318 			    const char *fmt, ...)
319 {
320 	va_list args;
321 
322 	if (!bpf_verifier_log_needed(log))
323 		return;
324 
325 	va_start(args, fmt);
326 	bpf_verifier_vlog(log, fmt, args);
327 	va_end(args);
328 }
329 
330 static const char *ltrim(const char *s)
331 {
332 	while (isspace(*s))
333 		s++;
334 
335 	return s;
336 }
337 
338 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
339 					 u32 insn_off,
340 					 const char *prefix_fmt, ...)
341 {
342 	const struct bpf_line_info *linfo;
343 
344 	if (!bpf_verifier_log_needed(&env->log))
345 		return;
346 
347 	linfo = find_linfo(env, insn_off);
348 	if (!linfo || linfo == env->prev_linfo)
349 		return;
350 
351 	if (prefix_fmt) {
352 		va_list args;
353 
354 		va_start(args, prefix_fmt);
355 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
356 		va_end(args);
357 	}
358 
359 	verbose(env, "%s\n",
360 		ltrim(btf_name_by_offset(env->prog->aux->btf,
361 					 linfo->line_off)));
362 
363 	env->prev_linfo = linfo;
364 }
365 
366 static bool type_is_pkt_pointer(enum bpf_reg_type type)
367 {
368 	return type == PTR_TO_PACKET ||
369 	       type == PTR_TO_PACKET_META;
370 }
371 
372 static bool type_is_sk_pointer(enum bpf_reg_type type)
373 {
374 	return type == PTR_TO_SOCKET ||
375 		type == PTR_TO_SOCK_COMMON ||
376 		type == PTR_TO_TCP_SOCK ||
377 		type == PTR_TO_XDP_SOCK;
378 }
379 
380 static bool reg_type_may_be_null(enum bpf_reg_type type)
381 {
382 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
383 	       type == PTR_TO_SOCKET_OR_NULL ||
384 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
385 	       type == PTR_TO_TCP_SOCK_OR_NULL;
386 }
387 
388 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
389 {
390 	return reg->type == PTR_TO_MAP_VALUE &&
391 		map_value_has_spin_lock(reg->map_ptr);
392 }
393 
394 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
395 {
396 	return type == PTR_TO_SOCKET ||
397 		type == PTR_TO_SOCKET_OR_NULL ||
398 		type == PTR_TO_TCP_SOCK ||
399 		type == PTR_TO_TCP_SOCK_OR_NULL;
400 }
401 
402 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
403 {
404 	return type == ARG_PTR_TO_SOCK_COMMON;
405 }
406 
407 /* Determine whether the function releases some resources allocated by another
408  * function call. The first reference type argument will be assumed to be
409  * released by release_reference().
410  */
411 static bool is_release_function(enum bpf_func_id func_id)
412 {
413 	return func_id == BPF_FUNC_sk_release;
414 }
415 
416 static bool is_acquire_function(enum bpf_func_id func_id)
417 {
418 	return func_id == BPF_FUNC_sk_lookup_tcp ||
419 		func_id == BPF_FUNC_sk_lookup_udp ||
420 		func_id == BPF_FUNC_skc_lookup_tcp;
421 }
422 
423 static bool is_ptr_cast_function(enum bpf_func_id func_id)
424 {
425 	return func_id == BPF_FUNC_tcp_sock ||
426 		func_id == BPF_FUNC_sk_fullsock;
427 }
428 
429 /* string representation of 'enum bpf_reg_type' */
430 static const char * const reg_type_str[] = {
431 	[NOT_INIT]		= "?",
432 	[SCALAR_VALUE]		= "inv",
433 	[PTR_TO_CTX]		= "ctx",
434 	[CONST_PTR_TO_MAP]	= "map_ptr",
435 	[PTR_TO_MAP_VALUE]	= "map_value",
436 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
437 	[PTR_TO_STACK]		= "fp",
438 	[PTR_TO_PACKET]		= "pkt",
439 	[PTR_TO_PACKET_META]	= "pkt_meta",
440 	[PTR_TO_PACKET_END]	= "pkt_end",
441 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
442 	[PTR_TO_SOCKET]		= "sock",
443 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
444 	[PTR_TO_SOCK_COMMON]	= "sock_common",
445 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
446 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
447 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
448 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
449 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
450 	[PTR_TO_BTF_ID]		= "ptr_",
451 };
452 
453 static char slot_type_char[] = {
454 	[STACK_INVALID]	= '?',
455 	[STACK_SPILL]	= 'r',
456 	[STACK_MISC]	= 'm',
457 	[STACK_ZERO]	= '0',
458 };
459 
460 static void print_liveness(struct bpf_verifier_env *env,
461 			   enum bpf_reg_liveness live)
462 {
463 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
464 	    verbose(env, "_");
465 	if (live & REG_LIVE_READ)
466 		verbose(env, "r");
467 	if (live & REG_LIVE_WRITTEN)
468 		verbose(env, "w");
469 	if (live & REG_LIVE_DONE)
470 		verbose(env, "D");
471 }
472 
473 static struct bpf_func_state *func(struct bpf_verifier_env *env,
474 				   const struct bpf_reg_state *reg)
475 {
476 	struct bpf_verifier_state *cur = env->cur_state;
477 
478 	return cur->frame[reg->frameno];
479 }
480 
481 const char *kernel_type_name(u32 id)
482 {
483 	return btf_name_by_offset(btf_vmlinux,
484 				  btf_type_by_id(btf_vmlinux, id)->name_off);
485 }
486 
487 static void print_verifier_state(struct bpf_verifier_env *env,
488 				 const struct bpf_func_state *state)
489 {
490 	const struct bpf_reg_state *reg;
491 	enum bpf_reg_type t;
492 	int i;
493 
494 	if (state->frameno)
495 		verbose(env, " frame%d:", state->frameno);
496 	for (i = 0; i < MAX_BPF_REG; i++) {
497 		reg = &state->regs[i];
498 		t = reg->type;
499 		if (t == NOT_INIT)
500 			continue;
501 		verbose(env, " R%d", i);
502 		print_liveness(env, reg->live);
503 		verbose(env, "=%s", reg_type_str[t]);
504 		if (t == SCALAR_VALUE && reg->precise)
505 			verbose(env, "P");
506 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
507 		    tnum_is_const(reg->var_off)) {
508 			/* reg->off should be 0 for SCALAR_VALUE */
509 			verbose(env, "%lld", reg->var_off.value + reg->off);
510 		} else {
511 			if (t == PTR_TO_BTF_ID)
512 				verbose(env, "%s", kernel_type_name(reg->btf_id));
513 			verbose(env, "(id=%d", reg->id);
514 			if (reg_type_may_be_refcounted_or_null(t))
515 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
516 			if (t != SCALAR_VALUE)
517 				verbose(env, ",off=%d", reg->off);
518 			if (type_is_pkt_pointer(t))
519 				verbose(env, ",r=%d", reg->range);
520 			else if (t == CONST_PTR_TO_MAP ||
521 				 t == PTR_TO_MAP_VALUE ||
522 				 t == PTR_TO_MAP_VALUE_OR_NULL)
523 				verbose(env, ",ks=%d,vs=%d",
524 					reg->map_ptr->key_size,
525 					reg->map_ptr->value_size);
526 			if (tnum_is_const(reg->var_off)) {
527 				/* Typically an immediate SCALAR_VALUE, but
528 				 * could be a pointer whose offset is too big
529 				 * for reg->off
530 				 */
531 				verbose(env, ",imm=%llx", reg->var_off.value);
532 			} else {
533 				if (reg->smin_value != reg->umin_value &&
534 				    reg->smin_value != S64_MIN)
535 					verbose(env, ",smin_value=%lld",
536 						(long long)reg->smin_value);
537 				if (reg->smax_value != reg->umax_value &&
538 				    reg->smax_value != S64_MAX)
539 					verbose(env, ",smax_value=%lld",
540 						(long long)reg->smax_value);
541 				if (reg->umin_value != 0)
542 					verbose(env, ",umin_value=%llu",
543 						(unsigned long long)reg->umin_value);
544 				if (reg->umax_value != U64_MAX)
545 					verbose(env, ",umax_value=%llu",
546 						(unsigned long long)reg->umax_value);
547 				if (!tnum_is_unknown(reg->var_off)) {
548 					char tn_buf[48];
549 
550 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
551 					verbose(env, ",var_off=%s", tn_buf);
552 				}
553 				if (reg->s32_min_value != reg->smin_value &&
554 				    reg->s32_min_value != S32_MIN)
555 					verbose(env, ",s32_min_value=%d",
556 						(int)(reg->s32_min_value));
557 				if (reg->s32_max_value != reg->smax_value &&
558 				    reg->s32_max_value != S32_MAX)
559 					verbose(env, ",s32_max_value=%d",
560 						(int)(reg->s32_max_value));
561 				if (reg->u32_min_value != reg->umin_value &&
562 				    reg->u32_min_value != U32_MIN)
563 					verbose(env, ",u32_min_value=%d",
564 						(int)(reg->u32_min_value));
565 				if (reg->u32_max_value != reg->umax_value &&
566 				    reg->u32_max_value != U32_MAX)
567 					verbose(env, ",u32_max_value=%d",
568 						(int)(reg->u32_max_value));
569 			}
570 			verbose(env, ")");
571 		}
572 	}
573 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
574 		char types_buf[BPF_REG_SIZE + 1];
575 		bool valid = false;
576 		int j;
577 
578 		for (j = 0; j < BPF_REG_SIZE; j++) {
579 			if (state->stack[i].slot_type[j] != STACK_INVALID)
580 				valid = true;
581 			types_buf[j] = slot_type_char[
582 					state->stack[i].slot_type[j]];
583 		}
584 		types_buf[BPF_REG_SIZE] = 0;
585 		if (!valid)
586 			continue;
587 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
588 		print_liveness(env, state->stack[i].spilled_ptr.live);
589 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
590 			reg = &state->stack[i].spilled_ptr;
591 			t = reg->type;
592 			verbose(env, "=%s", reg_type_str[t]);
593 			if (t == SCALAR_VALUE && reg->precise)
594 				verbose(env, "P");
595 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
596 				verbose(env, "%lld", reg->var_off.value + reg->off);
597 		} else {
598 			verbose(env, "=%s", types_buf);
599 		}
600 	}
601 	if (state->acquired_refs && state->refs[0].id) {
602 		verbose(env, " refs=%d", state->refs[0].id);
603 		for (i = 1; i < state->acquired_refs; i++)
604 			if (state->refs[i].id)
605 				verbose(env, ",%d", state->refs[i].id);
606 	}
607 	verbose(env, "\n");
608 }
609 
610 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
611 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
612 			       const struct bpf_func_state *src)	\
613 {									\
614 	if (!src->FIELD)						\
615 		return 0;						\
616 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
617 		/* internal bug, make state invalid to reject the program */ \
618 		memset(dst, 0, sizeof(*dst));				\
619 		return -EFAULT;						\
620 	}								\
621 	memcpy(dst->FIELD, src->FIELD,					\
622 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
623 	return 0;							\
624 }
625 /* copy_reference_state() */
626 COPY_STATE_FN(reference, acquired_refs, refs, 1)
627 /* copy_stack_state() */
628 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
629 #undef COPY_STATE_FN
630 
631 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
632 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
633 				  bool copy_old)			\
634 {									\
635 	u32 old_size = state->COUNT;					\
636 	struct bpf_##NAME##_state *new_##FIELD;				\
637 	int slot = size / SIZE;						\
638 									\
639 	if (size <= old_size || !size) {				\
640 		if (copy_old)						\
641 			return 0;					\
642 		state->COUNT = slot * SIZE;				\
643 		if (!size && old_size) {				\
644 			kfree(state->FIELD);				\
645 			state->FIELD = NULL;				\
646 		}							\
647 		return 0;						\
648 	}								\
649 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
650 				    GFP_KERNEL);			\
651 	if (!new_##FIELD)						\
652 		return -ENOMEM;						\
653 	if (copy_old) {							\
654 		if (state->FIELD)					\
655 			memcpy(new_##FIELD, state->FIELD,		\
656 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
657 		memset(new_##FIELD + old_size / SIZE, 0,		\
658 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
659 	}								\
660 	state->COUNT = slot * SIZE;					\
661 	kfree(state->FIELD);						\
662 	state->FIELD = new_##FIELD;					\
663 	return 0;							\
664 }
665 /* realloc_reference_state() */
666 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
667 /* realloc_stack_state() */
668 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
669 #undef REALLOC_STATE_FN
670 
671 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
672  * make it consume minimal amount of memory. check_stack_write() access from
673  * the program calls into realloc_func_state() to grow the stack size.
674  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
675  * which realloc_stack_state() copies over. It points to previous
676  * bpf_verifier_state which is never reallocated.
677  */
678 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
679 			      int refs_size, bool copy_old)
680 {
681 	int err = realloc_reference_state(state, refs_size, copy_old);
682 	if (err)
683 		return err;
684 	return realloc_stack_state(state, stack_size, copy_old);
685 }
686 
687 /* Acquire a pointer id from the env and update the state->refs to include
688  * this new pointer reference.
689  * On success, returns a valid pointer id to associate with the register
690  * On failure, returns a negative errno.
691  */
692 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
693 {
694 	struct bpf_func_state *state = cur_func(env);
695 	int new_ofs = state->acquired_refs;
696 	int id, err;
697 
698 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
699 	if (err)
700 		return err;
701 	id = ++env->id_gen;
702 	state->refs[new_ofs].id = id;
703 	state->refs[new_ofs].insn_idx = insn_idx;
704 
705 	return id;
706 }
707 
708 /* release function corresponding to acquire_reference_state(). Idempotent. */
709 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
710 {
711 	int i, last_idx;
712 
713 	last_idx = state->acquired_refs - 1;
714 	for (i = 0; i < state->acquired_refs; i++) {
715 		if (state->refs[i].id == ptr_id) {
716 			if (last_idx && i != last_idx)
717 				memcpy(&state->refs[i], &state->refs[last_idx],
718 				       sizeof(*state->refs));
719 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
720 			state->acquired_refs--;
721 			return 0;
722 		}
723 	}
724 	return -EINVAL;
725 }
726 
727 static int transfer_reference_state(struct bpf_func_state *dst,
728 				    struct bpf_func_state *src)
729 {
730 	int err = realloc_reference_state(dst, src->acquired_refs, false);
731 	if (err)
732 		return err;
733 	err = copy_reference_state(dst, src);
734 	if (err)
735 		return err;
736 	return 0;
737 }
738 
739 static void free_func_state(struct bpf_func_state *state)
740 {
741 	if (!state)
742 		return;
743 	kfree(state->refs);
744 	kfree(state->stack);
745 	kfree(state);
746 }
747 
748 static void clear_jmp_history(struct bpf_verifier_state *state)
749 {
750 	kfree(state->jmp_history);
751 	state->jmp_history = NULL;
752 	state->jmp_history_cnt = 0;
753 }
754 
755 static void free_verifier_state(struct bpf_verifier_state *state,
756 				bool free_self)
757 {
758 	int i;
759 
760 	for (i = 0; i <= state->curframe; i++) {
761 		free_func_state(state->frame[i]);
762 		state->frame[i] = NULL;
763 	}
764 	clear_jmp_history(state);
765 	if (free_self)
766 		kfree(state);
767 }
768 
769 /* copy verifier state from src to dst growing dst stack space
770  * when necessary to accommodate larger src stack
771  */
772 static int copy_func_state(struct bpf_func_state *dst,
773 			   const struct bpf_func_state *src)
774 {
775 	int err;
776 
777 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
778 				 false);
779 	if (err)
780 		return err;
781 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
782 	err = copy_reference_state(dst, src);
783 	if (err)
784 		return err;
785 	return copy_stack_state(dst, src);
786 }
787 
788 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
789 			       const struct bpf_verifier_state *src)
790 {
791 	struct bpf_func_state *dst;
792 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
793 	int i, err;
794 
795 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
796 		kfree(dst_state->jmp_history);
797 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
798 		if (!dst_state->jmp_history)
799 			return -ENOMEM;
800 	}
801 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
802 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
803 
804 	/* if dst has more stack frames then src frame, free them */
805 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
806 		free_func_state(dst_state->frame[i]);
807 		dst_state->frame[i] = NULL;
808 	}
809 	dst_state->speculative = src->speculative;
810 	dst_state->curframe = src->curframe;
811 	dst_state->active_spin_lock = src->active_spin_lock;
812 	dst_state->branches = src->branches;
813 	dst_state->parent = src->parent;
814 	dst_state->first_insn_idx = src->first_insn_idx;
815 	dst_state->last_insn_idx = src->last_insn_idx;
816 	for (i = 0; i <= src->curframe; i++) {
817 		dst = dst_state->frame[i];
818 		if (!dst) {
819 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
820 			if (!dst)
821 				return -ENOMEM;
822 			dst_state->frame[i] = dst;
823 		}
824 		err = copy_func_state(dst, src->frame[i]);
825 		if (err)
826 			return err;
827 	}
828 	return 0;
829 }
830 
831 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
832 {
833 	while (st) {
834 		u32 br = --st->branches;
835 
836 		/* WARN_ON(br > 1) technically makes sense here,
837 		 * but see comment in push_stack(), hence:
838 		 */
839 		WARN_ONCE((int)br < 0,
840 			  "BUG update_branch_counts:branches_to_explore=%d\n",
841 			  br);
842 		if (br)
843 			break;
844 		st = st->parent;
845 	}
846 }
847 
848 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
849 		     int *insn_idx)
850 {
851 	struct bpf_verifier_state *cur = env->cur_state;
852 	struct bpf_verifier_stack_elem *elem, *head = env->head;
853 	int err;
854 
855 	if (env->head == NULL)
856 		return -ENOENT;
857 
858 	if (cur) {
859 		err = copy_verifier_state(cur, &head->st);
860 		if (err)
861 			return err;
862 	}
863 	if (insn_idx)
864 		*insn_idx = head->insn_idx;
865 	if (prev_insn_idx)
866 		*prev_insn_idx = head->prev_insn_idx;
867 	elem = head->next;
868 	free_verifier_state(&head->st, false);
869 	kfree(head);
870 	env->head = elem;
871 	env->stack_size--;
872 	return 0;
873 }
874 
875 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
876 					     int insn_idx, int prev_insn_idx,
877 					     bool speculative)
878 {
879 	struct bpf_verifier_state *cur = env->cur_state;
880 	struct bpf_verifier_stack_elem *elem;
881 	int err;
882 
883 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
884 	if (!elem)
885 		goto err;
886 
887 	elem->insn_idx = insn_idx;
888 	elem->prev_insn_idx = prev_insn_idx;
889 	elem->next = env->head;
890 	env->head = elem;
891 	env->stack_size++;
892 	err = copy_verifier_state(&elem->st, cur);
893 	if (err)
894 		goto err;
895 	elem->st.speculative |= speculative;
896 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
897 		verbose(env, "The sequence of %d jumps is too complex.\n",
898 			env->stack_size);
899 		goto err;
900 	}
901 	if (elem->st.parent) {
902 		++elem->st.parent->branches;
903 		/* WARN_ON(branches > 2) technically makes sense here,
904 		 * but
905 		 * 1. speculative states will bump 'branches' for non-branch
906 		 * instructions
907 		 * 2. is_state_visited() heuristics may decide not to create
908 		 * a new state for a sequence of branches and all such current
909 		 * and cloned states will be pointing to a single parent state
910 		 * which might have large 'branches' count.
911 		 */
912 	}
913 	return &elem->st;
914 err:
915 	free_verifier_state(env->cur_state, true);
916 	env->cur_state = NULL;
917 	/* pop all elements and return */
918 	while (!pop_stack(env, NULL, NULL));
919 	return NULL;
920 }
921 
922 #define CALLER_SAVED_REGS 6
923 static const int caller_saved[CALLER_SAVED_REGS] = {
924 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
925 };
926 
927 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
928 				struct bpf_reg_state *reg);
929 
930 /* Mark the unknown part of a register (variable offset or scalar value) as
931  * known to have the value @imm.
932  */
933 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
934 {
935 	/* Clear id, off, and union(map_ptr, range) */
936 	memset(((u8 *)reg) + sizeof(reg->type), 0,
937 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
938 	reg->var_off = tnum_const(imm);
939 	reg->smin_value = (s64)imm;
940 	reg->smax_value = (s64)imm;
941 	reg->umin_value = imm;
942 	reg->umax_value = imm;
943 
944 	reg->s32_min_value = (s32)imm;
945 	reg->s32_max_value = (s32)imm;
946 	reg->u32_min_value = (u32)imm;
947 	reg->u32_max_value = (u32)imm;
948 }
949 
950 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
951 {
952 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
953 	reg->s32_min_value = (s32)imm;
954 	reg->s32_max_value = (s32)imm;
955 	reg->u32_min_value = (u32)imm;
956 	reg->u32_max_value = (u32)imm;
957 }
958 
959 /* Mark the 'variable offset' part of a register as zero.  This should be
960  * used only on registers holding a pointer type.
961  */
962 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
963 {
964 	__mark_reg_known(reg, 0);
965 }
966 
967 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
968 {
969 	__mark_reg_known(reg, 0);
970 	reg->type = SCALAR_VALUE;
971 }
972 
973 static void mark_reg_known_zero(struct bpf_verifier_env *env,
974 				struct bpf_reg_state *regs, u32 regno)
975 {
976 	if (WARN_ON(regno >= MAX_BPF_REG)) {
977 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
978 		/* Something bad happened, let's kill all regs */
979 		for (regno = 0; regno < MAX_BPF_REG; regno++)
980 			__mark_reg_not_init(env, regs + regno);
981 		return;
982 	}
983 	__mark_reg_known_zero(regs + regno);
984 }
985 
986 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
987 {
988 	return type_is_pkt_pointer(reg->type);
989 }
990 
991 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
992 {
993 	return reg_is_pkt_pointer(reg) ||
994 	       reg->type == PTR_TO_PACKET_END;
995 }
996 
997 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
998 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
999 				    enum bpf_reg_type which)
1000 {
1001 	/* The register can already have a range from prior markings.
1002 	 * This is fine as long as it hasn't been advanced from its
1003 	 * origin.
1004 	 */
1005 	return reg->type == which &&
1006 	       reg->id == 0 &&
1007 	       reg->off == 0 &&
1008 	       tnum_equals_const(reg->var_off, 0);
1009 }
1010 
1011 /* Reset the min/max bounds of a register */
1012 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1013 {
1014 	reg->smin_value = S64_MIN;
1015 	reg->smax_value = S64_MAX;
1016 	reg->umin_value = 0;
1017 	reg->umax_value = U64_MAX;
1018 
1019 	reg->s32_min_value = S32_MIN;
1020 	reg->s32_max_value = S32_MAX;
1021 	reg->u32_min_value = 0;
1022 	reg->u32_max_value = U32_MAX;
1023 }
1024 
1025 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1026 {
1027 	reg->smin_value = S64_MIN;
1028 	reg->smax_value = S64_MAX;
1029 	reg->umin_value = 0;
1030 	reg->umax_value = U64_MAX;
1031 }
1032 
1033 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1034 {
1035 	reg->s32_min_value = S32_MIN;
1036 	reg->s32_max_value = S32_MAX;
1037 	reg->u32_min_value = 0;
1038 	reg->u32_max_value = U32_MAX;
1039 }
1040 
1041 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1042 {
1043 	struct tnum var32_off = tnum_subreg(reg->var_off);
1044 
1045 	/* min signed is max(sign bit) | min(other bits) */
1046 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1047 			var32_off.value | (var32_off.mask & S32_MIN));
1048 	/* max signed is min(sign bit) | max(other bits) */
1049 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1050 			var32_off.value | (var32_off.mask & S32_MAX));
1051 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1052 	reg->u32_max_value = min(reg->u32_max_value,
1053 				 (u32)(var32_off.value | var32_off.mask));
1054 }
1055 
1056 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1057 {
1058 	/* min signed is max(sign bit) | min(other bits) */
1059 	reg->smin_value = max_t(s64, reg->smin_value,
1060 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1061 	/* max signed is min(sign bit) | max(other bits) */
1062 	reg->smax_value = min_t(s64, reg->smax_value,
1063 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1064 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1065 	reg->umax_value = min(reg->umax_value,
1066 			      reg->var_off.value | reg->var_off.mask);
1067 }
1068 
1069 static void __update_reg_bounds(struct bpf_reg_state *reg)
1070 {
1071 	__update_reg32_bounds(reg);
1072 	__update_reg64_bounds(reg);
1073 }
1074 
1075 /* Uses signed min/max values to inform unsigned, and vice-versa */
1076 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1077 {
1078 	/* Learn sign from signed bounds.
1079 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1080 	 * are the same, so combine.  This works even in the negative case, e.g.
1081 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1082 	 */
1083 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1084 		reg->s32_min_value = reg->u32_min_value =
1085 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1086 		reg->s32_max_value = reg->u32_max_value =
1087 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1088 		return;
1089 	}
1090 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1091 	 * boundary, so we must be careful.
1092 	 */
1093 	if ((s32)reg->u32_max_value >= 0) {
1094 		/* Positive.  We can't learn anything from the smin, but smax
1095 		 * is positive, hence safe.
1096 		 */
1097 		reg->s32_min_value = reg->u32_min_value;
1098 		reg->s32_max_value = reg->u32_max_value =
1099 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1100 	} else if ((s32)reg->u32_min_value < 0) {
1101 		/* Negative.  We can't learn anything from the smax, but smin
1102 		 * is negative, hence safe.
1103 		 */
1104 		reg->s32_min_value = reg->u32_min_value =
1105 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1106 		reg->s32_max_value = reg->u32_max_value;
1107 	}
1108 }
1109 
1110 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1111 {
1112 	/* Learn sign from signed bounds.
1113 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1114 	 * are the same, so combine.  This works even in the negative case, e.g.
1115 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1116 	 */
1117 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1118 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1119 							  reg->umin_value);
1120 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1121 							  reg->umax_value);
1122 		return;
1123 	}
1124 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1125 	 * boundary, so we must be careful.
1126 	 */
1127 	if ((s64)reg->umax_value >= 0) {
1128 		/* Positive.  We can't learn anything from the smin, but smax
1129 		 * is positive, hence safe.
1130 		 */
1131 		reg->smin_value = reg->umin_value;
1132 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1133 							  reg->umax_value);
1134 	} else if ((s64)reg->umin_value < 0) {
1135 		/* Negative.  We can't learn anything from the smax, but smin
1136 		 * is negative, hence safe.
1137 		 */
1138 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1139 							  reg->umin_value);
1140 		reg->smax_value = reg->umax_value;
1141 	}
1142 }
1143 
1144 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1145 {
1146 	__reg32_deduce_bounds(reg);
1147 	__reg64_deduce_bounds(reg);
1148 }
1149 
1150 /* Attempts to improve var_off based on unsigned min/max information */
1151 static void __reg_bound_offset(struct bpf_reg_state *reg)
1152 {
1153 	struct tnum var64_off = tnum_intersect(reg->var_off,
1154 					       tnum_range(reg->umin_value,
1155 							  reg->umax_value));
1156 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1157 						tnum_range(reg->u32_min_value,
1158 							   reg->u32_max_value));
1159 
1160 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1161 }
1162 
1163 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1164 {
1165 	reg->umin_value = reg->u32_min_value;
1166 	reg->umax_value = reg->u32_max_value;
1167 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1168 	 * but must be positive otherwise set to worse case bounds
1169 	 * and refine later from tnum.
1170 	 */
1171 	if (reg->s32_min_value > 0)
1172 		reg->smin_value = reg->s32_min_value;
1173 	else
1174 		reg->smin_value = 0;
1175 	if (reg->s32_max_value > 0)
1176 		reg->smax_value = reg->s32_max_value;
1177 	else
1178 		reg->smax_value = U32_MAX;
1179 }
1180 
1181 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1182 {
1183 	/* special case when 64-bit register has upper 32-bit register
1184 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1185 	 * allowing us to use 32-bit bounds directly,
1186 	 */
1187 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1188 		__reg_assign_32_into_64(reg);
1189 	} else {
1190 		/* Otherwise the best we can do is push lower 32bit known and
1191 		 * unknown bits into register (var_off set from jmp logic)
1192 		 * then learn as much as possible from the 64-bit tnum
1193 		 * known and unknown bits. The previous smin/smax bounds are
1194 		 * invalid here because of jmp32 compare so mark them unknown
1195 		 * so they do not impact tnum bounds calculation.
1196 		 */
1197 		__mark_reg64_unbounded(reg);
1198 		__update_reg_bounds(reg);
1199 	}
1200 
1201 	/* Intersecting with the old var_off might have improved our bounds
1202 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1203 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1204 	 */
1205 	__reg_deduce_bounds(reg);
1206 	__reg_bound_offset(reg);
1207 	__update_reg_bounds(reg);
1208 }
1209 
1210 static bool __reg64_bound_s32(s64 a)
1211 {
1212 	if (a > S32_MIN && a < S32_MAX)
1213 		return true;
1214 	return false;
1215 }
1216 
1217 static bool __reg64_bound_u32(u64 a)
1218 {
1219 	if (a > U32_MIN && a < U32_MAX)
1220 		return true;
1221 	return false;
1222 }
1223 
1224 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1225 {
1226 	__mark_reg32_unbounded(reg);
1227 
1228 	if (__reg64_bound_s32(reg->smin_value))
1229 		reg->s32_min_value = (s32)reg->smin_value;
1230 	if (__reg64_bound_s32(reg->smax_value))
1231 		reg->s32_max_value = (s32)reg->smax_value;
1232 	if (__reg64_bound_u32(reg->umin_value))
1233 		reg->u32_min_value = (u32)reg->umin_value;
1234 	if (__reg64_bound_u32(reg->umax_value))
1235 		reg->u32_max_value = (u32)reg->umax_value;
1236 
1237 	/* Intersecting with the old var_off might have improved our bounds
1238 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1239 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1240 	 */
1241 	__reg_deduce_bounds(reg);
1242 	__reg_bound_offset(reg);
1243 	__update_reg_bounds(reg);
1244 }
1245 
1246 /* Mark a register as having a completely unknown (scalar) value. */
1247 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1248 			       struct bpf_reg_state *reg)
1249 {
1250 	/*
1251 	 * Clear type, id, off, and union(map_ptr, range) and
1252 	 * padding between 'type' and union
1253 	 */
1254 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1255 	reg->type = SCALAR_VALUE;
1256 	reg->var_off = tnum_unknown;
1257 	reg->frameno = 0;
1258 	reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks;
1259 	__mark_reg_unbounded(reg);
1260 }
1261 
1262 static void mark_reg_unknown(struct bpf_verifier_env *env,
1263 			     struct bpf_reg_state *regs, u32 regno)
1264 {
1265 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1266 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1267 		/* Something bad happened, let's kill all regs except FP */
1268 		for (regno = 0; regno < BPF_REG_FP; regno++)
1269 			__mark_reg_not_init(env, regs + regno);
1270 		return;
1271 	}
1272 	__mark_reg_unknown(env, regs + regno);
1273 }
1274 
1275 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1276 				struct bpf_reg_state *reg)
1277 {
1278 	__mark_reg_unknown(env, reg);
1279 	reg->type = NOT_INIT;
1280 }
1281 
1282 static void mark_reg_not_init(struct bpf_verifier_env *env,
1283 			      struct bpf_reg_state *regs, u32 regno)
1284 {
1285 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1286 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1287 		/* Something bad happened, let's kill all regs except FP */
1288 		for (regno = 0; regno < BPF_REG_FP; regno++)
1289 			__mark_reg_not_init(env, regs + regno);
1290 		return;
1291 	}
1292 	__mark_reg_not_init(env, regs + regno);
1293 }
1294 
1295 #define DEF_NOT_SUBREG	(0)
1296 static void init_reg_state(struct bpf_verifier_env *env,
1297 			   struct bpf_func_state *state)
1298 {
1299 	struct bpf_reg_state *regs = state->regs;
1300 	int i;
1301 
1302 	for (i = 0; i < MAX_BPF_REG; i++) {
1303 		mark_reg_not_init(env, regs, i);
1304 		regs[i].live = REG_LIVE_NONE;
1305 		regs[i].parent = NULL;
1306 		regs[i].subreg_def = DEF_NOT_SUBREG;
1307 	}
1308 
1309 	/* frame pointer */
1310 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1311 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1312 	regs[BPF_REG_FP].frameno = state->frameno;
1313 }
1314 
1315 #define BPF_MAIN_FUNC (-1)
1316 static void init_func_state(struct bpf_verifier_env *env,
1317 			    struct bpf_func_state *state,
1318 			    int callsite, int frameno, int subprogno)
1319 {
1320 	state->callsite = callsite;
1321 	state->frameno = frameno;
1322 	state->subprogno = subprogno;
1323 	init_reg_state(env, state);
1324 }
1325 
1326 enum reg_arg_type {
1327 	SRC_OP,		/* register is used as source operand */
1328 	DST_OP,		/* register is used as destination operand */
1329 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1330 };
1331 
1332 static int cmp_subprogs(const void *a, const void *b)
1333 {
1334 	return ((struct bpf_subprog_info *)a)->start -
1335 	       ((struct bpf_subprog_info *)b)->start;
1336 }
1337 
1338 static int find_subprog(struct bpf_verifier_env *env, int off)
1339 {
1340 	struct bpf_subprog_info *p;
1341 
1342 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1343 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1344 	if (!p)
1345 		return -ENOENT;
1346 	return p - env->subprog_info;
1347 
1348 }
1349 
1350 static int add_subprog(struct bpf_verifier_env *env, int off)
1351 {
1352 	int insn_cnt = env->prog->len;
1353 	int ret;
1354 
1355 	if (off >= insn_cnt || off < 0) {
1356 		verbose(env, "call to invalid destination\n");
1357 		return -EINVAL;
1358 	}
1359 	ret = find_subprog(env, off);
1360 	if (ret >= 0)
1361 		return 0;
1362 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1363 		verbose(env, "too many subprograms\n");
1364 		return -E2BIG;
1365 	}
1366 	env->subprog_info[env->subprog_cnt++].start = off;
1367 	sort(env->subprog_info, env->subprog_cnt,
1368 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1369 	return 0;
1370 }
1371 
1372 static int check_subprogs(struct bpf_verifier_env *env)
1373 {
1374 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1375 	struct bpf_subprog_info *subprog = env->subprog_info;
1376 	struct bpf_insn *insn = env->prog->insnsi;
1377 	int insn_cnt = env->prog->len;
1378 
1379 	/* Add entry function. */
1380 	ret = add_subprog(env, 0);
1381 	if (ret < 0)
1382 		return ret;
1383 
1384 	/* determine subprog starts. The end is one before the next starts */
1385 	for (i = 0; i < insn_cnt; i++) {
1386 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1387 			continue;
1388 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1389 			continue;
1390 		if (!env->allow_ptr_leaks) {
1391 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1392 			return -EPERM;
1393 		}
1394 		ret = add_subprog(env, i + insn[i].imm + 1);
1395 		if (ret < 0)
1396 			return ret;
1397 	}
1398 
1399 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1400 	 * logic. 'subprog_cnt' should not be increased.
1401 	 */
1402 	subprog[env->subprog_cnt].start = insn_cnt;
1403 
1404 	if (env->log.level & BPF_LOG_LEVEL2)
1405 		for (i = 0; i < env->subprog_cnt; i++)
1406 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1407 
1408 	/* now check that all jumps are within the same subprog */
1409 	subprog_start = subprog[cur_subprog].start;
1410 	subprog_end = subprog[cur_subprog + 1].start;
1411 	for (i = 0; i < insn_cnt; i++) {
1412 		u8 code = insn[i].code;
1413 
1414 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1415 			goto next;
1416 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1417 			goto next;
1418 		off = i + insn[i].off + 1;
1419 		if (off < subprog_start || off >= subprog_end) {
1420 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1421 			return -EINVAL;
1422 		}
1423 next:
1424 		if (i == subprog_end - 1) {
1425 			/* to avoid fall-through from one subprog into another
1426 			 * the last insn of the subprog should be either exit
1427 			 * or unconditional jump back
1428 			 */
1429 			if (code != (BPF_JMP | BPF_EXIT) &&
1430 			    code != (BPF_JMP | BPF_JA)) {
1431 				verbose(env, "last insn is not an exit or jmp\n");
1432 				return -EINVAL;
1433 			}
1434 			subprog_start = subprog_end;
1435 			cur_subprog++;
1436 			if (cur_subprog < env->subprog_cnt)
1437 				subprog_end = subprog[cur_subprog + 1].start;
1438 		}
1439 	}
1440 	return 0;
1441 }
1442 
1443 /* Parentage chain of this register (or stack slot) should take care of all
1444  * issues like callee-saved registers, stack slot allocation time, etc.
1445  */
1446 static int mark_reg_read(struct bpf_verifier_env *env,
1447 			 const struct bpf_reg_state *state,
1448 			 struct bpf_reg_state *parent, u8 flag)
1449 {
1450 	bool writes = parent == state->parent; /* Observe write marks */
1451 	int cnt = 0;
1452 
1453 	while (parent) {
1454 		/* if read wasn't screened by an earlier write ... */
1455 		if (writes && state->live & REG_LIVE_WRITTEN)
1456 			break;
1457 		if (parent->live & REG_LIVE_DONE) {
1458 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1459 				reg_type_str[parent->type],
1460 				parent->var_off.value, parent->off);
1461 			return -EFAULT;
1462 		}
1463 		/* The first condition is more likely to be true than the
1464 		 * second, checked it first.
1465 		 */
1466 		if ((parent->live & REG_LIVE_READ) == flag ||
1467 		    parent->live & REG_LIVE_READ64)
1468 			/* The parentage chain never changes and
1469 			 * this parent was already marked as LIVE_READ.
1470 			 * There is no need to keep walking the chain again and
1471 			 * keep re-marking all parents as LIVE_READ.
1472 			 * This case happens when the same register is read
1473 			 * multiple times without writes into it in-between.
1474 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1475 			 * then no need to set the weak REG_LIVE_READ32.
1476 			 */
1477 			break;
1478 		/* ... then we depend on parent's value */
1479 		parent->live |= flag;
1480 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1481 		if (flag == REG_LIVE_READ64)
1482 			parent->live &= ~REG_LIVE_READ32;
1483 		state = parent;
1484 		parent = state->parent;
1485 		writes = true;
1486 		cnt++;
1487 	}
1488 
1489 	if (env->longest_mark_read_walk < cnt)
1490 		env->longest_mark_read_walk = cnt;
1491 	return 0;
1492 }
1493 
1494 /* This function is supposed to be used by the following 32-bit optimization
1495  * code only. It returns TRUE if the source or destination register operates
1496  * on 64-bit, otherwise return FALSE.
1497  */
1498 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1499 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1500 {
1501 	u8 code, class, op;
1502 
1503 	code = insn->code;
1504 	class = BPF_CLASS(code);
1505 	op = BPF_OP(code);
1506 	if (class == BPF_JMP) {
1507 		/* BPF_EXIT for "main" will reach here. Return TRUE
1508 		 * conservatively.
1509 		 */
1510 		if (op == BPF_EXIT)
1511 			return true;
1512 		if (op == BPF_CALL) {
1513 			/* BPF to BPF call will reach here because of marking
1514 			 * caller saved clobber with DST_OP_NO_MARK for which we
1515 			 * don't care the register def because they are anyway
1516 			 * marked as NOT_INIT already.
1517 			 */
1518 			if (insn->src_reg == BPF_PSEUDO_CALL)
1519 				return false;
1520 			/* Helper call will reach here because of arg type
1521 			 * check, conservatively return TRUE.
1522 			 */
1523 			if (t == SRC_OP)
1524 				return true;
1525 
1526 			return false;
1527 		}
1528 	}
1529 
1530 	if (class == BPF_ALU64 || class == BPF_JMP ||
1531 	    /* BPF_END always use BPF_ALU class. */
1532 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1533 		return true;
1534 
1535 	if (class == BPF_ALU || class == BPF_JMP32)
1536 		return false;
1537 
1538 	if (class == BPF_LDX) {
1539 		if (t != SRC_OP)
1540 			return BPF_SIZE(code) == BPF_DW;
1541 		/* LDX source must be ptr. */
1542 		return true;
1543 	}
1544 
1545 	if (class == BPF_STX) {
1546 		if (reg->type != SCALAR_VALUE)
1547 			return true;
1548 		return BPF_SIZE(code) == BPF_DW;
1549 	}
1550 
1551 	if (class == BPF_LD) {
1552 		u8 mode = BPF_MODE(code);
1553 
1554 		/* LD_IMM64 */
1555 		if (mode == BPF_IMM)
1556 			return true;
1557 
1558 		/* Both LD_IND and LD_ABS return 32-bit data. */
1559 		if (t != SRC_OP)
1560 			return  false;
1561 
1562 		/* Implicit ctx ptr. */
1563 		if (regno == BPF_REG_6)
1564 			return true;
1565 
1566 		/* Explicit source could be any width. */
1567 		return true;
1568 	}
1569 
1570 	if (class == BPF_ST)
1571 		/* The only source register for BPF_ST is a ptr. */
1572 		return true;
1573 
1574 	/* Conservatively return true at default. */
1575 	return true;
1576 }
1577 
1578 /* Return TRUE if INSN doesn't have explicit value define. */
1579 static bool insn_no_def(struct bpf_insn *insn)
1580 {
1581 	u8 class = BPF_CLASS(insn->code);
1582 
1583 	return (class == BPF_JMP || class == BPF_JMP32 ||
1584 		class == BPF_STX || class == BPF_ST);
1585 }
1586 
1587 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1588 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1589 {
1590 	if (insn_no_def(insn))
1591 		return false;
1592 
1593 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1594 }
1595 
1596 static void mark_insn_zext(struct bpf_verifier_env *env,
1597 			   struct bpf_reg_state *reg)
1598 {
1599 	s32 def_idx = reg->subreg_def;
1600 
1601 	if (def_idx == DEF_NOT_SUBREG)
1602 		return;
1603 
1604 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1605 	/* The dst will be zero extended, so won't be sub-register anymore. */
1606 	reg->subreg_def = DEF_NOT_SUBREG;
1607 }
1608 
1609 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1610 			 enum reg_arg_type t)
1611 {
1612 	struct bpf_verifier_state *vstate = env->cur_state;
1613 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1614 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1615 	struct bpf_reg_state *reg, *regs = state->regs;
1616 	bool rw64;
1617 
1618 	if (regno >= MAX_BPF_REG) {
1619 		verbose(env, "R%d is invalid\n", regno);
1620 		return -EINVAL;
1621 	}
1622 
1623 	reg = &regs[regno];
1624 	rw64 = is_reg64(env, insn, regno, reg, t);
1625 	if (t == SRC_OP) {
1626 		/* check whether register used as source operand can be read */
1627 		if (reg->type == NOT_INIT) {
1628 			verbose(env, "R%d !read_ok\n", regno);
1629 			return -EACCES;
1630 		}
1631 		/* We don't need to worry about FP liveness because it's read-only */
1632 		if (regno == BPF_REG_FP)
1633 			return 0;
1634 
1635 		if (rw64)
1636 			mark_insn_zext(env, reg);
1637 
1638 		return mark_reg_read(env, reg, reg->parent,
1639 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1640 	} else {
1641 		/* check whether register used as dest operand can be written to */
1642 		if (regno == BPF_REG_FP) {
1643 			verbose(env, "frame pointer is read only\n");
1644 			return -EACCES;
1645 		}
1646 		reg->live |= REG_LIVE_WRITTEN;
1647 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1648 		if (t == DST_OP)
1649 			mark_reg_unknown(env, regs, regno);
1650 	}
1651 	return 0;
1652 }
1653 
1654 /* for any branch, call, exit record the history of jmps in the given state */
1655 static int push_jmp_history(struct bpf_verifier_env *env,
1656 			    struct bpf_verifier_state *cur)
1657 {
1658 	u32 cnt = cur->jmp_history_cnt;
1659 	struct bpf_idx_pair *p;
1660 
1661 	cnt++;
1662 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1663 	if (!p)
1664 		return -ENOMEM;
1665 	p[cnt - 1].idx = env->insn_idx;
1666 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1667 	cur->jmp_history = p;
1668 	cur->jmp_history_cnt = cnt;
1669 	return 0;
1670 }
1671 
1672 /* Backtrack one insn at a time. If idx is not at the top of recorded
1673  * history then previous instruction came from straight line execution.
