1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 25 #include "disasm.h" 26 27 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 28 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 29 [_id] = & _name ## _verifier_ops, 30 #define BPF_MAP_TYPE(_id, _ops) 31 #include <linux/bpf_types.h> 32 #undef BPF_PROG_TYPE 33 #undef BPF_MAP_TYPE 34 }; 35 36 /* bpf_check() is a static code analyzer that walks eBPF program 37 * instruction by instruction and updates register/stack state. 38 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 39 * 40 * The first pass is depth-first-search to check that the program is a DAG. 41 * It rejects the following programs: 42 * - larger than BPF_MAXINSNS insns 43 * - if loop is present (detected via back-edge) 44 * - unreachable insns exist (shouldn't be a forest. program = one function) 45 * - out of bounds or malformed jumps 46 * The second pass is all possible path descent from the 1st insn. 47 * Since it's analyzing all pathes through the program, the length of the 48 * analysis is limited to 64k insn, which may be hit even if total number of 49 * insn is less then 4K, but there are too many branches that change stack/regs. 50 * Number of 'branches to be analyzed' is limited to 1k 51 * 52 * On entry to each instruction, each register has a type, and the instruction 53 * changes the types of the registers depending on instruction semantics. 54 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 55 * copied to R1. 56 * 57 * All registers are 64-bit. 58 * R0 - return register 59 * R1-R5 argument passing registers 60 * R6-R9 callee saved registers 61 * R10 - frame pointer read-only 62 * 63 * At the start of BPF program the register R1 contains a pointer to bpf_context 64 * and has type PTR_TO_CTX. 65 * 66 * Verifier tracks arithmetic operations on pointers in case: 67 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 68 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 69 * 1st insn copies R10 (which has FRAME_PTR) type into R1 70 * and 2nd arithmetic instruction is pattern matched to recognize 71 * that it wants to construct a pointer to some element within stack. 72 * So after 2nd insn, the register R1 has type PTR_TO_STACK 73 * (and -20 constant is saved for further stack bounds checking). 74 * Meaning that this reg is a pointer to stack plus known immediate constant. 75 * 76 * Most of the time the registers have SCALAR_VALUE type, which 77 * means the register has some value, but it's not a valid pointer. 78 * (like pointer plus pointer becomes SCALAR_VALUE type) 79 * 80 * When verifier sees load or store instructions the type of base register 81 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 82 * four pointer types recognized by check_mem_access() function. 83 * 84 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 85 * and the range of [ptr, ptr + map's value_size) is accessible. 86 * 87 * registers used to pass values to function calls are checked against 88 * function argument constraints. 89 * 90 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 91 * It means that the register type passed to this function must be 92 * PTR_TO_STACK and it will be used inside the function as 93 * 'pointer to map element key' 94 * 95 * For example the argument constraints for bpf_map_lookup_elem(): 96 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 97 * .arg1_type = ARG_CONST_MAP_PTR, 98 * .arg2_type = ARG_PTR_TO_MAP_KEY, 99 * 100 * ret_type says that this function returns 'pointer to map elem value or null' 101 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 102 * 2nd argument should be a pointer to stack, which will be used inside 103 * the helper function as a pointer to map element key. 104 * 105 * On the kernel side the helper function looks like: 106 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 107 * { 108 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 109 * void *key = (void *) (unsigned long) r2; 110 * void *value; 111 * 112 * here kernel can access 'key' and 'map' pointers safely, knowing that 113 * [key, key + map->key_size) bytes are valid and were initialized on 114 * the stack of eBPF program. 115 * } 116 * 117 * Corresponding eBPF program may look like: 118 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 119 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 120 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 121 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 122 * here verifier looks at prototype of map_lookup_elem() and sees: 123 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 124 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 125 * 126 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 127 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 128 * and were initialized prior to this call. 129 * If it's ok, then verifier allows this BPF_CALL insn and looks at 130 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 131 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 132 * returns ether pointer to map value or NULL. 133 * 134 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 135 * insn, the register holding that pointer in the true branch changes state to 136 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 137 * branch. See check_cond_jmp_op(). 138 * 139 * After the call R0 is set to return type of the function and registers R1-R5 140 * are set to NOT_INIT to indicate that they are no longer readable. 141 * 142 * The following reference types represent a potential reference to a kernel 143 * resource which, after first being allocated, must be checked and freed by 144 * the BPF program: 145 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 146 * 147 * When the verifier sees a helper call return a reference type, it allocates a 148 * pointer id for the reference and stores it in the current function state. 149 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 150 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 151 * passes through a NULL-check conditional. For the branch wherein the state is 152 * changed to CONST_IMM, the verifier releases the reference. 153 * 154 * For each helper function that allocates a reference, such as 155 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 156 * bpf_sk_release(). When a reference type passes into the release function, 157 * the verifier also releases the reference. If any unchecked or unreleased 158 * reference remains at the end of the program, the verifier rejects it. 159 */ 160 161 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 162 struct bpf_verifier_stack_elem { 163 /* verifer state is 'st' 164 * before processing instruction 'insn_idx' 165 * and after processing instruction 'prev_insn_idx' 166 */ 167 struct bpf_verifier_state st; 168 int insn_idx; 169 int prev_insn_idx; 170 struct bpf_verifier_stack_elem *next; 171 }; 172 173 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 174 #define BPF_COMPLEXITY_LIMIT_STATES 64 175 176 #define BPF_MAP_KEY_POISON (1ULL << 63) 177 #define BPF_MAP_KEY_SEEN (1ULL << 62) 178 179 #define BPF_MAP_PTR_UNPRIV 1UL 180 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 181 POISON_POINTER_DELTA)) 182 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 183 184 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 185 { 186 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 187 } 188 189 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 190 { 191 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 192 } 193 194 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 195 const struct bpf_map *map, bool unpriv) 196 { 197 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 198 unpriv |= bpf_map_ptr_unpriv(aux); 199 aux->map_ptr_state = (unsigned long)map | 200 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 201 } 202 203 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 204 { 205 return aux->map_key_state & BPF_MAP_KEY_POISON; 206 } 207 208 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 209 { 210 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 211 } 212 213 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 214 { 215 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 216 } 217 218 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 219 { 220 bool poisoned = bpf_map_key_poisoned(aux); 221 222 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 223 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 224 } 225 226 struct bpf_call_arg_meta { 227 struct bpf_map *map_ptr; 228 bool raw_mode; 229 bool pkt_access; 230 int regno; 231 int access_size; 232 u64 msize_max_value; 233 int ref_obj_id; 234 int func_id; 235 u32 btf_id; 236 }; 237 238 struct btf *btf_vmlinux; 239 240 static DEFINE_MUTEX(bpf_verifier_lock); 241 242 static const struct bpf_line_info * 243 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 244 { 245 const struct bpf_line_info *linfo; 246 const struct bpf_prog *prog; 247 u32 i, nr_linfo; 248 249 prog = env->prog; 250 nr_linfo = prog->aux->nr_linfo; 251 252 if (!nr_linfo || insn_off >= prog->len) 253 return NULL; 254 255 linfo = prog->aux->linfo; 256 for (i = 1; i < nr_linfo; i++) 257 if (insn_off < linfo[i].insn_off) 258 break; 259 260 return &linfo[i - 1]; 261 } 262 263 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 264 va_list args) 265 { 266 unsigned int n; 267 268 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 269 270 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 271 "verifier log line truncated - local buffer too short\n"); 272 273 n = min(log->len_total - log->len_used - 1, n); 274 log->kbuf[n] = '\0'; 275 276 if (log->level == BPF_LOG_KERNEL) { 277 pr_err("BPF:%s\n", log->kbuf); 278 return; 279 } 280 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 281 log->len_used += n; 282 else 283 log->ubuf = NULL; 284 } 285 286 /* log_level controls verbosity level of eBPF verifier. 287 * bpf_verifier_log_write() is used to dump the verification trace to the log, 288 * so the user can figure out what's wrong with the program 289 */ 290 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 291 const char *fmt, ...) 292 { 293 va_list args; 294 295 if (!bpf_verifier_log_needed(&env->log)) 296 return; 297 298 va_start(args, fmt); 299 bpf_verifier_vlog(&env->log, fmt, args); 300 va_end(args); 301 } 302 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 303 304 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 305 { 306 struct bpf_verifier_env *env = private_data; 307 va_list args; 308 309 if (!bpf_verifier_log_needed(&env->log)) 310 return; 311 312 va_start(args, fmt); 313 bpf_verifier_vlog(&env->log, fmt, args); 314 va_end(args); 315 } 316 317 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 318 const char *fmt, ...) 319 { 320 va_list args; 321 322 if (!bpf_verifier_log_needed(log)) 323 return; 324 325 va_start(args, fmt); 326 bpf_verifier_vlog(log, fmt, args); 327 va_end(args); 328 } 329 330 static const char *ltrim(const char *s) 331 { 332 while (isspace(*s)) 333 s++; 334 335 return s; 336 } 337 338 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 339 u32 insn_off, 340 const char *prefix_fmt, ...) 341 { 342 const struct bpf_line_info *linfo; 343 344 if (!bpf_verifier_log_needed(&env->log)) 345 return; 346 347 linfo = find_linfo(env, insn_off); 348 if (!linfo || linfo == env->prev_linfo) 349 return; 350 351 if (prefix_fmt) { 352 va_list args; 353 354 va_start(args, prefix_fmt); 355 bpf_verifier_vlog(&env->log, prefix_fmt, args); 356 va_end(args); 357 } 358 359 verbose(env, "%s\n", 360 ltrim(btf_name_by_offset(env->prog->aux->btf, 361 linfo->line_off))); 362 363 env->prev_linfo = linfo; 364 } 365 366 static bool type_is_pkt_pointer(enum bpf_reg_type type) 367 { 368 return type == PTR_TO_PACKET || 369 type == PTR_TO_PACKET_META; 370 } 371 372 static bool type_is_sk_pointer(enum bpf_reg_type type) 373 { 374 return type == PTR_TO_SOCKET || 375 type == PTR_TO_SOCK_COMMON || 376 type == PTR_TO_TCP_SOCK || 377 type == PTR_TO_XDP_SOCK; 378 } 379 380 static bool reg_type_may_be_null(enum bpf_reg_type type) 381 { 382 return type == PTR_TO_MAP_VALUE_OR_NULL || 383 type == PTR_TO_SOCKET_OR_NULL || 384 type == PTR_TO_SOCK_COMMON_OR_NULL || 385 type == PTR_TO_TCP_SOCK_OR_NULL; 386 } 387 388 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 389 { 390 return reg->type == PTR_TO_MAP_VALUE && 391 map_value_has_spin_lock(reg->map_ptr); 392 } 393 394 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 395 { 396 return type == PTR_TO_SOCKET || 397 type == PTR_TO_SOCKET_OR_NULL || 398 type == PTR_TO_TCP_SOCK || 399 type == PTR_TO_TCP_SOCK_OR_NULL; 400 } 401 402 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 403 { 404 return type == ARG_PTR_TO_SOCK_COMMON; 405 } 406 407 /* Determine whether the function releases some resources allocated by another 408 * function call. The first reference type argument will be assumed to be 409 * released by release_reference(). 410 */ 411 static bool is_release_function(enum bpf_func_id func_id) 412 { 413 return func_id == BPF_FUNC_sk_release; 414 } 415 416 static bool is_acquire_function(enum bpf_func_id func_id) 417 { 418 return func_id == BPF_FUNC_sk_lookup_tcp || 419 func_id == BPF_FUNC_sk_lookup_udp || 420 func_id == BPF_FUNC_skc_lookup_tcp; 421 } 422 423 static bool is_ptr_cast_function(enum bpf_func_id func_id) 424 { 425 return func_id == BPF_FUNC_tcp_sock || 426 func_id == BPF_FUNC_sk_fullsock; 427 } 428 429 /* string representation of 'enum bpf_reg_type' */ 430 static const char * const reg_type_str[] = { 431 [NOT_INIT] = "?", 432 [SCALAR_VALUE] = "inv", 433 [PTR_TO_CTX] = "ctx", 434 [CONST_PTR_TO_MAP] = "map_ptr", 435 [PTR_TO_MAP_VALUE] = "map_value", 436 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 437 [PTR_TO_STACK] = "fp", 438 [PTR_TO_PACKET] = "pkt", 439 [PTR_TO_PACKET_META] = "pkt_meta", 440 [PTR_TO_PACKET_END] = "pkt_end", 441 [PTR_TO_FLOW_KEYS] = "flow_keys", 442 [PTR_TO_SOCKET] = "sock", 443 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 444 [PTR_TO_SOCK_COMMON] = "sock_common", 445 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 446 [PTR_TO_TCP_SOCK] = "tcp_sock", 447 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 448 [PTR_TO_TP_BUFFER] = "tp_buffer", 449 [PTR_TO_XDP_SOCK] = "xdp_sock", 450 [PTR_TO_BTF_ID] = "ptr_", 451 }; 452 453 static char slot_type_char[] = { 454 [STACK_INVALID] = '?', 455 [STACK_SPILL] = 'r', 456 [STACK_MISC] = 'm', 457 [STACK_ZERO] = '0', 458 }; 459 460 static void print_liveness(struct bpf_verifier_env *env, 461 enum bpf_reg_liveness live) 462 { 463 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 464 verbose(env, "_"); 465 if (live & REG_LIVE_READ) 466 verbose(env, "r"); 467 if (live & REG_LIVE_WRITTEN) 468 verbose(env, "w"); 469 if (live & REG_LIVE_DONE) 470 verbose(env, "D"); 471 } 472 473 static struct bpf_func_state *func(struct bpf_verifier_env *env, 474 const struct bpf_reg_state *reg) 475 { 476 struct bpf_verifier_state *cur = env->cur_state; 477 478 return cur->frame[reg->frameno]; 479 } 480 481 const char *kernel_type_name(u32 id) 482 { 483 return btf_name_by_offset(btf_vmlinux, 484 btf_type_by_id(btf_vmlinux, id)->name_off); 485 } 486 487 static void print_verifier_state(struct bpf_verifier_env *env, 488 const struct bpf_func_state *state) 489 { 490 const struct bpf_reg_state *reg; 491 enum bpf_reg_type t; 492 int i; 493 494 if (state->frameno) 495 verbose(env, " frame%d:", state->frameno); 496 for (i = 0; i < MAX_BPF_REG; i++) { 497 reg = &state->regs[i]; 498 t = reg->type; 499 if (t == NOT_INIT) 500 continue; 501 verbose(env, " R%d", i); 502 print_liveness(env, reg->live); 503 verbose(env, "=%s", reg_type_str[t]); 504 if (t == SCALAR_VALUE && reg->precise) 505 verbose(env, "P"); 506 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 507 tnum_is_const(reg->var_off)) { 508 /* reg->off should be 0 for SCALAR_VALUE */ 509 verbose(env, "%lld", reg->var_off.value + reg->off); 510 } else { 511 if (t == PTR_TO_BTF_ID) 512 verbose(env, "%s", kernel_type_name(reg->btf_id)); 513 verbose(env, "(id=%d", reg->id); 514 if (reg_type_may_be_refcounted_or_null(t)) 515 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 516 if (t != SCALAR_VALUE) 517 verbose(env, ",off=%d", reg->off); 518 if (type_is_pkt_pointer(t)) 519 verbose(env, ",r=%d", reg->range); 520 else if (t == CONST_PTR_TO_MAP || 521 t == PTR_TO_MAP_VALUE || 522 t == PTR_TO_MAP_VALUE_OR_NULL) 523 verbose(env, ",ks=%d,vs=%d", 524 reg->map_ptr->key_size, 525 reg->map_ptr->value_size); 526 if (tnum_is_const(reg->var_off)) { 527 /* Typically an immediate SCALAR_VALUE, but 528 * could be a pointer whose offset is too big 529 * for reg->off 530 */ 531 verbose(env, ",imm=%llx", reg->var_off.value); 532 } else { 533 if (reg->smin_value != reg->umin_value && 534 reg->smin_value != S64_MIN) 535 verbose(env, ",smin_value=%lld", 536 (long long)reg->smin_value); 537 if (reg->smax_value != reg->umax_value && 538 reg->smax_value != S64_MAX) 539 verbose(env, ",smax_value=%lld", 540 (long long)reg->smax_value); 541 if (reg->umin_value != 0) 542 verbose(env, ",umin_value=%llu", 543 (unsigned long long)reg->umin_value); 544 if (reg->umax_value != U64_MAX) 545 verbose(env, ",umax_value=%llu", 546 (unsigned long long)reg->umax_value); 547 if (!tnum_is_unknown(reg->var_off)) { 548 char tn_buf[48]; 549 550 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 551 verbose(env, ",var_off=%s", tn_buf); 552 } 553 if (reg->s32_min_value != reg->smin_value && 554 reg->s32_min_value != S32_MIN) 555 verbose(env, ",s32_min_value=%d", 556 (int)(reg->s32_min_value)); 557 if (reg->s32_max_value != reg->smax_value && 558 reg->s32_max_value != S32_MAX) 559 verbose(env, ",s32_max_value=%d", 560 (int)(reg->s32_max_value)); 561 if (reg->u32_min_value != reg->umin_value && 562 reg->u32_min_value != U32_MIN) 563 verbose(env, ",u32_min_value=%d", 564 (int)(reg->u32_min_value)); 565 if (reg->u32_max_value != reg->umax_value && 566 reg->u32_max_value != U32_MAX) 567 verbose(env, ",u32_max_value=%d", 568 (int)(reg->u32_max_value)); 569 } 570 verbose(env, ")"); 571 } 572 } 573 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 574 char types_buf[BPF_REG_SIZE + 1]; 575 bool valid = false; 576 int j; 577 578 for (j = 0; j < BPF_REG_SIZE; j++) { 579 if (state->stack[i].slot_type[j] != STACK_INVALID) 580 valid = true; 581 types_buf[j] = slot_type_char[ 582 state->stack[i].slot_type[j]]; 583 } 584 types_buf[BPF_REG_SIZE] = 0; 585 if (!valid) 586 continue; 587 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 588 print_liveness(env, state->stack[i].spilled_ptr.live); 589 if (state->stack[i].slot_type[0] == STACK_SPILL) { 590 reg = &state->stack[i].spilled_ptr; 591 t = reg->type; 592 verbose(env, "=%s", reg_type_str[t]); 593 if (t == SCALAR_VALUE && reg->precise) 594 verbose(env, "P"); 595 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 596 verbose(env, "%lld", reg->var_off.value + reg->off); 597 } else { 598 verbose(env, "=%s", types_buf); 599 } 600 } 601 if (state->acquired_refs && state->refs[0].id) { 602 verbose(env, " refs=%d", state->refs[0].id); 603 for (i = 1; i < state->acquired_refs; i++) 604 if (state->refs[i].id) 605 verbose(env, ",%d", state->refs[i].id); 606 } 607 verbose(env, "\n"); 608 } 609 610 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 611 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 612 const struct bpf_func_state *src) \ 613 { \ 614 if (!src->FIELD) \ 615 return 0; \ 616 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 617 /* internal bug, make state invalid to reject the program */ \ 618 memset(dst, 0, sizeof(*dst)); \ 619 return -EFAULT; \ 620 } \ 621 memcpy(dst->FIELD, src->FIELD, \ 622 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 623 return 0; \ 624 } 625 /* copy_reference_state() */ 626 COPY_STATE_FN(reference, acquired_refs, refs, 1) 627 /* copy_stack_state() */ 628 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 629 #undef COPY_STATE_FN 630 631 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 632 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 633 bool copy_old) \ 634 { \ 635 u32 old_size = state->COUNT; \ 636 struct bpf_##NAME##_state *new_##FIELD; \ 637 int slot = size / SIZE; \ 638 \ 639 if (size <= old_size || !size) { \ 640 if (copy_old) \ 641 return 0; \ 642 state->COUNT = slot * SIZE; \ 643 if (!size && old_size) { \ 644 kfree(state->FIELD); \ 645 state->FIELD = NULL; \ 646 } \ 647 return 0; \ 648 } \ 649 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 650 GFP_KERNEL); \ 651 if (!new_##FIELD) \ 652 return -ENOMEM; \ 653 if (copy_old) { \ 654 if (state->FIELD) \ 655 memcpy(new_##FIELD, state->FIELD, \ 656 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 657 memset(new_##FIELD + old_size / SIZE, 0, \ 658 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 659 } \ 660 state->COUNT = slot * SIZE; \ 661 kfree(state->FIELD); \ 662 state->FIELD = new_##FIELD; \ 663 return 0; \ 664 } 665 /* realloc_reference_state() */ 666 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 667 /* realloc_stack_state() */ 668 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 669 #undef REALLOC_STATE_FN 670 671 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 672 * make it consume minimal amount of memory. check_stack_write() access from 673 * the program calls into realloc_func_state() to grow the stack size. 674 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 675 * which realloc_stack_state() copies over. It points to previous 676 * bpf_verifier_state which is never reallocated. 677 */ 678 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 679 int refs_size, bool copy_old) 680 { 681 int err = realloc_reference_state(state, refs_size, copy_old); 682 if (err) 683 return err; 684 return realloc_stack_state(state, stack_size, copy_old); 685 } 686 687 /* Acquire a pointer id from the env and update the state->refs to include 688 * this new pointer reference. 689 * On success, returns a valid pointer id to associate with the register 690 * On failure, returns a negative errno. 691 */ 692 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 693 { 694 struct bpf_func_state *state = cur_func(env); 695 int new_ofs = state->acquired_refs; 696 int id, err; 697 698 err = realloc_reference_state(state, state->acquired_refs + 1, true); 699 if (err) 700 return err; 701 id = ++env->id_gen; 702 state->refs[new_ofs].id = id; 703 state->refs[new_ofs].insn_idx = insn_idx; 704 705 return id; 706 } 707 708 /* release function corresponding to acquire_reference_state(). Idempotent. */ 709 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 710 { 711 int i, last_idx; 712 713 last_idx = state->acquired_refs - 1; 714 for (i = 0; i < state->acquired_refs; i++) { 715 if (state->refs[i].id == ptr_id) { 716 if (last_idx && i != last_idx) 717 memcpy(&state->refs[i], &state->refs[last_idx], 718 sizeof(*state->refs)); 719 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 720 state->acquired_refs--; 721 return 0; 722 } 723 } 724 return -EINVAL; 725 } 726 727 static int transfer_reference_state(struct bpf_func_state *dst, 728 struct bpf_func_state *src) 729 { 730 int err = realloc_reference_state(dst, src->acquired_refs, false); 731 if (err) 732 return err; 733 err = copy_reference_state(dst, src); 734 if (err) 735 return err; 736 return 0; 737 } 738 739 static void free_func_state(struct bpf_func_state *state) 740 { 741 if (!state) 742 return; 743 kfree(state->refs); 744 kfree(state->stack); 745 kfree(state); 746 } 747 748 static void clear_jmp_history(struct bpf_verifier_state *state) 749 { 750 kfree(state->jmp_history); 751 state->jmp_history = NULL; 752 state->jmp_history_cnt = 0; 753 } 754 755 static void free_verifier_state(struct bpf_verifier_state *state, 756 bool free_self) 757 { 758 int i; 759 760 for (i = 0; i <= state->curframe; i++) { 761 free_func_state(state->frame[i]); 762 state->frame[i] = NULL; 763 } 764 clear_jmp_history(state); 765 if (free_self) 766 kfree(state); 767 } 768 769 /* copy verifier state from src to dst growing dst stack space 770 * when necessary to accommodate larger src stack 771 */ 772 static int copy_func_state(struct bpf_func_state *dst, 773 const struct bpf_func_state *src) 774 { 775 int err; 776 777 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 778 false); 779 if (err) 780 return err; 781 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 782 err = copy_reference_state(dst, src); 783 if (err) 784 return err; 785 return copy_stack_state(dst, src); 786 } 787 788 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 789 const struct bpf_verifier_state *src) 790 { 791 struct bpf_func_state *dst; 792 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 793 int i, err; 794 795 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 796 kfree(dst_state->jmp_history); 797 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 798 if (!dst_state->jmp_history) 799 return -ENOMEM; 800 } 801 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 802 dst_state->jmp_history_cnt = src->jmp_history_cnt; 803 804 /* if dst has more stack frames then src frame, free them */ 805 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 806 free_func_state(dst_state->frame[i]); 807 dst_state->frame[i] = NULL; 808 } 809 dst_state->speculative = src->speculative; 810 dst_state->curframe = src->curframe; 811 dst_state->active_spin_lock = src->active_spin_lock; 812 dst_state->branches = src->branches; 813 dst_state->parent = src->parent; 814 dst_state->first_insn_idx = src->first_insn_idx; 815 dst_state->last_insn_idx = src->last_insn_idx; 816 for (i = 0; i <= src->curframe; i++) { 817 dst = dst_state->frame[i]; 818 if (!dst) { 819 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 820 if (!dst) 821 return -ENOMEM; 822 dst_state->frame[i] = dst; 823 } 824 err = copy_func_state(dst, src->frame[i]); 825 if (err) 826 return err; 827 } 828 return 0; 829 } 830 831 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 832 { 833 while (st) { 834 u32 br = --st->branches; 835 836 /* WARN_ON(br > 1) technically makes sense here, 837 * but see comment in push_stack(), hence: 838 */ 839 WARN_ONCE((int)br < 0, 840 "BUG update_branch_counts:branches_to_explore=%d\n", 841 br); 842 if (br) 843 break; 844 st = st->parent; 845 } 846 } 847 848 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 849 int *insn_idx) 850 { 851 struct bpf_verifier_state *cur = env->cur_state; 852 struct bpf_verifier_stack_elem *elem, *head = env->head; 853 int err; 854 855 if (env->head == NULL) 856 return -ENOENT; 857 858 if (cur) { 859 err = copy_verifier_state(cur, &head->st); 860 if (err) 861 return err; 862 } 863 if (insn_idx) 864 *insn_idx = head->insn_idx; 865 if (prev_insn_idx) 866 *prev_insn_idx = head->prev_insn_idx; 867 elem = head->next; 868 free_verifier_state(&head->st, false); 869 kfree(head); 870 env->head = elem; 871 env->stack_size--; 872 return 0; 873 } 874 875 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 876 int insn_idx, int prev_insn_idx, 877 bool speculative) 878 { 879 struct bpf_verifier_state *cur = env->cur_state; 880 struct bpf_verifier_stack_elem *elem; 881 int err; 882 883 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 884 if (!elem) 885 goto err; 886 887 elem->insn_idx = insn_idx; 888 elem->prev_insn_idx = prev_insn_idx; 889 elem->next = env->head; 890 env->head = elem; 891 env->stack_size++; 892 err = copy_verifier_state(&elem->st, cur); 893 if (err) 894 goto err; 895 elem->st.speculative |= speculative; 896 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 897 verbose(env, "The sequence of %d jumps is too complex.\n", 898 env->stack_size); 899 goto err; 900 } 901 if (elem->st.parent) { 902 ++elem->st.parent->branches; 903 /* WARN_ON(branches > 2) technically makes sense here, 904 * but 905 * 1. speculative states will bump 'branches' for non-branch 906 * instructions 907 * 2. is_state_visited() heuristics may decide not to create 908 * a new state for a sequence of branches and all such current 909 * and cloned states will be pointing to a single parent state 910 * which might have large 'branches' count. 911 */ 912 } 913 return &elem->st; 914 err: 915 free_verifier_state(env->cur_state, true); 916 env->cur_state = NULL; 917 /* pop all elements and return */ 918 while (!pop_stack(env, NULL, NULL)); 919 return NULL; 920 } 921 922 #define CALLER_SAVED_REGS 6 923 static const int caller_saved[CALLER_SAVED_REGS] = { 924 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 925 }; 926 927 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 928 struct bpf_reg_state *reg); 929 930 /* Mark the unknown part of a register (variable offset or scalar value) as 931 * known to have the value @imm. 932 */ 933 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 934 { 935 /* Clear id, off, and union(map_ptr, range) */ 936 memset(((u8 *)reg) + sizeof(reg->type), 0, 937 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 938 reg->var_off = tnum_const(imm); 939 reg->smin_value = (s64)imm; 940 reg->smax_value = (s64)imm; 941 reg->umin_value = imm; 942 reg->umax_value = imm; 943 944 reg->s32_min_value = (s32)imm; 945 reg->s32_max_value = (s32)imm; 946 reg->u32_min_value = (u32)imm; 947 reg->u32_max_value = (u32)imm; 948 } 949 950 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 951 { 952 reg->var_off = tnum_const_subreg(reg->var_off, imm); 953 reg->s32_min_value = (s32)imm; 954 reg->s32_max_value = (s32)imm; 955 reg->u32_min_value = (u32)imm; 956 reg->u32_max_value = (u32)imm; 957 } 958 959 /* Mark the 'variable offset' part of a register as zero. This should be 960 * used only on registers holding a pointer type. 961 */ 962 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 963 { 964 __mark_reg_known(reg, 0); 965 } 966 967 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 968 { 969 __mark_reg_known(reg, 0); 970 reg->type = SCALAR_VALUE; 971 } 972 973 static void mark_reg_known_zero(struct bpf_verifier_env *env, 974 struct bpf_reg_state *regs, u32 regno) 975 { 976 if (WARN_ON(regno >= MAX_BPF_REG)) { 977 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 978 /* Something bad happened, let's kill all regs */ 979 for (regno = 0; regno < MAX_BPF_REG; regno++) 980 __mark_reg_not_init(env, regs + regno); 981 return; 982 } 983 __mark_reg_known_zero(regs + regno); 984 } 985 986 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 987 { 988 return type_is_pkt_pointer(reg->type); 989 } 990 991 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 992 { 993 return reg_is_pkt_pointer(reg) || 994 reg->type == PTR_TO_PACKET_END; 995 } 996 997 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 998 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 999 enum bpf_reg_type which) 1000 { 1001 /* The register can already have a range from prior markings. 1002 * This is fine as long as it hasn't been advanced from its 1003 * origin. 1004 */ 1005 return reg->type == which && 1006 reg->id == 0 && 1007 reg->off == 0 && 1008 tnum_equals_const(reg->var_off, 0); 1009 } 1010 1011 /* Reset the min/max bounds of a register */ 1012 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1013 { 1014 reg->smin_value = S64_MIN; 1015 reg->smax_value = S64_MAX; 1016 reg->umin_value = 0; 1017 reg->umax_value = U64_MAX; 1018 1019 reg->s32_min_value = S32_MIN; 1020 reg->s32_max_value = S32_MAX; 1021 reg->u32_min_value = 0; 1022 reg->u32_max_value = U32_MAX; 1023 } 1024 1025 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1026 { 1027 reg->smin_value = S64_MIN; 1028 reg->smax_value = S64_MAX; 1029 reg->umin_value = 0; 1030 reg->umax_value = U64_MAX; 1031 } 1032 1033 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1034 { 1035 reg->s32_min_value = S32_MIN; 1036 reg->s32_max_value = S32_MAX; 1037 reg->u32_min_value = 0; 1038 reg->u32_max_value = U32_MAX; 1039 } 1040 1041 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1042 { 1043 struct tnum var32_off = tnum_subreg(reg->var_off); 1044 1045 /* min signed is max(sign bit) | min(other bits) */ 1046 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1047 var32_off.value | (var32_off.mask & S32_MIN)); 1048 /* max signed is min(sign bit) | max(other bits) */ 1049 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1050 var32_off.value | (var32_off.mask & S32_MAX)); 1051 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1052 reg->u32_max_value = min(reg->u32_max_value, 1053 (u32)(var32_off.value | var32_off.mask)); 1054 } 1055 1056 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1057 { 1058 /* min signed is max(sign bit) | min(other bits) */ 1059 reg->smin_value = max_t(s64, reg->smin_value, 1060 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1061 /* max signed is min(sign bit) | max(other bits) */ 1062 reg->smax_value = min_t(s64, reg->smax_value, 1063 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1064 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1065 reg->umax_value = min(reg->umax_value, 1066 reg->var_off.value | reg->var_off.mask); 1067 } 1068 1069 static void __update_reg_bounds(struct bpf_reg_state *reg) 1070 { 1071 __update_reg32_bounds(reg); 1072 __update_reg64_bounds(reg); 1073 } 1074 1075 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1076 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1077 { 1078 /* Learn sign from signed bounds. 1079 * If we cannot cross the sign boundary, then signed and unsigned bounds 1080 * are the same, so combine. This works even in the negative case, e.g. 1081 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1082 */ 1083 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1084 reg->s32_min_value = reg->u32_min_value = 1085 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1086 reg->s32_max_value = reg->u32_max_value = 1087 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1088 return; 1089 } 1090 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1091 * boundary, so we must be careful. 1092 */ 1093 if ((s32)reg->u32_max_value >= 0) { 1094 /* Positive. We can't learn anything from the smin, but smax 1095 * is positive, hence safe. 1096 */ 1097 reg->s32_min_value = reg->u32_min_value; 1098 reg->s32_max_value = reg->u32_max_value = 1099 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1100 } else if ((s32)reg->u32_min_value < 0) { 1101 /* Negative. We can't learn anything from the smax, but smin 1102 * is negative, hence safe. 1103 */ 1104 reg->s32_min_value = reg->u32_min_value = 1105 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1106 reg->s32_max_value = reg->u32_max_value; 1107 } 1108 } 1109 1110 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1111 { 1112 /* Learn sign from signed bounds. 1113 * If we cannot cross the sign boundary, then signed and unsigned bounds 1114 * are the same, so combine. This works even in the negative case, e.g. 1115 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1116 */ 1117 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1118 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1119 reg->umin_value); 1120 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1121 reg->umax_value); 1122 return; 1123 } 1124 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1125 * boundary, so we must be careful. 1126 */ 1127 if ((s64)reg->umax_value >= 0) { 1128 /* Positive. We can't learn anything from the smin, but smax 1129 * is positive, hence safe. 1130 */ 1131 reg->smin_value = reg->umin_value; 1132 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1133 reg->umax_value); 1134 } else if ((s64)reg->umin_value < 0) { 1135 /* Negative. We can't learn anything from the smax, but smin 1136 * is negative, hence safe. 1137 */ 1138 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1139 reg->umin_value); 1140 reg->smax_value = reg->umax_value; 1141 } 1142 } 1143 1144 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1145 { 1146 __reg32_deduce_bounds(reg); 1147 __reg64_deduce_bounds(reg); 1148 } 1149 1150 /* Attempts to improve var_off based on unsigned min/max information */ 1151 static void __reg_bound_offset(struct bpf_reg_state *reg) 1152 { 1153 struct tnum var64_off = tnum_intersect(reg->var_off, 1154 tnum_range(reg->umin_value, 1155 reg->umax_value)); 1156 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1157 tnum_range(reg->u32_min_value, 1158 reg->u32_max_value)); 1159 1160 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1161 } 1162 1163 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1164 { 1165 reg->umin_value = reg->u32_min_value; 1166 reg->umax_value = reg->u32_max_value; 1167 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1168 * but must be positive otherwise set to worse case bounds 1169 * and refine later from tnum. 1170 */ 1171 if (reg->s32_min_value > 0) 1172 reg->smin_value = reg->s32_min_value; 1173 else 1174 reg->smin_value = 0; 1175 if (reg->s32_max_value > 0) 1176 reg->smax_value = reg->s32_max_value; 1177 else 1178 reg->smax_value = U32_MAX; 1179 } 1180 1181 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1182 { 1183 /* special case when 64-bit register has upper 32-bit register 1184 * zeroed. Typically happens after zext or <<32, >>32 sequence 1185 * allowing us to use 32-bit bounds directly, 1186 */ 1187 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1188 __reg_assign_32_into_64(reg); 1189 } else { 1190 /* Otherwise the best we can do is push lower 32bit known and 1191 * unknown bits into register (var_off set from jmp logic) 1192 * then learn as much as possible from the 64-bit tnum 1193 * known and unknown bits. The previous smin/smax bounds are 1194 * invalid here because of jmp32 compare so mark them unknown 1195 * so they do not impact tnum bounds calculation. 1196 */ 1197 __mark_reg64_unbounded(reg); 1198 __update_reg_bounds(reg); 1199 } 1200 1201 /* Intersecting with the old var_off might have improved our bounds 1202 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1203 * then new var_off is (0; 0x7f...fc) which improves our umax. 1204 */ 1205 __reg_deduce_bounds(reg); 1206 __reg_bound_offset(reg); 1207 __update_reg_bounds(reg); 1208 } 1209 1210 static bool __reg64_bound_s32(s64 a) 1211 { 1212 if (a > S32_MIN && a < S32_MAX) 1213 return true; 1214 return false; 1215 } 1216 1217 static bool __reg64_bound_u32(u64 a) 1218 { 1219 if (a > U32_MIN && a < U32_MAX) 1220 return true; 1221 return false; 1222 } 1223 1224 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1225 { 1226 __mark_reg32_unbounded(reg); 1227 1228 if (__reg64_bound_s32(reg->smin_value)) 1229 reg->s32_min_value = (s32)reg->smin_value; 1230 if (__reg64_bound_s32(reg->smax_value)) 1231 reg->s32_max_value = (s32)reg->smax_value; 1232 if (__reg64_bound_u32(reg->umin_value)) 1233 reg->u32_min_value = (u32)reg->umin_value; 1234 if (__reg64_bound_u32(reg->umax_value)) 1235 reg->u32_max_value = (u32)reg->umax_value; 1236 1237 /* Intersecting with the old var_off might have improved our bounds 1238 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1239 * then new var_off is (0; 0x7f...fc) which improves our umax. 1240 */ 1241 __reg_deduce_bounds(reg); 1242 __reg_bound_offset(reg); 1243 __update_reg_bounds(reg); 1244 } 1245 1246 /* Mark a register as having a completely unknown (scalar) value. */ 1247 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1248 struct bpf_reg_state *reg) 1249 { 1250 /* 1251 * Clear type, id, off, and union(map_ptr, range) and 1252 * padding between 'type' and union 1253 */ 1254 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1255 reg->type = SCALAR_VALUE; 1256 reg->var_off = tnum_unknown; 1257 reg->frameno = 0; 1258 reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks; 1259 __mark_reg_unbounded(reg); 1260 } 1261 1262 static void mark_reg_unknown(struct bpf_verifier_env *env, 1263 struct bpf_reg_state *regs, u32 regno) 1264 { 1265 if (WARN_ON(regno >= MAX_BPF_REG)) { 1266 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1267 /* Something bad happened, let's kill all regs except FP */ 1268 for (regno = 0; regno < BPF_REG_FP; regno++) 1269 __mark_reg_not_init(env, regs + regno); 1270 return; 1271 } 1272 __mark_reg_unknown(env, regs + regno); 1273 } 1274 1275 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1276 struct bpf_reg_state *reg) 1277 { 1278 __mark_reg_unknown(env, reg); 1279 reg->type = NOT_INIT; 1280 } 1281 1282 static void mark_reg_not_init(struct bpf_verifier_env *env, 1283 struct bpf_reg_state *regs, u32 regno) 1284 { 1285 if (WARN_ON(regno >= MAX_BPF_REG)) { 1286 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1287 /* Something bad happened, let's kill all regs except FP */ 1288 for (regno = 0; regno < BPF_REG_FP; regno++) 1289 __mark_reg_not_init(env, regs + regno); 1290 return; 1291 } 1292 __mark_reg_not_init(env, regs + regno); 1293 } 1294 1295 #define DEF_NOT_SUBREG (0) 1296 static void init_reg_state(struct bpf_verifier_env *env, 1297 struct bpf_func_state *state) 1298 { 1299 struct bpf_reg_state *regs = state->regs; 1300 int i; 1301 1302 for (i = 0; i < MAX_BPF_REG; i++) { 1303 mark_reg_not_init(env, regs, i); 1304 regs[i].live = REG_LIVE_NONE; 1305 regs[i].parent = NULL; 1306 regs[i].subreg_def = DEF_NOT_SUBREG; 1307 } 1308 1309 /* frame pointer */ 1310 regs[BPF_REG_FP].type = PTR_TO_STACK; 1311 mark_reg_known_zero(env, regs, BPF_REG_FP); 1312 regs[BPF_REG_FP].frameno = state->frameno; 1313 } 1314 1315 #define BPF_MAIN_FUNC (-1) 1316 static void init_func_state(struct bpf_verifier_env *env, 1317 struct bpf_func_state *state, 1318 int callsite, int frameno, int subprogno) 1319 { 1320 state->callsite = callsite; 1321 state->frameno = frameno; 1322 state->subprogno = subprogno; 1323 init_reg_state(env, state); 1324 } 1325 1326 enum reg_arg_type { 1327 SRC_OP, /* register is used as source operand */ 1328 DST_OP, /* register is used as destination operand */ 1329 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1330 }; 1331 1332 static int cmp_subprogs(const void *a, const void *b) 1333 { 1334 return ((struct bpf_subprog_info *)a)->start - 1335 ((struct bpf_subprog_info *)b)->start; 1336 } 1337 1338 static int find_subprog(struct bpf_verifier_env *env, int off) 1339 { 1340 struct bpf_subprog_info *p; 1341 1342 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1343 sizeof(env->subprog_info[0]), cmp_subprogs); 1344 if (!p) 1345 return -ENOENT; 1346 return p - env->subprog_info; 1347 1348 } 1349 1350 static int add_subprog(struct bpf_verifier_env *env, int off) 1351 { 1352 int insn_cnt = env->prog->len; 1353 int ret; 1354 1355 if (off >= insn_cnt || off < 0) { 1356 verbose(env, "call to invalid destination\n"); 1357 return -EINVAL; 1358 } 1359 ret = find_subprog(env, off); 1360 if (ret >= 0) 1361 return 0; 1362 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1363 verbose(env, "too many subprograms\n"); 1364 return -E2BIG; 1365 } 1366 env->subprog_info[env->subprog_cnt++].start = off; 1367 sort(env->subprog_info, env->subprog_cnt, 1368 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1369 return 0; 1370 } 1371 1372 static int check_subprogs(struct bpf_verifier_env *env) 1373 { 1374 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1375 struct bpf_subprog_info *subprog = env->subprog_info; 1376 struct bpf_insn *insn = env->prog->insnsi; 1377 int insn_cnt = env->prog->len; 1378 1379 /* Add entry function. */ 1380 ret = add_subprog(env, 0); 1381 if (ret < 0) 1382 return ret; 1383 1384 /* determine subprog starts. The end is one before the next starts */ 1385 for (i = 0; i < insn_cnt; i++) { 1386 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1387 continue; 1388 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1389 continue; 1390 if (!env->allow_ptr_leaks) { 1391 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1392 return -EPERM; 1393 } 1394 ret = add_subprog(env, i + insn[i].imm + 1); 1395 if (ret < 0) 1396 return ret; 1397 } 1398 1399 /* Add a fake 'exit' subprog which could simplify subprog iteration 1400 * logic. 