1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 #include <linux/trace_events.h> 32 #include <linux/kallsyms.h> 33 34 #include "disasm.h" 35 36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 38 [_id] = & _name ## _verifier_ops, 39 #define BPF_MAP_TYPE(_id, _ops) 40 #define BPF_LINK_TYPE(_id, _name) 41 #include <linux/bpf_types.h> 42 #undef BPF_PROG_TYPE 43 #undef BPF_MAP_TYPE 44 #undef BPF_LINK_TYPE 45 }; 46 47 struct bpf_mem_alloc bpf_global_percpu_ma; 48 static bool bpf_global_percpu_ma_set; 49 50 /* bpf_check() is a static code analyzer that walks eBPF program 51 * instruction by instruction and updates register/stack state. 52 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 53 * 54 * The first pass is depth-first-search to check that the program is a DAG. 55 * It rejects the following programs: 56 * - larger than BPF_MAXINSNS insns 57 * - if loop is present (detected via back-edge) 58 * - unreachable insns exist (shouldn't be a forest. program = one function) 59 * - out of bounds or malformed jumps 60 * The second pass is all possible path descent from the 1st insn. 61 * Since it's analyzing all paths through the program, the length of the 62 * analysis is limited to 64k insn, which may be hit even if total number of 63 * insn is less then 4K, but there are too many branches that change stack/regs. 64 * Number of 'branches to be analyzed' is limited to 1k 65 * 66 * On entry to each instruction, each register has a type, and the instruction 67 * changes the types of the registers depending on instruction semantics. 68 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 69 * copied to R1. 70 * 71 * All registers are 64-bit. 72 * R0 - return register 73 * R1-R5 argument passing registers 74 * R6-R9 callee saved registers 75 * R10 - frame pointer read-only 76 * 77 * At the start of BPF program the register R1 contains a pointer to bpf_context 78 * and has type PTR_TO_CTX. 79 * 80 * Verifier tracks arithmetic operations on pointers in case: 81 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 82 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 83 * 1st insn copies R10 (which has FRAME_PTR) type into R1 84 * and 2nd arithmetic instruction is pattern matched to recognize 85 * that it wants to construct a pointer to some element within stack. 86 * So after 2nd insn, the register R1 has type PTR_TO_STACK 87 * (and -20 constant is saved for further stack bounds checking). 88 * Meaning that this reg is a pointer to stack plus known immediate constant. 89 * 90 * Most of the time the registers have SCALAR_VALUE type, which 91 * means the register has some value, but it's not a valid pointer. 92 * (like pointer plus pointer becomes SCALAR_VALUE type) 93 * 94 * When verifier sees load or store instructions the type of base register 95 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 96 * four pointer types recognized by check_mem_access() function. 97 * 98 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 99 * and the range of [ptr, ptr + map's value_size) is accessible. 100 * 101 * registers used to pass values to function calls are checked against 102 * function argument constraints. 103 * 104 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 105 * It means that the register type passed to this function must be 106 * PTR_TO_STACK and it will be used inside the function as 107 * 'pointer to map element key' 108 * 109 * For example the argument constraints for bpf_map_lookup_elem(): 110 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 111 * .arg1_type = ARG_CONST_MAP_PTR, 112 * .arg2_type = ARG_PTR_TO_MAP_KEY, 113 * 114 * ret_type says that this function returns 'pointer to map elem value or null' 115 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 116 * 2nd argument should be a pointer to stack, which will be used inside 117 * the helper function as a pointer to map element key. 118 * 119 * On the kernel side the helper function looks like: 120 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 121 * { 122 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 123 * void *key = (void *) (unsigned long) r2; 124 * void *value; 125 * 126 * here kernel can access 'key' and 'map' pointers safely, knowing that 127 * [key, key + map->key_size) bytes are valid and were initialized on 128 * the stack of eBPF program. 129 * } 130 * 131 * Corresponding eBPF program may look like: 132 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 133 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 134 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 135 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 136 * here verifier looks at prototype of map_lookup_elem() and sees: 137 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 138 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 139 * 140 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 141 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 142 * and were initialized prior to this call. 143 * If it's ok, then verifier allows this BPF_CALL insn and looks at 144 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 145 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 146 * returns either pointer to map value or NULL. 147 * 148 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 149 * insn, the register holding that pointer in the true branch changes state to 150 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 151 * branch. See check_cond_jmp_op(). 152 * 153 * After the call R0 is set to return type of the function and registers R1-R5 154 * are set to NOT_INIT to indicate that they are no longer readable. 155 * 156 * The following reference types represent a potential reference to a kernel 157 * resource which, after first being allocated, must be checked and freed by 158 * the BPF program: 159 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 160 * 161 * When the verifier sees a helper call return a reference type, it allocates a 162 * pointer id for the reference and stores it in the current function state. 163 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 164 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 165 * passes through a NULL-check conditional. For the branch wherein the state is 166 * changed to CONST_IMM, the verifier releases the reference. 167 * 168 * For each helper function that allocates a reference, such as 169 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 170 * bpf_sk_release(). When a reference type passes into the release function, 171 * the verifier also releases the reference. If any unchecked or unreleased 172 * reference remains at the end of the program, the verifier rejects it. 173 */ 174 175 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 176 struct bpf_verifier_stack_elem { 177 /* verifier state is 'st' 178 * before processing instruction 'insn_idx' 179 * and after processing instruction 'prev_insn_idx' 180 */ 181 struct bpf_verifier_state st; 182 int insn_idx; 183 int prev_insn_idx; 184 struct bpf_verifier_stack_elem *next; 185 /* length of verifier log at the time this state was pushed on stack */ 186 u32 log_pos; 187 }; 188 189 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 190 #define BPF_COMPLEXITY_LIMIT_STATES 64 191 192 #define BPF_MAP_KEY_POISON (1ULL << 63) 193 #define BPF_MAP_KEY_SEEN (1ULL << 62) 194 195 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 196 197 #define BPF_PRIV_STACK_MIN_SIZE 64 198 199 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx); 200 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id); 201 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 202 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 203 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 204 static int ref_set_non_owning(struct bpf_verifier_env *env, 205 struct bpf_reg_state *reg); 206 static void specialize_kfunc(struct bpf_verifier_env *env, 207 u32 func_id, u16 offset, unsigned long *addr); 208 static bool is_trusted_reg(const struct bpf_reg_state *reg); 209 210 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 211 { 212 return aux->map_ptr_state.poison; 213 } 214 215 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 216 { 217 return aux->map_ptr_state.unpriv; 218 } 219 220 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 221 struct bpf_map *map, 222 bool unpriv, bool poison) 223 { 224 unpriv |= bpf_map_ptr_unpriv(aux); 225 aux->map_ptr_state.unpriv = unpriv; 226 aux->map_ptr_state.poison = poison; 227 aux->map_ptr_state.map_ptr = map; 228 } 229 230 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 231 { 232 return aux->map_key_state & BPF_MAP_KEY_POISON; 233 } 234 235 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 236 { 237 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 238 } 239 240 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 241 { 242 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 243 } 244 245 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 246 { 247 bool poisoned = bpf_map_key_poisoned(aux); 248 249 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 250 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 251 } 252 253 static bool bpf_helper_call(const struct bpf_insn *insn) 254 { 255 return insn->code == (BPF_JMP | BPF_CALL) && 256 insn->src_reg == 0; 257 } 258 259 static bool bpf_pseudo_call(const struct bpf_insn *insn) 260 { 261 return insn->code == (BPF_JMP | BPF_CALL) && 262 insn->src_reg == BPF_PSEUDO_CALL; 263 } 264 265 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 266 { 267 return insn->code == (BPF_JMP | BPF_CALL) && 268 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 269 } 270 271 struct bpf_call_arg_meta { 272 struct bpf_map *map_ptr; 273 bool raw_mode; 274 bool pkt_access; 275 u8 release_regno; 276 int regno; 277 int access_size; 278 int mem_size; 279 u64 msize_max_value; 280 int ref_obj_id; 281 int dynptr_id; 282 int map_uid; 283 int func_id; 284 struct btf *btf; 285 u32 btf_id; 286 struct btf *ret_btf; 287 u32 ret_btf_id; 288 u32 subprogno; 289 struct btf_field *kptr_field; 290 s64 const_map_key; 291 }; 292 293 struct bpf_kfunc_call_arg_meta { 294 /* In parameters */ 295 struct btf *btf; 296 u32 func_id; 297 u32 kfunc_flags; 298 const struct btf_type *func_proto; 299 const char *func_name; 300 /* Out parameters */ 301 u32 ref_obj_id; 302 u8 release_regno; 303 bool r0_rdonly; 304 u32 ret_btf_id; 305 u64 r0_size; 306 u32 subprogno; 307 struct { 308 u64 value; 309 bool found; 310 } arg_constant; 311 312 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 313 * generally to pass info about user-defined local kptr types to later 314 * verification logic 315 * bpf_obj_drop/bpf_percpu_obj_drop 316 * Record the local kptr type to be drop'd 317 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 318 * Record the local kptr type to be refcount_incr'd and use 319 * arg_owning_ref to determine whether refcount_acquire should be 320 * fallible 321 */ 322 struct btf *arg_btf; 323 u32 arg_btf_id; 324 bool arg_owning_ref; 325 bool arg_prog; 326 327 struct { 328 struct btf_field *field; 329 } arg_list_head; 330 struct { 331 struct btf_field *field; 332 } arg_rbtree_root; 333 struct { 334 enum bpf_dynptr_type type; 335 u32 id; 336 u32 ref_obj_id; 337 } initialized_dynptr; 338 struct { 339 u8 spi; 340 u8 frameno; 341 } iter; 342 struct { 343 struct bpf_map *ptr; 344 int uid; 345 } map; 346 u64 mem_size; 347 }; 348 349 struct btf *btf_vmlinux; 350 351 static const char *btf_type_name(const struct btf *btf, u32 id) 352 { 353 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 354 } 355 356 static DEFINE_MUTEX(bpf_verifier_lock); 357 static DEFINE_MUTEX(bpf_percpu_ma_lock); 358 359 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 360 { 361 struct bpf_verifier_env *env = private_data; 362 va_list args; 363 364 if (!bpf_verifier_log_needed(&env->log)) 365 return; 366 367 va_start(args, fmt); 368 bpf_verifier_vlog(&env->log, fmt, args); 369 va_end(args); 370 } 371 372 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 373 struct bpf_reg_state *reg, 374 struct bpf_retval_range range, const char *ctx, 375 const char *reg_name) 376 { 377 bool unknown = true; 378 379 verbose(env, "%s the register %s has", ctx, reg_name); 380 if (reg->smin_value > S64_MIN) { 381 verbose(env, " smin=%lld", reg->smin_value); 382 unknown = false; 383 } 384 if (reg->smax_value < S64_MAX) { 385 verbose(env, " smax=%lld", reg->smax_value); 386 unknown = false; 387 } 388 if (unknown) 389 verbose(env, " unknown scalar value"); 390 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 391 } 392 393 static bool reg_not_null(const struct bpf_reg_state *reg) 394 { 395 enum bpf_reg_type type; 396 397 type = reg->type; 398 if (type_may_be_null(type)) 399 return false; 400 401 type = base_type(type); 402 return type == PTR_TO_SOCKET || 403 type == PTR_TO_TCP_SOCK || 404 type == PTR_TO_MAP_VALUE || 405 type == PTR_TO_MAP_KEY || 406 type == PTR_TO_SOCK_COMMON || 407 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 408 type == PTR_TO_MEM; 409 } 410 411 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 412 { 413 struct btf_record *rec = NULL; 414 struct btf_struct_meta *meta; 415 416 if (reg->type == PTR_TO_MAP_VALUE) { 417 rec = reg->map_ptr->record; 418 } else if (type_is_ptr_alloc_obj(reg->type)) { 419 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 420 if (meta) 421 rec = meta->record; 422 } 423 return rec; 424 } 425 426 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 427 { 428 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 429 430 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 431 } 432 433 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 434 { 435 struct bpf_func_info *info; 436 437 if (!env->prog->aux->func_info) 438 return ""; 439 440 info = &env->prog->aux->func_info[subprog]; 441 return btf_type_name(env->prog->aux->btf, info->type_id); 442 } 443 444 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 445 { 446 struct bpf_subprog_info *info = subprog_info(env, subprog); 447 448 info->is_cb = true; 449 info->is_async_cb = true; 450 info->is_exception_cb = true; 451 } 452 453 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 454 { 455 return subprog_info(env, subprog)->is_exception_cb; 456 } 457 458 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 459 { 460 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK); 461 } 462 463 static bool type_is_rdonly_mem(u32 type) 464 { 465 return type & MEM_RDONLY; 466 } 467 468 static bool is_acquire_function(enum bpf_func_id func_id, 469 const struct bpf_map *map) 470 { 471 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 472 473 if (func_id == BPF_FUNC_sk_lookup_tcp || 474 func_id == BPF_FUNC_sk_lookup_udp || 475 func_id == BPF_FUNC_skc_lookup_tcp || 476 func_id == BPF_FUNC_ringbuf_reserve || 477 func_id == BPF_FUNC_kptr_xchg) 478 return true; 479 480 if (func_id == BPF_FUNC_map_lookup_elem && 481 (map_type == BPF_MAP_TYPE_SOCKMAP || 482 map_type == BPF_MAP_TYPE_SOCKHASH)) 483 return true; 484 485 return false; 486 } 487 488 static bool is_ptr_cast_function(enum bpf_func_id func_id) 489 { 490 return func_id == BPF_FUNC_tcp_sock || 491 func_id == BPF_FUNC_sk_fullsock || 492 func_id == BPF_FUNC_skc_to_tcp_sock || 493 func_id == BPF_FUNC_skc_to_tcp6_sock || 494 func_id == BPF_FUNC_skc_to_udp6_sock || 495 func_id == BPF_FUNC_skc_to_mptcp_sock || 496 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 497 func_id == BPF_FUNC_skc_to_tcp_request_sock; 498 } 499 500 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 501 { 502 return func_id == BPF_FUNC_dynptr_data; 503 } 504 505 static bool is_sync_callback_calling_kfunc(u32 btf_id); 506 static bool is_async_callback_calling_kfunc(u32 btf_id); 507 static bool is_callback_calling_kfunc(u32 btf_id); 508 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 509 510 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id); 511 512 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 513 { 514 return func_id == BPF_FUNC_for_each_map_elem || 515 func_id == BPF_FUNC_find_vma || 516 func_id == BPF_FUNC_loop || 517 func_id == BPF_FUNC_user_ringbuf_drain; 518 } 519 520 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 521 { 522 return func_id == BPF_FUNC_timer_set_callback; 523 } 524 525 static bool is_callback_calling_function(enum bpf_func_id func_id) 526 { 527 return is_sync_callback_calling_function(func_id) || 528 is_async_callback_calling_function(func_id); 529 } 530 531 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 532 { 533 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 534 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 535 } 536 537 static bool is_async_callback_calling_insn(struct bpf_insn *insn) 538 { 539 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || 540 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); 541 } 542 543 static bool is_may_goto_insn(struct bpf_insn *insn) 544 { 545 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; 546 } 547 548 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) 549 { 550 return is_may_goto_insn(&env->prog->insnsi[insn_idx]); 551 } 552 553 static bool is_storage_get_function(enum bpf_func_id func_id) 554 { 555 return func_id == BPF_FUNC_sk_storage_get || 556 func_id == BPF_FUNC_inode_storage_get || 557 func_id == BPF_FUNC_task_storage_get || 558 func_id == BPF_FUNC_cgrp_storage_get; 559 } 560 561 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 562 const struct bpf_map *map) 563 { 564 int ref_obj_uses = 0; 565 566 if (is_ptr_cast_function(func_id)) 567 ref_obj_uses++; 568 if (is_acquire_function(func_id, map)) 569 ref_obj_uses++; 570 if (is_dynptr_ref_function(func_id)) 571 ref_obj_uses++; 572 573 return ref_obj_uses > 1; 574 } 575 576 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 577 { 578 return BPF_CLASS(insn->code) == BPF_STX && 579 BPF_MODE(insn->code) == BPF_ATOMIC && 580 insn->imm == BPF_CMPXCHG; 581 } 582 583 static bool is_atomic_load_insn(const struct bpf_insn *insn) 584 { 585 return BPF_CLASS(insn->code) == BPF_STX && 586 BPF_MODE(insn->code) == BPF_ATOMIC && 587 insn->imm == BPF_LOAD_ACQ; 588 } 589 590 static int __get_spi(s32 off) 591 { 592 return (-off - 1) / BPF_REG_SIZE; 593 } 594 595 static struct bpf_func_state *func(struct bpf_verifier_env *env, 596 const struct bpf_reg_state *reg) 597 { 598 struct bpf_verifier_state *cur = env->cur_state; 599 600 return cur->frame[reg->frameno]; 601 } 602 603 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 604 { 605 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 606 607 /* We need to check that slots between [spi - nr_slots + 1, spi] are 608 * within [0, allocated_stack). 609 * 610 * Please note that the spi grows downwards. For example, a dynptr 611 * takes the size of two stack slots; the first slot will be at 612 * spi and the second slot will be at spi - 1. 613 */ 614 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 615 } 616 617 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 618 const char *obj_kind, int nr_slots) 619 { 620 int off, spi; 621 622 if (!tnum_is_const(reg->var_off)) { 623 verbose(env, "%s has to be at a constant offset\n", obj_kind); 624 return -EINVAL; 625 } 626 627 off = reg->off + reg->var_off.value; 628 if (off % BPF_REG_SIZE) { 629 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 630 return -EINVAL; 631 } 632 633 spi = __get_spi(off); 634 if (spi + 1 < nr_slots) { 635 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 636 return -EINVAL; 637 } 638 639 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 640 return -ERANGE; 641 return spi; 642 } 643 644 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 645 { 646 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 647 } 648 649 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 650 { 651 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 652 } 653 654 static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 655 { 656 return stack_slot_obj_get_spi(env, reg, "irq_flag", 1); 657 } 658 659 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 660 { 661 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 662 case DYNPTR_TYPE_LOCAL: 663 return BPF_DYNPTR_TYPE_LOCAL; 664 case DYNPTR_TYPE_RINGBUF: 665 return BPF_DYNPTR_TYPE_RINGBUF; 666 case DYNPTR_TYPE_SKB: 667 return BPF_DYNPTR_TYPE_SKB; 668 case DYNPTR_TYPE_XDP: 669 return BPF_DYNPTR_TYPE_XDP; 670 default: 671 return BPF_DYNPTR_TYPE_INVALID; 672 } 673 } 674 675 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 676 { 677 switch (type) { 678 case BPF_DYNPTR_TYPE_LOCAL: 679 return DYNPTR_TYPE_LOCAL; 680 case BPF_DYNPTR_TYPE_RINGBUF: 681 return DYNPTR_TYPE_RINGBUF; 682 case BPF_DYNPTR_TYPE_SKB: 683 return DYNPTR_TYPE_SKB; 684 case BPF_DYNPTR_TYPE_XDP: 685 return DYNPTR_TYPE_XDP; 686 default: 687 return 0; 688 } 689 } 690 691 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 692 { 693 return type == BPF_DYNPTR_TYPE_RINGBUF; 694 } 695 696 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 697 enum bpf_dynptr_type type, 698 bool first_slot, int dynptr_id); 699 700 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 701 struct bpf_reg_state *reg); 702 703 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 704 struct bpf_reg_state *sreg1, 705 struct bpf_reg_state *sreg2, 706 enum bpf_dynptr_type type) 707 { 708 int id = ++env->id_gen; 709 710 __mark_dynptr_reg(sreg1, type, true, id); 711 __mark_dynptr_reg(sreg2, type, false, id); 712 } 713 714 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 715 struct bpf_reg_state *reg, 716 enum bpf_dynptr_type type) 717 { 718 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 719 } 720 721 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 722 struct bpf_func_state *state, int spi); 723 724 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 725 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 726 { 727 struct bpf_func_state *state = func(env, reg); 728 enum bpf_dynptr_type type; 729 int spi, i, err; 730 731 spi = dynptr_get_spi(env, reg); 732 if (spi < 0) 733 return spi; 734 735 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 736 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 737 * to ensure that for the following example: 738 * [d1][d1][d2][d2] 739 * spi 3 2 1 0 740 * So marking spi = 2 should lead to destruction of both d1 and d2. In 741 * case they do belong to same dynptr, second call won't see slot_type 742 * as STACK_DYNPTR and will simply skip destruction. 743 */ 744 err = destroy_if_dynptr_stack_slot(env, state, spi); 745 if (err) 746 return err; 747 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 748 if (err) 749 return err; 750 751 for (i = 0; i < BPF_REG_SIZE; i++) { 752 state->stack[spi].slot_type[i] = STACK_DYNPTR; 753 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 754 } 755 756 type = arg_to_dynptr_type(arg_type); 757 if (type == BPF_DYNPTR_TYPE_INVALID) 758 return -EINVAL; 759 760 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 761 &state->stack[spi - 1].spilled_ptr, type); 762 763 if (dynptr_type_refcounted(type)) { 764 /* The id is used to track proper releasing */ 765 int id; 766 767 if (clone_ref_obj_id) 768 id = clone_ref_obj_id; 769 else 770 id = acquire_reference(env, insn_idx); 771 772 if (id < 0) 773 return id; 774 775 state->stack[spi].spilled_ptr.ref_obj_id = id; 776 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 777 } 778 779 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 780 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 781 782 return 0; 783 } 784 785 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 786 { 787 int i; 788 789 for (i = 0; i < BPF_REG_SIZE; i++) { 790 state->stack[spi].slot_type[i] = STACK_INVALID; 791 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 792 } 793 794 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 795 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 796 797 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 798 * 799 * While we don't allow reading STACK_INVALID, it is still possible to 800 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 801 * helpers or insns can do partial read of that part without failing, 802 * but check_stack_range_initialized, check_stack_read_var_off, and 803 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 804 * the slot conservatively. Hence we need to prevent those liveness 805 * marking walks. 806 * 807 * This was not a problem before because STACK_INVALID is only set by 808 * default (where the default reg state has its reg->parent as NULL), or 809 * in clean_live_states after REG_LIVE_DONE (at which point 810 * mark_reg_read won't walk reg->parent chain), but not randomly during 811 * verifier state exploration (like we did above). Hence, for our case 812 * parentage chain will still be live (i.e. reg->parent may be 813 * non-NULL), while earlier reg->parent was NULL, so we need 814 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 815 * done later on reads or by mark_dynptr_read as well to unnecessary 816 * mark registers in verifier state. 817 */ 818 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 819 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 820 } 821 822 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 823 { 824 struct bpf_func_state *state = func(env, reg); 825 int spi, ref_obj_id, i; 826 827 spi = dynptr_get_spi(env, reg); 828 if (spi < 0) 829 return spi; 830 831 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 832 invalidate_dynptr(env, state, spi); 833 return 0; 834 } 835 836 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 837 838 /* If the dynptr has a ref_obj_id, then we need to invalidate 839 * two things: 840 * 841 * 1) Any dynptrs with a matching ref_obj_id (clones) 842 * 2) Any slices derived from this dynptr. 843 */ 844 845 /* Invalidate any slices associated with this dynptr */ 846 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 847 848 /* Invalidate any dynptr clones */ 849 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 850 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 851 continue; 852 853 /* it should always be the case that if the ref obj id 854 * matches then the stack slot also belongs to a 855 * dynptr 856 */ 857 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 858 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 859 return -EFAULT; 860 } 861 if (state->stack[i].spilled_ptr.dynptr.first_slot) 862 invalidate_dynptr(env, state, i); 863 } 864 865 return 0; 866 } 867 868 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 869 struct bpf_reg_state *reg); 870 871 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 872 { 873 if (!env->allow_ptr_leaks) 874 __mark_reg_not_init(env, reg); 875 else 876 __mark_reg_unknown(env, reg); 877 } 878 879 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 880 struct bpf_func_state *state, int spi) 881 { 882 struct bpf_func_state *fstate; 883 struct bpf_reg_state *dreg; 884 int i, dynptr_id; 885 886 /* We always ensure that STACK_DYNPTR is never set partially, 887 * hence just checking for slot_type[0] is enough. This is 888 * different for STACK_SPILL, where it may be only set for 889 * 1 byte, so code has to use is_spilled_reg. 890 */ 891 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 892 return 0; 893 894 /* Reposition spi to first slot */ 895 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 896 spi = spi + 1; 897 898 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 899 verbose(env, "cannot overwrite referenced dynptr\n"); 900 return -EINVAL; 901 } 902 903 mark_stack_slot_scratched(env, spi); 904 mark_stack_slot_scratched(env, spi - 1); 905 906 /* Writing partially to one dynptr stack slot destroys both. */ 907 for (i = 0; i < BPF_REG_SIZE; i++) { 908 state->stack[spi].slot_type[i] = STACK_INVALID; 909 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 910 } 911 912 dynptr_id = state->stack[spi].spilled_ptr.id; 913 /* Invalidate any slices associated with this dynptr */ 914 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 915 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 916 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 917 continue; 918 if (dreg->dynptr_id == dynptr_id) 919 mark_reg_invalid(env, dreg); 920 })); 921 922 /* Do not release reference state, we are destroying dynptr on stack, 923 * not using some helper to release it. Just reset register. 924 */ 925 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 926 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 927 928 /* Same reason as unmark_stack_slots_dynptr above */ 929 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 930 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 931 932 return 0; 933 } 934 935 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 936 { 937 int spi; 938 939 if (reg->type == CONST_PTR_TO_DYNPTR) 940 return false; 941 942 spi = dynptr_get_spi(env, reg); 943 944 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 945 * error because this just means the stack state hasn't been updated yet. 946 * We will do check_mem_access to check and update stack bounds later. 947 */ 948 if (spi < 0 && spi != -ERANGE) 949 return false; 950 951 /* We don't need to check if the stack slots are marked by previous 952 * dynptr initializations because we allow overwriting existing unreferenced 953 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 954 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 955 * touching are completely destructed before we reinitialize them for a new 956 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 957 * instead of delaying it until the end where the user will get "Unreleased 958 * reference" error. 959 */ 960 return true; 961 } 962 963 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 964 { 965 struct bpf_func_state *state = func(env, reg); 966 int i, spi; 967 968 /* This already represents first slot of initialized bpf_dynptr. 969 * 970 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 971 * check_func_arg_reg_off's logic, so we don't need to check its 972 * offset and alignment. 973 */ 974 if (reg->type == CONST_PTR_TO_DYNPTR) 975 return true; 976 977 spi = dynptr_get_spi(env, reg); 978 if (spi < 0) 979 return false; 980 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 981 return false; 982 983 for (i = 0; i < BPF_REG_SIZE; i++) { 984 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 985 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 986 return false; 987 } 988 989 return true; 990 } 991 992 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 993 enum bpf_arg_type arg_type) 994 { 995 struct bpf_func_state *state = func(env, reg); 996 enum bpf_dynptr_type dynptr_type; 997 int spi; 998 999 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1000 if (arg_type == ARG_PTR_TO_DYNPTR) 1001 return true; 1002 1003 dynptr_type = arg_to_dynptr_type(arg_type); 1004 if (reg->type == CONST_PTR_TO_DYNPTR) { 1005 return reg->dynptr.type == dynptr_type; 1006 } else { 1007 spi = dynptr_get_spi(env, reg); 1008 if (spi < 0) 1009 return false; 1010 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1011 } 1012 } 1013 1014 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1015 1016 static bool in_rcu_cs(struct bpf_verifier_env *env); 1017 1018 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 1019 1020 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1021 struct bpf_kfunc_call_arg_meta *meta, 1022 struct bpf_reg_state *reg, int insn_idx, 1023 struct btf *btf, u32 btf_id, int nr_slots) 1024 { 1025 struct bpf_func_state *state = func(env, reg); 1026 int spi, i, j, id; 1027 1028 spi = iter_get_spi(env, reg, nr_slots); 1029 if (spi < 0) 1030 return spi; 1031 1032 id = acquire_reference(env, insn_idx); 1033 if (id < 0) 1034 return id; 1035 1036 for (i = 0; i < nr_slots; i++) { 1037 struct bpf_stack_state *slot = &state->stack[spi - i]; 1038 struct bpf_reg_state *st = &slot->spilled_ptr; 1039 1040 __mark_reg_known_zero(st); 1041 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1042 if (is_kfunc_rcu_protected(meta)) { 1043 if (in_rcu_cs(env)) 1044 st->type |= MEM_RCU; 1045 else 1046 st->type |= PTR_UNTRUSTED; 1047 } 1048 st->live |= REG_LIVE_WRITTEN; 1049 st->ref_obj_id = i == 0 ? id : 0; 1050 st->iter.btf = btf; 1051 st->iter.btf_id = btf_id; 1052 st->iter.state = BPF_ITER_STATE_ACTIVE; 1053 st->iter.depth = 0; 1054 1055 for (j = 0; j < BPF_REG_SIZE; j++) 1056 slot->slot_type[j] = STACK_ITER; 1057 1058 mark_stack_slot_scratched(env, spi - i); 1059 } 1060 1061 return 0; 1062 } 1063 1064 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1065 struct bpf_reg_state *reg, int nr_slots) 1066 { 1067 struct bpf_func_state *state = func(env, reg); 1068 int spi, i, j; 1069 1070 spi = iter_get_spi(env, reg, nr_slots); 1071 if (spi < 0) 1072 return spi; 1073 1074 for (i = 0; i < nr_slots; i++) { 1075 struct bpf_stack_state *slot = &state->stack[spi - i]; 1076 struct bpf_reg_state *st = &slot->spilled_ptr; 1077 1078 if (i == 0) 1079 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1080 1081 __mark_reg_not_init(env, st); 1082 1083 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1084 st->live |= REG_LIVE_WRITTEN; 1085 1086 for (j = 0; j < BPF_REG_SIZE; j++) 1087 slot->slot_type[j] = STACK_INVALID; 1088 1089 mark_stack_slot_scratched(env, spi - i); 1090 } 1091 1092 return 0; 1093 } 1094 1095 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1096 struct bpf_reg_state *reg, int nr_slots) 1097 { 1098 struct bpf_func_state *state = func(env, reg); 1099 int spi, i, j; 1100 1101 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1102 * will do check_mem_access to check and update stack bounds later, so 1103 * return true for that case. 1104 */ 1105 spi = iter_get_spi(env, reg, nr_slots); 1106 if (spi == -ERANGE) 1107 return true; 1108 if (spi < 0) 1109 return false; 1110 1111 for (i = 0; i < nr_slots; i++) { 1112 struct bpf_stack_state *slot = &state->stack[spi - i]; 1113 1114 for (j = 0; j < BPF_REG_SIZE; j++) 1115 if (slot->slot_type[j] == STACK_ITER) 1116 return false; 1117 } 1118 1119 return true; 1120 } 1121 1122 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1123 struct btf *btf, u32 btf_id, int nr_slots) 1124 { 1125 struct bpf_func_state *state = func(env, reg); 1126 int spi, i, j; 1127 1128 spi = iter_get_spi(env, reg, nr_slots); 1129 if (spi < 0) 1130 return -EINVAL; 1131 1132 for (i = 0; i < nr_slots; i++) { 1133 struct bpf_stack_state *slot = &state->stack[spi - i]; 1134 struct bpf_reg_state *st = &slot->spilled_ptr; 1135 1136 if (st->type & PTR_UNTRUSTED) 1137 return -EPROTO; 1138 /* only main (first) slot has ref_obj_id set */ 1139 if (i == 0 && !st->ref_obj_id) 1140 return -EINVAL; 1141 if (i != 0 && st->ref_obj_id) 1142 return -EINVAL; 1143 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1144 return -EINVAL; 1145 1146 for (j = 0; j < BPF_REG_SIZE; j++) 1147 if (slot->slot_type[j] != STACK_ITER) 1148 return -EINVAL; 1149 } 1150 1151 return 0; 1152 } 1153 1154 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx); 1155 static int release_irq_state(struct bpf_verifier_state *state, int id); 1156 1157 static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env, 1158 struct bpf_kfunc_call_arg_meta *meta, 1159 struct bpf_reg_state *reg, int insn_idx, 1160 int kfunc_class) 1161 { 1162 struct bpf_func_state *state = func(env, reg); 1163 struct bpf_stack_state *slot; 1164 struct bpf_reg_state *st; 1165 int spi, i, id; 1166 1167 spi = irq_flag_get_spi(env, reg); 1168 if (spi < 0) 1169 return spi; 1170 1171 id = acquire_irq_state(env, insn_idx); 1172 if (id < 0) 1173 return id; 1174 1175 slot = &state->stack[spi]; 1176 st = &slot->spilled_ptr; 1177 1178 __mark_reg_known_zero(st); 1179 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1180 st->live |= REG_LIVE_WRITTEN; 1181 st->ref_obj_id = id; 1182 st->irq.kfunc_class = kfunc_class; 1183 1184 for (i = 0; i < BPF_REG_SIZE; i++) 1185 slot->slot_type[i] = STACK_IRQ_FLAG; 1186 1187 mark_stack_slot_scratched(env, spi); 1188 return 0; 1189 } 1190 1191 static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1192 int kfunc_class) 1193 { 1194 struct bpf_func_state *state = func(env, reg); 1195 struct bpf_stack_state *slot; 1196 struct bpf_reg_state *st; 1197 int spi, i, err; 1198 1199 spi = irq_flag_get_spi(env, reg); 1200 if (spi < 0) 1201 return spi; 1202 1203 slot = &state->stack[spi]; 1204 st = &slot->spilled_ptr; 1205 1206 if (st->irq.kfunc_class != kfunc_class) { 1207 const char *flag_kfunc = st->irq.kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; 1208 const char *used_kfunc = kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; 1209 1210 verbose(env, "irq flag acquired by %s kfuncs cannot be restored with %s kfuncs\n", 1211 flag_kfunc, used_kfunc); 1212 return -EINVAL; 1213 } 1214 1215 err = release_irq_state(env->cur_state, st->ref_obj_id); 1216 WARN_ON_ONCE(err && err != -EACCES); 1217 if (err) { 1218 int insn_idx = 0; 1219 1220 for (int i = 0; i < env->cur_state->acquired_refs; i++) { 1221 if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) { 1222 insn_idx = env->cur_state->refs[i].insn_idx; 1223 break; 1224 } 1225 } 1226 1227 verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n", 1228 env->cur_state->active_irq_id, insn_idx); 1229 return err; 1230 } 1231 1232 __mark_reg_not_init(env, st); 1233 1234 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1235 st->live |= REG_LIVE_WRITTEN; 1236 1237 for (i = 0; i < BPF_REG_SIZE; i++) 1238 slot->slot_type[i] = STACK_INVALID; 1239 1240 mark_stack_slot_scratched(env, spi); 1241 return 0; 1242 } 1243 1244 static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1245 { 1246 struct bpf_func_state *state = func(env, reg); 1247 struct bpf_stack_state *slot; 1248 int spi, i; 1249 1250 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1251 * will do check_mem_access to check and update stack bounds later, so 1252 * return true for that case. 1253 */ 1254 spi = irq_flag_get_spi(env, reg); 1255 if (spi == -ERANGE) 1256 return true; 1257 if (spi < 0) 1258 return false; 1259 1260 slot = &state->stack[spi]; 1261 1262 for (i = 0; i < BPF_REG_SIZE; i++) 1263 if (slot->slot_type[i] == STACK_IRQ_FLAG) 1264 return false; 1265 return true; 1266 } 1267 1268 static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1269 { 1270 struct bpf_func_state *state = func(env, reg); 1271 struct bpf_stack_state *slot; 1272 struct bpf_reg_state *st; 1273 int spi, i; 1274 1275 spi = irq_flag_get_spi(env, reg); 1276 if (spi < 0) 1277 return -EINVAL; 1278 1279 slot = &state->stack[spi]; 1280 st = &slot->spilled_ptr; 1281 1282 if (!st->ref_obj_id) 1283 return -EINVAL; 1284 1285 for (i = 0; i < BPF_REG_SIZE; i++) 1286 if (slot->slot_type[i] != STACK_IRQ_FLAG) 1287 return -EINVAL; 1288 return 0; 1289 } 1290 1291 /* Check if given stack slot is "special": 1292 * - spilled register state (STACK_SPILL); 1293 * - dynptr state (STACK_DYNPTR); 1294 * - iter state (STACK_ITER). 1295 * - irq flag state (STACK_IRQ_FLAG) 1296 */ 1297 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1298 { 1299 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1300 1301 switch (type) { 1302 case STACK_SPILL: 1303 case STACK_DYNPTR: 1304 case STACK_ITER: 1305 case STACK_IRQ_FLAG: 1306 return true; 1307 case STACK_INVALID: 1308 case STACK_MISC: 1309 case STACK_ZERO: 1310 return false; 1311 default: 1312 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1313 return true; 1314 } 1315 } 1316 1317 /* The reg state of a pointer or a bounded scalar was saved when 1318 * it was spilled to the stack. 1319 */ 1320 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1321 { 1322 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1323 } 1324 1325 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1326 { 1327 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1328 stack->spilled_ptr.type == SCALAR_VALUE; 1329 } 1330 1331 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) 1332 { 1333 return stack->slot_type[0] == STACK_SPILL && 1334 stack->spilled_ptr.type == SCALAR_VALUE; 1335 } 1336 1337 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1338 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1339 * more precise STACK_ZERO. 1340 * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged 1341 * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is 1342 * unnecessary as both are considered equivalent when loading data and pruning, 1343 * in case of unprivileged mode it will be incorrect to allow reads of invalid 1344 * slots. 1345 */ 1346 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1347 { 1348 if (*stype == STACK_ZERO) 1349 return; 1350 if (*stype == STACK_INVALID) 1351 return; 1352 *stype = STACK_MISC; 1353 } 1354 1355 static void scrub_spilled_slot(u8 *stype) 1356 { 1357 if (*stype != STACK_INVALID) 1358 *stype = STACK_MISC; 1359 } 1360 1361 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1362 * small to hold src. This is different from krealloc since we don't want to preserve 1363 * the contents of dst. 1364 * 1365 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1366 * not be allocated. 1367 */ 1368 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1369 { 1370 size_t alloc_bytes; 1371 void *orig = dst; 1372 size_t bytes; 1373 1374 if (ZERO_OR_NULL_PTR(src)) 1375 goto out; 1376 1377 if (unlikely(check_mul_overflow(n, size, &bytes))) 1378 return NULL; 1379 1380 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1381 dst = krealloc(orig, alloc_bytes, flags); 1382 if (!dst) { 1383 kfree(orig); 1384 return NULL; 1385 } 1386 1387 memcpy(dst, src, bytes); 1388 out: 1389 return dst ? dst : ZERO_SIZE_PTR; 1390 } 1391 1392 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1393 * small to hold new_n items. new items are zeroed out if the array grows. 1394 * 1395 * Contrary to krealloc_array, does not free arr if new_n is zero. 1396 */ 1397 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1398 { 1399 size_t alloc_size; 1400 void *new_arr; 1401 1402 if (!new_n || old_n == new_n) 1403 goto out; 1404 1405 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1406 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1407 if (!new_arr) { 1408 kfree(arr); 1409 return NULL; 1410 } 1411 arr = new_arr; 1412 1413 if (new_n > old_n) 1414 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1415 1416 out: 1417 return arr ? arr : ZERO_SIZE_PTR; 1418 } 1419 1420 static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src) 1421 { 1422 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1423 sizeof(struct bpf_reference_state), GFP_KERNEL); 1424 if (!dst->refs) 1425 return -ENOMEM; 1426 1427 dst->acquired_refs = src->acquired_refs; 1428 dst->active_locks = src->active_locks; 1429 dst->active_preempt_locks = src->active_preempt_locks; 1430 dst->active_rcu_lock = src->active_rcu_lock; 1431 dst->active_irq_id = src->active_irq_id; 1432 dst->active_lock_id = src->active_lock_id; 1433 dst->active_lock_ptr = src->active_lock_ptr; 1434 return 0; 1435 } 1436 1437 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1438 { 1439 size_t n = src->allocated_stack / BPF_REG_SIZE; 1440 1441 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1442 GFP_KERNEL); 1443 if (!dst->stack) 1444 return -ENOMEM; 1445 1446 dst->allocated_stack = src->allocated_stack; 1447 return 0; 1448 } 1449 1450 static int resize_reference_state(struct bpf_verifier_state *state, size_t n) 1451 { 1452 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1453 sizeof(struct bpf_reference_state)); 1454 if (!state->refs) 1455 return -ENOMEM; 1456 1457 state->acquired_refs = n; 1458 return 0; 1459 } 1460 1461 /* Possibly update state->allocated_stack to be at least size bytes. Also 1462 * possibly update the function's high-water mark in its bpf_subprog_info. 1463 */ 1464 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1465 { 1466 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1467 1468 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1469 size = round_up(size, BPF_REG_SIZE); 1470 n = size / BPF_REG_SIZE; 1471 1472 if (old_n >= n) 1473 return 0; 1474 1475 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1476 if (!state->stack) 1477 return -ENOMEM; 1478 1479 state->allocated_stack = size; 1480 1481 /* update known max for given subprogram */ 1482 if (env->subprog_info[state->subprogno].stack_depth < size) 1483 env->subprog_info[state->subprogno].stack_depth = size; 1484 1485 return 0; 1486 } 1487 1488 /* Acquire a pointer id from the env and update the state->refs to include 1489 * this new pointer reference. 1490 * On success, returns a valid pointer id to associate with the register 1491 * On failure, returns a negative errno. 1492 */ 1493 static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1494 { 1495 struct bpf_verifier_state *state = env->cur_state; 1496 int new_ofs = state->acquired_refs; 1497 int err; 1498 1499 err = resize_reference_state(state, state->acquired_refs + 1); 1500 if (err) 1501 return NULL; 1502 state->refs[new_ofs].insn_idx = insn_idx; 1503 1504 return &state->refs[new_ofs]; 1505 } 1506 1507 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx) 1508 { 1509 struct bpf_reference_state *s; 1510 1511 s = acquire_reference_state(env, insn_idx); 1512 if (!s) 1513 return -ENOMEM; 1514 s->type = REF_TYPE_PTR; 1515 s->id = ++env->id_gen; 1516 return s->id; 1517 } 1518 1519 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type, 1520 int id, void *ptr) 1521 { 1522 struct bpf_verifier_state *state = env->cur_state; 1523 struct bpf_reference_state *s; 1524 1525 s = acquire_reference_state(env, insn_idx); 1526 if (!s) 1527 return -ENOMEM; 1528 s->type = type; 1529 s->id = id; 1530 s->ptr = ptr; 1531 1532 state->active_locks++; 1533 state->active_lock_id = id; 1534 state->active_lock_ptr = ptr; 1535 return 0; 1536 } 1537 1538 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx) 1539 { 1540 struct bpf_verifier_state *state = env->cur_state; 1541 struct bpf_reference_state *s; 1542 1543 s = acquire_reference_state(env, insn_idx); 1544 if (!s) 1545 return -ENOMEM; 1546 s->type = REF_TYPE_IRQ; 1547 s->id = ++env->id_gen; 1548 1549 state->active_irq_id = s->id; 1550 return s->id; 1551 } 1552 1553 static void release_reference_state(struct bpf_verifier_state *state, int idx) 1554 { 1555 int last_idx; 1556 size_t rem; 1557 1558 /* IRQ state requires the relative ordering of elements remaining the 1559 * same, since it relies on the refs array to behave as a stack, so that 1560 * it can detect out-of-order IRQ restore. Hence use memmove to shift 1561 * the array instead of swapping the final element into the deleted idx. 1562 */ 1563 last_idx = state->acquired_refs - 1; 1564 rem = state->acquired_refs - idx - 1; 1565 if (last_idx && idx != last_idx) 1566 memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem); 1567 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1568 state->acquired_refs--; 1569 return; 1570 } 1571 1572 static bool find_reference_state(struct bpf_verifier_state *state, int ptr_id) 1573 { 1574 int i; 1575 1576 for (i = 0; i < state->acquired_refs; i++) 1577 if (state->refs[i].id == ptr_id) 1578 return true; 1579 1580 return false; 1581 } 1582 1583 static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr) 1584 { 1585 void *prev_ptr = NULL; 1586 u32 prev_id = 0; 1587 int i; 1588 1589 for (i = 0; i < state->acquired_refs; i++) { 1590 if (state->refs[i].type == type && state->refs[i].id == id && 1591 state->refs[i].ptr == ptr) { 1592 release_reference_state(state, i); 1593 state->active_locks--; 1594 /* Reassign active lock (id, ptr). */ 1595 state->active_lock_id = prev_id; 1596 state->active_lock_ptr = prev_ptr; 1597 return 0; 1598 } 1599 if (state->refs[i].type & REF_TYPE_LOCK_MASK) { 1600 prev_id = state->refs[i].id; 1601 prev_ptr = state->refs[i].ptr; 1602 } 1603 } 1604 return -EINVAL; 1605 } 1606 1607 static int release_irq_state(struct bpf_verifier_state *state, int id) 1608 { 1609 u32 prev_id = 0; 1610 int i; 1611 1612 if (id != state->active_irq_id) 1613 return -EACCES; 1614 1615 for (i = 0; i < state->acquired_refs; i++) { 1616 if (state->refs[i].type != REF_TYPE_IRQ) 1617 continue; 1618 if (state->refs[i].id == id) { 1619 release_reference_state(state, i); 1620 state->active_irq_id = prev_id; 1621 return 0; 1622 } else { 1623 prev_id = state->refs[i].id; 1624 } 1625 } 1626 return -EINVAL; 1627 } 1628 1629 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type, 1630 int id, void *ptr) 1631 { 1632 int i; 1633 1634 for (i = 0; i < state->acquired_refs; i++) { 1635 struct bpf_reference_state *s = &state->refs[i]; 1636 1637 if (!(s->type & type)) 1638 continue; 1639 1640 if (s->id == id && s->ptr == ptr) 1641 return s; 1642 } 1643 return NULL; 1644 } 1645 1646 static void update_peak_states(struct bpf_verifier_env *env) 1647 { 1648 u32 cur_states; 1649 1650 cur_states = env->explored_states_size + env->free_list_size; 1651 env->peak_states = max(env->peak_states, cur_states); 1652 } 1653 1654 static void free_func_state(struct bpf_func_state *state) 1655 { 1656 if (!state) 1657 return; 1658 kfree(state->stack); 1659 kfree(state); 1660 } 1661 1662 static void free_verifier_state(struct bpf_verifier_state *state, 1663 bool free_self) 1664 { 1665 int i; 1666 1667 for (i = 0; i <= state->curframe; i++) { 1668 free_func_state(state->frame[i]); 1669 state->frame[i] = NULL; 1670 } 1671 kfree(state->refs); 1672 if (free_self) 1673 kfree(state); 1674 } 1675 1676 /* struct bpf_verifier_state->{parent,loop_entry} refer to states 1677 * that are in either of env->{expored_states,free_list}. 1678 * In both cases the state is contained in struct bpf_verifier_state_list. 1679 */ 1680 static struct bpf_verifier_state_list *state_parent_as_list(struct bpf_verifier_state *st) 1681 { 1682 if (st->parent) 1683 return container_of(st->parent, struct bpf_verifier_state_list, state); 1684 return NULL; 1685 } 1686 1687 static struct bpf_verifier_state_list *state_loop_entry_as_list(struct bpf_verifier_state *st) 1688 { 1689 if (st->loop_entry) 1690 return container_of(st->loop_entry, struct bpf_verifier_state_list, state); 1691 return NULL; 1692 } 1693 1694 /* A state can be freed if it is no longer referenced: 1695 * - is in the env->free_list; 1696 * - has no children states; 1697 * - is not used as loop_entry. 1698 * 1699 * Freeing a state can make it's loop_entry free-able. 1700 */ 1701 static void maybe_free_verifier_state(struct bpf_verifier_env *env, 1702 struct bpf_verifier_state_list *sl) 1703 { 1704 struct bpf_verifier_state_list *loop_entry_sl; 1705 1706 while (sl && sl->in_free_list && 1707 sl->state.branches == 0 && 1708 sl->state.used_as_loop_entry == 0) { 1709 loop_entry_sl = state_loop_entry_as_list(&sl->state); 1710 if (loop_entry_sl) 1711 loop_entry_sl->state.used_as_loop_entry--; 1712 list_del(&sl->node); 1713 free_verifier_state(&sl->state, false); 1714 kfree(sl); 1715 env->free_list_size--; 1716 sl = loop_entry_sl; 1717 } 1718 } 1719 1720 /* copy verifier state from src to dst growing dst stack space 1721 * when necessary to accommodate larger src stack 1722 */ 1723 static int copy_func_state(struct bpf_func_state *dst, 1724 const struct bpf_func_state *src) 1725 { 1726 memcpy(dst, src, offsetof(struct bpf_func_state, stack)); 1727 return copy_stack_state(dst, src); 1728 } 1729 1730 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1731 const struct bpf_verifier_state *src) 1732 { 1733 struct bpf_func_state *dst; 1734 int i, err; 1735 1736 /* if dst has more stack frames then src frame, free them, this is also 1737 * necessary in case of exceptional exits using bpf_throw. 1738 */ 1739 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1740 free_func_state(dst_state->frame[i]); 1741 dst_state->frame[i] = NULL; 1742 } 1743 err = copy_reference_state(dst_state, src); 1744 if (err) 1745 return err; 1746 dst_state->speculative = src->speculative; 1747 dst_state->in_sleepable = src->in_sleepable; 1748 dst_state->curframe = src->curframe; 1749 dst_state->branches = src->branches; 1750 dst_state->parent = src->parent; 1751 dst_state->first_insn_idx = src->first_insn_idx; 1752 dst_state->last_insn_idx = src->last_insn_idx; 1753 dst_state->insn_hist_start = src->insn_hist_start; 1754 dst_state->insn_hist_end = src->insn_hist_end; 1755 dst_state->dfs_depth = src->dfs_depth; 1756 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1757 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1758 dst_state->may_goto_depth = src->may_goto_depth; 1759 dst_state->loop_entry = src->loop_entry; 1760 for (i = 0; i <= src->curframe; i++) { 1761 dst = dst_state->frame[i]; 1762 if (!dst) { 1763 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1764 if (!dst) 1765 return -ENOMEM; 1766 dst_state->frame[i] = dst; 1767 } 1768 err = copy_func_state(dst, src->frame[i]); 1769 if (err) 1770 return err; 1771 } 1772 return 0; 1773 } 1774 1775 static u32 state_htab_size(struct bpf_verifier_env *env) 1776 { 1777 return env->prog->len; 1778 } 1779 1780 static struct list_head *explored_state(struct bpf_verifier_env *env, int idx) 1781 { 1782 struct bpf_verifier_state *cur = env->cur_state; 1783 struct bpf_func_state *state = cur->frame[cur->curframe]; 1784 1785 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1786 } 1787 1788 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1789 { 1790 int fr; 1791 1792 if (a->curframe != b->curframe) 1793 return false; 1794 1795 for (fr = a->curframe; fr >= 0; fr--) 1796 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1797 return false; 1798 1799 return true; 1800 } 1801 1802 /* Open coded iterators allow back-edges in the state graph in order to 1803 * check unbounded loops that iterators. 1804 * 1805 * In is_state_visited() it is necessary to know if explored states are 1806 * part of some loops in order to decide whether non-exact states 1807 * comparison could be used: 1808 * - non-exact states comparison establishes sub-state relation and uses 1809 * read and precision marks to do so, these marks are propagated from 1810 * children states and thus are not guaranteed to be final in a loop; 1811 * - exact states comparison just checks if current and explored states 1812 * are identical (and thus form a back-edge). 1813 * 1814 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1815 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1816 * algorithm for loop structure detection and gives an overview of 1817 * relevant terminology. It also has helpful illustrations. 1818 * 1819 * [1] https://api.semanticscholar.org/CorpusID:15784067 1820 * 1821 * We use a similar algorithm but because loop nested structure is 1822 * irrelevant for verifier ours is significantly simpler and resembles 1823 * strongly connected components algorithm from Sedgewick's textbook. 1824 * 1825 * Define topmost loop entry as a first node of the loop traversed in a 1826 * depth first search starting from initial state. The goal of the loop 1827 * tracking algorithm is to associate topmost loop entries with states 1828 * derived from these entries. 1829 * 1830 * For each step in the DFS states traversal algorithm needs to identify 1831 * the following situations: 1832 * 1833 * initial initial initial 1834 * | | | 1835 * V V V 1836 * ... ... .---------> hdr 1837 * | | | | 1838 * V V | V 1839 * cur .-> succ | .------... 1840 * | | | | | | 1841 * V | V | V V 1842 * succ '-- cur | ... ... 1843 * | | | 1844 * | V V 1845 * | succ <- cur 1846 * | | 1847 * | V 1848 * | ... 1849 * | | 1850 * '----' 1851 * 1852 * (A) successor state of cur (B) successor state of cur or it's entry 1853 * not yet traversed are in current DFS path, thus cur and succ 1854 * are members of the same outermost loop 1855 * 1856 * initial initial 1857 * | | 1858 * V V 1859 * ... ... 1860 * | | 1861 * V V 1862 * .------... .------... 1863 * | | | | 1864 * V V V V 1865 * .-> hdr ... ... ... 1866 * | | | | | 1867 * | V V V V 1868 * | succ <- cur succ <- cur 1869 * | | | 1870 * | V V 1871 * | ... ... 1872 * | | | 1873 * '----' exit 1874 * 1875 * (C) successor state of cur is a part of some loop but this loop 1876 * does not include cur or successor state is not in a loop at all. 1877 * 1878 * Algorithm could be described as the following python code: 1879 * 1880 * traversed = set() # Set of traversed nodes 1881 * entries = {} # Mapping from node to loop entry 1882 * depths = {} # Depth level assigned to graph node 1883 * path = set() # Current DFS path 1884 * 1885 * # Find outermost loop entry known for n 1886 * def get_loop_entry(n): 1887 * h = entries.get(n, None) 1888 * while h in entries: 1889 * h = entries[h] 1890 * return h 1891 * 1892 * # Update n's loop entry if h comes before n in current DFS path. 1893 * def update_loop_entry(n, h): 1894 * if h in path and depths[entries.get(n, n)] < depths[n]: 1895 * entries[n] = h1 1896 * 1897 * def dfs(n, depth): 1898 * traversed.add(n) 1899 * path.add(n) 1900 * depths[n] = depth 1901 * for succ in G.successors(n): 1902 * if succ not in traversed: 1903 * # Case A: explore succ and update cur's loop entry 1904 * # only if succ's entry is in current DFS path. 1905 * dfs(succ, depth + 1) 1906 * h = entries.get(succ, None) 1907 * update_loop_entry(n, h) 1908 * else: 1909 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1910 * update_loop_entry(n, succ) 1911 * path.remove(n) 1912 * 1913 * To adapt this algorithm for use with verifier: 1914 * - use st->branch == 0 as a signal that DFS of succ had been finished 1915 * and cur's loop entry has to be updated (case A), handle this in 1916 * update_branch_counts(); 1917 * - use st->branch > 0 as a signal that st is in the current DFS path; 1918 * - handle cases B and C in is_state_visited(). 1919 */ 1920 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_env *env, 1921 struct bpf_verifier_state *st) 1922 { 1923 struct bpf_verifier_state *topmost = st->loop_entry; 1924 u32 steps = 0; 1925 1926 while (topmost && topmost->loop_entry) { 1927 if (verifier_bug_if(steps++ > st->dfs_depth, env, "infinite loop")) 1928 return ERR_PTR(-EFAULT); 1929 topmost = topmost->loop_entry; 1930 } 1931 return topmost; 1932 } 1933 1934 static void update_loop_entry(struct bpf_verifier_env *env, 1935 struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1936 { 1937 /* The hdr->branches check decides between cases B and C in 1938 * comment for get_loop_entry(). If hdr->branches == 0 then 1939 * head's topmost loop entry is not in current DFS path, 1940 * hence 'cur' and 'hdr' are not in the same loop and there is 1941 * no need to update cur->loop_entry. 1942 */ 1943 if (hdr->branches && hdr->dfs_depth < (cur->loop_entry ?: cur)->dfs_depth) { 1944 if (cur->loop_entry) { 1945 cur->loop_entry->used_as_loop_entry--; 1946 maybe_free_verifier_state(env, state_loop_entry_as_list(cur)); 1947 } 1948 cur->loop_entry = hdr; 1949 hdr->used_as_loop_entry++; 1950 } 1951 } 1952 1953 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1954 { 1955 struct bpf_verifier_state_list *sl = NULL, *parent_sl; 1956 struct bpf_verifier_state *parent; 1957 1958 while (st) { 1959 u32 br = --st->branches; 1960 1961 /* br == 0 signals that DFS exploration for 'st' is finished, 1962 * thus it is necessary to update parent's loop entry if it 1963 * turned out that st is a part of some loop. 1964 * This is a part of 'case A' in get_loop_entry() comment. 1965 */ 1966 if (br == 0 && st->parent && st->loop_entry) 1967 update_loop_entry(env, st->parent, st->loop_entry); 1968 1969 /* WARN_ON(br > 1) technically makes sense here, 1970 * but see comment in push_stack(), hence: 1971 */ 1972 WARN_ONCE((int)br < 0, 1973 "BUG update_branch_counts:branches_to_explore=%d\n", 1974 br); 1975 if (br) 1976 break; 1977 parent = st->parent; 1978 parent_sl = state_parent_as_list(st); 1979 if (sl) 1980 maybe_free_verifier_state(env, sl); 1981 st = parent; 1982 sl = parent_sl; 1983 } 1984 } 1985 1986 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1987 int *insn_idx, bool pop_log) 1988 { 1989 struct bpf_verifier_state *cur = env->cur_state; 1990 struct bpf_verifier_stack_elem *elem, *head = env->head; 1991 int err; 1992 1993 if (env->head == NULL) 1994 return -ENOENT; 1995 1996 if (cur) { 1997 err = copy_verifier_state(cur, &head->st); 1998 if (err) 1999 return err; 2000 } 2001 if (pop_log) 2002 bpf_vlog_reset(&env->log, head->log_pos); 2003 if (insn_idx) 2004 *insn_idx = head->insn_idx; 2005 if (prev_insn_idx) 2006 *prev_insn_idx = head->prev_insn_idx; 2007 elem = head->next; 2008 free_verifier_state(&head->st, false); 2009 kfree(head); 2010 env->head = elem; 2011 env->stack_size--; 2012 return 0; 2013 } 2014 2015 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 2016 int insn_idx, int prev_insn_idx, 2017 bool speculative) 2018 { 2019 struct bpf_verifier_state *cur = env->cur_state; 2020 struct bpf_verifier_stack_elem *elem; 2021 int err; 2022 2023 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2024 if (!elem) 2025 goto err; 2026 2027 elem->insn_idx = insn_idx; 2028 elem->prev_insn_idx = prev_insn_idx; 2029 elem->next = env->head; 2030 elem->log_pos = env->log.end_pos; 2031 env->head = elem; 2032 env->stack_size++; 2033 err = copy_verifier_state(&elem->st, cur); 2034 if (err) 2035 goto err; 2036 elem->st.speculative |= speculative; 2037 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2038 verbose(env, "The sequence of %d jumps is too complex.\n", 2039 env->stack_size); 2040 goto err; 2041 } 2042 if (elem->st.parent) { 2043 ++elem->st.parent->branches; 2044 /* WARN_ON(branches > 2) technically makes sense here, 2045 * but 2046 * 1. speculative states will bump 'branches' for non-branch 2047 * instructions 2048 * 2. is_state_visited() heuristics may decide not to create 2049 * a new state for a sequence of branches and all such current 2050 * and cloned states will be pointing to a single parent state 2051 * which might have large 'branches' count. 2052 */ 2053 } 2054 return &elem->st; 2055 err: 2056 free_verifier_state(env->cur_state, true); 2057 env->cur_state = NULL; 2058 /* pop all elements and return */ 2059 while (!pop_stack(env, NULL, NULL, false)); 2060 return NULL; 2061 } 2062 2063 #define CALLER_SAVED_REGS 6 2064 static const int caller_saved[CALLER_SAVED_REGS] = { 2065 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 2066 }; 2067 2068 /* This helper doesn't clear reg->id */ 2069 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2070 { 2071 reg->var_off = tnum_const(imm); 2072 reg->smin_value = (s64)imm; 2073 reg->smax_value = (s64)imm; 2074 reg->umin_value = imm; 2075 reg->umax_value = imm; 2076 2077 reg->s32_min_value = (s32)imm; 2078 reg->s32_max_value = (s32)imm; 2079 reg->u32_min_value = (u32)imm; 2080 reg->u32_max_value = (u32)imm; 2081 } 2082 2083 /* Mark the unknown part of a register (variable offset or scalar value) as 2084 * known to have the value @imm. 2085 */ 2086 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2087 { 2088 /* Clear off and union(map_ptr, range) */ 2089 memset(((u8 *)reg) + sizeof(reg->type), 0, 2090 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 2091 reg->id = 0; 2092 reg->ref_obj_id = 0; 2093 ___mark_reg_known(reg, imm); 2094 } 2095 2096 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 2097 { 2098 reg->var_off = tnum_const_subreg(reg->var_off, imm); 2099 reg->s32_min_value = (s32)imm; 2100 reg->s32_max_value = (s32)imm; 2101 reg->u32_min_value = (u32)imm; 2102 reg->u32_max_value = (u32)imm; 2103 } 2104 2105 /* Mark the 'variable offset' part of a register as zero. This should be 2106 * used only on registers holding a pointer type. 2107 */ 2108 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 2109 { 2110 __mark_reg_known(reg, 0); 2111 } 2112 2113 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2114 { 2115 __mark_reg_known(reg, 0); 2116 reg->type = SCALAR_VALUE; 2117 /* all scalars are assumed imprecise initially (unless unprivileged, 2118 * in which case everything is forced to be precise) 2119 */ 2120 reg->precise = !env->bpf_capable; 2121 } 2122 2123 static void mark_reg_known_zero(struct bpf_verifier_env *env, 2124 struct bpf_reg_state *regs, u32 regno) 2125 { 2126 if (WARN_ON(regno >= MAX_BPF_REG)) { 2127 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 2128 /* Something bad happened, let's kill all regs */ 2129 for (regno = 0; regno < MAX_BPF_REG; regno++) 2130 __mark_reg_not_init(env, regs + regno); 2131 return; 2132 } 2133 __mark_reg_known_zero(regs + regno); 2134 } 2135 2136 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 2137 bool first_slot, int dynptr_id) 2138 { 2139 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 2140 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 2141 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 2142 */ 2143 __mark_reg_known_zero(reg); 2144 reg->type = CONST_PTR_TO_DYNPTR; 2145 /* Give each dynptr a unique id to uniquely associate slices to it. */ 2146 reg->id = dynptr_id; 2147 reg->dynptr.type = type; 2148 reg->dynptr.first_slot = first_slot; 2149 } 2150 2151 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 2152 { 2153 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 2154 const struct bpf_map *map = reg->map_ptr; 2155 2156 if (map->inner_map_meta) { 2157 reg->type = CONST_PTR_TO_MAP; 2158 reg->map_ptr = map->inner_map_meta; 2159 /* transfer reg's id which is unique for every map_lookup_elem 2160 * as UID of the inner map. 2161 */ 2162 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 2163 reg->map_uid = reg->id; 2164 if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE)) 2165 reg->map_uid = reg->id; 2166 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 2167 reg->type = PTR_TO_XDP_SOCK; 2168 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 2169 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 2170 reg->type = PTR_TO_SOCKET; 2171 } else { 2172 reg->type = PTR_TO_MAP_VALUE; 2173 } 2174 return; 2175 } 2176 2177 reg->type &= ~PTR_MAYBE_NULL; 2178 } 2179 2180 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 2181 struct btf_field_graph_root *ds_head) 2182 { 2183 __mark_reg_known_zero(®s[regno]); 2184 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 2185 regs[regno].btf = ds_head->btf; 2186 regs[regno].btf_id = ds_head->value_btf_id; 2187 regs[regno].off = ds_head->node_offset; 2188 } 2189 2190 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 2191 { 2192 return type_is_pkt_pointer(reg->type); 2193 } 2194 2195 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2196 { 2197 return reg_is_pkt_pointer(reg) || 2198 reg->type == PTR_TO_PACKET_END; 2199 } 2200 2201 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2202 { 2203 return base_type(reg->type) == PTR_TO_MEM && 2204 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2205 } 2206 2207 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2208 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2209 enum bpf_reg_type which) 2210 { 2211 /* The register can already have a range from prior markings. 2212 * This is fine as long as it hasn't been advanced from its 2213 * origin. 2214 */ 2215 return reg->type == which && 2216 reg->id == 0 && 2217 reg->off == 0 && 2218 tnum_equals_const(reg->var_off, 0); 2219 } 2220 2221 /* Reset the min/max bounds of a register */ 2222 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2223 { 2224 reg->smin_value = S64_MIN; 2225 reg->smax_value = S64_MAX; 2226 reg->umin_value = 0; 2227 reg->umax_value = U64_MAX; 2228 2229 reg->s32_min_value = S32_MIN; 2230 reg->s32_max_value = S32_MAX; 2231 reg->u32_min_value = 0; 2232 reg->u32_max_value = U32_MAX; 2233 } 2234 2235 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2236 { 2237 reg->smin_value = S64_MIN; 2238 reg->smax_value = S64_MAX; 2239 reg->umin_value = 0; 2240 reg->umax_value = U64_MAX; 2241 } 2242 2243 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2244 { 2245 reg->s32_min_value = S32_MIN; 2246 reg->s32_max_value = S32_MAX; 2247 reg->u32_min_value = 0; 2248 reg->u32_max_value = U32_MAX; 2249 } 2250 2251 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2252 { 2253 struct tnum var32_off = tnum_subreg(reg->var_off); 2254 2255 /* min signed is max(sign bit) | min(other bits) */ 2256 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2257 var32_off.value | (var32_off.mask & S32_MIN)); 2258 /* max signed is min(sign bit) | max(other bits) */ 2259 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2260 var32_off.value | (var32_off.mask & S32_MAX)); 2261 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2262 reg->u32_max_value = min(reg->u32_max_value, 2263 (u32)(var32_off.value | var32_off.mask)); 2264 } 2265 2266 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2267 { 2268 /* min signed is max(sign bit) | min(other bits) */ 2269 reg->smin_value = max_t(s64, reg->smin_value, 2270 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2271 /* max signed is min(sign bit) | max(other bits) */ 2272 reg->smax_value = min_t(s64, reg->smax_value, 2273 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2274 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2275 reg->umax_value = min(reg->umax_value, 2276 reg->var_off.value | reg->var_off.mask); 2277 } 2278 2279 static void __update_reg_bounds(struct bpf_reg_state *reg) 2280 { 2281 __update_reg32_bounds(reg); 2282 __update_reg64_bounds(reg); 2283 } 2284 2285 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2286 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2287 { 2288 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 2289 * bits to improve our u32/s32 boundaries. 2290 * 2291 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 2292 * u64) is pretty trivial, it's obvious that in u32 we'll also have 2293 * [10, 20] range. But this property holds for any 64-bit range as 2294 * long as upper 32 bits in that entire range of values stay the same. 2295 * 2296 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 2297 * in decimal) has the same upper 32 bits throughout all the values in 2298 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 2299 * range. 2300 * 2301 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 2302 * following the rules outlined below about u64/s64 correspondence 2303 * (which equally applies to u32 vs s32 correspondence). In general it 2304 * depends on actual hexadecimal values of 32-bit range. They can form 2305 * only valid u32, or only valid s32 ranges in some cases. 2306 * 2307 * So we use all these insights to derive bounds for subregisters here. 2308 */ 2309 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 2310 /* u64 to u32 casting preserves validity of low 32 bits as 2311 * a range, if upper 32 bits are the same 2312 */ 2313 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 2314 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 2315 2316 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 2317 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2318 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2319 } 2320 } 2321 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 2322 /* low 32 bits should form a proper u32 range */ 2323 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 2324 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 2325 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 2326 } 2327 /* low 32 bits should form a proper s32 range */ 2328 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 2329 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2330 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2331 } 2332 } 2333 /* Special case where upper bits form a small sequence of two 2334 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 2335 * 0x00000000 is also valid), while lower bits form a proper s32 range 2336 * going from negative numbers to positive numbers. E.g., let's say we 2337 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 2338 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 2339 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 2340 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 2341 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 2342 * upper 32 bits. As a random example, s64 range 2343 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 2344 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2345 */ 2346 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2347 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2348 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2349 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2350 } 2351 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2352 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2353 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2354 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2355 } 2356 /* if u32 range forms a valid s32 range (due to matching sign bit), 2357 * try to learn from that 2358 */ 2359 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2360 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2361 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2362 } 2363 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2364 * are the same, so combine. This works even in the negative case, e.g. 2365 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2366 */ 2367 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2368 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2369 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2370 } 2371 } 2372 2373 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2374 { 2375 /* If u64 range forms a valid s64 range (due to matching sign bit), 2376 * try to learn from that. Let's do a bit of ASCII art to see when 2377 * this is happening. Let's take u64 range first: 2378 * 2379 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2380 * |-------------------------------|--------------------------------| 2381 * 2382 * Valid u64 range is formed when umin and umax are anywhere in the 2383 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2384 * straightforward. Let's see how s64 range maps onto the same range 2385 * of values, annotated below the line for comparison: 2386 * 2387 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2388 * |-------------------------------|--------------------------------| 2389 * 0 S64_MAX S64_MIN -1 2390 * 2391 * So s64 values basically start in the middle and they are logically 2392 * contiguous to the right of it, wrapping around from -1 to 0, and 2393 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2394 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2395 * more visually as mapped to sign-agnostic range of hex values. 2396 * 2397 * u64 start u64 end 2398 * _______________________________________________________________ 2399 * / \ 2400 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2401 * |-------------------------------|--------------------------------| 2402 * 0 S64_MAX S64_MIN -1 2403 * / \ 2404 * >------------------------------ -------------------------------> 2405 * s64 continues... s64 end s64 start s64 "midpoint" 2406 * 2407 * What this means is that, in general, we can't always derive 2408 * something new about u64 from any random s64 range, and vice versa. 2409 * 2410 * But we can do that in two particular cases. One is when entire 2411 * u64/s64 range is *entirely* contained within left half of the above 2412 * diagram or when it is *entirely* contained in the right half. I.e.: 2413 * 2414 * |-------------------------------|--------------------------------| 2415 * ^ ^ ^ ^ 2416 * A B C D 2417 * 2418 * [A, B] and [C, D] are contained entirely in their respective halves 2419 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2420 * will be non-negative both as u64 and s64 (and in fact it will be 2421 * identical ranges no matter the signedness). [C, D] treated as s64 2422 * will be a range of negative values, while in u64 it will be 2423 * non-negative range of values larger than 0x8000000000000000. 2424 * 2425 * Now, any other range here can't be represented in both u64 and s64 2426 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2427 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2428 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2429 * for example. Similarly, valid s64 range [D, A] (going from negative 2430 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2431 * ranges as u64. Currently reg_state can't represent two segments per 2432 * numeric domain, so in such situations we can only derive maximal 2433 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2434 * 2435 * So we use these facts to derive umin/umax from smin/smax and vice 2436 * versa only if they stay within the same "half". This is equivalent 2437 * to checking sign bit: lower half will have sign bit as zero, upper 2438 * half have sign bit 1. Below in code we simplify this by just 2439 * casting umin/umax as smin/smax and checking if they form valid 2440 * range, and vice versa. Those are equivalent checks. 2441 */ 2442 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2443 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2444 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2445 } 2446 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2447 * are the same, so combine. This works even in the negative case, e.g. 2448 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2449 */ 2450 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2451 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2452 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2453 } 2454 } 2455 2456 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2457 { 2458 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2459 * values on both sides of 64-bit range in hope to have tighter range. 2460 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2461 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2462 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2463 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2464 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2465 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2466 * We just need to make sure that derived bounds we are intersecting 2467 * with are well-formed ranges in respective s64 or u64 domain, just 2468 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2469 */ 2470 __u64 new_umin, new_umax; 2471 __s64 new_smin, new_smax; 2472 2473 /* u32 -> u64 tightening, it's always well-formed */ 2474 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2475 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2476 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2477 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2478 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2479 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2480 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2481 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2482 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2483 2484 /* if s32 can be treated as valid u32 range, we can use it as well */ 2485 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2486 /* s32 -> u64 tightening */ 2487 new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2488 new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2489 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2490 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2491 /* s32 -> s64 tightening */ 2492 new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2493 new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2494 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2495 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2496 } 2497 2498 /* Here we would like to handle a special case after sign extending load, 2499 * when upper bits for a 64-bit range are all 1s or all 0s. 2500 * 2501 * Upper bits are all 1s when register is in a range: 2502 * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff] 2503 * Upper bits are all 0s when register is in a range: 2504 * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff] 2505 * Together this forms are continuous range: 2506 * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff] 2507 * 2508 * Now, suppose that register range is in fact tighter: 2509 * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R) 2510 * Also suppose that it's 32-bit range is positive, 2511 * meaning that lower 32-bits of the full 64-bit register 2512 * are in the range: 2513 * [0x0000_0000, 0x7fff_ffff] (W) 2514 * 2515 * If this happens, then any value in a range: 2516 * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff] 2517 * is smaller than a lowest bound of the range (R): 2518 * 0xffff_ffff_8000_0000 2519 * which means that upper bits of the full 64-bit register 2520 * can't be all 1s, when lower bits are in range (W). 2521 * 2522 * Note that: 2523 * - 0xffff_ffff_8000_0000 == (s64)S32_MIN 2524 * - 0x0000_0000_7fff_ffff == (s64)S32_MAX 2525 * These relations are used in the conditions below. 2526 */ 2527 if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) { 2528 reg->smin_value = reg->s32_min_value; 2529 reg->smax_value = reg->s32_max_value; 2530 reg->umin_value = reg->s32_min_value; 2531 reg->umax_value = reg->s32_max_value; 2532 reg->var_off = tnum_intersect(reg->var_off, 2533 tnum_range(reg->smin_value, reg->smax_value)); 2534 } 2535 } 2536 2537 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2538 { 2539 __reg32_deduce_bounds(reg); 2540 __reg64_deduce_bounds(reg); 2541 __reg_deduce_mixed_bounds(reg); 2542 } 2543 2544 /* Attempts to improve var_off based on unsigned min/max information */ 2545 static void __reg_bound_offset(struct bpf_reg_state *reg) 2546 { 2547 struct tnum var64_off = tnum_intersect(reg->var_off, 2548 tnum_range(reg->umin_value, 2549 reg->umax_value)); 2550 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2551 tnum_range(reg->u32_min_value, 2552 reg->u32_max_value)); 2553 2554 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2555 } 2556 2557 static void reg_bounds_sync(struct bpf_reg_state *reg) 2558 { 2559 /* We might have learned new bounds from the var_off. */ 2560 __update_reg_bounds(reg); 2561 /* We might have learned something about the sign bit. */ 2562 __reg_deduce_bounds(reg); 2563 __reg_deduce_bounds(reg); 2564 /* We might have learned some bits from the bounds. */ 2565 __reg_bound_offset(reg); 2566 /* Intersecting with the old var_off might have improved our bounds 2567 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2568 * then new var_off is (0; 0x7f...fc) which improves our umax. 2569 */ 2570 __update_reg_bounds(reg); 2571 } 2572 2573 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2574 struct bpf_reg_state *reg, const char *ctx) 2575 { 2576 const char *msg; 2577 2578 if (reg->umin_value > reg->umax_value || 2579 reg->smin_value > reg->smax_value || 2580 reg->u32_min_value > reg->u32_max_value || 2581 reg->s32_min_value > reg->s32_max_value) { 2582 msg = "range bounds violation"; 2583 goto out; 2584 } 2585 2586 if (tnum_is_const(reg->var_off)) { 2587 u64 uval = reg->var_off.value; 2588 s64 sval = (s64)uval; 2589 2590 if (reg->umin_value != uval || reg->umax_value != uval || 2591 reg->smin_value != sval || reg->smax_value != sval) { 2592 msg = "const tnum out of sync with range bounds"; 2593 goto out; 2594 } 2595 } 2596 2597 if (tnum_subreg_is_const(reg->var_off)) { 2598 u32 uval32 = tnum_subreg(reg->var_off).value; 2599 s32 sval32 = (s32)uval32; 2600 2601 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2602 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2603 msg = "const subreg tnum out of sync with range bounds"; 2604 goto out; 2605 } 2606 } 2607 2608 return 0; 2609 out: 2610 verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2611 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n", 2612 ctx, msg, reg->umin_value, reg->umax_value, 2613 reg->smin_value, reg->smax_value, 2614 reg->u32_min_value, reg->u32_max_value, 2615 reg->s32_min_value, reg->s32_max_value, 2616 reg->var_off.value, reg->var_off.mask); 2617 if (env->test_reg_invariants) 2618 return -EFAULT; 2619 __mark_reg_unbounded(reg); 2620 return 0; 2621 } 2622 2623 static bool __reg32_bound_s64(s32 a) 2624 { 2625 return a >= 0 && a <= S32_MAX; 2626 } 2627 2628 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2629 { 2630 reg->umin_value = reg->u32_min_value; 2631 reg->umax_value = reg->u32_max_value; 2632 2633 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2634 * be positive otherwise set to worse case bounds and refine later 2635 * from tnum. 2636 */ 2637 if (__reg32_bound_s64(reg->s32_min_value) && 2638 __reg32_bound_s64(reg->s32_max_value)) { 2639 reg->smin_value = reg->s32_min_value; 2640 reg->smax_value = reg->s32_max_value; 2641 } else { 2642 reg->smin_value = 0; 2643 reg->smax_value = U32_MAX; 2644 } 2645 } 2646 2647 /* Mark a register as having a completely unknown (scalar) value. */ 2648 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) 2649 { 2650 /* 2651 * Clear type, off, and union(map_ptr, range) and 2652 * padding between 'type' and union 2653 */ 2654 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2655 reg->type = SCALAR_VALUE; 2656 reg->id = 0; 2657 reg->ref_obj_id = 0; 2658 reg->var_off = tnum_unknown; 2659 reg->frameno = 0; 2660 reg->precise = false; 2661 __mark_reg_unbounded(reg); 2662 } 2663 2664 /* Mark a register as having a completely unknown (scalar) value, 2665 * initialize .precise as true when not bpf capable. 2666 */ 2667 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2668 struct bpf_reg_state *reg) 2669 { 2670 __mark_reg_unknown_imprecise(reg); 2671 reg->precise = !env->bpf_capable; 2672 } 2673 2674 static void mark_reg_unknown(struct bpf_verifier_env *env, 2675 struct bpf_reg_state *regs, u32 regno) 2676 { 2677 if (WARN_ON(regno >= MAX_BPF_REG)) { 2678 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2679 /* Something bad happened, let's kill all regs except FP */ 2680 for (regno = 0; regno < BPF_REG_FP; regno++) 2681 __mark_reg_not_init(env, regs + regno); 2682 return; 2683 } 2684 __mark_reg_unknown(env, regs + regno); 2685 } 2686 2687 static int __mark_reg_s32_range(struct bpf_verifier_env *env, 2688 struct bpf_reg_state *regs, 2689 u32 regno, 2690 s32 s32_min, 2691 s32 s32_max) 2692 { 2693 struct bpf_reg_state *reg = regs + regno; 2694 2695 reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min); 2696 reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max); 2697 2698 reg->smin_value = max_t(s64, reg->smin_value, s32_min); 2699 reg->smax_value = min_t(s64, reg->smax_value, s32_max); 2700 2701 reg_bounds_sync(reg); 2702 2703 return reg_bounds_sanity_check(env, reg, "s32_range"); 2704 } 2705 2706 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2707 struct bpf_reg_state *reg) 2708 { 2709 __mark_reg_unknown(env, reg); 2710 reg->type = NOT_INIT; 2711 } 2712 2713 static void mark_reg_not_init(struct bpf_verifier_env *env, 2714 struct bpf_reg_state *regs, u32 regno) 2715 { 2716 if (WARN_ON(regno >= MAX_BPF_REG)) { 2717 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2718 /* Something bad happened, let's kill all regs except FP */ 2719 for (regno = 0; regno < BPF_REG_FP; regno++) 2720 __mark_reg_not_init(env, regs + regno); 2721 return; 2722 } 2723 __mark_reg_not_init(env, regs + regno); 2724 } 2725 2726 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2727 struct bpf_reg_state *regs, u32 regno, 2728 enum bpf_reg_type reg_type, 2729 struct btf *btf, u32 btf_id, 2730 enum bpf_type_flag flag) 2731 { 2732 if (reg_type == SCALAR_VALUE) { 2733 mark_reg_unknown(env, regs, regno); 2734 return; 2735 } 2736 mark_reg_known_zero(env, regs, regno); 2737 regs[regno].type = PTR_TO_BTF_ID | flag; 2738 regs[regno].btf = btf; 2739 regs[regno].btf_id = btf_id; 2740 if (type_may_be_null(flag)) 2741 regs[regno].id = ++env->id_gen; 2742 } 2743 2744 #define DEF_NOT_SUBREG (0) 2745 static void init_reg_state(struct bpf_verifier_env *env, 2746 struct bpf_func_state *state) 2747 { 2748 struct bpf_reg_state *regs = state->regs; 2749 int i; 2750 2751 for (i = 0; i < MAX_BPF_REG; i++) { 2752 mark_reg_not_init(env, regs, i); 2753 regs[i].live = REG_LIVE_NONE; 2754 regs[i].parent = NULL; 2755 regs[i].subreg_def = DEF_NOT_SUBREG; 2756 } 2757 2758 /* frame pointer */ 2759 regs[BPF_REG_FP].type = PTR_TO_STACK; 2760 mark_reg_known_zero(env, regs, BPF_REG_FP); 2761 regs[BPF_REG_FP].frameno = state->frameno; 2762 } 2763 2764 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2765 { 2766 return (struct bpf_retval_range){ minval, maxval }; 2767 } 2768 2769 #define BPF_MAIN_FUNC (-1) 2770 static void init_func_state(struct bpf_verifier_env *env, 2771 struct bpf_func_state *state, 2772 int callsite, int frameno, int subprogno) 2773 { 2774 state->callsite = callsite; 2775 state->frameno = frameno; 2776 state->subprogno = subprogno; 2777 state->callback_ret_range = retval_range(0, 0); 2778 init_reg_state(env, state); 2779 mark_verifier_state_scratched(env); 2780 } 2781 2782 /* Similar to push_stack(), but for async callbacks */ 2783 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2784 int insn_idx, int prev_insn_idx, 2785 int subprog, bool is_sleepable) 2786 { 2787 struct bpf_verifier_stack_elem *elem; 2788 struct bpf_func_state *frame; 2789 2790 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2791 if (!elem) 2792 goto err; 2793 2794 elem->insn_idx = insn_idx; 2795 elem->prev_insn_idx = prev_insn_idx; 2796 elem->next = env->head; 2797 elem->log_pos = env->log.end_pos; 2798 env->head = elem; 2799 env->stack_size++; 2800 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2801 verbose(env, 2802 "The sequence of %d jumps is too complex for async cb.\n", 2803 env->stack_size); 2804 goto err; 2805 } 2806 /* Unlike push_stack() do not copy_verifier_state(). 2807 * The caller state doesn't matter. 2808 * This is async callback. It starts in a fresh stack. 2809 * Initialize it similar to do_check_common(). 2810 * But we do need to make sure to not clobber insn_hist, so we keep 2811 * chaining insn_hist_start/insn_hist_end indices as for a normal 2812 * child state. 2813 */ 2814 elem->st.branches = 1; 2815 elem->st.in_sleepable = is_sleepable; 2816 elem->st.insn_hist_start = env->cur_state->insn_hist_end; 2817 elem->st.insn_hist_end = elem->st.insn_hist_start; 2818 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2819 if (!frame) 2820 goto err; 2821 init_func_state(env, frame, 2822 BPF_MAIN_FUNC /* callsite */, 2823 0 /* frameno within this callchain */, 2824 subprog /* subprog number within this prog */); 2825 elem->st.frame[0] = frame; 2826 return &elem->st; 2827 err: 2828 free_verifier_state(env->cur_state, true); 2829 env->cur_state = NULL; 2830 /* pop all elements and return */ 2831 while (!pop_stack(env, NULL, NULL, false)); 2832 return NULL; 2833 } 2834 2835 2836 enum reg_arg_type { 2837 SRC_OP, /* register is used as source operand */ 2838 DST_OP, /* register is used as destination operand */ 2839 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2840 }; 2841 2842 static int cmp_subprogs(const void *a, const void *b) 2843 { 2844 return ((struct bpf_subprog_info *)a)->start - 2845 ((struct bpf_subprog_info *)b)->start; 2846 } 2847 2848 /* Find subprogram that contains instruction at 'off' */ 2849 static struct bpf_subprog_info *find_containing_subprog(struct bpf_verifier_env *env, int off) 2850 { 2851 struct bpf_subprog_info *vals = env->subprog_info; 2852 int l, r, m; 2853 2854 if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0) 2855 return NULL; 2856 2857 l = 0; 2858 r = env->subprog_cnt - 1; 2859 while (l < r) { 2860 m = l + (r - l + 1) / 2; 2861 if (vals[m].start <= off) 2862 l = m; 2863 else 2864 r = m - 1; 2865 } 2866 return &vals[l]; 2867 } 2868 2869 /* Find subprogram that starts exactly at 'off' */ 2870 static int find_subprog(struct bpf_verifier_env *env, int off) 2871 { 2872 struct bpf_subprog_info *p; 2873 2874 p = find_containing_subprog(env, off); 2875 if (!p || p->start != off) 2876 return -ENOENT; 2877 return p - env->subprog_info; 2878 } 2879 2880 static int add_subprog(struct bpf_verifier_env *env, int off) 2881 { 2882 int insn_cnt = env->prog->len; 2883 int ret; 2884 2885 if (off >= insn_cnt || off < 0) { 2886 verbose(env, "call to invalid destination\n"); 2887 return -EINVAL; 2888 } 2889 ret = find_subprog(env, off); 2890 if (ret >= 0) 2891 return ret; 2892 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2893 verbose(env, "too many subprograms\n"); 2894 return -E2BIG; 2895 } 2896 /* determine subprog starts. The end is one before the next starts */ 2897 env->subprog_info[env->subprog_cnt++].start = off; 2898 sort(env->subprog_info, env->subprog_cnt, 2899 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2900 return env->subprog_cnt - 1; 2901 } 2902 2903 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 2904 { 2905 struct bpf_prog_aux *aux = env->prog->aux; 2906 struct btf *btf = aux->btf; 2907 const struct btf_type *t; 2908 u32 main_btf_id, id; 2909 const char *name; 2910 int ret, i; 2911 2912 /* Non-zero func_info_cnt implies valid btf */ 2913 if (!aux->func_info_cnt) 2914 return 0; 2915 main_btf_id = aux->func_info[0].type_id; 2916 2917 t = btf_type_by_id(btf, main_btf_id); 2918 if (!t) { 2919 verbose(env, "invalid btf id for main subprog in func_info\n"); 2920 return -EINVAL; 2921 } 2922 2923 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 2924 if (IS_ERR(name)) { 2925 ret = PTR_ERR(name); 2926 /* If there is no tag present, there is no exception callback */ 2927 if (ret == -ENOENT) 2928 ret = 0; 2929 else if (ret == -EEXIST) 2930 verbose(env, "multiple exception callback tags for main subprog\n"); 2931 return ret; 2932 } 2933 2934 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 2935 if (ret < 0) { 2936 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 2937 return ret; 2938 } 2939 id = ret; 2940 t = btf_type_by_id(btf, id); 2941 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 2942 verbose(env, "exception callback '%s' must have global linkage\n", name); 2943 return -EINVAL; 2944 } 2945 ret = 0; 2946 for (i = 0; i < aux->func_info_cnt; i++) { 2947 if (aux->func_info[i].type_id != id) 2948 continue; 2949 ret = aux->func_info[i].insn_off; 2950 /* Further func_info and subprog checks will also happen 2951 * later, so assume this is the right insn_off for now. 2952 */ 2953 if (!ret) { 2954 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 2955 ret = -EINVAL; 2956 } 2957 } 2958 if (!ret) { 2959 verbose(env, "exception callback type id not found in func_info\n"); 2960 ret = -EINVAL; 2961 } 2962 return ret; 2963 } 2964 2965 #define MAX_KFUNC_DESCS 256 2966 #define MAX_KFUNC_BTFS 256 2967 2968 struct bpf_kfunc_desc { 2969 struct btf_func_model func_model; 2970 u32 func_id; 2971 s32 imm; 2972 u16 offset; 2973 unsigned long addr; 2974 }; 2975 2976 struct bpf_kfunc_btf { 2977 struct btf *btf; 2978 struct module *module; 2979 u16 offset; 2980 }; 2981 2982 struct bpf_kfunc_desc_tab { 2983 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2984 * verification. JITs do lookups by bpf_insn, where func_id may not be 2985 * available, therefore at the end of verification do_misc_fixups() 2986 * sorts this by imm and offset. 2987 */ 2988 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2989 u32 nr_descs; 2990 }; 2991 2992 struct bpf_kfunc_btf_tab { 2993 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2994 u32 nr_descs; 2995 }; 2996 2997 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2998 { 2999 const struct bpf_kfunc_desc *d0 = a; 3000 const struct bpf_kfunc_desc *d1 = b; 3001 3002 /* func_id is not greater than BTF_MAX_TYPE */ 3003 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 3004 } 3005 3006 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 3007 { 3008 const struct bpf_kfunc_btf *d0 = a; 3009 const struct bpf_kfunc_btf *d1 = b; 3010 3011 return d0->offset - d1->offset; 3012 } 3013 3014 static const struct bpf_kfunc_desc * 3015 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 3016 { 3017 struct bpf_kfunc_desc desc = { 3018 .func_id = func_id, 3019 .offset = offset, 3020 }; 3021 struct bpf_kfunc_desc_tab *tab; 3022 3023 tab = prog->aux->kfunc_tab; 3024 return bsearch(&desc, tab->descs, tab->nr_descs, 3025 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 3026 } 3027 3028 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 3029 u16 btf_fd_idx, u8 **func_addr) 3030 { 3031 const struct bpf_kfunc_desc *desc; 3032 3033 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 3034 if (!desc) 3035 return -EFAULT; 3036 3037 *func_addr = (u8 *)desc->addr; 3038 return 0; 3039 } 3040 3041 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 3042 s16 offset) 3043 { 3044 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 3045 struct bpf_kfunc_btf_tab *tab; 3046 struct bpf_kfunc_btf *b; 3047 struct module *mod; 3048 struct btf *btf; 3049 int btf_fd; 3050 3051 tab = env->prog->aux->kfunc_btf_tab; 3052 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 3053 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 3054 if (!b) { 3055 if (tab->nr_descs == MAX_KFUNC_BTFS) { 3056 verbose(env, "too many different module BTFs\n"); 3057 return ERR_PTR(-E2BIG); 3058 } 3059 3060 if (bpfptr_is_null(env->fd_array)) { 3061 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 3062 return ERR_PTR(-EPROTO); 3063 } 3064 3065 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 3066 offset * sizeof(btf_fd), 3067 sizeof(btf_fd))) 3068 return ERR_PTR(-EFAULT); 3069 3070 btf = btf_get_by_fd(btf_fd); 3071 if (IS_ERR(btf)) { 3072 verbose(env, "invalid module BTF fd specified\n"); 3073 return btf; 3074 } 3075 3076 if (!btf_is_module(btf)) { 3077 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 3078 btf_put(btf); 3079 return ERR_PTR(-EINVAL); 3080 } 3081 3082 mod = btf_try_get_module(btf); 3083 if (!mod) { 3084 btf_put(btf); 3085 return ERR_PTR(-ENXIO); 3086 } 3087 3088 b = &tab->descs[tab->nr_descs++]; 3089 b->btf = btf; 3090 b->module = mod; 3091 b->offset = offset; 3092 3093 /* sort() reorders entries by value, so b may no longer point 3094 * to the right entry after this 3095 */ 3096 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3097 kfunc_btf_cmp_by_off, NULL); 3098 } else { 3099 btf = b->btf; 3100 } 3101 3102 return btf; 3103 } 3104 3105 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 3106 { 3107 if (!tab) 3108 return; 3109 3110 while (tab->nr_descs--) { 3111 module_put(tab->descs[tab->nr_descs].module); 3112 btf_put(tab->descs[tab->nr_descs].btf); 3113 } 3114 kfree(tab); 3115 } 3116 3117 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 3118 { 3119 if (offset) { 3120 if (offset < 0) { 3121 /* In the future, this can be allowed to increase limit 3122 * of fd index into fd_array, interpreted as u16. 