xref: /linux/kernel/bpf/verifier.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of version 2 of the GNU General Public
7  * License as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  * General Public License for more details.
13  */
14 #include <uapi/linux/btf.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/bpf.h>
19 #include <linux/btf.h>
20 #include <linux/bpf_verifier.h>
21 #include <linux/filter.h>
22 #include <net/netlink.h>
23 #include <linux/file.h>
24 #include <linux/vmalloc.h>
25 #include <linux/stringify.h>
26 #include <linux/bsearch.h>
27 #include <linux/sort.h>
28 #include <linux/perf_event.h>
29 #include <linux/ctype.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #include <linux/bpf_types.h>
38 #undef BPF_PROG_TYPE
39 #undef BPF_MAP_TYPE
40 };
41 
42 /* bpf_check() is a static code analyzer that walks eBPF program
43  * instruction by instruction and updates register/stack state.
44  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45  *
46  * The first pass is depth-first-search to check that the program is a DAG.
47  * It rejects the following programs:
48  * - larger than BPF_MAXINSNS insns
49  * - if loop is present (detected via back-edge)
50  * - unreachable insns exist (shouldn't be a forest. program = one function)
51  * - out of bounds or malformed jumps
52  * The second pass is all possible path descent from the 1st insn.
53  * Since it's analyzing all pathes through the program, the length of the
54  * analysis is limited to 64k insn, which may be hit even if total number of
55  * insn is less then 4K, but there are too many branches that change stack/regs.
56  * Number of 'branches to be analyzed' is limited to 1k
57  *
58  * On entry to each instruction, each register has a type, and the instruction
59  * changes the types of the registers depending on instruction semantics.
60  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61  * copied to R1.
62  *
63  * All registers are 64-bit.
64  * R0 - return register
65  * R1-R5 argument passing registers
66  * R6-R9 callee saved registers
67  * R10 - frame pointer read-only
68  *
69  * At the start of BPF program the register R1 contains a pointer to bpf_context
70  * and has type PTR_TO_CTX.
71  *
72  * Verifier tracks arithmetic operations on pointers in case:
73  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75  * 1st insn copies R10 (which has FRAME_PTR) type into R1
76  * and 2nd arithmetic instruction is pattern matched to recognize
77  * that it wants to construct a pointer to some element within stack.
78  * So after 2nd insn, the register R1 has type PTR_TO_STACK
79  * (and -20 constant is saved for further stack bounds checking).
80  * Meaning that this reg is a pointer to stack plus known immediate constant.
81  *
82  * Most of the time the registers have SCALAR_VALUE type, which
83  * means the register has some value, but it's not a valid pointer.
84  * (like pointer plus pointer becomes SCALAR_VALUE type)
85  *
86  * When verifier sees load or store instructions the type of base register
87  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88  * four pointer types recognized by check_mem_access() function.
89  *
90  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91  * and the range of [ptr, ptr + map's value_size) is accessible.
92  *
93  * registers used to pass values to function calls are checked against
94  * function argument constraints.
95  *
96  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97  * It means that the register type passed to this function must be
98  * PTR_TO_STACK and it will be used inside the function as
99  * 'pointer to map element key'
100  *
101  * For example the argument constraints for bpf_map_lookup_elem():
102  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103  *   .arg1_type = ARG_CONST_MAP_PTR,
104  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
105  *
106  * ret_type says that this function returns 'pointer to map elem value or null'
107  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108  * 2nd argument should be a pointer to stack, which will be used inside
109  * the helper function as a pointer to map element key.
110  *
111  * On the kernel side the helper function looks like:
112  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113  * {
114  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115  *    void *key = (void *) (unsigned long) r2;
116  *    void *value;
117  *
118  *    here kernel can access 'key' and 'map' pointers safely, knowing that
119  *    [key, key + map->key_size) bytes are valid and were initialized on
120  *    the stack of eBPF program.
121  * }
122  *
123  * Corresponding eBPF program may look like:
124  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
125  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
127  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128  * here verifier looks at prototype of map_lookup_elem() and sees:
129  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131  *
132  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134  * and were initialized prior to this call.
135  * If it's ok, then verifier allows this BPF_CALL insn and looks at
136  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138  * returns ether pointer to map value or NULL.
139  *
140  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141  * insn, the register holding that pointer in the true branch changes state to
142  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143  * branch. See check_cond_jmp_op().
144  *
145  * After the call R0 is set to return type of the function and registers R1-R5
146  * are set to NOT_INIT to indicate that they are no longer readable.
147  *
148  * The following reference types represent a potential reference to a kernel
149  * resource which, after first being allocated, must be checked and freed by
150  * the BPF program:
151  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152  *
153  * When the verifier sees a helper call return a reference type, it allocates a
154  * pointer id for the reference and stores it in the current function state.
155  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157  * passes through a NULL-check conditional. For the branch wherein the state is
158  * changed to CONST_IMM, the verifier releases the reference.
159  *
160  * For each helper function that allocates a reference, such as
161  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162  * bpf_sk_release(). When a reference type passes into the release function,
163  * the verifier also releases the reference. If any unchecked or unreleased
164  * reference remains at the end of the program, the verifier rejects it.
165  */
166 
167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
168 struct bpf_verifier_stack_elem {
169 	/* verifer state is 'st'
170 	 * before processing instruction 'insn_idx'
171 	 * and after processing instruction 'prev_insn_idx'
172 	 */
173 	struct bpf_verifier_state st;
174 	int insn_idx;
175 	int prev_insn_idx;
176 	struct bpf_verifier_stack_elem *next;
177 };
178 
179 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
180 #define BPF_COMPLEXITY_LIMIT_STACK	1024
181 #define BPF_COMPLEXITY_LIMIT_STATES	64
182 
183 #define BPF_MAP_PTR_UNPRIV	1UL
184 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
185 					  POISON_POINTER_DELTA))
186 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
187 
188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
189 {
190 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
191 }
192 
193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
194 {
195 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
196 }
197 
198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
199 			      const struct bpf_map *map, bool unpriv)
200 {
201 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
202 	unpriv |= bpf_map_ptr_unpriv(aux);
203 	aux->map_state = (unsigned long)map |
204 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
205 }
206 
207 struct bpf_call_arg_meta {
208 	struct bpf_map *map_ptr;
209 	bool raw_mode;
210 	bool pkt_access;
211 	int regno;
212 	int access_size;
213 	s64 msize_smax_value;
214 	u64 msize_umax_value;
215 	int ref_obj_id;
216 	int func_id;
217 };
218 
219 static DEFINE_MUTEX(bpf_verifier_lock);
220 
221 static const struct bpf_line_info *
222 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
223 {
224 	const struct bpf_line_info *linfo;
225 	const struct bpf_prog *prog;
226 	u32 i, nr_linfo;
227 
228 	prog = env->prog;
229 	nr_linfo = prog->aux->nr_linfo;
230 
231 	if (!nr_linfo || insn_off >= prog->len)
232 		return NULL;
233 
234 	linfo = prog->aux->linfo;
235 	for (i = 1; i < nr_linfo; i++)
236 		if (insn_off < linfo[i].insn_off)
237 			break;
238 
239 	return &linfo[i - 1];
240 }
241 
242 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
243 		       va_list args)
244 {
245 	unsigned int n;
246 
247 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
248 
249 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
250 		  "verifier log line truncated - local buffer too short\n");
251 
252 	n = min(log->len_total - log->len_used - 1, n);
253 	log->kbuf[n] = '\0';
254 
255 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
256 		log->len_used += n;
257 	else
258 		log->ubuf = NULL;
259 }
260 
261 /* log_level controls verbosity level of eBPF verifier.
262  * bpf_verifier_log_write() is used to dump the verification trace to the log,
263  * so the user can figure out what's wrong with the program
264  */
265 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
266 					   const char *fmt, ...)
267 {
268 	va_list args;
269 
270 	if (!bpf_verifier_log_needed(&env->log))
271 		return;
272 
273 	va_start(args, fmt);
274 	bpf_verifier_vlog(&env->log, fmt, args);
275 	va_end(args);
276 }
277 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
278 
279 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
280 {
281 	struct bpf_verifier_env *env = private_data;
282 	va_list args;
283 
284 	if (!bpf_verifier_log_needed(&env->log))
285 		return;
286 
287 	va_start(args, fmt);
288 	bpf_verifier_vlog(&env->log, fmt, args);
289 	va_end(args);
290 }
291 
292 static const char *ltrim(const char *s)
293 {
294 	while (isspace(*s))
295 		s++;
296 
297 	return s;
298 }
299 
300 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
301 					 u32 insn_off,
302 					 const char *prefix_fmt, ...)
303 {
304 	const struct bpf_line_info *linfo;
305 
306 	if (!bpf_verifier_log_needed(&env->log))
307 		return;
308 
309 	linfo = find_linfo(env, insn_off);
310 	if (!linfo || linfo == env->prev_linfo)
311 		return;
312 
313 	if (prefix_fmt) {
314 		va_list args;
315 
316 		va_start(args, prefix_fmt);
317 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
318 		va_end(args);
319 	}
320 
321 	verbose(env, "%s\n",
322 		ltrim(btf_name_by_offset(env->prog->aux->btf,
323 					 linfo->line_off)));
324 
325 	env->prev_linfo = linfo;
326 }
327 
328 static bool type_is_pkt_pointer(enum bpf_reg_type type)
329 {
330 	return type == PTR_TO_PACKET ||
331 	       type == PTR_TO_PACKET_META;
332 }
333 
334 static bool type_is_sk_pointer(enum bpf_reg_type type)
335 {
336 	return type == PTR_TO_SOCKET ||
337 		type == PTR_TO_SOCK_COMMON ||
338 		type == PTR_TO_TCP_SOCK;
339 }
340 
341 static bool reg_type_may_be_null(enum bpf_reg_type type)
342 {
343 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
344 	       type == PTR_TO_SOCKET_OR_NULL ||
345 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
346 	       type == PTR_TO_TCP_SOCK_OR_NULL;
347 }
348 
349 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
350 {
351 	return reg->type == PTR_TO_MAP_VALUE &&
352 		map_value_has_spin_lock(reg->map_ptr);
353 }
354 
355 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
356 {
357 	return type == PTR_TO_SOCKET ||
358 		type == PTR_TO_SOCKET_OR_NULL ||
359 		type == PTR_TO_TCP_SOCK ||
360 		type == PTR_TO_TCP_SOCK_OR_NULL;
361 }
362 
363 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
364 {
365 	return type == ARG_PTR_TO_SOCK_COMMON;
366 }
367 
368 /* Determine whether the function releases some resources allocated by another
369  * function call. The first reference type argument will be assumed to be
370  * released by release_reference().
371  */
372 static bool is_release_function(enum bpf_func_id func_id)
373 {
374 	return func_id == BPF_FUNC_sk_release;
375 }
376 
377 static bool is_acquire_function(enum bpf_func_id func_id)
378 {
379 	return func_id == BPF_FUNC_sk_lookup_tcp ||
380 		func_id == BPF_FUNC_sk_lookup_udp;
381 }
382 
383 static bool is_ptr_cast_function(enum bpf_func_id func_id)
384 {
385 	return func_id == BPF_FUNC_tcp_sock ||
386 		func_id == BPF_FUNC_sk_fullsock;
387 }
388 
389 /* string representation of 'enum bpf_reg_type' */
390 static const char * const reg_type_str[] = {
391 	[NOT_INIT]		= "?",
392 	[SCALAR_VALUE]		= "inv",
393 	[PTR_TO_CTX]		= "ctx",
394 	[CONST_PTR_TO_MAP]	= "map_ptr",
395 	[PTR_TO_MAP_VALUE]	= "map_value",
396 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
397 	[PTR_TO_STACK]		= "fp",
398 	[PTR_TO_PACKET]		= "pkt",
399 	[PTR_TO_PACKET_META]	= "pkt_meta",
400 	[PTR_TO_PACKET_END]	= "pkt_end",
401 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
402 	[PTR_TO_SOCKET]		= "sock",
403 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
404 	[PTR_TO_SOCK_COMMON]	= "sock_common",
405 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
406 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
407 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
408 };
409 
410 static char slot_type_char[] = {
411 	[STACK_INVALID]	= '?',
412 	[STACK_SPILL]	= 'r',
413 	[STACK_MISC]	= 'm',
414 	[STACK_ZERO]	= '0',
415 };
416 
417 static void print_liveness(struct bpf_verifier_env *env,
418 			   enum bpf_reg_liveness live)
419 {
420 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
421 	    verbose(env, "_");
422 	if (live & REG_LIVE_READ)
423 		verbose(env, "r");
424 	if (live & REG_LIVE_WRITTEN)
425 		verbose(env, "w");
426 	if (live & REG_LIVE_DONE)
427 		verbose(env, "D");
428 }
429 
430 static struct bpf_func_state *func(struct bpf_verifier_env *env,
431 				   const struct bpf_reg_state *reg)
432 {
433 	struct bpf_verifier_state *cur = env->cur_state;
434 
435 	return cur->frame[reg->frameno];
436 }
437 
438 static void print_verifier_state(struct bpf_verifier_env *env,
439 				 const struct bpf_func_state *state)
440 {
441 	const struct bpf_reg_state *reg;
442 	enum bpf_reg_type t;
443 	int i;
444 
445 	if (state->frameno)
446 		verbose(env, " frame%d:", state->frameno);
447 	for (i = 0; i < MAX_BPF_REG; i++) {
448 		reg = &state->regs[i];
449 		t = reg->type;
450 		if (t == NOT_INIT)
451 			continue;
452 		verbose(env, " R%d", i);
453 		print_liveness(env, reg->live);
454 		verbose(env, "=%s", reg_type_str[t]);
455 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
456 		    tnum_is_const(reg->var_off)) {
457 			/* reg->off should be 0 for SCALAR_VALUE */
458 			verbose(env, "%lld", reg->var_off.value + reg->off);
459 			if (t == PTR_TO_STACK)
460 				verbose(env, ",call_%d", func(env, reg)->callsite);
461 		} else {
462 			verbose(env, "(id=%d", reg->id);
463 			if (reg_type_may_be_refcounted_or_null(t))
464 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
465 			if (t != SCALAR_VALUE)
466 				verbose(env, ",off=%d", reg->off);
467 			if (type_is_pkt_pointer(t))
468 				verbose(env, ",r=%d", reg->range);
469 			else if (t == CONST_PTR_TO_MAP ||
470 				 t == PTR_TO_MAP_VALUE ||
471 				 t == PTR_TO_MAP_VALUE_OR_NULL)
472 				verbose(env, ",ks=%d,vs=%d",
473 					reg->map_ptr->key_size,
474 					reg->map_ptr->value_size);
475 			if (tnum_is_const(reg->var_off)) {
476 				/* Typically an immediate SCALAR_VALUE, but
477 				 * could be a pointer whose offset is too big
478 				 * for reg->off
479 				 */
480 				verbose(env, ",imm=%llx", reg->var_off.value);
481 			} else {
482 				if (reg->smin_value != reg->umin_value &&
483 				    reg->smin_value != S64_MIN)
484 					verbose(env, ",smin_value=%lld",
485 						(long long)reg->smin_value);
486 				if (reg->smax_value != reg->umax_value &&
487 				    reg->smax_value != S64_MAX)
488 					verbose(env, ",smax_value=%lld",
489 						(long long)reg->smax_value);
490 				if (reg->umin_value != 0)
491 					verbose(env, ",umin_value=%llu",
492 						(unsigned long long)reg->umin_value);
493 				if (reg->umax_value != U64_MAX)
494 					verbose(env, ",umax_value=%llu",
495 						(unsigned long long)reg->umax_value);
496 				if (!tnum_is_unknown(reg->var_off)) {
497 					char tn_buf[48];
498 
499 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
500 					verbose(env, ",var_off=%s", tn_buf);
501 				}
502 			}
503 			verbose(env, ")");
504 		}
505 	}
506 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
507 		char types_buf[BPF_REG_SIZE + 1];
508 		bool valid = false;
509 		int j;
510 
511 		for (j = 0; j < BPF_REG_SIZE; j++) {
512 			if (state->stack[i].slot_type[j] != STACK_INVALID)
513 				valid = true;
514 			types_buf[j] = slot_type_char[
515 					state->stack[i].slot_type[j]];
516 		}
517 		types_buf[BPF_REG_SIZE] = 0;
518 		if (!valid)
519 			continue;
520 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
521 		print_liveness(env, state->stack[i].spilled_ptr.live);
522 		if (state->stack[i].slot_type[0] == STACK_SPILL)
523 			verbose(env, "=%s",
524 				reg_type_str[state->stack[i].spilled_ptr.type]);
525 		else
526 			verbose(env, "=%s", types_buf);
527 	}
528 	if (state->acquired_refs && state->refs[0].id) {
529 		verbose(env, " refs=%d", state->refs[0].id);
530 		for (i = 1; i < state->acquired_refs; i++)
531 			if (state->refs[i].id)
532 				verbose(env, ",%d", state->refs[i].id);
533 	}
534 	verbose(env, "\n");
535 }
536 
537 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
538 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
539 			       const struct bpf_func_state *src)	\
540 {									\
541 	if (!src->FIELD)						\
542 		return 0;						\
543 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
544 		/* internal bug, make state invalid to reject the program */ \
545 		memset(dst, 0, sizeof(*dst));				\
546 		return -EFAULT;						\
547 	}								\
548 	memcpy(dst->FIELD, src->FIELD,					\
549 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
550 	return 0;							\
551 }
552 /* copy_reference_state() */
553 COPY_STATE_FN(reference, acquired_refs, refs, 1)
554 /* copy_stack_state() */
555 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
556 #undef COPY_STATE_FN
557 
558 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
559 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
560 				  bool copy_old)			\
561 {									\
562 	u32 old_size = state->COUNT;					\
563 	struct bpf_##NAME##_state *new_##FIELD;				\
564 	int slot = size / SIZE;						\
565 									\
566 	if (size <= old_size || !size) {				\
567 		if (copy_old)						\
568 			return 0;					\
569 		state->COUNT = slot * SIZE;				\
570 		if (!size && old_size) {				\
571 			kfree(state->FIELD);				\
572 			state->FIELD = NULL;				\
573 		}							\
574 		return 0;						\
575 	}								\
576 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
577 				    GFP_KERNEL);			\
578 	if (!new_##FIELD)						\
579 		return -ENOMEM;						\
580 	if (copy_old) {							\
581 		if (state->FIELD)					\
582 			memcpy(new_##FIELD, state->FIELD,		\
583 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
584 		memset(new_##FIELD + old_size / SIZE, 0,		\
585 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
586 	}								\
587 	state->COUNT = slot * SIZE;					\
588 	kfree(state->FIELD);						\
589 	state->FIELD = new_##FIELD;					\
590 	return 0;							\
591 }
592 /* realloc_reference_state() */
593 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
594 /* realloc_stack_state() */
595 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
596 #undef REALLOC_STATE_FN
597 
598 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
599  * make it consume minimal amount of memory. check_stack_write() access from
600  * the program calls into realloc_func_state() to grow the stack size.
601  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
602  * which realloc_stack_state() copies over. It points to previous
603  * bpf_verifier_state which is never reallocated.
604  */
605 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
606 			      int refs_size, bool copy_old)
607 {
608 	int err = realloc_reference_state(state, refs_size, copy_old);
609 	if (err)
610 		return err;
611 	return realloc_stack_state(state, stack_size, copy_old);
612 }
613 
614 /* Acquire a pointer id from the env and update the state->refs to include
615  * this new pointer reference.
616  * On success, returns a valid pointer id to associate with the register
617  * On failure, returns a negative errno.
618  */
619 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
620 {
621 	struct bpf_func_state *state = cur_func(env);
622 	int new_ofs = state->acquired_refs;
623 	int id, err;
624 
625 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
626 	if (err)
627 		return err;
628 	id = ++env->id_gen;
629 	state->refs[new_ofs].id = id;
630 	state->refs[new_ofs].insn_idx = insn_idx;
631 
632 	return id;
633 }
634 
635 /* release function corresponding to acquire_reference_state(). Idempotent. */
636 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
637 {
638 	int i, last_idx;
639 
640 	last_idx = state->acquired_refs - 1;
641 	for (i = 0; i < state->acquired_refs; i++) {
642 		if (state->refs[i].id == ptr_id) {
643 			if (last_idx && i != last_idx)
644 				memcpy(&state->refs[i], &state->refs[last_idx],
645 				       sizeof(*state->refs));
646 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
647 			state->acquired_refs--;
648 			return 0;
649 		}
650 	}
651 	return -EINVAL;
652 }
653 
654 static int transfer_reference_state(struct bpf_func_state *dst,
655 				    struct bpf_func_state *src)
656 {
657 	int err = realloc_reference_state(dst, src->acquired_refs, false);
658 	if (err)
659 		return err;
660 	err = copy_reference_state(dst, src);
661 	if (err)
662 		return err;
663 	return 0;
664 }
665 
666 static void free_func_state(struct bpf_func_state *state)
667 {
668 	if (!state)
669 		return;
670 	kfree(state->refs);
671 	kfree(state->stack);
672 	kfree(state);
673 }
674 
675 static void free_verifier_state(struct bpf_verifier_state *state,
676 				bool free_self)
677 {
678 	int i;
679 
680 	for (i = 0; i <= state->curframe; i++) {
681 		free_func_state(state->frame[i]);
682 		state->frame[i] = NULL;
683 	}
684 	if (free_self)
685 		kfree(state);
686 }
687 
688 /* copy verifier state from src to dst growing dst stack space
689  * when necessary to accommodate larger src stack
690  */
691 static int copy_func_state(struct bpf_func_state *dst,
692 			   const struct bpf_func_state *src)
693 {
694 	int err;
695 
696 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
697 				 false);
698 	if (err)
699 		return err;
700 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
701 	err = copy_reference_state(dst, src);
702 	if (err)
703 		return err;
704 	return copy_stack_state(dst, src);
705 }
706 
707 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
708 			       const struct bpf_verifier_state *src)
709 {
710 	struct bpf_func_state *dst;
711 	int i, err;
712 
713 	/* if dst has more stack frames then src frame, free them */
714 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
715 		free_func_state(dst_state->frame[i]);
716 		dst_state->frame[i] = NULL;
717 	}
718 	dst_state->speculative = src->speculative;
719 	dst_state->curframe = src->curframe;
720 	dst_state->active_spin_lock = src->active_spin_lock;
721 	for (i = 0; i <= src->curframe; i++) {
722 		dst = dst_state->frame[i];
723 		if (!dst) {
724 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
725 			if (!dst)
726 				return -ENOMEM;
727 			dst_state->frame[i] = dst;
728 		}
729 		err = copy_func_state(dst, src->frame[i]);
730 		if (err)
731 			return err;
732 	}
733 	return 0;
734 }
735 
736 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
737 		     int *insn_idx)
738 {
739 	struct bpf_verifier_state *cur = env->cur_state;
740 	struct bpf_verifier_stack_elem *elem, *head = env->head;
741 	int err;
742 
743 	if (env->head == NULL)
744 		return -ENOENT;
745 
746 	if (cur) {
747 		err = copy_verifier_state(cur, &head->st);
748 		if (err)
749 			return err;
750 	}
751 	if (insn_idx)
752 		*insn_idx = head->insn_idx;
753 	if (prev_insn_idx)
754 		*prev_insn_idx = head->prev_insn_idx;
755 	elem = head->next;
756 	free_verifier_state(&head->st, false);
757 	kfree(head);
758 	env->head = elem;
759 	env->stack_size--;
760 	return 0;
761 }
762 
763 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
764 					     int insn_idx, int prev_insn_idx,
765 					     bool speculative)
766 {
767 	struct bpf_verifier_state *cur = env->cur_state;
768 	struct bpf_verifier_stack_elem *elem;
769 	int err;
770 
771 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
772 	if (!elem)
773 		goto err;
774 
775 	elem->insn_idx = insn_idx;
776 	elem->prev_insn_idx = prev_insn_idx;
777 	elem->next = env->head;
778 	env->head = elem;
779 	env->stack_size++;
780 	err = copy_verifier_state(&elem->st, cur);
781 	if (err)
782 		goto err;
783 	elem->st.speculative |= speculative;
784 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
785 		verbose(env, "BPF program is too complex\n");
786 		goto err;
787 	}
788 	return &elem->st;
789 err:
790 	free_verifier_state(env->cur_state, true);
791 	env->cur_state = NULL;
792 	/* pop all elements and return */
793 	while (!pop_stack(env, NULL, NULL));
794 	return NULL;
795 }
796 
797 #define CALLER_SAVED_REGS 6
798 static const int caller_saved[CALLER_SAVED_REGS] = {
799 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
800 };
801 
802 static void __mark_reg_not_init(struct bpf_reg_state *reg);
803 
804 /* Mark the unknown part of a register (variable offset or scalar value) as
805  * known to have the value @imm.
806  */
807 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
808 {
809 	/* Clear id, off, and union(map_ptr, range) */
810 	memset(((u8 *)reg) + sizeof(reg->type), 0,
811 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
812 	reg->var_off = tnum_const(imm);
813 	reg->smin_value = (s64)imm;
814 	reg->smax_value = (s64)imm;
815 	reg->umin_value = imm;
816 	reg->umax_value = imm;
817 }
818 
819 /* Mark the 'variable offset' part of a register as zero.  This should be
820  * used only on registers holding a pointer type.
821  */
822 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
823 {
824 	__mark_reg_known(reg, 0);
825 }
826 
827 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
828 {
829 	__mark_reg_known(reg, 0);
830 	reg->type = SCALAR_VALUE;
831 }
832 
833 static void mark_reg_known_zero(struct bpf_verifier_env *env,
834 				struct bpf_reg_state *regs, u32 regno)
835 {
836 	if (WARN_ON(regno >= MAX_BPF_REG)) {
837 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
838 		/* Something bad happened, let's kill all regs */
839 		for (regno = 0; regno < MAX_BPF_REG; regno++)
840 			__mark_reg_not_init(regs + regno);
841 		return;
842 	}
843 	__mark_reg_known_zero(regs + regno);
844 }
845 
846 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
847 {
848 	return type_is_pkt_pointer(reg->type);
849 }
850 
851 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
852 {
853 	return reg_is_pkt_pointer(reg) ||
854 	       reg->type == PTR_TO_PACKET_END;
855 }
856 
857 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
858 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
859 				    enum bpf_reg_type which)
860 {
861 	/* The register can already have a range from prior markings.
862 	 * This is fine as long as it hasn't been advanced from its
863 	 * origin.
864 	 */
865 	return reg->type == which &&
866 	       reg->id == 0 &&
867 	       reg->off == 0 &&
868 	       tnum_equals_const(reg->var_off, 0);
869 }
870 
871 /* Attempts to improve min/max values based on var_off information */
872 static void __update_reg_bounds(struct bpf_reg_state *reg)
873 {
874 	/* min signed is max(sign bit) | min(other bits) */
875 	reg->smin_value = max_t(s64, reg->smin_value,
876 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
877 	/* max signed is min(sign bit) | max(other bits) */
878 	reg->smax_value = min_t(s64, reg->smax_value,
879 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
880 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
881 	reg->umax_value = min(reg->umax_value,
882 			      reg->var_off.value | reg->var_off.mask);
883 }
884 
885 /* Uses signed min/max values to inform unsigned, and vice-versa */
886 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
887 {
888 	/* Learn sign from signed bounds.
889 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
890 	 * are the same, so combine.  This works even in the negative case, e.g.
891 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
892 	 */
893 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
894 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
895 							  reg->umin_value);
896 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
897 							  reg->umax_value);
898 		return;
899 	}
900 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
901 	 * boundary, so we must be careful.
902 	 */
903 	if ((s64)reg->umax_value >= 0) {
904 		/* Positive.  We can't learn anything from the smin, but smax
905 		 * is positive, hence safe.
906 		 */
907 		reg->smin_value = reg->umin_value;
908 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
909 							  reg->umax_value);
910 	} else if ((s64)reg->umin_value < 0) {
911 		/* Negative.  We can't learn anything from the smax, but smin
912 		 * is negative, hence safe.
913 		 */
914 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
915 							  reg->umin_value);
916 		reg->smax_value = reg->umax_value;
917 	}
918 }
919 
920 /* Attempts to improve var_off based on unsigned min/max information */
921 static void __reg_bound_offset(struct bpf_reg_state *reg)
922 {
923 	reg->var_off = tnum_intersect(reg->var_off,
924 				      tnum_range(reg->umin_value,
925 						 reg->umax_value));
926 }
927 
928 /* Reset the min/max bounds of a register */
929 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
930 {
931 	reg->smin_value = S64_MIN;
932 	reg->smax_value = S64_MAX;
933 	reg->umin_value = 0;
934 	reg->umax_value = U64_MAX;
935 }
936 
937 /* Mark a register as having a completely unknown (scalar) value. */
938 static void __mark_reg_unknown(struct bpf_reg_state *reg)
939 {
940 	/*
941 	 * Clear type, id, off, and union(map_ptr, range) and
942 	 * padding between 'type' and union
943 	 */
944 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
945 	reg->type = SCALAR_VALUE;
946 	reg->var_off = tnum_unknown;
947 	reg->frameno = 0;
948 	__mark_reg_unbounded(reg);
949 }
950 
951 static void mark_reg_unknown(struct bpf_verifier_env *env,
952 			     struct bpf_reg_state *regs, u32 regno)
953 {
954 	if (WARN_ON(regno >= MAX_BPF_REG)) {
955 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
956 		/* Something bad happened, let's kill all regs except FP */
957 		for (regno = 0; regno < BPF_REG_FP; regno++)
958 			__mark_reg_not_init(regs + regno);
959 		return;
960 	}
961 	__mark_reg_unknown(regs + regno);
962 }
963 
964 static void __mark_reg_not_init(struct bpf_reg_state *reg)
965 {
966 	__mark_reg_unknown(reg);
967 	reg->type = NOT_INIT;
968 }
969 
970 static void mark_reg_not_init(struct bpf_verifier_env *env,
971 			      struct bpf_reg_state *regs, u32 regno)
972 {
973 	if (WARN_ON(regno >= MAX_BPF_REG)) {
974 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
975 		/* Something bad happened, let's kill all regs except FP */
976 		for (regno = 0; regno < BPF_REG_FP; regno++)
977 			__mark_reg_not_init(regs + regno);
978 		return;
979 	}
980 	__mark_reg_not_init(regs + regno);
981 }
982 
983 static void init_reg_state(struct bpf_verifier_env *env,
984 			   struct bpf_func_state *state)
985 {
986 	struct bpf_reg_state *regs = state->regs;
987 	int i;
988 
989 	for (i = 0; i < MAX_BPF_REG; i++) {
990 		mark_reg_not_init(env, regs, i);
991 		regs[i].live = REG_LIVE_NONE;
992 		regs[i].parent = NULL;
993 	}
994 
995 	/* frame pointer */
996 	regs[BPF_REG_FP].type = PTR_TO_STACK;
997 	mark_reg_known_zero(env, regs, BPF_REG_FP);
998 	regs[BPF_REG_FP].frameno = state->frameno;
999 
1000 	/* 1st arg to a function */
1001 	regs[BPF_REG_1].type = PTR_TO_CTX;
1002 	mark_reg_known_zero(env, regs, BPF_REG_1);
1003 }
1004 
1005 #define BPF_MAIN_FUNC (-1)
1006 static void init_func_state(struct bpf_verifier_env *env,
1007 			    struct bpf_func_state *state,
1008 			    int callsite, int frameno, int subprogno)
1009 {
1010 	state->callsite = callsite;
1011 	state->frameno = frameno;
1012 	state->subprogno = subprogno;
1013 	init_reg_state(env, state);
1014 }
1015 
1016 enum reg_arg_type {
1017 	SRC_OP,		/* register is used as source operand */
1018 	DST_OP,		/* register is used as destination operand */
1019 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1020 };
1021 
1022 static int cmp_subprogs(const void *a, const void *b)
1023 {
1024 	return ((struct bpf_subprog_info *)a)->start -
1025 	       ((struct bpf_subprog_info *)b)->start;
1026 }
1027 
1028 static int find_subprog(struct bpf_verifier_env *env, int off)
1029 {
1030 	struct bpf_subprog_info *p;
1031 
1032 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1033 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1034 	if (!p)
1035 		return -ENOENT;
1036 	return p - env->subprog_info;
1037 
1038 }
1039 
1040 static int add_subprog(struct bpf_verifier_env *env, int off)
1041 {
1042 	int insn_cnt = env->prog->len;
1043 	int ret;
1044 
1045 	if (off >= insn_cnt || off < 0) {
1046 		verbose(env, "call to invalid destination\n");
1047 		return -EINVAL;
1048 	}
1049 	ret = find_subprog(env, off);
1050 	if (ret >= 0)
1051 		return 0;
1052 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1053 		verbose(env, "too many subprograms\n");
1054 		return -E2BIG;
1055 	}
1056 	env->subprog_info[env->subprog_cnt++].start = off;
1057 	sort(env->subprog_info, env->subprog_cnt,
1058 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1059 	return 0;
1060 }
1061 
1062 static int check_subprogs(struct bpf_verifier_env *env)
1063 {
1064 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1065 	struct bpf_subprog_info *subprog = env->subprog_info;
1066 	struct bpf_insn *insn = env->prog->insnsi;
1067 	int insn_cnt = env->prog->len;
1068 
1069 	/* Add entry function. */
1070 	ret = add_subprog(env, 0);
1071 	if (ret < 0)
1072 		return ret;
1073 
1074 	/* determine subprog starts. The end is one before the next starts */
1075 	for (i = 0; i < insn_cnt; i++) {
1076 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1077 			continue;
1078 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1079 			continue;
1080 		if (!env->allow_ptr_leaks) {
1081 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1082 			return -EPERM;
1083 		}
1084 		ret = add_subprog(env, i + insn[i].imm + 1);
1085 		if (ret < 0)
1086 			return ret;
1087 	}
1088 
1089 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1090 	 * logic. 'subprog_cnt' should not be increased.