'subprog_cnt' should not be increased. 1401 */ 1402 subprog[env->subprog_cnt].start = insn_cnt; 1403 1404 if (env->log.level & BPF_LOG_LEVEL2) 1405 for (i = 0; i < env->subprog_cnt; i++) 1406 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1407 1408 /* now check that all jumps are within the same subprog */ 1409 subprog_start = subprog[cur_subprog].start; 1410 subprog_end = subprog[cur_subprog + 1].start; 1411 for (i = 0; i < insn_cnt; i++) { 1412 u8 code = insn[i].code; 1413 1414 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1415 goto next; 1416 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1417 goto next; 1418 off = i + insn[i].off + 1; 1419 if (off < subprog_start || off >= subprog_end) { 1420 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1421 return -EINVAL; 1422 } 1423 next: 1424 if (i == subprog_end - 1) { 1425 /* to avoid fall-through from one subprog into another 1426 * the last insn of the subprog should be either exit 1427 * or unconditional jump back 1428 */ 1429 if (code != (BPF_JMP | BPF_EXIT) && 1430 code != (BPF_JMP | BPF_JA)) { 1431 verbose(env, "last insn is not an exit or jmp\n"); 1432 return -EINVAL; 1433 } 1434 subprog_start = subprog_end; 1435 cur_subprog++; 1436 if (cur_subprog < env->subprog_cnt) 1437 subprog_end = subprog[cur_subprog + 1].start; 1438 } 1439 } 1440 return 0; 1441 } 1442 1443 /* Parentage chain of this register (or stack slot) should take care of all 1444 * issues like callee-saved registers, stack slot allocation time, etc. 1445 */ 1446 static int mark_reg_read(struct bpf_verifier_env *env, 1447 const struct bpf_reg_state *state, 1448 struct bpf_reg_state *parent, u8 flag) 1449 { 1450 bool writes = parent == state->parent; /* Observe write marks */ 1451 int cnt = 0; 1452 1453 while (parent) { 1454 /* if read wasn't screened by an earlier write ... */ 1455 if (writes && state->live & REG_LIVE_WRITTEN) 1456 break; 1457 if (parent->live & REG_LIVE_DONE) { 1458 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1459 reg_type_str[parent->type], 1460 parent->var_off.value, parent->off); 1461 return -EFAULT; 1462 } 1463 /* The first condition is more likely to be true than the 1464 * second, checked it first. 1465 */ 1466 if ((parent->live & REG_LIVE_READ) == flag || 1467 parent->live & REG_LIVE_READ64) 1468 /* The parentage chain never changes and 1469 * this parent was already marked as LIVE_READ. 1470 * There is no need to keep walking the chain again and 1471 * keep re-marking all parents as LIVE_READ. 1472 * This case happens when the same register is read 1473 * multiple times without writes into it in-between. 1474 * Also, if parent has the stronger REG_LIVE_READ64 set, 1475 * then no need to set the weak REG_LIVE_READ32. 1476 */ 1477 break; 1478 /* ... then we depend on parent's value */ 1479 parent->live |= flag; 1480 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1481 if (flag == REG_LIVE_READ64) 1482 parent->live &= ~REG_LIVE_READ32; 1483 state = parent; 1484 parent = state->parent; 1485 writes = true; 1486 cnt++; 1487 } 1488 1489 if (env->longest_mark_read_walk < cnt) 1490 env->longest_mark_read_walk = cnt; 1491 return 0; 1492 } 1493 1494 /* This function is supposed to be used by the following 32-bit optimization 1495 * code only. It returns TRUE if the source or destination register operates 1496 * on 64-bit, otherwise return FALSE. 1497 */ 1498 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1499 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1500 { 1501 u8 code, class, op; 1502 1503 code = insn->code; 1504 class = BPF_CLASS(code); 1505 op = BPF_OP(code); 1506 if (class == BPF_JMP) { 1507 /* BPF_EXIT for "main" will reach here. Return TRUE 1508 * conservatively. 1509 */ 1510 if (op == BPF_EXIT) 1511 return true; 1512 if (op == BPF_CALL) { 1513 /* BPF to BPF call will reach here because of marking 1514 * caller saved clobber with DST_OP_NO_MARK for which we 1515 * don't care the register def because they are anyway 1516 * marked as NOT_INIT already. 1517 */ 1518 if (insn->src_reg == BPF_PSEUDO_CALL) 1519 return false; 1520 /* Helper call will reach here because of arg type 1521 * check, conservatively return TRUE. 1522 */ 1523 if (t == SRC_OP) 1524 return true; 1525 1526 return false; 1527 } 1528 } 1529 1530 if (class == BPF_ALU64 || class == BPF_JMP || 1531 /* BPF_END always use BPF_ALU class. */ 1532 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1533 return true; 1534 1535 if (class == BPF_ALU || class == BPF_JMP32) 1536 return false; 1537 1538 if (class == BPF_LDX) { 1539 if (t != SRC_OP) 1540 return BPF_SIZE(code) == BPF_DW; 1541 /* LDX source must be ptr. */ 1542 return true; 1543 } 1544 1545 if (class == BPF_STX) { 1546 if (reg->type != SCALAR_VALUE) 1547 return true; 1548 return BPF_SIZE(code) == BPF_DW; 1549 } 1550 1551 if (class == BPF_LD) { 1552 u8 mode = BPF_MODE(code); 1553 1554 /* LD_IMM64 */ 1555 if (mode == BPF_IMM) 1556 return true; 1557 1558 /* Both LD_IND and LD_ABS return 32-bit data. */ 1559 if (t != SRC_OP) 1560 return false; 1561 1562 /* Implicit ctx ptr. */ 1563 if (regno == BPF_REG_6) 1564 return true; 1565 1566 /* Explicit source could be any width. */ 1567 return true; 1568 } 1569 1570 if (class == BPF_ST) 1571 /* The only source register for BPF_ST is a ptr. */ 1572 return true; 1573 1574 /* Conservatively return true at default. */ 1575 return true; 1576 } 1577 1578 /* Return TRUE if INSN doesn't have explicit value define. */ 1579 static bool insn_no_def(struct bpf_insn *insn) 1580 { 1581 u8 class = BPF_CLASS(insn->code); 1582 1583 return (class == BPF_JMP || class == BPF_JMP32 || 1584 class == BPF_STX || class == BPF_ST); 1585 } 1586 1587 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1588 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1589 { 1590 if (insn_no_def(insn)) 1591 return false; 1592 1593 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1594 } 1595 1596 static void mark_insn_zext(struct bpf_verifier_env *env, 1597 struct bpf_reg_state *reg) 1598 { 1599 s32 def_idx = reg->subreg_def; 1600 1601 if (def_idx == DEF_NOT_SUBREG) 1602 return; 1603 1604 env->insn_aux_data[def_idx - 1].zext_dst = true; 1605 /* The dst will be zero extended, so won't be sub-register anymore. */ 1606 reg->subreg_def = DEF_NOT_SUBREG; 1607 } 1608 1609 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1610 enum reg_arg_type t) 1611 { 1612 struct bpf_verifier_state *vstate = env->cur_state; 1613 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1614 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1615 struct bpf_reg_state *reg, *regs = state->regs; 1616 bool rw64; 1617 1618 if (regno >= MAX_BPF_REG) { 1619 verbose(env, "R%d is invalid\n", regno); 1620 return -EINVAL; 1621 } 1622 1623 reg = ®s[regno]; 1624 rw64 = is_reg64(env, insn, regno, reg, t); 1625 if (t == SRC_OP) { 1626 /* check whether register used as source operand can be read */ 1627 if (reg->type == NOT_INIT) { 1628 verbose(env, "R%d !read_ok\n", regno); 1629 return -EACCES; 1630 } 1631 /* We don't need to worry about FP liveness because it's read-only */ 1632 if (regno == BPF_REG_FP) 1633 return 0; 1634 1635 if (rw64) 1636 mark_insn_zext(env, reg); 1637 1638 return mark_reg_read(env, reg, reg->parent, 1639 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1640 } else { 1641 /* check whether register used as dest operand can be written to */ 1642 if (regno == BPF_REG_FP) { 1643 verbose(env, "frame pointer is read only\n"); 1644 return -EACCES; 1645 } 1646 reg->live |= REG_LIVE_WRITTEN; 1647 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1648 if (t == DST_OP) 1649 mark_reg_unknown(env, regs, regno); 1650 } 1651 return 0; 1652 } 1653 1654 /* for any branch, call, exit record the history of jmps in the given state */ 1655 static int push_jmp_history(struct bpf_verifier_env *env, 1656 struct bpf_verifier_state *cur) 1657 { 1658 u32 cnt = cur->jmp_history_cnt; 1659 struct bpf_idx_pair *p; 1660 1661 cnt++; 1662 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1663 if (!p) 1664 return -ENOMEM; 1665 p[cnt - 1].idx = env->insn_idx; 1666 p[cnt - 1].prev_idx = env->prev_insn_idx; 1667 cur->jmp_history = p; 1668 cur->jmp_history_cnt = cnt; 1669 return 0; 1670 } 1671 1672 /* Backtrack one insn at a time. If idx is not at the top of recorded 1673 * history then previous instruction came from straight line execution. 1674 */ 1675 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1676 u32 *history) 1677 { 1678 u32 cnt = *history; 1679 1680 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1681 i = st->jmp_history[cnt - 1].prev_idx; 1682 (*history)--; 1683 } else { 1684 i--; 1685 } 1686 return i; 1687 } 1688 1689 /* For given verifier state backtrack_insn() is called from the last insn to 1690 * the first insn. Its purpose is to compute a bitmask of registers and 1691 * stack slots that needs precision in the parent verifier state. 1692 */ 1693 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1694 u32 *reg_mask, u64 *stack_mask) 1695 { 1696 const struct bpf_insn_cbs cbs = { 1697 .cb_print = verbose, 1698 .private_data = env, 1699 }; 1700 struct bpf_insn *insn = env->prog->insnsi + idx; 1701 u8 class = BPF_CLASS(insn->code); 1702 u8 opcode = BPF_OP(insn->code); 1703 u8 mode = BPF_MODE(insn->code); 1704 u32 dreg = 1u << insn->dst_reg; 1705 u32 sreg = 1u << insn->src_reg; 1706 u32 spi; 1707 1708 if (insn->code == 0) 1709 return 0; 1710 if (env->log.level & BPF_LOG_LEVEL) { 1711 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1712 verbose(env, "%d: ", idx); 1713 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1714 } 1715 1716 if (class == BPF_ALU || class == BPF_ALU64) { 1717 if (!(*reg_mask & dreg)) 1718 return 0; 1719 if (opcode == BPF_MOV) { 1720 if (BPF_SRC(insn->code) == BPF_X) { 1721 /* dreg = sreg 1722 * dreg needs precision after this insn 1723 * sreg needs precision before this insn 1724 */ 1725 *reg_mask &= ~dreg; 1726 *reg_mask |= sreg; 1727 } else { 1728 /* dreg = K 1729 * dreg needs precision after this insn. 1730 * Corresponding register is already marked 1731 * as precise=true in this verifier state. 1732 * No further markings in parent are necessary 1733 */ 1734 *reg_mask &= ~dreg; 1735 } 1736 } else { 1737 if (BPF_SRC(insn->code) == BPF_X) { 1738 /* dreg += sreg 1739 * both dreg and sreg need precision 1740 * before this insn 1741 */ 1742 *reg_mask |= sreg; 1743 } /* else dreg += K 1744 * dreg still needs precision before this insn 1745 */ 1746 } 1747 } else if (class == BPF_LDX) { 1748 if (!(*reg_mask & dreg)) 1749 return 0; 1750 *reg_mask &= ~dreg; 1751 1752 /* scalars can only be spilled into stack w/o losing precision. 1753 * Load from any other memory can be zero extended. 1754 * The desire to keep that precision is already indicated 1755 * by 'precise' mark in corresponding register of this state. 1756 * No further tracking necessary. 1757 */ 1758 if (insn->src_reg != BPF_REG_FP) 1759 return 0; 1760 if (BPF_SIZE(insn->code) != BPF_DW) 1761 return 0; 1762 1763 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1764 * that [fp - off] slot contains scalar that needs to be 1765 * tracked with precision 1766 */ 1767 spi = (-insn->off - 1) / BPF_REG_SIZE; 1768 if (spi >= 64) { 1769 verbose(env, "BUG spi %d\n", spi); 1770 WARN_ONCE(1, "verifier backtracking bug"); 1771 return -EFAULT; 1772 } 1773 *stack_mask |= 1ull << spi; 1774 } else if (class == BPF_STX || class == BPF_ST) { 1775 if (*reg_mask & dreg) 1776 /* stx & st shouldn't be using _scalar_ dst_reg 1777 * to access memory. It means backtracking 1778 * encountered a case of pointer subtraction. 1779 */ 1780 return -ENOTSUPP; 1781 /* scalars can only be spilled into stack */ 1782 if (insn->dst_reg != BPF_REG_FP) 1783 return 0; 1784 if (BPF_SIZE(insn->code) != BPF_DW) 1785 return 0; 1786 spi = (-insn->off - 1) / BPF_REG_SIZE; 1787 if (spi >= 64) { 1788 verbose(env, "BUG spi %d\n", spi); 1789 WARN_ONCE(1, "verifier backtracking bug"); 1790 return -EFAULT; 1791 } 1792 if (!(*stack_mask & (1ull << spi))) 1793 return 0; 1794 *stack_mask &= ~(1ull << spi); 1795 if (class == BPF_STX) 1796 *reg_mask |= sreg; 1797 } else if (class == BPF_JMP || class == BPF_JMP32) { 1798 if (opcode == BPF_CALL) { 1799 if (insn->src_reg == BPF_PSEUDO_CALL) 1800 return -ENOTSUPP; 1801 /* regular helper call sets R0 */ 1802 *reg_mask &= ~1; 1803 if (*reg_mask & 0x3f) { 1804 /* if backtracing was looking for registers R1-R5 1805 * they should have been found already. 1806 */ 1807 verbose(env, "BUG regs %x\n", *reg_mask); 1808 WARN_ONCE(1, "verifier backtracking bug"); 1809 return -EFAULT; 1810 } 1811 } else if (opcode == BPF_EXIT) { 1812 return -ENOTSUPP; 1813 } 1814 } else if (class == BPF_LD) { 1815 if (!(*reg_mask & dreg)) 1816 return 0; 1817 *reg_mask &= ~dreg; 1818 /* It's ld_imm64 or ld_abs or ld_ind. 1819 * For ld_imm64 no further tracking of precision 1820 * into parent is necessary 1821 */ 1822 if (mode == BPF_IND || mode == BPF_ABS) 1823 /* to be analyzed */ 1824 return -ENOTSUPP; 1825 } 1826 return 0; 1827 } 1828 1829 /* the scalar precision tracking algorithm: 1830 * . at the start all registers have precise=false. 1831 * . scalar ranges are tracked as normal through alu and jmp insns. 1832 * . once precise value of the scalar register is used in: 1833 * . ptr + scalar alu 1834 * . if (scalar cond K|scalar) 1835 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1836 * backtrack through the verifier states and mark all registers and 1837 * stack slots with spilled constants that these scalar regisers 1838 * should be precise. 1839 * . during state pruning two registers (or spilled stack slots) 1840 * are equivalent if both are not precise. 1841 * 1842 * Note the verifier cannot simply walk register parentage chain, 1843 * since many different registers and stack slots could have been 1844 * used to compute single precise scalar. 1845 * 1846 * The approach of starting with precise=true for all registers and then 1847 * backtrack to mark a register as not precise when the verifier detects 1848 * that program doesn't care about specific value (e.g., when helper 1849 * takes register as ARG_ANYTHING parameter) is not safe. 1850 * 1851 * It's ok to walk single parentage chain of the verifier states. 1852 * It's possible that this backtracking will go all the way till 1st insn. 1853 * All other branches will be explored for needing precision later. 1854 * 1855 * The backtracking needs to deal with cases like: 1856 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1857 * r9 -= r8 1858 * r5 = r9 1859 * if r5 > 0x79f goto pc+7 1860 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1861 * r5 += 1 1862 * ... 1863 * call bpf_perf_event_output#25 1864 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1865 * 1866 * and this case: 1867 * r6 = 1 1868 * call foo // uses callee's r6 inside to compute r0 1869 * r0 += r6 1870 * if r0 == 0 goto 1871 * 1872 * to track above reg_mask/stack_mask needs to be independent for each frame. 1873 * 1874 * Also if parent's curframe > frame where backtracking started, 1875 * the verifier need to mark registers in both frames, otherwise callees 1876 * may incorrectly prune callers. This is similar to 1877 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1878 * 1879 * For now backtracking falls back into conservative marking. 1880 */ 1881 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1882 struct bpf_verifier_state *st) 1883 { 1884 struct bpf_func_state *func; 1885 struct bpf_reg_state *reg; 1886 int i, j; 1887 1888 /* big hammer: mark all scalars precise in this path. 1889 * pop_stack may still get !precise scalars. 1890 */ 1891 for (; st; st = st->parent) 1892 for (i = 0; i <= st->curframe; i++) { 1893 func = st->frame[i]; 1894 for (j = 0; j < BPF_REG_FP; j++) { 1895 reg = &func->regs[j]; 1896 if (reg->type != SCALAR_VALUE) 1897 continue; 1898 reg->precise = true; 1899 } 1900 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1901 if (func->stack[j].slot_type[0] != STACK_SPILL) 1902 continue; 1903 reg = &func->stack[j].spilled_ptr; 1904 if (reg->type != SCALAR_VALUE) 1905 continue; 1906 reg->precise = true; 1907 } 1908 } 1909 } 1910 1911 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1912 int spi) 1913 { 1914 struct bpf_verifier_state *st = env->cur_state; 1915 int first_idx = st->first_insn_idx; 1916 int last_idx = env->insn_idx; 1917 struct bpf_func_state *func; 1918 struct bpf_reg_state *reg; 1919 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1920 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1921 bool skip_first = true; 1922 bool new_marks = false; 1923 int i, err; 1924 1925 if (!env->allow_ptr_leaks) 1926 /* backtracking is root only for now */ 1927 return 0; 1928 1929 func = st->frame[st->curframe]; 1930 if (regno >= 0) { 1931 reg = &func->regs[regno]; 1932 if (reg->type != SCALAR_VALUE) { 1933 WARN_ONCE(1, "backtracing misuse"); 1934 return -EFAULT; 1935 } 1936 if (!reg->precise) 1937 new_marks = true; 1938 else 1939 reg_mask = 0; 1940 reg->precise = true; 1941 } 1942 1943 while (spi >= 0) { 1944 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 1945 stack_mask = 0; 1946 break; 1947 } 1948 reg = &func->stack[spi].spilled_ptr; 1949 if (reg->type != SCALAR_VALUE) { 1950 stack_mask = 0; 1951 break; 1952 } 1953 if (!reg->precise) 1954 new_marks = true; 1955 else 1956 stack_mask = 0; 1957 reg->precise = true; 1958 break; 1959 } 1960 1961 if (!new_marks) 1962 return 0; 1963 if (!reg_mask && !stack_mask) 1964 return 0; 1965 for (;;) { 1966 DECLARE_BITMAP(mask, 64); 1967 u32 history = st->jmp_history_cnt; 1968 1969 if (env->log.level & BPF_LOG_LEVEL) 1970 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 1971 for (i = last_idx;;) { 1972 if (skip_first) { 1973 err = 0; 1974 skip_first = false; 1975 } else { 1976 err = backtrack_insn(env, i, ®_mask, &stack_mask); 1977 } 1978 if (err == -ENOTSUPP) { 1979 mark_all_scalars_precise(env, st); 1980 return 0; 1981 } else if (err) { 1982 return err; 1983 } 1984 if (!reg_mask && !stack_mask) 1985 /* Found assignment(s) into tracked register in this state. 1986 * Since this state is already marked, just return. 1987 * Nothing to be tracked further in the parent state. 1988 */ 1989 return 0; 1990 if (i == first_idx) 1991 break; 1992 i = get_prev_insn_idx(st, i, &history); 1993 if (i >= env->prog->len) { 1994 /* This can happen if backtracking reached insn 0 1995 * and there are still reg_mask or stack_mask 1996 * to backtrack. 1997 * It means the backtracking missed the spot where 1998 * particular register was initialized with a constant. 1999 */ 2000 verbose(env, "BUG backtracking idx %d\n", i); 2001 WARN_ONCE(1, "verifier backtracking bug"); 2002 return -EFAULT; 2003 } 2004 } 2005 st = st->parent; 2006 if (!st) 2007 break; 2008 2009 new_marks = false; 2010 func = st->frame[st->curframe]; 2011 bitmap_from_u64(mask, reg_mask); 2012 for_each_set_bit(i, mask, 32) { 2013 reg = &func->regs[i]; 2014 if (reg->type != SCALAR_VALUE) { 2015 reg_mask &= ~(1u << i); 2016 continue; 2017 } 2018 if (!reg->precise) 2019 new_marks = true; 2020 reg->precise = true; 2021 } 2022 2023 bitmap_from_u64(mask, stack_mask); 2024 for_each_set_bit(i, mask, 64) { 2025 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2026 /* the sequence of instructions: 2027 * 2: (bf) r3 = r10 2028 * 3: (7b) *(u64 *)(r3 -8) = r0 2029 * 4: (79) r4 = *(u64 *)(r10 -8) 2030 * doesn't contain jmps. It's backtracked 2031 * as a single block. 2032 * During backtracking insn 3 is not recognized as 2033 * stack access, so at the end of backtracking 2034 * stack slot fp-8 is still marked in stack_mask. 2035 * However the parent state may not have accessed 2036 * fp-8 and it's "unallocated" stack space. 2037 * In such case fallback to conservative. 2038 */ 2039 mark_all_scalars_precise(env, st); 2040 return 0; 2041 } 2042 2043 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2044 stack_mask &= ~(1ull << i); 2045 continue; 2046 } 2047 reg = &func->stack[i].spilled_ptr; 2048 if (reg->type != SCALAR_VALUE) { 2049 stack_mask &= ~(1ull << i); 2050 continue; 2051 } 2052 if (!reg->precise) 2053 new_marks = true; 2054 reg->precise = true; 2055 } 2056 if (env->log.level & BPF_LOG_LEVEL) { 2057 print_verifier_state(env, func); 2058 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2059 new_marks ? "didn't have" : "already had", 2060 reg_mask, stack_mask); 2061 } 2062 2063 if (!reg_mask && !stack_mask) 2064 break; 2065 if (!new_marks) 2066 break; 2067 2068 last_idx = st->last_insn_idx; 2069 first_idx = st->first_insn_idx; 2070 } 2071 return 0; 2072 } 2073 2074 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2075 { 2076 return __mark_chain_precision(env, regno, -1); 2077 } 2078 2079 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2080 { 2081 return __mark_chain_precision(env, -1, spi); 2082 } 2083 2084 static bool is_spillable_regtype(enum bpf_reg_type type) 2085 { 2086 switch (type) { 2087 case PTR_TO_MAP_VALUE: 2088 case PTR_TO_MAP_VALUE_OR_NULL: 2089 case PTR_TO_STACK: 2090 case PTR_TO_CTX: 2091 case PTR_TO_PACKET: 2092 case PTR_TO_PACKET_META: 2093 case PTR_TO_PACKET_END: 2094 case PTR_TO_FLOW_KEYS: 2095 case CONST_PTR_TO_MAP: 2096 case PTR_TO_SOCKET: 2097 case PTR_TO_SOCKET_OR_NULL: 2098 case PTR_TO_SOCK_COMMON: 2099 case PTR_TO_SOCK_COMMON_OR_NULL: 2100 case PTR_TO_TCP_SOCK: 2101 case PTR_TO_TCP_SOCK_OR_NULL: 2102 case PTR_TO_XDP_SOCK: 2103 case PTR_TO_BTF_ID: 2104 return true; 2105 default: 2106 return false; 2107 } 2108 } 2109 2110 /* Does this register contain a constant zero? */ 2111 static bool register_is_null(struct bpf_reg_state *reg) 2112 { 2113 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2114 } 2115 2116 static bool register_is_const(struct bpf_reg_state *reg) 2117 { 2118 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2119 } 2120 2121 static bool __is_pointer_value(bool allow_ptr_leaks, 2122 const struct bpf_reg_state *reg) 2123 { 2124 if (allow_ptr_leaks) 2125 return false; 2126 2127 return reg->type != SCALAR_VALUE; 2128 } 2129 2130 static void save_register_state(struct bpf_func_state *state, 2131 int spi, struct bpf_reg_state *reg) 2132 { 2133 int i; 2134 2135 state->stack[spi].spilled_ptr = *reg; 2136 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2137 2138 for (i = 0; i < BPF_REG_SIZE; i++) 2139 state->stack[spi].slot_type[i] = STACK_SPILL; 2140 } 2141 2142 /* check_stack_read/write functions track spill/fill of registers, 2143 * stack boundary and alignment are checked in check_mem_access() 2144 */ 2145 static int check_stack_write(struct bpf_verifier_env *env, 2146 struct bpf_func_state *state, /* func where register points to */ 2147 int off, int size, int value_regno, int insn_idx) 2148 { 2149 struct bpf_func_state *cur; /* state of the current function */ 2150 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2151 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2152 struct bpf_reg_state *reg = NULL; 2153 2154 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2155 state->acquired_refs, true); 2156 if (err) 2157 return err; 2158 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2159 * so it's aligned access and [off, off + size) are within stack limits 2160 */ 2161 if (!env->allow_ptr_leaks && 2162 state->stack[spi].slot_type[0] == STACK_SPILL && 2163 size != BPF_REG_SIZE) { 2164 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2165 return -EACCES; 2166 } 2167 2168 cur = env->cur_state->frame[env->cur_state->curframe]; 2169 if (value_regno >= 0) 2170 reg = &cur->regs[value_regno]; 2171 2172 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 2173 !register_is_null(reg) && env->allow_ptr_leaks) { 2174 if (dst_reg != BPF_REG_FP) { 2175 /* The backtracking logic can only recognize explicit 2176 * stack slot address like [fp - 8]. Other spill of 2177 * scalar via different register has to be conervative. 2178 * Backtrack from here and mark all registers as precise 2179 * that contributed into 'reg' being a constant. 2180 */ 2181 err = mark_chain_precision(env, value_regno); 2182 if (err) 2183 return err; 2184 } 2185 save_register_state(state, spi, reg); 2186 } else if (reg && is_spillable_regtype(reg->type)) { 2187 /* register containing pointer is being spilled into stack */ 2188 if (size != BPF_REG_SIZE) { 2189 verbose_linfo(env, insn_idx, "; "); 2190 verbose(env, "invalid size of register spill\n"); 2191 return -EACCES; 2192 } 2193 2194 if (state != cur && reg->type == PTR_TO_STACK) { 2195 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2196 return -EINVAL; 2197 } 2198 2199 if (!env->allow_ptr_leaks) { 2200 bool sanitize = false; 2201 2202 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2203 register_is_const(&state->stack[spi].spilled_ptr)) 2204 sanitize = true; 2205 for (i = 0; i < BPF_REG_SIZE; i++) 2206 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2207 sanitize = true; 2208 break; 2209 } 2210 if (sanitize) { 2211 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2212 int soff = (-spi - 1) * BPF_REG_SIZE; 2213 2214 /* detected reuse of integer stack slot with a pointer 2215 * which means either llvm is reusing stack slot or 2216 * an attacker is trying to exploit CVE-2018-3639 2217 * (speculative store bypass) 2218 * Have to sanitize that slot with preemptive 2219 * store of zero. 2220 */ 2221 if (*poff && *poff != soff) { 2222 /* disallow programs where single insn stores 2223 * into two different stack slots, since verifier 2224 * cannot sanitize them 2225 */ 2226 verbose(env, 2227 "insn %d cannot access two stack slots fp%d and fp%d", 2228 insn_idx, *poff, soff); 2229 return -EINVAL; 2230 } 2231 *poff = soff; 2232 } 2233 } 2234 save_register_state(state, spi, reg); 2235 } else { 2236 u8 type = STACK_MISC; 2237 2238 /* regular write of data into stack destroys any spilled ptr */ 2239 state->stack[spi].spilled_ptr.type = NOT_INIT; 2240 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2241 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2242 for (i = 0; i < BPF_REG_SIZE; i++) 2243 state->stack[spi].slot_type[i] = STACK_MISC; 2244 2245 /* only mark the slot as written if all 8 bytes were written 2246 * otherwise read propagation may incorrectly stop too soon 2247 * when stack slots are partially written. 2248 * This heuristic means that read propagation will be 2249 * conservative, since it will add reg_live_read marks 2250 * to stack slots all the way to first state when programs 2251 * writes+reads less than 8 bytes 2252 */ 2253 if (size == BPF_REG_SIZE) 2254 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2255 2256 /* when we zero initialize stack slots mark them as such */ 2257 if (reg && register_is_null(reg)) { 2258 /* backtracking doesn't work for STACK_ZERO yet. */ 2259 err = mark_chain_precision(env, value_regno); 2260 if (err) 2261 return err; 2262 type = STACK_ZERO; 2263 } 2264 2265 /* Mark slots affected by this stack write. */ 2266 for (i = 0; i < size; i++) 2267 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2268 type; 2269 } 2270 return 0; 2271 } 2272 2273 static int check_stack_read(struct bpf_verifier_env *env, 2274 struct bpf_func_state *reg_state /* func where register points to */, 2275 int off, int size, int value_regno) 2276 { 2277 struct bpf_verifier_state *vstate = env->cur_state; 2278 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2279 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2280 struct bpf_reg_state *reg; 2281 u8 *stype; 2282 2283 if (reg_state->allocated_stack <= slot) { 2284 verbose(env, "invalid read from stack off %d+0 size %d\n", 2285 off, size); 2286 return -EACCES; 2287 } 2288 stype = reg_state->stack[spi].slot_type; 2289 reg = ®_state->stack[spi].spilled_ptr; 2290 2291 if (stype[0] == STACK_SPILL) { 2292 if (size != BPF_REG_SIZE) { 2293 if (reg->type != SCALAR_VALUE) { 2294 verbose_linfo(env, env->insn_idx, "; "); 2295 verbose(env, "invalid size of register fill\n"); 2296 return -EACCES; 2297 } 2298 if (value_regno >= 0) { 2299 mark_reg_unknown(env, state->regs, value_regno); 2300 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2301 } 2302 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2303 return 0; 2304 } 2305 for (i = 1; i < BPF_REG_SIZE; i++) { 2306 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2307 verbose(env, "corrupted spill memory\n"); 2308 return -EACCES; 2309 } 2310 } 2311 2312 if (value_regno >= 0) { 2313 /* restore register state from stack */ 2314 state->regs[value_regno] = *reg; 2315 /* mark reg as written since spilled pointer state likely 2316 * has its liveness marks cleared by is_state_visited() 2317 * which resets stack/reg liveness for state transitions 2318 */ 2319 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2320 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2321 /* If value_regno==-1, the caller is asking us whether 2322 * it is acceptable to use this value as a SCALAR_VALUE 2323 * (e.g. for XADD). 2324 * We must not allow unprivileged callers to do that 2325 * with spilled pointers. 2326 */ 2327 verbose(env, "leaking pointer from stack off %d\n", 2328 off); 2329 return -EACCES; 2330 } 2331 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2332 } else { 2333 int zeros = 0; 2334 2335 for (i = 0; i < size; i++) { 2336 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2337 continue; 2338 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2339 zeros++; 2340 continue; 2341 } 2342 verbose(env, "invalid read from stack off %d+%d size %d\n", 2343 off, i, size); 2344 return -EACCES; 2345 } 2346 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2347 if (value_regno >= 0) { 2348 if (zeros == size) { 2349 /* any size read into register is zero extended, 2350 * so the whole register == const_zero 2351 */ 2352 __mark_reg_const_zero(&state->regs[value_regno]); 2353 /* backtracking doesn't support STACK_ZERO yet, 2354 * so mark it precise here, so that later 2355 * backtracking can stop here. 2356 * Backtracking may not need this if this register 2357 * doesn't participate in pointer adjustment. 2358 * Forward propagation of precise flag is not 2359 * necessary either. This mark is only to stop 2360 * backtracking. Any register that contributed 2361 * to const 0 was marked precise before spill. 2362 */ 2363 state->regs[value_regno].precise = true; 2364 } else { 2365 /* have read misc data from the stack */ 2366 mark_reg_unknown(env, state->regs, value_regno); 2367 } 2368 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2369 } 2370 } 2371 return 0; 2372 } 2373 2374 static int check_stack_access(struct bpf_verifier_env *env, 2375 const struct bpf_reg_state *reg, 2376 int off, int size) 2377 { 2378 /* Stack accesses must be at a fixed offset, so that we 2379 * can determine what type of data were returned. See 2380 * check_stack_read(). 2381 */ 2382 if (!tnum_is_const(reg->var_off)) { 2383 char tn_buf[48]; 2384 2385 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2386 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2387 tn_buf, off, size); 2388 return -EACCES; 2389 } 2390 2391 if (off >= 0 || off < -MAX_BPF_STACK) { 2392 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2393 return -EACCES; 2394 } 2395 2396 return 0; 2397 } 2398 2399 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2400 int off, int size, enum bpf_access_type type) 2401 { 2402 struct bpf_reg_state *regs = cur_regs(env); 2403 struct bpf_map *map = regs[regno].map_ptr; 2404 u32 cap = bpf_map_flags_to_cap(map); 2405 2406 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2407 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2408 map->value_size, off, size); 2409 return -EACCES; 2410 } 2411 2412 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2413 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2414 map->value_size, off, size); 2415 return -EACCES; 2416 } 2417 2418 return 0; 2419 } 2420 2421 /* check read/write into map element returned by bpf_map_lookup_elem() */ 2422 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 2423 int size, bool zero_size_allowed) 2424 { 2425 struct bpf_reg_state *regs = cur_regs(env); 2426 struct bpf_map *map = regs[regno].map_ptr; 2427 2428 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2429 off + size > map->value_size) { 2430 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2431 map->value_size, off, size); 2432 return -EACCES; 2433 } 2434 return 0; 2435 } 2436 2437 /* check read/write into a map element with possible variable offset */ 2438 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2439 int off, int size, bool zero_size_allowed) 2440 { 2441 struct bpf_verifier_state *vstate = env->cur_state; 2442 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2443 struct bpf_reg_state *reg = &state->regs[regno]; 2444 int err; 2445 2446 /* We may have adjusted the register to this map value, so we 2447 * need to try adding each of min_value and max_value to off 2448 * to make sure our theoretical access will be safe. 2449 */ 2450 if (env->log.level & BPF_LOG_LEVEL) 2451 print_verifier_state(env, state); 2452 2453 /* The minimum value is only important with signed 2454 * comparisons where we can't assume the floor of a 2455 * value is 0. If we are using signed variables for our 2456 * index'es we need to make sure that whatever we use 2457 * will have a set floor within our range. 2458 */ 2459 if (reg->smin_value < 0 && 2460 (reg->smin_value == S64_MIN || 2461 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2462 reg->smin_value + off < 0)) { 2463 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2464 regno); 2465 return -EACCES; 2466 } 2467 err = __check_map_access(env, regno, reg->smin_value + off, size, 2468 zero_size_allowed); 2469 if (err) { 2470 verbose(env, "R%d min value is outside of the array range\n", 2471 regno); 2472 return err; 2473 } 2474 2475 /* If we haven't set a max value then we need to bail since we can't be 2476 * sure we won't do bad things. 2477 * If reg->umax_value + off could overflow, treat that as unbounded too. 2478 */ 2479 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2480 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 2481 regno); 2482 return -EACCES; 2483 } 2484 err = __check_map_access(env, regno, reg->umax_value + off, size, 2485 zero_size_allowed); 2486 if (err) 2487 verbose(env, "R%d max value is outside of the array range\n", 2488 regno); 2489 2490 if (map_value_has_spin_lock(reg->map_ptr)) { 2491 u32 lock = reg->map_ptr->spin_lock_off; 2492 2493 /* if any part of struct bpf_spin_lock can be touched by 2494 * load/store reject this program. 2495 * To check that [x1, x2) overlaps with [y1, y2) 2496 * it is sufficient to check x1 < y2 && y1 < x2. 2497 */ 2498 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2499 lock < reg->umax_value + off + size) { 2500 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2501 return -EACCES; 2502 } 2503 } 2504 return err; 2505 } 2506 2507 #define MAX_PACKET_OFF 0xffff 2508 2509 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2510 const struct bpf_call_arg_meta *meta, 2511 enum bpf_access_type t) 2512 { 2513 switch (env->prog->type) { 2514 /* Program types only with direct read access go here! */ 2515 case BPF_PROG_TYPE_LWT_IN: 2516 case BPF_PROG_TYPE_LWT_OUT: 2517 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2518 case BPF_PROG_TYPE_SK_REUSEPORT: 2519 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2520 case BPF_PROG_TYPE_CGROUP_SKB: 2521 if (t == BPF_WRITE) 2522 return false; 2523 /* fallthrough */ 2524 2525 /* Program types with direct read + write access go here! */ 2526 case BPF_PROG_TYPE_SCHED_CLS: 2527 case BPF_PROG_TYPE_SCHED_ACT: 2528 case BPF_PROG_TYPE_XDP: 2529 case BPF_PROG_TYPE_LWT_XMIT: 2530 case BPF_PROG_TYPE_SK_SKB: 2531 case BPF_PROG_TYPE_SK_MSG: 2532 if (meta) 2533 return meta->pkt_access; 2534 2535 env->seen_direct_write = true; 2536 return true; 2537 2538 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2539 if (t == BPF_WRITE) 2540 env->seen_direct_write = true; 2541 2542 return true; 2543 2544 default: 2545 return false; 2546 } 2547 } 2548 2549 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 2550 int off, int size, bool zero_size_allowed) 2551 { 2552 struct bpf_reg_state *regs = cur_regs(env); 2553 struct bpf_reg_state *reg = ®s[regno]; 2554 2555 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2556 (u64)off + size > reg->range) { 2557 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2558 off, size, regno, reg->id, reg->off, reg->range); 2559 return -EACCES; 2560 } 2561 return 0; 2562 } 2563 2564 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2565 int size, bool zero_size_allowed) 2566 { 2567 struct bpf_reg_state *regs = cur_regs(env); 2568 struct bpf_reg_state *reg = ®s[regno]; 2569 int err; 2570 2571 /* We may have added a variable offset to the packet pointer; but any 2572 * reg->range we have comes after that. We are only checking the fixed 2573 * offset. 2574 */ 2575 2576 /* We don't allow negative numbers, because we aren't tracking enough 2577 * detail to prove they're safe. 2578 */ 2579 if (reg->smin_value < 0) { 2580 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2581 regno); 2582 return -EACCES; 2583 } 2584 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 2585 if (err) { 2586 verbose(env, "R%d offset is outside of the packet\n", regno); 2587 return err; 2588 } 2589 2590 /* __check_packet_access has made sure "off + size - 1" is within u16. 2591 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2592 * otherwise find_good_pkt_pointers would have refused to set range info 2593 * that __check_packet_access would have rejected this pkt access. 2594 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2595 */ 2596 env->prog->aux->max_pkt_offset = 2597 max_t(u32, env->prog->aux->max_pkt_offset, 2598 off + reg->umax_value + size - 1); 2599 2600 return err; 2601 } 2602 2603 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2604 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2605 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2606 u32 *btf_id) 2607 { 2608 struct bpf_insn_access_aux info = { 2609 .reg_type = *reg_type, 2610 .log = &env->log, 2611 }; 2612 2613 if (env->ops->is_valid_access && 2614 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2615 /* A non zero info.ctx_field_size indicates that this field is a 2616 * candidate for later verifier transformation to load the whole 2617 * field and then apply a mask when accessed with a narrower 2618 * access than actual ctx access size. A zero info.ctx_field_size 2619 * will only allow for whole field access and rejects any other 2620 * type of narrower access. 2621 */ 2622 *reg_type = info.reg_type; 2623 2624 if (*reg_type == PTR_TO_BTF_ID) 2625 *btf_id = info.btf_id; 2626 else 2627 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2628 /* remember the offset of last byte accessed in ctx */ 2629 if (env->prog->aux->max_ctx_offset < off + size) 2630 env->prog->aux->max_ctx_offset = off + size; 2631 return 0; 2632 } 2633 2634 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2635 return -EACCES; 2636 } 2637 2638 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2639 int size) 2640 { 2641 if (size < 0 || off < 0 || 2642 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2643 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2644 off, size); 2645 return -EACCES; 2646 } 2647 return 0; 2648 } 2649 2650 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2651 u32 regno, int off, int size, 2652 enum bpf_access_type t) 2653 { 2654 struct bpf_reg_state *regs = cur_regs(env); 2655 struct bpf_reg_state *reg = ®s[regno]; 2656 struct bpf_insn_access_aux info = {}; 2657 bool valid; 2658 2659 if (reg->smin_value < 0) { 2660 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2661 regno); 2662 return -EACCES; 2663 } 2664 2665 switch (reg->type) { 2666 case PTR_TO_SOCK_COMMON: 2667 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2668 break; 2669 case PTR_TO_SOCKET: 2670 valid = bpf_sock_is_valid_access(off, size, t, &info); 2671 break; 2672 case PTR_TO_TCP_SOCK: 2673 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2674 break; 2675 case PTR_TO_XDP_SOCK: 2676 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2677 break; 2678 default: 2679 valid = false; 2680 } 2681 2682 2683 if (valid) { 2684 env->insn_aux_data[insn_idx].ctx_field_size = 2685 info.ctx_field_size; 2686 return 0; 2687 } 2688 2689 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2690 regno, reg_type_str[reg->type], off, size); 2691 2692 return -EACCES; 2693 } 2694 2695 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2696 { 2697 return cur_regs(env) + regno; 2698 } 2699 2700 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2701 { 2702 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2703 } 2704 2705 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2706 { 2707 const struct bpf_reg_state *reg = reg_state(env, regno); 2708 2709 return reg->type == PTR_TO_CTX; 2710 } 2711 2712 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2713 { 2714 const struct bpf_reg_state *reg = reg_state(env, regno); 2715 2716 return type_is_sk_pointer(reg->type); 2717 } 2718 2719 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2720 { 2721 const struct bpf_reg_state *reg = reg_state(env, regno); 2722 2723 return type_is_pkt_pointer(reg->type); 2724 } 2725 2726 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2727 { 2728 const struct bpf_reg_state *reg = reg_state(env, regno); 2729 2730 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2731 return reg->type == PTR_TO_FLOW_KEYS; 2732 } 2733 2734 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2735 const struct bpf_reg_state *reg, 2736 int off, int size, bool strict) 2737 { 2738 struct tnum reg_off; 2739 int ip_align; 2740 2741 /* Byte size accesses are always allowed. */ 2742 if (!strict || size == 1) 2743 return 0; 2744 2745 /* For platforms that do not have a Kconfig enabling 2746 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2747 * NET_IP_ALIGN is universally set to '2'. And on platforms 2748 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2749 * to this code only in strict mode where we want to emulate 2750 * the NET_IP_ALIGN==2 checking. Therefore use an 2751 * unconditional IP align value of '2'. 