3123 */ 3124 verbose(env, "negative offset disallowed for kernel module function call\n"); 3125 return ERR_PTR(-EINVAL); 3126 } 3127 3128 return __find_kfunc_desc_btf(env, offset); 3129 } 3130 return btf_vmlinux ?: ERR_PTR(-ENOENT); 3131 } 3132 3133 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 3134 { 3135 const struct btf_type *func, *func_proto; 3136 struct bpf_kfunc_btf_tab *btf_tab; 3137 struct bpf_kfunc_desc_tab *tab; 3138 struct bpf_prog_aux *prog_aux; 3139 struct bpf_kfunc_desc *desc; 3140 const char *func_name; 3141 struct btf *desc_btf; 3142 unsigned long call_imm; 3143 unsigned long addr; 3144 int err; 3145 3146 prog_aux = env->prog->aux; 3147 tab = prog_aux->kfunc_tab; 3148 btf_tab = prog_aux->kfunc_btf_tab; 3149 if (!tab) { 3150 if (!btf_vmlinux) { 3151 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 3152 return -ENOTSUPP; 3153 } 3154 3155 if (!env->prog->jit_requested) { 3156 verbose(env, "JIT is required for calling kernel function\n"); 3157 return -ENOTSUPP; 3158 } 3159 3160 if (!bpf_jit_supports_kfunc_call()) { 3161 verbose(env, "JIT does not support calling kernel function\n"); 3162 return -ENOTSUPP; 3163 } 3164 3165 if (!env->prog->gpl_compatible) { 3166 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 3167 return -EINVAL; 3168 } 3169 3170 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 3171 if (!tab) 3172 return -ENOMEM; 3173 prog_aux->kfunc_tab = tab; 3174 } 3175 3176 /* func_id == 0 is always invalid, but instead of returning an error, be 3177 * conservative and wait until the code elimination pass before returning 3178 * error, so that invalid calls that get pruned out can be in BPF programs 3179 * loaded from userspace. It is also required that offset be untouched 3180 * for such calls. 3181 */ 3182 if (!func_id && !offset) 3183 return 0; 3184 3185 if (!btf_tab && offset) { 3186 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 3187 if (!btf_tab) 3188 return -ENOMEM; 3189 prog_aux->kfunc_btf_tab = btf_tab; 3190 } 3191 3192 desc_btf = find_kfunc_desc_btf(env, offset); 3193 if (IS_ERR(desc_btf)) { 3194 verbose(env, "failed to find BTF for kernel function\n"); 3195 return PTR_ERR(desc_btf); 3196 } 3197 3198 if (find_kfunc_desc(env->prog, func_id, offset)) 3199 return 0; 3200 3201 if (tab->nr_descs == MAX_KFUNC_DESCS) { 3202 verbose(env, "too many different kernel function calls\n"); 3203 return -E2BIG; 3204 } 3205 3206 func = btf_type_by_id(desc_btf, func_id); 3207 if (!func || !btf_type_is_func(func)) { 3208 verbose(env, "kernel btf_id %u is not a function\n", 3209 func_id); 3210 return -EINVAL; 3211 } 3212 func_proto = btf_type_by_id(desc_btf, func->type); 3213 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 3214 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 3215 func_id); 3216 return -EINVAL; 3217 } 3218 3219 func_name = btf_name_by_offset(desc_btf, func->name_off); 3220 addr = kallsyms_lookup_name(func_name); 3221 if (!addr) { 3222 verbose(env, "cannot find address for kernel function %s\n", 3223 func_name); 3224 return -EINVAL; 3225 } 3226 specialize_kfunc(env, func_id, offset, &addr); 3227 3228 if (bpf_jit_supports_far_kfunc_call()) { 3229 call_imm = func_id; 3230 } else { 3231 call_imm = BPF_CALL_IMM(addr); 3232 /* Check whether the relative offset overflows desc->imm */ 3233 if ((unsigned long)(s32)call_imm != call_imm) { 3234 verbose(env, "address of kernel function %s is out of range\n", 3235 func_name); 3236 return -EINVAL; 3237 } 3238 } 3239 3240 if (bpf_dev_bound_kfunc_id(func_id)) { 3241 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 3242 if (err) 3243 return err; 3244 } 3245 3246 desc = &tab->descs[tab->nr_descs++]; 3247 desc->func_id = func_id; 3248 desc->imm = call_imm; 3249 desc->offset = offset; 3250 desc->addr = addr; 3251 err = btf_distill_func_proto(&env->log, desc_btf, 3252 func_proto, func_name, 3253 &desc->func_model); 3254 if (!err) 3255 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3256 kfunc_desc_cmp_by_id_off, NULL); 3257 return err; 3258 } 3259 3260 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 3261 { 3262 const struct bpf_kfunc_desc *d0 = a; 3263 const struct bpf_kfunc_desc *d1 = b; 3264 3265 if (d0->imm != d1->imm) 3266 return d0->imm < d1->imm ? -1 : 1; 3267 if (d0->offset != d1->offset) 3268 return d0->offset < d1->offset ? -1 : 1; 3269 return 0; 3270 } 3271 3272 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 3273 { 3274 struct bpf_kfunc_desc_tab *tab; 3275 3276 tab = prog->aux->kfunc_tab; 3277 if (!tab) 3278 return; 3279 3280 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3281 kfunc_desc_cmp_by_imm_off, NULL); 3282 } 3283 3284 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 3285 { 3286 return !!prog->aux->kfunc_tab; 3287 } 3288 3289 const struct btf_func_model * 3290 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 3291 const struct bpf_insn *insn) 3292 { 3293 const struct bpf_kfunc_desc desc = { 3294 .imm = insn->imm, 3295 .offset = insn->off, 3296 }; 3297 const struct bpf_kfunc_desc *res; 3298 struct bpf_kfunc_desc_tab *tab; 3299 3300 tab = prog->aux->kfunc_tab; 3301 res = bsearch(&desc, tab->descs, tab->nr_descs, 3302 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3303 3304 return res ? &res->func_model : NULL; 3305 } 3306 3307 static int add_kfunc_in_insns(struct bpf_verifier_env *env, 3308 struct bpf_insn *insn, int cnt) 3309 { 3310 int i, ret; 3311 3312 for (i = 0; i < cnt; i++, insn++) { 3313 if (bpf_pseudo_kfunc_call(insn)) { 3314 ret = add_kfunc_call(env, insn->imm, insn->off); 3315 if (ret < 0) 3316 return ret; 3317 } 3318 } 3319 return 0; 3320 } 3321 3322 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3323 { 3324 struct bpf_subprog_info *subprog = env->subprog_info; 3325 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 3326 struct bpf_insn *insn = env->prog->insnsi; 3327 3328 /* Add entry function. */ 3329 ret = add_subprog(env, 0); 3330 if (ret) 3331 return ret; 3332 3333 for (i = 0; i < insn_cnt; i++, insn++) { 3334 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3335 !bpf_pseudo_kfunc_call(insn)) 3336 continue; 3337 3338 if (!env->bpf_capable) { 3339 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3340 return -EPERM; 3341 } 3342 3343 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3344 ret = add_subprog(env, i + insn->imm + 1); 3345 else 3346 ret = add_kfunc_call(env, insn->imm, insn->off); 3347 3348 if (ret < 0) 3349 return ret; 3350 } 3351 3352 ret = bpf_find_exception_callback_insn_off(env); 3353 if (ret < 0) 3354 return ret; 3355 ex_cb_insn = ret; 3356 3357 /* If ex_cb_insn > 0, this means that the main program has a subprog 3358 * marked using BTF decl tag to serve as the exception callback. 3359 */ 3360 if (ex_cb_insn) { 3361 ret = add_subprog(env, ex_cb_insn); 3362 if (ret < 0) 3363 return ret; 3364 for (i = 1; i < env->subprog_cnt; i++) { 3365 if (env->subprog_info[i].start != ex_cb_insn) 3366 continue; 3367 env->exception_callback_subprog = i; 3368 mark_subprog_exc_cb(env, i); 3369 break; 3370 } 3371 } 3372 3373 /* Add a fake 'exit' subprog which could simplify subprog iteration 3374 * logic. 'subprog_cnt' should not be increased. 3375 */ 3376 subprog[env->subprog_cnt].start = insn_cnt; 3377 3378 if (env->log.level & BPF_LOG_LEVEL2) 3379 for (i = 0; i < env->subprog_cnt; i++) 3380 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3381 3382 return 0; 3383 } 3384 3385 static int jmp_offset(struct bpf_insn *insn) 3386 { 3387 u8 code = insn->code; 3388 3389 if (code == (BPF_JMP32 | BPF_JA)) 3390 return insn->imm; 3391 return insn->off; 3392 } 3393 3394 static int check_subprogs(struct bpf_verifier_env *env) 3395 { 3396 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3397 struct bpf_subprog_info *subprog = env->subprog_info; 3398 struct bpf_insn *insn = env->prog->insnsi; 3399 int insn_cnt = env->prog->len; 3400 3401 /* now check that all jumps are within the same subprog */ 3402 subprog_start = subprog[cur_subprog].start; 3403 subprog_end = subprog[cur_subprog + 1].start; 3404 for (i = 0; i < insn_cnt; i++) { 3405 u8 code = insn[i].code; 3406 3407 if (code == (BPF_JMP | BPF_CALL) && 3408 insn[i].src_reg == 0 && 3409 insn[i].imm == BPF_FUNC_tail_call) { 3410 subprog[cur_subprog].has_tail_call = true; 3411 subprog[cur_subprog].tail_call_reachable = true; 3412 } 3413 if (BPF_CLASS(code) == BPF_LD && 3414 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3415 subprog[cur_subprog].has_ld_abs = true; 3416 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3417 goto next; 3418 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3419 goto next; 3420 off = i + jmp_offset(&insn[i]) + 1; 3421 if (off < subprog_start || off >= subprog_end) { 3422 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3423 return -EINVAL; 3424 } 3425 next: 3426 if (i == subprog_end - 1) { 3427 /* to avoid fall-through from one subprog into another 3428 * the last insn of the subprog should be either exit 3429 * or unconditional jump back or bpf_throw call 3430 */ 3431 if (code != (BPF_JMP | BPF_EXIT) && 3432 code != (BPF_JMP32 | BPF_JA) && 3433 code != (BPF_JMP | BPF_JA)) { 3434 verbose(env, "last insn is not an exit or jmp\n"); 3435 return -EINVAL; 3436 } 3437 subprog_start = subprog_end; 3438 cur_subprog++; 3439 if (cur_subprog < env->subprog_cnt) 3440 subprog_end = subprog[cur_subprog + 1].start; 3441 } 3442 } 3443 return 0; 3444 } 3445 3446 /* Parentage chain of this register (or stack slot) should take care of all 3447 * issues like callee-saved registers, stack slot allocation time, etc. 3448 */ 3449 static int mark_reg_read(struct bpf_verifier_env *env, 3450 const struct bpf_reg_state *state, 3451 struct bpf_reg_state *parent, u8 flag) 3452 { 3453 bool writes = parent == state->parent; /* Observe write marks */ 3454 int cnt = 0; 3455 3456 while (parent) { 3457 /* if read wasn't screened by an earlier write ... */ 3458 if (writes && state->live & REG_LIVE_WRITTEN) 3459 break; 3460 if (verifier_bug_if(parent->live & REG_LIVE_DONE, env, 3461 "type %s var_off %lld off %d", 3462 reg_type_str(env, parent->type), 3463 parent->var_off.value, parent->off)) 3464 return -EFAULT; 3465 /* The first condition is more likely to be true than the 3466 * second, checked it first. 3467 */ 3468 if ((parent->live & REG_LIVE_READ) == flag || 3469 parent->live & REG_LIVE_READ64) 3470 /* The parentage chain never changes and 3471 * this parent was already marked as LIVE_READ. 3472 * There is no need to keep walking the chain again and 3473 * keep re-marking all parents as LIVE_READ. 3474 * This case happens when the same register is read 3475 * multiple times without writes into it in-between. 3476 * Also, if parent has the stronger REG_LIVE_READ64 set, 3477 * then no need to set the weak REG_LIVE_READ32. 3478 */ 3479 break; 3480 /* ... then we depend on parent's value */ 3481 parent->live |= flag; 3482 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3483 if (flag == REG_LIVE_READ64) 3484 parent->live &= ~REG_LIVE_READ32; 3485 state = parent; 3486 parent = state->parent; 3487 writes = true; 3488 cnt++; 3489 } 3490 3491 if (env->longest_mark_read_walk < cnt) 3492 env->longest_mark_read_walk = cnt; 3493 return 0; 3494 } 3495 3496 static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3497 int spi, int nr_slots) 3498 { 3499 struct bpf_func_state *state = func(env, reg); 3500 int err, i; 3501 3502 for (i = 0; i < nr_slots; i++) { 3503 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3504 3505 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3506 if (err) 3507 return err; 3508 3509 mark_stack_slot_scratched(env, spi - i); 3510 } 3511 return 0; 3512 } 3513 3514 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3515 { 3516 int spi; 3517 3518 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3519 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3520 * check_kfunc_call. 3521 */ 3522 if (reg->type == CONST_PTR_TO_DYNPTR) 3523 return 0; 3524 spi = dynptr_get_spi(env, reg); 3525 if (spi < 0) 3526 return spi; 3527 /* Caller ensures dynptr is valid and initialized, which means spi is in 3528 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3529 * read. 3530 */ 3531 return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS); 3532 } 3533 3534 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3535 int spi, int nr_slots) 3536 { 3537 return mark_stack_slot_obj_read(env, reg, spi, nr_slots); 3538 } 3539 3540 static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3541 { 3542 int spi; 3543 3544 spi = irq_flag_get_spi(env, reg); 3545 if (spi < 0) 3546 return spi; 3547 return mark_stack_slot_obj_read(env, reg, spi, 1); 3548 } 3549 3550 /* This function is supposed to be used by the following 32-bit optimization 3551 * code only. It returns TRUE if the source or destination register operates 3552 * on 64-bit, otherwise return FALSE. 3553 */ 3554 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3555 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3556 { 3557 u8 code, class, op; 3558 3559 code = insn->code; 3560 class = BPF_CLASS(code); 3561 op = BPF_OP(code); 3562 if (class == BPF_JMP) { 3563 /* BPF_EXIT for "main" will reach here. Return TRUE 3564 * conservatively. 3565 */ 3566 if (op == BPF_EXIT) 3567 return true; 3568 if (op == BPF_CALL) { 3569 /* BPF to BPF call will reach here because of marking 3570 * caller saved clobber with DST_OP_NO_MARK for which we 3571 * don't care the register def because they are anyway 3572 * marked as NOT_INIT already. 3573 */ 3574 if (insn->src_reg == BPF_PSEUDO_CALL) 3575 return false; 3576 /* Helper call will reach here because of arg type 3577 * check, conservatively return TRUE. 3578 */ 3579 if (t == SRC_OP) 3580 return true; 3581 3582 return false; 3583 } 3584 } 3585 3586 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3587 return false; 3588 3589 if (class == BPF_ALU64 || class == BPF_JMP || 3590 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3591 return true; 3592 3593 if (class == BPF_ALU || class == BPF_JMP32) 3594 return false; 3595 3596 if (class == BPF_LDX) { 3597 if (t != SRC_OP) 3598 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3599 /* LDX source must be ptr. */ 3600 return true; 3601 } 3602 3603 if (class == BPF_STX) { 3604 /* BPF_STX (including atomic variants) has one or more source 3605 * operands, one of which is a ptr. Check whether the caller is 3606 * asking about it. 3607 */ 3608 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3609 return true; 3610 return BPF_SIZE(code) == BPF_DW; 3611 } 3612 3613 if (class == BPF_LD) { 3614 u8 mode = BPF_MODE(code); 3615 3616 /* LD_IMM64 */ 3617 if (mode == BPF_IMM) 3618 return true; 3619 3620 /* Both LD_IND and LD_ABS return 32-bit data. */ 3621 if (t != SRC_OP) 3622 return false; 3623 3624 /* Implicit ctx ptr. */ 3625 if (regno == BPF_REG_6) 3626 return true; 3627 3628 /* Explicit source could be any width. */ 3629 return true; 3630 } 3631 3632 if (class == BPF_ST) 3633 /* The only source register for BPF_ST is a ptr. */ 3634 return true; 3635 3636 /* Conservatively return true at default. */ 3637 return true; 3638 } 3639 3640 /* Return the regno defined by the insn, or -1. */ 3641 static int insn_def_regno(const struct bpf_insn *insn) 3642 { 3643 switch (BPF_CLASS(insn->code)) { 3644 case BPF_JMP: 3645 case BPF_JMP32: 3646 case BPF_ST: 3647 return -1; 3648 case BPF_STX: 3649 if (BPF_MODE(insn->code) == BPF_ATOMIC || 3650 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) { 3651 if (insn->imm == BPF_CMPXCHG) 3652 return BPF_REG_0; 3653 else if (insn->imm == BPF_LOAD_ACQ) 3654 return insn->dst_reg; 3655 else if (insn->imm & BPF_FETCH) 3656 return insn->src_reg; 3657 } 3658 return -1; 3659 default: 3660 return insn->dst_reg; 3661 } 3662 } 3663 3664 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3665 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3666 { 3667 int dst_reg = insn_def_regno(insn); 3668 3669 if (dst_reg == -1) 3670 return false; 3671 3672 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3673 } 3674 3675 static void mark_insn_zext(struct bpf_verifier_env *env, 3676 struct bpf_reg_state *reg) 3677 { 3678 s32 def_idx = reg->subreg_def; 3679 3680 if (def_idx == DEF_NOT_SUBREG) 3681 return; 3682 3683 env->insn_aux_data[def_idx - 1].zext_dst = true; 3684 /* The dst will be zero extended, so won't be sub-register anymore. */ 3685 reg->subreg_def = DEF_NOT_SUBREG; 3686 } 3687 3688 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3689 enum reg_arg_type t) 3690 { 3691 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3692 struct bpf_reg_state *reg; 3693 bool rw64; 3694 3695 if (regno >= MAX_BPF_REG) { 3696 verbose(env, "R%d is invalid\n", regno); 3697 return -EINVAL; 3698 } 3699 3700 mark_reg_scratched(env, regno); 3701 3702 reg = ®s[regno]; 3703 rw64 = is_reg64(env, insn, regno, reg, t); 3704 if (t == SRC_OP) { 3705 /* check whether register used as source operand can be read */ 3706 if (reg->type == NOT_INIT) { 3707 verbose(env, "R%d !read_ok\n", regno); 3708 return -EACCES; 3709 } 3710 /* We don't need to worry about FP liveness because it's read-only */ 3711 if (regno == BPF_REG_FP) 3712 return 0; 3713 3714 if (rw64) 3715 mark_insn_zext(env, reg); 3716 3717 return mark_reg_read(env, reg, reg->parent, 3718 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3719 } else { 3720 /* check whether register used as dest operand can be written to */ 3721 if (regno == BPF_REG_FP) { 3722 verbose(env, "frame pointer is read only\n"); 3723 return -EACCES; 3724 } 3725 reg->live |= REG_LIVE_WRITTEN; 3726 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3727 if (t == DST_OP) 3728 mark_reg_unknown(env, regs, regno); 3729 } 3730 return 0; 3731 } 3732 3733 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3734 enum reg_arg_type t) 3735 { 3736 struct bpf_verifier_state *vstate = env->cur_state; 3737 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3738 3739 return __check_reg_arg(env, state->regs, regno, t); 3740 } 3741 3742 static int insn_stack_access_flags(int frameno, int spi) 3743 { 3744 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3745 } 3746 3747 static int insn_stack_access_spi(int insn_flags) 3748 { 3749 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3750 } 3751 3752 static int insn_stack_access_frameno(int insn_flags) 3753 { 3754 return insn_flags & INSN_F_FRAMENO_MASK; 3755 } 3756 3757 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3758 { 3759 env->insn_aux_data[idx].jmp_point = true; 3760 } 3761 3762 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3763 { 3764 return env->insn_aux_data[insn_idx].jmp_point; 3765 } 3766 3767 #define LR_FRAMENO_BITS 3 3768 #define LR_SPI_BITS 6 3769 #define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1) 3770 #define LR_SIZE_BITS 4 3771 #define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1) 3772 #define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1) 3773 #define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1) 3774 #define LR_SPI_OFF LR_FRAMENO_BITS 3775 #define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS) 3776 #define LINKED_REGS_MAX 6 3777 3778 struct linked_reg { 3779 u8 frameno; 3780 union { 3781 u8 spi; 3782 u8 regno; 3783 }; 3784 bool is_reg; 3785 }; 3786 3787 struct linked_regs { 3788 int cnt; 3789 struct linked_reg entries[LINKED_REGS_MAX]; 3790 }; 3791 3792 static struct linked_reg *linked_regs_push(struct linked_regs *s) 3793 { 3794 if (s->cnt < LINKED_REGS_MAX) 3795 return &s->entries[s->cnt++]; 3796 3797 return NULL; 3798 } 3799 3800 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track 3801 * number of elements currently in stack. 3802 * Pack one history entry for linked registers as 10 bits in the following format: 3803 * - 3-bits frameno 3804 * - 6-bits spi_or_reg 3805 * - 1-bit is_reg 3806 */ 3807 static u64 linked_regs_pack(struct linked_regs *s) 3808 { 3809 u64 val = 0; 3810 int i; 3811 3812 for (i = 0; i < s->cnt; ++i) { 3813 struct linked_reg *e = &s->entries[i]; 3814 u64 tmp = 0; 3815 3816 tmp |= e->frameno; 3817 tmp |= e->spi << LR_SPI_OFF; 3818 tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF; 3819 3820 val <<= LR_ENTRY_BITS; 3821 val |= tmp; 3822 } 3823 val <<= LR_SIZE_BITS; 3824 val |= s->cnt; 3825 return val; 3826 } 3827 3828 static void linked_regs_unpack(u64 val, struct linked_regs *s) 3829 { 3830 int i; 3831 3832 s->cnt = val & LR_SIZE_MASK; 3833 val >>= LR_SIZE_BITS; 3834 3835 for (i = 0; i < s->cnt; ++i) { 3836 struct linked_reg *e = &s->entries[i]; 3837 3838 e->frameno = val & LR_FRAMENO_MASK; 3839 e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK; 3840 e->is_reg = (val >> LR_IS_REG_OFF) & 0x1; 3841 val >>= LR_ENTRY_BITS; 3842 } 3843 } 3844 3845 /* for any branch, call, exit record the history of jmps in the given state */ 3846 static int push_insn_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 3847 int insn_flags, u64 linked_regs) 3848 { 3849 struct bpf_insn_hist_entry *p; 3850 size_t alloc_size; 3851 3852 /* combine instruction flags if we already recorded this instruction */ 3853 if (env->cur_hist_ent) { 3854 /* atomic instructions push insn_flags twice, for READ and 3855 * WRITE sides, but they should agree on stack slot 3856 */ 3857 verifier_bug_if((env->cur_hist_ent->flags & insn_flags) && 3858 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 3859 env, "insn history: insn_idx %d cur flags %x new flags %x", 3860 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 3861 env->cur_hist_ent->flags |= insn_flags; 3862 verifier_bug_if(env->cur_hist_ent->linked_regs != 0, env, 3863 "insn history: insn_idx %d linked_regs: %#llx", 3864 env->insn_idx, env->cur_hist_ent->linked_regs); 3865 env->cur_hist_ent->linked_regs = linked_regs; 3866 return 0; 3867 } 3868 3869 if (cur->insn_hist_end + 1 > env->insn_hist_cap) { 3870 alloc_size = size_mul(cur->insn_hist_end + 1, sizeof(*p)); 3871 p = kvrealloc(env->insn_hist, alloc_size, GFP_USER); 3872 if (!p) 3873 return -ENOMEM; 3874 env->insn_hist = p; 3875 env->insn_hist_cap = alloc_size / sizeof(*p); 3876 } 3877 3878 p = &env->insn_hist[cur->insn_hist_end]; 3879 p->idx = env->insn_idx; 3880 p->prev_idx = env->prev_insn_idx; 3881 p->flags = insn_flags; 3882 p->linked_regs = linked_regs; 3883 3884 cur->insn_hist_end++; 3885 env->cur_hist_ent = p; 3886 3887 return 0; 3888 } 3889 3890 static struct bpf_insn_hist_entry *get_insn_hist_entry(struct bpf_verifier_env *env, 3891 u32 hist_start, u32 hist_end, int insn_idx) 3892 { 3893 if (hist_end > hist_start && env->insn_hist[hist_end - 1].idx == insn_idx) 3894 return &env->insn_hist[hist_end - 1]; 3895 return NULL; 3896 } 3897 3898 /* Backtrack one insn at a time. If idx is not at the top of recorded 3899 * history then previous instruction came from straight line execution. 3900 * Return -ENOENT if we exhausted all instructions within given state. 3901 * 3902 * It's legal to have a bit of a looping with the same starting and ending 3903 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3904 * instruction index is the same as state's first_idx doesn't mean we are 3905 * done. If there is still some jump history left, we should keep going. We 3906 * need to take into account that we might have a jump history between given 3907 * state's parent and itself, due to checkpointing. In this case, we'll have 3908 * history entry recording a jump from last instruction of parent state and 3909 * first instruction of given state. 3910 */ 3911 static int get_prev_insn_idx(const struct bpf_verifier_env *env, 3912 struct bpf_verifier_state *st, 3913 int insn_idx, u32 hist_start, u32 *hist_endp) 3914 { 3915 u32 hist_end = *hist_endp; 3916 u32 cnt = hist_end - hist_start; 3917 3918 if (insn_idx == st->first_insn_idx) { 3919 if (cnt == 0) 3920 return -ENOENT; 3921 if (cnt == 1 && env->insn_hist[hist_start].idx == insn_idx) 3922 return -ENOENT; 3923 } 3924 3925 if (cnt && env->insn_hist[hist_end - 1].idx == insn_idx) { 3926 (*hist_endp)--; 3927 return env->insn_hist[hist_end - 1].prev_idx; 3928 } else { 3929 return insn_idx - 1; 3930 } 3931 } 3932 3933 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3934 { 3935 const struct btf_type *func; 3936 struct btf *desc_btf; 3937 3938 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3939 return NULL; 3940 3941 desc_btf = find_kfunc_desc_btf(data, insn->off); 3942 if (IS_ERR(desc_btf)) 3943 return "<error>"; 3944 3945 func = btf_type_by_id(desc_btf, insn->imm); 3946 return btf_name_by_offset(desc_btf, func->name_off); 3947 } 3948 3949 static void verbose_insn(struct bpf_verifier_env *env, struct bpf_insn *insn) 3950 { 3951 const struct bpf_insn_cbs cbs = { 3952 .cb_call = disasm_kfunc_name, 3953 .cb_print = verbose, 3954 .private_data = env, 3955 }; 3956 3957 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3958 } 3959 3960 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3961 { 3962 bt->frame = frame; 3963 } 3964 3965 static inline void bt_reset(struct backtrack_state *bt) 3966 { 3967 struct bpf_verifier_env *env = bt->env; 3968 3969 memset(bt, 0, sizeof(*bt)); 3970 bt->env = env; 3971 } 3972 3973 static inline u32 bt_empty(struct backtrack_state *bt) 3974 { 3975 u64 mask = 0; 3976 int i; 3977 3978 for (i = 0; i <= bt->frame; i++) 3979 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3980 3981 return mask == 0; 3982 } 3983 3984 static inline int bt_subprog_enter(struct backtrack_state *bt) 3985 { 3986 if (bt->frame == MAX_CALL_FRAMES - 1) { 3987 verifier_bug(bt->env, "subprog enter from frame %d", bt->frame); 3988 return -EFAULT; 3989 } 3990 bt->frame++; 3991 return 0; 3992 } 3993 3994 static inline int bt_subprog_exit(struct backtrack_state *bt) 3995 { 3996 if (bt->frame == 0) { 3997 verifier_bug(bt->env, "subprog exit from frame 0"); 3998 return -EFAULT; 3999 } 4000 bt->frame--; 4001 return 0; 4002 } 4003 4004 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 4005 { 4006 bt->reg_masks[frame] |= 1 << reg; 4007 } 4008 4009 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 4010 { 4011 bt->reg_masks[frame] &= ~(1 << reg); 4012 } 4013 4014 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 4015 { 4016 bt_set_frame_reg(bt, bt->frame, reg); 4017 } 4018 4019 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 4020 { 4021 bt_clear_frame_reg(bt, bt->frame, reg); 4022 } 4023 4024 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 4025 { 4026 bt->stack_masks[frame] |= 1ull << slot; 4027 } 4028 4029 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 4030 { 4031 bt->stack_masks[frame] &= ~(1ull << slot); 4032 } 4033 4034 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 4035 { 4036 return bt->reg_masks[frame]; 4037 } 4038 4039 static inline u32 bt_reg_mask(struct backtrack_state *bt) 4040 { 4041 return bt->reg_masks[bt->frame]; 4042 } 4043 4044 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 4045 { 4046 return bt->stack_masks[frame]; 4047 } 4048 4049 static inline u64 bt_stack_mask(struct backtrack_state *bt) 4050 { 4051 return bt->stack_masks[bt->frame]; 4052 } 4053 4054 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 4055 { 4056 return bt->reg_masks[bt->frame] & (1 << reg); 4057 } 4058 4059 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg) 4060 { 4061 return bt->reg_masks[frame] & (1 << reg); 4062 } 4063 4064 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 4065 { 4066 return bt->stack_masks[frame] & (1ull << slot); 4067 } 4068 4069 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 4070 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 4071 { 4072 DECLARE_BITMAP(mask, 64); 4073 bool first = true; 4074 int i, n; 4075 4076 buf[0] = '\0'; 4077 4078 bitmap_from_u64(mask, reg_mask); 4079 for_each_set_bit(i, mask, 32) { 4080 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 4081 first = false; 4082 buf += n; 4083 buf_sz -= n; 4084 if (buf_sz < 0) 4085 break; 4086 } 4087 } 4088 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 4089 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 4090 { 4091 DECLARE_BITMAP(mask, 64); 4092 bool first = true; 4093 int i, n; 4094 4095 buf[0] = '\0'; 4096 4097 bitmap_from_u64(mask, stack_mask); 4098 for_each_set_bit(i, mask, 64) { 4099 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 4100 first = false; 4101 buf += n; 4102 buf_sz -= n; 4103 if (buf_sz < 0) 4104 break; 4105 } 4106 } 4107 4108 /* If any register R in hist->linked_regs is marked as precise in bt, 4109 * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs. 4110 */ 4111 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_insn_hist_entry *hist) 4112 { 4113 struct linked_regs linked_regs; 4114 bool some_precise = false; 4115 int i; 4116 4117 if (!hist || hist->linked_regs == 0) 4118 return; 4119 4120 linked_regs_unpack(hist->linked_regs, &linked_regs); 4121 for (i = 0; i < linked_regs.cnt; ++i) { 4122 struct linked_reg *e = &linked_regs.entries[i]; 4123 4124 if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) || 4125 (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) { 4126 some_precise = true; 4127 break; 4128 } 4129 } 4130 4131 if (!some_precise) 4132 return; 4133 4134 for (i = 0; i < linked_regs.cnt; ++i) { 4135 struct linked_reg *e = &linked_regs.entries[i]; 4136 4137 if (e->is_reg) 4138 bt_set_frame_reg(bt, e->frameno, e->regno); 4139 else 4140 bt_set_frame_slot(bt, e->frameno, e->spi); 4141 } 4142 } 4143 4144 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 4145 4146 /* For given verifier state backtrack_insn() is called from the last insn to 4147 * the first insn. Its purpose is to compute a bitmask of registers and 4148 * stack slots that needs precision in the parent verifier state. 4149 * 4150 * @idx is an index of the instruction we are currently processing; 4151 * @subseq_idx is an index of the subsequent instruction that: 4152 * - *would be* executed next, if jump history is viewed in forward order; 4153 * - *was* processed previously during backtracking. 4154 */ 4155 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 4156 struct bpf_insn_hist_entry *hist, struct backtrack_state *bt) 4157 { 4158 struct bpf_insn *insn = env->prog->insnsi + idx; 4159 u8 class = BPF_CLASS(insn->code); 4160 u8 opcode = BPF_OP(insn->code); 4161 u8 mode = BPF_MODE(insn->code); 4162 u32 dreg = insn->dst_reg; 4163 u32 sreg = insn->src_reg; 4164 u32 spi, i, fr; 4165 4166 if (insn->code == 0) 4167 return 0; 4168 if (env->log.level & BPF_LOG_LEVEL2) { 4169 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 4170 verbose(env, "mark_precise: frame%d: regs=%s ", 4171 bt->frame, env->tmp_str_buf); 4172 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 4173 verbose(env, "stack=%s before ", env->tmp_str_buf); 4174 verbose(env, "%d: ", idx); 4175 verbose_insn(env, insn); 4176 } 4177 4178 /* If there is a history record that some registers gained range at this insn, 4179 * propagate precision marks to those registers, so that bt_is_reg_set() 4180 * accounts for these registers. 4181 */ 4182 bt_sync_linked_regs(bt, hist); 4183 4184 if (class == BPF_ALU || class == BPF_ALU64) { 4185 if (!bt_is_reg_set(bt, dreg)) 4186 return 0; 4187 if (opcode == BPF_END || opcode == BPF_NEG) { 4188 /* sreg is reserved and unused 4189 * dreg still need precision before this insn 4190 */ 4191 return 0; 4192 } else if (opcode == BPF_MOV) { 4193 if (BPF_SRC(insn->code) == BPF_X) { 4194 /* dreg = sreg or dreg = (s8, s16, s32)sreg 4195 * dreg needs precision after this insn 4196 * sreg needs precision before this insn 4197 */ 4198 bt_clear_reg(bt, dreg); 4199 if (sreg != BPF_REG_FP) 4200 bt_set_reg(bt, sreg); 4201 } else { 4202 /* dreg = K 4203 * dreg needs precision after this insn. 4204 * Corresponding register is already marked 4205 * as precise=true in this verifier state. 4206 * No further markings in parent are necessary 4207 */ 4208 bt_clear_reg(bt, dreg); 4209 } 4210 } else { 4211 if (BPF_SRC(insn->code) == BPF_X) { 4212 /* dreg += sreg 4213 * both dreg and sreg need precision 4214 * before this insn 4215 */ 4216 if (sreg != BPF_REG_FP) 4217 bt_set_reg(bt, sreg); 4218 } /* else dreg += K 4219 * dreg still needs precision before this insn 4220 */ 4221 } 4222 } else if (class == BPF_LDX || is_atomic_load_insn(insn)) { 4223 if (!bt_is_reg_set(bt, dreg)) 4224 return 0; 4225 bt_clear_reg(bt, dreg); 4226 4227 /* scalars can only be spilled into stack w/o losing precision. 4228 * Load from any other memory can be zero extended. 4229 * The desire to keep that precision is already indicated 4230 * by 'precise' mark in corresponding register of this state. 4231 * No further tracking necessary. 4232 */ 4233 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4234 return 0; 4235 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 4236 * that [fp - off] slot contains scalar that needs to be 4237 * tracked with precision 4238 */ 4239 spi = insn_stack_access_spi(hist->flags); 4240 fr = insn_stack_access_frameno(hist->flags); 4241 bt_set_frame_slot(bt, fr, spi); 4242 } else if (class == BPF_STX || class == BPF_ST) { 4243 if (bt_is_reg_set(bt, dreg)) 4244 /* stx & st shouldn't be using _scalar_ dst_reg 4245 * to access memory. It means backtracking 4246 * encountered a case of pointer subtraction. 4247 */ 4248 return -ENOTSUPP; 4249 /* scalars can only be spilled into stack */ 4250 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4251 return 0; 4252 spi = insn_stack_access_spi(hist->flags); 4253 fr = insn_stack_access_frameno(hist->flags); 4254 if (!bt_is_frame_slot_set(bt, fr, spi)) 4255 return 0; 4256 bt_clear_frame_slot(bt, fr, spi); 4257 if (class == BPF_STX) 4258 bt_set_reg(bt, sreg); 4259 } else if (class == BPF_JMP || class == BPF_JMP32) { 4260 if (bpf_pseudo_call(insn)) { 4261 int subprog_insn_idx, subprog; 4262 4263 subprog_insn_idx = idx + insn->imm + 1; 4264 subprog = find_subprog(env, subprog_insn_idx); 4265 if (subprog < 0) 4266 return -EFAULT; 4267 4268 if (subprog_is_global(env, subprog)) { 4269 /* check that jump history doesn't have any 4270 * extra instructions from subprog; the next 4271 * instruction after call to global subprog 4272 * should be literally next instruction in 4273 * caller program 4274 */ 4275 verifier_bug_if(idx + 1 != subseq_idx, env, 4276 "extra insn from subprog"); 4277 /* r1-r5 are invalidated after subprog call, 4278 * so for global func call it shouldn't be set 4279 * anymore 4280 */ 4281 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4282 verifier_bug(env, "global subprog unexpected regs %x", 4283 bt_reg_mask(bt)); 4284 return -EFAULT; 4285 } 4286 /* global subprog always sets R0 */ 4287 bt_clear_reg(bt, BPF_REG_0); 4288 return 0; 4289 } else { 4290 /* static subprog call instruction, which 4291 * means that we are exiting current subprog, 4292 * so only r1-r5 could be still requested as 4293 * precise, r0 and r6-r10 or any stack slot in 4294 * the current frame should be zero by now 4295 */ 4296 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4297 verifier_bug(env, "static subprog unexpected regs %x", 4298 bt_reg_mask(bt)); 4299 return -EFAULT; 4300 } 4301 /* we are now tracking register spills correctly, 4302 * so any instance of leftover slots is a bug 4303 */ 4304 if (bt_stack_mask(bt) != 0) { 4305 verifier_bug(env, 4306 "static subprog leftover stack slots %llx", 4307 bt_stack_mask(bt)); 4308 return -EFAULT; 4309 } 4310 /* propagate r1-r5 to the caller */ 4311 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 4312 if (bt_is_reg_set(bt, i)) { 4313 bt_clear_reg(bt, i); 4314 bt_set_frame_reg(bt, bt->frame - 1, i); 4315 } 4316 } 4317 if (bt_subprog_exit(bt)) 4318 return -EFAULT; 4319 return 0; 4320 } 4321 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 4322 /* exit from callback subprog to callback-calling helper or 4323 * kfunc call. Use idx/subseq_idx check to discern it from 4324 * straight line code backtracking. 4325 * Unlike the subprog call handling above, we shouldn't 4326 * propagate precision of r1-r5 (if any requested), as they are 4327 * not actually arguments passed directly to callback subprogs 4328 */ 4329 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4330 verifier_bug(env, "callback unexpected regs %x", 4331 bt_reg_mask(bt)); 4332 return -EFAULT; 4333 } 4334 if (bt_stack_mask(bt) != 0) { 4335 verifier_bug(env, "callback leftover stack slots %llx", 4336 bt_stack_mask(bt)); 4337 return -EFAULT; 4338 } 4339 /* clear r1-r5 in callback subprog's mask */ 4340 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4341 bt_clear_reg(bt, i); 4342 if (bt_subprog_exit(bt)) 4343 return -EFAULT; 4344 return 0; 4345 } else if (opcode == BPF_CALL) { 4346 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 4347 * catch this error later. Make backtracking conservative 4348 * with ENOTSUPP. 4349 */ 4350 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 4351 return -ENOTSUPP; 4352 /* regular helper call sets R0 */ 4353 bt_clear_reg(bt, BPF_REG_0); 4354 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4355 /* if backtracking was looking for registers R1-R5 4356 * they should have been found already. 4357 */ 4358 verifier_bug(env, "backtracking call unexpected regs %x", 4359 bt_reg_mask(bt)); 4360 return -EFAULT; 4361 } 4362 } else if (opcode == BPF_EXIT) { 4363 bool r0_precise; 4364 4365 /* Backtracking to a nested function call, 'idx' is a part of 4366 * the inner frame 'subseq_idx' is a part of the outer frame. 4367 * In case of a regular function call, instructions giving 4368 * precision to registers R1-R5 should have been found already. 4369 * In case of a callback, it is ok to have R1-R5 marked for 4370 * backtracking, as these registers are set by the function 4371 * invoking callback. 4372 */ 4373 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 4374 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4375 bt_clear_reg(bt, i); 4376 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4377 verifier_bug(env, "backtracking exit unexpected regs %x", 4378 bt_reg_mask(bt)); 4379 return -EFAULT; 4380 } 4381 4382 /* BPF_EXIT in subprog or callback always returns 4383 * right after the call instruction, so by checking 4384 * whether the instruction at subseq_idx-1 is subprog 4385 * call or not we can distinguish actual exit from 4386 * *subprog* from exit from *callback*. In the former 4387 * case, we need to propagate r0 precision, if 4388 * necessary. In the former we never do that. 4389 */ 4390 r0_precise = subseq_idx - 1 >= 0 && 4391 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 4392 bt_is_reg_set(bt, BPF_REG_0); 4393 4394 bt_clear_reg(bt, BPF_REG_0); 4395 if (bt_subprog_enter(bt)) 4396 return -EFAULT; 4397 4398 if (r0_precise) 4399 bt_set_reg(bt, BPF_REG_0); 4400 /* r6-r9 and stack slots will stay set in caller frame 4401 * bitmasks until we return back from callee(s) 4402 */ 4403 return 0; 4404 } else if (BPF_SRC(insn->code) == BPF_X) { 4405 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 4406 return 0; 4407 /* dreg <cond> sreg 4408 * Both dreg and sreg need precision before 4409 * this insn. If only sreg was marked precise 4410 * before it would be equally necessary to 4411 * propagate it to dreg. 4412 */ 4413 if (!hist || !(hist->flags & INSN_F_SRC_REG_STACK)) 4414 bt_set_reg(bt, sreg); 4415 if (!hist || !(hist->flags & INSN_F_DST_REG_STACK)) 4416 bt_set_reg(bt, dreg); 4417 } else if (BPF_SRC(insn->code) == BPF_K) { 4418 /* dreg <cond> K 4419 * Only dreg still needs precision before 4420 * this insn, so for the K-based conditional 4421 * there is nothing new to be marked. 4422 */ 4423 } 4424 } else if (class == BPF_LD) { 4425 if (!bt_is_reg_set(bt, dreg)) 4426 return 0; 4427 bt_clear_reg(bt, dreg); 4428 /* It's ld_imm64 or ld_abs or ld_ind. 4429 * For ld_imm64 no further tracking of precision 4430 * into parent is necessary 4431 */ 4432 if (mode == BPF_IND || mode == BPF_ABS) 4433 /* to be analyzed */ 4434 return -ENOTSUPP; 4435 } 4436 /* Propagate precision marks to linked registers, to account for 4437 * registers marked as precise in this function. 4438 */ 4439 bt_sync_linked_regs(bt, hist); 4440 return 0; 4441 } 4442 4443 /* the scalar precision tracking algorithm: 4444 * . at the start all registers have precise=false. 4445 * . scalar ranges are tracked as normal through alu and jmp insns. 4446 * . once precise value of the scalar register is used in: 4447 * . ptr + scalar alu 4448 * . if (scalar cond K|scalar) 4449 * . helper_call(.., scalar, ...) where ARG_CONST is expected 4450 * backtrack through the verifier states and mark all registers and 4451 * stack slots with spilled constants that these scalar regisers 4452 * should be precise. 4453 * . during state pruning two registers (or spilled stack slots) 4454 * are equivalent if both are not precise. 4455 * 4456 * Note the verifier cannot simply walk register parentage chain, 4457 * since many different registers and stack slots could have been 4458 * used to compute single precise scalar. 4459 * 4460 * The approach of starting with precise=true for all registers and then 4461 * backtrack to mark a register as not precise when the verifier detects 4462 * that program doesn't care about specific value (e.g., when helper 4463 * takes register as ARG_ANYTHING parameter) is not safe. 4464 * 4465 * It's ok to walk single parentage chain of the verifier states. 4466 * It's possible that this backtracking will go all the way till 1st insn. 4467 * All other branches will be explored for needing precision later. 4468 * 4469 * The backtracking needs to deal with cases like: 4470 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 4471 * r9 -= r8 4472 * r5 = r9 4473 * if r5 > 0x79f goto pc+7 4474 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 4475 * r5 += 1 4476 * ... 4477 * call bpf_perf_event_output#25 4478 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 4479 * 4480 * and this case: 4481 * r6 = 1 4482 * call foo // uses callee's r6 inside to compute r0 4483 * r0 += r6 4484 * if r0 == 0 goto 4485 * 4486 * to track above reg_mask/stack_mask needs to be independent for each frame. 4487 * 4488 * Also if parent's curframe > frame where backtracking started, 4489 * the verifier need to mark registers in both frames, otherwise callees 4490 * may incorrectly prune callers. This is similar to 4491 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 4492 * 4493 * For now backtracking falls back into conservative marking. 4494 */ 4495 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 4496 struct bpf_verifier_state *st) 4497 { 4498 struct bpf_func_state *func; 4499 struct bpf_reg_state *reg; 4500 int i, j; 4501 4502 if (env->log.level & BPF_LOG_LEVEL2) { 4503 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 4504 st->curframe); 4505 } 4506 4507 /* big hammer: mark all scalars precise in this path. 4508 * pop_stack may still get !precise scalars. 4509 * We also skip current state and go straight to first parent state, 4510 * because precision markings in current non-checkpointed state are 4511 * not needed. See why in the comment in __mark_chain_precision below. 4512 */ 4513 for (st = st->parent; st; st = st->parent) { 4514 for (i = 0; i <= st->curframe; i++) { 4515 func = st->frame[i]; 4516 for (j = 0; j < BPF_REG_FP; j++) { 4517 reg = &func->regs[j]; 4518 if (reg->type != SCALAR_VALUE || reg->precise) 4519 continue; 4520 reg->precise = true; 4521 if (env->log.level & BPF_LOG_LEVEL2) { 4522 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4523 i, j); 4524 } 4525 } 4526 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4527 if (!is_spilled_reg(&func->stack[j])) 4528 continue; 4529 reg = &func->stack[j].spilled_ptr; 4530 if (reg->type != SCALAR_VALUE || reg->precise) 4531 continue; 4532 reg->precise = true; 4533 if (env->log.level & BPF_LOG_LEVEL2) { 4534 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4535 i, -(j + 1) * 8); 4536 } 4537 } 4538 } 4539 } 4540 } 4541 4542 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4543 { 4544 struct bpf_func_state *func; 4545 struct bpf_reg_state *reg; 4546 int i, j; 4547 4548 for (i = 0; i <= st->curframe; i++) { 4549 func = st->frame[i]; 4550 for (j = 0; j < BPF_REG_FP; j++) { 4551 reg = &func->regs[j]; 4552 if (reg->type != SCALAR_VALUE) 4553 continue; 4554 reg->precise = false; 4555 } 4556 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4557 if (!is_spilled_reg(&func->stack[j])) 4558 continue; 4559 reg = &func->stack[j].spilled_ptr; 4560 if (reg->type != SCALAR_VALUE) 4561 continue; 4562 reg->precise = false; 4563 } 4564 } 4565 } 4566 4567 /* 4568 * __mark_chain_precision() backtracks BPF program instruction sequence and 4569 * chain of verifier states making sure that register *regno* (if regno >= 0) 4570 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4571 * SCALARS, as well as any other registers and slots that contribute to 4572 * a tracked state of given registers/stack slots, depending on specific BPF 4573 * assembly instructions (see backtrack_insns() for exact instruction handling 4574 * logic). This backtracking relies on recorded insn_hist and is able to 4575 * traverse entire chain of parent states. This process ends only when all the 4576 * necessary registers/slots and their transitive dependencies are marked as 4577 * precise. 4578 * 4579 * One important and subtle aspect is that precise marks *do not matter* in 4580 * the currently verified state (current state). It is important to understand 4581 * why this is the case. 4582 * 4583 * First, note that current state is the state that is not yet "checkpointed", 4584 * i.e., it is not yet put into env->explored_states, and it has no children 4585 * states as well. It's ephemeral, and can end up either a) being discarded if 4586 * compatible explored state is found at some point or BPF_EXIT instruction is 4587 * reached or b) checkpointed and put into env->explored_states, branching out 4588 * into one or more children states. 4589 * 4590 * In the former case, precise markings in current state are completely 4591 * ignored by state comparison code (see regsafe() for details). Only 4592 * checkpointed ("old") state precise markings are important, and if old 4593 * state's register/slot is precise, regsafe() assumes current state's 4594 * register/slot as precise and checks value ranges exactly and precisely. If 4595 * states turn out to be compatible, current state's necessary precise 4596 * markings and any required parent states' precise markings are enforced 4597 * after the fact with propagate_precision() logic, after the fact. But it's 4598 * important to realize that in this case, even after marking current state 4599 * registers/slots as precise, we immediately discard current state. So what 4600 * actually matters is any of the precise markings propagated into current 4601 * state's parent states, which are always checkpointed (due to b) case above). 4602 * As such, for scenario a) it doesn't matter if current state has precise 4603 * markings set or not. 4604 * 4605 * Now, for the scenario b), checkpointing and forking into child(ren) 4606 * state(s). Note that before current state gets to checkpointing step, any 4607 * processed instruction always assumes precise SCALAR register/slot 4608 * knowledge: if precise value or range is useful to prune jump branch, BPF 4609 * verifier takes this opportunity enthusiastically. Similarly, when 4610 * register's value is used to calculate offset or memory address, exact 4611 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4612 * what we mentioned above about state comparison ignoring precise markings 4613 * during state comparison, BPF verifier ignores and also assumes precise 4614 * markings *at will* during instruction verification process. But as verifier 4615 * assumes precision, it also propagates any precision dependencies across 4616 * parent states, which are not yet finalized, so can be further restricted 4617 * based on new knowledge gained from restrictions enforced by their children 4618 * states. This is so that once those parent states are finalized, i.e., when 4619 * they have no more active children state, state comparison logic in 4620 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4621 * required for correctness. 4622 * 4623 * To build a bit more intuition, note also that once a state is checkpointed, 4624 * the path we took to get to that state is not important. This is crucial 4625 * property for state pruning. When state is checkpointed and finalized at 4626 * some instruction index, it can be correctly and safely used to "short 4627 * circuit" any *compatible* state that reaches exactly the same instruction 4628 * index. I.e., if we jumped to that instruction from a completely different 4629 * code path than original finalized state was derived from, it doesn't 4630 * matter, current state can be discarded because from that instruction 4631 * forward having a compatible state will ensure we will safely reach the 4632 * exit. States describe preconditions for further exploration, but completely 4633 * forget the history of how we got here. 4634 * 4635 * This also means that even if we needed precise SCALAR range to get to 4636 * finalized state, but from that point forward *that same* SCALAR register is 4637 * never used in a precise context (i.e., it's precise value is not needed for 4638 * correctness), it's correct and safe to mark such register as "imprecise" 4639 * (i.e., precise marking set to false). This is what we rely on when we do 4640 * not set precise marking in current state. If no child state requires 4641 * precision for any given SCALAR register, it's safe to dictate that it can 4642 * be imprecise. If any child state does require this register to be precise, 4643 * we'll mark it precise later retroactively during precise markings 4644 * propagation from child state to parent states. 4645 * 4646 * Skipping precise marking setting in current state is a mild version of 4647 * relying on the above observation. But we can utilize this property even 4648 * more aggressively by proactively forgetting any precise marking in the 4649 * current state (which we inherited from the parent state), right before we 4650 * checkpoint it and branch off into new child state. This is done by 4651 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4652 * finalized states which help in short circuiting more future states. 4653 */ 4654 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4655 { 4656 struct backtrack_state *bt = &env->bt; 4657 struct bpf_verifier_state *st = env->cur_state; 4658 int first_idx = st->first_insn_idx; 4659 int last_idx = env->insn_idx; 4660 int subseq_idx = -1; 4661 struct bpf_func_state *func; 4662 struct bpf_reg_state *reg; 4663 bool skip_first = true; 4664 int i, fr, err; 4665 4666 if (!env->bpf_capable) 4667 return 0; 4668 4669 /* set frame number from which we are starting to backtrack */ 4670 bt_init(bt, env->cur_state->curframe); 4671 4672 /* Do sanity checks against current state of register and/or stack 4673 * slot, but don't set precise flag in current state, as precision 4674 * tracking in the current state is unnecessary. 4675 */ 4676 func = st->frame[bt->frame]; 4677 if (regno >= 0) { 4678 reg = &func->regs[regno]; 4679 if (reg->type != SCALAR_VALUE) { 4680 WARN_ONCE(1, "backtracing misuse"); 4681 return -EFAULT; 4682 } 4683 bt_set_reg(bt, regno); 4684 } 4685 4686 if (bt_empty(bt)) 4687 return 0; 4688 4689 for (;;) { 4690 DECLARE_BITMAP(mask, 64); 4691 u32 hist_start = st->insn_hist_start; 4692 u32 hist_end = st->insn_hist_end; 4693 struct bpf_insn_hist_entry *hist; 4694 4695 if (env->log.level & BPF_LOG_LEVEL2) { 4696 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4697 bt->frame, last_idx, first_idx, subseq_idx); 4698 } 4699 4700 if (last_idx < 0) { 4701 /* we are at the entry into subprog, which 4702 * is expected for global funcs, but only if 4703 * requested precise registers are R1-R5 4704 * (which are global func's input arguments) 4705 */ 4706 if (st->curframe == 0 && 4707 st->frame[0]->subprogno > 0 && 4708 st->frame[0]->callsite == BPF_MAIN_FUNC && 4709 bt_stack_mask(bt) == 0 && 4710 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4711 bitmap_from_u64(mask, bt_reg_mask(bt)); 4712 for_each_set_bit(i, mask, 32) { 4713 reg = &st->frame[0]->regs[i]; 4714 bt_clear_reg(bt, i); 4715 if (reg->type == SCALAR_VALUE) 4716 reg->precise = true; 4717 } 4718 return 0; 4719 } 4720 4721 verifier_bug(env, "backtracking func entry subprog %d reg_mask %x stack_mask %llx", 4722 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4723 return -EFAULT; 4724 } 4725 4726 for (i = last_idx;;) { 4727 if (skip_first) { 4728 err = 0; 4729 skip_first = false; 4730 } else { 4731 hist = get_insn_hist_entry(env, hist_start, hist_end, i); 4732 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4733 } 4734 if (err == -ENOTSUPP) { 4735 mark_all_scalars_precise(env, env->cur_state); 4736 bt_reset(bt); 4737 return 0; 4738 } else if (err) { 4739 return err; 4740 } 4741 if (bt_empty(bt)) 4742 /* Found assignment(s) into tracked register in this state. 4743 * Since this state is already marked, just return. 4744 * Nothing to be tracked further in the parent state. 4745 */ 4746 return 0; 4747 subseq_idx = i; 4748 i = get_prev_insn_idx(env, st, i, hist_start, &hist_end); 4749 if (i == -ENOENT) 4750 break; 4751 if (i >= env->prog->len) { 4752 /* This can happen if backtracking reached insn 0 4753 * and there are still reg_mask or stack_mask 4754 * to backtrack. 4755 * It means the backtracking missed the spot where 4756 * particular register was initialized with a constant. 4757 */ 4758 verifier_bug(env, "backtracking idx %d", i); 4759 return -EFAULT; 4760 } 4761 } 4762 st = st->parent; 4763 if (!st) 4764 break; 4765 4766 for (fr = bt->frame; fr >= 0; fr--) { 4767 func = st->frame[fr]; 4768 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4769 for_each_set_bit(i, mask, 32) { 4770 reg = &func->regs[i]; 4771 if (reg->type != SCALAR_VALUE) { 4772 bt_clear_frame_reg(bt, fr, i); 4773 continue; 4774 } 4775 if (reg->precise) 4776 bt_clear_frame_reg(bt, fr, i); 4777 else 4778 reg->precise = true; 4779 } 4780 4781 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4782 for_each_set_bit(i, mask, 64) { 4783 if (verifier_bug_if(i >= func->allocated_stack / BPF_REG_SIZE, 4784 env, "stack slot %d, total slots %d", 4785 i, func->allocated_stack / BPF_REG_SIZE)) 4786 return -EFAULT; 4787 4788 if (!is_spilled_scalar_reg(&func->stack[i])) { 4789 bt_clear_frame_slot(bt, fr, i); 4790 continue; 4791 } 4792 reg = &func->stack[i].spilled_ptr; 4793 if (reg->precise) 4794 bt_clear_frame_slot(bt, fr, i); 4795 else 4796 reg->precise = true; 4797 } 4798 if (env->log.level & BPF_LOG_LEVEL2) { 4799 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4800 bt_frame_reg_mask(bt, fr)); 4801 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4802 fr, env->tmp_str_buf); 4803 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4804 bt_frame_stack_mask(bt, fr)); 4805 verbose(env, "stack=%s: ", env->tmp_str_buf); 4806 print_verifier_state(env, st, fr, true); 4807 } 4808 } 4809 4810 if (bt_empty(bt)) 4811 return 0; 4812 4813 subseq_idx = first_idx; 4814 last_idx = st->last_insn_idx; 4815 first_idx = st->first_insn_idx; 4816 } 4817 4818 /* if we still have requested precise regs or slots, we missed 4819 * something (e.g., stack access through non-r10 register), so 4820 * fallback to marking all precise 4821 */ 4822 if (!bt_empty(bt)) { 4823 mark_all_scalars_precise(env, env->cur_state); 4824 bt_reset(bt); 4825 } 4826 4827 return 0; 4828 } 4829 4830 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4831 { 4832 return __mark_chain_precision(env, regno); 4833 } 4834 4835 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4836 * desired reg and stack masks across all relevant frames 4837 */ 4838 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4839 { 4840 return __mark_chain_precision(env, -1); 4841 } 4842 4843 static bool is_spillable_regtype(enum bpf_reg_type type) 4844 { 4845 switch (base_type(type)) { 4846 case PTR_TO_MAP_VALUE: 4847 case PTR_TO_STACK: 4848 case PTR_TO_CTX: 4849 case PTR_TO_PACKET: 4850 case PTR_TO_PACKET_META: 4851 case PTR_TO_PACKET_END: 4852 case PTR_TO_FLOW_KEYS: 4853 case CONST_PTR_TO_MAP: 4854 case PTR_TO_SOCKET: 4855 case PTR_TO_SOCK_COMMON: 4856 case PTR_TO_TCP_SOCK: 4857 case PTR_TO_XDP_SOCK: 4858 case PTR_TO_BTF_ID: 4859 case PTR_TO_BUF: 4860 case PTR_TO_MEM: 4861 case PTR_TO_FUNC: 4862 case PTR_TO_MAP_KEY: 4863 case PTR_TO_ARENA: 4864 return true; 4865 default: 4866 return false; 4867 } 4868 } 4869 4870 /* Does this register contain a constant zero? */ 4871 static bool register_is_null(struct bpf_reg_state *reg) 4872 { 4873 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4874 } 4875 4876 /* check if register is a constant scalar value */ 4877 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 4878 { 4879 return reg->type == SCALAR_VALUE && 4880 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 4881 } 4882 4883 /* assuming is_reg_const() is true, return constant value of a register */ 4884 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 4885 { 4886 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 4887 } 4888 4889 static bool __is_pointer_value(bool allow_ptr_leaks, 4890 const struct bpf_reg_state *reg) 4891 { 4892 if (allow_ptr_leaks) 4893 return false; 4894 4895 return reg->type != SCALAR_VALUE; 4896 } 4897 4898 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, 4899 struct bpf_reg_state *src_reg) 4900 { 4901 if (src_reg->type != SCALAR_VALUE) 4902 return; 4903 4904 if (src_reg->id & BPF_ADD_CONST) { 4905 /* 4906 * The verifier is processing rX = rY insn and 4907 * rY->id has special linked register already. 4908 * Cleared it, since multiple rX += const are not supported. 4909 */ 4910 src_reg->id = 0; 4911 src_reg->off = 0; 4912 } 4913 4914 if (!src_reg->id && !tnum_is_const(src_reg->var_off)) 4915 /* Ensure that src_reg has a valid ID that will be copied to 4916 * dst_reg and then will be used by sync_linked_regs() to 4917 * propagate min/max range. 4918 */ 4919 src_reg->id = ++env->id_gen; 4920 } 4921 4922 /* Copy src state preserving dst->parent and dst->live fields */ 4923 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4924 { 4925 struct bpf_reg_state *parent = dst->parent; 4926 enum bpf_reg_liveness live = dst->live; 4927 4928 *dst = *src; 4929 dst->parent = parent; 4930 dst->live = live; 4931 } 4932 4933 static void save_register_state(struct bpf_verifier_env *env, 4934 struct bpf_func_state *state, 4935 int spi, struct bpf_reg_state *reg, 4936 int size) 4937 { 4938 int i; 4939 4940 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4941 if (size == BPF_REG_SIZE) 4942 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4943 4944 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4945 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4946 4947 /* size < 8 bytes spill */ 4948 for (; i; i--) 4949 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 4950 } 4951 4952 static bool is_bpf_st_mem(struct bpf_insn *insn) 4953 { 4954 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4955 } 4956 4957 static int get_reg_width(struct bpf_reg_state *reg) 4958 { 4959 return fls64(reg->umax_value); 4960 } 4961 4962 /* See comment for mark_fastcall_pattern_for_call() */ 4963 static void check_fastcall_stack_contract(struct bpf_verifier_env *env, 4964 struct bpf_func_state *state, int insn_idx, int off) 4965 { 4966 struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno]; 4967 struct bpf_insn_aux_data *aux = env->insn_aux_data; 4968 int i; 4969 4970 if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern) 4971 return; 4972 /* access to the region [max_stack_depth .. fastcall_stack_off) 4973 * from something that is not a part of the fastcall pattern, 4974 * disable fastcall rewrites for current subprogram by setting 4975 * fastcall_stack_off to a value smaller than any possible offset. 4976 */ 4977 subprog->fastcall_stack_off = S16_MIN; 4978 /* reset fastcall aux flags within subprogram, 4979 * happens at most once per subprogram 4980 */ 4981 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 4982 aux[i].fastcall_spills_num = 0; 4983 aux[i].fastcall_pattern = 0; 4984 } 4985 } 4986 4987 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4988 * stack boundary and alignment are checked in check_mem_access() 4989 */ 4990 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4991 /* stack frame we're writing to */ 4992 struct bpf_func_state *state, 4993 int off, int size, int value_regno, 4994 int insn_idx) 4995 { 4996 struct bpf_func_state *cur; /* state of the current function */ 4997 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4998 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4999 struct bpf_reg_state *reg = NULL; 5000 int insn_flags = insn_stack_access_flags(state->frameno, spi); 5001 5002 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 5003 * so it's aligned access and [off, off + size) are within stack limits 5004 */ 5005 if (!env->allow_ptr_leaks && 5006 is_spilled_reg(&state->stack[spi]) && 5007 !is_spilled_scalar_reg(&state->stack[spi]) && 5008 size != BPF_REG_SIZE) { 5009 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 5010 return -EACCES; 5011 } 5012 5013 cur = env->cur_state->frame[env->cur_state->curframe]; 5014 if (value_regno >= 0) 5015 reg = &cur->regs[value_regno]; 5016 if (!env->bypass_spec_v4) { 5017 bool sanitize = reg && is_spillable_regtype(reg->type); 5018 5019 for (i = 0; i < size; i++) { 5020 u8 type = state->stack[spi].slot_type[i]; 5021 5022 if (type != STACK_MISC && type != STACK_ZERO) { 5023 sanitize = true; 5024 break; 5025 } 5026 } 5027 5028 if (sanitize) 5029 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 5030 } 5031 5032 err = destroy_if_dynptr_stack_slot(env, state, spi); 5033 if (err) 5034 return err; 5035 5036 check_fastcall_stack_contract(env, state, insn_idx, off); 5037 mark_stack_slot_scratched(env, spi); 5038 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { 5039 bool reg_value_fits; 5040 5041 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; 5042 /* Make sure that reg had an ID to build a relation on spill. */ 5043 if (reg_value_fits) 5044 assign_scalar_id_before_mov(env, reg); 5045 save_register_state(env, state, spi, reg, size); 5046 /* Break the relation on a narrowing spill. */ 5047 if (!reg_value_fits) 5048 state->stack[spi].spilled_ptr.id = 0; 5049 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 5050 env->bpf_capable) { 5051 struct bpf_reg_state *tmp_reg = &env->fake_reg[0]; 5052 5053 memset(tmp_reg, 0, sizeof(*tmp_reg)); 5054 __mark_reg_known(tmp_reg, insn->imm); 5055 tmp_reg->type = SCALAR_VALUE; 5056 save_register_state(env, state, spi, tmp_reg, size); 5057 } else if (reg && is_spillable_regtype(reg->type)) { 5058 /* register containing pointer is being spilled into stack */ 5059 if (size != BPF_REG_SIZE) { 5060 verbose_linfo(env, insn_idx, "; "); 5061 verbose(env, "invalid size of register spill\n"); 5062 return -EACCES; 5063 } 5064 if (state != cur && reg->type == PTR_TO_STACK) { 5065 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 5066 return -EINVAL; 5067 } 5068 save_register_state(env, state, spi, reg, size); 5069 } else { 5070 u8 type = STACK_MISC; 5071 5072 /* regular write of data into stack destroys any spilled ptr */ 5073 state->stack[spi].spilled_ptr.type = NOT_INIT; 5074 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 5075 if (is_stack_slot_special(&state->stack[spi])) 5076 for (i = 0; i < BPF_REG_SIZE; i++) 5077 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 5078 5079 /* only mark the slot as written if all 8 bytes were written 5080 * otherwise read propagation may incorrectly stop too soon 5081 * when stack slots are partially written. 5082 * This heuristic means that read propagation will be 5083 * conservative, since it will add reg_live_read marks 5084 * to stack slots all the way to first state when programs 5085 * writes+reads less than 8 bytes 5086 */ 5087 if (size == BPF_REG_SIZE) 5088 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 5089 5090 /* when we zero initialize stack slots mark them as such */ 5091 if ((reg && register_is_null(reg)) || 5092 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 5093 /* STACK_ZERO case happened because register spill 5094 * wasn't properly aligned at the stack slot boundary, 5095 * so it's not a register spill anymore; force 5096 * originating register to be precise to make 5097 * STACK_ZERO correct for subsequent states 5098 */ 5099 err = mark_chain_precision(env, value_regno); 5100 if (err) 5101 return err; 5102 type = STACK_ZERO; 5103 } 5104 5105 /* Mark slots affected by this stack write. */ 5106 for (i = 0; i < size; i++) 5107 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 5108 insn_flags = 0; /* not a register spill */ 5109 } 5110 5111 if (insn_flags) 5112 return push_insn_history(env, env->cur_state, insn_flags, 0); 5113 return 0; 5114 } 5115 5116 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 5117 * known to contain a variable offset. 5118 * This function checks whether the write is permitted and conservatively 5119 * tracks the effects of the write, considering that each stack slot in the 5120 * dynamic range is potentially written to. 5121 * 5122 * 'off' includes 'regno->off'. 5123 * 'value_regno' can be -1, meaning that an unknown value is being written to 5124 * the stack. 5125 * 5126 * Spilled pointers in range are not marked as written because we don't know 5127 * what's going to be actually written. This means that read propagation for 5128 * future reads cannot be terminated by this write. 5129 * 5130 * For privileged programs, uninitialized stack slots are considered 5131 * initialized by this write (even though we don't know exactly what offsets 5132 * are going to be written to). The idea is that we don't want the verifier to 5133 * reject future reads that access slots written to through variable offsets. 5134 */ 5135 static int check_stack_write_var_off(struct bpf_verifier_env *env, 5136 /* func where register points to */ 5137 struct bpf_func_state *state, 5138 int ptr_regno, int off, int size, 5139 int value_regno, int insn_idx) 5140 { 5141 struct bpf_func_state *cur; /* state of the current function */ 5142 int min_off, max_off; 5143 int i, err; 5144 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 5145 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5146 bool writing_zero = false; 5147 /* set if the fact that we're writing a zero is used to let any 5148 * stack slots remain STACK_ZERO 5149 */ 5150 bool zero_used = false; 5151 5152 cur = env->cur_state->frame[env->cur_state->curframe]; 5153 ptr_reg = &cur->regs[ptr_regno]; 5154 min_off = ptr_reg->smin_value + off; 5155 max_off = ptr_reg->smax_value + off + size; 5156 if (value_regno >= 0) 5157 value_reg = &cur->regs[value_regno]; 5158 if ((value_reg && register_is_null(value_reg)) || 5159 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 5160 writing_zero = true; 5161 5162 for (i = min_off; i < max_off; i++) { 5163 int spi; 5164 5165 spi = __get_spi(i); 5166 err = destroy_if_dynptr_stack_slot(env, state, spi); 5167 if (err) 5168 return err; 5169 } 5170 5171 check_fastcall_stack_contract(env, state, insn_idx, min_off); 5172 /* Variable offset writes destroy any spilled pointers in range. */ 5173 for (i = min_off; i < max_off; i++) { 5174 u8 new_type, *stype; 5175 int slot, spi; 5176 5177 slot = -i - 1; 5178 spi = slot / BPF_REG_SIZE; 5179 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5180 mark_stack_slot_scratched(env, spi); 5181 5182 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 5183 /* Reject the write if range we may write to has not 5184 * been initialized beforehand. If we didn't reject 5185 * here, the ptr status would be erased below (even 5186 * though not all slots are actually overwritten), 5187 * possibly opening the door to leaks. 5188 * 5189 * We do however catch STACK_INVALID case below, and 5190 * only allow reading possibly uninitialized memory 5191 * later for CAP_PERFMON, as the write may not happen to 5192 * that slot. 5193 */ 5194 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 5195 insn_idx, i); 5196 return -EINVAL; 5197 } 5198 5199 /* If writing_zero and the spi slot contains a spill of value 0, 5200 * maintain the spill type. 5201 */ 5202 if (writing_zero && *stype == STACK_SPILL && 5203 is_spilled_scalar_reg(&state->stack[spi])) { 5204 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; 5205 5206 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { 5207 zero_used = true; 5208 continue; 5209 } 5210 } 5211 5212 /* Erase all other spilled pointers. */ 5213 state->stack[spi].spilled_ptr.type = NOT_INIT; 5214 5215 /* Update the slot type. */ 5216 new_type = STACK_MISC; 5217 if (writing_zero && *stype == STACK_ZERO) { 5218 new_type = STACK_ZERO; 5219 zero_used = true; 5220 } 5221 /* If the slot is STACK_INVALID, we check whether it's OK to 5222 * pretend that it will be initialized by this write. The slot 5223 * might not actually be written to, and so if we mark it as 5224 * initialized future reads might leak uninitialized memory. 5225 * For privileged programs, we will accept such reads to slots 5226 * that may or may not be written because, if we're reject 5227 * them, the error would be too confusing. 5228 */ 5229 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 5230 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 5231 insn_idx, i); 5232 return -EINVAL; 5233 } 5234 *stype = new_type; 5235 } 5236 if (zero_used) { 5237 /* backtracking doesn't work for STACK_ZERO yet. */ 5238 err = mark_chain_precision(env, value_regno); 5239 if (err) 5240 return err; 5241 } 5242 return 0; 5243 } 5244 5245 /* When register 'dst_regno' is assigned some values from stack[min_off, 5246 * max_off), we set the register's type according to the types of the 5247 * respective stack slots. If all the stack values are known to be zeros, then 5248 * so is the destination reg. Otherwise, the register is considered to be 5249 * SCALAR. This function does not deal with register filling; the caller must 5250 * ensure that all spilled registers in the stack range have been marked as 5251 * read. 5252 */ 5253 static void mark_reg_stack_read(struct bpf_verifier_env *env, 5254 /* func where src register points to */ 5255 struct bpf_func_state *ptr_state, 5256 int min_off, int max_off, int dst_regno) 5257 { 5258 struct bpf_verifier_state *vstate = env->cur_state; 5259 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5260 int i, slot, spi; 5261 u8 *stype; 5262 int zeros = 0; 5263 5264 for (i = min_off; i < max_off; i++) { 5265 slot = -i - 1; 5266 spi = slot / BPF_REG_SIZE; 5267 mark_stack_slot_scratched(env, spi); 5268 stype = ptr_state->stack[spi].slot_type; 5269 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 5270 break; 5271 zeros++; 5272 } 5273 if (zeros == max_off - min_off) { 5274 /* Any access_size read into register is zero extended, 5275 * so the whole register == const_zero. 5276 */ 5277 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5278 } else { 5279 /* have read misc data from the stack */ 5280 mark_reg_unknown(env, state->regs, dst_regno); 5281 } 5282 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5283 } 5284 5285 /* Read the stack at 'off' and put the results into the register indicated by 5286 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 5287 * spilled reg. 5288 * 5289 * 'dst_regno' can be -1, meaning that the read value is not going to a 5290 * register. 5291 * 5292 * The access is assumed to be within the current stack bounds. 5293 */ 5294 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 5295 /* func where src register points to */ 5296 struct bpf_func_state *reg_state, 5297 int off, int size, int dst_regno) 5298 { 5299 struct bpf_verifier_state *vstate = env->cur_state; 5300 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5301 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 5302 struct bpf_reg_state *reg; 5303 u8 *stype, type; 5304 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 5305 5306 stype = reg_state->stack[spi].slot_type; 5307 reg = ®_state->stack[spi].spilled_ptr; 5308 5309 mark_stack_slot_scratched(env, spi); 5310 check_fastcall_stack_contract(env, state, env->insn_idx, off); 5311 5312 if (is_spilled_reg(®_state->stack[spi])) { 5313 u8 spill_size = 1; 5314 5315 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 5316 spill_size++; 5317 5318 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 5319 if (reg->type != SCALAR_VALUE) { 5320 verbose_linfo(env, env->insn_idx, "; "); 5321 verbose(env, "invalid size of register fill\n"); 5322 return -EACCES; 5323 } 5324 5325 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5326 if (dst_regno < 0) 5327 return 0; 5328 5329 if (size <= spill_size && 5330 bpf_stack_narrow_access_ok(off, size, spill_size)) { 5331 /* The earlier check_reg_arg() has decided the 5332 * subreg_def for this insn. Save it first. 5333 */ 5334 s32 subreg_def = state->regs[dst_regno].subreg_def; 5335 5336 copy_register_state(&state->regs[dst_regno], reg); 5337 state->regs[dst_regno].subreg_def = subreg_def; 5338 5339 /* Break the relation on a narrowing fill. 5340 * coerce_reg_to_size will adjust the boundaries. 5341 */ 5342 if (get_reg_width(reg) > size * BITS_PER_BYTE) 5343 state->regs[dst_regno].id = 0; 5344 } else { 5345 int spill_cnt = 0, zero_cnt = 0; 5346 5347 for (i = 0; i < size; i++) { 5348 type = stype[(slot - i) % BPF_REG_SIZE]; 5349 if (type == STACK_SPILL) { 5350 spill_cnt++; 5351 continue; 5352 } 5353 if (type == STACK_MISC) 5354 continue; 5355 if (type == STACK_ZERO) { 5356 zero_cnt++; 5357 continue; 5358 } 5359 if (type == STACK_INVALID && env->allow_uninit_stack) 5360 continue; 5361 verbose(env, "invalid read from stack off %d+%d size %d\n", 5362 off, i, size); 5363 return -EACCES; 5364 } 5365 5366 if (spill_cnt == size && 5367 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 5368 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5369 /* this IS register fill, so keep insn_flags */ 5370 } else if (zero_cnt == size) { 5371 /* similarly to mark_reg_stack_read(), preserve zeroes */ 5372 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5373 insn_flags = 0; /* not restoring original register state */ 5374 } else { 5375 mark_reg_unknown(env, state->regs, dst_regno); 5376 insn_flags = 0; /* not restoring original register state */ 5377 } 5378 } 5379 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5380 } else if (dst_regno >= 0) { 5381 /* restore register state from stack */ 5382 copy_register_state(&state->regs[dst_regno], reg); 5383 /* mark reg as written since spilled pointer state likely 5384 * has its liveness marks cleared by is_state_visited() 5385 * which resets stack/reg liveness for state transitions 5386 */ 5387 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5388 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 5389 /* If dst_regno==-1, the caller is asking us whether 5390 * it is acceptable to use this value as a SCALAR_VALUE 5391 * (e.g. for XADD). 5392 * We must not allow unprivileged callers to do that 5393 * with spilled pointers. 5394 */ 5395 verbose(env, "leaking pointer from stack off %d\n", 5396 off); 5397 return -EACCES; 5398 } 5399 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5400 } else { 5401 for (i = 0; i < size; i++) { 5402 type = stype[(slot - i) % BPF_REG_SIZE]; 5403 if (type == STACK_MISC) 5404 continue; 5405 if (type == STACK_ZERO) 5406 continue; 5407 if (type == STACK_INVALID && env->allow_uninit_stack) 5408 continue; 5409 verbose(env, "invalid read from stack off %d+%d size %d\n", 5410 off, i, size); 5411 return -EACCES; 5412 } 5413 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5414 if (dst_regno >= 0) 5415 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 5416 insn_flags = 0; /* we are not restoring spilled register */ 5417 } 5418 if (insn_flags) 5419 return push_insn_history(env, env->cur_state, insn_flags, 0); 5420 return 0; 5421 } 5422 5423 enum bpf_access_src { 5424 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 5425 ACCESS_HELPER = 2, /* the access is performed by a helper */ 5426 }; 5427 5428 static int check_stack_range_initialized(struct bpf_verifier_env *env, 5429 int regno, int off, int access_size, 5430 bool zero_size_allowed, 5431 enum bpf_access_type type, 5432 struct bpf_call_arg_meta *meta); 5433 5434 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 5435 { 5436 return cur_regs(env) + regno; 5437 } 5438 5439 /* Read the stack at 'ptr_regno + off' and put the result into the register 5440 * 'dst_regno'. 5441 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 5442 * but not its variable offset. 5443 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 5444 * 5445 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 5446 * filling registers (i.e. reads of spilled register cannot be detected when 5447 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 5448 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 5449 * offset; for a fixed offset check_stack_read_fixed_off should be used 5450 * instead. 5451 */ 5452 static int check_stack_read_var_off(struct bpf_verifier_env *env, 5453 int ptr_regno, int off, int size, int dst_regno) 5454 { 5455 /* The state of the source register. */ 5456 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5457 struct bpf_func_state *ptr_state = func(env, reg); 5458 int err; 5459 int min_off, max_off; 5460 5461 /* Note that we pass a NULL meta, so raw access will not be permitted. 5462 */ 5463 err = check_stack_range_initialized(env, ptr_regno, off, size, 5464 false, BPF_READ, NULL); 5465 if (err) 5466 return err; 5467 5468 min_off = reg->smin_value + off; 5469 max_off = reg->smax_value + off; 5470 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 5471 check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off); 5472 return 0; 5473 } 5474 5475 /* check_stack_read dispatches to check_stack_read_fixed_off or 5476 * check_stack_read_var_off. 5477 * 5478 * The caller must ensure that the offset falls within the allocated stack 5479 * bounds. 5480 * 5481 * 'dst_regno' is a register which will receive the value from the stack. It 5482 * can be -1, meaning that the read value is not going to a register. 5483 */ 5484 static int check_stack_read(struct bpf_verifier_env *env, 5485 int ptr_regno, int off, int size, 5486 int dst_regno) 5487 { 5488 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5489 struct bpf_func_state *state = func(env, reg); 5490 int err; 5491 /* Some accesses are only permitted with a static offset. */ 5492 bool var_off = !tnum_is_const(reg->var_off); 5493 5494 /* The offset is required to be static when reads don't go to a 5495 * register, in order to not leak pointers (see 5496 * check_stack_read_fixed_off). 5497 */ 5498 if (dst_regno < 0 && var_off) { 5499 char tn_buf[48]; 5500 5501 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5502 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5503 tn_buf, off, size); 5504 return -EACCES; 5505 } 5506 /* Variable offset is prohibited for unprivileged mode for simplicity 5507 * since it requires corresponding support in Spectre masking for stack 5508 * ALU. See also retrieve_ptr_limit(). The check in 5509 * check_stack_access_for_ptr_arithmetic() called by 5510 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5511 * with variable offsets, therefore no check is required here. Further, 5512 * just checking it here would be insufficient as speculative stack 5513 * writes could still lead to unsafe speculative behaviour. 5514 */ 5515 if (!var_off) { 5516 off += reg->var_off.value; 5517 err = check_stack_read_fixed_off(env, state, off, size, 5518 dst_regno); 5519 } else { 5520 /* Variable offset stack reads need more conservative handling 5521 * than fixed offset ones. Note that dst_regno >= 0 on this 5522 * branch. 5523 */ 5524 err = check_stack_read_var_off(env, ptr_regno, off, size, 5525 dst_regno); 5526 } 5527 return err; 5528 } 5529 5530 5531 /* check_stack_write dispatches to check_stack_write_fixed_off or 5532 * check_stack_write_var_off. 5533 * 5534 * 'ptr_regno' is the register used as a pointer into the stack. 5535 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5536 * 'value_regno' is the register whose value we're writing to the stack. It can 5537 * be -1, meaning that we're not writing from a register. 5538 * 5539 * The caller must ensure that the offset falls within the maximum stack size. 5540 */ 5541 static int check_stack_write(struct bpf_verifier_env *env, 5542 int ptr_regno, int off, int size, 5543 int value_regno, int insn_idx) 5544 { 5545 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5546 struct bpf_func_state *state = func(env, reg); 5547 int err; 5548 5549 if (tnum_is_const(reg->var_off)) { 5550 off += reg->var_off.value; 5551 err = check_stack_write_fixed_off(env, state, off, size, 5552 value_regno, insn_idx); 5553 } else { 5554 /* Variable offset stack reads need more conservative handling 5555 * than fixed offset ones. 5556 */ 5557 err = check_stack_write_var_off(env, state, 5558 ptr_regno, off, size, 5559 value_regno, insn_idx); 5560 } 5561 return err; 5562 } 5563 5564 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5565 int off, int size, enum bpf_access_type type) 5566 { 5567 struct bpf_reg_state *regs = cur_regs(env); 5568 struct bpf_map *map = regs[regno].map_ptr; 5569 u32 cap = bpf_map_flags_to_cap(map); 5570 5571 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5572 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5573 map->value_size, off, size); 5574 return -EACCES; 5575 } 5576 5577 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5578 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5579 map->value_size, off, size); 5580 return -EACCES; 5581 } 5582 5583 return 0; 5584 } 5585 5586 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5587 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5588 int off, int size, u32 mem_size, 5589 bool zero_size_allowed) 5590 { 5591 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5592 struct bpf_reg_state *reg; 5593 5594 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5595 return 0; 5596 5597 reg = &cur_regs(env)[regno]; 5598 switch (reg->type) { 5599 case PTR_TO_MAP_KEY: 5600 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5601 mem_size, off, size); 5602 break; 5603 case PTR_TO_MAP_VALUE: 5604 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5605 mem_size, off, size); 5606 break; 5607 case PTR_TO_PACKET: 5608 case PTR_TO_PACKET_META: 5609 case PTR_TO_PACKET_END: 5610 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5611 off, size, regno, reg->id, off, mem_size); 5612 break; 5613 case PTR_TO_MEM: 5614 default: 5615 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5616 mem_size, off, size); 5617 } 5618 5619 return -EACCES; 5620 } 5621 5622 /* check read/write into a memory region with possible variable offset */ 5623 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5624 int off, int size, u32 mem_size, 5625 bool zero_size_allowed) 5626 { 5627 struct bpf_verifier_state *vstate = env->cur_state; 5628 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5629 struct bpf_reg_state *reg = &state->regs[regno]; 5630 int err; 5631 5632 /* We may have adjusted the register pointing to memory region, so we 5633 * need to try adding each of min_value and max_value to off 5634 * to make sure our theoretical access will be safe. 5635 * 5636 * The minimum value is only important with signed 5637 * comparisons where we can't assume the floor of a 5638 * value is 0. If we are using signed variables for our 5639 * index'es we need to make sure that whatever we use 5640 * will have a set floor within our range. 5641 */ 5642 if (reg->smin_value < 0 && 5643 (reg->smin_value == S64_MIN || 5644 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5645 reg->smin_value + off < 0)) { 5646 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5647 regno); 5648 return -EACCES; 5649 } 5650 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5651 mem_size, zero_size_allowed); 5652 if (err) { 5653 verbose(env, "R%d min value is outside of the allowed memory range\n", 5654 regno); 5655 return err; 5656 } 5657 5658 /* If we haven't set a max value then we need to bail since we can't be 5659 * sure we won't do bad things. 5660 * If reg->umax_value + off could overflow, treat that as unbounded too. 5661 */ 5662 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5663 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5664 regno); 5665 return -EACCES; 5666 } 5667 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5668 mem_size, zero_size_allowed); 5669 if (err) { 5670 verbose(env, "R%d max value is outside of the allowed memory range\n", 5671 regno); 5672 return err; 5673 } 5674 5675 return 0; 5676 } 5677 5678 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5679 const struct bpf_reg_state *reg, int regno, 5680 bool fixed_off_ok) 5681 { 5682 /* Access to this pointer-typed register or passing it to a helper 5683 * is only allowed in its original, unmodified form. 5684 */ 5685 5686 if (reg->off < 0) { 5687 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5688 reg_type_str(env, reg->type), regno, reg->off); 5689 return -EACCES; 5690 } 5691 5692 if (!fixed_off_ok && reg->off) { 5693 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5694 reg_type_str(env, reg->type), regno, reg->off); 5695 return -EACCES; 5696 } 5697 5698 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5699 char tn_buf[48]; 5700 5701 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5702 verbose(env, "variable %s access var_off=%s disallowed\n", 5703 reg_type_str(env, reg->type), tn_buf); 5704 return -EACCES; 5705 } 5706 5707 return 0; 5708 } 5709 5710 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5711 const struct bpf_reg_state *reg, int regno) 5712 { 5713 return __check_ptr_off_reg(env, reg, regno, false); 5714 } 5715 5716 static int map_kptr_match_type(struct bpf_verifier_env *env, 5717 struct btf_field *kptr_field, 5718 struct bpf_reg_state *reg, u32 regno) 5719 { 5720 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5721 int perm_flags; 5722 const char *reg_name = ""; 5723 5724 if (btf_is_kernel(reg->btf)) { 5725 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5726 5727 /* Only unreferenced case accepts untrusted pointers */ 5728 if (kptr_field->type == BPF_KPTR_UNREF) 5729 perm_flags |= PTR_UNTRUSTED; 5730 } else { 5731 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5732 if (kptr_field->type == BPF_KPTR_PERCPU) 5733 perm_flags |= MEM_PERCPU; 5734 } 5735 5736 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5737 goto bad_type; 5738 5739 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5740 reg_name = btf_type_name(reg->btf, reg->btf_id); 5741 5742 /* For ref_ptr case, release function check should ensure we get one 5743 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5744 * normal store of unreferenced kptr, we must ensure var_off is zero. 5745 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5746 * reg->off and reg->ref_obj_id are not needed here. 5747 */ 5748 if (__check_ptr_off_reg(env, reg, regno, true)) 5749 return -EACCES; 5750 5751 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5752 * we also need to take into account the reg->off. 5753 * 5754 * We want to support cases like: 5755 * 5756 * struct foo { 5757 * struct bar br; 5758 * struct baz bz; 5759 * }; 5760 * 5761 * struct foo *v; 5762 * v = func(); // PTR_TO_BTF_ID 5763 * val->foo = v; // reg->off is zero, btf and btf_id match type 5764 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5765 * // first member type of struct after comparison fails 5766 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5767 * // to match type 5768 * 5769 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5770 * is zero. We must also ensure that btf_struct_ids_match does not walk 5771 * the struct to match type against first member of struct, i.e. reject 5772 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5773 * strict mode to true for type match. 5774 */ 5775 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5776 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5777 kptr_field->type != BPF_KPTR_UNREF)) 5778 goto bad_type; 5779 return 0; 5780 bad_type: 5781 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5782 reg_type_str(env, reg->type), reg_name); 5783 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5784 if (kptr_field->type == BPF_KPTR_UNREF) 5785 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5786 targ_name); 5787 else 5788 verbose(env, "\n"); 5789 return -EINVAL; 5790 } 5791 5792 static bool in_sleepable(struct bpf_verifier_env *env) 5793 { 5794 return env->prog->sleepable || 5795 (env->cur_state && env->cur_state->in_sleepable); 5796 } 5797 5798 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5799 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5800 */ 5801 static bool in_rcu_cs(struct bpf_verifier_env *env) 5802 { 5803 return env->cur_state->active_rcu_lock || 5804 env->cur_state->active_locks || 5805 !in_sleepable(env); 5806 } 5807 5808 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5809 BTF_SET_START(rcu_protected_types) 5810 #ifdef CONFIG_NET 5811 BTF_ID(struct, prog_test_ref_kfunc) 5812 #endif 5813 #ifdef CONFIG_CGROUPS 5814 BTF_ID(struct, cgroup) 5815 #endif 5816 #ifdef CONFIG_BPF_JIT 5817 BTF_ID(struct, bpf_cpumask) 5818 #endif 5819 BTF_ID(struct, task_struct) 5820 #ifdef CONFIG_CRYPTO 5821 BTF_ID(struct, bpf_crypto_ctx) 5822 #endif 5823 BTF_SET_END(rcu_protected_types) 5824 5825 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5826 { 5827 if (!btf_is_kernel(btf)) 5828 return true; 5829 return btf_id_set_contains(&rcu_protected_types, btf_id); 5830 } 5831 5832 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5833 { 5834 struct btf_struct_meta *meta; 5835 5836 if (btf_is_kernel(kptr_field->kptr.btf)) 5837 return NULL; 5838 5839 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5840 kptr_field->kptr.btf_id); 5841 5842 return meta ? meta->record : NULL; 5843 } 5844 5845 static bool rcu_safe_kptr(const struct btf_field *field) 5846 { 5847 const struct btf_field_kptr *kptr = &field->kptr; 5848 5849 return field->type == BPF_KPTR_PERCPU || 5850 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5851 } 5852 5853 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5854 { 5855 struct btf_record *rec; 5856 u32 ret; 5857 5858 ret = PTR_MAYBE_NULL; 5859 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5860 ret |= MEM_RCU; 5861 if (kptr_field->type == BPF_KPTR_PERCPU) 5862 ret |= MEM_PERCPU; 5863 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5864 ret |= MEM_ALLOC; 5865 5866 rec = kptr_pointee_btf_record(kptr_field); 5867 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5868 ret |= NON_OWN_REF; 5869 } else { 5870 ret |= PTR_UNTRUSTED; 5871 } 5872 5873 return ret; 5874 } 5875 5876 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno, 5877 struct btf_field *field) 5878 { 5879 struct bpf_reg_state *reg; 5880 const struct btf_type *t; 5881 5882 t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id); 5883 mark_reg_known_zero(env, cur_regs(env), regno); 5884 reg = reg_state(env, regno); 5885 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 5886 reg->mem_size = t->size; 5887 reg->id = ++env->id_gen; 5888 5889 return 0; 5890 } 5891 5892 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5893 int value_regno, int insn_idx, 5894 struct btf_field *kptr_field) 5895 { 5896 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5897 int class = BPF_CLASS(insn->code); 5898 struct bpf_reg_state *val_reg; 5899 5900 /* Things we already checked for in check_map_access and caller: 5901 * - Reject cases where variable offset may touch kptr 5902 * - size of access (must be BPF_DW) 5903 * - tnum_is_const(reg->var_off) 5904 * - kptr_field->offset == off + reg->var_off.value 5905 */ 5906 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5907 if (BPF_MODE(insn->code) != BPF_MEM) { 5908 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5909 return -EACCES; 5910 } 5911 5912 /* We only allow loading referenced kptr, since it will be marked as 5913 * untrusted, similar to unreferenced kptr. 5914 */ 5915 if (class != BPF_LDX && 5916 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 5917 verbose(env, "store to referenced kptr disallowed\n"); 5918 return -EACCES; 5919 } 5920 if (class != BPF_LDX && kptr_field->type == BPF_UPTR) { 5921 verbose(env, "store to uptr disallowed\n"); 5922 return -EACCES; 5923 } 5924 5925 if (class == BPF_LDX) { 5926 if (kptr_field->type == BPF_UPTR) 5927 return mark_uptr_ld_reg(env, value_regno, kptr_field); 5928 5929 /* We can simply mark the value_regno receiving the pointer 5930 * value from map as PTR_TO_BTF_ID, with the correct type. 5931 */ 5932 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5933 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); 5934 } else if (class == BPF_STX) { 5935 val_reg = reg_state(env, value_regno); 5936 if (!register_is_null(val_reg) && 5937 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5938 return -EACCES; 5939 } else if (class == BPF_ST) { 5940 if (insn->imm) { 5941 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5942 kptr_field->offset); 5943 return -EACCES; 5944 } 5945 } else { 5946 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5947 return -EACCES; 5948 } 5949 return 0; 5950 } 5951 5952 /* check read/write into a map element with possible variable offset */ 5953 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5954 int off, int size, bool zero_size_allowed, 5955 enum bpf_access_src src) 5956 { 5957 struct bpf_verifier_state *vstate = env->cur_state; 5958 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5959 struct bpf_reg_state *reg = &state->regs[regno]; 5960 struct bpf_map *map = reg->map_ptr; 5961 struct btf_record *rec; 5962 int err, i; 5963 5964 err = check_mem_region_access(env, regno, off, size, map->value_size, 5965 zero_size_allowed); 5966 if (err) 5967 return err; 5968 5969 if (IS_ERR_OR_NULL(map->record)) 5970 return 0; 5971 rec = map->record; 5972 for (i = 0; i < rec->cnt; i++) { 5973 struct btf_field *field = &rec->fields[i]; 5974 u32 p = field->offset; 5975 5976 /* If any part of a field can be touched by load/store, reject 5977 * this program. To check that [x1, x2) overlaps with [y1, y2), 5978 * it is sufficient to check x1 < y2 && y1 < x2. 5979 */ 5980 if (reg->smin_value + off < p + field->size && 5981 p < reg->umax_value + off + size) { 5982 switch (field->type) { 5983 case BPF_KPTR_UNREF: 5984 case BPF_KPTR_REF: 5985 case BPF_KPTR_PERCPU: 5986 case BPF_UPTR: 5987 if (src != ACCESS_DIRECT) { 5988 verbose(env, "%s cannot be accessed indirectly by helper\n", 5989 btf_field_type_name(field->type)); 5990 return -EACCES; 5991 } 5992 if (!tnum_is_const(reg->var_off)) { 5993 verbose(env, "%s access cannot have variable offset\n", 5994 btf_field_type_name(field->type)); 5995 return -EACCES; 5996 } 5997 if (p != off + reg->var_off.value) { 5998 verbose(env, "%s access misaligned expected=%u off=%llu\n", 5999 btf_field_type_name(field->type), 6000 p, off + reg->var_off.value); 6001 return -EACCES; 6002 } 6003 if (size != bpf_size_to_bytes(BPF_DW)) { 6004 verbose(env, "%s access size must be BPF_DW\n", 6005 btf_field_type_name(field->type)); 6006 return -EACCES; 6007 } 6008 break; 6009 default: 6010 verbose(env, "%s cannot be accessed directly by load/store\n", 6011 btf_field_type_name(field->type)); 6012 return -EACCES; 6013 } 6014 } 6015 } 6016 return 0; 6017 } 6018 6019 #define MAX_PACKET_OFF 0xffff 6020 6021 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 6022 const struct bpf_call_arg_meta *meta, 6023 enum bpf_access_type t) 6024 { 6025 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 6026 6027 switch (prog_type) { 6028 /* Program types only with direct read access go here! */ 6029 case BPF_PROG_TYPE_LWT_IN: 6030 case BPF_PROG_TYPE_LWT_OUT: 6031 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 6032 case BPF_PROG_TYPE_SK_REUSEPORT: 6033 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6034 case BPF_PROG_TYPE_CGROUP_SKB: 6035 if (t == BPF_WRITE) 6036 return false; 6037 fallthrough; 6038 6039 /* Program types with direct read + write access go here! */ 6040 case BPF_PROG_TYPE_SCHED_CLS: 6041 case BPF_PROG_TYPE_SCHED_ACT: 6042 case BPF_PROG_TYPE_XDP: 6043 case BPF_PROG_TYPE_LWT_XMIT: 6044 case BPF_PROG_TYPE_SK_SKB: 6045 case BPF_PROG_TYPE_SK_MSG: 6046 if (meta) 6047 return meta->pkt_access; 6048 6049 env->seen_direct_write = true; 6050 return true; 6051 6052 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 6053 if (t == BPF_WRITE) 6054 env->seen_direct_write = true; 6055 6056 return true; 6057 6058 default: 6059 return false; 6060 } 6061 } 6062 6063 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 6064 int size, bool zero_size_allowed) 6065 { 6066 struct bpf_reg_state *regs = cur_regs(env); 6067 struct bpf_reg_state *reg = ®s[regno]; 6068 int err; 6069 6070 /* We may have added a variable offset to the packet pointer; but any 6071 * reg->range we have comes after that. We are only checking the fixed 6072 * offset. 6073 */ 6074 6075 /* We don't allow negative numbers, because we aren't tracking enough 6076 * detail to prove they're safe. 6077 */ 6078 if (reg->smin_value < 0) { 6079 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 6080 regno); 6081 return -EACCES; 6082 } 6083 6084 err = reg->range < 0 ? -EINVAL : 6085 __check_mem_access(env, regno, off, size, reg->range, 6086 zero_size_allowed); 6087 if (err) { 6088 verbose(env, "R%d offset is outside of the packet\n", regno); 6089 return err; 6090 } 6091 6092 /* __check_mem_access has made sure "off + size - 1" is within u16. 