1674  */
1675 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1676 			     u32 *history)
1677 {
1678 	u32 cnt = *history;
1679 
1680 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1681 		i = st->jmp_history[cnt - 1].prev_idx;
1682 		(*history)--;
1683 	} else {
1684 		i--;
1685 	}
1686 	return i;
1687 }
1688 
1689 /* For given verifier state backtrack_insn() is called from the last insn to
1690  * the first insn. Its purpose is to compute a bitmask of registers and
1691  * stack slots that needs precision in the parent verifier state.
1692  */
1693 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1694 			  u32 *reg_mask, u64 *stack_mask)
1695 {
1696 	const struct bpf_insn_cbs cbs = {
1697 		.cb_print	= verbose,
1698 		.private_data	= env,
1699 	};
1700 	struct bpf_insn *insn = env->prog->insnsi + idx;
1701 	u8 class = BPF_CLASS(insn->code);
1702 	u8 opcode = BPF_OP(insn->code);
1703 	u8 mode = BPF_MODE(insn->code);
1704 	u32 dreg = 1u << insn->dst_reg;
1705 	u32 sreg = 1u << insn->src_reg;
1706 	u32 spi;
1707 
1708 	if (insn->code == 0)
1709 		return 0;
1710 	if (env->log.level & BPF_LOG_LEVEL) {
1711 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1712 		verbose(env, "%d: ", idx);
1713 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1714 	}
1715 
1716 	if (class == BPF_ALU || class == BPF_ALU64) {
1717 		if (!(*reg_mask & dreg))
1718 			return 0;
1719 		if (opcode == BPF_MOV) {
1720 			if (BPF_SRC(insn->code) == BPF_X) {
1721 				/* dreg = sreg
1722 				 * dreg needs precision after this insn
1723 				 * sreg needs precision before this insn
1724 				 */
1725 				*reg_mask &= ~dreg;
1726 				*reg_mask |= sreg;
1727 			} else {
1728 				/* dreg = K
1729 				 * dreg needs precision after this insn.
1730 				 * Corresponding register is already marked
1731 				 * as precise=true in this verifier state.
1732 				 * No further markings in parent are necessary
1733 				 */
1734 				*reg_mask &= ~dreg;
1735 			}
1736 		} else {
1737 			if (BPF_SRC(insn->code) == BPF_X) {
1738 				/* dreg += sreg
1739 				 * both dreg and sreg need precision
1740 				 * before this insn
1741 				 */
1742 				*reg_mask |= sreg;
1743 			} /* else dreg += K
1744 			   * dreg still needs precision before this insn
1745 			   */
1746 		}
1747 	} else if (class == BPF_LDX) {
1748 		if (!(*reg_mask & dreg))
1749 			return 0;
1750 		*reg_mask &= ~dreg;
1751 
1752 		/* scalars can only be spilled into stack w/o losing precision.
1753 		 * Load from any other memory can be zero extended.
1754 		 * The desire to keep that precision is already indicated
1755 		 * by 'precise' mark in corresponding register of this state.
1756 		 * No further tracking necessary.
1757 		 */
1758 		if (insn->src_reg != BPF_REG_FP)
1759 			return 0;
1760 		if (BPF_SIZE(insn->code) != BPF_DW)
1761 			return 0;
1762 
1763 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1764 		 * that [fp - off] slot contains scalar that needs to be
1765 		 * tracked with precision
1766 		 */
1767 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1768 		if (spi >= 64) {
1769 			verbose(env, "BUG spi %d\n", spi);
1770 			WARN_ONCE(1, "verifier backtracking bug");
1771 			return -EFAULT;
1772 		}
1773 		*stack_mask |= 1ull << spi;
1774 	} else if (class == BPF_STX || class == BPF_ST) {
1775 		if (*reg_mask & dreg)
1776 			/* stx & st shouldn't be using _scalar_ dst_reg
1777 			 * to access memory. It means backtracking
1778 			 * encountered a case of pointer subtraction.
1779 			 */
1780 			return -ENOTSUPP;
1781 		/* scalars can only be spilled into stack */
1782 		if (insn->dst_reg != BPF_REG_FP)
1783 			return 0;
1784 		if (BPF_SIZE(insn->code) != BPF_DW)
1785 			return 0;
1786 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1787 		if (spi >= 64) {
1788 			verbose(env, "BUG spi %d\n", spi);
1789 			WARN_ONCE(1, "verifier backtracking bug");
1790 			return -EFAULT;
1791 		}
1792 		if (!(*stack_mask & (1ull << spi)))
1793 			return 0;
1794 		*stack_mask &= ~(1ull << spi);
1795 		if (class == BPF_STX)
1796 			*reg_mask |= sreg;
1797 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1798 		if (opcode == BPF_CALL) {
1799 			if (insn->src_reg == BPF_PSEUDO_CALL)
1800 				return -ENOTSUPP;
1801 			/* regular helper call sets R0 */
1802 			*reg_mask &= ~1;
1803 			if (*reg_mask & 0x3f) {
1804 				/* if backtracing was looking for registers R1-R5
1805 				 * they should have been found already.
1806 				 */
1807 				verbose(env, "BUG regs %x\n", *reg_mask);
1808 				WARN_ONCE(1, "verifier backtracking bug");
1809 				return -EFAULT;
1810 			}
1811 		} else if (opcode == BPF_EXIT) {
1812 			return -ENOTSUPP;
1813 		}
1814 	} else if (class == BPF_LD) {
1815 		if (!(*reg_mask & dreg))
1816 			return 0;
1817 		*reg_mask &= ~dreg;
1818 		/* It's ld_imm64 or ld_abs or ld_ind.
1819 		 * For ld_imm64 no further tracking of precision
1820 		 * into parent is necessary
1821 		 */
1822 		if (mode == BPF_IND || mode == BPF_ABS)
1823 			/* to be analyzed */
1824 			return -ENOTSUPP;
1825 	}
1826 	return 0;
1827 }
1828 
1829 /* the scalar precision tracking algorithm:
1830  * . at the start all registers have precise=false.
1831  * . scalar ranges are tracked as normal through alu and jmp insns.
1832  * . once precise value of the scalar register is used in:
1833  *   .  ptr + scalar alu
1834  *   . if (scalar cond K|scalar)
1835  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1836  *   backtrack through the verifier states and mark all registers and
1837  *   stack slots with spilled constants that these scalar regisers
1838  *   should be precise.
1839  * . during state pruning two registers (or spilled stack slots)
1840  *   are equivalent if both are not precise.
1841  *
1842  * Note the verifier cannot simply walk register parentage chain,
1843  * since many different registers and stack slots could have been
1844  * used to compute single precise scalar.
1845  *
1846  * The approach of starting with precise=true for all registers and then
1847  * backtrack to mark a register as not precise when the verifier detects
1848  * that program doesn't care about specific value (e.g., when helper
1849  * takes register as ARG_ANYTHING parameter) is not safe.
1850  *
1851  * It's ok to walk single parentage chain of the verifier states.
1852  * It's possible that this backtracking will go all the way till 1st insn.
1853  * All other branches will be explored for needing precision later.
1854  *
1855  * The backtracking needs to deal with cases like:
1856  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1857  * r9 -= r8
1858  * r5 = r9
1859  * if r5 > 0x79f goto pc+7
1860  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1861  * r5 += 1
1862  * ...
1863  * call bpf_perf_event_output#25
1864  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1865  *
1866  * and this case:
1867  * r6 = 1
1868  * call foo // uses callee's r6 inside to compute r0
1869  * r0 += r6
1870  * if r0 == 0 goto
1871  *
1872  * to track above reg_mask/stack_mask needs to be independent for each frame.
1873  *
1874  * Also if parent's curframe > frame where backtracking started,
1875  * the verifier need to mark registers in both frames, otherwise callees
1876  * may incorrectly prune callers. This is similar to
1877  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1878  *
1879  * For now backtracking falls back into conservative marking.
1880  */
1881 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1882 				     struct bpf_verifier_state *st)
1883 {
1884 	struct bpf_func_state *func;
1885 	struct bpf_reg_state *reg;
1886 	int i, j;
1887 
1888 	/* big hammer: mark all scalars precise in this path.
1889 	 * pop_stack may still get !precise scalars.
1890 	 */
1891 	for (; st; st = st->parent)
1892 		for (i = 0; i <= st->curframe; i++) {
1893 			func = st->frame[i];
1894 			for (j = 0; j < BPF_REG_FP; j++) {
1895 				reg = &func->regs[j];
1896 				if (reg->type != SCALAR_VALUE)
1897 					continue;
1898 				reg->precise = true;
1899 			}
1900 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1901 				if (func->stack[j].slot_type[0] != STACK_SPILL)
1902 					continue;
1903 				reg = &func->stack[j].spilled_ptr;
1904 				if (reg->type != SCALAR_VALUE)
1905 					continue;
1906 				reg->precise = true;
1907 			}
1908 		}
1909 }
1910 
1911 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1912 				  int spi)
1913 {
1914 	struct bpf_verifier_state *st = env->cur_state;
1915 	int first_idx = st->first_insn_idx;
1916 	int last_idx = env->insn_idx;
1917 	struct bpf_func_state *func;
1918 	struct bpf_reg_state *reg;
1919 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1920 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1921 	bool skip_first = true;
1922 	bool new_marks = false;
1923 	int i, err;
1924 
1925 	if (!env->allow_ptr_leaks)
1926 		/* backtracking is root only for now */
1927 		return 0;
1928 
1929 	func = st->frame[st->curframe];
1930 	if (regno >= 0) {
1931 		reg = &func->regs[regno];
1932 		if (reg->type != SCALAR_VALUE) {
1933 			WARN_ONCE(1, "backtracing misuse");
1934 			return -EFAULT;
1935 		}
1936 		if (!reg->precise)
1937 			new_marks = true;
1938 		else
1939 			reg_mask = 0;
1940 		reg->precise = true;
1941 	}
1942 
1943 	while (spi >= 0) {
1944 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1945 			stack_mask = 0;
1946 			break;
1947 		}
1948 		reg = &func->stack[spi].spilled_ptr;
1949 		if (reg->type != SCALAR_VALUE) {
1950 			stack_mask = 0;
1951 			break;
1952 		}
1953 		if (!reg->precise)
1954 			new_marks = true;
1955 		else
1956 			stack_mask = 0;
1957 		reg->precise = true;
1958 		break;
1959 	}
1960 
1961 	if (!new_marks)
1962 		return 0;
1963 	if (!reg_mask && !stack_mask)
1964 		return 0;
1965 	for (;;) {
1966 		DECLARE_BITMAP(mask, 64);
1967 		u32 history = st->jmp_history_cnt;
1968 
1969 		if (env->log.level & BPF_LOG_LEVEL)
1970 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1971 		for (i = last_idx;;) {
1972 			if (skip_first) {
1973 				err = 0;
1974 				skip_first = false;
1975 			} else {
1976 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1977 			}
1978 			if (err == -ENOTSUPP) {
1979 				mark_all_scalars_precise(env, st);
1980 				return 0;
1981 			} else if (err) {
1982 				return err;
1983 			}
1984 			if (!reg_mask && !stack_mask)
1985 				/* Found assignment(s) into tracked register in this state.
1986 				 * Since this state is already marked, just return.
1987 				 * Nothing to be tracked further in the parent state.
1988 				 */
1989 				return 0;
1990 			if (i == first_idx)
1991 				break;
1992 			i = get_prev_insn_idx(st, i, &history);
1993 			if (i >= env->prog->len) {
1994 				/* This can happen if backtracking reached insn 0
1995 				 * and there are still reg_mask or stack_mask
1996 				 * to backtrack.
1997 				 * It means the backtracking missed the spot where
1998 				 * particular register was initialized with a constant.
1999 				 */
2000 				verbose(env, "BUG backtracking idx %d\n", i);
2001 				WARN_ONCE(1, "verifier backtracking bug");
2002 				return -EFAULT;
2003 			}
2004 		}
2005 		st = st->parent;
2006 		if (!st)
2007 			break;
2008 
2009 		new_marks = false;
2010 		func = st->frame[st->curframe];
2011 		bitmap_from_u64(mask, reg_mask);
2012 		for_each_set_bit(i, mask, 32) {
2013 			reg = &func->regs[i];
2014 			if (reg->type != SCALAR_VALUE) {
2015 				reg_mask &= ~(1u << i);
2016 				continue;
2017 			}
2018 			if (!reg->precise)
2019 				new_marks = true;
2020 			reg->precise = true;
2021 		}
2022 
2023 		bitmap_from_u64(mask, stack_mask);
2024 		for_each_set_bit(i, mask, 64) {
2025 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2026 				/* the sequence of instructions:
2027 				 * 2: (bf) r3 = r10
2028 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2029 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2030 				 * doesn't contain jmps. It's backtracked
2031 				 * as a single block.
2032 				 * During backtracking insn 3 is not recognized as
2033 				 * stack access, so at the end of backtracking
2034 				 * stack slot fp-8 is still marked in stack_mask.
2035 				 * However the parent state may not have accessed
2036 				 * fp-8 and it's "unallocated" stack space.
2037 				 * In such case fallback to conservative.
2038 				 */
2039 				mark_all_scalars_precise(env, st);
2040 				return 0;
2041 			}
2042 
2043 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2044 				stack_mask &= ~(1ull << i);
2045 				continue;
2046 			}
2047 			reg = &func->stack[i].spilled_ptr;
2048 			if (reg->type != SCALAR_VALUE) {
2049 				stack_mask &= ~(1ull << i);
2050 				continue;
2051 			}
2052 			if (!reg->precise)
2053 				new_marks = true;
2054 			reg->precise = true;
2055 		}
2056 		if (env->log.level & BPF_LOG_LEVEL) {
2057 			print_verifier_state(env, func);
2058 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2059 				new_marks ? "didn't have" : "already had",
2060 				reg_mask, stack_mask);
2061 		}
2062 
2063 		if (!reg_mask && !stack_mask)
2064 			break;
2065 		if (!new_marks)
2066 			break;
2067 
2068 		last_idx = st->last_insn_idx;
2069 		first_idx = st->first_insn_idx;
2070 	}
2071 	return 0;
2072 }
2073 
2074 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2075 {
2076 	return __mark_chain_precision(env, regno, -1);
2077 }
2078 
2079 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2080 {
2081 	return __mark_chain_precision(env, -1, spi);
2082 }
2083 
2084 static bool is_spillable_regtype(enum bpf_reg_type type)
2085 {
2086 	switch (type) {
2087 	case PTR_TO_MAP_VALUE:
2088 	case PTR_TO_MAP_VALUE_OR_NULL:
2089 	case PTR_TO_STACK:
2090 	case PTR_TO_CTX:
2091 	case PTR_TO_PACKET:
2092 	case PTR_TO_PACKET_META:
2093 	case PTR_TO_PACKET_END:
2094 	case PTR_TO_FLOW_KEYS:
2095 	case CONST_PTR_TO_MAP:
2096 	case PTR_TO_SOCKET:
2097 	case PTR_TO_SOCKET_OR_NULL:
2098 	case PTR_TO_SOCK_COMMON:
2099 	case PTR_TO_SOCK_COMMON_OR_NULL:
2100 	case PTR_TO_TCP_SOCK:
2101 	case PTR_TO_TCP_SOCK_OR_NULL:
2102 	case PTR_TO_XDP_SOCK:
2103 	case PTR_TO_BTF_ID:
2104 		return true;
2105 	default:
2106 		return false;
2107 	}
2108 }
2109 
2110 /* Does this register contain a constant zero? */
2111 static bool register_is_null(struct bpf_reg_state *reg)
2112 {
2113 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2114 }
2115 
2116 static bool register_is_const(struct bpf_reg_state *reg)
2117 {
2118 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2119 }
2120 
2121 static bool __is_pointer_value(bool allow_ptr_leaks,
2122 			       const struct bpf_reg_state *reg)
2123 {
2124 	if (allow_ptr_leaks)
2125 		return false;
2126 
2127 	return reg->type != SCALAR_VALUE;
2128 }
2129 
2130 static void save_register_state(struct bpf_func_state *state,
2131 				int spi, struct bpf_reg_state *reg)
2132 {
2133 	int i;
2134 
2135 	state->stack[spi].spilled_ptr = *reg;
2136 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2137 
2138 	for (i = 0; i < BPF_REG_SIZE; i++)
2139 		state->stack[spi].slot_type[i] = STACK_SPILL;
2140 }
2141 
2142 /* check_stack_read/write functions track spill/fill of registers,
2143  * stack boundary and alignment are checked in check_mem_access()
2144  */
2145 static int check_stack_write(struct bpf_verifier_env *env,
2146 			     struct bpf_func_state *state, /* func where register points to */
2147 			     int off, int size, int value_regno, int insn_idx)
2148 {
2149 	struct bpf_func_state *cur; /* state of the current function */
2150 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2151 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2152 	struct bpf_reg_state *reg = NULL;
2153 
2154 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2155 				 state->acquired_refs, true);
2156 	if (err)
2157 		return err;
2158 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2159 	 * so it's aligned access and [off, off + size) are within stack limits
2160 	 */
2161 	if (!env->allow_ptr_leaks &&
2162 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2163 	    size != BPF_REG_SIZE) {
2164 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2165 		return -EACCES;
2166 	}
2167 
2168 	cur = env->cur_state->frame[env->cur_state->curframe];
2169 	if (value_regno >= 0)
2170 		reg = &cur->regs[value_regno];
2171 
2172 	if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
2173 	    !register_is_null(reg) && env->allow_ptr_leaks) {
2174 		if (dst_reg != BPF_REG_FP) {
2175 			/* The backtracking logic can only recognize explicit
2176 			 * stack slot address like [fp - 8]. Other spill of
2177 			 * scalar via different register has to be conervative.
2178 			 * Backtrack from here and mark all registers as precise
2179 			 * that contributed into 'reg' being a constant.
2180 			 */
2181 			err = mark_chain_precision(env, value_regno);
2182 			if (err)
2183 				return err;
2184 		}
2185 		save_register_state(state, spi, reg);
2186 	} else if (reg && is_spillable_regtype(reg->type)) {
2187 		/* register containing pointer is being spilled into stack */
2188 		if (size != BPF_REG_SIZE) {
2189 			verbose_linfo(env, insn_idx, "; ");
2190 			verbose(env, "invalid size of register spill\n");
2191 			return -EACCES;
2192 		}
2193 
2194 		if (state != cur && reg->type == PTR_TO_STACK) {
2195 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2196 			return -EINVAL;
2197 		}
2198 
2199 		if (!env->allow_ptr_leaks) {
2200 			bool sanitize = false;
2201 
2202 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2203 			    register_is_const(&state->stack[spi].spilled_ptr))
2204 				sanitize = true;
2205 			for (i = 0; i < BPF_REG_SIZE; i++)
2206 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2207 					sanitize = true;
2208 					break;
2209 				}
2210 			if (sanitize) {
2211 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2212 				int soff = (-spi - 1) * BPF_REG_SIZE;
2213 
2214 				/* detected reuse of integer stack slot with a pointer
2215 				 * which means either llvm is reusing stack slot or
2216 				 * an attacker is trying to exploit CVE-2018-3639
2217 				 * (speculative store bypass)
2218 				 * Have to sanitize that slot with preemptive
2219 				 * store of zero.
2220 				 */
2221 				if (*poff && *poff != soff) {
2222 					/* disallow programs where single insn stores
2223 					 * into two different stack slots, since verifier
2224 					 * cannot sanitize them
2225 					 */
2226 					verbose(env,
2227 						"insn %d cannot access two stack slots fp%d and fp%d",
2228 						insn_idx, *poff, soff);
2229 					return -EINVAL;
2230 				}
2231 				*poff = soff;
2232 			}
2233 		}
2234 		save_register_state(state, spi, reg);
2235 	} else {
2236 		u8 type = STACK_MISC;
2237 
2238 		/* regular write of data into stack destroys any spilled ptr */
2239 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2240 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2241 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2242 			for (i = 0; i < BPF_REG_SIZE; i++)
2243 				state->stack[spi].slot_type[i] = STACK_MISC;
2244 
2245 		/* only mark the slot as written if all 8 bytes were written
2246 		 * otherwise read propagation may incorrectly stop too soon
2247 		 * when stack slots are partially written.
2248 		 * This heuristic means that read propagation will be
2249 		 * conservative, since it will add reg_live_read marks
2250 		 * to stack slots all the way to first state when programs
2251 		 * writes+reads less than 8 bytes
2252 		 */
2253 		if (size == BPF_REG_SIZE)
2254 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2255 
2256 		/* when we zero initialize stack slots mark them as such */
2257 		if (reg && register_is_null(reg)) {
2258 			/* backtracking doesn't work for STACK_ZERO yet. */
2259 			err = mark_chain_precision(env, value_regno);
2260 			if (err)
2261 				return err;
2262 			type = STACK_ZERO;
2263 		}
2264 
2265 		/* Mark slots affected by this stack write. */
2266 		for (i = 0; i < size; i++)
2267 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2268 				type;
2269 	}
2270 	return 0;
2271 }
2272 
2273 static int check_stack_read(struct bpf_verifier_env *env,
2274 			    struct bpf_func_state *reg_state /* func where register points to */,
2275 			    int off, int size, int value_regno)
2276 {
2277 	struct bpf_verifier_state *vstate = env->cur_state;
2278 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2279 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2280 	struct bpf_reg_state *reg;
2281 	u8 *stype;
2282 
2283 	if (reg_state->allocated_stack <= slot) {
2284 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2285 			off, size);
2286 		return -EACCES;
2287 	}
2288 	stype = reg_state->stack[spi].slot_type;
2289 	reg = &reg_state->stack[spi].spilled_ptr;
2290 
2291 	if (stype[0] == STACK_SPILL) {
2292 		if (size != BPF_REG_SIZE) {
2293 			if (reg->type != SCALAR_VALUE) {
2294 				verbose_linfo(env, env->insn_idx, "; ");
2295 				verbose(env, "invalid size of register fill\n");
2296 				return -EACCES;
2297 			}
2298 			if (value_regno >= 0) {
2299 				mark_reg_unknown(env, state->regs, value_regno);
2300 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2301 			}
2302 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2303 			return 0;
2304 		}
2305 		for (i = 1; i < BPF_REG_SIZE; i++) {
2306 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2307 				verbose(env, "corrupted spill memory\n");
2308 				return -EACCES;
2309 			}
2310 		}
2311 
2312 		if (value_regno >= 0) {
2313 			/* restore register state from stack */
2314 			state->regs[value_regno] = *reg;
2315 			/* mark reg as written since spilled pointer state likely
2316 			 * has its liveness marks cleared by is_state_visited()
2317 			 * which resets stack/reg liveness for state transitions
2318 			 */
2319 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2320 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2321 			/* If value_regno==-1, the caller is asking us whether
2322 			 * it is acceptable to use this value as a SCALAR_VALUE
2323 			 * (e.g. for XADD).
2324 			 * We must not allow unprivileged callers to do that
2325 			 * with spilled pointers.
2326 			 */
2327 			verbose(env, "leaking pointer from stack off %d\n",
2328 				off);
2329 			return -EACCES;
2330 		}
2331 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2332 	} else {
2333 		int zeros = 0;
2334 
2335 		for (i = 0; i < size; i++) {
2336 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2337 				continue;
2338 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2339 				zeros++;
2340 				continue;
2341 			}
2342 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2343 				off, i, size);
2344 			return -EACCES;
2345 		}
2346 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2347 		if (value_regno >= 0) {
2348 			if (zeros == size) {
2349 				/* any size read into register is zero extended,
2350 				 * so the whole register == const_zero
2351 				 */
2352 				__mark_reg_const_zero(&state->regs[value_regno]);
2353 				/* backtracking doesn't support STACK_ZERO yet,
2354 				 * so mark it precise here, so that later
2355 				 * backtracking can stop here.
2356 				 * Backtracking may not need this if this register
2357 				 * doesn't participate in pointer adjustment.
2358 				 * Forward propagation of precise flag is not
2359 				 * necessary either. This mark is only to stop
2360 				 * backtracking. Any register that contributed
2361 				 * to const 0 was marked precise before spill.
2362 				 */
2363 				state->regs[value_regno].precise = true;
2364 			} else {
2365 				/* have read misc data from the stack */
2366 				mark_reg_unknown(env, state->regs, value_regno);
2367 			}
2368 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2369 		}
2370 	}
2371 	return 0;
2372 }
2373 
2374 static int check_stack_access(struct bpf_verifier_env *env,
2375 			      const struct bpf_reg_state *reg,
2376 			      int off, int size)
2377 {
2378 	/* Stack accesses must be at a fixed offset, so that we
2379 	 * can determine what type of data were returned. See
2380 	 * check_stack_read().
2381 	 */
2382 	if (!tnum_is_const(reg->var_off)) {
2383 		char tn_buf[48];
2384 
2385 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2386 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2387 			tn_buf, off, size);
2388 		return -EACCES;
2389 	}
2390 
2391 	if (off >= 0 || off < -MAX_BPF_STACK) {
2392 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2393 		return -EACCES;
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2400 				 int off, int size, enum bpf_access_type type)
2401 {
2402 	struct bpf_reg_state *regs = cur_regs(env);
2403 	struct bpf_map *map = regs[regno].map_ptr;
2404 	u32 cap = bpf_map_flags_to_cap(map);
2405 
2406 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2407 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2408 			map->value_size, off, size);
2409 		return -EACCES;
2410 	}
2411 
2412 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2413 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2414 			map->value_size, off, size);
2415 		return -EACCES;
2416 	}
2417 
2418 	return 0;
2419 }
2420 
2421 /* check read/write into map element returned by bpf_map_lookup_elem() */
2422 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
2423 			      int size, bool zero_size_allowed)
2424 {
2425 	struct bpf_reg_state *regs = cur_regs(env);
2426 	struct bpf_map *map = regs[regno].map_ptr;
2427 
2428 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2429 	    off + size > map->value_size) {
2430 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2431 			map->value_size, off, size);
2432 		return -EACCES;
2433 	}
2434 	return 0;
2435 }
2436 
2437 /* check read/write into a map element with possible variable offset */
2438 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2439 			    int off, int size, bool zero_size_allowed)
2440 {
2441 	struct bpf_verifier_state *vstate = env->cur_state;
2442 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2443 	struct bpf_reg_state *reg = &state->regs[regno];
2444 	int err;
2445 
2446 	/* We may have adjusted the register to this map value, so we
2447 	 * need to try adding each of min_value and max_value to off
2448 	 * to make sure our theoretical access will be safe.
2449 	 */
2450 	if (env->log.level & BPF_LOG_LEVEL)
2451 		print_verifier_state(env, state);
2452 
2453 	/* The minimum value is only important with signed
2454 	 * comparisons where we can't assume the floor of a
2455 	 * value is 0.  If we are using signed variables for our
2456 	 * index'es we need to make sure that whatever we use
2457 	 * will have a set floor within our range.
2458 	 */
2459 	if (reg->smin_value < 0 &&
2460 	    (reg->smin_value == S64_MIN ||
2461 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2462 	      reg->smin_value + off < 0)) {
2463 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2464 			regno);
2465 		return -EACCES;
2466 	}
2467 	err = __check_map_access(env, regno, reg->smin_value + off, size,
2468 				 zero_size_allowed);
2469 	if (err) {
2470 		verbose(env, "R%d min value is outside of the array range\n",
2471 			regno);
2472 		return err;
2473 	}
2474 
2475 	/* If we haven't set a max value then we need to bail since we can't be
2476 	 * sure we won't do bad things.
2477 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2478 	 */
2479 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2480 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
2481 			regno);
2482 		return -EACCES;
2483 	}
2484 	err = __check_map_access(env, regno, reg->umax_value + off, size,
2485 				 zero_size_allowed);
2486 	if (err)
2487 		verbose(env, "R%d max value is outside of the array range\n",
2488 			regno);
2489 
2490 	if (map_value_has_spin_lock(reg->map_ptr)) {
2491 		u32 lock = reg->map_ptr->spin_lock_off;
2492 
2493 		/* if any part of struct bpf_spin_lock can be touched by
2494 		 * load/store reject this program.
2495 		 * To check that [x1, x2) overlaps with [y1, y2)
2496 		 * it is sufficient to check x1 < y2 && y1 < x2.
2497 		 */
2498 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2499 		     lock < reg->umax_value + off + size) {
2500 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2501 			return -EACCES;
2502 		}
2503 	}
2504 	return err;
2505 }
2506 
2507 #define MAX_PACKET_OFF 0xffff
2508 
2509 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2510 				       const struct bpf_call_arg_meta *meta,
2511 				       enum bpf_access_type t)
2512 {
2513 	switch (env->prog->type) {
2514 	/* Program types only with direct read access go here! */
2515 	case BPF_PROG_TYPE_LWT_IN:
2516 	case BPF_PROG_TYPE_LWT_OUT:
2517 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2518 	case BPF_PROG_TYPE_SK_REUSEPORT:
2519 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2520 	case BPF_PROG_TYPE_CGROUP_SKB:
2521 		if (t == BPF_WRITE)
2522 			return false;
2523 		/* fallthrough */
2524 
2525 	/* Program types with direct read + write access go here! */
2526 	case BPF_PROG_TYPE_SCHED_CLS:
2527 	case BPF_PROG_TYPE_SCHED_ACT:
2528 	case BPF_PROG_TYPE_XDP:
2529 	case BPF_PROG_TYPE_LWT_XMIT:
2530 	case BPF_PROG_TYPE_SK_SKB:
2531 	case BPF_PROG_TYPE_SK_MSG:
2532 		if (meta)
2533 			return meta->pkt_access;
2534 
2535 		env->seen_direct_write = true;
2536 		return true;
2537 
2538 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2539 		if (t == BPF_WRITE)
2540 			env->seen_direct_write = true;
2541 
2542 		return true;
2543 
2544 	default:
2545 		return false;
2546 	}
2547 }
2548 
2549 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
2550 				 int off, int size, bool zero_size_allowed)
2551 {
2552 	struct bpf_reg_state *regs = cur_regs(env);
2553 	struct bpf_reg_state *reg = &regs[regno];
2554 
2555 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2556 	    (u64)off + size > reg->range) {
2557 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2558 			off, size, regno, reg->id, reg->off, reg->range);
2559 		return -EACCES;
2560 	}
2561 	return 0;
2562 }
2563 
2564 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2565 			       int size, bool zero_size_allowed)
2566 {
2567 	struct bpf_reg_state *regs = cur_regs(env);
2568 	struct bpf_reg_state *reg = &regs[regno];
2569 	int err;
2570 
2571 	/* We may have added a variable offset to the packet pointer; but any
2572 	 * reg->range we have comes after that.  We are only checking the fixed
2573 	 * offset.
2574 	 */
2575 
2576 	/* We don't allow negative numbers, because we aren't tracking enough
2577 	 * detail to prove they're safe.
2578 	 */
2579 	if (reg->smin_value < 0) {
2580 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2581 			regno);
2582 		return -EACCES;
2583 	}
2584 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
2585 	if (err) {
2586 		verbose(env, "R%d offset is outside of the packet\n", regno);
2587 		return err;
2588 	}
2589 
2590 	/* __check_packet_access has made sure "off + size - 1" is within u16.
2591 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2592 	 * otherwise find_good_pkt_pointers would have refused to set range info
2593 	 * that __check_packet_access would have rejected this pkt access.
2594 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2595 	 */
2596 	env->prog->aux->max_pkt_offset =
2597 		max_t(u32, env->prog->aux->max_pkt_offset,
2598 		      off + reg->umax_value + size - 1);
2599 
2600 	return err;
2601 }
2602 
2603 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2604 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2605 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
2606 			    u32 *btf_id)
2607 {
2608 	struct bpf_insn_access_aux info = {
2609 		.reg_type = *reg_type,
2610 		.log = &env->log,
2611 	};
2612 
2613 	if (env->ops->is_valid_access &&
2614 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2615 		/* A non zero info.ctx_field_size indicates that this field is a
2616 		 * candidate for later verifier transformation to load the whole
2617 		 * field and then apply a mask when accessed with a narrower
2618 		 * access than actual ctx access size. A zero info.ctx_field_size
2619 		 * will only allow for whole field access and rejects any other
2620 		 * type of narrower access.
2621 		 */
2622 		*reg_type = info.reg_type;
2623 
2624 		if (*reg_type == PTR_TO_BTF_ID)
2625 			*btf_id = info.btf_id;
2626 		else
2627 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2628 		/* remember the offset of last byte accessed in ctx */
2629 		if (env->prog->aux->max_ctx_offset < off + size)
2630 			env->prog->aux->max_ctx_offset = off + size;
2631 		return 0;
2632 	}
2633 
2634 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2635 	return -EACCES;
2636 }
2637 
2638 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2639 				  int size)
2640 {
2641 	if (size < 0 || off < 0 ||
2642 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2643 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2644 			off, size);
2645 		return -EACCES;
2646 	}
2647 	return 0;
2648 }
2649 
2650 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2651 			     u32 regno, int off, int size,
2652 			     enum bpf_access_type t)
2653 {
2654 	struct bpf_reg_state *regs = cur_regs(env);
2655 	struct bpf_reg_state *reg = &regs[regno];
2656 	struct bpf_insn_access_aux info = {};
2657 	bool valid;
2658 
2659 	if (reg->smin_value < 0) {
2660 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2661 			regno);
2662 		return -EACCES;
2663 	}
2664 
2665 	switch (reg->type) {
2666 	case PTR_TO_SOCK_COMMON:
2667 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2668 		break;
2669 	case PTR_TO_SOCKET:
2670 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2671 		break;
2672 	case PTR_TO_TCP_SOCK:
2673 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2674 		break;
2675 	case PTR_TO_XDP_SOCK:
2676 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2677 		break;
2678 	default:
2679 		valid = false;
2680 	}
2681 
2682 
2683 	if (valid) {
2684 		env->insn_aux_data[insn_idx].ctx_field_size =
2685 			info.ctx_field_size;
2686 		return 0;
2687 	}
2688 
2689 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2690 		regno, reg_type_str[reg->type], off, size);
2691 
2692 	return -EACCES;
2693 }
2694 
2695 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2696 {
2697 	return cur_regs(env) + regno;
2698 }
2699 
2700 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2701 {
2702 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2703 }
2704 
2705 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2706 {
2707 	const struct bpf_reg_state *reg = reg_state(env, regno);
2708 
2709 	return reg->type == PTR_TO_CTX;
2710 }
2711 
2712 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2713 {
2714 	const struct bpf_reg_state *reg = reg_state(env, regno);
2715 
2716 	return type_is_sk_pointer(reg->type);
2717 }
2718 
2719 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2720 {
2721 	const struct bpf_reg_state *reg = reg_state(env, regno);
2722 
2723 	return type_is_pkt_pointer(reg->type);
2724 }
2725 
2726 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2727 {
2728 	const struct bpf_reg_state *reg = reg_state(env, regno);
2729 
2730 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2731 	return reg->type == PTR_TO_FLOW_KEYS;
2732 }
2733 
2734 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2735 				   const struct bpf_reg_state *reg,
2736 				   int off, int size, bool strict)
2737 {
2738 	struct tnum reg_off;
2739 	int ip_align;
2740 
2741 	/* Byte size accesses are always allowed. */
2742 	if (!strict || size == 1)
2743 		return 0;
2744 
2745 	/* For platforms that do not have a Kconfig enabling
2746 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2747 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2748 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2749 	 * to this code only in strict mode where we want to emulate
2750 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2751 	 * unconditional IP align value of '2'.
2752 	 */
2753 	ip_align = 2;
2754 
2755 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2756 	if (!tnum_is_aligned(reg_off, size)) {
2757 		char tn_buf[48];
2758 
2759 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2760 		verbose(env,
2761 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2762 			ip_align, tn_buf, reg->off, off, size);
2763 		return -EACCES;
2764 	}
2765 
2766 	return 0;
2767 }
2768 
2769 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2770 				       const struct bpf_reg_state *reg,
2771 				       const char *pointer_desc,
2772 				       int off, int size, bool strict)
2773 {
2774 	struct tnum reg_off;
2775 
2776 	/* Byte size accesses are always allowed. */
2777 	if (!strict || size == 1)
2778 		return 0;
2779 
2780 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2781 	if (!tnum_is_aligned(reg_off, size)) {
2782 		char tn_buf[48];
2783 
2784 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2785 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2786 			pointer_desc, tn_buf, reg->off, off, size);
2787 		return -EACCES;
2788 	}
2789 
2790 	return 0;
2791 }
2792 
2793 static int check_ptr_alignment(struct bpf_verifier_env *env,
2794 			       const struct bpf_reg_state *reg, int off,
2795 			       int size, bool strict_alignment_once)
2796 {
2797 	bool strict = env->strict_alignment || strict_alignment_once;
2798 	const char *pointer_desc = "";
2799 
2800 	switch (reg->type) {
2801 	case PTR_TO_PACKET:
2802 	case PTR_TO_PACKET_META:
2803 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2804 		 * right in front, treat it the very same way.
2805 		 */
2806 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2807 	case PTR_TO_FLOW_KEYS:
2808 		pointer_desc = "flow keys ";
2809 		break;
2810 	case PTR_TO_MAP_VALUE:
2811 		pointer_desc = "value ";
2812 		break;
2813 	case PTR_TO_CTX:
2814 		pointer_desc = "context ";
2815 		break;
2816 	case PTR_TO_STACK:
2817 		pointer_desc = "stack ";
2818 		/* The stack spill tracking logic in check_stack_write()
2819 		 * and check_stack_read() relies on stack accesses being
2820 		 * aligned.
2821 		 */
2822 		strict = true;
2823 		break;
2824 	case PTR_TO_SOCKET:
2825 		pointer_desc = "sock ";
2826 		break;
2827 	case PTR_TO_SOCK_COMMON:
2828 		pointer_desc = "sock_common ";
2829 		break;
2830 	case PTR_TO_TCP_SOCK:
2831 		pointer_desc = "tcp_sock ";
2832 		break;
2833 	case PTR_TO_XDP_SOCK:
2834 		pointer_desc = "xdp_sock ";
2835 		break;
2836 	default:
2837 		break;
2838 	}
2839 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2840 					   strict);
2841 }
2842 
2843 static int update_stack_depth(struct bpf_verifier_env *env,
2844 			      const struct bpf_func_state *func,
2845 			      int off)
2846 {
2847 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
2848 
2849 	if (stack >= -off)
2850 		return 0;
2851 
2852 	/* update known max for given subprogram */
2853 	env->subprog_info[func->subprogno].stack_depth = -off;
2854 	return 0;
2855 }
2856 
2857 /* starting from main bpf function walk all instructions of the function
2858  * and recursively walk all callees that given function can call.
2859  * Ignore jump and exit insns.
2860  * Since recursion is prevented by check_cfg() this algorithm
2861  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2862  */
2863 static int check_max_stack_depth(struct bpf_verifier_env *env)
2864 {
2865 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2866 	struct bpf_subprog_info *subprog = env->subprog_info;
2867 	struct bpf_insn *insn = env->prog->insnsi;
2868 	int ret_insn[MAX_CALL_FRAMES];
2869 	int ret_prog[MAX_CALL_FRAMES];
2870 
2871 process_func:
2872 	/* round up to 32-bytes, since this is granularity
2873 	 * of interpreter stack size
2874 	 */
2875 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2876 	if (depth > MAX_BPF_STACK) {
2877 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
2878 			frame + 1, depth);
2879 		return -EACCES;
2880 	}
2881 continue_func:
2882 	subprog_end = subprog[idx + 1].start;
2883 	for (; i < subprog_end; i++) {
2884 		if (insn[i].code != (BPF_JMP | BPF_CALL))
2885 			continue;
2886 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
2887 			continue;
2888 		/* remember insn and function to return to */
2889 		ret_insn[frame] = i + 1;
2890 		ret_prog[frame] = idx;
2891 
2892 		/* find the callee */
2893 		i = i + insn[i].imm + 1;
2894 		idx = find_subprog(env, i);
2895 		if (idx < 0) {
2896 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2897 				  i);
2898 			return -EFAULT;
2899 		}
2900 		frame++;
2901 		if (frame >= MAX_CALL_FRAMES) {
2902 			verbose(env, "the call stack of %d frames is too deep !\n",
2903 				frame);
2904 			return -E2BIG;
2905 		}
2906 		goto process_func;
2907 	}
2908 	/* end of for() loop means the last insn of the 'subprog'
2909 	 * was reached. Doesn't matter whether it was JA or EXIT
2910 	 */
2911 	if (frame == 0)
2912 		return 0;
2913 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2914 	frame--;
2915 	i = ret_insn[frame];
2916 	idx = ret_prog[frame];
2917 	goto continue_func;
2918 }
2919 
2920 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2921 static int get_callee_stack_depth(struct bpf_verifier_env *env,
2922 				  const struct bpf_insn *insn, int idx)
2923 {
2924 	int start = idx + insn->imm + 1, subprog;
2925 
2926 	subprog = find_subprog(env, start);
2927 	if (subprog < 0) {
2928 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2929 			  start);
2930 		return -EFAULT;
2931 	}
2932 	return env->subprog_info[subprog].stack_depth;
2933 }
2934 #endif
2935 
2936 int check_ctx_reg(struct bpf_verifier_env *env,
2937 		  const struct bpf_reg_state *reg, int regno)
2938 {
2939 	/* Access to ctx or passing it to a helper is only allowed in
2940 	 * its original, unmodified form.
2941 	 */
2942 
2943 	if (reg->off) {
2944 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2945 			regno, reg->off);
2946 		return -EACCES;
2947 	}
2948 
2949 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2950 		char tn_buf[48];
2951 
2952 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2953 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2954 		return -EACCES;
2955 	}
2956 
2957 	return 0;
2958 }
2959 
2960 static int check_tp_buffer_access(struct bpf_verifier_env *env,
2961 				  const struct bpf_reg_state *reg,
2962 				  int regno, int off, int size)
2963 {
2964 	if (off < 0) {
2965 		verbose(env,
2966 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
2967 			regno, off, size);
2968 		return -EACCES;
2969 	}
2970 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2971 		char tn_buf[48];
2972 
2973 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2974 		verbose(env,
2975 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
2976 			regno, off, tn_buf);
2977 		return -EACCES;
2978 	}
2979 	if (off + size > env->prog->aux->max_tp_access)
2980 		env->prog->aux->max_tp_access = off + size;
2981 
2982 	return 0;
2983 }
2984 
2985 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
2986 static void zext_32_to_64(struct bpf_reg_state *reg)
2987 {
2988 	reg->var_off = tnum_subreg(reg->var_off);
2989 	__reg_assign_32_into_64(reg);
2990 }
2991 
2992 /* truncate register to smaller size (in bytes)
2993  * must be called with size < BPF_REG_SIZE
2994  */
2995 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2996 {
2997 	u64 mask;
2998 
2999 	/* clear high bits in bit representation */
3000 	reg->var_off = tnum_cast(reg->var_off, size);
3001 
3002 	/* fix arithmetic bounds */
3003 	mask = ((u64)1 << (size * 8)) - 1;
3004 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3005 		reg->umin_value &= mask;
3006 		reg->umax_value &= mask;
3007 	} else {
3008 		reg->umin_value = 0;
3009 		reg->umax_value = mask;
3010 	}
3011 	reg->smin_value = reg->umin_value;
3012 	reg->smax_value = reg->umax_value;
3013 
3014 	/* If size is smaller than 32bit register the 32bit register
3015 	 * values are also truncated so we push 64-bit bounds into
3016 	 * 32-bit bounds. Above were truncated < 32-bits already.