2752 */ 2753 ip_align = 2; 2754 2755 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2756 if (!tnum_is_aligned(reg_off, size)) { 2757 char tn_buf[48]; 2758 2759 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2760 verbose(env, 2761 "misaligned packet access off %d+%s+%d+%d size %d\n", 2762 ip_align, tn_buf, reg->off, off, size); 2763 return -EACCES; 2764 } 2765 2766 return 0; 2767 } 2768 2769 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2770 const struct bpf_reg_state *reg, 2771 const char *pointer_desc, 2772 int off, int size, bool strict) 2773 { 2774 struct tnum reg_off; 2775 2776 /* Byte size accesses are always allowed. */ 2777 if (!strict || size == 1) 2778 return 0; 2779 2780 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2781 if (!tnum_is_aligned(reg_off, size)) { 2782 char tn_buf[48]; 2783 2784 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2785 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2786 pointer_desc, tn_buf, reg->off, off, size); 2787 return -EACCES; 2788 } 2789 2790 return 0; 2791 } 2792 2793 static int check_ptr_alignment(struct bpf_verifier_env *env, 2794 const struct bpf_reg_state *reg, int off, 2795 int size, bool strict_alignment_once) 2796 { 2797 bool strict = env->strict_alignment || strict_alignment_once; 2798 const char *pointer_desc = ""; 2799 2800 switch (reg->type) { 2801 case PTR_TO_PACKET: 2802 case PTR_TO_PACKET_META: 2803 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2804 * right in front, treat it the very same way. 2805 */ 2806 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2807 case PTR_TO_FLOW_KEYS: 2808 pointer_desc = "flow keys "; 2809 break; 2810 case PTR_TO_MAP_VALUE: 2811 pointer_desc = "value "; 2812 break; 2813 case PTR_TO_CTX: 2814 pointer_desc = "context "; 2815 break; 2816 case PTR_TO_STACK: 2817 pointer_desc = "stack "; 2818 /* The stack spill tracking logic in check_stack_write() 2819 * and check_stack_read() relies on stack accesses being 2820 * aligned. 2821 */ 2822 strict = true; 2823 break; 2824 case PTR_TO_SOCKET: 2825 pointer_desc = "sock "; 2826 break; 2827 case PTR_TO_SOCK_COMMON: 2828 pointer_desc = "sock_common "; 2829 break; 2830 case PTR_TO_TCP_SOCK: 2831 pointer_desc = "tcp_sock "; 2832 break; 2833 case PTR_TO_XDP_SOCK: 2834 pointer_desc = "xdp_sock "; 2835 break; 2836 default: 2837 break; 2838 } 2839 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2840 strict); 2841 } 2842 2843 static int update_stack_depth(struct bpf_verifier_env *env, 2844 const struct bpf_func_state *func, 2845 int off) 2846 { 2847 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2848 2849 if (stack >= -off) 2850 return 0; 2851 2852 /* update known max for given subprogram */ 2853 env->subprog_info[func->subprogno].stack_depth = -off; 2854 return 0; 2855 } 2856 2857 /* starting from main bpf function walk all instructions of the function 2858 * and recursively walk all callees that given function can call. 2859 * Ignore jump and exit insns. 2860 * Since recursion is prevented by check_cfg() this algorithm 2861 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2862 */ 2863 static int check_max_stack_depth(struct bpf_verifier_env *env) 2864 { 2865 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2866 struct bpf_subprog_info *subprog = env->subprog_info; 2867 struct bpf_insn *insn = env->prog->insnsi; 2868 int ret_insn[MAX_CALL_FRAMES]; 2869 int ret_prog[MAX_CALL_FRAMES]; 2870 2871 process_func: 2872 /* round up to 32-bytes, since this is granularity 2873 * of interpreter stack size 2874 */ 2875 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2876 if (depth > MAX_BPF_STACK) { 2877 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2878 frame + 1, depth); 2879 return -EACCES; 2880 } 2881 continue_func: 2882 subprog_end = subprog[idx + 1].start; 2883 for (; i < subprog_end; i++) { 2884 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2885 continue; 2886 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2887 continue; 2888 /* remember insn and function to return to */ 2889 ret_insn[frame] = i + 1; 2890 ret_prog[frame] = idx; 2891 2892 /* find the callee */ 2893 i = i + insn[i].imm + 1; 2894 idx = find_subprog(env, i); 2895 if (idx < 0) { 2896 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2897 i); 2898 return -EFAULT; 2899 } 2900 frame++; 2901 if (frame >= MAX_CALL_FRAMES) { 2902 verbose(env, "the call stack of %d frames is too deep !\n", 2903 frame); 2904 return -E2BIG; 2905 } 2906 goto process_func; 2907 } 2908 /* end of for() loop means the last insn of the 'subprog' 2909 * was reached. Doesn't matter whether it was JA or EXIT 2910 */ 2911 if (frame == 0) 2912 return 0; 2913 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2914 frame--; 2915 i = ret_insn[frame]; 2916 idx = ret_prog[frame]; 2917 goto continue_func; 2918 } 2919 2920 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2921 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2922 const struct bpf_insn *insn, int idx) 2923 { 2924 int start = idx + insn->imm + 1, subprog; 2925 2926 subprog = find_subprog(env, start); 2927 if (subprog < 0) { 2928 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2929 start); 2930 return -EFAULT; 2931 } 2932 return env->subprog_info[subprog].stack_depth; 2933 } 2934 #endif 2935 2936 int check_ctx_reg(struct bpf_verifier_env *env, 2937 const struct bpf_reg_state *reg, int regno) 2938 { 2939 /* Access to ctx or passing it to a helper is only allowed in 2940 * its original, unmodified form. 2941 */ 2942 2943 if (reg->off) { 2944 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2945 regno, reg->off); 2946 return -EACCES; 2947 } 2948 2949 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2950 char tn_buf[48]; 2951 2952 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2953 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2954 return -EACCES; 2955 } 2956 2957 return 0; 2958 } 2959 2960 static int check_tp_buffer_access(struct bpf_verifier_env *env, 2961 const struct bpf_reg_state *reg, 2962 int regno, int off, int size) 2963 { 2964 if (off < 0) { 2965 verbose(env, 2966 "R%d invalid tracepoint buffer access: off=%d, size=%d", 2967 regno, off, size); 2968 return -EACCES; 2969 } 2970 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2971 char tn_buf[48]; 2972 2973 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2974 verbose(env, 2975 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2976 regno, off, tn_buf); 2977 return -EACCES; 2978 } 2979 if (off + size > env->prog->aux->max_tp_access) 2980 env->prog->aux->max_tp_access = off + size; 2981 2982 return 0; 2983 } 2984 2985 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 2986 static void zext_32_to_64(struct bpf_reg_state *reg) 2987 { 2988 reg->var_off = tnum_subreg(reg->var_off); 2989 __reg_assign_32_into_64(reg); 2990 } 2991 2992 /* truncate register to smaller size (in bytes) 2993 * must be called with size < BPF_REG_SIZE 2994 */ 2995 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 2996 { 2997 u64 mask; 2998 2999 /* clear high bits in bit representation */ 3000 reg->var_off = tnum_cast(reg->var_off, size); 3001 3002 /* fix arithmetic bounds */ 3003 mask = ((u64)1 << (size * 8)) - 1; 3004 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3005 reg->umin_value &= mask; 3006 reg->umax_value &= mask; 3007 } else { 3008 reg->umin_value = 0; 3009 reg->umax_value = mask; 3010 } 3011 reg->smin_value = reg->umin_value; 3012 reg->smax_value = reg->umax_value; 3013 3014 /* If size is smaller than 32bit register the 32bit register 3015 * values are also truncated so we push 64-bit bounds into 3016 * 32-bit bounds. Above were truncated < 32-bits already. 3017 */ 3018 if (size >= 4) 3019 return; 3020 __reg_combine_64_into_32(reg); 3021 } 3022 3023 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3024 { 3025 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3026 } 3027 3028 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3029 { 3030 void *ptr; 3031 u64 addr; 3032 int err; 3033 3034 err = map->ops->map_direct_value_addr(map, &addr, off); 3035 if (err) 3036 return err; 3037 ptr = (void *)(long)addr + off; 3038 3039 switch (size) { 3040 case sizeof(u8): 3041 *val = (u64)*(u8 *)ptr; 3042 break; 3043 case sizeof(u16): 3044 *val = (u64)*(u16 *)ptr; 3045 break; 3046 case sizeof(u32): 3047 *val = (u64)*(u32 *)ptr; 3048 break; 3049 case sizeof(u64): 3050 *val = *(u64 *)ptr; 3051 break; 3052 default: 3053 return -EINVAL; 3054 } 3055 return 0; 3056 } 3057 3058 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3059 struct bpf_reg_state *regs, 3060 int regno, int off, int size, 3061 enum bpf_access_type atype, 3062 int value_regno) 3063 { 3064 struct bpf_reg_state *reg = regs + regno; 3065 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 3066 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3067 u32 btf_id; 3068 int ret; 3069 3070 if (off < 0) { 3071 verbose(env, 3072 "R%d is ptr_%s invalid negative access: off=%d\n", 3073 regno, tname, off); 3074 return -EACCES; 3075 } 3076 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3077 char tn_buf[48]; 3078 3079 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3080 verbose(env, 3081 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3082 regno, tname, off, tn_buf); 3083 return -EACCES; 3084 } 3085 3086 if (env->ops->btf_struct_access) { 3087 ret = env->ops->btf_struct_access(&env->log, t, off, size, 3088 atype, &btf_id); 3089 } else { 3090 if (atype != BPF_READ) { 3091 verbose(env, "only read is supported\n"); 3092 return -EACCES; 3093 } 3094 3095 ret = btf_struct_access(&env->log, t, off, size, atype, 3096 &btf_id); 3097 } 3098 3099 if (ret < 0) 3100 return ret; 3101 3102 if (atype == BPF_READ && value_regno >= 0) { 3103 if (ret == SCALAR_VALUE) { 3104 mark_reg_unknown(env, regs, value_regno); 3105 return 0; 3106 } 3107 mark_reg_known_zero(env, regs, value_regno); 3108 regs[value_regno].type = PTR_TO_BTF_ID; 3109 regs[value_regno].btf_id = btf_id; 3110 } 3111 3112 return 0; 3113 } 3114 3115 /* check whether memory at (regno + off) is accessible for t = (read | write) 3116 * if t==write, value_regno is a register which value is stored into memory 3117 * if t==read, value_regno is a register which will receive the value from memory 3118 * if t==write && value_regno==-1, some unknown value is stored into memory 3119 * if t==read && value_regno==-1, don't care what we read from memory 3120 */ 3121 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 3122 int off, int bpf_size, enum bpf_access_type t, 3123 int value_regno, bool strict_alignment_once) 3124 { 3125 struct bpf_reg_state *regs = cur_regs(env); 3126 struct bpf_reg_state *reg = regs + regno; 3127 struct bpf_func_state *state; 3128 int size, err = 0; 3129 3130 size = bpf_size_to_bytes(bpf_size); 3131 if (size < 0) 3132 return size; 3133 3134 /* alignment checks will add in reg->off themselves */ 3135 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3136 if (err) 3137 return err; 3138 3139 /* for access checks, reg->off is just part of off */ 3140 off += reg->off; 3141 3142 if (reg->type == PTR_TO_MAP_VALUE) { 3143 if (t == BPF_WRITE && value_regno >= 0 && 3144 is_pointer_value(env, value_regno)) { 3145 verbose(env, "R%d leaks addr into map\n", value_regno); 3146 return -EACCES; 3147 } 3148 err = check_map_access_type(env, regno, off, size, t); 3149 if (err) 3150 return err; 3151 err = check_map_access(env, regno, off, size, false); 3152 if (!err && t == BPF_READ && value_regno >= 0) { 3153 struct bpf_map *map = reg->map_ptr; 3154 3155 /* if map is read-only, track its contents as scalars */ 3156 if (tnum_is_const(reg->var_off) && 3157 bpf_map_is_rdonly(map) && 3158 map->ops->map_direct_value_addr) { 3159 int map_off = off + reg->var_off.value; 3160 u64 val = 0; 3161 3162 err = bpf_map_direct_read(map, map_off, size, 3163 &val); 3164 if (err) 3165 return err; 3166 3167 regs[value_regno].type = SCALAR_VALUE; 3168 __mark_reg_known(®s[value_regno], val); 3169 } else { 3170 mark_reg_unknown(env, regs, value_regno); 3171 } 3172 } 3173 } else if (reg->type == PTR_TO_CTX) { 3174 enum bpf_reg_type reg_type = SCALAR_VALUE; 3175 u32 btf_id = 0; 3176 3177 if (t == BPF_WRITE && value_regno >= 0 && 3178 is_pointer_value(env, value_regno)) { 3179 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3180 return -EACCES; 3181 } 3182 3183 err = check_ctx_reg(env, reg, regno); 3184 if (err < 0) 3185 return err; 3186 3187 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 3188 if (err) 3189 verbose_linfo(env, insn_idx, "; "); 3190 if (!err && t == BPF_READ && value_regno >= 0) { 3191 /* ctx access returns either a scalar, or a 3192 * PTR_TO_PACKET[_META,_END]. In the latter 3193 * case, we know the offset is zero. 3194 */ 3195 if (reg_type == SCALAR_VALUE) { 3196 mark_reg_unknown(env, regs, value_regno); 3197 } else { 3198 mark_reg_known_zero(env, regs, 3199 value_regno); 3200 if (reg_type_may_be_null(reg_type)) 3201 regs[value_regno].id = ++env->id_gen; 3202 /* A load of ctx field could have different 3203 * actual load size with the one encoded in the 3204 * insn. When the dst is PTR, it is for sure not 3205 * a sub-register. 3206 */ 3207 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3208 if (reg_type == PTR_TO_BTF_ID) 3209 regs[value_regno].btf_id = btf_id; 3210 } 3211 regs[value_regno].type = reg_type; 3212 } 3213 3214 } else if (reg->type == PTR_TO_STACK) { 3215 off += reg->var_off.value; 3216 err = check_stack_access(env, reg, off, size); 3217 if (err) 3218 return err; 3219 3220 state = func(env, reg); 3221 err = update_stack_depth(env, state, off); 3222 if (err) 3223 return err; 3224 3225 if (t == BPF_WRITE) 3226 err = check_stack_write(env, state, off, size, 3227 value_regno, insn_idx); 3228 else 3229 err = check_stack_read(env, state, off, size, 3230 value_regno); 3231 } else if (reg_is_pkt_pointer(reg)) { 3232 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3233 verbose(env, "cannot write into packet\n"); 3234 return -EACCES; 3235 } 3236 if (t == BPF_WRITE && value_regno >= 0 && 3237 is_pointer_value(env, value_regno)) { 3238 verbose(env, "R%d leaks addr into packet\n", 3239 value_regno); 3240 return -EACCES; 3241 } 3242 err = check_packet_access(env, regno, off, size, false); 3243 if (!err && t == BPF_READ && value_regno >= 0) 3244 mark_reg_unknown(env, regs, value_regno); 3245 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3246 if (t == BPF_WRITE && value_regno >= 0 && 3247 is_pointer_value(env, value_regno)) { 3248 verbose(env, "R%d leaks addr into flow keys\n", 3249 value_regno); 3250 return -EACCES; 3251 } 3252 3253 err = check_flow_keys_access(env, off, size); 3254 if (!err && t == BPF_READ && value_regno >= 0) 3255 mark_reg_unknown(env, regs, value_regno); 3256 } else if (type_is_sk_pointer(reg->type)) { 3257 if (t == BPF_WRITE) { 3258 verbose(env, "R%d cannot write into %s\n", 3259 regno, reg_type_str[reg->type]); 3260 return -EACCES; 3261 } 3262 err = check_sock_access(env, insn_idx, regno, off, size, t); 3263 if (!err && value_regno >= 0) 3264 mark_reg_unknown(env, regs, value_regno); 3265 } else if (reg->type == PTR_TO_TP_BUFFER) { 3266 err = check_tp_buffer_access(env, reg, regno, off, size); 3267 if (!err && t == BPF_READ && value_regno >= 0) 3268 mark_reg_unknown(env, regs, value_regno); 3269 } else if (reg->type == PTR_TO_BTF_ID) { 3270 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3271 value_regno); 3272 } else { 3273 verbose(env, "R%d invalid mem access '%s'\n", regno, 3274 reg_type_str[reg->type]); 3275 return -EACCES; 3276 } 3277 3278 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3279 regs[value_regno].type == SCALAR_VALUE) { 3280 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3281 coerce_reg_to_size(®s[value_regno], size); 3282 } 3283 return err; 3284 } 3285 3286 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3287 { 3288 int err; 3289 3290 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3291 insn->imm != 0) { 3292 verbose(env, "BPF_XADD uses reserved fields\n"); 3293 return -EINVAL; 3294 } 3295 3296 /* check src1 operand */ 3297 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3298 if (err) 3299 return err; 3300 3301 /* check src2 operand */ 3302 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3303 if (err) 3304 return err; 3305 3306 if (is_pointer_value(env, insn->src_reg)) { 3307 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3308 return -EACCES; 3309 } 3310 3311 if (is_ctx_reg(env, insn->dst_reg) || 3312 is_pkt_reg(env, insn->dst_reg) || 3313 is_flow_key_reg(env, insn->dst_reg) || 3314 is_sk_reg(env, insn->dst_reg)) { 3315 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3316 insn->dst_reg, 3317 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3318 return -EACCES; 3319 } 3320 3321 /* check whether atomic_add can read the memory */ 3322 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3323 BPF_SIZE(insn->code), BPF_READ, -1, true); 3324 if (err) 3325 return err; 3326 3327 /* check whether atomic_add can write into the same memory */ 3328 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3329 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3330 } 3331 3332 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3333 int off, int access_size, 3334 bool zero_size_allowed) 3335 { 3336 struct bpf_reg_state *reg = reg_state(env, regno); 3337 3338 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3339 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3340 if (tnum_is_const(reg->var_off)) { 3341 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3342 regno, off, access_size); 3343 } else { 3344 char tn_buf[48]; 3345 3346 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3347 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3348 regno, tn_buf, access_size); 3349 } 3350 return -EACCES; 3351 } 3352 return 0; 3353 } 3354 3355 /* when register 'regno' is passed into function that will read 'access_size' 3356 * bytes from that pointer, make sure that it's within stack boundary 3357 * and all elements of stack are initialized. 3358 * Unlike most pointer bounds-checking functions, this one doesn't take an 3359 * 'off' argument, so it has to add in reg->off itself. 3360 */ 3361 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3362 int access_size, bool zero_size_allowed, 3363 struct bpf_call_arg_meta *meta) 3364 { 3365 struct bpf_reg_state *reg = reg_state(env, regno); 3366 struct bpf_func_state *state = func(env, reg); 3367 int err, min_off, max_off, i, j, slot, spi; 3368 3369 if (reg->type != PTR_TO_STACK) { 3370 /* Allow zero-byte read from NULL, regardless of pointer type */ 3371 if (zero_size_allowed && access_size == 0 && 3372 register_is_null(reg)) 3373 return 0; 3374 3375 verbose(env, "R%d type=%s expected=%s\n", regno, 3376 reg_type_str[reg->type], 3377 reg_type_str[PTR_TO_STACK]); 3378 return -EACCES; 3379 } 3380 3381 if (tnum_is_const(reg->var_off)) { 3382 min_off = max_off = reg->var_off.value + reg->off; 3383 err = __check_stack_boundary(env, regno, min_off, access_size, 3384 zero_size_allowed); 3385 if (err) 3386 return err; 3387 } else { 3388 /* Variable offset is prohibited for unprivileged mode for 3389 * simplicity since it requires corresponding support in 3390 * Spectre masking for stack ALU. 3391 * See also retrieve_ptr_limit(). 3392 */ 3393 if (!env->allow_ptr_leaks) { 3394 char tn_buf[48]; 3395 3396 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3397 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3398 regno, tn_buf); 3399 return -EACCES; 3400 } 3401 /* Only initialized buffer on stack is allowed to be accessed 3402 * with variable offset. With uninitialized buffer it's hard to 3403 * guarantee that whole memory is marked as initialized on 3404 * helper return since specific bounds are unknown what may 3405 * cause uninitialized stack leaking. 3406 */ 3407 if (meta && meta->raw_mode) 3408 meta = NULL; 3409 3410 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3411 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3412 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3413 regno); 3414 return -EACCES; 3415 } 3416 min_off = reg->smin_value + reg->off; 3417 max_off = reg->smax_value + reg->off; 3418 err = __check_stack_boundary(env, regno, min_off, access_size, 3419 zero_size_allowed); 3420 if (err) { 3421 verbose(env, "R%d min value is outside of stack bound\n", 3422 regno); 3423 return err; 3424 } 3425 err = __check_stack_boundary(env, regno, max_off, access_size, 3426 zero_size_allowed); 3427 if (err) { 3428 verbose(env, "R%d max value is outside of stack bound\n", 3429 regno); 3430 return err; 3431 } 3432 } 3433 3434 if (meta && meta->raw_mode) { 3435 meta->access_size = access_size; 3436 meta->regno = regno; 3437 return 0; 3438 } 3439 3440 for (i = min_off; i < max_off + access_size; i++) { 3441 u8 *stype; 3442 3443 slot = -i - 1; 3444 spi = slot / BPF_REG_SIZE; 3445 if (state->allocated_stack <= slot) 3446 goto err; 3447 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3448 if (*stype == STACK_MISC) 3449 goto mark; 3450 if (*stype == STACK_ZERO) { 3451 /* helper can write anything into the stack */ 3452 *stype = STACK_MISC; 3453 goto mark; 3454 } 3455 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3456 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3457 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3458 for (j = 0; j < BPF_REG_SIZE; j++) 3459 state->stack[spi].slot_type[j] = STACK_MISC; 3460 goto mark; 3461 } 3462 3463 err: 3464 if (tnum_is_const(reg->var_off)) { 3465 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3466 min_off, i - min_off, access_size); 3467 } else { 3468 char tn_buf[48]; 3469 3470 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3471 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3472 tn_buf, i - min_off, access_size); 3473 } 3474 return -EACCES; 3475 mark: 3476 /* reading any byte out of 8-byte 'spill_slot' will cause 3477 * the whole slot to be marked as 'read' 3478 */ 3479 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3480 state->stack[spi].spilled_ptr.parent, 3481 REG_LIVE_READ64); 3482 } 3483 return update_stack_depth(env, state, min_off); 3484 } 3485 3486 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3487 int access_size, bool zero_size_allowed, 3488 struct bpf_call_arg_meta *meta) 3489 { 3490 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3491 3492 switch (reg->type) { 3493 case PTR_TO_PACKET: 3494 case PTR_TO_PACKET_META: 3495 return check_packet_access(env, regno, reg->off, access_size, 3496 zero_size_allowed); 3497 case PTR_TO_MAP_VALUE: 3498 if (check_map_access_type(env, regno, reg->off, access_size, 3499 meta && meta->raw_mode ? BPF_WRITE : 3500 BPF_READ)) 3501 return -EACCES; 3502 return check_map_access(env, regno, reg->off, access_size, 3503 zero_size_allowed); 3504 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3505 return check_stack_boundary(env, regno, access_size, 3506 zero_size_allowed, meta); 3507 } 3508 } 3509 3510 /* Implementation details: 3511 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3512 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3513 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3514 * value_or_null->value transition, since the verifier only cares about 3515 * the range of access to valid map value pointer and doesn't care about actual 3516 * address of the map element. 3517 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3518 * reg->id > 0 after value_or_null->value transition. By doing so 3519 * two bpf_map_lookups will be considered two different pointers that 3520 * point to different bpf_spin_locks. 3521 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3522 * dead-locks. 3523 * Since only one bpf_spin_lock is allowed the checks are simpler than 3524 * reg_is_refcounted() logic. The verifier needs to remember only 3525 * one spin_lock instead of array of acquired_refs. 3526 * cur_state->active_spin_lock remembers which map value element got locked 3527 * and clears it after bpf_spin_unlock. 3528 */ 3529 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3530 bool is_lock) 3531 { 3532 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3533 struct bpf_verifier_state *cur = env->cur_state; 3534 bool is_const = tnum_is_const(reg->var_off); 3535 struct bpf_map *map = reg->map_ptr; 3536 u64 val = reg->var_off.value; 3537 3538 if (reg->type != PTR_TO_MAP_VALUE) { 3539 verbose(env, "R%d is not a pointer to map_value\n", regno); 3540 return -EINVAL; 3541 } 3542 if (!is_const) { 3543 verbose(env, 3544 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3545 regno); 3546 return -EINVAL; 3547 } 3548 if (!map->btf) { 3549 verbose(env, 3550 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3551 map->name); 3552 return -EINVAL; 3553 } 3554 if (!map_value_has_spin_lock(map)) { 3555 if (map->spin_lock_off == -E2BIG) 3556 verbose(env, 3557 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3558 map->name); 3559 else if (map->spin_lock_off == -ENOENT) 3560 verbose(env, 3561 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3562 map->name); 3563 else 3564 verbose(env, 3565 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3566 map->name); 3567 return -EINVAL; 3568 } 3569 if (map->spin_lock_off != val + reg->off) { 3570 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3571 val + reg->off); 3572 return -EINVAL; 3573 } 3574 if (is_lock) { 3575 if (cur->active_spin_lock) { 3576 verbose(env, 3577 "Locking two bpf_spin_locks are not allowed\n"); 3578 return -EINVAL; 3579 } 3580 cur->active_spin_lock = reg->id; 3581 } else { 3582 if (!cur->active_spin_lock) { 3583 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3584 return -EINVAL; 3585 } 3586 if (cur->active_spin_lock != reg->id) { 3587 verbose(env, "bpf_spin_unlock of different lock\n"); 3588 return -EINVAL; 3589 } 3590 cur->active_spin_lock = 0; 3591 } 3592 return 0; 3593 } 3594 3595 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3596 { 3597 return type == ARG_PTR_TO_MEM || 3598 type == ARG_PTR_TO_MEM_OR_NULL || 3599 type == ARG_PTR_TO_UNINIT_MEM; 3600 } 3601 3602 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3603 { 3604 return type == ARG_CONST_SIZE || 3605 type == ARG_CONST_SIZE_OR_ZERO; 3606 } 3607 3608 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3609 { 3610 return type == ARG_PTR_TO_INT || 3611 type == ARG_PTR_TO_LONG; 3612 } 3613 3614 static int int_ptr_type_to_size(enum bpf_arg_type type) 3615 { 3616 if (type == ARG_PTR_TO_INT) 3617 return sizeof(u32); 3618 else if (type == ARG_PTR_TO_LONG) 3619 return sizeof(u64); 3620 3621 return -EINVAL; 3622 } 3623 3624 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3625 enum bpf_arg_type arg_type, 3626 struct bpf_call_arg_meta *meta) 3627 { 3628 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3629 enum bpf_reg_type expected_type, type = reg->type; 3630 int err = 0; 3631 3632 if (arg_type == ARG_DONTCARE) 3633 return 0; 3634 3635 err = check_reg_arg(env, regno, SRC_OP); 3636 if (err) 3637 return err; 3638 3639 if (arg_type == ARG_ANYTHING) { 3640 if (is_pointer_value(env, regno)) { 3641 verbose(env, "R%d leaks addr into helper function\n", 3642 regno); 3643 return -EACCES; 3644 } 3645 return 0; 3646 } 3647 3648 if (type_is_pkt_pointer(type) && 3649 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3650 verbose(env, "helper access to the packet is not allowed\n"); 3651 return -EACCES; 3652 } 3653 3654 if (arg_type == ARG_PTR_TO_MAP_KEY || 3655 arg_type == ARG_PTR_TO_MAP_VALUE || 3656 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3657 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3658 expected_type = PTR_TO_STACK; 3659 if (register_is_null(reg) && 3660 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3661 /* final test in check_stack_boundary() */; 3662 else if (!type_is_pkt_pointer(type) && 3663 type != PTR_TO_MAP_VALUE && 3664 type != expected_type) 3665 goto err_type; 3666 } else if (arg_type == ARG_CONST_SIZE || 3667 arg_type == ARG_CONST_SIZE_OR_ZERO) { 3668 expected_type = SCALAR_VALUE; 3669 if (type != expected_type) 3670 goto err_type; 3671 } else if (arg_type == ARG_CONST_MAP_PTR) { 3672 expected_type = CONST_PTR_TO_MAP; 3673 if (type != expected_type) 3674 goto err_type; 3675 } else if (arg_type == ARG_PTR_TO_CTX || 3676 arg_type == ARG_PTR_TO_CTX_OR_NULL) { 3677 expected_type = PTR_TO_CTX; 3678 if (!(register_is_null(reg) && 3679 arg_type == ARG_PTR_TO_CTX_OR_NULL)) { 3680 if (type != expected_type) 3681 goto err_type; 3682 err = check_ctx_reg(env, reg, regno); 3683 if (err < 0) 3684 return err; 3685 } 3686 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3687 expected_type = PTR_TO_SOCK_COMMON; 3688 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3689 if (!type_is_sk_pointer(type)) 3690 goto err_type; 3691 if (reg->ref_obj_id) { 3692 if (meta->ref_obj_id) { 3693 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3694 regno, reg->ref_obj_id, 3695 meta->ref_obj_id); 3696 return -EFAULT; 3697 } 3698 meta->ref_obj_id = reg->ref_obj_id; 3699 } 3700 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3701 expected_type = PTR_TO_SOCKET; 3702 if (type != expected_type) 3703 goto err_type; 3704 } else if (arg_type == ARG_PTR_TO_BTF_ID) { 3705 expected_type = PTR_TO_BTF_ID; 3706 if (type != expected_type) 3707 goto err_type; 3708 if (reg->btf_id != meta->btf_id) { 3709 verbose(env, "Helper has type %s got %s in R%d\n", 3710 kernel_type_name(meta->btf_id), 3711 kernel_type_name(reg->btf_id), regno); 3712 3713 return -EACCES; 3714 } 3715 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) { 3716 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 3717 regno); 3718 return -EACCES; 3719 } 3720 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3721 if (meta->func_id == BPF_FUNC_spin_lock) { 3722 if (process_spin_lock(env, regno, true)) 3723 return -EACCES; 3724 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3725 if (process_spin_lock(env, regno, false)) 3726 return -EACCES; 3727 } else { 3728 verbose(env, "verifier internal error\n"); 3729 return -EFAULT; 3730 } 3731 } else if (arg_type_is_mem_ptr(arg_type)) { 3732 expected_type = PTR_TO_STACK; 3733 /* One exception here. In case function allows for NULL to be 3734 * passed in as argument, it's a SCALAR_VALUE type. Final test 3735 * happens during stack boundary checking. 3736 */ 3737 if (register_is_null(reg) && 3738 arg_type == ARG_PTR_TO_MEM_OR_NULL) 3739 /* final test in check_stack_boundary() */; 3740 else if (!type_is_pkt_pointer(type) && 3741 type != PTR_TO_MAP_VALUE && 3742 type != expected_type) 3743 goto err_type; 3744 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3745 } else if (arg_type_is_int_ptr(arg_type)) { 3746 expected_type = PTR_TO_STACK; 3747 if (!type_is_pkt_pointer(type) && 3748 type != PTR_TO_MAP_VALUE && 3749 type != expected_type) 3750 goto err_type; 3751 } else { 3752 verbose(env, "unsupported arg_type %d\n", arg_type); 3753 return -EFAULT; 3754 } 3755 3756 if (arg_type == ARG_CONST_MAP_PTR) { 3757 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3758 meta->map_ptr = reg->map_ptr; 3759 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3760 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3761 * check that [key, key + map->key_size) are within 3762 * stack limits and initialized 3763 */ 3764 if (!meta->map_ptr) { 3765 /* in function declaration map_ptr must come before 3766 * map_key, so that it's verified and known before 3767 * we have to check map_key here. Otherwise it means 3768 * that kernel subsystem misconfigured verifier 3769 */ 3770 verbose(env, "invalid map_ptr to access map->key\n"); 3771 return -EACCES; 3772 } 3773 err = check_helper_mem_access(env, regno, 3774 meta->map_ptr->key_size, false, 3775 NULL); 3776 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3777 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3778 !register_is_null(reg)) || 3779 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3780 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3781 * check [value, value + map->value_size) validity 3782 */ 3783 if (!meta->map_ptr) { 3784 /* kernel subsystem misconfigured verifier */ 3785 verbose(env, "invalid map_ptr to access map->value\n"); 3786 return -EACCES; 3787 } 3788 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3789 err = check_helper_mem_access(env, regno, 3790 meta->map_ptr->value_size, false, 3791 meta); 3792 } else if (arg_type_is_mem_size(arg_type)) { 3793 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3794 3795 /* This is used to refine r0 return value bounds for helpers 3796 * that enforce this value as an upper bound on return values. 3797 * See do_refine_retval_range() for helpers that can refine 3798 * the return value. C type of helper is u32 so we pull register 3799 * bound from umax_value however, if negative verifier errors 3800 * out. Only upper bounds can be learned because retval is an 3801 * int type and negative retvals are allowed. 3802 */ 3803 meta->msize_max_value = reg->umax_value; 3804 3805 /* The register is SCALAR_VALUE; the access check 3806 * happens using its boundaries. 3807 */ 3808 if (!tnum_is_const(reg->var_off)) 3809 /* For unprivileged variable accesses, disable raw 3810 * mode so that the program is required to 3811 * initialize all the memory that the helper could 3812 * just partially fill up. 3813 */ 3814 meta = NULL; 3815 3816 if (reg->smin_value < 0) { 3817 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3818 regno); 3819 return -EACCES; 3820 } 3821 3822 if (reg->umin_value == 0) { 3823 err = check_helper_mem_access(env, regno - 1, 0, 3824 zero_size_allowed, 3825 meta); 3826 if (err) 3827 return err; 3828 } 3829 3830 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3831 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3832 regno); 3833 return -EACCES; 3834 } 3835 err = check_helper_mem_access(env, regno - 1, 3836 reg->umax_value, 3837 zero_size_allowed, meta); 3838 if (!err) 3839 err = mark_chain_precision(env, regno); 3840 } else if (arg_type_is_int_ptr(arg_type)) { 3841 int size = int_ptr_type_to_size(arg_type); 3842 3843 err = check_helper_mem_access(env, regno, size, false, meta); 3844 if (err) 3845 return err; 3846 err = check_ptr_alignment(env, reg, 0, size, true); 3847 } 3848 3849 return err; 3850 err_type: 3851 verbose(env, "R%d type=%s expected=%s\n", regno, 3852 reg_type_str[type], reg_type_str[expected_type]); 3853 return -EACCES; 3854 } 3855 3856 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3857 struct bpf_map *map, int func_id) 3858 { 3859 if (!map) 3860 return 0; 3861 3862 /* We need a two way check, first is from map perspective ... */ 3863 switch (map->map_type) { 3864 case BPF_MAP_TYPE_PROG_ARRAY: 3865 if (func_id != BPF_FUNC_tail_call) 3866 goto error; 3867 break; 3868 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 3869 if (func_id != BPF_FUNC_perf_event_read && 3870 func_id != BPF_FUNC_perf_event_output && 3871 func_id != BPF_FUNC_skb_output && 3872 func_id != BPF_FUNC_perf_event_read_value && 3873 func_id != BPF_FUNC_xdp_output) 3874 goto error; 3875 break; 3876 case BPF_MAP_TYPE_STACK_TRACE: 3877 if (func_id != BPF_FUNC_get_stackid) 3878 goto error; 3879 break; 3880 case BPF_MAP_TYPE_CGROUP_ARRAY: 3881 if (func_id != BPF_FUNC_skb_under_cgroup && 3882 func_id != BPF_FUNC_current_task_under_cgroup) 3883 goto error; 3884 break; 3885 case BPF_MAP_TYPE_CGROUP_STORAGE: 3886 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 3887 if (func_id != BPF_FUNC_get_local_storage) 3888 goto error; 3889 break; 3890 case BPF_MAP_TYPE_DEVMAP: 3891 case BPF_MAP_TYPE_DEVMAP_HASH: 3892 if (func_id != BPF_FUNC_redirect_map && 3893 func_id != BPF_FUNC_map_lookup_elem) 3894 goto error; 3895 break; 3896 /* Restrict bpf side of cpumap and xskmap, open when use-cases 3897 * appear. 3898 */ 3899 case BPF_MAP_TYPE_CPUMAP: 3900 if (func_id != BPF_FUNC_redirect_map) 3901 goto error; 3902 break; 3903 case BPF_MAP_TYPE_XSKMAP: 3904 if (func_id != BPF_FUNC_redirect_map && 3905 func_id != BPF_FUNC_map_lookup_elem) 3906 goto error; 3907 break; 3908 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 3909 case BPF_MAP_TYPE_HASH_OF_MAPS: 3910 if (func_id != BPF_FUNC_map_lookup_elem) 3911 goto error; 3912 break; 3913 case BPF_MAP_TYPE_SOCKMAP: 3914 if (func_id != BPF_FUNC_sk_redirect_map && 3915 func_id != BPF_FUNC_sock_map_update && 3916 func_id != BPF_FUNC_map_delete_elem && 3917 func_id != BPF_FUNC_msg_redirect_map && 3918 func_id != BPF_FUNC_sk_select_reuseport) 3919 goto error; 3920 break; 3921 case BPF_MAP_TYPE_SOCKHASH: 3922 if (func_id != BPF_FUNC_sk_redirect_hash && 3923 func_id != BPF_FUNC_sock_hash_update && 3924 func_id != BPF_FUNC_map_delete_elem && 3925 func_id != BPF_FUNC_msg_redirect_hash && 3926 func_id != BPF_FUNC_sk_select_reuseport) 3927 goto error; 3928 break; 3929 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 3930 if (func_id != BPF_FUNC_sk_select_reuseport) 3931 goto error; 3932 break; 3933 case BPF_MAP_TYPE_QUEUE: 3934 case BPF_MAP_TYPE_STACK: 3935 if (func_id != BPF_FUNC_map_peek_elem && 3936 func_id != BPF_FUNC_map_pop_elem && 3937 func_id != BPF_FUNC_map_push_elem) 3938 goto error; 3939 break; 3940 case BPF_MAP_TYPE_SK_STORAGE: 3941 if (func_id != BPF_FUNC_sk_storage_get && 3942 func_id != BPF_FUNC_sk_storage_delete) 3943 goto error; 3944 break; 3945 default: 3946 break; 3947 } 3948 3949 /* ... and second from the function itself. */ 3950 switch (func_id) { 3951 case BPF_FUNC_tail_call: 3952 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 3953 goto error; 3954 if (env->subprog_cnt > 1) { 3955 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 3956 return -EINVAL; 3957 } 3958 break; 3959 case BPF_FUNC_perf_event_read: 3960 case BPF_FUNC_perf_event_output: 3961 case BPF_FUNC_perf_event_read_value: 3962 case BPF_FUNC_skb_output: 3963 case BPF_FUNC_xdp_output: 3964 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 3965 goto error; 3966 break; 3967 case BPF_FUNC_get_stackid: 3968 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 3969 goto error; 3970 break; 3971 case BPF_FUNC_current_task_under_cgroup: 3972 case BPF_FUNC_skb_under_cgroup: 3973 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 3974 goto error; 3975 break; 3976 case BPF_FUNC_redirect_map: 3977 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 3978 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 3979 map->map_type != BPF_MAP_TYPE_CPUMAP && 3980 map->map_type != BPF_MAP_TYPE_XSKMAP) 3981 goto error; 3982 break; 3983 case BPF_FUNC_sk_redirect_map: 3984 case BPF_FUNC_msg_redirect_map: 3985 case BPF_FUNC_sock_map_update: 3986 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 3987 goto error; 3988 break; 3989 case BPF_FUNC_sk_redirect_hash: 3990 case BPF_FUNC_msg_redirect_hash: 3991 case BPF_FUNC_sock_hash_update: 3992 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 3993 goto error; 3994 break; 3995 case BPF_FUNC_get_local_storage: 3996 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 3997 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 3998 goto error; 3999 break; 4000 case BPF_FUNC_sk_select_reuseport: 4001 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 4002 map->map_type != BPF_MAP_TYPE_SOCKMAP && 4003 map->map_type != BPF_MAP_TYPE_SOCKHASH) 4004 goto error; 4005 break; 4006 case BPF_FUNC_map_peek_elem: 4007 case BPF_FUNC_map_pop_elem: 4008 case BPF_FUNC_map_push_elem: 4009 if (map->map_type != BPF_MAP_TYPE_QUEUE && 4010 map->map_type != BPF_MAP_TYPE_STACK) 4011 goto error; 4012 break; 4013 case BPF_FUNC_sk_storage_get: 4014 case BPF_FUNC_sk_storage_delete: 4015 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 4016 goto error; 4017 break; 4018 default: 4019 break; 4020 } 4021 4022 return 0; 4023 error: 4024 verbose(env, "cannot pass map_type %d into func %s#%d\n", 4025 map->map_type, func_id_name(func_id), func_id); 4026 return -EINVAL; 4027 } 4028 4029 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 4030 { 4031 int count = 0; 4032 4033 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 4034 count++; 4035 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 4036 count++; 4037 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 4038 count++; 4039 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 4040 count++; 4041 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 4042 count++; 4043 4044 /* We only support one arg being in raw mode at the moment, 4045 * which is sufficient for the helper functions we have 4046 * right now. 4047 */ 4048 return count <= 1; 4049 } 4050 4051 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 4052 enum bpf_arg_type arg_next) 4053 { 4054 return (arg_type_is_mem_ptr(arg_curr) && 4055 !arg_type_is_mem_size(arg_next)) || 4056 (!arg_type_is_mem_ptr(arg_curr) && 4057 arg_type_is_mem_size(arg_next)); 4058 } 4059 4060 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 4061 { 4062 /* bpf_xxx(..., buf, len) call will access 'len' 4063 * bytes from memory 'buf'. Both arg types need 4064 * to be paired, so make sure there's no buggy 4065 * helper function specification. 4066 */ 4067 if (arg_type_is_mem_size(fn->arg1_type) || 4068 arg_type_is_mem_ptr(fn->arg5_type) || 4069 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 4070 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 4071 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 4072 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 4073 return false; 4074 4075 return true; 4076 } 4077 4078 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 4079 { 4080 int count = 0; 4081 4082 if (arg_type_may_be_refcounted(fn->arg1_type)) 4083 count++; 4084 if (arg_type_may_be_refcounted(fn->arg2_type)) 4085 count++; 4086 if (arg_type_may_be_refcounted(fn->arg3_type)) 4087 count++; 4088 if (arg_type_may_be_refcounted(fn->arg4_type)) 4089 count++; 4090 if (arg_type_may_be_refcounted(fn->arg5_type)) 4091 count++; 4092 4093 /* A reference acquiring function cannot acquire 4094 * another refcounted ptr. 4095 */ 4096 if (is_acquire_function(func_id) && count) 4097 return false; 4098 4099 /* We only support one arg being unreferenced at the moment, 4100 * which is sufficient for the helper functions we have right now. 4101 */ 4102 return count <= 1; 4103 } 4104 4105 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 4106 { 4107 return check_raw_mode_ok(fn) && 4108 check_arg_pair_ok(fn) && 4109 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 4110 } 4111 4112 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 4113 * are now invalid, so turn them into unknown SCALAR_VALUE. 