6093 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 6094 * otherwise find_good_pkt_pointers would have refused to set range info 6095 * that __check_mem_access would have rejected this pkt access. 6096 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 6097 */ 6098 env->prog->aux->max_pkt_offset = 6099 max_t(u32, env->prog->aux->max_pkt_offset, 6100 off + reg->umax_value + size - 1); 6101 6102 return err; 6103 } 6104 6105 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 6106 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 6107 enum bpf_access_type t, struct bpf_insn_access_aux *info) 6108 { 6109 if (env->ops->is_valid_access && 6110 env->ops->is_valid_access(off, size, t, env->prog, info)) { 6111 /* A non zero info.ctx_field_size indicates that this field is a 6112 * candidate for later verifier transformation to load the whole 6113 * field and then apply a mask when accessed with a narrower 6114 * access than actual ctx access size. A zero info.ctx_field_size 6115 * will only allow for whole field access and rejects any other 6116 * type of narrower access. 6117 */ 6118 if (base_type(info->reg_type) == PTR_TO_BTF_ID) { 6119 if (info->ref_obj_id && 6120 !find_reference_state(env->cur_state, info->ref_obj_id)) { 6121 verbose(env, "invalid bpf_context access off=%d. Reference may already be released\n", 6122 off); 6123 return -EACCES; 6124 } 6125 } else { 6126 env->insn_aux_data[insn_idx].ctx_field_size = info->ctx_field_size; 6127 } 6128 /* remember the offset of last byte accessed in ctx */ 6129 if (env->prog->aux->max_ctx_offset < off + size) 6130 env->prog->aux->max_ctx_offset = off + size; 6131 return 0; 6132 } 6133 6134 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 6135 return -EACCES; 6136 } 6137 6138 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 6139 int size) 6140 { 6141 if (size < 0 || off < 0 || 6142 (u64)off + size > sizeof(struct bpf_flow_keys)) { 6143 verbose(env, "invalid access to flow keys off=%d size=%d\n", 6144 off, size); 6145 return -EACCES; 6146 } 6147 return 0; 6148 } 6149 6150 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 6151 u32 regno, int off, int size, 6152 enum bpf_access_type t) 6153 { 6154 struct bpf_reg_state *regs = cur_regs(env); 6155 struct bpf_reg_state *reg = ®s[regno]; 6156 struct bpf_insn_access_aux info = {}; 6157 bool valid; 6158 6159 if (reg->smin_value < 0) { 6160 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 6161 regno); 6162 return -EACCES; 6163 } 6164 6165 switch (reg->type) { 6166 case PTR_TO_SOCK_COMMON: 6167 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 6168 break; 6169 case PTR_TO_SOCKET: 6170 valid = bpf_sock_is_valid_access(off, size, t, &info); 6171 break; 6172 case PTR_TO_TCP_SOCK: 6173 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 6174 break; 6175 case PTR_TO_XDP_SOCK: 6176 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 6177 break; 6178 default: 6179 valid = false; 6180 } 6181 6182 6183 if (valid) { 6184 env->insn_aux_data[insn_idx].ctx_field_size = 6185 info.ctx_field_size; 6186 return 0; 6187 } 6188 6189 verbose(env, "R%d invalid %s access off=%d size=%d\n", 6190 regno, reg_type_str(env, reg->type), off, size); 6191 6192 return -EACCES; 6193 } 6194 6195 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 6196 { 6197 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 6198 } 6199 6200 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 6201 { 6202 const struct bpf_reg_state *reg = reg_state(env, regno); 6203 6204 return reg->type == PTR_TO_CTX; 6205 } 6206 6207 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 6208 { 6209 const struct bpf_reg_state *reg = reg_state(env, regno); 6210 6211 return type_is_sk_pointer(reg->type); 6212 } 6213 6214 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 6215 { 6216 const struct bpf_reg_state *reg = reg_state(env, regno); 6217 6218 return type_is_pkt_pointer(reg->type); 6219 } 6220 6221 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 6222 { 6223 const struct bpf_reg_state *reg = reg_state(env, regno); 6224 6225 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 6226 return reg->type == PTR_TO_FLOW_KEYS; 6227 } 6228 6229 static bool is_arena_reg(struct bpf_verifier_env *env, int regno) 6230 { 6231 const struct bpf_reg_state *reg = reg_state(env, regno); 6232 6233 return reg->type == PTR_TO_ARENA; 6234 } 6235 6236 /* Return false if @regno contains a pointer whose type isn't supported for 6237 * atomic instruction @insn. 6238 */ 6239 static bool atomic_ptr_type_ok(struct bpf_verifier_env *env, int regno, 6240 struct bpf_insn *insn) 6241 { 6242 if (is_ctx_reg(env, regno)) 6243 return false; 6244 if (is_pkt_reg(env, regno)) 6245 return false; 6246 if (is_flow_key_reg(env, regno)) 6247 return false; 6248 if (is_sk_reg(env, regno)) 6249 return false; 6250 if (is_arena_reg(env, regno)) 6251 return bpf_jit_supports_insn(insn, true); 6252 6253 return true; 6254 } 6255 6256 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 6257 #ifdef CONFIG_NET 6258 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 6259 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6260 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 6261 #endif 6262 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 6263 }; 6264 6265 static bool is_trusted_reg(const struct bpf_reg_state *reg) 6266 { 6267 /* A referenced register is always trusted. */ 6268 if (reg->ref_obj_id) 6269 return true; 6270 6271 /* Types listed in the reg2btf_ids are always trusted */ 6272 if (reg2btf_ids[base_type(reg->type)] && 6273 !bpf_type_has_unsafe_modifiers(reg->type)) 6274 return true; 6275 6276 /* If a register is not referenced, it is trusted if it has the 6277 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 6278 * other type modifiers may be safe, but we elect to take an opt-in 6279 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 6280 * not. 6281 * 6282 * Eventually, we should make PTR_TRUSTED the single source of truth 6283 * for whether a register is trusted. 6284 */ 6285 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 6286 !bpf_type_has_unsafe_modifiers(reg->type); 6287 } 6288 6289 static bool is_rcu_reg(const struct bpf_reg_state *reg) 6290 { 6291 return reg->type & MEM_RCU; 6292 } 6293 6294 static void clear_trusted_flags(enum bpf_type_flag *flag) 6295 { 6296 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 6297 } 6298 6299 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 6300 const struct bpf_reg_state *reg, 6301 int off, int size, bool strict) 6302 { 6303 struct tnum reg_off; 6304 int ip_align; 6305 6306 /* Byte size accesses are always allowed. */ 6307 if (!strict || size == 1) 6308 return 0; 6309 6310 /* For platforms that do not have a Kconfig enabling 6311 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 6312 * NET_IP_ALIGN is universally set to '2'. And on platforms 6313 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 6314 * to this code only in strict mode where we want to emulate 6315 * the NET_IP_ALIGN==2 checking. Therefore use an 6316 * unconditional IP align value of '2'. 6317 */ 6318 ip_align = 2; 6319 6320 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 6321 if (!tnum_is_aligned(reg_off, size)) { 6322 char tn_buf[48]; 6323 6324 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6325 verbose(env, 6326 "misaligned packet access off %d+%s+%d+%d size %d\n", 6327 ip_align, tn_buf, reg->off, off, size); 6328 return -EACCES; 6329 } 6330 6331 return 0; 6332 } 6333 6334 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 6335 const struct bpf_reg_state *reg, 6336 const char *pointer_desc, 6337 int off, int size, bool strict) 6338 { 6339 struct tnum reg_off; 6340 6341 /* Byte size accesses are always allowed. */ 6342 if (!strict || size == 1) 6343 return 0; 6344 6345 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 6346 if (!tnum_is_aligned(reg_off, size)) { 6347 char tn_buf[48]; 6348 6349 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6350 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 6351 pointer_desc, tn_buf, reg->off, off, size); 6352 return -EACCES; 6353 } 6354 6355 return 0; 6356 } 6357 6358 static int check_ptr_alignment(struct bpf_verifier_env *env, 6359 const struct bpf_reg_state *reg, int off, 6360 int size, bool strict_alignment_once) 6361 { 6362 bool strict = env->strict_alignment || strict_alignment_once; 6363 const char *pointer_desc = ""; 6364 6365 switch (reg->type) { 6366 case PTR_TO_PACKET: 6367 case PTR_TO_PACKET_META: 6368 /* Special case, because of NET_IP_ALIGN. Given metadata sits 6369 * right in front, treat it the very same way. 6370 */ 6371 return check_pkt_ptr_alignment(env, reg, off, size, strict); 6372 case PTR_TO_FLOW_KEYS: 6373 pointer_desc = "flow keys "; 6374 break; 6375 case PTR_TO_MAP_KEY: 6376 pointer_desc = "key "; 6377 break; 6378 case PTR_TO_MAP_VALUE: 6379 pointer_desc = "value "; 6380 break; 6381 case PTR_TO_CTX: 6382 pointer_desc = "context "; 6383 break; 6384 case PTR_TO_STACK: 6385 pointer_desc = "stack "; 6386 /* The stack spill tracking logic in check_stack_write_fixed_off() 6387 * and check_stack_read_fixed_off() relies on stack accesses being 6388 * aligned. 6389 */ 6390 strict = true; 6391 break; 6392 case PTR_TO_SOCKET: 6393 pointer_desc = "sock "; 6394 break; 6395 case PTR_TO_SOCK_COMMON: 6396 pointer_desc = "sock_common "; 6397 break; 6398 case PTR_TO_TCP_SOCK: 6399 pointer_desc = "tcp_sock "; 6400 break; 6401 case PTR_TO_XDP_SOCK: 6402 pointer_desc = "xdp_sock "; 6403 break; 6404 case PTR_TO_ARENA: 6405 return 0; 6406 default: 6407 break; 6408 } 6409 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 6410 strict); 6411 } 6412 6413 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog) 6414 { 6415 if (!bpf_jit_supports_private_stack()) 6416 return NO_PRIV_STACK; 6417 6418 /* bpf_prog_check_recur() checks all prog types that use bpf trampoline 6419 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked 6420 * explicitly. 6421 */ 6422 switch (prog->type) { 6423 case BPF_PROG_TYPE_KPROBE: 6424 case BPF_PROG_TYPE_TRACEPOINT: 6425 case BPF_PROG_TYPE_PERF_EVENT: 6426 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6427 return PRIV_STACK_ADAPTIVE; 6428 case BPF_PROG_TYPE_TRACING: 6429 case BPF_PROG_TYPE_LSM: 6430 case BPF_PROG_TYPE_STRUCT_OPS: 6431 if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog)) 6432 return PRIV_STACK_ADAPTIVE; 6433 fallthrough; 6434 default: 6435 break; 6436 } 6437 6438 return NO_PRIV_STACK; 6439 } 6440 6441 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) 6442 { 6443 if (env->prog->jit_requested) 6444 return round_up(stack_depth, 16); 6445 6446 /* round up to 32-bytes, since this is granularity 6447 * of interpreter stack size 6448 */ 6449 return round_up(max_t(u32, stack_depth, 1), 32); 6450 } 6451 6452 /* starting from main bpf function walk all instructions of the function 6453 * and recursively walk all callees that given function can call. 6454 * Ignore jump and exit insns. 6455 * Since recursion is prevented by check_cfg() this algorithm 6456 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 6457 */ 6458 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx, 6459 bool priv_stack_supported) 6460 { 6461 struct bpf_subprog_info *subprog = env->subprog_info; 6462 struct bpf_insn *insn = env->prog->insnsi; 6463 int depth = 0, frame = 0, i, subprog_end, subprog_depth; 6464 bool tail_call_reachable = false; 6465 int ret_insn[MAX_CALL_FRAMES]; 6466 int ret_prog[MAX_CALL_FRAMES]; 6467 int j; 6468 6469 i = subprog[idx].start; 6470 if (!priv_stack_supported) 6471 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6472 process_func: 6473 /* protect against potential stack overflow that might happen when 6474 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 6475 * depth for such case down to 256 so that the worst case scenario 6476 * would result in 8k stack size (32 which is tailcall limit * 256 = 6477 * 8k). 6478 * 6479 * To get the idea what might happen, see an example: 6480 * func1 -> sub rsp, 128 6481 * subfunc1 -> sub rsp, 256 6482 * tailcall1 -> add rsp, 256 6483 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 6484 * subfunc2 -> sub rsp, 64 6485 * subfunc22 -> sub rsp, 128 6486 * tailcall2 -> add rsp, 128 6487 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 6488 * 6489 * tailcall will unwind the current stack frame but it will not get rid 6490 * of caller's stack as shown on the example above. 6491 */ 6492 if (idx && subprog[idx].has_tail_call && depth >= 256) { 6493 verbose(env, 6494 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 6495 depth); 6496 return -EACCES; 6497 } 6498 6499 subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth); 6500 if (priv_stack_supported) { 6501 /* Request private stack support only if the subprog stack 6502 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to 6503 * avoid jit penalty if the stack usage is small. 6504 */ 6505 if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN && 6506 subprog_depth >= BPF_PRIV_STACK_MIN_SIZE) 6507 subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE; 6508 } 6509 6510 if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6511 if (subprog_depth > MAX_BPF_STACK) { 6512 verbose(env, "stack size of subprog %d is %d. Too large\n", 6513 idx, subprog_depth); 6514 return -EACCES; 6515 } 6516 } else { 6517 depth += subprog_depth; 6518 if (depth > MAX_BPF_STACK) { 6519 verbose(env, "combined stack size of %d calls is %d. Too large\n", 6520 frame + 1, depth); 6521 return -EACCES; 6522 } 6523 } 6524 continue_func: 6525 subprog_end = subprog[idx + 1].start; 6526 for (; i < subprog_end; i++) { 6527 int next_insn, sidx; 6528 6529 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 6530 bool err = false; 6531 6532 if (!is_bpf_throw_kfunc(insn + i)) 6533 continue; 6534 if (subprog[idx].is_cb) 6535 err = true; 6536 for (int c = 0; c < frame && !err; c++) { 6537 if (subprog[ret_prog[c]].is_cb) { 6538 err = true; 6539 break; 6540 } 6541 } 6542 if (!err) 6543 continue; 6544 verbose(env, 6545 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 6546 i, idx); 6547 return -EINVAL; 6548 } 6549 6550 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 6551 continue; 6552 /* remember insn and function to return to */ 6553 ret_insn[frame] = i + 1; 6554 ret_prog[frame] = idx; 6555 6556 /* find the callee */ 6557 next_insn = i + insn[i].imm + 1; 6558 sidx = find_subprog(env, next_insn); 6559 if (verifier_bug_if(sidx < 0, env, "callee not found at insn %d", next_insn)) 6560 return -EFAULT; 6561 if (subprog[sidx].is_async_cb) { 6562 if (subprog[sidx].has_tail_call) { 6563 verifier_bug(env, "subprog has tail_call and async cb"); 6564 return -EFAULT; 6565 } 6566 /* async callbacks don't increase bpf prog stack size unless called directly */ 6567 if (!bpf_pseudo_call(insn + i)) 6568 continue; 6569 if (subprog[sidx].is_exception_cb) { 6570 verbose(env, "insn %d cannot call exception cb directly", i); 6571 return -EINVAL; 6572 } 6573 } 6574 i = next_insn; 6575 idx = sidx; 6576 if (!priv_stack_supported) 6577 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6578 6579 if (subprog[idx].has_tail_call) 6580 tail_call_reachable = true; 6581 6582 frame++; 6583 if (frame >= MAX_CALL_FRAMES) { 6584 verbose(env, "the call stack of %d frames is too deep !\n", 6585 frame); 6586 return -E2BIG; 6587 } 6588 goto process_func; 6589 } 6590 /* if tail call got detected across bpf2bpf calls then mark each of the 6591 * currently present subprog frames as tail call reachable subprogs; 6592 * this info will be utilized by JIT so that we will be preserving the 6593 * tail call counter throughout bpf2bpf calls combined with tailcalls 6594 */ 6595 if (tail_call_reachable) 6596 for (j = 0; j < frame; j++) { 6597 if (subprog[ret_prog[j]].is_exception_cb) { 6598 verbose(env, "cannot tail call within exception cb\n"); 6599 return -EINVAL; 6600 } 6601 subprog[ret_prog[j]].tail_call_reachable = true; 6602 } 6603 if (subprog[0].tail_call_reachable) 6604 env->prog->aux->tail_call_reachable = true; 6605 6606 /* end of for() loop means the last insn of the 'subprog' 6607 * was reached. Doesn't matter whether it was JA or EXIT 6608 */ 6609 if (frame == 0) 6610 return 0; 6611 if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE) 6612 depth -= round_up_stack_depth(env, subprog[idx].stack_depth); 6613 frame--; 6614 i = ret_insn[frame]; 6615 idx = ret_prog[frame]; 6616 goto continue_func; 6617 } 6618 6619 static int check_max_stack_depth(struct bpf_verifier_env *env) 6620 { 6621 enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN; 6622 struct bpf_subprog_info *si = env->subprog_info; 6623 bool priv_stack_supported; 6624 int ret; 6625 6626 for (int i = 0; i < env->subprog_cnt; i++) { 6627 if (si[i].has_tail_call) { 6628 priv_stack_mode = NO_PRIV_STACK; 6629 break; 6630 } 6631 } 6632 6633 if (priv_stack_mode == PRIV_STACK_UNKNOWN) 6634 priv_stack_mode = bpf_enable_priv_stack(env->prog); 6635 6636 /* All async_cb subprogs use normal kernel stack. If a particular 6637 * subprog appears in both main prog and async_cb subtree, that 6638 * subprog will use normal kernel stack to avoid potential nesting. 6639 * The reverse subprog traversal ensures when main prog subtree is 6640 * checked, the subprogs appearing in async_cb subtrees are already 6641 * marked as using normal kernel stack, so stack size checking can 6642 * be done properly. 6643 */ 6644 for (int i = env->subprog_cnt - 1; i >= 0; i--) { 6645 if (!i || si[i].is_async_cb) { 6646 priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE; 6647 ret = check_max_stack_depth_subprog(env, i, priv_stack_supported); 6648 if (ret < 0) 6649 return ret; 6650 } 6651 } 6652 6653 for (int i = 0; i < env->subprog_cnt; i++) { 6654 if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6655 env->prog->aux->jits_use_priv_stack = true; 6656 break; 6657 } 6658 } 6659 6660 return 0; 6661 } 6662 6663 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6664 static int get_callee_stack_depth(struct bpf_verifier_env *env, 6665 const struct bpf_insn *insn, int idx) 6666 { 6667 int start = idx + insn->imm + 1, subprog; 6668 6669 subprog = find_subprog(env, start); 6670 if (verifier_bug_if(subprog < 0, env, "get stack depth: no program at insn %d", start)) 6671 return -EFAULT; 6672 return env->subprog_info[subprog].stack_depth; 6673 } 6674 #endif 6675 6676 static int __check_buffer_access(struct bpf_verifier_env *env, 6677 const char *buf_info, 6678 const struct bpf_reg_state *reg, 6679 int regno, int off, int size) 6680 { 6681 if (off < 0) { 6682 verbose(env, 6683 "R%d invalid %s buffer access: off=%d, size=%d\n", 6684 regno, buf_info, off, size); 6685 return -EACCES; 6686 } 6687 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6688 char tn_buf[48]; 6689 6690 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6691 verbose(env, 6692 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6693 regno, off, tn_buf); 6694 return -EACCES; 6695 } 6696 6697 return 0; 6698 } 6699 6700 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6701 const struct bpf_reg_state *reg, 6702 int regno, int off, int size) 6703 { 6704 int err; 6705 6706 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6707 if (err) 6708 return err; 6709 6710 if (off + size > env->prog->aux->max_tp_access) 6711 env->prog->aux->max_tp_access = off + size; 6712 6713 return 0; 6714 } 6715 6716 static int check_buffer_access(struct bpf_verifier_env *env, 6717 const struct bpf_reg_state *reg, 6718 int regno, int off, int size, 6719 bool zero_size_allowed, 6720 u32 *max_access) 6721 { 6722 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6723 int err; 6724 6725 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6726 if (err) 6727 return err; 6728 6729 if (off + size > *max_access) 6730 *max_access = off + size; 6731 6732 return 0; 6733 } 6734 6735 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6736 static void zext_32_to_64(struct bpf_reg_state *reg) 6737 { 6738 reg->var_off = tnum_subreg(reg->var_off); 6739 __reg_assign_32_into_64(reg); 6740 } 6741 6742 /* truncate register to smaller size (in bytes) 6743 * must be called with size < BPF_REG_SIZE 6744 */ 6745 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6746 { 6747 u64 mask; 6748 6749 /* clear high bits in bit representation */ 6750 reg->var_off = tnum_cast(reg->var_off, size); 6751 6752 /* fix arithmetic bounds */ 6753 mask = ((u64)1 << (size * 8)) - 1; 6754 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6755 reg->umin_value &= mask; 6756 reg->umax_value &= mask; 6757 } else { 6758 reg->umin_value = 0; 6759 reg->umax_value = mask; 6760 } 6761 reg->smin_value = reg->umin_value; 6762 reg->smax_value = reg->umax_value; 6763 6764 /* If size is smaller than 32bit register the 32bit register 6765 * values are also truncated so we push 64-bit bounds into 6766 * 32-bit bounds. Above were truncated < 32-bits already. 6767 */ 6768 if (size < 4) 6769 __mark_reg32_unbounded(reg); 6770 6771 reg_bounds_sync(reg); 6772 } 6773 6774 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6775 { 6776 if (size == 1) { 6777 reg->smin_value = reg->s32_min_value = S8_MIN; 6778 reg->smax_value = reg->s32_max_value = S8_MAX; 6779 } else if (size == 2) { 6780 reg->smin_value = reg->s32_min_value = S16_MIN; 6781 reg->smax_value = reg->s32_max_value = S16_MAX; 6782 } else { 6783 /* size == 4 */ 6784 reg->smin_value = reg->s32_min_value = S32_MIN; 6785 reg->smax_value = reg->s32_max_value = S32_MAX; 6786 } 6787 reg->umin_value = reg->u32_min_value = 0; 6788 reg->umax_value = U64_MAX; 6789 reg->u32_max_value = U32_MAX; 6790 reg->var_off = tnum_unknown; 6791 } 6792 6793 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6794 { 6795 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6796 u64 top_smax_value, top_smin_value; 6797 u64 num_bits = size * 8; 6798 6799 if (tnum_is_const(reg->var_off)) { 6800 u64_cval = reg->var_off.value; 6801 if (size == 1) 6802 reg->var_off = tnum_const((s8)u64_cval); 6803 else if (size == 2) 6804 reg->var_off = tnum_const((s16)u64_cval); 6805 else 6806 /* size == 4 */ 6807 reg->var_off = tnum_const((s32)u64_cval); 6808 6809 u64_cval = reg->var_off.value; 6810 reg->smax_value = reg->smin_value = u64_cval; 6811 reg->umax_value = reg->umin_value = u64_cval; 6812 reg->s32_max_value = reg->s32_min_value = u64_cval; 6813 reg->u32_max_value = reg->u32_min_value = u64_cval; 6814 return; 6815 } 6816 6817 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6818 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6819 6820 if (top_smax_value != top_smin_value) 6821 goto out; 6822 6823 /* find the s64_min and s64_min after sign extension */ 6824 if (size == 1) { 6825 init_s64_max = (s8)reg->smax_value; 6826 init_s64_min = (s8)reg->smin_value; 6827 } else if (size == 2) { 6828 init_s64_max = (s16)reg->smax_value; 6829 init_s64_min = (s16)reg->smin_value; 6830 } else { 6831 init_s64_max = (s32)reg->smax_value; 6832 init_s64_min = (s32)reg->smin_value; 6833 } 6834 6835 s64_max = max(init_s64_max, init_s64_min); 6836 s64_min = min(init_s64_max, init_s64_min); 6837 6838 /* both of s64_max/s64_min positive or negative */ 6839 if ((s64_max >= 0) == (s64_min >= 0)) { 6840 reg->s32_min_value = reg->smin_value = s64_min; 6841 reg->s32_max_value = reg->smax_value = s64_max; 6842 reg->u32_min_value = reg->umin_value = s64_min; 6843 reg->u32_max_value = reg->umax_value = s64_max; 6844 reg->var_off = tnum_range(s64_min, s64_max); 6845 return; 6846 } 6847 6848 out: 6849 set_sext64_default_val(reg, size); 6850 } 6851 6852 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6853 { 6854 if (size == 1) { 6855 reg->s32_min_value = S8_MIN; 6856 reg->s32_max_value = S8_MAX; 6857 } else { 6858 /* size == 2 */ 6859 reg->s32_min_value = S16_MIN; 6860 reg->s32_max_value = S16_MAX; 6861 } 6862 reg->u32_min_value = 0; 6863 reg->u32_max_value = U32_MAX; 6864 reg->var_off = tnum_subreg(tnum_unknown); 6865 } 6866 6867 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6868 { 6869 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6870 u32 top_smax_value, top_smin_value; 6871 u32 num_bits = size * 8; 6872 6873 if (tnum_is_const(reg->var_off)) { 6874 u32_val = reg->var_off.value; 6875 if (size == 1) 6876 reg->var_off = tnum_const((s8)u32_val); 6877 else 6878 reg->var_off = tnum_const((s16)u32_val); 6879 6880 u32_val = reg->var_off.value; 6881 reg->s32_min_value = reg->s32_max_value = u32_val; 6882 reg->u32_min_value = reg->u32_max_value = u32_val; 6883 return; 6884 } 6885 6886 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6887 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6888 6889 if (top_smax_value != top_smin_value) 6890 goto out; 6891 6892 /* find the s32_min and s32_min after sign extension */ 6893 if (size == 1) { 6894 init_s32_max = (s8)reg->s32_max_value; 6895 init_s32_min = (s8)reg->s32_min_value; 6896 } else { 6897 /* size == 2 */ 6898 init_s32_max = (s16)reg->s32_max_value; 6899 init_s32_min = (s16)reg->s32_min_value; 6900 } 6901 s32_max = max(init_s32_max, init_s32_min); 6902 s32_min = min(init_s32_max, init_s32_min); 6903 6904 if ((s32_min >= 0) == (s32_max >= 0)) { 6905 reg->s32_min_value = s32_min; 6906 reg->s32_max_value = s32_max; 6907 reg->u32_min_value = (u32)s32_min; 6908 reg->u32_max_value = (u32)s32_max; 6909 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); 6910 return; 6911 } 6912 6913 out: 6914 set_sext32_default_val(reg, size); 6915 } 6916 6917 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6918 { 6919 /* A map is considered read-only if the following condition are true: 6920 * 6921 * 1) BPF program side cannot change any of the map content. The 6922 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6923 * and was set at map creation time. 6924 * 2) The map value(s) have been initialized from user space by a 6925 * loader and then "frozen", such that no new map update/delete 6926 * operations from syscall side are possible for the rest of 6927 * the map's lifetime from that point onwards. 6928 * 3) Any parallel/pending map update/delete operations from syscall 6929 * side have been completed. Only after that point, it's safe to 6930 * assume that map value(s) are immutable. 6931 */ 6932 return (map->map_flags & BPF_F_RDONLY_PROG) && 6933 READ_ONCE(map->frozen) && 6934 !bpf_map_write_active(map); 6935 } 6936 6937 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6938 bool is_ldsx) 6939 { 6940 void *ptr; 6941 u64 addr; 6942 int err; 6943 6944 err = map->ops->map_direct_value_addr(map, &addr, off); 6945 if (err) 6946 return err; 6947 ptr = (void *)(long)addr + off; 6948 6949 switch (size) { 6950 case sizeof(u8): 6951 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6952 break; 6953 case sizeof(u16): 6954 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6955 break; 6956 case sizeof(u32): 6957 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6958 break; 6959 case sizeof(u64): 6960 *val = *(u64 *)ptr; 6961 break; 6962 default: 6963 return -EINVAL; 6964 } 6965 return 0; 6966 } 6967 6968 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6969 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6970 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6971 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 6972 6973 /* 6974 * Allow list few fields as RCU trusted or full trusted. 6975 * This logic doesn't allow mix tagging and will be removed once GCC supports 6976 * btf_type_tag. 6977 */ 6978 6979 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6980 BTF_TYPE_SAFE_RCU(struct task_struct) { 6981 const cpumask_t *cpus_ptr; 6982 struct css_set __rcu *cgroups; 6983 struct task_struct __rcu *real_parent; 6984 struct task_struct *group_leader; 6985 }; 6986 6987 BTF_TYPE_SAFE_RCU(struct cgroup) { 6988 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6989 struct kernfs_node *kn; 6990 }; 6991 6992 BTF_TYPE_SAFE_RCU(struct css_set) { 6993 struct cgroup *dfl_cgrp; 6994 }; 6995 6996 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6997 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6998 struct file __rcu *exe_file; 6999 }; 7000 7001 /* skb->sk, req->sk are not RCU protected, but we mark them as such 7002 * because bpf prog accessible sockets are SOCK_RCU_FREE. 7003 */ 7004 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 7005 struct sock *sk; 7006 }; 7007 7008 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 7009 struct sock *sk; 7010 }; 7011 7012 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 7013 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 7014 struct seq_file *seq; 7015 }; 7016 7017 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 7018 struct bpf_iter_meta *meta; 7019 struct task_struct *task; 7020 }; 7021 7022 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 7023 struct file *file; 7024 }; 7025 7026 BTF_TYPE_SAFE_TRUSTED(struct file) { 7027 struct inode *f_inode; 7028 }; 7029 7030 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry) { 7031 struct inode *d_inode; 7032 }; 7033 7034 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 7035 struct sock *sk; 7036 }; 7037 7038 static bool type_is_rcu(struct bpf_verifier_env *env, 7039 struct bpf_reg_state *reg, 7040 const char *field_name, u32 btf_id) 7041 { 7042 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 7043 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 7044 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 7045 7046 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 7047 } 7048 7049 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 7050 struct bpf_reg_state *reg, 7051 const char *field_name, u32 btf_id) 7052 { 7053 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 7054 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 7055 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 7056 7057 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 7058 } 7059 7060 static bool type_is_trusted(struct bpf_verifier_env *env, 7061 struct bpf_reg_state *reg, 7062 const char *field_name, u32 btf_id) 7063 { 7064 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 7065 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 7066 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 7067 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 7068 7069 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 7070 } 7071 7072 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 7073 struct bpf_reg_state *reg, 7074 const char *field_name, u32 btf_id) 7075 { 7076 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 7077 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry)); 7078 7079 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 7080 "__safe_trusted_or_null"); 7081 } 7082 7083 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 7084 struct bpf_reg_state *regs, 7085 int regno, int off, int size, 7086 enum bpf_access_type atype, 7087 int value_regno) 7088 { 7089 struct bpf_reg_state *reg = regs + regno; 7090 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 7091 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 7092 const char *field_name = NULL; 7093 enum bpf_type_flag flag = 0; 7094 u32 btf_id = 0; 7095 int ret; 7096 7097 if (!env->allow_ptr_leaks) { 7098 verbose(env, 7099 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 7100 tname); 7101 return -EPERM; 7102 } 7103 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 7104 verbose(env, 7105 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 7106 tname); 7107 return -EINVAL; 7108 } 7109 if (off < 0) { 7110 verbose(env, 7111 "R%d is ptr_%s invalid negative access: off=%d\n", 7112 regno, tname, off); 7113 return -EACCES; 7114 } 7115 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 7116 char tn_buf[48]; 7117 7118 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7119 verbose(env, 7120 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 7121 regno, tname, off, tn_buf); 7122 return -EACCES; 7123 } 7124 7125 if (reg->type & MEM_USER) { 7126 verbose(env, 7127 "R%d is ptr_%s access user memory: off=%d\n", 7128 regno, tname, off); 7129 return -EACCES; 7130 } 7131 7132 if (reg->type & MEM_PERCPU) { 7133 verbose(env, 7134 "R%d is ptr_%s access percpu memory: off=%d\n", 7135 regno, tname, off); 7136 return -EACCES; 7137 } 7138 7139 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 7140 if (!btf_is_kernel(reg->btf)) { 7141 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 7142 return -EFAULT; 7143 } 7144 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 7145 } else { 7146 /* Writes are permitted with default btf_struct_access for 7147 * program allocated objects (which always have ref_obj_id > 0), 7148 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 7149 */ 7150 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 7151 verbose(env, "only read is supported\n"); 7152 return -EACCES; 7153 } 7154 7155 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 7156 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 7157 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 7158 return -EFAULT; 7159 } 7160 7161 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 7162 } 7163 7164 if (ret < 0) 7165 return ret; 7166 7167 if (ret != PTR_TO_BTF_ID) { 7168 /* just mark; */ 7169 7170 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 7171 /* If this is an untrusted pointer, all pointers formed by walking it 7172 * also inherit the untrusted flag. 7173 */ 7174 flag = PTR_UNTRUSTED; 7175 7176 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 7177 /* By default any pointer obtained from walking a trusted pointer is no 7178 * longer trusted, unless the field being accessed has explicitly been 7179 * marked as inheriting its parent's state of trust (either full or RCU). 7180 * For example: 7181 * 'cgroups' pointer is untrusted if task->cgroups dereference 7182 * happened in a sleepable program outside of bpf_rcu_read_lock() 7183 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 7184 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 7185 * 7186 * A regular RCU-protected pointer with __rcu tag can also be deemed 7187 * trusted if we are in an RCU CS. Such pointer can be NULL. 7188 */ 7189 if (type_is_trusted(env, reg, field_name, btf_id)) { 7190 flag |= PTR_TRUSTED; 7191 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 7192 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 7193 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 7194 if (type_is_rcu(env, reg, field_name, btf_id)) { 7195 /* ignore __rcu tag and mark it MEM_RCU */ 7196 flag |= MEM_RCU; 7197 } else if (flag & MEM_RCU || 7198 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 7199 /* __rcu tagged pointers can be NULL */ 7200 flag |= MEM_RCU | PTR_MAYBE_NULL; 7201 7202 /* We always trust them */ 7203 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 7204 flag & PTR_UNTRUSTED) 7205 flag &= ~PTR_UNTRUSTED; 7206 } else if (flag & (MEM_PERCPU | MEM_USER)) { 7207 /* keep as-is */ 7208 } else { 7209 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 7210 clear_trusted_flags(&flag); 7211 } 7212 } else { 7213 /* 7214 * If not in RCU CS or MEM_RCU pointer can be NULL then 7215 * aggressively mark as untrusted otherwise such 7216 * pointers will be plain PTR_TO_BTF_ID without flags 7217 * and will be allowed to be passed into helpers for 7218 * compat reasons. 7219 */ 7220 flag = PTR_UNTRUSTED; 7221 } 7222 } else { 7223 /* Old compat. Deprecated */ 7224 clear_trusted_flags(&flag); 7225 } 7226 7227 if (atype == BPF_READ && value_regno >= 0) 7228 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 7229 7230 return 0; 7231 } 7232 7233 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 7234 struct bpf_reg_state *regs, 7235 int regno, int off, int size, 7236 enum bpf_access_type atype, 7237 int value_regno) 7238 { 7239 struct bpf_reg_state *reg = regs + regno; 7240 struct bpf_map *map = reg->map_ptr; 7241 struct bpf_reg_state map_reg; 7242 enum bpf_type_flag flag = 0; 7243 const struct btf_type *t; 7244 const char *tname; 7245 u32 btf_id; 7246 int ret; 7247 7248 if (!btf_vmlinux) { 7249 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 7250 return -ENOTSUPP; 7251 } 7252 7253 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 7254 verbose(env, "map_ptr access not supported for map type %d\n", 7255 map->map_type); 7256 return -ENOTSUPP; 7257 } 7258 7259 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 7260 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 7261 7262 if (!env->allow_ptr_leaks) { 7263 verbose(env, 7264 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 7265 tname); 7266 return -EPERM; 7267 } 7268 7269 if (off < 0) { 7270 verbose(env, "R%d is %s invalid negative access: off=%d\n", 7271 regno, tname, off); 7272 return -EACCES; 7273 } 7274 7275 if (atype != BPF_READ) { 7276 verbose(env, "only read from %s is supported\n", tname); 7277 return -EACCES; 7278 } 7279 7280 /* Simulate access to a PTR_TO_BTF_ID */ 7281 memset(&map_reg, 0, sizeof(map_reg)); 7282 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 7283 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 7284 if (ret < 0) 7285 return ret; 7286 7287 if (value_regno >= 0) 7288 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 7289 7290 return 0; 7291 } 7292 7293 /* Check that the stack access at the given offset is within bounds. The 7294 * maximum valid offset is -1. 7295 * 7296 * The minimum valid offset is -MAX_BPF_STACK for writes, and 7297 * -state->allocated_stack for reads. 7298 */ 7299 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 7300 s64 off, 7301 struct bpf_func_state *state, 7302 enum bpf_access_type t) 7303 { 7304 int min_valid_off; 7305 7306 if (t == BPF_WRITE || env->allow_uninit_stack) 7307 min_valid_off = -MAX_BPF_STACK; 7308 else 7309 min_valid_off = -state->allocated_stack; 7310 7311 if (off < min_valid_off || off > -1) 7312 return -EACCES; 7313 return 0; 7314 } 7315 7316 /* Check that the stack access at 'regno + off' falls within the maximum stack 7317 * bounds. 7318 * 7319 * 'off' includes `regno->offset`, but not its dynamic part (if any). 7320 */ 7321 static int check_stack_access_within_bounds( 7322 struct bpf_verifier_env *env, 7323 int regno, int off, int access_size, 7324 enum bpf_access_type type) 7325 { 7326 struct bpf_reg_state *regs = cur_regs(env); 7327 struct bpf_reg_state *reg = regs + regno; 7328 struct bpf_func_state *state = func(env, reg); 7329 s64 min_off, max_off; 7330 int err; 7331 char *err_extra; 7332 7333 if (type == BPF_READ) 7334 err_extra = " read from"; 7335 else 7336 err_extra = " write to"; 7337 7338 if (tnum_is_const(reg->var_off)) { 7339 min_off = (s64)reg->var_off.value + off; 7340 max_off = min_off + access_size; 7341 } else { 7342 if (reg->smax_value >= BPF_MAX_VAR_OFF || 7343 reg->smin_value <= -BPF_MAX_VAR_OFF) { 7344 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 7345 err_extra, regno); 7346 return -EACCES; 7347 } 7348 min_off = reg->smin_value + off; 7349 max_off = reg->smax_value + off + access_size; 7350 } 7351 7352 err = check_stack_slot_within_bounds(env, min_off, state, type); 7353 if (!err && max_off > 0) 7354 err = -EINVAL; /* out of stack access into non-negative offsets */ 7355 if (!err && access_size < 0) 7356 /* access_size should not be negative (or overflow an int); others checks 7357 * along the way should have prevented such an access. 7358 */ 7359 err = -EFAULT; /* invalid negative access size; integer overflow? */ 7360 7361 if (err) { 7362 if (tnum_is_const(reg->var_off)) { 7363 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 7364 err_extra, regno, off, access_size); 7365 } else { 7366 char tn_buf[48]; 7367 7368 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7369 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 7370 err_extra, regno, tn_buf, off, access_size); 7371 } 7372 return err; 7373 } 7374 7375 /* Note that there is no stack access with offset zero, so the needed stack 7376 * size is -min_off, not -min_off+1. 7377 */ 7378 return grow_stack_state(env, state, -min_off /* size */); 7379 } 7380 7381 static bool get_func_retval_range(struct bpf_prog *prog, 7382 struct bpf_retval_range *range) 7383 { 7384 if (prog->type == BPF_PROG_TYPE_LSM && 7385 prog->expected_attach_type == BPF_LSM_MAC && 7386 !bpf_lsm_get_retval_range(prog, range)) { 7387 return true; 7388 } 7389 return false; 7390 } 7391 7392 /* check whether memory at (regno + off) is accessible for t = (read | write) 7393 * if t==write, value_regno is a register which value is stored into memory 7394 * if t==read, value_regno is a register which will receive the value from memory 7395 * if t==write && value_regno==-1, some unknown value is stored into memory 7396 * if t==read && value_regno==-1, don't care what we read from memory 7397 */ 7398 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 7399 int off, int bpf_size, enum bpf_access_type t, 7400 int value_regno, bool strict_alignment_once, bool is_ldsx) 7401 { 7402 struct bpf_reg_state *regs = cur_regs(env); 7403 struct bpf_reg_state *reg = regs + regno; 7404 int size, err = 0; 7405 7406 size = bpf_size_to_bytes(bpf_size); 7407 if (size < 0) 7408 return size; 7409 7410 /* alignment checks will add in reg->off themselves */ 7411 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 7412 if (err) 7413 return err; 7414 7415 /* for access checks, reg->off is just part of off */ 7416 off += reg->off; 7417 7418 if (reg->type == PTR_TO_MAP_KEY) { 7419 if (t == BPF_WRITE) { 7420 verbose(env, "write to change key R%d not allowed\n", regno); 7421 return -EACCES; 7422 } 7423 7424 err = check_mem_region_access(env, regno, off, size, 7425 reg->map_ptr->key_size, false); 7426 if (err) 7427 return err; 7428 if (value_regno >= 0) 7429 mark_reg_unknown(env, regs, value_regno); 7430 } else if (reg->type == PTR_TO_MAP_VALUE) { 7431 struct btf_field *kptr_field = NULL; 7432 7433 if (t == BPF_WRITE && value_regno >= 0 && 7434 is_pointer_value(env, value_regno)) { 7435 verbose(env, "R%d leaks addr into map\n", value_regno); 7436 return -EACCES; 7437 } 7438 err = check_map_access_type(env, regno, off, size, t); 7439 if (err) 7440 return err; 7441 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 7442 if (err) 7443 return err; 7444 if (tnum_is_const(reg->var_off)) 7445 kptr_field = btf_record_find(reg->map_ptr->record, 7446 off + reg->var_off.value, BPF_KPTR | BPF_UPTR); 7447 if (kptr_field) { 7448 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 7449 } else if (t == BPF_READ && value_regno >= 0) { 7450 struct bpf_map *map = reg->map_ptr; 7451 7452 /* if map is read-only, track its contents as scalars */ 7453 if (tnum_is_const(reg->var_off) && 7454 bpf_map_is_rdonly(map) && 7455 map->ops->map_direct_value_addr) { 7456 int map_off = off + reg->var_off.value; 7457 u64 val = 0; 7458 7459 err = bpf_map_direct_read(map, map_off, size, 7460 &val, is_ldsx); 7461 if (err) 7462 return err; 7463 7464 regs[value_regno].type = SCALAR_VALUE; 7465 __mark_reg_known(®s[value_regno], val); 7466 } else { 7467 mark_reg_unknown(env, regs, value_regno); 7468 } 7469 } 7470 } else if (base_type(reg->type) == PTR_TO_MEM) { 7471 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7472 7473 if (type_may_be_null(reg->type)) { 7474 verbose(env, "R%d invalid mem access '%s'\n", regno, 7475 reg_type_str(env, reg->type)); 7476 return -EACCES; 7477 } 7478 7479 if (t == BPF_WRITE && rdonly_mem) { 7480 verbose(env, "R%d cannot write into %s\n", 7481 regno, reg_type_str(env, reg->type)); 7482 return -EACCES; 7483 } 7484 7485 if (t == BPF_WRITE && value_regno >= 0 && 7486 is_pointer_value(env, value_regno)) { 7487 verbose(env, "R%d leaks addr into mem\n", value_regno); 7488 return -EACCES; 7489 } 7490 7491 err = check_mem_region_access(env, regno, off, size, 7492 reg->mem_size, false); 7493 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 7494 mark_reg_unknown(env, regs, value_regno); 7495 } else if (reg->type == PTR_TO_CTX) { 7496 struct bpf_retval_range range; 7497 struct bpf_insn_access_aux info = { 7498 .reg_type = SCALAR_VALUE, 7499 .is_ldsx = is_ldsx, 7500 .log = &env->log, 7501 }; 7502 7503 if (t == BPF_WRITE && value_regno >= 0 && 7504 is_pointer_value(env, value_regno)) { 7505 verbose(env, "R%d leaks addr into ctx\n", value_regno); 7506 return -EACCES; 7507 } 7508 7509 err = check_ptr_off_reg(env, reg, regno); 7510 if (err < 0) 7511 return err; 7512 7513 err = check_ctx_access(env, insn_idx, off, size, t, &info); 7514 if (err) 7515 verbose_linfo(env, insn_idx, "; "); 7516 if (!err && t == BPF_READ && value_regno >= 0) { 7517 /* ctx access returns either a scalar, or a 7518 * PTR_TO_PACKET[_META,_END]. In the latter 7519 * case, we know the offset is zero. 7520 */ 7521 if (info.reg_type == SCALAR_VALUE) { 7522 if (info.is_retval && get_func_retval_range(env->prog, &range)) { 7523 err = __mark_reg_s32_range(env, regs, value_regno, 7524 range.minval, range.maxval); 7525 if (err) 7526 return err; 7527 } else { 7528 mark_reg_unknown(env, regs, value_regno); 7529 } 7530 } else { 7531 mark_reg_known_zero(env, regs, 7532 value_regno); 7533 if (type_may_be_null(info.reg_type)) 7534 regs[value_regno].id = ++env->id_gen; 7535 /* A load of ctx field could have different 7536 * actual load size with the one encoded in the 7537 * insn. When the dst is PTR, it is for sure not 7538 * a sub-register. 7539 */ 7540 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 7541 if (base_type(info.reg_type) == PTR_TO_BTF_ID) { 7542 regs[value_regno].btf = info.btf; 7543 regs[value_regno].btf_id = info.btf_id; 7544 regs[value_regno].ref_obj_id = info.ref_obj_id; 7545 } 7546 } 7547 regs[value_regno].type = info.reg_type; 7548 } 7549 7550 } else if (reg->type == PTR_TO_STACK) { 7551 /* Basic bounds checks. */ 7552 err = check_stack_access_within_bounds(env, regno, off, size, t); 7553 if (err) 7554 return err; 7555 7556 if (t == BPF_READ) 7557 err = check_stack_read(env, regno, off, size, 7558 value_regno); 7559 else 7560 err = check_stack_write(env, regno, off, size, 7561 value_regno, insn_idx); 7562 } else if (reg_is_pkt_pointer(reg)) { 7563 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 7564 verbose(env, "cannot write into packet\n"); 7565 return -EACCES; 7566 } 7567 if (t == BPF_WRITE && value_regno >= 0 && 7568 is_pointer_value(env, value_regno)) { 7569 verbose(env, "R%d leaks addr into packet\n", 7570 value_regno); 7571 return -EACCES; 7572 } 7573 err = check_packet_access(env, regno, off, size, false); 7574 if (!err && t == BPF_READ && value_regno >= 0) 7575 mark_reg_unknown(env, regs, value_regno); 7576 } else if (reg->type == PTR_TO_FLOW_KEYS) { 7577 if (t == BPF_WRITE && value_regno >= 0 && 7578 is_pointer_value(env, value_regno)) { 7579 verbose(env, "R%d leaks addr into flow keys\n", 7580 value_regno); 7581 return -EACCES; 7582 } 7583 7584 err = check_flow_keys_access(env, off, size); 7585 if (!err && t == BPF_READ && value_regno >= 0) 7586 mark_reg_unknown(env, regs, value_regno); 7587 } else if (type_is_sk_pointer(reg->type)) { 7588 if (t == BPF_WRITE) { 7589 verbose(env, "R%d cannot write into %s\n", 7590 regno, reg_type_str(env, reg->type)); 7591 return -EACCES; 7592 } 7593 err = check_sock_access(env, insn_idx, regno, off, size, t); 7594 if (!err && value_regno >= 0) 7595 mark_reg_unknown(env, regs, value_regno); 7596 } else if (reg->type == PTR_TO_TP_BUFFER) { 7597 err = check_tp_buffer_access(env, reg, regno, off, size); 7598 if (!err && t == BPF_READ && value_regno >= 0) 7599 mark_reg_unknown(env, regs, value_regno); 7600 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 7601 !type_may_be_null(reg->type)) { 7602 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 7603 value_regno); 7604 } else if (reg->type == CONST_PTR_TO_MAP) { 7605 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 7606 value_regno); 7607 } else if (base_type(reg->type) == PTR_TO_BUF) { 7608 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7609 u32 *max_access; 7610 7611 if (rdonly_mem) { 7612 if (t == BPF_WRITE) { 7613 verbose(env, "R%d cannot write into %s\n", 7614 regno, reg_type_str(env, reg->type)); 7615 return -EACCES; 7616 } 7617 max_access = &env->prog->aux->max_rdonly_access; 7618 } else { 7619 max_access = &env->prog->aux->max_rdwr_access; 7620 } 7621 7622 err = check_buffer_access(env, reg, regno, off, size, false, 7623 max_access); 7624 7625 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 7626 mark_reg_unknown(env, regs, value_regno); 7627 } else if (reg->type == PTR_TO_ARENA) { 7628 if (t == BPF_READ && value_regno >= 0) 7629 mark_reg_unknown(env, regs, value_regno); 7630 } else { 7631 verbose(env, "R%d invalid mem access '%s'\n", regno, 7632 reg_type_str(env, reg->type)); 7633 return -EACCES; 7634 } 7635 7636 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 7637 regs[value_regno].type == SCALAR_VALUE) { 7638 if (!is_ldsx) 7639 /* b/h/w load zero-extends, mark upper bits as known 0 */ 7640 coerce_reg_to_size(®s[value_regno], size); 7641 else 7642 coerce_reg_to_size_sx(®s[value_regno], size); 7643 } 7644 return err; 7645 } 7646 7647 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 7648 bool allow_trust_mismatch); 7649 7650 static int check_load_mem(struct bpf_verifier_env *env, struct bpf_insn *insn, 7651 bool strict_alignment_once, bool is_ldsx, 7652 bool allow_trust_mismatch, const char *ctx) 7653 { 7654 struct bpf_reg_state *regs = cur_regs(env); 7655 enum bpf_reg_type src_reg_type; 7656 int err; 7657 7658 /* check src operand */ 7659 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7660 if (err) 7661 return err; 7662 7663 /* check dst operand */ 7664 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7665 if (err) 7666 return err; 7667 7668 src_reg_type = regs[insn->src_reg].type; 7669 7670 /* Check if (src_reg + off) is readable. The state of dst_reg will be 7671 * updated by this call. 7672 */ 7673 err = check_mem_access(env, env->insn_idx, insn->src_reg, insn->off, 7674 BPF_SIZE(insn->code), BPF_READ, insn->dst_reg, 7675 strict_alignment_once, is_ldsx); 7676 err = err ?: save_aux_ptr_type(env, src_reg_type, 7677 allow_trust_mismatch); 7678 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], ctx); 7679 7680 return err; 7681 } 7682 7683 static int check_store_reg(struct bpf_verifier_env *env, struct bpf_insn *insn, 7684 bool strict_alignment_once) 7685 { 7686 struct bpf_reg_state *regs = cur_regs(env); 7687 enum bpf_reg_type dst_reg_type; 7688 int err; 7689 7690 /* check src1 operand */ 7691 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7692 if (err) 7693 return err; 7694 7695 /* check src2 operand */ 7696 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7697 if (err) 7698 return err; 7699 7700 dst_reg_type = regs[insn->dst_reg].type; 7701 7702 /* Check if (dst_reg + off) is writeable. */ 7703 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7704 BPF_SIZE(insn->code), BPF_WRITE, insn->src_reg, 7705 strict_alignment_once, false); 7706 err = err ?: save_aux_ptr_type(env, dst_reg_type, false); 7707 7708 return err; 7709 } 7710 7711 static int check_atomic_rmw(struct bpf_verifier_env *env, 7712 struct bpf_insn *insn) 7713 { 7714 int load_reg; 7715 int err; 7716 7717 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 7718 verbose(env, "invalid atomic operand size\n"); 7719 return -EINVAL; 7720 } 7721 7722 /* check src1 operand */ 7723 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7724 if (err) 7725 return err; 7726 7727 /* check src2 operand */ 7728 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7729 if (err) 7730 return err; 7731 7732 if (insn->imm == BPF_CMPXCHG) { 7733 /* Check comparison of R0 with memory location */ 7734 const u32 aux_reg = BPF_REG_0; 7735 7736 err = check_reg_arg(env, aux_reg, SRC_OP); 7737 if (err) 7738 return err; 7739 7740 if (is_pointer_value(env, aux_reg)) { 7741 verbose(env, "R%d leaks addr into mem\n", aux_reg); 7742 return -EACCES; 7743 } 7744 } 7745 7746 if (is_pointer_value(env, insn->src_reg)) { 7747 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 7748 return -EACCES; 7749 } 7750 7751 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) { 7752 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7753 insn->dst_reg, 7754 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7755 return -EACCES; 7756 } 7757 7758 if (insn->imm & BPF_FETCH) { 7759 if (insn->imm == BPF_CMPXCHG) 7760 load_reg = BPF_REG_0; 7761 else 7762 load_reg = insn->src_reg; 7763 7764 /* check and record load of old value */ 7765 err = check_reg_arg(env, load_reg, DST_OP); 7766 if (err) 7767 return err; 7768 } else { 7769 /* This instruction accesses a memory location but doesn't 7770 * actually load it into a register. 7771 */ 7772 load_reg = -1; 7773 } 7774 7775 /* Check whether we can read the memory, with second call for fetch 7776 * case to simulate the register fill. 7777 */ 7778 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7779 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7780 if (!err && load_reg >= 0) 7781 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7782 insn->off, BPF_SIZE(insn->code), 7783 BPF_READ, load_reg, true, false); 7784 if (err) 7785 return err; 7786 7787 if (is_arena_reg(env, insn->dst_reg)) { 7788 err = save_aux_ptr_type(env, PTR_TO_ARENA, false); 7789 if (err) 7790 return err; 7791 } 7792 /* Check whether we can write into the same memory. */ 7793 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7794 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7795 if (err) 7796 return err; 7797 return 0; 7798 } 7799 7800 static int check_atomic_load(struct bpf_verifier_env *env, 7801 struct bpf_insn *insn) 7802 { 7803 int err; 7804 7805 err = check_load_mem(env, insn, true, false, false, "atomic_load"); 7806 if (err) 7807 return err; 7808 7809 if (!atomic_ptr_type_ok(env, insn->src_reg, insn)) { 7810 verbose(env, "BPF_ATOMIC loads from R%d %s is not allowed\n", 7811 insn->src_reg, 7812 reg_type_str(env, reg_state(env, insn->src_reg)->type)); 7813 return -EACCES; 7814 } 7815 7816 return 0; 7817 } 7818 7819 static int check_atomic_store(struct bpf_verifier_env *env, 7820 struct bpf_insn *insn) 7821 { 7822 int err; 7823 7824 err = check_store_reg(env, insn, true); 7825 if (err) 7826 return err; 7827 7828 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) { 7829 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7830 insn->dst_reg, 7831 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7832 return -EACCES; 7833 } 7834 7835 return 0; 7836 } 7837 7838 static int check_atomic(struct bpf_verifier_env *env, struct bpf_insn *insn) 7839 { 7840 switch (insn->imm) { 7841 case BPF_ADD: 7842 case BPF_ADD | BPF_FETCH: 7843 case BPF_AND: 7844 case BPF_AND | BPF_FETCH: 7845 case BPF_OR: 7846 case BPF_OR | BPF_FETCH: 7847 case BPF_XOR: 7848 case BPF_XOR | BPF_FETCH: 7849 case BPF_XCHG: 7850 case BPF_CMPXCHG: 7851 return check_atomic_rmw(env, insn); 7852 case BPF_LOAD_ACQ: 7853 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) { 7854 verbose(env, 7855 "64-bit load-acquires are only supported on 64-bit arches\n"); 7856 return -EOPNOTSUPP; 7857 } 7858 return check_atomic_load(env, insn); 7859 case BPF_STORE_REL: 7860 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) { 7861 verbose(env, 7862 "64-bit store-releases are only supported on 64-bit arches\n"); 7863 return -EOPNOTSUPP; 7864 } 7865 return check_atomic_store(env, insn); 7866 default: 7867 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", 7868 insn->imm); 7869 return -EINVAL; 7870 } 7871 } 7872 7873 /* When register 'regno' is used to read the stack (either directly or through 7874 * a helper function) make sure that it's within stack boundary and, depending 7875 * on the access type and privileges, that all elements of the stack are 7876 * initialized. 7877 * 7878 * 'off' includes 'regno->off', but not its dynamic part (if any). 7879 * 7880 * All registers that have been spilled on the stack in the slots within the 7881 * read offsets are marked as read. 7882 */ 7883 static int check_stack_range_initialized( 7884 struct bpf_verifier_env *env, int regno, int off, 7885 int access_size, bool zero_size_allowed, 7886 enum bpf_access_type type, struct bpf_call_arg_meta *meta) 7887 { 7888 struct bpf_reg_state *reg = reg_state(env, regno); 7889 struct bpf_func_state *state = func(env, reg); 7890 int err, min_off, max_off, i, j, slot, spi; 7891 /* Some accesses can write anything into the stack, others are 7892 * read-only. 7893 */ 7894 bool clobber = false; 7895 7896 if (access_size == 0 && !zero_size_allowed) { 7897 verbose(env, "invalid zero-sized read\n"); 7898 return -EACCES; 7899 } 7900 7901 if (type == BPF_WRITE) 7902 clobber = true; 7903 7904 err = check_stack_access_within_bounds(env, regno, off, access_size, type); 7905 if (err) 7906 return err; 7907 7908 7909 if (tnum_is_const(reg->var_off)) { 7910 min_off = max_off = reg->var_off.value + off; 7911 } else { 7912 /* Variable offset is prohibited for unprivileged mode for 7913 * simplicity since it requires corresponding support in 7914 * Spectre masking for stack ALU. 7915 * See also retrieve_ptr_limit(). 7916 */ 7917 if (!env->bypass_spec_v1) { 7918 char tn_buf[48]; 7919 7920 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7921 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 7922 regno, tn_buf); 7923 return -EACCES; 7924 } 7925 /* Only initialized buffer on stack is allowed to be accessed 7926 * with variable offset. With uninitialized buffer it's hard to 7927 * guarantee that whole memory is marked as initialized on 7928 * helper return since specific bounds are unknown what may 7929 * cause uninitialized stack leaking. 7930 */ 7931 if (meta && meta->raw_mode) 7932 meta = NULL; 7933 7934 min_off = reg->smin_value + off; 7935 max_off = reg->smax_value + off; 7936 } 7937 7938 if (meta && meta->raw_mode) { 7939 /* Ensure we won't be overwriting dynptrs when simulating byte 7940 * by byte access in check_helper_call using meta.access_size. 7941 * This would be a problem if we have a helper in the future 7942 * which takes: 7943 * 7944 * helper(uninit_mem, len, dynptr) 7945 * 7946 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7947 * may end up writing to dynptr itself when touching memory from 7948 * arg 1. This can be relaxed on a case by case basis for known 7949 * safe cases, but reject due to the possibilitiy of aliasing by 7950 * default. 7951 */ 7952 for (i = min_off; i < max_off + access_size; i++) { 7953 int stack_off = -i - 1; 7954 7955 spi = __get_spi(i); 7956 /* raw_mode may write past allocated_stack */ 7957 if (state->allocated_stack <= stack_off) 7958 continue; 7959 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7960 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7961 return -EACCES; 7962 } 7963 } 7964 meta->access_size = access_size; 7965 meta->regno = regno; 7966 return 0; 7967 } 7968 7969 for (i = min_off; i < max_off + access_size; i++) { 7970 u8 *stype; 7971 7972 slot = -i - 1; 7973 spi = slot / BPF_REG_SIZE; 7974 if (state->allocated_stack <= slot) { 7975 verbose(env, "allocated_stack too small\n"); 7976 return -EFAULT; 7977 } 7978 7979 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7980 if (*stype == STACK_MISC) 7981 goto mark; 7982 if ((*stype == STACK_ZERO) || 7983 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7984 if (clobber) { 7985 /* helper can write anything into the stack */ 7986 *stype = STACK_MISC; 7987 } 7988 goto mark; 7989 } 7990 7991 if (is_spilled_reg(&state->stack[spi]) && 7992 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7993 env->allow_ptr_leaks)) { 7994 if (clobber) { 7995 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7996 for (j = 0; j < BPF_REG_SIZE; j++) 7997 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7998 } 7999 goto mark; 8000 } 8001 8002 if (tnum_is_const(reg->var_off)) { 8003 verbose(env, "invalid read from stack R%d off %d+%d size %d\n", 8004 regno, min_off, i - min_off, access_size); 8005 } else { 8006 char tn_buf[48]; 8007 8008 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8009 verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n", 8010 regno, tn_buf, i - min_off, access_size); 8011 } 8012 return -EACCES; 8013 mark: 8014 /* reading any byte out of 8-byte 'spill_slot' will cause 8015 * the whole slot to be marked as 'read' 8016 */ 8017 mark_reg_read(env, &state->stack[spi].spilled_ptr, 8018 state->stack[spi].spilled_ptr.parent, 8019 REG_LIVE_READ64); 8020 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 8021 * be sure that whether stack slot is written to or not. Hence, 8022 * we must still conservatively propagate reads upwards even if 8023 * helper may write to the entire memory range. 8024 */ 8025 } 8026 return 0; 8027 } 8028 8029 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 8030 int access_size, enum bpf_access_type access_type, 8031 bool zero_size_allowed, 8032 struct bpf_call_arg_meta *meta) 8033 { 8034 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8035 u32 *max_access; 8036 8037 switch (base_type(reg->type)) { 8038 case PTR_TO_PACKET: 8039 case PTR_TO_PACKET_META: 8040 return check_packet_access(env, regno, reg->off, access_size, 8041 zero_size_allowed); 8042 case PTR_TO_MAP_KEY: 8043 if (access_type == BPF_WRITE) { 8044 verbose(env, "R%d cannot write into %s\n", regno, 8045 reg_type_str(env, reg->type)); 8046 return -EACCES; 8047 } 8048 return check_mem_region_access(env, regno, reg->off, access_size, 8049 reg->map_ptr->key_size, false); 8050 case PTR_TO_MAP_VALUE: 8051 if (check_map_access_type(env, regno, reg->off, access_size, access_type)) 8052 return -EACCES; 8053 return check_map_access(env, regno, reg->off, access_size, 8054 zero_size_allowed, ACCESS_HELPER); 8055 case PTR_TO_MEM: 8056 if (type_is_rdonly_mem(reg->type)) { 8057 if (access_type == BPF_WRITE) { 8058 verbose(env, "R%d cannot write into %s\n", regno, 8059 reg_type_str(env, reg->type)); 8060 return -EACCES; 8061 } 8062 } 8063 return check_mem_region_access(env, regno, reg->off, 8064 access_size, reg->mem_size, 8065 zero_size_allowed); 8066 case PTR_TO_BUF: 8067 if (type_is_rdonly_mem(reg->type)) { 8068 if (access_type == BPF_WRITE) { 8069 verbose(env, "R%d cannot write into %s\n", regno, 8070 reg_type_str(env, reg->type)); 8071 return -EACCES; 8072 } 8073 8074 max_access = &env->prog->aux->max_rdonly_access; 8075 } else { 8076 max_access = &env->prog->aux->max_rdwr_access; 8077 } 8078 return check_buffer_access(env, reg, regno, reg->off, 8079 access_size, zero_size_allowed, 8080 max_access); 8081 case PTR_TO_STACK: 8082 return check_stack_range_initialized( 8083 env, 8084 regno, reg->off, access_size, 8085 zero_size_allowed, access_type, meta); 8086 case PTR_TO_BTF_ID: 8087 return check_ptr_to_btf_access(env, regs, regno, reg->off, 8088 access_size, BPF_READ, -1); 8089 case PTR_TO_CTX: 8090 /* in case the function doesn't know how to access the context, 8091 * (because we are in a program of type SYSCALL for example), we 8092 * can not statically check its size. 8093 * Dynamically check it now. 8094 */ 8095 if (!env->ops->convert_ctx_access) { 8096 int offset = access_size - 1; 8097 8098 /* Allow zero-byte read from PTR_TO_CTX */ 8099 if (access_size == 0) 8100 return zero_size_allowed ? 0 : -EACCES; 8101 8102 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 8103 access_type, -1, false, false); 8104 } 8105 8106 fallthrough; 8107 default: /* scalar_value or invalid ptr */ 8108 /* Allow zero-byte read from NULL, regardless of pointer type */ 8109 if (zero_size_allowed && access_size == 0 && 8110 register_is_null(reg)) 8111 return 0; 8112 8113 verbose(env, "R%d type=%s ", regno, 8114 reg_type_str(env, reg->type)); 8115 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 8116 return -EACCES; 8117 } 8118 } 8119 8120 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 8121 * size. 8122 * 8123 * @regno is the register containing the access size. regno-1 is the register 8124 * containing the pointer. 8125 */ 8126 static int check_mem_size_reg(struct bpf_verifier_env *env, 8127 struct bpf_reg_state *reg, u32 regno, 8128 enum bpf_access_type access_type, 8129 bool zero_size_allowed, 8130 struct bpf_call_arg_meta *meta) 8131 { 8132 int err; 8133 8134 /* This is used to refine r0 return value bounds for helpers 8135 * that enforce this value as an upper bound on return values. 8136 * See do_refine_retval_range() for helpers that can refine 8137 * the return value. C type of helper is u32 so we pull register 8138 * bound from umax_value however, if negative verifier errors 8139 * out. Only upper bounds can be learned because retval is an 8140 * int type and negative retvals are allowed. 8141 */ 8142 meta->msize_max_value = reg->umax_value; 8143 8144 /* The register is SCALAR_VALUE; the access check happens using 8145 * its boundaries. For unprivileged variable accesses, disable 8146 * raw mode so that the program is required to initialize all 8147 * the memory that the helper could just partially fill up. 8148 */ 8149 if (!tnum_is_const(reg->var_off)) 8150 meta = NULL; 8151 8152 if (reg->smin_value < 0) { 8153 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 8154 regno); 8155 return -EACCES; 8156 } 8157 8158 if (reg->umin_value == 0 && !zero_size_allowed) { 8159 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 8160 regno, reg->umin_value, reg->umax_value); 8161 return -EACCES; 8162 } 8163 8164 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 8165 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 8166 regno); 8167 return -EACCES; 8168 } 8169 err = check_helper_mem_access(env, regno - 1, reg->umax_value, 8170 access_type, zero_size_allowed, meta); 8171 if (!err) 8172 err = mark_chain_precision(env, regno); 8173 return err; 8174 } 8175 8176 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 8177 u32 regno, u32 mem_size) 8178 { 8179 bool may_be_null = type_may_be_null(reg->type); 8180 struct bpf_reg_state saved_reg; 8181 int err; 8182 8183 if (register_is_null(reg)) 8184 return 0; 8185 8186 /* Assuming that the register contains a value check if the memory 8187 * access is safe. Temporarily save and restore the register's state as 8188 * the conversion shouldn't be visible to a caller. 8189 */ 8190 if (may_be_null) { 8191 saved_reg = *reg; 8192 mark_ptr_not_null_reg(reg); 8193 } 8194 8195 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL); 8196 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL); 8197 8198 if (may_be_null) 8199 *reg = saved_reg; 8200 8201 return err; 8202 } 8203 8204 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 8205 u32 regno) 8206 { 8207 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 8208 bool may_be_null = type_may_be_null(mem_reg->type); 8209 struct bpf_reg_state saved_reg; 8210 struct bpf_call_arg_meta meta; 8211 int err; 8212 8213 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 8214 8215 memset(&meta, 0, sizeof(meta)); 8216 8217 if (may_be_null) { 8218 saved_reg = *mem_reg; 8219 mark_ptr_not_null_reg(mem_reg); 8220 } 8221 8222 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta); 8223 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta); 8224 8225 if (may_be_null) 8226 *mem_reg = saved_reg; 8227 8228 return err; 8229 } 8230 8231 enum { 8232 PROCESS_SPIN_LOCK = (1 << 0), 8233 PROCESS_RES_LOCK = (1 << 1), 8234 PROCESS_LOCK_IRQ = (1 << 2), 8235 }; 8236 8237 /* Implementation details: 8238 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 8239 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 8240 * Two bpf_map_lookups (even with the same key) will have different reg->id. 8241 * Two separate bpf_obj_new will also have different reg->id. 8242 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 8243 * clears reg->id after value_or_null->value transition, since the verifier only 8244 * cares about the range of access to valid map value pointer and doesn't care 8245 * about actual address of the map element. 8246 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 8247 * reg->id > 0 after value_or_null->value transition. By doing so 8248 * two bpf_map_lookups will be considered two different pointers that 8249 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 8250 * returned from bpf_obj_new. 8251 * The verifier allows taking only one bpf_spin_lock at a time to avoid 8252 * dead-locks. 8253 * Since only one bpf_spin_lock is allowed the checks are simpler than 8254 * reg_is_refcounted() logic. The verifier needs to remember only 8255 * one spin_lock instead of array of acquired_refs. 8256 * env->cur_state->active_locks remembers which map value element or allocated 8257 * object got locked and clears it after bpf_spin_unlock. 8258 */ 8259 static int process_spin_lock(struct bpf_verifier_env *env, int regno, int flags) 8260 { 8261 bool is_lock = flags & PROCESS_SPIN_LOCK, is_res_lock = flags & PROCESS_RES_LOCK; 8262 const char *lock_str = is_res_lock ? "bpf_res_spin" : "bpf_spin"; 8263 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8264 struct bpf_verifier_state *cur = env->cur_state; 8265 bool is_const = tnum_is_const(reg->var_off); 8266 bool is_irq = flags & PROCESS_LOCK_IRQ; 8267 u64 val = reg->var_off.value; 8268 struct bpf_map *map = NULL; 8269 struct btf *btf = NULL; 8270 struct btf_record *rec; 8271 u32 spin_lock_off; 8272 int err; 8273 8274 if (!is_const) { 8275 verbose(env, 8276 "R%d doesn't have constant offset. %s_lock has to be at the constant offset\n", 8277 regno, lock_str); 8278 return -EINVAL; 8279 } 8280 if (reg->type == PTR_TO_MAP_VALUE) { 8281 map = reg->map_ptr; 8282 if (!map->btf) { 8283 verbose(env, 8284 "map '%s' has to have BTF in order to use %s_lock\n", 8285 map->name, lock_str); 8286 return -EINVAL; 8287 } 8288 } else { 8289 btf = reg->btf; 8290 } 8291 8292 rec = reg_btf_record(reg); 8293 if (!btf_record_has_field(rec, is_res_lock ? BPF_RES_SPIN_LOCK : BPF_SPIN_LOCK)) { 8294 verbose(env, "%s '%s' has no valid %s_lock\n", map ? "map" : "local", 8295 map ? map->name : "kptr", lock_str); 8296 return -EINVAL; 8297 } 8298 spin_lock_off = is_res_lock ? rec->res_spin_lock_off : rec->spin_lock_off; 8299 if (spin_lock_off != val + reg->off) { 8300 verbose(env, "off %lld doesn't point to 'struct %s_lock' that is at %d\n", 8301 val + reg->off, lock_str, spin_lock_off); 8302 return -EINVAL; 8303 } 8304 if (is_lock) { 8305 void *ptr; 8306 int type; 8307 8308 if (map) 8309 ptr = map; 8310 else 8311 ptr = btf; 8312 8313 if (!is_res_lock && cur->active_locks) { 8314 if (find_lock_state(env->cur_state, REF_TYPE_LOCK, 0, NULL)) { 8315 verbose(env, 8316 "Locking two bpf_spin_locks are not allowed\n"); 8317 return -EINVAL; 8318 } 8319 } else if (is_res_lock && cur->active_locks) { 8320 if (find_lock_state(env->cur_state, REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, reg->id, ptr)) { 8321 verbose(env, "Acquiring the same lock again, AA deadlock detected\n"); 8322 return -EINVAL; 8323 } 8324 } 8325 8326 if (is_res_lock && is_irq) 8327 type = REF_TYPE_RES_LOCK_IRQ; 8328 else if (is_res_lock) 8329 type = REF_TYPE_RES_LOCK; 8330 else 8331 type = REF_TYPE_LOCK; 8332 err = acquire_lock_state(env, env->insn_idx, type, reg->id, ptr); 8333 if (err < 0) { 8334 verbose(env, "Failed to acquire lock state\n"); 8335 return err; 8336 } 8337 } else { 8338 void *ptr; 8339 int type; 8340 8341 if (map) 8342 ptr = map; 8343 else 8344 ptr = btf; 8345 8346 if (!cur->active_locks) { 8347 verbose(env, "%s_unlock without taking a lock\n", lock_str); 8348 return -EINVAL; 8349 } 8350 8351 if (is_res_lock && is_irq) 8352 type = REF_TYPE_RES_LOCK_IRQ; 8353 else if (is_res_lock) 8354 type = REF_TYPE_RES_LOCK; 8355 else 8356 type = REF_TYPE_LOCK; 8357 if (!find_lock_state(cur, type, reg->id, ptr)) { 8358 verbose(env, "%s_unlock of different lock\n", lock_str); 8359 return -EINVAL; 8360 } 8361 if (reg->id != cur->active_lock_id || ptr != cur->active_lock_ptr) { 8362 verbose(env, "%s_unlock cannot be out of order\n", lock_str); 8363 return -EINVAL; 8364 } 8365 if (release_lock_state(cur, type, reg->id, ptr)) { 8366 verbose(env, "%s_unlock of different lock\n", lock_str); 8367 return -EINVAL; 8368 } 8369 8370 invalidate_non_owning_refs(env); 8371 } 8372 return 0; 8373 } 8374 8375 static int process_timer_func(struct bpf_verifier_env *env, int regno, 8376 struct bpf_call_arg_meta *meta) 8377 { 8378 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8379 bool is_const = tnum_is_const(reg->var_off); 8380 struct bpf_map *map = reg->map_ptr; 8381 u64 val = reg->var_off.value; 8382 8383 if (!is_const) { 8384 verbose(env, 8385 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 8386 regno); 8387 return -EINVAL; 8388 } 8389 if (!map->btf) { 8390 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 8391 map->name); 8392 return -EINVAL; 8393 } 8394 if (!btf_record_has_field(map->record, BPF_TIMER)) { 8395 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 8396 return -EINVAL; 8397 } 8398 if (map->record->timer_off != val + reg->off) { 8399 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 8400 val + reg->off, map->record->timer_off); 8401 return -EINVAL; 8402 } 8403 if (meta->map_ptr) { 8404 verifier_bug(env, "Two map pointers in a timer helper"); 8405 return -EFAULT; 8406 } 8407 meta->map_uid = reg->map_uid; 8408 meta->map_ptr = map; 8409 return 0; 8410 } 8411 8412 static int process_wq_func(struct bpf_verifier_env *env, int regno, 8413 struct bpf_kfunc_call_arg_meta *meta) 8414 { 8415 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8416 struct bpf_map *map = reg->map_ptr; 8417 u64 val = reg->var_off.value; 8418 8419 if (map->record->wq_off != val + reg->off) { 8420 verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n", 8421 val + reg->off, map->record->wq_off); 8422 return -EINVAL; 8423 } 8424 meta->map.uid = reg->map_uid; 8425 meta->map.ptr = map; 8426 return 0; 8427 } 8428 8429 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 8430 struct bpf_call_arg_meta *meta) 8431 { 8432 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8433 struct btf_field *kptr_field; 8434 struct bpf_map *map_ptr; 8435 struct btf_record *rec; 8436 u32 kptr_off; 8437 8438 if (type_is_ptr_alloc_obj(reg->type)) { 8439 rec = reg_btf_record(reg); 8440 } else { /* PTR_TO_MAP_VALUE */ 8441 map_ptr = reg->map_ptr; 8442 if (!map_ptr->btf) { 8443 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 8444 map_ptr->name); 8445 return -EINVAL; 8446 } 8447 rec = map_ptr->record; 8448 meta->map_ptr = map_ptr; 8449 } 8450 8451 if (!tnum_is_const(reg->var_off)) { 8452 verbose(env, 8453 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 8454 regno); 8455 return -EINVAL; 8456 } 8457 8458 if (!btf_record_has_field(rec, BPF_KPTR)) { 8459 verbose(env, "R%d has no valid kptr\n", regno); 8460 return -EINVAL; 8461 } 8462 8463 kptr_off = reg->off + reg->var_off.value; 8464 kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR); 8465 if (!kptr_field) { 8466 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 8467 return -EACCES; 8468 } 8469 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 8470 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 8471 return -EACCES; 8472 } 8473 meta->kptr_field = kptr_field; 8474 return 0; 8475 } 8476 8477 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 8478 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 8479 * 8480 * In both cases we deal with the first 8 bytes, but need to mark the next 8 8481 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 8482 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 8483 * 8484 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 8485 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 8486 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 8487 * mutate the view of the dynptr and also possibly destroy it. In the latter 8488 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 8489 * memory that dynptr points to. 8490 * 8491 * The verifier will keep track both levels of mutation (bpf_dynptr's in 8492 * reg->type and the memory's in reg->dynptr.type), but there is no support for 8493 * readonly dynptr view yet, hence only the first case is tracked and checked. 8494 * 8495 * This is consistent with how C applies the const modifier to a struct object, 8496 * where the pointer itself inside bpf_dynptr becomes const but not what it 8497 * points to. 8498 * 8499 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 8500 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 8501 */ 8502 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 8503 enum bpf_arg_type arg_type, int clone_ref_obj_id) 8504 { 8505 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8506 int err; 8507 8508 if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) { 8509 verbose(env, 8510 "arg#%d expected pointer to stack or const struct bpf_dynptr\n", 8511 regno - 1); 8512 return -EINVAL; 8513 } 8514 8515 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 8516 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 8517 */ 8518 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 8519 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 8520 return -EFAULT; 8521 } 8522 8523 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 8524 * constructing a mutable bpf_dynptr object. 8525 * 8526 * Currently, this is only possible with PTR_TO_STACK 8527 * pointing to a region of at least 16 bytes which doesn't 8528 * contain an existing bpf_dynptr. 8529 * 8530 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 8531 * mutated or destroyed. However, the memory it points to 8532 * may be mutated. 8533 * 8534 * None - Points to a initialized dynptr that can be mutated and 8535 * destroyed, including mutation of the memory it points 8536 * to. 8537 */ 8538 if (arg_type & MEM_UNINIT) { 8539 int i; 8540 8541 if (!is_dynptr_reg_valid_uninit(env, reg)) { 8542 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 8543 return -EINVAL; 8544 } 8545 8546 /* we write BPF_DW bits (8 bytes) at a time */ 8547 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 8548 err = check_mem_access(env, insn_idx, regno, 8549 i, BPF_DW, BPF_WRITE, -1, false, false); 8550 if (err) 8551 return err; 8552 } 8553 8554 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 8555 } else /* MEM_RDONLY and None case from above */ { 8556 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 8557 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 8558 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 8559 return -EINVAL; 8560 } 8561 8562 if (!is_dynptr_reg_valid_init(env, reg)) { 8563 verbose(env, 8564 "Expected an initialized dynptr as arg #%d\n", 8565 regno - 1); 8566 return -EINVAL; 8567 } 8568 8569 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 8570 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 8571 verbose(env, 8572 "Expected a dynptr of type %s as arg #%d\n", 8573 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1); 8574 return -EINVAL; 8575 } 8576 8577 err = mark_dynptr_read(env, reg); 8578 } 8579 return err; 8580 } 8581 8582 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 8583 { 8584 struct bpf_func_state *state = func(env, reg); 8585 8586 return state->stack[spi].spilled_ptr.ref_obj_id; 8587 } 8588 8589 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8590 { 8591 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8592 } 8593 8594 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8595 { 8596 return meta->kfunc_flags & KF_ITER_NEW; 8597 } 8598 8599 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8600 { 8601 return meta->kfunc_flags & KF_ITER_NEXT; 8602 } 8603 8604 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8605 { 8606 return meta->kfunc_flags & KF_ITER_DESTROY; 8607 } 8608 8609 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx, 8610 const struct btf_param *arg) 8611 { 8612 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 8613 * kfunc is iter state pointer 8614 */ 8615 if (is_iter_kfunc(meta)) 8616 return arg_idx == 0; 8617 8618 /* iter passed as an argument to a generic kfunc */ 8619 return btf_param_match_suffix(meta->btf, arg, "__iter"); 8620 } 8621 8622 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 8623 struct bpf_kfunc_call_arg_meta *meta) 8624 { 8625 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8626 const struct btf_type *t; 8627 int spi, err, i, nr_slots, btf_id; 8628 8629 if (reg->type != PTR_TO_STACK) { 8630 verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1); 8631 return -EINVAL; 8632 } 8633 8634 /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs() 8635 * ensures struct convention, so we wouldn't need to do any BTF 8636 * validation here. But given iter state can be passed as a parameter 8637 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more 8638 * conservative here. 8639 */ 8640 btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1); 8641 if (btf_id < 0) { 8642 verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1); 8643 return -EINVAL; 8644 } 8645 t = btf_type_by_id(meta->btf, btf_id); 8646 nr_slots = t->size / BPF_REG_SIZE; 8647 8648 if (is_iter_new_kfunc(meta)) { 8649 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 8650 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 8651 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 8652 iter_type_str(meta->btf, btf_id), regno - 1); 8653 return -EINVAL; 8654 } 8655 8656 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 8657 err = check_mem_access(env, insn_idx, regno, 8658 i, BPF_DW, BPF_WRITE, -1, false, false); 8659 if (err) 8660 return err; 8661 } 8662 8663 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 8664 if (err) 8665 return err; 8666 } else { 8667 /* iter_next() or iter_destroy(), as well as any kfunc 8668 * accepting iter argument, expect initialized iter state 8669 */ 8670 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 8671 switch (err) { 8672 case 0: 8673 break; 8674 case -EINVAL: 8675 verbose(env, "expected an initialized iter_%s as arg #%d\n", 8676 iter_type_str(meta->btf, btf_id), regno - 1); 8677 return err; 8678 case -EPROTO: 8679 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 8680 return err; 8681 default: 8682 return err; 8683 } 8684 8685 spi = iter_get_spi(env, reg, nr_slots); 8686 if (spi < 0) 8687 return spi; 8688 8689 err = mark_iter_read(env, reg, spi, nr_slots); 8690 if (err) 8691 return err; 8692 8693 /* remember meta->iter info for process_iter_next_call() */ 8694 meta->iter.spi = spi; 8695 meta->iter.frameno = reg->frameno; 8696 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 8697 8698 if (is_iter_destroy_kfunc(meta)) { 8699 err = unmark_stack_slots_iter(env, reg, nr_slots); 8700 if (err) 8701 return err; 8702 } 8703 } 8704 8705 return 0; 8706 } 8707 8708 /* Look for a previous loop entry at insn_idx: nearest parent state 8709 * stopped at insn_idx with callsites matching those in cur->frame. 8710 */ 8711 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 8712 struct bpf_verifier_state *cur, 8713 int insn_idx) 8714 { 8715 struct bpf_verifier_state_list *sl; 8716 struct bpf_verifier_state *st; 8717 struct list_head *pos, *head; 8718 8719 /* Explored states are pushed in stack order, most recent states come first */ 8720 head = explored_state(env, insn_idx); 8721 list_for_each(pos, head) { 8722 sl = container_of(pos, struct bpf_verifier_state_list, node); 8723 /* If st->branches != 0 state is a part of current DFS verification path, 8724 * hence cur & st for a loop. 8725 */ 8726 st = &sl->state; 8727 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 8728 st->dfs_depth < cur->dfs_depth) 8729 return st; 8730 } 8731 8732 return NULL; 8733 } 8734 8735 static void reset_idmap_scratch(struct bpf_verifier_env *env); 8736 static bool regs_exact(const struct bpf_reg_state *rold, 8737 const struct bpf_reg_state *rcur, 8738 struct bpf_idmap *idmap); 8739 8740 static void maybe_widen_reg(struct bpf_verifier_env *env, 8741 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8742 struct bpf_idmap *idmap) 8743 { 8744 if (rold->type != SCALAR_VALUE) 8745 return; 8746 if (rold->type != rcur->type) 8747 return; 8748 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 8749 return; 8750 __mark_reg_unknown(env, rcur); 8751 } 8752 8753 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 8754 struct bpf_verifier_state *old, 8755 struct bpf_verifier_state *cur) 8756 { 8757 struct bpf_func_state *fold, *fcur; 8758 int i, fr; 8759 8760 reset_idmap_scratch(env); 8761 for (fr = old->curframe; fr >= 0; fr--) { 8762 fold = old->frame[fr]; 8763 fcur = cur->frame[fr]; 8764 8765 for (i = 0; i < MAX_BPF_REG; i++) 8766 maybe_widen_reg(env, 8767 &fold->regs[i], 8768 &fcur->regs[i], 8769 &env->idmap_scratch); 8770 8771 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 8772 if (!is_spilled_reg(&fold->stack[i]) || 8773 !is_spilled_reg(&fcur->stack[i])) 8774 continue; 8775 8776 maybe_widen_reg(env, 8777 &fold->stack[i].spilled_ptr, 8778 &fcur->stack[i].spilled_ptr, 8779 &env->idmap_scratch); 8780 } 8781 } 8782 return 0; 8783 } 8784 8785 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st, 8786 struct bpf_kfunc_call_arg_meta *meta) 8787 { 8788 int iter_frameno = meta->iter.frameno; 8789 int iter_spi = meta->iter.spi; 8790 8791 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8792 } 8793 8794 /* process_iter_next_call() is called when verifier gets to iterator's next 8795 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 8796 * to it as just "iter_next()" in comments below. 8797 * 8798 * BPF verifier relies on a crucial contract for any iter_next() 8799 * implementation: it should *eventually* return NULL, and once that happens 8800 * it should keep returning NULL. That is, once iterator exhausts elements to 8801 * iterate, it should never reset or spuriously return new elements. 8802 * 8803 * With the assumption of such contract, process_iter_next_call() simulates 8804 * a fork in the verifier state to validate loop logic correctness and safety 8805 * without having to simulate infinite amount of iterations. 8806 * 8807 * In current state, we first assume that iter_next() returned NULL and 8808 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 8809 * conditions we should not form an infinite loop and should eventually reach 8810 * exit. 8811 * 8812 * Besides that, we also fork current state and enqueue it for later 8813 * verification. In a forked state we keep iterator state as ACTIVE 8814 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 8815 * also bump iteration depth to prevent erroneous infinite loop detection 8816 * later on (see iter_active_depths_differ() comment for details). In this 8817 * state we assume that we'll eventually loop back to another iter_next() 8818 * calls (it could be in exactly same location or in some other instruction, 8819 * it doesn't matter, we don't make any unnecessary assumptions about this, 8820 * everything revolves around iterator state in a stack slot, not which 8821 * instruction is calling iter_next()). When that happens, we either will come 8822 * to iter_next() with equivalent state and can conclude that next iteration 8823 * will proceed in exactly the same way as we just verified, so it's safe to 8824 * assume that loop converges. If not, we'll go on another iteration 8825 * simulation with a different input state, until all possible starting states 8826 * are validated or we reach maximum number of instructions limit. 8827 * 8828 * This way, we will either exhaustively discover all possible input states 8829 * that iterator loop can start with and eventually will converge, or we'll 8830 * effectively regress into bounded loop simulation logic and either reach 8831 * maximum number of instructions if loop is not provably convergent, or there 8832 * is some statically known limit on number of iterations (e.g., if there is 8833 * an explicit `if n > 100 then break;` statement somewhere in the loop). 8834 * 8835 * Iteration convergence logic in is_state_visited() relies on exact 8836 * states comparison, which ignores read and precision marks. 8837 * This is necessary because read and precision marks are not finalized 8838 * while in the loop. Exact comparison might preclude convergence for 8839 * simple programs like below: 8840 * 8841 * i = 0; 8842 * while(iter_next(&it)) 8843 * i++; 8844 * 8845 * At each iteration step i++ would produce a new distinct state and 8846 * eventually instruction processing limit would be reached. 8847 * 8848 * To avoid such behavior speculatively forget (widen) range for 8849 * imprecise scalar registers, if those registers were not precise at the 8850 * end of the previous iteration and do not match exactly. 8851 * 8852 * This is a conservative heuristic that allows to verify wide range of programs, 8853 * however it precludes verification of programs that conjure an 8854 * imprecise value on the first loop iteration and use it as precise on a second. 8855 * For example, the following safe program would fail to verify: 8856 * 8857 * struct bpf_num_iter it; 8858 * int arr[10]; 8859 * int i = 0, a = 0; 8860 * bpf_iter_num_new(&it, 0, 10); 8861 * while (bpf_iter_num_next(&it)) { 8862 * if (a == 0) { 8863 * a = 1; 8864 * i = 7; // Because i changed verifier would forget 8865 * // it's range on second loop entry. 8866 * } else { 8867 * arr[i] = 42; // This would fail to verify. 8868 * } 8869 * } 8870 * bpf_iter_num_destroy(&it); 8871 */ 8872 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 8873 struct bpf_kfunc_call_arg_meta *meta) 8874 { 8875 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 8876 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 8877 struct bpf_reg_state *cur_iter, *queued_iter; 8878 8879 BTF_TYPE_EMIT(struct bpf_iter); 8880 8881 cur_iter = get_iter_from_state(cur_st, meta); 8882 8883 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 8884 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 8885 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 8886 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 8887 return -EFAULT; 8888 } 8889 8890 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 8891 /* Because iter_next() call is a checkpoint is_state_visitied() 8892 * should guarantee parent state with same call sites and insn_idx. 8893 */ 8894 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 8895 !same_callsites(cur_st->parent, cur_st)) { 8896 verbose(env, "bug: bad parent state for iter next call"); 8897 return -EFAULT; 8898 } 8899 /* Note cur_st->parent in the call below, it is necessary to skip 8900 * checkpoint created for cur_st by is_state_visited() 8901 * right at this instruction. 8902 */ 8903 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 8904 /* branch out active iter state */ 8905 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 8906 if (!queued_st) 8907 return -ENOMEM; 8908 8909 queued_iter = get_iter_from_state(queued_st, meta); 8910 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 8911 queued_iter->iter.depth++; 8912 if (prev_st) 8913 widen_imprecise_scalars(env, prev_st, queued_st); 8914 8915 queued_fr = queued_st->frame[queued_st->curframe]; 8916 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 8917 } 8918 8919 /* switch to DRAINED state, but keep the depth unchanged */ 8920 /* mark current iter state as drained and assume returned NULL */ 8921 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 8922 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 8923 8924 return 0; 8925 } 8926 8927 static bool arg_type_is_mem_size(enum bpf_arg_type type) 8928 { 8929 return type == ARG_CONST_SIZE || 8930 type == ARG_CONST_SIZE_OR_ZERO; 8931 } 8932 8933 static bool arg_type_is_raw_mem(enum bpf_arg_type type) 8934 { 8935 return base_type(type) == ARG_PTR_TO_MEM && 8936 type & MEM_UNINIT; 8937 } 8938 8939 static bool arg_type_is_release(enum bpf_arg_type type) 8940 { 8941 return type & OBJ_RELEASE; 8942 } 8943 8944 static bool arg_type_is_dynptr(enum bpf_arg_type type) 8945 { 8946 return base_type(type) == ARG_PTR_TO_DYNPTR; 8947 } 8948 8949 static int resolve_map_arg_type(struct bpf_verifier_env *env, 8950 const struct bpf_call_arg_meta *meta, 8951 enum bpf_arg_type *arg_type) 8952 { 8953 if (!meta->map_ptr) { 8954 /* kernel subsystem misconfigured verifier */ 8955 verbose(env, "invalid map_ptr to access map->type\n"); 8956 return -EACCES; 8957 } 8958 8959 switch (meta->map_ptr->map_type) { 8960 case BPF_MAP_TYPE_SOCKMAP: 8961 case BPF_MAP_TYPE_SOCKHASH: 8962 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8963 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8964 } else { 8965 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8966 return -EINVAL; 8967 } 8968 break; 8969 case BPF_MAP_TYPE_BLOOM_FILTER: 8970 if (meta->func_id == BPF_FUNC_map_peek_elem) 8971 *arg_type = ARG_PTR_TO_MAP_VALUE; 8972 break; 8973 default: 8974 break; 8975 } 8976 return 0; 8977 } 8978 8979 struct bpf_reg_types { 8980 const enum bpf_reg_type types[10]; 8981 u32 *btf_id; 8982 }; 8983 8984 static const struct bpf_reg_types sock_types = { 8985 .types = { 8986 PTR_TO_SOCK_COMMON, 8987 PTR_TO_SOCKET, 8988 PTR_TO_TCP_SOCK, 8989 PTR_TO_XDP_SOCK, 8990 }, 8991 }; 8992 8993 #ifdef CONFIG_NET 8994 static const struct bpf_reg_types btf_id_sock_common_types = { 8995 .types = { 8996 PTR_TO_SOCK_COMMON, 8997 PTR_TO_SOCKET, 8998 PTR_TO_TCP_SOCK, 8999 PTR_TO_XDP_SOCK, 9000 PTR_TO_BTF_ID, 9001 PTR_TO_BTF_ID | PTR_TRUSTED, 9002 }, 9003 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 9004 }; 9005 #endif 9006 9007 static const struct bpf_reg_types mem_types = { 9008 .types = { 9009 PTR_TO_STACK, 9010 PTR_TO_PACKET, 9011 PTR_TO_PACKET_META, 9012 PTR_TO_MAP_KEY, 9013 PTR_TO_MAP_VALUE, 9014 PTR_TO_MEM, 9015 PTR_TO_MEM | MEM_RINGBUF, 9016 PTR_TO_BUF, 9017 PTR_TO_BTF_ID | PTR_TRUSTED, 9018 }, 9019 }; 9020 9021 static const struct bpf_reg_types spin_lock_types = { 9022 .types = { 9023 PTR_TO_MAP_VALUE, 9024 PTR_TO_BTF_ID | MEM_ALLOC, 9025 } 9026 }; 9027 9028 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 9029 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 9030 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 9031 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 9032 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 9033 static const struct bpf_reg_types btf_ptr_types = { 9034 .types = { 9035 PTR_TO_BTF_ID, 9036 PTR_TO_BTF_ID | PTR_TRUSTED, 9037 PTR_TO_BTF_ID | MEM_RCU, 9038 }, 9039 }; 9040 static const struct bpf_reg_types percpu_btf_ptr_types = { 9041 .types = { 9042 PTR_TO_BTF_ID | MEM_PERCPU, 9043 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 9044 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 9045 } 9046 }; 9047 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 9048 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 9049 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 9050 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 9051 static const struct bpf_reg_types kptr_xchg_dest_types = { 9052 .types = { 9053 PTR_TO_MAP_VALUE, 9054 PTR_TO_BTF_ID | MEM_ALLOC 9055 } 9056 }; 9057 static const struct bpf_reg_types dynptr_types = { 9058 .types = { 9059 PTR_TO_STACK, 9060 CONST_PTR_TO_DYNPTR, 9061 } 9062 }; 9063 9064 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 9065 [ARG_PTR_TO_MAP_KEY] = &mem_types, 9066 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 9067 [ARG_CONST_SIZE] = &scalar_types, 9068 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 9069 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 9070 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 9071 [ARG_PTR_TO_CTX] = &context_types, 9072 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 9073 #ifdef CONFIG_NET 9074 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 9075 #endif 9076 [ARG_PTR_TO_SOCKET] = &fullsock_types, 9077 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 9078 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 9079 [ARG_PTR_TO_MEM] = &mem_types, 9080 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 9081 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 9082 [ARG_PTR_TO_FUNC] = &func_ptr_types, 9083 [ARG_PTR_TO_STACK] = &stack_ptr_types, 9084 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 9085 [ARG_PTR_TO_TIMER] = &timer_types, 9086 [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types, 9087 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 9088 }; 9089 9090 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 9091 enum bpf_arg_type arg_type, 9092 const u32 *arg_btf_id, 9093 struct bpf_call_arg_meta *meta) 9094 { 9095 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 9096 enum bpf_reg_type expected, type = reg->type; 9097 const struct bpf_reg_types *compatible; 9098 int i, j; 9099 9100 compatible = compatible_reg_types[base_type(arg_type)]; 9101 if (!compatible) { 9102 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 9103 return -EFAULT; 9104 } 9105 9106 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 9107 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 9108 * 9109 * Same for MAYBE_NULL: 9110 * 9111 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 9112 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 9113 * 9114 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 9115 * 9116 * Therefore we fold these flags depending on the arg_type before comparison. 9117 */ 9118 if (arg_type & MEM_RDONLY) 9119 type &= ~MEM_RDONLY; 9120 if (arg_type & PTR_MAYBE_NULL) 9121 type &= ~PTR_MAYBE_NULL; 9122 if (base_type(arg_type) == ARG_PTR_TO_MEM) 9123 type &= ~DYNPTR_TYPE_FLAG_MASK; 9124 9125 /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */ 9126 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) { 9127 type &= ~MEM_ALLOC; 9128 type &= ~MEM_PERCPU; 9129 } 9130 9131 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 9132 expected = compatible->types[i]; 9133 if (expected == NOT_INIT) 9134 break; 9135 9136 if (type == expected) 9137 goto found; 9138 } 9139 9140 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 9141 for (j = 0; j + 1 < i; j++) 9142 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 9143 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 9144 return -EACCES; 9145 9146 found: 9147 if (base_type(reg->type) != PTR_TO_BTF_ID) 9148 return 0; 9149 9150 if (compatible == &mem_types) { 9151 if (!