3017 	 */
3018 	if (size >= 4)
3019 		return;
3020 	__reg_combine_64_into_32(reg);
3021 }
3022 
3023 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3024 {
3025 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3026 }
3027 
3028 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3029 {
3030 	void *ptr;
3031 	u64 addr;
3032 	int err;
3033 
3034 	err = map->ops->map_direct_value_addr(map, &addr, off);
3035 	if (err)
3036 		return err;
3037 	ptr = (void *)(long)addr + off;
3038 
3039 	switch (size) {
3040 	case sizeof(u8):
3041 		*val = (u64)*(u8 *)ptr;
3042 		break;
3043 	case sizeof(u16):
3044 		*val = (u64)*(u16 *)ptr;
3045 		break;
3046 	case sizeof(u32):
3047 		*val = (u64)*(u32 *)ptr;
3048 		break;
3049 	case sizeof(u64):
3050 		*val = *(u64 *)ptr;
3051 		break;
3052 	default:
3053 		return -EINVAL;
3054 	}
3055 	return 0;
3056 }
3057 
3058 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3059 				   struct bpf_reg_state *regs,
3060 				   int regno, int off, int size,
3061 				   enum bpf_access_type atype,
3062 				   int value_regno)
3063 {
3064 	struct bpf_reg_state *reg = regs + regno;
3065 	const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3066 	const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3067 	u32 btf_id;
3068 	int ret;
3069 
3070 	if (off < 0) {
3071 		verbose(env,
3072 			"R%d is ptr_%s invalid negative access: off=%d\n",
3073 			regno, tname, off);
3074 		return -EACCES;
3075 	}
3076 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3077 		char tn_buf[48];
3078 
3079 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3080 		verbose(env,
3081 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3082 			regno, tname, off, tn_buf);
3083 		return -EACCES;
3084 	}
3085 
3086 	if (env->ops->btf_struct_access) {
3087 		ret = env->ops->btf_struct_access(&env->log, t, off, size,
3088 						  atype, &btf_id);
3089 	} else {
3090 		if (atype != BPF_READ) {
3091 			verbose(env, "only read is supported\n");
3092 			return -EACCES;
3093 		}
3094 
3095 		ret = btf_struct_access(&env->log, t, off, size, atype,
3096 					&btf_id);
3097 	}
3098 
3099 	if (ret < 0)
3100 		return ret;
3101 
3102 	if (atype == BPF_READ && value_regno >= 0) {
3103 		if (ret == SCALAR_VALUE) {
3104 			mark_reg_unknown(env, regs, value_regno);
3105 			return 0;
3106 		}
3107 		mark_reg_known_zero(env, regs, value_regno);
3108 		regs[value_regno].type = PTR_TO_BTF_ID;
3109 		regs[value_regno].btf_id = btf_id;
3110 	}
3111 
3112 	return 0;
3113 }
3114 
3115 /* check whether memory at (regno + off) is accessible for t = (read | write)
3116  * if t==write, value_regno is a register which value is stored into memory
3117  * if t==read, value_regno is a register which will receive the value from memory
3118  * if t==write && value_regno==-1, some unknown value is stored into memory
3119  * if t==read && value_regno==-1, don't care what we read from memory
3120  */
3121 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3122 			    int off, int bpf_size, enum bpf_access_type t,
3123 			    int value_regno, bool strict_alignment_once)
3124 {
3125 	struct bpf_reg_state *regs = cur_regs(env);
3126 	struct bpf_reg_state *reg = regs + regno;
3127 	struct bpf_func_state *state;
3128 	int size, err = 0;
3129 
3130 	size = bpf_size_to_bytes(bpf_size);
3131 	if (size < 0)
3132 		return size;
3133 
3134 	/* alignment checks will add in reg->off themselves */
3135 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3136 	if (err)
3137 		return err;
3138 
3139 	/* for access checks, reg->off is just part of off */
3140 	off += reg->off;
3141 
3142 	if (reg->type == PTR_TO_MAP_VALUE) {
3143 		if (t == BPF_WRITE && value_regno >= 0 &&
3144 		    is_pointer_value(env, value_regno)) {
3145 			verbose(env, "R%d leaks addr into map\n", value_regno);
3146 			return -EACCES;
3147 		}
3148 		err = check_map_access_type(env, regno, off, size, t);
3149 		if (err)
3150 			return err;
3151 		err = check_map_access(env, regno, off, size, false);
3152 		if (!err && t == BPF_READ && value_regno >= 0) {
3153 			struct bpf_map *map = reg->map_ptr;
3154 
3155 			/* if map is read-only, track its contents as scalars */
3156 			if (tnum_is_const(reg->var_off) &&
3157 			    bpf_map_is_rdonly(map) &&
3158 			    map->ops->map_direct_value_addr) {
3159 				int map_off = off + reg->var_off.value;
3160 				u64 val = 0;
3161 
3162 				err = bpf_map_direct_read(map, map_off, size,
3163 							  &val);
3164 				if (err)
3165 					return err;
3166 
3167 				regs[value_regno].type = SCALAR_VALUE;
3168 				__mark_reg_known(&regs[value_regno], val);
3169 			} else {
3170 				mark_reg_unknown(env, regs, value_regno);
3171 			}
3172 		}
3173 	} else if (reg->type == PTR_TO_CTX) {
3174 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3175 		u32 btf_id = 0;
3176 
3177 		if (t == BPF_WRITE && value_regno >= 0 &&
3178 		    is_pointer_value(env, value_regno)) {
3179 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3180 			return -EACCES;
3181 		}
3182 
3183 		err = check_ctx_reg(env, reg, regno);
3184 		if (err < 0)
3185 			return err;
3186 
3187 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3188 		if (err)
3189 			verbose_linfo(env, insn_idx, "; ");
3190 		if (!err && t == BPF_READ && value_regno >= 0) {
3191 			/* ctx access returns either a scalar, or a
3192 			 * PTR_TO_PACKET[_META,_END]. In the latter
3193 			 * case, we know the offset is zero.
3194 			 */
3195 			if (reg_type == SCALAR_VALUE) {
3196 				mark_reg_unknown(env, regs, value_regno);
3197 			} else {
3198 				mark_reg_known_zero(env, regs,
3199 						    value_regno);
3200 				if (reg_type_may_be_null(reg_type))
3201 					regs[value_regno].id = ++env->id_gen;
3202 				/* A load of ctx field could have different
3203 				 * actual load size with the one encoded in the
3204 				 * insn. When the dst is PTR, it is for sure not
3205 				 * a sub-register.
3206 				 */
3207 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3208 				if (reg_type == PTR_TO_BTF_ID)
3209 					regs[value_regno].btf_id = btf_id;
3210 			}
3211 			regs[value_regno].type = reg_type;
3212 		}
3213 
3214 	} else if (reg->type == PTR_TO_STACK) {
3215 		off += reg->var_off.value;
3216 		err = check_stack_access(env, reg, off, size);
3217 		if (err)
3218 			return err;
3219 
3220 		state = func(env, reg);
3221 		err = update_stack_depth(env, state, off);
3222 		if (err)
3223 			return err;
3224 
3225 		if (t == BPF_WRITE)
3226 			err = check_stack_write(env, state, off, size,
3227 						value_regno, insn_idx);
3228 		else
3229 			err = check_stack_read(env, state, off, size,
3230 					       value_regno);
3231 	} else if (reg_is_pkt_pointer(reg)) {
3232 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3233 			verbose(env, "cannot write into packet\n");
3234 			return -EACCES;
3235 		}
3236 		if (t == BPF_WRITE && value_regno >= 0 &&
3237 		    is_pointer_value(env, value_regno)) {
3238 			verbose(env, "R%d leaks addr into packet\n",
3239 				value_regno);
3240 			return -EACCES;
3241 		}
3242 		err = check_packet_access(env, regno, off, size, false);
3243 		if (!err && t == BPF_READ && value_regno >= 0)
3244 			mark_reg_unknown(env, regs, value_regno);
3245 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3246 		if (t == BPF_WRITE && value_regno >= 0 &&
3247 		    is_pointer_value(env, value_regno)) {
3248 			verbose(env, "R%d leaks addr into flow keys\n",
3249 				value_regno);
3250 			return -EACCES;
3251 		}
3252 
3253 		err = check_flow_keys_access(env, off, size);
3254 		if (!err && t == BPF_READ && value_regno >= 0)
3255 			mark_reg_unknown(env, regs, value_regno);
3256 	} else if (type_is_sk_pointer(reg->type)) {
3257 		if (t == BPF_WRITE) {
3258 			verbose(env, "R%d cannot write into %s\n",
3259 				regno, reg_type_str[reg->type]);
3260 			return -EACCES;
3261 		}
3262 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3263 		if (!err && value_regno >= 0)
3264 			mark_reg_unknown(env, regs, value_regno);
3265 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3266 		err = check_tp_buffer_access(env, reg, regno, off, size);
3267 		if (!err && t == BPF_READ && value_regno >= 0)
3268 			mark_reg_unknown(env, regs, value_regno);
3269 	} else if (reg->type == PTR_TO_BTF_ID) {
3270 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3271 					      value_regno);
3272 	} else {
3273 		verbose(env, "R%d invalid mem access '%s'\n", regno,
3274 			reg_type_str[reg->type]);
3275 		return -EACCES;
3276 	}
3277 
3278 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3279 	    regs[value_regno].type == SCALAR_VALUE) {
3280 		/* b/h/w load zero-extends, mark upper bits as known 0 */
3281 		coerce_reg_to_size(&regs[value_regno], size);
3282 	}
3283 	return err;
3284 }
3285 
3286 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3287 {
3288 	int err;
3289 
3290 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3291 	    insn->imm != 0) {
3292 		verbose(env, "BPF_XADD uses reserved fields\n");
3293 		return -EINVAL;
3294 	}
3295 
3296 	/* check src1 operand */
3297 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
3298 	if (err)
3299 		return err;
3300 
3301 	/* check src2 operand */
3302 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3303 	if (err)
3304 		return err;
3305 
3306 	if (is_pointer_value(env, insn->src_reg)) {
3307 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3308 		return -EACCES;
3309 	}
3310 
3311 	if (is_ctx_reg(env, insn->dst_reg) ||
3312 	    is_pkt_reg(env, insn->dst_reg) ||
3313 	    is_flow_key_reg(env, insn->dst_reg) ||
3314 	    is_sk_reg(env, insn->dst_reg)) {
3315 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3316 			insn->dst_reg,
3317 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
3318 		return -EACCES;
3319 	}
3320 
3321 	/* check whether atomic_add can read the memory */
3322 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3323 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
3324 	if (err)
3325 		return err;
3326 
3327 	/* check whether atomic_add can write into the same memory */
3328 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3329 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3330 }
3331 
3332 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3333 				  int off, int access_size,
3334 				  bool zero_size_allowed)
3335 {
3336 	struct bpf_reg_state *reg = reg_state(env, regno);
3337 
3338 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3339 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3340 		if (tnum_is_const(reg->var_off)) {
3341 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3342 				regno, off, access_size);
3343 		} else {
3344 			char tn_buf[48];
3345 
3346 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3347 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3348 				regno, tn_buf, access_size);
3349 		}
3350 		return -EACCES;
3351 	}
3352 	return 0;
3353 }
3354 
3355 /* when register 'regno' is passed into function that will read 'access_size'
3356  * bytes from that pointer, make sure that it's within stack boundary
3357  * and all elements of stack are initialized.
3358  * Unlike most pointer bounds-checking functions, this one doesn't take an
3359  * 'off' argument, so it has to add in reg->off itself.
3360  */
3361 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3362 				int access_size, bool zero_size_allowed,
3363 				struct bpf_call_arg_meta *meta)
3364 {
3365 	struct bpf_reg_state *reg = reg_state(env, regno);
3366 	struct bpf_func_state *state = func(env, reg);
3367 	int err, min_off, max_off, i, j, slot, spi;
3368 
3369 	if (reg->type != PTR_TO_STACK) {
3370 		/* Allow zero-byte read from NULL, regardless of pointer type */
3371 		if (zero_size_allowed && access_size == 0 &&
3372 		    register_is_null(reg))
3373 			return 0;
3374 
3375 		verbose(env, "R%d type=%s expected=%s\n", regno,
3376 			reg_type_str[reg->type],
3377 			reg_type_str[PTR_TO_STACK]);
3378 		return -EACCES;
3379 	}
3380 
3381 	if (tnum_is_const(reg->var_off)) {
3382 		min_off = max_off = reg->var_off.value + reg->off;
3383 		err = __check_stack_boundary(env, regno, min_off, access_size,
3384 					     zero_size_allowed);
3385 		if (err)
3386 			return err;
3387 	} else {
3388 		/* Variable offset is prohibited for unprivileged mode for
3389 		 * simplicity since it requires corresponding support in
3390 		 * Spectre masking for stack ALU.
3391 		 * See also retrieve_ptr_limit().
3392 		 */
3393 		if (!env->allow_ptr_leaks) {
3394 			char tn_buf[48];
3395 
3396 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3397 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3398 				regno, tn_buf);
3399 			return -EACCES;
3400 		}
3401 		/* Only initialized buffer on stack is allowed to be accessed
3402 		 * with variable offset. With uninitialized buffer it's hard to
3403 		 * guarantee that whole memory is marked as initialized on
3404 		 * helper return since specific bounds are unknown what may
3405 		 * cause uninitialized stack leaking.
3406 		 */
3407 		if (meta && meta->raw_mode)
3408 			meta = NULL;
3409 
3410 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3411 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3412 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3413 				regno);
3414 			return -EACCES;
3415 		}
3416 		min_off = reg->smin_value + reg->off;
3417 		max_off = reg->smax_value + reg->off;
3418 		err = __check_stack_boundary(env, regno, min_off, access_size,
3419 					     zero_size_allowed);
3420 		if (err) {
3421 			verbose(env, "R%d min value is outside of stack bound\n",
3422 				regno);
3423 			return err;
3424 		}
3425 		err = __check_stack_boundary(env, regno, max_off, access_size,
3426 					     zero_size_allowed);
3427 		if (err) {
3428 			verbose(env, "R%d max value is outside of stack bound\n",
3429 				regno);
3430 			return err;
3431 		}
3432 	}
3433 
3434 	if (meta && meta->raw_mode) {
3435 		meta->access_size = access_size;
3436 		meta->regno = regno;
3437 		return 0;
3438 	}
3439 
3440 	for (i = min_off; i < max_off + access_size; i++) {
3441 		u8 *stype;
3442 
3443 		slot = -i - 1;
3444 		spi = slot / BPF_REG_SIZE;
3445 		if (state->allocated_stack <= slot)
3446 			goto err;
3447 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3448 		if (*stype == STACK_MISC)
3449 			goto mark;
3450 		if (*stype == STACK_ZERO) {
3451 			/* helper can write anything into the stack */
3452 			*stype = STACK_MISC;
3453 			goto mark;
3454 		}
3455 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3456 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3457 			__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3458 			for (j = 0; j < BPF_REG_SIZE; j++)
3459 				state->stack[spi].slot_type[j] = STACK_MISC;
3460 			goto mark;
3461 		}
3462 
3463 err:
3464 		if (tnum_is_const(reg->var_off)) {
3465 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3466 				min_off, i - min_off, access_size);
3467 		} else {
3468 			char tn_buf[48];
3469 
3470 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3471 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3472 				tn_buf, i - min_off, access_size);
3473 		}
3474 		return -EACCES;
3475 mark:
3476 		/* reading any byte out of 8-byte 'spill_slot' will cause
3477 		 * the whole slot to be marked as 'read'
3478 		 */
3479 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3480 			      state->stack[spi].spilled_ptr.parent,
3481 			      REG_LIVE_READ64);
3482 	}
3483 	return update_stack_depth(env, state, min_off);
3484 }
3485 
3486 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3487 				   int access_size, bool zero_size_allowed,
3488 				   struct bpf_call_arg_meta *meta)
3489 {
3490 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3491 
3492 	switch (reg->type) {
3493 	case PTR_TO_PACKET:
3494 	case PTR_TO_PACKET_META:
3495 		return check_packet_access(env, regno, reg->off, access_size,
3496 					   zero_size_allowed);
3497 	case PTR_TO_MAP_VALUE:
3498 		if (check_map_access_type(env, regno, reg->off, access_size,
3499 					  meta && meta->raw_mode ? BPF_WRITE :
3500 					  BPF_READ))
3501 			return -EACCES;
3502 		return check_map_access(env, regno, reg->off, access_size,
3503 					zero_size_allowed);
3504 	default: /* scalar_value|ptr_to_stack or invalid ptr */
3505 		return check_stack_boundary(env, regno, access_size,
3506 					    zero_size_allowed, meta);
3507 	}
3508 }
3509 
3510 /* Implementation details:
3511  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3512  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3513  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3514  * value_or_null->value transition, since the verifier only cares about
3515  * the range of access to valid map value pointer and doesn't care about actual
3516  * address of the map element.
3517  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3518  * reg->id > 0 after value_or_null->value transition. By doing so
3519  * two bpf_map_lookups will be considered two different pointers that
3520  * point to different bpf_spin_locks.
3521  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3522  * dead-locks.
3523  * Since only one bpf_spin_lock is allowed the checks are simpler than
3524  * reg_is_refcounted() logic. The verifier needs to remember only
3525  * one spin_lock instead of array of acquired_refs.
3526  * cur_state->active_spin_lock remembers which map value element got locked
3527  * and clears it after bpf_spin_unlock.
3528  */
3529 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3530 			     bool is_lock)
3531 {
3532 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3533 	struct bpf_verifier_state *cur = env->cur_state;
3534 	bool is_const = tnum_is_const(reg->var_off);
3535 	struct bpf_map *map = reg->map_ptr;
3536 	u64 val = reg->var_off.value;
3537 
3538 	if (reg->type != PTR_TO_MAP_VALUE) {
3539 		verbose(env, "R%d is not a pointer to map_value\n", regno);
3540 		return -EINVAL;
3541 	}
3542 	if (!is_const) {
3543 		verbose(env,
3544 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3545 			regno);
3546 		return -EINVAL;
3547 	}
3548 	if (!map->btf) {
3549 		verbose(env,
3550 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3551 			map->name);
3552 		return -EINVAL;
3553 	}
3554 	if (!map_value_has_spin_lock(map)) {
3555 		if (map->spin_lock_off == -E2BIG)
3556 			verbose(env,
3557 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3558 				map->name);
3559 		else if (map->spin_lock_off == -ENOENT)
3560 			verbose(env,
3561 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3562 				map->name);
3563 		else
3564 			verbose(env,
3565 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3566 				map->name);
3567 		return -EINVAL;
3568 	}
3569 	if (map->spin_lock_off != val + reg->off) {
3570 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3571 			val + reg->off);
3572 		return -EINVAL;
3573 	}
3574 	if (is_lock) {
3575 		if (cur->active_spin_lock) {
3576 			verbose(env,
3577 				"Locking two bpf_spin_locks are not allowed\n");
3578 			return -EINVAL;
3579 		}
3580 		cur->active_spin_lock = reg->id;
3581 	} else {
3582 		if (!cur->active_spin_lock) {
3583 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3584 			return -EINVAL;
3585 		}
3586 		if (cur->active_spin_lock != reg->id) {
3587 			verbose(env, "bpf_spin_unlock of different lock\n");
3588 			return -EINVAL;
3589 		}
3590 		cur->active_spin_lock = 0;
3591 	}
3592 	return 0;
3593 }
3594 
3595 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3596 {
3597 	return type == ARG_PTR_TO_MEM ||
3598 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3599 	       type == ARG_PTR_TO_UNINIT_MEM;
3600 }
3601 
3602 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3603 {
3604 	return type == ARG_CONST_SIZE ||
3605 	       type == ARG_CONST_SIZE_OR_ZERO;
3606 }
3607 
3608 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3609 {
3610 	return type == ARG_PTR_TO_INT ||
3611 	       type == ARG_PTR_TO_LONG;
3612 }
3613 
3614 static int int_ptr_type_to_size(enum bpf_arg_type type)
3615 {
3616 	if (type == ARG_PTR_TO_INT)
3617 		return sizeof(u32);
3618 	else if (type == ARG_PTR_TO_LONG)
3619 		return sizeof(u64);
3620 
3621 	return -EINVAL;
3622 }
3623 
3624 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
3625 			  enum bpf_arg_type arg_type,
3626 			  struct bpf_call_arg_meta *meta)
3627 {
3628 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3629 	enum bpf_reg_type expected_type, type = reg->type;
3630 	int err = 0;
3631 
3632 	if (arg_type == ARG_DONTCARE)
3633 		return 0;
3634 
3635 	err = check_reg_arg(env, regno, SRC_OP);
3636 	if (err)
3637 		return err;
3638 
3639 	if (arg_type == ARG_ANYTHING) {
3640 		if (is_pointer_value(env, regno)) {
3641 			verbose(env, "R%d leaks addr into helper function\n",
3642 				regno);
3643 			return -EACCES;
3644 		}
3645 		return 0;
3646 	}
3647 
3648 	if (type_is_pkt_pointer(type) &&
3649 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3650 		verbose(env, "helper access to the packet is not allowed\n");
3651 		return -EACCES;
3652 	}
3653 
3654 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
3655 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
3656 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3657 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3658 		expected_type = PTR_TO_STACK;
3659 		if (register_is_null(reg) &&
3660 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3661 			/* final test in check_stack_boundary() */;
3662 		else if (!type_is_pkt_pointer(type) &&
3663 			 type != PTR_TO_MAP_VALUE &&
3664 			 type != expected_type)
3665 			goto err_type;
3666 	} else if (arg_type == ARG_CONST_SIZE ||
3667 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
3668 		expected_type = SCALAR_VALUE;
3669 		if (type != expected_type)
3670 			goto err_type;
3671 	} else if (arg_type == ARG_CONST_MAP_PTR) {
3672 		expected_type = CONST_PTR_TO_MAP;
3673 		if (type != expected_type)
3674 			goto err_type;
3675 	} else if (arg_type == ARG_PTR_TO_CTX ||
3676 		   arg_type == ARG_PTR_TO_CTX_OR_NULL) {
3677 		expected_type = PTR_TO_CTX;
3678 		if (!(register_is_null(reg) &&
3679 		      arg_type == ARG_PTR_TO_CTX_OR_NULL)) {
3680 			if (type != expected_type)
3681 				goto err_type;
3682 			err = check_ctx_reg(env, reg, regno);
3683 			if (err < 0)
3684 				return err;
3685 		}
3686 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3687 		expected_type = PTR_TO_SOCK_COMMON;
3688 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3689 		if (!type_is_sk_pointer(type))
3690 			goto err_type;
3691 		if (reg->ref_obj_id) {
3692 			if (meta->ref_obj_id) {
3693 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3694 					regno, reg->ref_obj_id,
3695 					meta->ref_obj_id);
3696 				return -EFAULT;
3697 			}
3698 			meta->ref_obj_id = reg->ref_obj_id;
3699 		}
3700 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
3701 		expected_type = PTR_TO_SOCKET;
3702 		if (type != expected_type)
3703 			goto err_type;
3704 	} else if (arg_type == ARG_PTR_TO_BTF_ID) {
3705 		expected_type = PTR_TO_BTF_ID;
3706 		if (type != expected_type)
3707 			goto err_type;
3708 		if (reg->btf_id != meta->btf_id) {
3709 			verbose(env, "Helper has type %s got %s in R%d\n",
3710 				kernel_type_name(meta->btf_id),
3711 				kernel_type_name(reg->btf_id), regno);
3712 
3713 			return -EACCES;
3714 		}
3715 		if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
3716 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
3717 				regno);
3718 			return -EACCES;
3719 		}
3720 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3721 		if (meta->func_id == BPF_FUNC_spin_lock) {
3722 			if (process_spin_lock(env, regno, true))
3723 				return -EACCES;
3724 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
3725 			if (process_spin_lock(env, regno, false))
3726 				return -EACCES;
3727 		} else {
3728 			verbose(env, "verifier internal error\n");
3729 			return -EFAULT;
3730 		}
3731 	} else if (arg_type_is_mem_ptr(arg_type)) {
3732 		expected_type = PTR_TO_STACK;
3733 		/* One exception here. In case function allows for NULL to be
3734 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
3735 		 * happens during stack boundary checking.
3736 		 */
3737 		if (register_is_null(reg) &&
3738 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
3739 			/* final test in check_stack_boundary() */;
3740 		else if (!type_is_pkt_pointer(type) &&
3741 			 type != PTR_TO_MAP_VALUE &&
3742 			 type != expected_type)
3743 			goto err_type;
3744 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
3745 	} else if (arg_type_is_int_ptr(arg_type)) {
3746 		expected_type = PTR_TO_STACK;
3747 		if (!type_is_pkt_pointer(type) &&
3748 		    type != PTR_TO_MAP_VALUE &&
3749 		    type != expected_type)
3750 			goto err_type;
3751 	} else {
3752 		verbose(env, "unsupported arg_type %d\n", arg_type);
3753 		return -EFAULT;
3754 	}
3755 
3756 	if (arg_type == ARG_CONST_MAP_PTR) {
3757 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3758 		meta->map_ptr = reg->map_ptr;
3759 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3760 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
3761 		 * check that [key, key + map->key_size) are within
3762 		 * stack limits and initialized
3763 		 */
3764 		if (!meta->map_ptr) {
3765 			/* in function declaration map_ptr must come before
3766 			 * map_key, so that it's verified and known before
3767 			 * we have to check map_key here. Otherwise it means
3768 			 * that kernel subsystem misconfigured verifier
3769 			 */
3770 			verbose(env, "invalid map_ptr to access map->key\n");
3771 			return -EACCES;
3772 		}
3773 		err = check_helper_mem_access(env, regno,
3774 					      meta->map_ptr->key_size, false,
3775 					      NULL);
3776 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3777 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3778 		    !register_is_null(reg)) ||
3779 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
3780 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
3781 		 * check [value, value + map->value_size) validity
3782 		 */
3783 		if (!meta->map_ptr) {
3784 			/* kernel subsystem misconfigured verifier */
3785 			verbose(env, "invalid map_ptr to access map->value\n");
3786 			return -EACCES;
3787 		}
3788 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
3789 		err = check_helper_mem_access(env, regno,
3790 					      meta->map_ptr->value_size, false,
3791 					      meta);
3792 	} else if (arg_type_is_mem_size(arg_type)) {
3793 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
3794 
3795 		/* This is used to refine r0 return value bounds for helpers
3796 		 * that enforce this value as an upper bound on return values.
3797 		 * See do_refine_retval_range() for helpers that can refine
3798 		 * the return value. C type of helper is u32 so we pull register
3799 		 * bound from umax_value however, if negative verifier errors
3800 		 * out. Only upper bounds can be learned because retval is an
3801 		 * int type and negative retvals are allowed.
3802 		 */
3803 		meta->msize_max_value = reg->umax_value;
3804 
3805 		/* The register is SCALAR_VALUE; the access check
3806 		 * happens using its boundaries.
3807 		 */
3808 		if (!tnum_is_const(reg->var_off))
3809 			/* For unprivileged variable accesses, disable raw
3810 			 * mode so that the program is required to
3811 			 * initialize all the memory that the helper could
3812 			 * just partially fill up.
3813 			 */
3814 			meta = NULL;
3815 
3816 		if (reg->smin_value < 0) {
3817 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
3818 				regno);
3819 			return -EACCES;
3820 		}
3821 
3822 		if (reg->umin_value == 0) {
3823 			err = check_helper_mem_access(env, regno - 1, 0,
3824 						      zero_size_allowed,
3825 						      meta);
3826 			if (err)
3827 				return err;
3828 		}
3829 
3830 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
3831 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
3832 				regno);
3833 			return -EACCES;
3834 		}
3835 		err = check_helper_mem_access(env, regno - 1,
3836 					      reg->umax_value,
3837 					      zero_size_allowed, meta);
3838 		if (!err)
3839 			err = mark_chain_precision(env, regno);
3840 	} else if (arg_type_is_int_ptr(arg_type)) {
3841 		int size = int_ptr_type_to_size(arg_type);
3842 
3843 		err = check_helper_mem_access(env, regno, size, false, meta);
3844 		if (err)
3845 			return err;
3846 		err = check_ptr_alignment(env, reg, 0, size, true);
3847 	}
3848 
3849 	return err;
3850 err_type:
3851 	verbose(env, "R%d type=%s expected=%s\n", regno,
3852 		reg_type_str[type], reg_type_str[expected_type]);
3853 	return -EACCES;
3854 }
3855 
3856 static int check_map_func_compatibility(struct bpf_verifier_env *env,
3857 					struct bpf_map *map, int func_id)
3858 {
3859 	if (!map)
3860 		return 0;
3861 
3862 	/* We need a two way check, first is from map perspective ... */
3863 	switch (map->map_type) {
3864 	case BPF_MAP_TYPE_PROG_ARRAY:
3865 		if (func_id != BPF_FUNC_tail_call)
3866 			goto error;
3867 		break;
3868 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3869 		if (func_id != BPF_FUNC_perf_event_read &&
3870 		    func_id != BPF_FUNC_perf_event_output &&
3871 		    func_id != BPF_FUNC_skb_output &&
3872 		    func_id != BPF_FUNC_perf_event_read_value &&
3873 		    func_id != BPF_FUNC_xdp_output)
3874 			goto error;
3875 		break;
3876 	case BPF_MAP_TYPE_STACK_TRACE:
3877 		if (func_id != BPF_FUNC_get_stackid)
3878 			goto error;
3879 		break;
3880 	case BPF_MAP_TYPE_CGROUP_ARRAY:
3881 		if (func_id != BPF_FUNC_skb_under_cgroup &&
3882 		    func_id != BPF_FUNC_current_task_under_cgroup)
3883 			goto error;
3884 		break;
3885 	case BPF_MAP_TYPE_CGROUP_STORAGE:
3886 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
3887 		if (func_id != BPF_FUNC_get_local_storage)
3888 			goto error;
3889 		break;
3890 	case BPF_MAP_TYPE_DEVMAP:
3891 	case BPF_MAP_TYPE_DEVMAP_HASH:
3892 		if (func_id != BPF_FUNC_redirect_map &&
3893 		    func_id != BPF_FUNC_map_lookup_elem)
3894 			goto error;
3895 		break;
3896 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
3897 	 * appear.
3898 	 */
3899 	case BPF_MAP_TYPE_CPUMAP:
3900 		if (func_id != BPF_FUNC_redirect_map)
3901 			goto error;
3902 		break;
3903 	case BPF_MAP_TYPE_XSKMAP:
3904 		if (func_id != BPF_FUNC_redirect_map &&
3905 		    func_id != BPF_FUNC_map_lookup_elem)
3906 			goto error;
3907 		break;
3908 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
3909 	case BPF_MAP_TYPE_HASH_OF_MAPS:
3910 		if (func_id != BPF_FUNC_map_lookup_elem)
3911 			goto error;
3912 		break;
3913 	case BPF_MAP_TYPE_SOCKMAP:
3914 		if (func_id != BPF_FUNC_sk_redirect_map &&
3915 		    func_id != BPF_FUNC_sock_map_update &&
3916 		    func_id != BPF_FUNC_map_delete_elem &&
3917 		    func_id != BPF_FUNC_msg_redirect_map &&
3918 		    func_id != BPF_FUNC_sk_select_reuseport)
3919 			goto error;
3920 		break;
3921 	case BPF_MAP_TYPE_SOCKHASH:
3922 		if (func_id != BPF_FUNC_sk_redirect_hash &&
3923 		    func_id != BPF_FUNC_sock_hash_update &&
3924 		    func_id != BPF_FUNC_map_delete_elem &&
3925 		    func_id != BPF_FUNC_msg_redirect_hash &&
3926 		    func_id != BPF_FUNC_sk_select_reuseport)
3927 			goto error;
3928 		break;
3929 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3930 		if (func_id != BPF_FUNC_sk_select_reuseport)
3931 			goto error;
3932 		break;
3933 	case BPF_MAP_TYPE_QUEUE:
3934 	case BPF_MAP_TYPE_STACK:
3935 		if (func_id != BPF_FUNC_map_peek_elem &&
3936 		    func_id != BPF_FUNC_map_pop_elem &&
3937 		    func_id != BPF_FUNC_map_push_elem)
3938 			goto error;
3939 		break;
3940 	case BPF_MAP_TYPE_SK_STORAGE:
3941 		if (func_id != BPF_FUNC_sk_storage_get &&
3942 		    func_id != BPF_FUNC_sk_storage_delete)
3943 			goto error;
3944 		break;
3945 	default:
3946 		break;
3947 	}
3948 
3949 	/* ... and second from the function itself. */
3950 	switch (func_id) {
3951 	case BPF_FUNC_tail_call:
3952 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3953 			goto error;
3954 		if (env->subprog_cnt > 1) {
3955 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3956 			return -EINVAL;
3957 		}
3958 		break;
3959 	case BPF_FUNC_perf_event_read:
3960 	case BPF_FUNC_perf_event_output:
3961 	case BPF_FUNC_perf_event_read_value:
3962 	case BPF_FUNC_skb_output:
3963 	case BPF_FUNC_xdp_output:
3964 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3965 			goto error;
3966 		break;
3967 	case BPF_FUNC_get_stackid:
3968 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3969 			goto error;
3970 		break;
3971 	case BPF_FUNC_current_task_under_cgroup:
3972 	case BPF_FUNC_skb_under_cgroup:
3973 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3974 			goto error;
3975 		break;
3976 	case BPF_FUNC_redirect_map:
3977 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
3978 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
3979 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
3980 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
3981 			goto error;
3982 		break;
3983 	case BPF_FUNC_sk_redirect_map:
3984 	case BPF_FUNC_msg_redirect_map:
3985 	case BPF_FUNC_sock_map_update:
3986 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3987 			goto error;
3988 		break;
3989 	case BPF_FUNC_sk_redirect_hash:
3990 	case BPF_FUNC_msg_redirect_hash:
3991 	case BPF_FUNC_sock_hash_update:
3992 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
3993 			goto error;
3994 		break;
3995 	case BPF_FUNC_get_local_storage:
3996 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3997 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
3998 			goto error;
3999 		break;
4000 	case BPF_FUNC_sk_select_reuseport:
4001 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4002 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4003 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
4004 			goto error;
4005 		break;
4006 	case BPF_FUNC_map_peek_elem:
4007 	case BPF_FUNC_map_pop_elem:
4008 	case BPF_FUNC_map_push_elem:
4009 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4010 		    map->map_type != BPF_MAP_TYPE_STACK)
4011 			goto error;
4012 		break;
4013 	case BPF_FUNC_sk_storage_get:
4014 	case BPF_FUNC_sk_storage_delete:
4015 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4016 			goto error;
4017 		break;
4018 	default:
4019 		break;
4020 	}
4021 
4022 	return 0;
4023 error:
4024 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
4025 		map->map_type, func_id_name(func_id), func_id);
4026 	return -EINVAL;
4027 }
4028 
4029 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4030 {
4031 	int count = 0;
4032 
4033 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4034 		count++;
4035 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4036 		count++;
4037 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4038 		count++;
4039 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4040 		count++;
4041 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4042 		count++;
4043 
4044 	/* We only support one arg being in raw mode at the moment,
4045 	 * which is sufficient for the helper functions we have
4046 	 * right now.
4047 	 */
4048 	return count <= 1;
4049 }
4050 
4051 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4052 				    enum bpf_arg_type arg_next)
4053 {
4054 	return (arg_type_is_mem_ptr(arg_curr) &&
4055 	        !arg_type_is_mem_size(arg_next)) ||
4056 	       (!arg_type_is_mem_ptr(arg_curr) &&
4057 		arg_type_is_mem_size(arg_next));
4058 }
4059 
4060 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4061 {
4062 	/* bpf_xxx(..., buf, len) call will access 'len'
4063 	 * bytes from memory 'buf'. Both arg types need
4064 	 * to be paired, so make sure there's no buggy
4065 	 * helper function specification.
4066 	 */
4067 	if (arg_type_is_mem_size(fn->arg1_type) ||
4068 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
4069 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4070 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4071 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4072 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4073 		return false;
4074 
4075 	return true;
4076 }
4077 
4078 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4079 {
4080 	int count = 0;
4081 
4082 	if (arg_type_may_be_refcounted(fn->arg1_type))
4083 		count++;
4084 	if (arg_type_may_be_refcounted(fn->arg2_type))
4085 		count++;
4086 	if (arg_type_may_be_refcounted(fn->arg3_type))
4087 		count++;
4088 	if (arg_type_may_be_refcounted(fn->arg4_type))
4089 		count++;
4090 	if (arg_type_may_be_refcounted(fn->arg5_type))
4091 		count++;
4092 
4093 	/* A reference acquiring function cannot acquire
4094 	 * another refcounted ptr.
4095 	 */
4096 	if (is_acquire_function(func_id) && count)
4097 		return false;
4098 
4099 	/* We only support one arg being unreferenced at the moment,
4100 	 * which is sufficient for the helper functions we have right now.
4101 	 */
4102 	return count <= 1;
4103 }
4104 
4105 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
4106 {
4107 	return check_raw_mode_ok(fn) &&
4108 	       check_arg_pair_ok(fn) &&
4109 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
4110 }
4111 
4112 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4113  * are now invalid, so turn them into unknown SCALAR_VALUE.
4114  */
4115 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4116 				     struct bpf_func_state *state)
4117 {
4118 	struct bpf_reg_state *regs = state->regs, *reg;
4119 	int i;
4120 
4121 	for (i = 0; i < MAX_BPF_REG; i++)
4122 		if (reg_is_pkt_pointer_any(&regs[i]))
4123 			mark_reg_unknown(env, regs, i);
4124 
4125 	bpf_for_each_spilled_reg(i, state, reg) {
4126 		if (!reg)
4127 			continue;
4128 		if (reg_is_pkt_pointer_any(reg))
4129 			__mark_reg_unknown(env, reg);
4130 	}
4131 }
4132 
4133 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4134 {
4135 	struct bpf_verifier_state *vstate = env->cur_state;
4136 	int i;
4137 
4138 	for (i = 0; i <= vstate->curframe; i++)
4139 		__clear_all_pkt_pointers(env, vstate->frame[i]);
4140 }
4141 
4142 static void release_reg_references(struct bpf_verifier_env *env,
4143 				   struct bpf_func_state *state,
4144 				   int ref_obj_id)
4145 {
4146 	struct bpf_reg_state *regs = state->regs, *reg;
4147 	int i;
4148 
4149 	for (i = 0; i < MAX_BPF_REG; i++)
4150 		if (regs[i].ref_obj_id == ref_obj_id)
4151 			mark_reg_unknown(env, regs, i);
4152 
4153 	bpf_for_each_spilled_reg(i, state, reg) {
4154 		if (!reg)
4155 			continue;
4156 		if (reg->ref_obj_id == ref_obj_id)
4157 			__mark_reg_unknown(env, reg);
4158 	}
4159 }
4160 
4161 /* The pointer with the specified id has released its reference to kernel
4162  * resources. Identify all copies of the same pointer and clear the reference.
4163  */
4164 static int release_reference(struct bpf_verifier_env *env,
4165 			     int ref_obj_id)
4166 {
4167 	struct bpf_verifier_state *vstate = env->cur_state;
4168 	int err;
4169 	int i;
4170 
4171 	err = release_reference_state(cur_func(env), ref_obj_id);
4172 	if (err)
4173 		return err;
4174 
4175 	for (i = 0; i <= vstate->curframe; i++)
4176 		release_reg_references(env, vstate->frame[i], ref_obj_id);
4177 
4178 	return 0;
4179 }
4180 
4181 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4182 				    struct bpf_reg_state *regs)
4183 {
4184 	int i;
4185 
4186 	/* after the call registers r0 - r5 were scratched */
4187 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4188 		mark_reg_not_init(env, regs, caller_saved[i]);
4189 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4190 	}
4191 }
4192 
4193 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4194 			   int *insn_idx)
4195 {
4196 	struct bpf_verifier_state *state = env->cur_state;
4197 	struct bpf_func_info_aux *func_info_aux;
4198 	struct bpf_func_state *caller, *callee;
4199 	int i, err, subprog, target_insn;
4200 	bool is_global = false;
4201 
4202 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
4203 		verbose(env, "the call stack of %d frames is too deep\n",
4204 			state->curframe + 2);
4205 		return -E2BIG;
4206 	}
4207 
4208 	target_insn = *insn_idx + insn->imm;
4209 	subprog = find_subprog(env, target_insn + 1);
4210 	if (subprog < 0) {
4211 		verbose(env, "verifier bug. No program starts at insn %d\n",
4212 			target_insn + 1);
4213 		return -EFAULT;
4214 	}
4215 
4216 	caller = state->frame[state->curframe];
4217 	if (state->frame[state->curframe + 1]) {
4218 		verbose(env, "verifier bug. Frame %d already allocated\n",
4219 			state->curframe + 1);
4220 		return -EFAULT;
4221 	}
4222 
4223 	func_info_aux = env->prog->aux->func_info_aux;
4224 	if (func_info_aux)
4225 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4226 	err = btf_check_func_arg_match(env, subprog, caller->regs);
4227 	if (err == -EFAULT)
4228 		return err;
4229 	if (is_global) {
4230 		if (err) {
4231 			verbose(env, "Caller passes invalid args into func#%d\n",
4232 				subprog);
4233 			return err;
4234 		} else {
4235 			if (env->log.level & BPF_LOG_LEVEL)
4236 				verbose(env,
4237 					"Func#%d is global and valid. Skipping.\n",
4238 					subprog);
4239 			clear_caller_saved_regs(env, caller->regs);
4240 
4241 			/* All global functions return SCALAR_VALUE */
4242 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
4243 
4244 			/* continue with next insn after call */
4245 			return 0;
4246 		}
4247 	}
4248 
4249 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4250 	if (!callee)
4251 		return -ENOMEM;
4252 	state->frame[state->curframe + 1] = callee;
4253 
4254 	/* callee cannot access r0, r6 - r9 for reading and has to write
4255 	 * into its own stack before reading from it.
4256 	 * callee can read/write into caller's stack
4257 	 */
4258 	init_func_state(env, callee,
4259 			/* remember the callsite, it will be used by bpf_exit */
4260 			*insn_idx /* callsite */,
4261 			state->curframe + 1 /* frameno within this callchain */,
4262 			subprog /* subprog number within this prog */);
4263 
4264 	/* Transfer references to the callee */
4265 	err = transfer_reference_state(callee, caller);
4266 	if (err)
4267 		return err;
4268 
4269 	/* copy r1 - r5 args that callee can access.  The copy includes parent
4270 	 * pointers, which connects us up to the liveness chain
4271 	 */
4272 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4273 		callee->regs[i] = caller->regs[i];
4274 
4275 	clear_caller_saved_regs(env, caller->regs);
4276 
4277 	/* only increment it after check_reg_arg() finished */
4278 	state->curframe++;
4279 
4280 	/* and go analyze first insn of the callee */
4281 	*insn_idx = target_insn;
4282 
4283 	if (env->log.level & BPF_LOG_LEVEL) {
4284 		verbose(env, "caller:\n");
4285 		print_verifier_state(env, caller);
4286 		verbose(env, "callee:\n");
4287 		print_verifier_state(env, callee);
4288 	}
4289 	return 0;
4290 }
4291 
4292 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4293 {
4294 	struct bpf_verifier_state *state = env->cur_state;
4295 	struct bpf_func_state *caller, *callee;
4296 	struct bpf_reg_state *r0;
4297 	int err;
4298 
4299 	callee = state->frame[state->curframe];
4300 	r0 = &callee->regs[BPF_REG_0];
4301 	if (r0->type == PTR_TO_STACK) {
4302 		/* technically it's ok to return caller's stack pointer
4303 		 * (or caller's caller's pointer) back to the caller,
4304 		 * since these pointers are valid. Only current stack
4305 		 * pointer will be invalid as soon as function exits,
4306 		 * but let's be conservative
4307 		 */
4308 		verbose(env, "cannot return stack pointer to the caller\n");
4309 		return -EINVAL;
4310 	}
4311 
4312 	state->curframe--;
4313 	caller = state->frame[state->curframe];
4314 	/* return to the caller whatever r0 had in the callee */
4315 	caller->regs[BPF_REG_0] = *r0;
4316 
4317 	/* Transfer references to the caller */
4318 	err = transfer_reference_state(caller, callee);
4319 	if (err)
4320 		return err;
4321 
4322 	*insn_idx = callee->callsite + 1;
4323 	if (env->log.level & BPF_LOG_LEVEL) {
4324 		verbose(env, "returning from callee:\n");
4325 		print_verifier_state(env, callee);
4326 		verbose(env, "to caller at %d:\n", *insn_idx);
4327 		print_verifier_state(env, caller);
4328 	}
4329 	/* clear everything in the callee */
4330 	free_func_state(callee);
4331 	state->frame[state->curframe + 1] = NULL;
4332 	return 0;
4333 }
4334 
4335 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4336 				   int func_id,
4337 				   struct bpf_call_arg_meta *meta)
4338 {
4339 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4340 
4341 	if (ret_type != RET_INTEGER ||
4342 	    (func_id != BPF_FUNC_get_stack &&
4343 	     func_id != BPF_FUNC_probe_read_str &&
4344 	     func_id != BPF_FUNC_probe_read_kernel_str &&
4345 	     func_id != BPF_FUNC_probe_read_user_str))
4346 		return;
4347 
4348 	ret_reg->smax_value = meta->msize_max_value;
4349 	ret_reg->s32_max_value = meta->msize_max_value;
4350 	__reg_deduce_bounds(ret_reg);
4351 	__reg_bound_offset(ret_reg);
4352 	__update_reg_bounds(ret_reg);
4353 }
4354 
4355 static int
4356 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4357 		int func_id, int insn_idx)
4358 {
4359 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4360 	struct bpf_map *map = meta->map_ptr;
4361 
4362 	if (func_id != BPF_FUNC_tail_call &&
4363 	    func_id != BPF_FUNC_map_lookup_elem &&
4364 	    func_id != BPF_FUNC_map_update_elem &&
4365 	    func_id != BPF_FUNC_map_delete_elem &&
4366 	    func_id != BPF_FUNC_map_push_elem &&
4367 	    func_id != BPF_FUNC_map_pop_elem &&
4368 	    func_id != BPF_FUNC_map_peek_elem)
4369 		return 0;
4370 
4371 	if (map == NULL) {
4372 		verbose(env, "kernel subsystem misconfigured verifier\n");
4373 		return -EINVAL;
4374 	}
4375 
4376 	/* In case of read-only, some additional restrictions
4377 	 * need to be applied in order to prevent altering the
4378 	 * state of the map from program side.