1091 	 */
1092 	subprog[env->subprog_cnt].start = insn_cnt;
1093 
1094 	if (env->log.level > 1)
1095 		for (i = 0; i < env->subprog_cnt; i++)
1096 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1097 
1098 	/* now check that all jumps are within the same subprog */
1099 	subprog_start = subprog[cur_subprog].start;
1100 	subprog_end = subprog[cur_subprog + 1].start;
1101 	for (i = 0; i < insn_cnt; i++) {
1102 		u8 code = insn[i].code;
1103 
1104 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1105 			goto next;
1106 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1107 			goto next;
1108 		off = i + insn[i].off + 1;
1109 		if (off < subprog_start || off >= subprog_end) {
1110 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1111 			return -EINVAL;
1112 		}
1113 next:
1114 		if (i == subprog_end - 1) {
1115 			/* to avoid fall-through from one subprog into another
1116 			 * the last insn of the subprog should be either exit
1117 			 * or unconditional jump back
1118 			 */
1119 			if (code != (BPF_JMP | BPF_EXIT) &&
1120 			    code != (BPF_JMP | BPF_JA)) {
1121 				verbose(env, "last insn is not an exit or jmp\n");
1122 				return -EINVAL;
1123 			}
1124 			subprog_start = subprog_end;
1125 			cur_subprog++;
1126 			if (cur_subprog < env->subprog_cnt)
1127 				subprog_end = subprog[cur_subprog + 1].start;
1128 		}
1129 	}
1130 	return 0;
1131 }
1132 
1133 /* Parentage chain of this register (or stack slot) should take care of all
1134  * issues like callee-saved registers, stack slot allocation time, etc.
1135  */
1136 static int mark_reg_read(struct bpf_verifier_env *env,
1137 			 const struct bpf_reg_state *state,
1138 			 struct bpf_reg_state *parent)
1139 {
1140 	bool writes = parent == state->parent; /* Observe write marks */
1141 
1142 	while (parent) {
1143 		/* if read wasn't screened by an earlier write ... */
1144 		if (writes && state->live & REG_LIVE_WRITTEN)
1145 			break;
1146 		if (parent->live & REG_LIVE_DONE) {
1147 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1148 				reg_type_str[parent->type],
1149 				parent->var_off.value, parent->off);
1150 			return -EFAULT;
1151 		}
1152 		/* ... then we depend on parent's value */
1153 		parent->live |= REG_LIVE_READ;
1154 		state = parent;
1155 		parent = state->parent;
1156 		writes = true;
1157 	}
1158 	return 0;
1159 }
1160 
1161 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1162 			 enum reg_arg_type t)
1163 {
1164 	struct bpf_verifier_state *vstate = env->cur_state;
1165 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1166 	struct bpf_reg_state *regs = state->regs;
1167 
1168 	if (regno >= MAX_BPF_REG) {
1169 		verbose(env, "R%d is invalid\n", regno);
1170 		return -EINVAL;
1171 	}
1172 
1173 	if (t == SRC_OP) {
1174 		/* check whether register used as source operand can be read */
1175 		if (regs[regno].type == NOT_INIT) {
1176 			verbose(env, "R%d !read_ok\n", regno);
1177 			return -EACCES;
1178 		}
1179 		/* We don't need to worry about FP liveness because it's read-only */
1180 		if (regno != BPF_REG_FP)
1181 			return mark_reg_read(env, &regs[regno],
1182 					     regs[regno].parent);
1183 	} else {
1184 		/* check whether register used as dest operand can be written to */
1185 		if (regno == BPF_REG_FP) {
1186 			verbose(env, "frame pointer is read only\n");
1187 			return -EACCES;
1188 		}
1189 		regs[regno].live |= REG_LIVE_WRITTEN;
1190 		if (t == DST_OP)
1191 			mark_reg_unknown(env, regs, regno);
1192 	}
1193 	return 0;
1194 }
1195 
1196 static bool is_spillable_regtype(enum bpf_reg_type type)
1197 {
1198 	switch (type) {
1199 	case PTR_TO_MAP_VALUE:
1200 	case PTR_TO_MAP_VALUE_OR_NULL:
1201 	case PTR_TO_STACK:
1202 	case PTR_TO_CTX:
1203 	case PTR_TO_PACKET:
1204 	case PTR_TO_PACKET_META:
1205 	case PTR_TO_PACKET_END:
1206 	case PTR_TO_FLOW_KEYS:
1207 	case CONST_PTR_TO_MAP:
1208 	case PTR_TO_SOCKET:
1209 	case PTR_TO_SOCKET_OR_NULL:
1210 	case PTR_TO_SOCK_COMMON:
1211 	case PTR_TO_SOCK_COMMON_OR_NULL:
1212 	case PTR_TO_TCP_SOCK:
1213 	case PTR_TO_TCP_SOCK_OR_NULL:
1214 		return true;
1215 	default:
1216 		return false;
1217 	}
1218 }
1219 
1220 /* Does this register contain a constant zero? */
1221 static bool register_is_null(struct bpf_reg_state *reg)
1222 {
1223 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1224 }
1225 
1226 /* check_stack_read/write functions track spill/fill of registers,
1227  * stack boundary and alignment are checked in check_mem_access()
1228  */
1229 static int check_stack_write(struct bpf_verifier_env *env,
1230 			     struct bpf_func_state *state, /* func where register points to */
1231 			     int off, int size, int value_regno, int insn_idx)
1232 {
1233 	struct bpf_func_state *cur; /* state of the current function */
1234 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1235 	enum bpf_reg_type type;
1236 
1237 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1238 				 state->acquired_refs, true);
1239 	if (err)
1240 		return err;
1241 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1242 	 * so it's aligned access and [off, off + size) are within stack limits
1243 	 */
1244 	if (!env->allow_ptr_leaks &&
1245 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1246 	    size != BPF_REG_SIZE) {
1247 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1248 		return -EACCES;
1249 	}
1250 
1251 	cur = env->cur_state->frame[env->cur_state->curframe];
1252 	if (value_regno >= 0 &&
1253 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1254 
1255 		/* register containing pointer is being spilled into stack */
1256 		if (size != BPF_REG_SIZE) {
1257 			verbose(env, "invalid size of register spill\n");
1258 			return -EACCES;
1259 		}
1260 
1261 		if (state != cur && type == PTR_TO_STACK) {
1262 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1263 			return -EINVAL;
1264 		}
1265 
1266 		/* save register state */
1267 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1268 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1269 
1270 		for (i = 0; i < BPF_REG_SIZE; i++) {
1271 			if (state->stack[spi].slot_type[i] == STACK_MISC &&
1272 			    !env->allow_ptr_leaks) {
1273 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1274 				int soff = (-spi - 1) * BPF_REG_SIZE;
1275 
1276 				/* detected reuse of integer stack slot with a pointer
1277 				 * which means either llvm is reusing stack slot or
1278 				 * an attacker is trying to exploit CVE-2018-3639
1279 				 * (speculative store bypass)
1280 				 * Have to sanitize that slot with preemptive
1281 				 * store of zero.
1282 				 */
1283 				if (*poff && *poff != soff) {
1284 					/* disallow programs where single insn stores
1285 					 * into two different stack slots, since verifier
1286 					 * cannot sanitize them
1287 					 */
1288 					verbose(env,
1289 						"insn %d cannot access two stack slots fp%d and fp%d",
1290 						insn_idx, *poff, soff);
1291 					return -EINVAL;
1292 				}
1293 				*poff = soff;
1294 			}
1295 			state->stack[spi].slot_type[i] = STACK_SPILL;
1296 		}
1297 	} else {
1298 		u8 type = STACK_MISC;
1299 
1300 		/* regular write of data into stack destroys any spilled ptr */
1301 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1302 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1303 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
1304 			for (i = 0; i < BPF_REG_SIZE; i++)
1305 				state->stack[spi].slot_type[i] = STACK_MISC;
1306 
1307 		/* only mark the slot as written if all 8 bytes were written
1308 		 * otherwise read propagation may incorrectly stop too soon
1309 		 * when stack slots are partially written.
1310 		 * This heuristic means that read propagation will be
1311 		 * conservative, since it will add reg_live_read marks
1312 		 * to stack slots all the way to first state when programs
1313 		 * writes+reads less than 8 bytes
1314 		 */
1315 		if (size == BPF_REG_SIZE)
1316 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1317 
1318 		/* when we zero initialize stack slots mark them as such */
1319 		if (value_regno >= 0 &&
1320 		    register_is_null(&cur->regs[value_regno]))
1321 			type = STACK_ZERO;
1322 
1323 		/* Mark slots affected by this stack write. */
1324 		for (i = 0; i < size; i++)
1325 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1326 				type;
1327 	}
1328 	return 0;
1329 }
1330 
1331 static int check_stack_read(struct bpf_verifier_env *env,
1332 			    struct bpf_func_state *reg_state /* func where register points to */,
1333 			    int off, int size, int value_regno)
1334 {
1335 	struct bpf_verifier_state *vstate = env->cur_state;
1336 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1337 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1338 	u8 *stype;
1339 
1340 	if (reg_state->allocated_stack <= slot) {
1341 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1342 			off, size);
1343 		return -EACCES;
1344 	}
1345 	stype = reg_state->stack[spi].slot_type;
1346 
1347 	if (stype[0] == STACK_SPILL) {
1348 		if (size != BPF_REG_SIZE) {
1349 			verbose(env, "invalid size of register spill\n");
1350 			return -EACCES;
1351 		}
1352 		for (i = 1; i < BPF_REG_SIZE; i++) {
1353 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1354 				verbose(env, "corrupted spill memory\n");
1355 				return -EACCES;
1356 			}
1357 		}
1358 
1359 		if (value_regno >= 0) {
1360 			/* restore register state from stack */
1361 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1362 			/* mark reg as written since spilled pointer state likely
1363 			 * has its liveness marks cleared by is_state_visited()
1364 			 * which resets stack/reg liveness for state transitions
1365 			 */
1366 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1367 		}
1368 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1369 			      reg_state->stack[spi].spilled_ptr.parent);
1370 		return 0;
1371 	} else {
1372 		int zeros = 0;
1373 
1374 		for (i = 0; i < size; i++) {
1375 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1376 				continue;
1377 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1378 				zeros++;
1379 				continue;
1380 			}
1381 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1382 				off, i, size);
1383 			return -EACCES;
1384 		}
1385 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1386 			      reg_state->stack[spi].spilled_ptr.parent);
1387 		if (value_regno >= 0) {
1388 			if (zeros == size) {
1389 				/* any size read into register is zero extended,
1390 				 * so the whole register == const_zero
1391 				 */
1392 				__mark_reg_const_zero(&state->regs[value_regno]);
1393 			} else {
1394 				/* have read misc data from the stack */
1395 				mark_reg_unknown(env, state->regs, value_regno);
1396 			}
1397 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1398 		}
1399 		return 0;
1400 	}
1401 }
1402 
1403 static int check_stack_access(struct bpf_verifier_env *env,
1404 			      const struct bpf_reg_state *reg,
1405 			      int off, int size)
1406 {
1407 	/* Stack accesses must be at a fixed offset, so that we
1408 	 * can determine what type of data were returned. See
1409 	 * check_stack_read().
1410 	 */
1411 	if (!tnum_is_const(reg->var_off)) {
1412 		char tn_buf[48];
1413 
1414 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1415 		verbose(env, "variable stack access var_off=%s off=%d size=%d",
1416 			tn_buf, off, size);
1417 		return -EACCES;
1418 	}
1419 
1420 	if (off >= 0 || off < -MAX_BPF_STACK) {
1421 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
1422 		return -EACCES;
1423 	}
1424 
1425 	return 0;
1426 }
1427 
1428 /* check read/write into map element returned by bpf_map_lookup_elem() */
1429 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1430 			      int size, bool zero_size_allowed)
1431 {
1432 	struct bpf_reg_state *regs = cur_regs(env);
1433 	struct bpf_map *map = regs[regno].map_ptr;
1434 
1435 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1436 	    off + size > map->value_size) {
1437 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1438 			map->value_size, off, size);
1439 		return -EACCES;
1440 	}
1441 	return 0;
1442 }
1443 
1444 /* check read/write into a map element with possible variable offset */
1445 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1446 			    int off, int size, bool zero_size_allowed)
1447 {
1448 	struct bpf_verifier_state *vstate = env->cur_state;
1449 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1450 	struct bpf_reg_state *reg = &state->regs[regno];
1451 	int err;
1452 
1453 	/* We may have adjusted the register to this map value, so we
1454 	 * need to try adding each of min_value and max_value to off
1455 	 * to make sure our theoretical access will be safe.
1456 	 */
1457 	if (env->log.level)
1458 		print_verifier_state(env, state);
1459 
1460 	/* The minimum value is only important with signed
1461 	 * comparisons where we can't assume the floor of a
1462 	 * value is 0.  If we are using signed variables for our
1463 	 * index'es we need to make sure that whatever we use
1464 	 * will have a set floor within our range.
1465 	 */
1466 	if (reg->smin_value < 0 &&
1467 	    (reg->smin_value == S64_MIN ||
1468 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1469 	      reg->smin_value + off < 0)) {
1470 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1471 			regno);
1472 		return -EACCES;
1473 	}
1474 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1475 				 zero_size_allowed);
1476 	if (err) {
1477 		verbose(env, "R%d min value is outside of the array range\n",
1478 			regno);
1479 		return err;
1480 	}
1481 
1482 	/* If we haven't set a max value then we need to bail since we can't be
1483 	 * sure we won't do bad things.
1484 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1485 	 */
1486 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1487 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1488 			regno);
1489 		return -EACCES;
1490 	}
1491 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1492 				 zero_size_allowed);
1493 	if (err)
1494 		verbose(env, "R%d max value is outside of the array range\n",
1495 			regno);
1496 
1497 	if (map_value_has_spin_lock(reg->map_ptr)) {
1498 		u32 lock = reg->map_ptr->spin_lock_off;
1499 
1500 		/* if any part of struct bpf_spin_lock can be touched by
1501 		 * load/store reject this program.
1502 		 * To check that [x1, x2) overlaps with [y1, y2)
1503 		 * it is sufficient to check x1 < y2 && y1 < x2.
1504 		 */
1505 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
1506 		     lock < reg->umax_value + off + size) {
1507 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
1508 			return -EACCES;
1509 		}
1510 	}
1511 	return err;
1512 }
1513 
1514 #define MAX_PACKET_OFF 0xffff
1515 
1516 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1517 				       const struct bpf_call_arg_meta *meta,
1518 				       enum bpf_access_type t)
1519 {
1520 	switch (env->prog->type) {
1521 	/* Program types only with direct read access go here! */
1522 	case BPF_PROG_TYPE_LWT_IN:
1523 	case BPF_PROG_TYPE_LWT_OUT:
1524 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1525 	case BPF_PROG_TYPE_SK_REUSEPORT:
1526 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
1527 	case BPF_PROG_TYPE_CGROUP_SKB:
1528 		if (t == BPF_WRITE)
1529 			return false;
1530 		/* fallthrough */
1531 
1532 	/* Program types with direct read + write access go here! */
1533 	case BPF_PROG_TYPE_SCHED_CLS:
1534 	case BPF_PROG_TYPE_SCHED_ACT:
1535 	case BPF_PROG_TYPE_XDP:
1536 	case BPF_PROG_TYPE_LWT_XMIT:
1537 	case BPF_PROG_TYPE_SK_SKB:
1538 	case BPF_PROG_TYPE_SK_MSG:
1539 		if (meta)
1540 			return meta->pkt_access;
1541 
1542 		env->seen_direct_write = true;
1543 		return true;
1544 	default:
1545 		return false;
1546 	}
1547 }
1548 
1549 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1550 				 int off, int size, bool zero_size_allowed)
1551 {
1552 	struct bpf_reg_state *regs = cur_regs(env);
1553 	struct bpf_reg_state *reg = &regs[regno];
1554 
1555 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1556 	    (u64)off + size > reg->range) {
1557 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1558 			off, size, regno, reg->id, reg->off, reg->range);
1559 		return -EACCES;
1560 	}
1561 	return 0;
1562 }
1563 
1564 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1565 			       int size, bool zero_size_allowed)
1566 {
1567 	struct bpf_reg_state *regs = cur_regs(env);
1568 	struct bpf_reg_state *reg = &regs[regno];
1569 	int err;
1570 
1571 	/* We may have added a variable offset to the packet pointer; but any
1572 	 * reg->range we have comes after that.  We are only checking the fixed
1573 	 * offset.
1574 	 */
1575 
1576 	/* We don't allow negative numbers, because we aren't tracking enough
1577 	 * detail to prove they're safe.
1578 	 */
1579 	if (reg->smin_value < 0) {
1580 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1581 			regno);
1582 		return -EACCES;
1583 	}
1584 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1585 	if (err) {
1586 		verbose(env, "R%d offset is outside of the packet\n", regno);
1587 		return err;
1588 	}
1589 
1590 	/* __check_packet_access has made sure "off + size - 1" is within u16.
1591 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1592 	 * otherwise find_good_pkt_pointers would have refused to set range info
1593 	 * that __check_packet_access would have rejected this pkt access.
1594 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1595 	 */
1596 	env->prog->aux->max_pkt_offset =
1597 		max_t(u32, env->prog->aux->max_pkt_offset,
1598 		      off + reg->umax_value + size - 1);
1599 
1600 	return err;
1601 }
1602 
1603 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1604 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1605 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1606 {
1607 	struct bpf_insn_access_aux info = {
1608 		.reg_type = *reg_type,
1609 	};
1610 
1611 	if (env->ops->is_valid_access &&
1612 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1613 		/* A non zero info.ctx_field_size indicates that this field is a
1614 		 * candidate for later verifier transformation to load the whole
1615 		 * field and then apply a mask when accessed with a narrower
1616 		 * access than actual ctx access size. A zero info.ctx_field_size
1617 		 * will only allow for whole field access and rejects any other
1618 		 * type of narrower access.
1619 		 */
1620 		*reg_type = info.reg_type;
1621 
1622 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1623 		/* remember the offset of last byte accessed in ctx */
1624 		if (env->prog->aux->max_ctx_offset < off + size)
1625 			env->prog->aux->max_ctx_offset = off + size;
1626 		return 0;
1627 	}
1628 
1629 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1630 	return -EACCES;
1631 }
1632 
1633 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1634 				  int size)
1635 {
1636 	if (size < 0 || off < 0 ||
1637 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
1638 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
1639 			off, size);
1640 		return -EACCES;
1641 	}
1642 	return 0;
1643 }
1644 
1645 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
1646 			     u32 regno, int off, int size,
1647 			     enum bpf_access_type t)
1648 {
1649 	struct bpf_reg_state *regs = cur_regs(env);
1650 	struct bpf_reg_state *reg = &regs[regno];
1651 	struct bpf_insn_access_aux info = {};
1652 	bool valid;
1653 
1654 	if (reg->smin_value < 0) {
1655 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1656 			regno);
1657 		return -EACCES;
1658 	}
1659 
1660 	switch (reg->type) {
1661 	case PTR_TO_SOCK_COMMON:
1662 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
1663 		break;
1664 	case PTR_TO_SOCKET:
1665 		valid = bpf_sock_is_valid_access(off, size, t, &info);
1666 		break;
1667 	case PTR_TO_TCP_SOCK:
1668 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
1669 		break;
1670 	default:
1671 		valid = false;
1672 	}
1673 
1674 
1675 	if (valid) {
1676 		env->insn_aux_data[insn_idx].ctx_field_size =
1677 			info.ctx_field_size;
1678 		return 0;
1679 	}
1680 
1681 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
1682 		regno, reg_type_str[reg->type], off, size);
1683 
1684 	return -EACCES;
1685 }
1686 
1687 static bool __is_pointer_value(bool allow_ptr_leaks,
1688 			       const struct bpf_reg_state *reg)
1689 {
1690 	if (allow_ptr_leaks)
1691 		return false;
1692 
1693 	return reg->type != SCALAR_VALUE;
1694 }
1695 
1696 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1697 {
1698 	return cur_regs(env) + regno;
1699 }
1700 
1701 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1702 {
1703 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1704 }
1705 
1706 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1707 {
1708 	const struct bpf_reg_state *reg = reg_state(env, regno);
1709 
1710 	return reg->type == PTR_TO_CTX;
1711 }
1712 
1713 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
1714 {
1715 	const struct bpf_reg_state *reg = reg_state(env, regno);
1716 
1717 	return type_is_sk_pointer(reg->type);
1718 }
1719 
1720 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1721 {
1722 	const struct bpf_reg_state *reg = reg_state(env, regno);
1723 
1724 	return type_is_pkt_pointer(reg->type);
1725 }
1726 
1727 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1728 {
1729 	const struct bpf_reg_state *reg = reg_state(env, regno);
1730 
1731 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1732 	return reg->type == PTR_TO_FLOW_KEYS;
1733 }
1734 
1735 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1736 				   const struct bpf_reg_state *reg,
1737 				   int off, int size, bool strict)
1738 {
1739 	struct tnum reg_off;
1740 	int ip_align;
1741 
1742 	/* Byte size accesses are always allowed. */
1743 	if (!strict || size == 1)
1744 		return 0;
1745 
1746 	/* For platforms that do not have a Kconfig enabling
1747 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1748 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1749 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1750 	 * to this code only in strict mode where we want to emulate
1751 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1752 	 * unconditional IP align value of '2'.
1753 	 */
1754 	ip_align = 2;
1755 
1756 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1757 	if (!tnum_is_aligned(reg_off, size)) {
1758 		char tn_buf[48];
1759 
1760 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1761 		verbose(env,
1762 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1763 			ip_align, tn_buf, reg->off, off, size);
1764 		return -EACCES;
1765 	}
1766 
1767 	return 0;
1768 }
1769 
1770 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1771 				       const struct bpf_reg_state *reg,
1772 				       const char *pointer_desc,
1773 				       int off, int size, bool strict)
1774 {
1775 	struct tnum reg_off;
1776 
1777 	/* Byte size accesses are always allowed. */
1778 	if (!strict || size == 1)
1779 		return 0;
1780 
1781 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1782 	if (!tnum_is_aligned(reg_off, size)) {
1783 		char tn_buf[48];
1784 
1785 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1786 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1787 			pointer_desc, tn_buf, reg->off, off, size);
1788 		return -EACCES;
1789 	}
1790 
1791 	return 0;
1792 }
1793 
1794 static int check_ptr_alignment(struct bpf_verifier_env *env,
1795 			       const struct bpf_reg_state *reg, int off,
1796 			       int size, bool strict_alignment_once)
1797 {
1798 	bool strict = env->strict_alignment || strict_alignment_once;
1799 	const char *pointer_desc = "";
1800 
1801 	switch (reg->type) {
1802 	case PTR_TO_PACKET:
1803 	case PTR_TO_PACKET_META:
1804 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1805 		 * right in front, treat it the very same way.
1806 		 */
1807 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1808 	case PTR_TO_FLOW_KEYS:
1809 		pointer_desc = "flow keys ";
1810 		break;
1811 	case PTR_TO_MAP_VALUE:
1812 		pointer_desc = "value ";
1813 		break;
1814 	case PTR_TO_CTX:
1815 		pointer_desc = "context ";
1816 		break;
1817 	case PTR_TO_STACK:
1818 		pointer_desc = "stack ";
1819 		/* The stack spill tracking logic in check_stack_write()
1820 		 * and check_stack_read() relies on stack accesses being
1821 		 * aligned.
1822 		 */
1823 		strict = true;
1824 		break;
1825 	case PTR_TO_SOCKET:
1826 		pointer_desc = "sock ";
1827 		break;
1828 	case PTR_TO_SOCK_COMMON:
1829 		pointer_desc = "sock_common ";
1830 		break;
1831 	case PTR_TO_TCP_SOCK:
1832 		pointer_desc = "tcp_sock ";
1833 		break;
1834 	default:
1835 		break;
1836 	}
1837 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1838 					   strict);
1839 }
1840 
1841 static int update_stack_depth(struct bpf_verifier_env *env,
1842 			      const struct bpf_func_state *func,
1843 			      int off)
1844 {
1845 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1846 
1847 	if (stack >= -off)
1848 		return 0;
1849 
1850 	/* update known max for given subprogram */
1851 	env->subprog_info[func->subprogno].stack_depth = -off;
1852 	return 0;
1853 }
1854 
1855 /* starting from main bpf function walk all instructions of the function
1856  * and recursively walk all callees that given function can call.
1857  * Ignore jump and exit insns.
1858  * Since recursion is prevented by check_cfg() this algorithm
1859  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1860  */
1861 static int check_max_stack_depth(struct bpf_verifier_env *env)
1862 {
1863 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1864 	struct bpf_subprog_info *subprog = env->subprog_info;
1865 	struct bpf_insn *insn = env->prog->insnsi;
1866 	int ret_insn[MAX_CALL_FRAMES];
1867 	int ret_prog[MAX_CALL_FRAMES];
1868 
1869 process_func:
1870 	/* round up to 32-bytes, since this is granularity
1871 	 * of interpreter stack size
1872 	 */
1873 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1874 	if (depth > MAX_BPF_STACK) {
1875 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1876 			frame + 1, depth);
1877 		return -EACCES;
1878 	}
1879 continue_func:
1880 	subprog_end = subprog[idx + 1].start;
1881 	for (; i < subprog_end; i++) {
1882 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1883 			continue;
1884 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1885 			continue;
1886 		/* remember insn and function to return to */
1887 		ret_insn[frame] = i + 1;
1888 		ret_prog[frame] = idx;
1889 
1890 		/* find the callee */
1891 		i = i + insn[i].imm + 1;
1892 		idx = find_subprog(env, i);
1893 		if (idx < 0) {
1894 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1895 				  i);
1896 			return -EFAULT;
1897 		}
1898 		frame++;
1899 		if (frame >= MAX_CALL_FRAMES) {
1900 			verbose(env, "the call stack of %d frames is too deep !\n",
1901 				frame);
1902 			return -E2BIG;
1903 		}
1904 		goto process_func;
1905 	}
1906 	/* end of for() loop means the last insn of the 'subprog'
1907 	 * was reached. Doesn't matter whether it was JA or EXIT
1908 	 */
1909 	if (frame == 0)
1910 		return 0;
1911 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1912 	frame--;
1913 	i = ret_insn[frame];
1914 	idx = ret_prog[frame];
1915 	goto continue_func;
1916 }
1917 
1918 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1919 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1920 				  const struct bpf_insn *insn, int idx)
1921 {
1922 	int start = idx + insn->imm + 1, subprog;
1923 
1924 	subprog = find_subprog(env, start);
1925 	if (subprog < 0) {
1926 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1927 			  start);
1928 		return -EFAULT;
1929 	}
1930 	return env->subprog_info[subprog].stack_depth;
1931 }
1932 #endif
1933 
1934 static int check_ctx_reg(struct bpf_verifier_env *env,
1935 			 const struct bpf_reg_state *reg, int regno)
1936 {
1937 	/* Access to ctx or passing it to a helper is only allowed in
1938 	 * its original, unmodified form.
1939 	 */
1940 
1941 	if (reg->off) {
1942 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1943 			regno, reg->off);
1944 		return -EACCES;
1945 	}
1946 
1947 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1948 		char tn_buf[48];
1949 
1950 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1951 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1952 		return -EACCES;
1953 	}
1954 
1955 	return 0;
1956 }
1957 
1958 /* truncate register to smaller size (in bytes)
1959  * must be called with size < BPF_REG_SIZE
1960  */
1961 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1962 {
1963 	u64 mask;
1964 
1965 	/* clear high bits in bit representation */
1966 	reg->var_off = tnum_cast(reg->var_off, size);
1967 
1968 	/* fix arithmetic bounds */
1969 	mask = ((u64)1 << (size * 8)) - 1;
1970 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1971 		reg->umin_value &= mask;
1972 		reg->umax_value &= mask;
1973 	} else {
1974 		reg->umin_value = 0;
1975 		reg->umax_value = mask;
1976 	}
1977 	reg->smin_value = reg->umin_value;
1978 	reg->smax_value = reg->umax_value;
1979 }
1980 
1981 /* check whether memory at (regno + off) is accessible for t = (read | write)
1982  * if t==write, value_regno is a register which value is stored into memory
1983  * if t==read, value_regno is a register which will receive the value from memory
1984  * if t==write && value_regno==-1, some unknown value is stored into memory
1985  * if t==read && value_regno==-1, don't care what we read from memory
1986  */
1987 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1988 			    int off, int bpf_size, enum bpf_access_type t,
1989 			    int value_regno, bool strict_alignment_once)
1990 {
1991 	struct bpf_reg_state *regs = cur_regs(env);
1992 	struct bpf_reg_state *reg = regs + regno;
1993 	struct bpf_func_state *state;
1994 	int size, err = 0;
1995 
1996 	size = bpf_size_to_bytes(bpf_size);
1997 	if (size < 0)
1998 		return size;
1999 
2000 	/* alignment checks will add in reg->off themselves */
2001 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2002 	if (err)
2003 		return err;
2004 
2005 	/* for access checks, reg->off is just part of off */
2006 	off += reg->off;
2007 
2008 	if (reg->type == PTR_TO_MAP_VALUE) {
2009 		if (t == BPF_WRITE && value_regno >= 0 &&
2010 		    is_pointer_value(env, value_regno)) {
2011 			verbose(env, "R%d leaks addr into map\n", value_regno);
2012 			return -EACCES;
2013 		}
2014 
2015 		err = check_map_access(env, regno, off, size, false);
2016 		if (!err && t == BPF_READ && value_regno >= 0)
2017 			mark_reg_unknown(env, regs, value_regno);
2018 
2019 	} else if (reg->type == PTR_TO_CTX) {
2020 		enum bpf_reg_type reg_type = SCALAR_VALUE;
2021 
2022 		if (t == BPF_WRITE && value_regno >= 0 &&
2023 		    is_pointer_value(env, value_regno)) {
2024 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
2025 			return -EACCES;
2026 		}
2027 
2028 		err = check_ctx_reg(env, reg, regno);
2029 		if (err < 0)
2030 			return err;
2031 
2032 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2033 		if (!err && t == BPF_READ && value_regno >= 0) {
2034 			/* ctx access returns either a scalar, or a
2035 			 * PTR_TO_PACKET[_META,_END]. In the latter
2036 			 * case, we know the offset is zero.