(arg_type & MEM_RDONLY)) { 9152 verbose(env, 9153 "%s() may write into memory pointed by R%d type=%s\n", 9154 func_id_name(meta->func_id), 9155 regno, reg_type_str(env, reg->type)); 9156 return -EACCES; 9157 } 9158 return 0; 9159 } 9160 9161 switch ((int)reg->type) { 9162 case PTR_TO_BTF_ID: 9163 case PTR_TO_BTF_ID | PTR_TRUSTED: 9164 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 9165 case PTR_TO_BTF_ID | MEM_RCU: 9166 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 9167 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 9168 { 9169 /* For bpf_sk_release, it needs to match against first member 9170 * 'struct sock_common', hence make an exception for it. This 9171 * allows bpf_sk_release to work for multiple socket types. 9172 */ 9173 bool strict_type_match = arg_type_is_release(arg_type) && 9174 meta->func_id != BPF_FUNC_sk_release; 9175 9176 if (type_may_be_null(reg->type) && 9177 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 9178 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 9179 return -EACCES; 9180 } 9181 9182 if (!arg_btf_id) { 9183 if (!compatible->btf_id) { 9184 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 9185 return -EFAULT; 9186 } 9187 arg_btf_id = compatible->btf_id; 9188 } 9189 9190 if (meta->func_id == BPF_FUNC_kptr_xchg) { 9191 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 9192 return -EACCES; 9193 } else { 9194 if (arg_btf_id == BPF_PTR_POISON) { 9195 verbose(env, "verifier internal error:"); 9196 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 9197 regno); 9198 return -EACCES; 9199 } 9200 9201 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 9202 btf_vmlinux, *arg_btf_id, 9203 strict_type_match)) { 9204 verbose(env, "R%d is of type %s but %s is expected\n", 9205 regno, btf_type_name(reg->btf, reg->btf_id), 9206 btf_type_name(btf_vmlinux, *arg_btf_id)); 9207 return -EACCES; 9208 } 9209 } 9210 break; 9211 } 9212 case PTR_TO_BTF_ID | MEM_ALLOC: 9213 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 9214 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 9215 meta->func_id != BPF_FUNC_kptr_xchg) { 9216 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 9217 return -EFAULT; 9218 } 9219 /* Check if local kptr in src arg matches kptr in dst arg */ 9220 if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) { 9221 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 9222 return -EACCES; 9223 } 9224 break; 9225 case PTR_TO_BTF_ID | MEM_PERCPU: 9226 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 9227 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 9228 /* Handled by helper specific checks */ 9229 break; 9230 default: 9231 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 9232 return -EFAULT; 9233 } 9234 return 0; 9235 } 9236 9237 static struct btf_field * 9238 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 9239 { 9240 struct btf_field *field; 9241 struct btf_record *rec; 9242 9243 rec = reg_btf_record(reg); 9244 if (!rec) 9245 return NULL; 9246 9247 field = btf_record_find(rec, off, fields); 9248 if (!field) 9249 return NULL; 9250 9251 return field; 9252 } 9253 9254 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 9255 const struct bpf_reg_state *reg, int regno, 9256 enum bpf_arg_type arg_type) 9257 { 9258 u32 type = reg->type; 9259 9260 /* When referenced register is passed to release function, its fixed 9261 * offset must be 0. 9262 * 9263 * We will check arg_type_is_release reg has ref_obj_id when storing 9264 * meta->release_regno. 9265 */ 9266 if (arg_type_is_release(arg_type)) { 9267 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 9268 * may not directly point to the object being released, but to 9269 * dynptr pointing to such object, which might be at some offset 9270 * on the stack. In that case, we simply to fallback to the 9271 * default handling. 9272 */ 9273 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 9274 return 0; 9275 9276 /* Doing check_ptr_off_reg check for the offset will catch this 9277 * because fixed_off_ok is false, but checking here allows us 9278 * to give the user a better error message. 9279 */ 9280 if (reg->off) { 9281 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 9282 regno); 9283 return -EINVAL; 9284 } 9285 return __check_ptr_off_reg(env, reg, regno, false); 9286 } 9287 9288 switch (type) { 9289 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 9290 case PTR_TO_STACK: 9291 case PTR_TO_PACKET: 9292 case PTR_TO_PACKET_META: 9293 case PTR_TO_MAP_KEY: 9294 case PTR_TO_MAP_VALUE: 9295 case PTR_TO_MEM: 9296 case PTR_TO_MEM | MEM_RDONLY: 9297 case PTR_TO_MEM | MEM_RINGBUF: 9298 case PTR_TO_BUF: 9299 case PTR_TO_BUF | MEM_RDONLY: 9300 case PTR_TO_ARENA: 9301 case SCALAR_VALUE: 9302 return 0; 9303 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 9304 * fixed offset. 9305 */ 9306 case PTR_TO_BTF_ID: 9307 case PTR_TO_BTF_ID | MEM_ALLOC: 9308 case PTR_TO_BTF_ID | PTR_TRUSTED: 9309 case PTR_TO_BTF_ID | MEM_RCU: 9310 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 9311 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 9312 /* When referenced PTR_TO_BTF_ID is passed to release function, 9313 * its fixed offset must be 0. In the other cases, fixed offset 9314 * can be non-zero. This was already checked above. So pass 9315 * fixed_off_ok as true to allow fixed offset for all other 9316 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 9317 * still need to do checks instead of returning. 9318 */ 9319 return __check_ptr_off_reg(env, reg, regno, true); 9320 default: 9321 return __check_ptr_off_reg(env, reg, regno, false); 9322 } 9323 } 9324 9325 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 9326 const struct bpf_func_proto *fn, 9327 struct bpf_reg_state *regs) 9328 { 9329 struct bpf_reg_state *state = NULL; 9330 int i; 9331 9332 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 9333 if (arg_type_is_dynptr(fn->arg_type[i])) { 9334 if (state) { 9335 verbose(env, "verifier internal error: multiple dynptr args\n"); 9336 return NULL; 9337 } 9338 state = ®s[BPF_REG_1 + i]; 9339 } 9340 9341 if (!state) 9342 verbose(env, "verifier internal error: no dynptr arg found\n"); 9343 9344 return state; 9345 } 9346 9347 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9348 { 9349 struct bpf_func_state *state = func(env, reg); 9350 int spi; 9351 9352 if (reg->type == CONST_PTR_TO_DYNPTR) 9353 return reg->id; 9354 spi = dynptr_get_spi(env, reg); 9355 if (spi < 0) 9356 return spi; 9357 return state->stack[spi].spilled_ptr.id; 9358 } 9359 9360 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9361 { 9362 struct bpf_func_state *state = func(env, reg); 9363 int spi; 9364 9365 if (reg->type == CONST_PTR_TO_DYNPTR) 9366 return reg->ref_obj_id; 9367 spi = dynptr_get_spi(env, reg); 9368 if (spi < 0) 9369 return spi; 9370 return state->stack[spi].spilled_ptr.ref_obj_id; 9371 } 9372 9373 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 9374 struct bpf_reg_state *reg) 9375 { 9376 struct bpf_func_state *state = func(env, reg); 9377 int spi; 9378 9379 if (reg->type == CONST_PTR_TO_DYNPTR) 9380 return reg->dynptr.type; 9381 9382 spi = __get_spi(reg->off); 9383 if (spi < 0) { 9384 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 9385 return BPF_DYNPTR_TYPE_INVALID; 9386 } 9387 9388 return state->stack[spi].spilled_ptr.dynptr.type; 9389 } 9390 9391 static int check_reg_const_str(struct bpf_verifier_env *env, 9392 struct bpf_reg_state *reg, u32 regno) 9393 { 9394 struct bpf_map *map = reg->map_ptr; 9395 int err; 9396 int map_off; 9397 u64 map_addr; 9398 char *str_ptr; 9399 9400 if (reg->type != PTR_TO_MAP_VALUE) 9401 return -EINVAL; 9402 9403 if (!bpf_map_is_rdonly(map)) { 9404 verbose(env, "R%d does not point to a readonly map'\n", regno); 9405 return -EACCES; 9406 } 9407 9408 if (!tnum_is_const(reg->var_off)) { 9409 verbose(env, "R%d is not a constant address'\n", regno); 9410 return -EACCES; 9411 } 9412 9413 if (!map->ops->map_direct_value_addr) { 9414 verbose(env, "no direct value access support for this map type\n"); 9415 return -EACCES; 9416 } 9417 9418 err = check_map_access(env, regno, reg->off, 9419 map->value_size - reg->off, false, 9420 ACCESS_HELPER); 9421 if (err) 9422 return err; 9423 9424 map_off = reg->off + reg->var_off.value; 9425 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 9426 if (err) { 9427 verbose(env, "direct value access on string failed\n"); 9428 return err; 9429 } 9430 9431 str_ptr = (char *)(long)(map_addr); 9432 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 9433 verbose(env, "string is not zero-terminated\n"); 9434 return -EINVAL; 9435 } 9436 return 0; 9437 } 9438 9439 /* Returns constant key value in `value` if possible, else negative error */ 9440 static int get_constant_map_key(struct bpf_verifier_env *env, 9441 struct bpf_reg_state *key, 9442 u32 key_size, 9443 s64 *value) 9444 { 9445 struct bpf_func_state *state = func(env, key); 9446 struct bpf_reg_state *reg; 9447 int slot, spi, off; 9448 int spill_size = 0; 9449 int zero_size = 0; 9450 int stack_off; 9451 int i, err; 9452 u8 *stype; 9453 9454 if (!env->bpf_capable) 9455 return -EOPNOTSUPP; 9456 if (key->type != PTR_TO_STACK) 9457 return -EOPNOTSUPP; 9458 if (!tnum_is_const(key->var_off)) 9459 return -EOPNOTSUPP; 9460 9461 stack_off = key->off + key->var_off.value; 9462 slot = -stack_off - 1; 9463 spi = slot / BPF_REG_SIZE; 9464 off = slot % BPF_REG_SIZE; 9465 stype = state->stack[spi].slot_type; 9466 9467 /* First handle precisely tracked STACK_ZERO */ 9468 for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--) 9469 zero_size++; 9470 if (zero_size >= key_size) { 9471 *value = 0; 9472 return 0; 9473 } 9474 9475 /* Check that stack contains a scalar spill of expected size */ 9476 if (!is_spilled_scalar_reg(&state->stack[spi])) 9477 return -EOPNOTSUPP; 9478 for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--) 9479 spill_size++; 9480 if (spill_size != key_size) 9481 return -EOPNOTSUPP; 9482 9483 reg = &state->stack[spi].spilled_ptr; 9484 if (!tnum_is_const(reg->var_off)) 9485 /* Stack value not statically known */ 9486 return -EOPNOTSUPP; 9487 9488 /* We are relying on a constant value. So mark as precise 9489 * to prevent pruning on it. 9490 */ 9491 bt_set_frame_slot(&env->bt, key->frameno, spi); 9492 err = mark_chain_precision_batch(env); 9493 if (err < 0) 9494 return err; 9495 9496 *value = reg->var_off.value; 9497 return 0; 9498 } 9499 9500 static bool can_elide_value_nullness(enum bpf_map_type type); 9501 9502 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 9503 struct bpf_call_arg_meta *meta, 9504 const struct bpf_func_proto *fn, 9505 int insn_idx) 9506 { 9507 u32 regno = BPF_REG_1 + arg; 9508 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 9509 enum bpf_arg_type arg_type = fn->arg_type[arg]; 9510 enum bpf_reg_type type = reg->type; 9511 u32 *arg_btf_id = NULL; 9512 u32 key_size; 9513 int err = 0; 9514 9515 if (arg_type == ARG_DONTCARE) 9516 return 0; 9517 9518 err = check_reg_arg(env, regno, SRC_OP); 9519 if (err) 9520 return err; 9521 9522 if (arg_type == ARG_ANYTHING) { 9523 if (is_pointer_value(env, regno)) { 9524 verbose(env, "R%d leaks addr into helper function\n", 9525 regno); 9526 return -EACCES; 9527 } 9528 return 0; 9529 } 9530 9531 if (type_is_pkt_pointer(type) && 9532 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 9533 verbose(env, "helper access to the packet is not allowed\n"); 9534 return -EACCES; 9535 } 9536 9537 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 9538 err = resolve_map_arg_type(env, meta, &arg_type); 9539 if (err) 9540 return err; 9541 } 9542 9543 if (register_is_null(reg) && type_may_be_null(arg_type)) 9544 /* A NULL register has a SCALAR_VALUE type, so skip 9545 * type checking. 9546 */ 9547 goto skip_type_check; 9548 9549 /* arg_btf_id and arg_size are in a union. */ 9550 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 9551 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 9552 arg_btf_id = fn->arg_btf_id[arg]; 9553 9554 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 9555 if (err) 9556 return err; 9557 9558 err = check_func_arg_reg_off(env, reg, regno, arg_type); 9559 if (err) 9560 return err; 9561 9562 skip_type_check: 9563 if (arg_type_is_release(arg_type)) { 9564 if (arg_type_is_dynptr(arg_type)) { 9565 struct bpf_func_state *state = func(env, reg); 9566 int spi; 9567 9568 /* Only dynptr created on stack can be released, thus 9569 * the get_spi and stack state checks for spilled_ptr 9570 * should only be done before process_dynptr_func for 9571 * PTR_TO_STACK. 9572 */ 9573 if (reg->type == PTR_TO_STACK) { 9574 spi = dynptr_get_spi(env, reg); 9575 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 9576 verbose(env, "arg %d is an unacquired reference\n", regno); 9577 return -EINVAL; 9578 } 9579 } else { 9580 verbose(env, "cannot release unowned const bpf_dynptr\n"); 9581 return -EINVAL; 9582 } 9583 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 9584 verbose(env, "R%d must be referenced when passed to release function\n", 9585 regno); 9586 return -EINVAL; 9587 } 9588 if (meta->release_regno) { 9589 verbose(env, "verifier internal error: more than one release argument\n"); 9590 return -EFAULT; 9591 } 9592 meta->release_regno = regno; 9593 } 9594 9595 if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) { 9596 if (meta->ref_obj_id) { 9597 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 9598 regno, reg->ref_obj_id, 9599 meta->ref_obj_id); 9600 return -EFAULT; 9601 } 9602 meta->ref_obj_id = reg->ref_obj_id; 9603 } 9604 9605 switch (base_type(arg_type)) { 9606 case ARG_CONST_MAP_PTR: 9607 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 9608 if (meta->map_ptr) { 9609 /* Use map_uid (which is unique id of inner map) to reject: 9610 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 9611 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 9612 * if (inner_map1 && inner_map2) { 9613 * timer = bpf_map_lookup_elem(inner_map1); 9614 * if (timer) 9615 * // mismatch would have been allowed 9616 * bpf_timer_init(timer, inner_map2); 9617 * } 9618 * 9619 * Comparing map_ptr is enough to distinguish normal and outer maps. 9620 */ 9621 if (meta->map_ptr != reg->map_ptr || 9622 meta->map_uid != reg->map_uid) { 9623 verbose(env, 9624 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 9625 meta->map_uid, reg->map_uid); 9626 return -EINVAL; 9627 } 9628 } 9629 meta->map_ptr = reg->map_ptr; 9630 meta->map_uid = reg->map_uid; 9631 break; 9632 case ARG_PTR_TO_MAP_KEY: 9633 /* bpf_map_xxx(..., map_ptr, ..., key) call: 9634 * check that [key, key + map->key_size) are within 9635 * stack limits and initialized 9636 */ 9637 if (!meta->map_ptr) { 9638 /* in function declaration map_ptr must come before 9639 * map_key, so that it's verified and known before 9640 * we have to check map_key here. Otherwise it means 9641 * that kernel subsystem misconfigured verifier 9642 */ 9643 verbose(env, "invalid map_ptr to access map->key\n"); 9644 return -EACCES; 9645 } 9646 key_size = meta->map_ptr->key_size; 9647 err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL); 9648 if (err) 9649 return err; 9650 if (can_elide_value_nullness(meta->map_ptr->map_type)) { 9651 err = get_constant_map_key(env, reg, key_size, &meta->const_map_key); 9652 if (err < 0) { 9653 meta->const_map_key = -1; 9654 if (err == -EOPNOTSUPP) 9655 err = 0; 9656 else 9657 return err; 9658 } 9659 } 9660 break; 9661 case ARG_PTR_TO_MAP_VALUE: 9662 if (type_may_be_null(arg_type) && register_is_null(reg)) 9663 return 0; 9664 9665 /* bpf_map_xxx(..., map_ptr, ..., value) call: 9666 * check [value, value + map->value_size) validity 9667 */ 9668 if (!meta->map_ptr) { 9669 /* kernel subsystem misconfigured verifier */ 9670 verbose(env, "invalid map_ptr to access map->value\n"); 9671 return -EACCES; 9672 } 9673 meta->raw_mode = arg_type & MEM_UNINIT; 9674 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size, 9675 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9676 false, meta); 9677 break; 9678 case ARG_PTR_TO_PERCPU_BTF_ID: 9679 if (!reg->btf_id) { 9680 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 9681 return -EACCES; 9682 } 9683 meta->ret_btf = reg->btf; 9684 meta->ret_btf_id = reg->btf_id; 9685 break; 9686 case ARG_PTR_TO_SPIN_LOCK: 9687 if (in_rbtree_lock_required_cb(env)) { 9688 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 9689 return -EACCES; 9690 } 9691 if (meta->func_id == BPF_FUNC_spin_lock) { 9692 err = process_spin_lock(env, regno, PROCESS_SPIN_LOCK); 9693 if (err) 9694 return err; 9695 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 9696 err = process_spin_lock(env, regno, 0); 9697 if (err) 9698 return err; 9699 } else { 9700 verbose(env, "verifier internal error\n"); 9701 return -EFAULT; 9702 } 9703 break; 9704 case ARG_PTR_TO_TIMER: 9705 err = process_timer_func(env, regno, meta); 9706 if (err) 9707 return err; 9708 break; 9709 case ARG_PTR_TO_FUNC: 9710 meta->subprogno = reg->subprogno; 9711 break; 9712 case ARG_PTR_TO_MEM: 9713 /* The access to this pointer is only checked when we hit the 9714 * next is_mem_size argument below. 9715 */ 9716 meta->raw_mode = arg_type & MEM_UNINIT; 9717 if (arg_type & MEM_FIXED_SIZE) { 9718 err = check_helper_mem_access(env, regno, fn->arg_size[arg], 9719 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9720 false, meta); 9721 if (err) 9722 return err; 9723 if (arg_type & MEM_ALIGNED) 9724 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true); 9725 } 9726 break; 9727 case ARG_CONST_SIZE: 9728 err = check_mem_size_reg(env, reg, regno, 9729 fn->arg_type[arg - 1] & MEM_WRITE ? 9730 BPF_WRITE : BPF_READ, 9731 false, meta); 9732 break; 9733 case ARG_CONST_SIZE_OR_ZERO: 9734 err = check_mem_size_reg(env, reg, regno, 9735 fn->arg_type[arg - 1] & MEM_WRITE ? 9736 BPF_WRITE : BPF_READ, 9737 true, meta); 9738 break; 9739 case ARG_PTR_TO_DYNPTR: 9740 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 9741 if (err) 9742 return err; 9743 break; 9744 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 9745 if (!tnum_is_const(reg->var_off)) { 9746 verbose(env, "R%d is not a known constant'\n", 9747 regno); 9748 return -EACCES; 9749 } 9750 meta->mem_size = reg->var_off.value; 9751 err = mark_chain_precision(env, regno); 9752 if (err) 9753 return err; 9754 break; 9755 case ARG_PTR_TO_CONST_STR: 9756 { 9757 err = check_reg_const_str(env, reg, regno); 9758 if (err) 9759 return err; 9760 break; 9761 } 9762 case ARG_KPTR_XCHG_DEST: 9763 err = process_kptr_func(env, regno, meta); 9764 if (err) 9765 return err; 9766 break; 9767 } 9768 9769 return err; 9770 } 9771 9772 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 9773 { 9774 enum bpf_attach_type eatype = env->prog->expected_attach_type; 9775 enum bpf_prog_type type = resolve_prog_type(env->prog); 9776 9777 if (func_id != BPF_FUNC_map_update_elem && 9778 func_id != BPF_FUNC_map_delete_elem) 9779 return false; 9780 9781 /* It's not possible to get access to a locked struct sock in these 9782 * contexts, so updating is safe. 9783 */ 9784 switch (type) { 9785 case BPF_PROG_TYPE_TRACING: 9786 if (eatype == BPF_TRACE_ITER) 9787 return true; 9788 break; 9789 case BPF_PROG_TYPE_SOCK_OPS: 9790 /* map_update allowed only via dedicated helpers with event type checks */ 9791 if (func_id == BPF_FUNC_map_delete_elem) 9792 return true; 9793 break; 9794 case BPF_PROG_TYPE_SOCKET_FILTER: 9795 case BPF_PROG_TYPE_SCHED_CLS: 9796 case BPF_PROG_TYPE_SCHED_ACT: 9797 case BPF_PROG_TYPE_XDP: 9798 case BPF_PROG_TYPE_SK_REUSEPORT: 9799 case BPF_PROG_TYPE_FLOW_DISSECTOR: 9800 case BPF_PROG_TYPE_SK_LOOKUP: 9801 return true; 9802 default: 9803 break; 9804 } 9805 9806 verbose(env, "cannot update sockmap in this context\n"); 9807 return false; 9808 } 9809 9810 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 9811 { 9812 return env->prog->jit_requested && 9813 bpf_jit_supports_subprog_tailcalls(); 9814 } 9815 9816 static int check_map_func_compatibility(struct bpf_verifier_env *env, 9817 struct bpf_map *map, int func_id) 9818 { 9819 if (!map) 9820 return 0; 9821 9822 /* We need a two way check, first is from map perspective ... */ 9823 switch (map->map_type) { 9824 case BPF_MAP_TYPE_PROG_ARRAY: 9825 if (func_id != BPF_FUNC_tail_call) 9826 goto error; 9827 break; 9828 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 9829 if (func_id != BPF_FUNC_perf_event_read && 9830 func_id != BPF_FUNC_perf_event_output && 9831 func_id != BPF_FUNC_skb_output && 9832 func_id != BPF_FUNC_perf_event_read_value && 9833 func_id != BPF_FUNC_xdp_output) 9834 goto error; 9835 break; 9836 case BPF_MAP_TYPE_RINGBUF: 9837 if (func_id != BPF_FUNC_ringbuf_output && 9838 func_id != BPF_FUNC_ringbuf_reserve && 9839 func_id != BPF_FUNC_ringbuf_query && 9840 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 9841 func_id != BPF_FUNC_ringbuf_submit_dynptr && 9842 func_id != BPF_FUNC_ringbuf_discard_dynptr) 9843 goto error; 9844 break; 9845 case BPF_MAP_TYPE_USER_RINGBUF: 9846 if (func_id != BPF_FUNC_user_ringbuf_drain) 9847 goto error; 9848 break; 9849 case BPF_MAP_TYPE_STACK_TRACE: 9850 if (func_id != BPF_FUNC_get_stackid) 9851 goto error; 9852 break; 9853 case BPF_MAP_TYPE_CGROUP_ARRAY: 9854 if (func_id != BPF_FUNC_skb_under_cgroup && 9855 func_id != BPF_FUNC_current_task_under_cgroup) 9856 goto error; 9857 break; 9858 case BPF_MAP_TYPE_CGROUP_STORAGE: 9859 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 9860 if (func_id != BPF_FUNC_get_local_storage) 9861 goto error; 9862 break; 9863 case BPF_MAP_TYPE_DEVMAP: 9864 case BPF_MAP_TYPE_DEVMAP_HASH: 9865 if (func_id != BPF_FUNC_redirect_map && 9866 func_id != BPF_FUNC_map_lookup_elem) 9867 goto error; 9868 break; 9869 /* Restrict bpf side of cpumap and xskmap, open when use-cases 9870 * appear. 9871 */ 9872 case BPF_MAP_TYPE_CPUMAP: 9873 if (func_id != BPF_FUNC_redirect_map) 9874 goto error; 9875 break; 9876 case BPF_MAP_TYPE_XSKMAP: 9877 if (func_id != BPF_FUNC_redirect_map && 9878 func_id != BPF_FUNC_map_lookup_elem) 9879 goto error; 9880 break; 9881 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 9882 case BPF_MAP_TYPE_HASH_OF_MAPS: 9883 if (func_id != BPF_FUNC_map_lookup_elem) 9884 goto error; 9885 break; 9886 case BPF_MAP_TYPE_SOCKMAP: 9887 if (func_id != BPF_FUNC_sk_redirect_map && 9888 func_id != BPF_FUNC_sock_map_update && 9889 func_id != BPF_FUNC_msg_redirect_map && 9890 func_id != BPF_FUNC_sk_select_reuseport && 9891 func_id != BPF_FUNC_map_lookup_elem && 9892 !may_update_sockmap(env, func_id)) 9893 goto error; 9894 break; 9895 case BPF_MAP_TYPE_SOCKHASH: 9896 if (func_id != BPF_FUNC_sk_redirect_hash && 9897 func_id != BPF_FUNC_sock_hash_update && 9898 func_id != BPF_FUNC_msg_redirect_hash && 9899 func_id != BPF_FUNC_sk_select_reuseport && 9900 func_id != BPF_FUNC_map_lookup_elem && 9901 !may_update_sockmap(env, func_id)) 9902 goto error; 9903 break; 9904 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 9905 if (func_id != BPF_FUNC_sk_select_reuseport) 9906 goto error; 9907 break; 9908 case BPF_MAP_TYPE_QUEUE: 9909 case BPF_MAP_TYPE_STACK: 9910 if (func_id != BPF_FUNC_map_peek_elem && 9911 func_id != BPF_FUNC_map_pop_elem && 9912 func_id != BPF_FUNC_map_push_elem) 9913 goto error; 9914 break; 9915 case BPF_MAP_TYPE_SK_STORAGE: 9916 if (func_id != BPF_FUNC_sk_storage_get && 9917 func_id != BPF_FUNC_sk_storage_delete && 9918 func_id != BPF_FUNC_kptr_xchg) 9919 goto error; 9920 break; 9921 case BPF_MAP_TYPE_INODE_STORAGE: 9922 if (func_id != BPF_FUNC_inode_storage_get && 9923 func_id != BPF_FUNC_inode_storage_delete && 9924 func_id != BPF_FUNC_kptr_xchg) 9925 goto error; 9926 break; 9927 case BPF_MAP_TYPE_TASK_STORAGE: 9928 if (func_id != BPF_FUNC_task_storage_get && 9929 func_id != BPF_FUNC_task_storage_delete && 9930 func_id != BPF_FUNC_kptr_xchg) 9931 goto error; 9932 break; 9933 case BPF_MAP_TYPE_CGRP_STORAGE: 9934 if (func_id != BPF_FUNC_cgrp_storage_get && 9935 func_id != BPF_FUNC_cgrp_storage_delete && 9936 func_id != BPF_FUNC_kptr_xchg) 9937 goto error; 9938 break; 9939 case BPF_MAP_TYPE_BLOOM_FILTER: 9940 if (func_id != BPF_FUNC_map_peek_elem && 9941 func_id != BPF_FUNC_map_push_elem) 9942 goto error; 9943 break; 9944 default: 9945 break; 9946 } 9947 9948 /* ... and second from the function itself. */ 9949 switch (func_id) { 9950 case BPF_FUNC_tail_call: 9951 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 9952 goto error; 9953 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 9954 verbose(env, "mixing of tail_calls and bpf-to-bpf calls is not supported\n"); 9955 return -EINVAL; 9956 } 9957 break; 9958 case BPF_FUNC_perf_event_read: 9959 case BPF_FUNC_perf_event_output: 9960 case BPF_FUNC_perf_event_read_value: 9961 case BPF_FUNC_skb_output: 9962 case BPF_FUNC_xdp_output: 9963 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9964 goto error; 9965 break; 9966 case BPF_FUNC_ringbuf_output: 9967 case BPF_FUNC_ringbuf_reserve: 9968 case BPF_FUNC_ringbuf_query: 9969 case BPF_FUNC_ringbuf_reserve_dynptr: 9970 case BPF_FUNC_ringbuf_submit_dynptr: 9971 case BPF_FUNC_ringbuf_discard_dynptr: 9972 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 9973 goto error; 9974 break; 9975 case BPF_FUNC_user_ringbuf_drain: 9976 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 9977 goto error; 9978 break; 9979 case BPF_FUNC_get_stackid: 9980 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 9981 goto error; 9982 break; 9983 case BPF_FUNC_current_task_under_cgroup: 9984 case BPF_FUNC_skb_under_cgroup: 9985 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 9986 goto error; 9987 break; 9988 case BPF_FUNC_redirect_map: 9989 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 9990 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 9991 map->map_type != BPF_MAP_TYPE_CPUMAP && 9992 map->map_type != BPF_MAP_TYPE_XSKMAP) 9993 goto error; 9994 break; 9995 case BPF_FUNC_sk_redirect_map: 9996 case BPF_FUNC_msg_redirect_map: 9997 case BPF_FUNC_sock_map_update: 9998 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 9999 goto error; 10000 break; 10001 case BPF_FUNC_sk_redirect_hash: 10002 case BPF_FUNC_msg_redirect_hash: 10003 case BPF_FUNC_sock_hash_update: 10004 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 10005 goto error; 10006 break; 10007 case BPF_FUNC_get_local_storage: 10008 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 10009 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 10010 goto error; 10011 break; 10012 case BPF_FUNC_sk_select_reuseport: 10013 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 10014 map->map_type != BPF_MAP_TYPE_SOCKMAP && 10015 map->map_type != BPF_MAP_TYPE_SOCKHASH) 10016 goto error; 10017 break; 10018 case BPF_FUNC_map_pop_elem: 10019 if (map->map_type != BPF_MAP_TYPE_QUEUE && 10020 map->map_type != BPF_MAP_TYPE_STACK) 10021 goto error; 10022 break; 10023 case BPF_FUNC_map_peek_elem: 10024 case BPF_FUNC_map_push_elem: 10025 if (map->map_type != BPF_MAP_TYPE_QUEUE && 10026 map->map_type != BPF_MAP_TYPE_STACK && 10027 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 10028 goto error; 10029 break; 10030 case BPF_FUNC_map_lookup_percpu_elem: 10031 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 10032 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 10033 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 10034 goto error; 10035 break; 10036 case BPF_FUNC_sk_storage_get: 10037 case BPF_FUNC_sk_storage_delete: 10038 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 10039 goto error; 10040 break; 10041 case BPF_FUNC_inode_storage_get: 10042 case BPF_FUNC_inode_storage_delete: 10043 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 10044 goto error; 10045 break; 10046 case BPF_FUNC_task_storage_get: 10047 case BPF_FUNC_task_storage_delete: 10048 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 10049 goto error; 10050 break; 10051 case BPF_FUNC_cgrp_storage_get: 10052 case BPF_FUNC_cgrp_storage_delete: 10053 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 10054 goto error; 10055 break; 10056 default: 10057 break; 10058 } 10059 10060 return 0; 10061 error: 10062 verbose(env, "cannot pass map_type %d into func %s#%d\n", 10063 map->map_type, func_id_name(func_id), func_id); 10064 return -EINVAL; 10065 } 10066 10067 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 10068 { 10069 int count = 0; 10070 10071 if (arg_type_is_raw_mem(fn->arg1_type)) 10072 count++; 10073 if (arg_type_is_raw_mem(fn->arg2_type)) 10074 count++; 10075 if (arg_type_is_raw_mem(fn->arg3_type)) 10076 count++; 10077 if (arg_type_is_raw_mem(fn->arg4_type)) 10078 count++; 10079 if (arg_type_is_raw_mem(fn->arg5_type)) 10080 count++; 10081 10082 /* We only support one arg being in raw mode at the moment, 10083 * which is sufficient for the helper functions we have 10084 * right now. 10085 */ 10086 return count <= 1; 10087 } 10088 10089 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 10090 { 10091 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 10092 bool has_size = fn->arg_size[arg] != 0; 10093 bool is_next_size = false; 10094 10095 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 10096 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 10097 10098 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 10099 return is_next_size; 10100 10101 return has_size == is_next_size || is_next_size == is_fixed; 10102 } 10103 10104 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 10105 { 10106 /* bpf_xxx(..., buf, len) call will access 'len' 10107 * bytes from memory 'buf'. Both arg types need 10108 * to be paired, so make sure there's no buggy 10109 * helper function specification. 10110 */ 10111 if (arg_type_is_mem_size(fn->arg1_type) || 10112 check_args_pair_invalid(fn, 0) || 10113 check_args_pair_invalid(fn, 1) || 10114 check_args_pair_invalid(fn, 2) || 10115 check_args_pair_invalid(fn, 3) || 10116 check_args_pair_invalid(fn, 4)) 10117 return false; 10118 10119 return true; 10120 } 10121 10122 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 10123 { 10124 int i; 10125 10126 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 10127 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 10128 return !!fn->arg_btf_id[i]; 10129 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 10130 return fn->arg_btf_id[i] == BPF_PTR_POISON; 10131 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 10132 /* arg_btf_id and arg_size are in a union. */ 10133 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 10134 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 10135 return false; 10136 } 10137 10138 return true; 10139 } 10140 10141 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 10142 { 10143 return check_raw_mode_ok(fn) && 10144 check_arg_pair_ok(fn) && 10145 check_btf_id_ok(fn) ? 0 : -EINVAL; 10146 } 10147 10148 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 10149 * are now invalid, so turn them into unknown SCALAR_VALUE. 10150 * 10151 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 10152 * since these slices point to packet data. 10153 */ 10154 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 10155 { 10156 struct bpf_func_state *state; 10157 struct bpf_reg_state *reg; 10158 10159 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10160 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 10161 mark_reg_invalid(env, reg); 10162 })); 10163 } 10164 10165 enum { 10166 AT_PKT_END = -1, 10167 BEYOND_PKT_END = -2, 10168 }; 10169 10170 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 10171 { 10172 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 10173 struct bpf_reg_state *reg = &state->regs[regn]; 10174 10175 if (reg->type != PTR_TO_PACKET) 10176 /* PTR_TO_PACKET_META is not supported yet */ 10177 return; 10178 10179 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 10180 * How far beyond pkt_end it goes is unknown. 10181 * if (!range_open) it's the case of pkt >= pkt_end 10182 * if (range_open) it's the case of pkt > pkt_end 10183 * hence this pointer is at least 1 byte bigger than pkt_end 10184 */ 10185 if (range_open) 10186 reg->range = BEYOND_PKT_END; 10187 else 10188 reg->range = AT_PKT_END; 10189 } 10190 10191 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id) 10192 { 10193 int i; 10194 10195 for (i = 0; i < state->acquired_refs; i++) { 10196 if (state->refs[i].type != REF_TYPE_PTR) 10197 continue; 10198 if (state->refs[i].id == ref_obj_id) { 10199 release_reference_state(state, i); 10200 return 0; 10201 } 10202 } 10203 return -EINVAL; 10204 } 10205 10206 /* The pointer with the specified id has released its reference to kernel 10207 * resources. Identify all copies of the same pointer and clear the reference. 10208 * 10209 * This is the release function corresponding to acquire_reference(). Idempotent. 10210 */ 10211 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id) 10212 { 10213 struct bpf_verifier_state *vstate = env->cur_state; 10214 struct bpf_func_state *state; 10215 struct bpf_reg_state *reg; 10216 int err; 10217 10218 err = release_reference_nomark(vstate, ref_obj_id); 10219 if (err) 10220 return err; 10221 10222 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 10223 if (reg->ref_obj_id == ref_obj_id) 10224 mark_reg_invalid(env, reg); 10225 })); 10226 10227 return 0; 10228 } 10229 10230 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 10231 { 10232 struct bpf_func_state *unused; 10233 struct bpf_reg_state *reg; 10234 10235 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10236 if (type_is_non_owning_ref(reg->type)) 10237 mark_reg_invalid(env, reg); 10238 })); 10239 } 10240 10241 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 10242 struct bpf_reg_state *regs) 10243 { 10244 int i; 10245 10246 /* after the call registers r0 - r5 were scratched */ 10247 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10248 mark_reg_not_init(env, regs, caller_saved[i]); 10249 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 10250 } 10251 } 10252 10253 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 10254 struct bpf_func_state *caller, 10255 struct bpf_func_state *callee, 10256 int insn_idx); 10257 10258 static int set_callee_state(struct bpf_verifier_env *env, 10259 struct bpf_func_state *caller, 10260 struct bpf_func_state *callee, int insn_idx); 10261 10262 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 10263 set_callee_state_fn set_callee_state_cb, 10264 struct bpf_verifier_state *state) 10265 { 10266 struct bpf_func_state *caller, *callee; 10267 int err; 10268 10269 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 10270 verbose(env, "the call stack of %d frames is too deep\n", 10271 state->curframe + 2); 10272 return -E2BIG; 10273 } 10274 10275 if (state->frame[state->curframe + 1]) { 10276 verifier_bug(env, "Frame %d already allocated", state->curframe + 1); 10277 return -EFAULT; 10278 } 10279 10280 caller = state->frame[state->curframe]; 10281 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 10282 if (!callee) 10283 return -ENOMEM; 10284 state->frame[state->curframe + 1] = callee; 10285 10286 /* callee cannot access r0, r6 - r9 for reading and has to write 10287 * into its own stack before reading from it. 10288 * callee can read/write into caller's stack 10289 */ 10290 init_func_state(env, callee, 10291 /* remember the callsite, it will be used by bpf_exit */ 10292 callsite, 10293 state->curframe + 1 /* frameno within this callchain */, 10294 subprog /* subprog number within this prog */); 10295 err = set_callee_state_cb(env, caller, callee, callsite); 10296 if (err) 10297 goto err_out; 10298 10299 /* only increment it after check_reg_arg() finished */ 10300 state->curframe++; 10301 10302 return 0; 10303 10304 err_out: 10305 free_func_state(callee); 10306 state->frame[state->curframe + 1] = NULL; 10307 return err; 10308 } 10309 10310 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 10311 const struct btf *btf, 10312 struct bpf_reg_state *regs) 10313 { 10314 struct bpf_subprog_info *sub = subprog_info(env, subprog); 10315 struct bpf_verifier_log *log = &env->log; 10316 u32 i; 10317 int ret; 10318 10319 ret = btf_prepare_func_args(env, subprog); 10320 if (ret) 10321 return ret; 10322 10323 /* check that BTF function arguments match actual types that the 10324 * verifier sees. 10325 */ 10326 for (i = 0; i < sub->arg_cnt; i++) { 10327 u32 regno = i + 1; 10328 struct bpf_reg_state *reg = ®s[regno]; 10329 struct bpf_subprog_arg_info *arg = &sub->args[i]; 10330 10331 if (arg->arg_type == ARG_ANYTHING) { 10332 if (reg->type != SCALAR_VALUE) { 10333 bpf_log(log, "R%d is not a scalar\n", regno); 10334 return -EINVAL; 10335 } 10336 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 10337 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10338 if (ret < 0) 10339 return ret; 10340 /* If function expects ctx type in BTF check that caller 10341 * is passing PTR_TO_CTX. 10342 */ 10343 if (reg->type != PTR_TO_CTX) { 10344 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 10345 return -EINVAL; 10346 } 10347 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 10348 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10349 if (ret < 0) 10350 return ret; 10351 if (check_mem_reg(env, reg, regno, arg->mem_size)) 10352 return -EINVAL; 10353 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 10354 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 10355 return -EINVAL; 10356 } 10357 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 10358 /* 10359 * Can pass any value and the kernel won't crash, but 10360 * only PTR_TO_ARENA or SCALAR make sense. Everything 10361 * else is a bug in the bpf program. Point it out to 10362 * the user at the verification time instead of 10363 * run-time debug nightmare. 10364 */ 10365 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { 10366 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); 10367 return -EINVAL; 10368 } 10369 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 10370 ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR); 10371 if (ret) 10372 return ret; 10373 10374 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 10375 if (ret) 10376 return ret; 10377 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 10378 struct bpf_call_arg_meta meta; 10379 int err; 10380 10381 if (register_is_null(reg) && type_may_be_null(arg->arg_type)) 10382 continue; 10383 10384 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ 10385 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); 10386 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); 10387 if (err) 10388 return err; 10389 } else { 10390 verifier_bug(env, "unrecognized arg#%d type %d", i, arg->arg_type); 10391 return -EFAULT; 10392 } 10393 } 10394 10395 return 0; 10396 } 10397 10398 /* Compare BTF of a function call with given bpf_reg_state. 10399 * Returns: 10400 * EFAULT - there is a verifier bug. Abort verification. 10401 * EINVAL - there is a type mismatch or BTF is not available. 10402 * 0 - BTF matches with what bpf_reg_state expects. 10403 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 10404 */ 10405 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 10406 struct bpf_reg_state *regs) 10407 { 10408 struct bpf_prog *prog = env->prog; 10409 struct btf *btf = prog->aux->btf; 10410 u32 btf_id; 10411 int err; 10412 10413 if (!prog->aux->func_info) 10414 return -EINVAL; 10415 10416 btf_id = prog->aux->func_info[subprog].type_id; 10417 if (!btf_id) 10418 return -EFAULT; 10419 10420 if (prog->aux->func_info_aux[subprog].unreliable) 10421 return -EINVAL; 10422 10423 err = btf_check_func_arg_match(env, subprog, btf, regs); 10424 /* Compiler optimizations can remove arguments from static functions 10425 * or mismatched type can be passed into a global function. 10426 * In such cases mark the function as unreliable from BTF point of view. 10427 */ 10428 if (err) 10429 prog->aux->func_info_aux[subprog].unreliable = true; 10430 return err; 10431 } 10432 10433 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10434 int insn_idx, int subprog, 10435 set_callee_state_fn set_callee_state_cb) 10436 { 10437 struct bpf_verifier_state *state = env->cur_state, *callback_state; 10438 struct bpf_func_state *caller, *callee; 10439 int err; 10440 10441 caller = state->frame[state->curframe]; 10442 err = btf_check_subprog_call(env, subprog, caller->regs); 10443 if (err == -EFAULT) 10444 return err; 10445 10446 /* set_callee_state is used for direct subprog calls, but we are 10447 * interested in validating only BPF helpers that can call subprogs as 10448 * callbacks 10449 */ 10450 env->subprog_info[subprog].is_cb = true; 10451 if (bpf_pseudo_kfunc_call(insn) && 10452 !is_callback_calling_kfunc(insn->imm)) { 10453 verifier_bug(env, "kfunc %s#%d not marked as callback-calling", 10454 func_id_name(insn->imm), insn->imm); 10455 return -EFAULT; 10456 } else if (!bpf_pseudo_kfunc_call(insn) && 10457 !is_callback_calling_function(insn->imm)) { /* helper */ 10458 verifier_bug(env, "helper %s#%d not marked as callback-calling", 10459 func_id_name(insn->imm), insn->imm); 10460 return -EFAULT; 10461 } 10462 10463 if (is_async_callback_calling_insn(insn)) { 10464 struct bpf_verifier_state *async_cb; 10465 10466 /* there is no real recursion here. timer and workqueue callbacks are async */ 10467 env->subprog_info[subprog].is_async_cb = true; 10468 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 10469 insn_idx, subprog, 10470 is_bpf_wq_set_callback_impl_kfunc(insn->imm)); 10471 if (!async_cb) 10472 return -EFAULT; 10473 callee = async_cb->frame[0]; 10474 callee->async_entry_cnt = caller->async_entry_cnt + 1; 10475 10476 /* Convert bpf_timer_set_callback() args into timer callback args */ 10477 err = set_callee_state_cb(env, caller, callee, insn_idx); 10478 if (err) 10479 return err; 10480 10481 return 0; 10482 } 10483 10484 /* for callback functions enqueue entry to callback and 10485 * proceed with next instruction within current frame. 10486 */ 10487 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 10488 if (!callback_state) 10489 return -ENOMEM; 10490 10491 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 10492 callback_state); 10493 if (err) 10494 return err; 10495 10496 callback_state->callback_unroll_depth++; 10497 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 10498 caller->callback_depth = 0; 10499 return 0; 10500 } 10501 10502 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10503 int *insn_idx) 10504 { 10505 struct bpf_verifier_state *state = env->cur_state; 10506 struct bpf_func_state *caller; 10507 int err, subprog, target_insn; 10508 10509 target_insn = *insn_idx + insn->imm + 1; 10510 subprog = find_subprog(env, target_insn); 10511 if (verifier_bug_if(subprog < 0, env, "target of func call at insn %d is not a program", 10512 target_insn)) 10513 return -EFAULT; 10514 10515 caller = state->frame[state->curframe]; 10516 err = btf_check_subprog_call(env, subprog, caller->regs); 10517 if (err == -EFAULT) 10518 return err; 10519 if (subprog_is_global(env, subprog)) { 10520 const char *sub_name = subprog_name(env, subprog); 10521 10522 if (env->cur_state->active_locks) { 10523 verbose(env, "global function calls are not allowed while holding a lock,\n" 10524 "use static function instead\n"); 10525 return -EINVAL; 10526 } 10527 10528 if (env->subprog_info[subprog].might_sleep && 10529 (env->cur_state->active_rcu_lock || env->cur_state->active_preempt_locks || 10530 env->cur_state->active_irq_id || !in_sleepable(env))) { 10531 verbose(env, "global functions that may sleep are not allowed in non-sleepable context,\n" 10532 "i.e., in a RCU/IRQ/preempt-disabled section, or in\n" 10533 "a non-sleepable BPF program context\n"); 10534 return -EINVAL; 10535 } 10536 10537 if (err) { 10538 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 10539 subprog, sub_name); 10540 return err; 10541 } 10542 10543 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 10544 subprog, sub_name); 10545 if (env->subprog_info[subprog].changes_pkt_data) 10546 clear_all_pkt_pointers(env); 10547 /* mark global subprog for verifying after main prog */ 10548 subprog_aux(env, subprog)->called = true; 10549 clear_caller_saved_regs(env, caller->regs); 10550 10551 /* All global functions return a 64-bit SCALAR_VALUE */ 10552 mark_reg_unknown(env, caller->regs, BPF_REG_0); 10553 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10554 10555 /* continue with next insn after call */ 10556 return 0; 10557 } 10558 10559 /* for regular function entry setup new frame and continue 10560 * from that frame. 10561 */ 10562 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 10563 if (err) 10564 return err; 10565 10566 clear_caller_saved_regs(env, caller->regs); 10567 10568 /* and go analyze first insn of the callee */ 10569 *insn_idx = env->subprog_info[subprog].start - 1; 10570 10571 if (env->log.level & BPF_LOG_LEVEL) { 10572 verbose(env, "caller:\n"); 10573 print_verifier_state(env, state, caller->frameno, true); 10574 verbose(env, "callee:\n"); 10575 print_verifier_state(env, state, state->curframe, true); 10576 } 10577 10578 return 0; 10579 } 10580 10581 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 10582 struct bpf_func_state *caller, 10583 struct bpf_func_state *callee) 10584 { 10585 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 10586 * void *callback_ctx, u64 flags); 10587 * callback_fn(struct bpf_map *map, void *key, void *value, 10588 * void *callback_ctx); 10589 */ 10590 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10591 10592 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10593 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10594 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10595 10596 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10597 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10598 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10599 10600 /* pointer to stack or null */ 10601 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 10602 10603 /* unused */ 10604 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10605 return 0; 10606 } 10607 10608 static int set_callee_state(struct bpf_verifier_env *env, 10609 struct bpf_func_state *caller, 10610 struct bpf_func_state *callee, int insn_idx) 10611 { 10612 int i; 10613 10614 /* copy r1 - r5 args that callee can access. The copy includes parent 10615 * pointers, which connects us up to the liveness chain 10616 */ 10617 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 10618 callee->regs[i] = caller->regs[i]; 10619 return 0; 10620 } 10621 10622 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 10623 struct bpf_func_state *caller, 10624 struct bpf_func_state *callee, 10625 int insn_idx) 10626 { 10627 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 10628 struct bpf_map *map; 10629 int err; 10630 10631 /* valid map_ptr and poison value does not matter */ 10632 map = insn_aux->map_ptr_state.map_ptr; 10633 if (!map->ops->map_set_for_each_callback_args || 10634 !map->ops->map_for_each_callback) { 10635 verbose(env, "callback function not allowed for map\n"); 10636 return -ENOTSUPP; 10637 } 10638 10639 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 10640 if (err) 10641 return err; 10642 10643 callee->in_callback_fn = true; 10644 callee->callback_ret_range = retval_range(0, 1); 10645 return 0; 10646 } 10647 10648 static int set_loop_callback_state(struct bpf_verifier_env *env, 10649 struct bpf_func_state *caller, 10650 struct bpf_func_state *callee, 10651 int insn_idx) 10652 { 10653 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 10654 * u64 flags); 10655 * callback_fn(u64 index, void *callback_ctx); 10656 */ 10657 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 10658 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10659 10660 /* unused */ 10661 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10662 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10663 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10664 10665 callee->in_callback_fn = true; 10666 callee->callback_ret_range = retval_range(0, 1); 10667 return 0; 10668 } 10669 10670 static int set_timer_callback_state(struct bpf_verifier_env *env, 10671 struct bpf_func_state *caller, 10672 struct bpf_func_state *callee, 10673 int insn_idx) 10674 { 10675 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 10676 10677 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 10678 * callback_fn(struct bpf_map *map, void *key, void *value); 10679 */ 10680 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 10681 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 10682 callee->regs[BPF_REG_1].map_ptr = map_ptr; 10683 10684 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10685 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10686 callee->regs[BPF_REG_2].map_ptr = map_ptr; 10687 10688 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10689 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10690 callee->regs[BPF_REG_3].map_ptr = map_ptr; 10691 10692 /* unused */ 10693 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10694 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10695 callee->in_async_callback_fn = true; 10696 callee->callback_ret_range = retval_range(0, 1); 10697 return 0; 10698 } 10699 10700 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 10701 struct bpf_func_state *caller, 10702 struct bpf_func_state *callee, 10703 int insn_idx) 10704 { 10705 /* bpf_find_vma(struct task_struct *task, u64 addr, 10706 * void *callback_fn, void *callback_ctx, u64 flags) 10707 * (callback_fn)(struct task_struct *task, 10708 * struct vm_area_struct *vma, void *callback_ctx); 10709 */ 10710 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10711 10712 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 10713 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10714 callee->regs[BPF_REG_2].btf = btf_vmlinux; 10715 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 10716 10717 /* pointer to stack or null */ 10718 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 10719 10720 /* unused */ 10721 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10722 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10723 callee->in_callback_fn = true; 10724 callee->callback_ret_range = retval_range(0, 1); 10725 return 0; 10726 } 10727 10728 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 10729 struct bpf_func_state *caller, 10730 struct bpf_func_state *callee, 10731 int insn_idx) 10732 { 10733 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 10734 * callback_ctx, u64 flags); 10735 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 10736 */ 10737 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 10738 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 10739 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10740 10741 /* unused */ 10742 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10743 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10744 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10745 10746 callee->in_callback_fn = true; 10747 callee->callback_ret_range = retval_range(0, 1); 10748 return 0; 10749 } 10750 10751 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 10752 struct bpf_func_state *caller, 10753 struct bpf_func_state *callee, 10754 int insn_idx) 10755 { 10756 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 10757 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 10758 * 10759 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 10760 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 10761 * by this point, so look at 'root' 10762 */ 10763 struct btf_field *field; 10764 10765 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 10766 BPF_RB_ROOT); 10767 if (!field || !field->graph_root.value_btf_id) 10768 return -EFAULT; 10769 10770 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 10771 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 10772 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 10773 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 10774 10775 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10776 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10777 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10778 callee->in_callback_fn = true; 10779 callee->callback_ret_range = retval_range(0, 1); 10780 return 0; 10781 } 10782 10783 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 10784 10785 /* Are we currently verifying the callback for a rbtree helper that must 10786 * be called with lock held? If so, no need to complain about unreleased 10787 * lock 10788 */ 10789 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 10790 { 10791 struct bpf_verifier_state *state = env->cur_state; 10792 struct bpf_insn *insn = env->prog->insnsi; 10793 struct bpf_func_state *callee; 10794 int kfunc_btf_id; 10795 10796 if (!state->curframe) 10797 return false; 10798 10799 callee = state->frame[state->curframe]; 10800 10801 if (!callee->in_callback_fn) 10802 return false; 10803 10804 kfunc_btf_id = insn[callee->callsite].imm; 10805 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 10806 } 10807 10808 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg, 10809 bool return_32bit) 10810 { 10811 if (return_32bit) 10812 return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval; 10813 else 10814 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 10815 } 10816 10817 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 10818 { 10819 struct bpf_verifier_state *state = env->cur_state, *prev_st; 10820 struct bpf_func_state *caller, *callee; 10821 struct bpf_reg_state *r0; 10822 bool in_callback_fn; 10823 int err; 10824 10825 callee = state->frame[state->curframe]; 10826 r0 = &callee->regs[BPF_REG_0]; 10827 if (r0->type == PTR_TO_STACK) { 10828 /* technically it's ok to return caller's stack pointer 10829 * (or caller's caller's pointer) back to the caller, 10830 * since these pointers are valid. Only current stack 10831 * pointer will be invalid as soon as function exits, 10832 * but let's be conservative 10833 */ 10834 verbose(env, "cannot return stack pointer to the caller\n"); 10835 return -EINVAL; 10836 } 10837 10838 caller = state->frame[state->curframe - 1]; 10839 if (callee->in_callback_fn) { 10840 if (r0->type != SCALAR_VALUE) { 10841 verbose(env, "R0 not a scalar value\n"); 10842 return -EACCES; 10843 } 10844 10845 /* we are going to rely on register's precise value */ 10846 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 10847 err = err ?: mark_chain_precision(env, BPF_REG_0); 10848 if (err) 10849 return err; 10850 10851 /* enforce R0 return value range, and bpf_callback_t returns 64bit */ 10852 if (!retval_range_within(callee->callback_ret_range, r0, false)) { 10853 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 10854 "At callback return", "R0"); 10855 return -EINVAL; 10856 } 10857 if (!calls_callback(env, callee->callsite)) { 10858 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 10859 *insn_idx, callee->callsite); 10860 return -EFAULT; 10861 } 10862 } else { 10863 /* return to the caller whatever r0 had in the callee */ 10864 caller->regs[BPF_REG_0] = *r0; 10865 } 10866 10867 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 10868 * there function call logic would reschedule callback visit. If iteration 10869 * converges is_state_visited() would prune that visit eventually. 10870 */ 10871 in_callback_fn = callee->in_callback_fn; 10872 if (in_callback_fn) 10873 *insn_idx = callee->callsite; 10874 else 10875 *insn_idx = callee->callsite + 1; 10876 10877 if (env->log.level & BPF_LOG_LEVEL) { 10878 verbose(env, "returning from callee:\n"); 10879 print_verifier_state(env, state, callee->frameno, true); 10880 verbose(env, "to caller at %d:\n", *insn_idx); 10881 print_verifier_state(env, state, caller->frameno, true); 10882 } 10883 /* clear everything in the callee. In case of exceptional exits using 10884 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 10885 free_func_state(callee); 10886 state->frame[state->curframe--] = NULL; 10887 10888 /* for callbacks widen imprecise scalars to make programs like below verify: 10889 * 10890 * struct ctx { int i; } 10891 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 10892 * ... 10893 * struct ctx = { .i = 0; } 10894 * bpf_loop(100, cb, &ctx, 0); 10895 * 10896 * This is similar to what is done in process_iter_next_call() for open 10897 * coded iterators. 10898 */ 10899 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 10900 if (prev_st) { 10901 err = widen_imprecise_scalars(env, prev_st, state); 10902 if (err) 10903 return err; 10904 } 10905 return 0; 10906 } 10907 10908 static int do_refine_retval_range(struct bpf_verifier_env *env, 10909 struct bpf_reg_state *regs, int ret_type, 10910 int func_id, 10911 struct bpf_call_arg_meta *meta) 10912 { 10913 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 10914 10915 if (ret_type != RET_INTEGER) 10916 return 0; 10917 10918 switch (func_id) { 10919 case BPF_FUNC_get_stack: 10920 case BPF_FUNC_get_task_stack: 10921 case BPF_FUNC_probe_read_str: 10922 case BPF_FUNC_probe_read_kernel_str: 10923 case BPF_FUNC_probe_read_user_str: 10924 ret_reg->smax_value = meta->msize_max_value; 10925 ret_reg->s32_max_value = meta->msize_max_value; 10926 ret_reg->smin_value = -MAX_ERRNO; 10927 ret_reg->s32_min_value = -MAX_ERRNO; 10928 reg_bounds_sync(ret_reg); 10929 break; 10930 case BPF_FUNC_get_smp_processor_id: 10931 ret_reg->umax_value = nr_cpu_ids - 1; 10932 ret_reg->u32_max_value = nr_cpu_ids - 1; 10933 ret_reg->smax_value = nr_cpu_ids - 1; 10934 ret_reg->s32_max_value = nr_cpu_ids - 1; 10935 ret_reg->umin_value = 0; 10936 ret_reg->u32_min_value = 0; 10937 ret_reg->smin_value = 0; 10938 ret_reg->s32_min_value = 0; 10939 reg_bounds_sync(ret_reg); 10940 break; 10941 } 10942 10943 return reg_bounds_sanity_check(env, ret_reg, "retval"); 10944 } 10945 10946 static int 10947 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10948 int func_id, int insn_idx) 10949 { 10950 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10951 struct bpf_map *map = meta->map_ptr; 10952 10953 if (func_id != BPF_FUNC_tail_call && 10954 func_id != BPF_FUNC_map_lookup_elem && 10955 func_id != BPF_FUNC_map_update_elem && 10956 func_id != BPF_FUNC_map_delete_elem && 10957 func_id != BPF_FUNC_map_push_elem && 10958 func_id != BPF_FUNC_map_pop_elem && 10959 func_id != BPF_FUNC_map_peek_elem && 10960 func_id != BPF_FUNC_for_each_map_elem && 10961 func_id != BPF_FUNC_redirect_map && 10962 func_id != BPF_FUNC_map_lookup_percpu_elem) 10963 return 0; 10964 10965 if (map == NULL) { 10966 verbose(env, "kernel subsystem misconfigured verifier\n"); 10967 return -EINVAL; 10968 } 10969 10970 /* In case of read-only, some additional restrictions 10971 * need to be applied in order to prevent altering the 10972 * state of the map from program side. 10973 */ 10974 if ((map->map_flags & BPF_F_RDONLY_PROG) && 10975 (func_id == BPF_FUNC_map_delete_elem || 10976 func_id == BPF_FUNC_map_update_elem || 10977 func_id == BPF_FUNC_map_push_elem || 10978 func_id == BPF_FUNC_map_pop_elem)) { 10979 verbose(env, "write into map forbidden\n"); 10980 return -EACCES; 10981 } 10982 10983 if (!aux->map_ptr_state.map_ptr) 10984 bpf_map_ptr_store(aux, meta->map_ptr, 10985 !meta->map_ptr->bypass_spec_v1, false); 10986 else if (aux->map_ptr_state.map_ptr != meta->map_ptr) 10987 bpf_map_ptr_store(aux, meta->map_ptr, 10988 !meta->map_ptr->bypass_spec_v1, true); 10989 return 0; 10990 } 10991 10992 static int 10993 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10994 int func_id, int insn_idx) 10995 { 10996 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10997 struct bpf_reg_state *regs = cur_regs(env), *reg; 10998 struct bpf_map *map = meta->map_ptr; 10999 u64 val, max; 11000 int err; 11001 11002 if (func_id != BPF_FUNC_tail_call) 11003 return 0; 11004 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 11005 verbose(env, "kernel subsystem misconfigured verifier\n"); 11006 return -EINVAL; 11007 } 11008 11009 reg = ®s[BPF_REG_3]; 11010 val = reg->var_off.value; 11011 max = map->max_entries; 11012 11013 if (!(is_reg_const(reg, false) && val < max)) { 11014 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 11015 return 0; 11016 } 11017 11018 err = mark_chain_precision(env, BPF_REG_3); 11019 if (err) 11020 return err; 11021 if (bpf_map_key_unseen(aux)) 11022 bpf_map_key_store(aux, val); 11023 else if (!bpf_map_key_poisoned(aux) && 11024 bpf_map_key_immediate(aux) != val) 11025 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 11026 return 0; 11027 } 11028 11029 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 11030 { 11031 struct bpf_verifier_state *state = env->cur_state; 11032 enum bpf_prog_type type = resolve_prog_type(env->prog); 11033 struct bpf_reg_state *reg = reg_state(env, BPF_REG_0); 11034 bool refs_lingering = false; 11035 int i; 11036 11037 if (!exception_exit && cur_func(env)->frameno) 11038 return 0; 11039 11040 for (i = 0; i < state->acquired_refs; i++) { 11041 if (state->refs[i].type != REF_TYPE_PTR) 11042 continue; 11043 /* Allow struct_ops programs to return a referenced kptr back to 11044 * kernel. Type checks are performed later in check_return_code. 11045 */ 11046 if (type == BPF_PROG_TYPE_STRUCT_OPS && !exception_exit && 11047 reg->ref_obj_id == state->refs[i].id) 11048 continue; 11049 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 11050 state->refs[i].id, state->refs[i].insn_idx); 11051 refs_lingering = true; 11052 } 11053 return refs_lingering ? -EINVAL : 0; 11054 } 11055 11056 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix) 11057 { 11058 int err; 11059 11060 if (check_lock && env->cur_state->active_locks) { 11061 verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix); 11062 return -EINVAL; 11063 } 11064 11065 err = check_reference_leak(env, exception_exit); 11066 if (err) { 11067 verbose(env, "%s would lead to reference leak\n", prefix); 11068 return err; 11069 } 11070 11071 if (check_lock && env->cur_state->active_irq_id) { 11072 verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix); 11073 return -EINVAL; 11074 } 11075 11076 if (check_lock && env->cur_state->active_rcu_lock) { 11077 verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix); 11078 return -EINVAL; 11079 } 11080 11081 if (check_lock && env->cur_state->active_preempt_locks) { 11082 verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix); 11083 return -EINVAL; 11084 } 11085 11086 return 0; 11087 } 11088 11089 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 11090 struct bpf_reg_state *regs) 11091 { 11092 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 11093 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 11094 struct bpf_map *fmt_map = fmt_reg->map_ptr; 11095 struct bpf_bprintf_data data = {}; 11096 int err, fmt_map_off, num_args; 11097 u64 fmt_addr; 11098 char *fmt; 11099 11100 /* data must be an array of u64 */ 11101 if (data_len_reg->var_off.value % 8) 11102 return -EINVAL; 11103 num_args = data_len_reg->var_off.value / 8; 11104 11105 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 11106 * and map_direct_value_addr is set. 11107 */ 11108 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 11109 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 11110 fmt_map_off); 11111 if (err) { 11112 verbose(env, "failed to retrieve map value address\n"); 11113 return -EFAULT; 11114 } 11115 fmt = (char *)(long)fmt_addr + fmt_map_off; 11116 11117 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 11118 * can focus on validating the format specifiers. 11119 */ 11120 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 11121 if (err < 0) 11122 verbose(env, "Invalid format string\n"); 11123 11124 return err; 11125 } 11126 11127 static int check_get_func_ip(struct bpf_verifier_env *env) 11128 { 11129 enum bpf_prog_type type = resolve_prog_type(env->prog); 11130 int func_id = BPF_FUNC_get_func_ip; 11131 11132 if (type == BPF_PROG_TYPE_TRACING) { 11133 if (!bpf_prog_has_trampoline(env->prog)) { 11134 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 11135 func_id_name(func_id), func_id); 11136 return -ENOTSUPP; 11137 } 11138 return 0; 11139 } else if (type == BPF_PROG_TYPE_KPROBE) { 11140 return 0; 11141 } 11142 11143 verbose(env, "func %s#%d not supported for program type %d\n", 11144 func_id_name(func_id), func_id, type); 11145 return -ENOTSUPP; 11146 } 11147 11148 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 11149 { 11150 return &env->insn_aux_data[env->insn_idx]; 11151 } 11152 11153 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 11154 { 11155 struct bpf_reg_state *regs = cur_regs(env); 11156 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 11157 bool reg_is_null = register_is_null(reg); 11158 11159 if (reg_is_null) 11160 mark_chain_precision(env, BPF_REG_4); 11161 11162 return reg_is_null; 11163 } 11164 11165 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 11166 { 11167 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 11168 11169 if (!state->initialized) { 11170 state->initialized = 1; 11171 state->fit_for_inline = loop_flag_is_zero(env); 11172 state->callback_subprogno = subprogno; 11173 return; 11174 } 11175 11176 if (!state->fit_for_inline) 11177 return; 11178 11179 state->fit_for_inline = (loop_flag_is_zero(env) && 11180 state->callback_subprogno == subprogno); 11181 } 11182 11183 /* Returns whether or not the given map type can potentially elide 11184 * lookup return value nullness check. This is possible if the key 11185 * is statically known. 11186 */ 11187 static bool can_elide_value_nullness(enum bpf_map_type type) 11188 { 11189 switch (type) { 11190 case BPF_MAP_TYPE_ARRAY: 11191 case BPF_MAP_TYPE_PERCPU_ARRAY: 11192 return true; 11193 default: 11194 return false; 11195 } 11196 } 11197 11198 static int get_helper_proto(struct bpf_verifier_env *env, int func_id, 11199 const struct bpf_func_proto **ptr) 11200 { 11201 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) 11202 return -ERANGE; 11203 11204 if (!env->ops->get_func_proto) 11205 return -EINVAL; 11206 11207 *ptr = env->ops->get_func_proto(func_id, env->prog); 11208 return *ptr ? 0 : -EINVAL; 11209 } 11210 11211 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11212 int *insn_idx_p) 11213 { 11214 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 11215 bool returns_cpu_specific_alloc_ptr = false; 11216 const struct bpf_func_proto *fn = NULL; 11217 enum bpf_return_type ret_type; 11218 enum bpf_type_flag ret_flag; 11219 struct bpf_reg_state *regs; 11220 struct bpf_call_arg_meta meta; 11221 int insn_idx = *insn_idx_p; 11222 bool changes_data; 11223 int i, err, func_id; 11224 11225 /* find function prototype */ 11226 func_id = insn->imm; 11227 err = get_helper_proto(env, insn->imm, &fn); 11228 if (err == -ERANGE) { 11229 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id); 11230 return -EINVAL; 11231 } 11232 11233 if (err) { 11234 verbose(env, "program of this type cannot use helper %s#%d\n", 11235 func_id_name(func_id), func_id); 11236 return err; 11237 } 11238 11239 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 11240 if (!env->prog->gpl_compatible && fn->gpl_only) { 11241 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 11242 return -EINVAL; 11243 } 11244 11245 if (fn->allowed && !fn->allowed(env->prog)) { 11246 verbose(env, "helper call is not allowed in probe\n"); 11247 return -EINVAL; 11248 } 11249 11250 if (!in_sleepable(env) && fn->might_sleep) { 11251 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 11252 return -EINVAL; 11253 } 11254 11255 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 11256 changes_data = bpf_helper_changes_pkt_data(func_id); 11257 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 11258 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 11259 func_id_name(func_id), func_id); 11260 return -EINVAL; 11261 } 11262 11263 memset(&meta, 0, sizeof(meta)); 11264 meta.pkt_access = fn->pkt_access; 11265 11266 err = check_func_proto(fn, func_id); 11267 if (err) { 11268 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 11269 func_id_name(func_id), func_id); 11270 return err; 11271 } 11272 11273 if (env->cur_state->active_rcu_lock) { 11274 if (fn->might_sleep) { 11275 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 11276 func_id_name(func_id), func_id); 11277 return -EINVAL; 11278 } 11279 11280 if (in_sleepable(env) && is_storage_get_function(func_id)) 11281 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11282 } 11283 11284 if (env->cur_state->active_preempt_locks) { 11285 if (fn->might_sleep) { 11286 verbose(env, "sleepable helper %s#%d in non-preemptible region\n", 11287 func_id_name(func_id), func_id); 11288 return -EINVAL; 11289 } 11290 11291 if (in_sleepable(env) && is_storage_get_function(func_id)) 11292 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11293 } 11294 11295 if (env->cur_state->active_irq_id) { 11296 if (fn->might_sleep) { 11297 verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n", 11298 func_id_name(func_id), func_id); 11299 return -EINVAL; 11300 } 11301 11302 if (in_sleepable(env) && is_storage_get_function(func_id)) 11303 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11304 } 11305 11306 meta.func_id = func_id; 11307 /* check args */ 11308 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 11309 err = check_func_arg(env, i, &meta, fn, insn_idx); 11310 if (err) 11311 return err; 11312 } 11313 11314 err = record_func_map(env, &meta, func_id, insn_idx); 11315 if (err) 11316 return err; 11317 11318 err = record_func_key(env, &meta, func_id, insn_idx); 11319 if (err) 11320 return err; 11321 11322 /* Mark slots with STACK_MISC in case of raw mode, stack offset 11323 * is inferred from register state. 11324 */ 11325 for (i = 0; i < meta.access_size; i++) { 11326 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 11327 BPF_WRITE, -1, false, false); 11328 if (err) 11329 return err; 11330 } 11331 11332 regs = cur_regs(env); 11333 11334 if (meta.release_regno) { 11335 err = -EINVAL; 11336 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 11337 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 11338 * is safe to do directly. 11339 */ 11340 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 11341 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 11342 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 11343 return -EFAULT; 11344 } 11345 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 11346 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 11347 u32 ref_obj_id = meta.ref_obj_id; 11348 bool in_rcu = in_rcu_cs(env); 11349 struct bpf_func_state *state; 11350 struct bpf_reg_state *reg; 11351 11352 err = release_reference_nomark(env->cur_state, ref_obj_id); 11353 if (!err) { 11354 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11355 if (reg->ref_obj_id == ref_obj_id) { 11356 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 11357 reg->ref_obj_id = 0; 11358 reg->type &= ~MEM_ALLOC; 11359 reg->type |= MEM_RCU; 11360 } else { 11361 mark_reg_invalid(env, reg); 11362 } 11363 } 11364 })); 11365 } 11366 } else if (meta.ref_obj_id) { 11367 err = release_reference(env, meta.ref_obj_id); 11368 } else if (register_is_null(®s[meta.release_regno])) { 11369 /* meta.ref_obj_id can only be 0 if register that is meant to be 11370 * released is NULL, which must be > R0. 11371 */ 11372 err = 0; 11373 } 11374 if (err) { 11375 verbose(env, "func %s#%d reference has not been acquired before\n", 11376 func_id_name(func_id), func_id); 11377 return err; 11378 } 11379 } 11380 11381 switch (func_id) { 11382 case BPF_FUNC_tail_call: 11383 err = check_resource_leak(env, false, true, "tail_call"); 11384 if (err) 11385 return err; 11386 break; 11387 case BPF_FUNC_get_local_storage: 11388 /* check that flags argument in get_local_storage(map, flags) is 0, 11389 * this is required because get_local_storage() can't return an error. 11390 */ 11391 if (!register_is_null(®s[BPF_REG_2])) { 11392 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 11393 return -EINVAL; 11394 } 11395 break; 11396 case BPF_FUNC_for_each_map_elem: 11397 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11398 set_map_elem_callback_state); 11399 break; 11400 case BPF_FUNC_timer_set_callback: 11401 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11402 set_timer_callback_state); 11403 break; 11404 case BPF_FUNC_find_vma: 11405 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11406 set_find_vma_callback_state); 11407 break; 11408 case BPF_FUNC_snprintf: 11409 err = check_bpf_snprintf_call(env, regs); 11410 break; 11411 case BPF_FUNC_loop: 11412 update_loop_inline_state(env, meta.subprogno); 11413 /* Verifier relies on R1 value to determine if bpf_loop() iteration 11414 * is finished, thus mark it precise. 11415 */ 11416 err = mark_chain_precision(env, BPF_REG_1); 11417 if (err) 11418 return err; 11419 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 11420 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11421 set_loop_callback_state); 11422 } else { 11423 cur_func(env)->callback_depth = 0; 11424 if (env->log.level & BPF_LOG_LEVEL2) 11425 verbose(env, "frame%d bpf_loop iteration limit reached\n", 11426 env->cur_state->curframe); 11427 } 11428 break; 11429 case BPF_FUNC_dynptr_from_mem: 11430 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 11431 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 11432 reg_type_str(env, regs[BPF_REG_1].type)); 11433 return -EACCES; 11434 } 11435 break; 11436 case BPF_FUNC_set_retval: 11437 if (prog_type == BPF_PROG_TYPE_LSM && 11438 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 11439 if (!env->prog->aux->attach_func_proto->type) { 11440 /* Make sure programs that attach to void 11441 * hooks don't try to modify return value. 11442 */ 11443 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 11444 return -EINVAL; 11445 } 11446 } 11447 break; 11448 case BPF_FUNC_dynptr_data: 11449 { 11450 struct bpf_reg_state *reg; 11451 int id, ref_obj_id; 11452 11453 reg = get_dynptr_arg_reg(env, fn, regs); 11454 if (!reg) 11455 return -EFAULT; 11456 11457 11458 if (meta.dynptr_id) { 11459 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 11460 return -EFAULT; 11461 } 11462 if (meta.ref_obj_id) { 11463 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 11464 return -EFAULT; 11465 } 11466 11467 id = dynptr_id(env, reg); 11468 if (id < 0) { 11469 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11470 return id; 11471 } 11472 11473 ref_obj_id = dynptr_ref_obj_id(env, reg); 11474 if (ref_obj_id < 0) { 11475 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 11476 return ref_obj_id; 11477 } 11478 11479 meta.dynptr_id = id; 11480 meta.ref_obj_id = ref_obj_id; 11481 11482 break; 11483 } 11484 case BPF_FUNC_dynptr_write: 11485 { 11486 enum bpf_dynptr_type dynptr_type; 11487 struct bpf_reg_state *reg; 11488 11489 reg = get_dynptr_arg_reg(env, fn, regs); 11490 if (!reg) 11491 return -EFAULT; 11492 11493 dynptr_type = dynptr_get_type(env, reg); 11494 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 11495 return -EFAULT; 11496 11497 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 11498 /* this will trigger clear_all_pkt_pointers(), which will 11499 * invalidate all dynptr slices associated with the skb 11500 */ 11501 changes_data = true; 11502 11503 break; 11504 } 11505 case BPF_FUNC_per_cpu_ptr: 11506 case BPF_FUNC_this_cpu_ptr: 11507 { 11508 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 11509 const struct btf_type *type; 11510 11511 if (reg->type & MEM_RCU) { 11512 type = btf_type_by_id(reg->btf, reg->btf_id); 11513 if (!type || !btf_type_is_struct(type)) { 11514 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 11515 return -EFAULT; 11516 } 11517 returns_cpu_specific_alloc_ptr = true; 11518 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 11519 } 11520 break; 11521 } 11522 case BPF_FUNC_user_ringbuf_drain: 11523 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11524 set_user_ringbuf_callback_state); 11525 break; 11526 } 11527 11528 if (err) 11529 return err; 11530 11531 /* reset caller saved regs */ 11532 for (i = 0; i < CALLER_SAVED_REGS; i++) { 11533 mark_reg_not_init(env, regs, caller_saved[i]); 11534 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 11535 } 11536 11537 /* helper call returns 64-bit value. */ 11538 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 11539 11540 /* update return register (already marked as written above) */ 11541 ret_type = fn->ret_type; 11542 ret_flag = type_flag(ret_type); 11543 11544 switch (base_type(ret_type)) { 11545 case RET_INTEGER: 11546 /* sets type to SCALAR_VALUE */ 11547 mark_reg_unknown(env, regs, BPF_REG_0); 11548 break; 11549 case RET_VOID: 11550 regs[BPF_REG_0].type = NOT_INIT; 11551 break; 11552 case RET_PTR_TO_MAP_VALUE: 11553 /* There is no offset yet applied, variable or fixed */ 11554 mark_reg_known_zero(env, regs, BPF_REG_0); 11555 /* remember map_ptr, so that check_map_access() 11556 * can check 'value_size' boundary of memory access 11557 * to map element returned from bpf_map_lookup_elem() 11558 */ 11559 if (meta.map_ptr == NULL) { 11560 verbose(env, 11561 "kernel subsystem misconfigured verifier\n"); 11562 return -EINVAL; 11563 } 11564 11565 if (func_id == BPF_FUNC_map_lookup_elem && 11566 can_elide_value_nullness(meta.map_ptr->map_type) && 11567 meta.const_map_key >= 0 && 11568 meta.const_map_key < meta.map_ptr->max_entries) 11569 ret_flag &= ~PTR_MAYBE_NULL; 11570 11571 regs[BPF_REG_0].map_ptr = meta.map_ptr; 11572 regs[BPF_REG_0].map_uid = meta.map_uid; 11573 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 11574 if (!type_may_be_null(ret_flag) && 11575 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { 11576 regs[BPF_REG_0].id = ++env->id_gen; 11577 } 11578 break; 11579 case RET_PTR_TO_SOCKET: 11580 mark_reg_known_zero(env, regs, BPF_REG_0); 11581 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 11582 break; 11583 case RET_PTR_TO_SOCK_COMMON: 11584 mark_reg_known_zero(env, regs, BPF_REG_0); 11585 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 11586 break; 11587 case RET_PTR_TO_TCP_SOCK: 11588 mark_reg_known_zero(env, regs, BPF_REG_0); 11589 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 11590 break; 11591 case RET_PTR_TO_MEM: 11592 mark_reg_known_zero(env, regs, BPF_REG_0); 11593 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11594 regs[BPF_REG_0].mem_size = meta.mem_size; 11595 break; 11596 case RET_PTR_TO_MEM_OR_BTF_ID: 11597 { 11598 const struct btf_type *t; 11599 11600 mark_reg_known_zero(env, regs, BPF_REG_0); 11601 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 11602 if (!btf_type_is_struct(t)) { 11603 u32 tsize; 11604 const struct btf_type *ret; 11605 const char *tname; 11606 11607 /* resolve the type size of ksym. */ 11608 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 11609 if (IS_ERR(ret)) { 11610 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 11611 verbose(env, "unable to resolve the size of type '%s': %ld\n", 11612 tname, PTR_ERR(ret)); 11613 return -EINVAL; 11614 } 11615 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11616 regs[BPF_REG_0].mem_size = tsize; 11617 } else { 11618 if (returns_cpu_specific_alloc_ptr) { 11619 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 11620 } else { 11621 /* MEM_RDONLY may be carried from ret_flag, but it 11622 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 11623 * it will confuse the check of PTR_TO_BTF_ID in 11624 * check_mem_access(). 11625 */ 11626 ret_flag &= ~MEM_RDONLY; 11627 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11628 } 11629 11630 regs[BPF_REG_0].btf = meta.ret_btf; 11631 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11632 } 11633 break; 11634 } 11635 case RET_PTR_TO_BTF_ID: 11636 { 11637 struct btf *ret_btf; 11638 int ret_btf_id; 11639 11640 mark_reg_known_zero(env, regs, BPF_REG_0); 11641 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11642 if (func_id == BPF_FUNC_kptr_xchg) { 11643 ret_btf = meta.kptr_field->kptr.btf; 11644 ret_btf_id = meta.kptr_field->kptr.btf_id; 11645 if (!btf_is_kernel(ret_btf)) { 11646 regs[BPF_REG_0].type |= MEM_ALLOC; 11647 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 11648 regs[BPF_REG_0].type |= MEM_PERCPU; 11649 } 11650 } else { 11651 if (fn->ret_btf_id == BPF_PTR_POISON) { 11652 verbose(env, "verifier internal error:"); 11653 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 11654 func_id_name(func_id)); 11655 return -EINVAL; 11656 } 11657 ret_btf = btf_vmlinux; 11658 ret_btf_id = *fn->ret_btf_id; 11659 } 11660 if (ret_btf_id == 0) { 11661 verbose(env, "invalid return type %u of func %s#%d\n", 11662 base_type(ret_type), func_id_name(func_id), 11663 func_id); 11664 return -EINVAL; 11665 } 11666 regs[BPF_REG_0].btf = ret_btf; 11667 regs[BPF_REG_0].btf_id = ret_btf_id; 11668 break; 11669 } 11670 default: 11671 verbose(env, "unknown return type %u of func %s#%d\n", 11672 base_type(ret_type), func_id_name(func_id), func_id); 11673 return -EINVAL; 11674 } 11675 11676 if (type_may_be_null(regs[BPF_REG_0].type)) 11677 regs[BPF_REG_0].id = ++env->id_gen; 11678 11679 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 11680 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 11681 func_id_name(func_id), func_id); 11682 return -EFAULT; 11683 } 11684 11685 if (is_dynptr_ref_function(func_id)) 11686 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 11687 11688 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 11689 /* For release_reference() */ 11690 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11691 } else if (is_acquire_function(func_id, meta.map_ptr)) { 11692 int id = acquire_reference(env, insn_idx); 11693 11694 if (id < 0) 11695 return id; 11696 /* For mark_ptr_or_null_reg() */ 11697 regs[BPF_REG_0].id = id; 11698 /* For release_reference() */ 11699 regs[BPF_REG_0].ref_obj_id = id; 11700 } 11701 11702 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 11703 if (err) 11704 return err; 11705 11706 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 11707 if (err) 11708 return err; 11709 11710 if ((func_id == BPF_FUNC_get_stack || 11711 func_id == BPF_FUNC_get_task_stack) && 11712 !env->prog->has_callchain_buf) { 11713 const char *err_str; 11714 11715 #ifdef CONFIG_PERF_EVENTS 11716 err = get_callchain_buffers(sysctl_perf_event_max_stack); 11717 err_str = "cannot get callchain buffer for func %s#%d\n"; 11718 #else 11719 err = -ENOTSUPP; 11720 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 11721 #endif 11722 if (err) { 11723 verbose(env, err_str, func_id_name(func_id), func_id); 11724 return err; 11725 } 11726 11727 env->prog->has_callchain_buf = true; 11728 } 11729 11730 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 11731 env->prog->call_get_stack = true; 11732 11733 if (func_id == BPF_FUNC_get_func_ip) { 11734 if (check_get_func_ip(env)) 11735 return -ENOTSUPP; 11736 env->prog->call_get_func_ip = true; 11737 } 11738 11739 if (changes_data) 11740 clear_all_pkt_pointers(env); 11741 return 0; 11742 } 11743 11744 /* mark_btf_func_reg_size() is used when the reg size is determined by 11745 * the BTF func_proto's return value size and argument. 11746 */ 11747 static void __mark_btf_func_reg_size(struct bpf_verifier_env *env, struct bpf_reg_state *regs, 11748 u32 regno, size_t reg_size) 11749 { 11750 struct bpf_reg_state *reg = ®s[regno]; 11751 11752 if (regno == BPF_REG_0) { 11753 /* Function return value */ 11754 reg->live |= REG_LIVE_WRITTEN; 11755 reg->subreg_def = reg_size == sizeof(u64) ? 11756 DEF_NOT_SUBREG : env->insn_idx + 1; 11757 } else { 11758 /* Function argument */ 11759 if (reg_size == sizeof(u64)) { 11760 mark_insn_zext(env, reg); 11761 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 11762 } else { 11763 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 11764 } 11765 } 11766 } 11767 11768 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 11769 size_t reg_size) 11770 { 11771 return __mark_btf_func_reg_size(env, cur_regs(env), regno, reg_size); 11772 } 11773 11774 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 11775 { 11776 return meta->kfunc_flags & KF_ACQUIRE; 11777 } 11778 11779 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 11780 { 11781 return meta->kfunc_flags & KF_RELEASE; 11782 } 11783 11784 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 11785 { 11786 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 11787 } 11788 11789 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 11790 { 11791 return meta->kfunc_flags & KF_SLEEPABLE; 11792 } 11793 11794 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 11795 { 11796 return meta->kfunc_flags & KF_DESTRUCTIVE; 11797 } 11798 11799 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 11800 { 11801 return meta->kfunc_flags & KF_RCU; 11802 } 11803 11804 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 11805 { 11806 return meta->kfunc_flags & KF_RCU_PROTECTED; 11807 } 11808 11809 static bool is_kfunc_arg_mem_size(const struct btf *btf, 11810 const struct btf_param *arg, 11811 const struct bpf_reg_state *reg) 11812 { 11813 const struct btf_type *t; 11814 11815 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11816 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11817 return false; 11818 11819 return btf_param_match_suffix(btf, arg, "__sz"); 11820 } 11821 11822 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 11823 const struct btf_param *arg, 11824 const struct bpf_reg_state *reg) 11825 { 11826 const struct btf_type *t; 11827 11828 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11829 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11830 return false; 11831 11832 return btf_param_match_suffix(btf, arg, "__szk"); 11833 } 11834 11835 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 11836 { 11837 return btf_param_match_suffix(btf, arg, "__opt"); 11838 } 11839 11840 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 11841 { 11842 return btf_param_match_suffix(btf, arg, "__k"); 11843 } 11844 11845 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 11846 { 11847 return btf_param_match_suffix(btf, arg, "__ign"); 11848 } 11849 11850 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) 11851 { 11852 return btf_param_match_suffix(btf, arg, "__map"); 11853 } 11854 11855 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 11856 { 11857 return btf_param_match_suffix(btf, arg, "__alloc"); 11858 } 11859 11860 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 11861 { 11862 return btf_param_match_suffix(btf, arg, "__uninit"); 11863 } 11864 11865 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 11866 { 11867 return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); 11868 } 11869 11870 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 11871 { 11872 return btf_param_match_suffix(btf, arg, "__nullable"); 11873 } 11874 11875 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 11876 { 11877 return btf_param_match_suffix(btf, arg, "__str"); 11878 } 11879 11880 static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg) 11881 { 11882 return btf_param_match_suffix(btf, arg, "__irq_flag"); 11883 } 11884 11885 static bool is_kfunc_arg_prog(const struct btf *btf, const struct btf_param *arg) 11886 { 11887 return btf_param_match_suffix(btf, arg, "__prog"); 11888 } 11889 11890 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 11891 const struct btf_param *arg, 11892 const char *name) 11893 { 11894 int len, target_len = strlen(name); 11895 const char *param_name; 11896 11897 param_name = btf_name_by_offset(btf, arg->name_off); 11898 if (str_is_empty(param_name)) 11899 return false; 11900 len = strlen(param_name); 11901 if (len != target_len) 11902 return false; 11903 if (strcmp(param_name, name)) 11904 return false; 11905 11906 return true; 11907 } 11908 11909 enum { 11910 KF_ARG_DYNPTR_ID, 11911 KF_ARG_LIST_HEAD_ID, 11912 KF_ARG_LIST_NODE_ID, 11913 KF_ARG_RB_ROOT_ID, 11914 KF_ARG_RB_NODE_ID, 11915 KF_ARG_WORKQUEUE_ID, 11916 KF_ARG_RES_SPIN_LOCK_ID, 11917 }; 11918 11919 BTF_ID_LIST(kf_arg_btf_ids) 11920 BTF_ID(struct, bpf_dynptr) 11921 BTF_ID(struct, bpf_list_head) 11922 BTF_ID(struct, bpf_list_node) 11923 BTF_ID(struct, bpf_rb_root) 11924 BTF_ID(struct, bpf_rb_node) 11925 BTF_ID(struct, bpf_wq) 11926 BTF_ID(struct, bpf_res_spin_lock) 11927 11928 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 11929 const struct btf_param *arg, int type) 11930 { 11931 const struct btf_type *t; 11932 u32 res_id; 11933 11934 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11935 if (!t) 11936 return false; 11937 if (!btf_type_is_ptr(t)) 11938 return false; 11939 t = btf_type_skip_modifiers(btf, t->type, &res_id); 11940 if (!t) 11941 return false; 11942 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 11943 } 11944 11945 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 11946 { 11947 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 11948 } 11949 11950 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 11951 { 11952 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 11953 } 11954 11955 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 11956 { 11957 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 11958 } 11959 11960 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 11961 { 11962 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 11963 } 11964 11965 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 11966 { 11967 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 11968 } 11969 11970 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) 11971 { 11972 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); 11973 } 11974 11975 static bool is_kfunc_arg_res_spin_lock(const struct btf *btf, const struct btf_param *arg) 11976 { 11977 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RES_SPIN_LOCK_ID); 11978 } 11979 11980 static bool is_rbtree_node_type(const struct btf_type *t) 11981 { 11982 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_RB_NODE_ID]); 11983 } 11984 11985 static bool is_list_node_type(const struct btf_type *t) 11986 { 11987 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_LIST_NODE_ID]); 11988 } 11989 11990 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 11991 const struct btf_param *arg) 11992 { 11993 const struct btf_type *t; 11994 11995 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 11996 if (!t) 11997 return false; 11998 11999 return true; 12000 } 12001 12002 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 12003 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 12004 const struct btf *btf, 12005 const struct btf_type *t, int rec) 12006 { 12007 const struct btf_type *member_type; 12008 const struct btf_member *member; 12009 u32 i; 12010 12011 if (!btf_type_is_struct(t)) 12012 return false; 12013 12014 for_each_member(i, t, member) { 12015 const struct btf_array *array; 12016 12017 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 12018 if (btf_type_is_struct(member_type)) { 12019 if (rec >= 3) { 12020 verbose(env, "max struct nesting depth exceeded\n"); 12021 return false; 12022 } 12023 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 12024 return false; 12025 continue; 12026 } 12027 if (btf_type_is_array(member_type)) { 12028 array = btf_array(member_type); 12029 if (!array->nelems) 12030 return false; 12031 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 12032 if (!btf_type_is_scalar(member_type)) 12033 return false; 12034 continue; 12035 } 12036 if (!btf_type_is_scalar(member_type)) 12037 return false; 12038 } 12039 return true; 12040 } 12041 12042 enum kfunc_ptr_arg_type { 12043 KF_ARG_PTR_TO_CTX, 12044 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 12045 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 12046 KF_ARG_PTR_TO_DYNPTR, 12047 KF_ARG_PTR_TO_ITER, 12048 KF_ARG_PTR_TO_LIST_HEAD, 12049 KF_ARG_PTR_TO_LIST_NODE, 12050 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 12051 KF_ARG_PTR_TO_MEM, 12052 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 12053 KF_ARG_PTR_TO_CALLBACK, 12054 KF_ARG_PTR_TO_RB_ROOT, 12055 KF_ARG_PTR_TO_RB_NODE, 12056 KF_ARG_PTR_TO_NULL, 12057 KF_ARG_PTR_TO_CONST_STR, 12058 KF_ARG_PTR_TO_MAP, 12059 KF_ARG_PTR_TO_WORKQUEUE, 12060 KF_ARG_PTR_TO_IRQ_FLAG, 12061 KF_ARG_PTR_TO_RES_SPIN_LOCK, 12062 }; 12063 12064 enum special_kfunc_type { 12065 KF_bpf_obj_new_impl, 12066 KF_bpf_obj_drop_impl, 12067 KF_bpf_refcount_acquire_impl, 12068 KF_bpf_list_push_front_impl, 12069 KF_bpf_list_push_back_impl, 12070 KF_bpf_list_pop_front, 12071 KF_bpf_list_pop_back, 12072 KF_bpf_list_front, 12073 KF_bpf_list_back, 12074 KF_bpf_cast_to_kern_ctx, 12075 KF_bpf_rdonly_cast, 12076 KF_bpf_rcu_read_lock, 12077 KF_bpf_rcu_read_unlock, 12078 KF_bpf_rbtree_remove, 12079 KF_bpf_rbtree_add_impl, 12080 KF_bpf_rbtree_first, 12081 KF_bpf_rbtree_root, 12082 KF_bpf_rbtree_left, 12083 KF_bpf_rbtree_right, 12084 KF_bpf_dynptr_from_skb, 12085 KF_bpf_dynptr_from_xdp, 12086 KF_bpf_dynptr_slice, 12087 KF_bpf_dynptr_slice_rdwr, 12088 KF_bpf_dynptr_clone, 12089 KF_bpf_percpu_obj_new_impl, 12090 KF_bpf_percpu_obj_drop_impl, 12091 KF_bpf_throw, 12092 KF_bpf_wq_set_callback_impl, 12093 KF_bpf_preempt_disable, 12094 KF_bpf_preempt_enable, 12095 KF_bpf_iter_css_task_new, 12096 KF_bpf_session_cookie, 12097 KF_bpf_get_kmem_cache, 12098 KF_bpf_local_irq_save, 12099 KF_bpf_local_irq_restore, 12100 KF_bpf_iter_num_new, 12101 KF_bpf_iter_num_next, 12102 KF_bpf_iter_num_destroy, 12103 KF_bpf_set_dentry_xattr, 12104 KF_bpf_remove_dentry_xattr, 12105 KF_bpf_res_spin_lock, 12106 KF_bpf_res_spin_unlock, 12107 KF_bpf_res_spin_lock_irqsave, 12108 KF_bpf_res_spin_unlock_irqrestore, 12109 KF___bpf_trap, 12110 }; 12111 12112 BTF_ID_LIST(special_kfunc_list) 12113 BTF_ID(func, bpf_obj_new_impl) 12114 BTF_ID(func, bpf_obj_drop_impl) 12115 BTF_ID(func, bpf_refcount_acquire_impl) 12116 BTF_ID(func, bpf_list_push_front_impl) 12117 BTF_ID(func, bpf_list_push_back_impl) 12118 BTF_ID(func, bpf_list_pop_front) 12119 BTF_ID(func, bpf_list_pop_back) 12120 BTF_ID(func, bpf_list_front) 12121 BTF_ID(func, bpf_list_back) 12122 BTF_ID(func, bpf_cast_to_kern_ctx) 12123 BTF_ID(func, bpf_rdonly_cast) 12124 BTF_ID(func, bpf_rcu_read_lock) 12125 BTF_ID(func, bpf_rcu_read_unlock) 12126 BTF_ID(func, bpf_rbtree_remove) 12127 BTF_ID(func, bpf_rbtree_add_impl) 12128 BTF_ID(func, bpf_rbtree_first) 12129 BTF_ID(func, bpf_rbtree_root) 12130 BTF_ID(func, bpf_rbtree_left) 12131 BTF_ID(func, bpf_rbtree_right) 12132 #ifdef CONFIG_NET 12133 BTF_ID(func, bpf_dynptr_from_skb) 12134 BTF_ID(func, bpf_dynptr_from_xdp) 12135 #else 12136 BTF_ID_UNUSED 12137 BTF_ID_UNUSED 12138 #endif 12139 BTF_ID(func, bpf_dynptr_slice) 12140 BTF_ID(func, bpf_dynptr_slice_rdwr) 12141 BTF_ID(func, bpf_dynptr_clone) 12142 BTF_ID(func, bpf_percpu_obj_new_impl) 12143 BTF_ID(func, bpf_percpu_obj_drop_impl) 12144 BTF_ID(func, bpf_throw) 12145 BTF_ID(func, bpf_wq_set_callback_impl) 12146 BTF_ID(func, bpf_preempt_disable) 12147 BTF_ID(func, bpf_preempt_enable) 12148 #ifdef CONFIG_CGROUPS 12149 BTF_ID(func, bpf_iter_css_task_new) 12150 #else 12151 BTF_ID_UNUSED 12152 #endif 12153 #ifdef CONFIG_BPF_EVENTS 12154 BTF_ID(func, bpf_session_cookie) 12155 #else 12156 BTF_ID_UNUSED 12157 #endif 12158 BTF_ID(func, bpf_get_kmem_cache) 12159 BTF_ID(func, bpf_local_irq_save) 12160 BTF_ID(func, bpf_local_irq_restore) 12161 BTF_ID(func, bpf_iter_num_new) 12162 BTF_ID(func, bpf_iter_num_next) 12163 BTF_ID(func, bpf_iter_num_destroy) 12164 #ifdef CONFIG_BPF_LSM 12165 BTF_ID(func, bpf_set_dentry_xattr) 12166 BTF_ID(func, bpf_remove_dentry_xattr) 12167 #else 12168 BTF_ID_UNUSED 12169 BTF_ID_UNUSED 12170 #endif 12171 BTF_ID(func, bpf_res_spin_lock) 12172 BTF_ID(func, bpf_res_spin_unlock) 12173 BTF_ID(func, bpf_res_spin_lock_irqsave) 12174 BTF_ID(func, bpf_res_spin_unlock_irqrestore) 12175 BTF_ID(func, __bpf_trap) 12176 12177 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 12178 { 12179 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 12180 meta->arg_owning_ref) { 12181 return false; 12182 } 12183 12184 return meta->kfunc_flags & KF_RET_NULL; 12185 } 12186 12187 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 12188 { 12189 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 12190 } 12191 12192 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 12193 { 12194 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 12195 } 12196 12197 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) 12198 { 12199 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; 12200 } 12201 12202 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) 12203 { 12204 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; 12205 } 12206 12207 static enum kfunc_ptr_arg_type 12208 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 12209 struct bpf_kfunc_call_arg_meta *meta, 12210 const struct btf_type *t, const struct btf_type *ref_t, 12211 const char *ref_tname, const struct btf_param *args, 12212 int argno, int nargs) 12213 { 12214 u32 regno = argno + 1; 12215 struct bpf_reg_state *regs = cur_regs(env); 12216 struct bpf_reg_state *reg = ®s[regno]; 12217 bool arg_mem_size = false; 12218 12219 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 12220 return KF_ARG_PTR_TO_CTX; 12221 12222 /* In this function, we verify the kfunc's BTF as per the argument type, 12223 * leaving the rest of the verification with respect to the register 12224 * type to our caller. When a set of conditions hold in the BTF type of 12225 * arguments, we resolve it to a known kfunc_ptr_arg_type. 12226 */ 12227 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 12228 return KF_ARG_PTR_TO_CTX; 12229 12230 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 12231 return KF_ARG_PTR_TO_NULL; 12232 12233 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 12234 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 12235 12236 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 12237 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 12238 12239 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 12240 return KF_ARG_PTR_TO_DYNPTR; 12241 12242 if (is_kfunc_arg_iter(meta, argno, &args[argno])) 12243 return KF_ARG_PTR_TO_ITER; 12244 12245 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 12246 return KF_ARG_PTR_TO_LIST_HEAD; 12247 12248 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 12249 return KF_ARG_PTR_TO_LIST_NODE; 12250 12251 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 12252 return KF_ARG_PTR_TO_RB_ROOT; 12253 12254 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 12255 return KF_ARG_PTR_TO_RB_NODE; 12256 12257 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 12258 return KF_ARG_PTR_TO_CONST_STR; 12259 12260 if (is_kfunc_arg_map(meta->btf, &args[argno])) 12261 return KF_ARG_PTR_TO_MAP; 12262 12263 if (is_kfunc_arg_wq(meta->btf, &args[argno])) 12264 return KF_ARG_PTR_TO_WORKQUEUE; 12265 12266 if (is_kfunc_arg_irq_flag(meta->btf, &args[argno])) 12267 return KF_ARG_PTR_TO_IRQ_FLAG; 12268 12269 if (is_kfunc_arg_res_spin_lock(meta->btf, &args[argno])) 12270 return KF_ARG_PTR_TO_RES_SPIN_LOCK; 12271 12272 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 12273 if (!btf_type_is_struct(ref_t)) { 12274 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 12275 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 12276 return -EINVAL; 12277 } 12278 return KF_ARG_PTR_TO_BTF_ID; 12279 } 12280 12281 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 12282 return KF_ARG_PTR_TO_CALLBACK; 12283 12284 if (argno + 1 < nargs && 12285 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 12286 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 12287 arg_mem_size = true; 12288 12289 /* This is the catch all argument type of register types supported by 12290 * check_helper_mem_access. However, we only allow when argument type is 12291 * pointer to scalar, or struct composed (recursively) of scalars. When 12292 * arg_mem_size is true, the pointer can be void *. 