4114 */ 4115 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 4116 struct bpf_func_state *state) 4117 { 4118 struct bpf_reg_state *regs = state->regs, *reg; 4119 int i; 4120 4121 for (i = 0; i < MAX_BPF_REG; i++) 4122 if (reg_is_pkt_pointer_any(®s[i])) 4123 mark_reg_unknown(env, regs, i); 4124 4125 bpf_for_each_spilled_reg(i, state, reg) { 4126 if (!reg) 4127 continue; 4128 if (reg_is_pkt_pointer_any(reg)) 4129 __mark_reg_unknown(env, reg); 4130 } 4131 } 4132 4133 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 4134 { 4135 struct bpf_verifier_state *vstate = env->cur_state; 4136 int i; 4137 4138 for (i = 0; i <= vstate->curframe; i++) 4139 __clear_all_pkt_pointers(env, vstate->frame[i]); 4140 } 4141 4142 static void release_reg_references(struct bpf_verifier_env *env, 4143 struct bpf_func_state *state, 4144 int ref_obj_id) 4145 { 4146 struct bpf_reg_state *regs = state->regs, *reg; 4147 int i; 4148 4149 for (i = 0; i < MAX_BPF_REG; i++) 4150 if (regs[i].ref_obj_id == ref_obj_id) 4151 mark_reg_unknown(env, regs, i); 4152 4153 bpf_for_each_spilled_reg(i, state, reg) { 4154 if (!reg) 4155 continue; 4156 if (reg->ref_obj_id == ref_obj_id) 4157 __mark_reg_unknown(env, reg); 4158 } 4159 } 4160 4161 /* The pointer with the specified id has released its reference to kernel 4162 * resources. Identify all copies of the same pointer and clear the reference. 4163 */ 4164 static int release_reference(struct bpf_verifier_env *env, 4165 int ref_obj_id) 4166 { 4167 struct bpf_verifier_state *vstate = env->cur_state; 4168 int err; 4169 int i; 4170 4171 err = release_reference_state(cur_func(env), ref_obj_id); 4172 if (err) 4173 return err; 4174 4175 for (i = 0; i <= vstate->curframe; i++) 4176 release_reg_references(env, vstate->frame[i], ref_obj_id); 4177 4178 return 0; 4179 } 4180 4181 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 4182 struct bpf_reg_state *regs) 4183 { 4184 int i; 4185 4186 /* after the call registers r0 - r5 were scratched */ 4187 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4188 mark_reg_not_init(env, regs, caller_saved[i]); 4189 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4190 } 4191 } 4192 4193 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 4194 int *insn_idx) 4195 { 4196 struct bpf_verifier_state *state = env->cur_state; 4197 struct bpf_func_info_aux *func_info_aux; 4198 struct bpf_func_state *caller, *callee; 4199 int i, err, subprog, target_insn; 4200 bool is_global = false; 4201 4202 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 4203 verbose(env, "the call stack of %d frames is too deep\n", 4204 state->curframe + 2); 4205 return -E2BIG; 4206 } 4207 4208 target_insn = *insn_idx + insn->imm; 4209 subprog = find_subprog(env, target_insn + 1); 4210 if (subprog < 0) { 4211 verbose(env, "verifier bug. No program starts at insn %d\n", 4212 target_insn + 1); 4213 return -EFAULT; 4214 } 4215 4216 caller = state->frame[state->curframe]; 4217 if (state->frame[state->curframe + 1]) { 4218 verbose(env, "verifier bug. Frame %d already allocated\n", 4219 state->curframe + 1); 4220 return -EFAULT; 4221 } 4222 4223 func_info_aux = env->prog->aux->func_info_aux; 4224 if (func_info_aux) 4225 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 4226 err = btf_check_func_arg_match(env, subprog, caller->regs); 4227 if (err == -EFAULT) 4228 return err; 4229 if (is_global) { 4230 if (err) { 4231 verbose(env, "Caller passes invalid args into func#%d\n", 4232 subprog); 4233 return err; 4234 } else { 4235 if (env->log.level & BPF_LOG_LEVEL) 4236 verbose(env, 4237 "Func#%d is global and valid. Skipping.\n", 4238 subprog); 4239 clear_caller_saved_regs(env, caller->regs); 4240 4241 /* All global functions return SCALAR_VALUE */ 4242 mark_reg_unknown(env, caller->regs, BPF_REG_0); 4243 4244 /* continue with next insn after call */ 4245 return 0; 4246 } 4247 } 4248 4249 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 4250 if (!callee) 4251 return -ENOMEM; 4252 state->frame[state->curframe + 1] = callee; 4253 4254 /* callee cannot access r0, r6 - r9 for reading and has to write 4255 * into its own stack before reading from it. 4256 * callee can read/write into caller's stack 4257 */ 4258 init_func_state(env, callee, 4259 /* remember the callsite, it will be used by bpf_exit */ 4260 *insn_idx /* callsite */, 4261 state->curframe + 1 /* frameno within this callchain */, 4262 subprog /* subprog number within this prog */); 4263 4264 /* Transfer references to the callee */ 4265 err = transfer_reference_state(callee, caller); 4266 if (err) 4267 return err; 4268 4269 /* copy r1 - r5 args that callee can access. The copy includes parent 4270 * pointers, which connects us up to the liveness chain 4271 */ 4272 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4273 callee->regs[i] = caller->regs[i]; 4274 4275 clear_caller_saved_regs(env, caller->regs); 4276 4277 /* only increment it after check_reg_arg() finished */ 4278 state->curframe++; 4279 4280 /* and go analyze first insn of the callee */ 4281 *insn_idx = target_insn; 4282 4283 if (env->log.level & BPF_LOG_LEVEL) { 4284 verbose(env, "caller:\n"); 4285 print_verifier_state(env, caller); 4286 verbose(env, "callee:\n"); 4287 print_verifier_state(env, callee); 4288 } 4289 return 0; 4290 } 4291 4292 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4293 { 4294 struct bpf_verifier_state *state = env->cur_state; 4295 struct bpf_func_state *caller, *callee; 4296 struct bpf_reg_state *r0; 4297 int err; 4298 4299 callee = state->frame[state->curframe]; 4300 r0 = &callee->regs[BPF_REG_0]; 4301 if (r0->type == PTR_TO_STACK) { 4302 /* technically it's ok to return caller's stack pointer 4303 * (or caller's caller's pointer) back to the caller, 4304 * since these pointers are valid. Only current stack 4305 * pointer will be invalid as soon as function exits, 4306 * but let's be conservative 4307 */ 4308 verbose(env, "cannot return stack pointer to the caller\n"); 4309 return -EINVAL; 4310 } 4311 4312 state->curframe--; 4313 caller = state->frame[state->curframe]; 4314 /* return to the caller whatever r0 had in the callee */ 4315 caller->regs[BPF_REG_0] = *r0; 4316 4317 /* Transfer references to the caller */ 4318 err = transfer_reference_state(caller, callee); 4319 if (err) 4320 return err; 4321 4322 *insn_idx = callee->callsite + 1; 4323 if (env->log.level & BPF_LOG_LEVEL) { 4324 verbose(env, "returning from callee:\n"); 4325 print_verifier_state(env, callee); 4326 verbose(env, "to caller at %d:\n", *insn_idx); 4327 print_verifier_state(env, caller); 4328 } 4329 /* clear everything in the callee */ 4330 free_func_state(callee); 4331 state->frame[state->curframe + 1] = NULL; 4332 return 0; 4333 } 4334 4335 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4336 int func_id, 4337 struct bpf_call_arg_meta *meta) 4338 { 4339 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4340 4341 if (ret_type != RET_INTEGER || 4342 (func_id != BPF_FUNC_get_stack && 4343 func_id != BPF_FUNC_probe_read_str && 4344 func_id != BPF_FUNC_probe_read_kernel_str && 4345 func_id != BPF_FUNC_probe_read_user_str)) 4346 return; 4347 4348 ret_reg->smax_value = meta->msize_max_value; 4349 ret_reg->s32_max_value = meta->msize_max_value; 4350 __reg_deduce_bounds(ret_reg); 4351 __reg_bound_offset(ret_reg); 4352 __update_reg_bounds(ret_reg); 4353 } 4354 4355 static int 4356 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4357 int func_id, int insn_idx) 4358 { 4359 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4360 struct bpf_map *map = meta->map_ptr; 4361 4362 if (func_id != BPF_FUNC_tail_call && 4363 func_id != BPF_FUNC_map_lookup_elem && 4364 func_id != BPF_FUNC_map_update_elem && 4365 func_id != BPF_FUNC_map_delete_elem && 4366 func_id != BPF_FUNC_map_push_elem && 4367 func_id != BPF_FUNC_map_pop_elem && 4368 func_id != BPF_FUNC_map_peek_elem) 4369 return 0; 4370 4371 if (map == NULL) { 4372 verbose(env, "kernel subsystem misconfigured verifier\n"); 4373 return -EINVAL; 4374 } 4375 4376 /* In case of read-only, some additional restrictions 4377 * need to be applied in order to prevent altering the 4378 * state of the map from program side. 4379 */ 4380 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4381 (func_id == BPF_FUNC_map_delete_elem || 4382 func_id == BPF_FUNC_map_update_elem || 4383 func_id == BPF_FUNC_map_push_elem || 4384 func_id == BPF_FUNC_map_pop_elem)) { 4385 verbose(env, "write into map forbidden\n"); 4386 return -EACCES; 4387 } 4388 4389 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4390 bpf_map_ptr_store(aux, meta->map_ptr, 4391 meta->map_ptr->unpriv_array); 4392 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4393 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4394 meta->map_ptr->unpriv_array); 4395 return 0; 4396 } 4397 4398 static int 4399 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4400 int func_id, int insn_idx) 4401 { 4402 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4403 struct bpf_reg_state *regs = cur_regs(env), *reg; 4404 struct bpf_map *map = meta->map_ptr; 4405 struct tnum range; 4406 u64 val; 4407 int err; 4408 4409 if (func_id != BPF_FUNC_tail_call) 4410 return 0; 4411 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4412 verbose(env, "kernel subsystem misconfigured verifier\n"); 4413 return -EINVAL; 4414 } 4415 4416 range = tnum_range(0, map->max_entries - 1); 4417 reg = ®s[BPF_REG_3]; 4418 4419 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 4420 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4421 return 0; 4422 } 4423 4424 err = mark_chain_precision(env, BPF_REG_3); 4425 if (err) 4426 return err; 4427 4428 val = reg->var_off.value; 4429 if (bpf_map_key_unseen(aux)) 4430 bpf_map_key_store(aux, val); 4431 else if (!bpf_map_key_poisoned(aux) && 4432 bpf_map_key_immediate(aux) != val) 4433 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4434 return 0; 4435 } 4436 4437 static int check_reference_leak(struct bpf_verifier_env *env) 4438 { 4439 struct bpf_func_state *state = cur_func(env); 4440 int i; 4441 4442 for (i = 0; i < state->acquired_refs; i++) { 4443 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 4444 state->refs[i].id, state->refs[i].insn_idx); 4445 } 4446 return state->acquired_refs ? -EINVAL : 0; 4447 } 4448 4449 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 4450 { 4451 const struct bpf_func_proto *fn = NULL; 4452 struct bpf_reg_state *regs; 4453 struct bpf_call_arg_meta meta; 4454 bool changes_data; 4455 int i, err; 4456 4457 /* find function prototype */ 4458 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 4459 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 4460 func_id); 4461 return -EINVAL; 4462 } 4463 4464 if (env->ops->get_func_proto) 4465 fn = env->ops->get_func_proto(func_id, env->prog); 4466 if (!fn) { 4467 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 4468 func_id); 4469 return -EINVAL; 4470 } 4471 4472 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 4473 if (!env->prog->gpl_compatible && fn->gpl_only) { 4474 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 4475 return -EINVAL; 4476 } 4477 4478 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 4479 changes_data = bpf_helper_changes_pkt_data(fn->func); 4480 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 4481 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 4482 func_id_name(func_id), func_id); 4483 return -EINVAL; 4484 } 4485 4486 memset(&meta, 0, sizeof(meta)); 4487 meta.pkt_access = fn->pkt_access; 4488 4489 err = check_func_proto(fn, func_id); 4490 if (err) { 4491 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 4492 func_id_name(func_id), func_id); 4493 return err; 4494 } 4495 4496 meta.func_id = func_id; 4497 /* check args */ 4498 for (i = 0; i < 5; i++) { 4499 err = btf_resolve_helper_id(&env->log, fn, i); 4500 if (err > 0) 4501 meta.btf_id = err; 4502 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta); 4503 if (err) 4504 return err; 4505 } 4506 4507 err = record_func_map(env, &meta, func_id, insn_idx); 4508 if (err) 4509 return err; 4510 4511 err = record_func_key(env, &meta, func_id, insn_idx); 4512 if (err) 4513 return err; 4514 4515 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4516 * is inferred from register state. 4517 */ 4518 for (i = 0; i < meta.access_size; i++) { 4519 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4520 BPF_WRITE, -1, false); 4521 if (err) 4522 return err; 4523 } 4524 4525 if (func_id == BPF_FUNC_tail_call) { 4526 err = check_reference_leak(env); 4527 if (err) { 4528 verbose(env, "tail_call would lead to reference leak\n"); 4529 return err; 4530 } 4531 } else if (is_release_function(func_id)) { 4532 err = release_reference(env, meta.ref_obj_id); 4533 if (err) { 4534 verbose(env, "func %s#%d reference has not been acquired before\n", 4535 func_id_name(func_id), func_id); 4536 return err; 4537 } 4538 } 4539 4540 regs = cur_regs(env); 4541 4542 /* check that flags argument in get_local_storage(map, flags) is 0, 4543 * this is required because get_local_storage() can't return an error. 4544 */ 4545 if (func_id == BPF_FUNC_get_local_storage && 4546 !register_is_null(®s[BPF_REG_2])) { 4547 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4548 return -EINVAL; 4549 } 4550 4551 /* reset caller saved regs */ 4552 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4553 mark_reg_not_init(env, regs, caller_saved[i]); 4554 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4555 } 4556 4557 /* helper call returns 64-bit value. */ 4558 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4559 4560 /* update return register (already marked as written above) */ 4561 if (fn->ret_type == RET_INTEGER) { 4562 /* sets type to SCALAR_VALUE */ 4563 mark_reg_unknown(env, regs, BPF_REG_0); 4564 } else if (fn->ret_type == RET_VOID) { 4565 regs[BPF_REG_0].type = NOT_INIT; 4566 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4567 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4568 /* There is no offset yet applied, variable or fixed */ 4569 mark_reg_known_zero(env, regs, BPF_REG_0); 4570 /* remember map_ptr, so that check_map_access() 4571 * can check 'value_size' boundary of memory access 4572 * to map element returned from bpf_map_lookup_elem() 4573 */ 4574 if (meta.map_ptr == NULL) { 4575 verbose(env, 4576 "kernel subsystem misconfigured verifier\n"); 4577 return -EINVAL; 4578 } 4579 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4580 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4581 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4582 if (map_value_has_spin_lock(meta.map_ptr)) 4583 regs[BPF_REG_0].id = ++env->id_gen; 4584 } else { 4585 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4586 regs[BPF_REG_0].id = ++env->id_gen; 4587 } 4588 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4589 mark_reg_known_zero(env, regs, BPF_REG_0); 4590 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4591 regs[BPF_REG_0].id = ++env->id_gen; 4592 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4593 mark_reg_known_zero(env, regs, BPF_REG_0); 4594 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4595 regs[BPF_REG_0].id = ++env->id_gen; 4596 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4597 mark_reg_known_zero(env, regs, BPF_REG_0); 4598 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4599 regs[BPF_REG_0].id = ++env->id_gen; 4600 } else { 4601 verbose(env, "unknown return type %d of func %s#%d\n", 4602 fn->ret_type, func_id_name(func_id), func_id); 4603 return -EINVAL; 4604 } 4605 4606 if (is_ptr_cast_function(func_id)) { 4607 /* For release_reference() */ 4608 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4609 } else if (is_acquire_function(func_id)) { 4610 int id = acquire_reference_state(env, insn_idx); 4611 4612 if (id < 0) 4613 return id; 4614 /* For mark_ptr_or_null_reg() */ 4615 regs[BPF_REG_0].id = id; 4616 /* For release_reference() */ 4617 regs[BPF_REG_0].ref_obj_id = id; 4618 } 4619 4620 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4621 4622 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4623 if (err) 4624 return err; 4625 4626 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4627 const char *err_str; 4628 4629 #ifdef CONFIG_PERF_EVENTS 4630 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4631 err_str = "cannot get callchain buffer for func %s#%d\n"; 4632 #else 4633 err = -ENOTSUPP; 4634 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4635 #endif 4636 if (err) { 4637 verbose(env, err_str, func_id_name(func_id), func_id); 4638 return err; 4639 } 4640 4641 env->prog->has_callchain_buf = true; 4642 } 4643 4644 if (changes_data) 4645 clear_all_pkt_pointers(env); 4646 return 0; 4647 } 4648 4649 static bool signed_add_overflows(s64 a, s64 b) 4650 { 4651 /* Do the add in u64, where overflow is well-defined */ 4652 s64 res = (s64)((u64)a + (u64)b); 4653 4654 if (b < 0) 4655 return res > a; 4656 return res < a; 4657 } 4658 4659 static bool signed_add32_overflows(s64 a, s64 b) 4660 { 4661 /* Do the add in u32, where overflow is well-defined */ 4662 s32 res = (s32)((u32)a + (u32)b); 4663 4664 if (b < 0) 4665 return res > a; 4666 return res < a; 4667 } 4668 4669 static bool signed_sub_overflows(s32 a, s32 b) 4670 { 4671 /* Do the sub in u64, where overflow is well-defined */ 4672 s64 res = (s64)((u64)a - (u64)b); 4673 4674 if (b < 0) 4675 return res < a; 4676 return res > a; 4677 } 4678 4679 static bool signed_sub32_overflows(s32 a, s32 b) 4680 { 4681 /* Do the sub in u64, where overflow is well-defined */ 4682 s32 res = (s32)((u32)a - (u32)b); 4683 4684 if (b < 0) 4685 return res < a; 4686 return res > a; 4687 } 4688 4689 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4690 const struct bpf_reg_state *reg, 4691 enum bpf_reg_type type) 4692 { 4693 bool known = tnum_is_const(reg->var_off); 4694 s64 val = reg->var_off.value; 4695 s64 smin = reg->smin_value; 4696 4697 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4698 verbose(env, "math between %s pointer and %lld is not allowed\n", 4699 reg_type_str[type], val); 4700 return false; 4701 } 4702 4703 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4704 verbose(env, "%s pointer offset %d is not allowed\n", 4705 reg_type_str[type], reg->off); 4706 return false; 4707 } 4708 4709 if (smin == S64_MIN) { 4710 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4711 reg_type_str[type]); 4712 return false; 4713 } 4714 4715 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4716 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4717 smin, reg_type_str[type]); 4718 return false; 4719 } 4720 4721 return true; 4722 } 4723 4724 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4725 { 4726 return &env->insn_aux_data[env->insn_idx]; 4727 } 4728 4729 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4730 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4731 { 4732 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4733 (opcode == BPF_SUB && !off_is_neg); 4734 u32 off; 4735 4736 switch (ptr_reg->type) { 4737 case PTR_TO_STACK: 4738 /* Indirect variable offset stack access is prohibited in 4739 * unprivileged mode so it's not handled here. 4740 */ 4741 off = ptr_reg->off + ptr_reg->var_off.value; 4742 if (mask_to_left) 4743 *ptr_limit = MAX_BPF_STACK + off; 4744 else 4745 *ptr_limit = -off; 4746 return 0; 4747 case PTR_TO_MAP_VALUE: 4748 if (mask_to_left) { 4749 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4750 } else { 4751 off = ptr_reg->smin_value + ptr_reg->off; 4752 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4753 } 4754 return 0; 4755 default: 4756 return -EINVAL; 4757 } 4758 } 4759 4760 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4761 const struct bpf_insn *insn) 4762 { 4763 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 4764 } 4765 4766 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4767 u32 alu_state, u32 alu_limit) 4768 { 4769 /* If we arrived here from different branches with different 4770 * state or limits to sanitize, then this won't work. 4771 */ 4772 if (aux->alu_state && 4773 (aux->alu_state != alu_state || 4774 aux->alu_limit != alu_limit)) 4775 return -EACCES; 4776 4777 /* Corresponding fixup done in fixup_bpf_calls(). */ 4778 aux->alu_state = alu_state; 4779 aux->alu_limit = alu_limit; 4780 return 0; 4781 } 4782 4783 static int sanitize_val_alu(struct bpf_verifier_env *env, 4784 struct bpf_insn *insn) 4785 { 4786 struct bpf_insn_aux_data *aux = cur_aux(env); 4787 4788 if (can_skip_alu_sanitation(env, insn)) 4789 return 0; 4790 4791 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4792 } 4793 4794 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4795 struct bpf_insn *insn, 4796 const struct bpf_reg_state *ptr_reg, 4797 struct bpf_reg_state *dst_reg, 4798 bool off_is_neg) 4799 { 4800 struct bpf_verifier_state *vstate = env->cur_state; 4801 struct bpf_insn_aux_data *aux = cur_aux(env); 4802 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4803 u8 opcode = BPF_OP(insn->code); 4804 u32 alu_state, alu_limit; 4805 struct bpf_reg_state tmp; 4806 bool ret; 4807 4808 if (can_skip_alu_sanitation(env, insn)) 4809 return 0; 4810 4811 /* We already marked aux for masking from non-speculative 4812 * paths, thus we got here in the first place. We only care 4813 * to explore bad access from here. 4814 */ 4815 if (vstate->speculative) 4816 goto do_sim; 4817 4818 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4819 alu_state |= ptr_is_dst_reg ? 4820 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4821 4822 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4823 return 0; 4824 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4825 return -EACCES; 4826 do_sim: 4827 /* Simulate and find potential out-of-bounds access under 4828 * speculative execution from truncation as a result of 4829 * masking when off was not within expected range. If off 4830 * sits in dst, then we temporarily need to move ptr there 4831 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4832 * for cases where we use K-based arithmetic in one direction 4833 * and truncated reg-based in the other in order to explore 4834 * bad access. 4835 */ 4836 if (!ptr_is_dst_reg) { 4837 tmp = *dst_reg; 4838 *dst_reg = *ptr_reg; 4839 } 4840 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4841 if (!ptr_is_dst_reg && ret) 4842 *dst_reg = tmp; 4843 return !ret ? -EFAULT : 0; 4844 } 4845 4846 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 4847 * Caller should also handle BPF_MOV case separately. 4848 * If we return -EACCES, caller may want to try again treating pointer as a 4849 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 4850 */ 4851 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 4852 struct bpf_insn *insn, 4853 const struct bpf_reg_state *ptr_reg, 4854 const struct bpf_reg_state *off_reg) 4855 { 4856 struct bpf_verifier_state *vstate = env->cur_state; 4857 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4858 struct bpf_reg_state *regs = state->regs, *dst_reg; 4859 bool known = tnum_is_const(off_reg->var_off); 4860 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 4861 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 4862 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 4863 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 4864 u32 dst = insn->dst_reg, src = insn->src_reg; 4865 u8 opcode = BPF_OP(insn->code); 4866 int ret; 4867 4868 dst_reg = ®s[dst]; 4869 4870 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 4871 smin_val > smax_val || umin_val > umax_val) { 4872 /* Taint dst register if offset had invalid bounds derived from 4873 * e.g. dead branches. 4874 */ 4875 __mark_reg_unknown(env, dst_reg); 4876 return 0; 4877 } 4878 4879 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4880 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 4881 verbose(env, 4882 "R%d 32-bit pointer arithmetic prohibited\n", 4883 dst); 4884 return -EACCES; 4885 } 4886 4887 switch (ptr_reg->type) { 4888 case PTR_TO_MAP_VALUE_OR_NULL: 4889 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 4890 dst, reg_type_str[ptr_reg->type]); 4891 return -EACCES; 4892 case CONST_PTR_TO_MAP: 4893 case PTR_TO_PACKET_END: 4894 case PTR_TO_SOCKET: 4895 case PTR_TO_SOCKET_OR_NULL: 4896 case PTR_TO_SOCK_COMMON: 4897 case PTR_TO_SOCK_COMMON_OR_NULL: 4898 case PTR_TO_TCP_SOCK: 4899 case PTR_TO_TCP_SOCK_OR_NULL: 4900 case PTR_TO_XDP_SOCK: 4901 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 4902 dst, reg_type_str[ptr_reg->type]); 4903 return -EACCES; 4904 case PTR_TO_MAP_VALUE: 4905 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 4906 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 4907 off_reg == dst_reg ? dst : src); 4908 return -EACCES; 4909 } 4910 /* fall-through */ 4911 default: 4912 break; 4913 } 4914 4915 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 4916 * The id may be overwritten later if we create a new variable offset. 4917 */ 4918 dst_reg->type = ptr_reg->type; 4919 dst_reg->id = ptr_reg->id; 4920 4921 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 4922 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 4923 return -EINVAL; 4924 4925 /* pointer types do not carry 32-bit bounds at the moment. */ 4926 __mark_reg32_unbounded(dst_reg); 4927 4928 switch (opcode) { 4929 case BPF_ADD: 4930 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4931 if (ret < 0) { 4932 verbose(env, "R%d tried to add from different maps or paths\n", dst); 4933 return ret; 4934 } 4935 /* We can take a fixed offset as long as it doesn't overflow 4936 * the s32 'off' field 4937 */ 4938 if (known && (ptr_reg->off + smin_val == 4939 (s64)(s32)(ptr_reg->off + smin_val))) { 4940 /* pointer += K. Accumulate it into fixed offset */ 4941 dst_reg->smin_value = smin_ptr; 4942 dst_reg->smax_value = smax_ptr; 4943 dst_reg->umin_value = umin_ptr; 4944 dst_reg->umax_value = umax_ptr; 4945 dst_reg->var_off = ptr_reg->var_off; 4946 dst_reg->off = ptr_reg->off + smin_val; 4947 dst_reg->raw = ptr_reg->raw; 4948 break; 4949 } 4950 /* A new variable offset is created. Note that off_reg->off 4951 * == 0, since it's a scalar. 4952 * dst_reg gets the pointer type and since some positive 4953 * integer value was added to the pointer, give it a new 'id' 4954 * if it's a PTR_TO_PACKET. 4955 * this creates a new 'base' pointer, off_reg (variable) gets 4956 * added into the variable offset, and we copy the fixed offset 4957 * from ptr_reg. 4958 */ 4959 if (signed_add_overflows(smin_ptr, smin_val) || 4960 signed_add_overflows(smax_ptr, smax_val)) { 4961 dst_reg->smin_value = S64_MIN; 4962 dst_reg->smax_value = S64_MAX; 4963 } else { 4964 dst_reg->smin_value = smin_ptr + smin_val; 4965 dst_reg->smax_value = smax_ptr + smax_val; 4966 } 4967 if (umin_ptr + umin_val < umin_ptr || 4968 umax_ptr + umax_val < umax_ptr) { 4969 dst_reg->umin_value = 0; 4970 dst_reg->umax_value = U64_MAX; 4971 } else { 4972 dst_reg->umin_value = umin_ptr + umin_val; 4973 dst_reg->umax_value = umax_ptr + umax_val; 4974 } 4975 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 4976 dst_reg->off = ptr_reg->off; 4977 dst_reg->raw = ptr_reg->raw; 4978 if (reg_is_pkt_pointer(ptr_reg)) { 4979 dst_reg->id = ++env->id_gen; 4980 /* something was added to pkt_ptr, set range to zero */ 4981 dst_reg->raw = 0; 4982 } 4983 break; 4984 case BPF_SUB: 4985 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4986 if (ret < 0) { 4987 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 4988 return ret; 4989 } 4990 if (dst_reg == off_reg) { 4991 /* scalar -= pointer. Creates an unknown scalar */ 4992 verbose(env, "R%d tried to subtract pointer from scalar\n", 4993 dst); 4994 return -EACCES; 4995 } 4996 /* We don't allow subtraction from FP, because (according to 4997 * test_verifier.c test "invalid fp arithmetic", JITs might not 4998 * be able to deal with it. 4999 */ 5000 if (ptr_reg->type == PTR_TO_STACK) { 5001 verbose(env, "R%d subtraction from stack pointer prohibited\n", 5002 dst); 5003 return -EACCES; 5004 } 5005 if (known && (ptr_reg->off - smin_val == 5006 (s64)(s32)(ptr_reg->off - smin_val))) { 5007 /* pointer -= K. Subtract it from fixed offset */ 5008 dst_reg->smin_value = smin_ptr; 5009 dst_reg->smax_value = smax_ptr; 5010 dst_reg->umin_value = umin_ptr; 5011 dst_reg->umax_value = umax_ptr; 5012 dst_reg->var_off = ptr_reg->var_off; 5013 dst_reg->id = ptr_reg->id; 5014 dst_reg->off = ptr_reg->off - smin_val; 5015 dst_reg->raw = ptr_reg->raw; 5016 break; 5017 } 5018 /* A new variable offset is created. If the subtrahend is known 5019 * nonnegative, then any reg->range we had before is still good. 5020 */ 5021 if (signed_sub_overflows(smin_ptr, smax_val) || 5022 signed_sub_overflows(smax_ptr, smin_val)) { 5023 /* Overflow possible, we know nothing */ 5024 dst_reg->smin_value = S64_MIN; 5025 dst_reg->smax_value = S64_MAX; 5026 } else { 5027 dst_reg->smin_value = smin_ptr - smax_val; 5028 dst_reg->smax_value = smax_ptr - smin_val; 5029 } 5030 if (umin_ptr < umax_val) { 5031 /* Overflow possible, we know nothing */ 5032 dst_reg->umin_value = 0; 5033 dst_reg->umax_value = U64_MAX; 5034 } else { 5035 /* Cannot overflow (as long as bounds are consistent) */ 5036 dst_reg->umin_value = umin_ptr - umax_val; 5037 dst_reg->umax_value = umax_ptr - umin_val; 5038 } 5039 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 5040 dst_reg->off = ptr_reg->off; 5041 dst_reg->raw = ptr_reg->raw; 5042 if (reg_is_pkt_pointer(ptr_reg)) { 5043 dst_reg->id = ++env->id_gen; 5044 /* something was added to pkt_ptr, set range to zero */ 5045 if (smin_val < 0) 5046 dst_reg->raw = 0; 5047 } 5048 break; 5049 case BPF_AND: 5050 case BPF_OR: 5051 case BPF_XOR: 5052 /* bitwise ops on pointers are troublesome, prohibit. */ 5053 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 5054 dst, bpf_alu_string[opcode >> 4]); 5055 return -EACCES; 5056 default: 5057 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 5058 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 5059 dst, bpf_alu_string[opcode >> 4]); 5060 return -EACCES; 5061 } 5062 5063 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 5064 return -EINVAL; 5065 5066 __update_reg_bounds(dst_reg); 5067 __reg_deduce_bounds(dst_reg); 5068 __reg_bound_offset(dst_reg); 5069 5070 /* For unprivileged we require that resulting offset must be in bounds 5071 * in order to be able to sanitize access later on. 5072 */ 5073 if (!env->allow_ptr_leaks) { 5074 if (dst_reg->type == PTR_TO_MAP_VALUE && 5075 check_map_access(env, dst, dst_reg->off, 1, false)) { 5076 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 5077 "prohibited for !root\n", dst); 5078 return -EACCES; 5079 } else if (dst_reg->type == PTR_TO_STACK && 5080 check_stack_access(env, dst_reg, dst_reg->off + 5081 dst_reg->var_off.value, 1)) { 5082 verbose(env, "R%d stack pointer arithmetic goes out of range, " 5083 "prohibited for !root\n", dst); 5084 return -EACCES; 5085 } 5086 } 5087 5088 return 0; 5089 } 5090 5091 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 5092 struct bpf_reg_state *src_reg) 5093 { 5094 s32 smin_val = src_reg->s32_min_value; 5095 s32 smax_val = src_reg->s32_max_value; 5096 u32 umin_val = src_reg->u32_min_value; 5097 u32 umax_val = src_reg->u32_max_value; 5098 5099 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 5100 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 5101 dst_reg->s32_min_value = S32_MIN; 5102 dst_reg->s32_max_value = S32_MAX; 5103 } else { 5104 dst_reg->s32_min_value += smin_val; 5105 dst_reg->s32_max_value += smax_val; 5106 } 5107 if (dst_reg->u32_min_value + umin_val < umin_val || 5108 dst_reg->u32_max_value + umax_val < umax_val) { 5109 dst_reg->u32_min_value = 0; 5110 dst_reg->u32_max_value = U32_MAX; 5111 } else { 5112 dst_reg->u32_min_value += umin_val; 5113 dst_reg->u32_max_value += umax_val; 5114 } 5115 } 5116 5117 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 5118 struct bpf_reg_state *src_reg) 5119 { 5120 s64 smin_val = src_reg->smin_value; 5121 s64 smax_val = src_reg->smax_value; 5122 u64 umin_val = src_reg->umin_value; 5123 u64 umax_val = src_reg->umax_value; 5124 5125 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 5126 signed_add_overflows(dst_reg->smax_value, smax_val)) { 5127 dst_reg->smin_value = S64_MIN; 5128 dst_reg->smax_value = S64_MAX; 5129 } else { 5130 dst_reg->smin_value += smin_val; 5131 dst_reg->smax_value += smax_val; 5132 } 5133 if (dst_reg->umin_value + umin_val < umin_val || 5134 dst_reg->umax_value + umax_val < umax_val) { 5135 dst_reg->umin_value = 0; 5136 dst_reg->umax_value = U64_MAX; 5137 } else { 5138 dst_reg->umin_value += umin_val; 5139 dst_reg->umax_value += umax_val; 5140 } 5141 } 5142 5143 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 5144 struct bpf_reg_state *src_reg) 5145 { 5146 s32 smin_val = src_reg->s32_min_value; 5147 s32 smax_val = src_reg->s32_max_value; 5148 u32 umin_val = src_reg->u32_min_value; 5149 u32 umax_val = src_reg->u32_max_value; 5150 5151 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 5152 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 5153 /* Overflow possible, we know nothing */ 5154 dst_reg->s32_min_value = S32_MIN; 5155 dst_reg->s32_max_value = S32_MAX; 5156 } else { 5157 dst_reg->s32_min_value -= smax_val; 5158 dst_reg->s32_max_value -= smin_val; 5159 } 5160 if (dst_reg->u32_min_value < umax_val) { 5161 /* Overflow possible, we know nothing */ 5162 dst_reg->u32_min_value = 0; 5163 dst_reg->u32_max_value = U32_MAX; 5164 } else { 5165 /* Cannot overflow (as long as bounds are consistent) */ 5166 dst_reg->u32_min_value -= umax_val; 5167 dst_reg->u32_max_value -= umin_val; 5168 } 5169 } 5170 5171 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 5172 struct bpf_reg_state *src_reg) 5173 { 5174 s64 smin_val = src_reg->smin_value; 5175 s64 smax_val = src_reg->smax_value; 5176 u64 umin_val = src_reg->umin_value; 5177 u64 umax_val = src_reg->umax_value; 5178 5179 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 5180 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 5181 /* Overflow possible, we know nothing */ 5182 dst_reg->smin_value = S64_MIN; 5183 dst_reg->smax_value = S64_MAX; 5184 } else { 5185 dst_reg->smin_value -= smax_val; 5186 dst_reg->smax_value -= smin_val; 5187 } 5188 if (dst_reg->umin_value < umax_val) { 5189 /* Overflow possible, we know nothing */ 5190 dst_reg->umin_value = 0; 5191 dst_reg->umax_value = U64_MAX; 5192 } else { 5193 /* Cannot overflow (as long as bounds are consistent) */ 5194 dst_reg->umin_value -= umax_val; 5195 dst_reg->umax_value -= umin_val; 5196 } 5197 } 5198 5199 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 5200 struct bpf_reg_state *src_reg) 5201 { 5202 s32 smin_val = src_reg->s32_min_value; 5203 u32 umin_val = src_reg->u32_min_value; 5204 u32 umax_val = src_reg->u32_max_value; 5205 5206 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 5207 /* Ain't nobody got time to multiply that sign */ 5208 __mark_reg32_unbounded(dst_reg); 5209 return; 5210 } 5211 /* Both values are positive, so we can work with unsigned and 5212 * copy the result to signed (unless it exceeds S32_MAX). 5213 */ 5214 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 5215 /* Potential overflow, we know nothing */ 5216 __mark_reg32_unbounded(dst_reg); 5217 return; 5218 } 5219 dst_reg->u32_min_value *= umin_val; 5220 dst_reg->u32_max_value *= umax_val; 5221 if (dst_reg->u32_max_value > S32_MAX) { 5222 /* Overflow possible, we know nothing */ 5223 dst_reg->s32_min_value = S32_MIN; 5224 dst_reg->s32_max_value = S32_MAX; 5225 } else { 5226 dst_reg->s32_min_value = dst_reg->u32_min_value; 5227 dst_reg->s32_max_value = dst_reg->u32_max_value; 5228 } 5229 } 5230 5231 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 5232 struct bpf_reg_state *src_reg) 5233 { 5234 s64 smin_val = src_reg->smin_value; 5235 u64 umin_val = src_reg->umin_value; 5236 u64 umax_val = src_reg->umax_value; 5237 5238 if (smin_val < 0 || dst_reg->smin_value < 0) { 5239 /* Ain't nobody got time to multiply that sign */ 5240 __mark_reg64_unbounded(dst_reg); 5241 return; 5242 } 5243 /* Both values are positive, so we can work with unsigned and 5244 * copy the result to signed (unless it exceeds S64_MAX). 5245 */ 5246 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 5247 /* Potential overflow, we know nothing */ 5248 __mark_reg64_unbounded(dst_reg); 5249 return; 5250 } 5251 dst_reg->umin_value *= umin_val; 5252 dst_reg->umax_value *= umax_val; 5253 if (dst_reg->umax_value > S64_MAX) { 5254 /* Overflow possible, we know nothing */ 5255 dst_reg->smin_value = S64_MIN; 5256 dst_reg->smax_value = S64_MAX; 5257 } else { 5258 dst_reg->smin_value = dst_reg->umin_value; 5259 dst_reg->smax_value = dst_reg->umax_value; 5260 } 5261 } 5262 5263 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 5264 struct bpf_reg_state *src_reg) 5265 { 5266 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5267 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5268 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5269 s32 smin_val = src_reg->s32_min_value; 5270 u32 umax_val = src_reg->u32_max_value; 5271 5272 /* Assuming scalar64_min_max_and will be called so its safe 5273 * to skip updating register for known 32-bit case. 5274 */ 5275 if (src_known && dst_known) 5276 return; 5277 5278 /* We get our minimum from the var_off, since that's inherently 5279 * bitwise. Our maximum is the minimum of the operands' maxima. 5280 */ 5281 dst_reg->u32_min_value = var32_off.value; 5282 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 5283 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5284 /* Lose signed bounds when ANDing negative numbers, 5285 * ain't nobody got time for that. 5286 */ 5287 dst_reg->s32_min_value = S32_MIN; 5288 dst_reg->s32_max_value = S32_MAX; 5289 } else { 5290 /* ANDing two positives gives a positive, so safe to 5291 * cast result into s64. 5292 */ 5293 dst_reg->s32_min_value = dst_reg->u32_min_value; 5294 dst_reg->s32_max_value = dst_reg->u32_max_value; 5295 } 5296 5297 } 5298 5299 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 5300 struct bpf_reg_state *src_reg) 5301 { 5302 bool src_known = tnum_is_const(src_reg->var_off); 5303 bool dst_known = tnum_is_const(dst_reg->var_off); 5304 s64 smin_val = src_reg->smin_value; 5305 u64 umax_val = src_reg->umax_value; 5306 5307 if (src_known && dst_known) { 5308 __mark_reg_known(dst_reg, dst_reg->var_off.value & 5309 src_reg->var_off.value); 5310 return; 5311 } 5312 5313 /* We get our minimum from the var_off, since that's inherently 5314 * bitwise. Our maximum is the minimum of the operands' maxima. 5315 */ 5316 dst_reg->umin_value = dst_reg->var_off.value; 5317 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 5318 if (dst_reg->smin_value < 0 || smin_val < 0) { 5319 /* Lose signed bounds when ANDing negative numbers, 5320 * ain't nobody got time for that. 5321 */ 5322 dst_reg->smin_value = S64_MIN; 5323 dst_reg->smax_value = S64_MAX; 5324 } else { 5325 /* ANDing two positives gives a positive, so safe to 5326 * cast result into s64. 5327 */ 5328 dst_reg->smin_value = dst_reg->umin_value; 5329 dst_reg->smax_value = dst_reg->umax_value; 5330 } 5331 /* We may learn something more from the var_off */ 5332 __update_reg_bounds(dst_reg); 5333 } 5334 5335 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 5336 struct bpf_reg_state *src_reg) 5337 { 5338 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5339 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5340 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5341 s32 smin_val = src_reg->smin_value; 5342 u32 umin_val = src_reg->umin_value; 5343 5344 /* Assuming scalar64_min_max_or will be called so it is safe 5345 * to skip updating register for known case. 5346 */ 5347 if (src_known && dst_known) 5348 return; 5349 5350 /* We get our maximum from the var_off, and our minimum is the 5351 * maximum of the operands' minima 5352 */ 5353 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 5354 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 5355 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5356 /* Lose signed bounds when ORing negative numbers, 5357 * ain't nobody got time for that. 5358 */ 5359 dst_reg->s32_min_value = S32_MIN; 5360 dst_reg->s32_max_value = S32_MAX; 5361 } else { 5362 /* ORing two positives gives a positive, so safe to 5363 * cast result into s64. 5364 */ 5365 dst_reg->s32_min_value = dst_reg->umin_value; 5366 dst_reg->s32_max_value = dst_reg->umax_value; 5367 } 5368 } 5369 5370 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 5371 struct bpf_reg_state *src_reg) 5372 { 5373 bool src_known = tnum_is_const(src_reg->var_off); 5374 bool dst_known = tnum_is_const(dst_reg->var_off); 5375 s64 smin_val = src_reg->smin_value; 5376 u64 umin_val = src_reg->umin_value; 5377 5378 if (src_known && dst_known) { 5379 __mark_reg_known(dst_reg, dst_reg->var_off.value | 5380 src_reg->var_off.value); 5381 return; 5382 } 5383 5384 /* We get our maximum from the var_off, and our minimum is the 5385 * maximum of the operands' minima 5386 */ 5387 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 5388 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 5389 if (dst_reg->smin_value < 0 || smin_val < 0) { 5390 /* Lose signed bounds when ORing negative numbers, 5391 * ain't nobody got time for that. 5392 */ 5393 dst_reg->smin_value = S64_MIN; 5394 dst_reg->smax_value = S64_MAX; 5395 } else { 5396 /* ORing two positives gives a positive, so safe to 5397 * cast result into s64. 