2037 			 */
2038 			if (reg_type == SCALAR_VALUE) {
2039 				mark_reg_unknown(env, regs, value_regno);
2040 			} else {
2041 				mark_reg_known_zero(env, regs,
2042 						    value_regno);
2043 				if (reg_type_may_be_null(reg_type))
2044 					regs[value_regno].id = ++env->id_gen;
2045 			}
2046 			regs[value_regno].type = reg_type;
2047 		}
2048 
2049 	} else if (reg->type == PTR_TO_STACK) {
2050 		off += reg->var_off.value;
2051 		err = check_stack_access(env, reg, off, size);
2052 		if (err)
2053 			return err;
2054 
2055 		state = func(env, reg);
2056 		err = update_stack_depth(env, state, off);
2057 		if (err)
2058 			return err;
2059 
2060 		if (t == BPF_WRITE)
2061 			err = check_stack_write(env, state, off, size,
2062 						value_regno, insn_idx);
2063 		else
2064 			err = check_stack_read(env, state, off, size,
2065 					       value_regno);
2066 	} else if (reg_is_pkt_pointer(reg)) {
2067 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2068 			verbose(env, "cannot write into packet\n");
2069 			return -EACCES;
2070 		}
2071 		if (t == BPF_WRITE && value_regno >= 0 &&
2072 		    is_pointer_value(env, value_regno)) {
2073 			verbose(env, "R%d leaks addr into packet\n",
2074 				value_regno);
2075 			return -EACCES;
2076 		}
2077 		err = check_packet_access(env, regno, off, size, false);
2078 		if (!err && t == BPF_READ && value_regno >= 0)
2079 			mark_reg_unknown(env, regs, value_regno);
2080 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
2081 		if (t == BPF_WRITE && value_regno >= 0 &&
2082 		    is_pointer_value(env, value_regno)) {
2083 			verbose(env, "R%d leaks addr into flow keys\n",
2084 				value_regno);
2085 			return -EACCES;
2086 		}
2087 
2088 		err = check_flow_keys_access(env, off, size);
2089 		if (!err && t == BPF_READ && value_regno >= 0)
2090 			mark_reg_unknown(env, regs, value_regno);
2091 	} else if (type_is_sk_pointer(reg->type)) {
2092 		if (t == BPF_WRITE) {
2093 			verbose(env, "R%d cannot write into %s\n",
2094 				regno, reg_type_str[reg->type]);
2095 			return -EACCES;
2096 		}
2097 		err = check_sock_access(env, insn_idx, regno, off, size, t);
2098 		if (!err && value_regno >= 0)
2099 			mark_reg_unknown(env, regs, value_regno);
2100 	} else {
2101 		verbose(env, "R%d invalid mem access '%s'\n", regno,
2102 			reg_type_str[reg->type]);
2103 		return -EACCES;
2104 	}
2105 
2106 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2107 	    regs[value_regno].type == SCALAR_VALUE) {
2108 		/* b/h/w load zero-extends, mark upper bits as known 0 */
2109 		coerce_reg_to_size(&regs[value_regno], size);
2110 	}
2111 	return err;
2112 }
2113 
2114 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2115 {
2116 	int err;
2117 
2118 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2119 	    insn->imm != 0) {
2120 		verbose(env, "BPF_XADD uses reserved fields\n");
2121 		return -EINVAL;
2122 	}
2123 
2124 	/* check src1 operand */
2125 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
2126 	if (err)
2127 		return err;
2128 
2129 	/* check src2 operand */
2130 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2131 	if (err)
2132 		return err;
2133 
2134 	if (is_pointer_value(env, insn->src_reg)) {
2135 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2136 		return -EACCES;
2137 	}
2138 
2139 	if (is_ctx_reg(env, insn->dst_reg) ||
2140 	    is_pkt_reg(env, insn->dst_reg) ||
2141 	    is_flow_key_reg(env, insn->dst_reg) ||
2142 	    is_sk_reg(env, insn->dst_reg)) {
2143 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2144 			insn->dst_reg,
2145 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
2146 		return -EACCES;
2147 	}
2148 
2149 	/* check whether atomic_add can read the memory */
2150 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2151 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
2152 	if (err)
2153 		return err;
2154 
2155 	/* check whether atomic_add can write into the same memory */
2156 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2157 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2158 }
2159 
2160 /* when register 'regno' is passed into function that will read 'access_size'
2161  * bytes from that pointer, make sure that it's within stack boundary
2162  * and all elements of stack are initialized.
2163  * Unlike most pointer bounds-checking functions, this one doesn't take an
2164  * 'off' argument, so it has to add in reg->off itself.
2165  */
2166 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2167 				int access_size, bool zero_size_allowed,
2168 				struct bpf_call_arg_meta *meta)
2169 {
2170 	struct bpf_reg_state *reg = reg_state(env, regno);
2171 	struct bpf_func_state *state = func(env, reg);
2172 	int off, i, slot, spi;
2173 
2174 	if (reg->type != PTR_TO_STACK) {
2175 		/* Allow zero-byte read from NULL, regardless of pointer type */
2176 		if (zero_size_allowed && access_size == 0 &&
2177 		    register_is_null(reg))
2178 			return 0;
2179 
2180 		verbose(env, "R%d type=%s expected=%s\n", regno,
2181 			reg_type_str[reg->type],
2182 			reg_type_str[PTR_TO_STACK]);
2183 		return -EACCES;
2184 	}
2185 
2186 	/* Only allow fixed-offset stack reads */
2187 	if (!tnum_is_const(reg->var_off)) {
2188 		char tn_buf[48];
2189 
2190 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2191 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
2192 			regno, tn_buf);
2193 		return -EACCES;
2194 	}
2195 	off = reg->off + reg->var_off.value;
2196 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2197 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2198 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2199 			regno, off, access_size);
2200 		return -EACCES;
2201 	}
2202 
2203 	if (meta && meta->raw_mode) {
2204 		meta->access_size = access_size;
2205 		meta->regno = regno;
2206 		return 0;
2207 	}
2208 
2209 	for (i = 0; i < access_size; i++) {
2210 		u8 *stype;
2211 
2212 		slot = -(off + i) - 1;
2213 		spi = slot / BPF_REG_SIZE;
2214 		if (state->allocated_stack <= slot)
2215 			goto err;
2216 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2217 		if (*stype == STACK_MISC)
2218 			goto mark;
2219 		if (*stype == STACK_ZERO) {
2220 			/* helper can write anything into the stack */
2221 			*stype = STACK_MISC;
2222 			goto mark;
2223 		}
2224 err:
2225 		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2226 			off, i, access_size);
2227 		return -EACCES;
2228 mark:
2229 		/* reading any byte out of 8-byte 'spill_slot' will cause
2230 		 * the whole slot to be marked as 'read'
2231 		 */
2232 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
2233 			      state->stack[spi].spilled_ptr.parent);
2234 	}
2235 	return update_stack_depth(env, state, off);
2236 }
2237 
2238 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2239 				   int access_size, bool zero_size_allowed,
2240 				   struct bpf_call_arg_meta *meta)
2241 {
2242 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2243 
2244 	switch (reg->type) {
2245 	case PTR_TO_PACKET:
2246 	case PTR_TO_PACKET_META:
2247 		return check_packet_access(env, regno, reg->off, access_size,
2248 					   zero_size_allowed);
2249 	case PTR_TO_MAP_VALUE:
2250 		return check_map_access(env, regno, reg->off, access_size,
2251 					zero_size_allowed);
2252 	default: /* scalar_value|ptr_to_stack or invalid ptr */
2253 		return check_stack_boundary(env, regno, access_size,
2254 					    zero_size_allowed, meta);
2255 	}
2256 }
2257 
2258 /* Implementation details:
2259  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2260  * Two bpf_map_lookups (even with the same key) will have different reg->id.
2261  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2262  * value_or_null->value transition, since the verifier only cares about
2263  * the range of access to valid map value pointer and doesn't care about actual
2264  * address of the map element.
2265  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2266  * reg->id > 0 after value_or_null->value transition. By doing so
2267  * two bpf_map_lookups will be considered two different pointers that
2268  * point to different bpf_spin_locks.
2269  * The verifier allows taking only one bpf_spin_lock at a time to avoid
2270  * dead-locks.
2271  * Since only one bpf_spin_lock is allowed the checks are simpler than
2272  * reg_is_refcounted() logic. The verifier needs to remember only
2273  * one spin_lock instead of array of acquired_refs.
2274  * cur_state->active_spin_lock remembers which map value element got locked
2275  * and clears it after bpf_spin_unlock.
2276  */
2277 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
2278 			     bool is_lock)
2279 {
2280 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2281 	struct bpf_verifier_state *cur = env->cur_state;
2282 	bool is_const = tnum_is_const(reg->var_off);
2283 	struct bpf_map *map = reg->map_ptr;
2284 	u64 val = reg->var_off.value;
2285 
2286 	if (reg->type != PTR_TO_MAP_VALUE) {
2287 		verbose(env, "R%d is not a pointer to map_value\n", regno);
2288 		return -EINVAL;
2289 	}
2290 	if (!is_const) {
2291 		verbose(env,
2292 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2293 			regno);
2294 		return -EINVAL;
2295 	}
2296 	if (!map->btf) {
2297 		verbose(env,
2298 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
2299 			map->name);
2300 		return -EINVAL;
2301 	}
2302 	if (!map_value_has_spin_lock(map)) {
2303 		if (map->spin_lock_off == -E2BIG)
2304 			verbose(env,
2305 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
2306 				map->name);
2307 		else if (map->spin_lock_off == -ENOENT)
2308 			verbose(env,
2309 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
2310 				map->name);
2311 		else
2312 			verbose(env,
2313 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2314 				map->name);
2315 		return -EINVAL;
2316 	}
2317 	if (map->spin_lock_off != val + reg->off) {
2318 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2319 			val + reg->off);
2320 		return -EINVAL;
2321 	}
2322 	if (is_lock) {
2323 		if (cur->active_spin_lock) {
2324 			verbose(env,
2325 				"Locking two bpf_spin_locks are not allowed\n");
2326 			return -EINVAL;
2327 		}
2328 		cur->active_spin_lock = reg->id;
2329 	} else {
2330 		if (!cur->active_spin_lock) {
2331 			verbose(env, "bpf_spin_unlock without taking a lock\n");
2332 			return -EINVAL;
2333 		}
2334 		if (cur->active_spin_lock != reg->id) {
2335 			verbose(env, "bpf_spin_unlock of different lock\n");
2336 			return -EINVAL;
2337 		}
2338 		cur->active_spin_lock = 0;
2339 	}
2340 	return 0;
2341 }
2342 
2343 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2344 {
2345 	return type == ARG_PTR_TO_MEM ||
2346 	       type == ARG_PTR_TO_MEM_OR_NULL ||
2347 	       type == ARG_PTR_TO_UNINIT_MEM;
2348 }
2349 
2350 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2351 {
2352 	return type == ARG_CONST_SIZE ||
2353 	       type == ARG_CONST_SIZE_OR_ZERO;
2354 }
2355 
2356 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2357 			  enum bpf_arg_type arg_type,
2358 			  struct bpf_call_arg_meta *meta)
2359 {
2360 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2361 	enum bpf_reg_type expected_type, type = reg->type;
2362 	int err = 0;
2363 
2364 	if (arg_type == ARG_DONTCARE)
2365 		return 0;
2366 
2367 	err = check_reg_arg(env, regno, SRC_OP);
2368 	if (err)
2369 		return err;
2370 
2371 	if (arg_type == ARG_ANYTHING) {
2372 		if (is_pointer_value(env, regno)) {
2373 			verbose(env, "R%d leaks addr into helper function\n",
2374 				regno);
2375 			return -EACCES;
2376 		}
2377 		return 0;
2378 	}
2379 
2380 	if (type_is_pkt_pointer(type) &&
2381 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2382 		verbose(env, "helper access to the packet is not allowed\n");
2383 		return -EACCES;
2384 	}
2385 
2386 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
2387 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
2388 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2389 		expected_type = PTR_TO_STACK;
2390 		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
2391 		    type != expected_type)
2392 			goto err_type;
2393 	} else if (arg_type == ARG_CONST_SIZE ||
2394 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
2395 		expected_type = SCALAR_VALUE;
2396 		if (type != expected_type)
2397 			goto err_type;
2398 	} else if (arg_type == ARG_CONST_MAP_PTR) {
2399 		expected_type = CONST_PTR_TO_MAP;
2400 		if (type != expected_type)
2401 			goto err_type;
2402 	} else if (arg_type == ARG_PTR_TO_CTX) {
2403 		expected_type = PTR_TO_CTX;
2404 		if (type != expected_type)
2405 			goto err_type;
2406 		err = check_ctx_reg(env, reg, regno);
2407 		if (err < 0)
2408 			return err;
2409 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
2410 		expected_type = PTR_TO_SOCK_COMMON;
2411 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
2412 		if (!type_is_sk_pointer(type))
2413 			goto err_type;
2414 		if (reg->ref_obj_id) {
2415 			if (meta->ref_obj_id) {
2416 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
2417 					regno, reg->ref_obj_id,
2418 					meta->ref_obj_id);
2419 				return -EFAULT;
2420 			}
2421 			meta->ref_obj_id = reg->ref_obj_id;
2422 		}
2423 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
2424 		if (meta->func_id == BPF_FUNC_spin_lock) {
2425 			if (process_spin_lock(env, regno, true))
2426 				return -EACCES;
2427 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
2428 			if (process_spin_lock(env, regno, false))
2429 				return -EACCES;
2430 		} else {
2431 			verbose(env, "verifier internal error\n");
2432 			return -EFAULT;
2433 		}
2434 	} else if (arg_type_is_mem_ptr(arg_type)) {
2435 		expected_type = PTR_TO_STACK;
2436 		/* One exception here. In case function allows for NULL to be
2437 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
2438 		 * happens during stack boundary checking.
2439 		 */
2440 		if (register_is_null(reg) &&
2441 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
2442 			/* final test in check_stack_boundary() */;
2443 		else if (!type_is_pkt_pointer(type) &&
2444 			 type != PTR_TO_MAP_VALUE &&
2445 			 type != expected_type)
2446 			goto err_type;
2447 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2448 	} else {
2449 		verbose(env, "unsupported arg_type %d\n", arg_type);
2450 		return -EFAULT;
2451 	}
2452 
2453 	if (arg_type == ARG_CONST_MAP_PTR) {
2454 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2455 		meta->map_ptr = reg->map_ptr;
2456 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2457 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
2458 		 * check that [key, key + map->key_size) are within
2459 		 * stack limits and initialized
2460 		 */
2461 		if (!meta->map_ptr) {
2462 			/* in function declaration map_ptr must come before
2463 			 * map_key, so that it's verified and known before
2464 			 * we have to check map_key here. Otherwise it means
2465 			 * that kernel subsystem misconfigured verifier
2466 			 */
2467 			verbose(env, "invalid map_ptr to access map->key\n");
2468 			return -EACCES;
2469 		}
2470 		err = check_helper_mem_access(env, regno,
2471 					      meta->map_ptr->key_size, false,
2472 					      NULL);
2473 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2474 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2475 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
2476 		 * check [value, value + map->value_size) validity
2477 		 */
2478 		if (!meta->map_ptr) {
2479 			/* kernel subsystem misconfigured verifier */
2480 			verbose(env, "invalid map_ptr to access map->value\n");
2481 			return -EACCES;
2482 		}
2483 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2484 		err = check_helper_mem_access(env, regno,
2485 					      meta->map_ptr->value_size, false,
2486 					      meta);
2487 	} else if (arg_type_is_mem_size(arg_type)) {
2488 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2489 
2490 		/* remember the mem_size which may be used later
2491 		 * to refine return values.
2492 		 */
2493 		meta->msize_smax_value = reg->smax_value;
2494 		meta->msize_umax_value = reg->umax_value;
2495 
2496 		/* The register is SCALAR_VALUE; the access check
2497 		 * happens using its boundaries.
2498 		 */
2499 		if (!tnum_is_const(reg->var_off))
2500 			/* For unprivileged variable accesses, disable raw
2501 			 * mode so that the program is required to
2502 			 * initialize all the memory that the helper could
2503 			 * just partially fill up.
2504 			 */
2505 			meta = NULL;
2506 
2507 		if (reg->smin_value < 0) {
2508 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2509 				regno);
2510 			return -EACCES;
2511 		}
2512 
2513 		if (reg->umin_value == 0) {
2514 			err = check_helper_mem_access(env, regno - 1, 0,
2515 						      zero_size_allowed,
2516 						      meta);
2517 			if (err)
2518 				return err;
2519 		}
2520 
2521 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2522 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2523 				regno);
2524 			return -EACCES;
2525 		}
2526 		err = check_helper_mem_access(env, regno - 1,
2527 					      reg->umax_value,
2528 					      zero_size_allowed, meta);
2529 	}
2530 
2531 	return err;
2532 err_type:
2533 	verbose(env, "R%d type=%s expected=%s\n", regno,
2534 		reg_type_str[type], reg_type_str[expected_type]);
2535 	return -EACCES;
2536 }
2537 
2538 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2539 					struct bpf_map *map, int func_id)
2540 {
2541 	if (!map)
2542 		return 0;
2543 
2544 	/* We need a two way check, first is from map perspective ... */
2545 	switch (map->map_type) {
2546 	case BPF_MAP_TYPE_PROG_ARRAY:
2547 		if (func_id != BPF_FUNC_tail_call)
2548 			goto error;
2549 		break;
2550 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2551 		if (func_id != BPF_FUNC_perf_event_read &&
2552 		    func_id != BPF_FUNC_perf_event_output &&
2553 		    func_id != BPF_FUNC_perf_event_read_value)
2554 			goto error;
2555 		break;
2556 	case BPF_MAP_TYPE_STACK_TRACE:
2557 		if (func_id != BPF_FUNC_get_stackid)
2558 			goto error;
2559 		break;
2560 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2561 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2562 		    func_id != BPF_FUNC_current_task_under_cgroup)
2563 			goto error;
2564 		break;
2565 	case BPF_MAP_TYPE_CGROUP_STORAGE:
2566 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2567 		if (func_id != BPF_FUNC_get_local_storage)
2568 			goto error;
2569 		break;
2570 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2571 	 * allow to be modified from bpf side. So do not allow lookup elements
2572 	 * for now.
2573 	 */
2574 	case BPF_MAP_TYPE_DEVMAP:
2575 		if (func_id != BPF_FUNC_redirect_map)
2576 			goto error;
2577 		break;
2578 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2579 	 * appear.
2580 	 */
2581 	case BPF_MAP_TYPE_CPUMAP:
2582 	case BPF_MAP_TYPE_XSKMAP:
2583 		if (func_id != BPF_FUNC_redirect_map)
2584 			goto error;
2585 		break;
2586 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2587 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2588 		if (func_id != BPF_FUNC_map_lookup_elem)
2589 			goto error;
2590 		break;
2591 	case BPF_MAP_TYPE_SOCKMAP:
2592 		if (func_id != BPF_FUNC_sk_redirect_map &&
2593 		    func_id != BPF_FUNC_sock_map_update &&
2594 		    func_id != BPF_FUNC_map_delete_elem &&
2595 		    func_id != BPF_FUNC_msg_redirect_map)
2596 			goto error;
2597 		break;
2598 	case BPF_MAP_TYPE_SOCKHASH:
2599 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2600 		    func_id != BPF_FUNC_sock_hash_update &&
2601 		    func_id != BPF_FUNC_map_delete_elem &&
2602 		    func_id != BPF_FUNC_msg_redirect_hash)
2603 			goto error;
2604 		break;
2605 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2606 		if (func_id != BPF_FUNC_sk_select_reuseport)
2607 			goto error;
2608 		break;
2609 	case BPF_MAP_TYPE_QUEUE:
2610 	case BPF_MAP_TYPE_STACK:
2611 		if (func_id != BPF_FUNC_map_peek_elem &&
2612 		    func_id != BPF_FUNC_map_pop_elem &&
2613 		    func_id != BPF_FUNC_map_push_elem)
2614 			goto error;
2615 		break;
2616 	default:
2617 		break;
2618 	}
2619 
2620 	/* ... and second from the function itself. */
2621 	switch (func_id) {
2622 	case BPF_FUNC_tail_call:
2623 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2624 			goto error;
2625 		if (env->subprog_cnt > 1) {
2626 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2627 			return -EINVAL;
2628 		}
2629 		break;
2630 	case BPF_FUNC_perf_event_read:
2631 	case BPF_FUNC_perf_event_output:
2632 	case BPF_FUNC_perf_event_read_value:
2633 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2634 			goto error;
2635 		break;
2636 	case BPF_FUNC_get_stackid:
2637 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2638 			goto error;
2639 		break;
2640 	case BPF_FUNC_current_task_under_cgroup:
2641 	case BPF_FUNC_skb_under_cgroup:
2642 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2643 			goto error;
2644 		break;
2645 	case BPF_FUNC_redirect_map:
2646 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2647 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2648 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2649 			goto error;
2650 		break;
2651 	case BPF_FUNC_sk_redirect_map:
2652 	case BPF_FUNC_msg_redirect_map:
2653 	case BPF_FUNC_sock_map_update:
2654 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2655 			goto error;
2656 		break;
2657 	case BPF_FUNC_sk_redirect_hash:
2658 	case BPF_FUNC_msg_redirect_hash:
2659 	case BPF_FUNC_sock_hash_update:
2660 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2661 			goto error;
2662 		break;
2663 	case BPF_FUNC_get_local_storage:
2664 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2665 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2666 			goto error;
2667 		break;
2668 	case BPF_FUNC_sk_select_reuseport:
2669 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2670 			goto error;
2671 		break;
2672 	case BPF_FUNC_map_peek_elem:
2673 	case BPF_FUNC_map_pop_elem:
2674 	case BPF_FUNC_map_push_elem:
2675 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2676 		    map->map_type != BPF_MAP_TYPE_STACK)
2677 			goto error;
2678 		break;
2679 	default:
2680 		break;
2681 	}
2682 
2683 	return 0;
2684 error:
2685 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2686 		map->map_type, func_id_name(func_id), func_id);
2687 	return -EINVAL;
2688 }
2689 
2690 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2691 {
2692 	int count = 0;
2693 
2694 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2695 		count++;
2696 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2697 		count++;
2698 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2699 		count++;
2700 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2701 		count++;
2702 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2703 		count++;
2704 
2705 	/* We only support one arg being in raw mode at the moment,
2706 	 * which is sufficient for the helper functions we have
2707 	 * right now.
2708 	 */
2709 	return count <= 1;
2710 }
2711 
2712 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2713 				    enum bpf_arg_type arg_next)
2714 {
2715 	return (arg_type_is_mem_ptr(arg_curr) &&
2716 	        !arg_type_is_mem_size(arg_next)) ||
2717 	       (!arg_type_is_mem_ptr(arg_curr) &&
2718 		arg_type_is_mem_size(arg_next));
2719 }
2720 
2721 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2722 {
2723 	/* bpf_xxx(..., buf, len) call will access 'len'
2724 	 * bytes from memory 'buf'. Both arg types need
2725 	 * to be paired, so make sure there's no buggy
2726 	 * helper function specification.
2727 	 */
2728 	if (arg_type_is_mem_size(fn->arg1_type) ||
2729 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2730 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2731 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2732 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2733 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2734 		return false;
2735 
2736 	return true;
2737 }
2738 
2739 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
2740 {
2741 	int count = 0;
2742 
2743 	if (arg_type_may_be_refcounted(fn->arg1_type))
2744 		count++;
2745 	if (arg_type_may_be_refcounted(fn->arg2_type))
2746 		count++;
2747 	if (arg_type_may_be_refcounted(fn->arg3_type))
2748 		count++;
2749 	if (arg_type_may_be_refcounted(fn->arg4_type))
2750 		count++;
2751 	if (arg_type_may_be_refcounted(fn->arg5_type))
2752 		count++;
2753 
2754 	/* A reference acquiring function cannot acquire
2755 	 * another refcounted ptr.
2756 	 */
2757 	if (is_acquire_function(func_id) && count)
2758 		return false;
2759 
2760 	/* We only support one arg being unreferenced at the moment,
2761 	 * which is sufficient for the helper functions we have right now.
2762 	 */
2763 	return count <= 1;
2764 }
2765 
2766 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
2767 {
2768 	return check_raw_mode_ok(fn) &&
2769 	       check_arg_pair_ok(fn) &&
2770 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
2771 }
2772 
2773 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2774  * are now invalid, so turn them into unknown SCALAR_VALUE.
2775  */
2776 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2777 				     struct bpf_func_state *state)
2778 {
2779 	struct bpf_reg_state *regs = state->regs, *reg;
2780 	int i;
2781 
2782 	for (i = 0; i < MAX_BPF_REG; i++)
2783 		if (reg_is_pkt_pointer_any(&regs[i]))
2784 			mark_reg_unknown(env, regs, i);
2785 
2786 	bpf_for_each_spilled_reg(i, state, reg) {
2787 		if (!reg)
2788 			continue;
2789 		if (reg_is_pkt_pointer_any(reg))
2790 			__mark_reg_unknown(reg);
2791 	}
2792 }
2793 
2794 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2795 {
2796 	struct bpf_verifier_state *vstate = env->cur_state;
2797 	int i;
2798 
2799 	for (i = 0; i <= vstate->curframe; i++)
2800 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2801 }
2802 
2803 static void release_reg_references(struct bpf_verifier_env *env,
2804 				   struct bpf_func_state *state,
2805 				   int ref_obj_id)
2806 {
2807 	struct bpf_reg_state *regs = state->regs, *reg;
2808 	int i;
2809 
2810 	for (i = 0; i < MAX_BPF_REG; i++)
2811 		if (regs[i].ref_obj_id == ref_obj_id)
2812 			mark_reg_unknown(env, regs, i);
2813 
2814 	bpf_for_each_spilled_reg(i, state, reg) {
2815 		if (!reg)
2816 			continue;
2817 		if (reg->ref_obj_id == ref_obj_id)
2818 			__mark_reg_unknown(reg);
2819 	}
2820 }
2821 
2822 /* The pointer with the specified id has released its reference to kernel
2823  * resources. Identify all copies of the same pointer and clear the reference.
2824  */
2825 static int release_reference(struct bpf_verifier_env *env,
2826 			     int ref_obj_id)
2827 {
2828 	struct bpf_verifier_state *vstate = env->cur_state;
2829 	int err;
2830 	int i;
2831 
2832 	err = release_reference_state(cur_func(env), ref_obj_id);
2833 	if (err)
2834 		return err;
2835 
2836 	for (i = 0; i <= vstate->curframe; i++)
2837 		release_reg_references(env, vstate->frame[i], ref_obj_id);
2838 
2839 	return 0;
2840 }
2841 
2842 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2843 			   int *insn_idx)
2844 {
2845 	struct bpf_verifier_state *state = env->cur_state;
2846 	struct bpf_func_state *caller, *callee;
2847 	int i, err, subprog, target_insn;
2848 
2849 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2850 		verbose(env, "the call stack of %d frames is too deep\n",
2851 			state->curframe + 2);
2852 		return -E2BIG;
2853 	}
2854 
2855 	target_insn = *insn_idx + insn->imm;
2856 	subprog = find_subprog(env, target_insn + 1);
2857 	if (subprog < 0) {
2858 		verbose(env, "verifier bug. No program starts at insn %d\n",
2859 			target_insn + 1);
2860 		return -EFAULT;
2861 	}
2862 
2863 	caller = state->frame[state->curframe];
2864 	if (state->frame[state->curframe + 1]) {
2865 		verbose(env, "verifier bug. Frame %d already allocated\n",
2866 			state->curframe + 1);
2867 		return -EFAULT;
2868 	}
2869 
2870 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2871 	if (!callee)
2872 		return -ENOMEM;
2873 	state->frame[state->curframe + 1] = callee;
2874 
2875 	/* callee cannot access r0, r6 - r9 for reading and has to write
2876 	 * into its own stack before reading from it.
2877 	 * callee can read/write into caller's stack
2878 	 */
2879 	init_func_state(env, callee,
2880 			/* remember the callsite, it will be used by bpf_exit */
2881 			*insn_idx /* callsite */,
2882 			state->curframe + 1 /* frameno within this callchain */,
2883 			subprog /* subprog number within this prog */);
2884 
2885 	/* Transfer references to the callee */
2886 	err = transfer_reference_state(callee, caller);
2887 	if (err)
2888 		return err;
2889 
2890 	/* copy r1 - r5 args that callee can access.  The copy includes parent
2891 	 * pointers, which connects us up to the liveness chain
2892 	 */
2893 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2894 		callee->regs[i] = caller->regs[i];
2895 
2896 	/* after the call registers r0 - r5 were scratched */
2897 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2898 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
2899 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2900 	}
2901 
2902 	/* only increment it after check_reg_arg() finished */
2903 	state->curframe++;
2904 
2905 	/* and go analyze first insn of the callee */
2906 	*insn_idx = target_insn;
2907 
2908 	if (env->log.level) {
2909 		verbose(env, "caller:\n");
2910 		print_verifier_state(env, caller);
2911 		verbose(env, "callee:\n");
2912 		print_verifier_state(env, callee);
2913 	}
2914 	return 0;
2915 }
2916 
2917 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2918 {
2919 	struct bpf_verifier_state *state = env->cur_state;
2920 	struct bpf_func_state *caller, *callee;
2921 	struct bpf_reg_state *r0;
2922 	int err;
2923 
2924 	callee = state->frame[state->curframe];
2925 	r0 = &callee->regs[BPF_REG_0];
2926 	if (r0->type == PTR_TO_STACK) {
2927 		/* technically it's ok to return caller's stack pointer
2928 		 * (or caller's caller's pointer) back to the caller,
2929 		 * since these pointers are valid. Only current stack
2930 		 * pointer will be invalid as soon as function exits,
2931 		 * but let's be conservative
2932 		 */
2933 		verbose(env, "cannot return stack pointer to the caller\n");
2934 		return -EINVAL;
2935 	}
2936 
2937 	state->curframe--;
2938 	caller = state->frame[state->curframe];
2939 	/* return to the caller whatever r0 had in the callee */
2940 	caller->regs[BPF_REG_0] = *r0;
2941 
2942 	/* Transfer references to the caller */
2943 	err = transfer_reference_state(caller, callee);
2944 	if (err)
2945 		return err;
2946 
2947 	*insn_idx = callee->callsite + 1;
2948 	if (env->log.level) {
2949 		verbose(env, "returning from callee:\n");
2950 		print_verifier_state(env, callee);
2951 		verbose(env, "to caller at %d:\n", *insn_idx);
2952 		print_verifier_state(env, caller);
2953 	}
2954 	/* clear everything in the callee */
2955 	free_func_state(callee);
2956 	state->frame[state->curframe + 1] = NULL;
2957 	return 0;
2958 }
2959 
2960 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2961 				   int func_id,
2962 				   struct bpf_call_arg_meta *meta)
2963 {
2964 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2965 
2966 	if (ret_type != RET_INTEGER ||
2967 	    (func_id != BPF_FUNC_get_stack &&
2968 	     func_id != BPF_FUNC_probe_read_str))
2969 		return;
2970 
2971 	ret_reg->smax_value = meta->msize_smax_value;
2972 	ret_reg->umax_value = meta->msize_umax_value;
2973 	__reg_deduce_bounds(ret_reg);
2974 	__reg_bound_offset(ret_reg);
2975 }
2976 
2977 static int
2978 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2979 		int func_id, int insn_idx)
2980 {
2981 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2982 
2983 	if (func_id != BPF_FUNC_tail_call &&
2984 	    func_id != BPF_FUNC_map_lookup_elem &&
2985 	    func_id != BPF_FUNC_map_update_elem &&
2986 	    func_id != BPF_FUNC_map_delete_elem &&
2987 	    func_id != BPF_FUNC_map_push_elem &&
2988 	    func_id != BPF_FUNC_map_pop_elem &&
2989 	    func_id != BPF_FUNC_map_peek_elem)
2990 		return 0;
2991 
2992 	if (meta->map_ptr == NULL) {
2993 		verbose(env, "kernel subsystem misconfigured verifier\n");
2994 		return -EINVAL;
2995 	}
2996 
2997 	if (!BPF_MAP_PTR(aux->map_state))
2998 		bpf_map_ptr_store(aux, meta->map_ptr,
2999 				  meta->map_ptr->unpriv_array);
3000 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3001 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3002 				  meta->map_ptr->unpriv_array);
3003 	return 0;
3004 }
3005 
3006 static int check_reference_leak(struct bpf_verifier_env *env)
3007 {
3008 	struct bpf_func_state *state = cur_func(env);
3009 	int i;
3010 
3011 	for (i = 0; i < state->acquired_refs; i++) {
3012 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3013 			state->refs[i].id, state->refs[i].insn_idx);
3014 	}
3015 	return state->acquired_refs ? -EINVAL : 0;
3016 }
3017 
3018 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
3019 {
3020 	const struct bpf_func_proto *fn = NULL;
3021 	struct bpf_reg_state *regs;
3022 	struct bpf_call_arg_meta meta;
3023 	bool changes_data;
3024 	int i, err;
3025 
3026 	/* find function prototype */
3027 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
3028 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3029 			func_id);
3030 		return -EINVAL;
3031 	}
3032 
3033 	if (env->ops->get_func_proto)
3034 		fn = env->ops->get_func_proto(func_id, env->prog);
3035 	if (!fn) {
3036 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3037 			func_id);
3038 		return -EINVAL;
3039 	}
3040 
3041 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
3042 	if (!env->prog->gpl_compatible && fn->gpl_only) {
3043 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
3044 		return -EINVAL;
3045 	}
3046 
3047 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
3048 	changes_data = bpf_helper_changes_pkt_data(fn->func);
3049 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3050 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3051 			func_id_name(func_id), func_id);
3052 		return -EINVAL;
3053 	}
3054 
3055 	memset(&meta, 0, sizeof(meta));
3056 	meta.pkt_access = fn->pkt_access;
3057 
3058 	err = check_func_proto(fn, func_id);
3059 	if (err) {
3060 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
3061 			func_id_name(func_id), func_id);
3062 		return err;
3063 	}
3064 
3065 	meta.func_id = func_id;
3066 	/* check args */
3067 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
3068 	if (err)
3069 		return err;
3070 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
3071 	if (err)
3072 		return err;
3073 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
3074 	if (err)
3075 		return err;
3076 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
3077 	if (err)
3078 		return err;
3079 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
3080 	if (err)
3081 		return err;
3082 
3083 	err = record_func_map(env, &meta, func_id, insn_idx);
3084 	if (err)
3085 		return err;
3086 
3087 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
3088 	 * is inferred from register state.