12293 */ 12294 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 12295 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 12296 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 12297 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 12298 return -EINVAL; 12299 } 12300 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 12301 } 12302 12303 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 12304 struct bpf_reg_state *reg, 12305 const struct btf_type *ref_t, 12306 const char *ref_tname, u32 ref_id, 12307 struct bpf_kfunc_call_arg_meta *meta, 12308 int argno) 12309 { 12310 const struct btf_type *reg_ref_t; 12311 bool strict_type_match = false; 12312 const struct btf *reg_btf; 12313 const char *reg_ref_tname; 12314 bool taking_projection; 12315 bool struct_same; 12316 u32 reg_ref_id; 12317 12318 if (base_type(reg->type) == PTR_TO_BTF_ID) { 12319 reg_btf = reg->btf; 12320 reg_ref_id = reg->btf_id; 12321 } else { 12322 reg_btf = btf_vmlinux; 12323 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 12324 } 12325 12326 /* Enforce strict type matching for calls to kfuncs that are acquiring 12327 * or releasing a reference, or are no-cast aliases. We do _not_ 12328 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 12329 * as we want to enable BPF programs to pass types that are bitwise 12330 * equivalent without forcing them to explicitly cast with something 12331 * like bpf_cast_to_kern_ctx(). 12332 * 12333 * For example, say we had a type like the following: 12334 * 12335 * struct bpf_cpumask { 12336 * cpumask_t cpumask; 12337 * refcount_t usage; 12338 * }; 12339 * 12340 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 12341 * to a struct cpumask, so it would be safe to pass a struct 12342 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 12343 * 12344 * The philosophy here is similar to how we allow scalars of different 12345 * types to be passed to kfuncs as long as the size is the same. The 12346 * only difference here is that we're simply allowing 12347 * btf_struct_ids_match() to walk the struct at the 0th offset, and 12348 * resolve types. 12349 */ 12350 if ((is_kfunc_release(meta) && reg->ref_obj_id) || 12351 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 12352 strict_type_match = true; 12353 12354 WARN_ON_ONCE(is_kfunc_release(meta) && 12355 (reg->off || !tnum_is_const(reg->var_off) || 12356 reg->var_off.value)); 12357 12358 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 12359 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 12360 struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match); 12361 /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot 12362 * actually use it -- it must cast to the underlying type. So we allow 12363 * caller to pass in the underlying type. 12364 */ 12365 taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname); 12366 if (!taking_projection && !struct_same) { 12367 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 12368 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 12369 btf_type_str(reg_ref_t), reg_ref_tname); 12370 return -EINVAL; 12371 } 12372 return 0; 12373 } 12374 12375 static int process_irq_flag(struct bpf_verifier_env *env, int regno, 12376 struct bpf_kfunc_call_arg_meta *meta) 12377 { 12378 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 12379 int err, kfunc_class = IRQ_NATIVE_KFUNC; 12380 bool irq_save; 12381 12382 if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save] || 12383 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) { 12384 irq_save = true; 12385 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) 12386 kfunc_class = IRQ_LOCK_KFUNC; 12387 } else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore] || 12388 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) { 12389 irq_save = false; 12390 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) 12391 kfunc_class = IRQ_LOCK_KFUNC; 12392 } else { 12393 verbose(env, "verifier internal error: unknown irq flags kfunc\n"); 12394 return -EFAULT; 12395 } 12396 12397 if (irq_save) { 12398 if (!is_irq_flag_reg_valid_uninit(env, reg)) { 12399 verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1); 12400 return -EINVAL; 12401 } 12402 12403 err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false); 12404 if (err) 12405 return err; 12406 12407 err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx, kfunc_class); 12408 if (err) 12409 return err; 12410 } else { 12411 err = is_irq_flag_reg_valid_init(env, reg); 12412 if (err) { 12413 verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1); 12414 return err; 12415 } 12416 12417 err = mark_irq_flag_read(env, reg); 12418 if (err) 12419 return err; 12420 12421 err = unmark_stack_slot_irq_flag(env, reg, kfunc_class); 12422 if (err) 12423 return err; 12424 } 12425 return 0; 12426 } 12427 12428 12429 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12430 { 12431 struct btf_record *rec = reg_btf_record(reg); 12432 12433 if (!env->cur_state->active_locks) { 12434 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 12435 return -EFAULT; 12436 } 12437 12438 if (type_flag(reg->type) & NON_OWN_REF) { 12439 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 12440 return -EFAULT; 12441 } 12442 12443 reg->type |= NON_OWN_REF; 12444 if (rec->refcount_off >= 0) 12445 reg->type |= MEM_RCU; 12446 12447 return 0; 12448 } 12449 12450 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 12451 { 12452 struct bpf_verifier_state *state = env->cur_state; 12453 struct bpf_func_state *unused; 12454 struct bpf_reg_state *reg; 12455 int i; 12456 12457 if (!ref_obj_id) { 12458 verbose(env, "verifier internal error: ref_obj_id is zero for " 12459 "owning -> non-owning conversion\n"); 12460 return -EFAULT; 12461 } 12462 12463 for (i = 0; i < state->acquired_refs; i++) { 12464 if (state->refs[i].id != ref_obj_id) 12465 continue; 12466 12467 /* Clear ref_obj_id here so release_reference doesn't clobber 12468 * the whole reg 12469 */ 12470 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 12471 if (reg->ref_obj_id == ref_obj_id) { 12472 reg->ref_obj_id = 0; 12473 ref_set_non_owning(env, reg); 12474 } 12475 })); 12476 return 0; 12477 } 12478 12479 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 12480 return -EFAULT; 12481 } 12482 12483 /* Implementation details: 12484 * 12485 * Each register points to some region of memory, which we define as an 12486 * allocation. Each allocation may embed a bpf_spin_lock which protects any 12487 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 12488 * allocation. The lock and the data it protects are colocated in the same 12489 * memory region. 12490 * 12491 * Hence, everytime a register holds a pointer value pointing to such 12492 * allocation, the verifier preserves a unique reg->id for it. 12493 * 12494 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 12495 * bpf_spin_lock is called. 12496 * 12497 * To enable this, lock state in the verifier captures two values: 12498 * active_lock.ptr = Register's type specific pointer 12499 * active_lock.id = A unique ID for each register pointer value 12500 * 12501 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 12502 * supported register types. 12503 * 12504 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 12505 * allocated objects is the reg->btf pointer. 12506 * 12507 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 12508 * can establish the provenance of the map value statically for each distinct 12509 * lookup into such maps. They always contain a single map value hence unique 12510 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 12511 * 12512 * So, in case of global variables, they use array maps with max_entries = 1, 12513 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 12514 * into the same map value as max_entries is 1, as described above). 12515 * 12516 * In case of inner map lookups, the inner map pointer has same map_ptr as the 12517 * outer map pointer (in verifier context), but each lookup into an inner map 12518 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 12519 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 12520 * will get different reg->id assigned to each lookup, hence different 12521 * active_lock.id. 12522 * 12523 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 12524 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 12525 * returned from bpf_obj_new. Each allocation receives a new reg->id. 12526 */ 12527 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12528 { 12529 struct bpf_reference_state *s; 12530 void *ptr; 12531 u32 id; 12532 12533 switch ((int)reg->type) { 12534 case PTR_TO_MAP_VALUE: 12535 ptr = reg->map_ptr; 12536 break; 12537 case PTR_TO_BTF_ID | MEM_ALLOC: 12538 ptr = reg->btf; 12539 break; 12540 default: 12541 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 12542 return -EFAULT; 12543 } 12544 id = reg->id; 12545 12546 if (!env->cur_state->active_locks) 12547 return -EINVAL; 12548 s = find_lock_state(env->cur_state, REF_TYPE_LOCK_MASK, id, ptr); 12549 if (!s) { 12550 verbose(env, "held lock and object are not in the same allocation\n"); 12551 return -EINVAL; 12552 } 12553 return 0; 12554 } 12555 12556 static bool is_bpf_list_api_kfunc(u32 btf_id) 12557 { 12558 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12559 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12560 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 12561 btf_id == special_kfunc_list[KF_bpf_list_pop_back] || 12562 btf_id == special_kfunc_list[KF_bpf_list_front] || 12563 btf_id == special_kfunc_list[KF_bpf_list_back]; 12564 } 12565 12566 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 12567 { 12568 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 12569 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12570 btf_id == special_kfunc_list[KF_bpf_rbtree_first] || 12571 btf_id == special_kfunc_list[KF_bpf_rbtree_root] || 12572 btf_id == special_kfunc_list[KF_bpf_rbtree_left] || 12573 btf_id == special_kfunc_list[KF_bpf_rbtree_right]; 12574 } 12575 12576 static bool is_bpf_iter_num_api_kfunc(u32 btf_id) 12577 { 12578 return btf_id == special_kfunc_list[KF_bpf_iter_num_new] || 12579 btf_id == special_kfunc_list[KF_bpf_iter_num_next] || 12580 btf_id == special_kfunc_list[KF_bpf_iter_num_destroy]; 12581 } 12582 12583 static bool is_bpf_graph_api_kfunc(u32 btf_id) 12584 { 12585 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 12586 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 12587 } 12588 12589 static bool is_bpf_res_spin_lock_kfunc(u32 btf_id) 12590 { 12591 return btf_id == special_kfunc_list[KF_bpf_res_spin_lock] || 12592 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock] || 12593 btf_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || 12594 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]; 12595 } 12596 12597 static bool kfunc_spin_allowed(u32 btf_id) 12598 { 12599 return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id) || 12600 is_bpf_res_spin_lock_kfunc(btf_id); 12601 } 12602 12603 static bool is_sync_callback_calling_kfunc(u32 btf_id) 12604 { 12605 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 12606 } 12607 12608 static bool is_async_callback_calling_kfunc(u32 btf_id) 12609 { 12610 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 12611 } 12612 12613 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 12614 { 12615 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 12616 insn->imm == special_kfunc_list[KF_bpf_throw]; 12617 } 12618 12619 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id) 12620 { 12621 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 12622 } 12623 12624 static bool is_callback_calling_kfunc(u32 btf_id) 12625 { 12626 return is_sync_callback_calling_kfunc(btf_id) || 12627 is_async_callback_calling_kfunc(btf_id); 12628 } 12629 12630 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 12631 { 12632 return is_bpf_rbtree_api_kfunc(btf_id); 12633 } 12634 12635 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 12636 enum btf_field_type head_field_type, 12637 u32 kfunc_btf_id) 12638 { 12639 bool ret; 12640 12641 switch (head_field_type) { 12642 case BPF_LIST_HEAD: 12643 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 12644 break; 12645 case BPF_RB_ROOT: 12646 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 12647 break; 12648 default: 12649 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 12650 btf_field_type_name(head_field_type)); 12651 return false; 12652 } 12653 12654 if (!ret) 12655 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 12656 btf_field_type_name(head_field_type)); 12657 return ret; 12658 } 12659 12660 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 12661 enum btf_field_type node_field_type, 12662 u32 kfunc_btf_id) 12663 { 12664 bool ret; 12665 12666 switch (node_field_type) { 12667 case BPF_LIST_NODE: 12668 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12669 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 12670 break; 12671 case BPF_RB_NODE: 12672 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12673 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 12674 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_left] || 12675 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_right]); 12676 break; 12677 default: 12678 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 12679 btf_field_type_name(node_field_type)); 12680 return false; 12681 } 12682 12683 if (!ret) 12684 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 12685 btf_field_type_name(node_field_type)); 12686 return ret; 12687 } 12688 12689 static int 12690 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 12691 struct bpf_reg_state *reg, u32 regno, 12692 struct bpf_kfunc_call_arg_meta *meta, 12693 enum btf_field_type head_field_type, 12694 struct btf_field **head_field) 12695 { 12696 const char *head_type_name; 12697 struct btf_field *field; 12698 struct btf_record *rec; 12699 u32 head_off; 12700 12701 if (meta->btf != btf_vmlinux) { 12702 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 12703 return -EFAULT; 12704 } 12705 12706 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 12707 return -EFAULT; 12708 12709 head_type_name = btf_field_type_name(head_field_type); 12710 if (!tnum_is_const(reg->var_off)) { 12711 verbose(env, 12712 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12713 regno, head_type_name); 12714 return -EINVAL; 12715 } 12716 12717 rec = reg_btf_record(reg); 12718 head_off = reg->off + reg->var_off.value; 12719 field = btf_record_find(rec, head_off, head_field_type); 12720 if (!field) { 12721 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 12722 return -EINVAL; 12723 } 12724 12725 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 12726 if (check_reg_allocation_locked(env, reg)) { 12727 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 12728 rec->spin_lock_off, head_type_name); 12729 return -EINVAL; 12730 } 12731 12732 if (*head_field) { 12733 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 12734 return -EFAULT; 12735 } 12736 *head_field = field; 12737 return 0; 12738 } 12739 12740 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 12741 struct bpf_reg_state *reg, u32 regno, 12742 struct bpf_kfunc_call_arg_meta *meta) 12743 { 12744 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 12745 &meta->arg_list_head.field); 12746 } 12747 12748 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 12749 struct bpf_reg_state *reg, u32 regno, 12750 struct bpf_kfunc_call_arg_meta *meta) 12751 { 12752 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 12753 &meta->arg_rbtree_root.field); 12754 } 12755 12756 static int 12757 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 12758 struct bpf_reg_state *reg, u32 regno, 12759 struct bpf_kfunc_call_arg_meta *meta, 12760 enum btf_field_type head_field_type, 12761 enum btf_field_type node_field_type, 12762 struct btf_field **node_field) 12763 { 12764 const char *node_type_name; 12765 const struct btf_type *et, *t; 12766 struct btf_field *field; 12767 u32 node_off; 12768 12769 if (meta->btf != btf_vmlinux) { 12770 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 12771 return -EFAULT; 12772 } 12773 12774 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 12775 return -EFAULT; 12776 12777 node_type_name = btf_field_type_name(node_field_type); 12778 if (!tnum_is_const(reg->var_off)) { 12779 verbose(env, 12780 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12781 regno, node_type_name); 12782 return -EINVAL; 12783 } 12784 12785 node_off = reg->off + reg->var_off.value; 12786 field = reg_find_field_offset(reg, node_off, node_field_type); 12787 if (!field) { 12788 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 12789 return -EINVAL; 12790 } 12791 12792 field = *node_field; 12793 12794 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 12795 t = btf_type_by_id(reg->btf, reg->btf_id); 12796 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 12797 field->graph_root.value_btf_id, true)) { 12798 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 12799 "in struct %s, but arg is at offset=%d in struct %s\n", 12800 btf_field_type_name(head_field_type), 12801 btf_field_type_name(node_field_type), 12802 field->graph_root.node_offset, 12803 btf_name_by_offset(field->graph_root.btf, et->name_off), 12804 node_off, btf_name_by_offset(reg->btf, t->name_off)); 12805 return -EINVAL; 12806 } 12807 meta->arg_btf = reg->btf; 12808 meta->arg_btf_id = reg->btf_id; 12809 12810 if (node_off != field->graph_root.node_offset) { 12811 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 12812 node_off, btf_field_type_name(node_field_type), 12813 field->graph_root.node_offset, 12814 btf_name_by_offset(field->graph_root.btf, et->name_off)); 12815 return -EINVAL; 12816 } 12817 12818 return 0; 12819 } 12820 12821 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 12822 struct bpf_reg_state *reg, u32 regno, 12823 struct bpf_kfunc_call_arg_meta *meta) 12824 { 12825 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 12826 BPF_LIST_HEAD, BPF_LIST_NODE, 12827 &meta->arg_list_head.field); 12828 } 12829 12830 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 12831 struct bpf_reg_state *reg, u32 regno, 12832 struct bpf_kfunc_call_arg_meta *meta) 12833 { 12834 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 12835 BPF_RB_ROOT, BPF_RB_NODE, 12836 &meta->arg_rbtree_root.field); 12837 } 12838 12839 /* 12840 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 12841 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 12842 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 12843 * them can only be attached to some specific hook points. 12844 */ 12845 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 12846 { 12847 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 12848 12849 switch (prog_type) { 12850 case BPF_PROG_TYPE_LSM: 12851 return true; 12852 case BPF_PROG_TYPE_TRACING: 12853 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 12854 return true; 12855 fallthrough; 12856 default: 12857 return in_sleepable(env); 12858 } 12859 } 12860 12861 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 12862 int insn_idx) 12863 { 12864 const char *func_name = meta->func_name, *ref_tname; 12865 const struct btf *btf = meta->btf; 12866 const struct btf_param *args; 12867 struct btf_record *rec; 12868 u32 i, nargs; 12869 int ret; 12870 12871 args = (const struct btf_param *)(meta->func_proto + 1); 12872 nargs = btf_type_vlen(meta->func_proto); 12873 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 12874 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 12875 MAX_BPF_FUNC_REG_ARGS); 12876 return -EINVAL; 12877 } 12878 12879 /* Check that BTF function arguments match actual types that the 12880 * verifier sees. 12881 */ 12882 for (i = 0; i < nargs; i++) { 12883 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 12884 const struct btf_type *t, *ref_t, *resolve_ret; 12885 enum bpf_arg_type arg_type = ARG_DONTCARE; 12886 u32 regno = i + 1, ref_id, type_size; 12887 bool is_ret_buf_sz = false; 12888 int kf_arg_type; 12889 12890 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 12891 12892 if (is_kfunc_arg_ignore(btf, &args[i])) 12893 continue; 12894 12895 if (is_kfunc_arg_prog(btf, &args[i])) { 12896 /* Used to reject repeated use of __prog. */ 12897 if (meta->arg_prog) { 12898 verbose(env, "Only 1 prog->aux argument supported per-kfunc\n"); 12899 return -EFAULT; 12900 } 12901 meta->arg_prog = true; 12902 cur_aux(env)->arg_prog = regno; 12903 continue; 12904 } 12905 12906 if (btf_type_is_scalar(t)) { 12907 if (reg->type != SCALAR_VALUE) { 12908 verbose(env, "R%d is not a scalar\n", regno); 12909 return -EINVAL; 12910 } 12911 12912 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 12913 if (meta->arg_constant.found) { 12914 verbose(env, "verifier internal error: only one constant argument permitted\n"); 12915 return -EFAULT; 12916 } 12917 if (!tnum_is_const(reg->var_off)) { 12918 verbose(env, "R%d must be a known constant\n", regno); 12919 return -EINVAL; 12920 } 12921 ret = mark_chain_precision(env, regno); 12922 if (ret < 0) 12923 return ret; 12924 meta->arg_constant.found = true; 12925 meta->arg_constant.value = reg->var_off.value; 12926 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 12927 meta->r0_rdonly = true; 12928 is_ret_buf_sz = true; 12929 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 12930 is_ret_buf_sz = true; 12931 } 12932 12933 if (is_ret_buf_sz) { 12934 if (meta->r0_size) { 12935 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 12936 return -EINVAL; 12937 } 12938 12939 if (!tnum_is_const(reg->var_off)) { 12940 verbose(env, "R%d is not a const\n", regno); 12941 return -EINVAL; 12942 } 12943 12944 meta->r0_size = reg->var_off.value; 12945 ret = mark_chain_precision(env, regno); 12946 if (ret) 12947 return ret; 12948 } 12949 continue; 12950 } 12951 12952 if (!btf_type_is_ptr(t)) { 12953 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 12954 return -EINVAL; 12955 } 12956 12957 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 12958 (register_is_null(reg) || type_may_be_null(reg->type)) && 12959 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 12960 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 12961 return -EACCES; 12962 } 12963 12964 if (reg->ref_obj_id) { 12965 if (is_kfunc_release(meta) && meta->ref_obj_id) { 12966 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 12967 regno, reg->ref_obj_id, 12968 meta->ref_obj_id); 12969 return -EFAULT; 12970 } 12971 meta->ref_obj_id = reg->ref_obj_id; 12972 if (is_kfunc_release(meta)) 12973 meta->release_regno = regno; 12974 } 12975 12976 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 12977 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 12978 12979 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 12980 if (kf_arg_type < 0) 12981 return kf_arg_type; 12982 12983 switch (kf_arg_type) { 12984 case KF_ARG_PTR_TO_NULL: 12985 continue; 12986 case KF_ARG_PTR_TO_MAP: 12987 if (!reg->map_ptr) { 12988 verbose(env, "pointer in R%d isn't map pointer\n", regno); 12989 return -EINVAL; 12990 } 12991 if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) { 12992 /* Use map_uid (which is unique id of inner map) to reject: 12993 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 12994 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 12995 * if (inner_map1 && inner_map2) { 12996 * wq = bpf_map_lookup_elem(inner_map1); 12997 * if (wq) 12998 * // mismatch would have been allowed 12999 * bpf_wq_init(wq, inner_map2); 13000 * } 13001 * 13002 * Comparing map_ptr is enough to distinguish normal and outer maps. 13003 */ 13004 if (meta->map.ptr != reg->map_ptr || 13005 meta->map.uid != reg->map_uid) { 13006 verbose(env, 13007 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 13008 meta->map.uid, reg->map_uid); 13009 return -EINVAL; 13010 } 13011 } 13012 meta->map.ptr = reg->map_ptr; 13013 meta->map.uid = reg->map_uid; 13014 fallthrough; 13015 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 13016 case KF_ARG_PTR_TO_BTF_ID: 13017 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 13018 break; 13019 13020 if (!is_trusted_reg(reg)) { 13021 if (!is_kfunc_rcu(meta)) { 13022 verbose(env, "R%d must be referenced or trusted\n", regno); 13023 return -EINVAL; 13024 } 13025 if (!is_rcu_reg(reg)) { 13026 verbose(env, "R%d must be a rcu pointer\n", regno); 13027 return -EINVAL; 13028 } 13029 } 13030 fallthrough; 13031 case KF_ARG_PTR_TO_CTX: 13032 case KF_ARG_PTR_TO_DYNPTR: 13033 case KF_ARG_PTR_TO_ITER: 13034 case KF_ARG_PTR_TO_LIST_HEAD: 13035 case KF_ARG_PTR_TO_LIST_NODE: 13036 case KF_ARG_PTR_TO_RB_ROOT: 13037 case KF_ARG_PTR_TO_RB_NODE: 13038 case KF_ARG_PTR_TO_MEM: 13039 case KF_ARG_PTR_TO_MEM_SIZE: 13040 case KF_ARG_PTR_TO_CALLBACK: 13041 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 13042 case KF_ARG_PTR_TO_CONST_STR: 13043 case KF_ARG_PTR_TO_WORKQUEUE: 13044 case KF_ARG_PTR_TO_IRQ_FLAG: 13045 case KF_ARG_PTR_TO_RES_SPIN_LOCK: 13046 break; 13047 default: 13048 WARN_ON_ONCE(1); 13049 return -EFAULT; 13050 } 13051 13052 if (is_kfunc_release(meta) && reg->ref_obj_id) 13053 arg_type |= OBJ_RELEASE; 13054 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 13055 if (ret < 0) 13056 return ret; 13057 13058 switch (kf_arg_type) { 13059 case KF_ARG_PTR_TO_CTX: 13060 if (reg->type != PTR_TO_CTX) { 13061 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", 13062 i, reg_type_str(env, reg->type)); 13063 return -EINVAL; 13064 } 13065 13066 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 13067 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 13068 if (ret < 0) 13069 return -EINVAL; 13070 meta->ret_btf_id = ret; 13071 } 13072 break; 13073 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 13074 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 13075 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 13076 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 13077 return -EINVAL; 13078 } 13079 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 13080 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 13081 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 13082 return -EINVAL; 13083 } 13084 } else { 13085 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13086 return -EINVAL; 13087 } 13088 if (!reg->ref_obj_id) { 13089 verbose(env, "allocated object must be referenced\n"); 13090 return -EINVAL; 13091 } 13092 if (meta->btf == btf_vmlinux) { 13093 meta->arg_btf = reg->btf; 13094 meta->arg_btf_id = reg->btf_id; 13095 } 13096 break; 13097 case KF_ARG_PTR_TO_DYNPTR: 13098 { 13099 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 13100 int clone_ref_obj_id = 0; 13101 13102 if (reg->type == CONST_PTR_TO_DYNPTR) 13103 dynptr_arg_type |= MEM_RDONLY; 13104 13105 if (is_kfunc_arg_uninit(btf, &args[i])) 13106 dynptr_arg_type |= MEM_UNINIT; 13107 13108 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 13109 dynptr_arg_type |= DYNPTR_TYPE_SKB; 13110 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 13111 dynptr_arg_type |= DYNPTR_TYPE_XDP; 13112 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 13113 (dynptr_arg_type & MEM_UNINIT)) { 13114 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 13115 13116 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 13117 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 13118 return -EFAULT; 13119 } 13120 13121 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 13122 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 13123 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 13124 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 13125 return -EFAULT; 13126 } 13127 } 13128 13129 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 13130 if (ret < 0) 13131 return ret; 13132 13133 if (!(dynptr_arg_type & MEM_UNINIT)) { 13134 int id = dynptr_id(env, reg); 13135 13136 if (id < 0) { 13137 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 13138 return id; 13139 } 13140 meta->initialized_dynptr.id = id; 13141 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 13142 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 13143 } 13144 13145 break; 13146 } 13147 case KF_ARG_PTR_TO_ITER: 13148 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 13149 if (!check_css_task_iter_allowlist(env)) { 13150 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 13151 return -EINVAL; 13152 } 13153 } 13154 ret = process_iter_arg(env, regno, insn_idx, meta); 13155 if (ret < 0) 13156 return ret; 13157 break; 13158 case KF_ARG_PTR_TO_LIST_HEAD: 13159 if (reg->type != PTR_TO_MAP_VALUE && 13160 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13161 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 13162 return -EINVAL; 13163 } 13164 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 13165 verbose(env, "allocated object must be referenced\n"); 13166 return -EINVAL; 13167 } 13168 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 13169 if (ret < 0) 13170 return ret; 13171 break; 13172 case KF_ARG_PTR_TO_RB_ROOT: 13173 if (reg->type != PTR_TO_MAP_VALUE && 13174 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13175 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 13176 return -EINVAL; 13177 } 13178 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 13179 verbose(env, "allocated object must be referenced\n"); 13180 return -EINVAL; 13181 } 13182 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 13183 if (ret < 0) 13184 return ret; 13185 break; 13186 case KF_ARG_PTR_TO_LIST_NODE: 13187 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13188 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13189 return -EINVAL; 13190 } 13191 if (!reg->ref_obj_id) { 13192 verbose(env, "allocated object must be referenced\n"); 13193 return -EINVAL; 13194 } 13195 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 13196 if (ret < 0) 13197 return ret; 13198 break; 13199 case KF_ARG_PTR_TO_RB_NODE: 13200 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13201 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13202 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13203 return -EINVAL; 13204 } 13205 if (!reg->ref_obj_id) { 13206 verbose(env, "allocated object must be referenced\n"); 13207 return -EINVAL; 13208 } 13209 } else { 13210 if (!type_is_non_owning_ref(reg->type) && !reg->ref_obj_id) { 13211 verbose(env, "%s can only take non-owning or refcounted bpf_rb_node pointer\n", func_name); 13212 return -EINVAL; 13213 } 13214 if (in_rbtree_lock_required_cb(env)) { 13215 verbose(env, "%s not allowed in rbtree cb\n", func_name); 13216 return -EINVAL; 13217 } 13218 } 13219 13220 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 13221 if (ret < 0) 13222 return ret; 13223 break; 13224 case KF_ARG_PTR_TO_MAP: 13225 /* If argument has '__map' suffix expect 'struct bpf_map *' */ 13226 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; 13227 ref_t = btf_type_by_id(btf_vmlinux, ref_id); 13228 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 13229 fallthrough; 13230 case KF_ARG_PTR_TO_BTF_ID: 13231 /* Only base_type is checked, further checks are done here */ 13232 if ((base_type(reg->type) != PTR_TO_BTF_ID || 13233 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 13234 !reg2btf_ids[base_type(reg->type)]) { 13235 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 13236 verbose(env, "expected %s or socket\n", 13237 reg_type_str(env, base_type(reg->type) | 13238 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 13239 return -EINVAL; 13240 } 13241 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 13242 if (ret < 0) 13243 return ret; 13244 break; 13245 case KF_ARG_PTR_TO_MEM: 13246 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 13247 if (IS_ERR(resolve_ret)) { 13248 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 13249 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 13250 return -EINVAL; 13251 } 13252 ret = check_mem_reg(env, reg, regno, type_size); 13253 if (ret < 0) 13254 return ret; 13255 break; 13256 case KF_ARG_PTR_TO_MEM_SIZE: 13257 { 13258 struct bpf_reg_state *buff_reg = ®s[regno]; 13259 const struct btf_param *buff_arg = &args[i]; 13260 struct bpf_reg_state *size_reg = ®s[regno + 1]; 13261 const struct btf_param *size_arg = &args[i + 1]; 13262 13263 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 13264 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 13265 if (ret < 0) { 13266 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 13267 return ret; 13268 } 13269 } 13270 13271 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 13272 if (meta->arg_constant.found) { 13273 verbose(env, "verifier internal error: only one constant argument permitted\n"); 13274 return -EFAULT; 13275 } 13276 if (!tnum_is_const(size_reg->var_off)) { 13277 verbose(env, "R%d must be a known constant\n", regno + 1); 13278 return -EINVAL; 13279 } 13280 meta->arg_constant.found = true; 13281 meta->arg_constant.value = size_reg->var_off.value; 13282 } 13283 13284 /* Skip next '__sz' or '__szk' argument */ 13285 i++; 13286 break; 13287 } 13288 case KF_ARG_PTR_TO_CALLBACK: 13289 if (reg->type != PTR_TO_FUNC) { 13290 verbose(env, "arg%d expected pointer to func\n", i); 13291 return -EINVAL; 13292 } 13293 meta->subprogno = reg->subprogno; 13294 break; 13295 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 13296 if (!type_is_ptr_alloc_obj(reg->type)) { 13297 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 13298 return -EINVAL; 13299 } 13300 if (!type_is_non_owning_ref(reg->type)) 13301 meta->arg_owning_ref = true; 13302 13303 rec = reg_btf_record(reg); 13304 if (!rec) { 13305 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 13306 return -EFAULT; 13307 } 13308 13309 if (rec->refcount_off < 0) { 13310 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 13311 return -EINVAL; 13312 } 13313 13314 meta->arg_btf = reg->btf; 13315 meta->arg_btf_id = reg->btf_id; 13316 break; 13317 case KF_ARG_PTR_TO_CONST_STR: 13318 if (reg->type != PTR_TO_MAP_VALUE) { 13319 verbose(env, "arg#%d doesn't point to a const string\n", i); 13320 return -EINVAL; 13321 } 13322 ret = check_reg_const_str(env, reg, regno); 13323 if (ret) 13324 return ret; 13325 break; 13326 case KF_ARG_PTR_TO_WORKQUEUE: 13327 if (reg->type != PTR_TO_MAP_VALUE) { 13328 verbose(env, "arg#%d doesn't point to a map value\n", i); 13329 return -EINVAL; 13330 } 13331 ret = process_wq_func(env, regno, meta); 13332 if (ret < 0) 13333 return ret; 13334 break; 13335 case KF_ARG_PTR_TO_IRQ_FLAG: 13336 if (reg->type != PTR_TO_STACK) { 13337 verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i); 13338 return -EINVAL; 13339 } 13340 ret = process_irq_flag(env, regno, meta); 13341 if (ret < 0) 13342 return ret; 13343 break; 13344 case KF_ARG_PTR_TO_RES_SPIN_LOCK: 13345 { 13346 int flags = PROCESS_RES_LOCK; 13347 13348 if (reg->type != PTR_TO_MAP_VALUE && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13349 verbose(env, "arg#%d doesn't point to map value or allocated object\n", i); 13350 return -EINVAL; 13351 } 13352 13353 if (!is_bpf_res_spin_lock_kfunc(meta->func_id)) 13354 return -EFAULT; 13355 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock] || 13356 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) 13357 flags |= PROCESS_SPIN_LOCK; 13358 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || 13359 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) 13360 flags |= PROCESS_LOCK_IRQ; 13361 ret = process_spin_lock(env, regno, flags); 13362 if (ret < 0) 13363 return ret; 13364 break; 13365 } 13366 } 13367 } 13368 13369 if (is_kfunc_release(meta) && !meta->release_regno) { 13370 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 13371 func_name); 13372 return -EINVAL; 13373 } 13374 13375 return 0; 13376 } 13377 13378 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 13379 struct bpf_insn *insn, 13380 struct bpf_kfunc_call_arg_meta *meta, 13381 const char **kfunc_name) 13382 { 13383 const struct btf_type *func, *func_proto; 13384 u32 func_id, *kfunc_flags; 13385 const char *func_name; 13386 struct btf *desc_btf; 13387 13388 if (kfunc_name) 13389 *kfunc_name = NULL; 13390 13391 if (!insn->imm) 13392 return -EINVAL; 13393 13394 desc_btf = find_kfunc_desc_btf(env, insn->off); 13395 if (IS_ERR(desc_btf)) 13396 return PTR_ERR(desc_btf); 13397 13398 func_id = insn->imm; 13399 func = btf_type_by_id(desc_btf, func_id); 13400 func_name = btf_name_by_offset(desc_btf, func->name_off); 13401 if (kfunc_name) 13402 *kfunc_name = func_name; 13403 func_proto = btf_type_by_id(desc_btf, func->type); 13404 13405 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 13406 if (!kfunc_flags) { 13407 return -EACCES; 13408 } 13409 13410 memset(meta, 0, sizeof(*meta)); 13411 meta->btf = desc_btf; 13412 meta->func_id = func_id; 13413 meta->kfunc_flags = *kfunc_flags; 13414 meta->func_proto = func_proto; 13415 meta->func_name = func_name; 13416 13417 return 0; 13418 } 13419 13420 /* check special kfuncs and return: 13421 * 1 - not fall-through to 'else' branch, continue verification 13422 * 0 - fall-through to 'else' branch 13423 * < 0 - not fall-through to 'else' branch, return error 13424 */ 13425 static int check_special_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 13426 struct bpf_reg_state *regs, struct bpf_insn_aux_data *insn_aux, 13427 const struct btf_type *ptr_type, struct btf *desc_btf) 13428 { 13429 const struct btf_type *ret_t; 13430 int err = 0; 13431 13432 if (meta->btf != btf_vmlinux) 13433 return 0; 13434 13435 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 13436 meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13437 struct btf_struct_meta *struct_meta; 13438 struct btf *ret_btf; 13439 u32 ret_btf_id; 13440 13441 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 13442 return -ENOMEM; 13443 13444 if (((u64)(u32)meta->arg_constant.value) != meta->arg_constant.value) { 13445 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 13446 return -EINVAL; 13447 } 13448 13449 ret_btf = env->prog->aux->btf; 13450 ret_btf_id = meta->arg_constant.value; 13451 13452 /* This may be NULL due to user not supplying a BTF */ 13453 if (!ret_btf) { 13454 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 13455 return -EINVAL; 13456 } 13457 13458 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 13459 if (!ret_t || !__btf_type_is_struct(ret_t)) { 13460 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 13461 return -EINVAL; 13462 } 13463 13464 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13465 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { 13466 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", 13467 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); 13468 return -EINVAL; 13469 } 13470 13471 if (!bpf_global_percpu_ma_set) { 13472 mutex_lock(&bpf_percpu_ma_lock); 13473 if (!bpf_global_percpu_ma_set) { 13474 /* Charge memory allocated with bpf_global_percpu_ma to 13475 * root memcg. The obj_cgroup for root memcg is NULL. 13476 */ 13477 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); 13478 if (!err) 13479 bpf_global_percpu_ma_set = true; 13480 } 13481 mutex_unlock(&bpf_percpu_ma_lock); 13482 if (err) 13483 return err; 13484 } 13485 13486 mutex_lock(&bpf_percpu_ma_lock); 13487 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); 13488 mutex_unlock(&bpf_percpu_ma_lock); 13489 if (err) 13490 return err; 13491 } 13492 13493 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 13494 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13495 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 13496 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 13497 return -EINVAL; 13498 } 13499 13500 if (struct_meta) { 13501 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 13502 return -EINVAL; 13503 } 13504 } 13505 13506 mark_reg_known_zero(env, regs, BPF_REG_0); 13507 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13508 regs[BPF_REG_0].btf = ret_btf; 13509 regs[BPF_REG_0].btf_id = ret_btf_id; 13510 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 13511 regs[BPF_REG_0].type |= MEM_PERCPU; 13512 13513 insn_aux->obj_new_size = ret_t->size; 13514 insn_aux->kptr_struct_meta = struct_meta; 13515 } else if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 13516 mark_reg_known_zero(env, regs, BPF_REG_0); 13517 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13518 regs[BPF_REG_0].btf = meta->arg_btf; 13519 regs[BPF_REG_0].btf_id = meta->arg_btf_id; 13520 13521 insn_aux->kptr_struct_meta = 13522 btf_find_struct_meta(meta->arg_btf, 13523 meta->arg_btf_id); 13524 } else if (is_list_node_type(ptr_type)) { 13525 struct btf_field *field = meta->arg_list_head.field; 13526 13527 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13528 } else if (is_rbtree_node_type(ptr_type)) { 13529 struct btf_field *field = meta->arg_rbtree_root.field; 13530 13531 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13532 } else if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 13533 mark_reg_known_zero(env, regs, BPF_REG_0); 13534 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 13535 regs[BPF_REG_0].btf = desc_btf; 13536 regs[BPF_REG_0].btf_id = meta->ret_btf_id; 13537 } else if (meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 13538 ret_t = btf_type_by_id(desc_btf, meta->arg_constant.value); 13539 if (!ret_t || !btf_type_is_struct(ret_t)) { 13540 verbose(env, 13541 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 13542 return -EINVAL; 13543 } 13544 13545 mark_reg_known_zero(env, regs, BPF_REG_0); 13546 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 13547 regs[BPF_REG_0].btf = desc_btf; 13548 regs[BPF_REG_0].btf_id = meta->arg_constant.value; 13549 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 13550 meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 13551 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta->initialized_dynptr.type); 13552 13553 mark_reg_known_zero(env, regs, BPF_REG_0); 13554 13555 if (!meta->arg_constant.found) { 13556 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 13557 return -EFAULT; 13558 } 13559 13560 regs[BPF_REG_0].mem_size = meta->arg_constant.value; 13561 13562 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 13563 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 13564 13565 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 13566 regs[BPF_REG_0].type |= MEM_RDONLY; 13567 } else { 13568 /* this will set env->seen_direct_write to true */ 13569 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 13570 verbose(env, "the prog does not allow writes to packet data\n"); 13571 return -EINVAL; 13572 } 13573 } 13574 13575 if (!meta->initialized_dynptr.id) { 13576 verbose(env, "verifier internal error: no dynptr id\n"); 13577 return -EFAULT; 13578 } 13579 regs[BPF_REG_0].dynptr_id = meta->initialized_dynptr.id; 13580 13581 /* we don't need to set BPF_REG_0's ref obj id 13582 * because packet slices are not refcounted (see 13583 * dynptr_type_refcounted) 13584 */ 13585 } else { 13586 return 0; 13587 } 13588 13589 return 1; 13590 } 13591 13592 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 13593 13594 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 13595 int *insn_idx_p) 13596 { 13597 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; 13598 u32 i, nargs, ptr_type_id, release_ref_obj_id; 13599 struct bpf_reg_state *regs = cur_regs(env); 13600 const char *func_name, *ptr_type_name; 13601 const struct btf_type *t, *ptr_type; 13602 struct bpf_kfunc_call_arg_meta meta; 13603 struct bpf_insn_aux_data *insn_aux; 13604 int err, insn_idx = *insn_idx_p; 13605 const struct btf_param *args; 13606 struct btf *desc_btf; 13607 13608 /* skip for now, but return error when we find this in fixup_kfunc_call */ 13609 if (!insn->imm) 13610 return 0; 13611 13612 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 13613 if (err == -EACCES && func_name) 13614 verbose(env, "calling kernel function %s is not allowed\n", func_name); 13615 if (err) 13616 return err; 13617 desc_btf = meta.btf; 13618 insn_aux = &env->insn_aux_data[insn_idx]; 13619 13620 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 13621 13622 if (!insn->off && 13623 (insn->imm == special_kfunc_list[KF_bpf_res_spin_lock] || 13624 insn->imm == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) { 13625 struct bpf_verifier_state *branch; 13626 struct bpf_reg_state *regs; 13627 13628 branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false); 13629 if (!branch) { 13630 verbose(env, "failed to push state for failed lock acquisition\n"); 13631 return -ENOMEM; 13632 } 13633 13634 regs = branch->frame[branch->curframe]->regs; 13635 13636 /* Clear r0-r5 registers in forked state */ 13637 for (i = 0; i < CALLER_SAVED_REGS; i++) 13638 mark_reg_not_init(env, regs, caller_saved[i]); 13639 13640 mark_reg_unknown(env, regs, BPF_REG_0); 13641 err = __mark_reg_s32_range(env, regs, BPF_REG_0, -MAX_ERRNO, -1); 13642 if (err) { 13643 verbose(env, "failed to mark s32 range for retval in forked state for lock\n"); 13644 return err; 13645 } 13646 __mark_btf_func_reg_size(env, regs, BPF_REG_0, sizeof(u32)); 13647 } else if (!insn->off && insn->imm == special_kfunc_list[KF___bpf_trap]) { 13648 verbose(env, "unexpected __bpf_trap() due to uninitialized variable?\n"); 13649 return -EFAULT; 13650 } 13651 13652 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 13653 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 13654 return -EACCES; 13655 } 13656 13657 sleepable = is_kfunc_sleepable(&meta); 13658 if (sleepable && !in_sleepable(env)) { 13659 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 13660 return -EACCES; 13661 } 13662 13663 /* Check the arguments */ 13664 err = check_kfunc_args(env, &meta, insn_idx); 13665 if (err < 0) 13666 return err; 13667 13668 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13669 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 13670 set_rbtree_add_callback_state); 13671 if (err) { 13672 verbose(env, "kfunc %s#%d failed callback verification\n", 13673 func_name, meta.func_id); 13674 return err; 13675 } 13676 } 13677 13678 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) { 13679 meta.r0_size = sizeof(u64); 13680 meta.r0_rdonly = false; 13681 } 13682 13683 if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) { 13684 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 13685 set_timer_callback_state); 13686 if (err) { 13687 verbose(env, "kfunc %s#%d failed callback verification\n", 13688 func_name, meta.func_id); 13689 return err; 13690 } 13691 } 13692 13693 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 13694 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 13695 13696 preempt_disable = is_kfunc_bpf_preempt_disable(&meta); 13697 preempt_enable = is_kfunc_bpf_preempt_enable(&meta); 13698 13699 if (env->cur_state->active_rcu_lock) { 13700 struct bpf_func_state *state; 13701 struct bpf_reg_state *reg; 13702 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 13703 13704 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 13705 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 13706 return -EACCES; 13707 } 13708 13709 if (rcu_lock) { 13710 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 13711 return -EINVAL; 13712 } else if (rcu_unlock) { 13713 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 13714 if (reg->type & MEM_RCU) { 13715 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 13716 reg->type |= PTR_UNTRUSTED; 13717 } 13718 })); 13719 env->cur_state->active_rcu_lock = false; 13720 } else if (sleepable) { 13721 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 13722 return -EACCES; 13723 } 13724 } else if (rcu_lock) { 13725 env->cur_state->active_rcu_lock = true; 13726 } else if (rcu_unlock) { 13727 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 13728 return -EINVAL; 13729 } 13730 13731 if (env->cur_state->active_preempt_locks) { 13732 if (preempt_disable) { 13733 env->cur_state->active_preempt_locks++; 13734 } else if (preempt_enable) { 13735 env->cur_state->active_preempt_locks--; 13736 } else if (sleepable) { 13737 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); 13738 return -EACCES; 13739 } 13740 } else if (preempt_disable) { 13741 env->cur_state->active_preempt_locks++; 13742 } else if (preempt_enable) { 13743 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); 13744 return -EINVAL; 13745 } 13746 13747 if (env->cur_state->active_irq_id && sleepable) { 13748 verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name); 13749 return -EACCES; 13750 } 13751 13752 /* In case of release function, we get register number of refcounted 13753 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 13754 */ 13755 if (meta.release_regno) { 13756 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 13757 if (err) { 13758 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 13759 func_name, meta.func_id); 13760 return err; 13761 } 13762 } 13763 13764 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 13765 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 13766 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13767 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 13768 insn_aux->insert_off = regs[BPF_REG_2].off; 13769 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 13770 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 13771 if (err) { 13772 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 13773 func_name, meta.func_id); 13774 return err; 13775 } 13776 13777 err = release_reference(env, release_ref_obj_id); 13778 if (err) { 13779 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 13780 func_name, meta.func_id); 13781 return err; 13782 } 13783 } 13784 13785 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 13786 if (!bpf_jit_supports_exceptions()) { 13787 verbose(env, "JIT does not support calling kfunc %s#%d\n", 13788 func_name, meta.func_id); 13789 return -ENOTSUPP; 13790 } 13791 env->seen_exception = true; 13792 13793 /* In the case of the default callback, the cookie value passed 13794 * to bpf_throw becomes the return value of the program. 13795 */ 13796 if (!env->exception_callback_subprog) { 13797 err = check_return_code(env, BPF_REG_1, "R1"); 13798 if (err < 0) 13799 return err; 13800 } 13801 } 13802 13803 for (i = 0; i < CALLER_SAVED_REGS; i++) 13804 mark_reg_not_init(env, regs, caller_saved[i]); 13805 13806 /* Check return type */ 13807 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 13808 13809 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 13810 /* Only exception is bpf_obj_new_impl */ 13811 if (meta.btf != btf_vmlinux || 13812 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 13813 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 13814 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 13815 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 13816 return -EINVAL; 13817 } 13818 } 13819 13820 if (btf_type_is_scalar(t)) { 13821 mark_reg_unknown(env, regs, BPF_REG_0); 13822 if (meta.btf == btf_vmlinux && (meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock] || 13823 meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) 13824 __mark_reg_const_zero(env, ®s[BPF_REG_0]); 13825 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 13826 } else if (btf_type_is_ptr(t)) { 13827 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 13828 err = check_special_kfunc(env, &meta, regs, insn_aux, ptr_type, desc_btf); 13829 if (err) { 13830 if (err < 0) 13831 return err; 13832 } else if (btf_type_is_void(ptr_type)) { 13833 /* kfunc returning 'void *' is equivalent to returning scalar */ 13834 mark_reg_unknown(env, regs, BPF_REG_0); 13835 } else if (!__btf_type_is_struct(ptr_type)) { 13836 if (!meta.r0_size) { 13837 __u32 sz; 13838 13839 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 13840 meta.r0_size = sz; 13841 meta.r0_rdonly = true; 13842 } 13843 } 13844 if (!meta.r0_size) { 13845 ptr_type_name = btf_name_by_offset(desc_btf, 13846 ptr_type->name_off); 13847 verbose(env, 13848 "kernel function %s returns pointer type %s %s is not supported\n", 13849 func_name, 13850 btf_type_str(ptr_type), 13851 ptr_type_name); 13852 return -EINVAL; 13853 } 13854 13855 mark_reg_known_zero(env, regs, BPF_REG_0); 13856 regs[BPF_REG_0].type = PTR_TO_MEM; 13857 regs[BPF_REG_0].mem_size = meta.r0_size; 13858 13859 if (meta.r0_rdonly) 13860 regs[BPF_REG_0].type |= MEM_RDONLY; 13861 13862 /* Ensures we don't access the memory after a release_reference() */ 13863 if (meta.ref_obj_id) 13864 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 13865 } else { 13866 mark_reg_known_zero(env, regs, BPF_REG_0); 13867 regs[BPF_REG_0].btf = desc_btf; 13868 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 13869 regs[BPF_REG_0].btf_id = ptr_type_id; 13870 13871 if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache]) 13872 regs[BPF_REG_0].type |= PTR_UNTRUSTED; 13873 13874 if (is_iter_next_kfunc(&meta)) { 13875 struct bpf_reg_state *cur_iter; 13876 13877 cur_iter = get_iter_from_state(env->cur_state, &meta); 13878 13879 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */ 13880 regs[BPF_REG_0].type |= MEM_RCU; 13881 else 13882 regs[BPF_REG_0].type |= PTR_TRUSTED; 13883 } 13884 } 13885 13886 if (is_kfunc_ret_null(&meta)) { 13887 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 13888 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 13889 regs[BPF_REG_0].id = ++env->id_gen; 13890 } 13891 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 13892 if (is_kfunc_acquire(&meta)) { 13893 int id = acquire_reference(env, insn_idx); 13894 13895 if (id < 0) 13896 return id; 13897 if (is_kfunc_ret_null(&meta)) 13898 regs[BPF_REG_0].id = id; 13899 regs[BPF_REG_0].ref_obj_id = id; 13900 } else if (is_rbtree_node_type(ptr_type) || is_list_node_type(ptr_type)) { 13901 ref_set_non_owning(env, ®s[BPF_REG_0]); 13902 } 13903 13904 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 13905 regs[BPF_REG_0].id = ++env->id_gen; 13906 } else if (btf_type_is_void(t)) { 13907 if (meta.btf == btf_vmlinux) { 13908 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 13909 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 13910 insn_aux->kptr_struct_meta = 13911 btf_find_struct_meta(meta.arg_btf, 13912 meta.arg_btf_id); 13913 } 13914 } 13915 } 13916 13917 nargs = btf_type_vlen(meta.func_proto); 13918 args = (const struct btf_param *)(meta.func_proto + 1); 13919 for (i = 0; i < nargs; i++) { 13920 u32 regno = i + 1; 13921 13922 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 13923 if (btf_type_is_ptr(t)) 13924 mark_btf_func_reg_size(env, regno, sizeof(void *)); 13925 else 13926 /* scalar. ensured by btf_check_kfunc_arg_match() */ 13927 mark_btf_func_reg_size(env, regno, t->size); 13928 } 13929 13930 if (is_iter_next_kfunc(&meta)) { 13931 err = process_iter_next_call(env, insn_idx, &meta); 13932 if (err) 13933 return err; 13934 } 13935 13936 return 0; 13937 } 13938 13939 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 13940 const struct bpf_reg_state *reg, 13941 enum bpf_reg_type type) 13942 { 13943 bool known = tnum_is_const(reg->var_off); 13944 s64 val = reg->var_off.value; 13945 s64 smin = reg->smin_value; 13946 13947 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 13948 verbose(env, "math between %s pointer and %lld is not allowed\n", 13949 reg_type_str(env, type), val); 13950 return false; 13951 } 13952 13953 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 13954 verbose(env, "%s pointer offset %d is not allowed\n", 13955 reg_type_str(env, type), reg->off); 13956 return false; 13957 } 13958 13959 if (smin == S64_MIN) { 13960 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 13961 reg_type_str(env, type)); 13962 return false; 13963 } 13964 13965 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 13966 verbose(env, "value %lld makes %s pointer be out of bounds\n", 13967 smin, reg_type_str(env, type)); 13968 return false; 13969 } 13970 13971 return true; 13972 } 13973 13974 enum { 13975 REASON_BOUNDS = -1, 13976 REASON_TYPE = -2, 13977 REASON_PATHS = -3, 13978 REASON_LIMIT = -4, 13979 REASON_STACK = -5, 13980 }; 13981 13982 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 13983 u32 *alu_limit, bool mask_to_left) 13984 { 13985 u32 max = 0, ptr_limit = 0; 13986 13987 switch (ptr_reg->type) { 13988 case PTR_TO_STACK: 13989 /* Offset 0 is out-of-bounds, but acceptable start for the 13990 * left direction, see BPF_REG_FP. Also, unknown scalar 13991 * offset where we would need to deal with min/max bounds is 13992 * currently prohibited for unprivileged. 13993 */ 13994 max = MAX_BPF_STACK + mask_to_left; 13995 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 13996 break; 13997 case PTR_TO_MAP_VALUE: 13998 max = ptr_reg->map_ptr->value_size; 13999 ptr_limit = (mask_to_left ? 14000 ptr_reg->smin_value : 14001 ptr_reg->umax_value) + ptr_reg->off; 14002 break; 14003 default: 14004 return REASON_TYPE; 14005 } 14006 14007 if (ptr_limit >= max) 14008 return REASON_LIMIT; 14009 *alu_limit = ptr_limit; 14010 return 0; 14011 } 14012 14013 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 14014 const struct bpf_insn *insn) 14015 { 14016 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 14017 } 14018 14019 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 14020 u32 alu_state, u32 alu_limit) 14021 { 14022 /* If we arrived here from different branches with different 14023 * state or limits to sanitize, then this won't work. 14024 */ 14025 if (aux->alu_state && 14026 (aux->alu_state != alu_state || 14027 aux->alu_limit != alu_limit)) 14028 return REASON_PATHS; 14029 14030 /* Corresponding fixup done in do_misc_fixups(). */ 14031 aux->alu_state = alu_state; 14032 aux->alu_limit = alu_limit; 14033 return 0; 14034 } 14035 14036 static int sanitize_val_alu(struct bpf_verifier_env *env, 14037 struct bpf_insn *insn) 14038 { 14039 struct bpf_insn_aux_data *aux = cur_aux(env); 14040 14041 if (can_skip_alu_sanitation(env, insn)) 14042 return 0; 14043 14044 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 14045 } 14046 14047 static bool sanitize_needed(u8 opcode) 14048 { 14049 return opcode == BPF_ADD || opcode == BPF_SUB; 14050 } 14051 14052 struct bpf_sanitize_info { 14053 struct bpf_insn_aux_data aux; 14054 bool mask_to_left; 14055 }; 14056 14057 static struct bpf_verifier_state * 14058 sanitize_speculative_path(struct bpf_verifier_env *env, 14059 const struct bpf_insn *insn, 14060 u32 next_idx, u32 curr_idx) 14061 { 14062 struct bpf_verifier_state *branch; 14063 struct bpf_reg_state *regs; 14064 14065 branch = push_stack(env, next_idx, curr_idx, true); 14066 if (branch && insn) { 14067 regs = branch->frame[branch->curframe]->regs; 14068 if (BPF_SRC(insn->code) == BPF_K) { 14069 mark_reg_unknown(env, regs, insn->dst_reg); 14070 } else if (BPF_SRC(insn->code) == BPF_X) { 14071 mark_reg_unknown(env, regs, insn->dst_reg); 14072 mark_reg_unknown(env, regs, insn->src_reg); 14073 } 14074 } 14075 return branch; 14076 } 14077 14078 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 14079 struct bpf_insn *insn, 14080 const struct bpf_reg_state *ptr_reg, 14081 const struct bpf_reg_state *off_reg, 14082 struct bpf_reg_state *dst_reg, 14083 struct bpf_sanitize_info *info, 14084 const bool commit_window) 14085 { 14086 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 14087 struct bpf_verifier_state *vstate = env->cur_state; 14088 bool off_is_imm = tnum_is_const(off_reg->var_off); 14089 bool off_is_neg = off_reg->smin_value < 0; 14090 bool ptr_is_dst_reg = ptr_reg == dst_reg; 14091 u8 opcode = BPF_OP(insn->code); 14092 u32 alu_state, alu_limit; 14093 struct bpf_reg_state tmp; 14094 bool ret; 14095 int err; 14096 14097 if (can_skip_alu_sanitation(env, insn)) 14098 return 0; 14099 14100 /* We already marked aux for masking from non-speculative 14101 * paths, thus we got here in the first place. We only care 14102 * to explore bad access from here. 14103 */ 14104 if (vstate->speculative) 14105 goto do_sim; 14106 14107 if (!commit_window) { 14108 if (!tnum_is_const(off_reg->var_off) && 14109 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 14110 return REASON_BOUNDS; 14111 14112 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 14113 (opcode == BPF_SUB && !off_is_neg); 14114 } 14115 14116 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 14117 if (err < 0) 14118 return err; 14119 14120 if (commit_window) { 14121 /* In commit phase we narrow the masking window based on 14122 * the observed pointer move after the simulated operation. 14123 */ 14124 alu_state = info->aux.alu_state; 14125 alu_limit = abs(info->aux.alu_limit - alu_limit); 14126 } else { 14127 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 14128 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 14129 alu_state |= ptr_is_dst_reg ? 14130 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 14131 14132 /* Limit pruning on unknown scalars to enable deep search for 14133 * potential masking differences from other program paths. 14134 */ 14135 if (!off_is_imm) 14136 env->explore_alu_limits = true; 14137 } 14138 14139 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 14140 if (err < 0) 14141 return err; 14142 do_sim: 14143 /* If we're in commit phase, we're done here given we already 14144 * pushed the truncated dst_reg into the speculative verification 14145 * stack. 14146 * 14147 * Also, when register is a known constant, we rewrite register-based 14148 * operation to immediate-based, and thus do not need masking (and as 14149 * a consequence, do not need to simulate the zero-truncation either). 14150 */ 14151 if (commit_window || off_is_imm) 14152 return 0; 14153 14154 /* Simulate and find potential out-of-bounds access under 14155 * speculative execution from truncation as a result of 14156 * masking when off was not within expected range. If off 14157 * sits in dst, then we temporarily need to move ptr there 14158 * to simulate dst (== 0) +/-= ptr. Needed, for example, 14159 * for cases where we use K-based arithmetic in one direction 14160 * and truncated reg-based in the other in order to explore 14161 * bad access. 14162 */ 14163 if (!ptr_is_dst_reg) { 14164 tmp = *dst_reg; 14165 copy_register_state(dst_reg, ptr_reg); 14166 } 14167 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 14168 env->insn_idx); 14169 if (!ptr_is_dst_reg && ret) 14170 *dst_reg = tmp; 14171 return !ret ? REASON_STACK : 0; 14172 } 14173 14174 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 14175 { 14176 struct bpf_verifier_state *vstate = env->cur_state; 14177 14178 /* If we simulate paths under speculation, we don't update the 14179 * insn as 'seen' such that when we verify unreachable paths in 14180 * the non-speculative domain, sanitize_dead_code() can still 14181 * rewrite/sanitize them. 14182 */ 14183 if (!vstate->speculative) 14184 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 14185 } 14186 14187 static int sanitize_err(struct bpf_verifier_env *env, 14188 const struct bpf_insn *insn, int reason, 14189 const struct bpf_reg_state *off_reg, 14190 const struct bpf_reg_state *dst_reg) 14191 { 14192 static const char *err = "pointer arithmetic with it prohibited for !root"; 14193 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 14194 u32 dst = insn->dst_reg, src = insn->src_reg; 14195 14196 switch (reason) { 14197 case REASON_BOUNDS: 14198 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 14199 off_reg == dst_reg ? dst : src, err); 14200 break; 14201 case REASON_TYPE: 14202 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 14203 off_reg == dst_reg ? src : dst, err); 14204 break; 14205 case REASON_PATHS: 14206 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 14207 dst, op, err); 14208 break; 14209 case REASON_LIMIT: 14210 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 14211 dst, op, err); 14212 break; 14213 case REASON_STACK: 14214 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 14215 dst, err); 14216 break; 14217 default: 14218 verbose(env, "verifier internal error: unknown reason (%d)\n", 14219 reason); 14220 break; 14221 } 14222 14223 return -EACCES; 14224 } 14225 14226 /* check that stack access falls within stack limits and that 'reg' doesn't 14227 * have a variable offset. 14228 * 14229 * Variable offset is prohibited for unprivileged mode for simplicity since it 14230 * requires corresponding support in Spectre masking for stack ALU. See also 14231 * retrieve_ptr_limit(). 14232 * 14233 * 14234 * 'off' includes 'reg->off'. 14235 */ 14236 static int check_stack_access_for_ptr_arithmetic( 14237 struct bpf_verifier_env *env, 14238 int regno, 14239 const struct bpf_reg_state *reg, 14240 int off) 14241 { 14242 if (!tnum_is_const(reg->var_off)) { 14243 char tn_buf[48]; 14244 14245 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 14246 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 14247 regno, tn_buf, off); 14248 return -EACCES; 14249 } 14250 14251 if (off >= 0 || off < -MAX_BPF_STACK) { 14252 verbose(env, "R%d stack pointer arithmetic goes out of range, " 14253 "prohibited for !root; off=%d\n", regno, off); 14254 return -EACCES; 14255 } 14256 14257 return 0; 14258 } 14259 14260 static int sanitize_check_bounds(struct bpf_verifier_env *env, 14261 const struct bpf_insn *insn, 14262 const struct bpf_reg_state *dst_reg) 14263 { 14264 u32 dst = insn->dst_reg; 14265 14266 /* For unprivileged we require that resulting offset must be in bounds 14267 * in order to be able to sanitize access later on. 14268 */ 14269 if (env->bypass_spec_v1) 14270 return 0; 14271 14272 switch (dst_reg->type) { 14273 case PTR_TO_STACK: 14274 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 14275 dst_reg->off + dst_reg->var_off.value)) 14276 return -EACCES; 14277 break; 14278 case PTR_TO_MAP_VALUE: 14279 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 14280 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 14281 "prohibited for !root\n", dst); 14282 return -EACCES; 14283 } 14284 break; 14285 default: 14286 break; 14287 } 14288 14289 return 0; 14290 } 14291 14292 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 14293 * Caller should also handle BPF_MOV case separately. 14294 * If we return -EACCES, caller may want to try again treating pointer as a 14295 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 14296 */ 14297 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 14298 struct bpf_insn *insn, 14299 const struct bpf_reg_state *ptr_reg, 14300 const struct bpf_reg_state *off_reg) 14301 { 14302 struct bpf_verifier_state *vstate = env->cur_state; 14303 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14304 struct bpf_reg_state *regs = state->regs, *dst_reg; 14305 bool known = tnum_is_const(off_reg->var_off); 14306 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 14307 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 14308 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 14309 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 14310 struct bpf_sanitize_info info = {}; 14311 u8 opcode = BPF_OP(insn->code); 14312 u32 dst = insn->dst_reg; 14313 int ret; 14314 14315 dst_reg = ®s[dst]; 14316 14317 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 14318 smin_val > smax_val || umin_val > umax_val) { 14319 /* Taint dst register if offset had invalid bounds derived from 14320 * e.g. dead branches. 14321 */ 14322 __mark_reg_unknown(env, dst_reg); 14323 return 0; 14324 } 14325 14326 if (BPF_CLASS(insn->code) != BPF_ALU64) { 14327 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 14328 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 14329 __mark_reg_unknown(env, dst_reg); 14330 return 0; 14331 } 14332 14333 verbose(env, 14334 "R%d 32-bit pointer arithmetic prohibited\n", 14335 dst); 14336 return -EACCES; 14337 } 14338 14339 if (ptr_reg->type & PTR_MAYBE_NULL) { 14340 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 14341 dst, reg_type_str(env, ptr_reg->type)); 14342 return -EACCES; 14343 } 14344 14345 switch (base_type(ptr_reg->type)) { 14346 case PTR_TO_CTX: 14347 case PTR_TO_MAP_VALUE: 14348 case PTR_TO_MAP_KEY: 14349 case PTR_TO_STACK: 14350 case PTR_TO_PACKET_META: 14351 case PTR_TO_PACKET: 14352 case PTR_TO_TP_BUFFER: 14353 case PTR_TO_BTF_ID: 14354 case PTR_TO_MEM: 14355 case PTR_TO_BUF: 14356 case PTR_TO_FUNC: 14357 case CONST_PTR_TO_DYNPTR: 14358 break; 14359 case PTR_TO_FLOW_KEYS: 14360 if (known) 14361 break; 14362 fallthrough; 14363 case CONST_PTR_TO_MAP: 14364 /* smin_val represents the known value */ 14365 if (known && smin_val == 0 && opcode == BPF_ADD) 14366 break; 14367 fallthrough; 14368 default: 14369 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 14370 dst, reg_type_str(env, ptr_reg->type)); 14371 return -EACCES; 14372 } 14373 14374 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 14375 * The id may be overwritten later if we create a new variable offset. 14376 */ 14377 dst_reg->type = ptr_reg->type; 14378 dst_reg->id = ptr_reg->id; 14379 14380 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 14381 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 14382 return -EINVAL; 14383 14384 /* pointer types do not carry 32-bit bounds at the moment. */ 14385 __mark_reg32_unbounded(dst_reg); 14386 14387 if (sanitize_needed(opcode)) { 14388 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 14389 &info, false); 14390 if (ret < 0) 14391 return sanitize_err(env, insn, ret, off_reg, dst_reg); 14392 } 14393 14394 switch (opcode) { 14395 case BPF_ADD: 14396 /* We can take a fixed offset as long as it doesn't overflow 14397 * the s32 'off' field 14398 */ 14399 if (known && (ptr_reg->off + smin_val == 14400 (s64)(s32)(ptr_reg->off + smin_val))) { 14401 /* pointer += K. Accumulate it into fixed offset */ 14402 dst_reg->smin_value = smin_ptr; 14403 dst_reg->smax_value = smax_ptr; 14404 dst_reg->umin_value = umin_ptr; 14405 dst_reg->umax_value = umax_ptr; 14406 dst_reg->var_off = ptr_reg->var_off; 14407 dst_reg->off = ptr_reg->off + smin_val; 14408 dst_reg->raw = ptr_reg->raw; 14409 break; 14410 } 14411 /* A new variable offset is created. Note that off_reg->off 14412 * == 0, since it's a scalar. 14413 * dst_reg gets the pointer type and since some positive 14414 * integer value was added to the pointer, give it a new 'id' 14415 * if it's a PTR_TO_PACKET. 14416 * this creates a new 'base' pointer, off_reg (variable) gets 14417 * added into the variable offset, and we copy the fixed offset 14418 * from ptr_reg. 14419 */ 14420 if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) || 14421 check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) { 14422 dst_reg->smin_value = S64_MIN; 14423 dst_reg->smax_value = S64_MAX; 14424 } 14425 if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) || 14426 check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) { 14427 dst_reg->umin_value = 0; 14428 dst_reg->umax_value = U64_MAX; 14429 } 14430 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 14431 dst_reg->off = ptr_reg->off; 14432 dst_reg->raw = ptr_reg->raw; 14433 if (reg_is_pkt_pointer(ptr_reg)) { 14434 dst_reg->id = ++env->id_gen; 14435 /* something was added to pkt_ptr, set range to zero */ 14436 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14437 } 14438 break; 14439 case BPF_SUB: 14440 if (dst_reg == off_reg) { 14441 /* scalar -= pointer. Creates an unknown scalar */ 14442 verbose(env, "R%d tried to subtract pointer from scalar\n", 14443 dst); 14444 return -EACCES; 14445 } 14446 /* We don't allow subtraction from FP, because (according to 14447 * test_verifier.c test "invalid fp arithmetic", JITs might not 14448 * be able to deal with it. 14449 */ 14450 if (ptr_reg->type == PTR_TO_STACK) { 14451 verbose(env, "R%d subtraction from stack pointer prohibited\n", 14452 dst); 14453 return -EACCES; 14454 } 14455 if (known && (ptr_reg->off - smin_val == 14456 (s64)(s32)(ptr_reg->off - smin_val))) { 14457 /* pointer -= K. Subtract it from fixed offset */ 14458 dst_reg->smin_value = smin_ptr; 14459 dst_reg->smax_value = smax_ptr; 14460 dst_reg->umin_value = umin_ptr; 14461 dst_reg->umax_value = umax_ptr; 14462 dst_reg->var_off = ptr_reg->var_off; 14463 dst_reg->id = ptr_reg->id; 14464 dst_reg->off = ptr_reg->off - smin_val; 14465 dst_reg->raw = ptr_reg->raw; 14466 break; 14467 } 14468 /* A new variable offset is created. If the subtrahend is known 14469 * nonnegative, then any reg->range we had before is still good. 14470 */ 14471 if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) || 14472 check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) { 14473 /* Overflow possible, we know nothing */ 14474 dst_reg->smin_value = S64_MIN; 14475 dst_reg->smax_value = S64_MAX; 14476 } 14477 if (umin_ptr < umax_val) { 14478 /* Overflow possible, we know nothing */ 14479 dst_reg->umin_value = 0; 14480 dst_reg->umax_value = U64_MAX; 14481 } else { 14482 /* Cannot overflow (as long as bounds are consistent) */ 14483 dst_reg->umin_value = umin_ptr - umax_val; 14484 dst_reg->umax_value = umax_ptr - umin_val; 14485 } 14486 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 14487 dst_reg->off = ptr_reg->off; 14488 dst_reg->raw = ptr_reg->raw; 14489 if (reg_is_pkt_pointer(ptr_reg)) { 14490 dst_reg->id = ++env->id_gen; 14491 /* something was added to pkt_ptr, set range to zero */ 14492 if (smin_val < 0) 14493 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14494 } 14495 break; 14496 case BPF_AND: 14497 case BPF_OR: 14498 case BPF_XOR: 14499 /* bitwise ops on pointers are troublesome, prohibit. */ 14500 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 14501 dst, bpf_alu_string[opcode >> 4]); 14502 return -EACCES; 14503 default: 14504 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 14505 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 14506 dst, bpf_alu_string[opcode >> 4]); 14507 return -EACCES; 14508 } 14509 14510 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 14511 return -EINVAL; 14512 reg_bounds_sync(dst_reg); 14513 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 14514 return -EACCES; 14515 if (sanitize_needed(opcode)) { 14516 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 14517 &info, true); 14518 if (ret < 0) 14519 return sanitize_err(env, insn, ret, off_reg, dst_reg); 14520 } 14521 14522 return 0; 14523 } 14524 14525 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 14526 struct bpf_reg_state *src_reg) 14527 { 14528 s32 *dst_smin = &dst_reg->s32_min_value; 14529 s32 *dst_smax = &dst_reg->s32_max_value; 14530 u32 *dst_umin = &dst_reg->u32_min_value; 14531 u32 *dst_umax = &dst_reg->u32_max_value; 14532 14533 if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) || 14534 check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) { 14535 *dst_smin = S32_MIN; 14536 *dst_smax = S32_MAX; 14537 } 14538 if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) || 14539 check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) { 14540 *dst_umin = 0; 14541 *dst_umax = U32_MAX; 14542 } 14543 } 14544 14545 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 14546 struct bpf_reg_state *src_reg) 14547 { 14548 s64 *dst_smin = &dst_reg->smin_value; 14549 s64 *dst_smax = &dst_reg->smax_value; 14550 u64 *dst_umin = &dst_reg->umin_value; 14551 u64 *dst_umax = &dst_reg->umax_value; 14552 14553 if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) || 14554 check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) { 14555 *dst_smin = S64_MIN; 14556 *dst_smax = S64_MAX; 14557 } 14558 if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) || 14559 check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) { 14560 *dst_umin = 0; 14561 *dst_umax = U64_MAX; 14562 } 14563 } 14564 14565 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 14566 struct bpf_reg_state *src_reg) 14567 { 14568 s32 *dst_smin = &dst_reg->s32_min_value; 14569 s32 *dst_smax = &dst_reg->s32_max_value; 14570 u32 umin_val = src_reg->u32_min_value; 14571 u32 umax_val = src_reg->u32_max_value; 14572 14573 if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) || 14574 check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) { 14575 /* Overflow possible, we know nothing */ 14576 *dst_smin = S32_MIN; 14577 *dst_smax = S32_MAX; 14578 } 14579 if (dst_reg->u32_min_value < umax_val) { 14580 /* Overflow possible, we know nothing */ 14581 dst_reg->u32_min_value = 0; 14582 dst_reg->u32_max_value = U32_MAX; 14583 } else { 14584 /* Cannot overflow (as long as bounds are consistent) */ 14585 dst_reg->u32_min_value -= umax_val; 14586 dst_reg->u32_max_value -= umin_val; 14587 } 14588 } 14589 14590 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 14591 struct bpf_reg_state *src_reg) 14592 { 14593 s64 *dst_smin = &dst_reg->smin_value; 14594 s64 *dst_smax = &dst_reg->smax_value; 14595 u64 umin_val = src_reg->umin_value; 14596 u64 umax_val = src_reg->umax_value; 14597 14598 if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) || 14599 check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) { 14600 /* Overflow possible, we know nothing */ 14601 *dst_smin = S64_MIN; 14602 *dst_smax = S64_MAX; 14603 } 14604 if (dst_reg->umin_value < umax_val) { 14605 /* Overflow possible, we know nothing */ 14606 dst_reg->umin_value = 0; 14607 dst_reg->umax_value = U64_MAX; 14608 } else { 14609 /* Cannot overflow (as long as bounds are consistent) */ 14610 dst_reg->umin_value -= umax_val; 14611 dst_reg->umax_value -= umin_val; 14612 } 14613 } 14614 14615 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 14616 struct bpf_reg_state *src_reg) 14617 { 14618 s32 *dst_smin = &dst_reg->s32_min_value; 14619 s32 *dst_smax = &dst_reg->s32_max_value; 14620 u32 *dst_umin = &dst_reg->u32_min_value; 14621 u32 *dst_umax = &dst_reg->u32_max_value; 14622 s32 tmp_prod[4]; 14623 14624 if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) || 14625 check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) { 14626 /* Overflow possible, we know nothing */ 14627 *dst_umin = 0; 14628 *dst_umax = U32_MAX; 14629 } 14630 if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) || 14631 check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) || 14632 check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) || 14633 check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) { 14634 /* Overflow possible, we know nothing */ 14635 *dst_smin = S32_MIN; 14636 *dst_smax = S32_MAX; 14637 } else { 14638 *dst_smin = min_array(tmp_prod, 4); 14639 *dst_smax = max_array(tmp_prod, 4); 14640 } 14641 } 14642 14643 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 14644 struct bpf_reg_state *src_reg) 14645 { 14646 s64 *dst_smin = &dst_reg->smin_value; 14647 s64 *dst_smax = &dst_reg->smax_value; 14648 u64 *dst_umin = &dst_reg->umin_value; 14649 u64 *dst_umax = &dst_reg->umax_value; 14650 s64 tmp_prod[4]; 14651 14652 if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) || 14653 check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) { 14654 /* Overflow possible, we know nothing */ 14655 *dst_umin = 0; 14656 *dst_umax = U64_MAX; 14657 } 14658 if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) || 14659 check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) || 14660 check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) || 14661 check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) { 14662 /* Overflow possible, we know nothing */ 14663 *dst_smin = S64_MIN; 14664 *dst_smax = S64_MAX; 14665 } else { 14666 *dst_smin = min_array(tmp_prod, 4); 14667 *dst_smax = max_array(tmp_prod, 4); 14668 } 14669 } 14670 14671 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 14672 struct bpf_reg_state *src_reg) 14673 { 14674 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14675 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14676 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14677 u32 umax_val = src_reg->u32_max_value; 14678 14679 if (src_known && dst_known) { 14680 __mark_reg32_known(dst_reg, var32_off.value); 14681 return; 14682 } 14683 14684 /* We get our minimum from the var_off, since that's inherently 14685 * bitwise. Our maximum is the minimum of the operands' maxima. 14686 */ 14687 dst_reg->u32_min_value = var32_off.value; 14688 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 14689 14690 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14691 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14692 */ 14693 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14694 dst_reg->s32_min_value = dst_reg->u32_min_value; 14695 dst_reg->s32_max_value = dst_reg->u32_max_value; 14696 } else { 14697 dst_reg->s32_min_value = S32_MIN; 14698 dst_reg->s32_max_value = S32_MAX; 14699 } 14700 } 14701 14702 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 14703 struct bpf_reg_state *src_reg) 14704 { 14705 bool src_known = tnum_is_const(src_reg->var_off); 14706 bool dst_known = tnum_is_const(dst_reg->var_off); 14707 u64 umax_val = src_reg->umax_value; 14708 14709 if (src_known && dst_known) { 14710 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14711 return; 14712 } 14713 14714 /* We get our minimum from the var_off, since that's inherently 14715 * bitwise. Our maximum is the minimum of the operands' maxima. 14716 */ 14717 dst_reg->umin_value = dst_reg->var_off.value; 14718 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 14719 14720 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14721 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14722 */ 14723 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 14724 dst_reg->smin_value = dst_reg->umin_value; 14725 dst_reg->smax_value = dst_reg->umax_value; 14726 } else { 14727 dst_reg->smin_value = S64_MIN; 14728 dst_reg->smax_value = S64_MAX; 14729 } 14730 /* We may learn something more from the var_off */ 14731 __update_reg_bounds(dst_reg); 14732 } 14733 14734 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 14735 struct bpf_reg_state *src_reg) 14736 { 14737 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14738 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14739 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14740 u32 umin_val = src_reg->u32_min_value; 14741 14742 if (src_known && dst_known) { 14743 __mark_reg32_known(dst_reg, var32_off.value); 14744 return; 14745 } 14746 14747 /* We get our maximum from the var_off, and our minimum is the 14748 * maximum of the operands' minima 14749 */ 14750 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 14751 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 14752 14753 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14754 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14755 */ 14756 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14757 dst_reg->s32_min_value = dst_reg->u32_min_value; 14758 dst_reg->s32_max_value = dst_reg->u32_max_value; 14759 } else { 14760 dst_reg->s32_min_value = S32_MIN; 14761 dst_reg->s32_max_value = S32_MAX; 14762 } 14763 } 14764 14765 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 14766 struct bpf_reg_state *src_reg) 14767 { 14768 bool src_known = tnum_is_const(src_reg->var_off); 14769 bool dst_known = tnum_is_const(dst_reg->var_off); 14770 u64 umin_val = src_reg->umin_value; 14771 14772 if (src_known && dst_known) { 14773 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14774 return; 14775 } 14776 14777 /* We get our maximum from the var_off, and our minimum is the 14778 * maximum of the operands' minima 14779 */ 14780 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 14781 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 14782 14783 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14784 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14785 */ 14786 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 14787 dst_reg->smin_value = dst_reg->umin_value; 14788 dst_reg->smax_value = dst_reg->umax_value; 14789 } else { 14790 dst_reg->smin_value = S64_MIN; 14791 dst_reg->smax_value = S64_MAX; 14792 } 14793 /* We may learn something more from the var_off */ 14794 __update_reg_bounds(dst_reg); 14795 } 14796 14797 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 14798 struct bpf_reg_state *src_reg) 14799 { 14800 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14801 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14802 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14803 14804 if (src_known && dst_known) { 14805 __mark_reg32_known(dst_reg, var32_off.value); 14806 return; 14807 } 14808 14809 /* We get both minimum and maximum from the var32_off. */ 14810 dst_reg->u32_min_value = var32_off.value; 14811 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 14812 14813 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14814 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14815 */ 14816 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14817 dst_reg->s32_min_value = dst_reg->u32_min_value; 14818 dst_reg->s32_max_value = dst_reg->u32_max_value; 14819 } else { 14820 dst_reg->s32_min_value = S32_MIN; 14821 dst_reg->s32_max_value = S32_MAX; 14822 } 14823 } 14824 14825 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 14826 struct bpf_reg_state *src_reg) 14827 { 14828 bool src_known = tnum_is_const(src_reg->var_off); 14829 bool dst_known = tnum_is_const(dst_reg->var_off); 14830 14831 if (src_known && dst_known) { 14832 /* dst_reg->var_off.value has been updated earlier */ 14833 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14834 return; 14835 } 14836 14837 /* We get both minimum and maximum from the var_off. */ 14838 dst_reg->umin_value = dst_reg->var_off.value; 14839 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 14840 14841 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14842 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14843 */ 14844 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 14845 dst_reg->smin_value = dst_reg->umin_value; 14846 dst_reg->smax_value = dst_reg->umax_value; 14847 } else { 14848 dst_reg->smin_value = S64_MIN; 14849 dst_reg->smax_value = S64_MAX; 14850 } 14851 14852 __update_reg_bounds(dst_reg); 14853 } 14854 14855 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 14856 u64 umin_val, u64 umax_val) 14857 { 14858 /* We lose all sign bit information (except what we can pick 14859 * up from var_off) 14860 */ 14861 dst_reg->s32_min_value = S32_MIN; 14862 dst_reg->s32_max_value = S32_MAX; 14863 /* If we might shift our top bit out, then we know nothing */ 14864 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 14865 dst_reg->u32_min_value = 0; 14866 dst_reg->u32_max_value = U32_MAX; 14867 } else { 14868 dst_reg->u32_min_value <<= umin_val; 14869 dst_reg->u32_max_value <<= umax_val; 14870 } 14871 } 14872 14873 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 14874 struct bpf_reg_state *src_reg) 14875 { 14876 u32 umax_val = src_reg->u32_max_value; 14877 u32 umin_val = src_reg->u32_min_value; 14878 /* u32 alu operation will zext upper bits */ 14879 struct tnum subreg = tnum_subreg(dst_reg->var_off); 14880 14881 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 14882 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 14883 /* Not required but being careful mark reg64 bounds as unknown so 14884 * that we are forced to pick them up from tnum and zext later and 14885 * if some path skips this step we are still safe. 14886 */ 14887 __mark_reg64_unbounded(dst_reg); 14888 __update_reg32_bounds(dst_reg); 14889 } 14890 14891 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 14892 u64 umin_val, u64 umax_val) 14893 { 14894 /* Special case <<32 because it is a common compiler pattern to sign 14895 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 14896 * positive we know this shift will also be positive so we can track 14897 * bounds correctly. Otherwise we lose all sign bit information except 14898 * what we can pick up from var_off. Perhaps we can generalize this 14899 * later to shifts of any length. 14900 */ 14901 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 14902 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 14903 else 14904 dst_reg->smax_value = S64_MAX; 14905 14906 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 14907 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 14908 else 14909 dst_reg->smin_value = S64_MIN; 14910 14911 /* If we might shift our top bit out, then we know nothing */ 14912 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 14913 dst_reg->umin_value = 0; 14914 dst_reg->umax_value = U64_MAX; 14915 } else { 14916 dst_reg->umin_value <<= umin_val; 14917 dst_reg->umax_value <<= umax_val; 14918 } 14919 } 14920 14921 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 14922 struct bpf_reg_state *src_reg) 14923 { 14924 u64 umax_val = src_reg->umax_value; 14925 u64 umin_val = src_reg->umin_value; 14926 14927 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 14928 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 14929 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 14930 14931 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 14932 /* We may learn something more from the var_off */ 14933 __update_reg_bounds(dst_reg); 14934 } 14935 14936 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 14937 struct bpf_reg_state *src_reg) 14938 { 14939 struct tnum subreg = tnum_subreg(dst_reg->var_off); 14940 u32 umax_val = src_reg->u32_max_value; 14941 u32 umin_val = src_reg->u32_min_value; 14942 14943 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 14944 * be negative, then either: 14945 * 1) src_reg might be zero, so the sign bit of the result is 14946 * unknown, so we lose our signed bounds 14947 * 2) it's known negative, thus the unsigned bounds capture the 14948 * signed bounds 14949 * 3) the signed bounds cross zero, so they tell us nothing 14950 * about the result 14951 * If the value in dst_reg is known nonnegative, then again the 14952 * unsigned bounds capture the signed bounds. 14953 * Thus, in all cases it suffices to blow away our signed bounds 14954 * and rely on inferring new ones from the unsigned bounds and 14955 * var_off of the result. 14956 */ 14957 dst_reg->s32_min_value = S32_MIN; 14958 dst_reg->s32_max_value = S32_MAX; 14959 14960 dst_reg->var_off = tnum_rshift(subreg, umin_val); 14961 dst_reg->u32_min_value >>= umax_val; 14962 dst_reg->u32_max_value >>= umin_val; 14963 14964 __mark_reg64_unbounded(dst_reg); 14965 __update_reg32_bounds(dst_reg); 14966 } 14967 14968 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 14969 struct bpf_reg_state *src_reg) 14970 { 14971 u64 umax_val = src_reg->umax_value; 14972 u64 umin_val = src_reg->umin_value; 14973 14974 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 14975 * be negative, then either: 14976 * 1) src_reg might be zero, so the sign bit of the result is 14977 * unknown, so we lose our signed bounds 14978 * 2) it's known negative, thus the unsigned bounds capture the 14979 * signed bounds 14980 * 3) the signed bounds cross zero, so they tell us nothing 14981 * about the result 14982 * If the value in dst_reg is known nonnegative, then again the 14983 * unsigned bounds capture the signed bounds. 14984 * Thus, in all cases it suffices to blow away our signed bounds 14985 * and rely on inferring new ones from the unsigned bounds and 14986 * var_off of the result. 14987 */ 14988 dst_reg->smin_value = S64_MIN; 14989 dst_reg->smax_value = S64_MAX; 14990 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 14991 dst_reg->umin_value >>= umax_val; 14992 dst_reg->umax_value >>= umin_val; 14993 14994 /* Its not easy to operate on alu32 bounds here because it depends 14995 * on bits being shifted in. Take easy way out and mark unbounded 14996 * so we can recalculate later from tnum. 14997 */ 14998 __mark_reg32_unbounded(dst_reg); 14999 __update_reg_bounds(dst_reg); 15000 } 15001 15002 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 15003 struct bpf_reg_state *src_reg) 15004 { 15005 u64 umin_val = src_reg->u32_min_value; 15006 15007 /* Upon reaching here, src_known is true and 15008 * umax_val is equal to umin_val. 15009 */ 15010 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 15011 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 15012 15013 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 15014 15015 /* blow away the dst_reg umin_value/umax_value and rely on 15016 * dst_reg var_off to refine the result. 15017 */ 15018 dst_reg->u32_min_value = 0; 15019 dst_reg->u32_max_value = U32_MAX; 15020 15021 __mark_reg64_unbounded(dst_reg); 15022 __update_reg32_bounds(dst_reg); 15023 } 15024 15025 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 15026 struct bpf_reg_state *src_reg) 15027 { 15028 u64 umin_val = src_reg->umin_value; 15029 15030 /* Upon reaching here, src_known is true and umax_val is equal 15031 * to umin_val. 15032 */ 15033 dst_reg->smin_value >>= umin_val; 15034 dst_reg->smax_value >>= umin_val; 15035 15036 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 15037 15038 /* blow away the dst_reg umin_value/umax_value and rely on 15039 * dst_reg var_off to refine the result. 15040 */ 15041 dst_reg->umin_value = 0; 15042 dst_reg->umax_value = U64_MAX; 15043 15044 /* Its not easy to operate on alu32 bounds here because it depends 15045 * on bits being shifted in from upper 32-bits. Take easy way out 15046 * and mark unbounded so we can recalculate later from tnum. 15047 */ 15048 __mark_reg32_unbounded(dst_reg); 15049 __update_reg_bounds(dst_reg); 15050 } 15051 15052 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, 15053 const struct bpf_reg_state *src_reg) 15054 { 15055 bool src_is_const = false; 15056 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 15057 15058 if (insn_bitness == 32) { 15059 if (tnum_subreg_is_const(src_reg->var_off) 15060 && src_reg->s32_min_value == src_reg->s32_max_value 15061 && src_reg->u32_min_value == src_reg->u32_max_value) 15062 src_is_const = true; 15063 } else { 15064 if (tnum_is_const(src_reg->var_off) 15065 && src_reg->smin_value == src_reg->smax_value 15066 && src_reg->umin_value == src_reg->umax_value) 15067 src_is_const = true; 15068 } 15069 15070 switch (BPF_OP(insn->code)) { 15071 case BPF_ADD: 15072 case BPF_SUB: 15073 case BPF_AND: 15074 case BPF_XOR: 15075 case BPF_OR: 15076 case BPF_MUL: 15077 return true; 15078 15079 /* Shift operators range is only computable if shift dimension operand 15080 * is a constant. Shifts greater than 31 or 63 are undefined. This 15081 * includes shifts by a negative number. 15082 */ 15083 case BPF_LSH: 15084 case BPF_RSH: 15085 case BPF_ARSH: 15086 return (src_is_const && src_reg->umax_value < insn_bitness); 15087 default: 15088 return false; 15089 } 15090 } 15091 15092 /* WARNING: This function does calculations on 64-bit values, but the actual 15093 * execution may occur on 32-bit values. Therefore, things like bitshifts 15094 * need extra checks in the 32-bit case. 15095 */ 15096 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 15097 struct bpf_insn *insn, 15098 struct bpf_reg_state *dst_reg, 15099 struct bpf_reg_state src_reg) 15100 { 15101 u8 opcode = BPF_OP(insn->code); 15102 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 15103 int ret; 15104 15105 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) { 15106 __mark_reg_unknown(env, dst_reg); 15107 return 0; 15108 } 15109 15110 if (sanitize_needed(opcode)) { 15111 ret = sanitize_val_alu(env, insn); 15112 if (ret < 0) 15113 return sanitize_err(env, insn, ret, NULL, NULL); 15114 } 15115 15116 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 15117 * There are two classes of instructions: The first class we track both 15118 * alu32 and alu64 sign/unsigned bounds independently this provides the 15119 * greatest amount of precision when alu operations are mixed with jmp32 15120 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 15121 * and BPF_OR. This is possible because these ops have fairly easy to 15122 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 15123 * See alu32 verifier tests for examples. The second class of 15124 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 15125 * with regards to tracking sign/unsigned bounds because the bits may 15126 * cross subreg boundaries in the alu64 case. When this happens we mark 15127 * the reg unbounded in the subreg bound space and use the resulting 15128 * tnum to calculate an approximation of the sign/unsigned bounds. 