4379 	 */
4380 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4381 	    (func_id == BPF_FUNC_map_delete_elem ||
4382 	     func_id == BPF_FUNC_map_update_elem ||
4383 	     func_id == BPF_FUNC_map_push_elem ||
4384 	     func_id == BPF_FUNC_map_pop_elem)) {
4385 		verbose(env, "write into map forbidden\n");
4386 		return -EACCES;
4387 	}
4388 
4389 	if (!BPF_MAP_PTR(aux->map_ptr_state))
4390 		bpf_map_ptr_store(aux, meta->map_ptr,
4391 				  meta->map_ptr->unpriv_array);
4392 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4393 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4394 				  meta->map_ptr->unpriv_array);
4395 	return 0;
4396 }
4397 
4398 static int
4399 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4400 		int func_id, int insn_idx)
4401 {
4402 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4403 	struct bpf_reg_state *regs = cur_regs(env), *reg;
4404 	struct bpf_map *map = meta->map_ptr;
4405 	struct tnum range;
4406 	u64 val;
4407 	int err;
4408 
4409 	if (func_id != BPF_FUNC_tail_call)
4410 		return 0;
4411 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4412 		verbose(env, "kernel subsystem misconfigured verifier\n");
4413 		return -EINVAL;
4414 	}
4415 
4416 	range = tnum_range(0, map->max_entries - 1);
4417 	reg = &regs[BPF_REG_3];
4418 
4419 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4420 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4421 		return 0;
4422 	}
4423 
4424 	err = mark_chain_precision(env, BPF_REG_3);
4425 	if (err)
4426 		return err;
4427 
4428 	val = reg->var_off.value;
4429 	if (bpf_map_key_unseen(aux))
4430 		bpf_map_key_store(aux, val);
4431 	else if (!bpf_map_key_poisoned(aux) &&
4432 		  bpf_map_key_immediate(aux) != val)
4433 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4434 	return 0;
4435 }
4436 
4437 static int check_reference_leak(struct bpf_verifier_env *env)
4438 {
4439 	struct bpf_func_state *state = cur_func(env);
4440 	int i;
4441 
4442 	for (i = 0; i < state->acquired_refs; i++) {
4443 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4444 			state->refs[i].id, state->refs[i].insn_idx);
4445 	}
4446 	return state->acquired_refs ? -EINVAL : 0;
4447 }
4448 
4449 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
4450 {
4451 	const struct bpf_func_proto *fn = NULL;
4452 	struct bpf_reg_state *regs;
4453 	struct bpf_call_arg_meta meta;
4454 	bool changes_data;
4455 	int i, err;
4456 
4457 	/* find function prototype */
4458 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
4459 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4460 			func_id);
4461 		return -EINVAL;
4462 	}
4463 
4464 	if (env->ops->get_func_proto)
4465 		fn = env->ops->get_func_proto(func_id, env->prog);
4466 	if (!fn) {
4467 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4468 			func_id);
4469 		return -EINVAL;
4470 	}
4471 
4472 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
4473 	if (!env->prog->gpl_compatible && fn->gpl_only) {
4474 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
4475 		return -EINVAL;
4476 	}
4477 
4478 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
4479 	changes_data = bpf_helper_changes_pkt_data(fn->func);
4480 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4481 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4482 			func_id_name(func_id), func_id);
4483 		return -EINVAL;
4484 	}
4485 
4486 	memset(&meta, 0, sizeof(meta));
4487 	meta.pkt_access = fn->pkt_access;
4488 
4489 	err = check_func_proto(fn, func_id);
4490 	if (err) {
4491 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
4492 			func_id_name(func_id), func_id);
4493 		return err;
4494 	}
4495 
4496 	meta.func_id = func_id;
4497 	/* check args */
4498 	for (i = 0; i < 5; i++) {
4499 		err = btf_resolve_helper_id(&env->log, fn, i);
4500 		if (err > 0)
4501 			meta.btf_id = err;
4502 		err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta);
4503 		if (err)
4504 			return err;
4505 	}
4506 
4507 	err = record_func_map(env, &meta, func_id, insn_idx);
4508 	if (err)
4509 		return err;
4510 
4511 	err = record_func_key(env, &meta, func_id, insn_idx);
4512 	if (err)
4513 		return err;
4514 
4515 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
4516 	 * is inferred from register state.
4517 	 */
4518 	for (i = 0; i < meta.access_size; i++) {
4519 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4520 				       BPF_WRITE, -1, false);
4521 		if (err)
4522 			return err;
4523 	}
4524 
4525 	if (func_id == BPF_FUNC_tail_call) {
4526 		err = check_reference_leak(env);
4527 		if (err) {
4528 			verbose(env, "tail_call would lead to reference leak\n");
4529 			return err;
4530 		}
4531 	} else if (is_release_function(func_id)) {
4532 		err = release_reference(env, meta.ref_obj_id);
4533 		if (err) {
4534 			verbose(env, "func %s#%d reference has not been acquired before\n",
4535 				func_id_name(func_id), func_id);
4536 			return err;
4537 		}
4538 	}
4539 
4540 	regs = cur_regs(env);
4541 
4542 	/* check that flags argument in get_local_storage(map, flags) is 0,
4543 	 * this is required because get_local_storage() can't return an error.
4544 	 */
4545 	if (func_id == BPF_FUNC_get_local_storage &&
4546 	    !register_is_null(&regs[BPF_REG_2])) {
4547 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4548 		return -EINVAL;
4549 	}
4550 
4551 	/* reset caller saved regs */
4552 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4553 		mark_reg_not_init(env, regs, caller_saved[i]);
4554 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4555 	}
4556 
4557 	/* helper call returns 64-bit value. */
4558 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4559 
4560 	/* update return register (already marked as written above) */
4561 	if (fn->ret_type == RET_INTEGER) {
4562 		/* sets type to SCALAR_VALUE */
4563 		mark_reg_unknown(env, regs, BPF_REG_0);
4564 	} else if (fn->ret_type == RET_VOID) {
4565 		regs[BPF_REG_0].type = NOT_INIT;
4566 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4567 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4568 		/* There is no offset yet applied, variable or fixed */
4569 		mark_reg_known_zero(env, regs, BPF_REG_0);
4570 		/* remember map_ptr, so that check_map_access()
4571 		 * can check 'value_size' boundary of memory access
4572 		 * to map element returned from bpf_map_lookup_elem()
4573 		 */
4574 		if (meta.map_ptr == NULL) {
4575 			verbose(env,
4576 				"kernel subsystem misconfigured verifier\n");
4577 			return -EINVAL;
4578 		}
4579 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
4580 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4581 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4582 			if (map_value_has_spin_lock(meta.map_ptr))
4583 				regs[BPF_REG_0].id = ++env->id_gen;
4584 		} else {
4585 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4586 			regs[BPF_REG_0].id = ++env->id_gen;
4587 		}
4588 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4589 		mark_reg_known_zero(env, regs, BPF_REG_0);
4590 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4591 		regs[BPF_REG_0].id = ++env->id_gen;
4592 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4593 		mark_reg_known_zero(env, regs, BPF_REG_0);
4594 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4595 		regs[BPF_REG_0].id = ++env->id_gen;
4596 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4597 		mark_reg_known_zero(env, regs, BPF_REG_0);
4598 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4599 		regs[BPF_REG_0].id = ++env->id_gen;
4600 	} else {
4601 		verbose(env, "unknown return type %d of func %s#%d\n",
4602 			fn->ret_type, func_id_name(func_id), func_id);
4603 		return -EINVAL;
4604 	}
4605 
4606 	if (is_ptr_cast_function(func_id)) {
4607 		/* For release_reference() */
4608 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4609 	} else if (is_acquire_function(func_id)) {
4610 		int id = acquire_reference_state(env, insn_idx);
4611 
4612 		if (id < 0)
4613 			return id;
4614 		/* For mark_ptr_or_null_reg() */
4615 		regs[BPF_REG_0].id = id;
4616 		/* For release_reference() */
4617 		regs[BPF_REG_0].ref_obj_id = id;
4618 	}
4619 
4620 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4621 
4622 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4623 	if (err)
4624 		return err;
4625 
4626 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4627 		const char *err_str;
4628 
4629 #ifdef CONFIG_PERF_EVENTS
4630 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
4631 		err_str = "cannot get callchain buffer for func %s#%d\n";
4632 #else
4633 		err = -ENOTSUPP;
4634 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4635 #endif
4636 		if (err) {
4637 			verbose(env, err_str, func_id_name(func_id), func_id);
4638 			return err;
4639 		}
4640 
4641 		env->prog->has_callchain_buf = true;
4642 	}
4643 
4644 	if (changes_data)
4645 		clear_all_pkt_pointers(env);
4646 	return 0;
4647 }
4648 
4649 static bool signed_add_overflows(s64 a, s64 b)
4650 {
4651 	/* Do the add in u64, where overflow is well-defined */
4652 	s64 res = (s64)((u64)a + (u64)b);
4653 
4654 	if (b < 0)
4655 		return res > a;
4656 	return res < a;
4657 }
4658 
4659 static bool signed_add32_overflows(s64 a, s64 b)
4660 {
4661 	/* Do the add in u32, where overflow is well-defined */
4662 	s32 res = (s32)((u32)a + (u32)b);
4663 
4664 	if (b < 0)
4665 		return res > a;
4666 	return res < a;
4667 }
4668 
4669 static bool signed_sub_overflows(s32 a, s32 b)
4670 {
4671 	/* Do the sub in u64, where overflow is well-defined */
4672 	s64 res = (s64)((u64)a - (u64)b);
4673 
4674 	if (b < 0)
4675 		return res < a;
4676 	return res > a;
4677 }
4678 
4679 static bool signed_sub32_overflows(s32 a, s32 b)
4680 {
4681 	/* Do the sub in u64, where overflow is well-defined */
4682 	s32 res = (s32)((u32)a - (u32)b);
4683 
4684 	if (b < 0)
4685 		return res < a;
4686 	return res > a;
4687 }
4688 
4689 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4690 				  const struct bpf_reg_state *reg,
4691 				  enum bpf_reg_type type)
4692 {
4693 	bool known = tnum_is_const(reg->var_off);
4694 	s64 val = reg->var_off.value;
4695 	s64 smin = reg->smin_value;
4696 
4697 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4698 		verbose(env, "math between %s pointer and %lld is not allowed\n",
4699 			reg_type_str[type], val);
4700 		return false;
4701 	}
4702 
4703 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4704 		verbose(env, "%s pointer offset %d is not allowed\n",
4705 			reg_type_str[type], reg->off);
4706 		return false;
4707 	}
4708 
4709 	if (smin == S64_MIN) {
4710 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4711 			reg_type_str[type]);
4712 		return false;
4713 	}
4714 
4715 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4716 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
4717 			smin, reg_type_str[type]);
4718 		return false;
4719 	}
4720 
4721 	return true;
4722 }
4723 
4724 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4725 {
4726 	return &env->insn_aux_data[env->insn_idx];
4727 }
4728 
4729 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4730 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
4731 {
4732 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
4733 			    (opcode == BPF_SUB && !off_is_neg);
4734 	u32 off;
4735 
4736 	switch (ptr_reg->type) {
4737 	case PTR_TO_STACK:
4738 		/* Indirect variable offset stack access is prohibited in
4739 		 * unprivileged mode so it's not handled here.
4740 		 */
4741 		off = ptr_reg->off + ptr_reg->var_off.value;
4742 		if (mask_to_left)
4743 			*ptr_limit = MAX_BPF_STACK + off;
4744 		else
4745 			*ptr_limit = -off;
4746 		return 0;
4747 	case PTR_TO_MAP_VALUE:
4748 		if (mask_to_left) {
4749 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4750 		} else {
4751 			off = ptr_reg->smin_value + ptr_reg->off;
4752 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
4753 		}
4754 		return 0;
4755 	default:
4756 		return -EINVAL;
4757 	}
4758 }
4759 
4760 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4761 				    const struct bpf_insn *insn)
4762 {
4763 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4764 }
4765 
4766 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4767 				       u32 alu_state, u32 alu_limit)
4768 {
4769 	/* If we arrived here from different branches with different
4770 	 * state or limits to sanitize, then this won't work.
4771 	 */
4772 	if (aux->alu_state &&
4773 	    (aux->alu_state != alu_state ||
4774 	     aux->alu_limit != alu_limit))
4775 		return -EACCES;
4776 
4777 	/* Corresponding fixup done in fixup_bpf_calls(). */
4778 	aux->alu_state = alu_state;
4779 	aux->alu_limit = alu_limit;
4780 	return 0;
4781 }
4782 
4783 static int sanitize_val_alu(struct bpf_verifier_env *env,
4784 			    struct bpf_insn *insn)
4785 {
4786 	struct bpf_insn_aux_data *aux = cur_aux(env);
4787 
4788 	if (can_skip_alu_sanitation(env, insn))
4789 		return 0;
4790 
4791 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4792 }
4793 
4794 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4795 			    struct bpf_insn *insn,
4796 			    const struct bpf_reg_state *ptr_reg,
4797 			    struct bpf_reg_state *dst_reg,
4798 			    bool off_is_neg)
4799 {
4800 	struct bpf_verifier_state *vstate = env->cur_state;
4801 	struct bpf_insn_aux_data *aux = cur_aux(env);
4802 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
4803 	u8 opcode = BPF_OP(insn->code);
4804 	u32 alu_state, alu_limit;
4805 	struct bpf_reg_state tmp;
4806 	bool ret;
4807 
4808 	if (can_skip_alu_sanitation(env, insn))
4809 		return 0;
4810 
4811 	/* We already marked aux for masking from non-speculative
4812 	 * paths, thus we got here in the first place. We only care
4813 	 * to explore bad access from here.
4814 	 */
4815 	if (vstate->speculative)
4816 		goto do_sim;
4817 
4818 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4819 	alu_state |= ptr_is_dst_reg ?
4820 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4821 
4822 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4823 		return 0;
4824 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
4825 		return -EACCES;
4826 do_sim:
4827 	/* Simulate and find potential out-of-bounds access under
4828 	 * speculative execution from truncation as a result of
4829 	 * masking when off was not within expected range. If off
4830 	 * sits in dst, then we temporarily need to move ptr there
4831 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4832 	 * for cases where we use K-based arithmetic in one direction
4833 	 * and truncated reg-based in the other in order to explore
4834 	 * bad access.
4835 	 */
4836 	if (!ptr_is_dst_reg) {
4837 		tmp = *dst_reg;
4838 		*dst_reg = *ptr_reg;
4839 	}
4840 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
4841 	if (!ptr_is_dst_reg && ret)
4842 		*dst_reg = tmp;
4843 	return !ret ? -EFAULT : 0;
4844 }
4845 
4846 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
4847  * Caller should also handle BPF_MOV case separately.
4848  * If we return -EACCES, caller may want to try again treating pointer as a
4849  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
4850  */
4851 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4852 				   struct bpf_insn *insn,
4853 				   const struct bpf_reg_state *ptr_reg,
4854 				   const struct bpf_reg_state *off_reg)
4855 {
4856 	struct bpf_verifier_state *vstate = env->cur_state;
4857 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4858 	struct bpf_reg_state *regs = state->regs, *dst_reg;
4859 	bool known = tnum_is_const(off_reg->var_off);
4860 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4861 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4862 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4863 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
4864 	u32 dst = insn->dst_reg, src = insn->src_reg;
4865 	u8 opcode = BPF_OP(insn->code);
4866 	int ret;
4867 
4868 	dst_reg = &regs[dst];
4869 
4870 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4871 	    smin_val > smax_val || umin_val > umax_val) {
4872 		/* Taint dst register if offset had invalid bounds derived from
4873 		 * e.g. dead branches.
4874 		 */
4875 		__mark_reg_unknown(env, dst_reg);
4876 		return 0;
4877 	}
4878 
4879 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4880 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
4881 		verbose(env,
4882 			"R%d 32-bit pointer arithmetic prohibited\n",
4883 			dst);
4884 		return -EACCES;
4885 	}
4886 
4887 	switch (ptr_reg->type) {
4888 	case PTR_TO_MAP_VALUE_OR_NULL:
4889 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4890 			dst, reg_type_str[ptr_reg->type]);
4891 		return -EACCES;
4892 	case CONST_PTR_TO_MAP:
4893 	case PTR_TO_PACKET_END:
4894 	case PTR_TO_SOCKET:
4895 	case PTR_TO_SOCKET_OR_NULL:
4896 	case PTR_TO_SOCK_COMMON:
4897 	case PTR_TO_SOCK_COMMON_OR_NULL:
4898 	case PTR_TO_TCP_SOCK:
4899 	case PTR_TO_TCP_SOCK_OR_NULL:
4900 	case PTR_TO_XDP_SOCK:
4901 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4902 			dst, reg_type_str[ptr_reg->type]);
4903 		return -EACCES;
4904 	case PTR_TO_MAP_VALUE:
4905 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4906 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4907 				off_reg == dst_reg ? dst : src);
4908 			return -EACCES;
4909 		}
4910 		/* fall-through */
4911 	default:
4912 		break;
4913 	}
4914 
4915 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4916 	 * The id may be overwritten later if we create a new variable offset.
4917 	 */
4918 	dst_reg->type = ptr_reg->type;
4919 	dst_reg->id = ptr_reg->id;
4920 
4921 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4922 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4923 		return -EINVAL;
4924 
4925 	/* pointer types do not carry 32-bit bounds at the moment. */
4926 	__mark_reg32_unbounded(dst_reg);
4927 
4928 	switch (opcode) {
4929 	case BPF_ADD:
4930 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4931 		if (ret < 0) {
4932 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
4933 			return ret;
4934 		}
4935 		/* We can take a fixed offset as long as it doesn't overflow
4936 		 * the s32 'off' field
4937 		 */
4938 		if (known && (ptr_reg->off + smin_val ==
4939 			      (s64)(s32)(ptr_reg->off + smin_val))) {
4940 			/* pointer += K.  Accumulate it into fixed offset */
4941 			dst_reg->smin_value = smin_ptr;
4942 			dst_reg->smax_value = smax_ptr;
4943 			dst_reg->umin_value = umin_ptr;
4944 			dst_reg->umax_value = umax_ptr;
4945 			dst_reg->var_off = ptr_reg->var_off;
4946 			dst_reg->off = ptr_reg->off + smin_val;
4947 			dst_reg->raw = ptr_reg->raw;
4948 			break;
4949 		}
4950 		/* A new variable offset is created.  Note that off_reg->off
4951 		 * == 0, since it's a scalar.
4952 		 * dst_reg gets the pointer type and since some positive
4953 		 * integer value was added to the pointer, give it a new 'id'
4954 		 * if it's a PTR_TO_PACKET.
4955 		 * this creates a new 'base' pointer, off_reg (variable) gets
4956 		 * added into the variable offset, and we copy the fixed offset
4957 		 * from ptr_reg.
4958 		 */
4959 		if (signed_add_overflows(smin_ptr, smin_val) ||
4960 		    signed_add_overflows(smax_ptr, smax_val)) {
4961 			dst_reg->smin_value = S64_MIN;
4962 			dst_reg->smax_value = S64_MAX;
4963 		} else {
4964 			dst_reg->smin_value = smin_ptr + smin_val;
4965 			dst_reg->smax_value = smax_ptr + smax_val;
4966 		}
4967 		if (umin_ptr + umin_val < umin_ptr ||
4968 		    umax_ptr + umax_val < umax_ptr) {
4969 			dst_reg->umin_value = 0;
4970 			dst_reg->umax_value = U64_MAX;
4971 		} else {
4972 			dst_reg->umin_value = umin_ptr + umin_val;
4973 			dst_reg->umax_value = umax_ptr + umax_val;
4974 		}
4975 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4976 		dst_reg->off = ptr_reg->off;
4977 		dst_reg->raw = ptr_reg->raw;
4978 		if (reg_is_pkt_pointer(ptr_reg)) {
4979 			dst_reg->id = ++env->id_gen;
4980 			/* something was added to pkt_ptr, set range to zero */
4981 			dst_reg->raw = 0;
4982 		}
4983 		break;
4984 	case BPF_SUB:
4985 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4986 		if (ret < 0) {
4987 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4988 			return ret;
4989 		}
4990 		if (dst_reg == off_reg) {
4991 			/* scalar -= pointer.  Creates an unknown scalar */
4992 			verbose(env, "R%d tried to subtract pointer from scalar\n",
4993 				dst);
4994 			return -EACCES;
4995 		}
4996 		/* We don't allow subtraction from FP, because (according to
4997 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
4998 		 * be able to deal with it.
4999 		 */
5000 		if (ptr_reg->type == PTR_TO_STACK) {
5001 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
5002 				dst);
5003 			return -EACCES;
5004 		}
5005 		if (known && (ptr_reg->off - smin_val ==
5006 			      (s64)(s32)(ptr_reg->off - smin_val))) {
5007 			/* pointer -= K.  Subtract it from fixed offset */
5008 			dst_reg->smin_value = smin_ptr;
5009 			dst_reg->smax_value = smax_ptr;
5010 			dst_reg->umin_value = umin_ptr;
5011 			dst_reg->umax_value = umax_ptr;
5012 			dst_reg->var_off = ptr_reg->var_off;
5013 			dst_reg->id = ptr_reg->id;
5014 			dst_reg->off = ptr_reg->off - smin_val;
5015 			dst_reg->raw = ptr_reg->raw;
5016 			break;
5017 		}
5018 		/* A new variable offset is created.  If the subtrahend is known
5019 		 * nonnegative, then any reg->range we had before is still good.
5020 		 */
5021 		if (signed_sub_overflows(smin_ptr, smax_val) ||
5022 		    signed_sub_overflows(smax_ptr, smin_val)) {
5023 			/* Overflow possible, we know nothing */
5024 			dst_reg->smin_value = S64_MIN;
5025 			dst_reg->smax_value = S64_MAX;
5026 		} else {
5027 			dst_reg->smin_value = smin_ptr - smax_val;
5028 			dst_reg->smax_value = smax_ptr - smin_val;
5029 		}
5030 		if (umin_ptr < umax_val) {
5031 			/* Overflow possible, we know nothing */
5032 			dst_reg->umin_value = 0;
5033 			dst_reg->umax_value = U64_MAX;
5034 		} else {
5035 			/* Cannot overflow (as long as bounds are consistent) */
5036 			dst_reg->umin_value = umin_ptr - umax_val;
5037 			dst_reg->umax_value = umax_ptr - umin_val;
5038 		}
5039 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5040 		dst_reg->off = ptr_reg->off;
5041 		dst_reg->raw = ptr_reg->raw;
5042 		if (reg_is_pkt_pointer(ptr_reg)) {
5043 			dst_reg->id = ++env->id_gen;
5044 			/* something was added to pkt_ptr, set range to zero */
5045 			if (smin_val < 0)
5046 				dst_reg->raw = 0;
5047 		}
5048 		break;
5049 	case BPF_AND:
5050 	case BPF_OR:
5051 	case BPF_XOR:
5052 		/* bitwise ops on pointers are troublesome, prohibit. */
5053 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5054 			dst, bpf_alu_string[opcode >> 4]);
5055 		return -EACCES;
5056 	default:
5057 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
5058 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5059 			dst, bpf_alu_string[opcode >> 4]);
5060 		return -EACCES;
5061 	}
5062 
5063 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5064 		return -EINVAL;
5065 
5066 	__update_reg_bounds(dst_reg);
5067 	__reg_deduce_bounds(dst_reg);
5068 	__reg_bound_offset(dst_reg);
5069 
5070 	/* For unprivileged we require that resulting offset must be in bounds
5071 	 * in order to be able to sanitize access later on.
5072 	 */
5073 	if (!env->allow_ptr_leaks) {
5074 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
5075 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
5076 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5077 				"prohibited for !root\n", dst);
5078 			return -EACCES;
5079 		} else if (dst_reg->type == PTR_TO_STACK &&
5080 			   check_stack_access(env, dst_reg, dst_reg->off +
5081 					      dst_reg->var_off.value, 1)) {
5082 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
5083 				"prohibited for !root\n", dst);
5084 			return -EACCES;
5085 		}
5086 	}
5087 
5088 	return 0;
5089 }
5090 
5091 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5092 				 struct bpf_reg_state *src_reg)
5093 {
5094 	s32 smin_val = src_reg->s32_min_value;
5095 	s32 smax_val = src_reg->s32_max_value;
5096 	u32 umin_val = src_reg->u32_min_value;
5097 	u32 umax_val = src_reg->u32_max_value;
5098 
5099 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5100 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5101 		dst_reg->s32_min_value = S32_MIN;
5102 		dst_reg->s32_max_value = S32_MAX;
5103 	} else {
5104 		dst_reg->s32_min_value += smin_val;
5105 		dst_reg->s32_max_value += smax_val;
5106 	}
5107 	if (dst_reg->u32_min_value + umin_val < umin_val ||
5108 	    dst_reg->u32_max_value + umax_val < umax_val) {
5109 		dst_reg->u32_min_value = 0;
5110 		dst_reg->u32_max_value = U32_MAX;
5111 	} else {
5112 		dst_reg->u32_min_value += umin_val;
5113 		dst_reg->u32_max_value += umax_val;
5114 	}
5115 }
5116 
5117 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5118 			       struct bpf_reg_state *src_reg)
5119 {
5120 	s64 smin_val = src_reg->smin_value;
5121 	s64 smax_val = src_reg->smax_value;
5122 	u64 umin_val = src_reg->umin_value;
5123 	u64 umax_val = src_reg->umax_value;
5124 
5125 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5126 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
5127 		dst_reg->smin_value = S64_MIN;
5128 		dst_reg->smax_value = S64_MAX;
5129 	} else {
5130 		dst_reg->smin_value += smin_val;
5131 		dst_reg->smax_value += smax_val;
5132 	}
5133 	if (dst_reg->umin_value + umin_val < umin_val ||
5134 	    dst_reg->umax_value + umax_val < umax_val) {
5135 		dst_reg->umin_value = 0;
5136 		dst_reg->umax_value = U64_MAX;
5137 	} else {
5138 		dst_reg->umin_value += umin_val;
5139 		dst_reg->umax_value += umax_val;
5140 	}
5141 }
5142 
5143 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5144 				 struct bpf_reg_state *src_reg)
5145 {
5146 	s32 smin_val = src_reg->s32_min_value;
5147 	s32 smax_val = src_reg->s32_max_value;
5148 	u32 umin_val = src_reg->u32_min_value;
5149 	u32 umax_val = src_reg->u32_max_value;
5150 
5151 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5152 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5153 		/* Overflow possible, we know nothing */
5154 		dst_reg->s32_min_value = S32_MIN;
5155 		dst_reg->s32_max_value = S32_MAX;
5156 	} else {
5157 		dst_reg->s32_min_value -= smax_val;
5158 		dst_reg->s32_max_value -= smin_val;
5159 	}
5160 	if (dst_reg->u32_min_value < umax_val) {
5161 		/* Overflow possible, we know nothing */
5162 		dst_reg->u32_min_value = 0;
5163 		dst_reg->u32_max_value = U32_MAX;
5164 	} else {
5165 		/* Cannot overflow (as long as bounds are consistent) */
5166 		dst_reg->u32_min_value -= umax_val;
5167 		dst_reg->u32_max_value -= umin_val;
5168 	}
5169 }
5170 
5171 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5172 			       struct bpf_reg_state *src_reg)
5173 {
5174 	s64 smin_val = src_reg->smin_value;
5175 	s64 smax_val = src_reg->smax_value;
5176 	u64 umin_val = src_reg->umin_value;
5177 	u64 umax_val = src_reg->umax_value;
5178 
5179 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5180 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5181 		/* Overflow possible, we know nothing */
5182 		dst_reg->smin_value = S64_MIN;
5183 		dst_reg->smax_value = S64_MAX;
5184 	} else {
5185 		dst_reg->smin_value -= smax_val;
5186 		dst_reg->smax_value -= smin_val;
5187 	}
5188 	if (dst_reg->umin_value < umax_val) {
5189 		/* Overflow possible, we know nothing */
5190 		dst_reg->umin_value = 0;
5191 		dst_reg->umax_value = U64_MAX;
5192 	} else {
5193 		/* Cannot overflow (as long as bounds are consistent) */
5194 		dst_reg->umin_value -= umax_val;
5195 		dst_reg->umax_value -= umin_val;
5196 	}
5197 }
5198 
5199 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5200 				 struct bpf_reg_state *src_reg)
5201 {
5202 	s32 smin_val = src_reg->s32_min_value;
5203 	u32 umin_val = src_reg->u32_min_value;
5204 	u32 umax_val = src_reg->u32_max_value;
5205 
5206 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5207 		/* Ain't nobody got time to multiply that sign */
5208 		__mark_reg32_unbounded(dst_reg);
5209 		return;
5210 	}
5211 	/* Both values are positive, so we can work with unsigned and
5212 	 * copy the result to signed (unless it exceeds S32_MAX).
5213 	 */
5214 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5215 		/* Potential overflow, we know nothing */
5216 		__mark_reg32_unbounded(dst_reg);
5217 		return;
5218 	}
5219 	dst_reg->u32_min_value *= umin_val;
5220 	dst_reg->u32_max_value *= umax_val;
5221 	if (dst_reg->u32_max_value > S32_MAX) {
5222 		/* Overflow possible, we know nothing */
5223 		dst_reg->s32_min_value = S32_MIN;
5224 		dst_reg->s32_max_value = S32_MAX;
5225 	} else {
5226 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5227 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5228 	}
5229 }
5230 
5231 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5232 			       struct bpf_reg_state *src_reg)
5233 {
5234 	s64 smin_val = src_reg->smin_value;
5235 	u64 umin_val = src_reg->umin_value;
5236 	u64 umax_val = src_reg->umax_value;
5237 
5238 	if (smin_val < 0 || dst_reg->smin_value < 0) {
5239 		/* Ain't nobody got time to multiply that sign */
5240 		__mark_reg64_unbounded(dst_reg);
5241 		return;
5242 	}
5243 	/* Both values are positive, so we can work with unsigned and
5244 	 * copy the result to signed (unless it exceeds S64_MAX).
5245 	 */
5246 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5247 		/* Potential overflow, we know nothing */
5248 		__mark_reg64_unbounded(dst_reg);
5249 		return;
5250 	}
5251 	dst_reg->umin_value *= umin_val;
5252 	dst_reg->umax_value *= umax_val;
5253 	if (dst_reg->umax_value > S64_MAX) {
5254 		/* Overflow possible, we know nothing */
5255 		dst_reg->smin_value = S64_MIN;
5256 		dst_reg->smax_value = S64_MAX;
5257 	} else {
5258 		dst_reg->smin_value = dst_reg->umin_value;
5259 		dst_reg->smax_value = dst_reg->umax_value;
5260 	}
5261 }
5262 
5263 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5264 				 struct bpf_reg_state *src_reg)
5265 {
5266 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5267 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5268 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5269 	s32 smin_val = src_reg->s32_min_value;
5270 	u32 umax_val = src_reg->u32_max_value;
5271 
5272 	/* Assuming scalar64_min_max_and will be called so its safe
5273 	 * to skip updating register for known 32-bit case.
5274 	 */
5275 	if (src_known && dst_known)
5276 		return;
5277 
5278 	/* We get our minimum from the var_off, since that's inherently
5279 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5280 	 */
5281 	dst_reg->u32_min_value = var32_off.value;
5282 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5283 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5284 		/* Lose signed bounds when ANDing negative numbers,
5285 		 * ain't nobody got time for that.
5286 		 */
5287 		dst_reg->s32_min_value = S32_MIN;
5288 		dst_reg->s32_max_value = S32_MAX;
5289 	} else {
5290 		/* ANDing two positives gives a positive, so safe to
5291 		 * cast result into s64.
5292 		 */
5293 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5294 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5295 	}
5296 
5297 }
5298 
5299 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5300 			       struct bpf_reg_state *src_reg)
5301 {
5302 	bool src_known = tnum_is_const(src_reg->var_off);
5303 	bool dst_known = tnum_is_const(dst_reg->var_off);
5304 	s64 smin_val = src_reg->smin_value;
5305 	u64 umax_val = src_reg->umax_value;
5306 
5307 	if (src_known && dst_known) {
5308 		__mark_reg_known(dst_reg, dst_reg->var_off.value &
5309 					  src_reg->var_off.value);
5310 		return;
5311 	}
5312 
5313 	/* We get our minimum from the var_off, since that's inherently
5314 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5315 	 */
5316 	dst_reg->umin_value = dst_reg->var_off.value;
5317 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5318 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5319 		/* Lose signed bounds when ANDing negative numbers,
5320 		 * ain't nobody got time for that.
5321 		 */
5322 		dst_reg->smin_value = S64_MIN;
5323 		dst_reg->smax_value = S64_MAX;
5324 	} else {
5325 		/* ANDing two positives gives a positive, so safe to
5326 		 * cast result into s64.
5327 		 */
5328 		dst_reg->smin_value = dst_reg->umin_value;
5329 		dst_reg->smax_value = dst_reg->umax_value;
5330 	}
5331 	/* We may learn something more from the var_off */
5332 	__update_reg_bounds(dst_reg);
5333 }
5334 
5335 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5336 				struct bpf_reg_state *src_reg)
5337 {
5338 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5339 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5340 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5341 	s32 smin_val = src_reg->smin_value;
5342 	u32 umin_val = src_reg->umin_value;
5343 
5344 	/* Assuming scalar64_min_max_or will be called so it is safe
5345 	 * to skip updating register for known case.
5346 	 */
5347 	if (src_known && dst_known)
5348 		return;
5349 
5350 	/* We get our maximum from the var_off, and our minimum is the
5351 	 * maximum of the operands' minima
5352 	 */
5353 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5354 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5355 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5356 		/* Lose signed bounds when ORing negative numbers,
5357 		 * ain't nobody got time for that.
5358 		 */
5359 		dst_reg->s32_min_value = S32_MIN;
5360 		dst_reg->s32_max_value = S32_MAX;
5361 	} else {
5362 		/* ORing two positives gives a positive, so safe to
5363 		 * cast result into s64.
5364 		 */
5365 		dst_reg->s32_min_value = dst_reg->umin_value;
5366 		dst_reg->s32_max_value = dst_reg->umax_value;
5367 	}
5368 }
5369 
5370 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5371 			      struct bpf_reg_state *src_reg)
5372 {
5373 	bool src_known = tnum_is_const(src_reg->var_off);
5374 	bool dst_known = tnum_is_const(dst_reg->var_off);
5375 	s64 smin_val = src_reg->smin_value;
5376 	u64 umin_val = src_reg->umin_value;
5377 
5378 	if (src_known && dst_known) {
5379 		__mark_reg_known(dst_reg, dst_reg->var_off.value |
5380 					  src_reg->var_off.value);
5381 		return;
5382 	}
5383 
5384 	/* We get our maximum from the var_off, and our minimum is the
5385 	 * maximum of the operands' minima
5386 	 */
5387 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5388 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5389 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5390 		/* Lose signed bounds when ORing negative numbers,
5391 		 * ain't nobody got time for that.
5392 		 */
5393 		dst_reg->smin_value = S64_MIN;
5394 		dst_reg->smax_value = S64_MAX;
5395 	} else {
5396 		/* ORing two positives gives a positive, so safe to
5397 		 * cast result into s64.
5398 		 */
5399 		dst_reg->smin_value = dst_reg->umin_value;
5400 		dst_reg->smax_value = dst_reg->umax_value;
5401 	}
5402 	/* We may learn something more from the var_off */
5403 	__update_reg_bounds(dst_reg);
5404 }
5405 
5406 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5407 				   u64 umin_val, u64 umax_val)
5408 {
5409 	/* We lose all sign bit information (except what we can pick
5410 	 * up from var_off)
5411 	 */
5412 	dst_reg->s32_min_value = S32_MIN;
5413 	dst_reg->s32_max_value = S32_MAX;
5414 	/* If we might shift our top bit out, then we know nothing */
5415 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
5416 		dst_reg->u32_min_value = 0;
5417 		dst_reg->u32_max_value = U32_MAX;
5418 	} else {
5419 		dst_reg->u32_min_value <<= umin_val;
5420 		dst_reg->u32_max_value <<= umax_val;
5421 	}
5422 }
5423 
5424 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5425 				 struct bpf_reg_state *src_reg)
5426 {
5427 	u32 umax_val = src_reg->u32_max_value;
5428 	u32 umin_val = src_reg->u32_min_value;
5429 	/* u32 alu operation will zext upper bits */
5430 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
5431 
5432 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5433 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
5434 	/* Not required but being careful mark reg64 bounds as unknown so
5435 	 * that we are forced to pick them up from tnum and zext later and
5436 	 * if some path skips this step we are still safe.
5437 	 */
5438 	__mark_reg64_unbounded(dst_reg);
5439 	__update_reg32_bounds(dst_reg);
5440 }
5441 
5442 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
5443 				   u64 umin_val, u64 umax_val)
5444 {
5445 	/* Special case <<32 because it is a common compiler pattern to sign
5446 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
5447 	 * positive we know this shift will also be positive so we can track
5448 	 * bounds correctly. Otherwise we lose all sign bit information except
5449 	 * what we can pick up from var_off. Perhaps we can generalize this
5450 	 * later to shifts of any length.
5451 	 */
5452 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
5453 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
5454 	else
5455 		dst_reg->smax_value = S64_MAX;
5456 
5457 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
5458 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
5459 	else
5460 		dst_reg->smin_value = S64_MIN;
5461 
5462 	/* If we might shift our top bit out, then we know nothing */
5463 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5464 		dst_reg->umin_value = 0;
5465 		dst_reg->umax_value = U64_MAX;
5466 	} else {
5467 		dst_reg->umin_value <<= umin_val;
5468 		dst_reg->umax_value <<= umax_val;
5469 	}
5470 }
5471 
5472 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
5473 			       struct bpf_reg_state *src_reg)
5474 {
5475 	u64 umax_val = src_reg->umax_value;
5476 	u64 umin_val = src_reg->umin_value;
5477 
5478 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
5479 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
5480 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5481 
5482 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
5483 	/* We may learn something more from the var_off */
5484 	__update_reg_bounds(dst_reg);
5485 }
5486 
5487 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
5488 				 struct bpf_reg_state *src_reg)
5489 {
5490 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
5491 	u32 umax_val = src_reg->u32_max_value;
5492 	u32 umin_val = src_reg->u32_min_value;
5493 
5494 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5495 	 * be negative, then either:
5496 	 * 1) src_reg might be zero, so the sign bit of the result is
5497 	 *    unknown, so we lose our signed bounds
5498 	 * 2) it's known negative, thus the unsigned bounds capture the
5499 	 *    signed bounds
5500 	 * 3) the signed bounds cross zero, so they tell us nothing
5501 	 *    about the result
5502 	 * If the value in dst_reg is known nonnegative, then again the
5503 	 * unsigned bounts capture the signed bounds.
5504 	 * Thus, in all cases it suffices to blow away our signed bounds
5505 	 * and rely on inferring new ones from the unsigned bounds and
5506 	 * var_off of the result.
5507 	 */
5508 	dst_reg->s32_min_value = S32_MIN;
5509 	dst_reg->s32_max_value = S32_MAX;
5510 
5511 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
5512 	dst_reg->u32_min_value >>= umax_val;
5513 	dst_reg->u32_max_value >>= umin_val;
5514 
5515 	__mark_reg64_unbounded(dst_reg);
5516 	__update_reg32_bounds(dst_reg);
5517 }
5518 
5519 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
5520 			       struct bpf_reg_state *src_reg)
5521 {
5522 	u64 umax_val = src_reg->umax_value;
5523 	u64 umin_val = src_reg->umin_value;
5524 
5525 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5526 	 * be negative, then either:
5527 	 * 1) src_reg might be zero, so the sign bit of the result is
5528 	 *    unknown, so we lose our signed bounds
5529 	 * 2) it's known negative, thus the unsigned bounds capture the
5530 	 *    signed bounds
5531 	 * 3) the signed bounds cross zero, so they tell us nothing
5532 	 *    about the result
5533 	 * If the value in dst_reg is known nonnegative, then again the
5534 	 * unsigned bounts capture the signed bounds.
5535 	 * Thus, in all cases it suffices to blow away our signed bounds
5536 	 * and rely on inferring new ones from the unsigned bounds and
5537 	 * var_off of the result.
5538 	 */
5539 	dst_reg->smin_value = S64_MIN;
5540 	dst_reg->smax_value = S64_MAX;
5541 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
5542 	dst_reg->umin_value >>= umax_val;
5543 	dst_reg->umax_value >>= umin_val;
5544 
5545 	/* Its not easy to operate on alu32 bounds here because it depends
5546 	 * on bits being shifted in. Take easy way out and mark unbounded
5547 	 * so we can recalculate later from tnum.
5548 	 */
5549 	__mark_reg32_unbounded(dst_reg);
5550 	__update_reg_bounds(dst_reg);
5551 }
5552 
5553 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
5554 				  struct bpf_reg_state *src_reg)
5555 {
5556 	u64 umin_val = src_reg->u32_min_value;
5557 
5558 	/* Upon reaching here, src_known is true and
5559 	 * umax_val is equal to umin_val.
5560 	 */
5561 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
5562 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
5563 
5564 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
5565 
5566 	/* blow away the dst_reg umin_value/umax_value and rely on
5567 	 * dst_reg var_off to refine the result.
5568 	 */
5569 	dst_reg->u32_min_value = 0;
5570 	dst_reg->u32_max_value = U32_MAX;
5571 
5572 	__mark_reg64_unbounded(dst_reg);
5573 	__update_reg32_bounds(dst_reg);
5574 }
5575 
5576 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
5577 				struct bpf_reg_state *src_reg)
5578 {
5579 	u64 umin_val = src_reg->umin_value;
5580 
5581 	/* Upon reaching here, src_known is true and umax_val is equal
5582 	 * to umin_val.
5583 	 */
5584 	dst_reg->smin_value >>= umin_val;
5585 	dst_reg->smax_value >>= umin_val;
5586 
5587 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
5588 
5589 	/* blow away the dst_reg umin_value/umax_value and rely on
5590 	 * dst_reg var_off to refine the result.
5591 	 */
5592 	dst_reg->umin_value = 0;
5593 	dst_reg->umax_value = U64_MAX;
5594 
5595 	/* Its not easy to operate on alu32 bounds here because it depends
5596 	 * on bits being shifted in from upper 32-bits. Take easy way out
5597 	 * and mark unbounded so we can recalculate later from tnum.
5598 	 */
5599 	__mark_reg32_unbounded(dst_reg);
5600 	__update_reg_bounds(dst_reg);
5601 }
5602 
5603 /* WARNING: This function does calculations on 64-bit values, but the actual
5604  * execution may occur on 32-bit values. Therefore, things like bitshifts
5605  * need extra checks in the 32-bit case.
5606  */
5607 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
5608 				      struct bpf_insn *insn,
5609 				      struct bpf_reg_state *dst_reg,
5610 				      struct bpf_reg_state src_reg)
5611 {
5612 	struct bpf_reg_state *regs = cur_regs(env);
5613 	u8 opcode = BPF_OP(insn->code);
5614 	bool src_known, dst_known;
5615 	s64 smin_val, smax_val;
5616 	u64 umin_val, umax_val;
5617 	s32 s32_min_val, s32_max_val;
5618 	u32 u32_min_val, u32_max_val;
5619 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
5620 	u32 dst = insn->dst_reg;
5621 	int ret;
5622 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
5623 
5624 	smin_val = src_reg.smin_value;
5625 	smax_val = src_reg.smax_value;
5626 	umin_val = src_reg.umin_value;
5627 	umax_val = src_reg.umax_value;
5628 
5629 	s32_min_val = src_reg.s32_min_value;
5630 	s32_max_val = src_reg.s32_max_value;
5631 	u32_min_val = src_reg.u32_min_value;
5632 	u32_max_val = src_reg.u32_max_value;
5633 
5634 	if (alu32) {
5635 		src_known = tnum_subreg_is_const(src_reg.var_off);
5636 		dst_known = tnum_subreg_is_const(dst_reg->var_off);
5637 		if ((src_known &&
5638 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
5639 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
5640 			/* Taint dst register if offset had invalid bounds
5641 			 * derived from e.g. dead branches.