3089 	 */
3090 	for (i = 0; i < meta.access_size; i++) {
3091 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3092 				       BPF_WRITE, -1, false);
3093 		if (err)
3094 			return err;
3095 	}
3096 
3097 	if (func_id == BPF_FUNC_tail_call) {
3098 		err = check_reference_leak(env);
3099 		if (err) {
3100 			verbose(env, "tail_call would lead to reference leak\n");
3101 			return err;
3102 		}
3103 	} else if (is_release_function(func_id)) {
3104 		err = release_reference(env, meta.ref_obj_id);
3105 		if (err) {
3106 			verbose(env, "func %s#%d reference has not been acquired before\n",
3107 				func_id_name(func_id), func_id);
3108 			return err;
3109 		}
3110 	}
3111 
3112 	regs = cur_regs(env);
3113 
3114 	/* check that flags argument in get_local_storage(map, flags) is 0,
3115 	 * this is required because get_local_storage() can't return an error.
3116 	 */
3117 	if (func_id == BPF_FUNC_get_local_storage &&
3118 	    !register_is_null(&regs[BPF_REG_2])) {
3119 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3120 		return -EINVAL;
3121 	}
3122 
3123 	/* reset caller saved regs */
3124 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3125 		mark_reg_not_init(env, regs, caller_saved[i]);
3126 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3127 	}
3128 
3129 	/* update return register (already marked as written above) */
3130 	if (fn->ret_type == RET_INTEGER) {
3131 		/* sets type to SCALAR_VALUE */
3132 		mark_reg_unknown(env, regs, BPF_REG_0);
3133 	} else if (fn->ret_type == RET_VOID) {
3134 		regs[BPF_REG_0].type = NOT_INIT;
3135 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
3136 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3137 		/* There is no offset yet applied, variable or fixed */
3138 		mark_reg_known_zero(env, regs, BPF_REG_0);
3139 		/* remember map_ptr, so that check_map_access()
3140 		 * can check 'value_size' boundary of memory access
3141 		 * to map element returned from bpf_map_lookup_elem()
3142 		 */
3143 		if (meta.map_ptr == NULL) {
3144 			verbose(env,
3145 				"kernel subsystem misconfigured verifier\n");
3146 			return -EINVAL;
3147 		}
3148 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
3149 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3150 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
3151 			if (map_value_has_spin_lock(meta.map_ptr))
3152 				regs[BPF_REG_0].id = ++env->id_gen;
3153 		} else {
3154 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
3155 			regs[BPF_REG_0].id = ++env->id_gen;
3156 		}
3157 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
3158 		mark_reg_known_zero(env, regs, BPF_REG_0);
3159 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
3160 		if (is_acquire_function(func_id)) {
3161 			int id = acquire_reference_state(env, insn_idx);
3162 
3163 			if (id < 0)
3164 				return id;
3165 			/* For mark_ptr_or_null_reg() */
3166 			regs[BPF_REG_0].id = id;
3167 			/* For release_reference() */
3168 			regs[BPF_REG_0].ref_obj_id = id;
3169 		} else {
3170 			/* For mark_ptr_or_null_reg() */
3171 			regs[BPF_REG_0].id = ++env->id_gen;
3172 		}
3173 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
3174 		mark_reg_known_zero(env, regs, BPF_REG_0);
3175 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
3176 		regs[BPF_REG_0].id = ++env->id_gen;
3177 	} else {
3178 		verbose(env, "unknown return type %d of func %s#%d\n",
3179 			fn->ret_type, func_id_name(func_id), func_id);
3180 		return -EINVAL;
3181 	}
3182 
3183 	if (is_ptr_cast_function(func_id))
3184 		/* For release_reference() */
3185 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
3186 
3187 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
3188 
3189 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
3190 	if (err)
3191 		return err;
3192 
3193 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
3194 		const char *err_str;
3195 
3196 #ifdef CONFIG_PERF_EVENTS
3197 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
3198 		err_str = "cannot get callchain buffer for func %s#%d\n";
3199 #else
3200 		err = -ENOTSUPP;
3201 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3202 #endif
3203 		if (err) {
3204 			verbose(env, err_str, func_id_name(func_id), func_id);
3205 			return err;
3206 		}
3207 
3208 		env->prog->has_callchain_buf = true;
3209 	}
3210 
3211 	if (changes_data)
3212 		clear_all_pkt_pointers(env);
3213 	return 0;
3214 }
3215 
3216 static bool signed_add_overflows(s64 a, s64 b)
3217 {
3218 	/* Do the add in u64, where overflow is well-defined */
3219 	s64 res = (s64)((u64)a + (u64)b);
3220 
3221 	if (b < 0)
3222 		return res > a;
3223 	return res < a;
3224 }
3225 
3226 static bool signed_sub_overflows(s64 a, s64 b)
3227 {
3228 	/* Do the sub in u64, where overflow is well-defined */
3229 	s64 res = (s64)((u64)a - (u64)b);
3230 
3231 	if (b < 0)
3232 		return res < a;
3233 	return res > a;
3234 }
3235 
3236 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3237 				  const struct bpf_reg_state *reg,
3238 				  enum bpf_reg_type type)
3239 {
3240 	bool known = tnum_is_const(reg->var_off);
3241 	s64 val = reg->var_off.value;
3242 	s64 smin = reg->smin_value;
3243 
3244 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3245 		verbose(env, "math between %s pointer and %lld is not allowed\n",
3246 			reg_type_str[type], val);
3247 		return false;
3248 	}
3249 
3250 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3251 		verbose(env, "%s pointer offset %d is not allowed\n",
3252 			reg_type_str[type], reg->off);
3253 		return false;
3254 	}
3255 
3256 	if (smin == S64_MIN) {
3257 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3258 			reg_type_str[type]);
3259 		return false;
3260 	}
3261 
3262 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3263 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
3264 			smin, reg_type_str[type]);
3265 		return false;
3266 	}
3267 
3268 	return true;
3269 }
3270 
3271 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
3272 {
3273 	return &env->insn_aux_data[env->insn_idx];
3274 }
3275 
3276 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
3277 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
3278 {
3279 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
3280 			    (opcode == BPF_SUB && !off_is_neg);
3281 	u32 off;
3282 
3283 	switch (ptr_reg->type) {
3284 	case PTR_TO_STACK:
3285 		off = ptr_reg->off + ptr_reg->var_off.value;
3286 		if (mask_to_left)
3287 			*ptr_limit = MAX_BPF_STACK + off;
3288 		else
3289 			*ptr_limit = -off;
3290 		return 0;
3291 	case PTR_TO_MAP_VALUE:
3292 		if (mask_to_left) {
3293 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
3294 		} else {
3295 			off = ptr_reg->smin_value + ptr_reg->off;
3296 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
3297 		}
3298 		return 0;
3299 	default:
3300 		return -EINVAL;
3301 	}
3302 }
3303 
3304 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
3305 				    const struct bpf_insn *insn)
3306 {
3307 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
3308 }
3309 
3310 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
3311 				       u32 alu_state, u32 alu_limit)
3312 {
3313 	/* If we arrived here from different branches with different
3314 	 * state or limits to sanitize, then this won't work.
3315 	 */
3316 	if (aux->alu_state &&
3317 	    (aux->alu_state != alu_state ||
3318 	     aux->alu_limit != alu_limit))
3319 		return -EACCES;
3320 
3321 	/* Corresponding fixup done in fixup_bpf_calls(). */
3322 	aux->alu_state = alu_state;
3323 	aux->alu_limit = alu_limit;
3324 	return 0;
3325 }
3326 
3327 static int sanitize_val_alu(struct bpf_verifier_env *env,
3328 			    struct bpf_insn *insn)
3329 {
3330 	struct bpf_insn_aux_data *aux = cur_aux(env);
3331 
3332 	if (can_skip_alu_sanitation(env, insn))
3333 		return 0;
3334 
3335 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
3336 }
3337 
3338 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
3339 			    struct bpf_insn *insn,
3340 			    const struct bpf_reg_state *ptr_reg,
3341 			    struct bpf_reg_state *dst_reg,
3342 			    bool off_is_neg)
3343 {
3344 	struct bpf_verifier_state *vstate = env->cur_state;
3345 	struct bpf_insn_aux_data *aux = cur_aux(env);
3346 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
3347 	u8 opcode = BPF_OP(insn->code);
3348 	u32 alu_state, alu_limit;
3349 	struct bpf_reg_state tmp;
3350 	bool ret;
3351 
3352 	if (can_skip_alu_sanitation(env, insn))
3353 		return 0;
3354 
3355 	/* We already marked aux for masking from non-speculative
3356 	 * paths, thus we got here in the first place. We only care
3357 	 * to explore bad access from here.
3358 	 */
3359 	if (vstate->speculative)
3360 		goto do_sim;
3361 
3362 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
3363 	alu_state |= ptr_is_dst_reg ?
3364 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
3365 
3366 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
3367 		return 0;
3368 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
3369 		return -EACCES;
3370 do_sim:
3371 	/* Simulate and find potential out-of-bounds access under
3372 	 * speculative execution from truncation as a result of
3373 	 * masking when off was not within expected range. If off
3374 	 * sits in dst, then we temporarily need to move ptr there
3375 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3376 	 * for cases where we use K-based arithmetic in one direction
3377 	 * and truncated reg-based in the other in order to explore
3378 	 * bad access.
3379 	 */
3380 	if (!ptr_is_dst_reg) {
3381 		tmp = *dst_reg;
3382 		*dst_reg = *ptr_reg;
3383 	}
3384 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
3385 	if (!ptr_is_dst_reg && ret)
3386 		*dst_reg = tmp;
3387 	return !ret ? -EFAULT : 0;
3388 }
3389 
3390 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
3391  * Caller should also handle BPF_MOV case separately.
3392  * If we return -EACCES, caller may want to try again treating pointer as a
3393  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
3394  */
3395 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3396 				   struct bpf_insn *insn,
3397 				   const struct bpf_reg_state *ptr_reg,
3398 				   const struct bpf_reg_state *off_reg)
3399 {
3400 	struct bpf_verifier_state *vstate = env->cur_state;
3401 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3402 	struct bpf_reg_state *regs = state->regs, *dst_reg;
3403 	bool known = tnum_is_const(off_reg->var_off);
3404 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3405 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3406 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3407 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3408 	u32 dst = insn->dst_reg, src = insn->src_reg;
3409 	u8 opcode = BPF_OP(insn->code);
3410 	int ret;
3411 
3412 	dst_reg = &regs[dst];
3413 
3414 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3415 	    smin_val > smax_val || umin_val > umax_val) {
3416 		/* Taint dst register if offset had invalid bounds derived from
3417 		 * e.g. dead branches.
3418 		 */
3419 		__mark_reg_unknown(dst_reg);
3420 		return 0;
3421 	}
3422 
3423 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3424 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
3425 		verbose(env,
3426 			"R%d 32-bit pointer arithmetic prohibited\n",
3427 			dst);
3428 		return -EACCES;
3429 	}
3430 
3431 	switch (ptr_reg->type) {
3432 	case PTR_TO_MAP_VALUE_OR_NULL:
3433 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3434 			dst, reg_type_str[ptr_reg->type]);
3435 		return -EACCES;
3436 	case CONST_PTR_TO_MAP:
3437 	case PTR_TO_PACKET_END:
3438 	case PTR_TO_SOCKET:
3439 	case PTR_TO_SOCKET_OR_NULL:
3440 	case PTR_TO_SOCK_COMMON:
3441 	case PTR_TO_SOCK_COMMON_OR_NULL:
3442 	case PTR_TO_TCP_SOCK:
3443 	case PTR_TO_TCP_SOCK_OR_NULL:
3444 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3445 			dst, reg_type_str[ptr_reg->type]);
3446 		return -EACCES;
3447 	case PTR_TO_MAP_VALUE:
3448 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
3449 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3450 				off_reg == dst_reg ? dst : src);
3451 			return -EACCES;
3452 		}
3453 		/* fall-through */
3454 	default:
3455 		break;
3456 	}
3457 
3458 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3459 	 * The id may be overwritten later if we create a new variable offset.
3460 	 */
3461 	dst_reg->type = ptr_reg->type;
3462 	dst_reg->id = ptr_reg->id;
3463 
3464 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3465 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3466 		return -EINVAL;
3467 
3468 	switch (opcode) {
3469 	case BPF_ADD:
3470 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3471 		if (ret < 0) {
3472 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
3473 			return ret;
3474 		}
3475 		/* We can take a fixed offset as long as it doesn't overflow
3476 		 * the s32 'off' field
3477 		 */
3478 		if (known && (ptr_reg->off + smin_val ==
3479 			      (s64)(s32)(ptr_reg->off + smin_val))) {
3480 			/* pointer += K.  Accumulate it into fixed offset */
3481 			dst_reg->smin_value = smin_ptr;
3482 			dst_reg->smax_value = smax_ptr;
3483 			dst_reg->umin_value = umin_ptr;
3484 			dst_reg->umax_value = umax_ptr;
3485 			dst_reg->var_off = ptr_reg->var_off;
3486 			dst_reg->off = ptr_reg->off + smin_val;
3487 			dst_reg->raw = ptr_reg->raw;
3488 			break;
3489 		}
3490 		/* A new variable offset is created.  Note that off_reg->off
3491 		 * == 0, since it's a scalar.
3492 		 * dst_reg gets the pointer type and since some positive
3493 		 * integer value was added to the pointer, give it a new 'id'
3494 		 * if it's a PTR_TO_PACKET.
3495 		 * this creates a new 'base' pointer, off_reg (variable) gets
3496 		 * added into the variable offset, and we copy the fixed offset
3497 		 * from ptr_reg.
3498 		 */
3499 		if (signed_add_overflows(smin_ptr, smin_val) ||
3500 		    signed_add_overflows(smax_ptr, smax_val)) {
3501 			dst_reg->smin_value = S64_MIN;
3502 			dst_reg->smax_value = S64_MAX;
3503 		} else {
3504 			dst_reg->smin_value = smin_ptr + smin_val;
3505 			dst_reg->smax_value = smax_ptr + smax_val;
3506 		}
3507 		if (umin_ptr + umin_val < umin_ptr ||
3508 		    umax_ptr + umax_val < umax_ptr) {
3509 			dst_reg->umin_value = 0;
3510 			dst_reg->umax_value = U64_MAX;
3511 		} else {
3512 			dst_reg->umin_value = umin_ptr + umin_val;
3513 			dst_reg->umax_value = umax_ptr + umax_val;
3514 		}
3515 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3516 		dst_reg->off = ptr_reg->off;
3517 		dst_reg->raw = ptr_reg->raw;
3518 		if (reg_is_pkt_pointer(ptr_reg)) {
3519 			dst_reg->id = ++env->id_gen;
3520 			/* something was added to pkt_ptr, set range to zero */
3521 			dst_reg->raw = 0;
3522 		}
3523 		break;
3524 	case BPF_SUB:
3525 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3526 		if (ret < 0) {
3527 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
3528 			return ret;
3529 		}
3530 		if (dst_reg == off_reg) {
3531 			/* scalar -= pointer.  Creates an unknown scalar */
3532 			verbose(env, "R%d tried to subtract pointer from scalar\n",
3533 				dst);
3534 			return -EACCES;
3535 		}
3536 		/* We don't allow subtraction from FP, because (according to
3537 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
3538 		 * be able to deal with it.
3539 		 */
3540 		if (ptr_reg->type == PTR_TO_STACK) {
3541 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
3542 				dst);
3543 			return -EACCES;
3544 		}
3545 		if (known && (ptr_reg->off - smin_val ==
3546 			      (s64)(s32)(ptr_reg->off - smin_val))) {
3547 			/* pointer -= K.  Subtract it from fixed offset */
3548 			dst_reg->smin_value = smin_ptr;
3549 			dst_reg->smax_value = smax_ptr;
3550 			dst_reg->umin_value = umin_ptr;
3551 			dst_reg->umax_value = umax_ptr;
3552 			dst_reg->var_off = ptr_reg->var_off;
3553 			dst_reg->id = ptr_reg->id;
3554 			dst_reg->off = ptr_reg->off - smin_val;
3555 			dst_reg->raw = ptr_reg->raw;
3556 			break;
3557 		}
3558 		/* A new variable offset is created.  If the subtrahend is known
3559 		 * nonnegative, then any reg->range we had before is still good.
3560 		 */
3561 		if (signed_sub_overflows(smin_ptr, smax_val) ||
3562 		    signed_sub_overflows(smax_ptr, smin_val)) {
3563 			/* Overflow possible, we know nothing */
3564 			dst_reg->smin_value = S64_MIN;
3565 			dst_reg->smax_value = S64_MAX;
3566 		} else {
3567 			dst_reg->smin_value = smin_ptr - smax_val;
3568 			dst_reg->smax_value = smax_ptr - smin_val;
3569 		}
3570 		if (umin_ptr < umax_val) {
3571 			/* Overflow possible, we know nothing */
3572 			dst_reg->umin_value = 0;
3573 			dst_reg->umax_value = U64_MAX;
3574 		} else {
3575 			/* Cannot overflow (as long as bounds are consistent) */
3576 			dst_reg->umin_value = umin_ptr - umax_val;
3577 			dst_reg->umax_value = umax_ptr - umin_val;
3578 		}
3579 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3580 		dst_reg->off = ptr_reg->off;
3581 		dst_reg->raw = ptr_reg->raw;
3582 		if (reg_is_pkt_pointer(ptr_reg)) {
3583 			dst_reg->id = ++env->id_gen;
3584 			/* something was added to pkt_ptr, set range to zero */
3585 			if (smin_val < 0)
3586 				dst_reg->raw = 0;
3587 		}
3588 		break;
3589 	case BPF_AND:
3590 	case BPF_OR:
3591 	case BPF_XOR:
3592 		/* bitwise ops on pointers are troublesome, prohibit. */
3593 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3594 			dst, bpf_alu_string[opcode >> 4]);
3595 		return -EACCES;
3596 	default:
3597 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
3598 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3599 			dst, bpf_alu_string[opcode >> 4]);
3600 		return -EACCES;
3601 	}
3602 
3603 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3604 		return -EINVAL;
3605 
3606 	__update_reg_bounds(dst_reg);
3607 	__reg_deduce_bounds(dst_reg);
3608 	__reg_bound_offset(dst_reg);
3609 
3610 	/* For unprivileged we require that resulting offset must be in bounds
3611 	 * in order to be able to sanitize access later on.
3612 	 */
3613 	if (!env->allow_ptr_leaks) {
3614 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
3615 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
3616 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3617 				"prohibited for !root\n", dst);
3618 			return -EACCES;
3619 		} else if (dst_reg->type == PTR_TO_STACK &&
3620 			   check_stack_access(env, dst_reg, dst_reg->off +
3621 					      dst_reg->var_off.value, 1)) {
3622 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
3623 				"prohibited for !root\n", dst);
3624 			return -EACCES;
3625 		}
3626 	}
3627 
3628 	return 0;
3629 }
3630 
3631 /* WARNING: This function does calculations on 64-bit values, but the actual
3632  * execution may occur on 32-bit values. Therefore, things like bitshifts
3633  * need extra checks in the 32-bit case.
3634  */
3635 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3636 				      struct bpf_insn *insn,
3637 				      struct bpf_reg_state *dst_reg,
3638 				      struct bpf_reg_state src_reg)
3639 {
3640 	struct bpf_reg_state *regs = cur_regs(env);
3641 	u8 opcode = BPF_OP(insn->code);
3642 	bool src_known, dst_known;
3643 	s64 smin_val, smax_val;
3644 	u64 umin_val, umax_val;
3645 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3646 	u32 dst = insn->dst_reg;
3647 	int ret;
3648 
3649 	if (insn_bitness == 32) {
3650 		/* Relevant for 32-bit RSH: Information can propagate towards
3651 		 * LSB, so it isn't sufficient to only truncate the output to
3652 		 * 32 bits.
3653 		 */
3654 		coerce_reg_to_size(dst_reg, 4);
3655 		coerce_reg_to_size(&src_reg, 4);
3656 	}
3657 
3658 	smin_val = src_reg.smin_value;
3659 	smax_val = src_reg.smax_value;
3660 	umin_val = src_reg.umin_value;
3661 	umax_val = src_reg.umax_value;
3662 	src_known = tnum_is_const(src_reg.var_off);
3663 	dst_known = tnum_is_const(dst_reg->var_off);
3664 
3665 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3666 	    smin_val > smax_val || umin_val > umax_val) {
3667 		/* Taint dst register if offset had invalid bounds derived from
3668 		 * e.g. dead branches.
3669 		 */
3670 		__mark_reg_unknown(dst_reg);
3671 		return 0;
3672 	}
3673 
3674 	if (!src_known &&
3675 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3676 		__mark_reg_unknown(dst_reg);
3677 		return 0;
3678 	}
3679 
3680 	switch (opcode) {
3681 	case BPF_ADD:
3682 		ret = sanitize_val_alu(env, insn);
3683 		if (ret < 0) {
3684 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
3685 			return ret;
3686 		}
3687 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3688 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
3689 			dst_reg->smin_value = S64_MIN;
3690 			dst_reg->smax_value = S64_MAX;
3691 		} else {
3692 			dst_reg->smin_value += smin_val;
3693 			dst_reg->smax_value += smax_val;
3694 		}
3695 		if (dst_reg->umin_value + umin_val < umin_val ||
3696 		    dst_reg->umax_value + umax_val < umax_val) {
3697 			dst_reg->umin_value = 0;
3698 			dst_reg->umax_value = U64_MAX;
3699 		} else {
3700 			dst_reg->umin_value += umin_val;
3701 			dst_reg->umax_value += umax_val;
3702 		}
3703 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3704 		break;
3705 	case BPF_SUB:
3706 		ret = sanitize_val_alu(env, insn);
3707 		if (ret < 0) {
3708 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
3709 			return ret;
3710 		}
3711 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3712 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3713 			/* Overflow possible, we know nothing */
3714 			dst_reg->smin_value = S64_MIN;
3715 			dst_reg->smax_value = S64_MAX;
3716 		} else {
3717 			dst_reg->smin_value -= smax_val;
3718 			dst_reg->smax_value -= smin_val;
3719 		}
3720 		if (dst_reg->umin_value < umax_val) {
3721 			/* Overflow possible, we know nothing */
3722 			dst_reg->umin_value = 0;
3723 			dst_reg->umax_value = U64_MAX;
3724 		} else {
3725 			/* Cannot overflow (as long as bounds are consistent) */
3726 			dst_reg->umin_value -= umax_val;
3727 			dst_reg->umax_value -= umin_val;
3728 		}
3729 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3730 		break;
3731 	case BPF_MUL:
3732 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3733 		if (smin_val < 0 || dst_reg->smin_value < 0) {
3734 			/* Ain't nobody got time to multiply that sign */
3735 			__mark_reg_unbounded(dst_reg);
3736 			__update_reg_bounds(dst_reg);
3737 			break;
3738 		}
3739 		/* Both values are positive, so we can work with unsigned and
3740 		 * copy the result to signed (unless it exceeds S64_MAX).
3741 		 */
3742 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3743 			/* Potential overflow, we know nothing */
3744 			__mark_reg_unbounded(dst_reg);
3745 			/* (except what we can learn from the var_off) */
3746 			__update_reg_bounds(dst_reg);
3747 			break;
3748 		}
3749 		dst_reg->umin_value *= umin_val;
3750 		dst_reg->umax_value *= umax_val;
3751 		if (dst_reg->umax_value > S64_MAX) {
3752 			/* Overflow possible, we know nothing */
3753 			dst_reg->smin_value = S64_MIN;
3754 			dst_reg->smax_value = S64_MAX;
3755 		} else {
3756 			dst_reg->smin_value = dst_reg->umin_value;
3757 			dst_reg->smax_value = dst_reg->umax_value;
3758 		}
3759 		break;
3760 	case BPF_AND:
3761 		if (src_known && dst_known) {
3762 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
3763 						  src_reg.var_off.value);
3764 			break;
3765 		}
3766 		/* We get our minimum from the var_off, since that's inherently
3767 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
3768 		 */
3769 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3770 		dst_reg->umin_value = dst_reg->var_off.value;
3771 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3772 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3773 			/* Lose signed bounds when ANDing negative numbers,
3774 			 * ain't nobody got time for that.
3775 			 */
3776 			dst_reg->smin_value = S64_MIN;
3777 			dst_reg->smax_value = S64_MAX;
3778 		} else {
3779 			/* ANDing two positives gives a positive, so safe to
3780 			 * cast result into s64.
3781 			 */
3782 			dst_reg->smin_value = dst_reg->umin_value;
3783 			dst_reg->smax_value = dst_reg->umax_value;
3784 		}
3785 		/* We may learn something more from the var_off */
3786 		__update_reg_bounds(dst_reg);
3787 		break;
3788 	case BPF_OR:
3789 		if (src_known && dst_known) {
3790 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
3791 						  src_reg.var_off.value);
3792 			break;
3793 		}
3794 		/* We get our maximum from the var_off, and our minimum is the
3795 		 * maximum of the operands' minima
3796 		 */
3797 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
3798 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3799 		dst_reg->umax_value = dst_reg->var_off.value |
3800 				      dst_reg->var_off.mask;
3801 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3802 			/* Lose signed bounds when ORing negative numbers,
3803 			 * ain't nobody got time for that.
3804 			 */
3805 			dst_reg->smin_value = S64_MIN;
3806 			dst_reg->smax_value = S64_MAX;
3807 		} else {
3808 			/* ORing two positives gives a positive, so safe to
3809 			 * cast result into s64.
3810 			 */
3811 			dst_reg->smin_value = dst_reg->umin_value;
3812 			dst_reg->smax_value = dst_reg->umax_value;
3813 		}
3814 		/* We may learn something more from the var_off */
3815 		__update_reg_bounds(dst_reg);
3816 		break;
3817 	case BPF_LSH:
3818 		if (umax_val >= insn_bitness) {
3819 			/* Shifts greater than 31 or 63 are undefined.
3820 			 * This includes shifts by a negative number.
3821 			 */
3822 			mark_reg_unknown(env, regs, insn->dst_reg);
3823 			break;
3824 		}
3825 		/* We lose all sign bit information (except what we can pick
3826 		 * up from var_off)
3827 		 */
3828 		dst_reg->smin_value = S64_MIN;
3829 		dst_reg->smax_value = S64_MAX;
3830 		/* If we might shift our top bit out, then we know nothing */
3831 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3832 			dst_reg->umin_value = 0;
3833 			dst_reg->umax_value = U64_MAX;
3834 		} else {
3835 			dst_reg->umin_value <<= umin_val;
3836 			dst_reg->umax_value <<= umax_val;
3837 		}
3838 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3839 		/* We may learn something more from the var_off */
3840 		__update_reg_bounds(dst_reg);
3841 		break;
3842 	case BPF_RSH:
3843 		if (umax_val >= insn_bitness) {
3844 			/* Shifts greater than 31 or 63 are undefined.
3845 			 * This includes shifts by a negative number.
3846 			 */
3847 			mark_reg_unknown(env, regs, insn->dst_reg);
3848 			break;
3849 		}
3850 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
3851 		 * be negative, then either:
3852 		 * 1) src_reg might be zero, so the sign bit of the result is
3853 		 *    unknown, so we lose our signed bounds
3854 		 * 2) it's known negative, thus the unsigned bounds capture the
3855 		 *    signed bounds
3856 		 * 3) the signed bounds cross zero, so they tell us nothing
3857 		 *    about the result
3858 		 * If the value in dst_reg is known nonnegative, then again the
3859 		 * unsigned bounts capture the signed bounds.
3860 		 * Thus, in all cases it suffices to blow away our signed bounds
3861 		 * and rely on inferring new ones from the unsigned bounds and
3862 		 * var_off of the result.
3863 		 */
3864 		dst_reg->smin_value = S64_MIN;
3865 		dst_reg->smax_value = S64_MAX;
3866 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
3867 		dst_reg->umin_value >>= umax_val;
3868 		dst_reg->umax_value >>= umin_val;
3869 		/* We may learn something more from the var_off */
3870 		__update_reg_bounds(dst_reg);
3871 		break;
3872 	case BPF_ARSH:
3873 		if (umax_val >= insn_bitness) {
3874 			/* Shifts greater than 31 or 63 are undefined.
3875 			 * This includes shifts by a negative number.
3876 			 */
3877 			mark_reg_unknown(env, regs, insn->dst_reg);
3878 			break;
3879 		}
3880 
3881 		/* Upon reaching here, src_known is true and
3882 		 * umax_val is equal to umin_val.
3883 		 */
3884 		dst_reg->smin_value >>= umin_val;
3885 		dst_reg->smax_value >>= umin_val;
3886 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3887 
3888 		/* blow away the dst_reg umin_value/umax_value and rely on
3889 		 * dst_reg var_off to refine the result.
3890 		 */
3891 		dst_reg->umin_value = 0;
3892 		dst_reg->umax_value = U64_MAX;
3893 		__update_reg_bounds(dst_reg);
3894 		break;
3895 	default:
3896 		mark_reg_unknown(env, regs, insn->dst_reg);
3897 		break;
3898 	}
3899 
3900 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3901 		/* 32-bit ALU ops are (32,32)->32 */
3902 		coerce_reg_to_size(dst_reg, 4);
3903 	}
3904 
3905 	__reg_deduce_bounds(dst_reg);
3906 	__reg_bound_offset(dst_reg);
3907 	return 0;
3908 }
3909 
3910 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3911  * and var_off.
3912  */
3913 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3914 				   struct bpf_insn *insn)
3915 {
3916 	struct bpf_verifier_state *vstate = env->cur_state;
3917 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3918 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3919 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3920 	u8 opcode = BPF_OP(insn->code);
3921 
3922 	dst_reg = &regs[insn->dst_reg];
3923 	src_reg = NULL;
3924 	if (dst_reg->type != SCALAR_VALUE)
3925 		ptr_reg = dst_reg;
3926 	if (BPF_SRC(insn->code) == BPF_X) {
3927 		src_reg = &regs[insn->src_reg];
3928 		if (src_reg->type != SCALAR_VALUE) {
3929 			if (dst_reg->type != SCALAR_VALUE) {
3930 				/* Combining two pointers by any ALU op yields
3931 				 * an arbitrary scalar. Disallow all math except
3932 				 * pointer subtraction
3933 				 */
3934 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
3935 					mark_reg_unknown(env, regs, insn->dst_reg);
3936 					return 0;
3937 				}
3938 				verbose(env, "R%d pointer %s pointer prohibited\n",
3939 					insn->dst_reg,
3940 					bpf_alu_string[opcode >> 4]);
3941 				return -EACCES;
3942 			} else {
3943 				/* scalar += pointer
3944 				 * This is legal, but we have to reverse our
3945 				 * src/dest handling in computing the range
3946 				 */
3947 				return adjust_ptr_min_max_vals(env, insn,
3948 							       src_reg, dst_reg);
3949 			}
3950 		} else if (ptr_reg) {
3951 			/* pointer += scalar */
3952 			return adjust_ptr_min_max_vals(env, insn,
3953 						       dst_reg, src_reg);
3954 		}
3955 	} else {
3956 		/* Pretend the src is a reg with a known value, since we only
3957 		 * need to be able to read from this state.