15129 */ 15130 switch (opcode) { 15131 case BPF_ADD: 15132 scalar32_min_max_add(dst_reg, &src_reg); 15133 scalar_min_max_add(dst_reg, &src_reg); 15134 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 15135 break; 15136 case BPF_SUB: 15137 scalar32_min_max_sub(dst_reg, &src_reg); 15138 scalar_min_max_sub(dst_reg, &src_reg); 15139 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 15140 break; 15141 case BPF_MUL: 15142 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 15143 scalar32_min_max_mul(dst_reg, &src_reg); 15144 scalar_min_max_mul(dst_reg, &src_reg); 15145 break; 15146 case BPF_AND: 15147 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 15148 scalar32_min_max_and(dst_reg, &src_reg); 15149 scalar_min_max_and(dst_reg, &src_reg); 15150 break; 15151 case BPF_OR: 15152 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 15153 scalar32_min_max_or(dst_reg, &src_reg); 15154 scalar_min_max_or(dst_reg, &src_reg); 15155 break; 15156 case BPF_XOR: 15157 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 15158 scalar32_min_max_xor(dst_reg, &src_reg); 15159 scalar_min_max_xor(dst_reg, &src_reg); 15160 break; 15161 case BPF_LSH: 15162 if (alu32) 15163 scalar32_min_max_lsh(dst_reg, &src_reg); 15164 else 15165 scalar_min_max_lsh(dst_reg, &src_reg); 15166 break; 15167 case BPF_RSH: 15168 if (alu32) 15169 scalar32_min_max_rsh(dst_reg, &src_reg); 15170 else 15171 scalar_min_max_rsh(dst_reg, &src_reg); 15172 break; 15173 case BPF_ARSH: 15174 if (alu32) 15175 scalar32_min_max_arsh(dst_reg, &src_reg); 15176 else 15177 scalar_min_max_arsh(dst_reg, &src_reg); 15178 break; 15179 default: 15180 break; 15181 } 15182 15183 /* ALU32 ops are zero extended into 64bit register */ 15184 if (alu32) 15185 zext_32_to_64(dst_reg); 15186 reg_bounds_sync(dst_reg); 15187 return 0; 15188 } 15189 15190 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 15191 * and var_off. 15192 */ 15193 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 15194 struct bpf_insn *insn) 15195 { 15196 struct bpf_verifier_state *vstate = env->cur_state; 15197 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 15198 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 15199 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 15200 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 15201 u8 opcode = BPF_OP(insn->code); 15202 int err; 15203 15204 dst_reg = ®s[insn->dst_reg]; 15205 src_reg = NULL; 15206 15207 if (dst_reg->type == PTR_TO_ARENA) { 15208 struct bpf_insn_aux_data *aux = cur_aux(env); 15209 15210 if (BPF_CLASS(insn->code) == BPF_ALU64) 15211 /* 15212 * 32-bit operations zero upper bits automatically. 15213 * 64-bit operations need to be converted to 32. 15214 */ 15215 aux->needs_zext = true; 15216 15217 /* Any arithmetic operations are allowed on arena pointers */ 15218 return 0; 15219 } 15220 15221 if (dst_reg->type != SCALAR_VALUE) 15222 ptr_reg = dst_reg; 15223 15224 if (BPF_SRC(insn->code) == BPF_X) { 15225 src_reg = ®s[insn->src_reg]; 15226 if (src_reg->type != SCALAR_VALUE) { 15227 if (dst_reg->type != SCALAR_VALUE) { 15228 /* Combining two pointers by any ALU op yields 15229 * an arbitrary scalar. Disallow all math except 15230 * pointer subtraction 15231 */ 15232 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 15233 mark_reg_unknown(env, regs, insn->dst_reg); 15234 return 0; 15235 } 15236 verbose(env, "R%d pointer %s pointer prohibited\n", 15237 insn->dst_reg, 15238 bpf_alu_string[opcode >> 4]); 15239 return -EACCES; 15240 } else { 15241 /* scalar += pointer 15242 * This is legal, but we have to reverse our 15243 * src/dest handling in computing the range 15244 */ 15245 err = mark_chain_precision(env, insn->dst_reg); 15246 if (err) 15247 return err; 15248 return adjust_ptr_min_max_vals(env, insn, 15249 src_reg, dst_reg); 15250 } 15251 } else if (ptr_reg) { 15252 /* pointer += scalar */ 15253 err = mark_chain_precision(env, insn->src_reg); 15254 if (err) 15255 return err; 15256 return adjust_ptr_min_max_vals(env, insn, 15257 dst_reg, src_reg); 15258 } else if (dst_reg->precise) { 15259 /* if dst_reg is precise, src_reg should be precise as well */ 15260 err = mark_chain_precision(env, insn->src_reg); 15261 if (err) 15262 return err; 15263 } 15264 } else { 15265 /* Pretend the src is a reg with a known value, since we only 15266 * need to be able to read from this state. 15267 */ 15268 off_reg.type = SCALAR_VALUE; 15269 __mark_reg_known(&off_reg, insn->imm); 15270 src_reg = &off_reg; 15271 if (ptr_reg) /* pointer += K */ 15272 return adjust_ptr_min_max_vals(env, insn, 15273 ptr_reg, src_reg); 15274 } 15275 15276 /* Got here implies adding two SCALAR_VALUEs */ 15277 if (WARN_ON_ONCE(ptr_reg)) { 15278 print_verifier_state(env, vstate, vstate->curframe, true); 15279 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 15280 return -EINVAL; 15281 } 15282 if (WARN_ON(!src_reg)) { 15283 print_verifier_state(env, vstate, vstate->curframe, true); 15284 verbose(env, "verifier internal error: no src_reg\n"); 15285 return -EINVAL; 15286 } 15287 err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 15288 if (err) 15289 return err; 15290 /* 15291 * Compilers can generate the code 15292 * r1 = r2 15293 * r1 += 0x1 15294 * if r2 < 1000 goto ... 15295 * use r1 in memory access 15296 * So for 64-bit alu remember constant delta between r2 and r1 and 15297 * update r1 after 'if' condition. 15298 */ 15299 if (env->bpf_capable && 15300 BPF_OP(insn->code) == BPF_ADD && !alu32 && 15301 dst_reg->id && is_reg_const(src_reg, false)) { 15302 u64 val = reg_const_value(src_reg, false); 15303 15304 if ((dst_reg->id & BPF_ADD_CONST) || 15305 /* prevent overflow in sync_linked_regs() later */ 15306 val > (u32)S32_MAX) { 15307 /* 15308 * If the register already went through rX += val 15309 * we cannot accumulate another val into rx->off. 15310 */ 15311 dst_reg->off = 0; 15312 dst_reg->id = 0; 15313 } else { 15314 dst_reg->id |= BPF_ADD_CONST; 15315 dst_reg->off = val; 15316 } 15317 } else { 15318 /* 15319 * Make sure ID is cleared otherwise dst_reg min/max could be 15320 * incorrectly propagated into other registers by sync_linked_regs() 15321 */ 15322 dst_reg->id = 0; 15323 } 15324 return 0; 15325 } 15326 15327 /* check validity of 32-bit and 64-bit arithmetic operations */ 15328 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 15329 { 15330 struct bpf_reg_state *regs = cur_regs(env); 15331 u8 opcode = BPF_OP(insn->code); 15332 int err; 15333 15334 if (opcode == BPF_END || opcode == BPF_NEG) { 15335 if (opcode == BPF_NEG) { 15336 if (BPF_SRC(insn->code) != BPF_K || 15337 insn->src_reg != BPF_REG_0 || 15338 insn->off != 0 || insn->imm != 0) { 15339 verbose(env, "BPF_NEG uses reserved fields\n"); 15340 return -EINVAL; 15341 } 15342 } else { 15343 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 15344 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 15345 (BPF_CLASS(insn->code) == BPF_ALU64 && 15346 BPF_SRC(insn->code) != BPF_TO_LE)) { 15347 verbose(env, "BPF_END uses reserved fields\n"); 15348 return -EINVAL; 15349 } 15350 } 15351 15352 /* check src operand */ 15353 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15354 if (err) 15355 return err; 15356 15357 if (is_pointer_value(env, insn->dst_reg)) { 15358 verbose(env, "R%d pointer arithmetic prohibited\n", 15359 insn->dst_reg); 15360 return -EACCES; 15361 } 15362 15363 /* check dest operand */ 15364 err = check_reg_arg(env, insn->dst_reg, DST_OP); 15365 if (err) 15366 return err; 15367 15368 } else if (opcode == BPF_MOV) { 15369 15370 if (BPF_SRC(insn->code) == BPF_X) { 15371 if (BPF_CLASS(insn->code) == BPF_ALU) { 15372 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || 15373 insn->imm) { 15374 verbose(env, "BPF_MOV uses reserved fields\n"); 15375 return -EINVAL; 15376 } 15377 } else if (insn->off == BPF_ADDR_SPACE_CAST) { 15378 if (insn->imm != 1 && insn->imm != 1u << 16) { 15379 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); 15380 return -EINVAL; 15381 } 15382 if (!env->prog->aux->arena) { 15383 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); 15384 return -EINVAL; 15385 } 15386 } else { 15387 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && 15388 insn->off != 32) || insn->imm) { 15389 verbose(env, "BPF_MOV uses reserved fields\n"); 15390 return -EINVAL; 15391 } 15392 } 15393 15394 /* check src operand */ 15395 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15396 if (err) 15397 return err; 15398 } else { 15399 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 15400 verbose(env, "BPF_MOV uses reserved fields\n"); 15401 return -EINVAL; 15402 } 15403 } 15404 15405 /* check dest operand, mark as required later */ 15406 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15407 if (err) 15408 return err; 15409 15410 if (BPF_SRC(insn->code) == BPF_X) { 15411 struct bpf_reg_state *src_reg = regs + insn->src_reg; 15412 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 15413 15414 if (BPF_CLASS(insn->code) == BPF_ALU64) { 15415 if (insn->imm) { 15416 /* off == BPF_ADDR_SPACE_CAST */ 15417 mark_reg_unknown(env, regs, insn->dst_reg); 15418 if (insn->imm == 1) { /* cast from as(1) to as(0) */ 15419 dst_reg->type = PTR_TO_ARENA; 15420 /* PTR_TO_ARENA is 32-bit */ 15421 dst_reg->subreg_def = env->insn_idx + 1; 15422 } 15423 } else if (insn->off == 0) { 15424 /* case: R1 = R2 15425 * copy register state to dest reg 15426 */ 15427 assign_scalar_id_before_mov(env, src_reg); 15428 copy_register_state(dst_reg, src_reg); 15429 dst_reg->live |= REG_LIVE_WRITTEN; 15430 dst_reg->subreg_def = DEF_NOT_SUBREG; 15431 } else { 15432 /* case: R1 = (s8, s16 s32)R2 */ 15433 if (is_pointer_value(env, insn->src_reg)) { 15434 verbose(env, 15435 "R%d sign-extension part of pointer\n", 15436 insn->src_reg); 15437 return -EACCES; 15438 } else if (src_reg->type == SCALAR_VALUE) { 15439 bool no_sext; 15440 15441 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 15442 if (no_sext) 15443 assign_scalar_id_before_mov(env, src_reg); 15444 copy_register_state(dst_reg, src_reg); 15445 if (!no_sext) 15446 dst_reg->id = 0; 15447 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 15448 dst_reg->live |= REG_LIVE_WRITTEN; 15449 dst_reg->subreg_def = DEF_NOT_SUBREG; 15450 } else { 15451 mark_reg_unknown(env, regs, insn->dst_reg); 15452 } 15453 } 15454 } else { 15455 /* R1 = (u32) R2 */ 15456 if (is_pointer_value(env, insn->src_reg)) { 15457 verbose(env, 15458 "R%d partial copy of pointer\n", 15459 insn->src_reg); 15460 return -EACCES; 15461 } else if (src_reg->type == SCALAR_VALUE) { 15462 if (insn->off == 0) { 15463 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; 15464 15465 if (is_src_reg_u32) 15466 assign_scalar_id_before_mov(env, src_reg); 15467 copy_register_state(dst_reg, src_reg); 15468 /* Make sure ID is cleared if src_reg is not in u32 15469 * range otherwise dst_reg min/max could be incorrectly 15470 * propagated into src_reg by sync_linked_regs() 15471 */ 15472 if (!is_src_reg_u32) 15473 dst_reg->id = 0; 15474 dst_reg->live |= REG_LIVE_WRITTEN; 15475 dst_reg->subreg_def = env->insn_idx + 1; 15476 } else { 15477 /* case: W1 = (s8, s16)W2 */ 15478 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 15479 15480 if (no_sext) 15481 assign_scalar_id_before_mov(env, src_reg); 15482 copy_register_state(dst_reg, src_reg); 15483 if (!no_sext) 15484 dst_reg->id = 0; 15485 dst_reg->live |= REG_LIVE_WRITTEN; 15486 dst_reg->subreg_def = env->insn_idx + 1; 15487 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 15488 } 15489 } else { 15490 mark_reg_unknown(env, regs, 15491 insn->dst_reg); 15492 } 15493 zext_32_to_64(dst_reg); 15494 reg_bounds_sync(dst_reg); 15495 } 15496 } else { 15497 /* case: R = imm 15498 * remember the value we stored into this reg 15499 */ 15500 /* clear any state __mark_reg_known doesn't set */ 15501 mark_reg_unknown(env, regs, insn->dst_reg); 15502 regs[insn->dst_reg].type = SCALAR_VALUE; 15503 if (BPF_CLASS(insn->code) == BPF_ALU64) { 15504 __mark_reg_known(regs + insn->dst_reg, 15505 insn->imm); 15506 } else { 15507 __mark_reg_known(regs + insn->dst_reg, 15508 (u32)insn->imm); 15509 } 15510 } 15511 15512 } else if (opcode > BPF_END) { 15513 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 15514 return -EINVAL; 15515 15516 } else { /* all other ALU ops: and, sub, xor, add, ... */ 15517 15518 if (BPF_SRC(insn->code) == BPF_X) { 15519 if (insn->imm != 0 || insn->off > 1 || 15520 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 15521 verbose(env, "BPF_ALU uses reserved fields\n"); 15522 return -EINVAL; 15523 } 15524 /* check src1 operand */ 15525 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15526 if (err) 15527 return err; 15528 } else { 15529 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 15530 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 15531 verbose(env, "BPF_ALU uses reserved fields\n"); 15532 return -EINVAL; 15533 } 15534 } 15535 15536 /* check src2 operand */ 15537 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15538 if (err) 15539 return err; 15540 15541 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 15542 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 15543 verbose(env, "div by zero\n"); 15544 return -EINVAL; 15545 } 15546 15547 if ((opcode == BPF_LSH || opcode == BPF_RSH || 15548 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 15549 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 15550 15551 if (insn->imm < 0 || insn->imm >= size) { 15552 verbose(env, "invalid shift %d\n", insn->imm); 15553 return -EINVAL; 15554 } 15555 } 15556 15557 /* check dest operand */ 15558 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15559 err = err ?: adjust_reg_min_max_vals(env, insn); 15560 if (err) 15561 return err; 15562 } 15563 15564 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 15565 } 15566 15567 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 15568 struct bpf_reg_state *dst_reg, 15569 enum bpf_reg_type type, 15570 bool range_right_open) 15571 { 15572 struct bpf_func_state *state; 15573 struct bpf_reg_state *reg; 15574 int new_range; 15575 15576 if (dst_reg->off < 0 || 15577 (dst_reg->off == 0 && range_right_open)) 15578 /* This doesn't give us any range */ 15579 return; 15580 15581 if (dst_reg->umax_value > MAX_PACKET_OFF || 15582 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 15583 /* Risk of overflow. For instance, ptr + (1<<63) may be less 15584 * than pkt_end, but that's because it's also less than pkt. 15585 */ 15586 return; 15587 15588 new_range = dst_reg->off; 15589 if (range_right_open) 15590 new_range++; 15591 15592 /* Examples for register markings: 15593 * 15594 * pkt_data in dst register: 15595 * 15596 * r2 = r3; 15597 * r2 += 8; 15598 * if (r2 > pkt_end) goto <handle exception> 15599 * <access okay> 15600 * 15601 * r2 = r3; 15602 * r2 += 8; 15603 * if (r2 < pkt_end) goto <access okay> 15604 * <handle exception> 15605 * 15606 * Where: 15607 * r2 == dst_reg, pkt_end == src_reg 15608 * r2=pkt(id=n,off=8,r=0) 15609 * r3=pkt(id=n,off=0,r=0) 15610 * 15611 * pkt_data in src register: 15612 * 15613 * r2 = r3; 15614 * r2 += 8; 15615 * if (pkt_end >= r2) goto <access okay> 15616 * <handle exception> 15617 * 15618 * r2 = r3; 15619 * r2 += 8; 15620 * if (pkt_end <= r2) goto <handle exception> 15621 * <access okay> 15622 * 15623 * Where: 15624 * pkt_end == dst_reg, r2 == src_reg 15625 * r2=pkt(id=n,off=8,r=0) 15626 * r3=pkt(id=n,off=0,r=0) 15627 * 15628 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 15629 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 15630 * and [r3, r3 + 8-1) respectively is safe to access depending on 15631 * the check. 15632 */ 15633 15634 /* If our ids match, then we must have the same max_value. And we 15635 * don't care about the other reg's fixed offset, since if it's too big 15636 * the range won't allow anything. 15637 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 15638 */ 15639 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 15640 if (reg->type == type && reg->id == dst_reg->id) 15641 /* keep the maximum range already checked */ 15642 reg->range = max(reg->range, new_range); 15643 })); 15644 } 15645 15646 /* 15647 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 15648 */ 15649 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15650 u8 opcode, bool is_jmp32) 15651 { 15652 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 15653 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 15654 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 15655 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 15656 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 15657 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 15658 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 15659 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 15660 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 15661 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 15662 15663 switch (opcode) { 15664 case BPF_JEQ: 15665 /* constants, umin/umax and smin/smax checks would be 15666 * redundant in this case because they all should match 15667 */ 15668 if (tnum_is_const(t1) && tnum_is_const(t2)) 15669 return t1.value == t2.value; 15670 /* non-overlapping ranges */ 15671 if (umin1 > umax2 || umax1 < umin2) 15672 return 0; 15673 if (smin1 > smax2 || smax1 < smin2) 15674 return 0; 15675 if (!is_jmp32) { 15676 /* if 64-bit ranges are inconclusive, see if we can 15677 * utilize 32-bit subrange knowledge to eliminate 15678 * branches that can't be taken a priori 15679 */ 15680 if (reg1->u32_min_value > reg2->u32_max_value || 15681 reg1->u32_max_value < reg2->u32_min_value) 15682 return 0; 15683 if (reg1->s32_min_value > reg2->s32_max_value || 15684 reg1->s32_max_value < reg2->s32_min_value) 15685 return 0; 15686 } 15687 break; 15688 case BPF_JNE: 15689 /* constants, umin/umax and smin/smax checks would be 15690 * redundant in this case because they all should match 15691 */ 15692 if (tnum_is_const(t1) && tnum_is_const(t2)) 15693 return t1.value != t2.value; 15694 /* non-overlapping ranges */ 15695 if (umin1 > umax2 || umax1 < umin2) 15696 return 1; 15697 if (smin1 > smax2 || smax1 < smin2) 15698 return 1; 15699 if (!is_jmp32) { 15700 /* if 64-bit ranges are inconclusive, see if we can 15701 * utilize 32-bit subrange knowledge to eliminate 15702 * branches that can't be taken a priori 15703 */ 15704 if (reg1->u32_min_value > reg2->u32_max_value || 15705 reg1->u32_max_value < reg2->u32_min_value) 15706 return 1; 15707 if (reg1->s32_min_value > reg2->s32_max_value || 15708 reg1->s32_max_value < reg2->s32_min_value) 15709 return 1; 15710 } 15711 break; 15712 case BPF_JSET: 15713 if (!is_reg_const(reg2, is_jmp32)) { 15714 swap(reg1, reg2); 15715 swap(t1, t2); 15716 } 15717 if (!is_reg_const(reg2, is_jmp32)) 15718 return -1; 15719 if ((~t1.mask & t1.value) & t2.value) 15720 return 1; 15721 if (!((t1.mask | t1.value) & t2.value)) 15722 return 0; 15723 break; 15724 case BPF_JGT: 15725 if (umin1 > umax2) 15726 return 1; 15727 else if (umax1 <= umin2) 15728 return 0; 15729 break; 15730 case BPF_JSGT: 15731 if (smin1 > smax2) 15732 return 1; 15733 else if (smax1 <= smin2) 15734 return 0; 15735 break; 15736 case BPF_JLT: 15737 if (umax1 < umin2) 15738 return 1; 15739 else if (umin1 >= umax2) 15740 return 0; 15741 break; 15742 case BPF_JSLT: 15743 if (smax1 < smin2) 15744 return 1; 15745 else if (smin1 >= smax2) 15746 return 0; 15747 break; 15748 case BPF_JGE: 15749 if (umin1 >= umax2) 15750 return 1; 15751 else if (umax1 < umin2) 15752 return 0; 15753 break; 15754 case BPF_JSGE: 15755 if (smin1 >= smax2) 15756 return 1; 15757 else if (smax1 < smin2) 15758 return 0; 15759 break; 15760 case BPF_JLE: 15761 if (umax1 <= umin2) 15762 return 1; 15763 else if (umin1 > umax2) 15764 return 0; 15765 break; 15766 case BPF_JSLE: 15767 if (smax1 <= smin2) 15768 return 1; 15769 else if (smin1 > smax2) 15770 return 0; 15771 break; 15772 } 15773 15774 return -1; 15775 } 15776 15777 static int flip_opcode(u32 opcode) 15778 { 15779 /* How can we transform "a <op> b" into "b <op> a"? */ 15780 static const u8 opcode_flip[16] = { 15781 /* these stay the same */ 15782 [BPF_JEQ >> 4] = BPF_JEQ, 15783 [BPF_JNE >> 4] = BPF_JNE, 15784 [BPF_JSET >> 4] = BPF_JSET, 15785 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 15786 [BPF_JGE >> 4] = BPF_JLE, 15787 [BPF_JGT >> 4] = BPF_JLT, 15788 [BPF_JLE >> 4] = BPF_JGE, 15789 [BPF_JLT >> 4] = BPF_JGT, 15790 [BPF_JSGE >> 4] = BPF_JSLE, 15791 [BPF_JSGT >> 4] = BPF_JSLT, 15792 [BPF_JSLE >> 4] = BPF_JSGE, 15793 [BPF_JSLT >> 4] = BPF_JSGT 15794 }; 15795 return opcode_flip[opcode >> 4]; 15796 } 15797 15798 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 15799 struct bpf_reg_state *src_reg, 15800 u8 opcode) 15801 { 15802 struct bpf_reg_state *pkt; 15803 15804 if (src_reg->type == PTR_TO_PACKET_END) { 15805 pkt = dst_reg; 15806 } else if (dst_reg->type == PTR_TO_PACKET_END) { 15807 pkt = src_reg; 15808 opcode = flip_opcode(opcode); 15809 } else { 15810 return -1; 15811 } 15812 15813 if (pkt->range >= 0) 15814 return -1; 15815 15816 switch (opcode) { 15817 case BPF_JLE: 15818 /* pkt <= pkt_end */ 15819 fallthrough; 15820 case BPF_JGT: 15821 /* pkt > pkt_end */ 15822 if (pkt->range == BEYOND_PKT_END) 15823 /* pkt has at last one extra byte beyond pkt_end */ 15824 return opcode == BPF_JGT; 15825 break; 15826 case BPF_JLT: 15827 /* pkt < pkt_end */ 15828 fallthrough; 15829 case BPF_JGE: 15830 /* pkt >= pkt_end */ 15831 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 15832 return opcode == BPF_JGE; 15833 break; 15834 } 15835 return -1; 15836 } 15837 15838 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 15839 * and return: 15840 * 1 - branch will be taken and "goto target" will be executed 15841 * 0 - branch will not be taken and fall-through to next insn 15842 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 15843 * range [0,10] 15844 */ 15845 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15846 u8 opcode, bool is_jmp32) 15847 { 15848 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 15849 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 15850 15851 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 15852 u64 val; 15853 15854 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 15855 if (!is_reg_const(reg2, is_jmp32)) { 15856 opcode = flip_opcode(opcode); 15857 swap(reg1, reg2); 15858 } 15859 /* and ensure that reg2 is a constant */ 15860 if (!is_reg_const(reg2, is_jmp32)) 15861 return -1; 15862 15863 if (!reg_not_null(reg1)) 15864 return -1; 15865 15866 /* If pointer is valid tests against zero will fail so we can 15867 * use this to direct branch taken. 15868 */ 15869 val = reg_const_value(reg2, is_jmp32); 15870 if (val != 0) 15871 return -1; 15872 15873 switch (opcode) { 15874 case BPF_JEQ: 15875 return 0; 15876 case BPF_JNE: 15877 return 1; 15878 default: 15879 return -1; 15880 } 15881 } 15882 15883 /* now deal with two scalars, but not necessarily constants */ 15884 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 15885 } 15886 15887 /* Opcode that corresponds to a *false* branch condition. 15888 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 15889 */ 15890 static u8 rev_opcode(u8 opcode) 15891 { 15892 switch (opcode) { 15893 case BPF_JEQ: return BPF_JNE; 15894 case BPF_JNE: return BPF_JEQ; 15895 /* JSET doesn't have it's reverse opcode in BPF, so add 15896 * BPF_X flag to denote the reverse of that operation 15897 */ 15898 case BPF_JSET: return BPF_JSET | BPF_X; 15899 case BPF_JSET | BPF_X: return BPF_JSET; 15900 case BPF_JGE: return BPF_JLT; 15901 case BPF_JGT: return BPF_JLE; 15902 case BPF_JLE: return BPF_JGT; 15903 case BPF_JLT: return BPF_JGE; 15904 case BPF_JSGE: return BPF_JSLT; 15905 case BPF_JSGT: return BPF_JSLE; 15906 case BPF_JSLE: return BPF_JSGT; 15907 case BPF_JSLT: return BPF_JSGE; 15908 default: return 0; 15909 } 15910 } 15911 15912 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 15913 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15914 u8 opcode, bool is_jmp32) 15915 { 15916 struct tnum t; 15917 u64 val; 15918 15919 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ 15920 switch (opcode) { 15921 case BPF_JGE: 15922 case BPF_JGT: 15923 case BPF_JSGE: 15924 case BPF_JSGT: 15925 opcode = flip_opcode(opcode); 15926 swap(reg1, reg2); 15927 break; 15928 default: 15929 break; 15930 } 15931 15932 switch (opcode) { 15933 case BPF_JEQ: 15934 if (is_jmp32) { 15935 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 15936 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 15937 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 15938 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 15939 reg2->u32_min_value = reg1->u32_min_value; 15940 reg2->u32_max_value = reg1->u32_max_value; 15941 reg2->s32_min_value = reg1->s32_min_value; 15942 reg2->s32_max_value = reg1->s32_max_value; 15943 15944 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 15945 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 15946 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 15947 } else { 15948 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 15949 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 15950 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 15951 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 15952 reg2->umin_value = reg1->umin_value; 15953 reg2->umax_value = reg1->umax_value; 15954 reg2->smin_value = reg1->smin_value; 15955 reg2->smax_value = reg1->smax_value; 15956 15957 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 15958 reg2->var_off = reg1->var_off; 15959 } 15960 break; 15961 case BPF_JNE: 15962 if (!is_reg_const(reg2, is_jmp32)) 15963 swap(reg1, reg2); 15964 if (!is_reg_const(reg2, is_jmp32)) 15965 break; 15966 15967 /* try to recompute the bound of reg1 if reg2 is a const and 15968 * is exactly the edge of reg1. 15969 */ 15970 val = reg_const_value(reg2, is_jmp32); 15971 if (is_jmp32) { 15972 /* u32_min_value is not equal to 0xffffffff at this point, 15973 * because otherwise u32_max_value is 0xffffffff as well, 15974 * in such a case both reg1 and reg2 would be constants, 15975 * jump would be predicted and reg_set_min_max() won't 15976 * be called. 15977 * 15978 * Same reasoning works for all {u,s}{min,max}{32,64} cases 15979 * below. 15980 */ 15981 if (reg1->u32_min_value == (u32)val) 15982 reg1->u32_min_value++; 15983 if (reg1->u32_max_value == (u32)val) 15984 reg1->u32_max_value--; 15985 if (reg1->s32_min_value == (s32)val) 15986 reg1->s32_min_value++; 15987 if (reg1->s32_max_value == (s32)val) 15988 reg1->s32_max_value--; 15989 } else { 15990 if (reg1->umin_value == (u64)val) 15991 reg1->umin_value++; 15992 if (reg1->umax_value == (u64)val) 15993 reg1->umax_value--; 15994 if (reg1->smin_value == (s64)val) 15995 reg1->smin_value++; 15996 if (reg1->smax_value == (s64)val) 15997 reg1->smax_value--; 15998 } 15999 break; 16000 case BPF_JSET: 16001 if (!is_reg_const(reg2, is_jmp32)) 16002 swap(reg1, reg2); 16003 if (!is_reg_const(reg2, is_jmp32)) 16004 break; 16005 val = reg_const_value(reg2, is_jmp32); 16006 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 16007 * requires single bit to learn something useful. E.g., if we 16008 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 16009 * are actually set? We can learn something definite only if 16010 * it's a single-bit value to begin with. 16011 * 16012 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 16013 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 16014 * bit 1 is set, which we can readily use in adjustments. 16015 */ 16016 if (!is_power_of_2(val)) 16017 break; 16018 if (is_jmp32) { 16019 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 16020 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 16021 } else { 16022 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 16023 } 16024 break; 16025 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 16026 if (!is_reg_const(reg2, is_jmp32)) 16027 swap(reg1, reg2); 16028 if (!is_reg_const(reg2, is_jmp32)) 16029 break; 16030 val = reg_const_value(reg2, is_jmp32); 16031 if (is_jmp32) { 16032 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 16033 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 16034 } else { 16035 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 16036 } 16037 break; 16038 case BPF_JLE: 16039 if (is_jmp32) { 16040 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 16041 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 16042 } else { 16043 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 16044 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 16045 } 16046 break; 16047 case BPF_JLT: 16048 if (is_jmp32) { 16049 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 16050 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 16051 } else { 16052 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 16053 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 16054 } 16055 break; 16056 case BPF_JSLE: 16057 if (is_jmp32) { 16058 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 16059 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 16060 } else { 16061 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 16062 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 16063 } 16064 break; 16065 case BPF_JSLT: 16066 if (is_jmp32) { 16067 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 16068 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 16069 } else { 16070 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 16071 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 16072 } 16073 break; 16074 default: 16075 return; 16076 } 16077 } 16078 16079 /* Adjusts the register min/max values in the case that the dst_reg and 16080 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 16081 * check, in which case we have a fake SCALAR_VALUE representing insn->imm). 16082 * Technically we can do similar adjustments for pointers to the same object, 16083 * but we don't support that right now. 16084 */ 16085 static int reg_set_min_max(struct bpf_verifier_env *env, 16086 struct bpf_reg_state *true_reg1, 16087 struct bpf_reg_state *true_reg2, 16088 struct bpf_reg_state *false_reg1, 16089 struct bpf_reg_state *false_reg2, 16090 u8 opcode, bool is_jmp32) 16091 { 16092 int err; 16093 16094 /* If either register is a pointer, we can't learn anything about its 16095 * variable offset from the compare (unless they were a pointer into 16096 * the same object, but we don't bother with that). 16097 */ 16098 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 16099 return 0; 16100 16101 /* fallthrough (FALSE) branch */ 16102 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 16103 reg_bounds_sync(false_reg1); 16104 reg_bounds_sync(false_reg2); 16105 16106 /* jump (TRUE) branch */ 16107 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 16108 reg_bounds_sync(true_reg1); 16109 reg_bounds_sync(true_reg2); 16110 16111 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 16112 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 16113 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 16114 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 16115 return err; 16116 } 16117 16118 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 16119 struct bpf_reg_state *reg, u32 id, 16120 bool is_null) 16121 { 16122 if (type_may_be_null(reg->type) && reg->id == id && 16123 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 16124 /* Old offset (both fixed and variable parts) should have been 16125 * known-zero, because we don't allow pointer arithmetic on 16126 * pointers that might be NULL. If we see this happening, don't 16127 * convert the register. 16128 * 16129 * But in some cases, some helpers that return local kptrs 16130 * advance offset for the returned pointer. In those cases, it 16131 * is fine to expect to see reg->off. 16132 */ 16133 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 16134 return; 16135 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 16136 WARN_ON_ONCE(reg->off)) 16137 return; 16138 16139 if (is_null) { 16140 reg->type = SCALAR_VALUE; 16141 /* We don't need id and ref_obj_id from this point 16142 * onwards anymore, thus we should better reset it, 16143 * so that state pruning has chances to take effect. 16144 */ 16145 reg->id = 0; 16146 reg->ref_obj_id = 0; 16147 16148 return; 16149 } 16150 16151 mark_ptr_not_null_reg(reg); 16152 16153 if (!reg_may_point_to_spin_lock(reg)) { 16154 /* For not-NULL ptr, reg->ref_obj_id will be reset 16155 * in release_reference(). 16156 * 16157 * reg->id is still used by spin_lock ptr. Other 16158 * than spin_lock ptr type, reg->id can be reset. 16159 */ 16160 reg->id = 0; 16161 } 16162 } 16163 } 16164 16165 /* The logic is similar to find_good_pkt_pointers(), both could eventually 16166 * be folded together at some point. 16167 */ 16168 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 16169 bool is_null) 16170 { 16171 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 16172 struct bpf_reg_state *regs = state->regs, *reg; 16173 u32 ref_obj_id = regs[regno].ref_obj_id; 16174 u32 id = regs[regno].id; 16175 16176 if (ref_obj_id && ref_obj_id == id && is_null) 16177 /* regs[regno] is in the " == NULL" branch. 16178 * No one could have freed the reference state before 16179 * doing the NULL check. 16180 */ 16181 WARN_ON_ONCE(release_reference_nomark(vstate, id)); 16182 16183 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 16184 mark_ptr_or_null_reg(state, reg, id, is_null); 16185 })); 16186 } 16187 16188 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 16189 struct bpf_reg_state *dst_reg, 16190 struct bpf_reg_state *src_reg, 16191 struct bpf_verifier_state *this_branch, 16192 struct bpf_verifier_state *other_branch) 16193 { 16194 if (BPF_SRC(insn->code) != BPF_X) 16195 return false; 16196 16197 /* Pointers are always 64-bit. */ 16198 if (BPF_CLASS(insn->code) == BPF_JMP32) 16199 return false; 16200 16201 switch (BPF_OP(insn->code)) { 16202 case BPF_JGT: 16203 if ((dst_reg->type == PTR_TO_PACKET && 16204 src_reg->type == PTR_TO_PACKET_END) || 16205 (dst_reg->type == PTR_TO_PACKET_META && 16206 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16207 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 16208 find_good_pkt_pointers(this_branch, dst_reg, 16209 dst_reg->type, false); 16210 mark_pkt_end(other_branch, insn->dst_reg, true); 16211 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16212 src_reg->type == PTR_TO_PACKET) || 16213 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16214 src_reg->type == PTR_TO_PACKET_META)) { 16215 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 16216 find_good_pkt_pointers(other_branch, src_reg, 16217 src_reg->type, true); 16218 mark_pkt_end(this_branch, insn->src_reg, false); 16219 } else { 16220 return false; 16221 } 16222 break; 16223 case BPF_JLT: 16224 if ((dst_reg->type == PTR_TO_PACKET && 16225 src_reg->type == PTR_TO_PACKET_END) || 16226 (dst_reg->type == PTR_TO_PACKET_META && 16227 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16228 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 16229 find_good_pkt_pointers(other_branch, dst_reg, 16230 dst_reg->type, true); 16231 mark_pkt_end(this_branch, insn->dst_reg, false); 16232 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16233 src_reg->type == PTR_TO_PACKET) || 16234 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16235 src_reg->type == PTR_TO_PACKET_META)) { 16236 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 16237 find_good_pkt_pointers(this_branch, src_reg, 16238 src_reg->type, false); 16239 mark_pkt_end(other_branch, insn->src_reg, true); 16240 } else { 16241 return false; 16242 } 16243 break; 16244 case BPF_JGE: 16245 if ((dst_reg->type == PTR_TO_PACKET && 16246 src_reg->type == PTR_TO_PACKET_END) || 16247 (dst_reg->type == PTR_TO_PACKET_META && 16248 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16249 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 16250 find_good_pkt_pointers(this_branch, dst_reg, 16251 dst_reg->type, true); 16252 mark_pkt_end(other_branch, insn->dst_reg, false); 16253 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16254 src_reg->type == PTR_TO_PACKET) || 16255 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16256 src_reg->type == PTR_TO_PACKET_META)) { 16257 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 16258 find_good_pkt_pointers(other_branch, src_reg, 16259 src_reg->type, false); 16260 mark_pkt_end(this_branch, insn->src_reg, true); 16261 } else { 16262 return false; 16263 } 16264 break; 16265 case BPF_JLE: 16266 if ((dst_reg->type == PTR_TO_PACKET && 16267 src_reg->type == PTR_TO_PACKET_END) || 16268 (dst_reg->type == PTR_TO_PACKET_META && 16269 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16270 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 16271 find_good_pkt_pointers(other_branch, dst_reg, 16272 dst_reg->type, false); 16273 mark_pkt_end(this_branch, insn->dst_reg, true); 16274 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16275 src_reg->type == PTR_TO_PACKET) || 16276 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16277 src_reg->type == PTR_TO_PACKET_META)) { 16278 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 16279 find_good_pkt_pointers(this_branch, src_reg, 16280 src_reg->type, true); 16281 mark_pkt_end(other_branch, insn->src_reg, false); 16282 } else { 16283 return false; 16284 } 16285 break; 16286 default: 16287 return false; 16288 } 16289 16290 return true; 16291 } 16292 16293 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg, 16294 u32 id, u32 frameno, u32 spi_or_reg, bool is_reg) 16295 { 16296 struct linked_reg *e; 16297 16298 if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id) 16299 return; 16300 16301 e = linked_regs_push(reg_set); 16302 if (e) { 16303 e->frameno = frameno; 16304 e->is_reg = is_reg; 16305 e->regno = spi_or_reg; 16306 } else { 16307 reg->id = 0; 16308 } 16309 } 16310 16311 /* For all R being scalar registers or spilled scalar registers 16312 * in verifier state, save R in linked_regs if R->id == id. 16313 * If there are too many Rs sharing same id, reset id for leftover Rs. 16314 */ 16315 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id, 16316 struct linked_regs *linked_regs) 16317 { 16318 struct bpf_func_state *func; 16319 struct bpf_reg_state *reg; 16320 int i, j; 16321 16322 id = id & ~BPF_ADD_CONST; 16323 for (i = vstate->curframe; i >= 0; i--) { 16324 func = vstate->frame[i]; 16325 for (j = 0; j < BPF_REG_FP; j++) { 16326 reg = &func->regs[j]; 16327 __collect_linked_regs(linked_regs, reg, id, i, j, true); 16328 } 16329 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 16330 if (!is_spilled_reg(&func->stack[j])) 16331 continue; 16332 reg = &func->stack[j].spilled_ptr; 16333 __collect_linked_regs(linked_regs, reg, id, i, j, false); 16334 } 16335 } 16336 } 16337 16338 /* For all R in linked_regs, copy known_reg range into R 16339 * if R->id == known_reg->id. 16340 */ 16341 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg, 16342 struct linked_regs *linked_regs) 16343 { 16344 struct bpf_reg_state fake_reg; 16345 struct bpf_reg_state *reg; 16346 struct linked_reg *e; 16347 int i; 16348 16349 for (i = 0; i < linked_regs->cnt; ++i) { 16350 e = &linked_regs->entries[i]; 16351 reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno] 16352 : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr; 16353 if (reg->type != SCALAR_VALUE || reg == known_reg) 16354 continue; 16355 if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST)) 16356 continue; 16357 if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) || 16358 reg->off == known_reg->off) { 16359 s32 saved_subreg_def = reg->subreg_def; 16360 16361 copy_register_state(reg, known_reg); 16362 reg->subreg_def = saved_subreg_def; 16363 } else { 16364 s32 saved_subreg_def = reg->subreg_def; 16365 s32 saved_off = reg->off; 16366 16367 fake_reg.type = SCALAR_VALUE; 16368 __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off); 16369 16370 /* reg = known_reg; reg += delta */ 16371 copy_register_state(reg, known_reg); 16372 /* 16373 * Must preserve off, id and add_const flag, 16374 * otherwise another sync_linked_regs() will be incorrect. 16375 */ 16376 reg->off = saved_off; 16377 reg->subreg_def = saved_subreg_def; 16378 16379 scalar32_min_max_add(reg, &fake_reg); 16380 scalar_min_max_add(reg, &fake_reg); 16381 reg->var_off = tnum_add(reg->var_off, fake_reg.var_off); 16382 } 16383 } 16384 } 16385 16386 static int check_cond_jmp_op(struct bpf_verifier_env *env, 16387 struct bpf_insn *insn, int *insn_idx) 16388 { 16389 struct bpf_verifier_state *this_branch = env->cur_state; 16390 struct bpf_verifier_state *other_branch; 16391 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 16392 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 16393 struct bpf_reg_state *eq_branch_regs; 16394 struct linked_regs linked_regs = {}; 16395 u8 opcode = BPF_OP(insn->code); 16396 int insn_flags = 0; 16397 bool is_jmp32; 16398 int pred = -1; 16399 int err; 16400 16401 /* Only conditional jumps are expected to reach here. */ 16402 if (opcode == BPF_JA || opcode > BPF_JCOND) { 16403 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 16404 return -EINVAL; 16405 } 16406 16407 if (opcode == BPF_JCOND) { 16408 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 16409 int idx = *insn_idx; 16410 16411 if (insn->code != (BPF_JMP | BPF_JCOND) || 16412 insn->src_reg != BPF_MAY_GOTO || 16413 insn->dst_reg || insn->imm) { 16414 verbose(env, "invalid may_goto imm %d\n", insn->imm); 16415 return -EINVAL; 16416 } 16417 prev_st = find_prev_entry(env, cur_st->parent, idx); 16418 16419 /* branch out 'fallthrough' insn as a new state to explore */ 16420 queued_st = push_stack(env, idx + 1, idx, false); 16421 if (!queued_st) 16422 return -ENOMEM; 16423 16424 queued_st->may_goto_depth++; 16425 if (prev_st) 16426 widen_imprecise_scalars(env, prev_st, queued_st); 16427 *insn_idx += insn->off; 16428 return 0; 16429 } 16430 16431 /* check src2 operand */ 16432 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16433 if (err) 16434 return err; 16435 16436 dst_reg = ®s[insn->dst_reg]; 16437 if (BPF_SRC(insn->code) == BPF_X) { 16438 if (insn->imm != 0) { 16439 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 16440 return -EINVAL; 16441 } 16442 16443 /* check src1 operand */ 16444 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16445 if (err) 16446 return err; 16447 16448 src_reg = ®s[insn->src_reg]; 16449 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 16450 is_pointer_value(env, insn->src_reg)) { 16451 verbose(env, "R%d pointer comparison prohibited\n", 16452 insn->src_reg); 16453 return -EACCES; 16454 } 16455 16456 if (src_reg->type == PTR_TO_STACK) 16457 insn_flags |= INSN_F_SRC_REG_STACK; 16458 if (dst_reg->type == PTR_TO_STACK) 16459 insn_flags |= INSN_F_DST_REG_STACK; 16460 } else { 16461 if (insn->src_reg != BPF_REG_0) { 16462 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 16463 return -EINVAL; 16464 } 16465 src_reg = &env->fake_reg[0]; 16466 memset(src_reg, 0, sizeof(*src_reg)); 16467 src_reg->type = SCALAR_VALUE; 16468 __mark_reg_known(src_reg, insn->imm); 16469 16470 if (dst_reg->type == PTR_TO_STACK) 16471 insn_flags |= INSN_F_DST_REG_STACK; 16472 } 16473 16474 if (insn_flags) { 16475 err = push_insn_history(env, this_branch, insn_flags, 0); 16476 if (err) 16477 return err; 16478 } 16479 16480 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 16481 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 16482 if (pred >= 0) { 16483 /* If we get here with a dst_reg pointer type it is because 16484 * above is_branch_taken() special cased the 0 comparison. 16485 */ 16486 if (!__is_pointer_value(false, dst_reg)) 16487 err = mark_chain_precision(env, insn->dst_reg); 16488 if (BPF_SRC(insn->code) == BPF_X && !err && 16489 !__is_pointer_value(false, src_reg)) 16490 err = mark_chain_precision(env, insn->src_reg); 16491 if (err) 16492 return err; 16493 } 16494 16495 if (pred == 1) { 16496 /* Only follow the goto, ignore fall-through. If needed, push 16497 * the fall-through branch for simulation under speculative 16498 * execution. 16499 */ 16500 if (!env->bypass_spec_v1 && 16501 !sanitize_speculative_path(env, insn, *insn_idx + 1, 16502 *insn_idx)) 16503 return -EFAULT; 16504 if (env->log.level & BPF_LOG_LEVEL) 16505 print_insn_state(env, this_branch, this_branch->curframe); 16506 *insn_idx += insn->off; 16507 return 0; 16508 } else if (pred == 0) { 16509 /* Only follow the fall-through branch, since that's where the 16510 * program will go. If needed, push the goto branch for 16511 * simulation under speculative execution. 16512 */ 16513 if (!env->bypass_spec_v1 && 16514 !sanitize_speculative_path(env, insn, 16515 *insn_idx + insn->off + 1, 16516 *insn_idx)) 16517 return -EFAULT; 16518 if (env->log.level & BPF_LOG_LEVEL) 16519 print_insn_state(env, this_branch, this_branch->curframe); 16520 return 0; 16521 } 16522 16523 /* Push scalar registers sharing same ID to jump history, 16524 * do this before creating 'other_branch', so that both 16525 * 'this_branch' and 'other_branch' share this history 16526 * if parent state is created. 16527 */ 16528 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id) 16529 collect_linked_regs(this_branch, src_reg->id, &linked_regs); 16530 if (dst_reg->type == SCALAR_VALUE && dst_reg->id) 16531 collect_linked_regs(this_branch, dst_reg->id, &linked_regs); 16532 if (linked_regs.cnt > 1) { 16533 err = push_insn_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); 16534 if (err) 16535 return err; 16536 } 16537 16538 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 16539 false); 16540 if (!other_branch) 16541 return -EFAULT; 16542 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 16543 16544 if (BPF_SRC(insn->code) == BPF_X) { 16545 err = reg_set_min_max(env, 16546 &other_branch_regs[insn->dst_reg], 16547 &other_branch_regs[insn->src_reg], 16548 dst_reg, src_reg, opcode, is_jmp32); 16549 } else /* BPF_SRC(insn->code) == BPF_K */ { 16550 /* reg_set_min_max() can mangle the fake_reg. Make a copy 16551 * so that these are two different memory locations. The 16552 * src_reg is not used beyond here in context of K. 16553 */ 16554 memcpy(&env->fake_reg[1], &env->fake_reg[0], 16555 sizeof(env->fake_reg[0])); 16556 err = reg_set_min_max(env, 16557 &other_branch_regs[insn->dst_reg], 16558 &env->fake_reg[0], 16559 dst_reg, &env->fake_reg[1], 16560 opcode, is_jmp32); 16561 } 16562 if (err) 16563 return err; 16564 16565 if (BPF_SRC(insn->code) == BPF_X && 16566 src_reg->type == SCALAR_VALUE && src_reg->id && 16567 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 16568 sync_linked_regs(this_branch, src_reg, &linked_regs); 16569 sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs); 16570 } 16571 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 16572 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 16573 sync_linked_regs(this_branch, dst_reg, &linked_regs); 16574 sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs); 16575 } 16576 16577 /* if one pointer register is compared to another pointer 16578 * register check if PTR_MAYBE_NULL could be lifted. 16579 * E.g. register A - maybe null 16580 * register B - not null 16581 * for JNE A, B, ... - A is not null in the false branch; 16582 * for JEQ A, B, ... - A is not null in the true branch. 16583 * 16584 * Since PTR_TO_BTF_ID points to a kernel struct that does 16585 * not need to be null checked by the BPF program, i.e., 16586 * could be null even without PTR_MAYBE_NULL marking, so 16587 * only propagate nullness when neither reg is that type. 16588 */ 16589 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 16590 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 16591 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 16592 base_type(src_reg->type) != PTR_TO_BTF_ID && 16593 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 16594 eq_branch_regs = NULL; 16595 switch (opcode) { 16596 case BPF_JEQ: 16597 eq_branch_regs = other_branch_regs; 16598 break; 16599 case BPF_JNE: 16600 eq_branch_regs = regs; 16601 break; 16602 default: 16603 /* do nothing */ 16604 break; 16605 } 16606 if (eq_branch_regs) { 16607 if (type_may_be_null(src_reg->type)) 16608 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 16609 else 16610 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 16611 } 16612 } 16613 16614 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 16615 * NOTE: these optimizations below are related with pointer comparison 16616 * which will never be JMP32. 16617 */ 16618 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 16619 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 16620 type_may_be_null(dst_reg->type)) { 16621 /* Mark all identical registers in each branch as either 16622 * safe or unknown depending R == 0 or R != 0 conditional. 16623 */ 16624 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 16625 opcode == BPF_JNE); 16626 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 16627 opcode == BPF_JEQ); 16628 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 16629 this_branch, other_branch) && 16630 is_pointer_value(env, insn->dst_reg)) { 16631 verbose(env, "R%d pointer comparison prohibited\n", 16632 insn->dst_reg); 16633 return -EACCES; 16634 } 16635 if (env->log.level & BPF_LOG_LEVEL) 16636 print_insn_state(env, this_branch, this_branch->curframe); 16637 return 0; 16638 } 16639 16640 /* verify BPF_LD_IMM64 instruction */ 16641 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 16642 { 16643 struct bpf_insn_aux_data *aux = cur_aux(env); 16644 struct bpf_reg_state *regs = cur_regs(env); 16645 struct bpf_reg_state *dst_reg; 16646 struct bpf_map *map; 16647 int err; 16648 16649 if (BPF_SIZE(insn->code) != BPF_DW) { 16650 verbose(env, "invalid BPF_LD_IMM insn\n"); 16651 return -EINVAL; 16652 } 16653 if (insn->off != 0) { 16654 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 16655 return -EINVAL; 16656 } 16657 16658 err = check_reg_arg(env, insn->dst_reg, DST_OP); 16659 if (err) 16660 return err; 16661 16662 dst_reg = ®s[insn->dst_reg]; 16663 if (insn->src_reg == 0) { 16664 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 16665 16666 dst_reg->type = SCALAR_VALUE; 16667 __mark_reg_known(®s[insn->dst_reg], imm); 16668 return 0; 16669 } 16670 16671 /* All special src_reg cases are listed below. From this point onwards 16672 * we either succeed and assign a corresponding dst_reg->type after 16673 * zeroing the offset, or fail and reject the program. 16674 */ 16675 mark_reg_known_zero(env, regs, insn->dst_reg); 16676 16677 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 16678 dst_reg->type = aux->btf_var.reg_type; 16679 switch (base_type(dst_reg->type)) { 16680 case PTR_TO_MEM: 16681 dst_reg->mem_size = aux->btf_var.mem_size; 16682 break; 16683 case PTR_TO_BTF_ID: 16684 dst_reg->btf = aux->btf_var.btf; 16685 dst_reg->btf_id = aux->btf_var.btf_id; 16686 break; 16687 default: 16688 verbose(env, "bpf verifier is misconfigured\n"); 16689 return -EFAULT; 16690 } 16691 return 0; 16692 } 16693 16694 if (insn->src_reg == BPF_PSEUDO_FUNC) { 16695 struct bpf_prog_aux *aux = env->prog->aux; 16696 u32 subprogno = find_subprog(env, 16697 env->insn_idx + insn->imm + 1); 16698 16699 if (!aux->func_info) { 16700 verbose(env, "missing btf func_info\n"); 16701 return -EINVAL; 16702 } 16703 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 16704 verbose(env, "callback function not static\n"); 16705 return -EINVAL; 16706 } 16707 16708 dst_reg->type = PTR_TO_FUNC; 16709 dst_reg->subprogno = subprogno; 16710 return 0; 16711 } 16712 16713 map = env->used_maps[aux->map_index]; 16714 dst_reg->map_ptr = map; 16715 16716 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 16717 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 16718 if (map->map_type == BPF_MAP_TYPE_ARENA) { 16719 __mark_reg_unknown(env, dst_reg); 16720 return 0; 16721 } 16722 dst_reg->type = PTR_TO_MAP_VALUE; 16723 dst_reg->off = aux->map_off; 16724 WARN_ON_ONCE(map->max_entries != 1); 16725 /* We want reg->id to be same (0) as map_value is not distinct */ 16726 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 16727 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 16728 dst_reg->type = CONST_PTR_TO_MAP; 16729 } else { 16730 verbose(env, "bpf verifier is misconfigured\n"); 16731 return -EINVAL; 16732 } 16733 16734 return 0; 16735 } 16736 16737 static bool may_access_skb(enum bpf_prog_type type) 16738 { 16739 switch (type) { 16740 case BPF_PROG_TYPE_SOCKET_FILTER: 16741 case BPF_PROG_TYPE_SCHED_CLS: 16742 case BPF_PROG_TYPE_SCHED_ACT: 16743 return true; 16744 default: 16745 return false; 16746 } 16747 } 16748 16749 /* verify safety of LD_ABS|LD_IND instructions: 16750 * - they can only appear in the programs where ctx == skb 16751 * - since they are wrappers of function calls, they scratch R1-R5 registers, 16752 * preserve R6-R9, and store return value into R0 16753 * 16754 * Implicit input: 16755 * ctx == skb == R6 == CTX 16756 * 16757 * Explicit input: 16758 * SRC == any register 16759 * IMM == 32-bit immediate 16760 * 16761 * Output: 16762 * R0 - 8/16/32-bit skb data converted to cpu endianness 16763 */ 16764 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 16765 { 16766 struct bpf_reg_state *regs = cur_regs(env); 16767 static const int ctx_reg = BPF_REG_6; 16768 u8 mode = BPF_MODE(insn->code); 16769 int i, err; 16770 16771 if (!may_access_skb(resolve_prog_type(env->prog))) { 16772 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 16773 return -EINVAL; 16774 } 16775 16776 if (!env->ops->gen_ld_abs) { 16777 verbose(env, "bpf verifier is misconfigured\n"); 16778 return -EINVAL; 16779 } 16780 16781 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 16782 BPF_SIZE(insn->code) == BPF_DW || 16783 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 16784 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 16785 return -EINVAL; 16786 } 16787 16788 /* check whether implicit source operand (register R6) is readable */ 16789 err = check_reg_arg(env, ctx_reg, SRC_OP); 16790 if (err) 16791 return err; 16792 16793 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 16794 * gen_ld_abs() may terminate the program at runtime, leading to 16795 * reference leak. 16796 */ 16797 err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]"); 16798 if (err) 16799 return err; 16800 16801 if (regs[ctx_reg].type != PTR_TO_CTX) { 16802 verbose(env, 16803 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 16804 return -EINVAL; 16805 } 16806 16807 if (mode == BPF_IND) { 16808 /* check explicit source operand */ 16809 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16810 if (err) 16811 return err; 16812 } 16813 16814 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 16815 if (err < 0) 16816 return err; 16817 16818 /* reset caller saved regs to unreadable */ 16819 for (i = 0; i < CALLER_SAVED_REGS; i++) { 16820 mark_reg_not_init(env, regs, caller_saved[i]); 16821 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 16822 } 16823 16824 /* mark destination R0 register as readable, since it contains 16825 * the value fetched from the packet. 16826 * Already marked as written above. 16827 */ 16828 mark_reg_unknown(env, regs, BPF_REG_0); 16829 /* ld_abs load up to 32-bit skb data. */ 16830 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 16831 return 0; 16832 } 16833 16834 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 16835 { 16836 const char *exit_ctx = "At program exit"; 16837 struct tnum enforce_attach_type_range = tnum_unknown; 16838 const struct bpf_prog *prog = env->prog; 16839 struct bpf_reg_state *reg = reg_state(env, regno); 16840 struct bpf_retval_range range = retval_range(0, 1); 16841 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 16842 int err; 16843 struct bpf_func_state *frame = env->cur_state->frame[0]; 16844 const bool is_subprog = frame->subprogno; 16845 bool return_32bit = false; 16846 const struct btf_type *reg_type, *ret_type = NULL; 16847 16848 /* LSM and struct_ops func-ptr's return type could be "void" */ 16849 if (!is_subprog || frame->in_exception_callback_fn) { 16850 switch (prog_type) { 16851 case BPF_PROG_TYPE_LSM: 16852 if (prog->expected_attach_type == BPF_LSM_CGROUP) 16853 /* See below, can be 0 or 0-1 depending on hook. */ 16854 break; 16855 if (!prog->aux->attach_func_proto->type) 16856 return 0; 16857 break; 16858 case BPF_PROG_TYPE_STRUCT_OPS: 16859 if (!prog->aux->attach_func_proto->type) 16860 return 0; 16861 16862 if (frame->in_exception_callback_fn) 16863 break; 16864 16865 /* Allow a struct_ops program to return a referenced kptr if it 16866 * matches the operator's return type and is in its unmodified 16867 * form. A scalar zero (i.e., a null pointer) is also allowed. 16868 */ 16869 reg_type = reg->btf ? btf_type_by_id(reg->btf, reg->btf_id) : NULL; 16870 ret_type = btf_type_resolve_ptr(prog->aux->attach_btf, 16871 prog->aux->attach_func_proto->type, 16872 NULL); 16873 if (ret_type && ret_type == reg_type && reg->ref_obj_id) 16874 return __check_ptr_off_reg(env, reg, regno, false); 16875 break; 16876 default: 16877 break; 16878 } 16879 } 16880 16881 /* eBPF calling convention is such that R0 is used 16882 * to return the value from eBPF program. 16883 * Make sure that it's readable at this time 16884 * of bpf_exit, which means that program wrote 16885 * something into it earlier 16886 */ 16887 err = check_reg_arg(env, regno, SRC_OP); 16888 if (err) 16889 return err; 16890 16891 if (is_pointer_value(env, regno)) { 16892 verbose(env, "R%d leaks addr as return value\n", regno); 16893 return -EACCES; 16894 } 16895 16896 if (frame->in_async_callback_fn) { 16897 /* enforce return zero from async callbacks like timer */ 16898 exit_ctx = "At async callback return"; 16899 range = retval_range(0, 0); 16900 goto enforce_retval; 16901 } 16902 16903 if (is_subprog && !frame->in_exception_callback_fn) { 16904 if (reg->type != SCALAR_VALUE) { 16905 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 16906 regno, reg_type_str(env, reg->type)); 16907 return -EINVAL; 16908 } 16909 return 0; 16910 } 16911 16912 switch (prog_type) { 16913 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 16914 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 16915 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 16916 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 16917 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 16918 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 16919 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 16920 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 16921 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 16922 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 16923 range = retval_range(1, 1); 16924 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 16925 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 16926 range = retval_range(0, 3); 16927 break; 16928 case BPF_PROG_TYPE_CGROUP_SKB: 16929 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 16930 range = retval_range(0, 3); 16931 enforce_attach_type_range = tnum_range(2, 3); 16932 } 16933 break; 16934 case BPF_PROG_TYPE_CGROUP_SOCK: 16935 case BPF_PROG_TYPE_SOCK_OPS: 16936 case BPF_PROG_TYPE_CGROUP_DEVICE: 16937 case BPF_PROG_TYPE_CGROUP_SYSCTL: 16938 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 16939 break; 16940 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16941 if (!env->prog->aux->attach_btf_id) 16942 return 0; 16943 range = retval_range(0, 0); 16944 break; 16945 case BPF_PROG_TYPE_TRACING: 16946 switch (env->prog->expected_attach_type) { 16947 case BPF_TRACE_FENTRY: 16948 case BPF_TRACE_FEXIT: 16949 range = retval_range(0, 0); 16950 break; 16951 case BPF_TRACE_RAW_TP: 16952 case BPF_MODIFY_RETURN: 16953 return 0; 16954 case BPF_TRACE_ITER: 16955 break; 16956 default: 16957 return -ENOTSUPP; 16958 } 16959 break; 16960 case BPF_PROG_TYPE_KPROBE: 16961 switch (env->prog->expected_attach_type) { 16962 case BPF_TRACE_KPROBE_SESSION: 16963 case BPF_TRACE_UPROBE_SESSION: 16964 range = retval_range(0, 1); 16965 break; 16966 default: 16967 return 0; 16968 } 16969 break; 16970 case BPF_PROG_TYPE_SK_LOOKUP: 16971 range = retval_range(SK_DROP, SK_PASS); 16972 break; 16973 16974 case BPF_PROG_TYPE_LSM: 16975 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 16976 /* no range found, any return value is allowed */ 16977 if (!get_func_retval_range(env->prog, &range)) 16978 return 0; 16979 /* no restricted range, any return value is allowed */ 16980 if (range.minval == S32_MIN && range.maxval == S32_MAX) 16981 return 0; 16982 return_32bit = true; 16983 } else if (!env->prog->aux->attach_func_proto->type) { 16984 /* Make sure programs that attach to void 16985 * hooks don't try to modify return value. 16986 */ 16987 range = retval_range(1, 1); 16988 } 16989 break; 16990 16991 case BPF_PROG_TYPE_NETFILTER: 16992 range = retval_range(NF_DROP, NF_ACCEPT); 16993 break; 16994 case BPF_PROG_TYPE_STRUCT_OPS: 16995 if (!ret_type) 16996 return 0; 16997 range = retval_range(0, 0); 16998 break; 16999 case BPF_PROG_TYPE_EXT: 17000 /* freplace program can return anything as its return value 17001 * depends on the to-be-replaced kernel func or bpf program. 17002 */ 17003 default: 17004 return 0; 17005 } 17006 17007 enforce_retval: 17008 if (reg->type != SCALAR_VALUE) { 17009 verbose(env, "%s the register R%d is not a known value (%s)\n", 17010 exit_ctx, regno, reg_type_str(env, reg->type)); 17011 return -EINVAL; 17012 } 17013 17014 err = mark_chain_precision(env, regno); 17015 if (err) 17016 return err; 17017 17018 if (!retval_range_within(range, reg, return_32bit)) { 17019 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 17020 if (!is_subprog && 17021 prog->expected_attach_type == BPF_LSM_CGROUP && 17022 prog_type == BPF_PROG_TYPE_LSM && 17023 !prog->aux->attach_func_proto->type) 17024 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 17025 return -EINVAL; 17026 } 17027 17028 if (!tnum_is_unknown(enforce_attach_type_range) && 17029 tnum_in(enforce_attach_type_range, reg->var_off)) 17030 env->prog->enforce_expected_attach_type = 1; 17031 return 0; 17032 } 17033 17034 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off) 17035 { 17036 struct bpf_subprog_info *subprog; 17037 17038 subprog = find_containing_subprog(env, off); 17039 subprog->changes_pkt_data = true; 17040 } 17041 17042 static void mark_subprog_might_sleep(struct bpf_verifier_env *env, int off) 17043 { 17044 struct bpf_subprog_info *subprog; 17045 17046 subprog = find_containing_subprog(env, off); 17047 subprog->might_sleep = true; 17048 } 17049 17050 /* 't' is an index of a call-site. 17051 * 'w' is a callee entry point. 17052 * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED. 17053 * Rely on DFS traversal order and absence of recursive calls to guarantee that 17054 * callee's change_pkt_data marks would be correct at that moment. 17055 */ 17056 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w) 17057 { 17058 struct bpf_subprog_info *caller, *callee; 17059 17060 caller = find_containing_subprog(env, t); 17061 callee = find_containing_subprog(env, w); 17062 caller->changes_pkt_data |= callee->changes_pkt_data; 17063 caller->might_sleep |= callee->might_sleep; 17064 } 17065 17066 /* non-recursive DFS pseudo code 17067 * 1 procedure DFS-iterative(G,v): 17068 * 2 label v as discovered 17069 * 3 let S be a stack 17070 * 4 S.push(v) 17071 * 5 while S is not empty 17072 * 6 t <- S.peek() 17073 * 7 if t is what we're looking for: 17074 * 8 return t 17075 * 9 for all edges e in G.adjacentEdges(t) do 17076 * 10 if edge e is already labelled 17077 * 11 continue with the next edge 17078 * 12 w <- G.adjacentVertex(t,e) 17079 * 13 if vertex w is not discovered and not explored 17080 * 14 label e as tree-edge 17081 * 15 label w as discovered 17082 * 16 S.push(w) 17083 * 17 continue at 5 17084 * 18 else if vertex w is discovered 17085 * 19 label e as back-edge 17086 * 20 else 17087 * 21 // vertex w is explored 17088 * 22 label e as forward- or cross-edge 17089 * 23 label t as explored 17090 * 24 S.pop() 17091 * 17092 * convention: 17093 * 0x10 - discovered 17094 * 0x11 - discovered and fall-through edge labelled 17095 * 0x12 - discovered and fall-through and branch edges labelled 17096 * 0x20 - explored 17097 */ 17098 17099 enum { 17100 DISCOVERED = 0x10, 17101 EXPLORED = 0x20, 17102 FALLTHROUGH = 1, 17103 BRANCH = 2, 17104 }; 17105 17106 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 17107 { 17108 env->insn_aux_data[idx].prune_point = true; 17109 } 17110 17111 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 17112 { 17113 return env->insn_aux_data[insn_idx].prune_point; 17114 } 17115 17116 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 17117 { 17118 env->insn_aux_data[idx].force_checkpoint = true; 17119 } 17120 17121 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 17122 { 17123 return env->insn_aux_data[insn_idx].force_checkpoint; 17124 } 17125 17126 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 17127 { 17128 env->insn_aux_data[idx].calls_callback = true; 17129 } 17130 17131 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 17132 { 17133 return env->insn_aux_data[insn_idx].calls_callback; 17134 } 17135 17136 enum { 17137 DONE_EXPLORING = 0, 17138 KEEP_EXPLORING = 1, 17139 }; 17140 17141 /* t, w, e - match pseudo-code above: 17142 * t - index of current instruction 17143 * w - next instruction 17144 * e - edge 17145 */ 17146 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 17147 { 17148 int *insn_stack = env->cfg.insn_stack; 17149 int *insn_state = env->cfg.insn_state; 17150 17151 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 17152 return DONE_EXPLORING; 17153 17154 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 17155 return DONE_EXPLORING; 17156 17157 if (w < 0 || w >= env->prog->len) { 17158 verbose_linfo(env, t, "%d: ", t); 17159 verbose(env, "jump out of range from insn %d to %d\n", t, w); 17160 return -EINVAL; 17161 } 17162 17163 if (e == BRANCH) { 17164 /* mark branch target for state pruning */ 17165 mark_prune_point(env, w); 17166 mark_jmp_point(env, w); 17167 } 17168 17169 if (insn_state[w] == 0) { 17170 /* tree-edge */ 17171 insn_state[t] = DISCOVERED | e; 17172 insn_state[w] = DISCOVERED; 17173 if (env->cfg.cur_stack >= env->prog->len) 17174 return -E2BIG; 17175 insn_stack[env->cfg.cur_stack++] = w; 17176 return KEEP_EXPLORING; 17177 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 17178 if (env->bpf_capable) 17179 return DONE_EXPLORING; 17180 verbose_linfo(env, t, "%d: ", t); 17181 verbose_linfo(env, w, "%d: ", w); 17182 verbose(env, "back-edge from insn %d to %d\n", t, w); 17183 return -EINVAL; 17184 } else if (insn_state[w] == EXPLORED) { 17185 /* forward- or cross-edge */ 17186 insn_state[t] = DISCOVERED | e; 17187 } else { 17188 verbose(env, "insn state internal bug\n"); 17189 return -EFAULT; 17190 } 17191 return DONE_EXPLORING; 17192 } 17193 17194 static int visit_func_call_insn(int t, struct bpf_insn *insns, 17195 struct bpf_verifier_env *env, 17196 bool visit_callee) 17197 { 17198 int ret, insn_sz; 17199 int w; 17200 17201 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 17202 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 17203 if (ret) 17204 return ret; 17205 17206 mark_prune_point(env, t + insn_sz); 17207 /* when we exit from subprog, we need to record non-linear history */ 17208 mark_jmp_point(env, t + insn_sz); 17209 17210 if (visit_callee) { 17211 w = t + insns[t].imm + 1; 17212 mark_prune_point(env, t); 17213 merge_callee_effects(env, t, w); 17214 ret = push_insn(t, w, BRANCH, env); 17215 } 17216 return ret; 17217 } 17218 17219 /* Bitmask with 1s for all caller saved registers */ 17220 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 17221 17222 /* True if do_misc_fixups() replaces calls to helper number 'imm', 17223 * replacement patch is presumed to follow bpf_fastcall contract 17224 * (see mark_fastcall_pattern_for_call() below). 17225 */ 17226 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm) 17227 { 17228 switch (imm) { 17229 #ifdef CONFIG_X86_64 17230 case BPF_FUNC_get_smp_processor_id: 17231 return env->prog->jit_requested && bpf_jit_supports_percpu_insn(); 17232 #endif 17233 default: 17234 return false; 17235 } 17236 } 17237 17238 struct call_summary { 17239 u8 num_params; 17240 bool is_void; 17241 bool fastcall; 17242 }; 17243 17244 /* If @call is a kfunc or helper call, fills @cs and returns true, 17245 * otherwise returns false. 17246 */ 17247 static bool get_call_summary(struct bpf_verifier_env *env, struct bpf_insn *call, 17248 struct call_summary *cs) 17249 { 17250 struct bpf_kfunc_call_arg_meta meta; 17251 const struct bpf_func_proto *fn; 17252 int i; 17253 17254 if (bpf_helper_call(call)) { 17255 17256 if (get_helper_proto(env, call->imm, &fn) < 0) 17257 /* error would be reported later */ 17258 return false; 17259 cs->fastcall = fn->allow_fastcall && 17260 (verifier_inlines_helper_call(env, call->imm) || 17261 bpf_jit_inlines_helper_call(call->imm)); 17262 cs->is_void = fn->ret_type == RET_VOID; 17263 cs->num_params = 0; 17264 for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) { 17265 if (fn->arg_type[i] == ARG_DONTCARE) 17266 break; 17267 cs->num_params++; 17268 } 17269 return true; 17270 } 17271 17272 if (bpf_pseudo_kfunc_call(call)) { 17273 int err; 17274 17275 err = fetch_kfunc_meta(env, call, &meta, NULL); 17276 if (err < 0) 17277 /* error would be reported later */ 17278 return false; 17279 cs->num_params = btf_type_vlen(meta.func_proto); 17280 cs->fastcall = meta.kfunc_flags & KF_FASTCALL; 17281 cs->is_void = btf_type_is_void(btf_type_by_id(meta.btf, meta.func_proto->type)); 17282 return true; 17283 } 17284 17285 return false; 17286 } 17287 17288 /* LLVM define a bpf_fastcall function attribute. 17289 * This attribute means that function scratches only some of 17290 * the caller saved registers defined by ABI. 17291 * For BPF the set of such registers could be defined as follows: 17292 * - R0 is scratched only if function is non-void; 17293 * - R1-R5 are scratched only if corresponding parameter type is defined 17294 * in the function prototype. 17295 * 17296 * The contract between kernel and clang allows to simultaneously use 17297 * such functions and maintain backwards compatibility with old 17298 * kernels that don't understand bpf_fastcall calls: 17299 * 17300 * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5 17301 * registers are not scratched by the call; 17302 * 17303 * - as a post-processing step, clang visits each bpf_fastcall call and adds 17304 * spill/fill for every live r0-r5; 17305 * 17306 * - stack offsets used for the spill/fill are allocated as lowest 17307 * stack offsets in whole function and are not used for any other 17308 * purposes; 17309 * 17310 * - when kernel loads a program, it looks for such patterns 17311 * (bpf_fastcall function surrounded by spills/fills) and checks if 17312 * spill/fill stack offsets are used exclusively in fastcall patterns; 17313 * 17314 * - if so, and if verifier or current JIT inlines the call to the 17315 * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary 17316 * spill/fill pairs; 17317 * 17318 * - when old kernel loads a program, presence of spill/fill pairs 17319 * keeps BPF program valid, albeit slightly less efficient. 17320 * 17321 * For example: 17322 * 17323 * r1 = 1; 17324 * r2 = 2; 17325 * *(u64 *)(r10 - 8) = r1; r1 = 1; 17326 * *(u64 *)(r10 - 16) = r2; r2 = 2; 17327 * call %[to_be_inlined] --> call %[to_be_inlined] 17328 * r2 = *(u64 *)(r10 - 16); r0 = r1; 17329 * r1 = *(u64 *)(r10 - 8); r0 += r2; 17330 * r0 = r1; exit; 17331 * r0 += r2; 17332 * exit; 17333 * 17334 * The purpose of mark_fastcall_pattern_for_call is to: 17335 * - look for such patterns; 17336 * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern; 17337 * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction; 17338 * - update env->subprog_info[*]->fastcall_stack_off to find an offset 17339 * at which bpf_fastcall spill/fill stack slots start; 17340 * - update env->subprog_info[*]->keep_fastcall_stack. 17341 * 17342 * The .fastcall_pattern and .fastcall_stack_off are used by 17343 * check_fastcall_stack_contract() to check if every stack access to 17344 * fastcall spill/fill stack slot originates from spill/fill 17345 * instructions, members of fastcall patterns. 17346 * 17347 * If such condition holds true for a subprogram, fastcall patterns could 17348 * be rewritten by remove_fastcall_spills_fills(). 17349 * Otherwise bpf_fastcall patterns are not changed in the subprogram 17350 * (code, presumably, generated by an older clang version). 17351 * 17352 * For example, it is *not* safe to remove spill/fill below: 17353 * 17354 * r1 = 1; 17355 * *(u64 *)(r10 - 8) = r1; r1 = 1; 17356 * call %[to_be_inlined] --> call %[to_be_inlined] 17357 * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!! 17358 * r0 = *(u64 *)(r10 - 8); r0 += r1; 17359 * r0 += r1; exit; 17360 * exit; 17361 */ 17362 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env, 17363 struct bpf_subprog_info *subprog, 17364 int insn_idx, s16 lowest_off) 17365 { 17366 struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx; 17367 struct bpf_insn *call = &env->prog->insnsi[insn_idx]; 17368 u32 clobbered_regs_mask; 17369 struct call_summary cs; 17370 u32 expected_regs_mask; 17371 s16 off; 17372 int i; 17373 17374 if (!get_call_summary(env, call, &cs)) 17375 return; 17376 17377 /* A bitmask specifying which caller saved registers are clobbered 17378 * by a call to a helper/kfunc *as if* this helper/kfunc follows 17379 * bpf_fastcall contract: 17380 * - includes R0 if function is non-void; 17381 * - includes R1-R5 if corresponding parameter has is described 17382 * in the function prototype. 17383 */ 17384 clobbered_regs_mask = GENMASK(cs.num_params, cs.is_void ? 1 : 0); 17385 /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */ 17386 expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS; 17387 17388 /* match pairs of form: 17389 * 17390 * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0) 17391 * ... 17392 * call %[to_be_inlined] 17393 * ... 17394 * rX = *(u64 *)(r10 - Y) 17395 */ 17396 for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) { 17397 if (insn_idx - i < 0 || insn_idx + i >= env->prog->len) 17398 break; 17399 stx = &insns[insn_idx - i]; 17400 ldx = &insns[insn_idx + i]; 17401 /* must be a stack spill/fill pair */ 17402 if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) || 17403 ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) || 17404 stx->dst_reg != BPF_REG_10 || 17405 ldx->src_reg != BPF_REG_10) 17406 break; 17407 /* must be a spill/fill for the same reg */ 17408 if (stx->src_reg != ldx->dst_reg) 17409 break; 17410 /* must be one of the previously unseen registers */ 17411 if ((BIT(stx->src_reg) & expected_regs_mask) == 0) 17412 break; 17413 /* must be a spill/fill for the same expected offset, 17414 * no need to check offset alignment, BPF_DW stack access 17415 * is always 8-byte aligned. 17416 */ 17417 if (stx->off != off || ldx->off != off) 17418 break; 17419 expected_regs_mask &= ~BIT(stx->src_reg); 17420 env->insn_aux_data[insn_idx - i].fastcall_pattern = 1; 17421 env->insn_aux_data[insn_idx + i].fastcall_pattern = 1; 17422 } 17423 if (i == 1) 17424 return; 17425 17426 /* Conditionally set 'fastcall_spills_num' to allow forward 17427 * compatibility when more helper functions are marked as 17428 * bpf_fastcall at compile time than current kernel supports, e.g: 17429 * 17430 * 1: *(u64 *)(r10 - 8) = r1 17431 * 2: call A ;; assume A is bpf_fastcall for current kernel 17432 * 3: r1 = *(u64 *)(r10 - 8) 17433 * 4: *(u64 *)(r10 - 8) = r1 17434 * 5: call B ;; assume B is not bpf_fastcall for current kernel 17435 * 6: r1 = *(u64 *)(r10 - 8) 17436 * 17437 * There is no need to block bpf_fastcall rewrite for such program. 17438 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy, 17439 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills() 17440 * does not remove spill/fill pair {4,6}. 17441 */ 17442 if (cs.fastcall) 17443 env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1; 17444 else 17445 subprog->keep_fastcall_stack = 1; 17446 subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off); 17447 } 17448 17449 static int mark_fastcall_patterns(struct bpf_verifier_env *env) 17450 { 17451 struct bpf_subprog_info *subprog = env->subprog_info; 17452 struct bpf_insn *insn; 17453 s16 lowest_off; 17454 int s, i; 17455 17456 for (s = 0; s < env->subprog_cnt; ++s, ++subprog) { 17457 /* find lowest stack spill offset used in this subprog */ 17458 lowest_off = 0; 17459 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 17460 insn = env->prog->insnsi + i; 17461 if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) || 17462 insn->dst_reg != BPF_REG_10) 17463 continue; 17464 lowest_off = min(lowest_off, insn->off); 17465 } 17466 /* use this offset to find fastcall patterns */ 17467 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 17468 insn = env->prog->insnsi + i; 17469 if (insn->code != (BPF_JMP | BPF_CALL)) 17470 continue; 17471 mark_fastcall_pattern_for_call(env, subprog, i, lowest_off); 17472 } 17473 } 17474 return 0; 17475 } 17476 17477 /* Visits the instruction at index t and returns one of the following: 17478 * < 0 - an error occurred 17479 * DONE_EXPLORING - the instruction was fully explored 17480 * KEEP_EXPLORING - there is still work to be done before it is fully explored 17481 */ 17482 static int visit_insn(int t, struct bpf_verifier_env *env) 17483 { 17484 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 17485 int ret, off, insn_sz; 17486 17487 if (bpf_pseudo_func(insn)) 17488 return visit_func_call_insn(t, insns, env, true); 17489 17490 /* All non-branch instructions have a single fall-through edge. */ 17491 if (BPF_CLASS(insn->code) != BPF_JMP && 17492 BPF_CLASS(insn->code) != BPF_JMP32) { 17493 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 17494 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 17495 } 17496 17497 switch (BPF_OP(insn->code)) { 17498 case BPF_EXIT: 17499 return DONE_EXPLORING; 17500 17501 case BPF_CALL: 17502 if (is_async_callback_calling_insn(insn)) 17503 /* Mark this call insn as a prune point to trigger 17504 * is_state_visited() check before call itself is 17505 * processed by __check_func_call(). Otherwise new 17506 * async state will be pushed for further exploration. 17507 */ 17508 mark_prune_point(env, t); 17509 /* For functions that invoke callbacks it is not known how many times 17510 * callback would be called. Verifier models callback calling functions 17511 * by repeatedly visiting callback bodies and returning to origin call 17512 * instruction. 17513 * In order to stop such iteration verifier needs to identify when a 17514 * state identical some state from a previous iteration is reached. 17515 * Check below forces creation of checkpoint before callback calling 17516 * instruction to allow search for such identical states. 17517 */ 17518 if (is_sync_callback_calling_insn(insn)) { 17519 mark_calls_callback(env, t); 17520 mark_force_checkpoint(env, t); 17521 mark_prune_point(env, t); 17522 mark_jmp_point(env, t); 17523 } 17524 if (bpf_helper_call(insn)) { 17525 const struct bpf_func_proto *fp; 17526 17527 ret = get_helper_proto(env, insn->imm, &fp); 17528 /* If called in a non-sleepable context program will be 17529 * rejected anyway, so we should end up with precise 17530 * sleepable marks on subprogs, except for dead code 17531 * elimination. 17532 */ 17533 if (ret == 0 && fp->might_sleep) 17534 mark_subprog_might_sleep(env, t); 17535 if (bpf_helper_changes_pkt_data(insn->imm)) 17536 mark_subprog_changes_pkt_data(env, t); 17537 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 17538 struct bpf_kfunc_call_arg_meta meta; 17539 17540 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 17541 if (ret == 0 && is_iter_next_kfunc(&meta)) { 17542 mark_prune_point(env, t); 17543 /* Checking and saving state checkpoints at iter_next() call 17544 * is crucial for fast convergence of open-coded iterator loop 17545 * logic, so we need to force it. If we don't do that, 17546 * is_state_visited() might skip saving a checkpoint, causing 17547 * unnecessarily long sequence of not checkpointed 17548 * instructions and jumps, leading to exhaustion of jump 17549 * history buffer, and potentially other undesired outcomes. 17550 * It is expected that with correct open-coded iterators 17551 * convergence will happen quickly, so we don't run a risk of 17552 * exhausting memory. 17553 */ 17554 mark_force_checkpoint(env, t); 17555 } 17556 /* Same as helpers, if called in a non-sleepable context 17557 * program will be rejected anyway, so we should end up 17558 * with precise sleepable marks on subprogs, except for 17559 * dead code elimination. 17560 */ 17561 if (ret == 0 && is_kfunc_sleepable(&meta)) 17562 mark_subprog_might_sleep(env, t); 17563 } 17564 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 17565 17566 case BPF_JA: 17567 if (BPF_SRC(insn->code) != BPF_K) 17568 return -EINVAL; 17569 17570 if (BPF_CLASS(insn->code) == BPF_JMP) 17571 off = insn->off; 17572 else 17573 off = insn->imm; 17574 17575 /* unconditional jump with single edge */ 17576 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 17577 if (ret) 17578 return ret; 17579 17580 mark_prune_point(env, t + off + 1); 17581 mark_jmp_point(env, t + off + 1); 17582 17583 return ret; 17584 17585 default: 17586 /* conditional jump with two edges */ 17587 mark_prune_point(env, t); 17588 if (is_may_goto_insn(insn)) 17589 mark_force_checkpoint(env, t); 17590 17591 ret = push_insn(t, t + 1, FALLTHROUGH, env); 17592 if (ret) 17593 return ret; 17594 17595 return push_insn(t, t + insn->off + 1, BRANCH, env); 17596 } 17597 } 17598 17599 /* non-recursive depth-first-search to detect loops in BPF program 17600 * loop == back-edge in directed graph 17601 */ 17602 static int check_cfg(struct bpf_verifier_env *env) 17603 { 17604 int insn_cnt = env->prog->len; 17605 int *insn_stack, *insn_state, *insn_postorder; 17606 int ex_insn_beg, i, ret = 0; 17607 17608 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 17609 if (!insn_state) 17610 return -ENOMEM; 17611 17612 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 17613 if (!insn_stack) { 17614 kvfree(insn_state); 17615 return -ENOMEM; 17616 } 17617 17618 insn_postorder = env->cfg.insn_postorder = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 17619 if (!insn_postorder) { 17620 kvfree(insn_state); 17621 kvfree(insn_stack); 17622 return -ENOMEM; 17623 } 17624 17625 ex_insn_beg = env->exception_callback_subprog 17626 ? env->subprog_info[env->exception_callback_subprog].start 17627 : 0; 17628 17629 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 17630 insn_stack[0] = 0; /* 0 is the first instruction */ 17631 env->cfg.cur_stack = 1; 17632 17633 walk_cfg: 17634 while (env->cfg.cur_stack > 0) { 17635 int t = insn_stack[env->cfg.cur_stack - 1]; 17636 17637 ret = visit_insn(t, env); 17638 switch (ret) { 17639 case DONE_EXPLORING: 17640 insn_state[t] = EXPLORED; 17641 env->cfg.cur_stack--; 17642 insn_postorder[env->cfg.cur_postorder++] = t; 17643 break; 17644 case KEEP_EXPLORING: 17645 break; 17646 default: 17647 if (ret > 0) { 17648 verbose(env, "visit_insn internal bug\n"); 17649 ret = -EFAULT; 17650 } 17651 goto err_free; 17652 } 17653 } 17654 17655 if (env->cfg.cur_stack < 0) { 17656 verbose(env, "pop stack internal bug\n"); 17657 ret = -EFAULT; 17658 goto err_free; 17659 } 17660 17661 if (ex_insn_beg && insn_state[ex_insn_beg] != EXPLORED) { 17662 insn_state[ex_insn_beg] = DISCOVERED; 17663 insn_stack[0] = ex_insn_beg; 17664 env->cfg.cur_stack = 1; 17665 goto walk_cfg; 17666 } 17667 17668 for (i = 0; i < insn_cnt; i++) { 17669 struct bpf_insn *insn = &env->prog->insnsi[i]; 17670 17671 if (insn_state[i] != EXPLORED) { 17672 verbose(env, "unreachable insn %d\n", i); 17673 ret = -EINVAL; 17674 goto err_free; 17675 } 17676 if (bpf_is_ldimm64(insn)) { 17677 if (insn_state[i + 1] != 0) { 17678 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 17679 ret = -EINVAL; 17680 goto err_free; 17681 } 17682 i++; /* skip second half of ldimm64 */ 17683 } 17684 } 17685 ret = 0; /* cfg looks good */ 17686 env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data; 17687 env->prog->aux->might_sleep = env->subprog_info[0].might_sleep; 17688 17689 err_free: 17690 kvfree(insn_state); 17691 kvfree(insn_stack); 17692 env->cfg.insn_state = env->cfg.insn_stack = NULL; 17693 return ret; 17694 } 17695 17696 static int check_abnormal_return(struct bpf_verifier_env *env) 17697 { 17698 int i; 17699 17700 for (i = 1; i < env->subprog_cnt; i++) { 17701 if (env->subprog_info[i].has_ld_abs) { 17702 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 17703 return -EINVAL; 17704 } 17705 if (env->subprog_info[i].has_tail_call) { 17706 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 17707 return -EINVAL; 17708 } 17709 } 17710 return 0; 17711 } 17712 17713 /* The minimum supported BTF func info size */ 17714 #define MIN_BPF_FUNCINFO_SIZE 8 17715 #define MAX_FUNCINFO_REC_SIZE 252 17716 17717 static int check_btf_func_early(struct bpf_verifier_env *env, 17718 const union bpf_attr *attr, 17719 bpfptr_t uattr) 17720 { 17721 u32 krec_size = sizeof(struct bpf_func_info); 17722 const struct btf_type *type, *func_proto; 17723 u32 i, nfuncs, urec_size, min_size; 17724 struct bpf_func_info *krecord; 17725 struct bpf_prog *prog; 17726 const struct btf *btf; 17727 u32 prev_offset = 0; 17728 bpfptr_t urecord; 17729 int ret = -ENOMEM; 17730 17731 nfuncs = attr->func_info_cnt; 17732 if (!nfuncs) { 17733 if (check_abnormal_return(env)) 17734 return -EINVAL; 17735 return 0; 17736 } 17737 17738 urec_size = attr->func_info_rec_size; 17739 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 17740 urec_size > MAX_FUNCINFO_REC_SIZE || 17741 urec_size % sizeof(u32)) { 17742 verbose(env, "invalid func info rec size %u\n", urec_size); 17743 return -EINVAL; 17744 } 17745 17746 prog = env->prog; 17747 btf = prog->aux->btf; 17748 17749 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 17750 min_size = min_t(u32, krec_size, urec_size); 17751 17752 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 17753 if (!krecord) 17754 return -ENOMEM; 17755 17756 for (i = 0; i < nfuncs; i++) { 17757 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 17758 if (ret) { 17759 if (ret == -E2BIG) { 17760 verbose(env, "nonzero tailing record in func info"); 17761 /* set the size kernel expects so loader can zero 17762 * out the rest of the record. 17763 */ 17764 if (copy_to_bpfptr_offset(uattr, 17765 offsetof(union bpf_attr, func_info_rec_size), 17766 &min_size, sizeof(min_size))) 17767 ret = -EFAULT; 17768 } 17769 goto err_free; 17770 } 17771 17772 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 17773 ret = -EFAULT; 17774 goto err_free; 17775 } 17776 17777 /* check insn_off */ 17778 ret = -EINVAL; 17779 if (i == 0) { 17780 if (krecord[i].insn_off) { 17781 verbose(env, 17782 "nonzero insn_off %u for the first func info record", 17783 krecord[i].insn_off); 17784 goto err_free; 17785 } 17786 } else if (krecord[i].insn_off <= prev_offset) { 17787 verbose(env, 17788 "same or smaller insn offset (%u) than previous func info record (%u)", 17789 krecord[i].insn_off, prev_offset); 17790 goto err_free; 17791 } 17792 17793 /* check type_id */ 17794 type = btf_type_by_id(btf, krecord[i].type_id); 17795 if (!type || !btf_type_is_func(type)) { 17796 verbose(env, "invalid type id %d in func info", 17797 krecord[i].type_id); 17798 goto err_free; 17799 } 17800 17801 func_proto = btf_type_by_id(btf, type->type); 17802 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 17803 /* btf_func_check() already verified it during BTF load */ 17804 goto err_free; 17805 17806 prev_offset = krecord[i].insn_off; 17807 bpfptr_add(&urecord, urec_size); 17808 } 17809 17810 prog->aux->func_info = krecord; 17811 prog->aux->func_info_cnt = nfuncs; 17812 return 0; 17813 17814 err_free: 17815 kvfree(krecord); 17816 return ret; 17817 } 17818 17819 static int check_btf_func(struct bpf_verifier_env *env, 17820 const union bpf_attr *attr, 17821 bpfptr_t uattr) 17822 { 17823 const struct btf_type *type, *func_proto, *ret_type; 17824 u32 i, nfuncs, urec_size; 17825 struct bpf_func_info *krecord; 17826 struct bpf_func_info_aux *info_aux = NULL; 17827 struct bpf_prog *prog; 17828 const struct btf *btf; 17829 bpfptr_t urecord; 17830 bool scalar_return; 17831 int ret = -ENOMEM; 17832 17833 nfuncs = attr->func_info_cnt; 17834 if (!nfuncs) { 17835 if (check_abnormal_return(env)) 17836 return -EINVAL; 17837 return 0; 17838 } 17839 if (nfuncs != env->subprog_cnt) { 17840 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 17841 return -EINVAL; 17842 } 17843 17844 urec_size = attr->func_info_rec_size; 17845 17846 prog = env->prog; 17847 btf = prog->aux->btf; 17848 17849 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 17850 17851 krecord = prog->aux->func_info; 17852 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 17853 if (!info_aux) 17854 return -ENOMEM; 17855 17856 for (i = 0; i < nfuncs; i++) { 17857 /* check insn_off */ 17858 ret = -EINVAL; 17859 17860 if (env->subprog_info[i].start != krecord[i].insn_off) { 17861 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 17862 goto err_free; 17863 } 17864 17865 /* Already checked type_id */ 17866 type = btf_type_by_id(btf, krecord[i].type_id); 17867 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 17868 /* Already checked func_proto */ 17869 func_proto = btf_type_by_id(btf, type->type); 17870 17871 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 17872 scalar_return = 17873 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 17874 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 17875 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 17876 goto err_free; 17877 } 17878 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 17879 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 17880 goto err_free; 17881 } 17882 17883 bpfptr_add(&urecord, urec_size); 17884 } 17885 17886 prog->aux->func_info_aux = info_aux; 17887 return 0; 17888 17889 err_free: 17890 kfree(info_aux); 17891 return ret; 17892 } 17893 17894 static void adjust_btf_func(struct bpf_verifier_env *env) 17895 { 17896 struct bpf_prog_aux *aux = env->prog->aux; 17897 int i; 17898 17899 if (!aux->func_info) 17900 return; 17901 17902 /* func_info is not available for hidden subprogs */ 17903 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 17904 aux->func_info[i].insn_off = env->subprog_info[i].start; 17905 } 17906 17907 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 17908 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 17909 17910 static int check_btf_line(struct bpf_verifier_env *env, 17911 const union bpf_attr *attr, 17912 bpfptr_t uattr) 17913 { 17914 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 17915 struct bpf_subprog_info *sub; 17916 struct bpf_line_info *linfo; 17917 struct bpf_prog *prog; 17918 const struct btf *btf; 17919 bpfptr_t ulinfo; 17920 int err; 17921 17922 nr_linfo = attr->line_info_cnt; 17923 if (!nr_linfo) 17924 return 0; 17925 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 17926 return -EINVAL; 17927 17928 rec_size = attr->line_info_rec_size; 17929 if (rec_size < MIN_BPF_LINEINFO_SIZE || 17930 rec_size > MAX_LINEINFO_REC_SIZE || 17931 rec_size & (sizeof(u32) - 1)) 17932 return -EINVAL; 17933 17934 /* Need to zero it in case the userspace may 17935 * pass in a smaller bpf_line_info object. 17936 */ 17937 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 17938 GFP_KERNEL | __GFP_NOWARN); 17939 if (!linfo) 17940 return -ENOMEM; 17941 17942 prog = env->prog; 17943 btf = prog->aux->btf; 17944 17945 s = 0; 17946 sub = env->subprog_info; 17947 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 17948 expected_size = sizeof(struct bpf_line_info); 17949 ncopy = min_t(u32, expected_size, rec_size); 17950 for (i = 0; i < nr_linfo; i++) { 17951 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 17952 if (err) { 17953 if (err == -E2BIG) { 17954 verbose(env, "nonzero tailing record in line_info"); 17955 if (copy_to_bpfptr_offset(uattr, 17956 offsetof(union bpf_attr, line_info_rec_size), 17957 &expected_size, sizeof(expected_size))) 17958 err = -EFAULT; 17959 } 17960 goto err_free; 17961 } 17962 17963 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 17964 err = -EFAULT; 17965 goto err_free; 17966 } 17967 17968 /* 17969 * Check insn_off to ensure 17970 * 1) strictly increasing AND 17971 * 2) bounded by prog->len 17972 * 17973 * The linfo[0].insn_off == 0 check logically falls into 17974 * the later "missing bpf_line_info for func..." case 17975 * because the first linfo[0].insn_off must be the 17976 * first sub also and the first sub must have 17977 * subprog_info[0].start == 0. 17978 */ 17979 if ((i && linfo[i].insn_off <= prev_offset) || 17980 linfo[i].insn_off >= prog->len) { 17981 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 17982 i, linfo[i].insn_off, prev_offset, 17983 prog->len); 17984 err = -EINVAL; 17985 goto err_free; 17986 } 17987 17988 if (!prog->insnsi[linfo[i].insn_off].code) { 17989 verbose(env, 17990 "Invalid insn code at line_info[%u].insn_off\n", 17991 i); 17992 err = -EINVAL; 17993 goto err_free; 17994 } 17995 17996 if (!btf_name_by_offset(btf, linfo[i].line_off) || 17997 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 17998 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 17999 err = -EINVAL; 18000 goto err_free; 18001 } 18002 18003 if (s != env->subprog_cnt) { 18004 if (linfo[i].insn_off == sub[s].start) { 18005 sub[s].linfo_idx = i; 18006 s++; 18007 } else if (sub[s].start < linfo[i].insn_off) { 18008 verbose(env, "missing bpf_line_info for func#%u\n", s); 18009 err = -EINVAL; 18010 goto err_free; 18011 } 18012 } 18013 18014 prev_offset = linfo[i].insn_off; 18015 bpfptr_add(&ulinfo, rec_size); 18016 } 18017 18018 if (s != env->subprog_cnt) { 18019 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 18020 env->subprog_cnt - s, s); 18021 err = -EINVAL; 18022 goto err_free; 18023 } 18024 18025 prog->aux->linfo = linfo; 18026 prog->aux->nr_linfo = nr_linfo; 18027 18028 return 0; 18029 18030 err_free: 18031 kvfree(linfo); 18032 return err; 18033 } 18034 18035 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 18036 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 18037 18038 static int check_core_relo(struct bpf_verifier_env *env, 18039 const union bpf_attr *attr, 18040 bpfptr_t uattr) 18041 { 18042 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 18043 struct bpf_core_relo core_relo = {}; 18044 struct bpf_prog *prog = env->prog; 18045 const struct btf *btf = prog->aux->btf; 18046 struct bpf_core_ctx ctx = { 18047 .log = &env->log, 18048 .btf = btf, 18049 }; 18050 bpfptr_t u_core_relo; 18051 int err; 18052 18053 nr_core_relo = attr->core_relo_cnt; 18054 if (!nr_core_relo) 18055 return 0; 18056 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 18057 return -EINVAL; 18058 18059 rec_size = attr->core_relo_rec_size; 18060 if (rec_size < MIN_CORE_RELO_SIZE || 18061 rec_size > MAX_CORE_RELO_SIZE || 18062 rec_size % sizeof(u32)) 18063 return -EINVAL; 18064 18065 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 18066 expected_size = sizeof(struct bpf_core_relo); 18067 ncopy = min_t(u32, expected_size, rec_size); 18068 18069 /* Unlike func_info and line_info, copy and apply each CO-RE 18070 * relocation record one at a time. 18071 */ 18072 for (i = 0; i < nr_core_relo; i++) { 18073 /* future proofing when sizeof(bpf_core_relo) changes */ 18074 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 18075 if (err) { 18076 if (err == -E2BIG) { 18077 verbose(env, "nonzero tailing record in core_relo"); 18078 if (copy_to_bpfptr_offset(uattr, 18079 offsetof(union bpf_attr, core_relo_rec_size), 18080 &expected_size, sizeof(expected_size))) 18081 err = -EFAULT; 18082 } 18083 break; 18084 } 18085 18086 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 18087 err = -EFAULT; 18088 break; 18089 } 18090 18091 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 18092 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 18093 i, core_relo.insn_off, prog->len); 18094 err = -EINVAL; 18095 break; 18096 } 18097 18098 err = bpf_core_apply(&ctx, &core_relo, i, 18099 &prog->insnsi[core_relo.insn_off / 8]); 18100 if (err) 18101 break; 18102 bpfptr_add(&u_core_relo, rec_size); 18103 } 18104 return err; 18105 } 18106 18107 static int check_btf_info_early(struct bpf_verifier_env *env, 18108 const union bpf_attr *attr, 18109 bpfptr_t uattr) 18110 { 18111 struct btf *btf; 18112 int err; 18113 18114 if (!attr->func_info_cnt && !attr->line_info_cnt) { 18115 if (check_abnormal_return(env)) 18116 return -EINVAL; 18117 return 0; 18118 } 18119 18120 btf = btf_get_by_fd(attr->prog_btf_fd); 18121 if (IS_ERR(btf)) 18122 return PTR_ERR(btf); 18123 if (btf_is_kernel(btf)) { 18124 btf_put(btf); 18125 return -EACCES; 18126 } 18127 env->prog->aux->btf = btf; 18128 18129 err = check_btf_func_early(env, attr, uattr); 18130 if (err) 18131 return err; 18132 return 0; 18133 } 18134 18135 static int check_btf_info(struct bpf_verifier_env *env, 18136 const union bpf_attr *attr, 18137 bpfptr_t uattr) 18138 { 18139 int err; 18140 18141 if (!attr->func_info_cnt && !attr->line_info_cnt) { 18142 if (check_abnormal_return(env)) 18143 return -EINVAL; 18144 return 0; 18145 } 18146 18147 err = check_btf_func(env, attr, uattr); 18148 if (err) 18149 return err; 18150 18151 err = check_btf_line(env, attr, uattr); 18152 if (err) 18153 return err; 18154 18155 err = check_core_relo(env, attr, uattr); 18156 if (err) 18157 return err; 18158 18159 return 0; 18160 } 18161 18162 /* check %cur's range satisfies %old's */ 18163 static bool range_within(const struct bpf_reg_state *old, 18164 const struct bpf_reg_state *cur) 18165 { 18166 return old->umin_value <= cur->umin_value && 18167 old->umax_value >= cur->umax_value && 18168 old->smin_value <= cur->smin_value && 18169 old->smax_value >= cur->smax_value && 18170 old->u32_min_value <= cur->u32_min_value && 18171 old->u32_max_value >= cur->u32_max_value && 18172 old->s32_min_value <= cur->s32_min_value && 18173 old->s32_max_value >= cur->s32_max_value; 18174 } 18175 18176 /* If in the old state two registers had the same id, then they need to have 18177 * the same id in the new state as well. But that id could be different from 18178 * the old state, so we need to track the mapping from old to new ids. 18179 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 18180 * regs with old id 5 must also have new id 9 for the new state to be safe. But 18181 * regs with a different old id could still have new id 9, we don't care about 18182 * that. 18183 * So we look through our idmap to see if this old id has been seen before. If 18184 * so, we require the new id to match; otherwise, we add the id pair to the map. 18185 */ 18186 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 18187 { 18188 struct bpf_id_pair *map = idmap->map; 18189 unsigned int i; 18190 18191 /* either both IDs should be set or both should be zero */ 18192 if (!!old_id != !!cur_id) 18193 return false; 18194 18195 if (old_id == 0) /* cur_id == 0 as well */ 18196 return true; 18197 18198 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 18199 if (!map[i].old) { 18200 /* Reached an empty slot; haven't seen this id before */ 18201 map[i].old = old_id; 18202 map[i].cur = cur_id; 18203 return true; 18204 } 18205 if (map[i].old == old_id) 18206 return map[i].cur == cur_id; 18207 if (map[i].cur == cur_id) 18208 return false; 18209 } 18210 /* We ran out of idmap slots, which should be impossible */ 18211 WARN_ON_ONCE(1); 18212 return false; 18213 } 18214 18215 /* Similar to check_ids(), but allocate a unique temporary ID 18216 * for 'old_id' or 'cur_id' of zero. 18217 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 18218 */ 18219 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 18220 { 18221 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 18222 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 18223 18224 return check_ids(old_id, cur_id, idmap); 18225 } 18226 18227 static void clean_func_state(struct bpf_verifier_env *env, 18228 struct bpf_func_state *st) 18229 { 18230 enum bpf_reg_liveness live; 18231 int i, j; 18232 18233 for (i = 0; i < BPF_REG_FP; i++) { 18234 live = st->regs[i].live; 18235 /* liveness must not touch this register anymore */ 18236 st->regs[i].live |= REG_LIVE_DONE; 18237 if (!