5642 			 */
5643 			__mark_reg_unknown(env, dst_reg);
5644 			return 0;
5645 		}
5646 	} else {
5647 		src_known = tnum_is_const(src_reg.var_off);
5648 		dst_known = tnum_is_const(dst_reg->var_off);
5649 		if ((src_known &&
5650 		     (smin_val != smax_val || umin_val != umax_val)) ||
5651 		    smin_val > smax_val || umin_val > umax_val) {
5652 			/* Taint dst register if offset had invalid bounds
5653 			 * derived from e.g. dead branches.
5654 			 */
5655 			__mark_reg_unknown(env, dst_reg);
5656 			return 0;
5657 		}
5658 	}
5659 
5660 	if (!src_known &&
5661 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
5662 		__mark_reg_unknown(env, dst_reg);
5663 		return 0;
5664 	}
5665 
5666 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
5667 	 * There are two classes of instructions: The first class we track both
5668 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
5669 	 * greatest amount of precision when alu operations are mixed with jmp32
5670 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
5671 	 * and BPF_OR. This is possible because these ops have fairly easy to
5672 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
5673 	 * See alu32 verifier tests for examples. The second class of
5674 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
5675 	 * with regards to tracking sign/unsigned bounds because the bits may
5676 	 * cross subreg boundaries in the alu64 case. When this happens we mark
5677 	 * the reg unbounded in the subreg bound space and use the resulting
5678 	 * tnum to calculate an approximation of the sign/unsigned bounds.
5679 	 */
5680 	switch (opcode) {
5681 	case BPF_ADD:
5682 		ret = sanitize_val_alu(env, insn);
5683 		if (ret < 0) {
5684 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
5685 			return ret;
5686 		}
5687 		scalar32_min_max_add(dst_reg, &src_reg);
5688 		scalar_min_max_add(dst_reg, &src_reg);
5689 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
5690 		break;
5691 	case BPF_SUB:
5692 		ret = sanitize_val_alu(env, insn);
5693 		if (ret < 0) {
5694 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
5695 			return ret;
5696 		}
5697 		scalar32_min_max_sub(dst_reg, &src_reg);
5698 		scalar_min_max_sub(dst_reg, &src_reg);
5699 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
5700 		break;
5701 	case BPF_MUL:
5702 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
5703 		scalar32_min_max_mul(dst_reg, &src_reg);
5704 		scalar_min_max_mul(dst_reg, &src_reg);
5705 		break;
5706 	case BPF_AND:
5707 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
5708 		scalar32_min_max_and(dst_reg, &src_reg);
5709 		scalar_min_max_and(dst_reg, &src_reg);
5710 		break;
5711 	case BPF_OR:
5712 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
5713 		scalar32_min_max_or(dst_reg, &src_reg);
5714 		scalar_min_max_or(dst_reg, &src_reg);
5715 		break;
5716 	case BPF_LSH:
5717 		if (umax_val >= insn_bitness) {
5718 			/* Shifts greater than 31 or 63 are undefined.
5719 			 * This includes shifts by a negative number.
5720 			 */
5721 			mark_reg_unknown(env, regs, insn->dst_reg);
5722 			break;
5723 		}
5724 		if (alu32)
5725 			scalar32_min_max_lsh(dst_reg, &src_reg);
5726 		else
5727 			scalar_min_max_lsh(dst_reg, &src_reg);
5728 		break;
5729 	case BPF_RSH:
5730 		if (umax_val >= insn_bitness) {
5731 			/* Shifts greater than 31 or 63 are undefined.
5732 			 * This includes shifts by a negative number.
5733 			 */
5734 			mark_reg_unknown(env, regs, insn->dst_reg);
5735 			break;
5736 		}
5737 		if (alu32)
5738 			scalar32_min_max_rsh(dst_reg, &src_reg);
5739 		else
5740 			scalar_min_max_rsh(dst_reg, &src_reg);
5741 		break;
5742 	case BPF_ARSH:
5743 		if (umax_val >= insn_bitness) {
5744 			/* Shifts greater than 31 or 63 are undefined.
5745 			 * This includes shifts by a negative number.
5746 			 */
5747 			mark_reg_unknown(env, regs, insn->dst_reg);
5748 			break;
5749 		}
5750 		if (alu32)
5751 			scalar32_min_max_arsh(dst_reg, &src_reg);
5752 		else
5753 			scalar_min_max_arsh(dst_reg, &src_reg);
5754 		break;
5755 	default:
5756 		mark_reg_unknown(env, regs, insn->dst_reg);
5757 		break;
5758 	}
5759 
5760 	/* ALU32 ops are zero extended into 64bit register */
5761 	if (alu32)
5762 		zext_32_to_64(dst_reg);
5763 
5764 	__update_reg_bounds(dst_reg);
5765 	__reg_deduce_bounds(dst_reg);
5766 	__reg_bound_offset(dst_reg);
5767 	return 0;
5768 }
5769 
5770 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
5771  * and var_off.
5772  */
5773 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
5774 				   struct bpf_insn *insn)
5775 {
5776 	struct bpf_verifier_state *vstate = env->cur_state;
5777 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5778 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
5779 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
5780 	u8 opcode = BPF_OP(insn->code);
5781 	int err;
5782 
5783 	dst_reg = &regs[insn->dst_reg];
5784 	src_reg = NULL;
5785 	if (dst_reg->type != SCALAR_VALUE)
5786 		ptr_reg = dst_reg;
5787 	if (BPF_SRC(insn->code) == BPF_X) {
5788 		src_reg = &regs[insn->src_reg];
5789 		if (src_reg->type != SCALAR_VALUE) {
5790 			if (dst_reg->type != SCALAR_VALUE) {
5791 				/* Combining two pointers by any ALU op yields
5792 				 * an arbitrary scalar. Disallow all math except
5793 				 * pointer subtraction
5794 				 */
5795 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5796 					mark_reg_unknown(env, regs, insn->dst_reg);
5797 					return 0;
5798 				}
5799 				verbose(env, "R%d pointer %s pointer prohibited\n",
5800 					insn->dst_reg,
5801 					bpf_alu_string[opcode >> 4]);
5802 				return -EACCES;
5803 			} else {
5804 				/* scalar += pointer
5805 				 * This is legal, but we have to reverse our
5806 				 * src/dest handling in computing the range
5807 				 */
5808 				err = mark_chain_precision(env, insn->dst_reg);
5809 				if (err)
5810 					return err;
5811 				return adjust_ptr_min_max_vals(env, insn,
5812 							       src_reg, dst_reg);
5813 			}
5814 		} else if (ptr_reg) {
5815 			/* pointer += scalar */
5816 			err = mark_chain_precision(env, insn->src_reg);
5817 			if (err)
5818 				return err;
5819 			return adjust_ptr_min_max_vals(env, insn,
5820 						       dst_reg, src_reg);
5821 		}
5822 	} else {
5823 		/* Pretend the src is a reg with a known value, since we only
5824 		 * need to be able to read from this state.
5825 		 */
5826 		off_reg.type = SCALAR_VALUE;
5827 		__mark_reg_known(&off_reg, insn->imm);
5828 		src_reg = &off_reg;
5829 		if (ptr_reg) /* pointer += K */
5830 			return adjust_ptr_min_max_vals(env, insn,
5831 						       ptr_reg, src_reg);
5832 	}
5833 
5834 	/* Got here implies adding two SCALAR_VALUEs */
5835 	if (WARN_ON_ONCE(ptr_reg)) {
5836 		print_verifier_state(env, state);
5837 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
5838 		return -EINVAL;
5839 	}
5840 	if (WARN_ON(!src_reg)) {
5841 		print_verifier_state(env, state);
5842 		verbose(env, "verifier internal error: no src_reg\n");
5843 		return -EINVAL;
5844 	}
5845 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
5846 }
5847 
5848 /* check validity of 32-bit and 64-bit arithmetic operations */
5849 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
5850 {
5851 	struct bpf_reg_state *regs = cur_regs(env);
5852 	u8 opcode = BPF_OP(insn->code);
5853 	int err;
5854 
5855 	if (opcode == BPF_END || opcode == BPF_NEG) {
5856 		if (opcode == BPF_NEG) {
5857 			if (BPF_SRC(insn->code) != 0 ||
5858 			    insn->src_reg != BPF_REG_0 ||
5859 			    insn->off != 0 || insn->imm != 0) {
5860 				verbose(env, "BPF_NEG uses reserved fields\n");
5861 				return -EINVAL;
5862 			}
5863 		} else {
5864 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
5865 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
5866 			    BPF_CLASS(insn->code) == BPF_ALU64) {
5867 				verbose(env, "BPF_END uses reserved fields\n");
5868 				return -EINVAL;
5869 			}
5870 		}
5871 
5872 		/* check src operand */
5873 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5874 		if (err)
5875 			return err;
5876 
5877 		if (is_pointer_value(env, insn->dst_reg)) {
5878 			verbose(env, "R%d pointer arithmetic prohibited\n",
5879 				insn->dst_reg);
5880 			return -EACCES;
5881 		}
5882 
5883 		/* check dest operand */
5884 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
5885 		if (err)
5886 			return err;
5887 
5888 	} else if (opcode == BPF_MOV) {
5889 
5890 		if (BPF_SRC(insn->code) == BPF_X) {
5891 			if (insn->imm != 0 || insn->off != 0) {
5892 				verbose(env, "BPF_MOV uses reserved fields\n");
5893 				return -EINVAL;
5894 			}
5895 
5896 			/* check src operand */
5897 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5898 			if (err)
5899 				return err;
5900 		} else {
5901 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5902 				verbose(env, "BPF_MOV uses reserved fields\n");
5903 				return -EINVAL;
5904 			}
5905 		}
5906 
5907 		/* check dest operand, mark as required later */
5908 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5909 		if (err)
5910 			return err;
5911 
5912 		if (BPF_SRC(insn->code) == BPF_X) {
5913 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
5914 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
5915 
5916 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5917 				/* case: R1 = R2
5918 				 * copy register state to dest reg
5919 				 */
5920 				*dst_reg = *src_reg;
5921 				dst_reg->live |= REG_LIVE_WRITTEN;
5922 				dst_reg->subreg_def = DEF_NOT_SUBREG;
5923 			} else {
5924 				/* R1 = (u32) R2 */
5925 				if (is_pointer_value(env, insn->src_reg)) {
5926 					verbose(env,
5927 						"R%d partial copy of pointer\n",
5928 						insn->src_reg);
5929 					return -EACCES;
5930 				} else if (src_reg->type == SCALAR_VALUE) {
5931 					*dst_reg = *src_reg;
5932 					dst_reg->live |= REG_LIVE_WRITTEN;
5933 					dst_reg->subreg_def = env->insn_idx + 1;
5934 				} else {
5935 					mark_reg_unknown(env, regs,
5936 							 insn->dst_reg);
5937 				}
5938 				zext_32_to_64(dst_reg);
5939 			}
5940 		} else {
5941 			/* case: R = imm
5942 			 * remember the value we stored into this reg
5943 			 */
5944 			/* clear any state __mark_reg_known doesn't set */
5945 			mark_reg_unknown(env, regs, insn->dst_reg);
5946 			regs[insn->dst_reg].type = SCALAR_VALUE;
5947 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5948 				__mark_reg_known(regs + insn->dst_reg,
5949 						 insn->imm);
5950 			} else {
5951 				__mark_reg_known(regs + insn->dst_reg,
5952 						 (u32)insn->imm);
5953 			}
5954 		}
5955 
5956 	} else if (opcode > BPF_END) {
5957 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
5958 		return -EINVAL;
5959 
5960 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
5961 
5962 		if (BPF_SRC(insn->code) == BPF_X) {
5963 			if (insn->imm != 0 || insn->off != 0) {
5964 				verbose(env, "BPF_ALU uses reserved fields\n");
5965 				return -EINVAL;
5966 			}
5967 			/* check src1 operand */
5968 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5969 			if (err)
5970 				return err;
5971 		} else {
5972 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5973 				verbose(env, "BPF_ALU uses reserved fields\n");
5974 				return -EINVAL;
5975 			}
5976 		}
5977 
5978 		/* check src2 operand */
5979 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5980 		if (err)
5981 			return err;
5982 
5983 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5984 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
5985 			verbose(env, "div by zero\n");
5986 			return -EINVAL;
5987 		}
5988 
5989 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5990 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5991 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5992 
5993 			if (insn->imm < 0 || insn->imm >= size) {
5994 				verbose(env, "invalid shift %d\n", insn->imm);
5995 				return -EINVAL;
5996 			}
5997 		}
5998 
5999 		/* check dest operand */
6000 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6001 		if (err)
6002 			return err;
6003 
6004 		return adjust_reg_min_max_vals(env, insn);
6005 	}
6006 
6007 	return 0;
6008 }
6009 
6010 static void __find_good_pkt_pointers(struct bpf_func_state *state,
6011 				     struct bpf_reg_state *dst_reg,
6012 				     enum bpf_reg_type type, u16 new_range)
6013 {
6014 	struct bpf_reg_state *reg;
6015 	int i;
6016 
6017 	for (i = 0; i < MAX_BPF_REG; i++) {
6018 		reg = &state->regs[i];
6019 		if (reg->type == type && reg->id == dst_reg->id)
6020 			/* keep the maximum range already checked */
6021 			reg->range = max(reg->range, new_range);
6022 	}
6023 
6024 	bpf_for_each_spilled_reg(i, state, reg) {
6025 		if (!reg)
6026 			continue;
6027 		if (reg->type == type && reg->id == dst_reg->id)
6028 			reg->range = max(reg->range, new_range);
6029 	}
6030 }
6031 
6032 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
6033 				   struct bpf_reg_state *dst_reg,
6034 				   enum bpf_reg_type type,
6035 				   bool range_right_open)
6036 {
6037 	u16 new_range;
6038 	int i;
6039 
6040 	if (dst_reg->off < 0 ||
6041 	    (dst_reg->off == 0 && range_right_open))
6042 		/* This doesn't give us any range */
6043 		return;
6044 
6045 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
6046 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
6047 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
6048 		 * than pkt_end, but that's because it's also less than pkt.
6049 		 */
6050 		return;
6051 
6052 	new_range = dst_reg->off;
6053 	if (range_right_open)
6054 		new_range--;
6055 
6056 	/* Examples for register markings:
6057 	 *
6058 	 * pkt_data in dst register:
6059 	 *
6060 	 *   r2 = r3;
6061 	 *   r2 += 8;
6062 	 *   if (r2 > pkt_end) goto <handle exception>
6063 	 *   <access okay>
6064 	 *
6065 	 *   r2 = r3;
6066 	 *   r2 += 8;
6067 	 *   if (r2 < pkt_end) goto <access okay>
6068 	 *   <handle exception>
6069 	 *
6070 	 *   Where:
6071 	 *     r2 == dst_reg, pkt_end == src_reg
6072 	 *     r2=pkt(id=n,off=8,r=0)
6073 	 *     r3=pkt(id=n,off=0,r=0)
6074 	 *
6075 	 * pkt_data in src register:
6076 	 *
6077 	 *   r2 = r3;
6078 	 *   r2 += 8;
6079 	 *   if (pkt_end >= r2) goto <access okay>
6080 	 *   <handle exception>
6081 	 *
6082 	 *   r2 = r3;
6083 	 *   r2 += 8;
6084 	 *   if (pkt_end <= r2) goto <handle exception>
6085 	 *   <access okay>
6086 	 *
6087 	 *   Where:
6088 	 *     pkt_end == dst_reg, r2 == src_reg
6089 	 *     r2=pkt(id=n,off=8,r=0)
6090 	 *     r3=pkt(id=n,off=0,r=0)
6091 	 *
6092 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
6093 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6094 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
6095 	 * the check.
6096 	 */
6097 
6098 	/* If our ids match, then we must have the same max_value.  And we
6099 	 * don't care about the other reg's fixed offset, since if it's too big
6100 	 * the range won't allow anything.
6101 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6102 	 */
6103 	for (i = 0; i <= vstate->curframe; i++)
6104 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6105 					 new_range);
6106 }
6107 
6108 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
6109 {
6110 	struct tnum subreg = tnum_subreg(reg->var_off);
6111 	s32 sval = (s32)val;
6112 
6113 	switch (opcode) {
6114 	case BPF_JEQ:
6115 		if (tnum_is_const(subreg))
6116 			return !!tnum_equals_const(subreg, val);
6117 		break;
6118 	case BPF_JNE:
6119 		if (tnum_is_const(subreg))
6120 			return !tnum_equals_const(subreg, val);
6121 		break;
6122 	case BPF_JSET:
6123 		if ((~subreg.mask & subreg.value) & val)
6124 			return 1;
6125 		if (!((subreg.mask | subreg.value) & val))
6126 			return 0;
6127 		break;
6128 	case BPF_JGT:
6129 		if (reg->u32_min_value > val)
6130 			return 1;
6131 		else if (reg->u32_max_value <= val)
6132 			return 0;
6133 		break;
6134 	case BPF_JSGT:
6135 		if (reg->s32_min_value > sval)
6136 			return 1;
6137 		else if (reg->s32_max_value < sval)
6138 			return 0;
6139 		break;
6140 	case BPF_JLT:
6141 		if (reg->u32_max_value < val)
6142 			return 1;
6143 		else if (reg->u32_min_value >= val)
6144 			return 0;
6145 		break;
6146 	case BPF_JSLT:
6147 		if (reg->s32_max_value < sval)
6148 			return 1;
6149 		else if (reg->s32_min_value >= sval)
6150 			return 0;
6151 		break;
6152 	case BPF_JGE:
6153 		if (reg->u32_min_value >= val)
6154 			return 1;
6155 		else if (reg->u32_max_value < val)
6156 			return 0;
6157 		break;
6158 	case BPF_JSGE:
6159 		if (reg->s32_min_value >= sval)
6160 			return 1;
6161 		else if (reg->s32_max_value < sval)
6162 			return 0;
6163 		break;
6164 	case BPF_JLE:
6165 		if (reg->u32_max_value <= val)
6166 			return 1;
6167 		else if (reg->u32_min_value > val)
6168 			return 0;
6169 		break;
6170 	case BPF_JSLE:
6171 		if (reg->s32_max_value <= sval)
6172 			return 1;
6173 		else if (reg->s32_min_value > sval)
6174 			return 0;
6175 		break;
6176 	}
6177 
6178 	return -1;
6179 }
6180 
6181 
6182 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6183 {
6184 	s64 sval = (s64)val;
6185 
6186 	switch (opcode) {
6187 	case BPF_JEQ:
6188 		if (tnum_is_const(reg->var_off))
6189 			return !!tnum_equals_const(reg->var_off, val);
6190 		break;
6191 	case BPF_JNE:
6192 		if (tnum_is_const(reg->var_off))
6193 			return !tnum_equals_const(reg->var_off, val);
6194 		break;
6195 	case BPF_JSET:
6196 		if ((~reg->var_off.mask & reg->var_off.value) & val)
6197 			return 1;
6198 		if (!((reg->var_off.mask | reg->var_off.value) & val))
6199 			return 0;
6200 		break;
6201 	case BPF_JGT:
6202 		if (reg->umin_value > val)
6203 			return 1;
6204 		else if (reg->umax_value <= val)
6205 			return 0;
6206 		break;
6207 	case BPF_JSGT:
6208 		if (reg->smin_value > sval)
6209 			return 1;
6210 		else if (reg->smax_value < sval)
6211 			return 0;
6212 		break;
6213 	case BPF_JLT:
6214 		if (reg->umax_value < val)
6215 			return 1;
6216 		else if (reg->umin_value >= val)
6217 			return 0;
6218 		break;
6219 	case BPF_JSLT:
6220 		if (reg->smax_value < sval)
6221 			return 1;
6222 		else if (reg->smin_value >= sval)
6223 			return 0;
6224 		break;
6225 	case BPF_JGE:
6226 		if (reg->umin_value >= val)
6227 			return 1;
6228 		else if (reg->umax_value < val)
6229 			return 0;
6230 		break;
6231 	case BPF_JSGE:
6232 		if (reg->smin_value >= sval)
6233 			return 1;
6234 		else if (reg->smax_value < sval)
6235 			return 0;
6236 		break;
6237 	case BPF_JLE:
6238 		if (reg->umax_value <= val)
6239 			return 1;
6240 		else if (reg->umin_value > val)
6241 			return 0;
6242 		break;
6243 	case BPF_JSLE:
6244 		if (reg->smax_value <= sval)
6245 			return 1;
6246 		else if (reg->smin_value > sval)
6247 			return 0;
6248 		break;
6249 	}
6250 
6251 	return -1;
6252 }
6253 
6254 /* compute branch direction of the expression "if (reg opcode val) goto target;"
6255  * and return:
6256  *  1 - branch will be taken and "goto target" will be executed
6257  *  0 - branch will not be taken and fall-through to next insn
6258  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6259  *      range [0,10]
6260  */
6261 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6262 			   bool is_jmp32)
6263 {
6264 	if (__is_pointer_value(false, reg))
6265 		return -1;
6266 
6267 	if (is_jmp32)
6268 		return is_branch32_taken(reg, val, opcode);
6269 	return is_branch64_taken(reg, val, opcode);
6270 }
6271 
6272 /* Adjusts the register min/max values in the case that the dst_reg is the
6273  * variable register that we are working on, and src_reg is a constant or we're
6274  * simply doing a BPF_K check.
6275  * In JEQ/JNE cases we also adjust the var_off values.
6276  */
6277 static void reg_set_min_max(struct bpf_reg_state *true_reg,
6278 			    struct bpf_reg_state *false_reg,
6279 			    u64 val, u32 val32,
6280 			    u8 opcode, bool is_jmp32)
6281 {
6282 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
6283 	struct tnum false_64off = false_reg->var_off;
6284 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
6285 	struct tnum true_64off = true_reg->var_off;
6286 	s64 sval = (s64)val;
6287 	s32 sval32 = (s32)val32;
6288 
6289 	/* If the dst_reg is a pointer, we can't learn anything about its
6290 	 * variable offset from the compare (unless src_reg were a pointer into
6291 	 * the same object, but we don't bother with that.
6292 	 * Since false_reg and true_reg have the same type by construction, we
6293 	 * only need to check one of them for pointerness.
6294 	 */
6295 	if (__is_pointer_value(false, false_reg))
6296 		return;
6297 
6298 	switch (opcode) {
6299 	case BPF_JEQ:
6300 	case BPF_JNE:
6301 	{
6302 		struct bpf_reg_state *reg =
6303 			opcode == BPF_JEQ ? true_reg : false_reg;
6304 
6305 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
6306 		 * if it is true we know the value for sure. Likewise for
6307 		 * BPF_JNE.
6308 		 */
6309 		if (is_jmp32)
6310 			__mark_reg32_known(reg, val32);
6311 		else
6312 			__mark_reg_known(reg, val);
6313 		break;
6314 	}
6315 	case BPF_JSET:
6316 		if (is_jmp32) {
6317 			false_32off = tnum_and(false_32off, tnum_const(~val32));
6318 			if (is_power_of_2(val32))
6319 				true_32off = tnum_or(true_32off,
6320 						     tnum_const(val32));
6321 		} else {
6322 			false_64off = tnum_and(false_64off, tnum_const(~val));
6323 			if (is_power_of_2(val))
6324 				true_64off = tnum_or(true_64off,
6325 						     tnum_const(val));
6326 		}
6327 		break;
6328 	case BPF_JGE:
6329 	case BPF_JGT:
6330 	{
6331 		if (is_jmp32) {
6332 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
6333 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
6334 
6335 			false_reg->u32_max_value = min(false_reg->u32_max_value,
6336 						       false_umax);
6337 			true_reg->u32_min_value = max(true_reg->u32_min_value,
6338 						      true_umin);
6339 		} else {
6340 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
6341 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
6342 
6343 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
6344 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
6345 		}
6346 		break;
6347 	}
6348 	case BPF_JSGE:
6349 	case BPF_JSGT:
6350 	{
6351 		if (is_jmp32) {
6352 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
6353 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
6354 
6355 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
6356 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
6357 		} else {
6358 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
6359 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
6360 
6361 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
6362 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
6363 		}
6364 		break;
6365 	}
6366 	case BPF_JLE:
6367 	case BPF_JLT:
6368 	{
6369 		if (is_jmp32) {
6370 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
6371 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
6372 
6373 			false_reg->u32_min_value = max(false_reg->u32_min_value,
6374 						       false_umin);
6375 			true_reg->u32_max_value = min(true_reg->u32_max_value,
6376 						      true_umax);
6377 		} else {
6378 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
6379 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
6380 
6381 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
6382 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
6383 		}
6384 		break;
6385 	}
6386 	case BPF_JSLE:
6387 	case BPF_JSLT:
6388 	{
6389 		if (is_jmp32) {
6390 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
6391 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
6392 
6393 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
6394 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
6395 		} else {
6396 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
6397 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
6398 
6399 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
6400 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
6401 		}
6402 		break;
6403 	}
6404 	default:
6405 		return;
6406 	}
6407 
6408 	if (is_jmp32) {
6409 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
6410 					     tnum_subreg(false_32off));
6411 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
6412 					    tnum_subreg(true_32off));
6413 		__reg_combine_32_into_64(false_reg);
6414 		__reg_combine_32_into_64(true_reg);
6415 	} else {
6416 		false_reg->var_off = false_64off;
6417 		true_reg->var_off = true_64off;
6418 		__reg_combine_64_into_32(false_reg);
6419 		__reg_combine_64_into_32(true_reg);
6420 	}
6421 }
6422 
6423 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
6424  * the variable reg.
6425  */
6426 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
6427 				struct bpf_reg_state *false_reg,
6428 				u64 val, u32 val32,
6429 				u8 opcode, bool is_jmp32)
6430 {
6431 	/* How can we transform "a <op> b" into "b <op> a"? */
6432 	static const u8 opcode_flip[16] = {
6433 		/* these stay the same */
6434 		[BPF_JEQ  >> 4] = BPF_JEQ,
6435 		[BPF_JNE  >> 4] = BPF_JNE,
6436 		[BPF_JSET >> 4] = BPF_JSET,
6437 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
6438 		[BPF_JGE  >> 4] = BPF_JLE,
6439 		[BPF_JGT  >> 4] = BPF_JLT,
6440 		[BPF_JLE  >> 4] = BPF_JGE,
6441 		[BPF_JLT  >> 4] = BPF_JGT,
6442 		[BPF_JSGE >> 4] = BPF_JSLE,
6443 		[BPF_JSGT >> 4] = BPF_JSLT,
6444 		[BPF_JSLE >> 4] = BPF_JSGE,
6445 		[BPF_JSLT >> 4] = BPF_JSGT
6446 	};
6447 	opcode = opcode_flip[opcode >> 4];
6448 	/* This uses zero as "not present in table"; luckily the zero opcode,
6449 	 * BPF_JA, can't get here.
6450 	 */
6451 	if (opcode)
6452 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
6453 }
6454 
6455 /* Regs are known to be equal, so intersect their min/max/var_off */
6456 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
6457 				  struct bpf_reg_state *dst_reg)
6458 {
6459 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
6460 							dst_reg->umin_value);
6461 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
6462 							dst_reg->umax_value);
6463 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
6464 							dst_reg->smin_value);
6465 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
6466 							dst_reg->smax_value);
6467 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
6468 							     dst_reg->var_off);
6469 	/* We might have learned new bounds from the var_off. */
6470 	__update_reg_bounds(src_reg);
6471 	__update_reg_bounds(dst_reg);
6472 	/* We might have learned something about the sign bit. */
6473 	__reg_deduce_bounds(src_reg);
6474 	__reg_deduce_bounds(dst_reg);
6475 	/* We might have learned some bits from the bounds. */
6476 	__reg_bound_offset(src_reg);
6477 	__reg_bound_offset(dst_reg);
6478 	/* Intersecting with the old var_off might have improved our bounds
6479 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
6480 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
6481 	 */
6482 	__update_reg_bounds(src_reg);
6483 	__update_reg_bounds(dst_reg);
6484 }
6485 
6486 static void reg_combine_min_max(struct bpf_reg_state *true_src,
6487 				struct bpf_reg_state *true_dst,
6488 				struct bpf_reg_state *false_src,
6489 				struct bpf_reg_state *false_dst,
6490 				u8 opcode)
6491 {
6492 	switch (opcode) {
6493 	case BPF_JEQ:
6494 		__reg_combine_min_max(true_src, true_dst);
6495 		break;
6496 	case BPF_JNE:
6497 		__reg_combine_min_max(false_src, false_dst);
6498 		break;
6499 	}
6500 }
6501 
6502 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
6503 				 struct bpf_reg_state *reg, u32 id,
6504 				 bool is_null)
6505 {
6506 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
6507 		/* Old offset (both fixed and variable parts) should
6508 		 * have been known-zero, because we don't allow pointer
6509 		 * arithmetic on pointers that might be NULL.
6510 		 */
6511 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
6512 				 !tnum_equals_const(reg->var_off, 0) ||
6513 				 reg->off)) {
6514 			__mark_reg_known_zero(reg);
6515 			reg->off = 0;
6516 		}
6517 		if (is_null) {
6518 			reg->type = SCALAR_VALUE;
6519 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
6520 			if (reg->map_ptr->inner_map_meta) {
6521 				reg->type = CONST_PTR_TO_MAP;
6522 				reg->map_ptr = reg->map_ptr->inner_map_meta;
6523 			} else if (reg->map_ptr->map_type ==
6524 				   BPF_MAP_TYPE_XSKMAP) {
6525 				reg->type = PTR_TO_XDP_SOCK;
6526 			} else {
6527 				reg->type = PTR_TO_MAP_VALUE;
6528 			}
6529 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
6530 			reg->type = PTR_TO_SOCKET;
6531 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
6532 			reg->type = PTR_TO_SOCK_COMMON;
6533 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
6534 			reg->type = PTR_TO_TCP_SOCK;
6535 		}
6536 		if (is_null) {
6537 			/* We don't need id and ref_obj_id from this point
6538 			 * onwards anymore, thus we should better reset it,
6539 			 * so that state pruning has chances to take effect.
6540 			 */
6541 			reg->id = 0;
6542 			reg->ref_obj_id = 0;
6543 		} else if (!reg_may_point_to_spin_lock(reg)) {
6544 			/* For not-NULL ptr, reg->ref_obj_id will be reset
6545 			 * in release_reg_references().
6546 			 *
6547 			 * reg->id is still used by spin_lock ptr. Other
6548 			 * than spin_lock ptr type, reg->id can be reset.
6549 			 */
6550 			reg->id = 0;
6551 		}
6552 	}
6553 }
6554 
6555 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
6556 				    bool is_null)
6557 {
6558 	struct bpf_reg_state *reg;
6559 	int i;
6560 
6561 	for (i = 0; i < MAX_BPF_REG; i++)
6562 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
6563 
6564 	bpf_for_each_spilled_reg(i, state, reg) {
6565 		if (!reg)
6566 			continue;
6567 		mark_ptr_or_null_reg(state, reg, id, is_null);
6568 	}
6569 }
6570 
6571 /* The logic is similar to find_good_pkt_pointers(), both could eventually
6572  * be folded together at some point.
6573  */
6574 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
6575 				  bool is_null)
6576 {
6577 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6578 	struct bpf_reg_state *regs = state->regs;
6579 	u32 ref_obj_id = regs[regno].ref_obj_id;
6580 	u32 id = regs[regno].id;
6581 	int i;
6582 
6583 	if (ref_obj_id && ref_obj_id == id && is_null)
6584 		/* regs[regno] is in the " == NULL" branch.
6585 		 * No one could have freed the reference state before
6586 		 * doing the NULL check.
6587 		 */
6588 		WARN_ON_ONCE(release_reference_state(state, id));
6589 
6590 	for (i = 0; i <= vstate->curframe; i++)
6591 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
6592 }
6593 
6594 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
6595 				   struct bpf_reg_state *dst_reg,
6596 				   struct bpf_reg_state *src_reg,
6597 				   struct bpf_verifier_state *this_branch,
6598 				   struct bpf_verifier_state *other_branch)
6599 {
6600 	if (BPF_SRC(insn->code) != BPF_X)
6601 		return false;
6602 
6603 	/* Pointers are always 64-bit. */
6604 	if (BPF_CLASS(insn->code) == BPF_JMP32)
6605 		return false;
6606 
6607 	switch (BPF_OP(insn->code)) {
6608 	case BPF_JGT:
6609 		if ((dst_reg->type == PTR_TO_PACKET &&
6610 		     src_reg->type == PTR_TO_PACKET_END) ||
6611 		    (dst_reg->type == PTR_TO_PACKET_META &&
6612 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6613 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
6614 			find_good_pkt_pointers(this_branch, dst_reg,
6615 					       dst_reg->type, false);
6616 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6617 			    src_reg->type == PTR_TO_PACKET) ||
6618 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6619 			    src_reg->type == PTR_TO_PACKET_META)) {
6620 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
6621 			find_good_pkt_pointers(other_branch, src_reg,
6622 					       src_reg->type, true);
6623 		} else {
6624 			return false;
6625 		}
6626 		break;
6627 	case BPF_JLT:
6628 		if ((dst_reg->type == PTR_TO_PACKET &&
6629 		     src_reg->type == PTR_TO_PACKET_END) ||
6630 		    (dst_reg->type == PTR_TO_PACKET_META &&
6631 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6632 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
6633 			find_good_pkt_pointers(other_branch, dst_reg,
6634 					       dst_reg->type, true);
6635 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6636 			    src_reg->type == PTR_TO_PACKET) ||
6637 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6638 			    src_reg->type == PTR_TO_PACKET_META)) {
6639 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
6640 			find_good_pkt_pointers(this_branch, src_reg,
6641 					       src_reg->type, false);
6642 		} else {
6643 			return false;
6644 		}
6645 		break;
6646 	case BPF_JGE:
6647 		if ((dst_reg->type == PTR_TO_PACKET &&
6648 		     src_reg->type == PTR_TO_PACKET_END) ||
6649 		    (dst_reg->type == PTR_TO_PACKET_META &&
6650 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6651 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
6652 			find_good_pkt_pointers(this_branch, dst_reg,
6653 					       dst_reg->type, true);
6654 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6655 			    src_reg->type == PTR_TO_PACKET) ||
6656 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6657 			    src_reg->type == PTR_TO_PACKET_META)) {
6658 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
6659 			find_good_pkt_pointers(other_branch, src_reg,
6660 					       src_reg->type, false);
6661 		} else {
6662 			return false;
6663 		}
6664 		break;
6665 	case BPF_JLE:
6666 		if ((dst_reg->type == PTR_TO_PACKET &&
6667 		     src_reg->type == PTR_TO_PACKET_END) ||
6668 		    (dst_reg->type == PTR_TO_PACKET_META &&
6669 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6670 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
6671 			find_good_pkt_pointers(other_branch, dst_reg,
6672 					       dst_reg->type, false);
6673 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6674 			    src_reg->type == PTR_TO_PACKET) ||
6675 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6676 			    src_reg->type == PTR_TO_PACKET_META)) {
6677 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
6678 			find_good_pkt_pointers(this_branch, src_reg,
6679 					       src_reg->type, true);
6680 		} else {
6681 			return false;
6682 		}
6683 		break;
6684 	default:
6685 		return false;
6686 	}
6687 
6688 	return true;
6689 }
6690 
6691 static int check_cond_jmp_op(struct bpf_verifier_env *env,
6692 			     struct bpf_insn *insn, int *insn_idx)
6693 {
6694 	struct bpf_verifier_state *this_branch = env->cur_state;
6695 	struct bpf_verifier_state *other_branch;
6696 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
6697 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
6698 	u8 opcode = BPF_OP(insn->code);
6699 	bool is_jmp32;
6700 	int pred = -1;
6701 	int err;
6702 
6703 	/* Only conditional jumps are expected to reach here. */
6704 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
6705 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
6706 		return -EINVAL;
6707 	}
6708 
6709 	if (BPF_SRC(insn->code) == BPF_X) {
6710 		if (insn->imm != 0) {
6711 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6712 			return -EINVAL;
6713 		}
6714 
6715 		/* check src1 operand */
6716 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6717 		if (err)
6718 			return err;
6719 
6720 		if (is_pointer_value(env, insn->src_reg)) {
6721 			verbose(env, "R%d pointer comparison prohibited\n",
6722 				insn->src_reg);
6723 			return -EACCES;
6724 		}
6725 		src_reg = &regs[insn->src_reg];
6726 	} else {
6727 		if (insn->src_reg != BPF_REG_0) {
6728 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6729 			return -EINVAL;
6730 		}
6731 	}
6732 
6733 	/* check src2 operand */
6734 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6735 	if (err)
6736 		return err;
6737 
6738 	dst_reg = &regs[insn->dst_reg];
6739 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
6740 
6741 	if (BPF_SRC(insn->code) == BPF_K) {
6742 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
6743 	} else if (src_reg->type == SCALAR_VALUE &&
6744 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
6745 		pred = is_branch_taken(dst_reg,
6746 				       tnum_subreg(src_reg->var_off).value,
6747 				       opcode,
6748 				       is_jmp32);
6749 	} else if (src_reg->type == SCALAR_VALUE &&
6750 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
6751 		pred = is_branch_taken(dst_reg,
6752 				       src_reg->var_off.value,
6753 				       opcode,
6754 				       is_jmp32);
6755 	}
6756 
6757 	if (pred >= 0) {
6758 		err = mark_chain_precision(env, insn->dst_reg);
6759 		if (BPF_SRC(insn->code) == BPF_X && !err)
6760 			err = mark_chain_precision(env, insn->src_reg);
6761 		if (err)
6762 			return err;
6763 	}
6764 	if (pred == 1) {
6765 		/* only follow the goto, ignore fall-through */
6766 		*insn_idx += insn->off;
6767 		return 0;
6768 	} else if (pred == 0) {
6769 		/* only follow fall-through branch, since
6770 		 * that's where the program will go
6771 		 */
6772 		return 0;
6773 	}
6774 
6775 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
6776 				  false);
6777 	if (!other_branch)
6778 		return -EFAULT;
6779 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
6780 
6781 	/* detect if we are comparing against a constant value so we can adjust
6782 	 * our min/max values for our dst register.
6783 	 * this is only legit if both are scalars (or pointers to the same
6784 	 * object, I suppose, but we don't support that right now), because
6785 	 * otherwise the different base pointers mean the offsets aren't
6786 	 * comparable.
6787 	 */
6788 	if (BPF_SRC(insn->code) == BPF_X) {
6789 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
6790 
6791 		if (dst_reg->type == SCALAR_VALUE &&
6792 		    src_reg->type == SCALAR_VALUE) {
6793 			if (tnum_is_const(src_reg->var_off) ||
6794 			    (is_jmp32 &&
6795 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
6796 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
6797 						dst_reg,
6798 						src_reg->var_off.value,
6799 						tnum_subreg(src_reg->var_off).value,
6800 						opcode, is_jmp32);
6801 			else if (tnum_is_const(dst_reg->var_off) ||
6802 				 (is_jmp32 &&
6803 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
6804 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
6805 						    src_reg,
6806 						    dst_reg->var_off.value,
6807 						    tnum_subreg(dst_reg->var_off).value,
6808 						    opcode, is_jmp32);
6809 			else if (!is_jmp32 &&
6810 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
6811 				/* Comparing for equality, we can combine knowledge */
6812 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
6813 						    &other_branch_regs[insn->dst_reg],
6814 						    src_reg, dst_reg, opcode);
6815 		}
6816 	} else if (dst_reg->type == SCALAR_VALUE) {
6817 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
6818 					dst_reg, insn->imm, (u32)insn->imm,
6819 					opcode, is_jmp32);
6820 	}
6821 
6822 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
6823 	 * NOTE: these optimizations below are related with pointer comparison
6824 	 *       which will never be JMP32.
6825 	 */
6826 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
6827 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
6828 	    reg_type_may_be_null(dst_reg->type)) {
6829 		/* Mark all identical registers in each branch as either
6830 		 * safe or unknown depending R == 0 or R != 0 conditional.
6831 		 */
6832 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
6833 				      opcode == BPF_JNE);
6834 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
6835 				      opcode == BPF_JEQ);
6836 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
6837 					   this_branch, other_branch) &&
6838 		   is_pointer_value(env, insn->dst_reg)) {
6839 		verbose(env, "R%d pointer comparison prohibited\n",
6840 			insn->dst_reg);
6841 		return -EACCES;
6842 	}
6843 	if (env->log.level & BPF_LOG_LEVEL)
6844 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
6845 	return 0;
6846 }
6847 
6848 /* verify BPF_LD_IMM64 instruction */
6849 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
6850 {
6851 	struct bpf_insn_aux_data *aux = cur_aux(env);
6852 	struct bpf_reg_state *regs = cur_regs(env);
6853 	struct bpf_map *map;
6854 	int err;
6855 
6856 	if (BPF_SIZE(insn->code) != BPF_DW) {
6857 		verbose(env, "invalid BPF_LD_IMM insn\n");
6858 		return -EINVAL;
6859 	}
6860 	if (insn->off != 0) {
6861 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
6862 		return -EINVAL;
6863 	}
6864 
6865 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
6866 	if (err)
6867 		return err;
6868 
6869 	if (insn->src_reg == 0) {
6870 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
6871 
6872 		regs[insn->dst_reg].type = SCALAR_VALUE;
6873 		__mark_reg_known(&regs[insn->dst_reg], imm);
6874 		return 0;
6875 	}
6876 
6877 	map = env->used_maps[aux->map_index];
6878 	mark_reg_known_zero(env, regs, insn->dst_reg);
6879 	regs[insn->dst_reg].map_ptr = map;
6880 
6881 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
6882 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
6883 		regs[insn->dst_reg].off = aux->map_off;
6884 		if (map_value_has_spin_lock(map))
6885 			regs[insn->dst_reg].id = ++env->id_gen;
6886 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6887 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
6888 	} else {
6889 		verbose(env, "bpf verifier is misconfigured\n");
6890 		return -EINVAL;
6891 	}
6892 
6893 	return 0;
6894 }
6895 
6896 static bool may_access_skb(enum bpf_prog_type type)
6897 {
6898 	switch (type) {
6899 	case BPF_PROG_TYPE_SOCKET_FILTER:
6900 	case BPF_PROG_TYPE_SCHED_CLS:
6901 	case BPF_PROG_TYPE_SCHED_ACT:
6902 		return true;
6903 	default:
6904 		return false;
6905 	}
6906 }
6907 
6908 /* verify safety of LD_ABS|LD_IND instructions:
6909  * - they can only appear in the programs where ctx == skb
6910  * - since they are wrappers of function calls, they scratch R1-R5 registers,
6911  *   preserve R6-R9, and store return value into R0
6912  *
6913  * Implicit input:
6914  *   ctx == skb == R6 == CTX
6915  *
6916  * Explicit input:
6917  *   SRC == any register
6918  *   IMM == 32-bit immediate
6919  *
6920  * Output:
6921  *   R0 - 8/16/32-bit skb data converted to cpu endianness
6922  */
6923 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
6924 {
6925 	struct bpf_reg_state *regs = cur_regs(env);
6926 	static const int ctx_reg = BPF_REG_6;
6927 	u8 mode = BPF_MODE(insn->code);
6928 	int i, err;
6929 
6930 	if (!may_access_skb(env->prog->type)) {
6931 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
6932 		return -EINVAL;
6933 	}
6934 
6935 	if (!env->ops->gen_ld_abs) {
6936 		verbose(env, "bpf verifier is misconfigured\n");
6937 		return -EINVAL;
6938 	}
6939 
6940 	if (env->subprog_cnt > 1) {
6941 		/* when program has LD_ABS insn JITs and interpreter assume
6942 		 * that r1 == ctx == skb which is not the case for callees
6943 		 * that can have arbitrary arguments. It's problematic
6944 		 * for main prog as well since JITs would need to analyze
6945 		 * all functions in order to make proper register save/restore
6946 		 * decisions in the main prog. Hence disallow LD_ABS with calls
6947 		 */
6948 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6949 		return -EINVAL;
6950 	}
6951 
6952 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
6953 	    BPF_SIZE(insn->code) == BPF_DW ||
6954 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
6955 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
6956 		return -EINVAL;
6957 	}
6958 
6959 	/* check whether implicit source operand (register R6) is readable */
6960 	err = check_reg_arg(env, ctx_reg, SRC_OP);
6961 	if (err)
6962 		return err;
6963 
6964 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6965 	 * gen_ld_abs() may terminate the program at runtime, leading to
6966 	 * reference leak.