3958 		 */
3959 		off_reg.type = SCALAR_VALUE;
3960 		__mark_reg_known(&off_reg, insn->imm);
3961 		src_reg = &off_reg;
3962 		if (ptr_reg) /* pointer += K */
3963 			return adjust_ptr_min_max_vals(env, insn,
3964 						       ptr_reg, src_reg);
3965 	}
3966 
3967 	/* Got here implies adding two SCALAR_VALUEs */
3968 	if (WARN_ON_ONCE(ptr_reg)) {
3969 		print_verifier_state(env, state);
3970 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3971 		return -EINVAL;
3972 	}
3973 	if (WARN_ON(!src_reg)) {
3974 		print_verifier_state(env, state);
3975 		verbose(env, "verifier internal error: no src_reg\n");
3976 		return -EINVAL;
3977 	}
3978 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3979 }
3980 
3981 /* check validity of 32-bit and 64-bit arithmetic operations */
3982 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3983 {
3984 	struct bpf_reg_state *regs = cur_regs(env);
3985 	u8 opcode = BPF_OP(insn->code);
3986 	int err;
3987 
3988 	if (opcode == BPF_END || opcode == BPF_NEG) {
3989 		if (opcode == BPF_NEG) {
3990 			if (BPF_SRC(insn->code) != 0 ||
3991 			    insn->src_reg != BPF_REG_0 ||
3992 			    insn->off != 0 || insn->imm != 0) {
3993 				verbose(env, "BPF_NEG uses reserved fields\n");
3994 				return -EINVAL;
3995 			}
3996 		} else {
3997 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3998 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3999 			    BPF_CLASS(insn->code) == BPF_ALU64) {
4000 				verbose(env, "BPF_END uses reserved fields\n");
4001 				return -EINVAL;
4002 			}
4003 		}
4004 
4005 		/* check src operand */
4006 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4007 		if (err)
4008 			return err;
4009 
4010 		if (is_pointer_value(env, insn->dst_reg)) {
4011 			verbose(env, "R%d pointer arithmetic prohibited\n",
4012 				insn->dst_reg);
4013 			return -EACCES;
4014 		}
4015 
4016 		/* check dest operand */
4017 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
4018 		if (err)
4019 			return err;
4020 
4021 	} else if (opcode == BPF_MOV) {
4022 
4023 		if (BPF_SRC(insn->code) == BPF_X) {
4024 			if (insn->imm != 0 || insn->off != 0) {
4025 				verbose(env, "BPF_MOV uses reserved fields\n");
4026 				return -EINVAL;
4027 			}
4028 
4029 			/* check src operand */
4030 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4031 			if (err)
4032 				return err;
4033 		} else {
4034 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4035 				verbose(env, "BPF_MOV uses reserved fields\n");
4036 				return -EINVAL;
4037 			}
4038 		}
4039 
4040 		/* check dest operand, mark as required later */
4041 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4042 		if (err)
4043 			return err;
4044 
4045 		if (BPF_SRC(insn->code) == BPF_X) {
4046 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
4047 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4048 
4049 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4050 				/* case: R1 = R2
4051 				 * copy register state to dest reg
4052 				 */
4053 				*dst_reg = *src_reg;
4054 				dst_reg->live |= REG_LIVE_WRITTEN;
4055 			} else {
4056 				/* R1 = (u32) R2 */
4057 				if (is_pointer_value(env, insn->src_reg)) {
4058 					verbose(env,
4059 						"R%d partial copy of pointer\n",
4060 						insn->src_reg);
4061 					return -EACCES;
4062 				} else if (src_reg->type == SCALAR_VALUE) {
4063 					*dst_reg = *src_reg;
4064 					dst_reg->live |= REG_LIVE_WRITTEN;
4065 				} else {
4066 					mark_reg_unknown(env, regs,
4067 							 insn->dst_reg);
4068 				}
4069 				coerce_reg_to_size(dst_reg, 4);
4070 			}
4071 		} else {
4072 			/* case: R = imm
4073 			 * remember the value we stored into this reg
4074 			 */
4075 			/* clear any state __mark_reg_known doesn't set */
4076 			mark_reg_unknown(env, regs, insn->dst_reg);
4077 			regs[insn->dst_reg].type = SCALAR_VALUE;
4078 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4079 				__mark_reg_known(regs + insn->dst_reg,
4080 						 insn->imm);
4081 			} else {
4082 				__mark_reg_known(regs + insn->dst_reg,
4083 						 (u32)insn->imm);
4084 			}
4085 		}
4086 
4087 	} else if (opcode > BPF_END) {
4088 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
4089 		return -EINVAL;
4090 
4091 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
4092 
4093 		if (BPF_SRC(insn->code) == BPF_X) {
4094 			if (insn->imm != 0 || insn->off != 0) {
4095 				verbose(env, "BPF_ALU uses reserved fields\n");
4096 				return -EINVAL;
4097 			}
4098 			/* check src1 operand */
4099 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4100 			if (err)
4101 				return err;
4102 		} else {
4103 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4104 				verbose(env, "BPF_ALU uses reserved fields\n");
4105 				return -EINVAL;
4106 			}
4107 		}
4108 
4109 		/* check src2 operand */
4110 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4111 		if (err)
4112 			return err;
4113 
4114 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
4115 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
4116 			verbose(env, "div by zero\n");
4117 			return -EINVAL;
4118 		}
4119 
4120 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
4121 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
4122 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
4123 
4124 			if (insn->imm < 0 || insn->imm >= size) {
4125 				verbose(env, "invalid shift %d\n", insn->imm);
4126 				return -EINVAL;
4127 			}
4128 		}
4129 
4130 		/* check dest operand */
4131 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4132 		if (err)
4133 			return err;
4134 
4135 		return adjust_reg_min_max_vals(env, insn);
4136 	}
4137 
4138 	return 0;
4139 }
4140 
4141 static void __find_good_pkt_pointers(struct bpf_func_state *state,
4142 				     struct bpf_reg_state *dst_reg,
4143 				     enum bpf_reg_type type, u16 new_range)
4144 {
4145 	struct bpf_reg_state *reg;
4146 	int i;
4147 
4148 	for (i = 0; i < MAX_BPF_REG; i++) {
4149 		reg = &state->regs[i];
4150 		if (reg->type == type && reg->id == dst_reg->id)
4151 			/* keep the maximum range already checked */
4152 			reg->range = max(reg->range, new_range);
4153 	}
4154 
4155 	bpf_for_each_spilled_reg(i, state, reg) {
4156 		if (!reg)
4157 			continue;
4158 		if (reg->type == type && reg->id == dst_reg->id)
4159 			reg->range = max(reg->range, new_range);
4160 	}
4161 }
4162 
4163 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
4164 				   struct bpf_reg_state *dst_reg,
4165 				   enum bpf_reg_type type,
4166 				   bool range_right_open)
4167 {
4168 	u16 new_range;
4169 	int i;
4170 
4171 	if (dst_reg->off < 0 ||
4172 	    (dst_reg->off == 0 && range_right_open))
4173 		/* This doesn't give us any range */
4174 		return;
4175 
4176 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
4177 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
4178 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
4179 		 * than pkt_end, but that's because it's also less than pkt.
4180 		 */
4181 		return;
4182 
4183 	new_range = dst_reg->off;
4184 	if (range_right_open)
4185 		new_range--;
4186 
4187 	/* Examples for register markings:
4188 	 *
4189 	 * pkt_data in dst register:
4190 	 *
4191 	 *   r2 = r3;
4192 	 *   r2 += 8;
4193 	 *   if (r2 > pkt_end) goto <handle exception>
4194 	 *   <access okay>
4195 	 *
4196 	 *   r2 = r3;
4197 	 *   r2 += 8;
4198 	 *   if (r2 < pkt_end) goto <access okay>
4199 	 *   <handle exception>
4200 	 *
4201 	 *   Where:
4202 	 *     r2 == dst_reg, pkt_end == src_reg
4203 	 *     r2=pkt(id=n,off=8,r=0)
4204 	 *     r3=pkt(id=n,off=0,r=0)
4205 	 *
4206 	 * pkt_data in src register:
4207 	 *
4208 	 *   r2 = r3;
4209 	 *   r2 += 8;
4210 	 *   if (pkt_end >= r2) goto <access okay>
4211 	 *   <handle exception>
4212 	 *
4213 	 *   r2 = r3;
4214 	 *   r2 += 8;
4215 	 *   if (pkt_end <= r2) goto <handle exception>
4216 	 *   <access okay>
4217 	 *
4218 	 *   Where:
4219 	 *     pkt_end == dst_reg, r2 == src_reg
4220 	 *     r2=pkt(id=n,off=8,r=0)
4221 	 *     r3=pkt(id=n,off=0,r=0)
4222 	 *
4223 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
4224 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4225 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
4226 	 * the check.
4227 	 */
4228 
4229 	/* If our ids match, then we must have the same max_value.  And we
4230 	 * don't care about the other reg's fixed offset, since if it's too big
4231 	 * the range won't allow anything.
4232 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4233 	 */
4234 	for (i = 0; i <= vstate->curframe; i++)
4235 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
4236 					 new_range);
4237 }
4238 
4239 /* compute branch direction of the expression "if (reg opcode val) goto target;"
4240  * and return:
4241  *  1 - branch will be taken and "goto target" will be executed
4242  *  0 - branch will not be taken and fall-through to next insn
4243  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4244  */
4245 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
4246 			   bool is_jmp32)
4247 {
4248 	struct bpf_reg_state reg_lo;
4249 	s64 sval;
4250 
4251 	if (__is_pointer_value(false, reg))
4252 		return -1;
4253 
4254 	if (is_jmp32) {
4255 		reg_lo = *reg;
4256 		reg = &reg_lo;
4257 		/* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4258 		 * could truncate high bits and update umin/umax according to
4259 		 * information of low bits.
4260 		 */
4261 		coerce_reg_to_size(reg, 4);
4262 		/* smin/smax need special handling. For example, after coerce,
4263 		 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4264 		 * used as operand to JMP32. It is a negative number from s32's
4265 		 * point of view, while it is a positive number when seen as
4266 		 * s64. The smin/smax are kept as s64, therefore, when used with
4267 		 * JMP32, they need to be transformed into s32, then sign
4268 		 * extended back to s64.
4269 		 *
4270 		 * Also, smin/smax were copied from umin/umax. If umin/umax has
4271 		 * different sign bit, then min/max relationship doesn't
4272 		 * maintain after casting into s32, for this case, set smin/smax
4273 		 * to safest range.
4274 		 */
4275 		if ((reg->umax_value ^ reg->umin_value) &
4276 		    (1ULL << 31)) {
4277 			reg->smin_value = S32_MIN;
4278 			reg->smax_value = S32_MAX;
4279 		}
4280 		reg->smin_value = (s64)(s32)reg->smin_value;
4281 		reg->smax_value = (s64)(s32)reg->smax_value;
4282 
4283 		val = (u32)val;
4284 		sval = (s64)(s32)val;
4285 	} else {
4286 		sval = (s64)val;
4287 	}
4288 
4289 	switch (opcode) {
4290 	case BPF_JEQ:
4291 		if (tnum_is_const(reg->var_off))
4292 			return !!tnum_equals_const(reg->var_off, val);
4293 		break;
4294 	case BPF_JNE:
4295 		if (tnum_is_const(reg->var_off))
4296 			return !tnum_equals_const(reg->var_off, val);
4297 		break;
4298 	case BPF_JSET:
4299 		if ((~reg->var_off.mask & reg->var_off.value) & val)
4300 			return 1;
4301 		if (!((reg->var_off.mask | reg->var_off.value) & val))
4302 			return 0;
4303 		break;
4304 	case BPF_JGT:
4305 		if (reg->umin_value > val)
4306 			return 1;
4307 		else if (reg->umax_value <= val)
4308 			return 0;
4309 		break;
4310 	case BPF_JSGT:
4311 		if (reg->smin_value > sval)
4312 			return 1;
4313 		else if (reg->smax_value < sval)
4314 			return 0;
4315 		break;
4316 	case BPF_JLT:
4317 		if (reg->umax_value < val)
4318 			return 1;
4319 		else if (reg->umin_value >= val)
4320 			return 0;
4321 		break;
4322 	case BPF_JSLT:
4323 		if (reg->smax_value < sval)
4324 			return 1;
4325 		else if (reg->smin_value >= sval)
4326 			return 0;
4327 		break;
4328 	case BPF_JGE:
4329 		if (reg->umin_value >= val)
4330 			return 1;
4331 		else if (reg->umax_value < val)
4332 			return 0;
4333 		break;
4334 	case BPF_JSGE:
4335 		if (reg->smin_value >= sval)
4336 			return 1;
4337 		else if (reg->smax_value < sval)
4338 			return 0;
4339 		break;
4340 	case BPF_JLE:
4341 		if (reg->umax_value <= val)
4342 			return 1;
4343 		else if (reg->umin_value > val)
4344 			return 0;
4345 		break;
4346 	case BPF_JSLE:
4347 		if (reg->smax_value <= sval)
4348 			return 1;
4349 		else if (reg->smin_value > sval)
4350 			return 0;
4351 		break;
4352 	}
4353 
4354 	return -1;
4355 }
4356 
4357 /* Generate min value of the high 32-bit from TNUM info. */
4358 static u64 gen_hi_min(struct tnum var)
4359 {
4360 	return var.value & ~0xffffffffULL;
4361 }
4362 
4363 /* Generate max value of the high 32-bit from TNUM info. */
4364 static u64 gen_hi_max(struct tnum var)
4365 {
4366 	return (var.value | var.mask) & ~0xffffffffULL;
4367 }
4368 
4369 /* Return true if VAL is compared with a s64 sign extended from s32, and they
4370  * are with the same signedness.
4371  */
4372 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
4373 {
4374 	return ((s32)sval >= 0 &&
4375 		reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
4376 	       ((s32)sval < 0 &&
4377 		reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
4378 }
4379 
4380 /* Adjusts the register min/max values in the case that the dst_reg is the
4381  * variable register that we are working on, and src_reg is a constant or we're
4382  * simply doing a BPF_K check.
4383  * In JEQ/JNE cases we also adjust the var_off values.
4384  */
4385 static void reg_set_min_max(struct bpf_reg_state *true_reg,
4386 			    struct bpf_reg_state *false_reg, u64 val,
4387 			    u8 opcode, bool is_jmp32)
4388 {
4389 	s64 sval;
4390 
4391 	/* If the dst_reg is a pointer, we can't learn anything about its
4392 	 * variable offset from the compare (unless src_reg were a pointer into
4393 	 * the same object, but we don't bother with that.
4394 	 * Since false_reg and true_reg have the same type by construction, we
4395 	 * only need to check one of them for pointerness.
4396 	 */
4397 	if (__is_pointer_value(false, false_reg))
4398 		return;
4399 
4400 	val = is_jmp32 ? (u32)val : val;
4401 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4402 
4403 	switch (opcode) {
4404 	case BPF_JEQ:
4405 	case BPF_JNE:
4406 	{
4407 		struct bpf_reg_state *reg =
4408 			opcode == BPF_JEQ ? true_reg : false_reg;
4409 
4410 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4411 		 * if it is true we know the value for sure. Likewise for
4412 		 * BPF_JNE.
4413 		 */
4414 		if (is_jmp32) {
4415 			u64 old_v = reg->var_off.value;
4416 			u64 hi_mask = ~0xffffffffULL;
4417 
4418 			reg->var_off.value = (old_v & hi_mask) | val;
4419 			reg->var_off.mask &= hi_mask;
4420 		} else {
4421 			__mark_reg_known(reg, val);
4422 		}
4423 		break;
4424 	}
4425 	case BPF_JSET:
4426 		false_reg->var_off = tnum_and(false_reg->var_off,
4427 					      tnum_const(~val));
4428 		if (is_power_of_2(val))
4429 			true_reg->var_off = tnum_or(true_reg->var_off,
4430 						    tnum_const(val));
4431 		break;
4432 	case BPF_JGE:
4433 	case BPF_JGT:
4434 	{
4435 		u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
4436 		u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
4437 
4438 		if (is_jmp32) {
4439 			false_umax += gen_hi_max(false_reg->var_off);
4440 			true_umin += gen_hi_min(true_reg->var_off);
4441 		}
4442 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4443 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4444 		break;
4445 	}
4446 	case BPF_JSGE:
4447 	case BPF_JSGT:
4448 	{
4449 		s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
4450 		s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
4451 
4452 		/* If the full s64 was not sign-extended from s32 then don't
4453 		 * deduct further info.
4454 		 */
4455 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4456 			break;
4457 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4458 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4459 		break;
4460 	}
4461 	case BPF_JLE:
4462 	case BPF_JLT:
4463 	{
4464 		u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
4465 		u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
4466 
4467 		if (is_jmp32) {
4468 			false_umin += gen_hi_min(false_reg->var_off);
4469 			true_umax += gen_hi_max(true_reg->var_off);
4470 		}
4471 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4472 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4473 		break;
4474 	}
4475 	case BPF_JSLE:
4476 	case BPF_JSLT:
4477 	{
4478 		s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
4479 		s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4480 
4481 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4482 			break;
4483 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4484 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4485 		break;
4486 	}
4487 	default:
4488 		break;
4489 	}
4490 
4491 	__reg_deduce_bounds(false_reg);
4492 	__reg_deduce_bounds(true_reg);
4493 	/* We might have learned some bits from the bounds. */
4494 	__reg_bound_offset(false_reg);
4495 	__reg_bound_offset(true_reg);
4496 	/* Intersecting with the old var_off might have improved our bounds
4497 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4498 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4499 	 */
4500 	__update_reg_bounds(false_reg);
4501 	__update_reg_bounds(true_reg);
4502 }
4503 
4504 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
4505  * the variable reg.
4506  */
4507 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4508 				struct bpf_reg_state *false_reg, u64 val,
4509 				u8 opcode, bool is_jmp32)
4510 {
4511 	s64 sval;
4512 
4513 	if (__is_pointer_value(false, false_reg))
4514 		return;
4515 
4516 	val = is_jmp32 ? (u32)val : val;
4517 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4518 
4519 	switch (opcode) {
4520 	case BPF_JEQ:
4521 	case BPF_JNE:
4522 	{
4523 		struct bpf_reg_state *reg =
4524 			opcode == BPF_JEQ ? true_reg : false_reg;
4525 
4526 		if (is_jmp32) {
4527 			u64 old_v = reg->var_off.value;
4528 			u64 hi_mask = ~0xffffffffULL;
4529 
4530 			reg->var_off.value = (old_v & hi_mask) | val;
4531 			reg->var_off.mask &= hi_mask;
4532 		} else {
4533 			__mark_reg_known(reg, val);
4534 		}
4535 		break;
4536 	}
4537 	case BPF_JSET:
4538 		false_reg->var_off = tnum_and(false_reg->var_off,
4539 					      tnum_const(~val));
4540 		if (is_power_of_2(val))
4541 			true_reg->var_off = tnum_or(true_reg->var_off,
4542 						    tnum_const(val));
4543 		break;
4544 	case BPF_JGE:
4545 	case BPF_JGT:
4546 	{
4547 		u64 false_umin = opcode == BPF_JGT ? val    : val + 1;
4548 		u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4549 
4550 		if (is_jmp32) {
4551 			false_umin += gen_hi_min(false_reg->var_off);
4552 			true_umax += gen_hi_max(true_reg->var_off);
4553 		}
4554 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4555 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4556 		break;
4557 	}
4558 	case BPF_JSGE:
4559 	case BPF_JSGT:
4560 	{
4561 		s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
4562 		s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4563 
4564 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4565 			break;
4566 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4567 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4568 		break;
4569 	}
4570 	case BPF_JLE:
4571 	case BPF_JLT:
4572 	{
4573 		u64 false_umax = opcode == BPF_JLT ? val    : val - 1;
4574 		u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4575 
4576 		if (is_jmp32) {
4577 			false_umax += gen_hi_max(false_reg->var_off);
4578 			true_umin += gen_hi_min(true_reg->var_off);
4579 		}
4580 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4581 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4582 		break;
4583 	}
4584 	case BPF_JSLE:
4585 	case BPF_JSLT:
4586 	{
4587 		s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
4588 		s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4589 
4590 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4591 			break;
4592 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4593 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4594 		break;
4595 	}
4596 	default:
4597 		break;
4598 	}
4599 
4600 	__reg_deduce_bounds(false_reg);
4601 	__reg_deduce_bounds(true_reg);
4602 	/* We might have learned some bits from the bounds. */
4603 	__reg_bound_offset(false_reg);
4604 	__reg_bound_offset(true_reg);
4605 	/* Intersecting with the old var_off might have improved our bounds
4606 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4607 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4608 	 */
4609 	__update_reg_bounds(false_reg);
4610 	__update_reg_bounds(true_reg);
4611 }
4612 
4613 /* Regs are known to be equal, so intersect their min/max/var_off */
4614 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4615 				  struct bpf_reg_state *dst_reg)
4616 {
4617 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4618 							dst_reg->umin_value);
4619 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4620 							dst_reg->umax_value);
4621 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4622 							dst_reg->smin_value);
4623 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4624 							dst_reg->smax_value);
4625 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4626 							     dst_reg->var_off);
4627 	/* We might have learned new bounds from the var_off. */
4628 	__update_reg_bounds(src_reg);
4629 	__update_reg_bounds(dst_reg);
4630 	/* We might have learned something about the sign bit. */
4631 	__reg_deduce_bounds(src_reg);
4632 	__reg_deduce_bounds(dst_reg);
4633 	/* We might have learned some bits from the bounds. */
4634 	__reg_bound_offset(src_reg);
4635 	__reg_bound_offset(dst_reg);
4636 	/* Intersecting with the old var_off might have improved our bounds
4637 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4638 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4639 	 */
4640 	__update_reg_bounds(src_reg);
4641 	__update_reg_bounds(dst_reg);
4642 }
4643 
4644 static void reg_combine_min_max(struct bpf_reg_state *true_src,
4645 				struct bpf_reg_state *true_dst,
4646 				struct bpf_reg_state *false_src,
4647 				struct bpf_reg_state *false_dst,
4648 				u8 opcode)
4649 {
4650 	switch (opcode) {
4651 	case BPF_JEQ:
4652 		__reg_combine_min_max(true_src, true_dst);
4653 		break;
4654 	case BPF_JNE:
4655 		__reg_combine_min_max(false_src, false_dst);
4656 		break;
4657 	}
4658 }
4659 
4660 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4661 				 struct bpf_reg_state *reg, u32 id,
4662 				 bool is_null)
4663 {
4664 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
4665 		/* Old offset (both fixed and variable parts) should
4666 		 * have been known-zero, because we don't allow pointer
4667 		 * arithmetic on pointers that might be NULL.
4668 		 */
4669 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4670 				 !tnum_equals_const(reg->var_off, 0) ||
4671 				 reg->off)) {
4672 			__mark_reg_known_zero(reg);
4673 			reg->off = 0;
4674 		}
4675 		if (is_null) {
4676 			reg->type = SCALAR_VALUE;
4677 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4678 			if (reg->map_ptr->inner_map_meta) {
4679 				reg->type = CONST_PTR_TO_MAP;
4680 				reg->map_ptr = reg->map_ptr->inner_map_meta;
4681 			} else {
4682 				reg->type = PTR_TO_MAP_VALUE;
4683 			}
4684 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4685 			reg->type = PTR_TO_SOCKET;
4686 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
4687 			reg->type = PTR_TO_SOCK_COMMON;
4688 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
4689 			reg->type = PTR_TO_TCP_SOCK;
4690 		}
4691 		if (is_null) {
4692 			/* We don't need id and ref_obj_id from this point
4693 			 * onwards anymore, thus we should better reset it,
4694 			 * so that state pruning has chances to take effect.
4695 			 */
4696 			reg->id = 0;
4697 			reg->ref_obj_id = 0;
4698 		} else if (!reg_may_point_to_spin_lock(reg)) {
4699 			/* For not-NULL ptr, reg->ref_obj_id will be reset
4700 			 * in release_reg_references().
4701 			 *
4702 			 * reg->id is still used by spin_lock ptr. Other
4703 			 * than spin_lock ptr type, reg->id can be reset.
4704 			 */
4705 			reg->id = 0;
4706 		}
4707 	}
4708 }
4709 
4710 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
4711 				    bool is_null)
4712 {
4713 	struct bpf_reg_state *reg;
4714 	int i;
4715 
4716 	for (i = 0; i < MAX_BPF_REG; i++)
4717 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
4718 
4719 	bpf_for_each_spilled_reg(i, state, reg) {
4720 		if (!reg)
4721 			continue;
4722 		mark_ptr_or_null_reg(state, reg, id, is_null);
4723 	}
4724 }
4725 
4726 /* The logic is similar to find_good_pkt_pointers(), both could eventually
4727  * be folded together at some point.
4728  */
4729 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4730 				  bool is_null)
4731 {
4732 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4733 	struct bpf_reg_state *regs = state->regs;
4734 	u32 ref_obj_id = regs[regno].ref_obj_id;
4735 	u32 id = regs[regno].id;
4736 	int i;
4737 
4738 	if (ref_obj_id && ref_obj_id == id && is_null)
4739 		/* regs[regno] is in the " == NULL" branch.
4740 		 * No one could have freed the reference state before
4741 		 * doing the NULL check.
4742 		 */
4743 		WARN_ON_ONCE(release_reference_state(state, id));
4744 
4745 	for (i = 0; i <= vstate->curframe; i++)
4746 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
4747 }
4748 
4749 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4750 				   struct bpf_reg_state *dst_reg,
4751 				   struct bpf_reg_state *src_reg,
4752 				   struct bpf_verifier_state *this_branch,
4753 				   struct bpf_verifier_state *other_branch)
4754 {
4755 	if (BPF_SRC(insn->code) != BPF_X)
4756 		return false;
4757 
4758 	/* Pointers are always 64-bit. */
4759 	if (BPF_CLASS(insn->code) == BPF_JMP32)
4760 		return false;
4761 
4762 	switch (BPF_OP(insn->code)) {
4763 	case BPF_JGT:
4764 		if ((dst_reg->type == PTR_TO_PACKET &&
4765 		     src_reg->type == PTR_TO_PACKET_END) ||
4766 		    (dst_reg->type == PTR_TO_PACKET_META &&
4767 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4768 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4769 			find_good_pkt_pointers(this_branch, dst_reg,
4770 					       dst_reg->type, false);
4771 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4772 			    src_reg->type == PTR_TO_PACKET) ||
4773 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4774 			    src_reg->type == PTR_TO_PACKET_META)) {
4775 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
4776 			find_good_pkt_pointers(other_branch, src_reg,
4777 					       src_reg->type, true);
4778 		} else {
4779 			return false;
4780 		}
4781 		break;
4782 	case BPF_JLT:
4783 		if ((dst_reg->type == PTR_TO_PACKET &&
4784 		     src_reg->type == PTR_TO_PACKET_END) ||
4785 		    (dst_reg->type == PTR_TO_PACKET_META &&
4786 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4787 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4788 			find_good_pkt_pointers(other_branch, dst_reg,
4789 					       dst_reg->type, true);
4790 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4791 			    src_reg->type == PTR_TO_PACKET) ||
4792 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4793 			    src_reg->type == PTR_TO_PACKET_META)) {
4794 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
4795 			find_good_pkt_pointers(this_branch, src_reg,
4796 					       src_reg->type, false);
4797 		} else {
4798 			return false;
4799 		}
4800 		break;
4801 	case BPF_JGE:
4802 		if ((dst_reg->type == PTR_TO_PACKET &&
4803 		     src_reg->type == PTR_TO_PACKET_END) ||
4804 		    (dst_reg->type == PTR_TO_PACKET_META &&
4805 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4806 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4807 			find_good_pkt_pointers(this_branch, dst_reg,
4808 					       dst_reg->type, true);
4809 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4810 			    src_reg->type == PTR_TO_PACKET) ||
4811 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4812 			    src_reg->type == PTR_TO_PACKET_META)) {
4813 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4814 			find_good_pkt_pointers(other_branch, src_reg,
4815 					       src_reg->type, false);
4816 		} else {
4817 			return false;
4818 		}
4819 		break;
4820 	case BPF_JLE:
4821 		if ((dst_reg->type == PTR_TO_PACKET &&
4822 		     src_reg->type == PTR_TO_PACKET_END) ||
4823 		    (dst_reg->type == PTR_TO_PACKET_META &&
4824 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4825 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4826 			find_good_pkt_pointers(other_branch, dst_reg,
4827 					       dst_reg->type, false);
4828 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4829 			    src_reg->type == PTR_TO_PACKET) ||
4830 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4831 			    src_reg->type == PTR_TO_PACKET_META)) {
4832 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4833 			find_good_pkt_pointers(this_branch, src_reg,
4834 					       src_reg->type, true);
4835 		} else {
4836 			return false;
4837 		}
4838 		break;
4839 	default:
4840 		return false;
4841 	}
4842 
4843 	return true;
4844 }
4845 
4846 static int check_cond_jmp_op(struct bpf_verifier_env *env,
4847 			     struct bpf_insn *insn, int *insn_idx)
4848 {
4849 	struct bpf_verifier_state *this_branch = env->cur_state;
4850 	struct bpf_verifier_state *other_branch;
4851 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4852 	struct bpf_reg_state *dst_reg, *other_branch_regs;
4853 	u8 opcode = BPF_OP(insn->code);
4854 	bool is_jmp32;
4855 	int err;
4856 
4857 	/* Only conditional jumps are expected to reach here. */
4858 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
4859 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
4860 		return -EINVAL;
4861 	}
4862 
4863 	if (BPF_SRC(insn->code) == BPF_X) {
4864 		if (insn->imm != 0) {
4865 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
4866 			return -EINVAL;
4867 		}
4868 
4869 		/* check src1 operand */
4870 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4871 		if (err)
4872 			return err;
4873 
4874 		if (is_pointer_value(env, insn->src_reg)) {
4875 			verbose(env, "R%d pointer comparison prohibited\n",
4876 				insn->src_reg);
4877 			return -EACCES;
4878 		}
4879 	} else {
4880 		if (insn->src_reg != BPF_REG_0) {
4881 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
4882 			return -EINVAL;
4883 		}
4884 	}
4885 
4886 	/* check src2 operand */
4887 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4888 	if (err)
4889 		return err;
4890 
4891 	dst_reg = &regs[insn->dst_reg];
4892 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
4893 
4894 	if (BPF_SRC(insn->code) == BPF_K) {
4895 		int pred = is_branch_taken(dst_reg, insn->imm, opcode,
4896 					   is_jmp32);
4897 
4898 		if (pred == 1) {
4899 			 /* only follow the goto, ignore fall-through */
4900 			*insn_idx += insn->off;
4901 			return 0;
4902 		} else if (pred == 0) {
4903 			/* only follow fall-through branch, since
4904 			 * that's where the program will go
4905 			 */
4906 			return 0;
4907 		}
4908 	}
4909 
4910 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
4911 				  false);
4912 	if (!other_branch)
4913 		return -EFAULT;
4914 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
4915 
4916 	/* detect if we are comparing against a constant value so we can adjust
4917 	 * our min/max values for our dst register.
4918 	 * this is only legit if both are scalars (or pointers to the same
4919 	 * object, I suppose, but we don't support that right now), because
4920 	 * otherwise the different base pointers mean the offsets aren't
4921 	 * comparable.
4922 	 */
4923 	if (BPF_SRC(insn->code) == BPF_X) {
4924 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
4925 		struct bpf_reg_state lo_reg0 = *dst_reg;
4926 		struct bpf_reg_state lo_reg1 = *src_reg;
4927 		struct bpf_reg_state *src_lo, *dst_lo;
4928 
4929 		dst_lo = &lo_reg0;
4930 		src_lo = &lo_reg1;
4931 		coerce_reg_to_size(dst_lo, 4);
4932 		coerce_reg_to_size(src_lo, 4);
4933 
4934 		if (dst_reg->type == SCALAR_VALUE &&
4935 		    src_reg->type == SCALAR_VALUE) {
4936 			if (tnum_is_const(src_reg->var_off) ||
4937 			    (is_jmp32 && tnum_is_const(src_lo->var_off)))
4938 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
4939 						dst_reg,
4940 						is_jmp32
4941 						? src_lo->var_off.value
4942 						: src_reg->var_off.value,
4943 						opcode, is_jmp32);
4944 			else if (tnum_is_const(dst_reg->var_off) ||
4945 				 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
4946 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
4947 						    src_reg,
4948 						    is_jmp32
4949 						    ? dst_lo->var_off.value
4950 						    : dst_reg->var_off.value,
4951 						    opcode, is_jmp32);
4952 			else if (!is_jmp32 &&
4953 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
4954 				/* Comparing for equality, we can combine knowledge */
4955 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
4956 						    &other_branch_regs[insn->dst_reg],
4957 						    src_reg, dst_reg, opcode);
4958 		}
4959 	} else if (dst_reg->type == SCALAR_VALUE) {
4960 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
4961 					dst_reg, insn->imm, opcode, is_jmp32);
4962 	}
4963 
4964 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
4965 	 * NOTE: these optimizations below are related with pointer comparison
4966 	 *       which will never be JMP32.
4967 	 */
4968 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
4969 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
4970 	    reg_type_may_be_null(dst_reg->type)) {
4971 		/* Mark all identical registers in each branch as either
4972 		 * safe or unknown depending R == 0 or R != 0 conditional.