(live & REG_LIVE_READ)) 18238 /* since the register is unused, clear its state 18239 * to make further comparison simpler 18240 */ 18241 __mark_reg_not_init(env, &st->regs[i]); 18242 } 18243 18244 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 18245 live = st->stack[i].spilled_ptr.live; 18246 /* liveness must not touch this stack slot anymore */ 18247 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 18248 if (!(live & REG_LIVE_READ)) { 18249 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 18250 for (j = 0; j < BPF_REG_SIZE; j++) 18251 st->stack[i].slot_type[j] = STACK_INVALID; 18252 } 18253 } 18254 } 18255 18256 static void clean_verifier_state(struct bpf_verifier_env *env, 18257 struct bpf_verifier_state *st) 18258 { 18259 int i; 18260 18261 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 18262 /* all regs in this state in all frames were already marked */ 18263 return; 18264 18265 for (i = 0; i <= st->curframe; i++) 18266 clean_func_state(env, st->frame[i]); 18267 } 18268 18269 /* the parentage chains form a tree. 18270 * the verifier states are added to state lists at given insn and 18271 * pushed into state stack for future exploration. 18272 * when the verifier reaches bpf_exit insn some of the verifer states 18273 * stored in the state lists have their final liveness state already, 18274 * but a lot of states will get revised from liveness point of view when 18275 * the verifier explores other branches. 18276 * Example: 18277 * 1: r0 = 1 18278 * 2: if r1 == 100 goto pc+1 18279 * 3: r0 = 2 18280 * 4: exit 18281 * when the verifier reaches exit insn the register r0 in the state list of 18282 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 18283 * of insn 2 and goes exploring further. At the insn 4 it will walk the 18284 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 18285 * 18286 * Since the verifier pushes the branch states as it sees them while exploring 18287 * the program the condition of walking the branch instruction for the second 18288 * time means that all states below this branch were already explored and 18289 * their final liveness marks are already propagated. 18290 * Hence when the verifier completes the search of state list in is_state_visited() 18291 * we can call this clean_live_states() function to mark all liveness states 18292 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 18293 * will not be used. 18294 * This function also clears the registers and stack for states that !READ 18295 * to simplify state merging. 18296 * 18297 * Important note here that walking the same branch instruction in the callee 18298 * doesn't meant that the states are DONE. The verifier has to compare 18299 * the callsites 18300 */ 18301 static void clean_live_states(struct bpf_verifier_env *env, int insn, 18302 struct bpf_verifier_state *cur) 18303 { 18304 struct bpf_verifier_state *loop_entry; 18305 struct bpf_verifier_state_list *sl; 18306 struct list_head *pos, *head; 18307 18308 head = explored_state(env, insn); 18309 list_for_each(pos, head) { 18310 sl = container_of(pos, struct bpf_verifier_state_list, node); 18311 if (sl->state.branches) 18312 continue; 18313 loop_entry = get_loop_entry(env, &sl->state); 18314 if (!IS_ERR_OR_NULL(loop_entry) && loop_entry->branches) 18315 continue; 18316 if (sl->state.insn_idx != insn || 18317 !same_callsites(&sl->state, cur)) 18318 continue; 18319 clean_verifier_state(env, &sl->state); 18320 } 18321 } 18322 18323 static bool regs_exact(const struct bpf_reg_state *rold, 18324 const struct bpf_reg_state *rcur, 18325 struct bpf_idmap *idmap) 18326 { 18327 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 18328 check_ids(rold->id, rcur->id, idmap) && 18329 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 18330 } 18331 18332 enum exact_level { 18333 NOT_EXACT, 18334 EXACT, 18335 RANGE_WITHIN 18336 }; 18337 18338 /* Returns true if (rold safe implies rcur safe) */ 18339 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 18340 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, 18341 enum exact_level exact) 18342 { 18343 if (exact == EXACT) 18344 return regs_exact(rold, rcur, idmap); 18345 18346 if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT) 18347 /* explored state didn't use this */ 18348 return true; 18349 if (rold->type == NOT_INIT) { 18350 if (exact == NOT_EXACT || rcur->type == NOT_INIT) 18351 /* explored state can't have used this */ 18352 return true; 18353 } 18354 18355 /* Enforce that register types have to match exactly, including their 18356 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 18357 * rule. 18358 * 18359 * One can make a point that using a pointer register as unbounded 18360 * SCALAR would be technically acceptable, but this could lead to 18361 * pointer leaks because scalars are allowed to leak while pointers 18362 * are not. We could make this safe in special cases if root is 18363 * calling us, but it's probably not worth the hassle. 18364 * 18365 * Also, register types that are *not* MAYBE_NULL could technically be 18366 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 18367 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 18368 * to the same map). 18369 * However, if the old MAYBE_NULL register then got NULL checked, 18370 * doing so could have affected others with the same id, and we can't 18371 * check for that because we lost the id when we converted to 18372 * a non-MAYBE_NULL variant. 18373 * So, as a general rule we don't allow mixing MAYBE_NULL and 18374 * non-MAYBE_NULL registers as well. 18375 */ 18376 if (rold->type != rcur->type) 18377 return false; 18378 18379 switch (base_type(rold->type)) { 18380 case SCALAR_VALUE: 18381 if (env->explore_alu_limits) { 18382 /* explore_alu_limits disables tnum_in() and range_within() 18383 * logic and requires everything to be strict 18384 */ 18385 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 18386 check_scalar_ids(rold->id, rcur->id, idmap); 18387 } 18388 if (!rold->precise && exact == NOT_EXACT) 18389 return true; 18390 if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST)) 18391 return false; 18392 if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off)) 18393 return false; 18394 /* Why check_ids() for scalar registers? 18395 * 18396 * Consider the following BPF code: 18397 * 1: r6 = ... unbound scalar, ID=a ... 18398 * 2: r7 = ... unbound scalar, ID=b ... 18399 * 3: if (r6 > r7) goto +1 18400 * 4: r6 = r7 18401 * 5: if (r6 > X) goto ... 18402 * 6: ... memory operation using r7 ... 18403 * 18404 * First verification path is [1-6]: 18405 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 18406 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark 18407 * r7 <= X, because r6 and r7 share same id. 18408 * Next verification path is [1-4, 6]. 18409 * 18410 * Instruction (6) would be reached in two states: 18411 * I. r6{.id=b}, r7{.id=b} via path 1-6; 18412 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 18413 * 18414 * Use check_ids() to distinguish these states. 18415 * --- 18416 * Also verify that new value satisfies old value range knowledge. 18417 */ 18418 return range_within(rold, rcur) && 18419 tnum_in(rold->var_off, rcur->var_off) && 18420 check_scalar_ids(rold->id, rcur->id, idmap); 18421 case PTR_TO_MAP_KEY: 18422 case PTR_TO_MAP_VALUE: 18423 case PTR_TO_MEM: 18424 case PTR_TO_BUF: 18425 case PTR_TO_TP_BUFFER: 18426 /* If the new min/max/var_off satisfy the old ones and 18427 * everything else matches, we are OK. 18428 */ 18429 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 18430 range_within(rold, rcur) && 18431 tnum_in(rold->var_off, rcur->var_off) && 18432 check_ids(rold->id, rcur->id, idmap) && 18433 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 18434 case PTR_TO_PACKET_META: 18435 case PTR_TO_PACKET: 18436 /* We must have at least as much range as the old ptr 18437 * did, so that any accesses which were safe before are 18438 * still safe. This is true even if old range < old off, 18439 * since someone could have accessed through (ptr - k), or 18440 * even done ptr -= k in a register, to get a safe access. 18441 */ 18442 if (rold->range > rcur->range) 18443 return false; 18444 /* If the offsets don't match, we can't trust our alignment; 18445 * nor can we be sure that we won't fall out of range. 18446 */ 18447 if (rold->off != rcur->off) 18448 return false; 18449 /* id relations must be preserved */ 18450 if (!check_ids(rold->id, rcur->id, idmap)) 18451 return false; 18452 /* new val must satisfy old val knowledge */ 18453 return range_within(rold, rcur) && 18454 tnum_in(rold->var_off, rcur->var_off); 18455 case PTR_TO_STACK: 18456 /* two stack pointers are equal only if they're pointing to 18457 * the same stack frame, since fp-8 in foo != fp-8 in bar 18458 */ 18459 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 18460 case PTR_TO_ARENA: 18461 return true; 18462 default: 18463 return regs_exact(rold, rcur, idmap); 18464 } 18465 } 18466 18467 static struct bpf_reg_state unbound_reg; 18468 18469 static __init int unbound_reg_init(void) 18470 { 18471 __mark_reg_unknown_imprecise(&unbound_reg); 18472 unbound_reg.live |= REG_LIVE_READ; 18473 return 0; 18474 } 18475 late_initcall(unbound_reg_init); 18476 18477 static bool is_stack_all_misc(struct bpf_verifier_env *env, 18478 struct bpf_stack_state *stack) 18479 { 18480 u32 i; 18481 18482 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { 18483 if ((stack->slot_type[i] == STACK_MISC) || 18484 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) 18485 continue; 18486 return false; 18487 } 18488 18489 return true; 18490 } 18491 18492 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, 18493 struct bpf_stack_state *stack) 18494 { 18495 if (is_spilled_scalar_reg64(stack)) 18496 return &stack->spilled_ptr; 18497 18498 if (is_stack_all_misc(env, stack)) 18499 return &unbound_reg; 18500 18501 return NULL; 18502 } 18503 18504 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 18505 struct bpf_func_state *cur, struct bpf_idmap *idmap, 18506 enum exact_level exact) 18507 { 18508 int i, spi; 18509 18510 /* walk slots of the explored stack and ignore any additional 18511 * slots in the current stack, since explored(safe) state 18512 * didn't use them 18513 */ 18514 for (i = 0; i < old->allocated_stack; i++) { 18515 struct bpf_reg_state *old_reg, *cur_reg; 18516 18517 spi = i / BPF_REG_SIZE; 18518 18519 if (exact != NOT_EXACT && 18520 (i >= cur->allocated_stack || 18521 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 18522 cur->stack[spi].slot_type[i % BPF_REG_SIZE])) 18523 return false; 18524 18525 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) 18526 && exact == NOT_EXACT) { 18527 i += BPF_REG_SIZE - 1; 18528 /* explored state didn't use this */ 18529 continue; 18530 } 18531 18532 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 18533 continue; 18534 18535 if (env->allow_uninit_stack && 18536 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 18537 continue; 18538 18539 /* explored stack has more populated slots than current stack 18540 * and these slots were used 18541 */ 18542 if (i >= cur->allocated_stack) 18543 return false; 18544 18545 /* 64-bit scalar spill vs all slots MISC and vice versa. 18546 * Load from all slots MISC produces unbound scalar. 18547 * Construct a fake register for such stack and call 18548 * regsafe() to ensure scalar ids are compared. 18549 */ 18550 old_reg = scalar_reg_for_stack(env, &old->stack[spi]); 18551 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); 18552 if (old_reg && cur_reg) { 18553 if (!regsafe(env, old_reg, cur_reg, idmap, exact)) 18554 return false; 18555 i += BPF_REG_SIZE - 1; 18556 continue; 18557 } 18558 18559 /* if old state was safe with misc data in the stack 18560 * it will be safe with zero-initialized stack. 18561 * The opposite is not true 18562 */ 18563 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 18564 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 18565 continue; 18566 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 18567 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 18568 /* Ex: old explored (safe) state has STACK_SPILL in 18569 * this stack slot, but current has STACK_MISC -> 18570 * this verifier states are not equivalent, 18571 * return false to continue verification of this path 18572 */ 18573 return false; 18574 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 18575 continue; 18576 /* Both old and cur are having same slot_type */ 18577 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 18578 case STACK_SPILL: 18579 /* when explored and current stack slot are both storing 18580 * spilled registers, check that stored pointers types 18581 * are the same as well. 18582 * Ex: explored safe path could have stored 18583 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 18584 * but current path has stored: 18585 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 18586 * such verifier states are not equivalent. 18587 * return false to continue verification of this path 18588 */ 18589 if (!regsafe(env, &old->stack[spi].spilled_ptr, 18590 &cur->stack[spi].spilled_ptr, idmap, exact)) 18591 return false; 18592 break; 18593 case STACK_DYNPTR: 18594 old_reg = &old->stack[spi].spilled_ptr; 18595 cur_reg = &cur->stack[spi].spilled_ptr; 18596 if (old_reg->dynptr.type != cur_reg->dynptr.type || 18597 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 18598 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 18599 return false; 18600 break; 18601 case STACK_ITER: 18602 old_reg = &old->stack[spi].spilled_ptr; 18603 cur_reg = &cur->stack[spi].spilled_ptr; 18604 /* iter.depth is not compared between states as it 18605 * doesn't matter for correctness and would otherwise 18606 * prevent convergence; we maintain it only to prevent 18607 * infinite loop check triggering, see 18608 * iter_active_depths_differ() 18609 */ 18610 if (old_reg->iter.btf != cur_reg->iter.btf || 18611 old_reg->iter.btf_id != cur_reg->iter.btf_id || 18612 old_reg->iter.state != cur_reg->iter.state || 18613 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 18614 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 18615 return false; 18616 break; 18617 case STACK_IRQ_FLAG: 18618 old_reg = &old->stack[spi].spilled_ptr; 18619 cur_reg = &cur->stack[spi].spilled_ptr; 18620 if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap) || 18621 old_reg->irq.kfunc_class != cur_reg->irq.kfunc_class) 18622 return false; 18623 break; 18624 case STACK_MISC: 18625 case STACK_ZERO: 18626 case STACK_INVALID: 18627 continue; 18628 /* Ensure that new unhandled slot types return false by default */ 18629 default: 18630 return false; 18631 } 18632 } 18633 return true; 18634 } 18635 18636 static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur, 18637 struct bpf_idmap *idmap) 18638 { 18639 int i; 18640 18641 if (old->acquired_refs != cur->acquired_refs) 18642 return false; 18643 18644 if (old->active_locks != cur->active_locks) 18645 return false; 18646 18647 if (old->active_preempt_locks != cur->active_preempt_locks) 18648 return false; 18649 18650 if (old->active_rcu_lock != cur->active_rcu_lock) 18651 return false; 18652 18653 if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap)) 18654 return false; 18655 18656 if (!check_ids(old->active_lock_id, cur->active_lock_id, idmap) || 18657 old->active_lock_ptr != cur->active_lock_ptr) 18658 return false; 18659 18660 for (i = 0; i < old->acquired_refs; i++) { 18661 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) || 18662 old->refs[i].type != cur->refs[i].type) 18663 return false; 18664 switch (old->refs[i].type) { 18665 case REF_TYPE_PTR: 18666 case REF_TYPE_IRQ: 18667 break; 18668 case REF_TYPE_LOCK: 18669 case REF_TYPE_RES_LOCK: 18670 case REF_TYPE_RES_LOCK_IRQ: 18671 if (old->refs[i].ptr != cur->refs[i].ptr) 18672 return false; 18673 break; 18674 default: 18675 WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type); 18676 return false; 18677 } 18678 } 18679 18680 return true; 18681 } 18682 18683 /* compare two verifier states 18684 * 18685 * all states stored in state_list are known to be valid, since 18686 * verifier reached 'bpf_exit' instruction through them 18687 * 18688 * this function is called when verifier exploring different branches of 18689 * execution popped from the state stack. If it sees an old state that has 18690 * more strict register state and more strict stack state then this execution 18691 * branch doesn't need to be explored further, since verifier already 18692 * concluded that more strict state leads to valid finish. 18693 * 18694 * Therefore two states are equivalent if register state is more conservative 18695 * and explored stack state is more conservative than the current one. 18696 * Example: 18697 * explored current 18698 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 18699 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 18700 * 18701 * In other words if current stack state (one being explored) has more 18702 * valid slots than old one that already passed validation, it means 18703 * the verifier can stop exploring and conclude that current state is valid too 18704 * 18705 * Similarly with registers. If explored state has register type as invalid 18706 * whereas register type in current state is meaningful, it means that 18707 * the current state will reach 'bpf_exit' instruction safely 18708 */ 18709 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 18710 struct bpf_func_state *cur, u32 insn_idx, enum exact_level exact) 18711 { 18712 u16 live_regs = env->insn_aux_data[insn_idx].live_regs_before; 18713 u16 i; 18714 18715 if (old->callback_depth > cur->callback_depth) 18716 return false; 18717 18718 for (i = 0; i < MAX_BPF_REG; i++) 18719 if (((1 << i) & live_regs) && 18720 !regsafe(env, &old->regs[i], &cur->regs[i], 18721 &env->idmap_scratch, exact)) 18722 return false; 18723 18724 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 18725 return false; 18726 18727 return true; 18728 } 18729 18730 static void reset_idmap_scratch(struct bpf_verifier_env *env) 18731 { 18732 env->idmap_scratch.tmp_id_gen = env->id_gen; 18733 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 18734 } 18735 18736 static bool states_equal(struct bpf_verifier_env *env, 18737 struct bpf_verifier_state *old, 18738 struct bpf_verifier_state *cur, 18739 enum exact_level exact) 18740 { 18741 u32 insn_idx; 18742 int i; 18743 18744 if (old->curframe != cur->curframe) 18745 return false; 18746 18747 reset_idmap_scratch(env); 18748 18749 /* Verification state from speculative execution simulation 18750 * must never prune a non-speculative execution one. 18751 */ 18752 if (old->speculative && !cur->speculative) 18753 return false; 18754 18755 if (old->in_sleepable != cur->in_sleepable) 18756 return false; 18757 18758 if (!refsafe(old, cur, &env->idmap_scratch)) 18759 return false; 18760 18761 /* for states to be equal callsites have to be the same 18762 * and all frame states need to be equivalent 18763 */ 18764 for (i = 0; i <= old->curframe; i++) { 18765 insn_idx = i == old->curframe 18766 ? env->insn_idx 18767 : old->frame[i + 1]->callsite; 18768 if (old->frame[i]->callsite != cur->frame[i]->callsite) 18769 return false; 18770 if (!func_states_equal(env, old->frame[i], cur->frame[i], insn_idx, exact)) 18771 return false; 18772 } 18773 return true; 18774 } 18775 18776 /* Return 0 if no propagation happened. Return negative error code if error 18777 * happened. Otherwise, return the propagated bit. 18778 */ 18779 static int propagate_liveness_reg(struct bpf_verifier_env *env, 18780 struct bpf_reg_state *reg, 18781 struct bpf_reg_state *parent_reg) 18782 { 18783 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 18784 u8 flag = reg->live & REG_LIVE_READ; 18785 int err; 18786 18787 /* When comes here, read flags of PARENT_REG or REG could be any of 18788 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 18789 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 18790 */ 18791 if (parent_flag == REG_LIVE_READ64 || 18792 /* Or if there is no read flag from REG. */ 18793 !flag || 18794 /* Or if the read flag from REG is the same as PARENT_REG. */ 18795 parent_flag == flag) 18796 return 0; 18797 18798 err = mark_reg_read(env, reg, parent_reg, flag); 18799 if (err) 18800 return err; 18801 18802 return flag; 18803 } 18804 18805 /* A write screens off any subsequent reads; but write marks come from the 18806 * straight-line code between a state and its parent. When we arrive at an 18807 * equivalent state (jump target or such) we didn't arrive by the straight-line 18808 * code, so read marks in the state must propagate to the parent regardless 18809 * of the state's write marks. That's what 'parent == state->parent' comparison 18810 * in mark_reg_read() is for. 18811 */ 18812 static int propagate_liveness(struct bpf_verifier_env *env, 18813 const struct bpf_verifier_state *vstate, 18814 struct bpf_verifier_state *vparent) 18815 { 18816 struct bpf_reg_state *state_reg, *parent_reg; 18817 struct bpf_func_state *state, *parent; 18818 int i, frame, err = 0; 18819 18820 if (vparent->curframe != vstate->curframe) { 18821 WARN(1, "propagate_live: parent frame %d current frame %d\n", 18822 vparent->curframe, vstate->curframe); 18823 return -EFAULT; 18824 } 18825 /* Propagate read liveness of registers... */ 18826 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 18827 for (frame = 0; frame <= vstate->curframe; frame++) { 18828 parent = vparent->frame[frame]; 18829 state = vstate->frame[frame]; 18830 parent_reg = parent->regs; 18831 state_reg = state->regs; 18832 /* We don't need to worry about FP liveness, it's read-only */ 18833 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 18834 err = propagate_liveness_reg(env, &state_reg[i], 18835 &parent_reg[i]); 18836 if (err < 0) 18837 return err; 18838 if (err == REG_LIVE_READ64) 18839 mark_insn_zext(env, &parent_reg[i]); 18840 } 18841 18842 /* Propagate stack slots. */ 18843 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 18844 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 18845 parent_reg = &parent->stack[i].spilled_ptr; 18846 state_reg = &state->stack[i].spilled_ptr; 18847 err = propagate_liveness_reg(env, state_reg, 18848 parent_reg); 18849 if (err < 0) 18850 return err; 18851 } 18852 } 18853 return 0; 18854 } 18855 18856 /* find precise scalars in the previous equivalent state and 18857 * propagate them into the current state 18858 */ 18859 static int propagate_precision(struct bpf_verifier_env *env, 18860 const struct bpf_verifier_state *old) 18861 { 18862 struct bpf_reg_state *state_reg; 18863 struct bpf_func_state *state; 18864 int i, err = 0, fr; 18865 bool first; 18866 18867 for (fr = old->curframe; fr >= 0; fr--) { 18868 state = old->frame[fr]; 18869 state_reg = state->regs; 18870 first = true; 18871 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 18872 if (state_reg->type != SCALAR_VALUE || 18873 !state_reg->precise || 18874 !(state_reg->live & REG_LIVE_READ)) 18875 continue; 18876 if (env->log.level & BPF_LOG_LEVEL2) { 18877 if (first) 18878 verbose(env, "frame %d: propagating r%d", fr, i); 18879 else 18880 verbose(env, ",r%d", i); 18881 } 18882 bt_set_frame_reg(&env->bt, fr, i); 18883 first = false; 18884 } 18885 18886 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 18887 if (!is_spilled_reg(&state->stack[i])) 18888 continue; 18889 state_reg = &state->stack[i].spilled_ptr; 18890 if (state_reg->type != SCALAR_VALUE || 18891 !state_reg->precise || 18892 !(state_reg->live & REG_LIVE_READ)) 18893 continue; 18894 if (env->log.level & BPF_LOG_LEVEL2) { 18895 if (first) 18896 verbose(env, "frame %d: propagating fp%d", 18897 fr, (-i - 1) * BPF_REG_SIZE); 18898 else 18899 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 18900 } 18901 bt_set_frame_slot(&env->bt, fr, i); 18902 first = false; 18903 } 18904 if (!first) 18905 verbose(env, "\n"); 18906 } 18907 18908 err = mark_chain_precision_batch(env); 18909 if (err < 0) 18910 return err; 18911 18912 return 0; 18913 } 18914 18915 static bool states_maybe_looping(struct bpf_verifier_state *old, 18916 struct bpf_verifier_state *cur) 18917 { 18918 struct bpf_func_state *fold, *fcur; 18919 int i, fr = cur->curframe; 18920 18921 if (old->curframe != fr) 18922 return false; 18923 18924 fold = old->frame[fr]; 18925 fcur = cur->frame[fr]; 18926 for (i = 0; i < MAX_BPF_REG; i++) 18927 if (memcmp(&fold->regs[i], &fcur->regs[i], 18928 offsetof(struct bpf_reg_state, parent))) 18929 return false; 18930 return true; 18931 } 18932 18933 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 18934 { 18935 return env->insn_aux_data[insn_idx].is_iter_next; 18936 } 18937 18938 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 18939 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 18940 * states to match, which otherwise would look like an infinite loop. So while 18941 * iter_next() calls are taken care of, we still need to be careful and 18942 * prevent erroneous and too eager declaration of "ininite loop", when 18943 * iterators are involved. 18944 * 18945 * Here's a situation in pseudo-BPF assembly form: 18946 * 18947 * 0: again: ; set up iter_next() call args 18948 * 1: r1 = &it ; <CHECKPOINT HERE> 18949 * 2: call bpf_iter_num_next ; this is iter_next() call 18950 * 3: if r0 == 0 goto done 18951 * 4: ... something useful here ... 18952 * 5: goto again ; another iteration 18953 * 6: done: 18954 * 7: r1 = &it 18955 * 8: call bpf_iter_num_destroy ; clean up iter state 18956 * 9: exit 18957 * 18958 * This is a typical loop. Let's assume that we have a prune point at 1:, 18959 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 18960 * again`, assuming other heuristics don't get in a way). 18961 * 18962 * When we first time come to 1:, let's say we have some state X. We proceed 18963 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 18964 * Now we come back to validate that forked ACTIVE state. We proceed through 18965 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 18966 * are converging. But the problem is that we don't know that yet, as this 18967 * convergence has to happen at iter_next() call site only. So if nothing is 18968 * done, at 1: verifier will use bounded loop logic and declare infinite 18969 * looping (and would be *technically* correct, if not for iterator's 18970 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 18971 * don't want that. So what we do in process_iter_next_call() when we go on 18972 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 18973 * a different iteration. So when we suspect an infinite loop, we additionally 18974 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 18975 * pretend we are not looping and wait for next iter_next() call. 18976 * 18977 * This only applies to ACTIVE state. In DRAINED state we don't expect to 18978 * loop, because that would actually mean infinite loop, as DRAINED state is 18979 * "sticky", and so we'll keep returning into the same instruction with the 18980 * same state (at least in one of possible code paths). 18981 * 18982 * This approach allows to keep infinite loop heuristic even in the face of 18983 * active iterator. E.g., C snippet below is and will be detected as 18984 * inifintely looping: 18985 * 18986 * struct bpf_iter_num it; 18987 * int *p, x; 18988 * 18989 * bpf_iter_num_new(&it, 0, 10); 18990 * while ((p = bpf_iter_num_next(&t))) { 18991 * x = p; 18992 * while (x--) {} // <<-- infinite loop here 18993 * } 18994 * 18995 */ 18996 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 18997 { 18998 struct bpf_reg_state *slot, *cur_slot; 18999 struct bpf_func_state *state; 19000 int i, fr; 19001 19002 for (fr = old->curframe; fr >= 0; fr--) { 19003 state = old->frame[fr]; 19004 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 19005 if (state->stack[i].slot_type[0] != STACK_ITER) 19006 continue; 19007 19008 slot = &state->stack[i].spilled_ptr; 19009 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 19010 continue; 19011 19012 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 19013 if (cur_slot->iter.depth != slot->iter.depth) 19014 return true; 19015 } 19016 } 19017 return false; 19018 } 19019 19020 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 19021 { 19022 struct bpf_verifier_state_list *new_sl; 19023 struct bpf_verifier_state_list *sl; 19024 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 19025 int i, j, n, err, states_cnt = 0; 19026 bool force_new_state, add_new_state, force_exact; 19027 struct list_head *pos, *tmp, *head; 19028 19029 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) || 19030 /* Avoid accumulating infinitely long jmp history */ 19031 cur->insn_hist_end - cur->insn_hist_start > 40; 19032 19033 /* bpf progs typically have pruning point every 4 instructions 19034 * http://vger.kernel.org/bpfconf2019.html#session-1 19035 * Do not add new state for future pruning if the verifier hasn't seen 19036 * at least 2 jumps and at least 8 instructions. 19037 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 19038 * In tests that amounts to up to 50% reduction into total verifier 19039 * memory consumption and 20% verifier time speedup. 19040 */ 19041 add_new_state = force_new_state; 19042 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 19043 env->insn_processed - env->prev_insn_processed >= 8) 19044 add_new_state = true; 19045 19046 clean_live_states(env, insn_idx, cur); 19047 19048 head = explored_state(env, insn_idx); 19049 list_for_each_safe(pos, tmp, head) { 19050 sl = container_of(pos, struct bpf_verifier_state_list, node); 19051 states_cnt++; 19052 if (sl->state.insn_idx != insn_idx) 19053 continue; 19054 19055 if (sl->state.branches) { 19056 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 19057 19058 if (frame->in_async_callback_fn && 19059 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 19060 /* Different async_entry_cnt means that the verifier is 19061 * processing another entry into async callback. 19062 * Seeing the same state is not an indication of infinite 19063 * loop or infinite recursion. 19064 * But finding the same state doesn't mean that it's safe 19065 * to stop processing the current state. The previous state 19066 * hasn't yet reached bpf_exit, since state.branches > 0. 19067 * Checking in_async_callback_fn alone is not enough either. 19068 * Since the verifier still needs to catch infinite loops 19069 * inside async callbacks. 19070 */ 19071 goto skip_inf_loop_check; 19072 } 19073 /* BPF open-coded iterators loop detection is special. 19074 * states_maybe_looping() logic is too simplistic in detecting 19075 * states that *might* be equivalent, because it doesn't know 19076 * about ID remapping, so don't even perform it. 19077 * See process_iter_next_call() and iter_active_depths_differ() 19078 * for overview of the logic. When current and one of parent 19079 * states are detected as equivalent, it's a good thing: we prove 19080 * convergence and can stop simulating further iterations. 19081 * It's safe to assume that iterator loop will finish, taking into 19082 * account iter_next() contract of eventually returning 19083 * sticky NULL result. 19084 * 19085 * Note, that states have to be compared exactly in this case because 19086 * read and precision marks might not be finalized inside the loop. 19087 * E.g. as in the program below: 19088 * 19089 * 1. r7 = -16 19090 * 2. r6 = bpf_get_prandom_u32() 19091 * 3. while (bpf_iter_num_next(&fp[-8])) { 19092 * 4. if (r6 != 42) { 19093 * 5. r7 = -32 19094 * 6. r6 = bpf_get_prandom_u32() 19095 * 7. continue 19096 * 8. } 19097 * 9. r0 = r10 19098 * 10. r0 += r7 19099 * 11. r8 = *(u64 *)(r0 + 0) 19100 * 12. r6 = bpf_get_prandom_u32() 19101 * 13. } 19102 * 19103 * Here verifier would first visit path 1-3, create a checkpoint at 3 19104 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 19105 * not have read or precision mark for r7 yet, thus inexact states 19106 * comparison would discard current state with r7=-32 19107 * => unsafe memory access at 11 would not be caught. 19108 */ 19109 if (is_iter_next_insn(env, insn_idx)) { 19110 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 19111 struct bpf_func_state *cur_frame; 19112 struct bpf_reg_state *iter_state, *iter_reg; 19113 int spi; 19114 19115 cur_frame = cur->frame[cur->curframe]; 19116 /* btf_check_iter_kfuncs() enforces that 19117 * iter state pointer is always the first arg 19118 */ 19119 iter_reg = &cur_frame->regs[BPF_REG_1]; 19120 /* current state is valid due to states_equal(), 19121 * so we can assume valid iter and reg state, 19122 * no need for extra (re-)validations 19123 */ 19124 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 19125 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 19126 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 19127 update_loop_entry(env, cur, &sl->state); 19128 goto hit; 19129 } 19130 } 19131 goto skip_inf_loop_check; 19132 } 19133 if (is_may_goto_insn_at(env, insn_idx)) { 19134 if (sl->state.may_goto_depth != cur->may_goto_depth && 19135 states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 19136 update_loop_entry(env, cur, &sl->state); 19137 goto hit; 19138 } 19139 } 19140 if (calls_callback(env, insn_idx)) { 19141 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) 19142 goto hit; 19143 goto skip_inf_loop_check; 19144 } 19145 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 19146 if (states_maybe_looping(&sl->state, cur) && 19147 states_equal(env, &sl->state, cur, EXACT) && 19148 !iter_active_depths_differ(&sl->state, cur) && 19149 sl->state.may_goto_depth == cur->may_goto_depth && 19150 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 19151 verbose_linfo(env, insn_idx, "; "); 19152 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 19153 verbose(env, "cur state:"); 19154 print_verifier_state(env, cur, cur->curframe, true); 19155 verbose(env, "old state:"); 19156 print_verifier_state(env, &sl->state, cur->curframe, true); 19157 return -EINVAL; 19158 } 19159 /* if the verifier is processing a loop, avoid adding new state 19160 * too often, since different loop iterations have distinct 19161 * states and may not help future pruning. 19162 * This threshold shouldn't be too low to make sure that 19163 * a loop with large bound will be rejected quickly. 19164 * The most abusive loop will be: 19165 * r1 += 1 19166 * if r1 < 1000000 goto pc-2 19167 * 1M insn_procssed limit / 100 == 10k peak states. 19168 * This threshold shouldn't be too high either, since states 19169 * at the end of the loop are likely to be useful in pruning. 19170 */ 19171 skip_inf_loop_check: 19172 if (!force_new_state && 19173 env->jmps_processed - env->prev_jmps_processed < 20 && 19174 env->insn_processed - env->prev_insn_processed < 100) 19175 add_new_state = false; 19176 goto miss; 19177 } 19178 /* If sl->state is a part of a loop and this loop's entry is a part of 19179 * current verification path then states have to be compared exactly. 19180 * 'force_exact' is needed to catch the following case: 19181 * 19182 * initial Here state 'succ' was processed first, 19183 * | it was eventually tracked to produce a 19184 * V state identical to 'hdr'. 19185 * .---------> hdr All branches from 'succ' had been explored 19186 * | | and thus 'succ' has its .branches == 0. 19187 * | V 19188 * | .------... Suppose states 'cur' and 'succ' correspond 19189 * | | | to the same instruction + callsites. 19190 * | V V In such case it is necessary to check 19191 * | ... ... if 'succ' and 'cur' are states_equal(). 19192 * | | | If 'succ' and 'cur' are a part of the 19193 * | V V same loop exact flag has to be set. 19194 * | succ <- cur To check if that is the case, verify 19195 * | | if loop entry of 'succ' is in current 19196 * | V DFS path. 19197 * | ... 19198 * | | 19199 * '----' 19200 * 19201 * Additional details are in the comment before get_loop_entry(). 19202 */ 19203 loop_entry = get_loop_entry(env, &sl->state); 19204 if (IS_ERR(loop_entry)) 19205 return PTR_ERR(loop_entry); 19206 force_exact = loop_entry && loop_entry->branches > 0; 19207 if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) { 19208 if (force_exact) 19209 update_loop_entry(env, cur, loop_entry); 19210 hit: 19211 sl->hit_cnt++; 19212 /* reached equivalent register/stack state, 19213 * prune the search. 19214 * Registers read by the continuation are read by us. 19215 * If we have any write marks in env->cur_state, they 19216 * will prevent corresponding reads in the continuation 19217 * from reaching our parent (an explored_state). Our 19218 * own state will get the read marks recorded, but 19219 * they'll be immediately forgotten as we're pruning 19220 * this state and will pop a new one. 19221 */ 19222 err = propagate_liveness(env, &sl->state, cur); 19223 19224 /* if previous state reached the exit with precision and 19225 * current state is equivalent to it (except precision marks) 19226 * the precision needs to be propagated back in 19227 * the current state. 19228 */ 19229 if (is_jmp_point(env, env->insn_idx)) 19230 err = err ? : push_insn_history(env, cur, 0, 0); 19231 err = err ? : propagate_precision(env, &sl->state); 19232 if (err) 19233 return err; 19234 return 1; 19235 } 19236 miss: 19237 /* when new state is not going to be added do not increase miss count. 19238 * Otherwise several loop iterations will remove the state 19239 * recorded earlier. The goal of these heuristics is to have 19240 * states from some iterations of the loop (some in the beginning 19241 * and some at the end) to help pruning. 19242 */ 19243 if (add_new_state) 19244 sl->miss_cnt++; 19245 /* heuristic to determine whether this state is beneficial 19246 * to keep checking from state equivalence point of view. 19247 * Higher numbers increase max_states_per_insn and verification time, 19248 * but do not meaningfully decrease insn_processed. 19249 * 'n' controls how many times state could miss before eviction. 19250 * Use bigger 'n' for checkpoints because evicting checkpoint states 19251 * too early would hinder iterator convergence. 19252 */ 19253 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 19254 if (sl->miss_cnt > sl->hit_cnt * n + n) { 19255 /* the state is unlikely to be useful. Remove it to 19256 * speed up verification 19257 */ 19258 sl->in_free_list = true; 19259 list_del(&sl->node); 19260 list_add(&sl->node, &env->free_list); 19261 env->free_list_size++; 19262 env->explored_states_size--; 19263 maybe_free_verifier_state(env, sl); 19264 } 19265 } 19266 19267 if (env->max_states_per_insn < states_cnt) 19268 env->max_states_per_insn = states_cnt; 19269 19270 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 19271 return 0; 19272 19273 if (!add_new_state) 19274 return 0; 19275 19276 /* There were no equivalent states, remember the current one. 19277 * Technically the current state is not proven to be safe yet, 19278 * but it will either reach outer most bpf_exit (which means it's safe) 19279 * or it will be rejected. When there are no loops the verifier won't be 19280 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 19281 * again on the way to bpf_exit. 19282 * When looping the sl->state.branches will be > 0 and this state 19283 * will not be considered for equivalence until branches == 0. 19284 */ 19285 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 19286 if (!new_sl) 19287 return -ENOMEM; 19288 env->total_states++; 19289 env->explored_states_size++; 19290 update_peak_states(env); 19291 env->prev_jmps_processed = env->jmps_processed; 19292 env->prev_insn_processed = env->insn_processed; 19293 19294 /* forget precise markings we inherited, see __mark_chain_precision */ 19295 if (env->bpf_capable) 19296 mark_all_scalars_imprecise(env, cur); 19297 19298 /* add new state to the head of linked list */ 19299 new = &new_sl->state; 19300 err = copy_verifier_state(new, cur); 19301 if (err) { 19302 free_verifier_state(new, false); 19303 kfree(new_sl); 19304 return err; 19305 } 19306 new->insn_idx = insn_idx; 19307 WARN_ONCE(new->branches != 1, 19308 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 19309 19310 cur->parent = new; 19311 cur->first_insn_idx = insn_idx; 19312 cur->insn_hist_start = cur->insn_hist_end; 19313 cur->dfs_depth = new->dfs_depth + 1; 19314 list_add(&new_sl->node, head); 19315 19316 /* connect new state to parentage chain. Current frame needs all 19317 * registers connected. Only r6 - r9 of the callers are alive (pushed 19318 * to the stack implicitly by JITs) so in callers' frames connect just 19319 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 19320 * the state of the call instruction (with WRITTEN set), and r0 comes 19321 * from callee with its full parentage chain, anyway. 19322 */ 19323 /* clear write marks in current state: the writes we did are not writes 19324 * our child did, so they don't screen off its reads from us. 19325 * (There are no read marks in current state, because reads always mark 19326 * their parent and current state never has children yet. Only 19327 * explored_states can get read marks.) 19328 */ 19329 for (j = 0; j <= cur->curframe; j++) { 19330 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 19331 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 19332 for (i = 0; i < BPF_REG_FP; i++) 19333 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 19334 } 19335 19336 /* all stack frames are accessible from callee, clear them all */ 19337 for (j = 0; j <= cur->curframe; j++) { 19338 struct bpf_func_state *frame = cur->frame[j]; 19339 struct bpf_func_state *newframe = new->frame[j]; 19340 19341 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 19342 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 19343 frame->stack[i].spilled_ptr.parent = 19344 &newframe->stack[i].spilled_ptr; 19345 } 19346 } 19347 return 0; 19348 } 19349 19350 /* Return true if it's OK to have the same insn return a different type. */ 19351 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 19352 { 19353 switch (base_type(type)) { 19354 case PTR_TO_CTX: 19355 case PTR_TO_SOCKET: 19356 case PTR_TO_SOCK_COMMON: 19357 case PTR_TO_TCP_SOCK: 19358 case PTR_TO_XDP_SOCK: 19359 case PTR_TO_BTF_ID: 19360 case PTR_TO_ARENA: 19361 return false; 19362 default: 19363 return true; 19364 } 19365 } 19366 19367 /* If an instruction was previously used with particular pointer types, then we 19368 * need to be careful to avoid cases such as the below, where it may be ok 19369 * for one branch accessing the pointer, but not ok for the other branch: 19370 * 19371 * R1 = sock_ptr 19372 * goto X; 19373 * ... 19374 * R1 = some_other_valid_ptr; 19375 * goto X; 19376 * ... 19377 * R2 = *(u32 *)(R1 + 0); 19378 */ 19379 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 19380 { 19381 return src != prev && (!reg_type_mismatch_ok(src) || 19382 !reg_type_mismatch_ok(prev)); 19383 } 19384 19385 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 19386 bool allow_trust_mismatch) 19387 { 19388 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 19389 19390 if (*prev_type == NOT_INIT) { 19391 /* Saw a valid insn 19392 * dst_reg = *(u32 *)(src_reg + off) 19393 * save type to validate intersecting paths 19394 */ 19395 *prev_type = type; 19396 } else if (reg_type_mismatch(type, *prev_type)) { 19397 /* Abuser program is trying to use the same insn 19398 * dst_reg = *(u32*) (src_reg + off) 19399 * with different pointer types: 19400 * src_reg == ctx in one branch and 19401 * src_reg == stack|map in some other branch. 19402 * Reject it. 19403 */ 19404 if (allow_trust_mismatch && 19405 base_type(type) == PTR_TO_BTF_ID && 19406 base_type(*prev_type) == PTR_TO_BTF_ID) { 19407 /* 19408 * Have to support a use case when one path through 19409 * the program yields TRUSTED pointer while another 19410 * is UNTRUSTED. Fallback to UNTRUSTED to generate 19411 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 19412 */ 19413 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 19414 } else { 19415 verbose(env, "same insn cannot be used with different pointers\n"); 19416 return -EINVAL; 19417 } 19418 } 19419 19420 return 0; 19421 } 19422 19423 static int do_check(struct bpf_verifier_env *env) 19424 { 19425 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19426 struct bpf_verifier_state *state = env->cur_state; 19427 struct bpf_insn *insns = env->prog->insnsi; 19428 struct bpf_reg_state *regs; 19429 int insn_cnt = env->prog->len; 19430 bool do_print_state = false; 19431 int prev_insn_idx = -1; 19432 19433 for (;;) { 19434 bool exception_exit = false; 19435 struct bpf_insn *insn; 19436 u8 class; 19437 int err; 19438 19439 /* reset current history entry on each new instruction */ 19440 env->cur_hist_ent = NULL; 19441 19442 env->prev_insn_idx = prev_insn_idx; 19443 if (env->insn_idx >= insn_cnt) { 19444 verbose(env, "invalid insn idx %d insn_cnt %d\n", 19445 env->insn_idx, insn_cnt); 19446 return -EFAULT; 19447 } 19448 19449 insn = &insns[env->insn_idx]; 19450 class = BPF_CLASS(insn->code); 19451 19452 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 19453 verbose(env, 19454 "BPF program is too large. Processed %d insn\n", 19455 env->insn_processed); 19456 return -E2BIG; 19457 } 19458 19459 state->last_insn_idx = env->prev_insn_idx; 19460 19461 if (is_prune_point(env, env->insn_idx)) { 19462 err = is_state_visited(env, env->insn_idx); 19463 if (err < 0) 19464 return err; 19465 if (err == 1) { 19466 /* found equivalent state, can prune the search */ 19467 if (env->log.level & BPF_LOG_LEVEL) { 19468 if (do_print_state) 19469 verbose(env, "\nfrom %d to %d%s: safe\n", 19470 env->prev_insn_idx, env->insn_idx, 19471 env->cur_state->speculative ? 19472 " (speculative execution)" : ""); 19473 else 19474 verbose(env, "%d: safe\n", env->insn_idx); 19475 } 19476 goto process_bpf_exit; 19477 } 19478 } 19479 19480 if (is_jmp_point(env, env->insn_idx)) { 19481 err = push_insn_history(env, state, 0, 0); 19482 if (err) 19483 return err; 19484 } 19485 19486 if (signal_pending(current)) 19487 return -EAGAIN; 19488 19489 if (need_resched()) 19490 cond_resched(); 19491 19492 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 19493 verbose(env, "\nfrom %d to %d%s:", 19494 env->prev_insn_idx, env->insn_idx, 19495 env->cur_state->speculative ? 19496 " (speculative execution)" : ""); 19497 print_verifier_state(env, state, state->curframe, true); 19498 do_print_state = false; 19499 } 19500 19501 if (env->log.level & BPF_LOG_LEVEL) { 19502 if (verifier_state_scratched(env)) 19503 print_insn_state(env, state, state->curframe); 19504 19505 verbose_linfo(env, env->insn_idx, "; "); 19506 env->prev_log_pos = env->log.end_pos; 19507 verbose(env, "%d: ", env->insn_idx); 19508 verbose_insn(env, insn); 19509 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 19510 env->prev_log_pos = env->log.end_pos; 19511 } 19512 19513 if (bpf_prog_is_offloaded(env->prog->aux)) { 19514 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 19515 env->prev_insn_idx); 19516 if (err) 19517 return err; 19518 } 19519 19520 regs = cur_regs(env); 19521 sanitize_mark_insn_seen(env); 19522 prev_insn_idx = env->insn_idx; 19523 19524 if (class == BPF_ALU || class == BPF_ALU64) { 19525 err = check_alu_op(env, insn); 19526 if (err) 19527 return err; 19528 19529 } else if (class == BPF_LDX) { 19530 bool is_ldsx = BPF_MODE(insn->code) == BPF_MEMSX; 19531 19532 /* Check for reserved fields is already done in 19533 * resolve_pseudo_ldimm64(). 19534 */ 19535 err = check_load_mem(env, insn, false, is_ldsx, true, 19536 "ldx"); 19537 if (err) 19538 return err; 19539 } else if (class == BPF_STX) { 19540 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 19541 err = check_atomic(env, insn); 19542 if (err) 19543 return err; 19544 env->insn_idx++; 19545 continue; 19546 } 19547 19548 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 19549 verbose(env, "BPF_STX uses reserved fields\n"); 19550 return -EINVAL; 19551 } 19552 19553 err = check_store_reg(env, insn, false); 19554 if (err) 19555 return err; 19556 } else if (class == BPF_ST) { 19557 enum bpf_reg_type dst_reg_type; 19558 19559 if (BPF_MODE(insn->code) != BPF_MEM || 19560 insn->src_reg != BPF_REG_0) { 19561 verbose(env, "BPF_ST uses reserved fields\n"); 19562 return -EINVAL; 19563 } 19564 /* check src operand */ 19565 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 19566 if (err) 19567 return err; 19568 19569 dst_reg_type = regs[insn->dst_reg].type; 19570 19571 /* check that memory (dst_reg + off) is writeable */ 19572 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 19573 insn->off, BPF_SIZE(insn->code), 19574 BPF_WRITE, -1, false, false); 19575 if (err) 19576 return err; 19577 19578 err = save_aux_ptr_type(env, dst_reg_type, false); 19579 if (err) 19580 return err; 19581 } else if (class == BPF_JMP || class == BPF_JMP32) { 19582 u8 opcode = BPF_OP(insn->code); 19583 19584 env->jmps_processed++; 19585 if (opcode == BPF_CALL) { 19586 if (BPF_SRC(insn->code) != BPF_K || 19587 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 19588 && insn->off != 0) || 19589 (insn->src_reg != BPF_REG_0 && 19590 insn->src_reg != BPF_PSEUDO_CALL && 19591 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 19592 insn->dst_reg != BPF_REG_0 || 19593 class == BPF_JMP32) { 19594 verbose(env, "BPF_CALL uses reserved fields\n"); 19595 return -EINVAL; 19596 } 19597 19598 if (env->cur_state->active_locks) { 19599 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 19600 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 19601 (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) { 19602 verbose(env, "function calls are not allowed while holding a lock\n"); 19603 return -EINVAL; 19604 } 19605 } 19606 if (insn->src_reg == BPF_PSEUDO_CALL) { 19607 err = check_func_call(env, insn, &env->insn_idx); 19608 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 19609 err = check_kfunc_call(env, insn, &env->insn_idx); 19610 if (!err && is_bpf_throw_kfunc(insn)) { 19611 exception_exit = true; 19612 goto process_bpf_exit_full; 19613 } 19614 } else { 19615 err = check_helper_call(env, insn, &env->insn_idx); 19616 } 19617 if (err) 19618 return err; 19619 19620 mark_reg_scratched(env, BPF_REG_0); 19621 } else if (opcode == BPF_JA) { 19622 if (BPF_SRC(insn->code) != BPF_K || 19623 insn->src_reg != BPF_REG_0 || 19624 insn->dst_reg != BPF_REG_0 || 19625 (class == BPF_JMP && insn->imm != 0) || 19626 (class == BPF_JMP32 && insn->off != 0)) { 19627 verbose(env, "BPF_JA uses reserved fields\n"); 19628 return -EINVAL; 19629 } 19630 19631 if (class == BPF_JMP) 19632 env->insn_idx += insn->off + 1; 19633 else 19634 env->insn_idx += insn->imm + 1; 19635 continue; 19636 19637 } else if (opcode == BPF_EXIT) { 19638 if (BPF_SRC(insn->code) != BPF_K || 19639 insn->imm != 0 || 19640 insn->src_reg != BPF_REG_0 || 19641 insn->dst_reg != BPF_REG_0 || 19642 class == BPF_JMP32) { 19643 verbose(env, "BPF_EXIT uses reserved fields\n"); 19644 return -EINVAL; 19645 } 19646 process_bpf_exit_full: 19647 /* We must do check_reference_leak here before 19648 * prepare_func_exit to handle the case when 19649 * state->curframe > 0, it may be a callback 19650 * function, for which reference_state must 19651 * match caller reference state when it exits. 19652 */ 19653 err = check_resource_leak(env, exception_exit, !env->cur_state->curframe, 19654 "BPF_EXIT instruction in main prog"); 19655 if (err) 19656 return err; 19657 19658 /* The side effect of the prepare_func_exit 19659 * which is being skipped is that it frees 19660 * bpf_func_state. Typically, process_bpf_exit 19661 * will only be hit with outermost exit. 19662 * copy_verifier_state in pop_stack will handle 19663 * freeing of any extra bpf_func_state left over 19664 * from not processing all nested function 19665 * exits. We also skip return code checks as 19666 * they are not needed for exceptional exits. 19667 */ 19668 if (exception_exit) 19669 goto process_bpf_exit; 19670 19671 if (state->curframe) { 19672 /* exit from nested function */ 19673 err = prepare_func_exit(env, &env->insn_idx); 19674 if (err) 19675 return err; 19676 do_print_state = true; 19677 continue; 19678 } 19679 19680 err = check_return_code(env, BPF_REG_0, "R0"); 19681 if (err) 19682 return err; 19683 process_bpf_exit: 19684 mark_verifier_state_scratched(env); 19685 update_branch_counts(env, env->cur_state); 19686 err = pop_stack(env, &prev_insn_idx, 19687 &env->insn_idx, pop_log); 19688 if (err < 0) { 19689 if (err != -ENOENT) 19690 return err; 19691 break; 19692 } else { 19693 if (verifier_bug_if(env->cur_state->loop_entry, env, 19694 "broken loop detection")) 19695 return -EFAULT; 19696 do_print_state = true; 19697 continue; 19698 } 19699 } else { 19700 err = check_cond_jmp_op(env, insn, &env->insn_idx); 19701 if (err) 19702 return err; 19703 } 19704 } else if (class == BPF_LD) { 19705 u8 mode = BPF_MODE(insn->code); 19706 19707 if (mode == BPF_ABS || mode == BPF_IND) { 19708 err = check_ld_abs(env, insn); 19709 if (err) 19710 return err; 19711 19712 } else if (mode == BPF_IMM) { 19713 err = check_ld_imm(env, insn); 19714 if (err) 19715 return err; 19716 19717 env->insn_idx++; 19718 sanitize_mark_insn_seen(env); 19719 } else { 19720 verbose(env, "invalid BPF_LD mode\n"); 19721 return -EINVAL; 19722 } 19723 } else { 19724 verbose(env, "unknown insn class %d\n", class); 19725 return -EINVAL; 19726 } 19727 19728 env->insn_idx++; 19729 } 19730 19731 return 0; 19732 } 19733 19734 static int find_btf_percpu_datasec(struct btf *btf) 19735 { 19736 const struct btf_type *t; 19737 const char *tname; 19738 int i, n; 19739 19740 /* 19741 * Both vmlinux and module each have their own ".data..percpu" 19742 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 19743 * types to look at only module's own BTF types. 19744 */ 19745 n = btf_nr_types(btf); 19746 if (btf_is_module(btf)) 19747 i = btf_nr_types(btf_vmlinux); 19748 else 19749 i = 1; 19750 19751 for(; i < n; i++) { 19752 t = btf_type_by_id(btf, i); 19753 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 19754 continue; 19755 19756 tname = btf_name_by_offset(btf, t->name_off); 19757 if (!strcmp(tname, ".data..percpu")) 19758 return i; 19759 } 19760 19761 return -ENOENT; 19762 } 19763 19764 /* 19765 * Add btf to the used_btfs array and return the index. (If the btf was 19766 * already added, then just return the index.) Upon successful insertion 19767 * increase btf refcnt, and, if present, also refcount the corresponding 19768 * kernel module. 19769 */ 19770 static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf) 19771 { 19772 struct btf_mod_pair *btf_mod; 19773 int i; 19774 19775 /* check whether we recorded this BTF (and maybe module) already */ 19776 for (i = 0; i < env->used_btf_cnt; i++) 19777 if (env->used_btfs[i].btf == btf) 19778 return i; 19779 19780 if (env->used_btf_cnt >= MAX_USED_BTFS) 19781 return -E2BIG; 19782 19783 btf_get(btf); 19784 19785 btf_mod = &env->used_btfs[env->used_btf_cnt]; 19786 btf_mod->btf = btf; 19787 btf_mod->module = NULL; 19788 19789 /* if we reference variables from kernel module, bump its refcount */ 19790 if (btf_is_module(btf)) { 19791 btf_mod->module = btf_try_get_module(btf); 19792 if (!btf_mod->module) { 19793 btf_put(btf); 19794 return -ENXIO; 19795 } 19796 } 19797 19798 return env->used_btf_cnt++; 19799 } 19800 19801 /* replace pseudo btf_id with kernel symbol address */ 19802 static int __check_pseudo_btf_id(struct bpf_verifier_env *env, 19803 struct bpf_insn *insn, 19804 struct bpf_insn_aux_data *aux, 19805 struct btf *btf) 19806 { 19807 const struct btf_var_secinfo *vsi; 19808 const struct btf_type *datasec; 19809 const struct btf_type *t; 19810 const char *sym_name; 19811 bool percpu = false; 19812 u32 type, id = insn->imm; 19813 s32 datasec_id; 19814 u64 addr; 19815 int i; 19816 19817 t = btf_type_by_id(btf, id); 19818 if (!t) { 19819 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 19820 return -ENOENT; 19821 } 19822 19823 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 19824 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 19825 return -EINVAL; 19826 } 19827 19828 sym_name = btf_name_by_offset(btf, t->name_off); 19829 addr = kallsyms_lookup_name(sym_name); 19830 if (!addr) { 19831 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 19832 sym_name); 19833 return -ENOENT; 19834 } 19835 insn[0].imm = (u32)addr; 19836 insn[1].imm = addr >> 32; 19837 19838 if (btf_type_is_func(t)) { 19839 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 19840 aux->btf_var.mem_size = 0; 19841 return 0; 19842 } 19843 19844 datasec_id = find_btf_percpu_datasec(btf); 19845 if (datasec_id > 0) { 19846 datasec = btf_type_by_id(btf, datasec_id); 19847 for_each_vsi(i, datasec, vsi) { 19848 if (vsi->type == id) { 19849 percpu = true; 19850 break; 19851 } 19852 } 19853 } 19854 19855 type = t->type; 19856 t = btf_type_skip_modifiers(btf, type, NULL); 19857 if (percpu) { 19858 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 19859 aux->btf_var.btf = btf; 19860 aux->btf_var.btf_id = type; 19861 } else if (!btf_type_is_struct(t)) { 19862 const struct btf_type *ret; 19863 const char *tname; 19864 u32 tsize; 19865 19866 /* resolve the type size of ksym. */ 19867 ret = btf_resolve_size(btf, t, &tsize); 19868 if (IS_ERR(ret)) { 19869 tname = btf_name_by_offset(btf, t->name_off); 19870 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 19871 tname, PTR_ERR(ret)); 19872 return -EINVAL; 19873 } 19874 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 19875 aux->btf_var.mem_size = tsize; 19876 } else { 19877 aux->btf_var.reg_type = PTR_TO_BTF_ID; 19878 aux->btf_var.btf = btf; 19879 aux->btf_var.btf_id = type; 19880 } 19881 19882 return 0; 19883 } 19884 19885 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 19886 struct bpf_insn *insn, 19887 struct bpf_insn_aux_data *aux) 19888 { 19889 struct btf *btf; 19890 int btf_fd; 19891 int err; 19892 19893 btf_fd = insn[1].imm; 19894 if (btf_fd) { 19895 CLASS(fd, f)(btf_fd); 19896 19897 btf = __btf_get_by_fd(f); 19898 if (IS_ERR(btf)) { 19899 verbose(env, "invalid module BTF object FD specified.\n"); 19900 return -EINVAL; 19901 } 19902 } else { 19903 if (!btf_vmlinux) { 19904 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 19905 return -EINVAL; 19906 } 19907 btf = btf_vmlinux; 19908 } 19909 19910 err = __check_pseudo_btf_id(env, insn, aux, btf); 19911 if (err) 19912 return err; 19913 19914 err = __add_used_btf(env, btf); 19915 if (err < 0) 19916 return err; 19917 return 0; 19918 } 19919 19920 static bool is_tracing_prog_type(enum bpf_prog_type type) 19921 { 19922 switch (type) { 19923 case BPF_PROG_TYPE_KPROBE: 19924 case BPF_PROG_TYPE_TRACEPOINT: 19925 case BPF_PROG_TYPE_PERF_EVENT: 19926 case BPF_PROG_TYPE_RAW_TRACEPOINT: 19927 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 19928 return true; 19929 default: 19930 return false; 19931 } 19932 } 19933 19934 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 19935 { 19936 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 19937 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 19938 } 19939 19940 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 19941 struct bpf_map *map, 19942 struct bpf_prog *prog) 19943 19944 { 19945 enum bpf_prog_type prog_type = resolve_prog_type(prog); 19946 19947 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 19948 btf_record_has_field(map->record, BPF_RB_ROOT)) { 19949 if (is_tracing_prog_type(prog_type)) { 19950 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 19951 return -EINVAL; 19952 } 19953 } 19954 19955 if (btf_record_has_field(map->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { 19956 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 19957 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 19958 return -EINVAL; 19959 } 19960 19961 if (is_tracing_prog_type(prog_type)) { 19962 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 19963 return -EINVAL; 19964 } 19965 } 19966 19967 if (btf_record_has_field(map->record, BPF_TIMER)) { 19968 if (is_tracing_prog_type(prog_type)) { 19969 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 19970 return -EINVAL; 19971 } 19972 } 19973 19974 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) { 19975 if (is_tracing_prog_type(prog_type)) { 19976 verbose(env, "tracing progs cannot use bpf_wq yet\n"); 19977 return -EINVAL; 19978 } 19979 } 19980 19981 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 19982 !bpf_offload_prog_map_match(prog, map)) { 19983 verbose(env, "offload device mismatch between prog and map\n"); 19984 return -EINVAL; 19985 } 19986 19987 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 19988 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 19989 return -EINVAL; 19990 } 19991 19992 if (prog->sleepable) 19993 switch (map->map_type) { 19994 case BPF_MAP_TYPE_HASH: 19995 case BPF_MAP_TYPE_LRU_HASH: 19996 case BPF_MAP_TYPE_ARRAY: 19997 case BPF_MAP_TYPE_PERCPU_HASH: 19998 case BPF_MAP_TYPE_PERCPU_ARRAY: 19999 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 20000 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 20001 case BPF_MAP_TYPE_HASH_OF_MAPS: 20002 case BPF_MAP_TYPE_RINGBUF: 20003 case BPF_MAP_TYPE_USER_RINGBUF: 20004 case BPF_MAP_TYPE_INODE_STORAGE: 20005 case BPF_MAP_TYPE_SK_STORAGE: 20006 case BPF_MAP_TYPE_TASK_STORAGE: 20007 case BPF_MAP_TYPE_CGRP_STORAGE: 20008 case BPF_MAP_TYPE_QUEUE: 20009 case BPF_MAP_TYPE_STACK: 20010 case BPF_MAP_TYPE_ARENA: 20011 break; 20012 default: 20013 verbose(env, 20014 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 20015 return -EINVAL; 20016 } 20017 20018 if (bpf_map_is_cgroup_storage(map) && 20019 bpf_cgroup_storage_assign(env->prog->aux, map)) { 20020 verbose(env, "only one cgroup storage of each type is allowed\n"); 20021 return -EBUSY; 20022 } 20023 20024 if (map->map_type == BPF_MAP_TYPE_ARENA) { 20025 if (env->prog->aux->arena) { 20026 verbose(env, "Only one arena per program\n"); 20027 return -EBUSY; 20028 } 20029 if (!env->allow_ptr_leaks || !env->bpf_capable) { 20030 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); 20031 return -EPERM; 20032 } 20033 if (!env->prog->jit_requested) { 20034 verbose(env, "JIT is required to use arena\n"); 20035 return -EOPNOTSUPP; 20036 } 20037 if (!bpf_jit_supports_arena()) { 20038 verbose(env, "JIT doesn't support arena\n"); 20039 return -EOPNOTSUPP; 20040 } 20041 env->prog->aux->arena = (void *)map; 20042 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { 20043 verbose(env, "arena's user address must be set via map_extra or mmap()\n"); 20044 return -EINVAL; 20045 } 20046 } 20047 20048 return 0; 20049 } 20050 20051 static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map) 20052 { 20053 int i, err; 20054 20055 /* check whether we recorded this map already */ 20056 for (i = 0; i < env->used_map_cnt; i++) 20057 if (env->used_maps[i] == map) 20058 return i; 20059 20060 if (env->used_map_cnt >= MAX_USED_MAPS) { 20061 verbose(env, "The total number of maps per program has reached the limit of %u\n", 20062 MAX_USED_MAPS); 20063 return -E2BIG; 20064 } 20065 20066 err = check_map_prog_compatibility(env, map, env->prog); 20067 if (err) 20068 return err; 20069 20070 if (env->prog->sleepable) 20071 atomic64_inc(&map->sleepable_refcnt); 20072 20073 /* hold the map. If the program is rejected by verifier, 20074 * the map will be released by release_maps() or it 20075 * will be used by the valid program until it's unloaded 20076 * and all maps are released in bpf_free_used_maps() 20077 */ 20078 bpf_map_inc(map); 20079 20080 env->used_maps[env->used_map_cnt++] = map; 20081 20082 return env->used_map_cnt - 1; 20083 } 20084 20085 /* Add map behind fd to used maps list, if it's not already there, and return 20086 * its index. 20087 * Returns <0 on error, or >= 0 index, on success. 20088 */ 20089 static int add_used_map(struct bpf_verifier_env *env, int fd) 20090 { 20091 struct bpf_map *map; 20092 CLASS(fd, f)(fd); 20093 20094 map = __bpf_map_get(f); 20095 if (IS_ERR(map)) { 20096 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 20097 return PTR_ERR(map); 20098 } 20099 20100 return __add_used_map(env, map); 20101 } 20102 20103 /* find and rewrite pseudo imm in ld_imm64 instructions: 20104 * 20105 * 1. if it accesses map FD, replace it with actual map pointer. 20106 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 20107 * 20108 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 20109 */ 20110 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 20111 { 20112 struct bpf_insn *insn = env->prog->insnsi; 20113 int insn_cnt = env->prog->len; 20114 int i, err; 20115 20116 err = bpf_prog_calc_tag(env->prog); 20117 if (err) 20118 return err; 20119 20120 for (i = 0; i < insn_cnt; i++, insn++) { 20121 if (BPF_CLASS(insn->code) == BPF_LDX && 20122 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 20123 insn->imm != 0)) { 20124 verbose(env, "BPF_LDX uses reserved fields\n"); 20125 return -EINVAL; 20126 } 20127 20128 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 20129 struct bpf_insn_aux_data *aux; 20130 struct bpf_map *map; 20131 int map_idx; 20132 u64 addr; 20133 u32 fd; 20134 20135 if (i == insn_cnt - 1 || insn[1].code != 0 || 20136 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 20137 insn[1].off != 0) { 20138 verbose(env, "invalid bpf_ld_imm64 insn\n"); 20139 return -EINVAL; 20140 } 20141 20142 if (insn[0].src_reg == 0) 20143 /* valid generic load 64-bit imm */ 20144 goto next_insn; 20145 20146 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 20147 aux = &env->insn_aux_data[i]; 20148 err = check_pseudo_btf_id(env, insn, aux); 20149 if (err) 20150 return err; 20151 goto next_insn; 20152 } 20153 20154 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 20155 aux = &env->insn_aux_data[i]; 20156 aux->ptr_type = PTR_TO_FUNC; 20157 goto next_insn; 20158 } 20159 20160 /* In final convert_pseudo_ld_imm64() step, this is 20161 * converted into regular 64-bit imm load insn. 20162 */ 20163 switch (insn[0].src_reg) { 20164 case BPF_PSEUDO_MAP_VALUE: 20165 case BPF_PSEUDO_MAP_IDX_VALUE: 20166 break; 20167 case BPF_PSEUDO_MAP_FD: 20168 case BPF_PSEUDO_MAP_IDX: 20169 if (insn[1].imm == 0) 20170 break; 20171 fallthrough; 20172 default: 20173 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 20174 return -EINVAL; 20175 } 20176 20177 switch (insn[0].src_reg) { 20178 case BPF_PSEUDO_MAP_IDX_VALUE: 20179 case BPF_PSEUDO_MAP_IDX: 20180 if (bpfptr_is_null(env->fd_array)) { 20181 verbose(env, "fd_idx without fd_array is invalid\n"); 20182 return -EPROTO; 20183 } 20184 if (copy_from_bpfptr_offset(&fd, env->fd_array, 20185 insn[0].imm * sizeof(fd), 20186 sizeof(fd))) 20187 return -EFAULT; 20188 break; 20189 default: 20190 fd = insn[0].imm; 20191 break; 20192 } 20193 20194 map_idx = add_used_map(env, fd); 20195 if (map_idx < 0) 20196 return map_idx; 20197 map = env->used_maps[map_idx]; 20198 20199 aux = &env->insn_aux_data[i]; 20200 aux->map_index = map_idx; 20201 20202 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 20203 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 20204 addr = (unsigned long)map; 20205 } else { 20206 u32 off = insn[1].imm; 20207 20208 if (off >= BPF_MAX_VAR_OFF) { 20209 verbose(env, "direct value offset of %u is not allowed\n", off); 20210 return -EINVAL; 20211 } 20212 20213 if (!map->ops->map_direct_value_addr) { 20214 verbose(env, "no direct value access support for this map type\n"); 20215 return -EINVAL; 20216 } 20217 20218 err = map->ops->map_direct_value_addr(map, &addr, off); 20219 if (err) { 20220 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 20221 map->value_size, off); 20222 return err; 20223 } 20224 20225 aux->map_off = off; 20226 addr += off; 20227 } 20228 20229 insn[0].imm = (u32)addr; 20230 insn[1].imm = addr >> 32; 20231 20232 next_insn: 20233 insn++; 20234 i++; 20235 continue; 20236 } 20237 20238 /* Basic sanity check before we invest more work here. */ 20239 if (!bpf_opcode_in_insntable(insn->code)) { 20240 verbose(env, "unknown opcode %02x\n", insn->code); 20241 return -EINVAL; 20242 } 20243 } 20244 20245 /* now all pseudo BPF_LD_IMM64 instructions load valid 20246 * 'struct bpf_map *' into a register instead of user map_fd. 20247 * These pointers will be used later by verifier to validate map access. 20248 */ 20249 return 0; 20250 } 20251 20252 /* drop refcnt of maps used by the rejected program */ 20253 static void release_maps(struct bpf_verifier_env *env) 20254 { 20255 __bpf_free_used_maps(env->prog->aux, env->used_maps, 20256 env->used_map_cnt); 20257 } 20258 20259 /* drop refcnt of maps used by the rejected program */ 20260 static void release_btfs(struct bpf_verifier_env *env) 20261 { 20262 __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt); 20263 } 20264 20265 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 20266 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 20267 { 20268 struct bpf_insn *insn = env->prog->insnsi; 20269 int insn_cnt = env->prog->len; 20270 int i; 20271 20272 for (i = 0; i < insn_cnt; i++, insn++) { 20273 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 20274 continue; 20275 if (insn->src_reg == BPF_PSEUDO_FUNC) 20276 continue; 20277 insn->src_reg = 0; 20278 } 20279 } 20280 20281 /* single env->prog->insni[off] instruction was replaced with the range 20282 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 20283 * [0, off) and [off, end) to new locations, so the patched range stays zero 20284 */ 20285 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 20286 struct bpf_insn_aux_data *new_data, 20287 struct bpf_prog *new_prog, u32 off, u32 cnt) 20288 { 20289 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 20290 struct bpf_insn *insn = new_prog->insnsi; 20291 u32 old_seen = old_data[off].seen; 20292 u32 prog_len; 20293 int i; 20294 20295 /* aux info at OFF always needs adjustment, no matter fast path 20296 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 20297 * original insn at old prog. 20298 */ 20299 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 20300 20301 if (cnt == 1) 20302 return; 20303 prog_len = new_prog->len; 20304 20305 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 20306 memcpy(new_data + off + cnt - 1, old_data + off, 20307 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 20308 for (i = off; i < off + cnt - 1; i++) { 20309 /* Expand insni[off]'s seen count to the patched range. */ 20310 new_data[i].seen = old_seen; 20311 new_data[i].zext_dst = insn_has_def32(env, insn + i); 20312 } 20313 env->insn_aux_data = new_data; 20314 vfree(old_data); 20315 } 20316 20317 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 20318 { 20319 int i; 20320 20321 if (len == 1) 20322 return; 20323 /* NOTE: fake 'exit' subprog should be updated as well. */ 20324 for (i = 0; i <= env->subprog_cnt; i++) { 20325 if (env->subprog_info[i].start <= off) 20326 continue; 20327 env->subprog_info[i].start += len - 1; 20328 } 20329 } 20330 20331 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 20332 { 20333 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 20334 int i, sz = prog->aux->size_poke_tab; 20335 struct bpf_jit_poke_descriptor *desc; 20336 20337 for (i = 0; i < sz; i++) { 20338 desc = &tab[i]; 20339 if (desc->insn_idx <= off) 20340 continue; 20341 desc->insn_idx += len - 1; 20342 } 20343 } 20344 20345 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 20346 const struct bpf_insn *patch, u32 len) 20347 { 20348 struct bpf_prog *new_prog; 20349 struct bpf_insn_aux_data *new_data = NULL; 20350 20351 if (len > 1) { 20352 new_data = vzalloc(array_size(env->prog->len + len - 1, 20353 sizeof(struct bpf_insn_aux_data))); 20354 if (!new_data) 20355 return NULL; 20356 } 20357 20358 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 20359 if (IS_ERR(new_prog)) { 20360 if (PTR_ERR(new_prog) == -ERANGE) 20361 verbose(env, 20362 "insn %d cannot be patched due to 16-bit range\n", 20363 env->insn_aux_data[off].orig_idx); 20364 vfree(new_data); 20365 return NULL; 20366 } 20367 adjust_insn_aux_data(env, new_data, new_prog, off, len); 20368 adjust_subprog_starts(env, off, len); 20369 adjust_poke_descs(new_prog, off, len); 20370 return new_prog; 20371 } 20372 20373 /* 20374 * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the 20375 * jump offset by 'delta'. 20376 */ 20377 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta) 20378 { 20379 struct bpf_insn *insn = prog->insnsi; 20380 u32 insn_cnt = prog->len, i; 20381 s32 imm; 20382 s16 off; 20383 20384 for (i = 0; i < insn_cnt; i++, insn++) { 20385 u8 code = insn->code; 20386 20387 if (tgt_idx <= i && i < tgt_idx + delta) 20388 continue; 20389 20390 if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || 20391 BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT) 20392 continue; 20393 20394 if (insn->code == (BPF_JMP32 | BPF_JA)) { 20395 if (i + 1 + insn->imm != tgt_idx) 20396 continue; 20397 if (check_add_overflow(insn->imm, delta, &imm)) 20398 return -ERANGE; 20399 insn->imm = imm; 20400 } else { 20401 if (i + 1 + insn->off != tgt_idx) 20402 continue; 20403 if (check_add_overflow(insn->off, delta, &off)) 20404 return -ERANGE; 20405 insn->off = off; 20406 } 20407 } 20408 return 0; 20409 } 20410 20411 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 20412 u32 off, u32 cnt) 20413 { 20414 int i, j; 20415 20416 /* find first prog starting at or after off (first to remove) */ 20417 for (i = 0; i < env->subprog_cnt; i++) 20418 if (env->subprog_info[i].start >= off) 20419 break; 20420 /* find first prog starting at or after off + cnt (first to stay) */ 20421 for (j = i; j < env->subprog_cnt; j++) 20422 if (env->subprog_info[j].start >= off + cnt) 20423 break; 20424 /* if j doesn't start exactly at off + cnt, we are just removing 20425 * the front of previous prog 20426 */ 20427 if (env->subprog_info[j].start != off + cnt) 20428 j--; 20429 20430 if (j > i) { 20431 struct bpf_prog_aux *aux = env->prog->aux; 20432 int move; 20433 20434 /* move fake 'exit' subprog as well */ 20435 move = env->subprog_cnt + 1 - j; 20436 20437 memmove(env->subprog_info + i, 20438 env->subprog_info + j, 20439 sizeof(*env->subprog_info) * move); 20440 env->subprog_cnt -= j - i; 20441 20442 /* remove func_info */ 20443 if (aux->func_info) { 20444 move = aux->func_info_cnt - j; 20445 20446 memmove(aux->func_info + i, 20447 aux->func_info + j, 20448 sizeof(*aux->func_info) * move); 20449 aux->func_info_cnt -= j - i; 20450 /* func_info->insn_off is set after all code rewrites, 20451 * in adjust_btf_func() - no need to adjust 20452 */ 20453 } 20454 } else { 20455 /* convert i from "first prog to remove" to "first to adjust" */ 20456 if (env->subprog_info[i].start == off) 20457 i++; 20458 } 20459 20460 /* update fake 'exit' subprog as well */ 20461 for (; i <= env->subprog_cnt; i++) 20462 env->subprog_info[i].start -= cnt; 20463 20464 return 0; 20465 } 20466 20467 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 20468 u32 cnt) 20469 { 20470 struct bpf_prog *prog = env->prog; 20471 u32 i, l_off, l_cnt, nr_linfo; 20472 struct bpf_line_info *linfo; 20473 20474 nr_linfo = prog->aux->nr_linfo; 20475 if (!nr_linfo) 20476 return 0; 20477 20478 linfo = prog->aux->linfo; 20479 20480 /* find first line info to remove, count lines to be removed */ 20481 for (i = 0; i < nr_linfo; i++) 20482 if (linfo[i].insn_off >= off) 20483 break; 20484 20485 l_off = i; 20486 l_cnt = 0; 20487 for (; i < nr_linfo; i++) 20488 if (linfo[i].insn_off < off + cnt) 20489 l_cnt++; 20490 else 20491 break; 20492 20493 /* First live insn doesn't match first live linfo, it needs to "inherit" 20494 * last removed linfo. prog is already modified, so prog->len == off 20495 * means no live instructions after (tail of the program was removed). 20496 */ 20497 if (prog->len != off && l_cnt && 20498 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 20499 l_cnt--; 20500 linfo[--i].insn_off = off + cnt; 20501 } 20502 20503 /* remove the line info which refer to the removed instructions */ 20504 if (l_cnt) { 20505 memmove(linfo + l_off, linfo + i, 20506 sizeof(*linfo) * (nr_linfo - i)); 20507 20508 prog->aux->nr_linfo -= l_cnt; 20509 nr_linfo = prog->aux->nr_linfo; 20510 } 20511 20512 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 20513 for (i = l_off; i < nr_linfo; i++) 20514 linfo[i].insn_off -= cnt; 20515 20516 /* fix up all subprogs (incl. 'exit') which start >= off */ 20517 for (i = 0; i <= env->subprog_cnt; i++) 20518 if (env->subprog_info[i].linfo_idx > l_off) { 20519 /* program may have started in the removed region but 20520 * may not be fully removed 20521 */ 20522 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 20523 env->subprog_info[i].linfo_idx -= l_cnt; 20524 else 20525 env->subprog_info[i].linfo_idx = l_off; 20526 } 20527 20528 return 0; 20529 } 20530 20531 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 20532 { 20533 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20534 unsigned int orig_prog_len = env->prog->len; 20535 int err; 20536 20537 if (bpf_prog_is_offloaded(env->prog->aux)) 20538 bpf_prog_offload_remove_insns(env, off, cnt); 20539 20540 err = bpf_remove_insns(env->prog, off, cnt); 20541 if (err) 20542 return err; 20543 20544 err = adjust_subprog_starts_after_remove(env, off, cnt); 20545 if (err) 20546 return err; 20547 20548 err = bpf_adj_linfo_after_remove(env, off, cnt); 20549 if (err) 20550 return err; 20551 20552 memmove(aux_data + off, aux_data + off + cnt, 20553 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 20554 20555 return 0; 20556 } 20557 20558 /* The verifier does more data flow analysis than llvm and will not 20559 * explore branches that are dead at run time. Malicious programs can 20560 * have dead code too. Therefore replace all dead at-run-time code 20561 * with 'ja -1'. 20562 * 20563 * Just nops are not optimal, e.g. if they would sit at the end of the 20564 * program and through another bug we would manage to jump there, then 20565 * we'd execute beyond program memory otherwise. Returning exception 20566 * code also wouldn't work since we can have subprogs where the dead 20567 * code could be located. 20568 */ 20569 static void sanitize_dead_code(struct bpf_verifier_env *env) 20570 { 20571 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20572 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 20573 struct bpf_insn *insn = env->prog->insnsi; 20574 const int insn_cnt = env->prog->len; 20575 int i; 20576 20577 for (i = 0; i < insn_cnt; i++) { 20578 if (aux_data[i].seen) 20579 continue; 20580 memcpy(insn + i, &trap, sizeof(trap)); 20581 aux_data[i].zext_dst = false; 20582 } 20583 } 20584 20585 static bool insn_is_cond_jump(u8 code) 20586 { 20587 u8 op; 20588 20589 op = BPF_OP(code); 20590 if (BPF_CLASS(code) == BPF_JMP32) 20591 return op != BPF_JA; 20592 20593 if (BPF_CLASS(code) != BPF_JMP) 20594 return false; 20595 20596 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 20597 } 20598 20599 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 20600 { 20601 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20602 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 20603 struct bpf_insn *insn = env->prog->insnsi; 20604 const int insn_cnt = env->prog->len; 20605 int i; 20606 20607 for (i = 0; i < insn_cnt; i++, insn++) { 20608 if (!insn_is_cond_jump(insn->code)) 20609 continue; 20610 20611 if (!aux_data[i + 1].seen) 20612 ja.off = insn->off; 20613 else if (!aux_data[i + 1 + insn->off].seen) 20614 ja.off = 0; 20615 else 20616 continue; 20617 20618 if (bpf_prog_is_offloaded(env->prog->aux)) 20619 bpf_prog_offload_replace_insn(env, i, &ja); 20620 20621 memcpy(insn, &ja, sizeof(ja)); 20622 } 20623 } 20624 20625 static int opt_remove_dead_code(struct bpf_verifier_env *env) 20626 { 20627 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20628 int insn_cnt = env->prog->len; 20629 int i, err; 20630 20631 for (i = 0; i < insn_cnt; i++) { 20632 int j; 20633 20634 j = 0; 20635 while (i + j < insn_cnt && !aux_data[i + j].seen) 20636 j++; 20637 if (!j) 20638 continue; 20639 20640 err = verifier_remove_insns(env, i, j); 20641 if (err) 20642 return err; 20643 insn_cnt = env->prog->len; 20644 } 20645 20646 return 0; 20647 } 20648 20649 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 20650 static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0); 20651 20652 static int opt_remove_nops(struct bpf_verifier_env *env) 20653 { 20654 struct bpf_insn *insn = env->prog->insnsi; 20655 int insn_cnt = env->prog->len; 20656 bool is_may_goto_0, is_ja; 20657 int i, err; 20658 20659 for (i = 0; i < insn_cnt; i++) { 20660 is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0)); 20661 is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP)); 20662 20663 if (!is_may_goto_0 && !is_ja) 20664 continue; 20665 20666 err = verifier_remove_insns(env, i, 1); 20667 if (err) 20668 return err; 20669 insn_cnt--; 20670 /* Go back one insn to catch may_goto +1; may_goto +0 sequence */ 20671 i -= (is_may_goto_0 && i > 0) ? 2 : 1; 20672 } 20673 20674 return 0; 20675 } 20676 20677 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 20678 const union bpf_attr *attr) 20679 { 20680 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 20681 struct bpf_insn_aux_data *aux = env->insn_aux_data; 20682 int i, patch_len, delta = 0, len = env->prog->len; 20683 struct bpf_insn *insns = env->prog->insnsi; 20684 struct bpf_prog *new_prog; 20685 bool rnd_hi32; 20686 20687 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 20688 zext_patch[1] = BPF_ZEXT_REG(0); 20689 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 20690 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 20691 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 20692 for (i = 0; i < len; i++) { 20693 int adj_idx = i + delta; 20694 struct bpf_insn insn; 20695 int load_reg; 20696 20697 insn = insns[adj_idx]; 20698 load_reg = insn_def_regno(&insn); 20699 if (!aux[adj_idx].zext_dst) { 20700 u8 code, class; 20701 u32 imm_rnd; 20702 20703 if (!rnd_hi32) 20704 continue; 20705 20706 code = insn.code; 20707 class = BPF_CLASS(code); 20708 if (load_reg == -1) 20709 continue; 20710 20711 /* NOTE: arg "reg" (the fourth one) is only used for 20712 * BPF_STX + SRC_OP, so it is safe to pass NULL 20713 * here. 20714 */ 20715 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 20716 if (class == BPF_LD && 20717 BPF_MODE(code) == BPF_IMM) 20718 i++; 20719 continue; 20720 } 20721 20722 /* ctx load could be transformed into wider load. */ 20723 if (class == BPF_LDX && 20724 aux[adj_idx].ptr_type == PTR_TO_CTX) 20725 continue; 20726 20727 imm_rnd = get_random_u32(); 20728 rnd_hi32_patch[0] = insn; 20729 rnd_hi32_patch[1].imm = imm_rnd; 20730 rnd_hi32_patch[3].dst_reg = load_reg; 20731 patch = rnd_hi32_patch; 20732 patch_len = 4; 20733 goto apply_patch_buffer; 20734 } 20735 20736 /* Add in an zero-extend instruction if a) the JIT has requested 20737 * it or b) it's a CMPXCHG. 20738 * 20739 * The latter is because: BPF_CMPXCHG always loads a value into 20740 * R0, therefore always zero-extends. However some archs' 20741 * equivalent instruction only does this load when the 20742 * comparison is successful. This detail of CMPXCHG is 20743 * orthogonal to the general zero-extension behaviour of the 20744 * CPU, so it's treated independently of bpf_jit_needs_zext. 20745 */ 20746 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 20747 continue; 20748 20749 /* Zero-extension is done by the caller. */ 20750 if (bpf_pseudo_kfunc_call(&insn)) 20751 continue; 20752 20753 if (verifier_bug_if(load_reg == -1, env, 20754 "zext_dst is set, but no reg is defined")) 20755 return -EFAULT; 20756 20757 zext_patch[0] = insn; 20758 zext_patch[1].dst_reg = load_reg; 20759 zext_patch[1].src_reg = load_reg; 20760 patch = zext_patch; 20761 patch_len = 2; 20762 apply_patch_buffer: 20763 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 20764 if (!new_prog) 20765 return -ENOMEM; 20766 env->prog = new_prog; 20767 insns = new_prog->insnsi; 20768 aux = env->insn_aux_data; 20769 delta += patch_len - 1; 20770 } 20771 20772 return 0; 20773 } 20774 20775 /* convert load instructions that access fields of a context type into a 20776 * sequence of instructions that access fields of the underlying structure: 20777 * struct __sk_buff -> struct sk_buff 20778 * struct bpf_sock_ops -> struct sock 20779 */ 20780 static int convert_ctx_accesses(struct bpf_verifier_env *env) 20781 { 20782 struct bpf_subprog_info *subprogs = env->subprog_info; 20783 const struct bpf_verifier_ops *ops = env->ops; 20784 int i, cnt, size, ctx_field_size, ret, delta = 0, epilogue_cnt = 0; 20785 const int insn_cnt = env->prog->len; 20786 struct bpf_insn *epilogue_buf = env->epilogue_buf; 20787 struct bpf_insn *insn_buf = env->insn_buf; 20788 struct bpf_insn *insn; 20789 u32 target_size, size_default, off; 20790 struct bpf_prog *new_prog; 20791 enum bpf_access_type type; 20792 bool is_narrower_load; 20793 int epilogue_idx = 0; 20794 20795 if (ops->gen_epilogue) { 20796 epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog, 20797 -(subprogs[0].stack_depth + 8)); 20798 if (epilogue_cnt >= INSN_BUF_SIZE) { 20799 verbose(env, "bpf verifier is misconfigured\n"); 20800 return -EINVAL; 20801 } else if (epilogue_cnt) { 20802 /* Save the ARG_PTR_TO_CTX for the epilogue to use */ 20803 cnt = 0; 20804 subprogs[0].stack_depth += 8; 20805 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1, 20806 -subprogs[0].stack_depth); 20807 insn_buf[cnt++] = env->prog->insnsi[0]; 20808 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 20809 if (!new_prog) 20810 return -ENOMEM; 20811 env->prog = new_prog; 20812 delta += cnt - 1; 20813 20814 ret = add_kfunc_in_insns(env, epilogue_buf, epilogue_cnt - 1); 20815 if (ret < 0) 20816 return ret; 20817 } 20818 } 20819 20820 if (ops->gen_prologue || env->seen_direct_write) { 20821 if (!ops->gen_prologue) { 20822 verbose(env, "bpf verifier is misconfigured\n"); 20823 return -EINVAL; 20824 } 20825 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 20826 env->prog); 20827 if (cnt >= INSN_BUF_SIZE) { 20828 verbose(env, "bpf verifier is misconfigured\n"); 20829 return -EINVAL; 20830 } else if (cnt) { 20831 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 20832 if (!new_prog) 20833 return -ENOMEM; 20834 20835 env->prog = new_prog; 20836 delta += cnt - 1; 20837 20838 ret = add_kfunc_in_insns(env, insn_buf, cnt - 1); 20839 if (ret < 0) 20840 return ret; 20841 } 20842 } 20843 20844 if (delta) 20845 WARN_ON(adjust_jmp_off(env->prog, 0, delta)); 20846 20847 if (bpf_prog_is_offloaded(env->prog->aux)) 20848 return 0; 20849 20850 insn = env->prog->insnsi + delta; 20851 20852 for (i = 0; i < insn_cnt; i++, insn++) { 20853 bpf_convert_ctx_access_t convert_ctx_access; 20854 u8 mode; 20855 20856 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 20857 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 20858 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 20859 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 20860 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 20861 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 20862 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 20863 type = BPF_READ; 20864 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 20865 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 20866 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 20867 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 20868 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 20869 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 20870 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 20871 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 20872 type = BPF_WRITE; 20873 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_B) || 20874 insn->code == (BPF_STX | BPF_ATOMIC | BPF_H) || 20875 insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || 20876 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && 20877 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { 20878 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); 20879 env->prog->aux->num_exentries++; 20880 continue; 20881 } else if (insn->code == (BPF_JMP | BPF_EXIT) && 20882 epilogue_cnt && 20883 i + delta < subprogs[1].start) { 20884 /* Generate epilogue for the main prog */ 20885 if (epilogue_idx) { 20886 /* jump back to the earlier generated epilogue */ 20887 insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1); 20888 cnt = 1; 20889 } else { 20890 memcpy(insn_buf, epilogue_buf, 20891 epilogue_cnt * sizeof(*epilogue_buf)); 20892 cnt = epilogue_cnt; 20893 /* epilogue_idx cannot be 0. It must have at 20894 * least one ctx ptr saving insn before the 20895 * epilogue. 20896 */ 20897 epilogue_idx = i + delta; 20898 } 20899 goto patch_insn_buf; 20900 } else { 20901 continue; 20902 } 20903 20904 if (type == BPF_WRITE && 20905 env->insn_aux_data[i + delta].sanitize_stack_spill) { 20906 struct bpf_insn patch[] = { 20907 *insn, 20908 BPF_ST_NOSPEC(), 20909 }; 20910 20911 cnt = ARRAY_SIZE(patch); 20912 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 20913 if (!new_prog) 20914 return -ENOMEM; 20915 20916 delta += cnt - 1; 20917 env->prog = new_prog; 20918 insn = new_prog->insnsi + i + delta; 20919 continue; 20920 } 20921 20922 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 20923 case PTR_TO_CTX: 20924 if (!ops->convert_ctx_access) 20925 continue; 20926 convert_ctx_access = ops->convert_ctx_access; 20927 break; 20928 case PTR_TO_SOCKET: 20929 case PTR_TO_SOCK_COMMON: 20930 convert_ctx_access = bpf_sock_convert_ctx_access; 20931 break; 20932 case PTR_TO_TCP_SOCK: 20933 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 20934 break; 20935 case PTR_TO_XDP_SOCK: 20936 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 20937 break; 20938 case PTR_TO_BTF_ID: 20939 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 20940 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 20941 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 20942 * be said once it is marked PTR_UNTRUSTED, hence we must handle 20943 * any faults for loads into such types. BPF_WRITE is disallowed 20944 * for this case. 20945 */ 20946 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 20947 if (type == BPF_READ) { 20948 if (BPF_MODE(insn->code) == BPF_MEM) 20949 insn->code = BPF_LDX | BPF_PROBE_MEM | 20950 BPF_SIZE((insn)->code); 20951 else 20952 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 20953 BPF_SIZE((insn)->code); 20954 env->prog->aux->num_exentries++; 20955 } 20956 continue; 20957 case PTR_TO_ARENA: 20958 if (BPF_MODE(insn->code) == BPF_MEMSX) { 20959 verbose(env, "sign extending loads from arena are not supported yet\n"); 20960 return -EOPNOTSUPP; 20961 } 20962 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); 20963 env->prog->aux->num_exentries++; 20964 continue; 20965 default: 20966 continue; 20967 } 20968 20969 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 20970 size = BPF_LDST_BYTES(insn); 20971 mode = BPF_MODE(insn->code); 20972 20973 /* If the read access is a narrower load of the field, 20974 * convert to a 4/8-byte load, to minimum program type specific 20975 * convert_ctx_access changes. If conversion is successful, 20976 * we will apply proper mask to the result. 20977 */ 20978 is_narrower_load = size < ctx_field_size; 20979 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 20980 off = insn->off; 20981 if (is_narrower_load) { 20982 u8 size_code; 20983 20984 if (type == BPF_WRITE) { 20985 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 20986 return -EINVAL; 20987 } 20988 20989 size_code = BPF_H; 20990 if (ctx_field_size == 4) 20991 size_code = BPF_W; 20992 else if (ctx_field_size == 8) 20993 size_code = BPF_DW; 20994 20995 insn->off = off & ~(size_default - 1); 20996 insn->code = BPF_LDX | BPF_MEM | size_code; 20997 } 20998 20999 target_size = 0; 21000 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 21001 &target_size); 21002 if (cnt == 0 || cnt >= INSN_BUF_SIZE || 21003 (ctx_field_size && !target_size)) { 21004 verbose(env, "bpf verifier is misconfigured\n"); 21005 return -EINVAL; 21006 } 21007 21008 if (is_narrower_load && size < target_size) { 21009 u8 shift = bpf_ctx_narrow_access_offset( 21010 off, size, size_default) * 8; 21011 if (shift && cnt + 1 >= INSN_BUF_SIZE) { 21012 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 21013 return -EINVAL; 21014 } 21015 if (ctx_field_size <= 4) { 21016 if (shift) 21017 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 21018 insn->dst_reg, 21019 shift); 21020 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 21021 (1 << size * 8) - 1); 21022 } else { 21023 if (shift) 21024 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 21025 insn->dst_reg, 21026 shift); 21027 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 21028 (1ULL << size * 8) - 1); 21029 } 21030 } 21031 if (mode == BPF_MEMSX) 21032 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 21033 insn->dst_reg, insn->dst_reg, 21034 size * 8, 0); 21035 21036 patch_insn_buf: 21037 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21038 if (!new_prog) 21039 return -ENOMEM; 21040 21041 delta += cnt - 1; 21042 21043 /* keep walking new program and skip insns we just inserted */ 21044 env->prog = new_prog; 21045 insn = new_prog->insnsi + i + delta; 21046 } 21047 21048 return 0; 21049 } 21050 21051 static int jit_subprogs(struct bpf_verifier_env *env) 21052 { 21053 struct bpf_prog *prog = env->prog, **func, *tmp; 21054 int i, j, subprog_start, subprog_end = 0, len, subprog; 21055 struct bpf_map *map_ptr; 21056 struct bpf_insn *insn; 21057 void *old_bpf_func; 21058 int err, num_exentries; 21059 21060 if (env->subprog_cnt <= 1) 21061 return 0; 21062 21063 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 21064 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 21065 continue; 21066 21067 /* Upon error here we cannot fall back to interpreter but 21068 * need a hard reject of the program. Thus -EFAULT is 21069 * propagated in any case. 21070 */ 21071 subprog = find_subprog(env, i + insn->imm + 1); 21072 if (verifier_bug_if(subprog < 0, env, "No program to jit at insn %d", 21073 i + insn->imm + 1)) 21074 return -EFAULT; 21075 /* temporarily remember subprog id inside insn instead of 21076 * aux_data, since next loop will split up all insns into funcs 21077 */ 21078 insn->off = subprog; 21079 /* remember original imm in case JIT fails and fallback 21080 * to interpreter will be needed 21081 */ 21082 env->insn_aux_data[i].call_imm = insn->imm; 21083 /* point imm to __bpf_call_base+1 from JITs point of view */ 21084 insn->imm = 1; 21085 if (bpf_pseudo_func(insn)) { 21086 #if defined(MODULES_VADDR) 21087 u64 addr = MODULES_VADDR; 21088 #else 21089 u64 addr = VMALLOC_START; 21090 #endif 21091 /* jit (e.g. x86_64) may emit fewer instructions 21092 * if it learns a u32 imm is the same as a u64 imm. 21093 * Set close enough to possible prog address. 21094 */ 21095 insn[0].imm = (u32)addr; 21096 insn[1].imm = addr >> 32; 21097 } 21098 } 21099 21100 err = bpf_prog_alloc_jited_linfo(prog); 21101 if (err) 21102 goto out_undo_insn; 21103 21104 err = -ENOMEM; 21105 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 21106 if (!func) 21107 goto out_undo_insn; 21108 21109 for (i = 0; i < env->subprog_cnt; i++) { 21110 subprog_start = subprog_end; 21111 subprog_end = env->subprog_info[i + 1].start; 21112 21113 len = subprog_end - subprog_start; 21114 /* bpf_prog_run() doesn't call subprogs directly, 21115 * hence main prog stats include the runtime of subprogs. 