5398 */ 5399 dst_reg->smin_value = dst_reg->umin_value; 5400 dst_reg->smax_value = dst_reg->umax_value; 5401 } 5402 /* We may learn something more from the var_off */ 5403 __update_reg_bounds(dst_reg); 5404 } 5405 5406 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5407 u64 umin_val, u64 umax_val) 5408 { 5409 /* We lose all sign bit information (except what we can pick 5410 * up from var_off) 5411 */ 5412 dst_reg->s32_min_value = S32_MIN; 5413 dst_reg->s32_max_value = S32_MAX; 5414 /* If we might shift our top bit out, then we know nothing */ 5415 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 5416 dst_reg->u32_min_value = 0; 5417 dst_reg->u32_max_value = U32_MAX; 5418 } else { 5419 dst_reg->u32_min_value <<= umin_val; 5420 dst_reg->u32_max_value <<= umax_val; 5421 } 5422 } 5423 5424 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5425 struct bpf_reg_state *src_reg) 5426 { 5427 u32 umax_val = src_reg->u32_max_value; 5428 u32 umin_val = src_reg->u32_min_value; 5429 /* u32 alu operation will zext upper bits */ 5430 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5431 5432 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5433 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 5434 /* Not required but being careful mark reg64 bounds as unknown so 5435 * that we are forced to pick them up from tnum and zext later and 5436 * if some path skips this step we are still safe. 5437 */ 5438 __mark_reg64_unbounded(dst_reg); 5439 __update_reg32_bounds(dst_reg); 5440 } 5441 5442 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 5443 u64 umin_val, u64 umax_val) 5444 { 5445 /* Special case <<32 because it is a common compiler pattern to sign 5446 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 5447 * positive we know this shift will also be positive so we can track 5448 * bounds correctly. Otherwise we lose all sign bit information except 5449 * what we can pick up from var_off. Perhaps we can generalize this 5450 * later to shifts of any length. 5451 */ 5452 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 5453 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 5454 else 5455 dst_reg->smax_value = S64_MAX; 5456 5457 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 5458 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 5459 else 5460 dst_reg->smin_value = S64_MIN; 5461 5462 /* If we might shift our top bit out, then we know nothing */ 5463 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 5464 dst_reg->umin_value = 0; 5465 dst_reg->umax_value = U64_MAX; 5466 } else { 5467 dst_reg->umin_value <<= umin_val; 5468 dst_reg->umax_value <<= umax_val; 5469 } 5470 } 5471 5472 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 5473 struct bpf_reg_state *src_reg) 5474 { 5475 u64 umax_val = src_reg->umax_value; 5476 u64 umin_val = src_reg->umin_value; 5477 5478 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 5479 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 5480 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5481 5482 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 5483 /* We may learn something more from the var_off */ 5484 __update_reg_bounds(dst_reg); 5485 } 5486 5487 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 5488 struct bpf_reg_state *src_reg) 5489 { 5490 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5491 u32 umax_val = src_reg->u32_max_value; 5492 u32 umin_val = src_reg->u32_min_value; 5493 5494 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5495 * be negative, then either: 5496 * 1) src_reg might be zero, so the sign bit of the result is 5497 * unknown, so we lose our signed bounds 5498 * 2) it's known negative, thus the unsigned bounds capture the 5499 * signed bounds 5500 * 3) the signed bounds cross zero, so they tell us nothing 5501 * about the result 5502 * If the value in dst_reg is known nonnegative, then again the 5503 * unsigned bounts capture the signed bounds. 5504 * Thus, in all cases it suffices to blow away our signed bounds 5505 * and rely on inferring new ones from the unsigned bounds and 5506 * var_off of the result. 5507 */ 5508 dst_reg->s32_min_value = S32_MIN; 5509 dst_reg->s32_max_value = S32_MAX; 5510 5511 dst_reg->var_off = tnum_rshift(subreg, umin_val); 5512 dst_reg->u32_min_value >>= umax_val; 5513 dst_reg->u32_max_value >>= umin_val; 5514 5515 __mark_reg64_unbounded(dst_reg); 5516 __update_reg32_bounds(dst_reg); 5517 } 5518 5519 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 5520 struct bpf_reg_state *src_reg) 5521 { 5522 u64 umax_val = src_reg->umax_value; 5523 u64 umin_val = src_reg->umin_value; 5524 5525 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5526 * be negative, then either: 5527 * 1) src_reg might be zero, so the sign bit of the result is 5528 * unknown, so we lose our signed bounds 5529 * 2) it's known negative, thus the unsigned bounds capture the 5530 * signed bounds 5531 * 3) the signed bounds cross zero, so they tell us nothing 5532 * about the result 5533 * If the value in dst_reg is known nonnegative, then again the 5534 * unsigned bounts capture the signed bounds. 5535 * Thus, in all cases it suffices to blow away our signed bounds 5536 * and rely on inferring new ones from the unsigned bounds and 5537 * var_off of the result. 5538 */ 5539 dst_reg->smin_value = S64_MIN; 5540 dst_reg->smax_value = S64_MAX; 5541 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 5542 dst_reg->umin_value >>= umax_val; 5543 dst_reg->umax_value >>= umin_val; 5544 5545 /* Its not easy to operate on alu32 bounds here because it depends 5546 * on bits being shifted in. Take easy way out and mark unbounded 5547 * so we can recalculate later from tnum. 5548 */ 5549 __mark_reg32_unbounded(dst_reg); 5550 __update_reg_bounds(dst_reg); 5551 } 5552 5553 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 5554 struct bpf_reg_state *src_reg) 5555 { 5556 u64 umin_val = src_reg->u32_min_value; 5557 5558 /* Upon reaching here, src_known is true and 5559 * umax_val is equal to umin_val. 5560 */ 5561 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 5562 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 5563 5564 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 5565 5566 /* blow away the dst_reg umin_value/umax_value and rely on 5567 * dst_reg var_off to refine the result. 5568 */ 5569 dst_reg->u32_min_value = 0; 5570 dst_reg->u32_max_value = U32_MAX; 5571 5572 __mark_reg64_unbounded(dst_reg); 5573 __update_reg32_bounds(dst_reg); 5574 } 5575 5576 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 5577 struct bpf_reg_state *src_reg) 5578 { 5579 u64 umin_val = src_reg->umin_value; 5580 5581 /* Upon reaching here, src_known is true and umax_val is equal 5582 * to umin_val. 5583 */ 5584 dst_reg->smin_value >>= umin_val; 5585 dst_reg->smax_value >>= umin_val; 5586 5587 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 5588 5589 /* blow away the dst_reg umin_value/umax_value and rely on 5590 * dst_reg var_off to refine the result. 5591 */ 5592 dst_reg->umin_value = 0; 5593 dst_reg->umax_value = U64_MAX; 5594 5595 /* Its not easy to operate on alu32 bounds here because it depends 5596 * on bits being shifted in from upper 32-bits. Take easy way out 5597 * and mark unbounded so we can recalculate later from tnum. 5598 */ 5599 __mark_reg32_unbounded(dst_reg); 5600 __update_reg_bounds(dst_reg); 5601 } 5602 5603 /* WARNING: This function does calculations on 64-bit values, but the actual 5604 * execution may occur on 32-bit values. Therefore, things like bitshifts 5605 * need extra checks in the 32-bit case. 5606 */ 5607 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 5608 struct bpf_insn *insn, 5609 struct bpf_reg_state *dst_reg, 5610 struct bpf_reg_state src_reg) 5611 { 5612 struct bpf_reg_state *regs = cur_regs(env); 5613 u8 opcode = BPF_OP(insn->code); 5614 bool src_known, dst_known; 5615 s64 smin_val, smax_val; 5616 u64 umin_val, umax_val; 5617 s32 s32_min_val, s32_max_val; 5618 u32 u32_min_val, u32_max_val; 5619 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 5620 u32 dst = insn->dst_reg; 5621 int ret; 5622 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 5623 5624 smin_val = src_reg.smin_value; 5625 smax_val = src_reg.smax_value; 5626 umin_val = src_reg.umin_value; 5627 umax_val = src_reg.umax_value; 5628 5629 s32_min_val = src_reg.s32_min_value; 5630 s32_max_val = src_reg.s32_max_value; 5631 u32_min_val = src_reg.u32_min_value; 5632 u32_max_val = src_reg.u32_max_value; 5633 5634 if (alu32) { 5635 src_known = tnum_subreg_is_const(src_reg.var_off); 5636 dst_known = tnum_subreg_is_const(dst_reg->var_off); 5637 if ((src_known && 5638 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 5639 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 5640 /* Taint dst register if offset had invalid bounds 5641 * derived from e.g. dead branches. 5642 */ 5643 __mark_reg_unknown(env, dst_reg); 5644 return 0; 5645 } 5646 } else { 5647 src_known = tnum_is_const(src_reg.var_off); 5648 dst_known = tnum_is_const(dst_reg->var_off); 5649 if ((src_known && 5650 (smin_val != smax_val || umin_val != umax_val)) || 5651 smin_val > smax_val || umin_val > umax_val) { 5652 /* Taint dst register if offset had invalid bounds 5653 * derived from e.g. dead branches. 5654 */ 5655 __mark_reg_unknown(env, dst_reg); 5656 return 0; 5657 } 5658 } 5659 5660 if (!src_known && 5661 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 5662 __mark_reg_unknown(env, dst_reg); 5663 return 0; 5664 } 5665 5666 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 5667 * There are two classes of instructions: The first class we track both 5668 * alu32 and alu64 sign/unsigned bounds independently this provides the 5669 * greatest amount of precision when alu operations are mixed with jmp32 5670 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 5671 * and BPF_OR. This is possible because these ops have fairly easy to 5672 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 5673 * See alu32 verifier tests for examples. The second class of 5674 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 5675 * with regards to tracking sign/unsigned bounds because the bits may 5676 * cross subreg boundaries in the alu64 case. When this happens we mark 5677 * the reg unbounded in the subreg bound space and use the resulting 5678 * tnum to calculate an approximation of the sign/unsigned bounds. 5679 */ 5680 switch (opcode) { 5681 case BPF_ADD: 5682 ret = sanitize_val_alu(env, insn); 5683 if (ret < 0) { 5684 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 5685 return ret; 5686 } 5687 scalar32_min_max_add(dst_reg, &src_reg); 5688 scalar_min_max_add(dst_reg, &src_reg); 5689 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 5690 break; 5691 case BPF_SUB: 5692 ret = sanitize_val_alu(env, insn); 5693 if (ret < 0) { 5694 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 5695 return ret; 5696 } 5697 scalar32_min_max_sub(dst_reg, &src_reg); 5698 scalar_min_max_sub(dst_reg, &src_reg); 5699 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 5700 break; 5701 case BPF_MUL: 5702 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 5703 scalar32_min_max_mul(dst_reg, &src_reg); 5704 scalar_min_max_mul(dst_reg, &src_reg); 5705 break; 5706 case BPF_AND: 5707 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 5708 scalar32_min_max_and(dst_reg, &src_reg); 5709 scalar_min_max_and(dst_reg, &src_reg); 5710 break; 5711 case BPF_OR: 5712 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 5713 scalar32_min_max_or(dst_reg, &src_reg); 5714 scalar_min_max_or(dst_reg, &src_reg); 5715 break; 5716 case BPF_LSH: 5717 if (umax_val >= insn_bitness) { 5718 /* Shifts greater than 31 or 63 are undefined. 5719 * This includes shifts by a negative number. 5720 */ 5721 mark_reg_unknown(env, regs, insn->dst_reg); 5722 break; 5723 } 5724 if (alu32) 5725 scalar32_min_max_lsh(dst_reg, &src_reg); 5726 else 5727 scalar_min_max_lsh(dst_reg, &src_reg); 5728 break; 5729 case BPF_RSH: 5730 if (umax_val >= insn_bitness) { 5731 /* Shifts greater than 31 or 63 are undefined. 5732 * This includes shifts by a negative number. 5733 */ 5734 mark_reg_unknown(env, regs, insn->dst_reg); 5735 break; 5736 } 5737 if (alu32) 5738 scalar32_min_max_rsh(dst_reg, &src_reg); 5739 else 5740 scalar_min_max_rsh(dst_reg, &src_reg); 5741 break; 5742 case BPF_ARSH: 5743 if (umax_val >= insn_bitness) { 5744 /* Shifts greater than 31 or 63 are undefined. 5745 * This includes shifts by a negative number. 5746 */ 5747 mark_reg_unknown(env, regs, insn->dst_reg); 5748 break; 5749 } 5750 if (alu32) 5751 scalar32_min_max_arsh(dst_reg, &src_reg); 5752 else 5753 scalar_min_max_arsh(dst_reg, &src_reg); 5754 break; 5755 default: 5756 mark_reg_unknown(env, regs, insn->dst_reg); 5757 break; 5758 } 5759 5760 /* ALU32 ops are zero extended into 64bit register */ 5761 if (alu32) 5762 zext_32_to_64(dst_reg); 5763 5764 __update_reg_bounds(dst_reg); 5765 __reg_deduce_bounds(dst_reg); 5766 __reg_bound_offset(dst_reg); 5767 return 0; 5768 } 5769 5770 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 5771 * and var_off. 5772 */ 5773 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 5774 struct bpf_insn *insn) 5775 { 5776 struct bpf_verifier_state *vstate = env->cur_state; 5777 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5778 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 5779 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 5780 u8 opcode = BPF_OP(insn->code); 5781 int err; 5782 5783 dst_reg = ®s[insn->dst_reg]; 5784 src_reg = NULL; 5785 if (dst_reg->type != SCALAR_VALUE) 5786 ptr_reg = dst_reg; 5787 if (BPF_SRC(insn->code) == BPF_X) { 5788 src_reg = ®s[insn->src_reg]; 5789 if (src_reg->type != SCALAR_VALUE) { 5790 if (dst_reg->type != SCALAR_VALUE) { 5791 /* Combining two pointers by any ALU op yields 5792 * an arbitrary scalar. Disallow all math except 5793 * pointer subtraction 5794 */ 5795 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5796 mark_reg_unknown(env, regs, insn->dst_reg); 5797 return 0; 5798 } 5799 verbose(env, "R%d pointer %s pointer prohibited\n", 5800 insn->dst_reg, 5801 bpf_alu_string[opcode >> 4]); 5802 return -EACCES; 5803 } else { 5804 /* scalar += pointer 5805 * This is legal, but we have to reverse our 5806 * src/dest handling in computing the range 5807 */ 5808 err = mark_chain_precision(env, insn->dst_reg); 5809 if (err) 5810 return err; 5811 return adjust_ptr_min_max_vals(env, insn, 5812 src_reg, dst_reg); 5813 } 5814 } else if (ptr_reg) { 5815 /* pointer += scalar */ 5816 err = mark_chain_precision(env, insn->src_reg); 5817 if (err) 5818 return err; 5819 return adjust_ptr_min_max_vals(env, insn, 5820 dst_reg, src_reg); 5821 } 5822 } else { 5823 /* Pretend the src is a reg with a known value, since we only 5824 * need to be able to read from this state. 5825 */ 5826 off_reg.type = SCALAR_VALUE; 5827 __mark_reg_known(&off_reg, insn->imm); 5828 src_reg = &off_reg; 5829 if (ptr_reg) /* pointer += K */ 5830 return adjust_ptr_min_max_vals(env, insn, 5831 ptr_reg, src_reg); 5832 } 5833 5834 /* Got here implies adding two SCALAR_VALUEs */ 5835 if (WARN_ON_ONCE(ptr_reg)) { 5836 print_verifier_state(env, state); 5837 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 5838 return -EINVAL; 5839 } 5840 if (WARN_ON(!src_reg)) { 5841 print_verifier_state(env, state); 5842 verbose(env, "verifier internal error: no src_reg\n"); 5843 return -EINVAL; 5844 } 5845 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 5846 } 5847 5848 /* check validity of 32-bit and 64-bit arithmetic operations */ 5849 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 5850 { 5851 struct bpf_reg_state *regs = cur_regs(env); 5852 u8 opcode = BPF_OP(insn->code); 5853 int err; 5854 5855 if (opcode == BPF_END || opcode == BPF_NEG) { 5856 if (opcode == BPF_NEG) { 5857 if (BPF_SRC(insn->code) != 0 || 5858 insn->src_reg != BPF_REG_0 || 5859 insn->off != 0 || insn->imm != 0) { 5860 verbose(env, "BPF_NEG uses reserved fields\n"); 5861 return -EINVAL; 5862 } 5863 } else { 5864 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 5865 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 5866 BPF_CLASS(insn->code) == BPF_ALU64) { 5867 verbose(env, "BPF_END uses reserved fields\n"); 5868 return -EINVAL; 5869 } 5870 } 5871 5872 /* check src operand */ 5873 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5874 if (err) 5875 return err; 5876 5877 if (is_pointer_value(env, insn->dst_reg)) { 5878 verbose(env, "R%d pointer arithmetic prohibited\n", 5879 insn->dst_reg); 5880 return -EACCES; 5881 } 5882 5883 /* check dest operand */ 5884 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5885 if (err) 5886 return err; 5887 5888 } else if (opcode == BPF_MOV) { 5889 5890 if (BPF_SRC(insn->code) == BPF_X) { 5891 if (insn->imm != 0 || insn->off != 0) { 5892 verbose(env, "BPF_MOV uses reserved fields\n"); 5893 return -EINVAL; 5894 } 5895 5896 /* check src operand */ 5897 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5898 if (err) 5899 return err; 5900 } else { 5901 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5902 verbose(env, "BPF_MOV uses reserved fields\n"); 5903 return -EINVAL; 5904 } 5905 } 5906 5907 /* check dest operand, mark as required later */ 5908 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5909 if (err) 5910 return err; 5911 5912 if (BPF_SRC(insn->code) == BPF_X) { 5913 struct bpf_reg_state *src_reg = regs + insn->src_reg; 5914 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 5915 5916 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5917 /* case: R1 = R2 5918 * copy register state to dest reg 5919 */ 5920 *dst_reg = *src_reg; 5921 dst_reg->live |= REG_LIVE_WRITTEN; 5922 dst_reg->subreg_def = DEF_NOT_SUBREG; 5923 } else { 5924 /* R1 = (u32) R2 */ 5925 if (is_pointer_value(env, insn->src_reg)) { 5926 verbose(env, 5927 "R%d partial copy of pointer\n", 5928 insn->src_reg); 5929 return -EACCES; 5930 } else if (src_reg->type == SCALAR_VALUE) { 5931 *dst_reg = *src_reg; 5932 dst_reg->live |= REG_LIVE_WRITTEN; 5933 dst_reg->subreg_def = env->insn_idx + 1; 5934 } else { 5935 mark_reg_unknown(env, regs, 5936 insn->dst_reg); 5937 } 5938 zext_32_to_64(dst_reg); 5939 } 5940 } else { 5941 /* case: R = imm 5942 * remember the value we stored into this reg 5943 */ 5944 /* clear any state __mark_reg_known doesn't set */ 5945 mark_reg_unknown(env, regs, insn->dst_reg); 5946 regs[insn->dst_reg].type = SCALAR_VALUE; 5947 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5948 __mark_reg_known(regs + insn->dst_reg, 5949 insn->imm); 5950 } else { 5951 __mark_reg_known(regs + insn->dst_reg, 5952 (u32)insn->imm); 5953 } 5954 } 5955 5956 } else if (opcode > BPF_END) { 5957 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 5958 return -EINVAL; 5959 5960 } else { /* all other ALU ops: and, sub, xor, add, ... */ 5961 5962 if (BPF_SRC(insn->code) == BPF_X) { 5963 if (insn->imm != 0 || insn->off != 0) { 5964 verbose(env, "BPF_ALU uses reserved fields\n"); 5965 return -EINVAL; 5966 } 5967 /* check src1 operand */ 5968 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5969 if (err) 5970 return err; 5971 } else { 5972 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5973 verbose(env, "BPF_ALU uses reserved fields\n"); 5974 return -EINVAL; 5975 } 5976 } 5977 5978 /* check src2 operand */ 5979 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5980 if (err) 5981 return err; 5982 5983 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 5984 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 5985 verbose(env, "div by zero\n"); 5986 return -EINVAL; 5987 } 5988 5989 if ((opcode == BPF_LSH || opcode == BPF_RSH || 5990 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 5991 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 5992 5993 if (insn->imm < 0 || insn->imm >= size) { 5994 verbose(env, "invalid shift %d\n", insn->imm); 5995 return -EINVAL; 5996 } 5997 } 5998 5999 /* check dest operand */ 6000 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6001 if (err) 6002 return err; 6003 6004 return adjust_reg_min_max_vals(env, insn); 6005 } 6006 6007 return 0; 6008 } 6009 6010 static void __find_good_pkt_pointers(struct bpf_func_state *state, 6011 struct bpf_reg_state *dst_reg, 6012 enum bpf_reg_type type, u16 new_range) 6013 { 6014 struct bpf_reg_state *reg; 6015 int i; 6016 6017 for (i = 0; i < MAX_BPF_REG; i++) { 6018 reg = &state->regs[i]; 6019 if (reg->type == type && reg->id == dst_reg->id) 6020 /* keep the maximum range already checked */ 6021 reg->range = max(reg->range, new_range); 6022 } 6023 6024 bpf_for_each_spilled_reg(i, state, reg) { 6025 if (!reg) 6026 continue; 6027 if (reg->type == type && reg->id == dst_reg->id) 6028 reg->range = max(reg->range, new_range); 6029 } 6030 } 6031 6032 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 6033 struct bpf_reg_state *dst_reg, 6034 enum bpf_reg_type type, 6035 bool range_right_open) 6036 { 6037 u16 new_range; 6038 int i; 6039 6040 if (dst_reg->off < 0 || 6041 (dst_reg->off == 0 && range_right_open)) 6042 /* This doesn't give us any range */ 6043 return; 6044 6045 if (dst_reg->umax_value > MAX_PACKET_OFF || 6046 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 6047 /* Risk of overflow. For instance, ptr + (1<<63) may be less 6048 * than pkt_end, but that's because it's also less than pkt. 6049 */ 6050 return; 6051 6052 new_range = dst_reg->off; 6053 if (range_right_open) 6054 new_range--; 6055 6056 /* Examples for register markings: 6057 * 6058 * pkt_data in dst register: 6059 * 6060 * r2 = r3; 6061 * r2 += 8; 6062 * if (r2 > pkt_end) goto <handle exception> 6063 * <access okay> 6064 * 6065 * r2 = r3; 6066 * r2 += 8; 6067 * if (r2 < pkt_end) goto <access okay> 6068 * <handle exception> 6069 * 6070 * Where: 6071 * r2 == dst_reg, pkt_end == src_reg 6072 * r2=pkt(id=n,off=8,r=0) 6073 * r3=pkt(id=n,off=0,r=0) 6074 * 6075 * pkt_data in src register: 6076 * 6077 * r2 = r3; 6078 * r2 += 8; 6079 * if (pkt_end >= r2) goto <access okay> 6080 * <handle exception> 6081 * 6082 * r2 = r3; 6083 * r2 += 8; 6084 * if (pkt_end <= r2) goto <handle exception> 6085 * <access okay> 6086 * 6087 * Where: 6088 * pkt_end == dst_reg, r2 == src_reg 6089 * r2=pkt(id=n,off=8,r=0) 6090 * r3=pkt(id=n,off=0,r=0) 6091 * 6092 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 6093 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 6094 * and [r3, r3 + 8-1) respectively is safe to access depending on 6095 * the check. 6096 */ 6097 6098 /* If our ids match, then we must have the same max_value. And we 6099 * don't care about the other reg's fixed offset, since if it's too big 6100 * the range won't allow anything. 6101 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 6102 */ 6103 for (i = 0; i <= vstate->curframe; i++) 6104 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 6105 new_range); 6106 } 6107 6108 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 6109 { 6110 struct tnum subreg = tnum_subreg(reg->var_off); 6111 s32 sval = (s32)val; 6112 6113 switch (opcode) { 6114 case BPF_JEQ: 6115 if (tnum_is_const(subreg)) 6116 return !!tnum_equals_const(subreg, val); 6117 break; 6118 case BPF_JNE: 6119 if (tnum_is_const(subreg)) 6120 return !tnum_equals_const(subreg, val); 6121 break; 6122 case BPF_JSET: 6123 if ((~subreg.mask & subreg.value) & val) 6124 return 1; 6125 if (!((subreg.mask | subreg.value) & val)) 6126 return 0; 6127 break; 6128 case BPF_JGT: 6129 if (reg->u32_min_value > val) 6130 return 1; 6131 else if (reg->u32_max_value <= val) 6132 return 0; 6133 break; 6134 case BPF_JSGT: 6135 if (reg->s32_min_value > sval) 6136 return 1; 6137 else if (reg->s32_max_value < sval) 6138 return 0; 6139 break; 6140 case BPF_JLT: 6141 if (reg->u32_max_value < val) 6142 return 1; 6143 else if (reg->u32_min_value >= val) 6144 return 0; 6145 break; 6146 case BPF_JSLT: 6147 if (reg->s32_max_value < sval) 6148 return 1; 6149 else if (reg->s32_min_value >= sval) 6150 return 0; 6151 break; 6152 case BPF_JGE: 6153 if (reg->u32_min_value >= val) 6154 return 1; 6155 else if (reg->u32_max_value < val) 6156 return 0; 6157 break; 6158 case BPF_JSGE: 6159 if (reg->s32_min_value >= sval) 6160 return 1; 6161 else if (reg->s32_max_value < sval) 6162 return 0; 6163 break; 6164 case BPF_JLE: 6165 if (reg->u32_max_value <= val) 6166 return 1; 6167 else if (reg->u32_min_value > val) 6168 return 0; 6169 break; 6170 case BPF_JSLE: 6171 if (reg->s32_max_value <= sval) 6172 return 1; 6173 else if (reg->s32_min_value > sval) 6174 return 0; 6175 break; 6176 } 6177 6178 return -1; 6179 } 6180 6181 6182 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 6183 { 6184 s64 sval = (s64)val; 6185 6186 switch (opcode) { 6187 case BPF_JEQ: 6188 if (tnum_is_const(reg->var_off)) 6189 return !!tnum_equals_const(reg->var_off, val); 6190 break; 6191 case BPF_JNE: 6192 if (tnum_is_const(reg->var_off)) 6193 return !tnum_equals_const(reg->var_off, val); 6194 break; 6195 case BPF_JSET: 6196 if ((~reg->var_off.mask & reg->var_off.value) & val) 6197 return 1; 6198 if (!((reg->var_off.mask | reg->var_off.value) & val)) 6199 return 0; 6200 break; 6201 case BPF_JGT: 6202 if (reg->umin_value > val) 6203 return 1; 6204 else if (reg->umax_value <= val) 6205 return 0; 6206 break; 6207 case BPF_JSGT: 6208 if (reg->smin_value > sval) 6209 return 1; 6210 else if (reg->smax_value < sval) 6211 return 0; 6212 break; 6213 case BPF_JLT: 6214 if (reg->umax_value < val) 6215 return 1; 6216 else if (reg->umin_value >= val) 6217 return 0; 6218 break; 6219 case BPF_JSLT: 6220 if (reg->smax_value < sval) 6221 return 1; 6222 else if (reg->smin_value >= sval) 6223 return 0; 6224 break; 6225 case BPF_JGE: 6226 if (reg->umin_value >= val) 6227 return 1; 6228 else if (reg->umax_value < val) 6229 return 0; 6230 break; 6231 case BPF_JSGE: 6232 if (reg->smin_value >= sval) 6233 return 1; 6234 else if (reg->smax_value < sval) 6235 return 0; 6236 break; 6237 case BPF_JLE: 6238 if (reg->umax_value <= val) 6239 return 1; 6240 else if (reg->umin_value > val) 6241 return 0; 6242 break; 6243 case BPF_JSLE: 6244 if (reg->smax_value <= sval) 6245 return 1; 6246 else if (reg->smin_value > sval) 6247 return 0; 6248 break; 6249 } 6250 6251 return -1; 6252 } 6253 6254 /* compute branch direction of the expression "if (reg opcode val) goto target;" 6255 * and return: 6256 * 1 - branch will be taken and "goto target" will be executed 6257 * 0 - branch will not be taken and fall-through to next insn 6258 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 6259 * range [0,10] 6260 */ 6261 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 6262 bool is_jmp32) 6263 { 6264 if (__is_pointer_value(false, reg)) 6265 return -1; 6266 6267 if (is_jmp32) 6268 return is_branch32_taken(reg, val, opcode); 6269 return is_branch64_taken(reg, val, opcode); 6270 } 6271 6272 /* Adjusts the register min/max values in the case that the dst_reg is the 6273 * variable register that we are working on, and src_reg is a constant or we're 6274 * simply doing a BPF_K check. 6275 * In JEQ/JNE cases we also adjust the var_off values. 6276 */ 6277 static void reg_set_min_max(struct bpf_reg_state *true_reg, 6278 struct bpf_reg_state *false_reg, 6279 u64 val, u32 val32, 6280 u8 opcode, bool is_jmp32) 6281 { 6282 struct tnum false_32off = tnum_subreg(false_reg->var_off); 6283 struct tnum false_64off = false_reg->var_off; 6284 struct tnum true_32off = tnum_subreg(true_reg->var_off); 6285 struct tnum true_64off = true_reg->var_off; 6286 s64 sval = (s64)val; 6287 s32 sval32 = (s32)val32; 6288 6289 /* If the dst_reg is a pointer, we can't learn anything about its 6290 * variable offset from the compare (unless src_reg were a pointer into 6291 * the same object, but we don't bother with that. 6292 * Since false_reg and true_reg have the same type by construction, we 6293 * only need to check one of them for pointerness. 6294 */ 6295 if (__is_pointer_value(false, false_reg)) 6296 return; 6297 6298 switch (opcode) { 6299 case BPF_JEQ: 6300 case BPF_JNE: 6301 { 6302 struct bpf_reg_state *reg = 6303 opcode == BPF_JEQ ? true_reg : false_reg; 6304 6305 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 6306 * if it is true we know the value for sure. Likewise for 6307 * BPF_JNE. 6308 */ 6309 if (is_jmp32) 6310 __mark_reg32_known(reg, val32); 6311 else 6312 __mark_reg_known(reg, val); 6313 break; 6314 } 6315 case BPF_JSET: 6316 if (is_jmp32) { 6317 false_32off = tnum_and(false_32off, tnum_const(~val32)); 6318 if (is_power_of_2(val32)) 6319 true_32off = tnum_or(true_32off, 6320 tnum_const(val32)); 6321 } else { 6322 false_64off = tnum_and(false_64off, tnum_const(~val)); 6323 if (is_power_of_2(val)) 6324 true_64off = tnum_or(true_64off, 6325 tnum_const(val)); 6326 } 6327 break; 6328 case BPF_JGE: 6329 case BPF_JGT: 6330 { 6331 if (is_jmp32) { 6332 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 6333 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 6334 6335 false_reg->u32_max_value = min(false_reg->u32_max_value, 6336 false_umax); 6337 true_reg->u32_min_value = max(true_reg->u32_min_value, 6338 true_umin); 6339 } else { 6340 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 6341 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 6342 6343 false_reg->umax_value = min(false_reg->umax_value, false_umax); 6344 true_reg->umin_value = max(true_reg->umin_value, true_umin); 6345 } 6346 break; 6347 } 6348 case BPF_JSGE: 6349 case BPF_JSGT: 6350 { 6351 if (is_jmp32) { 6352 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 6353 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 6354 6355 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 6356 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 6357 } else { 6358 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 6359 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 6360 6361 false_reg->smax_value = min(false_reg->smax_value, false_smax); 6362 true_reg->smin_value = max(true_reg->smin_value, true_smin); 6363 } 6364 break; 6365 } 6366 case BPF_JLE: 6367 case BPF_JLT: 6368 { 6369 if (is_jmp32) { 6370 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 6371 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 6372 6373 false_reg->u32_min_value = max(false_reg->u32_min_value, 6374 false_umin); 6375 true_reg->u32_max_value = min(true_reg->u32_max_value, 6376 true_umax); 6377 } else { 6378 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 6379 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 6380 6381 false_reg->umin_value = max(false_reg->umin_value, false_umin); 6382 true_reg->umax_value = min(true_reg->umax_value, true_umax); 6383 } 6384 break; 6385 } 6386 case BPF_JSLE: 6387 case BPF_JSLT: 6388 { 6389 if (is_jmp32) { 6390 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 6391 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 6392 6393 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 6394 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 6395 } else { 6396 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 6397 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 6398 6399 false_reg->smin_value = max(false_reg->smin_value, false_smin); 6400 true_reg->smax_value = min(true_reg->smax_value, true_smax); 6401 } 6402 break; 6403 } 6404 default: 6405 return; 6406 } 6407 6408 if (is_jmp32) { 6409 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 6410 tnum_subreg(false_32off)); 6411 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 6412 tnum_subreg(true_32off)); 6413 __reg_combine_32_into_64(false_reg); 6414 __reg_combine_32_into_64(true_reg); 6415 } else { 6416 false_reg->var_off = false_64off; 6417 true_reg->var_off = true_64off; 6418 __reg_combine_64_into_32(false_reg); 6419 __reg_combine_64_into_32(true_reg); 6420 } 6421 } 6422 6423 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 6424 * the variable reg. 6425 */ 6426 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 6427 struct bpf_reg_state *false_reg, 6428 u64 val, u32 val32, 6429 u8 opcode, bool is_jmp32) 6430 { 6431 /* How can we transform "a <op> b" into "b <op> a"? */ 6432 static const u8 opcode_flip[16] = { 6433 /* these stay the same */ 6434 [BPF_JEQ >> 4] = BPF_JEQ, 6435 [BPF_JNE >> 4] = BPF_JNE, 6436 [BPF_JSET >> 4] = BPF_JSET, 6437 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 6438 [BPF_JGE >> 4] = BPF_JLE, 6439 [BPF_JGT >> 4] = BPF_JLT, 6440 [BPF_JLE >> 4] = BPF_JGE, 6441 [BPF_JLT >> 4] = BPF_JGT, 6442 [BPF_JSGE >> 4] = BPF_JSLE, 6443 [BPF_JSGT >> 4] = BPF_JSLT, 6444 [BPF_JSLE >> 4] = BPF_JSGE, 6445 [BPF_JSLT >> 4] = BPF_JSGT 6446 }; 6447 opcode = opcode_flip[opcode >> 4]; 6448 /* This uses zero as "not present in table"; luckily the zero opcode, 6449 * BPF_JA, can't get here. 6450 */ 6451 if (opcode) 6452 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 6453 } 6454 6455 /* Regs are known to be equal, so intersect their min/max/var_off */ 6456 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 6457 struct bpf_reg_state *dst_reg) 6458 { 6459 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 6460 dst_reg->umin_value); 6461 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 6462 dst_reg->umax_value); 6463 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 6464 dst_reg->smin_value); 6465 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 6466 dst_reg->smax_value); 6467 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 6468 dst_reg->var_off); 6469 /* We might have learned new bounds from the var_off. */ 6470 __update_reg_bounds(src_reg); 6471 __update_reg_bounds(dst_reg); 6472 /* We might have learned something about the sign bit. */ 6473 __reg_deduce_bounds(src_reg); 6474 __reg_deduce_bounds(dst_reg); 6475 /* We might have learned some bits from the bounds. */ 6476 __reg_bound_offset(src_reg); 6477 __reg_bound_offset(dst_reg); 6478 /* Intersecting with the old var_off might have improved our bounds 6479 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 6480 * then new var_off is (0; 0x7f...fc) which improves our umax. 6481 */ 6482 __update_reg_bounds(src_reg); 6483 __update_reg_bounds(dst_reg); 6484 } 6485 6486 static void reg_combine_min_max(struct bpf_reg_state *true_src, 6487 struct bpf_reg_state *true_dst, 6488 struct bpf_reg_state *false_src, 6489 struct bpf_reg_state *false_dst, 6490 u8 opcode) 6491 { 6492 switch (opcode) { 6493 case BPF_JEQ: 6494 __reg_combine_min_max(true_src, true_dst); 6495 break; 6496 case BPF_JNE: 6497 __reg_combine_min_max(false_src, false_dst); 6498 break; 6499 } 6500 } 6501 6502 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 6503 struct bpf_reg_state *reg, u32 id, 6504 bool is_null) 6505 { 6506 if (reg_type_may_be_null(reg->type) && reg->id == id) { 6507 /* Old offset (both fixed and variable parts) should 6508 * have been known-zero, because we don't allow pointer 6509 * arithmetic on pointers that might be NULL. 6510 */ 6511 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 6512 !tnum_equals_const(reg->var_off, 0) || 6513 reg->off)) { 6514 __mark_reg_known_zero(reg); 6515 reg->off = 0; 6516 } 6517 if (is_null) { 6518 reg->type = SCALAR_VALUE; 6519 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 6520 if (reg->map_ptr->inner_map_meta) { 6521 reg->type = CONST_PTR_TO_MAP; 6522 reg->map_ptr = reg->map_ptr->inner_map_meta; 6523 } else if (reg->map_ptr->map_type == 6524 BPF_MAP_TYPE_XSKMAP) { 6525 reg->type = PTR_TO_XDP_SOCK; 6526 } else { 6527 reg->type = PTR_TO_MAP_VALUE; 6528 } 6529 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 6530 reg->type = PTR_TO_SOCKET; 6531 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 6532 reg->type = PTR_TO_SOCK_COMMON; 6533 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 6534 reg->type = PTR_TO_TCP_SOCK; 6535 } 6536 if (is_null) { 6537 /* We don't need id and ref_obj_id from this point 6538 * onwards anymore, thus we should better reset it, 6539 * so that state pruning has chances to take effect. 6540 */ 6541 reg->id = 0; 6542 reg->ref_obj_id = 0; 6543 } else if (!reg_may_point_to_spin_lock(reg)) { 6544 /* For not-NULL ptr, reg->ref_obj_id will be reset 6545 * in release_reg_references(). 6546 * 6547 * reg->id is still used by spin_lock ptr. Other 6548 * than spin_lock ptr type, reg->id can be reset. 6549 */ 6550 reg->id = 0; 6551 } 6552 } 6553 } 6554 6555 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 6556 bool is_null) 6557 { 6558 struct bpf_reg_state *reg; 6559 int i; 6560 6561 for (i = 0; i < MAX_BPF_REG; i++) 6562 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 6563 6564 bpf_for_each_spilled_reg(i, state, reg) { 6565 if (!reg) 6566 continue; 6567 mark_ptr_or_null_reg(state, reg, id, is_null); 6568 } 6569 } 6570 6571 /* The logic is similar to find_good_pkt_pointers(), both could eventually 6572 * be folded together at some point. 6573 */ 6574 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 6575 bool is_null) 6576 { 6577 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6578 struct bpf_reg_state *regs = state->regs; 6579 u32 ref_obj_id = regs[regno].ref_obj_id; 6580 u32 id = regs[regno].id; 6581 int i; 6582 6583 if (ref_obj_id && ref_obj_id == id && is_null) 6584 /* regs[regno] is in the " == NULL" branch. 6585 * No one could have freed the reference state before 6586 * doing the NULL check. 6587 */ 6588 WARN_ON_ONCE(release_reference_state(state, id)); 6589 6590 for (i = 0; i <= vstate->curframe; i++) 6591 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 6592 } 6593 6594 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 6595 struct bpf_reg_state *dst_reg, 6596 struct bpf_reg_state *src_reg, 6597 struct bpf_verifier_state *this_branch, 6598 struct bpf_verifier_state *other_branch) 6599 { 6600 if (BPF_SRC(insn->code) != BPF_X) 6601 return false; 6602 6603 /* Pointers are always 64-bit. */ 6604 if (BPF_CLASS(insn->code) == BPF_JMP32) 6605 return false; 6606 6607 switch (BPF_OP(insn->code)) { 6608 case BPF_JGT: 6609 if ((dst_reg->type == PTR_TO_PACKET && 6610 src_reg->type == PTR_TO_PACKET_END) || 6611 (dst_reg->type == PTR_TO_PACKET_META && 6612 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6613 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 6614 find_good_pkt_pointers(this_branch, dst_reg, 6615 dst_reg->type, false); 6616 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6617 src_reg->type == PTR_TO_PACKET) || 6618 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6619 src_reg->type == PTR_TO_PACKET_META)) { 6620 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 6621 find_good_pkt_pointers(other_branch, src_reg, 6622 src_reg->type, true); 6623 } else { 6624 return false; 6625 } 6626 break; 6627 case BPF_JLT: 6628 if ((dst_reg->type == PTR_TO_PACKET && 6629 src_reg->type == PTR_TO_PACKET_END) || 6630 (dst_reg->type == PTR_TO_PACKET_META && 6631 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6632 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 6633 find_good_pkt_pointers(other_branch, dst_reg, 6634 dst_reg->type, true); 6635 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6636 src_reg->type == PTR_TO_PACKET) || 6637 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6638 src_reg->type == PTR_TO_PACKET_META)) { 6639 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 6640 find_good_pkt_pointers(this_branch, src_reg, 6641 src_reg->type, false); 6642 } else { 6643 return false; 6644 } 6645 break; 6646 case BPF_JGE: 6647 if ((dst_reg->type == PTR_TO_PACKET && 6648 src_reg->type == PTR_TO_PACKET_END) || 6649 (dst_reg->type == PTR_TO_PACKET_META && 6650 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6651 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 6652 find_good_pkt_pointers(this_branch, dst_reg, 6653 dst_reg->type, true); 6654 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6655 src_reg->type == PTR_TO_PACKET) || 6656 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6657 src_reg->type == PTR_TO_PACKET_META)) { 6658 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 6659 find_good_pkt_pointers(other_branch, src_reg, 6660 src_reg->type, false); 6661 } else { 6662 return false; 6663 } 6664 break; 6665 case BPF_JLE: 6666 if ((dst_reg->type == PTR_TO_PACKET && 6667 src_reg->type == PTR_TO_PACKET_END) || 6668 (dst_reg->type == PTR_TO_PACKET_META && 6669 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6670 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 6671 find_good_pkt_pointers(other_branch, dst_reg, 6672 dst_reg->type, false); 6673 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6674 src_reg->type == PTR_TO_PACKET) || 6675 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6676 src_reg->type == PTR_TO_PACKET_META)) { 6677 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 6678 find_good_pkt_pointers(this_branch, src_reg, 6679 src_reg->type, true); 6680 } else { 6681 return false; 6682 } 6683 break; 6684 default: 6685 return false; 6686 } 6687 6688 return true; 6689 } 6690 6691 static int check_cond_jmp_op(struct bpf_verifier_env *env, 6692 struct bpf_insn *insn, int *insn_idx) 6693 { 6694 struct bpf_verifier_state *this_branch = env->cur_state; 6695 struct bpf_verifier_state *other_branch; 6696 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 6697 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 6698 u8 opcode = BPF_OP(insn->code); 6699 bool is_jmp32; 6700 int pred = -1; 6701 int err; 6702 6703 /* Only conditional jumps are expected to reach here. */ 6704 if (opcode == BPF_JA || opcode > BPF_JSLE) { 6705 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 6706 return -EINVAL; 6707 } 6708 6709 if (BPF_SRC(insn->code) == BPF_X) { 6710 if (insn->imm != 0) { 6711 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6712 return -EINVAL; 6713 } 6714 6715 /* check src1 operand */ 6716 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6717 if (err) 6718 return err; 6719 6720 if (is_pointer_value(env, insn->src_reg)) { 6721 verbose(env, "R%d pointer comparison prohibited\n", 6722 insn->src_reg); 6723 return -EACCES; 6724 } 6725 src_reg = ®s[insn->src_reg]; 6726 } else { 6727 if (insn->src_reg != BPF_REG_0) { 6728 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6729 return -EINVAL; 6730 } 6731 } 6732 6733 /* check src2 operand */ 6734 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6735 if (err) 6736 return err; 6737 6738 dst_reg = ®s[insn->dst_reg]; 6739 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 6740 6741 if (BPF_SRC(insn->code) == BPF_K) { 6742 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 6743 } else if (src_reg->type == SCALAR_VALUE && 6744 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 6745 pred = is_branch_taken(dst_reg, 6746 tnum_subreg(src_reg->var_off).value, 6747 opcode, 6748 is_jmp32); 6749 } else if (src_reg->type == SCALAR_VALUE && 6750 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 6751 pred = is_branch_taken(dst_reg, 6752 src_reg->var_off.value, 6753 opcode, 6754 is_jmp32); 6755 } 6756 6757 if (pred >= 0) { 6758 err = mark_chain_precision(env, insn->dst_reg); 6759 if (BPF_SRC(insn->code) == BPF_X && !err) 6760 err = mark_chain_precision(env, insn->src_reg); 6761 if (err) 6762 return err; 6763 } 6764 if (pred == 1) { 6765 /* only follow the goto, ignore fall-through */ 6766 *insn_idx += insn->off; 6767 return 0; 6768 } else if (pred == 0) { 6769 /* only follow fall-through branch, since 6770 * that's where the program will go 6771 */ 6772 return 0; 6773 } 6774 6775 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 6776 false); 6777 if (!other_branch) 6778 return -EFAULT; 6779 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 6780 6781 /* detect if we are comparing against a constant value so we can adjust 6782 * our min/max values for our dst register. 