6967 	 */
6968 	err = check_reference_leak(env);
6969 	if (err) {
6970 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6971 		return err;
6972 	}
6973 
6974 	if (env->cur_state->active_spin_lock) {
6975 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6976 		return -EINVAL;
6977 	}
6978 
6979 	if (regs[ctx_reg].type != PTR_TO_CTX) {
6980 		verbose(env,
6981 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
6982 		return -EINVAL;
6983 	}
6984 
6985 	if (mode == BPF_IND) {
6986 		/* check explicit source operand */
6987 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6988 		if (err)
6989 			return err;
6990 	}
6991 
6992 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
6993 	if (err < 0)
6994 		return err;
6995 
6996 	/* reset caller saved regs to unreadable */
6997 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6998 		mark_reg_not_init(env, regs, caller_saved[i]);
6999 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7000 	}
7001 
7002 	/* mark destination R0 register as readable, since it contains
7003 	 * the value fetched from the packet.
7004 	 * Already marked as written above.
7005 	 */
7006 	mark_reg_unknown(env, regs, BPF_REG_0);
7007 	/* ld_abs load up to 32-bit skb data. */
7008 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
7009 	return 0;
7010 }
7011 
7012 static int check_return_code(struct bpf_verifier_env *env)
7013 {
7014 	struct tnum enforce_attach_type_range = tnum_unknown;
7015 	const struct bpf_prog *prog = env->prog;
7016 	struct bpf_reg_state *reg;
7017 	struct tnum range = tnum_range(0, 1);
7018 	int err;
7019 
7020 	/* LSM and struct_ops func-ptr's return type could be "void" */
7021 	if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
7022 	     env->prog->type == BPF_PROG_TYPE_LSM) &&
7023 	    !prog->aux->attach_func_proto->type)
7024 		return 0;
7025 
7026 	/* eBPF calling convetion is such that R0 is used
7027 	 * to return the value from eBPF program.
7028 	 * Make sure that it's readable at this time
7029 	 * of bpf_exit, which means that program wrote
7030 	 * something into it earlier
7031 	 */
7032 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7033 	if (err)
7034 		return err;
7035 
7036 	if (is_pointer_value(env, BPF_REG_0)) {
7037 		verbose(env, "R0 leaks addr as return value\n");
7038 		return -EACCES;
7039 	}
7040 
7041 	switch (env->prog->type) {
7042 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7043 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
7044 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
7045 			range = tnum_range(1, 1);
7046 		break;
7047 	case BPF_PROG_TYPE_CGROUP_SKB:
7048 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7049 			range = tnum_range(0, 3);
7050 			enforce_attach_type_range = tnum_range(2, 3);
7051 		}
7052 		break;
7053 	case BPF_PROG_TYPE_CGROUP_SOCK:
7054 	case BPF_PROG_TYPE_SOCK_OPS:
7055 	case BPF_PROG_TYPE_CGROUP_DEVICE:
7056 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
7057 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
7058 		break;
7059 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
7060 		if (!env->prog->aux->attach_btf_id)
7061 			return 0;
7062 		range = tnum_const(0);
7063 		break;
7064 	case BPF_PROG_TYPE_TRACING:
7065 		switch (env->prog->expected_attach_type) {
7066 		case BPF_TRACE_FENTRY:
7067 		case BPF_TRACE_FEXIT:
7068 			range = tnum_const(0);
7069 			break;
7070 		case BPF_TRACE_RAW_TP:
7071 		case BPF_MODIFY_RETURN:
7072 			return 0;
7073 		default:
7074 			return -ENOTSUPP;
7075 		}
7076 		break;
7077 	case BPF_PROG_TYPE_EXT:
7078 		/* freplace program can return anything as its return value
7079 		 * depends on the to-be-replaced kernel func or bpf program.
7080 		 */
7081 	default:
7082 		return 0;
7083 	}
7084 
7085 	reg = cur_regs(env) + BPF_REG_0;
7086 	if (reg->type != SCALAR_VALUE) {
7087 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
7088 			reg_type_str[reg->type]);
7089 		return -EINVAL;
7090 	}
7091 
7092 	if (!tnum_in(range, reg->var_off)) {
7093 		char tn_buf[48];
7094 
7095 		verbose(env, "At program exit the register R0 ");
7096 		if (!tnum_is_unknown(reg->var_off)) {
7097 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7098 			verbose(env, "has value %s", tn_buf);
7099 		} else {
7100 			verbose(env, "has unknown scalar value");
7101 		}
7102 		tnum_strn(tn_buf, sizeof(tn_buf), range);
7103 		verbose(env, " should have been in %s\n", tn_buf);
7104 		return -EINVAL;
7105 	}
7106 
7107 	if (!tnum_is_unknown(enforce_attach_type_range) &&
7108 	    tnum_in(enforce_attach_type_range, reg->var_off))
7109 		env->prog->enforce_expected_attach_type = 1;
7110 	return 0;
7111 }
7112 
7113 /* non-recursive DFS pseudo code
7114  * 1  procedure DFS-iterative(G,v):
7115  * 2      label v as discovered
7116  * 3      let S be a stack
7117  * 4      S.push(v)
7118  * 5      while S is not empty
7119  * 6            t <- S.pop()
7120  * 7            if t is what we're looking for:
7121  * 8                return t
7122  * 9            for all edges e in G.adjacentEdges(t) do
7123  * 10               if edge e is already labelled
7124  * 11                   continue with the next edge
7125  * 12               w <- G.adjacentVertex(t,e)
7126  * 13               if vertex w is not discovered and not explored
7127  * 14                   label e as tree-edge
7128  * 15                   label w as discovered
7129  * 16                   S.push(w)
7130  * 17                   continue at 5
7131  * 18               else if vertex w is discovered
7132  * 19                   label e as back-edge
7133  * 20               else
7134  * 21                   // vertex w is explored
7135  * 22                   label e as forward- or cross-edge
7136  * 23           label t as explored
7137  * 24           S.pop()
7138  *
7139  * convention:
7140  * 0x10 - discovered
7141  * 0x11 - discovered and fall-through edge labelled
7142  * 0x12 - discovered and fall-through and branch edges labelled
7143  * 0x20 - explored
7144  */
7145 
7146 enum {
7147 	DISCOVERED = 0x10,
7148 	EXPLORED = 0x20,
7149 	FALLTHROUGH = 1,
7150 	BRANCH = 2,
7151 };
7152 
7153 static u32 state_htab_size(struct bpf_verifier_env *env)
7154 {
7155 	return env->prog->len;
7156 }
7157 
7158 static struct bpf_verifier_state_list **explored_state(
7159 					struct bpf_verifier_env *env,
7160 					int idx)
7161 {
7162 	struct bpf_verifier_state *cur = env->cur_state;
7163 	struct bpf_func_state *state = cur->frame[cur->curframe];
7164 
7165 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
7166 }
7167 
7168 static void init_explored_state(struct bpf_verifier_env *env, int idx)
7169 {
7170 	env->insn_aux_data[idx].prune_point = true;
7171 }
7172 
7173 /* t, w, e - match pseudo-code above:
7174  * t - index of current instruction
7175  * w - next instruction
7176  * e - edge
7177  */
7178 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7179 		     bool loop_ok)
7180 {
7181 	int *insn_stack = env->cfg.insn_stack;
7182 	int *insn_state = env->cfg.insn_state;
7183 
7184 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7185 		return 0;
7186 
7187 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7188 		return 0;
7189 
7190 	if (w < 0 || w >= env->prog->len) {
7191 		verbose_linfo(env, t, "%d: ", t);
7192 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
7193 		return -EINVAL;
7194 	}
7195 
7196 	if (e == BRANCH)
7197 		/* mark branch target for state pruning */
7198 		init_explored_state(env, w);
7199 
7200 	if (insn_state[w] == 0) {
7201 		/* tree-edge */
7202 		insn_state[t] = DISCOVERED | e;
7203 		insn_state[w] = DISCOVERED;
7204 		if (env->cfg.cur_stack >= env->prog->len)
7205 			return -E2BIG;
7206 		insn_stack[env->cfg.cur_stack++] = w;
7207 		return 1;
7208 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
7209 		if (loop_ok && env->allow_ptr_leaks)
7210 			return 0;
7211 		verbose_linfo(env, t, "%d: ", t);
7212 		verbose_linfo(env, w, "%d: ", w);
7213 		verbose(env, "back-edge from insn %d to %d\n", t, w);
7214 		return -EINVAL;
7215 	} else if (insn_state[w] == EXPLORED) {
7216 		/* forward- or cross-edge */
7217 		insn_state[t] = DISCOVERED | e;
7218 	} else {
7219 		verbose(env, "insn state internal bug\n");
7220 		return -EFAULT;
7221 	}
7222 	return 0;
7223 }
7224 
7225 /* non-recursive depth-first-search to detect loops in BPF program
7226  * loop == back-edge in directed graph
7227  */
7228 static int check_cfg(struct bpf_verifier_env *env)
7229 {
7230 	struct bpf_insn *insns = env->prog->insnsi;
7231 	int insn_cnt = env->prog->len;
7232 	int *insn_stack, *insn_state;
7233 	int ret = 0;
7234 	int i, t;
7235 
7236 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7237 	if (!insn_state)
7238 		return -ENOMEM;
7239 
7240 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7241 	if (!insn_stack) {
7242 		kvfree(insn_state);
7243 		return -ENOMEM;
7244 	}
7245 
7246 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
7247 	insn_stack[0] = 0; /* 0 is the first instruction */
7248 	env->cfg.cur_stack = 1;
7249 
7250 peek_stack:
7251 	if (env->cfg.cur_stack == 0)
7252 		goto check_state;
7253 	t = insn_stack[env->cfg.cur_stack - 1];
7254 
7255 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
7256 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
7257 		u8 opcode = BPF_OP(insns[t].code);
7258 
7259 		if (opcode == BPF_EXIT) {
7260 			goto mark_explored;
7261 		} else if (opcode == BPF_CALL) {
7262 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7263 			if (ret == 1)
7264 				goto peek_stack;
7265 			else if (ret < 0)
7266 				goto err_free;
7267 			if (t + 1 < insn_cnt)
7268 				init_explored_state(env, t + 1);
7269 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
7270 				init_explored_state(env, t);
7271 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
7272 						env, false);
7273 				if (ret == 1)
7274 					goto peek_stack;
7275 				else if (ret < 0)
7276 					goto err_free;
7277 			}
7278 		} else if (opcode == BPF_JA) {
7279 			if (BPF_SRC(insns[t].code) != BPF_K) {
7280 				ret = -EINVAL;
7281 				goto err_free;
7282 			}
7283 			/* unconditional jump with single edge */
7284 			ret = push_insn(t, t + insns[t].off + 1,
7285 					FALLTHROUGH, env, true);
7286 			if (ret == 1)
7287 				goto peek_stack;
7288 			else if (ret < 0)
7289 				goto err_free;
7290 			/* unconditional jmp is not a good pruning point,
7291 			 * but it's marked, since backtracking needs
7292 			 * to record jmp history in is_state_visited().
7293 			 */
7294 			init_explored_state(env, t + insns[t].off + 1);
7295 			/* tell verifier to check for equivalent states
7296 			 * after every call and jump
7297 			 */
7298 			if (t + 1 < insn_cnt)
7299 				init_explored_state(env, t + 1);
7300 		} else {
7301 			/* conditional jump with two edges */
7302 			init_explored_state(env, t);
7303 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
7304 			if (ret == 1)
7305 				goto peek_stack;
7306 			else if (ret < 0)
7307 				goto err_free;
7308 
7309 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
7310 			if (ret == 1)
7311 				goto peek_stack;
7312 			else if (ret < 0)
7313 				goto err_free;
7314 		}
7315 	} else {
7316 		/* all other non-branch instructions with single
7317 		 * fall-through edge
7318 		 */
7319 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7320 		if (ret == 1)
7321 			goto peek_stack;
7322 		else if (ret < 0)
7323 			goto err_free;
7324 	}
7325 
7326 mark_explored:
7327 	insn_state[t] = EXPLORED;
7328 	if (env->cfg.cur_stack-- <= 0) {
7329 		verbose(env, "pop stack internal bug\n");
7330 		ret = -EFAULT;
7331 		goto err_free;
7332 	}
7333 	goto peek_stack;
7334 
7335 check_state:
7336 	for (i = 0; i < insn_cnt; i++) {
7337 		if (insn_state[i] != EXPLORED) {
7338 			verbose(env, "unreachable insn %d\n", i);
7339 			ret = -EINVAL;
7340 			goto err_free;
7341 		}
7342 	}
7343 	ret = 0; /* cfg looks good */
7344 
7345 err_free:
7346 	kvfree(insn_state);
7347 	kvfree(insn_stack);
7348 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
7349 	return ret;
7350 }
7351 
7352 /* The minimum supported BTF func info size */
7353 #define MIN_BPF_FUNCINFO_SIZE	8
7354 #define MAX_FUNCINFO_REC_SIZE	252
7355 
7356 static int check_btf_func(struct bpf_verifier_env *env,
7357 			  const union bpf_attr *attr,
7358 			  union bpf_attr __user *uattr)
7359 {
7360 	u32 i, nfuncs, urec_size, min_size;
7361 	u32 krec_size = sizeof(struct bpf_func_info);
7362 	struct bpf_func_info *krecord;
7363 	struct bpf_func_info_aux *info_aux = NULL;
7364 	const struct btf_type *type;
7365 	struct bpf_prog *prog;
7366 	const struct btf *btf;
7367 	void __user *urecord;
7368 	u32 prev_offset = 0;
7369 	int ret = 0;
7370 
7371 	nfuncs = attr->func_info_cnt;
7372 	if (!nfuncs)
7373 		return 0;
7374 
7375 	if (nfuncs != env->subprog_cnt) {
7376 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
7377 		return -EINVAL;
7378 	}
7379 
7380 	urec_size = attr->func_info_rec_size;
7381 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
7382 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
7383 	    urec_size % sizeof(u32)) {
7384 		verbose(env, "invalid func info rec size %u\n", urec_size);
7385 		return -EINVAL;
7386 	}
7387 
7388 	prog = env->prog;
7389 	btf = prog->aux->btf;
7390 
7391 	urecord = u64_to_user_ptr(attr->func_info);
7392 	min_size = min_t(u32, krec_size, urec_size);
7393 
7394 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
7395 	if (!krecord)
7396 		return -ENOMEM;
7397 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
7398 	if (!info_aux)
7399 		goto err_free;
7400 
7401 	for (i = 0; i < nfuncs; i++) {
7402 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
7403 		if (ret) {
7404 			if (ret == -E2BIG) {
7405 				verbose(env, "nonzero tailing record in func info");
7406 				/* set the size kernel expects so loader can zero
7407 				 * out the rest of the record.
7408 				 */
7409 				if (put_user(min_size, &uattr->func_info_rec_size))
7410 					ret = -EFAULT;
7411 			}
7412 			goto err_free;
7413 		}
7414 
7415 		if (copy_from_user(&krecord[i], urecord, min_size)) {
7416 			ret = -EFAULT;
7417 			goto err_free;
7418 		}
7419 
7420 		/* check insn_off */
7421 		if (i == 0) {
7422 			if (krecord[i].insn_off) {
7423 				verbose(env,
7424 					"nonzero insn_off %u for the first func info record",
7425 					krecord[i].insn_off);
7426 				ret = -EINVAL;
7427 				goto err_free;
7428 			}
7429 		} else if (krecord[i].insn_off <= prev_offset) {
7430 			verbose(env,
7431 				"same or smaller insn offset (%u) than previous func info record (%u)",
7432 				krecord[i].insn_off, prev_offset);
7433 			ret = -EINVAL;
7434 			goto err_free;
7435 		}
7436 
7437 		if (env->subprog_info[i].start != krecord[i].insn_off) {
7438 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
7439 			ret = -EINVAL;
7440 			goto err_free;
7441 		}
7442 
7443 		/* check type_id */
7444 		type = btf_type_by_id(btf, krecord[i].type_id);
7445 		if (!type || !btf_type_is_func(type)) {
7446 			verbose(env, "invalid type id %d in func info",
7447 				krecord[i].type_id);
7448 			ret = -EINVAL;
7449 			goto err_free;
7450 		}
7451 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
7452 		prev_offset = krecord[i].insn_off;
7453 		urecord += urec_size;
7454 	}
7455 
7456 	prog->aux->func_info = krecord;
7457 	prog->aux->func_info_cnt = nfuncs;
7458 	prog->aux->func_info_aux = info_aux;
7459 	return 0;
7460 
7461 err_free:
7462 	kvfree(krecord);
7463 	kfree(info_aux);
7464 	return ret;
7465 }
7466 
7467 static void adjust_btf_func(struct bpf_verifier_env *env)
7468 {
7469 	struct bpf_prog_aux *aux = env->prog->aux;
7470 	int i;
7471 
7472 	if (!aux->func_info)
7473 		return;
7474 
7475 	for (i = 0; i < env->subprog_cnt; i++)
7476 		aux->func_info[i].insn_off = env->subprog_info[i].start;
7477 }
7478 
7479 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
7480 		sizeof(((struct bpf_line_info *)(0))->line_col))
7481 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
7482 
7483 static int check_btf_line(struct bpf_verifier_env *env,
7484 			  const union bpf_attr *attr,
7485 			  union bpf_attr __user *uattr)
7486 {
7487 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
7488 	struct bpf_subprog_info *sub;
7489 	struct bpf_line_info *linfo;
7490 	struct bpf_prog *prog;
7491 	const struct btf *btf;
7492 	void __user *ulinfo;
7493 	int err;
7494 
7495 	nr_linfo = attr->line_info_cnt;
7496 	if (!nr_linfo)
7497 		return 0;
7498 
7499 	rec_size = attr->line_info_rec_size;
7500 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
7501 	    rec_size > MAX_LINEINFO_REC_SIZE ||
7502 	    rec_size & (sizeof(u32) - 1))
7503 		return -EINVAL;
7504 
7505 	/* Need to zero it in case the userspace may
7506 	 * pass in a smaller bpf_line_info object.
7507 	 */
7508 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
7509 			 GFP_KERNEL | __GFP_NOWARN);
7510 	if (!linfo)
7511 		return -ENOMEM;
7512 
7513 	prog = env->prog;
7514 	btf = prog->aux->btf;
7515 
7516 	s = 0;
7517 	sub = env->subprog_info;
7518 	ulinfo = u64_to_user_ptr(attr->line_info);
7519 	expected_size = sizeof(struct bpf_line_info);
7520 	ncopy = min_t(u32, expected_size, rec_size);
7521 	for (i = 0; i < nr_linfo; i++) {
7522 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
7523 		if (err) {
7524 			if (err == -E2BIG) {
7525 				verbose(env, "nonzero tailing record in line_info");
7526 				if (put_user(expected_size,
7527 					     &uattr->line_info_rec_size))
7528 					err = -EFAULT;
7529 			}
7530 			goto err_free;
7531 		}
7532 
7533 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
7534 			err = -EFAULT;
7535 			goto err_free;
7536 		}
7537 
7538 		/*
7539 		 * Check insn_off to ensure
7540 		 * 1) strictly increasing AND
7541 		 * 2) bounded by prog->len
7542 		 *
7543 		 * The linfo[0].insn_off == 0 check logically falls into
7544 		 * the later "missing bpf_line_info for func..." case
7545 		 * because the first linfo[0].insn_off must be the
7546 		 * first sub also and the first sub must have
7547 		 * subprog_info[0].start == 0.
7548 		 */
7549 		if ((i && linfo[i].insn_off <= prev_offset) ||
7550 		    linfo[i].insn_off >= prog->len) {
7551 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
7552 				i, linfo[i].insn_off, prev_offset,
7553 				prog->len);
7554 			err = -EINVAL;
7555 			goto err_free;
7556 		}
7557 
7558 		if (!prog->insnsi[linfo[i].insn_off].code) {
7559 			verbose(env,
7560 				"Invalid insn code at line_info[%u].insn_off\n",
7561 				i);
7562 			err = -EINVAL;
7563 			goto err_free;
7564 		}
7565 
7566 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
7567 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
7568 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
7569 			err = -EINVAL;
7570 			goto err_free;
7571 		}
7572 
7573 		if (s != env->subprog_cnt) {
7574 			if (linfo[i].insn_off == sub[s].start) {
7575 				sub[s].linfo_idx = i;
7576 				s++;
7577 			} else if (sub[s].start < linfo[i].insn_off) {
7578 				verbose(env, "missing bpf_line_info for func#%u\n", s);
7579 				err = -EINVAL;
7580 				goto err_free;
7581 			}
7582 		}
7583 
7584 		prev_offset = linfo[i].insn_off;
7585 		ulinfo += rec_size;
7586 	}
7587 
7588 	if (s != env->subprog_cnt) {
7589 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
7590 			env->subprog_cnt - s, s);
7591 		err = -EINVAL;
7592 		goto err_free;
7593 	}
7594 
7595 	prog->aux->linfo = linfo;
7596 	prog->aux->nr_linfo = nr_linfo;
7597 
7598 	return 0;
7599 
7600 err_free:
7601 	kvfree(linfo);
7602 	return err;
7603 }
7604 
7605 static int check_btf_info(struct bpf_verifier_env *env,
7606 			  const union bpf_attr *attr,
7607 			  union bpf_attr __user *uattr)
7608 {
7609 	struct btf *btf;
7610 	int err;
7611 
7612 	if (!attr->func_info_cnt && !attr->line_info_cnt)
7613 		return 0;
7614 
7615 	btf = btf_get_by_fd(attr->prog_btf_fd);
7616 	if (IS_ERR(btf))
7617 		return PTR_ERR(btf);
7618 	env->prog->aux->btf = btf;
7619 
7620 	err = check_btf_func(env, attr, uattr);
7621 	if (err)
7622 		return err;
7623 
7624 	err = check_btf_line(env, attr, uattr);
7625 	if (err)
7626 		return err;
7627 
7628 	return 0;
7629 }
7630 
7631 /* check %cur's range satisfies %old's */
7632 static bool range_within(struct bpf_reg_state *old,
7633 			 struct bpf_reg_state *cur)
7634 {
7635 	return old->umin_value <= cur->umin_value &&
7636 	       old->umax_value >= cur->umax_value &&
7637 	       old->smin_value <= cur->smin_value &&
7638 	       old->smax_value >= cur->smax_value;
7639 }
7640 
7641 /* Maximum number of register states that can exist at once */
7642 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
7643 struct idpair {
7644 	u32 old;
7645 	u32 cur;
7646 };
7647 
7648 /* If in the old state two registers had the same id, then they need to have
7649  * the same id in the new state as well.  But that id could be different from
7650  * the old state, so we need to track the mapping from old to new ids.
7651  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
7652  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
7653  * regs with a different old id could still have new id 9, we don't care about
7654  * that.
7655  * So we look through our idmap to see if this old id has been seen before.  If
7656  * so, we require the new id to match; otherwise, we add the id pair to the map.
7657  */
7658 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
7659 {
7660 	unsigned int i;
7661 
7662 	for (i = 0; i < ID_MAP_SIZE; i++) {
7663 		if (!idmap[i].old) {
7664 			/* Reached an empty slot; haven't seen this id before */
7665 			idmap[i].old = old_id;
7666 			idmap[i].cur = cur_id;
7667 			return true;
7668 		}
7669 		if (idmap[i].old == old_id)
7670 			return idmap[i].cur == cur_id;
7671 	}
7672 	/* We ran out of idmap slots, which should be impossible */
7673 	WARN_ON_ONCE(1);
7674 	return false;
7675 }
7676 
7677 static void clean_func_state(struct bpf_verifier_env *env,
7678 			     struct bpf_func_state *st)
7679 {
7680 	enum bpf_reg_liveness live;
7681 	int i, j;
7682 
7683 	for (i = 0; i < BPF_REG_FP; i++) {
7684 		live = st->regs[i].live;
7685 		/* liveness must not touch this register anymore */
7686 		st->regs[i].live |= REG_LIVE_DONE;
7687 		if (!(live & REG_LIVE_READ))
7688 			/* since the register is unused, clear its state
7689 			 * to make further comparison simpler
7690 			 */
7691 			__mark_reg_not_init(env, &st->regs[i]);
7692 	}
7693 
7694 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
7695 		live = st->stack[i].spilled_ptr.live;
7696 		/* liveness must not touch this stack slot anymore */
7697 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
7698 		if (!(live & REG_LIVE_READ)) {
7699 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
7700 			for (j = 0; j < BPF_REG_SIZE; j++)
7701 				st->stack[i].slot_type[j] = STACK_INVALID;
7702 		}
7703 	}
7704 }
7705 
7706 static void clean_verifier_state(struct bpf_verifier_env *env,
7707 				 struct bpf_verifier_state *st)
7708 {
7709 	int i;
7710 
7711 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
7712 		/* all regs in this state in all frames were already marked */
7713 		return;
7714 
7715 	for (i = 0; i <= st->curframe; i++)
7716 		clean_func_state(env, st->frame[i]);
7717 }
7718 
7719 /* the parentage chains form a tree.
7720  * the verifier states are added to state lists at given insn and
7721  * pushed into state stack for future exploration.
7722  * when the verifier reaches bpf_exit insn some of the verifer states
7723  * stored in the state lists have their final liveness state already,
7724  * but a lot of states will get revised from liveness point of view when
7725  * the verifier explores other branches.
7726  * Example:
7727  * 1: r0 = 1
7728  * 2: if r1 == 100 goto pc+1
7729  * 3: r0 = 2
7730  * 4: exit
7731  * when the verifier reaches exit insn the register r0 in the state list of
7732  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
7733  * of insn 2 and goes exploring further. At the insn 4 it will walk the
7734  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
7735  *
7736  * Since the verifier pushes the branch states as it sees them while exploring
7737  * the program the condition of walking the branch instruction for the second
7738  * time means that all states below this branch were already explored and
7739  * their final liveness markes are already propagated.
7740  * Hence when the verifier completes the search of state list in is_state_visited()
7741  * we can call this clean_live_states() function to mark all liveness states
7742  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
7743  * will not be used.
7744  * This function also clears the registers and stack for states that !READ
7745  * to simplify state merging.
7746  *
7747  * Important note here that walking the same branch instruction in the callee
7748  * doesn't meant that the states are DONE. The verifier has to compare
7749  * the callsites
7750  */
7751 static void clean_live_states(struct bpf_verifier_env *env, int insn,
7752 			      struct bpf_verifier_state *cur)
7753 {
7754 	struct bpf_verifier_state_list *sl;
7755 	int i;
7756 
7757 	sl = *explored_state(env, insn);
7758 	while (sl) {
7759 		if (sl->state.branches)
7760 			goto next;
7761 		if (sl->state.insn_idx != insn ||
7762 		    sl->state.curframe != cur->curframe)
7763 			goto next;
7764 		for (i = 0; i <= cur->curframe; i++)
7765 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
7766 				goto next;
7767 		clean_verifier_state(env, &sl->state);
7768 next:
7769 		sl = sl->next;
7770 	}
7771 }
7772 
7773 /* Returns true if (rold safe implies rcur safe) */
7774 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7775 		    struct idpair *idmap)
7776 {
7777 	bool equal;
7778 
7779 	if (!(rold->live & REG_LIVE_READ))
7780 		/* explored state didn't use this */
7781 		return true;
7782 
7783 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
7784 
7785 	if (rold->type == PTR_TO_STACK)
7786 		/* two stack pointers are equal only if they're pointing to
7787 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
7788 		 */
7789 		return equal && rold->frameno == rcur->frameno;
7790 
7791 	if (equal)
7792 		return true;
7793 
7794 	if (rold->type == NOT_INIT)
7795 		/* explored state can't have used this */
7796 		return true;
7797 	if (rcur->type == NOT_INIT)
7798 		return false;
7799 	switch (rold->type) {
7800 	case SCALAR_VALUE:
7801 		if (rcur->type == SCALAR_VALUE) {
7802 			if (!rold->precise && !rcur->precise)
7803 				return true;
7804 			/* new val must satisfy old val knowledge */
7805 			return range_within(rold, rcur) &&
7806 			       tnum_in(rold->var_off, rcur->var_off);
7807 		} else {
7808 			/* We're trying to use a pointer in place of a scalar.
7809 			 * Even if the scalar was unbounded, this could lead to
7810 			 * pointer leaks because scalars are allowed to leak
7811 			 * while pointers are not. We could make this safe in
7812 			 * special cases if root is calling us, but it's
7813 			 * probably not worth the hassle.
7814 			 */
7815 			return false;
7816 		}
7817 	case PTR_TO_MAP_VALUE:
7818 		/* If the new min/max/var_off satisfy the old ones and
7819 		 * everything else matches, we are OK.
7820 		 * 'id' is not compared, since it's only used for maps with
7821 		 * bpf_spin_lock inside map element and in such cases if
7822 		 * the rest of the prog is valid for one map element then
7823 		 * it's valid for all map elements regardless of the key
7824 		 * used in bpf_map_lookup()
7825 		 */
7826 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
7827 		       range_within(rold, rcur) &&
7828 		       tnum_in(rold->var_off, rcur->var_off);
7829 	case PTR_TO_MAP_VALUE_OR_NULL:
7830 		/* a PTR_TO_MAP_VALUE could be safe to use as a
7831 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
7832 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
7833 		 * checked, doing so could have affected others with the same
7834 		 * id, and we can't check for that because we lost the id when
7835 		 * we converted to a PTR_TO_MAP_VALUE.
7836 		 */
7837 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
7838 			return false;
7839 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
7840 			return false;
7841 		/* Check our ids match any regs they're supposed to */
7842 		return check_ids(rold->id, rcur->id, idmap);
7843 	case PTR_TO_PACKET_META:
7844 	case PTR_TO_PACKET:
7845 		if (rcur->type != rold->type)
7846 			return false;
7847 		/* We must have at least as much range as the old ptr
7848 		 * did, so that any accesses which were safe before are
7849 		 * still safe.  This is true even if old range < old off,
7850 		 * since someone could have accessed through (ptr - k), or
7851 		 * even done ptr -= k in a register, to get a safe access.
7852 		 */
7853 		if (rold->range > rcur->range)
7854 			return false;
7855 		/* If the offsets don't match, we can't trust our alignment;
7856 		 * nor can we be sure that we won't fall out of range.
7857 		 */
7858 		if (rold->off != rcur->off)
7859 			return false;
7860 		/* id relations must be preserved */
7861 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
7862 			return false;
7863 		/* new val must satisfy old val knowledge */
7864 		return range_within(rold, rcur) &&
7865 		       tnum_in(rold->var_off, rcur->var_off);
7866 	case PTR_TO_CTX:
7867 	case CONST_PTR_TO_MAP:
7868 	case PTR_TO_PACKET_END:
7869 	case PTR_TO_FLOW_KEYS:
7870 	case PTR_TO_SOCKET:
7871 	case PTR_TO_SOCKET_OR_NULL:
7872 	case PTR_TO_SOCK_COMMON:
7873 	case PTR_TO_SOCK_COMMON_OR_NULL:
7874 	case PTR_TO_TCP_SOCK:
7875 	case PTR_TO_TCP_SOCK_OR_NULL:
7876 	case PTR_TO_XDP_SOCK:
7877 		/* Only valid matches are exact, which memcmp() above
7878 		 * would have accepted
7879 		 */
7880 	default:
7881 		/* Don't know what's going on, just say it's not safe */
7882 		return false;
7883 	}
7884 
7885 	/* Shouldn't get here; if we do, say it's not safe */
7886 	WARN_ON_ONCE(1);
7887 	return false;
7888 }
7889 
7890 static bool stacksafe(struct bpf_func_state *old,
7891 		      struct bpf_func_state *cur,
7892 		      struct idpair *idmap)
7893 {
7894 	int i, spi;
7895 
7896 	/* walk slots of the explored stack and ignore any additional
7897 	 * slots in the current stack, since explored(safe) state
7898 	 * didn't use them
7899 	 */
7900 	for (i = 0; i < old->allocated_stack; i++) {
7901 		spi = i / BPF_REG_SIZE;
7902 
7903 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
7904 			i += BPF_REG_SIZE - 1;
7905 			/* explored state didn't use this */
7906 			continue;
7907 		}
7908 
7909 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
7910 			continue;
7911 
7912 		/* explored stack has more populated slots than current stack
7913 		 * and these slots were used
7914 		 */
7915 		if (i >= cur->allocated_stack)
7916 			return false;
7917 
7918 		/* if old state was safe with misc data in the stack
7919 		 * it will be safe with zero-initialized stack.
7920 		 * The opposite is not true
7921 		 */
7922 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
7923 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
7924 			continue;
7925 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
7926 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
7927 			/* Ex: old explored (safe) state has STACK_SPILL in
7928 			 * this stack slot, but current has has STACK_MISC ->
7929 			 * this verifier states are not equivalent,
7930 			 * return false to continue verification of this path
7931 			 */
7932 			return false;
7933 		if (i % BPF_REG_SIZE)
7934 			continue;
7935 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
7936 			continue;
7937 		if (!regsafe(&old->stack[spi].spilled_ptr,
7938 			     &cur->stack[spi].spilled_ptr,
7939 			     idmap))
7940 			/* when explored and current stack slot are both storing
7941 			 * spilled registers, check that stored pointers types
7942 			 * are the same as well.
7943 			 * Ex: explored safe path could have stored
7944 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
7945 			 * but current path has stored:
7946 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
7947 			 * such verifier states are not equivalent.
7948 			 * return false to continue verification of this path
7949 			 */
7950 			return false;
7951 	}
7952 	return true;
7953 }
7954 
7955 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
7956 {
7957 	if (old->acquired_refs != cur->acquired_refs)
7958 		return false;
7959 	return !memcmp(old->refs, cur->refs,
7960 		       sizeof(*old->refs) * old->acquired_refs);
7961 }
7962 
7963 /* compare two verifier states
7964  *
7965  * all states stored in state_list are known to be valid, since
7966  * verifier reached 'bpf_exit' instruction through them
7967  *
7968  * this function is called when verifier exploring different branches of
7969  * execution popped from the state stack. If it sees an old state that has
7970  * more strict register state and more strict stack state then this execution
7971  * branch doesn't need to be explored further, since verifier already
7972  * concluded that more strict state leads to valid finish.
7973  *
7974  * Therefore two states are equivalent if register state is more conservative
7975  * and explored stack state is more conservative than the current one.
7976  * Example:
7977  *       explored                   current
7978  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7979  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7980  *
7981  * In other words if current stack state (one being explored) has more
7982  * valid slots than old one that already passed validation, it means
7983  * the verifier can stop exploring and conclude that current state is valid too
7984  *
7985  * Similarly with registers. If explored state has register type as invalid
7986  * whereas register type in current state is meaningful, it means that
7987  * the current state will reach 'bpf_exit' instruction safely
7988  */
7989 static bool func_states_equal(struct bpf_func_state *old,
7990 			      struct bpf_func_state *cur)
7991 {
7992 	struct idpair *idmap;
7993 	bool ret = false;
7994 	int i;
7995 
7996 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
7997 	/* If we failed to allocate the idmap, just say it's not safe */
7998 	if (!idmap)
7999 		return false;
8000 
8001 	for (i = 0; i < MAX_BPF_REG; i++) {
8002 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
8003 			goto out_free;
8004 	}
8005 
8006 	if (!stacksafe(old, cur, idmap))
8007 		goto out_free;
8008 
8009 	if (!refsafe(old, cur))
8010 		goto out_free;
8011 	ret = true;
8012 out_free:
8013 	kfree(idmap);
8014 	return ret;
8015 }
8016 
8017 static bool states_equal(struct bpf_verifier_env *env,
8018 			 struct bpf_verifier_state *old,
8019 			 struct bpf_verifier_state *cur)
8020 {
8021 	int i;
8022 
8023 	if (old->curframe != cur->curframe)
8024 		return false;
8025 
8026 	/* Verification state from speculative execution simulation
8027 	 * must never prune a non-speculative execution one.
8028 	 */
8029 	if (old->speculative && !cur->speculative)
8030 		return false;
8031 
8032 	if (old->active_spin_lock != cur->active_spin_lock)
8033 		return false;
8034 
8035 	/* for states to be equal callsites have to be the same
8036 	 * and all frame states need to be equivalent
8037 	 */
8038 	for (i = 0; i <= old->curframe; i++) {
8039 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
8040 			return false;
8041 		if (!func_states_equal(old->frame[i], cur->frame[i]))
8042 			return false;
8043 	}
8044 	return true;
8045 }
8046 
8047 /* Return 0 if no propagation happened. Return negative error code if error
8048  * happened. Otherwise, return the propagated bit.
8049  */
8050 static int propagate_liveness_reg(struct bpf_verifier_env *env,
8051 				  struct bpf_reg_state *reg,
8052 				  struct bpf_reg_state *parent_reg)
8053 {
8054 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8055 	u8 flag = reg->live & REG_LIVE_READ;
8056 	int err;
8057 
8058 	/* When comes here, read flags of PARENT_REG or REG could be any of
8059 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8060 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8061 	 */
8062 	if (parent_flag == REG_LIVE_READ64 ||
8063 	    /* Or if there is no read flag from REG. */
8064 	    !flag ||
8065 	    /* Or if the read flag from REG is the same as PARENT_REG. */
8066 	    parent_flag == flag)
8067 		return 0;
8068 
8069 	err = mark_reg_read(env, reg, parent_reg, flag);
8070 	if (err)
8071 		return err;
8072 
8073 	return flag;
8074 }
8075 
8076 /* A write screens off any subsequent reads; but write marks come from the
8077  * straight-line code between a state and its parent.  When we arrive at an
8078  * equivalent state (jump target or such) we didn't arrive by the straight-line
8079  * code, so read marks in the state must propagate to the parent regardless
8080  * of the state's write marks. That's what 'parent == state->parent' comparison
8081  * in mark_reg_read() is for.
8082  */
8083 static int propagate_liveness(struct bpf_verifier_env *env,
8084 			      const struct bpf_verifier_state *vstate,
8085 			      struct bpf_verifier_state *vparent)
8086 {
8087 	struct bpf_reg_state *state_reg, *parent_reg;
8088 	struct bpf_func_state *state, *parent;
8089 	int i, frame, err = 0;
8090 
8091 	if (vparent->curframe != vstate->curframe) {
8092 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
8093 		     vparent->curframe, vstate->curframe);
8094 		return -EFAULT;
8095 	}
8096 	/* Propagate read liveness of registers... */
8097 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
8098 	for (frame = 0; frame <= vstate->curframe; frame++) {
8099 		parent = vparent->frame[frame];
8100 		state = vstate->frame[frame];
8101 		parent_reg = parent->regs;
8102 		state_reg = state->regs;
8103 		/* We don't need to worry about FP liveness, it's read-only */
8104 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
8105 			err = propagate_liveness_reg(env, &state_reg[i],
8106 						     &parent_reg[i]);
8107 			if (err < 0)
8108 				return err;
8109 			if (err == REG_LIVE_READ64)
8110 				mark_insn_zext(env, &parent_reg[i]);
8111 		}
8112 
8113 		/* Propagate stack slots. */
8114 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8115 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
8116 			parent_reg = &parent->stack[i].spilled_ptr;
8117 			state_reg = &state->stack[i].spilled_ptr;
8118 			err = propagate_liveness_reg(env, state_reg,
8119 						     parent_reg);
8120 			if (err < 0)
8121 				return err;
8122 		}
8123 	}
8124 	return 0;
8125 }
8126 
8127 /* find precise scalars in the previous equivalent state and
8128  * propagate them into the current state
8129  */
8130 static int propagate_precision(struct bpf_verifier_env *env,
8131 			       const struct bpf_verifier_state *old)
8132 {
8133 	struct bpf_reg_state *state_reg;
8134 	struct bpf_func_state *state;
8135 	int i, err = 0;
8136 
8137 	state = old->frame[old->curframe];
8138 	state_reg = state->regs;
8139 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8140 		if (state_reg->type != SCALAR_VALUE ||
8141 		    !state_reg->precise)
8142 			continue;
8143 		if (env->log.level & BPF_LOG_LEVEL2)
8144 			verbose(env, "propagating r%d\n", i);
8145 		err = mark_chain_precision(env, i);
8146 		if (err < 0)
8147 			return err;
8148 	}
8149 
8150 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8151 		if (state->stack[i].slot_type[0] != STACK_SPILL)
8152 			continue;
8153 		state_reg = &state->stack[i].spilled_ptr;
8154 		if (state_reg->type != SCALAR_VALUE ||
8155 		    !state_reg->precise)
8156 			continue;
8157 		if (env->log.level & BPF_LOG_LEVEL2)
8158 			verbose(env, "propagating fp%d\n",
8159 				(-i - 1) * BPF_REG_SIZE);
8160 		err = mark_chain_precision_stack(env, i);
8161 		if (err < 0)
8162 			return err;
8163 	}
8164 	return 0;
8165 }
8166 
8167 static bool states_maybe_looping(struct bpf_verifier_state *old,
8168 				 struct bpf_verifier_state *cur)
8169 {
8170 	struct bpf_func_state *fold, *fcur;
8171 	int i, fr = cur->curframe;
8172 
8173 	if (old->curframe != fr)
8174 		return false;
8175 
8176 	fold = old->frame[fr];
8177 	fcur = cur->frame[fr];
8178 	for (i = 0; i < MAX_BPF_REG; i++)
8179 		if (memcmp(&fold->regs[i], &fcur->regs[i],
8180 			   offsetof(struct bpf_reg_state, parent)))
8181 			return false;
8182 	return true;
8183 }
8184 
8185 
8186 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
8187 {
8188 	struct bpf_verifier_state_list *new_sl;
8189 	struct bpf_verifier_state_list *sl, **pprev;
8190 	struct bpf_verifier_state *cur = env->cur_state, *new;
8191 	int i, j, err, states_cnt = 0;
8192 	bool add_new_state = env->test_state_freq ? true : false;
8193 
8194 	cur->last_insn_idx = env->prev_insn_idx;
8195 	if (!env->insn_aux_data[insn_idx].prune_point)
8196 		/* this 'insn_idx' instruction wasn't marked, so we will not
8197 		 * be doing state search here
8198 		 */
8199 		return 0;
8200 
8201 	/* bpf progs typically have pruning point every 4 instructions
8202 	 * http://vger.kernel.org/bpfconf2019.html#session-1
8203 	 * Do not add new state for future pruning if the verifier hasn't seen
8204 	 * at least 2 jumps and at least 8 instructions.
8205 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
8206 	 * In tests that amounts to up to 50% reduction into total verifier
8207 	 * memory consumption and 20% verifier time speedup.
8208 	 */
8209 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
8210 	    env->insn_processed - env->prev_insn_processed >= 8)
8211 		add_new_state = true;
8212 
8213 	pprev = explored_state(env, insn_idx);
8214 	sl = *pprev;
8215 
8216 	clean_live_states(env, insn_idx, cur);
8217 
8218 	while (sl) {
8219 		states_cnt++;
8220 		if (sl->state.insn_idx != insn_idx)
8221 			goto next;
8222 		if (sl->state.branches) {
8223 			if (states_maybe_looping(&sl->state, cur) &&
8224 			    states_equal(env, &sl->state, cur)) {
8225 				verbose_linfo(env, insn_idx, "; ");
8226 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
8227 				return -EINVAL;
8228 			}
8229 			/* if the verifier is processing a loop, avoid adding new state
8230 			 * too often, since different loop iterations have distinct
8231 			 * states and may not help future pruning.
8232 			 * This threshold shouldn't be too low to make sure that
8233 			 * a loop with large bound will be rejected quickly.
8234 			 * The most abusive loop will be:
8235 			 * r1 += 1
8236 			 * if r1 < 1000000 goto pc-2
8237 			 * 1M insn_procssed limit / 100 == 10k peak states.
8238 			 * This threshold shouldn't be too high either, since states
8239 			 * at the end of the loop are likely to be useful in pruning.
8240 			 */
8241 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
8242 			    env->insn_processed - env->prev_insn_processed < 100)
8243 				add_new_state = false;
8244 			goto miss;
8245 		}
8246 		if (states_equal(env, &sl->state, cur)) {
8247 			sl->hit_cnt++;
8248 			/* reached equivalent register/stack state,
8249 			 * prune the search.