4973 		 */
4974 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4975 				      opcode == BPF_JNE);
4976 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4977 				      opcode == BPF_JEQ);
4978 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4979 					   this_branch, other_branch) &&
4980 		   is_pointer_value(env, insn->dst_reg)) {
4981 		verbose(env, "R%d pointer comparison prohibited\n",
4982 			insn->dst_reg);
4983 		return -EACCES;
4984 	}
4985 	if (env->log.level)
4986 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
4987 	return 0;
4988 }
4989 
4990 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
4991 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4992 {
4993 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4994 
4995 	return (struct bpf_map *) (unsigned long) imm64;
4996 }
4997 
4998 /* verify BPF_LD_IMM64 instruction */
4999 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
5000 {
5001 	struct bpf_reg_state *regs = cur_regs(env);
5002 	int err;
5003 
5004 	if (BPF_SIZE(insn->code) != BPF_DW) {
5005 		verbose(env, "invalid BPF_LD_IMM insn\n");
5006 		return -EINVAL;
5007 	}
5008 	if (insn->off != 0) {
5009 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
5010 		return -EINVAL;
5011 	}
5012 
5013 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
5014 	if (err)
5015 		return err;
5016 
5017 	if (insn->src_reg == 0) {
5018 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5019 
5020 		regs[insn->dst_reg].type = SCALAR_VALUE;
5021 		__mark_reg_known(&regs[insn->dst_reg], imm);
5022 		return 0;
5023 	}
5024 
5025 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
5026 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
5027 
5028 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5029 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
5030 	return 0;
5031 }
5032 
5033 static bool may_access_skb(enum bpf_prog_type type)
5034 {
5035 	switch (type) {
5036 	case BPF_PROG_TYPE_SOCKET_FILTER:
5037 	case BPF_PROG_TYPE_SCHED_CLS:
5038 	case BPF_PROG_TYPE_SCHED_ACT:
5039 		return true;
5040 	default:
5041 		return false;
5042 	}
5043 }
5044 
5045 /* verify safety of LD_ABS|LD_IND instructions:
5046  * - they can only appear in the programs where ctx == skb
5047  * - since they are wrappers of function calls, they scratch R1-R5 registers,
5048  *   preserve R6-R9, and store return value into R0
5049  *
5050  * Implicit input:
5051  *   ctx == skb == R6 == CTX
5052  *
5053  * Explicit input:
5054  *   SRC == any register
5055  *   IMM == 32-bit immediate
5056  *
5057  * Output:
5058  *   R0 - 8/16/32-bit skb data converted to cpu endianness
5059  */
5060 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
5061 {
5062 	struct bpf_reg_state *regs = cur_regs(env);
5063 	u8 mode = BPF_MODE(insn->code);
5064 	int i, err;
5065 
5066 	if (!may_access_skb(env->prog->type)) {
5067 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
5068 		return -EINVAL;
5069 	}
5070 
5071 	if (!env->ops->gen_ld_abs) {
5072 		verbose(env, "bpf verifier is misconfigured\n");
5073 		return -EINVAL;
5074 	}
5075 
5076 	if (env->subprog_cnt > 1) {
5077 		/* when program has LD_ABS insn JITs and interpreter assume
5078 		 * that r1 == ctx == skb which is not the case for callees
5079 		 * that can have arbitrary arguments. It's problematic
5080 		 * for main prog as well since JITs would need to analyze
5081 		 * all functions in order to make proper register save/restore
5082 		 * decisions in the main prog. Hence disallow LD_ABS with calls
5083 		 */
5084 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5085 		return -EINVAL;
5086 	}
5087 
5088 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
5089 	    BPF_SIZE(insn->code) == BPF_DW ||
5090 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
5091 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
5092 		return -EINVAL;
5093 	}
5094 
5095 	/* check whether implicit source operand (register R6) is readable */
5096 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
5097 	if (err)
5098 		return err;
5099 
5100 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
5101 	 * gen_ld_abs() may terminate the program at runtime, leading to
5102 	 * reference leak.
5103 	 */
5104 	err = check_reference_leak(env);
5105 	if (err) {
5106 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
5107 		return err;
5108 	}
5109 
5110 	if (env->cur_state->active_spin_lock) {
5111 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
5112 		return -EINVAL;
5113 	}
5114 
5115 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
5116 		verbose(env,
5117 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
5118 		return -EINVAL;
5119 	}
5120 
5121 	if (mode == BPF_IND) {
5122 		/* check explicit source operand */
5123 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
5124 		if (err)
5125 			return err;
5126 	}
5127 
5128 	/* reset caller saved regs to unreadable */
5129 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5130 		mark_reg_not_init(env, regs, caller_saved[i]);
5131 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5132 	}
5133 
5134 	/* mark destination R0 register as readable, since it contains
5135 	 * the value fetched from the packet.
5136 	 * Already marked as written above.
5137 	 */
5138 	mark_reg_unknown(env, regs, BPF_REG_0);
5139 	return 0;
5140 }
5141 
5142 static int check_return_code(struct bpf_verifier_env *env)
5143 {
5144 	struct bpf_reg_state *reg;
5145 	struct tnum range = tnum_range(0, 1);
5146 
5147 	switch (env->prog->type) {
5148 	case BPF_PROG_TYPE_CGROUP_SKB:
5149 	case BPF_PROG_TYPE_CGROUP_SOCK:
5150 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
5151 	case BPF_PROG_TYPE_SOCK_OPS:
5152 	case BPF_PROG_TYPE_CGROUP_DEVICE:
5153 		break;
5154 	default:
5155 		return 0;
5156 	}
5157 
5158 	reg = cur_regs(env) + BPF_REG_0;
5159 	if (reg->type != SCALAR_VALUE) {
5160 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
5161 			reg_type_str[reg->type]);
5162 		return -EINVAL;
5163 	}
5164 
5165 	if (!tnum_in(range, reg->var_off)) {
5166 		verbose(env, "At program exit the register R0 ");
5167 		if (!tnum_is_unknown(reg->var_off)) {
5168 			char tn_buf[48];
5169 
5170 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5171 			verbose(env, "has value %s", tn_buf);
5172 		} else {
5173 			verbose(env, "has unknown scalar value");
5174 		}
5175 		verbose(env, " should have been 0 or 1\n");
5176 		return -EINVAL;
5177 	}
5178 	return 0;
5179 }
5180 
5181 /* non-recursive DFS pseudo code
5182  * 1  procedure DFS-iterative(G,v):
5183  * 2      label v as discovered
5184  * 3      let S be a stack
5185  * 4      S.push(v)
5186  * 5      while S is not empty
5187  * 6            t <- S.pop()
5188  * 7            if t is what we're looking for:
5189  * 8                return t
5190  * 9            for all edges e in G.adjacentEdges(t) do
5191  * 10               if edge e is already labelled
5192  * 11                   continue with the next edge
5193  * 12               w <- G.adjacentVertex(t,e)
5194  * 13               if vertex w is not discovered and not explored
5195  * 14                   label e as tree-edge
5196  * 15                   label w as discovered
5197  * 16                   S.push(w)
5198  * 17                   continue at 5
5199  * 18               else if vertex w is discovered
5200  * 19                   label e as back-edge
5201  * 20               else
5202  * 21                   // vertex w is explored
5203  * 22                   label e as forward- or cross-edge
5204  * 23           label t as explored
5205  * 24           S.pop()
5206  *
5207  * convention:
5208  * 0x10 - discovered
5209  * 0x11 - discovered and fall-through edge labelled
5210  * 0x12 - discovered and fall-through and branch edges labelled
5211  * 0x20 - explored
5212  */
5213 
5214 enum {
5215 	DISCOVERED = 0x10,
5216 	EXPLORED = 0x20,
5217 	FALLTHROUGH = 1,
5218 	BRANCH = 2,
5219 };
5220 
5221 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
5222 
5223 static int *insn_stack;	/* stack of insns to process */
5224 static int cur_stack;	/* current stack index */
5225 static int *insn_state;
5226 
5227 /* t, w, e - match pseudo-code above:
5228  * t - index of current instruction
5229  * w - next instruction
5230  * e - edge
5231  */
5232 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
5233 {
5234 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
5235 		return 0;
5236 
5237 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
5238 		return 0;
5239 
5240 	if (w < 0 || w >= env->prog->len) {
5241 		verbose_linfo(env, t, "%d: ", t);
5242 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
5243 		return -EINVAL;
5244 	}
5245 
5246 	if (e == BRANCH)
5247 		/* mark branch target for state pruning */
5248 		env->explored_states[w] = STATE_LIST_MARK;
5249 
5250 	if (insn_state[w] == 0) {
5251 		/* tree-edge */
5252 		insn_state[t] = DISCOVERED | e;
5253 		insn_state[w] = DISCOVERED;
5254 		if (cur_stack >= env->prog->len)
5255 			return -E2BIG;
5256 		insn_stack[cur_stack++] = w;
5257 		return 1;
5258 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
5259 		verbose_linfo(env, t, "%d: ", t);
5260 		verbose_linfo(env, w, "%d: ", w);
5261 		verbose(env, "back-edge from insn %d to %d\n", t, w);
5262 		return -EINVAL;
5263 	} else if (insn_state[w] == EXPLORED) {
5264 		/* forward- or cross-edge */
5265 		insn_state[t] = DISCOVERED | e;
5266 	} else {
5267 		verbose(env, "insn state internal bug\n");
5268 		return -EFAULT;
5269 	}
5270 	return 0;
5271 }
5272 
5273 /* non-recursive depth-first-search to detect loops in BPF program
5274  * loop == back-edge in directed graph
5275  */
5276 static int check_cfg(struct bpf_verifier_env *env)
5277 {
5278 	struct bpf_insn *insns = env->prog->insnsi;
5279 	int insn_cnt = env->prog->len;
5280 	int ret = 0;
5281 	int i, t;
5282 
5283 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5284 	if (!insn_state)
5285 		return -ENOMEM;
5286 
5287 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5288 	if (!insn_stack) {
5289 		kfree(insn_state);
5290 		return -ENOMEM;
5291 	}
5292 
5293 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
5294 	insn_stack[0] = 0; /* 0 is the first instruction */
5295 	cur_stack = 1;
5296 
5297 peek_stack:
5298 	if (cur_stack == 0)
5299 		goto check_state;
5300 	t = insn_stack[cur_stack - 1];
5301 
5302 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
5303 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
5304 		u8 opcode = BPF_OP(insns[t].code);
5305 
5306 		if (opcode == BPF_EXIT) {
5307 			goto mark_explored;
5308 		} else if (opcode == BPF_CALL) {
5309 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5310 			if (ret == 1)
5311 				goto peek_stack;
5312 			else if (ret < 0)
5313 				goto err_free;
5314 			if (t + 1 < insn_cnt)
5315 				env->explored_states[t + 1] = STATE_LIST_MARK;
5316 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5317 				env->explored_states[t] = STATE_LIST_MARK;
5318 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
5319 				if (ret == 1)
5320 					goto peek_stack;
5321 				else if (ret < 0)
5322 					goto err_free;
5323 			}
5324 		} else if (opcode == BPF_JA) {
5325 			if (BPF_SRC(insns[t].code) != BPF_K) {
5326 				ret = -EINVAL;
5327 				goto err_free;
5328 			}
5329 			/* unconditional jump with single edge */
5330 			ret = push_insn(t, t + insns[t].off + 1,
5331 					FALLTHROUGH, env);
5332 			if (ret == 1)
5333 				goto peek_stack;
5334 			else if (ret < 0)
5335 				goto err_free;
5336 			/* tell verifier to check for equivalent states
5337 			 * after every call and jump
5338 			 */
5339 			if (t + 1 < insn_cnt)
5340 				env->explored_states[t + 1] = STATE_LIST_MARK;
5341 		} else {
5342 			/* conditional jump with two edges */
5343 			env->explored_states[t] = STATE_LIST_MARK;
5344 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5345 			if (ret == 1)
5346 				goto peek_stack;
5347 			else if (ret < 0)
5348 				goto err_free;
5349 
5350 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
5351 			if (ret == 1)
5352 				goto peek_stack;
5353 			else if (ret < 0)
5354 				goto err_free;
5355 		}
5356 	} else {
5357 		/* all other non-branch instructions with single
5358 		 * fall-through edge
5359 		 */
5360 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
5361 		if (ret == 1)
5362 			goto peek_stack;
5363 		else if (ret < 0)
5364 			goto err_free;
5365 	}
5366 
5367 mark_explored:
5368 	insn_state[t] = EXPLORED;
5369 	if (cur_stack-- <= 0) {
5370 		verbose(env, "pop stack internal bug\n");
5371 		ret = -EFAULT;
5372 		goto err_free;
5373 	}
5374 	goto peek_stack;
5375 
5376 check_state:
5377 	for (i = 0; i < insn_cnt; i++) {
5378 		if (insn_state[i] != EXPLORED) {
5379 			verbose(env, "unreachable insn %d\n", i);
5380 			ret = -EINVAL;
5381 			goto err_free;
5382 		}
5383 	}
5384 	ret = 0; /* cfg looks good */
5385 
5386 err_free:
5387 	kfree(insn_state);
5388 	kfree(insn_stack);
5389 	return ret;
5390 }
5391 
5392 /* The minimum supported BTF func info size */
5393 #define MIN_BPF_FUNCINFO_SIZE	8
5394 #define MAX_FUNCINFO_REC_SIZE	252
5395 
5396 static int check_btf_func(struct bpf_verifier_env *env,
5397 			  const union bpf_attr *attr,
5398 			  union bpf_attr __user *uattr)
5399 {
5400 	u32 i, nfuncs, urec_size, min_size;
5401 	u32 krec_size = sizeof(struct bpf_func_info);
5402 	struct bpf_func_info *krecord;
5403 	const struct btf_type *type;
5404 	struct bpf_prog *prog;
5405 	const struct btf *btf;
5406 	void __user *urecord;
5407 	u32 prev_offset = 0;
5408 	int ret = 0;
5409 
5410 	nfuncs = attr->func_info_cnt;
5411 	if (!nfuncs)
5412 		return 0;
5413 
5414 	if (nfuncs != env->subprog_cnt) {
5415 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
5416 		return -EINVAL;
5417 	}
5418 
5419 	urec_size = attr->func_info_rec_size;
5420 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
5421 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
5422 	    urec_size % sizeof(u32)) {
5423 		verbose(env, "invalid func info rec size %u\n", urec_size);
5424 		return -EINVAL;
5425 	}
5426 
5427 	prog = env->prog;
5428 	btf = prog->aux->btf;
5429 
5430 	urecord = u64_to_user_ptr(attr->func_info);
5431 	min_size = min_t(u32, krec_size, urec_size);
5432 
5433 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
5434 	if (!krecord)
5435 		return -ENOMEM;
5436 
5437 	for (i = 0; i < nfuncs; i++) {
5438 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
5439 		if (ret) {
5440 			if (ret == -E2BIG) {
5441 				verbose(env, "nonzero tailing record in func info");
5442 				/* set the size kernel expects so loader can zero
5443 				 * out the rest of the record.
5444 				 */
5445 				if (put_user(min_size, &uattr->func_info_rec_size))
5446 					ret = -EFAULT;
5447 			}
5448 			goto err_free;
5449 		}
5450 
5451 		if (copy_from_user(&krecord[i], urecord, min_size)) {
5452 			ret = -EFAULT;
5453 			goto err_free;
5454 		}
5455 
5456 		/* check insn_off */
5457 		if (i == 0) {
5458 			if (krecord[i].insn_off) {
5459 				verbose(env,
5460 					"nonzero insn_off %u for the first func info record",
5461 					krecord[i].insn_off);
5462 				ret = -EINVAL;
5463 				goto err_free;
5464 			}
5465 		} else if (krecord[i].insn_off <= prev_offset) {
5466 			verbose(env,
5467 				"same or smaller insn offset (%u) than previous func info record (%u)",
5468 				krecord[i].insn_off, prev_offset);
5469 			ret = -EINVAL;
5470 			goto err_free;
5471 		}
5472 
5473 		if (env->subprog_info[i].start != krecord[i].insn_off) {
5474 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
5475 			ret = -EINVAL;
5476 			goto err_free;
5477 		}
5478 
5479 		/* check type_id */
5480 		type = btf_type_by_id(btf, krecord[i].type_id);
5481 		if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
5482 			verbose(env, "invalid type id %d in func info",
5483 				krecord[i].type_id);
5484 			ret = -EINVAL;
5485 			goto err_free;
5486 		}
5487 
5488 		prev_offset = krecord[i].insn_off;
5489 		urecord += urec_size;
5490 	}
5491 
5492 	prog->aux->func_info = krecord;
5493 	prog->aux->func_info_cnt = nfuncs;
5494 	return 0;
5495 
5496 err_free:
5497 	kvfree(krecord);
5498 	return ret;
5499 }
5500 
5501 static void adjust_btf_func(struct bpf_verifier_env *env)
5502 {
5503 	int i;
5504 
5505 	if (!env->prog->aux->func_info)
5506 		return;
5507 
5508 	for (i = 0; i < env->subprog_cnt; i++)
5509 		env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
5510 }
5511 
5512 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
5513 		sizeof(((struct bpf_line_info *)(0))->line_col))
5514 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
5515 
5516 static int check_btf_line(struct bpf_verifier_env *env,
5517 			  const union bpf_attr *attr,
5518 			  union bpf_attr __user *uattr)
5519 {
5520 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
5521 	struct bpf_subprog_info *sub;
5522 	struct bpf_line_info *linfo;
5523 	struct bpf_prog *prog;
5524 	const struct btf *btf;
5525 	void __user *ulinfo;
5526 	int err;
5527 
5528 	nr_linfo = attr->line_info_cnt;
5529 	if (!nr_linfo)
5530 		return 0;
5531 
5532 	rec_size = attr->line_info_rec_size;
5533 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
5534 	    rec_size > MAX_LINEINFO_REC_SIZE ||
5535 	    rec_size & (sizeof(u32) - 1))
5536 		return -EINVAL;
5537 
5538 	/* Need to zero it in case the userspace may
5539 	 * pass in a smaller bpf_line_info object.
5540 	 */
5541 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
5542 			 GFP_KERNEL | __GFP_NOWARN);
5543 	if (!linfo)
5544 		return -ENOMEM;
5545 
5546 	prog = env->prog;
5547 	btf = prog->aux->btf;
5548 
5549 	s = 0;
5550 	sub = env->subprog_info;
5551 	ulinfo = u64_to_user_ptr(attr->line_info);
5552 	expected_size = sizeof(struct bpf_line_info);
5553 	ncopy = min_t(u32, expected_size, rec_size);
5554 	for (i = 0; i < nr_linfo; i++) {
5555 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
5556 		if (err) {
5557 			if (err == -E2BIG) {
5558 				verbose(env, "nonzero tailing record in line_info");
5559 				if (put_user(expected_size,
5560 					     &uattr->line_info_rec_size))
5561 					err = -EFAULT;
5562 			}
5563 			goto err_free;
5564 		}
5565 
5566 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5567 			err = -EFAULT;
5568 			goto err_free;
5569 		}
5570 
5571 		/*
5572 		 * Check insn_off to ensure
5573 		 * 1) strictly increasing AND
5574 		 * 2) bounded by prog->len
5575 		 *
5576 		 * The linfo[0].insn_off == 0 check logically falls into
5577 		 * the later "missing bpf_line_info for func..." case
5578 		 * because the first linfo[0].insn_off must be the
5579 		 * first sub also and the first sub must have
5580 		 * subprog_info[0].start == 0.
5581 		 */
5582 		if ((i && linfo[i].insn_off <= prev_offset) ||
5583 		    linfo[i].insn_off >= prog->len) {
5584 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5585 				i, linfo[i].insn_off, prev_offset,
5586 				prog->len);
5587 			err = -EINVAL;
5588 			goto err_free;
5589 		}
5590 
5591 		if (!prog->insnsi[linfo[i].insn_off].code) {
5592 			verbose(env,
5593 				"Invalid insn code at line_info[%u].insn_off\n",
5594 				i);
5595 			err = -EINVAL;
5596 			goto err_free;
5597 		}
5598 
5599 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5600 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
5601 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5602 			err = -EINVAL;
5603 			goto err_free;
5604 		}
5605 
5606 		if (s != env->subprog_cnt) {
5607 			if (linfo[i].insn_off == sub[s].start) {
5608 				sub[s].linfo_idx = i;
5609 				s++;
5610 			} else if (sub[s].start < linfo[i].insn_off) {
5611 				verbose(env, "missing bpf_line_info for func#%u\n", s);
5612 				err = -EINVAL;
5613 				goto err_free;
5614 			}
5615 		}
5616 
5617 		prev_offset = linfo[i].insn_off;
5618 		ulinfo += rec_size;
5619 	}
5620 
5621 	if (s != env->subprog_cnt) {
5622 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
5623 			env->subprog_cnt - s, s);
5624 		err = -EINVAL;
5625 		goto err_free;
5626 	}
5627 
5628 	prog->aux->linfo = linfo;
5629 	prog->aux->nr_linfo = nr_linfo;
5630 
5631 	return 0;
5632 
5633 err_free:
5634 	kvfree(linfo);
5635 	return err;
5636 }
5637 
5638 static int check_btf_info(struct bpf_verifier_env *env,
5639 			  const union bpf_attr *attr,
5640 			  union bpf_attr __user *uattr)
5641 {
5642 	struct btf *btf;
5643 	int err;
5644 
5645 	if (!attr->func_info_cnt && !attr->line_info_cnt)
5646 		return 0;
5647 
5648 	btf = btf_get_by_fd(attr->prog_btf_fd);
5649 	if (IS_ERR(btf))
5650 		return PTR_ERR(btf);
5651 	env->prog->aux->btf = btf;
5652 
5653 	err = check_btf_func(env, attr, uattr);
5654 	if (err)
5655 		return err;
5656 
5657 	err = check_btf_line(env, attr, uattr);
5658 	if (err)
5659 		return err;
5660 
5661 	return 0;
5662 }
5663 
5664 /* check %cur's range satisfies %old's */
5665 static bool range_within(struct bpf_reg_state *old,
5666 			 struct bpf_reg_state *cur)
5667 {
5668 	return old->umin_value <= cur->umin_value &&
5669 	       old->umax_value >= cur->umax_value &&
5670 	       old->smin_value <= cur->smin_value &&
5671 	       old->smax_value >= cur->smax_value;
5672 }
5673 
5674 /* Maximum number of register states that can exist at once */
5675 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5676 struct idpair {
5677 	u32 old;
5678 	u32 cur;
5679 };
5680 
5681 /* If in the old state two registers had the same id, then they need to have
5682  * the same id in the new state as well.  But that id could be different from
5683  * the old state, so we need to track the mapping from old to new ids.
5684  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5685  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
5686  * regs with a different old id could still have new id 9, we don't care about
5687  * that.
5688  * So we look through our idmap to see if this old id has been seen before.  If
5689  * so, we require the new id to match; otherwise, we add the id pair to the map.
5690  */
5691 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
5692 {
5693 	unsigned int i;
5694 
5695 	for (i = 0; i < ID_MAP_SIZE; i++) {
5696 		if (!idmap[i].old) {
5697 			/* Reached an empty slot; haven't seen this id before */
5698 			idmap[i].old = old_id;
5699 			idmap[i].cur = cur_id;
5700 			return true;
5701 		}
5702 		if (idmap[i].old == old_id)
5703 			return idmap[i].cur == cur_id;
5704 	}
5705 	/* We ran out of idmap slots, which should be impossible */
5706 	WARN_ON_ONCE(1);
5707 	return false;
5708 }
5709 
5710 static void clean_func_state(struct bpf_verifier_env *env,
5711 			     struct bpf_func_state *st)
5712 {
5713 	enum bpf_reg_liveness live;
5714 	int i, j;
5715 
5716 	for (i = 0; i < BPF_REG_FP; i++) {
5717 		live = st->regs[i].live;
5718 		/* liveness must not touch this register anymore */
5719 		st->regs[i].live |= REG_LIVE_DONE;
5720 		if (!(live & REG_LIVE_READ))
5721 			/* since the register is unused, clear its state
5722 			 * to make further comparison simpler
5723 			 */
5724 			__mark_reg_not_init(&st->regs[i]);
5725 	}
5726 
5727 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
5728 		live = st->stack[i].spilled_ptr.live;
5729 		/* liveness must not touch this stack slot anymore */
5730 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
5731 		if (!(live & REG_LIVE_READ)) {
5732 			__mark_reg_not_init(&st->stack[i].spilled_ptr);
5733 			for (j = 0; j < BPF_REG_SIZE; j++)
5734 				st->stack[i].slot_type[j] = STACK_INVALID;
5735 		}
5736 	}
5737 }
5738 
5739 static void clean_verifier_state(struct bpf_verifier_env *env,
5740 				 struct bpf_verifier_state *st)
5741 {
5742 	int i;
5743 
5744 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
5745 		/* all regs in this state in all frames were already marked */
5746 		return;
5747 
5748 	for (i = 0; i <= st->curframe; i++)
5749 		clean_func_state(env, st->frame[i]);
5750 }
5751 
5752 /* the parentage chains form a tree.
5753  * the verifier states are added to state lists at given insn and
5754  * pushed into state stack for future exploration.
5755  * when the verifier reaches bpf_exit insn some of the verifer states
5756  * stored in the state lists have their final liveness state already,
5757  * but a lot of states will get revised from liveness point of view when
5758  * the verifier explores other branches.
5759  * Example:
5760  * 1: r0 = 1
5761  * 2: if r1 == 100 goto pc+1
5762  * 3: r0 = 2
5763  * 4: exit
5764  * when the verifier reaches exit insn the register r0 in the state list of
5765  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
5766  * of insn 2 and goes exploring further. At the insn 4 it will walk the
5767  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
5768  *
5769  * Since the verifier pushes the branch states as it sees them while exploring
5770  * the program the condition of walking the branch instruction for the second
5771  * time means that all states below this branch were already explored and
5772  * their final liveness markes are already propagated.
5773  * Hence when the verifier completes the search of state list in is_state_visited()
5774  * we can call this clean_live_states() function to mark all liveness states
5775  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
5776  * will not be used.
5777  * This function also clears the registers and stack for states that !READ
5778  * to simplify state merging.
5779  *
5780  * Important note here that walking the same branch instruction in the callee
5781  * doesn't meant that the states are DONE. The verifier has to compare
5782  * the callsites
5783  */
5784 static void clean_live_states(struct bpf_verifier_env *env, int insn,
5785 			      struct bpf_verifier_state *cur)
5786 {
5787 	struct bpf_verifier_state_list *sl;
5788 	int i;
5789 
5790 	sl = env->explored_states[insn];
5791 	if (!sl)
5792 		return;
5793 
5794 	while (sl != STATE_LIST_MARK) {
5795 		if (sl->state.curframe != cur->curframe)
5796 			goto next;
5797 		for (i = 0; i <= cur->curframe; i++)
5798 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
5799 				goto next;
5800 		clean_verifier_state(env, &sl->state);
5801 next:
5802 		sl = sl->next;
5803 	}
5804 }
5805 
5806 /* Returns true if (rold safe implies rcur safe) */
5807 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
5808 		    struct idpair *idmap)
5809 {
5810 	bool equal;
5811 
5812 	if (!(rold->live & REG_LIVE_READ))
5813 		/* explored state didn't use this */
5814 		return true;
5815 
5816 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
5817 
5818 	if (rold->type == PTR_TO_STACK)
5819 		/* two stack pointers are equal only if they're pointing to
5820 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
5821 		 */
5822 		return equal && rold->frameno == rcur->frameno;
5823 
5824 	if (equal)
5825 		return true;
5826 
5827 	if (rold->type == NOT_INIT)
5828 		/* explored state can't have used this */
5829 		return true;
5830 	if (rcur->type == NOT_INIT)
5831 		return false;
5832 	switch (rold->type) {
5833 	case SCALAR_VALUE:
5834 		if (rcur->type == SCALAR_VALUE) {
5835 			/* new val must satisfy old val knowledge */
5836 			return range_within(rold, rcur) &&
5837 			       tnum_in(rold->var_off, rcur->var_off);
5838 		} else {
5839 			/* We're trying to use a pointer in place of a scalar.
5840 			 * Even if the scalar was unbounded, this could lead to
5841 			 * pointer leaks because scalars are allowed to leak
5842 			 * while pointers are not. We could make this safe in
5843 			 * special cases if root is calling us, but it's
5844 			 * probably not worth the hassle.
5845 			 */
5846 			return false;
5847 		}
5848 	case PTR_TO_MAP_VALUE:
5849 		/* If the new min/max/var_off satisfy the old ones and
5850 		 * everything else matches, we are OK.
5851 		 * 'id' is not compared, since it's only used for maps with
5852 		 * bpf_spin_lock inside map element and in such cases if
5853 		 * the rest of the prog is valid for one map element then
5854 		 * it's valid for all map elements regardless of the key
5855 		 * used in bpf_map_lookup()
5856 		 */
5857 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
5858 		       range_within(rold, rcur) &&
5859 		       tnum_in(rold->var_off, rcur->var_off);
5860 	case PTR_TO_MAP_VALUE_OR_NULL:
5861 		/* a PTR_TO_MAP_VALUE could be safe to use as a
5862 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
5863 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
5864 		 * checked, doing so could have affected others with the same
5865 		 * id, and we can't check for that because we lost the id when
5866 		 * we converted to a PTR_TO_MAP_VALUE.
5867 		 */
5868 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
5869 			return false;
5870 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
5871 			return false;
5872 		/* Check our ids match any regs they're supposed to */
5873 		return check_ids(rold->id, rcur->id, idmap);
5874 	case PTR_TO_PACKET_META:
5875 	case PTR_TO_PACKET:
5876 		if (rcur->type != rold->type)
5877 			return false;
5878 		/* We must have at least as much range as the old ptr
5879 		 * did, so that any accesses which were safe before are
5880 		 * still safe.  This is true even if old range < old off,
5881 		 * since someone could have accessed through (ptr - k), or
5882 		 * even done ptr -= k in a register, to get a safe access.
5883 		 */
5884 		if (rold->range > rcur->range)
5885 			return false;
5886 		/* If the offsets don't match, we can't trust our alignment;
5887 		 * nor can we be sure that we won't fall out of range.
5888 		 */
5889 		if (rold->off != rcur->off)
5890 			return false;
5891 		/* id relations must be preserved */
5892 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
5893 			return false;
5894 		/* new val must satisfy old val knowledge */
5895 		return range_within(rold, rcur) &&
5896 		       tnum_in(rold->var_off, rcur->var_off);
5897 	case PTR_TO_CTX:
5898 	case CONST_PTR_TO_MAP:
5899 	case PTR_TO_PACKET_END:
5900 	case PTR_TO_FLOW_KEYS:
5901 	case PTR_TO_SOCKET:
5902 	case PTR_TO_SOCKET_OR_NULL:
5903 	case PTR_TO_SOCK_COMMON:
5904 	case PTR_TO_SOCK_COMMON_OR_NULL:
5905 	case PTR_TO_TCP_SOCK:
5906 	case PTR_TO_TCP_SOCK_OR_NULL:
5907 		/* Only valid matches are exact, which memcmp() above
5908 		 * would have accepted
5909 		 */
5910 	default:
5911 		/* Don't know what's going on, just say it's not safe */
5912 		return false;
5913 	}
5914 
5915 	/* Shouldn't get here; if we do, say it's not safe */
5916 	WARN_ON_ONCE(1);
5917 	return false;
5918 }
5919 
5920 static bool stacksafe(struct bpf_func_state *old,
5921 		      struct bpf_func_state *cur,
5922 		      struct idpair *idmap)
5923 {
5924 	int i, spi;
5925 
5926 	/* walk slots of the explored stack and ignore any additional
5927 	 * slots in the current stack, since explored(safe) state
5928 	 * didn't use them
5929 	 */
5930 	for (i = 0; i < old->allocated_stack; i++) {
5931 		spi = i / BPF_REG_SIZE;
5932 
5933 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
5934 			i += BPF_REG_SIZE - 1;
5935 			/* explored state didn't use this */
5936 			continue;
5937 		}
5938 
5939 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
5940 			continue;
5941 
5942 		/* explored stack has more populated slots than current stack
5943 		 * and these slots were used
5944 		 */
5945 		if (i >= cur->allocated_stack)
5946 			return false;
5947 
5948 		/* if old state was safe with misc data in the stack
5949 		 * it will be safe with zero-initialized stack.
5950 		 * The opposite is not true
5951 		 */
5952 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
5953 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
5954 			continue;
5955 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
5956 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
5957 			/* Ex: old explored (safe) state has STACK_SPILL in
5958 			 * this stack slot, but current has has STACK_MISC ->
5959 			 * this verifier states are not equivalent,
5960 			 * return false to continue verification of this path
5961 			 */
5962 			return false;
5963 		if (i % BPF_REG_SIZE)
5964 			continue;
5965 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
5966 			continue;
5967 		if (!regsafe(&old->stack[spi].spilled_ptr,
5968 			     &cur->stack[spi].spilled_ptr,
5969 			     idmap))
5970 			/* when explored and current stack slot are both storing
5971 			 * spilled registers, check that stored pointers types
5972 			 * are the same as well.
5973 			 * Ex: explored safe path could have stored
5974 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
5975 			 * but current path has stored:
5976 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
5977 			 * such verifier states are not equivalent.
5978 			 * return false to continue verification of this path
5979 			 */
5980 			return false;
5981 	}
5982 	return true;
5983 }
5984 
5985 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
5986 {
5987 	if (old->acquired_refs != cur->acquired_refs)
5988 		return false;
5989 	return !memcmp(old->refs, cur->refs,
5990 		       sizeof(*old->refs) * old->acquired_refs);
5991 }
5992 
5993 /* compare two verifier states
5994  *
5995  * all states stored in state_list are known to be valid, since
5996  * verifier reached 'bpf_exit' instruction through them
5997  *
5998  * this function is called when verifier exploring different branches of
5999  * execution popped from the state stack. If it sees an old state that has
6000  * more strict register state and more strict stack state then this execution
6001  * branch doesn't need to be explored further, since verifier already
6002  * concluded that more strict state leads to valid finish.
6003  *
6004  * Therefore two states are equivalent if register state is more conservative
6005  * and explored stack state is more conservative than the current one.