6783 * this is only legit if both are scalars (or pointers to the same 6784 * object, I suppose, but we don't support that right now), because 6785 * otherwise the different base pointers mean the offsets aren't 6786 * comparable. 6787 */ 6788 if (BPF_SRC(insn->code) == BPF_X) { 6789 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 6790 6791 if (dst_reg->type == SCALAR_VALUE && 6792 src_reg->type == SCALAR_VALUE) { 6793 if (tnum_is_const(src_reg->var_off) || 6794 (is_jmp32 && 6795 tnum_is_const(tnum_subreg(src_reg->var_off)))) 6796 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6797 dst_reg, 6798 src_reg->var_off.value, 6799 tnum_subreg(src_reg->var_off).value, 6800 opcode, is_jmp32); 6801 else if (tnum_is_const(dst_reg->var_off) || 6802 (is_jmp32 && 6803 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 6804 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 6805 src_reg, 6806 dst_reg->var_off.value, 6807 tnum_subreg(dst_reg->var_off).value, 6808 opcode, is_jmp32); 6809 else if (!is_jmp32 && 6810 (opcode == BPF_JEQ || opcode == BPF_JNE)) 6811 /* Comparing for equality, we can combine knowledge */ 6812 reg_combine_min_max(&other_branch_regs[insn->src_reg], 6813 &other_branch_regs[insn->dst_reg], 6814 src_reg, dst_reg, opcode); 6815 } 6816 } else if (dst_reg->type == SCALAR_VALUE) { 6817 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6818 dst_reg, insn->imm, (u32)insn->imm, 6819 opcode, is_jmp32); 6820 } 6821 6822 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 6823 * NOTE: these optimizations below are related with pointer comparison 6824 * which will never be JMP32. 6825 */ 6826 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 6827 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 6828 reg_type_may_be_null(dst_reg->type)) { 6829 /* Mark all identical registers in each branch as either 6830 * safe or unknown depending R == 0 or R != 0 conditional. 6831 */ 6832 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 6833 opcode == BPF_JNE); 6834 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 6835 opcode == BPF_JEQ); 6836 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 6837 this_branch, other_branch) && 6838 is_pointer_value(env, insn->dst_reg)) { 6839 verbose(env, "R%d pointer comparison prohibited\n", 6840 insn->dst_reg); 6841 return -EACCES; 6842 } 6843 if (env->log.level & BPF_LOG_LEVEL) 6844 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 6845 return 0; 6846 } 6847 6848 /* verify BPF_LD_IMM64 instruction */ 6849 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 6850 { 6851 struct bpf_insn_aux_data *aux = cur_aux(env); 6852 struct bpf_reg_state *regs = cur_regs(env); 6853 struct bpf_map *map; 6854 int err; 6855 6856 if (BPF_SIZE(insn->code) != BPF_DW) { 6857 verbose(env, "invalid BPF_LD_IMM insn\n"); 6858 return -EINVAL; 6859 } 6860 if (insn->off != 0) { 6861 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 6862 return -EINVAL; 6863 } 6864 6865 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6866 if (err) 6867 return err; 6868 6869 if (insn->src_reg == 0) { 6870 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 6871 6872 regs[insn->dst_reg].type = SCALAR_VALUE; 6873 __mark_reg_known(®s[insn->dst_reg], imm); 6874 return 0; 6875 } 6876 6877 map = env->used_maps[aux->map_index]; 6878 mark_reg_known_zero(env, regs, insn->dst_reg); 6879 regs[insn->dst_reg].map_ptr = map; 6880 6881 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 6882 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 6883 regs[insn->dst_reg].off = aux->map_off; 6884 if (map_value_has_spin_lock(map)) 6885 regs[insn->dst_reg].id = ++env->id_gen; 6886 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 6887 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 6888 } else { 6889 verbose(env, "bpf verifier is misconfigured\n"); 6890 return -EINVAL; 6891 } 6892 6893 return 0; 6894 } 6895 6896 static bool may_access_skb(enum bpf_prog_type type) 6897 { 6898 switch (type) { 6899 case BPF_PROG_TYPE_SOCKET_FILTER: 6900 case BPF_PROG_TYPE_SCHED_CLS: 6901 case BPF_PROG_TYPE_SCHED_ACT: 6902 return true; 6903 default: 6904 return false; 6905 } 6906 } 6907 6908 /* verify safety of LD_ABS|LD_IND instructions: 6909 * - they can only appear in the programs where ctx == skb 6910 * - since they are wrappers of function calls, they scratch R1-R5 registers, 6911 * preserve R6-R9, and store return value into R0 6912 * 6913 * Implicit input: 6914 * ctx == skb == R6 == CTX 6915 * 6916 * Explicit input: 6917 * SRC == any register 6918 * IMM == 32-bit immediate 6919 * 6920 * Output: 6921 * R0 - 8/16/32-bit skb data converted to cpu endianness 6922 */ 6923 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 6924 { 6925 struct bpf_reg_state *regs = cur_regs(env); 6926 static const int ctx_reg = BPF_REG_6; 6927 u8 mode = BPF_MODE(insn->code); 6928 int i, err; 6929 6930 if (!may_access_skb(env->prog->type)) { 6931 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 6932 return -EINVAL; 6933 } 6934 6935 if (!env->ops->gen_ld_abs) { 6936 verbose(env, "bpf verifier is misconfigured\n"); 6937 return -EINVAL; 6938 } 6939 6940 if (env->subprog_cnt > 1) { 6941 /* when program has LD_ABS insn JITs and interpreter assume 6942 * that r1 == ctx == skb which is not the case for callees 6943 * that can have arbitrary arguments. It's problematic 6944 * for main prog as well since JITs would need to analyze 6945 * all functions in order to make proper register save/restore 6946 * decisions in the main prog. Hence disallow LD_ABS with calls 6947 */ 6948 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 6949 return -EINVAL; 6950 } 6951 6952 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 6953 BPF_SIZE(insn->code) == BPF_DW || 6954 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 6955 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 6956 return -EINVAL; 6957 } 6958 6959 /* check whether implicit source operand (register R6) is readable */ 6960 err = check_reg_arg(env, ctx_reg, SRC_OP); 6961 if (err) 6962 return err; 6963 6964 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 6965 * gen_ld_abs() may terminate the program at runtime, leading to 6966 * reference leak. 6967 */ 6968 err = check_reference_leak(env); 6969 if (err) { 6970 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 6971 return err; 6972 } 6973 6974 if (env->cur_state->active_spin_lock) { 6975 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 6976 return -EINVAL; 6977 } 6978 6979 if (regs[ctx_reg].type != PTR_TO_CTX) { 6980 verbose(env, 6981 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 6982 return -EINVAL; 6983 } 6984 6985 if (mode == BPF_IND) { 6986 /* check explicit source operand */ 6987 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6988 if (err) 6989 return err; 6990 } 6991 6992 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 6993 if (err < 0) 6994 return err; 6995 6996 /* reset caller saved regs to unreadable */ 6997 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6998 mark_reg_not_init(env, regs, caller_saved[i]); 6999 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7000 } 7001 7002 /* mark destination R0 register as readable, since it contains 7003 * the value fetched from the packet. 7004 * Already marked as written above. 7005 */ 7006 mark_reg_unknown(env, regs, BPF_REG_0); 7007 /* ld_abs load up to 32-bit skb data. */ 7008 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 7009 return 0; 7010 } 7011 7012 static int check_return_code(struct bpf_verifier_env *env) 7013 { 7014 struct tnum enforce_attach_type_range = tnum_unknown; 7015 const struct bpf_prog *prog = env->prog; 7016 struct bpf_reg_state *reg; 7017 struct tnum range = tnum_range(0, 1); 7018 int err; 7019 7020 /* LSM and struct_ops func-ptr's return type could be "void" */ 7021 if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS || 7022 env->prog->type == BPF_PROG_TYPE_LSM) && 7023 !prog->aux->attach_func_proto->type) 7024 return 0; 7025 7026 /* eBPF calling convetion is such that R0 is used 7027 * to return the value from eBPF program. 7028 * Make sure that it's readable at this time 7029 * of bpf_exit, which means that program wrote 7030 * something into it earlier 7031 */ 7032 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7033 if (err) 7034 return err; 7035 7036 if (is_pointer_value(env, BPF_REG_0)) { 7037 verbose(env, "R0 leaks addr as return value\n"); 7038 return -EACCES; 7039 } 7040 7041 switch (env->prog->type) { 7042 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 7043 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 7044 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG) 7045 range = tnum_range(1, 1); 7046 break; 7047 case BPF_PROG_TYPE_CGROUP_SKB: 7048 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 7049 range = tnum_range(0, 3); 7050 enforce_attach_type_range = tnum_range(2, 3); 7051 } 7052 break; 7053 case BPF_PROG_TYPE_CGROUP_SOCK: 7054 case BPF_PROG_TYPE_SOCK_OPS: 7055 case BPF_PROG_TYPE_CGROUP_DEVICE: 7056 case BPF_PROG_TYPE_CGROUP_SYSCTL: 7057 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 7058 break; 7059 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7060 if (!env->prog->aux->attach_btf_id) 7061 return 0; 7062 range = tnum_const(0); 7063 break; 7064 case BPF_PROG_TYPE_TRACING: 7065 switch (env->prog->expected_attach_type) { 7066 case BPF_TRACE_FENTRY: 7067 case BPF_TRACE_FEXIT: 7068 range = tnum_const(0); 7069 break; 7070 case BPF_TRACE_RAW_TP: 7071 case BPF_MODIFY_RETURN: 7072 return 0; 7073 default: 7074 return -ENOTSUPP; 7075 } 7076 break; 7077 case BPF_PROG_TYPE_EXT: 7078 /* freplace program can return anything as its return value 7079 * depends on the to-be-replaced kernel func or bpf program. 7080 */ 7081 default: 7082 return 0; 7083 } 7084 7085 reg = cur_regs(env) + BPF_REG_0; 7086 if (reg->type != SCALAR_VALUE) { 7087 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 7088 reg_type_str[reg->type]); 7089 return -EINVAL; 7090 } 7091 7092 if (!tnum_in(range, reg->var_off)) { 7093 char tn_buf[48]; 7094 7095 verbose(env, "At program exit the register R0 "); 7096 if (!tnum_is_unknown(reg->var_off)) { 7097 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7098 verbose(env, "has value %s", tn_buf); 7099 } else { 7100 verbose(env, "has unknown scalar value"); 7101 } 7102 tnum_strn(tn_buf, sizeof(tn_buf), range); 7103 verbose(env, " should have been in %s\n", tn_buf); 7104 return -EINVAL; 7105 } 7106 7107 if (!tnum_is_unknown(enforce_attach_type_range) && 7108 tnum_in(enforce_attach_type_range, reg->var_off)) 7109 env->prog->enforce_expected_attach_type = 1; 7110 return 0; 7111 } 7112 7113 /* non-recursive DFS pseudo code 7114 * 1 procedure DFS-iterative(G,v): 7115 * 2 label v as discovered 7116 * 3 let S be a stack 7117 * 4 S.push(v) 7118 * 5 while S is not empty 7119 * 6 t <- S.pop() 7120 * 7 if t is what we're looking for: 7121 * 8 return t 7122 * 9 for all edges e in G.adjacentEdges(t) do 7123 * 10 if edge e is already labelled 7124 * 11 continue with the next edge 7125 * 12 w <- G.adjacentVertex(t,e) 7126 * 13 if vertex w is not discovered and not explored 7127 * 14 label e as tree-edge 7128 * 15 label w as discovered 7129 * 16 S.push(w) 7130 * 17 continue at 5 7131 * 18 else if vertex w is discovered 7132 * 19 label e as back-edge 7133 * 20 else 7134 * 21 // vertex w is explored 7135 * 22 label e as forward- or cross-edge 7136 * 23 label t as explored 7137 * 24 S.pop() 7138 * 7139 * convention: 7140 * 0x10 - discovered 7141 * 0x11 - discovered and fall-through edge labelled 7142 * 0x12 - discovered and fall-through and branch edges labelled 7143 * 0x20 - explored 7144 */ 7145 7146 enum { 7147 DISCOVERED = 0x10, 7148 EXPLORED = 0x20, 7149 FALLTHROUGH = 1, 7150 BRANCH = 2, 7151 }; 7152 7153 static u32 state_htab_size(struct bpf_verifier_env *env) 7154 { 7155 return env->prog->len; 7156 } 7157 7158 static struct bpf_verifier_state_list **explored_state( 7159 struct bpf_verifier_env *env, 7160 int idx) 7161 { 7162 struct bpf_verifier_state *cur = env->cur_state; 7163 struct bpf_func_state *state = cur->frame[cur->curframe]; 7164 7165 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 7166 } 7167 7168 static void init_explored_state(struct bpf_verifier_env *env, int idx) 7169 { 7170 env->insn_aux_data[idx].prune_point = true; 7171 } 7172 7173 /* t, w, e - match pseudo-code above: 7174 * t - index of current instruction 7175 * w - next instruction 7176 * e - edge 7177 */ 7178 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 7179 bool loop_ok) 7180 { 7181 int *insn_stack = env->cfg.insn_stack; 7182 int *insn_state = env->cfg.insn_state; 7183 7184 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 7185 return 0; 7186 7187 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 7188 return 0; 7189 7190 if (w < 0 || w >= env->prog->len) { 7191 verbose_linfo(env, t, "%d: ", t); 7192 verbose(env, "jump out of range from insn %d to %d\n", t, w); 7193 return -EINVAL; 7194 } 7195 7196 if (e == BRANCH) 7197 /* mark branch target for state pruning */ 7198 init_explored_state(env, w); 7199 7200 if (insn_state[w] == 0) { 7201 /* tree-edge */ 7202 insn_state[t] = DISCOVERED | e; 7203 insn_state[w] = DISCOVERED; 7204 if (env->cfg.cur_stack >= env->prog->len) 7205 return -E2BIG; 7206 insn_stack[env->cfg.cur_stack++] = w; 7207 return 1; 7208 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 7209 if (loop_ok && env->allow_ptr_leaks) 7210 return 0; 7211 verbose_linfo(env, t, "%d: ", t); 7212 verbose_linfo(env, w, "%d: ", w); 7213 verbose(env, "back-edge from insn %d to %d\n", t, w); 7214 return -EINVAL; 7215 } else if (insn_state[w] == EXPLORED) { 7216 /* forward- or cross-edge */ 7217 insn_state[t] = DISCOVERED | e; 7218 } else { 7219 verbose(env, "insn state internal bug\n"); 7220 return -EFAULT; 7221 } 7222 return 0; 7223 } 7224 7225 /* non-recursive depth-first-search to detect loops in BPF program 7226 * loop == back-edge in directed graph 7227 */ 7228 static int check_cfg(struct bpf_verifier_env *env) 7229 { 7230 struct bpf_insn *insns = env->prog->insnsi; 7231 int insn_cnt = env->prog->len; 7232 int *insn_stack, *insn_state; 7233 int ret = 0; 7234 int i, t; 7235 7236 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7237 if (!insn_state) 7238 return -ENOMEM; 7239 7240 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7241 if (!insn_stack) { 7242 kvfree(insn_state); 7243 return -ENOMEM; 7244 } 7245 7246 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 7247 insn_stack[0] = 0; /* 0 is the first instruction */ 7248 env->cfg.cur_stack = 1; 7249 7250 peek_stack: 7251 if (env->cfg.cur_stack == 0) 7252 goto check_state; 7253 t = insn_stack[env->cfg.cur_stack - 1]; 7254 7255 if (BPF_CLASS(insns[t].code) == BPF_JMP || 7256 BPF_CLASS(insns[t].code) == BPF_JMP32) { 7257 u8 opcode = BPF_OP(insns[t].code); 7258 7259 if (opcode == BPF_EXIT) { 7260 goto mark_explored; 7261 } else if (opcode == BPF_CALL) { 7262 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7263 if (ret == 1) 7264 goto peek_stack; 7265 else if (ret < 0) 7266 goto err_free; 7267 if (t + 1 < insn_cnt) 7268 init_explored_state(env, t + 1); 7269 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 7270 init_explored_state(env, t); 7271 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 7272 env, false); 7273 if (ret == 1) 7274 goto peek_stack; 7275 else if (ret < 0) 7276 goto err_free; 7277 } 7278 } else if (opcode == BPF_JA) { 7279 if (BPF_SRC(insns[t].code) != BPF_K) { 7280 ret = -EINVAL; 7281 goto err_free; 7282 } 7283 /* unconditional jump with single edge */ 7284 ret = push_insn(t, t + insns[t].off + 1, 7285 FALLTHROUGH, env, true); 7286 if (ret == 1) 7287 goto peek_stack; 7288 else if (ret < 0) 7289 goto err_free; 7290 /* unconditional jmp is not a good pruning point, 7291 * but it's marked, since backtracking needs 7292 * to record jmp history in is_state_visited(). 7293 */ 7294 init_explored_state(env, t + insns[t].off + 1); 7295 /* tell verifier to check for equivalent states 7296 * after every call and jump 7297 */ 7298 if (t + 1 < insn_cnt) 7299 init_explored_state(env, t + 1); 7300 } else { 7301 /* conditional jump with two edges */ 7302 init_explored_state(env, t); 7303 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 7304 if (ret == 1) 7305 goto peek_stack; 7306 else if (ret < 0) 7307 goto err_free; 7308 7309 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 7310 if (ret == 1) 7311 goto peek_stack; 7312 else if (ret < 0) 7313 goto err_free; 7314 } 7315 } else { 7316 /* all other non-branch instructions with single 7317 * fall-through edge 7318 */ 7319 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7320 if (ret == 1) 7321 goto peek_stack; 7322 else if (ret < 0) 7323 goto err_free; 7324 } 7325 7326 mark_explored: 7327 insn_state[t] = EXPLORED; 7328 if (env->cfg.cur_stack-- <= 0) { 7329 verbose(env, "pop stack internal bug\n"); 7330 ret = -EFAULT; 7331 goto err_free; 7332 } 7333 goto peek_stack; 7334 7335 check_state: 7336 for (i = 0; i < insn_cnt; i++) { 7337 if (insn_state[i] != EXPLORED) { 7338 verbose(env, "unreachable insn %d\n", i); 7339 ret = -EINVAL; 7340 goto err_free; 7341 } 7342 } 7343 ret = 0; /* cfg looks good */ 7344 7345 err_free: 7346 kvfree(insn_state); 7347 kvfree(insn_stack); 7348 env->cfg.insn_state = env->cfg.insn_stack = NULL; 7349 return ret; 7350 } 7351 7352 /* The minimum supported BTF func info size */ 7353 #define MIN_BPF_FUNCINFO_SIZE 8 7354 #define MAX_FUNCINFO_REC_SIZE 252 7355 7356 static int check_btf_func(struct bpf_verifier_env *env, 7357 const union bpf_attr *attr, 7358 union bpf_attr __user *uattr) 7359 { 7360 u32 i, nfuncs, urec_size, min_size; 7361 u32 krec_size = sizeof(struct bpf_func_info); 7362 struct bpf_func_info *krecord; 7363 struct bpf_func_info_aux *info_aux = NULL; 7364 const struct btf_type *type; 7365 struct bpf_prog *prog; 7366 const struct btf *btf; 7367 void __user *urecord; 7368 u32 prev_offset = 0; 7369 int ret = 0; 7370 7371 nfuncs = attr->func_info_cnt; 7372 if (!nfuncs) 7373 return 0; 7374 7375 if (nfuncs != env->subprog_cnt) { 7376 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 7377 return -EINVAL; 7378 } 7379 7380 urec_size = attr->func_info_rec_size; 7381 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 7382 urec_size > MAX_FUNCINFO_REC_SIZE || 7383 urec_size % sizeof(u32)) { 7384 verbose(env, "invalid func info rec size %u\n", urec_size); 7385 return -EINVAL; 7386 } 7387 7388 prog = env->prog; 7389 btf = prog->aux->btf; 7390 7391 urecord = u64_to_user_ptr(attr->func_info); 7392 min_size = min_t(u32, krec_size, urec_size); 7393 7394 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 7395 if (!krecord) 7396 return -ENOMEM; 7397 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 7398 if (!info_aux) 7399 goto err_free; 7400 7401 for (i = 0; i < nfuncs; i++) { 7402 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 7403 if (ret) { 7404 if (ret == -E2BIG) { 7405 verbose(env, "nonzero tailing record in func info"); 7406 /* set the size kernel expects so loader can zero 7407 * out the rest of the record. 7408 */ 7409 if (put_user(min_size, &uattr->func_info_rec_size)) 7410 ret = -EFAULT; 7411 } 7412 goto err_free; 7413 } 7414 7415 if (copy_from_user(&krecord[i], urecord, min_size)) { 7416 ret = -EFAULT; 7417 goto err_free; 7418 } 7419 7420 /* check insn_off */ 7421 if (i == 0) { 7422 if (krecord[i].insn_off) { 7423 verbose(env, 7424 "nonzero insn_off %u for the first func info record", 7425 krecord[i].insn_off); 7426 ret = -EINVAL; 7427 goto err_free; 7428 } 7429 } else if (krecord[i].insn_off <= prev_offset) { 7430 verbose(env, 7431 "same or smaller insn offset (%u) than previous func info record (%u)", 7432 krecord[i].insn_off, prev_offset); 7433 ret = -EINVAL; 7434 goto err_free; 7435 } 7436 7437 if (env->subprog_info[i].start != krecord[i].insn_off) { 7438 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 7439 ret = -EINVAL; 7440 goto err_free; 7441 } 7442 7443 /* check type_id */ 7444 type = btf_type_by_id(btf, krecord[i].type_id); 7445 if (!type || !btf_type_is_func(type)) { 7446 verbose(env, "invalid type id %d in func info", 7447 krecord[i].type_id); 7448 ret = -EINVAL; 7449 goto err_free; 7450 } 7451 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 7452 prev_offset = krecord[i].insn_off; 7453 urecord += urec_size; 7454 } 7455 7456 prog->aux->func_info = krecord; 7457 prog->aux->func_info_cnt = nfuncs; 7458 prog->aux->func_info_aux = info_aux; 7459 return 0; 7460 7461 err_free: 7462 kvfree(krecord); 7463 kfree(info_aux); 7464 return ret; 7465 } 7466 7467 static void adjust_btf_func(struct bpf_verifier_env *env) 7468 { 7469 struct bpf_prog_aux *aux = env->prog->aux; 7470 int i; 7471 7472 if (!aux->func_info) 7473 return; 7474 7475 for (i = 0; i < env->subprog_cnt; i++) 7476 aux->func_info[i].insn_off = env->subprog_info[i].start; 7477 } 7478 7479 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 7480 sizeof(((struct bpf_line_info *)(0))->line_col)) 7481 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 7482 7483 static int check_btf_line(struct bpf_verifier_env *env, 7484 const union bpf_attr *attr, 7485 union bpf_attr __user *uattr) 7486 { 7487 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 7488 struct bpf_subprog_info *sub; 7489 struct bpf_line_info *linfo; 7490 struct bpf_prog *prog; 7491 const struct btf *btf; 7492 void __user *ulinfo; 7493 int err; 7494 7495 nr_linfo = attr->line_info_cnt; 7496 if (!nr_linfo) 7497 return 0; 7498 7499 rec_size = attr->line_info_rec_size; 7500 if (rec_size < MIN_BPF_LINEINFO_SIZE || 7501 rec_size > MAX_LINEINFO_REC_SIZE || 7502 rec_size & (sizeof(u32) - 1)) 7503 return -EINVAL; 7504 7505 /* Need to zero it in case the userspace may 7506 * pass in a smaller bpf_line_info object. 7507 */ 7508 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 7509 GFP_KERNEL | __GFP_NOWARN); 7510 if (!linfo) 7511 return -ENOMEM; 7512 7513 prog = env->prog; 7514 btf = prog->aux->btf; 7515 7516 s = 0; 7517 sub = env->subprog_info; 7518 ulinfo = u64_to_user_ptr(attr->line_info); 7519 expected_size = sizeof(struct bpf_line_info); 7520 ncopy = min_t(u32, expected_size, rec_size); 7521 for (i = 0; i < nr_linfo; i++) { 7522 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 7523 if (err) { 7524 if (err == -E2BIG) { 7525 verbose(env, "nonzero tailing record in line_info"); 7526 if (put_user(expected_size, 7527 &uattr->line_info_rec_size)) 7528 err = -EFAULT; 7529 } 7530 goto err_free; 7531 } 7532 7533 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 7534 err = -EFAULT; 7535 goto err_free; 7536 } 7537 7538 /* 7539 * Check insn_off to ensure 7540 * 1) strictly increasing AND 7541 * 2) bounded by prog->len 7542 * 7543 * The linfo[0].insn_off == 0 check logically falls into 7544 * the later "missing bpf_line_info for func..." case 7545 * because the first linfo[0].insn_off must be the 7546 * first sub also and the first sub must have 7547 * subprog_info[0].start == 0. 7548 */ 7549 if ((i && linfo[i].insn_off <= prev_offset) || 7550 linfo[i].insn_off >= prog->len) { 7551 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 7552 i, linfo[i].insn_off, prev_offset, 7553 prog->len); 7554 err = -EINVAL; 7555 goto err_free; 7556 } 7557 7558 if (!prog->insnsi[linfo[i].insn_off].code) { 7559 verbose(env, 7560 "Invalid insn code at line_info[%u].insn_off\n", 7561 i); 7562 err = -EINVAL; 7563 goto err_free; 7564 } 7565 7566 if (!btf_name_by_offset(btf, linfo[i].line_off) || 7567 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 7568 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 7569 err = -EINVAL; 7570 goto err_free; 7571 } 7572 7573 if (s != env->subprog_cnt) { 7574 if (linfo[i].insn_off == sub[s].start) { 7575 sub[s].linfo_idx = i; 7576 s++; 7577 } else if (sub[s].start < linfo[i].insn_off) { 7578 verbose(env, "missing bpf_line_info for func#%u\n", s); 7579 err = -EINVAL; 7580 goto err_free; 7581 } 7582 } 7583 7584 prev_offset = linfo[i].insn_off; 7585 ulinfo += rec_size; 7586 } 7587 7588 if (s != env->subprog_cnt) { 7589 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 7590 env->subprog_cnt - s, s); 7591 err = -EINVAL; 7592 goto err_free; 7593 } 7594 7595 prog->aux->linfo = linfo; 7596 prog->aux->nr_linfo = nr_linfo; 7597 7598 return 0; 7599 7600 err_free: 7601 kvfree(linfo); 7602 return err; 7603 } 7604 7605 static int check_btf_info(struct bpf_verifier_env *env, 7606 const union bpf_attr *attr, 7607 union bpf_attr __user *uattr) 7608 { 7609 struct btf *btf; 7610 int err; 7611 7612 if (!attr->func_info_cnt && !attr->line_info_cnt) 7613 return 0; 7614 7615 btf = btf_get_by_fd(attr->prog_btf_fd); 7616 if (IS_ERR(btf)) 7617 return PTR_ERR(btf); 7618 env->prog->aux->btf = btf; 7619 7620 err = check_btf_func(env, attr, uattr); 7621 if (err) 7622 return err; 7623 7624 err = check_btf_line(env, attr, uattr); 7625 if (err) 7626 return err; 7627 7628 return 0; 7629 } 7630 7631 /* check %cur's range satisfies %old's */ 7632 static bool range_within(struct bpf_reg_state *old, 7633 struct bpf_reg_state *cur) 7634 { 7635 return old->umin_value <= cur->umin_value && 7636 old->umax_value >= cur->umax_value && 7637 old->smin_value <= cur->smin_value && 7638 old->smax_value >= cur->smax_value; 7639 } 7640 7641 /* Maximum number of register states that can exist at once */ 7642 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 7643 struct idpair { 7644 u32 old; 7645 u32 cur; 7646 }; 7647 7648 /* If in the old state two registers had the same id, then they need to have 7649 * the same id in the new state as well. But that id could be different from 7650 * the old state, so we need to track the mapping from old to new ids. 7651 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 7652 * regs with old id 5 must also have new id 9 for the new state to be safe. But 7653 * regs with a different old id could still have new id 9, we don't care about 7654 * that. 7655 * So we look through our idmap to see if this old id has been seen before. If 7656 * so, we require the new id to match; otherwise, we add the id pair to the map. 7657 */ 7658 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 7659 { 7660 unsigned int i; 7661 7662 for (i = 0; i < ID_MAP_SIZE; i++) { 7663 if (!idmap[i].old) { 7664 /* Reached an empty slot; haven't seen this id before */ 7665 idmap[i].old = old_id; 7666 idmap[i].cur = cur_id; 7667 return true; 7668 } 7669 if (idmap[i].old == old_id) 7670 return idmap[i].cur == cur_id; 7671 } 7672 /* We ran out of idmap slots, which should be impossible */ 7673 WARN_ON_ONCE(1); 7674 return false; 7675 } 7676 7677 static void clean_func_state(struct bpf_verifier_env *env, 7678 struct bpf_func_state *st) 7679 { 7680 enum bpf_reg_liveness live; 7681 int i, j; 7682 7683 for (i = 0; i < BPF_REG_FP; i++) { 7684 live = st->regs[i].live; 7685 /* liveness must not touch this register anymore */ 7686 st->regs[i].live |= REG_LIVE_DONE; 7687 if (!(live & REG_LIVE_READ)) 7688 /* since the register is unused, clear its state 7689 * to make further comparison simpler 7690 */ 7691 __mark_reg_not_init(env, &st->regs[i]); 7692 } 7693 7694 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 7695 live = st->stack[i].spilled_ptr.live; 7696 /* liveness must not touch this stack slot anymore */ 7697 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 7698 if (!(live & REG_LIVE_READ)) { 7699 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 7700 for (j = 0; j < BPF_REG_SIZE; j++) 7701 st->stack[i].slot_type[j] = STACK_INVALID; 7702 } 7703 } 7704 } 7705 7706 static void clean_verifier_state(struct bpf_verifier_env *env, 7707 struct bpf_verifier_state *st) 7708 { 7709 int i; 7710 7711 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 7712 /* all regs in this state in all frames were already marked */ 7713 return; 7714 7715 for (i = 0; i <= st->curframe; i++) 7716 clean_func_state(env, st->frame[i]); 7717 } 7718 7719 /* the parentage chains form a tree. 7720 * the verifier states are added to state lists at given insn and 7721 * pushed into state stack for future exploration. 7722 * when the verifier reaches bpf_exit insn some of the verifer states 7723 * stored in the state lists have their final liveness state already, 7724 * but a lot of states will get revised from liveness point of view when 7725 * the verifier explores other branches. 7726 * Example: 7727 * 1: r0 = 1 7728 * 2: if r1 == 100 goto pc+1 7729 * 3: r0 = 2 7730 * 4: exit 7731 * when the verifier reaches exit insn the register r0 in the state list of 7732 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 7733 * of insn 2 and goes exploring further. At the insn 4 it will walk the 7734 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 7735 * 7736 * Since the verifier pushes the branch states as it sees them while exploring 7737 * the program the condition of walking the branch instruction for the second 7738 * time means that all states below this branch were already explored and 7739 * their final liveness markes are already propagated. 7740 * Hence when the verifier completes the search of state list in is_state_visited() 7741 * we can call this clean_live_states() function to mark all liveness states 7742 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 7743 * will not be used. 7744 * This function also clears the registers and stack for states that !READ 7745 * to simplify state merging. 7746 * 7747 * Important note here that walking the same branch instruction in the callee 7748 * doesn't meant that the states are DONE. The verifier has to compare 7749 * the callsites 7750 */ 7751 static void clean_live_states(struct bpf_verifier_env *env, int insn, 7752 struct bpf_verifier_state *cur) 7753 { 7754 struct bpf_verifier_state_list *sl; 7755 int i; 7756 7757 sl = *explored_state(env, insn); 7758 while (sl) { 7759 if (sl->state.branches) 7760 goto next; 7761 if (sl->state.insn_idx != insn || 7762 sl->state.curframe != cur->curframe) 7763 goto next; 7764 for (i = 0; i <= cur->curframe; i++) 7765 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 7766 goto next; 7767 clean_verifier_state(env, &sl->state); 7768 next: 7769 sl = sl->next; 7770 } 7771 } 7772 7773 /* Returns true if (rold safe implies rcur safe) */ 7774 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7775 struct idpair *idmap) 7776 { 7777 bool equal; 7778 7779 if (!(rold->live & REG_LIVE_READ)) 7780 /* explored state didn't use this */ 7781 return true; 7782 7783 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 7784 7785 if (rold->type == PTR_TO_STACK) 7786 /* two stack pointers are equal only if they're pointing to 7787 * the same stack frame, since fp-8 in foo != fp-8 in bar 7788 */ 7789 return equal && rold->frameno == rcur->frameno; 7790 7791 if (equal) 7792 return true; 7793 7794 if (rold->type == NOT_INIT) 7795 /* explored state can't have used this */ 7796 return true; 7797 if (rcur->type == NOT_INIT) 7798 return false; 7799 switch (rold->type) { 7800 case SCALAR_VALUE: 7801 if (rcur->type == SCALAR_VALUE) { 7802 if (!rold->precise && !rcur->precise) 7803 return true; 7804 /* new val must satisfy old val knowledge */ 7805 return range_within(rold, rcur) && 7806 tnum_in(rold->var_off, rcur->var_off); 7807 } else { 7808 /* We're trying to use a pointer in place of a scalar. 7809 * Even if the scalar was unbounded, this could lead to 7810 * pointer leaks because scalars are allowed to leak 7811 * while pointers are not. We could make this safe in 7812 * special cases if root is calling us, but it's 7813 * probably not worth the hassle. 7814 */ 7815 return false; 7816 } 7817 case PTR_TO_MAP_VALUE: 7818 /* If the new min/max/var_off satisfy the old ones and 7819 * everything else matches, we are OK. 7820 * 'id' is not compared, since it's only used for maps with 7821 * bpf_spin_lock inside map element and in such cases if 7822 * the rest of the prog is valid for one map element then 7823 * it's valid for all map elements regardless of the key 7824 * used in bpf_map_lookup() 7825 */ 7826 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 7827 range_within(rold, rcur) && 7828 tnum_in(rold->var_off, rcur->var_off); 7829 case PTR_TO_MAP_VALUE_OR_NULL: 7830 /* a PTR_TO_MAP_VALUE could be safe to use as a 7831 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 7832 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 7833 * checked, doing so could have affected others with the same 7834 * id, and we can't check for that because we lost the id when 7835 * we converted to a PTR_TO_MAP_VALUE. 7836 */ 7837 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 7838 return false; 7839 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 7840 return false; 7841 /* Check our ids match any regs they're supposed to */ 7842 return check_ids(rold->id, rcur->id, idmap); 7843 case PTR_TO_PACKET_META: 7844 case PTR_TO_PACKET: 7845 if (rcur->type != rold->type) 7846 return false; 7847 /* We must have at least as much range as the old ptr 7848 * did, so that any accesses which were safe before are 7849 * still safe. This is true even if old range < old off, 7850 * since someone could have accessed through (ptr - k), or 7851 * even done ptr -= k in a register, to get a safe access. 7852 */ 7853 if (rold->range > rcur->range) 7854 return false; 7855 /* If the offsets don't match, we can't trust our alignment; 7856 * nor can we be sure that we won't fall out of range. 7857 */ 7858 if (rold->off != rcur->off) 7859 return false; 7860 /* id relations must be preserved */ 7861 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 7862 return false; 7863 /* new val must satisfy old val knowledge */ 7864 return range_within(rold, rcur) && 7865 tnum_in(rold->var_off, rcur->var_off); 7866 case PTR_TO_CTX: 7867 case CONST_PTR_TO_MAP: 7868 case PTR_TO_PACKET_END: 7869 case PTR_TO_FLOW_KEYS: 7870 case PTR_TO_SOCKET: 7871 case PTR_TO_SOCKET_OR_NULL: 7872 case PTR_TO_SOCK_COMMON: 7873 case PTR_TO_SOCK_COMMON_OR_NULL: 7874 case PTR_TO_TCP_SOCK: 7875 case PTR_TO_TCP_SOCK_OR_NULL: 7876 case PTR_TO_XDP_SOCK: 7877 /* Only valid matches are exact, which memcmp() above 7878 * would have accepted 7879 */ 7880 default: 7881 /* Don't know what's going on, just say it's not safe */ 7882 return false; 7883 } 7884 7885 /* Shouldn't get here; if we do, say it's not safe */ 7886 WARN_ON_ONCE(1); 7887 return false; 7888 } 7889 7890 static bool stacksafe(struct bpf_func_state *old, 7891 struct bpf_func_state *cur, 7892 struct idpair *idmap) 7893 { 7894 int i, spi; 7895 7896 /* walk slots of the explored stack and ignore any additional 7897 * slots in the current stack, since explored(safe) state 7898 * didn't use them 7899 */ 7900 for (i = 0; i < old->allocated_stack; i++) { 7901 spi = i / BPF_REG_SIZE; 7902 7903 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 7904 i += BPF_REG_SIZE - 1; 7905 /* explored state didn't use this */ 7906 continue; 7907 } 7908 7909 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 7910 continue; 7911 7912 /* explored stack has more populated slots than current stack 7913 * and these slots were used 7914 */ 7915 if (i >= cur->allocated_stack) 7916 return false; 7917 7918 /* if old state was safe with misc data in the stack 7919 * it will be safe with zero-initialized stack. 7920 * The opposite is not true 7921 */ 7922 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 7923 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 7924 continue; 7925 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 7926 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 7927 /* Ex: old explored (safe) state has STACK_SPILL in 7928 * this stack slot, but current has has STACK_MISC -> 7929 * this verifier states are not equivalent, 7930 * return false to continue verification of this path 7931 */ 7932 return false; 7933 if (i % BPF_REG_SIZE) 7934 continue; 7935 if (old->stack[spi].slot_type[0] != STACK_SPILL) 7936 continue; 7937 if (!regsafe(&old->stack[spi].spilled_ptr, 7938 &cur->stack[spi].spilled_ptr, 7939 idmap)) 7940 /* when explored and current stack slot are both storing 7941 * spilled registers, check that stored pointers types 7942 * are the same as well. 7943 * Ex: explored safe path could have stored 7944 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 7945 * but current path has stored: 7946 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 7947 * such verifier states are not equivalent. 7948 * return false to continue verification of this path 7949 */ 7950 return false; 7951 } 7952 return true; 7953 } 7954 7955 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 7956 { 7957 if (old->acquired_refs != cur->acquired_refs) 7958 return false; 7959 return !memcmp(old->refs, cur->refs, 7960 sizeof(*old->refs) * old->acquired_refs); 7961 } 7962 7963 /* compare two verifier states 7964 * 7965 * all states stored in state_list are known to be valid, since 7966 * verifier reached 'bpf_exit' instruction through them 7967 * 7968 * this function is called when verifier exploring different branches of 7969 * execution popped from the state stack. If it sees an old state that has 7970 * more strict register state and more strict stack state then this execution 7971 * branch doesn't need to be explored further, since verifier already 7972 * concluded that more strict state leads to valid finish. 7973 * 7974 * Therefore two states are equivalent if register state is more conservative 7975 * and explored stack state is more conservative than the current one. 7976 * Example: 7977 * explored current 7978 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 7979 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 7980 * 7981 * In other words if current stack state (one being explored) has more 7982 * valid slots than old one that already passed validation, it means 7983 * the verifier can stop exploring and conclude that current state is valid too 7984 * 7985 * Similarly with registers. If explored state has register type as invalid 7986 * whereas register type in current state is meaningful, it means that 7987 * the current state will reach 'bpf_exit' instruction safely 7988 */ 7989 static bool func_states_equal(struct bpf_func_state *old, 7990 struct bpf_func_state *cur) 7991 { 7992 struct idpair *idmap; 7993 bool ret = false; 7994 int i; 7995 7996 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 7997 /* If we failed to allocate the idmap, just say it's not safe */ 7998 if (!idmap) 7999 return false; 8000 8001 for (i = 0; i < MAX_BPF_REG; i++) { 8002 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 8003 goto out_free; 8004 } 8005 8006 if (!stacksafe(old, cur, idmap)) 8007 goto out_free; 8008 8009 if (!refsafe(old, cur)) 8010 goto out_free; 8011 ret = true; 8012 out_free: 8013 kfree(idmap); 8014 return ret; 8015 } 8016 8017 static bool states_equal(struct bpf_verifier_env *env, 8018 struct bpf_verifier_state *old, 8019 struct bpf_verifier_state *cur) 8020 { 8021 int i; 8022 8023 if (old->curframe != cur->curframe) 8024 return false; 8025 8026 /* Verification state from speculative execution simulation 8027 * must never prune a non-speculative execution one. 8028 */ 8029 if (old->speculative && !cur->speculative) 8030 return false; 8031 8032 if (old->active_spin_lock != cur->active_spin_lock) 8033 return false; 8034 8035 /* for states to be equal callsites have to be the same 8036 * and all frame states need to be equivalent 8037 */ 8038 for (i = 0; i <= old->curframe; i++) { 8039 if (old->frame[i]->callsite != cur->frame[i]->callsite) 8040 return false; 8041 if (!func_states_equal(old->frame[i], cur->frame[i])) 8042 return false; 8043 } 8044 return true; 8045 } 8046 8047 /* Return 0 if no propagation happened. Return negative error code if error 8048 * happened. Otherwise, return the propagated bit. 8049 */ 8050 static int propagate_liveness_reg(struct bpf_verifier_env *env, 8051 struct bpf_reg_state *reg, 8052 struct bpf_reg_state *parent_reg) 8053 { 8054 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 8055 u8 flag = reg->live & REG_LIVE_READ; 8056 int err; 8057 8058 /* When comes here, read flags of PARENT_REG or REG could be any of 8059 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 8060 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 8061 */ 8062 if (parent_flag == REG_LIVE_READ64 || 8063 /* Or if there is no read flag from REG. */ 8064 !flag || 8065 /* Or if the read flag from REG is the same as PARENT_REG. */ 8066 parent_flag == flag) 8067 return 0; 8068 8069 err = mark_reg_read(env, reg, parent_reg, flag); 8070 if (err) 8071 return err; 8072 8073 return flag; 8074 } 8075 8076 /* A write screens off any subsequent reads; but write marks come from the 8077 * straight-line code between a state and its parent. When we arrive at an 8078 * equivalent state (jump target or such) we didn't arrive by the straight-line 8079 * code, so read marks in the state must propagate to the parent regardless 8080 * of the state's write marks. That's what 'parent == state->parent' comparison 8081 * in mark_reg_read() is for. 8082 */ 8083 static int propagate_liveness(struct bpf_verifier_env *env, 8084 const struct bpf_verifier_state *vstate, 8085 struct bpf_verifier_state *vparent) 8086 { 8087 struct bpf_reg_state *state_reg, *parent_reg; 8088 struct bpf_func_state *state, *parent; 8089 int i, frame, err = 0; 8090 8091 if (vparent->curframe != vstate->curframe) { 8092 WARN(1, "propagate_live: parent frame %d current frame %d\n", 8093 vparent->curframe, vstate->curframe); 8094 return -EFAULT; 8095 } 8096 /* Propagate read liveness of registers... */ 8097 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 8098 for (frame = 0; frame <= vstate->curframe; frame++) { 8099 parent = vparent->frame[frame]; 8100 state = vstate->frame[frame]; 8101 parent_reg = parent->regs; 8102 state_reg = state->regs; 8103 /* We don't need to worry about FP liveness, it's read-only */ 8104 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 8105 err = propagate_liveness_reg(env, &state_reg[i], 8106 &parent_reg[i]); 8107 if (err < 0) 8108 return err; 8109 if (err == REG_LIVE_READ64) 8110 mark_insn_zext(env, &parent_reg[i]); 8111 } 8112 8113 /* Propagate stack slots. */ 8114 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 8115 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 8116 parent_reg = &parent->stack[i].spilled_ptr; 8117 state_reg = &state->stack[i].spilled_ptr; 8118 err = propagate_liveness_reg(env, state_reg, 8119 parent_reg); 8120 if (err < 0) 8121 return err; 8122 } 8123 } 8124 return 0; 8125 } 8126 8127 /* find precise scalars in the previous equivalent state and 8128 * propagate them into the current state 8129 */ 8130 static int propagate_precision(struct bpf_verifier_env *env, 8131 const struct bpf_verifier_state *old) 8132 { 8133 struct bpf_reg_state *state_reg; 8134 struct bpf_func_state *state; 8135 int i, err = 0; 8136 8137 state = old->frame[old->curframe]; 8138 state_reg = state->regs; 8139 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 8140 if (state_reg->type != SCALAR_VALUE || 8141 !state_reg->precise) 8142 continue; 8143 if (env->log.level & BPF_LOG_LEVEL2) 8144 verbose(env, "propagating r%d\n", i); 8145 err = mark_chain_precision(env, i); 8146 if (err < 0) 8147 return err; 8148 } 8149 8150 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 8151 if (state->stack[i].slot_type[0] != STACK_SPILL) 8152 continue; 8153 state_reg = &state->stack[i].spilled_ptr; 8154 if (state_reg->type != SCALAR_VALUE || 8155 !state_reg->precise) 8156 continue; 8157 if (env->log.level & BPF_LOG_LEVEL2) 8158 verbose(env, "propagating fp%d\n", 8159 (-i - 1) * BPF_REG_SIZE); 8160 err = mark_chain_precision_stack(env, i); 8161 if (err < 0) 8162 return err; 8163 } 8164 return 0; 8165 } 8166 8167 static bool states_maybe_looping(struct bpf_verifier_state *old, 8168 struct bpf_verifier_state *cur) 8169 { 8170 struct bpf_func_state *fold, *fcur; 8171 int i, fr = cur->curframe; 8172 8173 if (old->curframe != fr) 8174 return false; 8175 8176 fold = old->frame[fr]; 8177 fcur = cur->frame[fr]; 8178 for (i = 0; i < MAX_BPF_REG; i++) 8179 if (memcmp(&fold->regs[i], &fcur->regs[i], 8180 offsetof(struct bpf_reg_state, parent))) 8181 return false; 8182 return true; 8183 } 8184 8185 8186 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 8187 { 8188 struct bpf_verifier_state_list *new_sl; 8189 struct bpf_verifier_state_list *sl, **pprev; 8190 struct bpf_verifier_state *cur = env->cur_state, *new; 8191 int i, j, err, states_cnt = 0; 8192 bool add_new_state = env->test_state_freq ? true : false; 8193 8194 cur->last_insn_idx = env->prev_insn_idx; 8195 if (!env->insn_aux_data[insn_idx].prune_point) 8196 /* this 'insn_idx' instruction wasn't marked, so we will not 8197 * be doing state search here 8198 */ 8199 return 0; 8200 8201 /* bpf progs typically have pruning point every 4 instructions 8202 * http://vger.kernel.org/bpfconf2019.html#session-1 8203 * Do not add new state for future pruning if the verifier hasn't seen 8204 * at least 2 jumps and at least 8 instructions. 