8250 			 * Registers read by the continuation are read by us.
8251 			 * If we have any write marks in env->cur_state, they
8252 			 * will prevent corresponding reads in the continuation
8253 			 * from reaching our parent (an explored_state).  Our
8254 			 * own state will get the read marks recorded, but
8255 			 * they'll be immediately forgotten as we're pruning
8256 			 * this state and will pop a new one.
8257 			 */
8258 			err = propagate_liveness(env, &sl->state, cur);
8259 
8260 			/* if previous state reached the exit with precision and
8261 			 * current state is equivalent to it (except precsion marks)
8262 			 * the precision needs to be propagated back in
8263 			 * the current state.
8264 			 */
8265 			err = err ? : push_jmp_history(env, cur);
8266 			err = err ? : propagate_precision(env, &sl->state);
8267 			if (err)
8268 				return err;
8269 			return 1;
8270 		}
8271 miss:
8272 		/* when new state is not going to be added do not increase miss count.
8273 		 * Otherwise several loop iterations will remove the state
8274 		 * recorded earlier. The goal of these heuristics is to have
8275 		 * states from some iterations of the loop (some in the beginning
8276 		 * and some at the end) to help pruning.
8277 		 */
8278 		if (add_new_state)
8279 			sl->miss_cnt++;
8280 		/* heuristic to determine whether this state is beneficial
8281 		 * to keep checking from state equivalence point of view.
8282 		 * Higher numbers increase max_states_per_insn and verification time,
8283 		 * but do not meaningfully decrease insn_processed.
8284 		 */
8285 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
8286 			/* the state is unlikely to be useful. Remove it to
8287 			 * speed up verification
8288 			 */
8289 			*pprev = sl->next;
8290 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
8291 				u32 br = sl->state.branches;
8292 
8293 				WARN_ONCE(br,
8294 					  "BUG live_done but branches_to_explore %d\n",
8295 					  br);
8296 				free_verifier_state(&sl->state, false);
8297 				kfree(sl);
8298 				env->peak_states--;
8299 			} else {
8300 				/* cannot free this state, since parentage chain may
8301 				 * walk it later. Add it for free_list instead to
8302 				 * be freed at the end of verification
8303 				 */
8304 				sl->next = env->free_list;
8305 				env->free_list = sl;
8306 			}
8307 			sl = *pprev;
8308 			continue;
8309 		}
8310 next:
8311 		pprev = &sl->next;
8312 		sl = *pprev;
8313 	}
8314 
8315 	if (env->max_states_per_insn < states_cnt)
8316 		env->max_states_per_insn = states_cnt;
8317 
8318 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
8319 		return push_jmp_history(env, cur);
8320 
8321 	if (!add_new_state)
8322 		return push_jmp_history(env, cur);
8323 
8324 	/* There were no equivalent states, remember the current one.
8325 	 * Technically the current state is not proven to be safe yet,
8326 	 * but it will either reach outer most bpf_exit (which means it's safe)
8327 	 * or it will be rejected. When there are no loops the verifier won't be
8328 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
8329 	 * again on the way to bpf_exit.
8330 	 * When looping the sl->state.branches will be > 0 and this state
8331 	 * will not be considered for equivalence until branches == 0.
8332 	 */
8333 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
8334 	if (!new_sl)
8335 		return -ENOMEM;
8336 	env->total_states++;
8337 	env->peak_states++;
8338 	env->prev_jmps_processed = env->jmps_processed;
8339 	env->prev_insn_processed = env->insn_processed;
8340 
8341 	/* add new state to the head of linked list */
8342 	new = &new_sl->state;
8343 	err = copy_verifier_state(new, cur);
8344 	if (err) {
8345 		free_verifier_state(new, false);
8346 		kfree(new_sl);
8347 		return err;
8348 	}
8349 	new->insn_idx = insn_idx;
8350 	WARN_ONCE(new->branches != 1,
8351 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
8352 
8353 	cur->parent = new;
8354 	cur->first_insn_idx = insn_idx;
8355 	clear_jmp_history(cur);
8356 	new_sl->next = *explored_state(env, insn_idx);
8357 	*explored_state(env, insn_idx) = new_sl;
8358 	/* connect new state to parentage chain. Current frame needs all
8359 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
8360 	 * to the stack implicitly by JITs) so in callers' frames connect just
8361 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
8362 	 * the state of the call instruction (with WRITTEN set), and r0 comes
8363 	 * from callee with its full parentage chain, anyway.
8364 	 */
8365 	/* clear write marks in current state: the writes we did are not writes
8366 	 * our child did, so they don't screen off its reads from us.
8367 	 * (There are no read marks in current state, because reads always mark
8368 	 * their parent and current state never has children yet.  Only
8369 	 * explored_states can get read marks.)
8370 	 */
8371 	for (j = 0; j <= cur->curframe; j++) {
8372 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
8373 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
8374 		for (i = 0; i < BPF_REG_FP; i++)
8375 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
8376 	}
8377 
8378 	/* all stack frames are accessible from callee, clear them all */
8379 	for (j = 0; j <= cur->curframe; j++) {
8380 		struct bpf_func_state *frame = cur->frame[j];
8381 		struct bpf_func_state *newframe = new->frame[j];
8382 
8383 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
8384 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
8385 			frame->stack[i].spilled_ptr.parent =
8386 						&newframe->stack[i].spilled_ptr;
8387 		}
8388 	}
8389 	return 0;
8390 }
8391 
8392 /* Return true if it's OK to have the same insn return a different type. */
8393 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
8394 {
8395 	switch (type) {
8396 	case PTR_TO_CTX:
8397 	case PTR_TO_SOCKET:
8398 	case PTR_TO_SOCKET_OR_NULL:
8399 	case PTR_TO_SOCK_COMMON:
8400 	case PTR_TO_SOCK_COMMON_OR_NULL:
8401 	case PTR_TO_TCP_SOCK:
8402 	case PTR_TO_TCP_SOCK_OR_NULL:
8403 	case PTR_TO_XDP_SOCK:
8404 	case PTR_TO_BTF_ID:
8405 		return false;
8406 	default:
8407 		return true;
8408 	}
8409 }
8410 
8411 /* If an instruction was previously used with particular pointer types, then we
8412  * need to be careful to avoid cases such as the below, where it may be ok
8413  * for one branch accessing the pointer, but not ok for the other branch:
8414  *
8415  * R1 = sock_ptr
8416  * goto X;
8417  * ...
8418  * R1 = some_other_valid_ptr;
8419  * goto X;
8420  * ...
8421  * R2 = *(u32 *)(R1 + 0);
8422  */
8423 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
8424 {
8425 	return src != prev && (!reg_type_mismatch_ok(src) ||
8426 			       !reg_type_mismatch_ok(prev));
8427 }
8428 
8429 static int do_check(struct bpf_verifier_env *env)
8430 {
8431 	struct bpf_verifier_state *state = env->cur_state;
8432 	struct bpf_insn *insns = env->prog->insnsi;
8433 	struct bpf_reg_state *regs;
8434 	int insn_cnt = env->prog->len;
8435 	bool do_print_state = false;
8436 	int prev_insn_idx = -1;
8437 
8438 	for (;;) {
8439 		struct bpf_insn *insn;
8440 		u8 class;
8441 		int err;
8442 
8443 		env->prev_insn_idx = prev_insn_idx;
8444 		if (env->insn_idx >= insn_cnt) {
8445 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
8446 				env->insn_idx, insn_cnt);
8447 			return -EFAULT;
8448 		}
8449 
8450 		insn = &insns[env->insn_idx];
8451 		class = BPF_CLASS(insn->code);
8452 
8453 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
8454 			verbose(env,
8455 				"BPF program is too large. Processed %d insn\n",
8456 				env->insn_processed);
8457 			return -E2BIG;
8458 		}
8459 
8460 		err = is_state_visited(env, env->insn_idx);
8461 		if (err < 0)
8462 			return err;
8463 		if (err == 1) {
8464 			/* found equivalent state, can prune the search */
8465 			if (env->log.level & BPF_LOG_LEVEL) {
8466 				if (do_print_state)
8467 					verbose(env, "\nfrom %d to %d%s: safe\n",
8468 						env->prev_insn_idx, env->insn_idx,
8469 						env->cur_state->speculative ?
8470 						" (speculative execution)" : "");
8471 				else
8472 					verbose(env, "%d: safe\n", env->insn_idx);
8473 			}
8474 			goto process_bpf_exit;
8475 		}
8476 
8477 		if (signal_pending(current))
8478 			return -EAGAIN;
8479 
8480 		if (need_resched())
8481 			cond_resched();
8482 
8483 		if (env->log.level & BPF_LOG_LEVEL2 ||
8484 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
8485 			if (env->log.level & BPF_LOG_LEVEL2)
8486 				verbose(env, "%d:", env->insn_idx);
8487 			else
8488 				verbose(env, "\nfrom %d to %d%s:",
8489 					env->prev_insn_idx, env->insn_idx,
8490 					env->cur_state->speculative ?
8491 					" (speculative execution)" : "");
8492 			print_verifier_state(env, state->frame[state->curframe]);
8493 			do_print_state = false;
8494 		}
8495 
8496 		if (env->log.level & BPF_LOG_LEVEL) {
8497 			const struct bpf_insn_cbs cbs = {
8498 				.cb_print	= verbose,
8499 				.private_data	= env,
8500 			};
8501 
8502 			verbose_linfo(env, env->insn_idx, "; ");
8503 			verbose(env, "%d: ", env->insn_idx);
8504 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
8505 		}
8506 
8507 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
8508 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
8509 							   env->prev_insn_idx);
8510 			if (err)
8511 				return err;
8512 		}
8513 
8514 		regs = cur_regs(env);
8515 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8516 		prev_insn_idx = env->insn_idx;
8517 
8518 		if (class == BPF_ALU || class == BPF_ALU64) {
8519 			err = check_alu_op(env, insn);
8520 			if (err)
8521 				return err;
8522 
8523 		} else if (class == BPF_LDX) {
8524 			enum bpf_reg_type *prev_src_type, src_reg_type;
8525 
8526 			/* check for reserved fields is already done */
8527 
8528 			/* check src operand */
8529 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8530 			if (err)
8531 				return err;
8532 
8533 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8534 			if (err)
8535 				return err;
8536 
8537 			src_reg_type = regs[insn->src_reg].type;
8538 
8539 			/* check that memory (src_reg + off) is readable,
8540 			 * the state of dst_reg will be updated by this func
8541 			 */
8542 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
8543 					       insn->off, BPF_SIZE(insn->code),
8544 					       BPF_READ, insn->dst_reg, false);
8545 			if (err)
8546 				return err;
8547 
8548 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
8549 
8550 			if (*prev_src_type == NOT_INIT) {
8551 				/* saw a valid insn
8552 				 * dst_reg = *(u32 *)(src_reg + off)
8553 				 * save type to validate intersecting paths
8554 				 */
8555 				*prev_src_type = src_reg_type;
8556 
8557 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
8558 				/* ABuser program is trying to use the same insn
8559 				 * dst_reg = *(u32*) (src_reg + off)
8560 				 * with different pointer types:
8561 				 * src_reg == ctx in one branch and
8562 				 * src_reg == stack|map in some other branch.
8563 				 * Reject it.
8564 				 */
8565 				verbose(env, "same insn cannot be used with different pointers\n");
8566 				return -EINVAL;
8567 			}
8568 
8569 		} else if (class == BPF_STX) {
8570 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
8571 
8572 			if (BPF_MODE(insn->code) == BPF_XADD) {
8573 				err = check_xadd(env, env->insn_idx, insn);
8574 				if (err)
8575 					return err;
8576 				env->insn_idx++;
8577 				continue;
8578 			}
8579 
8580 			/* check src1 operand */
8581 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8582 			if (err)
8583 				return err;
8584 			/* check src2 operand */
8585 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8586 			if (err)
8587 				return err;
8588 
8589 			dst_reg_type = regs[insn->dst_reg].type;
8590 
8591 			/* check that memory (dst_reg + off) is writeable */
8592 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8593 					       insn->off, BPF_SIZE(insn->code),
8594 					       BPF_WRITE, insn->src_reg, false);
8595 			if (err)
8596 				return err;
8597 
8598 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
8599 
8600 			if (*prev_dst_type == NOT_INIT) {
8601 				*prev_dst_type = dst_reg_type;
8602 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
8603 				verbose(env, "same insn cannot be used with different pointers\n");
8604 				return -EINVAL;
8605 			}
8606 
8607 		} else if (class == BPF_ST) {
8608 			if (BPF_MODE(insn->code) != BPF_MEM ||
8609 			    insn->src_reg != BPF_REG_0) {
8610 				verbose(env, "BPF_ST uses reserved fields\n");
8611 				return -EINVAL;
8612 			}
8613 			/* check src operand */
8614 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8615 			if (err)
8616 				return err;
8617 
8618 			if (is_ctx_reg(env, insn->dst_reg)) {
8619 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
8620 					insn->dst_reg,
8621 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
8622 				return -EACCES;
8623 			}
8624 
8625 			/* check that memory (dst_reg + off) is writeable */
8626 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8627 					       insn->off, BPF_SIZE(insn->code),
8628 					       BPF_WRITE, -1, false);
8629 			if (err)
8630 				return err;
8631 
8632 		} else if (class == BPF_JMP || class == BPF_JMP32) {
8633 			u8 opcode = BPF_OP(insn->code);
8634 
8635 			env->jmps_processed++;
8636 			if (opcode == BPF_CALL) {
8637 				if (BPF_SRC(insn->code) != BPF_K ||
8638 				    insn->off != 0 ||
8639 				    (insn->src_reg != BPF_REG_0 &&
8640 				     insn->src_reg != BPF_PSEUDO_CALL) ||
8641 				    insn->dst_reg != BPF_REG_0 ||
8642 				    class == BPF_JMP32) {
8643 					verbose(env, "BPF_CALL uses reserved fields\n");
8644 					return -EINVAL;
8645 				}
8646 
8647 				if (env->cur_state->active_spin_lock &&
8648 				    (insn->src_reg == BPF_PSEUDO_CALL ||
8649 				     insn->imm != BPF_FUNC_spin_unlock)) {
8650 					verbose(env, "function calls are not allowed while holding a lock\n");
8651 					return -EINVAL;
8652 				}
8653 				if (insn->src_reg == BPF_PSEUDO_CALL)
8654 					err = check_func_call(env, insn, &env->insn_idx);
8655 				else
8656 					err = check_helper_call(env, insn->imm, env->insn_idx);
8657 				if (err)
8658 					return err;
8659 
8660 			} else if (opcode == BPF_JA) {
8661 				if (BPF_SRC(insn->code) != BPF_K ||
8662 				    insn->imm != 0 ||
8663 				    insn->src_reg != BPF_REG_0 ||
8664 				    insn->dst_reg != BPF_REG_0 ||
8665 				    class == BPF_JMP32) {
8666 					verbose(env, "BPF_JA uses reserved fields\n");
8667 					return -EINVAL;
8668 				}
8669 
8670 				env->insn_idx += insn->off + 1;
8671 				continue;
8672 
8673 			} else if (opcode == BPF_EXIT) {
8674 				if (BPF_SRC(insn->code) != BPF_K ||
8675 				    insn->imm != 0 ||
8676 				    insn->src_reg != BPF_REG_0 ||
8677 				    insn->dst_reg != BPF_REG_0 ||
8678 				    class == BPF_JMP32) {
8679 					verbose(env, "BPF_EXIT uses reserved fields\n");
8680 					return -EINVAL;
8681 				}
8682 
8683 				if (env->cur_state->active_spin_lock) {
8684 					verbose(env, "bpf_spin_unlock is missing\n");
8685 					return -EINVAL;
8686 				}
8687 
8688 				if (state->curframe) {
8689 					/* exit from nested function */
8690 					err = prepare_func_exit(env, &env->insn_idx);
8691 					if (err)
8692 						return err;
8693 					do_print_state = true;
8694 					continue;
8695 				}
8696 
8697 				err = check_reference_leak(env);
8698 				if (err)
8699 					return err;
8700 
8701 				err = check_return_code(env);
8702 				if (err)
8703 					return err;
8704 process_bpf_exit:
8705 				update_branch_counts(env, env->cur_state);
8706 				err = pop_stack(env, &prev_insn_idx,
8707 						&env->insn_idx);
8708 				if (err < 0) {
8709 					if (err != -ENOENT)
8710 						return err;
8711 					break;
8712 				} else {
8713 					do_print_state = true;
8714 					continue;
8715 				}
8716 			} else {
8717 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
8718 				if (err)
8719 					return err;
8720 			}
8721 		} else if (class == BPF_LD) {
8722 			u8 mode = BPF_MODE(insn->code);
8723 
8724 			if (mode == BPF_ABS || mode == BPF_IND) {
8725 				err = check_ld_abs(env, insn);
8726 				if (err)
8727 					return err;
8728 
8729 			} else if (mode == BPF_IMM) {
8730 				err = check_ld_imm(env, insn);
8731 				if (err)
8732 					return err;
8733 
8734 				env->insn_idx++;
8735 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8736 			} else {
8737 				verbose(env, "invalid BPF_LD mode\n");
8738 				return -EINVAL;
8739 			}
8740 		} else {
8741 			verbose(env, "unknown insn class %d\n", class);
8742 			return -EINVAL;
8743 		}
8744 
8745 		env->insn_idx++;
8746 	}
8747 
8748 	return 0;
8749 }
8750 
8751 static int check_map_prealloc(struct bpf_map *map)
8752 {
8753 	return (map->map_type != BPF_MAP_TYPE_HASH &&
8754 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8755 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
8756 		!(map->map_flags & BPF_F_NO_PREALLOC);
8757 }
8758 
8759 static bool is_tracing_prog_type(enum bpf_prog_type type)
8760 {
8761 	switch (type) {
8762 	case BPF_PROG_TYPE_KPROBE:
8763 	case BPF_PROG_TYPE_TRACEPOINT:
8764 	case BPF_PROG_TYPE_PERF_EVENT:
8765 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8766 		return true;
8767 	default:
8768 		return false;
8769 	}
8770 }
8771 
8772 static bool is_preallocated_map(struct bpf_map *map)
8773 {
8774 	if (!check_map_prealloc(map))
8775 		return false;
8776 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
8777 		return false;
8778 	return true;
8779 }
8780 
8781 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
8782 					struct bpf_map *map,
8783 					struct bpf_prog *prog)
8784 
8785 {
8786 	/*
8787 	 * Validate that trace type programs use preallocated hash maps.
8788 	 *
8789 	 * For programs attached to PERF events this is mandatory as the
8790 	 * perf NMI can hit any arbitrary code sequence.
8791 	 *
8792 	 * All other trace types using preallocated hash maps are unsafe as
8793 	 * well because tracepoint or kprobes can be inside locked regions
8794 	 * of the memory allocator or at a place where a recursion into the
8795 	 * memory allocator would see inconsistent state.
8796 	 *
8797 	 * On RT enabled kernels run-time allocation of all trace type
8798 	 * programs is strictly prohibited due to lock type constraints. On
8799 	 * !RT kernels it is allowed for backwards compatibility reasons for
8800 	 * now, but warnings are emitted so developers are made aware of
8801 	 * the unsafety and can fix their programs before this is enforced.
8802 	 */
8803 	if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) {
8804 		if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
8805 			verbose(env, "perf_event programs can only use preallocated hash map\n");
8806 			return -EINVAL;
8807 		}
8808 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
8809 			verbose(env, "trace type programs can only use preallocated hash map\n");
8810 			return -EINVAL;
8811 		}
8812 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
8813 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
8814 	}
8815 
8816 	if ((is_tracing_prog_type(prog->type) ||
8817 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
8818 	    map_value_has_spin_lock(map)) {
8819 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
8820 		return -EINVAL;
8821 	}
8822 
8823 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
8824 	    !bpf_offload_prog_map_match(prog, map)) {
8825 		verbose(env, "offload device mismatch between prog and map\n");
8826 		return -EINVAL;
8827 	}
8828 
8829 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
8830 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
8831 		return -EINVAL;
8832 	}
8833 
8834 	return 0;
8835 }
8836 
8837 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
8838 {
8839 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
8840 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
8841 }
8842 
8843 /* look for pseudo eBPF instructions that access map FDs and
8844  * replace them with actual map pointers
8845  */
8846 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
8847 {
8848 	struct bpf_insn *insn = env->prog->insnsi;
8849 	int insn_cnt = env->prog->len;
8850 	int i, j, err;
8851 
8852 	err = bpf_prog_calc_tag(env->prog);
8853 	if (err)
8854 		return err;
8855 
8856 	for (i = 0; i < insn_cnt; i++, insn++) {
8857 		if (BPF_CLASS(insn->code) == BPF_LDX &&
8858 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
8859 			verbose(env, "BPF_LDX uses reserved fields\n");
8860 			return -EINVAL;
8861 		}
8862 
8863 		if (BPF_CLASS(insn->code) == BPF_STX &&
8864 		    ((BPF_MODE(insn->code) != BPF_MEM &&
8865 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
8866 			verbose(env, "BPF_STX uses reserved fields\n");
8867 			return -EINVAL;
8868 		}
8869 
8870 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
8871 			struct bpf_insn_aux_data *aux;
8872 			struct bpf_map *map;
8873 			struct fd f;
8874 			u64 addr;
8875 
8876 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
8877 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
8878 			    insn[1].off != 0) {
8879 				verbose(env, "invalid bpf_ld_imm64 insn\n");
8880 				return -EINVAL;
8881 			}
8882 
8883 			if (insn[0].src_reg == 0)
8884 				/* valid generic load 64-bit imm */
8885 				goto next_insn;
8886 
8887 			/* In final convert_pseudo_ld_imm64() step, this is
8888 			 * converted into regular 64-bit imm load insn.
8889 			 */
8890 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
8891 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
8892 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
8893 			     insn[1].imm != 0)) {
8894 				verbose(env,
8895 					"unrecognized bpf_ld_imm64 insn\n");
8896 				return -EINVAL;
8897 			}
8898 
8899 			f = fdget(insn[0].imm);
8900 			map = __bpf_map_get(f);
8901 			if (IS_ERR(map)) {
8902 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
8903 					insn[0].imm);
8904 				return PTR_ERR(map);
8905 			}
8906 
8907 			err = check_map_prog_compatibility(env, map, env->prog);
8908 			if (err) {
8909 				fdput(f);
8910 				return err;
8911 			}
8912 
8913 			aux = &env->insn_aux_data[i];
8914 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8915 				addr = (unsigned long)map;
8916 			} else {
8917 				u32 off = insn[1].imm;
8918 
8919 				if (off >= BPF_MAX_VAR_OFF) {
8920 					verbose(env, "direct value offset of %u is not allowed\n", off);
8921 					fdput(f);
8922 					return -EINVAL;
8923 				}
8924 
8925 				if (!map->ops->map_direct_value_addr) {
8926 					verbose(env, "no direct value access support for this map type\n");
8927 					fdput(f);
8928 					return -EINVAL;
8929 				}
8930 
8931 				err = map->ops->map_direct_value_addr(map, &addr, off);
8932 				if (err) {
8933 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
8934 						map->value_size, off);
8935 					fdput(f);
8936 					return err;
8937 				}
8938 
8939 				aux->map_off = off;
8940 				addr += off;
8941 			}
8942 
8943 			insn[0].imm = (u32)addr;
8944 			insn[1].imm = addr >> 32;
8945 
8946 			/* check whether we recorded this map already */
8947 			for (j = 0; j < env->used_map_cnt; j++) {
8948 				if (env->used_maps[j] == map) {
8949 					aux->map_index = j;
8950 					fdput(f);
8951 					goto next_insn;
8952 				}
8953 			}
8954 
8955 			if (env->used_map_cnt >= MAX_USED_MAPS) {
8956 				fdput(f);
8957 				return -E2BIG;
8958 			}
8959 
8960 			/* hold the map. If the program is rejected by verifier,
8961 			 * the map will be released by release_maps() or it
8962 			 * will be used by the valid program until it's unloaded
8963 			 * and all maps are released in free_used_maps()
8964 			 */
8965 			bpf_map_inc(map);
8966 
8967 			aux->map_index = env->used_map_cnt;
8968 			env->used_maps[env->used_map_cnt++] = map;
8969 
8970 			if (bpf_map_is_cgroup_storage(map) &&
8971 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
8972 				verbose(env, "only one cgroup storage of each type is allowed\n");
8973 				fdput(f);
8974 				return -EBUSY;
8975 			}
8976 
8977 			fdput(f);
8978 next_insn:
8979 			insn++;
8980 			i++;
8981 			continue;
8982 		}
8983 
8984 		/* Basic sanity check before we invest more work here. */
8985 		if (!bpf_opcode_in_insntable(insn->code)) {
8986 			verbose(env, "unknown opcode %02x\n", insn->code);
8987 			return -EINVAL;
8988 		}
8989 	}
8990 
8991 	/* now all pseudo BPF_LD_IMM64 instructions load valid
8992 	 * 'struct bpf_map *' into a register instead of user map_fd.
8993 	 * These pointers will be used later by verifier to validate map access.
8994 	 */
8995 	return 0;
8996 }
8997 
8998 /* drop refcnt of maps used by the rejected program */
8999 static void release_maps(struct bpf_verifier_env *env)
9000 {
9001 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
9002 			     env->used_map_cnt);
9003 }
9004 
9005 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
9006 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
9007 {
9008 	struct bpf_insn *insn = env->prog->insnsi;
9009 	int insn_cnt = env->prog->len;
9010 	int i;
9011 
9012 	for (i = 0; i < insn_cnt; i++, insn++)
9013 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
9014 			insn->src_reg = 0;
9015 }
9016 
9017 /* single env->prog->insni[off] instruction was replaced with the range
9018  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
9019  * [0, off) and [off, end) to new locations, so the patched range stays zero
9020  */
9021 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
9022 				struct bpf_prog *new_prog, u32 off, u32 cnt)
9023 {
9024 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
9025 	struct bpf_insn *insn = new_prog->insnsi;
9026 	u32 prog_len;
9027 	int i;
9028 
9029 	/* aux info at OFF always needs adjustment, no matter fast path
9030 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9031 	 * original insn at old prog.
9032 	 */
9033 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9034 
9035 	if (cnt == 1)
9036 		return 0;
9037 	prog_len = new_prog->len;
9038 	new_data = vzalloc(array_size(prog_len,
9039 				      sizeof(struct bpf_insn_aux_data)));
9040 	if (!new_data)
9041 		return -ENOMEM;
9042 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9043 	memcpy(new_data + off + cnt - 1, old_data + off,
9044 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
9045 	for (i = off; i < off + cnt - 1; i++) {
9046 		new_data[i].seen = env->pass_cnt;
9047 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
9048 	}
9049 	env->insn_aux_data = new_data;
9050 	vfree(old_data);
9051 	return 0;
9052 }
9053 
9054 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
9055 {
9056 	int i;
9057 
9058 	if (len == 1)
9059 		return;
9060 	/* NOTE: fake 'exit' subprog should be updated as well. */
9061 	for (i = 0; i <= env->subprog_cnt; i++) {
9062 		if (env->subprog_info[i].start <= off)
9063 			continue;
9064 		env->subprog_info[i].start += len - 1;
9065 	}
9066 }
9067 
9068 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
9069 					    const struct bpf_insn *patch, u32 len)
9070 {
9071 	struct bpf_prog *new_prog;
9072 
9073 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
9074 	if (IS_ERR(new_prog)) {
9075 		if (PTR_ERR(new_prog) == -ERANGE)
9076 			verbose(env,
9077 				"insn %d cannot be patched due to 16-bit range\n",
9078 				env->insn_aux_data[off].orig_idx);
9079 		return NULL;
9080 	}
9081 	if (adjust_insn_aux_data(env, new_prog, off, len))
9082 		return NULL;
9083 	adjust_subprog_starts(env, off, len);
9084 	return new_prog;
9085 }
9086 
9087 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
9088 					      u32 off, u32 cnt)
9089 {
9090 	int i, j;
9091 
9092 	/* find first prog starting at or after off (first to remove) */
9093 	for (i = 0; i < env->subprog_cnt; i++)
9094 		if (env->subprog_info[i].start >= off)
9095 			break;
9096 	/* find first prog starting at or after off + cnt (first to stay) */
9097 	for (j = i; j < env->subprog_cnt; j++)
9098 		if (env->subprog_info[j].start >= off + cnt)
9099 			break;
9100 	/* if j doesn't start exactly at off + cnt, we are just removing
9101 	 * the front of previous prog
9102 	 */
9103 	if (env->subprog_info[j].start != off + cnt)
9104 		j--;
9105 
9106 	if (j > i) {
9107 		struct bpf_prog_aux *aux = env->prog->aux;
9108 		int move;
9109 
9110 		/* move fake 'exit' subprog as well */
9111 		move = env->subprog_cnt + 1 - j;
9112 
9113 		memmove(env->subprog_info + i,
9114 			env->subprog_info + j,
9115 			sizeof(*env->subprog_info) * move);
9116 		env->subprog_cnt -= j - i;
9117 
9118 		/* remove func_info */
9119 		if (aux->func_info) {
9120 			move = aux->func_info_cnt - j;
9121 
9122 			memmove(aux->func_info + i,
9123 				aux->func_info + j,
9124 				sizeof(*aux->func_info) * move);
9125 			aux->func_info_cnt -= j - i;
9126 			/* func_info->insn_off is set after all code rewrites,
9127 			 * in adjust_btf_func() - no need to adjust
9128 			 */
9129 		}
9130 	} else {
9131 		/* convert i from "first prog to remove" to "first to adjust" */
9132 		if (env->subprog_info[i].start == off)
9133 			i++;
9134 	}
9135 
9136 	/* update fake 'exit' subprog as well */
9137 	for (; i <= env->subprog_cnt; i++)
9138 		env->subprog_info[i].start -= cnt;
9139 
9140 	return 0;
9141 }
9142 
9143 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
9144 				      u32 cnt)
9145 {
9146 	struct bpf_prog *prog = env->prog;
9147 	u32 i, l_off, l_cnt, nr_linfo;
9148 	struct bpf_line_info *linfo;
9149 
9150 	nr_linfo = prog->aux->nr_linfo;
9151 	if (!nr_linfo)
9152 		return 0;
9153 
9154 	linfo = prog->aux->linfo;
9155 
9156 	/* find first line info to remove, count lines to be removed */
9157 	for (i = 0; i < nr_linfo; i++)
9158 		if (linfo[i].insn_off >= off)
9159 			break;
9160 
9161 	l_off = i;
9162 	l_cnt = 0;
9163 	for (; i < nr_linfo; i++)
9164 		if (linfo[i].insn_off < off + cnt)
9165 			l_cnt++;
9166 		else
9167 			break;
9168 
9169 	/* First live insn doesn't match first live linfo, it needs to "inherit"
9170 	 * last removed linfo.  prog is already modified, so prog->len == off
9171 	 * means no live instructions after (tail of the program was removed).
9172 	 */
9173 	if (prog->len != off && l_cnt &&
9174 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
9175 		l_cnt--;
9176 		linfo[--i].insn_off = off + cnt;
9177 	}
9178 
9179 	/* remove the line info which refer to the removed instructions */
9180 	if (l_cnt) {
9181 		memmove(linfo + l_off, linfo + i,
9182 			sizeof(*linfo) * (nr_linfo - i));
9183 
9184 		prog->aux->nr_linfo -= l_cnt;
9185 		nr_linfo = prog->aux->nr_linfo;
9186 	}
9187 
9188 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
9189 	for (i = l_off; i < nr_linfo; i++)
9190 		linfo[i].insn_off -= cnt;
9191 
9192 	/* fix up all subprogs (incl. 'exit') which start >= off */
9193 	for (i = 0; i <= env->subprog_cnt; i++)
9194 		if (env->subprog_info[i].linfo_idx > l_off) {
9195 			/* program may have started in the removed region but
9196 			 * may not be fully removed
9197 			 */
9198 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
9199 				env->subprog_info[i].linfo_idx -= l_cnt;
9200 			else
9201 				env->subprog_info[i].linfo_idx = l_off;
9202 		}
9203 
9204 	return 0;
9205 }
9206 
9207 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
9208 {
9209 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9210 	unsigned int orig_prog_len = env->prog->len;
9211 	int err;
9212 
9213 	if (bpf_prog_is_dev_bound(env->prog->aux))
9214 		bpf_prog_offload_remove_insns(env, off, cnt);
9215 
9216 	err = bpf_remove_insns(env->prog, off, cnt);
9217 	if (err)
9218 		return err;
9219 
9220 	err = adjust_subprog_starts_after_remove(env, off, cnt);
9221 	if (err)
9222 		return err;
9223 
9224 	err = bpf_adj_linfo_after_remove(env, off, cnt);
9225 	if (err)
9226 		return err;
9227 
9228 	memmove(aux_data + off,	aux_data + off + cnt,
9229 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
9230 
9231 	return 0;
9232 }
9233 
9234 /* The verifier does more data flow analysis than llvm and will not
9235  * explore branches that are dead at run time. Malicious programs can
9236  * have dead code too. Therefore replace all dead at-run-time code
9237  * with 'ja -1'.
9238  *
9239  * Just nops are not optimal, e.g. if they would sit at the end of the
9240  * program and through another bug we would manage to jump there, then
9241  * we'd execute beyond program memory otherwise. Returning exception
9242  * code also wouldn't work since we can have subprogs where the dead
9243  * code could be located.
9244  */
9245 static void sanitize_dead_code(struct bpf_verifier_env *env)
9246 {
9247 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9248 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
9249 	struct bpf_insn *insn = env->prog->insnsi;
9250 	const int insn_cnt = env->prog->len;
9251 	int i;
9252 
9253 	for (i = 0; i < insn_cnt; i++) {
9254 		if (aux_data[i].seen)
9255 			continue;
9256 		memcpy(insn + i, &trap, sizeof(trap));
9257 	}
9258 }
9259 
9260 static bool insn_is_cond_jump(u8 code)
9261 {
9262 	u8 op;
9263 
9264 	if (BPF_CLASS(code) == BPF_JMP32)
9265 		return true;
9266 
9267 	if (BPF_CLASS(code) != BPF_JMP)
9268 		return false;
9269 
9270 	op = BPF_OP(code);
9271 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
9272 }
9273 
9274 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
9275 {
9276 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9277 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9278 	struct bpf_insn *insn = env->prog->insnsi;
9279 	const int insn_cnt = env->prog->len;
9280 	int i;
9281 
9282 	for (i = 0; i < insn_cnt; i++, insn++) {
9283 		if (!insn_is_cond_jump(insn->code))
9284 			continue;
9285 
9286 		if (!aux_data[i + 1].seen)
9287 			ja.off = insn->off;
9288 		else if (!aux_data[i + 1 + insn->off].seen)
9289 			ja.off = 0;
9290 		else
9291 			continue;
9292 
9293 		if (bpf_prog_is_dev_bound(env->prog->aux))
9294 			bpf_prog_offload_replace_insn(env, i, &ja);
9295 
9296 		memcpy(insn, &ja, sizeof(ja));
9297 	}
9298 }
9299 
9300 static int opt_remove_dead_code(struct bpf_verifier_env *env)
9301 {
9302 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9303 	int insn_cnt = env->prog->len;
9304 	int i, err;
9305 
9306 	for (i = 0; i < insn_cnt; i++) {
9307 		int j;
9308 
9309 		j = 0;
9310 		while (i + j < insn_cnt && !aux_data[i + j].seen)
9311 			j++;
9312 		if (!j)
9313 			continue;
9314 
9315 		err = verifier_remove_insns(env, i, j);
9316 		if (err)
9317 			return err;
9318 		insn_cnt = env->prog->len;
9319 	}
9320 
9321 	return 0;
9322 }
9323 
9324 static int opt_remove_nops(struct bpf_verifier_env *env)
9325 {
9326 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9327 	struct bpf_insn *insn = env->prog->insnsi;
9328 	int insn_cnt = env->prog->len;
9329 	int i, err;
9330 
9331 	for (i = 0; i < insn_cnt; i++) {
9332 		if (memcmp(&insn[i], &ja, sizeof(ja)))
9333 			continue;
9334 
9335 		err = verifier_remove_insns(env, i, 1);
9336 		if (err)
9337 			return err;
9338 		insn_cnt--;
9339 		i--;
9340 	}
9341 
9342 	return 0;
9343 }
9344 
9345 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
9346 					 const union bpf_attr *attr)
9347 {
9348 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
9349 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
9350 	int i, patch_len, delta = 0, len = env->prog->len;
9351 	struct bpf_insn *insns = env->prog->insnsi;
9352 	struct bpf_prog *new_prog;
9353 	bool rnd_hi32;
9354 
9355 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
9356 	zext_patch[1] = BPF_ZEXT_REG(0);
9357 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
9358 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
9359 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
9360 	for (i = 0; i < len; i++) {
9361 		int adj_idx = i + delta;
9362 		struct bpf_insn insn;
9363 
9364 		insn = insns[adj_idx];
9365 		if (!aux[adj_idx].zext_dst) {
9366 			u8 code, class;
9367 			u32 imm_rnd;
9368 
9369 			if (!rnd_hi32)
9370 				continue;
9371 
9372 			code = insn.code;
9373 			class = BPF_CLASS(code);
9374 			if (insn_no_def(&insn))
9375 				continue;
9376 
9377 			/* NOTE: arg "reg" (the fourth one) is only used for
9378 			 *       BPF_STX which has been ruled out in above
9379 			 *       check, it is safe to pass NULL here.
9380 			 */
9381 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
9382 				if (class == BPF_LD &&
9383 				    BPF_MODE(code) == BPF_IMM)
9384 					i++;
9385 				continue;
9386 			}
9387 
9388 			/* ctx load could be transformed into wider load. */
9389 			if (class == BPF_LDX &&
9390 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
9391 				continue;
9392 
9393 			imm_rnd = get_random_int();
9394 			rnd_hi32_patch[0] = insn;
9395 			rnd_hi32_patch[1].imm = imm_rnd;
9396 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
9397 			patch = rnd_hi32_patch;
9398 			patch_len = 4;
9399 			goto apply_patch_buffer;
9400 		}
9401 
9402 		if (!bpf_jit_needs_zext())
9403 			continue;
9404 
9405 		zext_patch[0] = insn;
9406 		zext_patch[1].dst_reg = insn.dst_reg;
9407 		zext_patch[1].src_reg = insn.dst_reg;
9408 		patch = zext_patch;
9409 		patch_len = 2;
9410 apply_patch_buffer:
9411 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
9412 		if (!new_prog)
9413 			return -ENOMEM;
9414 		env->prog = new_prog;
9415 		insns = new_prog->insnsi;
9416 		aux = env->insn_aux_data;
9417 		delta += patch_len - 1;
9418 	}
9419 
9420 	return 0;
9421 }
9422 
9423 /* convert load instructions that access fields of a context type into a
9424  * sequence of instructions that access fields of the underlying structure:
9425  *     struct __sk_buff    -> struct sk_buff
9426  *     struct bpf_sock_ops -> struct sock
9427  */
9428 static int convert_ctx_accesses(struct bpf_verifier_env *env)
9429 {
9430 	const struct bpf_verifier_ops *ops = env->ops;
9431 	int i, cnt, size, ctx_field_size, delta = 0;
9432 	const int insn_cnt = env->prog->len;
9433 	struct bpf_insn insn_buf[16], *insn;
9434 	u32 target_size, size_default, off;
9435 	struct bpf_prog *new_prog;
9436 	enum bpf_access_type type;
9437 	bool is_narrower_load;
9438 
9439 	if (ops->gen_prologue || env->seen_direct_write) {
9440 		if (!ops->gen_prologue) {
9441 			verbose(env, "bpf verifier is misconfigured\n");
9442 			return -EINVAL;
9443 		}
9444 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
9445 					env->prog);
9446 		if (cnt >= ARRAY_SIZE(insn_buf)) {
9447 			verbose(env, "bpf verifier is misconfigured\n");
9448 			return -EINVAL;
9449 		} else if (cnt) {
9450 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
9451 			if (!new_prog)
9452 				return -ENOMEM;
9453 
9454 			env->prog = new_prog;
9455 			delta += cnt - 1;
9456 		}
9457 	}
9458 
9459 	if (bpf_prog_is_dev_bound(env->prog->aux))
9460 		return 0;
9461 
9462 	insn = env->prog->insnsi + delta;
9463 
9464 	for (i = 0; i < insn_cnt; i++, insn++) {
9465 		bpf_convert_ctx_access_t convert_ctx_access;
9466 
9467 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
9468 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
9469 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
9470 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
9471 			type = BPF_READ;
9472 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
9473 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
9474 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
9475 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
9476 			type = BPF_WRITE;
9477 		else
9478 			continue;
9479 
9480 		if (type == BPF_WRITE &&
9481 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
9482 			struct bpf_insn patch[] = {
9483 				/* Sanitize suspicious stack slot with zero.
9484 				 * There are no memory dependencies for this store,
9485 				 * since it's only using frame pointer and immediate
9486 				 * constant of zero
9487 				 */
9488 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
9489 					   env->insn_aux_data[i + delta].sanitize_stack_off,
9490 					   0),
9491 				/* the original STX instruction will immediately
9492 				 * overwrite the same stack slot with appropriate value
9493 				 */
9494 				*insn,
9495 			};
9496 
9497 			cnt = ARRAY_SIZE(patch);
9498 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
9499 			if (!new_prog)
9500 				return -ENOMEM;
9501 
9502 			delta    += cnt - 1;
9503 			env->prog = new_prog;
9504 			insn      = new_prog->insnsi + i + delta;
9505 			continue;
9506 		}
9507 
9508 		switch (env->insn_aux_data[i + delta].ptr_type) {
9509 		case PTR_TO_CTX:
9510 			if (!ops->convert_ctx_access)
9511 				continue;
9512 			convert_ctx_access = ops->convert_ctx_access;
9513 			break;
9514 		case PTR_TO_SOCKET:
9515 		case PTR_TO_SOCK_COMMON:
9516 			convert_ctx_access = bpf_sock_convert_ctx_access;
9517 			break;
9518 		case PTR_TO_TCP_SOCK:
9519 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
9520 			break;
9521 		case PTR_TO_XDP_SOCK:
9522 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
9523 			break;
9524 		case PTR_TO_BTF_ID:
9525 			if (type == BPF_READ) {
9526 				insn->code = BPF_LDX | BPF_PROBE_MEM |
9527 					BPF_SIZE((insn)->code);
9528 				env->prog->aux->num_exentries++;
9529 			} else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9530 				verbose(env, "Writes through BTF pointers are not allowed\n");
9531 				return -EINVAL;
9532 			}
9533 			continue;
9534 		default:
9535 			continue;
9536 		}
9537 
9538 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
9539 		size = BPF_LDST_BYTES(insn);
9540 
9541 		/* If the read access is a narrower load of the field,
9542 		 * convert to a 4/8-byte load, to minimum program type specific
9543 		 * convert_ctx_access changes. If conversion is successful,
9544 		 * we will apply proper mask to the result.
9545 		 */
9546 		is_narrower_load = size < ctx_field_size;
9547 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
9548 		off = insn->off;
9549 		if (is_narrower_load) {
9550 			u8 size_code;
9551 
9552 			if (type == BPF_WRITE) {
9553 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
9554 				return -EINVAL;
9555 			}
9556 
9557 			size_code = BPF_H;
9558 			if (ctx_field_size == 4)
9559 				size_code = BPF_W;
9560 			else if (ctx_field_size == 8)
9561 				size_code = BPF_DW;
9562 
9563 			insn->off = off & ~(size_default - 1);
9564 			insn->code = BPF_LDX | BPF_MEM | size_code;
9565 		}
9566 
9567 		target_size = 0;
9568 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
9569 					 &target_size);
9570 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
9571 		    (ctx_field_size && !target_size)) {
9572 			verbose(env, "bpf verifier is misconfigured\n");
9573 			return -EINVAL;
9574 		}
9575 
9576 		if (is_narrower_load && size < target_size) {
9577 			u8 shift = bpf_ctx_narrow_access_offset(
9578 				off, size, size_default) * 8;
9579 			if (ctx_field_size <= 4) {
9580 				if (shift)
9581 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
9582 									insn->dst_reg,
9583 									shift);
9584 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
9585 								(1 << size * 8) - 1);
9586 			} else {
9587 				if (shift)
9588 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
9589 									insn->dst_reg,
9590 									shift);
9591 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
9592 								(1ULL << size * 8) - 1);
9593 			}
9594 		}
9595 
9596 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9597 		if (!new_prog)
9598 			return -ENOMEM;
9599 
9600 		delta += cnt - 1;
9601 
9602 		/* keep walking new program and skip insns we just inserted */
9603 		env->prog = new_prog;
9604 		insn      = new_prog->insnsi + i + delta;
9605 	}
9606 
9607 	return 0;
9608 }
9609 
9610 static int jit_subprogs(struct bpf_verifier_env *env)
9611 {
9612 	struct bpf_prog *prog = env->prog, **func, *tmp;
9613 	int i, j, subprog_start, subprog_end = 0, len, subprog;
9614 	struct bpf_insn *insn;
9615 	void *old_bpf_func;
9616 	int err;
9617 
9618 	if (env->subprog_cnt <= 1)
9619 		return 0;
9620 
9621 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9622 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9623 		    insn->src_reg != BPF_PSEUDO_CALL)
9624 			continue;
9625 		/* Upon error here we cannot fall back to interpreter but
9626 		 * need a hard reject of the program. Thus -EFAULT is
9627 		 * propagated in any case.