6006  * Example:
6007  *       explored                   current
6008  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
6009  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
6010  *
6011  * In other words if current stack state (one being explored) has more
6012  * valid slots than old one that already passed validation, it means
6013  * the verifier can stop exploring and conclude that current state is valid too
6014  *
6015  * Similarly with registers. If explored state has register type as invalid
6016  * whereas register type in current state is meaningful, it means that
6017  * the current state will reach 'bpf_exit' instruction safely
6018  */
6019 static bool func_states_equal(struct bpf_func_state *old,
6020 			      struct bpf_func_state *cur)
6021 {
6022 	struct idpair *idmap;
6023 	bool ret = false;
6024 	int i;
6025 
6026 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
6027 	/* If we failed to allocate the idmap, just say it's not safe */
6028 	if (!idmap)
6029 		return false;
6030 
6031 	for (i = 0; i < MAX_BPF_REG; i++) {
6032 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
6033 			goto out_free;
6034 	}
6035 
6036 	if (!stacksafe(old, cur, idmap))
6037 		goto out_free;
6038 
6039 	if (!refsafe(old, cur))
6040 		goto out_free;
6041 	ret = true;
6042 out_free:
6043 	kfree(idmap);
6044 	return ret;
6045 }
6046 
6047 static bool states_equal(struct bpf_verifier_env *env,
6048 			 struct bpf_verifier_state *old,
6049 			 struct bpf_verifier_state *cur)
6050 {
6051 	int i;
6052 
6053 	if (old->curframe != cur->curframe)
6054 		return false;
6055 
6056 	/* Verification state from speculative execution simulation
6057 	 * must never prune a non-speculative execution one.
6058 	 */
6059 	if (old->speculative && !cur->speculative)
6060 		return false;
6061 
6062 	if (old->active_spin_lock != cur->active_spin_lock)
6063 		return false;
6064 
6065 	/* for states to be equal callsites have to be the same
6066 	 * and all frame states need to be equivalent
6067 	 */
6068 	for (i = 0; i <= old->curframe; i++) {
6069 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
6070 			return false;
6071 		if (!func_states_equal(old->frame[i], cur->frame[i]))
6072 			return false;
6073 	}
6074 	return true;
6075 }
6076 
6077 /* A write screens off any subsequent reads; but write marks come from the
6078  * straight-line code between a state and its parent.  When we arrive at an
6079  * equivalent state (jump target or such) we didn't arrive by the straight-line
6080  * code, so read marks in the state must propagate to the parent regardless
6081  * of the state's write marks. That's what 'parent == state->parent' comparison
6082  * in mark_reg_read() is for.
6083  */
6084 static int propagate_liveness(struct bpf_verifier_env *env,
6085 			      const struct bpf_verifier_state *vstate,
6086 			      struct bpf_verifier_state *vparent)
6087 {
6088 	int i, frame, err = 0;
6089 	struct bpf_func_state *state, *parent;
6090 
6091 	if (vparent->curframe != vstate->curframe) {
6092 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
6093 		     vparent->curframe, vstate->curframe);
6094 		return -EFAULT;
6095 	}
6096 	/* Propagate read liveness of registers... */
6097 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
6098 	for (frame = 0; frame <= vstate->curframe; frame++) {
6099 		/* We don't need to worry about FP liveness, it's read-only */
6100 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
6101 			if (vparent->frame[frame]->regs[i].live & REG_LIVE_READ)
6102 				continue;
6103 			if (vstate->frame[frame]->regs[i].live & REG_LIVE_READ) {
6104 				err = mark_reg_read(env, &vstate->frame[frame]->regs[i],
6105 						    &vparent->frame[frame]->regs[i]);
6106 				if (err)
6107 					return err;
6108 			}
6109 		}
6110 	}
6111 
6112 	/* ... and stack slots */
6113 	for (frame = 0; frame <= vstate->curframe; frame++) {
6114 		state = vstate->frame[frame];
6115 		parent = vparent->frame[frame];
6116 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
6117 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
6118 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
6119 				continue;
6120 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
6121 				mark_reg_read(env, &state->stack[i].spilled_ptr,
6122 					      &parent->stack[i].spilled_ptr);
6123 		}
6124 	}
6125 	return err;
6126 }
6127 
6128 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
6129 {
6130 	struct bpf_verifier_state_list *new_sl;
6131 	struct bpf_verifier_state_list *sl;
6132 	struct bpf_verifier_state *cur = env->cur_state, *new;
6133 	int i, j, err, states_cnt = 0;
6134 
6135 	sl = env->explored_states[insn_idx];
6136 	if (!sl)
6137 		/* this 'insn_idx' instruction wasn't marked, so we will not
6138 		 * be doing state search here
6139 		 */
6140 		return 0;
6141 
6142 	clean_live_states(env, insn_idx, cur);
6143 
6144 	while (sl != STATE_LIST_MARK) {
6145 		if (states_equal(env, &sl->state, cur)) {
6146 			/* reached equivalent register/stack state,
6147 			 * prune the search.
6148 			 * Registers read by the continuation are read by us.
6149 			 * If we have any write marks in env->cur_state, they
6150 			 * will prevent corresponding reads in the continuation
6151 			 * from reaching our parent (an explored_state).  Our
6152 			 * own state will get the read marks recorded, but
6153 			 * they'll be immediately forgotten as we're pruning
6154 			 * this state and will pop a new one.
6155 			 */
6156 			err = propagate_liveness(env, &sl->state, cur);
6157 			if (err)
6158 				return err;
6159 			return 1;
6160 		}
6161 		sl = sl->next;
6162 		states_cnt++;
6163 	}
6164 
6165 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
6166 		return 0;
6167 
6168 	/* there were no equivalent states, remember current one.
6169 	 * technically the current state is not proven to be safe yet,
6170 	 * but it will either reach outer most bpf_exit (which means it's safe)
6171 	 * or it will be rejected. Since there are no loops, we won't be
6172 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6173 	 * again on the way to bpf_exit
6174 	 */
6175 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
6176 	if (!new_sl)
6177 		return -ENOMEM;
6178 
6179 	/* add new state to the head of linked list */
6180 	new = &new_sl->state;
6181 	err = copy_verifier_state(new, cur);
6182 	if (err) {
6183 		free_verifier_state(new, false);
6184 		kfree(new_sl);
6185 		return err;
6186 	}
6187 	new_sl->next = env->explored_states[insn_idx];
6188 	env->explored_states[insn_idx] = new_sl;
6189 	/* connect new state to parentage chain. Current frame needs all
6190 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
6191 	 * to the stack implicitly by JITs) so in callers' frames connect just
6192 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6193 	 * the state of the call instruction (with WRITTEN set), and r0 comes
6194 	 * from callee with its full parentage chain, anyway.
6195 	 */
6196 	for (j = 0; j <= cur->curframe; j++)
6197 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
6198 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
6199 	/* clear write marks in current state: the writes we did are not writes
6200 	 * our child did, so they don't screen off its reads from us.
6201 	 * (There are no read marks in current state, because reads always mark
6202 	 * their parent and current state never has children yet.  Only
6203 	 * explored_states can get read marks.)
6204 	 */
6205 	for (i = 0; i < BPF_REG_FP; i++)
6206 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
6207 
6208 	/* all stack frames are accessible from callee, clear them all */
6209 	for (j = 0; j <= cur->curframe; j++) {
6210 		struct bpf_func_state *frame = cur->frame[j];
6211 		struct bpf_func_state *newframe = new->frame[j];
6212 
6213 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
6214 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
6215 			frame->stack[i].spilled_ptr.parent =
6216 						&newframe->stack[i].spilled_ptr;
6217 		}
6218 	}
6219 	return 0;
6220 }
6221 
6222 /* Return true if it's OK to have the same insn return a different type. */
6223 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
6224 {
6225 	switch (type) {
6226 	case PTR_TO_CTX:
6227 	case PTR_TO_SOCKET:
6228 	case PTR_TO_SOCKET_OR_NULL:
6229 	case PTR_TO_SOCK_COMMON:
6230 	case PTR_TO_SOCK_COMMON_OR_NULL:
6231 	case PTR_TO_TCP_SOCK:
6232 	case PTR_TO_TCP_SOCK_OR_NULL:
6233 		return false;
6234 	default:
6235 		return true;
6236 	}
6237 }
6238 
6239 /* If an instruction was previously used with particular pointer types, then we
6240  * need to be careful to avoid cases such as the below, where it may be ok
6241  * for one branch accessing the pointer, but not ok for the other branch:
6242  *
6243  * R1 = sock_ptr
6244  * goto X;
6245  * ...
6246  * R1 = some_other_valid_ptr;
6247  * goto X;
6248  * ...
6249  * R2 = *(u32 *)(R1 + 0);
6250  */
6251 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
6252 {
6253 	return src != prev && (!reg_type_mismatch_ok(src) ||
6254 			       !reg_type_mismatch_ok(prev));
6255 }
6256 
6257 static int do_check(struct bpf_verifier_env *env)
6258 {
6259 	struct bpf_verifier_state *state;
6260 	struct bpf_insn *insns = env->prog->insnsi;
6261 	struct bpf_reg_state *regs;
6262 	int insn_cnt = env->prog->len, i;
6263 	int insn_processed = 0;
6264 	bool do_print_state = false;
6265 
6266 	env->prev_linfo = NULL;
6267 
6268 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
6269 	if (!state)
6270 		return -ENOMEM;
6271 	state->curframe = 0;
6272 	state->speculative = false;
6273 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
6274 	if (!state->frame[0]) {
6275 		kfree(state);
6276 		return -ENOMEM;
6277 	}
6278 	env->cur_state = state;
6279 	init_func_state(env, state->frame[0],
6280 			BPF_MAIN_FUNC /* callsite */,
6281 			0 /* frameno */,
6282 			0 /* subprogno, zero == main subprog */);
6283 
6284 	for (;;) {
6285 		struct bpf_insn *insn;
6286 		u8 class;
6287 		int err;
6288 
6289 		if (env->insn_idx >= insn_cnt) {
6290 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
6291 				env->insn_idx, insn_cnt);
6292 			return -EFAULT;
6293 		}
6294 
6295 		insn = &insns[env->insn_idx];
6296 		class = BPF_CLASS(insn->code);
6297 
6298 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
6299 			verbose(env,
6300 				"BPF program is too large. Processed %d insn\n",
6301 				insn_processed);
6302 			return -E2BIG;
6303 		}
6304 
6305 		err = is_state_visited(env, env->insn_idx);
6306 		if (err < 0)
6307 			return err;
6308 		if (err == 1) {
6309 			/* found equivalent state, can prune the search */
6310 			if (env->log.level) {
6311 				if (do_print_state)
6312 					verbose(env, "\nfrom %d to %d%s: safe\n",
6313 						env->prev_insn_idx, env->insn_idx,
6314 						env->cur_state->speculative ?
6315 						" (speculative execution)" : "");
6316 				else
6317 					verbose(env, "%d: safe\n", env->insn_idx);
6318 			}
6319 			goto process_bpf_exit;
6320 		}
6321 
6322 		if (signal_pending(current))
6323 			return -EAGAIN;
6324 
6325 		if (need_resched())
6326 			cond_resched();
6327 
6328 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
6329 			if (env->log.level > 1)
6330 				verbose(env, "%d:", env->insn_idx);
6331 			else
6332 				verbose(env, "\nfrom %d to %d%s:",
6333 					env->prev_insn_idx, env->insn_idx,
6334 					env->cur_state->speculative ?
6335 					" (speculative execution)" : "");
6336 			print_verifier_state(env, state->frame[state->curframe]);
6337 			do_print_state = false;
6338 		}
6339 
6340 		if (env->log.level) {
6341 			const struct bpf_insn_cbs cbs = {
6342 				.cb_print	= verbose,
6343 				.private_data	= env,
6344 			};
6345 
6346 			verbose_linfo(env, env->insn_idx, "; ");
6347 			verbose(env, "%d: ", env->insn_idx);
6348 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
6349 		}
6350 
6351 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
6352 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
6353 							   env->prev_insn_idx);
6354 			if (err)
6355 				return err;
6356 		}
6357 
6358 		regs = cur_regs(env);
6359 		env->insn_aux_data[env->insn_idx].seen = true;
6360 
6361 		if (class == BPF_ALU || class == BPF_ALU64) {
6362 			err = check_alu_op(env, insn);
6363 			if (err)
6364 				return err;
6365 
6366 		} else if (class == BPF_LDX) {
6367 			enum bpf_reg_type *prev_src_type, src_reg_type;
6368 
6369 			/* check for reserved fields is already done */
6370 
6371 			/* check src operand */
6372 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6373 			if (err)
6374 				return err;
6375 
6376 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6377 			if (err)
6378 				return err;
6379 
6380 			src_reg_type = regs[insn->src_reg].type;
6381 
6382 			/* check that memory (src_reg + off) is readable,
6383 			 * the state of dst_reg will be updated by this func
6384 			 */
6385 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
6386 					       insn->off, BPF_SIZE(insn->code),
6387 					       BPF_READ, insn->dst_reg, false);
6388 			if (err)
6389 				return err;
6390 
6391 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6392 
6393 			if (*prev_src_type == NOT_INIT) {
6394 				/* saw a valid insn
6395 				 * dst_reg = *(u32 *)(src_reg + off)
6396 				 * save type to validate intersecting paths
6397 				 */
6398 				*prev_src_type = src_reg_type;
6399 
6400 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
6401 				/* ABuser program is trying to use the same insn
6402 				 * dst_reg = *(u32*) (src_reg + off)
6403 				 * with different pointer types:
6404 				 * src_reg == ctx in one branch and
6405 				 * src_reg == stack|map in some other branch.
6406 				 * Reject it.
6407 				 */
6408 				verbose(env, "same insn cannot be used with different pointers\n");
6409 				return -EINVAL;
6410 			}
6411 
6412 		} else if (class == BPF_STX) {
6413 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
6414 
6415 			if (BPF_MODE(insn->code) == BPF_XADD) {
6416 				err = check_xadd(env, env->insn_idx, insn);
6417 				if (err)
6418 					return err;
6419 				env->insn_idx++;
6420 				continue;
6421 			}
6422 
6423 			/* check src1 operand */
6424 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6425 			if (err)
6426 				return err;
6427 			/* check src2 operand */
6428 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6429 			if (err)
6430 				return err;
6431 
6432 			dst_reg_type = regs[insn->dst_reg].type;
6433 
6434 			/* check that memory (dst_reg + off) is writeable */
6435 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6436 					       insn->off, BPF_SIZE(insn->code),
6437 					       BPF_WRITE, insn->src_reg, false);
6438 			if (err)
6439 				return err;
6440 
6441 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6442 
6443 			if (*prev_dst_type == NOT_INIT) {
6444 				*prev_dst_type = dst_reg_type;
6445 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
6446 				verbose(env, "same insn cannot be used with different pointers\n");
6447 				return -EINVAL;
6448 			}
6449 
6450 		} else if (class == BPF_ST) {
6451 			if (BPF_MODE(insn->code) != BPF_MEM ||
6452 			    insn->src_reg != BPF_REG_0) {
6453 				verbose(env, "BPF_ST uses reserved fields\n");
6454 				return -EINVAL;
6455 			}
6456 			/* check src operand */
6457 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6458 			if (err)
6459 				return err;
6460 
6461 			if (is_ctx_reg(env, insn->dst_reg)) {
6462 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
6463 					insn->dst_reg,
6464 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
6465 				return -EACCES;
6466 			}
6467 
6468 			/* check that memory (dst_reg + off) is writeable */
6469 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6470 					       insn->off, BPF_SIZE(insn->code),
6471 					       BPF_WRITE, -1, false);
6472 			if (err)
6473 				return err;
6474 
6475 		} else if (class == BPF_JMP || class == BPF_JMP32) {
6476 			u8 opcode = BPF_OP(insn->code);
6477 
6478 			if (opcode == BPF_CALL) {
6479 				if (BPF_SRC(insn->code) != BPF_K ||
6480 				    insn->off != 0 ||
6481 				    (insn->src_reg != BPF_REG_0 &&
6482 				     insn->src_reg != BPF_PSEUDO_CALL) ||
6483 				    insn->dst_reg != BPF_REG_0 ||
6484 				    class == BPF_JMP32) {
6485 					verbose(env, "BPF_CALL uses reserved fields\n");
6486 					return -EINVAL;
6487 				}
6488 
6489 				if (env->cur_state->active_spin_lock &&
6490 				    (insn->src_reg == BPF_PSEUDO_CALL ||
6491 				     insn->imm != BPF_FUNC_spin_unlock)) {
6492 					verbose(env, "function calls are not allowed while holding a lock\n");
6493 					return -EINVAL;
6494 				}
6495 				if (insn->src_reg == BPF_PSEUDO_CALL)
6496 					err = check_func_call(env, insn, &env->insn_idx);
6497 				else
6498 					err = check_helper_call(env, insn->imm, env->insn_idx);
6499 				if (err)
6500 					return err;
6501 
6502 			} else if (opcode == BPF_JA) {
6503 				if (BPF_SRC(insn->code) != BPF_K ||
6504 				    insn->imm != 0 ||
6505 				    insn->src_reg != BPF_REG_0 ||
6506 				    insn->dst_reg != BPF_REG_0 ||
6507 				    class == BPF_JMP32) {
6508 					verbose(env, "BPF_JA uses reserved fields\n");
6509 					return -EINVAL;
6510 				}
6511 
6512 				env->insn_idx += insn->off + 1;
6513 				continue;
6514 
6515 			} else if (opcode == BPF_EXIT) {
6516 				if (BPF_SRC(insn->code) != BPF_K ||
6517 				    insn->imm != 0 ||
6518 				    insn->src_reg != BPF_REG_0 ||
6519 				    insn->dst_reg != BPF_REG_0 ||
6520 				    class == BPF_JMP32) {
6521 					verbose(env, "BPF_EXIT uses reserved fields\n");
6522 					return -EINVAL;
6523 				}
6524 
6525 				if (env->cur_state->active_spin_lock) {
6526 					verbose(env, "bpf_spin_unlock is missing\n");
6527 					return -EINVAL;
6528 				}
6529 
6530 				if (state->curframe) {
6531 					/* exit from nested function */
6532 					env->prev_insn_idx = env->insn_idx;
6533 					err = prepare_func_exit(env, &env->insn_idx);
6534 					if (err)
6535 						return err;
6536 					do_print_state = true;
6537 					continue;
6538 				}
6539 
6540 				err = check_reference_leak(env);
6541 				if (err)
6542 					return err;
6543 
6544 				/* eBPF calling convetion is such that R0 is used
6545 				 * to return the value from eBPF program.
6546 				 * Make sure that it's readable at this time
6547 				 * of bpf_exit, which means that program wrote
6548 				 * something into it earlier
6549 				 */
6550 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
6551 				if (err)
6552 					return err;
6553 
6554 				if (is_pointer_value(env, BPF_REG_0)) {
6555 					verbose(env, "R0 leaks addr as return value\n");
6556 					return -EACCES;
6557 				}
6558 
6559 				err = check_return_code(env);
6560 				if (err)
6561 					return err;
6562 process_bpf_exit:
6563 				err = pop_stack(env, &env->prev_insn_idx,
6564 						&env->insn_idx);
6565 				if (err < 0) {
6566 					if (err != -ENOENT)
6567 						return err;
6568 					break;
6569 				} else {
6570 					do_print_state = true;
6571 					continue;
6572 				}
6573 			} else {
6574 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
6575 				if (err)
6576 					return err;
6577 			}
6578 		} else if (class == BPF_LD) {
6579 			u8 mode = BPF_MODE(insn->code);
6580 
6581 			if (mode == BPF_ABS || mode == BPF_IND) {
6582 				err = check_ld_abs(env, insn);
6583 				if (err)
6584 					return err;
6585 
6586 			} else if (mode == BPF_IMM) {
6587 				err = check_ld_imm(env, insn);
6588 				if (err)
6589 					return err;
6590 
6591 				env->insn_idx++;
6592 				env->insn_aux_data[env->insn_idx].seen = true;
6593 			} else {
6594 				verbose(env, "invalid BPF_LD mode\n");
6595 				return -EINVAL;
6596 			}
6597 		} else {
6598 			verbose(env, "unknown insn class %d\n", class);
6599 			return -EINVAL;
6600 		}
6601 
6602 		env->insn_idx++;
6603 	}
6604 
6605 	verbose(env, "processed %d insns (limit %d), stack depth ",
6606 		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
6607 	for (i = 0; i < env->subprog_cnt; i++) {
6608 		u32 depth = env->subprog_info[i].stack_depth;
6609 
6610 		verbose(env, "%d", depth);
6611 		if (i + 1 < env->subprog_cnt)
6612 			verbose(env, "+");
6613 	}
6614 	verbose(env, "\n");
6615 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
6616 	return 0;
6617 }
6618 
6619 static int check_map_prealloc(struct bpf_map *map)
6620 {
6621 	return (map->map_type != BPF_MAP_TYPE_HASH &&
6622 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6623 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
6624 		!(map->map_flags & BPF_F_NO_PREALLOC);
6625 }
6626 
6627 static bool is_tracing_prog_type(enum bpf_prog_type type)
6628 {
6629 	switch (type) {
6630 	case BPF_PROG_TYPE_KPROBE:
6631 	case BPF_PROG_TYPE_TRACEPOINT:
6632 	case BPF_PROG_TYPE_PERF_EVENT:
6633 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6634 		return true;
6635 	default:
6636 		return false;
6637 	}
6638 }
6639 
6640 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
6641 					struct bpf_map *map,
6642 					struct bpf_prog *prog)
6643 
6644 {
6645 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
6646 	 * preallocated hash maps, since doing memory allocation
6647 	 * in overflow_handler can crash depending on where nmi got
6648 	 * triggered.
6649 	 */
6650 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
6651 		if (!check_map_prealloc(map)) {
6652 			verbose(env, "perf_event programs can only use preallocated hash map\n");
6653 			return -EINVAL;
6654 		}
6655 		if (map->inner_map_meta &&
6656 		    !check_map_prealloc(map->inner_map_meta)) {
6657 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
6658 			return -EINVAL;
6659 		}
6660 	}
6661 
6662 	if ((is_tracing_prog_type(prog->type) ||
6663 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
6664 	    map_value_has_spin_lock(map)) {
6665 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
6666 		return -EINVAL;
6667 	}
6668 
6669 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
6670 	    !bpf_offload_prog_map_match(prog, map)) {
6671 		verbose(env, "offload device mismatch between prog and map\n");
6672 		return -EINVAL;
6673 	}
6674 
6675 	return 0;
6676 }
6677 
6678 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
6679 {
6680 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
6681 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
6682 }
6683 
6684 /* look for pseudo eBPF instructions that access map FDs and
6685  * replace them with actual map pointers
6686  */
6687 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
6688 {
6689 	struct bpf_insn *insn = env->prog->insnsi;
6690 	int insn_cnt = env->prog->len;
6691 	int i, j, err;
6692 
6693 	err = bpf_prog_calc_tag(env->prog);
6694 	if (err)
6695 		return err;
6696 
6697 	for (i = 0; i < insn_cnt; i++, insn++) {
6698 		if (BPF_CLASS(insn->code) == BPF_LDX &&
6699 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
6700 			verbose(env, "BPF_LDX uses reserved fields\n");
6701 			return -EINVAL;
6702 		}
6703 
6704 		if (BPF_CLASS(insn->code) == BPF_STX &&
6705 		    ((BPF_MODE(insn->code) != BPF_MEM &&
6706 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
6707 			verbose(env, "BPF_STX uses reserved fields\n");
6708 			return -EINVAL;
6709 		}
6710 
6711 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
6712 			struct bpf_map *map;
6713 			struct fd f;
6714 
6715 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
6716 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
6717 			    insn[1].off != 0) {
6718 				verbose(env, "invalid bpf_ld_imm64 insn\n");
6719 				return -EINVAL;
6720 			}
6721 
6722 			if (insn->src_reg == 0)
6723 				/* valid generic load 64-bit imm */
6724 				goto next_insn;
6725 
6726 			if (insn[0].src_reg != BPF_PSEUDO_MAP_FD ||
6727 			    insn[1].imm != 0) {
6728 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
6729 				return -EINVAL;
6730 			}
6731 
6732 			f = fdget(insn[0].imm);
6733 			map = __bpf_map_get(f);
6734 			if (IS_ERR(map)) {
6735 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
6736 					insn[0].imm);
6737 				return PTR_ERR(map);
6738 			}
6739 
6740 			err = check_map_prog_compatibility(env, map, env->prog);
6741 			if (err) {
6742 				fdput(f);
6743 				return err;
6744 			}
6745 
6746 			/* store map pointer inside BPF_LD_IMM64 instruction */
6747 			insn[0].imm = (u32) (unsigned long) map;
6748 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
6749 
6750 			/* check whether we recorded this map already */
6751 			for (j = 0; j < env->used_map_cnt; j++)
6752 				if (env->used_maps[j] == map) {
6753 					fdput(f);
6754 					goto next_insn;
6755 				}
6756 
6757 			if (env->used_map_cnt >= MAX_USED_MAPS) {
6758 				fdput(f);
6759 				return -E2BIG;
6760 			}
6761 
6762 			/* hold the map. If the program is rejected by verifier,
6763 			 * the map will be released by release_maps() or it
6764 			 * will be used by the valid program until it's unloaded
6765 			 * and all maps are released in free_used_maps()
6766 			 */
6767 			map = bpf_map_inc(map, false);
6768 			if (IS_ERR(map)) {
6769 				fdput(f);
6770 				return PTR_ERR(map);
6771 			}
6772 			env->used_maps[env->used_map_cnt++] = map;
6773 
6774 			if (bpf_map_is_cgroup_storage(map) &&
6775 			    bpf_cgroup_storage_assign(env->prog, map)) {
6776 				verbose(env, "only one cgroup storage of each type is allowed\n");
6777 				fdput(f);
6778 				return -EBUSY;
6779 			}
6780 
6781 			fdput(f);
6782 next_insn:
6783 			insn++;
6784 			i++;
6785 			continue;
6786 		}
6787 
6788 		/* Basic sanity check before we invest more work here. */
6789 		if (!bpf_opcode_in_insntable(insn->code)) {
6790 			verbose(env, "unknown opcode %02x\n", insn->code);
6791 			return -EINVAL;
6792 		}
6793 	}
6794 
6795 	/* now all pseudo BPF_LD_IMM64 instructions load valid
6796 	 * 'struct bpf_map *' into a register instead of user map_fd.
6797 	 * These pointers will be used later by verifier to validate map access.
6798 	 */
6799 	return 0;
6800 }
6801 
6802 /* drop refcnt of maps used by the rejected program */
6803 static void release_maps(struct bpf_verifier_env *env)
6804 {
6805 	enum bpf_cgroup_storage_type stype;
6806 	int i;
6807 
6808 	for_each_cgroup_storage_type(stype) {
6809 		if (!env->prog->aux->cgroup_storage[stype])
6810 			continue;
6811 		bpf_cgroup_storage_release(env->prog,
6812 			env->prog->aux->cgroup_storage[stype]);
6813 	}
6814 
6815 	for (i = 0; i < env->used_map_cnt; i++)
6816 		bpf_map_put(env->used_maps[i]);
6817 }
6818 
6819 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
6820 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
6821 {
6822 	struct bpf_insn *insn = env->prog->insnsi;
6823 	int insn_cnt = env->prog->len;
6824 	int i;
6825 
6826 	for (i = 0; i < insn_cnt; i++, insn++)
6827 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
6828 			insn->src_reg = 0;
6829 }
6830 
6831 /* single env->prog->insni[off] instruction was replaced with the range
6832  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
6833  * [0, off) and [off, end) to new locations, so the patched range stays zero
6834  */
6835 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
6836 				u32 off, u32 cnt)
6837 {
6838 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
6839 	int i;
6840 
6841 	if (cnt == 1)
6842 		return 0;
6843 	new_data = vzalloc(array_size(prog_len,
6844 				      sizeof(struct bpf_insn_aux_data)));
6845 	if (!new_data)
6846 		return -ENOMEM;
6847 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
6848 	memcpy(new_data + off + cnt - 1, old_data + off,
6849 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
6850 	for (i = off; i < off + cnt - 1; i++)
6851 		new_data[i].seen = true;
6852 	env->insn_aux_data = new_data;
6853 	vfree(old_data);
6854 	return 0;
6855 }
6856 
6857 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
6858 {
6859 	int i;
6860 
6861 	if (len == 1)
6862 		return;
6863 	/* NOTE: fake 'exit' subprog should be updated as well. */
6864 	for (i = 0; i <= env->subprog_cnt; i++) {
6865 		if (env->subprog_info[i].start <= off)
6866 			continue;
6867 		env->subprog_info[i].start += len - 1;
6868 	}
6869 }
6870 
6871 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
6872 					    const struct bpf_insn *patch, u32 len)
6873 {
6874 	struct bpf_prog *new_prog;
6875 
6876 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
6877 	if (!new_prog)
6878 		return NULL;
6879 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
6880 		return NULL;
6881 	adjust_subprog_starts(env, off, len);
6882 	return new_prog;
6883 }
6884 
6885 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
6886 					      u32 off, u32 cnt)
6887 {
6888 	int i, j;
6889 
6890 	/* find first prog starting at or after off (first to remove) */
6891 	for (i = 0; i < env->subprog_cnt; i++)
6892 		if (env->subprog_info[i].start >= off)
6893 			break;
6894 	/* find first prog starting at or after off + cnt (first to stay) */
6895 	for (j = i; j < env->subprog_cnt; j++)
6896 		if (env->subprog_info[j].start >= off + cnt)
6897 			break;
6898 	/* if j doesn't start exactly at off + cnt, we are just removing
6899 	 * the front of previous prog
6900 	 */
6901 	if (env->subprog_info[j].start != off + cnt)
6902 		j--;
6903 
6904 	if (j > i) {
6905 		struct bpf_prog_aux *aux = env->prog->aux;
6906 		int move;
6907 
6908 		/* move fake 'exit' subprog as well */
6909 		move = env->subprog_cnt + 1 - j;
6910 
6911 		memmove(env->subprog_info + i,
6912 			env->subprog_info + j,
6913 			sizeof(*env->subprog_info) * move);
6914 		env->subprog_cnt -= j - i;
6915 
6916 		/* remove func_info */
6917 		if (aux->func_info) {
6918 			move = aux->func_info_cnt - j;
6919 
6920 			memmove(aux->func_info + i,
6921 				aux->func_info + j,
6922 				sizeof(*aux->func_info) * move);
6923 			aux->func_info_cnt -= j - i;
6924 			/* func_info->insn_off is set after all code rewrites,
6925 			 * in adjust_btf_func() - no need to adjust
6926 			 */
6927 		}
6928 	} else {
6929 		/* convert i from "first prog to remove" to "first to adjust" */
6930 		if (env->subprog_info[i].start == off)
6931 			i++;
6932 	}
6933 
6934 	/* update fake 'exit' subprog as well */
6935 	for (; i <= env->subprog_cnt; i++)
6936 		env->subprog_info[i].start -= cnt;
6937 
6938 	return 0;
6939 }
6940 
6941 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
6942 				      u32 cnt)
6943 {
6944 	struct bpf_prog *prog = env->prog;
6945 	u32 i, l_off, l_cnt, nr_linfo;
6946 	struct bpf_line_info *linfo;
6947 
6948 	nr_linfo = prog->aux->nr_linfo;
6949 	if (!nr_linfo)
6950 		return 0;
6951 
6952 	linfo = prog->aux->linfo;
6953 
6954 	/* find first line info to remove, count lines to be removed */
6955 	for (i = 0; i < nr_linfo; i++)
6956 		if (linfo[i].insn_off >= off)
6957 			break;
6958 
6959 	l_off = i;
6960 	l_cnt = 0;
6961 	for (; i < nr_linfo; i++)
6962 		if (linfo[i].insn_off < off + cnt)
6963 			l_cnt++;
6964 		else
6965 			break;
6966 
6967 	/* First live insn doesn't match first live linfo, it needs to "inherit"
6968 	 * last removed linfo.  prog is already modified, so prog->len == off
6969 	 * means no live instructions after (tail of the program was removed).
6970 	 */
6971 	if (prog->len != off && l_cnt &&
6972 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
6973 		l_cnt--;
6974 		linfo[--i].insn_off = off + cnt;
6975 	}
6976 
6977 	/* remove the line info which refer to the removed instructions */
6978 	if (l_cnt) {
6979 		memmove(linfo + l_off, linfo + i,
6980 			sizeof(*linfo) * (nr_linfo - i));
6981 
6982 		prog->aux->nr_linfo -= l_cnt;
6983 		nr_linfo = prog->aux->nr_linfo;
6984 	}
6985 
6986 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
6987 	for (i = l_off; i < nr_linfo; i++)
6988 		linfo[i].insn_off -= cnt;
6989 
6990 	/* fix up all subprogs (incl. 'exit') which start >= off */
6991 	for (i = 0; i <= env->subprog_cnt; i++)
6992 		if (env->subprog_info[i].linfo_idx > l_off) {
6993 			/* program may have started in the removed region but
6994 			 * may not be fully removed
6995 			 */
6996 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
6997 				env->subprog_info[i].linfo_idx -= l_cnt;
6998 			else
6999 				env->subprog_info[i].linfo_idx = l_off;
7000 		}
7001 
7002 	return 0;
7003 }
7004 
7005 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
7006 {
7007 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7008 	unsigned int orig_prog_len = env->prog->len;
7009 	int err;
7010 
7011 	if (bpf_prog_is_dev_bound(env->prog->aux))
7012 		bpf_prog_offload_remove_insns(env, off, cnt);
7013 
7014 	err = bpf_remove_insns(env->prog, off, cnt);
7015 	if (err)
7016 		return err;
7017 
7018 	err = adjust_subprog_starts_after_remove(env, off, cnt);
7019 	if (err)
7020 		return err;
7021 
7022 	err = bpf_adj_linfo_after_remove(env, off, cnt);
7023 	if (err)
7024 		return err;
7025 
7026 	memmove(aux_data + off,	aux_data + off + cnt,
7027 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
7028 
7029 	return 0;
7030 }
7031 
7032 /* The verifier does more data flow analysis than llvm and will not
7033  * explore branches that are dead at run time. Malicious programs can
7034  * have dead code too. Therefore replace all dead at-run-time code
7035  * with 'ja -1'.