8205 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 8206 * In tests that amounts to up to 50% reduction into total verifier 8207 * memory consumption and 20% verifier time speedup. 8208 */ 8209 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 8210 env->insn_processed - env->prev_insn_processed >= 8) 8211 add_new_state = true; 8212 8213 pprev = explored_state(env, insn_idx); 8214 sl = *pprev; 8215 8216 clean_live_states(env, insn_idx, cur); 8217 8218 while (sl) { 8219 states_cnt++; 8220 if (sl->state.insn_idx != insn_idx) 8221 goto next; 8222 if (sl->state.branches) { 8223 if (states_maybe_looping(&sl->state, cur) && 8224 states_equal(env, &sl->state, cur)) { 8225 verbose_linfo(env, insn_idx, "; "); 8226 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 8227 return -EINVAL; 8228 } 8229 /* if the verifier is processing a loop, avoid adding new state 8230 * too often, since different loop iterations have distinct 8231 * states and may not help future pruning. 8232 * This threshold shouldn't be too low to make sure that 8233 * a loop with large bound will be rejected quickly. 8234 * The most abusive loop will be: 8235 * r1 += 1 8236 * if r1 < 1000000 goto pc-2 8237 * 1M insn_procssed limit / 100 == 10k peak states. 8238 * This threshold shouldn't be too high either, since states 8239 * at the end of the loop are likely to be useful in pruning. 8240 */ 8241 if (env->jmps_processed - env->prev_jmps_processed < 20 && 8242 env->insn_processed - env->prev_insn_processed < 100) 8243 add_new_state = false; 8244 goto miss; 8245 } 8246 if (states_equal(env, &sl->state, cur)) { 8247 sl->hit_cnt++; 8248 /* reached equivalent register/stack state, 8249 * prune the search. 8250 * Registers read by the continuation are read by us. 8251 * If we have any write marks in env->cur_state, they 8252 * will prevent corresponding reads in the continuation 8253 * from reaching our parent (an explored_state). Our 8254 * own state will get the read marks recorded, but 8255 * they'll be immediately forgotten as we're pruning 8256 * this state and will pop a new one. 8257 */ 8258 err = propagate_liveness(env, &sl->state, cur); 8259 8260 /* if previous state reached the exit with precision and 8261 * current state is equivalent to it (except precsion marks) 8262 * the precision needs to be propagated back in 8263 * the current state. 8264 */ 8265 err = err ? : push_jmp_history(env, cur); 8266 err = err ? : propagate_precision(env, &sl->state); 8267 if (err) 8268 return err; 8269 return 1; 8270 } 8271 miss: 8272 /* when new state is not going to be added do not increase miss count. 8273 * Otherwise several loop iterations will remove the state 8274 * recorded earlier. The goal of these heuristics is to have 8275 * states from some iterations of the loop (some in the beginning 8276 * and some at the end) to help pruning. 8277 */ 8278 if (add_new_state) 8279 sl->miss_cnt++; 8280 /* heuristic to determine whether this state is beneficial 8281 * to keep checking from state equivalence point of view. 8282 * Higher numbers increase max_states_per_insn and verification time, 8283 * but do not meaningfully decrease insn_processed. 8284 */ 8285 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 8286 /* the state is unlikely to be useful. Remove it to 8287 * speed up verification 8288 */ 8289 *pprev = sl->next; 8290 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 8291 u32 br = sl->state.branches; 8292 8293 WARN_ONCE(br, 8294 "BUG live_done but branches_to_explore %d\n", 8295 br); 8296 free_verifier_state(&sl->state, false); 8297 kfree(sl); 8298 env->peak_states--; 8299 } else { 8300 /* cannot free this state, since parentage chain may 8301 * walk it later. Add it for free_list instead to 8302 * be freed at the end of verification 8303 */ 8304 sl->next = env->free_list; 8305 env->free_list = sl; 8306 } 8307 sl = *pprev; 8308 continue; 8309 } 8310 next: 8311 pprev = &sl->next; 8312 sl = *pprev; 8313 } 8314 8315 if (env->max_states_per_insn < states_cnt) 8316 env->max_states_per_insn = states_cnt; 8317 8318 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 8319 return push_jmp_history(env, cur); 8320 8321 if (!add_new_state) 8322 return push_jmp_history(env, cur); 8323 8324 /* There were no equivalent states, remember the current one. 8325 * Technically the current state is not proven to be safe yet, 8326 * but it will either reach outer most bpf_exit (which means it's safe) 8327 * or it will be rejected. When there are no loops the verifier won't be 8328 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 8329 * again on the way to bpf_exit. 8330 * When looping the sl->state.branches will be > 0 and this state 8331 * will not be considered for equivalence until branches == 0. 8332 */ 8333 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 8334 if (!new_sl) 8335 return -ENOMEM; 8336 env->total_states++; 8337 env->peak_states++; 8338 env->prev_jmps_processed = env->jmps_processed; 8339 env->prev_insn_processed = env->insn_processed; 8340 8341 /* add new state to the head of linked list */ 8342 new = &new_sl->state; 8343 err = copy_verifier_state(new, cur); 8344 if (err) { 8345 free_verifier_state(new, false); 8346 kfree(new_sl); 8347 return err; 8348 } 8349 new->insn_idx = insn_idx; 8350 WARN_ONCE(new->branches != 1, 8351 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 8352 8353 cur->parent = new; 8354 cur->first_insn_idx = insn_idx; 8355 clear_jmp_history(cur); 8356 new_sl->next = *explored_state(env, insn_idx); 8357 *explored_state(env, insn_idx) = new_sl; 8358 /* connect new state to parentage chain. Current frame needs all 8359 * registers connected. Only r6 - r9 of the callers are alive (pushed 8360 * to the stack implicitly by JITs) so in callers' frames connect just 8361 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 8362 * the state of the call instruction (with WRITTEN set), and r0 comes 8363 * from callee with its full parentage chain, anyway. 8364 */ 8365 /* clear write marks in current state: the writes we did are not writes 8366 * our child did, so they don't screen off its reads from us. 8367 * (There are no read marks in current state, because reads always mark 8368 * their parent and current state never has children yet. Only 8369 * explored_states can get read marks.) 8370 */ 8371 for (j = 0; j <= cur->curframe; j++) { 8372 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 8373 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 8374 for (i = 0; i < BPF_REG_FP; i++) 8375 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 8376 } 8377 8378 /* all stack frames are accessible from callee, clear them all */ 8379 for (j = 0; j <= cur->curframe; j++) { 8380 struct bpf_func_state *frame = cur->frame[j]; 8381 struct bpf_func_state *newframe = new->frame[j]; 8382 8383 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 8384 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 8385 frame->stack[i].spilled_ptr.parent = 8386 &newframe->stack[i].spilled_ptr; 8387 } 8388 } 8389 return 0; 8390 } 8391 8392 /* Return true if it's OK to have the same insn return a different type. */ 8393 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 8394 { 8395 switch (type) { 8396 case PTR_TO_CTX: 8397 case PTR_TO_SOCKET: 8398 case PTR_TO_SOCKET_OR_NULL: 8399 case PTR_TO_SOCK_COMMON: 8400 case PTR_TO_SOCK_COMMON_OR_NULL: 8401 case PTR_TO_TCP_SOCK: 8402 case PTR_TO_TCP_SOCK_OR_NULL: 8403 case PTR_TO_XDP_SOCK: 8404 case PTR_TO_BTF_ID: 8405 return false; 8406 default: 8407 return true; 8408 } 8409 } 8410 8411 /* If an instruction was previously used with particular pointer types, then we 8412 * need to be careful to avoid cases such as the below, where it may be ok 8413 * for one branch accessing the pointer, but not ok for the other branch: 8414 * 8415 * R1 = sock_ptr 8416 * goto X; 8417 * ... 8418 * R1 = some_other_valid_ptr; 8419 * goto X; 8420 * ... 8421 * R2 = *(u32 *)(R1 + 0); 8422 */ 8423 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 8424 { 8425 return src != prev && (!reg_type_mismatch_ok(src) || 8426 !reg_type_mismatch_ok(prev)); 8427 } 8428 8429 static int do_check(struct bpf_verifier_env *env) 8430 { 8431 struct bpf_verifier_state *state = env->cur_state; 8432 struct bpf_insn *insns = env->prog->insnsi; 8433 struct bpf_reg_state *regs; 8434 int insn_cnt = env->prog->len; 8435 bool do_print_state = false; 8436 int prev_insn_idx = -1; 8437 8438 for (;;) { 8439 struct bpf_insn *insn; 8440 u8 class; 8441 int err; 8442 8443 env->prev_insn_idx = prev_insn_idx; 8444 if (env->insn_idx >= insn_cnt) { 8445 verbose(env, "invalid insn idx %d insn_cnt %d\n", 8446 env->insn_idx, insn_cnt); 8447 return -EFAULT; 8448 } 8449 8450 insn = &insns[env->insn_idx]; 8451 class = BPF_CLASS(insn->code); 8452 8453 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 8454 verbose(env, 8455 "BPF program is too large. Processed %d insn\n", 8456 env->insn_processed); 8457 return -E2BIG; 8458 } 8459 8460 err = is_state_visited(env, env->insn_idx); 8461 if (err < 0) 8462 return err; 8463 if (err == 1) { 8464 /* found equivalent state, can prune the search */ 8465 if (env->log.level & BPF_LOG_LEVEL) { 8466 if (do_print_state) 8467 verbose(env, "\nfrom %d to %d%s: safe\n", 8468 env->prev_insn_idx, env->insn_idx, 8469 env->cur_state->speculative ? 8470 " (speculative execution)" : ""); 8471 else 8472 verbose(env, "%d: safe\n", env->insn_idx); 8473 } 8474 goto process_bpf_exit; 8475 } 8476 8477 if (signal_pending(current)) 8478 return -EAGAIN; 8479 8480 if (need_resched()) 8481 cond_resched(); 8482 8483 if (env->log.level & BPF_LOG_LEVEL2 || 8484 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 8485 if (env->log.level & BPF_LOG_LEVEL2) 8486 verbose(env, "%d:", env->insn_idx); 8487 else 8488 verbose(env, "\nfrom %d to %d%s:", 8489 env->prev_insn_idx, env->insn_idx, 8490 env->cur_state->speculative ? 8491 " (speculative execution)" : ""); 8492 print_verifier_state(env, state->frame[state->curframe]); 8493 do_print_state = false; 8494 } 8495 8496 if (env->log.level & BPF_LOG_LEVEL) { 8497 const struct bpf_insn_cbs cbs = { 8498 .cb_print = verbose, 8499 .private_data = env, 8500 }; 8501 8502 verbose_linfo(env, env->insn_idx, "; "); 8503 verbose(env, "%d: ", env->insn_idx); 8504 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 8505 } 8506 8507 if (bpf_prog_is_dev_bound(env->prog->aux)) { 8508 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 8509 env->prev_insn_idx); 8510 if (err) 8511 return err; 8512 } 8513 8514 regs = cur_regs(env); 8515 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8516 prev_insn_idx = env->insn_idx; 8517 8518 if (class == BPF_ALU || class == BPF_ALU64) { 8519 err = check_alu_op(env, insn); 8520 if (err) 8521 return err; 8522 8523 } else if (class == BPF_LDX) { 8524 enum bpf_reg_type *prev_src_type, src_reg_type; 8525 8526 /* check for reserved fields is already done */ 8527 8528 /* check src operand */ 8529 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8530 if (err) 8531 return err; 8532 8533 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8534 if (err) 8535 return err; 8536 8537 src_reg_type = regs[insn->src_reg].type; 8538 8539 /* check that memory (src_reg + off) is readable, 8540 * the state of dst_reg will be updated by this func 8541 */ 8542 err = check_mem_access(env, env->insn_idx, insn->src_reg, 8543 insn->off, BPF_SIZE(insn->code), 8544 BPF_READ, insn->dst_reg, false); 8545 if (err) 8546 return err; 8547 8548 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8549 8550 if (*prev_src_type == NOT_INIT) { 8551 /* saw a valid insn 8552 * dst_reg = *(u32 *)(src_reg + off) 8553 * save type to validate intersecting paths 8554 */ 8555 *prev_src_type = src_reg_type; 8556 8557 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 8558 /* ABuser program is trying to use the same insn 8559 * dst_reg = *(u32*) (src_reg + off) 8560 * with different pointer types: 8561 * src_reg == ctx in one branch and 8562 * src_reg == stack|map in some other branch. 8563 * Reject it. 8564 */ 8565 verbose(env, "same insn cannot be used with different pointers\n"); 8566 return -EINVAL; 8567 } 8568 8569 } else if (class == BPF_STX) { 8570 enum bpf_reg_type *prev_dst_type, dst_reg_type; 8571 8572 if (BPF_MODE(insn->code) == BPF_XADD) { 8573 err = check_xadd(env, env->insn_idx, insn); 8574 if (err) 8575 return err; 8576 env->insn_idx++; 8577 continue; 8578 } 8579 8580 /* check src1 operand */ 8581 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8582 if (err) 8583 return err; 8584 /* check src2 operand */ 8585 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8586 if (err) 8587 return err; 8588 8589 dst_reg_type = regs[insn->dst_reg].type; 8590 8591 /* check that memory (dst_reg + off) is writeable */ 8592 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8593 insn->off, BPF_SIZE(insn->code), 8594 BPF_WRITE, insn->src_reg, false); 8595 if (err) 8596 return err; 8597 8598 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8599 8600 if (*prev_dst_type == NOT_INIT) { 8601 *prev_dst_type = dst_reg_type; 8602 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 8603 verbose(env, "same insn cannot be used with different pointers\n"); 8604 return -EINVAL; 8605 } 8606 8607 } else if (class == BPF_ST) { 8608 if (BPF_MODE(insn->code) != BPF_MEM || 8609 insn->src_reg != BPF_REG_0) { 8610 verbose(env, "BPF_ST uses reserved fields\n"); 8611 return -EINVAL; 8612 } 8613 /* check src operand */ 8614 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8615 if (err) 8616 return err; 8617 8618 if (is_ctx_reg(env, insn->dst_reg)) { 8619 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 8620 insn->dst_reg, 8621 reg_type_str[reg_state(env, insn->dst_reg)->type]); 8622 return -EACCES; 8623 } 8624 8625 /* check that memory (dst_reg + off) is writeable */ 8626 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8627 insn->off, BPF_SIZE(insn->code), 8628 BPF_WRITE, -1, false); 8629 if (err) 8630 return err; 8631 8632 } else if (class == BPF_JMP || class == BPF_JMP32) { 8633 u8 opcode = BPF_OP(insn->code); 8634 8635 env->jmps_processed++; 8636 if (opcode == BPF_CALL) { 8637 if (BPF_SRC(insn->code) != BPF_K || 8638 insn->off != 0 || 8639 (insn->src_reg != BPF_REG_0 && 8640 insn->src_reg != BPF_PSEUDO_CALL) || 8641 insn->dst_reg != BPF_REG_0 || 8642 class == BPF_JMP32) { 8643 verbose(env, "BPF_CALL uses reserved fields\n"); 8644 return -EINVAL; 8645 } 8646 8647 if (env->cur_state->active_spin_lock && 8648 (insn->src_reg == BPF_PSEUDO_CALL || 8649 insn->imm != BPF_FUNC_spin_unlock)) { 8650 verbose(env, "function calls are not allowed while holding a lock\n"); 8651 return -EINVAL; 8652 } 8653 if (insn->src_reg == BPF_PSEUDO_CALL) 8654 err = check_func_call(env, insn, &env->insn_idx); 8655 else 8656 err = check_helper_call(env, insn->imm, env->insn_idx); 8657 if (err) 8658 return err; 8659 8660 } else if (opcode == BPF_JA) { 8661 if (BPF_SRC(insn->code) != BPF_K || 8662 insn->imm != 0 || 8663 insn->src_reg != BPF_REG_0 || 8664 insn->dst_reg != BPF_REG_0 || 8665 class == BPF_JMP32) { 8666 verbose(env, "BPF_JA uses reserved fields\n"); 8667 return -EINVAL; 8668 } 8669 8670 env->insn_idx += insn->off + 1; 8671 continue; 8672 8673 } else if (opcode == BPF_EXIT) { 8674 if (BPF_SRC(insn->code) != BPF_K || 8675 insn->imm != 0 || 8676 insn->src_reg != BPF_REG_0 || 8677 insn->dst_reg != BPF_REG_0 || 8678 class == BPF_JMP32) { 8679 verbose(env, "BPF_EXIT uses reserved fields\n"); 8680 return -EINVAL; 8681 } 8682 8683 if (env->cur_state->active_spin_lock) { 8684 verbose(env, "bpf_spin_unlock is missing\n"); 8685 return -EINVAL; 8686 } 8687 8688 if (state->curframe) { 8689 /* exit from nested function */ 8690 err = prepare_func_exit(env, &env->insn_idx); 8691 if (err) 8692 return err; 8693 do_print_state = true; 8694 continue; 8695 } 8696 8697 err = check_reference_leak(env); 8698 if (err) 8699 return err; 8700 8701 err = check_return_code(env); 8702 if (err) 8703 return err; 8704 process_bpf_exit: 8705 update_branch_counts(env, env->cur_state); 8706 err = pop_stack(env, &prev_insn_idx, 8707 &env->insn_idx); 8708 if (err < 0) { 8709 if (err != -ENOENT) 8710 return err; 8711 break; 8712 } else { 8713 do_print_state = true; 8714 continue; 8715 } 8716 } else { 8717 err = check_cond_jmp_op(env, insn, &env->insn_idx); 8718 if (err) 8719 return err; 8720 } 8721 } else if (class == BPF_LD) { 8722 u8 mode = BPF_MODE(insn->code); 8723 8724 if (mode == BPF_ABS || mode == BPF_IND) { 8725 err = check_ld_abs(env, insn); 8726 if (err) 8727 return err; 8728 8729 } else if (mode == BPF_IMM) { 8730 err = check_ld_imm(env, insn); 8731 if (err) 8732 return err; 8733 8734 env->insn_idx++; 8735 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8736 } else { 8737 verbose(env, "invalid BPF_LD mode\n"); 8738 return -EINVAL; 8739 } 8740 } else { 8741 verbose(env, "unknown insn class %d\n", class); 8742 return -EINVAL; 8743 } 8744 8745 env->insn_idx++; 8746 } 8747 8748 return 0; 8749 } 8750 8751 static int check_map_prealloc(struct bpf_map *map) 8752 { 8753 return (map->map_type != BPF_MAP_TYPE_HASH && 8754 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8755 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 8756 !(map->map_flags & BPF_F_NO_PREALLOC); 8757 } 8758 8759 static bool is_tracing_prog_type(enum bpf_prog_type type) 8760 { 8761 switch (type) { 8762 case BPF_PROG_TYPE_KPROBE: 8763 case BPF_PROG_TYPE_TRACEPOINT: 8764 case BPF_PROG_TYPE_PERF_EVENT: 8765 case BPF_PROG_TYPE_RAW_TRACEPOINT: 8766 return true; 8767 default: 8768 return false; 8769 } 8770 } 8771 8772 static bool is_preallocated_map(struct bpf_map *map) 8773 { 8774 if (!check_map_prealloc(map)) 8775 return false; 8776 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 8777 return false; 8778 return true; 8779 } 8780 8781 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 8782 struct bpf_map *map, 8783 struct bpf_prog *prog) 8784 8785 { 8786 /* 8787 * Validate that trace type programs use preallocated hash maps. 8788 * 8789 * For programs attached to PERF events this is mandatory as the 8790 * perf NMI can hit any arbitrary code sequence. 8791 * 8792 * All other trace types using preallocated hash maps are unsafe as 8793 * well because tracepoint or kprobes can be inside locked regions 8794 * of the memory allocator or at a place where a recursion into the 8795 * memory allocator would see inconsistent state. 8796 * 8797 * On RT enabled kernels run-time allocation of all trace type 8798 * programs is strictly prohibited due to lock type constraints. On 8799 * !RT kernels it is allowed for backwards compatibility reasons for 8800 * now, but warnings are emitted so developers are made aware of 8801 * the unsafety and can fix their programs before this is enforced. 8802 */ 8803 if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) { 8804 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 8805 verbose(env, "perf_event programs can only use preallocated hash map\n"); 8806 return -EINVAL; 8807 } 8808 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 8809 verbose(env, "trace type programs can only use preallocated hash map\n"); 8810 return -EINVAL; 8811 } 8812 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 8813 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 8814 } 8815 8816 if ((is_tracing_prog_type(prog->type) || 8817 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 8818 map_value_has_spin_lock(map)) { 8819 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 8820 return -EINVAL; 8821 } 8822 8823 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 8824 !bpf_offload_prog_map_match(prog, map)) { 8825 verbose(env, "offload device mismatch between prog and map\n"); 8826 return -EINVAL; 8827 } 8828 8829 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 8830 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 8831 return -EINVAL; 8832 } 8833 8834 return 0; 8835 } 8836 8837 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 8838 { 8839 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 8840 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 8841 } 8842 8843 /* look for pseudo eBPF instructions that access map FDs and 8844 * replace them with actual map pointers 8845 */ 8846 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 8847 { 8848 struct bpf_insn *insn = env->prog->insnsi; 8849 int insn_cnt = env->prog->len; 8850 int i, j, err; 8851 8852 err = bpf_prog_calc_tag(env->prog); 8853 if (err) 8854 return err; 8855 8856 for (i = 0; i < insn_cnt; i++, insn++) { 8857 if (BPF_CLASS(insn->code) == BPF_LDX && 8858 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 8859 verbose(env, "BPF_LDX uses reserved fields\n"); 8860 return -EINVAL; 8861 } 8862 8863 if (BPF_CLASS(insn->code) == BPF_STX && 8864 ((BPF_MODE(insn->code) != BPF_MEM && 8865 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 8866 verbose(env, "BPF_STX uses reserved fields\n"); 8867 return -EINVAL; 8868 } 8869 8870 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 8871 struct bpf_insn_aux_data *aux; 8872 struct bpf_map *map; 8873 struct fd f; 8874 u64 addr; 8875 8876 if (i == insn_cnt - 1 || insn[1].code != 0 || 8877 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 8878 insn[1].off != 0) { 8879 verbose(env, "invalid bpf_ld_imm64 insn\n"); 8880 return -EINVAL; 8881 } 8882 8883 if (insn[0].src_reg == 0) 8884 /* valid generic load 64-bit imm */ 8885 goto next_insn; 8886 8887 /* In final convert_pseudo_ld_imm64() step, this is 8888 * converted into regular 64-bit imm load insn. 8889 */ 8890 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 8891 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 8892 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 8893 insn[1].imm != 0)) { 8894 verbose(env, 8895 "unrecognized bpf_ld_imm64 insn\n"); 8896 return -EINVAL; 8897 } 8898 8899 f = fdget(insn[0].imm); 8900 map = __bpf_map_get(f); 8901 if (IS_ERR(map)) { 8902 verbose(env, "fd %d is not pointing to valid bpf_map\n", 8903 insn[0].imm); 8904 return PTR_ERR(map); 8905 } 8906 8907 err = check_map_prog_compatibility(env, map, env->prog); 8908 if (err) { 8909 fdput(f); 8910 return err; 8911 } 8912 8913 aux = &env->insn_aux_data[i]; 8914 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 8915 addr = (unsigned long)map; 8916 } else { 8917 u32 off = insn[1].imm; 8918 8919 if (off >= BPF_MAX_VAR_OFF) { 8920 verbose(env, "direct value offset of %u is not allowed\n", off); 8921 fdput(f); 8922 return -EINVAL; 8923 } 8924 8925 if (!map->ops->map_direct_value_addr) { 8926 verbose(env, "no direct value access support for this map type\n"); 8927 fdput(f); 8928 return -EINVAL; 8929 } 8930 8931 err = map->ops->map_direct_value_addr(map, &addr, off); 8932 if (err) { 8933 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 8934 map->value_size, off); 8935 fdput(f); 8936 return err; 8937 } 8938 8939 aux->map_off = off; 8940 addr += off; 8941 } 8942 8943 insn[0].imm = (u32)addr; 8944 insn[1].imm = addr >> 32; 8945 8946 /* check whether we recorded this map already */ 8947 for (j = 0; j < env->used_map_cnt; j++) { 8948 if (env->used_maps[j] == map) { 8949 aux->map_index = j; 8950 fdput(f); 8951 goto next_insn; 8952 } 8953 } 8954 8955 if (env->used_map_cnt >= MAX_USED_MAPS) { 8956 fdput(f); 8957 return -E2BIG; 8958 } 8959 8960 /* hold the map. If the program is rejected by verifier, 8961 * the map will be released by release_maps() or it 8962 * will be used by the valid program until it's unloaded 8963 * and all maps are released in free_used_maps() 8964 */ 8965 bpf_map_inc(map); 8966 8967 aux->map_index = env->used_map_cnt; 8968 env->used_maps[env->used_map_cnt++] = map; 8969 8970 if (bpf_map_is_cgroup_storage(map) && 8971 bpf_cgroup_storage_assign(env->prog->aux, map)) { 8972 verbose(env, "only one cgroup storage of each type is allowed\n"); 8973 fdput(f); 8974 return -EBUSY; 8975 } 8976 8977 fdput(f); 8978 next_insn: 8979 insn++; 8980 i++; 8981 continue; 8982 } 8983 8984 /* Basic sanity check before we invest more work here. */ 8985 if (!bpf_opcode_in_insntable(insn->code)) { 8986 verbose(env, "unknown opcode %02x\n", insn->code); 8987 return -EINVAL; 8988 } 8989 } 8990 8991 /* now all pseudo BPF_LD_IMM64 instructions load valid 8992 * 'struct bpf_map *' into a register instead of user map_fd. 8993 * These pointers will be used later by verifier to validate map access. 8994 */ 8995 return 0; 8996 } 8997 8998 /* drop refcnt of maps used by the rejected program */ 8999 static void release_maps(struct bpf_verifier_env *env) 9000 { 9001 __bpf_free_used_maps(env->prog->aux, env->used_maps, 9002 env->used_map_cnt); 9003 } 9004 9005 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 9006 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 9007 { 9008 struct bpf_insn *insn = env->prog->insnsi; 9009 int insn_cnt = env->prog->len; 9010 int i; 9011 9012 for (i = 0; i < insn_cnt; i++, insn++) 9013 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 9014 insn->src_reg = 0; 9015 } 9016 9017 /* single env->prog->insni[off] instruction was replaced with the range 9018 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 9019 * [0, off) and [off, end) to new locations, so the patched range stays zero 9020 */ 9021 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 9022 struct bpf_prog *new_prog, u32 off, u32 cnt) 9023 { 9024 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 9025 struct bpf_insn *insn = new_prog->insnsi; 9026 u32 prog_len; 9027 int i; 9028 9029 /* aux info at OFF always needs adjustment, no matter fast path 9030 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 9031 * original insn at old prog. 9032 */ 9033 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 9034 9035 if (cnt == 1) 9036 return 0; 9037 prog_len = new_prog->len; 9038 new_data = vzalloc(array_size(prog_len, 9039 sizeof(struct bpf_insn_aux_data))); 9040 if (!new_data) 9041 return -ENOMEM; 9042 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 9043 memcpy(new_data + off + cnt - 1, old_data + off, 9044 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 9045 for (i = off; i < off + cnt - 1; i++) { 9046 new_data[i].seen = env->pass_cnt; 9047 new_data[i].zext_dst = insn_has_def32(env, insn + i); 9048 } 9049 env->insn_aux_data = new_data; 9050 vfree(old_data); 9051 return 0; 9052 } 9053 9054 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 9055 { 9056 int i; 9057 9058 if (len == 1) 9059 return; 9060 /* NOTE: fake 'exit' subprog should be updated as well. */ 9061 for (i = 0; i <= env->subprog_cnt; i++) { 9062 if (env->subprog_info[i].start <= off) 9063 continue; 9064 env->subprog_info[i].start += len - 1; 9065 } 9066 } 9067 9068 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 9069 const struct bpf_insn *patch, u32 len) 9070 { 9071 struct bpf_prog *new_prog; 9072 9073 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 9074 if (IS_ERR(new_prog)) { 9075 if (PTR_ERR(new_prog) == -ERANGE) 9076 verbose(env, 9077 "insn %d cannot be patched due to 16-bit range\n", 9078 env->insn_aux_data[off].orig_idx); 9079 return NULL; 9080 } 9081 if (adjust_insn_aux_data(env, new_prog, off, len)) 9082 return NULL; 9083 adjust_subprog_starts(env, off, len); 9084 return new_prog; 9085 } 9086 9087 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 9088 u32 off, u32 cnt) 9089 { 9090 int i, j; 9091 9092 /* find first prog starting at or after off (first to remove) */ 9093 for (i = 0; i < env->subprog_cnt; i++) 9094 if (env->subprog_info[i].start >= off) 9095 break; 9096 /* find first prog starting at or after off + cnt (first to stay) */ 9097 for (j = i; j < env->subprog_cnt; j++) 9098 if (env->subprog_info[j].start >= off + cnt) 9099 break; 9100 /* if j doesn't start exactly at off + cnt, we are just removing 9101 * the front of previous prog 9102 */ 9103 if (env->subprog_info[j].start != off + cnt) 9104 j--; 9105 9106 if (j > i) { 9107 struct bpf_prog_aux *aux = env->prog->aux; 9108 int move; 9109 9110 /* move fake 'exit' subprog as well */ 9111 move = env->subprog_cnt + 1 - j; 9112 9113 memmove(env->subprog_info + i, 9114 env->subprog_info + j, 9115 sizeof(*env->subprog_info) * move); 9116 env->subprog_cnt -= j - i; 9117 9118 /* remove func_info */ 9119 if (aux->func_info) { 9120 move = aux->func_info_cnt - j; 9121 9122 memmove(aux->func_info + i, 9123 aux->func_info + j, 9124 sizeof(*aux->func_info) * move); 9125 aux->func_info_cnt -= j - i; 9126 /* func_info->insn_off is set after all code rewrites, 9127 * in adjust_btf_func() - no need to adjust 9128 */ 9129 } 9130 } else { 9131 /* convert i from "first prog to remove" to "first to adjust" */ 9132 if (env->subprog_info[i].start == off) 9133 i++; 9134 } 9135 9136 /* update fake 'exit' subprog as well */ 9137 for (; i <= env->subprog_cnt; i++) 9138 env->subprog_info[i].start -= cnt; 9139 9140 return 0; 9141 } 9142 9143 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 9144 u32 cnt) 9145 { 9146 struct bpf_prog *prog = env->prog; 9147 u32 i, l_off, l_cnt, nr_linfo; 9148 struct bpf_line_info *linfo; 9149 9150 nr_linfo = prog->aux->nr_linfo; 9151 if (!nr_linfo) 9152 return 0; 9153 9154 linfo = prog->aux->linfo; 9155 9156 /* find first line info to remove, count lines to be removed */ 9157 for (i = 0; i < nr_linfo; i++) 9158 if (linfo[i].insn_off >= off) 9159 break; 9160 9161 l_off = i; 9162 l_cnt = 0; 9163 for (; i < nr_linfo; i++) 9164 if (linfo[i].insn_off < off + cnt) 9165 l_cnt++; 9166 else 9167 break; 9168 9169 /* First live insn doesn't match first live linfo, it needs to "inherit" 9170 * last removed linfo. prog is already modified, so prog->len == off 9171 * means no live instructions after (tail of the program was removed). 9172 */ 9173 if (prog->len != off && l_cnt && 9174 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 9175 l_cnt--; 9176 linfo[--i].insn_off = off + cnt; 9177 } 9178 9179 /* remove the line info which refer to the removed instructions */ 9180 if (l_cnt) { 9181 memmove(linfo + l_off, linfo + i, 9182 sizeof(*linfo) * (nr_linfo - i)); 9183 9184 prog->aux->nr_linfo -= l_cnt; 9185 nr_linfo = prog->aux->nr_linfo; 9186 } 9187 9188 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 9189 for (i = l_off; i < nr_linfo; i++) 9190 linfo[i].insn_off -= cnt; 9191 9192 /* fix up all subprogs (incl. 'exit') which start >= off */ 9193 for (i = 0; i <= env->subprog_cnt; i++) 9194 if (env->subprog_info[i].linfo_idx > l_off) { 9195 /* program may have started in the removed region but 9196 * may not be fully removed 9197 */ 9198 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 9199 env->subprog_info[i].linfo_idx -= l_cnt; 9200 else 9201 env->subprog_info[i].linfo_idx = l_off; 9202 } 9203 9204 return 0; 9205 } 9206 9207 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 9208 { 9209 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9210 unsigned int orig_prog_len = env->prog->len; 9211 int err; 9212 9213 if (bpf_prog_is_dev_bound(env->prog->aux)) 9214 bpf_prog_offload_remove_insns(env, off, cnt); 9215 9216 err = bpf_remove_insns(env->prog, off, cnt); 9217 if (err) 9218 return err; 9219 9220 err = adjust_subprog_starts_after_remove(env, off, cnt); 9221 if (err) 9222 return err; 9223 9224 err = bpf_adj_linfo_after_remove(env, off, cnt); 9225 if (err) 9226 return err; 9227 9228 memmove(aux_data + off, aux_data + off + cnt, 9229 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 9230 9231 return 0; 9232 } 9233 9234 /* The verifier does more data flow analysis than llvm and will not 9235 * explore branches that are dead at run time. Malicious programs can 9236 * have dead code too. Therefore replace all dead at-run-time code 9237 * with 'ja -1'. 9238 * 9239 * Just nops are not optimal, e.g. if they would sit at the end of the 9240 * program and through another bug we would manage to jump there, then 9241 * we'd execute beyond program memory otherwise. Returning exception 9242 * code also wouldn't work since we can have subprogs where the dead 9243 * code could be located. 9244 */ 9245 static void sanitize_dead_code(struct bpf_verifier_env *env) 9246 { 9247 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9248 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 9249 struct bpf_insn *insn = env->prog->insnsi; 9250 const int insn_cnt = env->prog->len; 9251 int i; 9252 9253 for (i = 0; i < insn_cnt; i++) { 9254 if (aux_data[i].seen) 9255 continue; 9256 memcpy(insn + i, &trap, sizeof(trap)); 9257 } 9258 } 9259 9260 static bool insn_is_cond_jump(u8 code) 9261 { 9262 u8 op; 9263 9264 if (BPF_CLASS(code) == BPF_JMP32) 9265 return true; 9266 9267 if (BPF_CLASS(code) != BPF_JMP) 9268 return false; 9269 9270 op = BPF_OP(code); 9271 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 9272 } 9273 9274 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 9275 { 9276 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9277 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9278 struct bpf_insn *insn = env->prog->insnsi; 9279 const int insn_cnt = env->prog->len; 9280 int i; 9281 9282 for (i = 0; i < insn_cnt; i++, insn++) { 9283 if (!insn_is_cond_jump(insn->code)) 9284 continue; 9285 9286 if (!aux_data[i + 1].seen) 9287 ja.off = insn->off; 9288 else if (!aux_data[i + 1 + insn->off].seen) 9289 ja.off = 0; 9290 else 9291 continue; 9292 9293 if (bpf_prog_is_dev_bound(env->prog->aux)) 9294 bpf_prog_offload_replace_insn(env, i, &ja); 9295 9296 memcpy(insn, &ja, sizeof(ja)); 9297 } 9298 } 9299 9300 static int opt_remove_dead_code(struct bpf_verifier_env *env) 9301 { 9302 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9303 int insn_cnt = env->prog->len; 9304 int i, err; 9305 9306 for (i = 0; i < insn_cnt; i++) { 9307 int j; 9308 9309 j = 0; 9310 while (i + j < insn_cnt && !aux_data[i + j].seen) 9311 j++; 9312 if (!j) 9313 continue; 9314 9315 err = verifier_remove_insns(env, i, j); 9316 if (err) 9317 return err; 9318 insn_cnt = env->prog->len; 9319 } 9320 9321 return 0; 9322 } 9323 9324 static int opt_remove_nops(struct bpf_verifier_env *env) 9325 { 9326 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9327 struct bpf_insn *insn = env->prog->insnsi; 9328 int insn_cnt = env->prog->len; 9329 int i, err; 9330 9331 for (i = 0; i < insn_cnt; i++) { 9332 if (memcmp(&insn[i], &ja, sizeof(ja))) 9333 continue; 9334 9335 err = verifier_remove_insns(env, i, 1); 9336 if (err) 9337 return err; 9338 insn_cnt--; 9339 i--; 9340 } 9341 9342 return 0; 9343 } 9344 9345 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 9346 const union bpf_attr *attr) 9347 { 9348 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 9349 struct bpf_insn_aux_data *aux = env->insn_aux_data; 9350 int i, patch_len, delta = 0, len = env->prog->len; 9351 struct bpf_insn *insns = env->prog->insnsi; 9352 struct bpf_prog *new_prog; 9353 bool rnd_hi32; 9354 9355 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 9356 zext_patch[1] = BPF_ZEXT_REG(0); 9357 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 9358 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 9359 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 9360 for (i = 0; i < len; i++) { 9361 int adj_idx = i + delta; 9362 struct bpf_insn insn; 9363 9364 insn = insns[adj_idx]; 9365 if (!aux[adj_idx].zext_dst) { 9366 u8 code, class; 9367 u32 imm_rnd; 9368 9369 if (!rnd_hi32) 9370 continue; 9371 9372 code = insn.code; 9373 class = BPF_CLASS(code); 9374 if (insn_no_def(&insn)) 9375 continue; 9376 9377 /* NOTE: arg "reg" (the fourth one) is only used for 9378 * BPF_STX which has been ruled out in above 9379 * check, it is safe to pass NULL here. 9380 */ 9381 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 9382 if (class == BPF_LD && 9383 BPF_MODE(code) == BPF_IMM) 9384 i++; 9385 continue; 9386 } 9387 9388 /* ctx load could be transformed into wider load. */ 9389 if (class == BPF_LDX && 9390 aux[adj_idx].ptr_type == PTR_TO_CTX) 9391 continue; 9392 9393 imm_rnd = get_random_int(); 9394 rnd_hi32_patch[0] = insn; 9395 rnd_hi32_patch[1].imm = imm_rnd; 9396 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 9397 patch = rnd_hi32_patch; 9398 patch_len = 4; 9399 goto apply_patch_buffer; 9400 } 9401 9402 if (!bpf_jit_needs_zext()) 9403 continue; 9404 9405 zext_patch[0] = insn; 9406 zext_patch[1].dst_reg = insn.dst_reg; 9407 zext_patch[1].src_reg = insn.dst_reg; 9408 patch = zext_patch; 9409 patch_len = 2; 9410 apply_patch_buffer: 9411 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 9412 if (!new_prog) 9413 return -ENOMEM; 9414 env->prog = new_prog; 9415 insns = new_prog->insnsi; 9416 aux = env->insn_aux_data; 9417 delta += patch_len - 1; 9418 } 9419 9420 return 0; 9421 } 9422 9423 /* convert load instructions that access fields of a context type into a 9424 * sequence of instructions that access fields of the underlying structure: 9425 * struct __sk_buff -> struct sk_buff 9426 * struct bpf_sock_ops -> struct sock 9427 */ 9428 static int convert_ctx_accesses(struct bpf_verifier_env *env) 9429 { 9430 const struct bpf_verifier_ops *ops = env->ops; 9431 int i, cnt, size, ctx_field_size, delta = 0; 9432 const int insn_cnt = env->prog->len; 9433 struct bpf_insn insn_buf[16], *insn; 9434 u32 target_size, size_default, off; 9435 struct bpf_prog *new_prog; 9436 enum bpf_access_type type; 9437 bool is_narrower_load; 9438 9439 if (ops->gen_prologue || env->seen_direct_write) { 9440 if (!ops->gen_prologue) { 9441 verbose(env, "bpf verifier is misconfigured\n"); 9442 return -EINVAL; 9443 } 9444 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 9445 env->prog); 9446 if (cnt >= ARRAY_SIZE(insn_buf)) { 9447 verbose(env, "bpf verifier is misconfigured\n"); 9448 return -EINVAL; 9449 } else if (cnt) { 9450 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 9451 if (!new_prog) 9452 return -ENOMEM; 9453 9454 env->prog = new_prog; 9455 delta += cnt - 1; 9456 } 9457 } 9458 9459 if (bpf_prog_is_dev_bound(env->prog->aux)) 9460 return 0; 9461 9462 insn = env->prog->insnsi + delta; 9463 9464 for (i = 0; i < insn_cnt; i++, insn++) { 9465 bpf_convert_ctx_access_t convert_ctx_access; 9466 9467 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 9468 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 9469 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 9470 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 9471 type = BPF_READ; 9472 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 9473 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 9474 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 9475 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 9476 type = BPF_WRITE; 9477 else 9478 continue; 9479 9480 if (type == BPF_WRITE && 9481 env->insn_aux_data[i + delta].sanitize_stack_off) { 9482 struct bpf_insn patch[] = { 9483 /* Sanitize suspicious stack slot with zero. 9484 * There are no memory dependencies for this store, 9485 * since it's only using frame pointer and immediate 9486 * constant of zero 9487 */ 9488 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 9489 env->insn_aux_data[i + delta].sanitize_stack_off, 9490 0), 9491 /* the original STX instruction will immediately 9492 * overwrite the same stack slot with appropriate value 9493 */ 9494 *insn, 9495 }; 9496 9497 cnt = ARRAY_SIZE(patch); 9498 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 9499 if (!new_prog) 9500 return -ENOMEM; 9501 9502 delta += cnt - 1; 9503 env->prog = new_prog; 9504 insn = new_prog->insnsi + i + delta; 9505 continue; 9506 } 9507 9508 switch (env->insn_aux_data[i + delta].ptr_type) { 9509 case PTR_TO_CTX: 9510 if (!ops->convert_ctx_access) 9511 continue; 9512 convert_ctx_access = ops->convert_ctx_access; 9513 break; 9514 case PTR_TO_SOCKET: 9515 case PTR_TO_SOCK_COMMON: 9516 convert_ctx_access = bpf_sock_convert_ctx_access; 9517 break; 9518 case PTR_TO_TCP_SOCK: 9519 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 9520 break; 9521 case PTR_TO_XDP_SOCK: 9522 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 9523 break; 9524 case PTR_TO_BTF_ID: 9525 if (type == BPF_READ) { 9526 insn->code = BPF_LDX | BPF_PROBE_MEM | 9527 BPF_SIZE((insn)->code); 9528 env->prog->aux->num_exentries++; 9529 } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9530 verbose(env, "Writes through BTF pointers are not allowed\n"); 9531 return -EINVAL; 9532 } 9533 continue; 9534 default: 9535 continue; 9536 } 9537 9538 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 9539 size = BPF_LDST_BYTES(insn); 9540 9541 /* If the read access is a narrower load of the field, 9542 * convert to a 4/8-byte load, to minimum program type specific 9543 * convert_ctx_access changes. If conversion is successful, 9544 * we will apply proper mask to the result. 