9628 		 */
9629 		subprog = find_subprog(env, i + insn->imm + 1);
9630 		if (subprog < 0) {
9631 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
9632 				  i + insn->imm + 1);
9633 			return -EFAULT;
9634 		}
9635 		/* temporarily remember subprog id inside insn instead of
9636 		 * aux_data, since next loop will split up all insns into funcs
9637 		 */
9638 		insn->off = subprog;
9639 		/* remember original imm in case JIT fails and fallback
9640 		 * to interpreter will be needed
9641 		 */
9642 		env->insn_aux_data[i].call_imm = insn->imm;
9643 		/* point imm to __bpf_call_base+1 from JITs point of view */
9644 		insn->imm = 1;
9645 	}
9646 
9647 	err = bpf_prog_alloc_jited_linfo(prog);
9648 	if (err)
9649 		goto out_undo_insn;
9650 
9651 	err = -ENOMEM;
9652 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
9653 	if (!func)
9654 		goto out_undo_insn;
9655 
9656 	for (i = 0; i < env->subprog_cnt; i++) {
9657 		subprog_start = subprog_end;
9658 		subprog_end = env->subprog_info[i + 1].start;
9659 
9660 		len = subprog_end - subprog_start;
9661 		/* BPF_PROG_RUN doesn't call subprogs directly,
9662 		 * hence main prog stats include the runtime of subprogs.
9663 		 * subprogs don't have IDs and not reachable via prog_get_next_id
9664 		 * func[i]->aux->stats will never be accessed and stays NULL
9665 		 */
9666 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
9667 		if (!func[i])
9668 			goto out_free;
9669 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
9670 		       len * sizeof(struct bpf_insn));
9671 		func[i]->type = prog->type;
9672 		func[i]->len = len;
9673 		if (bpf_prog_calc_tag(func[i]))
9674 			goto out_free;
9675 		func[i]->is_func = 1;
9676 		func[i]->aux->func_idx = i;
9677 		/* the btf and func_info will be freed only at prog->aux */
9678 		func[i]->aux->btf = prog->aux->btf;
9679 		func[i]->aux->func_info = prog->aux->func_info;
9680 
9681 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
9682 		 * Long term would need debug info to populate names
9683 		 */
9684 		func[i]->aux->name[0] = 'F';
9685 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
9686 		func[i]->jit_requested = 1;
9687 		func[i]->aux->linfo = prog->aux->linfo;
9688 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
9689 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
9690 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
9691 		func[i] = bpf_int_jit_compile(func[i]);
9692 		if (!func[i]->jited) {
9693 			err = -ENOTSUPP;
9694 			goto out_free;
9695 		}
9696 		cond_resched();
9697 	}
9698 	/* at this point all bpf functions were successfully JITed
9699 	 * now populate all bpf_calls with correct addresses and
9700 	 * run last pass of JIT
9701 	 */
9702 	for (i = 0; i < env->subprog_cnt; i++) {
9703 		insn = func[i]->insnsi;
9704 		for (j = 0; j < func[i]->len; j++, insn++) {
9705 			if (insn->code != (BPF_JMP | BPF_CALL) ||
9706 			    insn->src_reg != BPF_PSEUDO_CALL)
9707 				continue;
9708 			subprog = insn->off;
9709 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
9710 				    __bpf_call_base;
9711 		}
9712 
9713 		/* we use the aux data to keep a list of the start addresses
9714 		 * of the JITed images for each function in the program
9715 		 *
9716 		 * for some architectures, such as powerpc64, the imm field
9717 		 * might not be large enough to hold the offset of the start
9718 		 * address of the callee's JITed image from __bpf_call_base
9719 		 *
9720 		 * in such cases, we can lookup the start address of a callee
9721 		 * by using its subprog id, available from the off field of
9722 		 * the call instruction, as an index for this list
9723 		 */
9724 		func[i]->aux->func = func;
9725 		func[i]->aux->func_cnt = env->subprog_cnt;
9726 	}
9727 	for (i = 0; i < env->subprog_cnt; i++) {
9728 		old_bpf_func = func[i]->bpf_func;
9729 		tmp = bpf_int_jit_compile(func[i]);
9730 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
9731 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
9732 			err = -ENOTSUPP;
9733 			goto out_free;
9734 		}
9735 		cond_resched();
9736 	}
9737 
9738 	/* finally lock prog and jit images for all functions and
9739 	 * populate kallsysm
9740 	 */
9741 	for (i = 0; i < env->subprog_cnt; i++) {
9742 		bpf_prog_lock_ro(func[i]);
9743 		bpf_prog_kallsyms_add(func[i]);
9744 	}
9745 
9746 	/* Last step: make now unused interpreter insns from main
9747 	 * prog consistent for later dump requests, so they can
9748 	 * later look the same as if they were interpreted only.
9749 	 */
9750 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9751 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9752 		    insn->src_reg != BPF_PSEUDO_CALL)
9753 			continue;
9754 		insn->off = env->insn_aux_data[i].call_imm;
9755 		subprog = find_subprog(env, i + insn->off + 1);
9756 		insn->imm = subprog;
9757 	}
9758 
9759 	prog->jited = 1;
9760 	prog->bpf_func = func[0]->bpf_func;
9761 	prog->aux->func = func;
9762 	prog->aux->func_cnt = env->subprog_cnt;
9763 	bpf_prog_free_unused_jited_linfo(prog);
9764 	return 0;
9765 out_free:
9766 	for (i = 0; i < env->subprog_cnt; i++)
9767 		if (func[i])
9768 			bpf_jit_free(func[i]);
9769 	kfree(func);
9770 out_undo_insn:
9771 	/* cleanup main prog to be interpreted */
9772 	prog->jit_requested = 0;
9773 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9774 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9775 		    insn->src_reg != BPF_PSEUDO_CALL)
9776 			continue;
9777 		insn->off = 0;
9778 		insn->imm = env->insn_aux_data[i].call_imm;
9779 	}
9780 	bpf_prog_free_jited_linfo(prog);
9781 	return err;
9782 }
9783 
9784 static int fixup_call_args(struct bpf_verifier_env *env)
9785 {
9786 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9787 	struct bpf_prog *prog = env->prog;
9788 	struct bpf_insn *insn = prog->insnsi;
9789 	int i, depth;
9790 #endif
9791 	int err = 0;
9792 
9793 	if (env->prog->jit_requested &&
9794 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
9795 		err = jit_subprogs(env);
9796 		if (err == 0)
9797 			return 0;
9798 		if (err == -EFAULT)
9799 			return err;
9800 	}
9801 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9802 	for (i = 0; i < prog->len; i++, insn++) {
9803 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9804 		    insn->src_reg != BPF_PSEUDO_CALL)
9805 			continue;
9806 		depth = get_callee_stack_depth(env, insn, i);
9807 		if (depth < 0)
9808 			return depth;
9809 		bpf_patch_call_args(insn, depth);
9810 	}
9811 	err = 0;
9812 #endif
9813 	return err;
9814 }
9815 
9816 /* fixup insn->imm field of bpf_call instructions
9817  * and inline eligible helpers as explicit sequence of BPF instructions
9818  *
9819  * this function is called after eBPF program passed verification
9820  */
9821 static int fixup_bpf_calls(struct bpf_verifier_env *env)
9822 {
9823 	struct bpf_prog *prog = env->prog;
9824 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
9825 	struct bpf_insn *insn = prog->insnsi;
9826 	const struct bpf_func_proto *fn;
9827 	const int insn_cnt = prog->len;
9828 	const struct bpf_map_ops *ops;
9829 	struct bpf_insn_aux_data *aux;
9830 	struct bpf_insn insn_buf[16];
9831 	struct bpf_prog *new_prog;
9832 	struct bpf_map *map_ptr;
9833 	int i, ret, cnt, delta = 0;
9834 
9835 	for (i = 0; i < insn_cnt; i++, insn++) {
9836 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
9837 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9838 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
9839 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9840 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
9841 			struct bpf_insn mask_and_div[] = {
9842 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9843 				/* Rx div 0 -> 0 */
9844 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
9845 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
9846 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
9847 				*insn,
9848 			};
9849 			struct bpf_insn mask_and_mod[] = {
9850 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9851 				/* Rx mod 0 -> Rx */
9852 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
9853 				*insn,
9854 			};
9855 			struct bpf_insn *patchlet;
9856 
9857 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9858 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9859 				patchlet = mask_and_div + (is64 ? 1 : 0);
9860 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
9861 			} else {
9862 				patchlet = mask_and_mod + (is64 ? 1 : 0);
9863 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
9864 			}
9865 
9866 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
9867 			if (!new_prog)
9868 				return -ENOMEM;
9869 
9870 			delta    += cnt - 1;
9871 			env->prog = prog = new_prog;
9872 			insn      = new_prog->insnsi + i + delta;
9873 			continue;
9874 		}
9875 
9876 		if (BPF_CLASS(insn->code) == BPF_LD &&
9877 		    (BPF_MODE(insn->code) == BPF_ABS ||
9878 		     BPF_MODE(insn->code) == BPF_IND)) {
9879 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
9880 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9881 				verbose(env, "bpf verifier is misconfigured\n");
9882 				return -EINVAL;
9883 			}
9884 
9885 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9886 			if (!new_prog)
9887 				return -ENOMEM;
9888 
9889 			delta    += cnt - 1;
9890 			env->prog = prog = new_prog;
9891 			insn      = new_prog->insnsi + i + delta;
9892 			continue;
9893 		}
9894 
9895 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
9896 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
9897 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
9898 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
9899 			struct bpf_insn insn_buf[16];
9900 			struct bpf_insn *patch = &insn_buf[0];
9901 			bool issrc, isneg;
9902 			u32 off_reg;
9903 
9904 			aux = &env->insn_aux_data[i + delta];
9905 			if (!aux->alu_state ||
9906 			    aux->alu_state == BPF_ALU_NON_POINTER)
9907 				continue;
9908 
9909 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
9910 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
9911 				BPF_ALU_SANITIZE_SRC;
9912 
9913 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
9914 			if (isneg)
9915 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9916 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
9917 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
9918 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
9919 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
9920 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
9921 			if (issrc) {
9922 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
9923 							 off_reg);
9924 				insn->src_reg = BPF_REG_AX;
9925 			} else {
9926 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
9927 							 BPF_REG_AX);
9928 			}
9929 			if (isneg)
9930 				insn->code = insn->code == code_add ?
9931 					     code_sub : code_add;
9932 			*patch++ = *insn;
9933 			if (issrc && isneg)
9934 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9935 			cnt = patch - insn_buf;
9936 
9937 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9938 			if (!new_prog)
9939 				return -ENOMEM;
9940 
9941 			delta    += cnt - 1;
9942 			env->prog = prog = new_prog;
9943 			insn      = new_prog->insnsi + i + delta;
9944 			continue;
9945 		}
9946 
9947 		if (insn->code != (BPF_JMP | BPF_CALL))
9948 			continue;
9949 		if (insn->src_reg == BPF_PSEUDO_CALL)
9950 			continue;
9951 
9952 		if (insn->imm == BPF_FUNC_get_route_realm)
9953 			prog->dst_needed = 1;
9954 		if (insn->imm == BPF_FUNC_get_prandom_u32)
9955 			bpf_user_rnd_init_once();
9956 		if (insn->imm == BPF_FUNC_override_return)
9957 			prog->kprobe_override = 1;
9958 		if (insn->imm == BPF_FUNC_tail_call) {
9959 			/* If we tail call into other programs, we
9960 			 * cannot make any assumptions since they can
9961 			 * be replaced dynamically during runtime in
9962 			 * the program array.
9963 			 */
9964 			prog->cb_access = 1;
9965 			env->prog->aux->stack_depth = MAX_BPF_STACK;
9966 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
9967 
9968 			/* mark bpf_tail_call as different opcode to avoid
9969 			 * conditional branch in the interpeter for every normal
9970 			 * call and to prevent accidental JITing by JIT compiler
9971 			 * that doesn't support bpf_tail_call yet
9972 			 */
9973 			insn->imm = 0;
9974 			insn->code = BPF_JMP | BPF_TAIL_CALL;
9975 
9976 			aux = &env->insn_aux_data[i + delta];
9977 			if (env->allow_ptr_leaks && !expect_blinding &&
9978 			    prog->jit_requested &&
9979 			    !bpf_map_key_poisoned(aux) &&
9980 			    !bpf_map_ptr_poisoned(aux) &&
9981 			    !bpf_map_ptr_unpriv(aux)) {
9982 				struct bpf_jit_poke_descriptor desc = {
9983 					.reason = BPF_POKE_REASON_TAIL_CALL,
9984 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
9985 					.tail_call.key = bpf_map_key_immediate(aux),
9986 				};
9987 
9988 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
9989 				if (ret < 0) {
9990 					verbose(env, "adding tail call poke descriptor failed\n");
9991 					return ret;
9992 				}
9993 
9994 				insn->imm = ret + 1;
9995 				continue;
9996 			}
9997 
9998 			if (!bpf_map_ptr_unpriv(aux))
9999 				continue;
10000 
10001 			/* instead of changing every JIT dealing with tail_call
10002 			 * emit two extra insns:
10003 			 * if (index >= max_entries) goto out;
10004 			 * index &= array->index_mask;
10005 			 * to avoid out-of-bounds cpu speculation
10006 			 */
10007 			if (bpf_map_ptr_poisoned(aux)) {
10008 				verbose(env, "tail_call abusing map_ptr\n");
10009 				return -EINVAL;
10010 			}
10011 
10012 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
10013 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
10014 						  map_ptr->max_entries, 2);
10015 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
10016 						    container_of(map_ptr,
10017 								 struct bpf_array,
10018 								 map)->index_mask);
10019 			insn_buf[2] = *insn;
10020 			cnt = 3;
10021 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10022 			if (!new_prog)
10023 				return -ENOMEM;
10024 
10025 			delta    += cnt - 1;
10026 			env->prog = prog = new_prog;
10027 			insn      = new_prog->insnsi + i + delta;
10028 			continue;
10029 		}
10030 
10031 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
10032 		 * and other inlining handlers are currently limited to 64 bit
10033 		 * only.
10034 		 */
10035 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
10036 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
10037 		     insn->imm == BPF_FUNC_map_update_elem ||
10038 		     insn->imm == BPF_FUNC_map_delete_elem ||
10039 		     insn->imm == BPF_FUNC_map_push_elem   ||
10040 		     insn->imm == BPF_FUNC_map_pop_elem    ||
10041 		     insn->imm == BPF_FUNC_map_peek_elem)) {
10042 			aux = &env->insn_aux_data[i + delta];
10043 			if (bpf_map_ptr_poisoned(aux))
10044 				goto patch_call_imm;
10045 
10046 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
10047 			ops = map_ptr->ops;
10048 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
10049 			    ops->map_gen_lookup) {
10050 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
10051 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10052 					verbose(env, "bpf verifier is misconfigured\n");
10053 					return -EINVAL;
10054 				}
10055 
10056 				new_prog = bpf_patch_insn_data(env, i + delta,
10057 							       insn_buf, cnt);
10058 				if (!new_prog)
10059 					return -ENOMEM;
10060 
10061 				delta    += cnt - 1;
10062 				env->prog = prog = new_prog;
10063 				insn      = new_prog->insnsi + i + delta;
10064 				continue;
10065 			}
10066 
10067 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
10068 				     (void *(*)(struct bpf_map *map, void *key))NULL));
10069 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
10070 				     (int (*)(struct bpf_map *map, void *key))NULL));
10071 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
10072 				     (int (*)(struct bpf_map *map, void *key, void *value,
10073 					      u64 flags))NULL));
10074 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
10075 				     (int (*)(struct bpf_map *map, void *value,
10076 					      u64 flags))NULL));
10077 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
10078 				     (int (*)(struct bpf_map *map, void *value))NULL));
10079 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
10080 				     (int (*)(struct bpf_map *map, void *value))NULL));
10081 
10082 			switch (insn->imm) {
10083 			case BPF_FUNC_map_lookup_elem:
10084 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
10085 					    __bpf_call_base;
10086 				continue;
10087 			case BPF_FUNC_map_update_elem:
10088 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
10089 					    __bpf_call_base;
10090 				continue;
10091 			case BPF_FUNC_map_delete_elem:
10092 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
10093 					    __bpf_call_base;
10094 				continue;
10095 			case BPF_FUNC_map_push_elem:
10096 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
10097 					    __bpf_call_base;
10098 				continue;
10099 			case BPF_FUNC_map_pop_elem:
10100 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
10101 					    __bpf_call_base;
10102 				continue;
10103 			case BPF_FUNC_map_peek_elem:
10104 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
10105 					    __bpf_call_base;
10106 				continue;
10107 			}
10108 
10109 			goto patch_call_imm;
10110 		}
10111 
10112 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
10113 		    insn->imm == BPF_FUNC_jiffies64) {
10114 			struct bpf_insn ld_jiffies_addr[2] = {
10115 				BPF_LD_IMM64(BPF_REG_0,
10116 					     (unsigned long)&jiffies),
10117 			};
10118 
10119 			insn_buf[0] = ld_jiffies_addr[0];
10120 			insn_buf[1] = ld_jiffies_addr[1];
10121 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
10122 						  BPF_REG_0, 0);
10123 			cnt = 3;
10124 
10125 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
10126 						       cnt);
10127 			if (!new_prog)
10128 				return -ENOMEM;
10129 
10130 			delta    += cnt - 1;
10131 			env->prog = prog = new_prog;
10132 			insn      = new_prog->insnsi + i + delta;
10133 			continue;
10134 		}
10135 
10136 patch_call_imm:
10137 		fn = env->ops->get_func_proto(insn->imm, env->prog);
10138 		/* all functions that have prototype and verifier allowed
10139 		 * programs to call them, must be real in-kernel functions
10140 		 */
10141 		if (!fn->func) {
10142 			verbose(env,
10143 				"kernel subsystem misconfigured func %s#%d\n",
10144 				func_id_name(insn->imm), insn->imm);
10145 			return -EFAULT;
10146 		}
10147 		insn->imm = fn->func - __bpf_call_base;
10148 	}
10149 
10150 	/* Since poke tab is now finalized, publish aux to tracker. */
10151 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
10152 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
10153 		if (!map_ptr->ops->map_poke_track ||
10154 		    !map_ptr->ops->map_poke_untrack ||
10155 		    !map_ptr->ops->map_poke_run) {
10156 			verbose(env, "bpf verifier is misconfigured\n");
10157 			return -EINVAL;
10158 		}
10159 
10160 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
10161 		if (ret < 0) {
10162 			verbose(env, "tracking tail call prog failed\n");
10163 			return ret;
10164 		}
10165 	}
10166 
10167 	return 0;
10168 }
10169 
10170 static void free_states(struct bpf_verifier_env *env)
10171 {
10172 	struct bpf_verifier_state_list *sl, *sln;
10173 	int i;
10174 
10175 	sl = env->free_list;
10176 	while (sl) {
10177 		sln = sl->next;
10178 		free_verifier_state(&sl->state, false);
10179 		kfree(sl);
10180 		sl = sln;
10181 	}
10182 	env->free_list = NULL;
10183 
10184 	if (!env->explored_states)
10185 		return;
10186 
10187 	for (i = 0; i < state_htab_size(env); i++) {
10188 		sl = env->explored_states[i];
10189 
10190 		while (sl) {
10191 			sln = sl->next;
10192 			free_verifier_state(&sl->state, false);
10193 			kfree(sl);
10194 			sl = sln;
10195 		}
10196 		env->explored_states[i] = NULL;
10197 	}
10198 }
10199 
10200 /* The verifier is using insn_aux_data[] to store temporary data during
10201  * verification and to store information for passes that run after the
10202  * verification like dead code sanitization. do_check_common() for subprogram N
10203  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
10204  * temporary data after do_check_common() finds that subprogram N cannot be
10205  * verified independently. pass_cnt counts the number of times
10206  * do_check_common() was run and insn->aux->seen tells the pass number
10207  * insn_aux_data was touched. These variables are compared to clear temporary
10208  * data from failed pass. For testing and experiments do_check_common() can be
10209  * run multiple times even when prior attempt to verify is unsuccessful.
10210  */
10211 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
10212 {
10213 	struct bpf_insn *insn = env->prog->insnsi;
10214 	struct bpf_insn_aux_data *aux;
10215 	int i, class;
10216 
10217 	for (i = 0; i < env->prog->len; i++) {
10218 		class = BPF_CLASS(insn[i].code);
10219 		if (class != BPF_LDX && class != BPF_STX)
10220 			continue;
10221 		aux = &env->insn_aux_data[i];
10222 		if (aux->seen != env->pass_cnt)
10223 			continue;
10224 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
10225 	}
10226 }
10227 
10228 static int do_check_common(struct bpf_verifier_env *env, int subprog)
10229 {
10230 	struct bpf_verifier_state *state;
10231 	struct bpf_reg_state *regs;
10232 	int ret, i;
10233 
10234 	env->prev_linfo = NULL;
10235 	env->pass_cnt++;
10236 
10237 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
10238 	if (!state)
10239 		return -ENOMEM;
10240 	state->curframe = 0;
10241 	state->speculative = false;
10242 	state->branches = 1;
10243 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
10244 	if (!state->frame[0]) {
10245 		kfree(state);
10246 		return -ENOMEM;
10247 	}
10248 	env->cur_state = state;
10249 	init_func_state(env, state->frame[0],
10250 			BPF_MAIN_FUNC /* callsite */,
10251 			0 /* frameno */,
10252 			subprog);
10253 
10254 	regs = state->frame[state->curframe]->regs;
10255 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
10256 		ret = btf_prepare_func_args(env, subprog, regs);
10257 		if (ret)
10258 			goto out;
10259 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
10260 			if (regs[i].type == PTR_TO_CTX)
10261 				mark_reg_known_zero(env, regs, i);
10262 			else if (regs[i].type == SCALAR_VALUE)
10263 				mark_reg_unknown(env, regs, i);
10264 		}
10265 	} else {
10266 		/* 1st arg to a function */
10267 		regs[BPF_REG_1].type = PTR_TO_CTX;
10268 		mark_reg_known_zero(env, regs, BPF_REG_1);
10269 		ret = btf_check_func_arg_match(env, subprog, regs);
10270 		if (ret == -EFAULT)
10271 			/* unlikely verifier bug. abort.
10272 			 * ret == 0 and ret < 0 are sadly acceptable for
10273 			 * main() function due to backward compatibility.
10274 			 * Like socket filter program may be written as:
10275 			 * int bpf_prog(struct pt_regs *ctx)
10276 			 * and never dereference that ctx in the program.
10277 			 * 'struct pt_regs' is a type mismatch for socket
10278 			 * filter that should be using 'struct __sk_buff'.
10279 			 */
10280 			goto out;
10281 	}
10282 
10283 	ret = do_check(env);
10284 out:
10285 	/* check for NULL is necessary, since cur_state can be freed inside
10286 	 * do_check() under memory pressure.
10287 	 */
10288 	if (env->cur_state) {
10289 		free_verifier_state(env->cur_state, true);
10290 		env->cur_state = NULL;
10291 	}
10292 	while (!pop_stack(env, NULL, NULL));
10293 	free_states(env);
10294 	if (ret)
10295 		/* clean aux data in case subprog was rejected */
10296 		sanitize_insn_aux_data(env);
10297 	return ret;
10298 }
10299 
10300 /* Verify all global functions in a BPF program one by one based on their BTF.
10301  * All global functions must pass verification. Otherwise the whole program is rejected.
10302  * Consider:
10303  * int bar(int);
10304  * int foo(int f)
10305  * {
10306  *    return bar(f);
10307  * }
10308  * int bar(int b)
10309  * {
10310  *    ...
10311  * }
10312  * foo() will be verified first for R1=any_scalar_value. During verification it
10313  * will be assumed that bar() already verified successfully and call to bar()
10314  * from foo() will be checked for type match only. Later bar() will be verified
10315  * independently to check that it's safe for R1=any_scalar_value.
10316  */
10317 static int do_check_subprogs(struct bpf_verifier_env *env)
10318 {
10319 	struct bpf_prog_aux *aux = env->prog->aux;
10320 	int i, ret;
10321 
10322 	if (!aux->func_info)
10323 		return 0;
10324 
10325 	for (i = 1; i < env->subprog_cnt; i++) {
10326 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
10327 			continue;
10328 		env->insn_idx = env->subprog_info[i].start;
10329 		WARN_ON_ONCE(env->insn_idx == 0);
10330 		ret = do_check_common(env, i);
10331 		if (ret) {
10332 			return ret;
10333 		} else if (env->log.level & BPF_LOG_LEVEL) {
10334 			verbose(env,
10335 				"Func#%d is safe for any args that match its prototype\n",
10336 				i);
10337 		}
10338 	}
10339 	return 0;
10340 }
10341 
10342 static int do_check_main(struct bpf_verifier_env *env)
10343 {
10344 	int ret;
10345 
10346 	env->insn_idx = 0;
10347 	ret = do_check_common(env, 0);
10348 	if (!ret)
10349 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
10350 	return ret;
10351 }
10352 
10353 
10354 static void print_verification_stats(struct bpf_verifier_env *env)
10355 {
10356 	int i;
10357 
10358 	if (env->log.level & BPF_LOG_STATS) {
10359 		verbose(env, "verification time %lld usec\n",
10360 			div_u64(env->verification_time, 1000));
10361 		verbose(env, "stack depth ");
10362 		for (i = 0; i < env->subprog_cnt; i++) {
10363 			u32 depth = env->subprog_info[i].stack_depth;
10364 
10365 			verbose(env, "%d", depth);
10366 			if (i + 1 < env->subprog_cnt)
10367 				verbose(env, "+");
10368 		}
10369 		verbose(env, "\n");
10370 	}
10371 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
10372 		"total_states %d peak_states %d mark_read %d\n",
10373 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
10374 		env->max_states_per_insn, env->total_states,
10375 		env->peak_states, env->longest_mark_read_walk);
10376 }
10377 
10378 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
10379 {
10380 	const struct btf_type *t, *func_proto;
10381 	const struct bpf_struct_ops *st_ops;
10382 	const struct btf_member *member;
10383 	struct bpf_prog *prog = env->prog;
10384 	u32 btf_id, member_idx;
10385 	const char *mname;
10386 
10387 	btf_id = prog->aux->attach_btf_id;
10388 	st_ops = bpf_struct_ops_find(btf_id);
10389 	if (!st_ops) {
10390 		verbose(env, "attach_btf_id %u is not a supported struct\n",
10391 			btf_id);
10392 		return -ENOTSUPP;
10393 	}
10394 
10395 	t = st_ops->type;
10396 	member_idx = prog->expected_attach_type;
10397 	if (member_idx >= btf_type_vlen(t)) {
10398 		verbose(env, "attach to invalid member idx %u of struct %s\n",
10399 			member_idx, st_ops->name);
10400 		return -EINVAL;
10401 	}
10402 
10403 	member = &btf_type_member(t)[member_idx];
10404 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
10405 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
10406 					       NULL);
10407 	if (!func_proto) {
10408 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
10409 			mname, member_idx, st_ops->name);
10410 		return -EINVAL;
10411 	}
10412 
10413 	if (st_ops->check_member) {
10414 		int err = st_ops->check_member(t, member);
10415 
10416 		if (err) {
10417 			verbose(env, "attach to unsupported member %s of struct %s\n",
10418 				mname, st_ops->name);
10419 			return err;
10420 		}
10421 	}
10422 
10423 	prog->aux->attach_func_proto = func_proto;
10424 	prog->aux->attach_func_name = mname;
10425 	env->ops = st_ops->verifier_ops;
10426 
10427 	return 0;
10428 }
10429 #define SECURITY_PREFIX "security_"
10430 
10431 static int check_attach_modify_return(struct bpf_verifier_env *env)
10432 {
10433 	struct bpf_prog *prog = env->prog;
10434 	unsigned long addr = (unsigned long) prog->aux->trampoline->func.addr;
10435 
10436 	/* This is expected to be cleaned up in the future with the KRSI effort
10437 	 * introducing the LSM_HOOK macro for cleaning up lsm_hooks.h.
10438 	 */
10439 	if (within_error_injection_list(addr) ||
10440 	    !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name,
10441 		     sizeof(SECURITY_PREFIX) - 1))
10442 		return 0;
10443 
10444 	verbose(env, "fmod_ret attach_btf_id %u (%s) is not modifiable\n",
10445 		prog->aux->attach_btf_id, prog->aux->attach_func_name);
10446 
10447 	return -EINVAL;
10448 }
10449 
10450 static int check_attach_btf_id(struct bpf_verifier_env *env)
10451 {
10452 	struct bpf_prog *prog = env->prog;
10453 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
10454 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
10455 	u32 btf_id = prog->aux->attach_btf_id;
10456 	const char prefix[] = "btf_trace_";
10457 	int ret = 0, subprog = -1, i;
10458 	struct bpf_trampoline *tr;
10459 	const struct btf_type *t;
10460 	bool conservative = true;
10461 	const char *tname;
10462 	struct btf *btf;
10463 	long addr;
10464 	u64 key;
10465 
10466 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
10467 		return check_struct_ops_btf_id(env);
10468 
10469 	if (prog->type != BPF_PROG_TYPE_TRACING &&
10470 	    prog->type != BPF_PROG_TYPE_LSM &&
10471 	    !prog_extension)
10472 		return 0;
10473 
10474 	if (!btf_id) {
10475 		verbose(env, "Tracing programs must provide btf_id\n");
10476 		return -EINVAL;
10477 	}
10478 	btf = bpf_prog_get_target_btf(prog);
10479 	if (!btf) {
10480 		verbose(env,
10481 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
10482 		return -EINVAL;
10483 	}
10484 	t = btf_type_by_id(btf, btf_id);
10485 	if (!t) {
10486 		verbose(env, "attach_btf_id %u is invalid\n", btf_id);
10487 		return -EINVAL;
10488 	}
10489 	tname = btf_name_by_offset(btf, t->name_off);
10490 	if (!tname) {
10491 		verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
10492 		return -EINVAL;
10493 	}
10494 	if (tgt_prog) {
10495 		struct bpf_prog_aux *aux = tgt_prog->aux;
10496 
10497 		for (i = 0; i < aux->func_info_cnt; i++)
10498 			if (aux->func_info[i].type_id == btf_id) {
10499 				subprog = i;
10500 				break;
10501 			}
10502 		if (subprog == -1) {
10503 			verbose(env, "Subprog %s doesn't exist\n", tname);
10504 			return -EINVAL;
10505 		}
10506 		conservative = aux->func_info_aux[subprog].unreliable;
10507 		if (prog_extension) {
10508 			if (conservative) {
10509 				verbose(env,
10510 					"Cannot replace static functions\n");
10511 				return -EINVAL;
10512 			}
10513 			if (!prog->jit_requested) {
10514 				verbose(env,
10515 					"Extension programs should be JITed\n");
10516 				return -EINVAL;
10517 			}
10518 			env->ops = bpf_verifier_ops[tgt_prog->type];
10519 			prog->expected_attach_type = tgt_prog->expected_attach_type;
10520 		}
10521 		if (!tgt_prog->jited) {
10522 			verbose(env, "Can attach to only JITed progs\n");
10523 			return -EINVAL;
10524 		}
10525 		if (tgt_prog->type == prog->type) {
10526 			/* Cannot fentry/fexit another fentry/fexit program.
10527 			 * Cannot attach program extension to another extension.
10528 			 * It's ok to attach fentry/fexit to extension program.
10529 			 */
10530 			verbose(env, "Cannot recursively attach\n");
10531 			return -EINVAL;
10532 		}
10533 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
10534 		    prog_extension &&
10535 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
10536 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
10537 			/* Program extensions can extend all program types
10538 			 * except fentry/fexit. The reason is the following.
10539 			 * The fentry/fexit programs are used for performance
10540 			 * analysis, stats and can be attached to any program
10541 			 * type except themselves. When extension program is
10542 			 * replacing XDP function it is necessary to allow
10543 			 * performance analysis of all functions. Both original
10544 			 * XDP program and its program extension. Hence
10545 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
10546 			 * allowed. If extending of fentry/fexit was allowed it
10547 			 * would be possible to create long call chain
10548 			 * fentry->extension->fentry->extension beyond
10549 			 * reasonable stack size. Hence extending fentry is not
10550 			 * allowed.
10551 			 */
10552 			verbose(env, "Cannot extend fentry/fexit\n");
10553 			return -EINVAL;
10554 		}
10555 		key = ((u64)aux->id) << 32 | btf_id;
10556 	} else {
10557 		if (prog_extension) {
10558 			verbose(env, "Cannot replace kernel functions\n");
10559 			return -EINVAL;
10560 		}
10561 		key = btf_id;
10562 	}
10563 
10564 	switch (prog->expected_attach_type) {
10565 	case BPF_TRACE_RAW_TP:
10566 		if (tgt_prog) {
10567 			verbose(env,
10568 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
10569 			return -EINVAL;
10570 		}
10571 		if (!btf_type_is_typedef(t)) {
10572 			verbose(env, "attach_btf_id %u is not a typedef\n",
10573 				btf_id);
10574 			return -EINVAL;
10575 		}
10576 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
10577 			verbose(env, "attach_btf_id %u points to wrong type name %s\n",
10578 				btf_id, tname);
10579 			return -EINVAL;
10580 		}
10581 		tname += sizeof(prefix) - 1;
10582 		t = btf_type_by_id(btf, t->type);
10583 		if (!btf_type_is_ptr(t))
10584 			/* should never happen in valid vmlinux build */
10585 			return -EINVAL;
10586 		t = btf_type_by_id(btf, t->type);
10587 		if (!btf_type_is_func_proto(t))
10588 			/* should never happen in valid vmlinux build */
10589 			return -EINVAL;
10590 
10591 		/* remember two read only pointers that are valid for
10592 		 * the life time of the kernel
10593 		 */
10594 		prog->aux->attach_func_name = tname;
10595 		prog->aux->attach_func_proto = t;
10596 		prog->aux->attach_btf_trace = true;
10597 		return 0;
10598 	default:
10599 		if (!prog_extension)
10600 			return -EINVAL;
10601 		/* fallthrough */
10602 	case BPF_MODIFY_RETURN:
10603 	case BPF_LSM_MAC:
10604 	case BPF_TRACE_FENTRY:
10605 	case BPF_TRACE_FEXIT:
10606 		prog->aux->attach_func_name = tname;
10607 		if (prog->type == BPF_PROG_TYPE_LSM) {
10608 			ret = bpf_lsm_verify_prog(&env->log, prog);
10609 			if (ret < 0)
10610 				return ret;
10611 		}
10612 
10613 		if (!btf_type_is_func(t)) {
10614 			verbose(env, "attach_btf_id %u is not a function\n",
10615 				btf_id);
10616 			return -EINVAL;
10617 		}
10618 		if (prog_extension &&
10619 		    btf_check_type_match(env, prog, btf, t))
10620 			return -EINVAL;
10621 		t = btf_type_by_id(btf, t->type);
10622 		if (!btf_type_is_func_proto(t))
10623 			return -EINVAL;
10624 		tr = bpf_trampoline_lookup(key);
10625 		if (!tr)
10626 			return -ENOMEM;
10627 		/* t is either vmlinux type or another program's type */
10628 		prog->aux->attach_func_proto = t;
10629 		mutex_lock(&tr->mutex);
10630 		if (tr->func.addr) {
10631 			prog->aux->trampoline = tr;
10632 			goto out;
10633 		}
10634 		if (tgt_prog && conservative) {
10635 			prog->aux->attach_func_proto = NULL;
10636 			t = NULL;
10637 		}
10638 		ret = btf_distill_func_proto(&env->log, btf, t,
10639 					     tname, &tr->func.model);
10640 		if (ret < 0)
10641 			goto out;
10642 		if (tgt_prog) {
10643 			if (subprog == 0)
10644 				addr = (long) tgt_prog->bpf_func;
10645 			else
10646 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
10647 		} else {
10648 			addr = kallsyms_lookup_name(tname);
10649 			if (!addr) {
10650 				verbose(env,
10651 					"The address of function %s cannot be found\n",
10652 					tname);
10653 				ret = -ENOENT;
10654 				goto out;
10655 			}
10656 		}
10657 		tr->func.addr = (void *)addr;
10658 		prog->aux->trampoline = tr;
10659 
10660 		if (prog->expected_attach_type == BPF_MODIFY_RETURN)
10661 			ret = check_attach_modify_return(env);
10662 out:
10663 		mutex_unlock(&tr->mutex);
10664 		if (ret)
10665 			bpf_trampoline_put(tr);
10666 		return ret;
10667 	}
10668 }
10669 
10670 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
10671 	      union bpf_attr __user *uattr)
10672 {
10673 	u64 start_time = ktime_get_ns();
10674 	struct bpf_verifier_env *env;
10675 	struct bpf_verifier_log *log;
10676 	int i, len, ret = -EINVAL;
10677 	bool is_priv;
10678 
10679 	/* no program is valid */
10680 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
10681 		return -EINVAL;
10682 
10683 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
10684 	 * allocate/free it every time bpf_check() is called
10685 	 */
10686 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
10687 	if (!env)
10688 		return -ENOMEM;
10689 	log = &env->log;
10690 
10691 	len = (*prog)->len;
10692 	env->insn_aux_data =
10693 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
10694 	ret = -ENOMEM;
10695 	if (!env->insn_aux_data)
10696 		goto err_free_env;
10697 	for (i = 0; i < len; i++)
10698 		env->insn_aux_data[i].orig_idx = i;
10699 	env->prog = *prog;
10700 	env->ops = bpf_verifier_ops[env->prog->type];
10701 	is_priv = capable(CAP_SYS_ADMIN);
10702 
10703 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
10704 		mutex_lock(&bpf_verifier_lock);
10705 		if (!btf_vmlinux)
10706 			btf_vmlinux = btf_parse_vmlinux();
10707 		mutex_unlock(&bpf_verifier_lock);
10708 	}
10709 
10710 	/* grab the mutex to protect few globals used by verifier */
10711 	if (!is_priv)
10712 		mutex_lock(&bpf_verifier_lock);
10713 
10714 	if (attr->log_level || attr->log_buf || attr->log_size) {
10715 		/* user requested verbose verifier output
10716 		 * and supplied buffer to store the verification trace
10717 		 */
10718 		log->level = attr->log_level;
10719 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
10720 		log->len_total = attr->log_size;
10721 
10722 		ret = -EINVAL;
10723 		/* log attributes have to be sane */
10724 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
10725 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
10726 			goto err_unlock;
10727 	}
10728 
10729 	if (IS_ERR(btf_vmlinux)) {
10730 		/* Either gcc or pahole or kernel are broken. */
10731 		verbose(env, "in-kernel BTF is malformed\n");
10732 		ret = PTR_ERR(btf_vmlinux);
10733 		goto skip_full_check;
10734 	}
10735 
10736 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
10737 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
10738 		env->strict_alignment = true;
10739 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
10740 		env->strict_alignment = false;
10741 
10742 	env->allow_ptr_leaks = is_priv;
10743 
10744 	if (is_priv)
10745 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
10746 
10747 	ret = replace_map_fd_with_map_ptr(env);
10748 	if (ret < 0)
10749 		goto skip_full_check;
10750 
10751 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
10752 		ret = bpf_prog_offload_verifier_prep(env->prog);
10753 		if (ret)
10754 			goto skip_full_check;
10755 	}
10756 
10757 	env->explored_states = kvcalloc(state_htab_size(env),
10758 				       sizeof(struct bpf_verifier_state_list *),
10759 				       GFP_USER);
10760 	ret = -ENOMEM;
10761 	if (!env->explored_states)
10762 		goto skip_full_check;
10763 
10764 	ret = check_subprogs(env);
10765 	if (ret < 0)
10766 		goto skip_full_check;
10767 
10768 	ret = check_btf_info(env, attr, uattr);
10769 	if (ret < 0)
10770 		goto skip_full_check;
10771 
10772 	ret = check_attach_btf_id(env);
10773 	if (ret)
10774 		goto skip_full_check;
10775 
10776 	ret = check_cfg(env);
10777 	if (ret < 0)
10778 		goto skip_full_check;
10779 
10780 	ret = do_check_subprogs(env);
10781 	ret = ret ?: do_check_main(env);
10782 
10783 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
10784 		ret = bpf_prog_offload_finalize(env);
10785 
10786 skip_full_check:
10787 	kvfree(env->explored_states);
10788 
10789 	if (ret == 0)
10790 		ret = check_max_stack_depth(env);
10791 
10792 	/* instruction rewrites happen after this point */
10793 	if (is_priv) {
10794 		if (ret == 0)
10795 			opt_hard_wire_dead_code_branches(env);
10796 		if (ret == 0)
10797 			ret = opt_remove_dead_code(env);
10798 		if (ret == 0)
10799 			ret = opt_remove_nops(env);
10800 	} else {
10801 		if (ret == 0)
10802 			sanitize_dead_code(env);
10803 	}
10804 
10805 	if (ret == 0)
10806 		/* program is valid, convert *(u32*)(ctx + off) accesses */
10807 		ret = convert_ctx_accesses(env);
10808 
10809 	if (ret == 0)
10810 		ret = fixup_bpf_calls(env);
10811 
10812 	/* do 32-bit optimization after insn patching has done so those patched
10813 	 * insns could be handled correctly.
10814 	 */
10815 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
10816 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
10817 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
10818 								     : false;
10819 	}
10820 
10821 	if (ret == 0)
10822 		ret = fixup_call_args(env);
10823 
10824 	env->verification_time = ktime_get_ns() - start_time;
10825 	print_verification_stats(env);
10826 
10827 	if (log->level && bpf_verifier_log_full(log))
10828 		ret = -ENOSPC;
10829 	if (log->level && !log->ubuf) {
10830 		ret = -EFAULT;
10831 		goto err_release_maps;
10832 	}
10833 
10834 	if (ret == 0 && env->used_map_cnt) {
10835 		/* if program passed verifier, update used_maps in bpf_prog_info */
10836 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
10837 							  sizeof(env->used_maps[0]),
10838 							  GFP_KERNEL);
10839 
10840 		if (!env->prog->aux->used_maps) {
10841 			ret = -ENOMEM;
10842 			goto err_release_maps;
10843 		}
10844 
10845 		memcpy(env->prog->aux->used_maps, env->used_maps,
10846 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
10847 		env->prog->aux->used_map_cnt = env->used_map_cnt;
10848 
10849 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
10850 		 * bpf_ld_imm64 instructions
10851 		 */
10852 		convert_pseudo_ld_imm64(env);
10853 	}
10854 
10855 	if (ret == 0)
10856 		adjust_btf_func(env);
10857 
10858 err_release_maps:
10859 	if (!env->prog->aux->used_maps)
10860 		/* if we didn't copy map pointers into bpf_prog_info, release
10861 		 * them now. Otherwise free_used_maps() will release them.
10862 		 */
10863 		release_maps(env);
10864 
10865 	/* extension progs temporarily inherit the attach_type of their targets
10866 	   for verification purposes, so set it back to zero before returning
10867 	 */
10868 	if (env->prog->type == BPF_PROG_TYPE_EXT)
10869 		env->prog->expected_attach_type = 0;
10870 
10871 	*prog = env->prog;
10872 err_unlock:
10873 	if (!is_priv)
10874 		mutex_unlock(&bpf_verifier_lock);
10875 	vfree(env->insn_aux_data);
10876 err_free_env:
10877 	kfree(env);
10878 	return ret;
10879 }
10880