7036  *
7037  * Just nops are not optimal, e.g. if they would sit at the end of the
7038  * program and through another bug we would manage to jump there, then
7039  * we'd execute beyond program memory otherwise. Returning exception
7040  * code also wouldn't work since we can have subprogs where the dead
7041  * code could be located.
7042  */
7043 static void sanitize_dead_code(struct bpf_verifier_env *env)
7044 {
7045 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7046 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
7047 	struct bpf_insn *insn = env->prog->insnsi;
7048 	const int insn_cnt = env->prog->len;
7049 	int i;
7050 
7051 	for (i = 0; i < insn_cnt; i++) {
7052 		if (aux_data[i].seen)
7053 			continue;
7054 		memcpy(insn + i, &trap, sizeof(trap));
7055 	}
7056 }
7057 
7058 static bool insn_is_cond_jump(u8 code)
7059 {
7060 	u8 op;
7061 
7062 	if (BPF_CLASS(code) == BPF_JMP32)
7063 		return true;
7064 
7065 	if (BPF_CLASS(code) != BPF_JMP)
7066 		return false;
7067 
7068 	op = BPF_OP(code);
7069 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
7070 }
7071 
7072 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
7073 {
7074 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7075 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7076 	struct bpf_insn *insn = env->prog->insnsi;
7077 	const int insn_cnt = env->prog->len;
7078 	int i;
7079 
7080 	for (i = 0; i < insn_cnt; i++, insn++) {
7081 		if (!insn_is_cond_jump(insn->code))
7082 			continue;
7083 
7084 		if (!aux_data[i + 1].seen)
7085 			ja.off = insn->off;
7086 		else if (!aux_data[i + 1 + insn->off].seen)
7087 			ja.off = 0;
7088 		else
7089 			continue;
7090 
7091 		if (bpf_prog_is_dev_bound(env->prog->aux))
7092 			bpf_prog_offload_replace_insn(env, i, &ja);
7093 
7094 		memcpy(insn, &ja, sizeof(ja));
7095 	}
7096 }
7097 
7098 static int opt_remove_dead_code(struct bpf_verifier_env *env)
7099 {
7100 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7101 	int insn_cnt = env->prog->len;
7102 	int i, err;
7103 
7104 	for (i = 0; i < insn_cnt; i++) {
7105 		int j;
7106 
7107 		j = 0;
7108 		while (i + j < insn_cnt && !aux_data[i + j].seen)
7109 			j++;
7110 		if (!j)
7111 			continue;
7112 
7113 		err = verifier_remove_insns(env, i, j);
7114 		if (err)
7115 			return err;
7116 		insn_cnt = env->prog->len;
7117 	}
7118 
7119 	return 0;
7120 }
7121 
7122 static int opt_remove_nops(struct bpf_verifier_env *env)
7123 {
7124 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7125 	struct bpf_insn *insn = env->prog->insnsi;
7126 	int insn_cnt = env->prog->len;
7127 	int i, err;
7128 
7129 	for (i = 0; i < insn_cnt; i++) {
7130 		if (memcmp(&insn[i], &ja, sizeof(ja)))
7131 			continue;
7132 
7133 		err = verifier_remove_insns(env, i, 1);
7134 		if (err)
7135 			return err;
7136 		insn_cnt--;
7137 		i--;
7138 	}
7139 
7140 	return 0;
7141 }
7142 
7143 /* convert load instructions that access fields of a context type into a
7144  * sequence of instructions that access fields of the underlying structure:
7145  *     struct __sk_buff    -> struct sk_buff
7146  *     struct bpf_sock_ops -> struct sock
7147  */
7148 static int convert_ctx_accesses(struct bpf_verifier_env *env)
7149 {
7150 	const struct bpf_verifier_ops *ops = env->ops;
7151 	int i, cnt, size, ctx_field_size, delta = 0;
7152 	const int insn_cnt = env->prog->len;
7153 	struct bpf_insn insn_buf[16], *insn;
7154 	u32 target_size, size_default, off;
7155 	struct bpf_prog *new_prog;
7156 	enum bpf_access_type type;
7157 	bool is_narrower_load;
7158 
7159 	if (ops->gen_prologue || env->seen_direct_write) {
7160 		if (!ops->gen_prologue) {
7161 			verbose(env, "bpf verifier is misconfigured\n");
7162 			return -EINVAL;
7163 		}
7164 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
7165 					env->prog);
7166 		if (cnt >= ARRAY_SIZE(insn_buf)) {
7167 			verbose(env, "bpf verifier is misconfigured\n");
7168 			return -EINVAL;
7169 		} else if (cnt) {
7170 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
7171 			if (!new_prog)
7172 				return -ENOMEM;
7173 
7174 			env->prog = new_prog;
7175 			delta += cnt - 1;
7176 		}
7177 	}
7178 
7179 	if (bpf_prog_is_dev_bound(env->prog->aux))
7180 		return 0;
7181 
7182 	insn = env->prog->insnsi + delta;
7183 
7184 	for (i = 0; i < insn_cnt; i++, insn++) {
7185 		bpf_convert_ctx_access_t convert_ctx_access;
7186 
7187 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
7188 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
7189 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
7190 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
7191 			type = BPF_READ;
7192 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
7193 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
7194 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
7195 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
7196 			type = BPF_WRITE;
7197 		else
7198 			continue;
7199 
7200 		if (type == BPF_WRITE &&
7201 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
7202 			struct bpf_insn patch[] = {
7203 				/* Sanitize suspicious stack slot with zero.
7204 				 * There are no memory dependencies for this store,
7205 				 * since it's only using frame pointer and immediate
7206 				 * constant of zero
7207 				 */
7208 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
7209 					   env->insn_aux_data[i + delta].sanitize_stack_off,
7210 					   0),
7211 				/* the original STX instruction will immediately
7212 				 * overwrite the same stack slot with appropriate value
7213 				 */
7214 				*insn,
7215 			};
7216 
7217 			cnt = ARRAY_SIZE(patch);
7218 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
7219 			if (!new_prog)
7220 				return -ENOMEM;
7221 
7222 			delta    += cnt - 1;
7223 			env->prog = new_prog;
7224 			insn      = new_prog->insnsi + i + delta;
7225 			continue;
7226 		}
7227 
7228 		switch (env->insn_aux_data[i + delta].ptr_type) {
7229 		case PTR_TO_CTX:
7230 			if (!ops->convert_ctx_access)
7231 				continue;
7232 			convert_ctx_access = ops->convert_ctx_access;
7233 			break;
7234 		case PTR_TO_SOCKET:
7235 		case PTR_TO_SOCK_COMMON:
7236 			convert_ctx_access = bpf_sock_convert_ctx_access;
7237 			break;
7238 		case PTR_TO_TCP_SOCK:
7239 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
7240 			break;
7241 		default:
7242 			continue;
7243 		}
7244 
7245 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
7246 		size = BPF_LDST_BYTES(insn);
7247 
7248 		/* If the read access is a narrower load of the field,
7249 		 * convert to a 4/8-byte load, to minimum program type specific
7250 		 * convert_ctx_access changes. If conversion is successful,
7251 		 * we will apply proper mask to the result.
7252 		 */
7253 		is_narrower_load = size < ctx_field_size;
7254 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
7255 		off = insn->off;
7256 		if (is_narrower_load) {
7257 			u8 size_code;
7258 
7259 			if (type == BPF_WRITE) {
7260 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
7261 				return -EINVAL;
7262 			}
7263 
7264 			size_code = BPF_H;
7265 			if (ctx_field_size == 4)
7266 				size_code = BPF_W;
7267 			else if (ctx_field_size == 8)
7268 				size_code = BPF_DW;
7269 
7270 			insn->off = off & ~(size_default - 1);
7271 			insn->code = BPF_LDX | BPF_MEM | size_code;
7272 		}
7273 
7274 		target_size = 0;
7275 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
7276 					 &target_size);
7277 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
7278 		    (ctx_field_size && !target_size)) {
7279 			verbose(env, "bpf verifier is misconfigured\n");
7280 			return -EINVAL;
7281 		}
7282 
7283 		if (is_narrower_load && size < target_size) {
7284 			u8 shift = (off & (size_default - 1)) * 8;
7285 
7286 			if (ctx_field_size <= 4) {
7287 				if (shift)
7288 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
7289 									insn->dst_reg,
7290 									shift);
7291 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
7292 								(1 << size * 8) - 1);
7293 			} else {
7294 				if (shift)
7295 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
7296 									insn->dst_reg,
7297 									shift);
7298 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
7299 								(1 << size * 8) - 1);
7300 			}
7301 		}
7302 
7303 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7304 		if (!new_prog)
7305 			return -ENOMEM;
7306 
7307 		delta += cnt - 1;
7308 
7309 		/* keep walking new program and skip insns we just inserted */
7310 		env->prog = new_prog;
7311 		insn      = new_prog->insnsi + i + delta;
7312 	}
7313 
7314 	return 0;
7315 }
7316 
7317 static int jit_subprogs(struct bpf_verifier_env *env)
7318 {
7319 	struct bpf_prog *prog = env->prog, **func, *tmp;
7320 	int i, j, subprog_start, subprog_end = 0, len, subprog;
7321 	struct bpf_insn *insn;
7322 	void *old_bpf_func;
7323 	int err;
7324 
7325 	if (env->subprog_cnt <= 1)
7326 		return 0;
7327 
7328 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7329 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7330 		    insn->src_reg != BPF_PSEUDO_CALL)
7331 			continue;
7332 		/* Upon error here we cannot fall back to interpreter but
7333 		 * need a hard reject of the program. Thus -EFAULT is
7334 		 * propagated in any case.
7335 		 */
7336 		subprog = find_subprog(env, i + insn->imm + 1);
7337 		if (subprog < 0) {
7338 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7339 				  i + insn->imm + 1);
7340 			return -EFAULT;
7341 		}
7342 		/* temporarily remember subprog id inside insn instead of
7343 		 * aux_data, since next loop will split up all insns into funcs
7344 		 */
7345 		insn->off = subprog;
7346 		/* remember original imm in case JIT fails and fallback
7347 		 * to interpreter will be needed
7348 		 */
7349 		env->insn_aux_data[i].call_imm = insn->imm;
7350 		/* point imm to __bpf_call_base+1 from JITs point of view */
7351 		insn->imm = 1;
7352 	}
7353 
7354 	err = bpf_prog_alloc_jited_linfo(prog);
7355 	if (err)
7356 		goto out_undo_insn;
7357 
7358 	err = -ENOMEM;
7359 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
7360 	if (!func)
7361 		goto out_undo_insn;
7362 
7363 	for (i = 0; i < env->subprog_cnt; i++) {
7364 		subprog_start = subprog_end;
7365 		subprog_end = env->subprog_info[i + 1].start;
7366 
7367 		len = subprog_end - subprog_start;
7368 		/* BPF_PROG_RUN doesn't call subprogs directly,
7369 		 * hence main prog stats include the runtime of subprogs.
7370 		 * subprogs don't have IDs and not reachable via prog_get_next_id
7371 		 * func[i]->aux->stats will never be accessed and stays NULL
7372 		 */
7373 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
7374 		if (!func[i])
7375 			goto out_free;
7376 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
7377 		       len * sizeof(struct bpf_insn));
7378 		func[i]->type = prog->type;
7379 		func[i]->len = len;
7380 		if (bpf_prog_calc_tag(func[i]))
7381 			goto out_free;
7382 		func[i]->is_func = 1;
7383 		func[i]->aux->func_idx = i;
7384 		/* the btf and func_info will be freed only at prog->aux */
7385 		func[i]->aux->btf = prog->aux->btf;
7386 		func[i]->aux->func_info = prog->aux->func_info;
7387 
7388 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
7389 		 * Long term would need debug info to populate names
7390 		 */
7391 		func[i]->aux->name[0] = 'F';
7392 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
7393 		func[i]->jit_requested = 1;
7394 		func[i]->aux->linfo = prog->aux->linfo;
7395 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
7396 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
7397 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
7398 		func[i] = bpf_int_jit_compile(func[i]);
7399 		if (!func[i]->jited) {
7400 			err = -ENOTSUPP;
7401 			goto out_free;
7402 		}
7403 		cond_resched();
7404 	}
7405 	/* at this point all bpf functions were successfully JITed
7406 	 * now populate all bpf_calls with correct addresses and
7407 	 * run last pass of JIT
7408 	 */
7409 	for (i = 0; i < env->subprog_cnt; i++) {
7410 		insn = func[i]->insnsi;
7411 		for (j = 0; j < func[i]->len; j++, insn++) {
7412 			if (insn->code != (BPF_JMP | BPF_CALL) ||
7413 			    insn->src_reg != BPF_PSEUDO_CALL)
7414 				continue;
7415 			subprog = insn->off;
7416 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
7417 				func[subprog]->bpf_func -
7418 				__bpf_call_base;
7419 		}
7420 
7421 		/* we use the aux data to keep a list of the start addresses
7422 		 * of the JITed images for each function in the program
7423 		 *
7424 		 * for some architectures, such as powerpc64, the imm field
7425 		 * might not be large enough to hold the offset of the start
7426 		 * address of the callee's JITed image from __bpf_call_base
7427 		 *
7428 		 * in such cases, we can lookup the start address of a callee
7429 		 * by using its subprog id, available from the off field of
7430 		 * the call instruction, as an index for this list
7431 		 */
7432 		func[i]->aux->func = func;
7433 		func[i]->aux->func_cnt = env->subprog_cnt;
7434 	}
7435 	for (i = 0; i < env->subprog_cnt; i++) {
7436 		old_bpf_func = func[i]->bpf_func;
7437 		tmp = bpf_int_jit_compile(func[i]);
7438 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
7439 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
7440 			err = -ENOTSUPP;
7441 			goto out_free;
7442 		}
7443 		cond_resched();
7444 	}
7445 
7446 	/* finally lock prog and jit images for all functions and
7447 	 * populate kallsysm
7448 	 */
7449 	for (i = 0; i < env->subprog_cnt; i++) {
7450 		bpf_prog_lock_ro(func[i]);
7451 		bpf_prog_kallsyms_add(func[i]);
7452 	}
7453 
7454 	/* Last step: make now unused interpreter insns from main
7455 	 * prog consistent for later dump requests, so they can
7456 	 * later look the same as if they were interpreted only.
7457 	 */
7458 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7459 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7460 		    insn->src_reg != BPF_PSEUDO_CALL)
7461 			continue;
7462 		insn->off = env->insn_aux_data[i].call_imm;
7463 		subprog = find_subprog(env, i + insn->off + 1);
7464 		insn->imm = subprog;
7465 	}
7466 
7467 	prog->jited = 1;
7468 	prog->bpf_func = func[0]->bpf_func;
7469 	prog->aux->func = func;
7470 	prog->aux->func_cnt = env->subprog_cnt;
7471 	bpf_prog_free_unused_jited_linfo(prog);
7472 	return 0;
7473 out_free:
7474 	for (i = 0; i < env->subprog_cnt; i++)
7475 		if (func[i])
7476 			bpf_jit_free(func[i]);
7477 	kfree(func);
7478 out_undo_insn:
7479 	/* cleanup main prog to be interpreted */
7480 	prog->jit_requested = 0;
7481 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7482 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7483 		    insn->src_reg != BPF_PSEUDO_CALL)
7484 			continue;
7485 		insn->off = 0;
7486 		insn->imm = env->insn_aux_data[i].call_imm;
7487 	}
7488 	bpf_prog_free_jited_linfo(prog);
7489 	return err;
7490 }
7491 
7492 static int fixup_call_args(struct bpf_verifier_env *env)
7493 {
7494 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7495 	struct bpf_prog *prog = env->prog;
7496 	struct bpf_insn *insn = prog->insnsi;
7497 	int i, depth;
7498 #endif
7499 	int err = 0;
7500 
7501 	if (env->prog->jit_requested &&
7502 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
7503 		err = jit_subprogs(env);
7504 		if (err == 0)
7505 			return 0;
7506 		if (err == -EFAULT)
7507 			return err;
7508 	}
7509 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7510 	for (i = 0; i < prog->len; i++, insn++) {
7511 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7512 		    insn->src_reg != BPF_PSEUDO_CALL)
7513 			continue;
7514 		depth = get_callee_stack_depth(env, insn, i);
7515 		if (depth < 0)
7516 			return depth;
7517 		bpf_patch_call_args(insn, depth);
7518 	}
7519 	err = 0;
7520 #endif
7521 	return err;
7522 }
7523 
7524 /* fixup insn->imm field of bpf_call instructions
7525  * and inline eligible helpers as explicit sequence of BPF instructions
7526  *
7527  * this function is called after eBPF program passed verification
7528  */
7529 static int fixup_bpf_calls(struct bpf_verifier_env *env)
7530 {
7531 	struct bpf_prog *prog = env->prog;
7532 	struct bpf_insn *insn = prog->insnsi;
7533 	const struct bpf_func_proto *fn;
7534 	const int insn_cnt = prog->len;
7535 	const struct bpf_map_ops *ops;
7536 	struct bpf_insn_aux_data *aux;
7537 	struct bpf_insn insn_buf[16];
7538 	struct bpf_prog *new_prog;
7539 	struct bpf_map *map_ptr;
7540 	int i, cnt, delta = 0;
7541 
7542 	for (i = 0; i < insn_cnt; i++, insn++) {
7543 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
7544 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7545 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
7546 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7547 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
7548 			struct bpf_insn mask_and_div[] = {
7549 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7550 				/* Rx div 0 -> 0 */
7551 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
7552 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
7553 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
7554 				*insn,
7555 			};
7556 			struct bpf_insn mask_and_mod[] = {
7557 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7558 				/* Rx mod 0 -> Rx */
7559 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
7560 				*insn,
7561 			};
7562 			struct bpf_insn *patchlet;
7563 
7564 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7565 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7566 				patchlet = mask_and_div + (is64 ? 1 : 0);
7567 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
7568 			} else {
7569 				patchlet = mask_and_mod + (is64 ? 1 : 0);
7570 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
7571 			}
7572 
7573 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
7574 			if (!new_prog)
7575 				return -ENOMEM;
7576 
7577 			delta    += cnt - 1;
7578 			env->prog = prog = new_prog;
7579 			insn      = new_prog->insnsi + i + delta;
7580 			continue;
7581 		}
7582 
7583 		if (BPF_CLASS(insn->code) == BPF_LD &&
7584 		    (BPF_MODE(insn->code) == BPF_ABS ||
7585 		     BPF_MODE(insn->code) == BPF_IND)) {
7586 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
7587 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7588 				verbose(env, "bpf verifier is misconfigured\n");
7589 				return -EINVAL;
7590 			}
7591 
7592 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7593 			if (!new_prog)
7594 				return -ENOMEM;
7595 
7596 			delta    += cnt - 1;
7597 			env->prog = prog = new_prog;
7598 			insn      = new_prog->insnsi + i + delta;
7599 			continue;
7600 		}
7601 
7602 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
7603 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
7604 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
7605 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
7606 			struct bpf_insn insn_buf[16];
7607 			struct bpf_insn *patch = &insn_buf[0];
7608 			bool issrc, isneg;
7609 			u32 off_reg;
7610 
7611 			aux = &env->insn_aux_data[i + delta];
7612 			if (!aux->alu_state ||
7613 			    aux->alu_state == BPF_ALU_NON_POINTER)
7614 				continue;
7615 
7616 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
7617 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
7618 				BPF_ALU_SANITIZE_SRC;
7619 
7620 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
7621 			if (isneg)
7622 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7623 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
7624 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
7625 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
7626 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
7627 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
7628 			if (issrc) {
7629 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
7630 							 off_reg);
7631 				insn->src_reg = BPF_REG_AX;
7632 			} else {
7633 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
7634 							 BPF_REG_AX);
7635 			}
7636 			if (isneg)
7637 				insn->code = insn->code == code_add ?
7638 					     code_sub : code_add;
7639 			*patch++ = *insn;
7640 			if (issrc && isneg)
7641 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7642 			cnt = patch - insn_buf;
7643 
7644 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7645 			if (!new_prog)
7646 				return -ENOMEM;
7647 
7648 			delta    += cnt - 1;
7649 			env->prog = prog = new_prog;
7650 			insn      = new_prog->insnsi + i + delta;
7651 			continue;
7652 		}
7653 
7654 		if (insn->code != (BPF_JMP | BPF_CALL))
7655 			continue;
7656 		if (insn->src_reg == BPF_PSEUDO_CALL)
7657 			continue;
7658 
7659 		if (insn->imm == BPF_FUNC_get_route_realm)
7660 			prog->dst_needed = 1;
7661 		if (insn->imm == BPF_FUNC_get_prandom_u32)
7662 			bpf_user_rnd_init_once();
7663 		if (insn->imm == BPF_FUNC_override_return)
7664 			prog->kprobe_override = 1;
7665 		if (insn->imm == BPF_FUNC_tail_call) {
7666 			/* If we tail call into other programs, we
7667 			 * cannot make any assumptions since they can
7668 			 * be replaced dynamically during runtime in
7669 			 * the program array.
7670 			 */
7671 			prog->cb_access = 1;
7672 			env->prog->aux->stack_depth = MAX_BPF_STACK;
7673 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7674 
7675 			/* mark bpf_tail_call as different opcode to avoid
7676 			 * conditional branch in the interpeter for every normal
7677 			 * call and to prevent accidental JITing by JIT compiler
7678 			 * that doesn't support bpf_tail_call yet
7679 			 */
7680 			insn->imm = 0;
7681 			insn->code = BPF_JMP | BPF_TAIL_CALL;
7682 
7683 			aux = &env->insn_aux_data[i + delta];
7684 			if (!bpf_map_ptr_unpriv(aux))
7685 				continue;
7686 
7687 			/* instead of changing every JIT dealing with tail_call
7688 			 * emit two extra insns:
7689 			 * if (index >= max_entries) goto out;
7690 			 * index &= array->index_mask;
7691 			 * to avoid out-of-bounds cpu speculation
7692 			 */
7693 			if (bpf_map_ptr_poisoned(aux)) {
7694 				verbose(env, "tail_call abusing map_ptr\n");
7695 				return -EINVAL;
7696 			}
7697 
7698 			map_ptr = BPF_MAP_PTR(aux->map_state);
7699 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
7700 						  map_ptr->max_entries, 2);
7701 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
7702 						    container_of(map_ptr,
7703 								 struct bpf_array,
7704 								 map)->index_mask);
7705 			insn_buf[2] = *insn;
7706 			cnt = 3;
7707 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7708 			if (!new_prog)
7709 				return -ENOMEM;
7710 
7711 			delta    += cnt - 1;
7712 			env->prog = prog = new_prog;
7713 			insn      = new_prog->insnsi + i + delta;
7714 			continue;
7715 		}
7716 
7717 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
7718 		 * and other inlining handlers are currently limited to 64 bit
7719 		 * only.
7720 		 */
7721 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
7722 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
7723 		     insn->imm == BPF_FUNC_map_update_elem ||
7724 		     insn->imm == BPF_FUNC_map_delete_elem ||
7725 		     insn->imm == BPF_FUNC_map_push_elem   ||
7726 		     insn->imm == BPF_FUNC_map_pop_elem    ||
7727 		     insn->imm == BPF_FUNC_map_peek_elem)) {
7728 			aux = &env->insn_aux_data[i + delta];
7729 			if (bpf_map_ptr_poisoned(aux))
7730 				goto patch_call_imm;
7731 
7732 			map_ptr = BPF_MAP_PTR(aux->map_state);
7733 			ops = map_ptr->ops;
7734 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
7735 			    ops->map_gen_lookup) {
7736 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
7737 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7738 					verbose(env, "bpf verifier is misconfigured\n");
7739 					return -EINVAL;
7740 				}
7741 
7742 				new_prog = bpf_patch_insn_data(env, i + delta,
7743 							       insn_buf, cnt);
7744 				if (!new_prog)
7745 					return -ENOMEM;
7746 
7747 				delta    += cnt - 1;
7748 				env->prog = prog = new_prog;
7749 				insn      = new_prog->insnsi + i + delta;
7750 				continue;
7751 			}
7752 
7753 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
7754 				     (void *(*)(struct bpf_map *map, void *key))NULL));
7755 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
7756 				     (int (*)(struct bpf_map *map, void *key))NULL));
7757 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
7758 				     (int (*)(struct bpf_map *map, void *key, void *value,
7759 					      u64 flags))NULL));
7760 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
7761 				     (int (*)(struct bpf_map *map, void *value,
7762 					      u64 flags))NULL));
7763 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
7764 				     (int (*)(struct bpf_map *map, void *value))NULL));
7765 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
7766 				     (int (*)(struct bpf_map *map, void *value))NULL));
7767 
7768 			switch (insn->imm) {
7769 			case BPF_FUNC_map_lookup_elem:
7770 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
7771 					    __bpf_call_base;
7772 				continue;
7773 			case BPF_FUNC_map_update_elem:
7774 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
7775 					    __bpf_call_base;
7776 				continue;
7777 			case BPF_FUNC_map_delete_elem:
7778 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
7779 					    __bpf_call_base;
7780 				continue;
7781 			case BPF_FUNC_map_push_elem:
7782 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
7783 					    __bpf_call_base;
7784 				continue;
7785 			case BPF_FUNC_map_pop_elem:
7786 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
7787 					    __bpf_call_base;
7788 				continue;
7789 			case BPF_FUNC_map_peek_elem:
7790 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
7791 					    __bpf_call_base;
7792 				continue;
7793 			}
7794 
7795 			goto patch_call_imm;
7796 		}
7797 
7798 patch_call_imm:
7799 		fn = env->ops->get_func_proto(insn->imm, env->prog);
7800 		/* all functions that have prototype and verifier allowed
7801 		 * programs to call them, must be real in-kernel functions
7802 		 */
7803 		if (!fn->func) {
7804 			verbose(env,
7805 				"kernel subsystem misconfigured func %s#%d\n",
7806 				func_id_name(insn->imm), insn->imm);
7807 			return -EFAULT;
7808 		}
7809 		insn->imm = fn->func - __bpf_call_base;
7810 	}
7811 
7812 	return 0;
7813 }
7814 
7815 static void free_states(struct bpf_verifier_env *env)
7816 {
7817 	struct bpf_verifier_state_list *sl, *sln;
7818 	int i;
7819 
7820 	if (!env->explored_states)
7821 		return;
7822 
7823 	for (i = 0; i < env->prog->len; i++) {
7824 		sl = env->explored_states[i];
7825 
7826 		if (sl)
7827 			while (sl != STATE_LIST_MARK) {
7828 				sln = sl->next;
7829 				free_verifier_state(&sl->state, false);
7830 				kfree(sl);
7831 				sl = sln;
7832 			}
7833 	}
7834 
7835 	kfree(env->explored_states);
7836 }
7837 
7838 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
7839 	      union bpf_attr __user *uattr)
7840 {
7841 	struct bpf_verifier_env *env;
7842 	struct bpf_verifier_log *log;
7843 	int i, len, ret = -EINVAL;
7844 	bool is_priv;
7845 
7846 	/* no program is valid */
7847 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
7848 		return -EINVAL;
7849 
7850 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
7851 	 * allocate/free it every time bpf_check() is called
7852 	 */
7853 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
7854 	if (!env)
7855 		return -ENOMEM;
7856 	log = &env->log;
7857 
7858 	len = (*prog)->len;
7859 	env->insn_aux_data =
7860 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
7861 	ret = -ENOMEM;
7862 	if (!env->insn_aux_data)
7863 		goto err_free_env;
7864 	for (i = 0; i < len; i++)
7865 		env->insn_aux_data[i].orig_idx = i;
7866 	env->prog = *prog;
7867 	env->ops = bpf_verifier_ops[env->prog->type];
7868 
7869 	/* grab the mutex to protect few globals used by verifier */
7870 	mutex_lock(&bpf_verifier_lock);
7871 
7872 	if (attr->log_level || attr->log_buf || attr->log_size) {
7873 		/* user requested verbose verifier output
7874 		 * and supplied buffer to store the verification trace
7875 		 */
7876 		log->level = attr->log_level;
7877 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
7878 		log->len_total = attr->log_size;
7879 
7880 		ret = -EINVAL;
7881 		/* log attributes have to be sane */
7882 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
7883 		    !log->level || !log->ubuf)
7884 			goto err_unlock;
7885 	}
7886 
7887 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
7888 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
7889 		env->strict_alignment = true;
7890 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
7891 		env->strict_alignment = false;
7892 
7893 	is_priv = capable(CAP_SYS_ADMIN);
7894 	env->allow_ptr_leaks = is_priv;
7895 
7896 	ret = replace_map_fd_with_map_ptr(env);
7897 	if (ret < 0)
7898 		goto skip_full_check;
7899 
7900 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
7901 		ret = bpf_prog_offload_verifier_prep(env->prog);
7902 		if (ret)
7903 			goto skip_full_check;
7904 	}
7905 
7906 	env->explored_states = kcalloc(env->prog->len,
7907 				       sizeof(struct bpf_verifier_state_list *),
7908 				       GFP_USER);
7909 	ret = -ENOMEM;
7910 	if (!env->explored_states)
7911 		goto skip_full_check;
7912 
7913 	ret = check_subprogs(env);
7914 	if (ret < 0)
7915 		goto skip_full_check;
7916 
7917 	ret = check_btf_info(env, attr, uattr);
7918 	if (ret < 0)
7919 		goto skip_full_check;
7920 
7921 	ret = check_cfg(env);
7922 	if (ret < 0)
7923 		goto skip_full_check;
7924 
7925 	ret = do_check(env);
7926 	if (env->cur_state) {
7927 		free_verifier_state(env->cur_state, true);
7928 		env->cur_state = NULL;
7929 	}
7930 
7931 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
7932 		ret = bpf_prog_offload_finalize(env);
7933 
7934 skip_full_check:
7935 	while (!pop_stack(env, NULL, NULL));
7936 	free_states(env);
7937 
7938 	if (ret == 0)
7939 		ret = check_max_stack_depth(env);
7940 
7941 	/* instruction rewrites happen after this point */
7942 	if (is_priv) {
7943 		if (ret == 0)
7944 			opt_hard_wire_dead_code_branches(env);
7945 		if (ret == 0)
7946 			ret = opt_remove_dead_code(env);
7947 		if (ret == 0)
7948 			ret = opt_remove_nops(env);
7949 	} else {
7950 		if (ret == 0)
7951 			sanitize_dead_code(env);
7952 	}
7953 
7954 	if (ret == 0)
7955 		/* program is valid, convert *(u32*)(ctx + off) accesses */
7956 		ret = convert_ctx_accesses(env);
7957 
7958 	if (ret == 0)
7959 		ret = fixup_bpf_calls(env);
7960 
7961 	if (ret == 0)
7962 		ret = fixup_call_args(env);
7963 
7964 	if (log->level && bpf_verifier_log_full(log))
7965 		ret = -ENOSPC;
7966 	if (log->level && !log->ubuf) {
7967 		ret = -EFAULT;
7968 		goto err_release_maps;
7969 	}
7970 
7971 	if (ret == 0 && env->used_map_cnt) {
7972 		/* if program passed verifier, update used_maps in bpf_prog_info */
7973 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
7974 							  sizeof(env->used_maps[0]),
7975 							  GFP_KERNEL);
7976 
7977 		if (!env->prog->aux->used_maps) {
7978 			ret = -ENOMEM;
7979 			goto err_release_maps;
7980 		}
7981 
7982 		memcpy(env->prog->aux->used_maps, env->used_maps,
7983 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
7984 		env->prog->aux->used_map_cnt = env->used_map_cnt;
7985 
7986 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
7987 		 * bpf_ld_imm64 instructions
7988 		 */
7989 		convert_pseudo_ld_imm64(env);
7990 	}
7991 
7992 	if (ret == 0)
7993 		adjust_btf_func(env);
7994 
7995 err_release_maps:
7996 	if (!env->prog->aux->used_maps)
7997 		/* if we didn't copy map pointers into bpf_prog_info, release
7998 		 * them now. Otherwise free_used_maps() will release them.
7999 		 */
8000 		release_maps(env);
8001 	*prog = env->prog;
8002 err_unlock:
8003 	mutex_unlock(&bpf_verifier_lock);
8004 	vfree(env->insn_aux_data);
8005 err_free_env:
8006 	kfree(env);
8007 	return ret;
8008 }
8009