9545 */ 9546 is_narrower_load = size < ctx_field_size; 9547 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 9548 off = insn->off; 9549 if (is_narrower_load) { 9550 u8 size_code; 9551 9552 if (type == BPF_WRITE) { 9553 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 9554 return -EINVAL; 9555 } 9556 9557 size_code = BPF_H; 9558 if (ctx_field_size == 4) 9559 size_code = BPF_W; 9560 else if (ctx_field_size == 8) 9561 size_code = BPF_DW; 9562 9563 insn->off = off & ~(size_default - 1); 9564 insn->code = BPF_LDX | BPF_MEM | size_code; 9565 } 9566 9567 target_size = 0; 9568 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 9569 &target_size); 9570 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 9571 (ctx_field_size && !target_size)) { 9572 verbose(env, "bpf verifier is misconfigured\n"); 9573 return -EINVAL; 9574 } 9575 9576 if (is_narrower_load && size < target_size) { 9577 u8 shift = bpf_ctx_narrow_access_offset( 9578 off, size, size_default) * 8; 9579 if (ctx_field_size <= 4) { 9580 if (shift) 9581 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 9582 insn->dst_reg, 9583 shift); 9584 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 9585 (1 << size * 8) - 1); 9586 } else { 9587 if (shift) 9588 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 9589 insn->dst_reg, 9590 shift); 9591 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 9592 (1ULL << size * 8) - 1); 9593 } 9594 } 9595 9596 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9597 if (!new_prog) 9598 return -ENOMEM; 9599 9600 delta += cnt - 1; 9601 9602 /* keep walking new program and skip insns we just inserted */ 9603 env->prog = new_prog; 9604 insn = new_prog->insnsi + i + delta; 9605 } 9606 9607 return 0; 9608 } 9609 9610 static int jit_subprogs(struct bpf_verifier_env *env) 9611 { 9612 struct bpf_prog *prog = env->prog, **func, *tmp; 9613 int i, j, subprog_start, subprog_end = 0, len, subprog; 9614 struct bpf_insn *insn; 9615 void *old_bpf_func; 9616 int err; 9617 9618 if (env->subprog_cnt <= 1) 9619 return 0; 9620 9621 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9622 if (insn->code != (BPF_JMP | BPF_CALL) || 9623 insn->src_reg != BPF_PSEUDO_CALL) 9624 continue; 9625 /* Upon error here we cannot fall back to interpreter but 9626 * need a hard reject of the program. Thus -EFAULT is 9627 * propagated in any case. 9628 */ 9629 subprog = find_subprog(env, i + insn->imm + 1); 9630 if (subprog < 0) { 9631 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 9632 i + insn->imm + 1); 9633 return -EFAULT; 9634 } 9635 /* temporarily remember subprog id inside insn instead of 9636 * aux_data, since next loop will split up all insns into funcs 9637 */ 9638 insn->off = subprog; 9639 /* remember original imm in case JIT fails and fallback 9640 * to interpreter will be needed 9641 */ 9642 env->insn_aux_data[i].call_imm = insn->imm; 9643 /* point imm to __bpf_call_base+1 from JITs point of view */ 9644 insn->imm = 1; 9645 } 9646 9647 err = bpf_prog_alloc_jited_linfo(prog); 9648 if (err) 9649 goto out_undo_insn; 9650 9651 err = -ENOMEM; 9652 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 9653 if (!func) 9654 goto out_undo_insn; 9655 9656 for (i = 0; i < env->subprog_cnt; i++) { 9657 subprog_start = subprog_end; 9658 subprog_end = env->subprog_info[i + 1].start; 9659 9660 len = subprog_end - subprog_start; 9661 /* BPF_PROG_RUN doesn't call subprogs directly, 9662 * hence main prog stats include the runtime of subprogs. 9663 * subprogs don't have IDs and not reachable via prog_get_next_id 9664 * func[i]->aux->stats will never be accessed and stays NULL 9665 */ 9666 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 9667 if (!func[i]) 9668 goto out_free; 9669 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 9670 len * sizeof(struct bpf_insn)); 9671 func[i]->type = prog->type; 9672 func[i]->len = len; 9673 if (bpf_prog_calc_tag(func[i])) 9674 goto out_free; 9675 func[i]->is_func = 1; 9676 func[i]->aux->func_idx = i; 9677 /* the btf and func_info will be freed only at prog->aux */ 9678 func[i]->aux->btf = prog->aux->btf; 9679 func[i]->aux->func_info = prog->aux->func_info; 9680 9681 /* Use bpf_prog_F_tag to indicate functions in stack traces. 9682 * Long term would need debug info to populate names 9683 */ 9684 func[i]->aux->name[0] = 'F'; 9685 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 9686 func[i]->jit_requested = 1; 9687 func[i]->aux->linfo = prog->aux->linfo; 9688 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 9689 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 9690 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 9691 func[i] = bpf_int_jit_compile(func[i]); 9692 if (!func[i]->jited) { 9693 err = -ENOTSUPP; 9694 goto out_free; 9695 } 9696 cond_resched(); 9697 } 9698 /* at this point all bpf functions were successfully JITed 9699 * now populate all bpf_calls with correct addresses and 9700 * run last pass of JIT 9701 */ 9702 for (i = 0; i < env->subprog_cnt; i++) { 9703 insn = func[i]->insnsi; 9704 for (j = 0; j < func[i]->len; j++, insn++) { 9705 if (insn->code != (BPF_JMP | BPF_CALL) || 9706 insn->src_reg != BPF_PSEUDO_CALL) 9707 continue; 9708 subprog = insn->off; 9709 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 9710 __bpf_call_base; 9711 } 9712 9713 /* we use the aux data to keep a list of the start addresses 9714 * of the JITed images for each function in the program 9715 * 9716 * for some architectures, such as powerpc64, the imm field 9717 * might not be large enough to hold the offset of the start 9718 * address of the callee's JITed image from __bpf_call_base 9719 * 9720 * in such cases, we can lookup the start address of a callee 9721 * by using its subprog id, available from the off field of 9722 * the call instruction, as an index for this list 9723 */ 9724 func[i]->aux->func = func; 9725 func[i]->aux->func_cnt = env->subprog_cnt; 9726 } 9727 for (i = 0; i < env->subprog_cnt; i++) { 9728 old_bpf_func = func[i]->bpf_func; 9729 tmp = bpf_int_jit_compile(func[i]); 9730 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 9731 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 9732 err = -ENOTSUPP; 9733 goto out_free; 9734 } 9735 cond_resched(); 9736 } 9737 9738 /* finally lock prog and jit images for all functions and 9739 * populate kallsysm 9740 */ 9741 for (i = 0; i < env->subprog_cnt; i++) { 9742 bpf_prog_lock_ro(func[i]); 9743 bpf_prog_kallsyms_add(func[i]); 9744 } 9745 9746 /* Last step: make now unused interpreter insns from main 9747 * prog consistent for later dump requests, so they can 9748 * later look the same as if they were interpreted only. 9749 */ 9750 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9751 if (insn->code != (BPF_JMP | BPF_CALL) || 9752 insn->src_reg != BPF_PSEUDO_CALL) 9753 continue; 9754 insn->off = env->insn_aux_data[i].call_imm; 9755 subprog = find_subprog(env, i + insn->off + 1); 9756 insn->imm = subprog; 9757 } 9758 9759 prog->jited = 1; 9760 prog->bpf_func = func[0]->bpf_func; 9761 prog->aux->func = func; 9762 prog->aux->func_cnt = env->subprog_cnt; 9763 bpf_prog_free_unused_jited_linfo(prog); 9764 return 0; 9765 out_free: 9766 for (i = 0; i < env->subprog_cnt; i++) 9767 if (func[i]) 9768 bpf_jit_free(func[i]); 9769 kfree(func); 9770 out_undo_insn: 9771 /* cleanup main prog to be interpreted */ 9772 prog->jit_requested = 0; 9773 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9774 if (insn->code != (BPF_JMP | BPF_CALL) || 9775 insn->src_reg != BPF_PSEUDO_CALL) 9776 continue; 9777 insn->off = 0; 9778 insn->imm = env->insn_aux_data[i].call_imm; 9779 } 9780 bpf_prog_free_jited_linfo(prog); 9781 return err; 9782 } 9783 9784 static int fixup_call_args(struct bpf_verifier_env *env) 9785 { 9786 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9787 struct bpf_prog *prog = env->prog; 9788 struct bpf_insn *insn = prog->insnsi; 9789 int i, depth; 9790 #endif 9791 int err = 0; 9792 9793 if (env->prog->jit_requested && 9794 !bpf_prog_is_dev_bound(env->prog->aux)) { 9795 err = jit_subprogs(env); 9796 if (err == 0) 9797 return 0; 9798 if (err == -EFAULT) 9799 return err; 9800 } 9801 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9802 for (i = 0; i < prog->len; i++, insn++) { 9803 if (insn->code != (BPF_JMP | BPF_CALL) || 9804 insn->src_reg != BPF_PSEUDO_CALL) 9805 continue; 9806 depth = get_callee_stack_depth(env, insn, i); 9807 if (depth < 0) 9808 return depth; 9809 bpf_patch_call_args(insn, depth); 9810 } 9811 err = 0; 9812 #endif 9813 return err; 9814 } 9815 9816 /* fixup insn->imm field of bpf_call instructions 9817 * and inline eligible helpers as explicit sequence of BPF instructions 9818 * 9819 * this function is called after eBPF program passed verification 9820 */ 9821 static int fixup_bpf_calls(struct bpf_verifier_env *env) 9822 { 9823 struct bpf_prog *prog = env->prog; 9824 bool expect_blinding = bpf_jit_blinding_enabled(prog); 9825 struct bpf_insn *insn = prog->insnsi; 9826 const struct bpf_func_proto *fn; 9827 const int insn_cnt = prog->len; 9828 const struct bpf_map_ops *ops; 9829 struct bpf_insn_aux_data *aux; 9830 struct bpf_insn insn_buf[16]; 9831 struct bpf_prog *new_prog; 9832 struct bpf_map *map_ptr; 9833 int i, ret, cnt, delta = 0; 9834 9835 for (i = 0; i < insn_cnt; i++, insn++) { 9836 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 9837 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9838 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 9839 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9840 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 9841 struct bpf_insn mask_and_div[] = { 9842 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9843 /* Rx div 0 -> 0 */ 9844 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 9845 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 9846 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 9847 *insn, 9848 }; 9849 struct bpf_insn mask_and_mod[] = { 9850 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9851 /* Rx mod 0 -> Rx */ 9852 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 9853 *insn, 9854 }; 9855 struct bpf_insn *patchlet; 9856 9857 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9858 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9859 patchlet = mask_and_div + (is64 ? 1 : 0); 9860 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 9861 } else { 9862 patchlet = mask_and_mod + (is64 ? 1 : 0); 9863 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 9864 } 9865 9866 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 9867 if (!new_prog) 9868 return -ENOMEM; 9869 9870 delta += cnt - 1; 9871 env->prog = prog = new_prog; 9872 insn = new_prog->insnsi + i + delta; 9873 continue; 9874 } 9875 9876 if (BPF_CLASS(insn->code) == BPF_LD && 9877 (BPF_MODE(insn->code) == BPF_ABS || 9878 BPF_MODE(insn->code) == BPF_IND)) { 9879 cnt = env->ops->gen_ld_abs(insn, insn_buf); 9880 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9881 verbose(env, "bpf verifier is misconfigured\n"); 9882 return -EINVAL; 9883 } 9884 9885 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9886 if (!new_prog) 9887 return -ENOMEM; 9888 9889 delta += cnt - 1; 9890 env->prog = prog = new_prog; 9891 insn = new_prog->insnsi + i + delta; 9892 continue; 9893 } 9894 9895 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 9896 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 9897 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 9898 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 9899 struct bpf_insn insn_buf[16]; 9900 struct bpf_insn *patch = &insn_buf[0]; 9901 bool issrc, isneg; 9902 u32 off_reg; 9903 9904 aux = &env->insn_aux_data[i + delta]; 9905 if (!aux->alu_state || 9906 aux->alu_state == BPF_ALU_NON_POINTER) 9907 continue; 9908 9909 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 9910 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 9911 BPF_ALU_SANITIZE_SRC; 9912 9913 off_reg = issrc ? insn->src_reg : insn->dst_reg; 9914 if (isneg) 9915 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9916 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 9917 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 9918 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 9919 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 9920 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 9921 if (issrc) { 9922 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 9923 off_reg); 9924 insn->src_reg = BPF_REG_AX; 9925 } else { 9926 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 9927 BPF_REG_AX); 9928 } 9929 if (isneg) 9930 insn->code = insn->code == code_add ? 9931 code_sub : code_add; 9932 *patch++ = *insn; 9933 if (issrc && isneg) 9934 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9935 cnt = patch - insn_buf; 9936 9937 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9938 if (!new_prog) 9939 return -ENOMEM; 9940 9941 delta += cnt - 1; 9942 env->prog = prog = new_prog; 9943 insn = new_prog->insnsi + i + delta; 9944 continue; 9945 } 9946 9947 if (insn->code != (BPF_JMP | BPF_CALL)) 9948 continue; 9949 if (insn->src_reg == BPF_PSEUDO_CALL) 9950 continue; 9951 9952 if (insn->imm == BPF_FUNC_get_route_realm) 9953 prog->dst_needed = 1; 9954 if (insn->imm == BPF_FUNC_get_prandom_u32) 9955 bpf_user_rnd_init_once(); 9956 if (insn->imm == BPF_FUNC_override_return) 9957 prog->kprobe_override = 1; 9958 if (insn->imm == BPF_FUNC_tail_call) { 9959 /* If we tail call into other programs, we 9960 * cannot make any assumptions since they can 9961 * be replaced dynamically during runtime in 9962 * the program array. 9963 */ 9964 prog->cb_access = 1; 9965 env->prog->aux->stack_depth = MAX_BPF_STACK; 9966 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 9967 9968 /* mark bpf_tail_call as different opcode to avoid 9969 * conditional branch in the interpeter for every normal 9970 * call and to prevent accidental JITing by JIT compiler 9971 * that doesn't support bpf_tail_call yet 9972 */ 9973 insn->imm = 0; 9974 insn->code = BPF_JMP | BPF_TAIL_CALL; 9975 9976 aux = &env->insn_aux_data[i + delta]; 9977 if (env->allow_ptr_leaks && !expect_blinding && 9978 prog->jit_requested && 9979 !bpf_map_key_poisoned(aux) && 9980 !bpf_map_ptr_poisoned(aux) && 9981 !bpf_map_ptr_unpriv(aux)) { 9982 struct bpf_jit_poke_descriptor desc = { 9983 .reason = BPF_POKE_REASON_TAIL_CALL, 9984 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 9985 .tail_call.key = bpf_map_key_immediate(aux), 9986 }; 9987 9988 ret = bpf_jit_add_poke_descriptor(prog, &desc); 9989 if (ret < 0) { 9990 verbose(env, "adding tail call poke descriptor failed\n"); 9991 return ret; 9992 } 9993 9994 insn->imm = ret + 1; 9995 continue; 9996 } 9997 9998 if (!bpf_map_ptr_unpriv(aux)) 9999 continue; 10000 10001 /* instead of changing every JIT dealing with tail_call 10002 * emit two extra insns: 10003 * if (index >= max_entries) goto out; 10004 * index &= array->index_mask; 10005 * to avoid out-of-bounds cpu speculation 10006 */ 10007 if (bpf_map_ptr_poisoned(aux)) { 10008 verbose(env, "tail_call abusing map_ptr\n"); 10009 return -EINVAL; 10010 } 10011 10012 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10013 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 10014 map_ptr->max_entries, 2); 10015 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 10016 container_of(map_ptr, 10017 struct bpf_array, 10018 map)->index_mask); 10019 insn_buf[2] = *insn; 10020 cnt = 3; 10021 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10022 if (!new_prog) 10023 return -ENOMEM; 10024 10025 delta += cnt - 1; 10026 env->prog = prog = new_prog; 10027 insn = new_prog->insnsi + i + delta; 10028 continue; 10029 } 10030 10031 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 10032 * and other inlining handlers are currently limited to 64 bit 10033 * only. 10034 */ 10035 if (prog->jit_requested && BITS_PER_LONG == 64 && 10036 (insn->imm == BPF_FUNC_map_lookup_elem || 10037 insn->imm == BPF_FUNC_map_update_elem || 10038 insn->imm == BPF_FUNC_map_delete_elem || 10039 insn->imm == BPF_FUNC_map_push_elem || 10040 insn->imm == BPF_FUNC_map_pop_elem || 10041 insn->imm == BPF_FUNC_map_peek_elem)) { 10042 aux = &env->insn_aux_data[i + delta]; 10043 if (bpf_map_ptr_poisoned(aux)) 10044 goto patch_call_imm; 10045 10046 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10047 ops = map_ptr->ops; 10048 if (insn->imm == BPF_FUNC_map_lookup_elem && 10049 ops->map_gen_lookup) { 10050 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 10051 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10052 verbose(env, "bpf verifier is misconfigured\n"); 10053 return -EINVAL; 10054 } 10055 10056 new_prog = bpf_patch_insn_data(env, i + delta, 10057 insn_buf, cnt); 10058 if (!new_prog) 10059 return -ENOMEM; 10060 10061 delta += cnt - 1; 10062 env->prog = prog = new_prog; 10063 insn = new_prog->insnsi + i + delta; 10064 continue; 10065 } 10066 10067 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 10068 (void *(*)(struct bpf_map *map, void *key))NULL)); 10069 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 10070 (int (*)(struct bpf_map *map, void *key))NULL)); 10071 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 10072 (int (*)(struct bpf_map *map, void *key, void *value, 10073 u64 flags))NULL)); 10074 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 10075 (int (*)(struct bpf_map *map, void *value, 10076 u64 flags))NULL)); 10077 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 10078 (int (*)(struct bpf_map *map, void *value))NULL)); 10079 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 10080 (int (*)(struct bpf_map *map, void *value))NULL)); 10081 10082 switch (insn->imm) { 10083 case BPF_FUNC_map_lookup_elem: 10084 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 10085 __bpf_call_base; 10086 continue; 10087 case BPF_FUNC_map_update_elem: 10088 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 10089 __bpf_call_base; 10090 continue; 10091 case BPF_FUNC_map_delete_elem: 10092 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 10093 __bpf_call_base; 10094 continue; 10095 case BPF_FUNC_map_push_elem: 10096 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 10097 __bpf_call_base; 10098 continue; 10099 case BPF_FUNC_map_pop_elem: 10100 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 10101 __bpf_call_base; 10102 continue; 10103 case BPF_FUNC_map_peek_elem: 10104 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 10105 __bpf_call_base; 10106 continue; 10107 } 10108 10109 goto patch_call_imm; 10110 } 10111 10112 if (prog->jit_requested && BITS_PER_LONG == 64 && 10113 insn->imm == BPF_FUNC_jiffies64) { 10114 struct bpf_insn ld_jiffies_addr[2] = { 10115 BPF_LD_IMM64(BPF_REG_0, 10116 (unsigned long)&jiffies), 10117 }; 10118 10119 insn_buf[0] = ld_jiffies_addr[0]; 10120 insn_buf[1] = ld_jiffies_addr[1]; 10121 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 10122 BPF_REG_0, 0); 10123 cnt = 3; 10124 10125 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 10126 cnt); 10127 if (!new_prog) 10128 return -ENOMEM; 10129 10130 delta += cnt - 1; 10131 env->prog = prog = new_prog; 10132 insn = new_prog->insnsi + i + delta; 10133 continue; 10134 } 10135 10136 patch_call_imm: 10137 fn = env->ops->get_func_proto(insn->imm, env->prog); 10138 /* all functions that have prototype and verifier allowed 10139 * programs to call them, must be real in-kernel functions 10140 */ 10141 if (!fn->func) { 10142 verbose(env, 10143 "kernel subsystem misconfigured func %s#%d\n", 10144 func_id_name(insn->imm), insn->imm); 10145 return -EFAULT; 10146 } 10147 insn->imm = fn->func - __bpf_call_base; 10148 } 10149 10150 /* Since poke tab is now finalized, publish aux to tracker. */ 10151 for (i = 0; i < prog->aux->size_poke_tab; i++) { 10152 map_ptr = prog->aux->poke_tab[i].tail_call.map; 10153 if (!map_ptr->ops->map_poke_track || 10154 !map_ptr->ops->map_poke_untrack || 10155 !map_ptr->ops->map_poke_run) { 10156 verbose(env, "bpf verifier is misconfigured\n"); 10157 return -EINVAL; 10158 } 10159 10160 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 10161 if (ret < 0) { 10162 verbose(env, "tracking tail call prog failed\n"); 10163 return ret; 10164 } 10165 } 10166 10167 return 0; 10168 } 10169 10170 static void free_states(struct bpf_verifier_env *env) 10171 { 10172 struct bpf_verifier_state_list *sl, *sln; 10173 int i; 10174 10175 sl = env->free_list; 10176 while (sl) { 10177 sln = sl->next; 10178 free_verifier_state(&sl->state, false); 10179 kfree(sl); 10180 sl = sln; 10181 } 10182 env->free_list = NULL; 10183 10184 if (!env->explored_states) 10185 return; 10186 10187 for (i = 0; i < state_htab_size(env); i++) { 10188 sl = env->explored_states[i]; 10189 10190 while (sl) { 10191 sln = sl->next; 10192 free_verifier_state(&sl->state, false); 10193 kfree(sl); 10194 sl = sln; 10195 } 10196 env->explored_states[i] = NULL; 10197 } 10198 } 10199 10200 /* The verifier is using insn_aux_data[] to store temporary data during 10201 * verification and to store information for passes that run after the 10202 * verification like dead code sanitization. do_check_common() for subprogram N 10203 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 10204 * temporary data after do_check_common() finds that subprogram N cannot be 10205 * verified independently. pass_cnt counts the number of times 10206 * do_check_common() was run and insn->aux->seen tells the pass number 10207 * insn_aux_data was touched. These variables are compared to clear temporary 10208 * data from failed pass. For testing and experiments do_check_common() can be 10209 * run multiple times even when prior attempt to verify is unsuccessful. 10210 */ 10211 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 10212 { 10213 struct bpf_insn *insn = env->prog->insnsi; 10214 struct bpf_insn_aux_data *aux; 10215 int i, class; 10216 10217 for (i = 0; i < env->prog->len; i++) { 10218 class = BPF_CLASS(insn[i].code); 10219 if (class != BPF_LDX && class != BPF_STX) 10220 continue; 10221 aux = &env->insn_aux_data[i]; 10222 if (aux->seen != env->pass_cnt) 10223 continue; 10224 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 10225 } 10226 } 10227 10228 static int do_check_common(struct bpf_verifier_env *env, int subprog) 10229 { 10230 struct bpf_verifier_state *state; 10231 struct bpf_reg_state *regs; 10232 int ret, i; 10233 10234 env->prev_linfo = NULL; 10235 env->pass_cnt++; 10236 10237 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 10238 if (!state) 10239 return -ENOMEM; 10240 state->curframe = 0; 10241 state->speculative = false; 10242 state->branches = 1; 10243 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 10244 if (!state->frame[0]) { 10245 kfree(state); 10246 return -ENOMEM; 10247 } 10248 env->cur_state = state; 10249 init_func_state(env, state->frame[0], 10250 BPF_MAIN_FUNC /* callsite */, 10251 0 /* frameno */, 10252 subprog); 10253 10254 regs = state->frame[state->curframe]->regs; 10255 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 10256 ret = btf_prepare_func_args(env, subprog, regs); 10257 if (ret) 10258 goto out; 10259 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 10260 if (regs[i].type == PTR_TO_CTX) 10261 mark_reg_known_zero(env, regs, i); 10262 else if (regs[i].type == SCALAR_VALUE) 10263 mark_reg_unknown(env, regs, i); 10264 } 10265 } else { 10266 /* 1st arg to a function */ 10267 regs[BPF_REG_1].type = PTR_TO_CTX; 10268 mark_reg_known_zero(env, regs, BPF_REG_1); 10269 ret = btf_check_func_arg_match(env, subprog, regs); 10270 if (ret == -EFAULT) 10271 /* unlikely verifier bug. abort. 10272 * ret == 0 and ret < 0 are sadly acceptable for 10273 * main() function due to backward compatibility. 10274 * Like socket filter program may be written as: 10275 * int bpf_prog(struct pt_regs *ctx) 10276 * and never dereference that ctx in the program. 10277 * 'struct pt_regs' is a type mismatch for socket 10278 * filter that should be using 'struct __sk_buff'. 10279 */ 10280 goto out; 10281 } 10282 10283 ret = do_check(env); 10284 out: 10285 /* check for NULL is necessary, since cur_state can be freed inside 10286 * do_check() under memory pressure. 10287 */ 10288 if (env->cur_state) { 10289 free_verifier_state(env->cur_state, true); 10290 env->cur_state = NULL; 10291 } 10292 while (!pop_stack(env, NULL, NULL)); 10293 free_states(env); 10294 if (ret) 10295 /* clean aux data in case subprog was rejected */ 10296 sanitize_insn_aux_data(env); 10297 return ret; 10298 } 10299 10300 /* Verify all global functions in a BPF program one by one based on their BTF. 10301 * All global functions must pass verification. Otherwise the whole program is rejected. 10302 * Consider: 10303 * int bar(int); 10304 * int foo(int f) 10305 * { 10306 * return bar(f); 10307 * } 10308 * int bar(int b) 10309 * { 10310 * ... 10311 * } 10312 * foo() will be verified first for R1=any_scalar_value. During verification it 10313 * will be assumed that bar() already verified successfully and call to bar() 10314 * from foo() will be checked for type match only. Later bar() will be verified 10315 * independently to check that it's safe for R1=any_scalar_value. 10316 */ 10317 static int do_check_subprogs(struct bpf_verifier_env *env) 10318 { 10319 struct bpf_prog_aux *aux = env->prog->aux; 10320 int i, ret; 10321 10322 if (!aux->func_info) 10323 return 0; 10324 10325 for (i = 1; i < env->subprog_cnt; i++) { 10326 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 10327 continue; 10328 env->insn_idx = env->subprog_info[i].start; 10329 WARN_ON_ONCE(env->insn_idx == 0); 10330 ret = do_check_common(env, i); 10331 if (ret) { 10332 return ret; 10333 } else if (env->log.level & BPF_LOG_LEVEL) { 10334 verbose(env, 10335 "Func#%d is safe for any args that match its prototype\n", 10336 i); 10337 } 10338 } 10339 return 0; 10340 } 10341 10342 static int do_check_main(struct bpf_verifier_env *env) 10343 { 10344 int ret; 10345 10346 env->insn_idx = 0; 10347 ret = do_check_common(env, 0); 10348 if (!ret) 10349 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 10350 return ret; 10351 } 10352 10353 10354 static void print_verification_stats(struct bpf_verifier_env *env) 10355 { 10356 int i; 10357 10358 if (env->log.level & BPF_LOG_STATS) { 10359 verbose(env, "verification time %lld usec\n", 10360 div_u64(env->verification_time, 1000)); 10361 verbose(env, "stack depth "); 10362 for (i = 0; i < env->subprog_cnt; i++) { 10363 u32 depth = env->subprog_info[i].stack_depth; 10364 10365 verbose(env, "%d", depth); 10366 if (i + 1 < env->subprog_cnt) 10367 verbose(env, "+"); 10368 } 10369 verbose(env, "\n"); 10370 } 10371 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 10372 "total_states %d peak_states %d mark_read %d\n", 10373 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 10374 env->max_states_per_insn, env->total_states, 10375 env->peak_states, env->longest_mark_read_walk); 10376 } 10377 10378 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 10379 { 10380 const struct btf_type *t, *func_proto; 10381 const struct bpf_struct_ops *st_ops; 10382 const struct btf_member *member; 10383 struct bpf_prog *prog = env->prog; 10384 u32 btf_id, member_idx; 10385 const char *mname; 10386 10387 btf_id = prog->aux->attach_btf_id; 10388 st_ops = bpf_struct_ops_find(btf_id); 10389 if (!st_ops) { 10390 verbose(env, "attach_btf_id %u is not a supported struct\n", 10391 btf_id); 10392 return -ENOTSUPP; 10393 } 10394 10395 t = st_ops->type; 10396 member_idx = prog->expected_attach_type; 10397 if (member_idx >= btf_type_vlen(t)) { 10398 verbose(env, "attach to invalid member idx %u of struct %s\n", 10399 member_idx, st_ops->name); 10400 return -EINVAL; 10401 } 10402 10403 member = &btf_type_member(t)[member_idx]; 10404 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 10405 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 10406 NULL); 10407 if (!func_proto) { 10408 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 10409 mname, member_idx, st_ops->name); 10410 return -EINVAL; 10411 } 10412 10413 if (st_ops->check_member) { 10414 int err = st_ops->check_member(t, member); 10415 10416 if (err) { 10417 verbose(env, "attach to unsupported member %s of struct %s\n", 10418 mname, st_ops->name); 10419 return err; 10420 } 10421 } 10422 10423 prog->aux->attach_func_proto = func_proto; 10424 prog->aux->attach_func_name = mname; 10425 env->ops = st_ops->verifier_ops; 10426 10427 return 0; 10428 } 10429 #define SECURITY_PREFIX "security_" 10430 10431 static int check_attach_modify_return(struct bpf_verifier_env *env) 10432 { 10433 struct bpf_prog *prog = env->prog; 10434 unsigned long addr = (unsigned long) prog->aux->trampoline->func.addr; 10435 10436 /* This is expected to be cleaned up in the future with the KRSI effort 10437 * introducing the LSM_HOOK macro for cleaning up lsm_hooks.h. 10438 */ 10439 if (within_error_injection_list(addr) || 10440 !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name, 10441 sizeof(SECURITY_PREFIX) - 1)) 10442 return 0; 10443 10444 verbose(env, "fmod_ret attach_btf_id %u (%s) is not modifiable\n", 10445 prog->aux->attach_btf_id, prog->aux->attach_func_name); 10446 10447 return -EINVAL; 10448 } 10449 10450 static int check_attach_btf_id(struct bpf_verifier_env *env) 10451 { 10452 struct bpf_prog *prog = env->prog; 10453 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 10454 struct bpf_prog *tgt_prog = prog->aux->linked_prog; 10455 u32 btf_id = prog->aux->attach_btf_id; 10456 const char prefix[] = "btf_trace_"; 10457 int ret = 0, subprog = -1, i; 10458 struct bpf_trampoline *tr; 10459 const struct btf_type *t; 10460 bool conservative = true; 10461 const char *tname; 10462 struct btf *btf; 10463 long addr; 10464 u64 key; 10465 10466 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 10467 return check_struct_ops_btf_id(env); 10468 10469 if (prog->type != BPF_PROG_TYPE_TRACING && 10470 prog->type != BPF_PROG_TYPE_LSM && 10471 !prog_extension) 10472 return 0; 10473 10474 if (!btf_id) { 10475 verbose(env, "Tracing programs must provide btf_id\n"); 10476 return -EINVAL; 10477 } 10478 btf = bpf_prog_get_target_btf(prog); 10479 if (!btf) { 10480 verbose(env, 10481 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 10482 return -EINVAL; 10483 } 10484 t = btf_type_by_id(btf, btf_id); 10485 if (!t) { 10486 verbose(env, "attach_btf_id %u is invalid\n", btf_id); 10487 return -EINVAL; 10488 } 10489 tname = btf_name_by_offset(btf, t->name_off); 10490 if (!tname) { 10491 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id); 10492 return -EINVAL; 10493 } 10494 if (tgt_prog) { 10495 struct bpf_prog_aux *aux = tgt_prog->aux; 10496 10497 for (i = 0; i < aux->func_info_cnt; i++) 10498 if (aux->func_info[i].type_id == btf_id) { 10499 subprog = i; 10500 break; 10501 } 10502 if (subprog == -1) { 10503 verbose(env, "Subprog %s doesn't exist\n", tname); 10504 return -EINVAL; 10505 } 10506 conservative = aux->func_info_aux[subprog].unreliable; 10507 if (prog_extension) { 10508 if (conservative) { 10509 verbose(env, 10510 "Cannot replace static functions\n"); 10511 return -EINVAL; 10512 } 10513 if (!prog->jit_requested) { 10514 verbose(env, 10515 "Extension programs should be JITed\n"); 10516 return -EINVAL; 10517 } 10518 env->ops = bpf_verifier_ops[tgt_prog->type]; 10519 prog->expected_attach_type = tgt_prog->expected_attach_type; 10520 } 10521 if (!tgt_prog->jited) { 10522 verbose(env, "Can attach to only JITed progs\n"); 10523 return -EINVAL; 10524 } 10525 if (tgt_prog->type == prog->type) { 10526 /* Cannot fentry/fexit another fentry/fexit program. 10527 * Cannot attach program extension to another extension. 10528 * It's ok to attach fentry/fexit to extension program. 10529 */ 10530 verbose(env, "Cannot recursively attach\n"); 10531 return -EINVAL; 10532 } 10533 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 10534 prog_extension && 10535 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 10536 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 10537 /* Program extensions can extend all program types 10538 * except fentry/fexit. The reason is the following. 10539 * The fentry/fexit programs are used for performance 10540 * analysis, stats and can be attached to any program 10541 * type except themselves. When extension program is 10542 * replacing XDP function it is necessary to allow 10543 * performance analysis of all functions. Both original 10544 * XDP program and its program extension. Hence 10545 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 10546 * allowed. If extending of fentry/fexit was allowed it 10547 * would be possible to create long call chain 10548 * fentry->extension->fentry->extension beyond 10549 * reasonable stack size. Hence extending fentry is not 10550 * allowed. 10551 */ 10552 verbose(env, "Cannot extend fentry/fexit\n"); 10553 return -EINVAL; 10554 } 10555 key = ((u64)aux->id) << 32 | btf_id; 10556 } else { 10557 if (prog_extension) { 10558 verbose(env, "Cannot replace kernel functions\n"); 10559 return -EINVAL; 10560 } 10561 key = btf_id; 10562 } 10563 10564 switch (prog->expected_attach_type) { 10565 case BPF_TRACE_RAW_TP: 10566 if (tgt_prog) { 10567 verbose(env, 10568 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 10569 return -EINVAL; 10570 } 10571 if (!btf_type_is_typedef(t)) { 10572 verbose(env, "attach_btf_id %u is not a typedef\n", 10573 btf_id); 10574 return -EINVAL; 10575 } 10576 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 10577 verbose(env, "attach_btf_id %u points to wrong type name %s\n", 10578 btf_id, tname); 10579 return -EINVAL; 10580 } 10581 tname += sizeof(prefix) - 1; 10582 t = btf_type_by_id(btf, t->type); 10583 if (!btf_type_is_ptr(t)) 10584 /* should never happen in valid vmlinux build */ 10585 return -EINVAL; 10586 t = btf_type_by_id(btf, t->type); 10587 if (!btf_type_is_func_proto(t)) 10588 /* should never happen in valid vmlinux build */ 10589 return -EINVAL; 10590 10591 /* remember two read only pointers that are valid for 10592 * the life time of the kernel 10593 */ 10594 prog->aux->attach_func_name = tname; 10595 prog->aux->attach_func_proto = t; 10596 prog->aux->attach_btf_trace = true; 10597 return 0; 10598 default: 10599 if (!prog_extension) 10600 return -EINVAL; 10601 /* fallthrough */ 10602 case BPF_MODIFY_RETURN: 10603 case BPF_LSM_MAC: 10604 case BPF_TRACE_FENTRY: 10605 case BPF_TRACE_FEXIT: 10606 prog->aux->attach_func_name = tname; 10607 if (prog->type == BPF_PROG_TYPE_LSM) { 10608 ret = bpf_lsm_verify_prog(&env->log, prog); 10609 if (ret < 0) 10610 return ret; 10611 } 10612 10613 if (!btf_type_is_func(t)) { 10614 verbose(env, "attach_btf_id %u is not a function\n", 10615 btf_id); 10616 return -EINVAL; 10617 } 10618 if (prog_extension && 10619 btf_check_type_match(env, prog, btf, t)) 10620 return -EINVAL; 10621 t = btf_type_by_id(btf, t->type); 10622 if (!btf_type_is_func_proto(t)) 10623 return -EINVAL; 10624 tr = bpf_trampoline_lookup(key); 10625 if (!tr) 10626 return -ENOMEM; 10627 /* t is either vmlinux type or another program's type */ 10628 prog->aux->attach_func_proto = t; 10629 mutex_lock(&tr->mutex); 10630 if (tr->func.addr) { 10631 prog->aux->trampoline = tr; 10632 goto out; 10633 } 10634 if (tgt_prog && conservative) { 10635 prog->aux->attach_func_proto = NULL; 10636 t = NULL; 10637 } 10638 ret = btf_distill_func_proto(&env->log, btf, t, 10639 tname, &tr->func.model); 10640 if (ret < 0) 10641 goto out; 10642 if (tgt_prog) { 10643 if (subprog == 0) 10644 addr = (long) tgt_prog->bpf_func; 10645 else 10646 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 10647 } else { 10648 addr = kallsyms_lookup_name(tname); 10649 if (!addr) { 10650 verbose(env, 10651 "The address of function %s cannot be found\n", 10652 tname); 10653 ret = -ENOENT; 10654 goto out; 10655 } 10656 } 10657 tr->func.addr = (void *)addr; 10658 prog->aux->trampoline = tr; 10659 10660 if (prog->expected_attach_type == BPF_MODIFY_RETURN) 10661 ret = check_attach_modify_return(env); 10662 out: 10663 mutex_unlock(&tr->mutex); 10664 if (ret) 10665 bpf_trampoline_put(tr); 10666 return ret; 10667 } 10668 } 10669 10670 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 10671 union bpf_attr __user *uattr) 10672 { 10673 u64 start_time = ktime_get_ns(); 10674 struct bpf_verifier_env *env; 10675 struct bpf_verifier_log *log; 10676 int i, len, ret = -EINVAL; 10677 bool is_priv; 10678 10679 /* no program is valid */ 10680 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 10681 return -EINVAL; 10682 10683 /* 'struct bpf_verifier_env' can be global, but since it's not small, 10684 * allocate/free it every time bpf_check() is called 10685 */ 10686 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 10687 if (!env) 10688 return -ENOMEM; 10689 log = &env->log; 10690 10691 len = (*prog)->len; 10692 env->insn_aux_data = 10693 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 10694 ret = -ENOMEM; 10695 if (!env->insn_aux_data) 10696 goto err_free_env; 10697 for (i = 0; i < len; i++) 10698 env->insn_aux_data[i].orig_idx = i; 10699 env->prog = *prog; 10700 env->ops = bpf_verifier_ops[env->prog->type]; 10701 is_priv = capable(CAP_SYS_ADMIN); 10702 10703 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 10704 mutex_lock(&bpf_verifier_lock); 10705 if (!btf_vmlinux) 10706 btf_vmlinux = btf_parse_vmlinux(); 10707 mutex_unlock(&bpf_verifier_lock); 10708 } 10709 10710 /* grab the mutex to protect few globals used by verifier */ 10711 if (!is_priv) 10712 mutex_lock(&bpf_verifier_lock); 10713 10714 if (attr->log_level || attr->log_buf || attr->log_size) { 10715 /* user requested verbose verifier output 10716 * and supplied buffer to store the verification trace 10717 */ 10718 log->level = attr->log_level; 10719 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 10720 log->len_total = attr->log_size; 10721 10722 ret = -EINVAL; 10723 /* log attributes have to be sane */ 10724 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 10725 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 10726 goto err_unlock; 10727 } 10728 10729 if (IS_ERR(btf_vmlinux)) { 10730 /* Either gcc or pahole or kernel are broken. */ 10731 verbose(env, "in-kernel BTF is malformed\n"); 10732 ret = PTR_ERR(btf_vmlinux); 10733 goto skip_full_check; 10734 } 10735 10736 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 10737 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 10738 env->strict_alignment = true; 10739 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 10740 env->strict_alignment = false; 10741 10742 env->allow_ptr_leaks = is_priv; 10743 10744 if (is_priv) 10745 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 10746 10747 ret = replace_map_fd_with_map_ptr(env); 10748 if (ret < 0) 10749 goto skip_full_check; 10750 10751 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10752 ret = bpf_prog_offload_verifier_prep(env->prog); 10753 if (ret) 10754 goto skip_full_check; 10755 } 10756 10757 env->explored_states = kvcalloc(state_htab_size(env), 10758 sizeof(struct bpf_verifier_state_list *), 10759 GFP_USER); 10760 ret = -ENOMEM; 10761 if (!env->explored_states) 10762 goto skip_full_check; 10763 10764 ret = check_subprogs(env); 10765 if (ret < 0) 10766 goto skip_full_check; 10767 10768 ret = check_btf_info(env, attr, uattr); 10769 if (ret < 0) 10770 goto skip_full_check; 10771 10772 ret = check_attach_btf_id(env); 10773 if (ret) 10774 goto skip_full_check; 10775 10776 ret = check_cfg(env); 10777 if (ret < 0) 10778 goto skip_full_check; 10779 10780 ret = do_check_subprogs(env); 10781 ret = ret ?: do_check_main(env); 10782 10783 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 10784 ret = bpf_prog_offload_finalize(env); 10785 10786 skip_full_check: 10787 kvfree(env->explored_states); 10788 10789 if (ret == 0) 10790 ret = check_max_stack_depth(env); 10791 10792 /* instruction rewrites happen after this point */ 10793 if (is_priv) { 10794 if (ret == 0) 10795 opt_hard_wire_dead_code_branches(env); 10796 if (ret == 0) 10797 ret = opt_remove_dead_code(env); 10798 if (ret == 0) 10799 ret = opt_remove_nops(env); 10800 } else { 10801 if (ret == 0) 10802 sanitize_dead_code(env); 10803 } 10804 10805 if (ret == 0) 10806 /* program is valid, convert *(u32*)(ctx + off) accesses */ 10807 ret = convert_ctx_accesses(env); 10808 10809 if (ret == 0) 10810 ret = fixup_bpf_calls(env); 10811 10812 /* do 32-bit optimization after insn patching has done so those patched 10813 * insns could be handled correctly. 10814 */ 10815 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 10816 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 10817 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 10818 : false; 10819 } 10820 10821 if (ret == 0) 10822 ret = fixup_call_args(env); 10823 10824 env->verification_time = ktime_get_ns() - start_time; 10825 print_verification_stats(env); 10826 10827 if (log->level && bpf_verifier_log_full(log)) 10828 ret = -ENOSPC; 10829 if (log->level && !log->ubuf) { 10830 ret = -EFAULT; 10831 goto err_release_maps; 10832 } 10833 10834 if (ret == 0 && env->used_map_cnt) { 10835 /* if program passed verifier, update used_maps in bpf_prog_info */ 10836 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 10837 sizeof(env->used_maps[0]), 10838 GFP_KERNEL); 10839 10840 if (!env->prog->aux->used_maps) { 10841 ret = -ENOMEM; 10842 goto err_release_maps; 10843 } 10844 10845 memcpy(env->prog->aux->used_maps, env->used_maps, 10846 sizeof(env->used_maps[0]) * env->used_map_cnt); 10847 env->prog->aux->used_map_cnt = env->used_map_cnt; 10848 10849 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 10850 * bpf_ld_imm64 instructions 10851 */ 10852 convert_pseudo_ld_imm64(env); 10853 } 10854 10855 if (ret == 0) 10856 adjust_btf_func(env); 10857 10858 err_release_maps: 10859 if (!env->prog->aux->used_maps) 10860 /* if we didn't copy map pointers into bpf_prog_info, release 10861 * them now. Otherwise free_used_maps() will release them. 10862 */ 10863 release_maps(env); 10864 10865 /* extension progs temporarily inherit the attach_type of their targets 10866 for verification purposes, so set it back to zero before returning 10867 */ 10868 if (env->prog->type == BPF_PROG_TYPE_EXT) 10869 env->prog->expected_attach_type = 0; 10870 10871 *prog = env->prog; 10872 err_unlock: 10873 if (!is_priv) 10874 mutex_unlock(&bpf_verifier_lock); 10875 vfree(env->insn_aux_data); 10876 err_free_env: 10877 kfree(env); 10878 return ret; 10879 } 10880