21116 * subprogs don't have IDs and not reachable via prog_get_next_id 21117 * func[i]->stats will never be accessed and stays NULL 21118 */ 21119 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 21120 if (!func[i]) 21121 goto out_free; 21122 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 21123 len * sizeof(struct bpf_insn)); 21124 func[i]->type = prog->type; 21125 func[i]->len = len; 21126 if (bpf_prog_calc_tag(func[i])) 21127 goto out_free; 21128 func[i]->is_func = 1; 21129 func[i]->sleepable = prog->sleepable; 21130 func[i]->aux->func_idx = i; 21131 /* Below members will be freed only at prog->aux */ 21132 func[i]->aux->btf = prog->aux->btf; 21133 func[i]->aux->func_info = prog->aux->func_info; 21134 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 21135 func[i]->aux->poke_tab = prog->aux->poke_tab; 21136 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 21137 21138 for (j = 0; j < prog->aux->size_poke_tab; j++) { 21139 struct bpf_jit_poke_descriptor *poke; 21140 21141 poke = &prog->aux->poke_tab[j]; 21142 if (poke->insn_idx < subprog_end && 21143 poke->insn_idx >= subprog_start) 21144 poke->aux = func[i]->aux; 21145 } 21146 21147 func[i]->aux->name[0] = 'F'; 21148 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 21149 if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) 21150 func[i]->aux->jits_use_priv_stack = true; 21151 21152 func[i]->jit_requested = 1; 21153 func[i]->blinding_requested = prog->blinding_requested; 21154 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 21155 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 21156 func[i]->aux->linfo = prog->aux->linfo; 21157 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 21158 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 21159 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 21160 func[i]->aux->arena = prog->aux->arena; 21161 num_exentries = 0; 21162 insn = func[i]->insnsi; 21163 for (j = 0; j < func[i]->len; j++, insn++) { 21164 if (BPF_CLASS(insn->code) == BPF_LDX && 21165 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 21166 BPF_MODE(insn->code) == BPF_PROBE_MEM32 || 21167 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 21168 num_exentries++; 21169 if ((BPF_CLASS(insn->code) == BPF_STX || 21170 BPF_CLASS(insn->code) == BPF_ST) && 21171 BPF_MODE(insn->code) == BPF_PROBE_MEM32) 21172 num_exentries++; 21173 if (BPF_CLASS(insn->code) == BPF_STX && 21174 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) 21175 num_exentries++; 21176 } 21177 func[i]->aux->num_exentries = num_exentries; 21178 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 21179 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 21180 func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data; 21181 func[i]->aux->might_sleep = env->subprog_info[i].might_sleep; 21182 if (!i) 21183 func[i]->aux->exception_boundary = env->seen_exception; 21184 func[i] = bpf_int_jit_compile(func[i]); 21185 if (!func[i]->jited) { 21186 err = -ENOTSUPP; 21187 goto out_free; 21188 } 21189 cond_resched(); 21190 } 21191 21192 /* at this point all bpf functions were successfully JITed 21193 * now populate all bpf_calls with correct addresses and 21194 * run last pass of JIT 21195 */ 21196 for (i = 0; i < env->subprog_cnt; i++) { 21197 insn = func[i]->insnsi; 21198 for (j = 0; j < func[i]->len; j++, insn++) { 21199 if (bpf_pseudo_func(insn)) { 21200 subprog = insn->off; 21201 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 21202 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 21203 continue; 21204 } 21205 if (!bpf_pseudo_call(insn)) 21206 continue; 21207 subprog = insn->off; 21208 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 21209 } 21210 21211 /* we use the aux data to keep a list of the start addresses 21212 * of the JITed images for each function in the program 21213 * 21214 * for some architectures, such as powerpc64, the imm field 21215 * might not be large enough to hold the offset of the start 21216 * address of the callee's JITed image from __bpf_call_base 21217 * 21218 * in such cases, we can lookup the start address of a callee 21219 * by using its subprog id, available from the off field of 21220 * the call instruction, as an index for this list 21221 */ 21222 func[i]->aux->func = func; 21223 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 21224 func[i]->aux->real_func_cnt = env->subprog_cnt; 21225 } 21226 for (i = 0; i < env->subprog_cnt; i++) { 21227 old_bpf_func = func[i]->bpf_func; 21228 tmp = bpf_int_jit_compile(func[i]); 21229 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 21230 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 21231 err = -ENOTSUPP; 21232 goto out_free; 21233 } 21234 cond_resched(); 21235 } 21236 21237 /* finally lock prog and jit images for all functions and 21238 * populate kallsysm. Begin at the first subprogram, since 21239 * bpf_prog_load will add the kallsyms for the main program. 21240 */ 21241 for (i = 1; i < env->subprog_cnt; i++) { 21242 err = bpf_prog_lock_ro(func[i]); 21243 if (err) 21244 goto out_free; 21245 } 21246 21247 for (i = 1; i < env->subprog_cnt; i++) 21248 bpf_prog_kallsyms_add(func[i]); 21249 21250 /* Last step: make now unused interpreter insns from main 21251 * prog consistent for later dump requests, so they can 21252 * later look the same as if they were interpreted only. 21253 */ 21254 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 21255 if (bpf_pseudo_func(insn)) { 21256 insn[0].imm = env->insn_aux_data[i].call_imm; 21257 insn[1].imm = insn->off; 21258 insn->off = 0; 21259 continue; 21260 } 21261 if (!bpf_pseudo_call(insn)) 21262 continue; 21263 insn->off = env->insn_aux_data[i].call_imm; 21264 subprog = find_subprog(env, i + insn->off + 1); 21265 insn->imm = subprog; 21266 } 21267 21268 prog->jited = 1; 21269 prog->bpf_func = func[0]->bpf_func; 21270 prog->jited_len = func[0]->jited_len; 21271 prog->aux->extable = func[0]->aux->extable; 21272 prog->aux->num_exentries = func[0]->aux->num_exentries; 21273 prog->aux->func = func; 21274 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 21275 prog->aux->real_func_cnt = env->subprog_cnt; 21276 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 21277 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 21278 bpf_prog_jit_attempt_done(prog); 21279 return 0; 21280 out_free: 21281 /* We failed JIT'ing, so at this point we need to unregister poke 21282 * descriptors from subprogs, so that kernel is not attempting to 21283 * patch it anymore as we're freeing the subprog JIT memory. 21284 */ 21285 for (i = 0; i < prog->aux->size_poke_tab; i++) { 21286 map_ptr = prog->aux->poke_tab[i].tail_call.map; 21287 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 21288 } 21289 /* At this point we're guaranteed that poke descriptors are not 21290 * live anymore. We can just unlink its descriptor table as it's 21291 * released with the main prog. 21292 */ 21293 for (i = 0; i < env->subprog_cnt; i++) { 21294 if (!func[i]) 21295 continue; 21296 func[i]->aux->poke_tab = NULL; 21297 bpf_jit_free(func[i]); 21298 } 21299 kfree(func); 21300 out_undo_insn: 21301 /* cleanup main prog to be interpreted */ 21302 prog->jit_requested = 0; 21303 prog->blinding_requested = 0; 21304 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 21305 if (!bpf_pseudo_call(insn)) 21306 continue; 21307 insn->off = 0; 21308 insn->imm = env->insn_aux_data[i].call_imm; 21309 } 21310 bpf_prog_jit_attempt_done(prog); 21311 return err; 21312 } 21313 21314 static int fixup_call_args(struct bpf_verifier_env *env) 21315 { 21316 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 21317 struct bpf_prog *prog = env->prog; 21318 struct bpf_insn *insn = prog->insnsi; 21319 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 21320 int i, depth; 21321 #endif 21322 int err = 0; 21323 21324 if (env->prog->jit_requested && 21325 !bpf_prog_is_offloaded(env->prog->aux)) { 21326 err = jit_subprogs(env); 21327 if (err == 0) 21328 return 0; 21329 if (err == -EFAULT) 21330 return err; 21331 } 21332 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 21333 if (has_kfunc_call) { 21334 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 21335 return -EINVAL; 21336 } 21337 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 21338 /* When JIT fails the progs with bpf2bpf calls and tail_calls 21339 * have to be rejected, since interpreter doesn't support them yet. 21340 */ 21341 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 21342 return -EINVAL; 21343 } 21344 for (i = 0; i < prog->len; i++, insn++) { 21345 if (bpf_pseudo_func(insn)) { 21346 /* When JIT fails the progs with callback calls 21347 * have to be rejected, since interpreter doesn't support them yet. 21348 */ 21349 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 21350 return -EINVAL; 21351 } 21352 21353 if (!bpf_pseudo_call(insn)) 21354 continue; 21355 depth = get_callee_stack_depth(env, insn, i); 21356 if (depth < 0) 21357 return depth; 21358 bpf_patch_call_args(insn, depth); 21359 } 21360 err = 0; 21361 #endif 21362 return err; 21363 } 21364 21365 /* replace a generic kfunc with a specialized version if necessary */ 21366 static void specialize_kfunc(struct bpf_verifier_env *env, 21367 u32 func_id, u16 offset, unsigned long *addr) 21368 { 21369 struct bpf_prog *prog = env->prog; 21370 bool seen_direct_write; 21371 void *xdp_kfunc; 21372 bool is_rdonly; 21373 21374 if (bpf_dev_bound_kfunc_id(func_id)) { 21375 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 21376 if (xdp_kfunc) { 21377 *addr = (unsigned long)xdp_kfunc; 21378 return; 21379 } 21380 /* fallback to default kfunc when not supported by netdev */ 21381 } 21382 21383 if (offset) 21384 return; 21385 21386 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 21387 seen_direct_write = env->seen_direct_write; 21388 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 21389 21390 if (is_rdonly) 21391 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 21392 21393 /* restore env->seen_direct_write to its original value, since 21394 * may_access_direct_pkt_data mutates it 21395 */ 21396 env->seen_direct_write = seen_direct_write; 21397 } 21398 21399 if (func_id == special_kfunc_list[KF_bpf_set_dentry_xattr] && 21400 bpf_lsm_has_d_inode_locked(prog)) 21401 *addr = (unsigned long)bpf_set_dentry_xattr_locked; 21402 21403 if (func_id == special_kfunc_list[KF_bpf_remove_dentry_xattr] && 21404 bpf_lsm_has_d_inode_locked(prog)) 21405 *addr = (unsigned long)bpf_remove_dentry_xattr_locked; 21406 } 21407 21408 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 21409 u16 struct_meta_reg, 21410 u16 node_offset_reg, 21411 struct bpf_insn *insn, 21412 struct bpf_insn *insn_buf, 21413 int *cnt) 21414 { 21415 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 21416 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 21417 21418 insn_buf[0] = addr[0]; 21419 insn_buf[1] = addr[1]; 21420 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 21421 insn_buf[3] = *insn; 21422 *cnt = 4; 21423 } 21424 21425 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 21426 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 21427 { 21428 const struct bpf_kfunc_desc *desc; 21429 21430 if (!insn->imm) { 21431 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 21432 return -EINVAL; 21433 } 21434 21435 *cnt = 0; 21436 21437 /* insn->imm has the btf func_id. Replace it with an offset relative to 21438 * __bpf_call_base, unless the JIT needs to call functions that are 21439 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 21440 */ 21441 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 21442 if (!desc) { 21443 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 21444 insn->imm); 21445 return -EFAULT; 21446 } 21447 21448 if (!bpf_jit_supports_far_kfunc_call()) 21449 insn->imm = BPF_CALL_IMM(desc->addr); 21450 if (insn->off) 21451 return 0; 21452 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 21453 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 21454 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21455 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 21456 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 21457 21458 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 21459 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 21460 insn_idx); 21461 return -EFAULT; 21462 } 21463 21464 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 21465 insn_buf[1] = addr[0]; 21466 insn_buf[2] = addr[1]; 21467 insn_buf[3] = *insn; 21468 *cnt = 4; 21469 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 21470 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 21471 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 21472 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21473 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 21474 21475 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 21476 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 21477 insn_idx); 21478 return -EFAULT; 21479 } 21480 21481 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 21482 !kptr_struct_meta) { 21483 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 21484 insn_idx); 21485 return -EFAULT; 21486 } 21487 21488 insn_buf[0] = addr[0]; 21489 insn_buf[1] = addr[1]; 21490 insn_buf[2] = *insn; 21491 *cnt = 3; 21492 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 21493 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 21494 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 21495 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21496 int struct_meta_reg = BPF_REG_3; 21497 int node_offset_reg = BPF_REG_4; 21498 21499 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 21500 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 21501 struct_meta_reg = BPF_REG_4; 21502 node_offset_reg = BPF_REG_5; 21503 } 21504 21505 if (!kptr_struct_meta) { 21506 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 21507 insn_idx); 21508 return -EFAULT; 21509 } 21510 21511 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 21512 node_offset_reg, insn, insn_buf, cnt); 21513 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 21514 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 21515 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 21516 *cnt = 1; 21517 } 21518 21519 if (env->insn_aux_data[insn_idx].arg_prog) { 21520 u32 regno = env->insn_aux_data[insn_idx].arg_prog; 21521 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(regno, (long)env->prog->aux) }; 21522 int idx = *cnt; 21523 21524 insn_buf[idx++] = ld_addrs[0]; 21525 insn_buf[idx++] = ld_addrs[1]; 21526 insn_buf[idx++] = *insn; 21527 *cnt = idx; 21528 } 21529 return 0; 21530 } 21531 21532 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 21533 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 21534 { 21535 struct bpf_subprog_info *info = env->subprog_info; 21536 int cnt = env->subprog_cnt; 21537 struct bpf_prog *prog; 21538 21539 /* We only reserve one slot for hidden subprogs in subprog_info. */ 21540 if (env->hidden_subprog_cnt) { 21541 verbose(env, "verifier internal error: only one hidden subprog supported\n"); 21542 return -EFAULT; 21543 } 21544 /* We're not patching any existing instruction, just appending the new 21545 * ones for the hidden subprog. Hence all of the adjustment operations 21546 * in bpf_patch_insn_data are no-ops. 21547 */ 21548 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 21549 if (!prog) 21550 return -ENOMEM; 21551 env->prog = prog; 21552 info[cnt + 1].start = info[cnt].start; 21553 info[cnt].start = prog->len - len + 1; 21554 env->subprog_cnt++; 21555 env->hidden_subprog_cnt++; 21556 return 0; 21557 } 21558 21559 /* Do various post-verification rewrites in a single program pass. 21560 * These rewrites simplify JIT and interpreter implementations. 21561 */ 21562 static int do_misc_fixups(struct bpf_verifier_env *env) 21563 { 21564 struct bpf_prog *prog = env->prog; 21565 enum bpf_attach_type eatype = prog->expected_attach_type; 21566 enum bpf_prog_type prog_type = resolve_prog_type(prog); 21567 struct bpf_insn *insn = prog->insnsi; 21568 const struct bpf_func_proto *fn; 21569 const int insn_cnt = prog->len; 21570 const struct bpf_map_ops *ops; 21571 struct bpf_insn_aux_data *aux; 21572 struct bpf_insn *insn_buf = env->insn_buf; 21573 struct bpf_prog *new_prog; 21574 struct bpf_map *map_ptr; 21575 int i, ret, cnt, delta = 0, cur_subprog = 0; 21576 struct bpf_subprog_info *subprogs = env->subprog_info; 21577 u16 stack_depth = subprogs[cur_subprog].stack_depth; 21578 u16 stack_depth_extra = 0; 21579 21580 if (env->seen_exception && !env->exception_callback_subprog) { 21581 struct bpf_insn patch[] = { 21582 env->prog->insnsi[insn_cnt - 1], 21583 BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), 21584 BPF_EXIT_INSN(), 21585 }; 21586 21587 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); 21588 if (ret < 0) 21589 return ret; 21590 prog = env->prog; 21591 insn = prog->insnsi; 21592 21593 env->exception_callback_subprog = env->subprog_cnt - 1; 21594 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 21595 mark_subprog_exc_cb(env, env->exception_callback_subprog); 21596 } 21597 21598 for (i = 0; i < insn_cnt;) { 21599 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { 21600 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || 21601 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { 21602 /* convert to 32-bit mov that clears upper 32-bit */ 21603 insn->code = BPF_ALU | BPF_MOV | BPF_X; 21604 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ 21605 insn->off = 0; 21606 insn->imm = 0; 21607 } /* cast from as(0) to as(1) should be handled by JIT */ 21608 goto next_insn; 21609 } 21610 21611 if (env->insn_aux_data[i + delta].needs_zext) 21612 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ 21613 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); 21614 21615 /* Make sdiv/smod divide-by-minus-one exceptions impossible. */ 21616 if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) || 21617 insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) || 21618 insn->code == (BPF_ALU | BPF_MOD | BPF_K) || 21619 insn->code == (BPF_ALU | BPF_DIV | BPF_K)) && 21620 insn->off == 1 && insn->imm == -1) { 21621 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 21622 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 21623 struct bpf_insn *patchlet; 21624 struct bpf_insn chk_and_sdiv[] = { 21625 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21626 BPF_NEG | BPF_K, insn->dst_reg, 21627 0, 0, 0), 21628 }; 21629 struct bpf_insn chk_and_smod[] = { 21630 BPF_MOV32_IMM(insn->dst_reg, 0), 21631 }; 21632 21633 patchlet = isdiv ? chk_and_sdiv : chk_and_smod; 21634 cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod); 21635 21636 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 21637 if (!new_prog) 21638 return -ENOMEM; 21639 21640 delta += cnt - 1; 21641 env->prog = prog = new_prog; 21642 insn = new_prog->insnsi + i + delta; 21643 goto next_insn; 21644 } 21645 21646 /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */ 21647 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 21648 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 21649 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 21650 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 21651 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 21652 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 21653 bool is_sdiv = isdiv && insn->off == 1; 21654 bool is_smod = !isdiv && insn->off == 1; 21655 struct bpf_insn *patchlet; 21656 struct bpf_insn chk_and_div[] = { 21657 /* [R,W]x div 0 -> 0 */ 21658 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21659 BPF_JNE | BPF_K, insn->src_reg, 21660 0, 2, 0), 21661 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 21662 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21663 *insn, 21664 }; 21665 struct bpf_insn chk_and_mod[] = { 21666 /* [R,W]x mod 0 -> [R,W]x */ 21667 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21668 BPF_JEQ | BPF_K, insn->src_reg, 21669 0, 1 + (is64 ? 0 : 1), 0), 21670 *insn, 21671 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21672 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 21673 }; 21674 struct bpf_insn chk_and_sdiv[] = { 21675 /* [R,W]x sdiv 0 -> 0 21676 * LLONG_MIN sdiv -1 -> LLONG_MIN 21677 * INT_MIN sdiv -1 -> INT_MIN 21678 */ 21679 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), 21680 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21681 BPF_ADD | BPF_K, BPF_REG_AX, 21682 0, 0, 1), 21683 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21684 BPF_JGT | BPF_K, BPF_REG_AX, 21685 0, 4, 1), 21686 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21687 BPF_JEQ | BPF_K, BPF_REG_AX, 21688 0, 1, 0), 21689 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21690 BPF_MOV | BPF_K, insn->dst_reg, 21691 0, 0, 0), 21692 /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */ 21693 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21694 BPF_NEG | BPF_K, insn->dst_reg, 21695 0, 0, 0), 21696 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21697 *insn, 21698 }; 21699 struct bpf_insn chk_and_smod[] = { 21700 /* [R,W]x mod 0 -> [R,W]x */ 21701 /* [R,W]x mod -1 -> 0 */ 21702 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), 21703 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21704 BPF_ADD | BPF_K, BPF_REG_AX, 21705 0, 0, 1), 21706 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21707 BPF_JGT | BPF_K, BPF_REG_AX, 21708 0, 3, 1), 21709 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21710 BPF_JEQ | BPF_K, BPF_REG_AX, 21711 0, 3 + (is64 ? 0 : 1), 1), 21712 BPF_MOV32_IMM(insn->dst_reg, 0), 21713 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21714 *insn, 21715 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21716 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 21717 }; 21718 21719 if (is_sdiv) { 21720 patchlet = chk_and_sdiv; 21721 cnt = ARRAY_SIZE(chk_and_sdiv); 21722 } else if (is_smod) { 21723 patchlet = chk_and_smod; 21724 cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0); 21725 } else { 21726 patchlet = isdiv ? chk_and_div : chk_and_mod; 21727 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 21728 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 21729 } 21730 21731 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 21732 if (!new_prog) 21733 return -ENOMEM; 21734 21735 delta += cnt - 1; 21736 env->prog = prog = new_prog; 21737 insn = new_prog->insnsi + i + delta; 21738 goto next_insn; 21739 } 21740 21741 /* Make it impossible to de-reference a userspace address */ 21742 if (BPF_CLASS(insn->code) == BPF_LDX && 21743 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 21744 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { 21745 struct bpf_insn *patch = &insn_buf[0]; 21746 u64 uaddress_limit = bpf_arch_uaddress_limit(); 21747 21748 if (!uaddress_limit) 21749 goto next_insn; 21750 21751 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 21752 if (insn->off) 21753 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); 21754 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); 21755 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); 21756 *patch++ = *insn; 21757 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 21758 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); 21759 21760 cnt = patch - insn_buf; 21761 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21762 if (!new_prog) 21763 return -ENOMEM; 21764 21765 delta += cnt - 1; 21766 env->prog = prog = new_prog; 21767 insn = new_prog->insnsi + i + delta; 21768 goto next_insn; 21769 } 21770 21771 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 21772 if (BPF_CLASS(insn->code) == BPF_LD && 21773 (BPF_MODE(insn->code) == BPF_ABS || 21774 BPF_MODE(insn->code) == BPF_IND)) { 21775 cnt = env->ops->gen_ld_abs(insn, insn_buf); 21776 if (cnt == 0 || cnt >= INSN_BUF_SIZE) { 21777 verbose(env, "bpf verifier is misconfigured\n"); 21778 return -EINVAL; 21779 } 21780 21781 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21782 if (!new_prog) 21783 return -ENOMEM; 21784 21785 delta += cnt - 1; 21786 env->prog = prog = new_prog; 21787 insn = new_prog->insnsi + i + delta; 21788 goto next_insn; 21789 } 21790 21791 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 21792 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 21793 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 21794 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 21795 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 21796 struct bpf_insn *patch = &insn_buf[0]; 21797 bool issrc, isneg, isimm; 21798 u32 off_reg; 21799 21800 aux = &env->insn_aux_data[i + delta]; 21801 if (!aux->alu_state || 21802 aux->alu_state == BPF_ALU_NON_POINTER) 21803 goto next_insn; 21804 21805 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 21806 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 21807 BPF_ALU_SANITIZE_SRC; 21808 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 21809 21810 off_reg = issrc ? insn->src_reg : insn->dst_reg; 21811 if (isimm) { 21812 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 21813 } else { 21814 if (isneg) 21815 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 21816 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 21817 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 21818 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 21819 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 21820 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 21821 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 21822 } 21823 if (!issrc) 21824 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 21825 insn->src_reg = BPF_REG_AX; 21826 if (isneg) 21827 insn->code = insn->code == code_add ? 21828 code_sub : code_add; 21829 *patch++ = *insn; 21830 if (issrc && isneg && !isimm) 21831 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 21832 cnt = patch - insn_buf; 21833 21834 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21835 if (!new_prog) 21836 return -ENOMEM; 21837 21838 delta += cnt - 1; 21839 env->prog = prog = new_prog; 21840 insn = new_prog->insnsi + i + delta; 21841 goto next_insn; 21842 } 21843 21844 if (is_may_goto_insn(insn) && bpf_jit_supports_timed_may_goto()) { 21845 int stack_off_cnt = -stack_depth - 16; 21846 21847 /* 21848 * Two 8 byte slots, depth-16 stores the count, and 21849 * depth-8 stores the start timestamp of the loop. 21850 * 21851 * The starting value of count is BPF_MAX_TIMED_LOOPS 21852 * (0xffff). Every iteration loads it and subs it by 1, 21853 * until the value becomes 0 in AX (thus, 1 in stack), 21854 * after which we call arch_bpf_timed_may_goto, which 21855 * either sets AX to 0xffff to keep looping, or to 0 21856 * upon timeout. AX is then stored into the stack. In 21857 * the next iteration, we either see 0 and break out, or 21858 * continue iterating until the next time value is 0 21859 * after subtraction, rinse and repeat. 21860 */ 21861 stack_depth_extra = 16; 21862 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off_cnt); 21863 if (insn->off >= 0) 21864 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 5); 21865 else 21866 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 21867 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 21868 insn_buf[3] = BPF_JMP_IMM(BPF_JNE, BPF_REG_AX, 0, 2); 21869 /* 21870 * AX is used as an argument to pass in stack_off_cnt 21871 * (to add to r10/fp), and also as the return value of 21872 * the call to arch_bpf_timed_may_goto. 21873 */ 21874 insn_buf[4] = BPF_MOV64_IMM(BPF_REG_AX, stack_off_cnt); 21875 insn_buf[5] = BPF_EMIT_CALL(arch_bpf_timed_may_goto); 21876 insn_buf[6] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off_cnt); 21877 cnt = 7; 21878 21879 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21880 if (!new_prog) 21881 return -ENOMEM; 21882 21883 delta += cnt - 1; 21884 env->prog = prog = new_prog; 21885 insn = new_prog->insnsi + i + delta; 21886 goto next_insn; 21887 } else if (is_may_goto_insn(insn)) { 21888 int stack_off = -stack_depth - 8; 21889 21890 stack_depth_extra = 8; 21891 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); 21892 if (insn->off >= 0) 21893 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); 21894 else 21895 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 21896 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 21897 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); 21898 cnt = 4; 21899 21900 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21901 if (!new_prog) 21902 return -ENOMEM; 21903 21904 delta += cnt - 1; 21905 env->prog = prog = new_prog; 21906 insn = new_prog->insnsi + i + delta; 21907 goto next_insn; 21908 } 21909 21910 if (insn->code != (BPF_JMP | BPF_CALL)) 21911 goto next_insn; 21912 if (insn->src_reg == BPF_PSEUDO_CALL) 21913 goto next_insn; 21914 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 21915 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 21916 if (ret) 21917 return ret; 21918 if (cnt == 0) 21919 goto next_insn; 21920 21921 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21922 if (!new_prog) 21923 return -ENOMEM; 21924 21925 delta += cnt - 1; 21926 env->prog = prog = new_prog; 21927 insn = new_prog->insnsi + i + delta; 21928 goto next_insn; 21929 } 21930 21931 /* Skip inlining the helper call if the JIT does it. */ 21932 if (bpf_jit_inlines_helper_call(insn->imm)) 21933 goto next_insn; 21934 21935 if (insn->imm == BPF_FUNC_get_route_realm) 21936 prog->dst_needed = 1; 21937 if (insn->imm == BPF_FUNC_get_prandom_u32) 21938 bpf_user_rnd_init_once(); 21939 if (insn->imm == BPF_FUNC_override_return) 21940 prog->kprobe_override = 1; 21941 if (insn->imm == BPF_FUNC_tail_call) { 21942 /* If we tail call into other programs, we 21943 * cannot make any assumptions since they can 21944 * be replaced dynamically during runtime in 21945 * the program array. 21946 */ 21947 prog->cb_access = 1; 21948 if (!allow_tail_call_in_subprogs(env)) 21949 prog->aux->stack_depth = MAX_BPF_STACK; 21950 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 21951 21952 /* mark bpf_tail_call as different opcode to avoid 21953 * conditional branch in the interpreter for every normal 21954 * call and to prevent accidental JITing by JIT compiler 21955 * that doesn't support bpf_tail_call yet 21956 */ 21957 insn->imm = 0; 21958 insn->code = BPF_JMP | BPF_TAIL_CALL; 21959 21960 aux = &env->insn_aux_data[i + delta]; 21961 if (env->bpf_capable && !prog->blinding_requested && 21962 prog->jit_requested && 21963 !bpf_map_key_poisoned(aux) && 21964 !bpf_map_ptr_poisoned(aux) && 21965 !bpf_map_ptr_unpriv(aux)) { 21966 struct bpf_jit_poke_descriptor desc = { 21967 .reason = BPF_POKE_REASON_TAIL_CALL, 21968 .tail_call.map = aux->map_ptr_state.map_ptr, 21969 .tail_call.key = bpf_map_key_immediate(aux), 21970 .insn_idx = i + delta, 21971 }; 21972 21973 ret = bpf_jit_add_poke_descriptor(prog, &desc); 21974 if (ret < 0) { 21975 verbose(env, "adding tail call poke descriptor failed\n"); 21976 return ret; 21977 } 21978 21979 insn->imm = ret + 1; 21980 goto next_insn; 21981 } 21982 21983 if (!bpf_map_ptr_unpriv(aux)) 21984 goto next_insn; 21985 21986 /* instead of changing every JIT dealing with tail_call 21987 * emit two extra insns: 21988 * if (index >= max_entries) goto out; 21989 * index &= array->index_mask; 21990 * to avoid out-of-bounds cpu speculation 21991 */ 21992 if (bpf_map_ptr_poisoned(aux)) { 21993 verbose(env, "tail_call abusing map_ptr\n"); 21994 return -EINVAL; 21995 } 21996 21997 map_ptr = aux->map_ptr_state.map_ptr; 21998 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 21999 map_ptr->max_entries, 2); 22000 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 22001 container_of(map_ptr, 22002 struct bpf_array, 22003 map)->index_mask); 22004 insn_buf[2] = *insn; 22005 cnt = 3; 22006 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22007 if (!new_prog) 22008 return -ENOMEM; 22009 22010 delta += cnt - 1; 22011 env->prog = prog = new_prog; 22012 insn = new_prog->insnsi + i + delta; 22013 goto next_insn; 22014 } 22015 22016 if (insn->imm == BPF_FUNC_timer_set_callback) { 22017 /* The verifier will process callback_fn as many times as necessary 22018 * with different maps and the register states prepared by 22019 * set_timer_callback_state will be accurate. 22020 * 22021 * The following use case is valid: 22022 * map1 is shared by prog1, prog2, prog3. 22023 * prog1 calls bpf_timer_init for some map1 elements 22024 * prog2 calls bpf_timer_set_callback for some map1 elements. 22025 * Those that were not bpf_timer_init-ed will return -EINVAL. 22026 * prog3 calls bpf_timer_start for some map1 elements. 22027 * Those that were not both bpf_timer_init-ed and 22028 * bpf_timer_set_callback-ed will return -EINVAL. 22029 */ 22030 struct bpf_insn ld_addrs[2] = { 22031 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 22032 }; 22033 22034 insn_buf[0] = ld_addrs[0]; 22035 insn_buf[1] = ld_addrs[1]; 22036 insn_buf[2] = *insn; 22037 cnt = 3; 22038 22039 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22040 if (!new_prog) 22041 return -ENOMEM; 22042 22043 delta += cnt - 1; 22044 env->prog = prog = new_prog; 22045 insn = new_prog->insnsi + i + delta; 22046 goto patch_call_imm; 22047 } 22048 22049 if (is_storage_get_function(insn->imm)) { 22050 if (!in_sleepable(env) || 22051 env->insn_aux_data[i + delta].storage_get_func_atomic) 22052 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 22053 else 22054 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 22055 insn_buf[1] = *insn; 22056 cnt = 2; 22057 22058 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22059 if (!new_prog) 22060 return -ENOMEM; 22061 22062 delta += cnt - 1; 22063 env->prog = prog = new_prog; 22064 insn = new_prog->insnsi + i + delta; 22065 goto patch_call_imm; 22066 } 22067 22068 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 22069 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 22070 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 22071 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 22072 */ 22073 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 22074 insn_buf[1] = *insn; 22075 cnt = 2; 22076 22077 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22078 if (!new_prog) 22079 return -ENOMEM; 22080 22081 delta += cnt - 1; 22082 env->prog = prog = new_prog; 22083 insn = new_prog->insnsi + i + delta; 22084 goto patch_call_imm; 22085 } 22086 22087 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 22088 * and other inlining handlers are currently limited to 64 bit 22089 * only. 22090 */ 22091 if (prog->jit_requested && BITS_PER_LONG == 64 && 22092 (insn->imm == BPF_FUNC_map_lookup_elem || 22093 insn->imm == BPF_FUNC_map_update_elem || 22094 insn->imm == BPF_FUNC_map_delete_elem || 22095 insn->imm == BPF_FUNC_map_push_elem || 22096 insn->imm == BPF_FUNC_map_pop_elem || 22097 insn->imm == BPF_FUNC_map_peek_elem || 22098 insn->imm == BPF_FUNC_redirect_map || 22099 insn->imm == BPF_FUNC_for_each_map_elem || 22100 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 22101 aux = &env->insn_aux_data[i + delta]; 22102 if (bpf_map_ptr_poisoned(aux)) 22103 goto patch_call_imm; 22104 22105 map_ptr = aux->map_ptr_state.map_ptr; 22106 ops = map_ptr->ops; 22107 if (insn->imm == BPF_FUNC_map_lookup_elem && 22108 ops->map_gen_lookup) { 22109 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 22110 if (cnt == -EOPNOTSUPP) 22111 goto patch_map_ops_generic; 22112 if (cnt <= 0 || cnt >= INSN_BUF_SIZE) { 22113 verbose(env, "bpf verifier is misconfigured\n"); 22114 return -EINVAL; 22115 } 22116 22117 new_prog = bpf_patch_insn_data(env, i + delta, 22118 insn_buf, cnt); 22119 if (!new_prog) 22120 return -ENOMEM; 22121 22122 delta += cnt - 1; 22123 env->prog = prog = new_prog; 22124 insn = new_prog->insnsi + i + delta; 22125 goto next_insn; 22126 } 22127 22128 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 22129 (void *(*)(struct bpf_map *map, void *key))NULL)); 22130 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 22131 (long (*)(struct bpf_map *map, void *key))NULL)); 22132 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 22133 (long (*)(struct bpf_map *map, void *key, void *value, 22134 u64 flags))NULL)); 22135 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 22136 (long (*)(struct bpf_map *map, void *value, 22137 u64 flags))NULL)); 22138 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 22139 (long (*)(struct bpf_map *map, void *value))NULL)); 22140 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 22141 (long (*)(struct bpf_map *map, void *value))NULL)); 22142 BUILD_BUG_ON(!__same_type(ops->map_redirect, 22143 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 22144 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 22145 (long (*)(struct bpf_map *map, 22146 bpf_callback_t callback_fn, 22147 void *callback_ctx, 22148 u64 flags))NULL)); 22149 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 22150 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 22151 22152 patch_map_ops_generic: 22153 switch (insn->imm) { 22154 case BPF_FUNC_map_lookup_elem: 22155 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 22156 goto next_insn; 22157 case BPF_FUNC_map_update_elem: 22158 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 22159 goto next_insn; 22160 case BPF_FUNC_map_delete_elem: 22161 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 22162 goto next_insn; 22163 case BPF_FUNC_map_push_elem: 22164 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 22165 goto next_insn; 22166 case BPF_FUNC_map_pop_elem: 22167 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 22168 goto next_insn; 22169 case BPF_FUNC_map_peek_elem: 22170 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 22171 goto next_insn; 22172 case BPF_FUNC_redirect_map: 22173 insn->imm = BPF_CALL_IMM(ops->map_redirect); 22174 goto next_insn; 22175 case BPF_FUNC_for_each_map_elem: 22176 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 22177 goto next_insn; 22178 case BPF_FUNC_map_lookup_percpu_elem: 22179 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 22180 goto next_insn; 22181 } 22182 22183 goto patch_call_imm; 22184 } 22185 22186 /* Implement bpf_jiffies64 inline. */ 22187 if (prog->jit_requested && BITS_PER_LONG == 64 && 22188 insn->imm == BPF_FUNC_jiffies64) { 22189 struct bpf_insn ld_jiffies_addr[2] = { 22190 BPF_LD_IMM64(BPF_REG_0, 22191 (unsigned long)&jiffies), 22192 }; 22193 22194 insn_buf[0] = ld_jiffies_addr[0]; 22195 insn_buf[1] = ld_jiffies_addr[1]; 22196 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 22197 BPF_REG_0, 0); 22198 cnt = 3; 22199 22200 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 22201 cnt); 22202 if (!new_prog) 22203 return -ENOMEM; 22204 22205 delta += cnt - 1; 22206 env->prog = prog = new_prog; 22207 insn = new_prog->insnsi + i + delta; 22208 goto next_insn; 22209 } 22210 22211 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) 22212 /* Implement bpf_get_smp_processor_id() inline. */ 22213 if (insn->imm == BPF_FUNC_get_smp_processor_id && 22214 verifier_inlines_helper_call(env, insn->imm)) { 22215 /* BPF_FUNC_get_smp_processor_id inlining is an 22216 * optimization, so if cpu_number is ever 22217 * changed in some incompatible and hard to support 22218 * way, it's fine to back out this inlining logic 22219 */ 22220 #ifdef CONFIG_SMP 22221 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, (u32)(unsigned long)&cpu_number); 22222 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 22223 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); 22224 cnt = 3; 22225 #else 22226 insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0); 22227 cnt = 1; 22228 #endif 22229 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22230 if (!new_prog) 22231 return -ENOMEM; 22232 22233 delta += cnt - 1; 22234 env->prog = prog = new_prog; 22235 insn = new_prog->insnsi + i + delta; 22236 goto next_insn; 22237 } 22238 #endif 22239 /* Implement bpf_get_func_arg inline. */ 22240 if (prog_type == BPF_PROG_TYPE_TRACING && 22241 insn->imm == BPF_FUNC_get_func_arg) { 22242 /* Load nr_args from ctx - 8 */ 22243 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 22244 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 22245 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 22246 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 22247 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 22248 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 22249 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 22250 insn_buf[7] = BPF_JMP_A(1); 22251 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 22252 cnt = 9; 22253 22254 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22255 if (!new_prog) 22256 return -ENOMEM; 22257 22258 delta += cnt - 1; 22259 env->prog = prog = new_prog; 22260 insn = new_prog->insnsi + i + delta; 22261 goto next_insn; 22262 } 22263 22264 /* Implement bpf_get_func_ret inline. */ 22265 if (prog_type == BPF_PROG_TYPE_TRACING && 22266 insn->imm == BPF_FUNC_get_func_ret) { 22267 if (eatype == BPF_TRACE_FEXIT || 22268 eatype == BPF_MODIFY_RETURN) { 22269 /* Load nr_args from ctx - 8 */ 22270 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 22271 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 22272 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 22273 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 22274 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 22275 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 22276 cnt = 6; 22277 } else { 22278 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 22279 cnt = 1; 22280 } 22281 22282 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22283 if (!new_prog) 22284 return -ENOMEM; 22285 22286 delta += cnt - 1; 22287 env->prog = prog = new_prog; 22288 insn = new_prog->insnsi + i + delta; 22289 goto next_insn; 22290 } 22291 22292 /* Implement get_func_arg_cnt inline. */ 22293 if (prog_type == BPF_PROG_TYPE_TRACING && 22294 insn->imm == BPF_FUNC_get_func_arg_cnt) { 22295 /* Load nr_args from ctx - 8 */ 22296 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 22297 22298 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 22299 if (!new_prog) 22300 return -ENOMEM; 22301 22302 env->prog = prog = new_prog; 22303 insn = new_prog->insnsi + i + delta; 22304 goto next_insn; 22305 } 22306 22307 /* Implement bpf_get_func_ip inline. */ 22308 if (prog_type == BPF_PROG_TYPE_TRACING && 22309 insn->imm == BPF_FUNC_get_func_ip) { 22310 /* Load IP address from ctx - 16 */ 22311 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 22312 22313 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 22314 if (!new_prog) 22315 return -ENOMEM; 22316 22317 env->prog = prog = new_prog; 22318 insn = new_prog->insnsi + i + delta; 22319 goto next_insn; 22320 } 22321 22322 /* Implement bpf_get_branch_snapshot inline. */ 22323 if (IS_ENABLED(CONFIG_PERF_EVENTS) && 22324 prog->jit_requested && BITS_PER_LONG == 64 && 22325 insn->imm == BPF_FUNC_get_branch_snapshot) { 22326 /* We are dealing with the following func protos: 22327 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); 22328 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); 22329 */ 22330 const u32 br_entry_size = sizeof(struct perf_branch_entry); 22331 22332 /* struct perf_branch_entry is part of UAPI and is 22333 * used as an array element, so extremely unlikely to 22334 * ever grow or shrink 22335 */ 22336 BUILD_BUG_ON(br_entry_size != 24); 22337 22338 /* if (unlikely(flags)) return -EINVAL */ 22339 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); 22340 22341 /* Transform size (bytes) into number of entries (cnt = size / 24). 22342 * But to avoid expensive division instruction, we implement 22343 * divide-by-3 through multiplication, followed by further 22344 * division by 8 through 3-bit right shift. 22345 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., 22346 * p. 227, chapter "Unsigned Division by 3" for details and proofs. 22347 * 22348 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. 22349 */ 22350 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); 22351 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); 22352 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); 22353 22354 /* call perf_snapshot_branch_stack implementation */ 22355 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); 22356 /* if (entry_cnt == 0) return -ENOENT */ 22357 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); 22358 /* return entry_cnt * sizeof(struct perf_branch_entry) */ 22359 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); 22360 insn_buf[7] = BPF_JMP_A(3); 22361 /* return -EINVAL; */ 22362 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 22363 insn_buf[9] = BPF_JMP_A(1); 22364 /* return -ENOENT; */ 22365 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); 22366 cnt = 11; 22367 22368 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22369 if (!new_prog) 22370 return -ENOMEM; 22371 22372 delta += cnt - 1; 22373 env->prog = prog = new_prog; 22374 insn = new_prog->insnsi + i + delta; 22375 goto next_insn; 22376 } 22377 22378 /* Implement bpf_kptr_xchg inline */ 22379 if (prog->jit_requested && BITS_PER_LONG == 64 && 22380 insn->imm == BPF_FUNC_kptr_xchg && 22381 bpf_jit_supports_ptr_xchg()) { 22382 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); 22383 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); 22384 cnt = 2; 22385 22386 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22387 if (!new_prog) 22388 return -ENOMEM; 22389 22390 delta += cnt - 1; 22391 env->prog = prog = new_prog; 22392 insn = new_prog->insnsi + i + delta; 22393 goto next_insn; 22394 } 22395 patch_call_imm: 22396 fn = env->ops->get_func_proto(insn->imm, env->prog); 22397 /* all functions that have prototype and verifier allowed 22398 * programs to call them, must be real in-kernel functions 22399 */ 22400 if (!fn->func) { 22401 verbose(env, 22402 "kernel subsystem misconfigured func %s#%d\n", 22403 func_id_name(insn->imm), insn->imm); 22404 return -EFAULT; 22405 } 22406 insn->imm = fn->func - __bpf_call_base; 22407 next_insn: 22408 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 22409 subprogs[cur_subprog].stack_depth += stack_depth_extra; 22410 subprogs[cur_subprog].stack_extra = stack_depth_extra; 22411 22412 stack_depth = subprogs[cur_subprog].stack_depth; 22413 if (stack_depth > MAX_BPF_STACK && !prog->jit_requested) { 22414 verbose(env, "stack size %d(extra %d) is too large\n", 22415 stack_depth, stack_depth_extra); 22416 return -EINVAL; 22417 } 22418 cur_subprog++; 22419 stack_depth = subprogs[cur_subprog].stack_depth; 22420 stack_depth_extra = 0; 22421 } 22422 i++; 22423 insn++; 22424 } 22425 22426 env->prog->aux->stack_depth = subprogs[0].stack_depth; 22427 for (i = 0; i < env->subprog_cnt; i++) { 22428 int delta = bpf_jit_supports_timed_may_goto() ? 2 : 1; 22429 int subprog_start = subprogs[i].start; 22430 int stack_slots = subprogs[i].stack_extra / 8; 22431 int slots = delta, cnt = 0; 22432 22433 if (!stack_slots) 22434 continue; 22435 /* We need two slots in case timed may_goto is supported. */ 22436 if (stack_slots > slots) { 22437 verifier_bug(env, "stack_slots supports may_goto only"); 22438 return -EFAULT; 22439 } 22440 22441 stack_depth = subprogs[i].stack_depth; 22442 if (bpf_jit_supports_timed_may_goto()) { 22443 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth, 22444 BPF_MAX_TIMED_LOOPS); 22445 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth + 8, 0); 22446 } else { 22447 /* Add ST insn to subprog prologue to init extra stack */ 22448 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth, 22449 BPF_MAX_LOOPS); 22450 } 22451 /* Copy first actual insn to preserve it */ 22452 insn_buf[cnt++] = env->prog->insnsi[subprog_start]; 22453 22454 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, cnt); 22455 if (!new_prog) 22456 return -ENOMEM; 22457 env->prog = prog = new_prog; 22458 /* 22459 * If may_goto is a first insn of a prog there could be a jmp 22460 * insn that points to it, hence adjust all such jmps to point 22461 * to insn after BPF_ST that inits may_goto count. 22462 * Adjustment will succeed because bpf_patch_insn_data() didn't fail. 22463 */ 22464 WARN_ON(adjust_jmp_off(env->prog, subprog_start, delta)); 22465 } 22466 22467 /* Since poke tab is now finalized, publish aux to tracker. */ 22468 for (i = 0; i < prog->aux->size_poke_tab; i++) { 22469 map_ptr = prog->aux->poke_tab[i].tail_call.map; 22470 if (!map_ptr->ops->map_poke_track || 22471 !map_ptr->ops->map_poke_untrack || 22472 !map_ptr->ops->map_poke_run) { 22473 verbose(env, "bpf verifier is misconfigured\n"); 22474 return -EINVAL; 22475 } 22476 22477 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 22478 if (ret < 0) { 22479 verbose(env, "tracking tail call prog failed\n"); 22480 return ret; 22481 } 22482 } 22483 22484 sort_kfunc_descs_by_imm_off(env->prog); 22485 22486 return 0; 22487 } 22488 22489 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 22490 int position, 22491 s32 stack_base, 22492 u32 callback_subprogno, 22493 u32 *total_cnt) 22494 { 22495 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 22496 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 22497 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 22498 int reg_loop_max = BPF_REG_6; 22499 int reg_loop_cnt = BPF_REG_7; 22500 int reg_loop_ctx = BPF_REG_8; 22501 22502 struct bpf_insn *insn_buf = env->insn_buf; 22503 struct bpf_prog *new_prog; 22504 u32 callback_start; 22505 u32 call_insn_offset; 22506 s32 callback_offset; 22507 u32 cnt = 0; 22508 22509 /* This represents an inlined version of bpf_iter.c:bpf_loop, 22510 * be careful to modify this code in sync. 22511 */ 22512 22513 /* Return error and jump to the end of the patch if 22514 * expected number of iterations is too big. 22515 */ 22516 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2); 22517 insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG); 22518 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16); 22519 /* spill R6, R7, R8 to use these as loop vars */ 22520 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset); 22521 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset); 22522 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset); 22523 /* initialize loop vars */ 22524 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1); 22525 insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0); 22526 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3); 22527 /* loop header, 22528 * if reg_loop_cnt >= reg_loop_max skip the loop body 22529 */ 22530 insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5); 22531 /* callback call, 22532 * correct callback offset would be set after patching 22533 */ 22534 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt); 22535 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx); 22536 insn_buf[cnt++] = BPF_CALL_REL(0); 22537 /* increment loop counter */ 22538 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1); 22539 /* jump to loop header if callback returned 0 */ 22540 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6); 22541 /* return value of bpf_loop, 22542 * set R0 to the number of iterations 22543 */ 22544 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt); 22545 /* restore original values of R6, R7, R8 */ 22546 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset); 22547 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset); 22548 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset); 22549 22550 *total_cnt = cnt; 22551 new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt); 22552 if (!new_prog) 22553 return new_prog; 22554 22555 /* callback start is known only after patching */ 22556 callback_start = env->subprog_info[callback_subprogno].start; 22557 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 22558 call_insn_offset = position + 12; 22559 callback_offset = callback_start - call_insn_offset - 1; 22560 new_prog->insnsi[call_insn_offset].imm = callback_offset; 22561 22562 return new_prog; 22563 } 22564 22565 static bool is_bpf_loop_call(struct bpf_insn *insn) 22566 { 22567 return insn->code == (BPF_JMP | BPF_CALL) && 22568 insn->src_reg == 0 && 22569 insn->imm == BPF_FUNC_loop; 22570 } 22571 22572 /* For all sub-programs in the program (including main) check 22573 * insn_aux_data to see if there are bpf_loop calls that require 22574 * inlining. If such calls are found the calls are replaced with a 22575 * sequence of instructions produced by `inline_bpf_loop` function and 22576 * subprog stack_depth is increased by the size of 3 registers. 22577 * This stack space is used to spill values of the R6, R7, R8. These 22578 * registers are used to store the loop bound, counter and context 22579 * variables. 22580 */ 22581 static int optimize_bpf_loop(struct bpf_verifier_env *env) 22582 { 22583 struct bpf_subprog_info *subprogs = env->subprog_info; 22584 int i, cur_subprog = 0, cnt, delta = 0; 22585 struct bpf_insn *insn = env->prog->insnsi; 22586 int insn_cnt = env->prog->len; 22587 u16 stack_depth = subprogs[cur_subprog].stack_depth; 22588 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 22589 u16 stack_depth_extra = 0; 22590 22591 for (i = 0; i < insn_cnt; i++, insn++) { 22592 struct bpf_loop_inline_state *inline_state = 22593 &env->insn_aux_data[i + delta].loop_inline_state; 22594 22595 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 22596 struct bpf_prog *new_prog; 22597 22598 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 22599 new_prog = inline_bpf_loop(env, 22600 i + delta, 22601 -(stack_depth + stack_depth_extra), 22602 inline_state->callback_subprogno, 22603 &cnt); 22604 if (!new_prog) 22605 return -ENOMEM; 22606 22607 delta += cnt - 1; 22608 env->prog = new_prog; 22609 insn = new_prog->insnsi + i + delta; 22610 } 22611 22612 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 22613 subprogs[cur_subprog].stack_depth += stack_depth_extra; 22614 cur_subprog++; 22615 stack_depth = subprogs[cur_subprog].stack_depth; 22616 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 22617 stack_depth_extra = 0; 22618 } 22619 } 22620 22621 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 22622 22623 return 0; 22624 } 22625 22626 /* Remove unnecessary spill/fill pairs, members of fastcall pattern, 22627 * adjust subprograms stack depth when possible. 22628 */ 22629 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env) 22630 { 22631 struct bpf_subprog_info *subprog = env->subprog_info; 22632 struct bpf_insn_aux_data *aux = env->insn_aux_data; 22633 struct bpf_insn *insn = env->prog->insnsi; 22634 int insn_cnt = env->prog->len; 22635 u32 spills_num; 22636 bool modified = false; 22637 int i, j; 22638 22639 for (i = 0; i < insn_cnt; i++, insn++) { 22640 if (aux[i].fastcall_spills_num > 0) { 22641 spills_num = aux[i].fastcall_spills_num; 22642 /* NOPs would be removed by opt_remove_nops() */ 22643 for (j = 1; j <= spills_num; ++j) { 22644 *(insn - j) = NOP; 22645 *(insn + j) = NOP; 22646 } 22647 modified = true; 22648 } 22649 if ((subprog + 1)->start == i + 1) { 22650 if (modified && !subprog->keep_fastcall_stack) 22651 subprog->stack_depth = -subprog->fastcall_stack_off; 22652 subprog++; 22653 modified = false; 22654 } 22655 } 22656 22657 return 0; 22658 } 22659 22660 static void free_states(struct bpf_verifier_env *env) 22661 { 22662 struct bpf_verifier_state_list *sl; 22663 struct list_head *head, *pos, *tmp; 22664 int i; 22665 22666 list_for_each_safe(pos, tmp, &env->free_list) { 22667 sl = container_of(pos, struct bpf_verifier_state_list, node); 22668 free_verifier_state(&sl->state, false); 22669 kfree(sl); 22670 } 22671 INIT_LIST_HEAD(&env->free_list); 22672 22673 if (!env->explored_states) 22674 return; 22675 22676 for (i = 0; i < state_htab_size(env); i++) { 22677 head = &env->explored_states[i]; 22678 22679 list_for_each_safe(pos, tmp, head) { 22680 sl = container_of(pos, struct bpf_verifier_state_list, node); 22681 free_verifier_state(&sl->state, false); 22682 kfree(sl); 22683 } 22684 INIT_LIST_HEAD(&env->explored_states[i]); 22685 } 22686 } 22687 22688 static int do_check_common(struct bpf_verifier_env *env, int subprog) 22689 { 22690 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 22691 struct bpf_subprog_info *sub = subprog_info(env, subprog); 22692 struct bpf_prog_aux *aux = env->prog->aux; 22693 struct bpf_verifier_state *state; 22694 struct bpf_reg_state *regs; 22695 int ret, i; 22696 22697 env->prev_linfo = NULL; 22698 env->pass_cnt++; 22699 22700 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 22701 if (!state) 22702 return -ENOMEM; 22703 state->curframe = 0; 22704 state->speculative = false; 22705 state->branches = 1; 22706 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 22707 if (!state->frame[0]) { 22708 kfree(state); 22709 return -ENOMEM; 22710 } 22711 env->cur_state = state; 22712 init_func_state(env, state->frame[0], 22713 BPF_MAIN_FUNC /* callsite */, 22714 0 /* frameno */, 22715 subprog); 22716 state->first_insn_idx = env->subprog_info[subprog].start; 22717 state->last_insn_idx = -1; 22718 22719 regs = state->frame[state->curframe]->regs; 22720 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 22721 const char *sub_name = subprog_name(env, subprog); 22722 struct bpf_subprog_arg_info *arg; 22723 struct bpf_reg_state *reg; 22724 22725 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 22726 ret = btf_prepare_func_args(env, subprog); 22727 if (ret) 22728 goto out; 22729 22730 if (subprog_is_exc_cb(env, subprog)) { 22731 state->frame[0]->in_exception_callback_fn = true; 22732 /* We have already ensured that the callback returns an integer, just 22733 * like all global subprogs. We need to determine it only has a single 22734 * scalar argument. 22735 */ 22736 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 22737 verbose(env, "exception cb only supports single integer argument\n"); 22738 ret = -EINVAL; 22739 goto out; 22740 } 22741 } 22742 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 22743 arg = &sub->args[i - BPF_REG_1]; 22744 reg = ®s[i]; 22745 22746 if (arg->arg_type == ARG_PTR_TO_CTX) { 22747 reg->type = PTR_TO_CTX; 22748 mark_reg_known_zero(env, regs, i); 22749 } else if (arg->arg_type == ARG_ANYTHING) { 22750 reg->type = SCALAR_VALUE; 22751 mark_reg_unknown(env, regs, i); 22752 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 22753 /* assume unspecial LOCAL dynptr type */ 22754 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 22755 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 22756 reg->type = PTR_TO_MEM; 22757 if (arg->arg_type & PTR_MAYBE_NULL) 22758 reg->type |= PTR_MAYBE_NULL; 22759 mark_reg_known_zero(env, regs, i); 22760 reg->mem_size = arg->mem_size; 22761 reg->id = ++env->id_gen; 22762 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 22763 reg->type = PTR_TO_BTF_ID; 22764 if (arg->arg_type & PTR_MAYBE_NULL) 22765 reg->type |= PTR_MAYBE_NULL; 22766 if (arg->arg_type & PTR_UNTRUSTED) 22767 reg->type |= PTR_UNTRUSTED; 22768 if (arg->arg_type & PTR_TRUSTED) 22769 reg->type |= PTR_TRUSTED; 22770 mark_reg_known_zero(env, regs, i); 22771 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ 22772 reg->btf_id = arg->btf_id; 22773 reg->id = ++env->id_gen; 22774 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 22775 /* caller can pass either PTR_TO_ARENA or SCALAR */ 22776 mark_reg_unknown(env, regs, i); 22777 } else { 22778 WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n", 22779 i - BPF_REG_1, arg->arg_type); 22780 ret = -EFAULT; 22781 goto out; 22782 } 22783 } 22784 } else { 22785 /* if main BPF program has associated BTF info, validate that 22786 * it's matching expected signature, and otherwise mark BTF 22787 * info for main program as unreliable 22788 */ 22789 if (env->prog->aux->func_info_aux) { 22790 ret = btf_prepare_func_args(env, 0); 22791 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 22792 env->prog->aux->func_info_aux[0].unreliable = true; 22793 } 22794 22795 /* 1st arg to a function */ 22796 regs[BPF_REG_1].type = PTR_TO_CTX; 22797 mark_reg_known_zero(env, regs, BPF_REG_1); 22798 } 22799 22800 /* Acquire references for struct_ops program arguments tagged with "__ref" */ 22801 if (!subprog && env->prog->type == BPF_PROG_TYPE_STRUCT_OPS) { 22802 for (i = 0; i < aux->ctx_arg_info_size; i++) 22803 aux->ctx_arg_info[i].ref_obj_id = aux->ctx_arg_info[i].refcounted ? 22804 acquire_reference(env, 0) : 0; 22805 } 22806 22807 ret = do_check(env); 22808 out: 22809 /* check for NULL is necessary, since cur_state can be freed inside 22810 * do_check() under memory pressure. 22811 */ 22812 if (env->cur_state) { 22813 free_verifier_state(env->cur_state, true); 22814 env->cur_state = NULL; 22815 } 22816 while (!pop_stack(env, NULL, NULL, false)); 22817 if (!ret && pop_log) 22818 bpf_vlog_reset(&env->log, 0); 22819 free_states(env); 22820 return ret; 22821 } 22822 22823 /* Lazily verify all global functions based on their BTF, if they are called 22824 * from main BPF program or any of subprograms transitively. 22825 * BPF global subprogs called from dead code are not validated. 22826 * All callable global functions must pass verification. 22827 * Otherwise the whole program is rejected. 22828 * Consider: 22829 * int bar(int); 22830 * int foo(int f) 22831 * { 22832 * return bar(f); 22833 * } 22834 * int bar(int b) 22835 * { 22836 * ... 22837 * } 22838 * foo() will be verified first for R1=any_scalar_value. During verification it 22839 * will be assumed that bar() already verified successfully and call to bar() 22840 * from foo() will be checked for type match only. Later bar() will be verified 22841 * independently to check that it's safe for R1=any_scalar_value. 22842 */ 22843 static int do_check_subprogs(struct bpf_verifier_env *env) 22844 { 22845 struct bpf_prog_aux *aux = env->prog->aux; 22846 struct bpf_func_info_aux *sub_aux; 22847 int i, ret, new_cnt; 22848 22849 if (!aux->func_info) 22850 return 0; 22851 22852 /* exception callback is presumed to be always called */ 22853 if (env->exception_callback_subprog) 22854 subprog_aux(env, env->exception_callback_subprog)->called = true; 22855 22856 again: 22857 new_cnt = 0; 22858 for (i = 1; i < env->subprog_cnt; i++) { 22859 if (!subprog_is_global(env, i)) 22860 continue; 22861 22862 sub_aux = subprog_aux(env, i); 22863 if (!sub_aux->called || sub_aux->verified) 22864 continue; 22865 22866 env->insn_idx = env->subprog_info[i].start; 22867 WARN_ON_ONCE(env->insn_idx == 0); 22868 ret = do_check_common(env, i); 22869 if (ret) { 22870 return ret; 22871 } else if (env->log.level & BPF_LOG_LEVEL) { 22872 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 22873 i, subprog_name(env, i)); 22874 } 22875 22876 /* We verified new global subprog, it might have called some 22877 * more global subprogs that we haven't verified yet, so we 22878 * need to do another pass over subprogs to verify those. 22879 */ 22880 sub_aux->verified = true; 22881 new_cnt++; 22882 } 22883 22884 /* We can't loop forever as we verify at least one global subprog on 22885 * each pass. 22886 */ 22887 if (new_cnt) 22888 goto again; 22889 22890 return 0; 22891 } 22892 22893 static int do_check_main(struct bpf_verifier_env *env) 22894 { 22895 int ret; 22896 22897 env->insn_idx = 0; 22898 ret = do_check_common(env, 0); 22899 if (!ret) 22900 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 22901 return ret; 22902 } 22903 22904 22905 static void print_verification_stats(struct bpf_verifier_env *env) 22906 { 22907 int i; 22908 22909 if (env->log.level & BPF_LOG_STATS) { 22910 verbose(env, "verification time %lld usec\n", 22911 div_u64(env->verification_time, 1000)); 22912 verbose(env, "stack depth "); 22913 for (i = 0; i < env->subprog_cnt; i++) { 22914 u32 depth = env->subprog_info[i].stack_depth; 22915 22916 verbose(env, "%d", depth); 22917 if (i + 1 < env->subprog_cnt) 22918 verbose(env, "+"); 22919 } 22920 verbose(env, "\n"); 22921 } 22922 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 22923 "total_states %d peak_states %d mark_read %d\n", 22924 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 22925 env->max_states_per_insn, env->total_states, 22926 env->peak_states, env->longest_mark_read_walk); 22927 } 22928 22929 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog, 22930 const struct bpf_ctx_arg_aux *info, u32 cnt) 22931 { 22932 prog->aux->ctx_arg_info = kmemdup_array(info, cnt, sizeof(*info), GFP_KERNEL); 22933 prog->aux->ctx_arg_info_size = cnt; 22934 22935 return prog->aux->ctx_arg_info ? 0 : -ENOMEM; 22936 } 22937 22938 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 22939 { 22940 const struct btf_type *t, *func_proto; 22941 const struct bpf_struct_ops_desc *st_ops_desc; 22942 const struct bpf_struct_ops *st_ops; 22943 const struct btf_member *member; 22944 struct bpf_prog *prog = env->prog; 22945 bool has_refcounted_arg = false; 22946 u32 btf_id, member_idx, member_off; 22947 struct btf *btf; 22948 const char *mname; 22949 int i, err; 22950 22951 if (!prog->gpl_compatible) { 22952 verbose(env, "struct ops programs must have a GPL compatible license\n"); 22953 return -EINVAL; 22954 } 22955 22956 if (!prog->aux->attach_btf_id) 22957 return -ENOTSUPP; 22958 22959 btf = prog->aux->attach_btf; 22960 if (btf_is_module(btf)) { 22961 /* Make sure st_ops is valid through the lifetime of env */ 22962 env->attach_btf_mod = btf_try_get_module(btf); 22963 if (!env->attach_btf_mod) { 22964 verbose(env, "struct_ops module %s is not found\n", 22965 btf_get_name(btf)); 22966 return -ENOTSUPP; 22967 } 22968 } 22969 22970 btf_id = prog->aux->attach_btf_id; 22971 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 22972 if (!st_ops_desc) { 22973 verbose(env, "attach_btf_id %u is not a supported struct\n", 22974 btf_id); 22975 return -ENOTSUPP; 22976 } 22977 st_ops = st_ops_desc->st_ops; 22978 22979 t = st_ops_desc->type; 22980 member_idx = prog->expected_attach_type; 22981 if (member_idx >= btf_type_vlen(t)) { 22982 verbose(env, "attach to invalid member idx %u of struct %s\n", 22983 member_idx, st_ops->name); 22984 return -EINVAL; 22985 } 22986 22987 member = &btf_type_member(t)[member_idx]; 22988 mname = btf_name_by_offset(btf, member->name_off); 22989 func_proto = btf_type_resolve_func_ptr(btf, member->type, 22990 NULL); 22991 if (!func_proto) { 22992 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 22993 mname, member_idx, st_ops->name); 22994 return -EINVAL; 22995 } 22996 22997 member_off = __btf_member_bit_offset(t, member) / 8; 22998 err = bpf_struct_ops_supported(st_ops, member_off); 22999 if (err) { 23000 verbose(env, "attach to unsupported member %s of struct %s\n", 23001 mname, st_ops->name); 23002 return err; 23003 } 23004 23005 if (st_ops->check_member) { 23006 err = st_ops->check_member(t, member, prog); 23007 23008 if (err) { 23009 verbose(env, "attach to unsupported member %s of struct %s\n", 23010 mname, st_ops->name); 23011 return err; 23012 } 23013 } 23014 23015 if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) { 23016 verbose(env, "Private stack not supported by jit\n"); 23017 return -EACCES; 23018 } 23019 23020 for (i = 0; i < st_ops_desc->arg_info[member_idx].cnt; i++) { 23021 if (st_ops_desc->arg_info[member_idx].info->refcounted) { 23022 has_refcounted_arg = true; 23023 break; 23024 } 23025 } 23026 23027 /* Tail call is not allowed for programs with refcounted arguments since we 23028 * cannot guarantee that valid refcounted kptrs will be passed to the callee. 23029 */ 23030 for (i = 0; i < env->subprog_cnt; i++) { 23031 if (has_refcounted_arg && env->subprog_info[i].has_tail_call) { 23032 verbose(env, "program with __ref argument cannot tail call\n"); 23033 return -EINVAL; 23034 } 23035 } 23036 23037 prog->aux->st_ops = st_ops; 23038 prog->aux->attach_st_ops_member_off = member_off; 23039 23040 prog->aux->attach_func_proto = func_proto; 23041 prog->aux->attach_func_name = mname; 23042 env->ops = st_ops->verifier_ops; 23043 23044 return bpf_prog_ctx_arg_info_init(prog, st_ops_desc->arg_info[member_idx].info, 23045 st_ops_desc->arg_info[member_idx].cnt); 23046 } 23047 #define SECURITY_PREFIX "security_" 23048 23049 static int check_attach_modify_return(unsigned long addr, const char *func_name) 23050 { 23051 if (within_error_injection_list(addr) || 23052 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 23053 return 0; 23054 23055 return -EINVAL; 23056 } 23057 23058 /* list of non-sleepable functions that are otherwise on 23059 * ALLOW_ERROR_INJECTION list 23060 */ 23061 BTF_SET_START(btf_non_sleepable_error_inject) 23062 /* Three functions below can be called from sleepable and non-sleepable context. 23063 * Assume non-sleepable from bpf safety point of view. 23064 */ 23065 BTF_ID(func, __filemap_add_folio) 23066 #ifdef CONFIG_FAIL_PAGE_ALLOC 23067 BTF_ID(func, should_fail_alloc_page) 23068 #endif 23069 #ifdef CONFIG_FAILSLAB 23070 BTF_ID(func, should_failslab) 23071 #endif 23072 BTF_SET_END(btf_non_sleepable_error_inject) 23073 23074 static int check_non_sleepable_error_inject(u32 btf_id) 23075 { 23076 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 23077 } 23078 23079 int bpf_check_attach_target(struct bpf_verifier_log *log, 23080 const struct bpf_prog *prog, 23081 const struct bpf_prog *tgt_prog, 23082 u32 btf_id, 23083 struct bpf_attach_target_info *tgt_info) 23084 { 23085 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 23086 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; 23087 char trace_symbol[KSYM_SYMBOL_LEN]; 23088 const char prefix[] = "btf_trace_"; 23089 struct bpf_raw_event_map *btp; 23090 int ret = 0, subprog = -1, i; 23091 const struct btf_type *t; 23092 bool conservative = true; 23093 const char *tname, *fname; 23094 struct btf *btf; 23095 long addr = 0; 23096 struct module *mod = NULL; 23097 23098 if (!btf_id) { 23099 bpf_log(log, "Tracing programs must provide btf_id\n"); 23100 return -EINVAL; 23101 } 23102 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 23103 if (!btf) { 23104 bpf_log(log, 23105 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 23106 return -EINVAL; 23107 } 23108 t = btf_type_by_id(btf, btf_id); 23109 if (!t) { 23110 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 23111 return -EINVAL; 23112 } 23113 tname = btf_name_by_offset(btf, t->name_off); 23114 if (!tname) { 23115 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 23116 return -EINVAL; 23117 } 23118 if (tgt_prog) { 23119 struct bpf_prog_aux *aux = tgt_prog->aux; 23120 bool tgt_changes_pkt_data; 23121 bool tgt_might_sleep; 23122 23123 if (bpf_prog_is_dev_bound(prog->aux) && 23124 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 23125 bpf_log(log, "Target program bound device mismatch"); 23126 return -EINVAL; 23127 } 23128 23129 for (i = 0; i < aux->func_info_cnt; i++) 23130 if (aux->func_info[i].type_id == btf_id) { 23131 subprog = i; 23132 break; 23133 } 23134 if (subprog == -1) { 23135 bpf_log(log, "Subprog %s doesn't exist\n", tname); 23136 return -EINVAL; 23137 } 23138 if (aux->func && aux->func[subprog]->aux->exception_cb) { 23139 bpf_log(log, 23140 "%s programs cannot attach to exception callback\n", 23141 prog_extension ? "Extension" : "FENTRY/FEXIT"); 23142 return -EINVAL; 23143 } 23144 conservative = aux->func_info_aux[subprog].unreliable; 23145 if (prog_extension) { 23146 if (conservative) { 23147 bpf_log(log, 23148 "Cannot replace static functions\n"); 23149 return -EINVAL; 23150 } 23151 if (!prog->jit_requested) { 23152 bpf_log(log, 23153 "Extension programs should be JITed\n"); 23154 return -EINVAL; 23155 } 23156 tgt_changes_pkt_data = aux->func 23157 ? aux->func[subprog]->aux->changes_pkt_data 23158 : aux->changes_pkt_data; 23159 if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) { 23160 bpf_log(log, 23161 "Extension program changes packet data, while original does not\n"); 23162 return -EINVAL; 23163 } 23164 23165 tgt_might_sleep = aux->func 23166 ? aux->func[subprog]->aux->might_sleep 23167 : aux->might_sleep; 23168 if (prog->aux->might_sleep && !tgt_might_sleep) { 23169 bpf_log(log, 23170 "Extension program may sleep, while original does not\n"); 23171 return -EINVAL; 23172 } 23173 } 23174 if (!tgt_prog->jited) { 23175 bpf_log(log, "Can attach to only JITed progs\n"); 23176 return -EINVAL; 23177 } 23178 if (prog_tracing) { 23179 if (aux->attach_tracing_prog) { 23180 /* 23181 * Target program is an fentry/fexit which is already attached 23182 * to another tracing program. More levels of nesting 23183 * attachment are not allowed. 23184 */ 23185 bpf_log(log, "Cannot nest tracing program attach more than once\n"); 23186 return -EINVAL; 23187 } 23188 } else if (tgt_prog->type == prog->type) { 23189 /* 23190 * To avoid potential call chain cycles, prevent attaching of a 23191 * program extension to another extension. It's ok to attach 23192 * fentry/fexit to extension program. 23193 */ 23194 bpf_log(log, "Cannot recursively attach\n"); 23195 return -EINVAL; 23196 } 23197 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 23198 prog_extension && 23199 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 23200 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 23201 /* Program extensions can extend all program types 23202 * except fentry/fexit. The reason is the following. 23203 * The fentry/fexit programs are used for performance 23204 * analysis, stats and can be attached to any program 23205 * type. When extension program is replacing XDP function 23206 * it is necessary to allow performance analysis of all 23207 * functions. Both original XDP program and its program 23208 * extension. Hence attaching fentry/fexit to 23209 * BPF_PROG_TYPE_EXT is allowed. If extending of 23210 * fentry/fexit was allowed it would be possible to create 23211 * long call chain fentry->extension->fentry->extension 23212 * beyond reasonable stack size. Hence extending fentry 23213 * is not allowed. 23214 */ 23215 bpf_log(log, "Cannot extend fentry/fexit\n"); 23216 return -EINVAL; 23217 } 23218 } else { 23219 if (prog_extension) { 23220 bpf_log(log, "Cannot replace kernel functions\n"); 23221 return -EINVAL; 23222 } 23223 } 23224 23225 switch (prog->expected_attach_type) { 23226 case BPF_TRACE_RAW_TP: 23227 if (tgt_prog) { 23228 bpf_log(log, 23229 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 23230 return -EINVAL; 23231 } 23232 if (!btf_type_is_typedef(t)) { 23233 bpf_log(log, "attach_btf_id %u is not a typedef\n", 23234 btf_id); 23235 return -EINVAL; 23236 } 23237 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 23238 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 23239 btf_id, tname); 23240 return -EINVAL; 23241 } 23242 tname += sizeof(prefix) - 1; 23243 23244 /* The func_proto of "btf_trace_##tname" is generated from typedef without argument 23245 * names. Thus using bpf_raw_event_map to get argument names. 23246 */ 23247 btp = bpf_get_raw_tracepoint(tname); 23248 if (!btp) 23249 return -EINVAL; 23250 fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL, 23251 trace_symbol); 23252 bpf_put_raw_tracepoint(btp); 23253 23254 if (fname) 23255 ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC); 23256 23257 if (!fname || ret < 0) { 23258 bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n", 23259 prefix, tname); 23260 t = btf_type_by_id(btf, t->type); 23261 if (!btf_type_is_ptr(t)) 23262 /* should never happen in valid vmlinux build */ 23263 return -EINVAL; 23264 } else { 23265 t = btf_type_by_id(btf, ret); 23266 if (!btf_type_is_func(t)) 23267 /* should never happen in valid vmlinux build */ 23268 return -EINVAL; 23269 } 23270 23271 t = btf_type_by_id(btf, t->type); 23272 if (!btf_type_is_func_proto(t)) 23273 /* should never happen in valid vmlinux build */ 23274 return -EINVAL; 23275 23276 break; 23277 case BPF_TRACE_ITER: 23278 if (!btf_type_is_func(t)) { 23279 bpf_log(log, "attach_btf_id %u is not a function\n", 23280 btf_id); 23281 return -EINVAL; 23282 } 23283 t = btf_type_by_id(btf, t->type); 23284 if (!btf_type_is_func_proto(t)) 23285 return -EINVAL; 23286 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 23287 if (ret) 23288 return ret; 23289 break; 23290 default: 23291 if (!prog_extension) 23292 return -EINVAL; 23293 fallthrough; 23294 case BPF_MODIFY_RETURN: 23295 case BPF_LSM_MAC: 23296 case BPF_LSM_CGROUP: 23297 case BPF_TRACE_FENTRY: 23298 case BPF_TRACE_FEXIT: 23299 if (!btf_type_is_func(t)) { 23300 bpf_log(log, "attach_btf_id %u is not a function\n", 23301 btf_id); 23302 return -EINVAL; 23303 } 23304 if (prog_extension && 23305 btf_check_type_match(log, prog, btf, t)) 23306 return -EINVAL; 23307 t = btf_type_by_id(btf, t->type); 23308 if (!btf_type_is_func_proto(t)) 23309 return -EINVAL; 23310 23311 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 23312 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 23313 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 23314 return -EINVAL; 23315 23316 if (tgt_prog && conservative) 23317 t = NULL; 23318 23319 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 23320 if (ret < 0) 23321 return ret; 23322 23323 if (tgt_prog) { 23324 if (subprog == 0) 23325 addr = (long) tgt_prog->bpf_func; 23326 else 23327 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 23328 } else { 23329 if (btf_is_module(btf)) { 23330 mod = btf_try_get_module(btf); 23331 if (mod) 23332 addr = find_kallsyms_symbol_value(mod, tname); 23333 else 23334 addr = 0; 23335 } else { 23336 addr = kallsyms_lookup_name(tname); 23337 } 23338 if (!addr) { 23339 module_put(mod); 23340 bpf_log(log, 23341 "The address of function %s cannot be found\n", 23342 tname); 23343 return -ENOENT; 23344 } 23345 } 23346 23347 if (prog->sleepable) { 23348 ret = -EINVAL; 23349 switch (prog->type) { 23350 case BPF_PROG_TYPE_TRACING: 23351 23352 /* fentry/fexit/fmod_ret progs can be sleepable if they are 23353 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 23354 */ 23355 if (!check_non_sleepable_error_inject(btf_id) && 23356 within_error_injection_list(addr)) 23357 ret = 0; 23358 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 23359 * in the fmodret id set with the KF_SLEEPABLE flag. 23360 */ 23361 else { 23362 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 23363 prog); 23364 23365 if (flags && (*flags & KF_SLEEPABLE)) 23366 ret = 0; 23367 } 23368 break; 23369 case BPF_PROG_TYPE_LSM: 23370 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 23371 * Only some of them are sleepable. 23372 */ 23373 if (bpf_lsm_is_sleepable_hook(btf_id)) 23374 ret = 0; 23375 break; 23376 default: 23377 break; 23378 } 23379 if (ret) { 23380 module_put(mod); 23381 bpf_log(log, "%s is not sleepable\n", tname); 23382 return ret; 23383 } 23384 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 23385 if (tgt_prog) { 23386 module_put(mod); 23387 bpf_log(log, "can't modify return codes of BPF programs\n"); 23388 return -EINVAL; 23389 } 23390 ret = -EINVAL; 23391 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 23392 !check_attach_modify_return(addr, tname)) 23393 ret = 0; 23394 if (ret) { 23395 module_put(mod); 23396 bpf_log(log, "%s() is not modifiable\n", tname); 23397 return ret; 23398 } 23399 } 23400 23401 break; 23402 } 23403 tgt_info->tgt_addr = addr; 23404 tgt_info->tgt_name = tname; 23405 tgt_info->tgt_type = t; 23406 tgt_info->tgt_mod = mod; 23407 return 0; 23408 } 23409 23410 BTF_SET_START(btf_id_deny) 23411 BTF_ID_UNUSED 23412 #ifdef CONFIG_SMP 23413 BTF_ID(func, migrate_disable) 23414 BTF_ID(func, migrate_enable) 23415 #endif 23416 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 23417 BTF_ID(func, rcu_read_unlock_strict) 23418 #endif 23419 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 23420 BTF_ID(func, preempt_count_add) 23421 BTF_ID(func, preempt_count_sub) 23422 #endif 23423 #ifdef CONFIG_PREEMPT_RCU 23424 BTF_ID(func, __rcu_read_lock) 23425 BTF_ID(func, __rcu_read_unlock) 23426 #endif 23427 BTF_SET_END(btf_id_deny) 23428 23429 /* fexit and fmod_ret can't be used to attach to __noreturn functions. 23430 * Currently, we must manually list all __noreturn functions here. Once a more 23431 * robust solution is implemented, this workaround can be removed. 23432 */ 23433 BTF_SET_START(noreturn_deny) 23434 #ifdef CONFIG_IA32_EMULATION 23435 BTF_ID(func, __ia32_sys_exit) 23436 BTF_ID(func, __ia32_sys_exit_group) 23437 #endif 23438 #ifdef CONFIG_KUNIT 23439 BTF_ID(func, __kunit_abort) 23440 BTF_ID(func, kunit_try_catch_throw) 23441 #endif 23442 #ifdef CONFIG_MODULES 23443 BTF_ID(func, __module_put_and_kthread_exit) 23444 #endif 23445 #ifdef CONFIG_X86_64 23446 BTF_ID(func, __x64_sys_exit) 23447 BTF_ID(func, __x64_sys_exit_group) 23448 #endif 23449 BTF_ID(func, do_exit) 23450 BTF_ID(func, do_group_exit) 23451 BTF_ID(func, kthread_complete_and_exit) 23452 BTF_ID(func, kthread_exit) 23453 BTF_ID(func, make_task_dead) 23454 BTF_SET_END(noreturn_deny) 23455 23456 static bool can_be_sleepable(struct bpf_prog *prog) 23457 { 23458 if (prog->type == BPF_PROG_TYPE_TRACING) { 23459 switch (prog->expected_attach_type) { 23460 case BPF_TRACE_FENTRY: 23461 case BPF_TRACE_FEXIT: 23462 case BPF_MODIFY_RETURN: 23463 case BPF_TRACE_ITER: 23464 return true; 23465 default: 23466 return false; 23467 } 23468 } 23469 return prog->type == BPF_PROG_TYPE_LSM || 23470 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 23471 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 23472 } 23473 23474 static int check_attach_btf_id(struct bpf_verifier_env *env) 23475 { 23476 struct bpf_prog *prog = env->prog; 23477 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 23478 struct bpf_attach_target_info tgt_info = {}; 23479 u32 btf_id = prog->aux->attach_btf_id; 23480 struct bpf_trampoline *tr; 23481 int ret; 23482 u64 key; 23483 23484 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 23485 if (prog->sleepable) 23486 /* attach_btf_id checked to be zero already */ 23487 return 0; 23488 verbose(env, "Syscall programs can only be sleepable\n"); 23489 return -EINVAL; 23490 } 23491 23492 if (prog->sleepable && !can_be_sleepable(prog)) { 23493 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 23494 return -EINVAL; 23495 } 23496 23497 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 23498 return check_struct_ops_btf_id(env); 23499 23500 if (prog->type != BPF_PROG_TYPE_TRACING && 23501 prog->type != BPF_PROG_TYPE_LSM && 23502 prog->type != BPF_PROG_TYPE_EXT) 23503 return 0; 23504 23505 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 23506 if (ret) 23507 return ret; 23508 23509 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 23510 /* to make freplace equivalent to their targets, they need to 23511 * inherit env->ops and expected_attach_type for the rest of the 23512 * verification 23513 */ 23514 env->ops = bpf_verifier_ops[tgt_prog->type]; 23515 prog->expected_attach_type = tgt_prog->expected_attach_type; 23516 } 23517 23518 /* store info about the attachment target that will be used later */ 23519 prog->aux->attach_func_proto = tgt_info.tgt_type; 23520 prog->aux->attach_func_name = tgt_info.tgt_name; 23521 prog->aux->mod = tgt_info.tgt_mod; 23522 23523 if (tgt_prog) { 23524 prog->aux->saved_dst_prog_type = tgt_prog->type; 23525 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 23526 } 23527 23528 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 23529 prog->aux->attach_btf_trace = true; 23530 return 0; 23531 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 23532 return bpf_iter_prog_supported(prog); 23533 } 23534 23535 if (prog->type == BPF_PROG_TYPE_LSM) { 23536 ret = bpf_lsm_verify_prog(&env->log, prog); 23537 if (ret < 0) 23538 return ret; 23539 } else if (prog->type == BPF_PROG_TYPE_TRACING && 23540 btf_id_set_contains(&btf_id_deny, btf_id)) { 23541 return -EINVAL; 23542 } else if ((prog->expected_attach_type == BPF_TRACE_FEXIT || 23543 prog->expected_attach_type == BPF_MODIFY_RETURN) && 23544 btf_id_set_contains(&noreturn_deny, btf_id)) { 23545 verbose(env, "Attaching fexit/fmod_ret to __noreturn functions is rejected.\n"); 23546 return -EINVAL; 23547 } 23548 23549 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 23550 tr = bpf_trampoline_get(key, &tgt_info); 23551 if (!tr) 23552 return -ENOMEM; 23553 23554 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 23555 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 23556 23557 prog->aux->dst_trampoline = tr; 23558 return 0; 23559 } 23560 23561 struct btf *bpf_get_btf_vmlinux(void) 23562 { 23563 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 23564 mutex_lock(&bpf_verifier_lock); 23565 if (!btf_vmlinux) 23566 btf_vmlinux = btf_parse_vmlinux(); 23567 mutex_unlock(&bpf_verifier_lock); 23568 } 23569 return btf_vmlinux; 23570 } 23571 23572 /* 23573 * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In 23574 * this case expect that every file descriptor in the array is either a map or 23575 * a BTF. Everything else is considered to be trash. 23576 */ 23577 static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd) 23578 { 23579 struct bpf_map *map; 23580 struct btf *btf; 23581 CLASS(fd, f)(fd); 23582 int err; 23583 23584 map = __bpf_map_get(f); 23585 if (!IS_ERR(map)) { 23586 err = __add_used_map(env, map); 23587 if (err < 0) 23588 return err; 23589 return 0; 23590 } 23591 23592 btf = __btf_get_by_fd(f); 23593 if (!IS_ERR(btf)) { 23594 err = __add_used_btf(env, btf); 23595 if (err < 0) 23596 return err; 23597 return 0; 23598 } 23599 23600 verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd); 23601 return PTR_ERR(map); 23602 } 23603 23604 static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr) 23605 { 23606 size_t size = sizeof(int); 23607 int ret; 23608 int fd; 23609 u32 i; 23610 23611 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 23612 23613 /* 23614 * The only difference between old (no fd_array_cnt is given) and new 23615 * APIs is that in the latter case the fd_array is expected to be 23616 * continuous and is scanned for map fds right away 23617 */ 23618 if (!attr->fd_array_cnt) 23619 return 0; 23620 23621 /* Check for integer overflow */ 23622 if (attr->fd_array_cnt >= (U32_MAX / size)) { 23623 verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt); 23624 return -EINVAL; 23625 } 23626 23627 for (i = 0; i < attr->fd_array_cnt; i++) { 23628 if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size)) 23629 return -EFAULT; 23630 23631 ret = add_fd_from_fd_array(env, fd); 23632 if (ret) 23633 return ret; 23634 } 23635 23636 return 0; 23637 } 23638 23639 static bool can_fallthrough(struct bpf_insn *insn) 23640 { 23641 u8 class = BPF_CLASS(insn->code); 23642 u8 opcode = BPF_OP(insn->code); 23643 23644 if (class != BPF_JMP && class != BPF_JMP32) 23645 return true; 23646 23647 if (opcode == BPF_EXIT || opcode == BPF_JA) 23648 return false; 23649 23650 return true; 23651 } 23652 23653 static bool can_jump(struct bpf_insn *insn) 23654 { 23655 u8 class = BPF_CLASS(insn->code); 23656 u8 opcode = BPF_OP(insn->code); 23657 23658 if (class != BPF_JMP && class != BPF_JMP32) 23659 return false; 23660 23661 switch (opcode) { 23662 case BPF_JA: 23663 case BPF_JEQ: 23664 case BPF_JNE: 23665 case BPF_JLT: 23666 case BPF_JLE: 23667 case BPF_JGT: 23668 case BPF_JGE: 23669 case BPF_JSGT: 23670 case BPF_JSGE: 23671 case BPF_JSLT: 23672 case BPF_JSLE: 23673 case BPF_JCOND: 23674 return true; 23675 } 23676 23677 return false; 23678 } 23679 23680 static int insn_successors(struct bpf_prog *prog, u32 idx, u32 succ[2]) 23681 { 23682 struct bpf_insn *insn = &prog->insnsi[idx]; 23683 int i = 0, insn_sz; 23684 u32 dst; 23685 23686 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 23687 if (can_fallthrough(insn) && idx + 1 < prog->len) 23688 succ[i++] = idx + insn_sz; 23689 23690 if (can_jump(insn)) { 23691 dst = idx + jmp_offset(insn) + 1; 23692 if (i == 0 || succ[0] != dst) 23693 succ[i++] = dst; 23694 } 23695 23696 return i; 23697 } 23698 23699 /* Each field is a register bitmask */ 23700 struct insn_live_regs { 23701 u16 use; /* registers read by instruction */ 23702 u16 def; /* registers written by instruction */ 23703 u16 in; /* registers that may be alive before instruction */ 23704 u16 out; /* registers that may be alive after instruction */ 23705 }; 23706 23707 /* Bitmask with 1s for all caller saved registers */ 23708 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 23709 23710 /* Compute info->{use,def} fields for the instruction */ 23711 static void compute_insn_live_regs(struct bpf_verifier_env *env, 23712 struct bpf_insn *insn, 23713 struct insn_live_regs *info) 23714 { 23715 struct call_summary cs; 23716 u8 class = BPF_CLASS(insn->code); 23717 u8 code = BPF_OP(insn->code); 23718 u8 mode = BPF_MODE(insn->code); 23719 u16 src = BIT(insn->src_reg); 23720 u16 dst = BIT(insn->dst_reg); 23721 u16 r0 = BIT(0); 23722 u16 def = 0; 23723 u16 use = 0xffff; 23724 23725 switch (class) { 23726 case BPF_LD: 23727 switch (mode) { 23728 case BPF_IMM: 23729 if (BPF_SIZE(insn->code) == BPF_DW) { 23730 def = dst; 23731 use = 0; 23732 } 23733 break; 23734 case BPF_LD | BPF_ABS: 23735 case BPF_LD | BPF_IND: 23736 /* stick with defaults */ 23737 break; 23738 } 23739 break; 23740 case BPF_LDX: 23741 switch (mode) { 23742 case BPF_MEM: 23743 case BPF_MEMSX: 23744 def = dst; 23745 use = src; 23746 break; 23747 } 23748 break; 23749 case BPF_ST: 23750 switch (mode) { 23751 case BPF_MEM: 23752 def = 0; 23753 use = dst; 23754 break; 23755 } 23756 break; 23757 case BPF_STX: 23758 switch (mode) { 23759 case BPF_MEM: 23760 def = 0; 23761 use = dst | src; 23762 break; 23763 case BPF_ATOMIC: 23764 switch (insn->imm) { 23765 case BPF_CMPXCHG: 23766 use = r0 | dst | src; 23767 def = r0; 23768 break; 23769 case BPF_LOAD_ACQ: 23770 def = dst; 23771 use = src; 23772 break; 23773 case BPF_STORE_REL: 23774 def = 0; 23775 use = dst | src; 23776 break; 23777 default: 23778 use = dst | src; 23779 if (insn->imm & BPF_FETCH) 23780 def = src; 23781 else 23782 def = 0; 23783 } 23784 break; 23785 } 23786 break; 23787 case BPF_ALU: 23788 case BPF_ALU64: 23789 switch (code) { 23790 case BPF_END: 23791 use = dst; 23792 def = dst; 23793 break; 23794 case BPF_MOV: 23795 def = dst; 23796 if (BPF_SRC(insn->code) == BPF_K) 23797 use = 0; 23798 else 23799 use = src; 23800 break; 23801 default: 23802 def = dst; 23803 if (BPF_SRC(insn->code) == BPF_K) 23804 use = dst; 23805 else 23806 use = dst | src; 23807 } 23808 break; 23809 case BPF_JMP: 23810 case BPF_JMP32: 23811 switch (code) { 23812 case BPF_JA: 23813 case BPF_JCOND: 23814 def = 0; 23815 use = 0; 23816 break; 23817 case BPF_EXIT: 23818 def = 0; 23819 use = r0; 23820 break; 23821 case BPF_CALL: 23822 def = ALL_CALLER_SAVED_REGS; 23823 use = def & ~BIT(BPF_REG_0); 23824 if (get_call_summary(env, insn, &cs)) 23825 use = GENMASK(cs.num_params, 1); 23826 break; 23827 default: 23828 def = 0; 23829 if (BPF_SRC(insn->code) == BPF_K) 23830 use = dst; 23831 else 23832 use = dst | src; 23833 } 23834 break; 23835 } 23836 23837 info->def = def; 23838 info->use = use; 23839 } 23840 23841 /* Compute may-live registers after each instruction in the program. 23842 * The register is live after the instruction I if it is read by some 23843 * instruction S following I during program execution and is not 23844 * overwritten between I and S. 23845 * 23846 * Store result in env->insn_aux_data[i].live_regs. 23847 */ 23848 static int compute_live_registers(struct bpf_verifier_env *env) 23849 { 23850 struct bpf_insn_aux_data *insn_aux = env->insn_aux_data; 23851 struct bpf_insn *insns = env->prog->insnsi; 23852 struct insn_live_regs *state; 23853 int insn_cnt = env->prog->len; 23854 int err = 0, i, j; 23855 bool changed; 23856 23857 /* Use the following algorithm: 23858 * - define the following: 23859 * - I.use : a set of all registers read by instruction I; 23860 * - I.def : a set of all registers written by instruction I; 23861 * - I.in : a set of all registers that may be alive before I execution; 23862 * - I.out : a set of all registers that may be alive after I execution; 23863 * - insn_successors(I): a set of instructions S that might immediately 23864 * follow I for some program execution; 23865 * - associate separate empty sets 'I.in' and 'I.out' with each instruction; 23866 * - visit each instruction in a postorder and update 23867 * state[i].in, state[i].out as follows: 23868 * 23869 * state[i].out = U [state[s].in for S in insn_successors(i)] 23870 * state[i].in = (state[i].out / state[i].def) U state[i].use 23871 * 23872 * (where U stands for set union, / stands for set difference) 23873 * - repeat the computation while {in,out} fields changes for 23874 * any instruction. 23875 */ 23876 state = kvcalloc(insn_cnt, sizeof(*state), GFP_KERNEL); 23877 if (!state) { 23878 err = -ENOMEM; 23879 goto out; 23880 } 23881 23882 for (i = 0; i < insn_cnt; ++i) 23883 compute_insn_live_regs(env, &insns[i], &state[i]); 23884 23885 changed = true; 23886 while (changed) { 23887 changed = false; 23888 for (i = 0; i < env->cfg.cur_postorder; ++i) { 23889 int insn_idx = env->cfg.insn_postorder[i]; 23890 struct insn_live_regs *live = &state[insn_idx]; 23891 int succ_num; 23892 u32 succ[2]; 23893 u16 new_out = 0; 23894 u16 new_in = 0; 23895 23896 succ_num = insn_successors(env->prog, insn_idx, succ); 23897 for (int s = 0; s < succ_num; ++s) 23898 new_out |= state[succ[s]].in; 23899 new_in = (new_out & ~live->def) | live->use; 23900 if (new_out != live->out || new_in != live->in) { 23901 live->in = new_in; 23902 live->out = new_out; 23903 changed = true; 23904 } 23905 } 23906 } 23907 23908 for (i = 0; i < insn_cnt; ++i) 23909 insn_aux[i].live_regs_before = state[i].in; 23910 23911 if (env->log.level & BPF_LOG_LEVEL2) { 23912 verbose(env, "Live regs before insn:\n"); 23913 for (i = 0; i < insn_cnt; ++i) { 23914 verbose(env, "%3d: ", i); 23915 for (j = BPF_REG_0; j < BPF_REG_10; ++j) 23916 if (insn_aux[i].live_regs_before & BIT(j)) 23917 verbose(env, "%d", j); 23918 else 23919 verbose(env, "."); 23920 verbose(env, " "); 23921 verbose_insn(env, &insns[i]); 23922 if (bpf_is_ldimm64(&insns[i])) 23923 i++; 23924 } 23925 } 23926 23927 out: 23928 kvfree(state); 23929 kvfree(env->cfg.insn_postorder); 23930 env->cfg.insn_postorder = NULL; 23931 env->cfg.cur_postorder = 0; 23932 return err; 23933 } 23934 23935 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 23936 { 23937 u64 start_time = ktime_get_ns(); 23938 struct bpf_verifier_env *env; 23939 int i, len, ret = -EINVAL, err; 23940 u32 log_true_size; 23941 bool is_priv; 23942 23943 /* no program is valid */ 23944 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 23945 return -EINVAL; 23946 23947 /* 'struct bpf_verifier_env' can be global, but since it's not small, 23948 * allocate/free it every time bpf_check() is called 23949 */ 23950 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 23951 if (!env) 23952 return -ENOMEM; 23953 23954 env->bt.env = env; 23955 23956 len = (*prog)->len; 23957 env->insn_aux_data = 23958 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 23959 ret = -ENOMEM; 23960 if (!env->insn_aux_data) 23961 goto err_free_env; 23962 for (i = 0; i < len; i++) 23963 env->insn_aux_data[i].orig_idx = i; 23964 env->prog = *prog; 23965 env->ops = bpf_verifier_ops[env->prog->type]; 23966 23967 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); 23968 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); 23969 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); 23970 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); 23971 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); 23972 23973 bpf_get_btf_vmlinux(); 23974 23975 /* grab the mutex to protect few globals used by verifier */ 23976 if (!is_priv) 23977 mutex_lock(&bpf_verifier_lock); 23978 23979 /* user could have requested verbose verifier output 23980 * and supplied buffer to store the verification trace 23981 */ 23982 ret = bpf_vlog_init(&env->log, attr->log_level, 23983 (char __user *) (unsigned long) attr->log_buf, 23984 attr->log_size); 23985 if (ret) 23986 goto err_unlock; 23987 23988 ret = process_fd_array(env, attr, uattr); 23989 if (ret) 23990 goto skip_full_check; 23991 23992 mark_verifier_state_clean(env); 23993 23994 if (IS_ERR(btf_vmlinux)) { 23995 /* Either gcc or pahole or kernel are broken. */ 23996 verbose(env, "in-kernel BTF is malformed\n"); 23997 ret = PTR_ERR(btf_vmlinux); 23998 goto skip_full_check; 23999 } 24000 24001 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 24002 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 24003 env->strict_alignment = true; 24004 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 24005 env->strict_alignment = false; 24006 24007 if (is_priv) 24008 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 24009 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 24010 24011 env->explored_states = kvcalloc(state_htab_size(env), 24012 sizeof(struct list_head), 24013 GFP_USER); 24014 ret = -ENOMEM; 24015 if (!env->explored_states) 24016 goto skip_full_check; 24017 24018 for (i = 0; i < state_htab_size(env); i++) 24019 INIT_LIST_HEAD(&env->explored_states[i]); 24020 INIT_LIST_HEAD(&env->free_list); 24021 24022 ret = check_btf_info_early(env, attr, uattr); 24023 if (ret < 0) 24024 goto skip_full_check; 24025 24026 ret = add_subprog_and_kfunc(env); 24027 if (ret < 0) 24028 goto skip_full_check; 24029 24030 ret = check_subprogs(env); 24031 if (ret < 0) 24032 goto skip_full_check; 24033 24034 ret = check_btf_info(env, attr, uattr); 24035 if (ret < 0) 24036 goto skip_full_check; 24037 24038 ret = resolve_pseudo_ldimm64(env); 24039 if (ret < 0) 24040 goto skip_full_check; 24041 24042 if (bpf_prog_is_offloaded(env->prog->aux)) { 24043 ret = bpf_prog_offload_verifier_prep(env->prog); 24044 if (ret) 24045 goto skip_full_check; 24046 } 24047 24048 ret = check_cfg(env); 24049 if (ret < 0) 24050 goto skip_full_check; 24051 24052 ret = check_attach_btf_id(env); 24053 if (ret) 24054 goto skip_full_check; 24055 24056 ret = compute_live_registers(env); 24057 if (ret < 0) 24058 goto skip_full_check; 24059 24060 ret = mark_fastcall_patterns(env); 24061 if (ret < 0) 24062 goto skip_full_check; 24063 24064 ret = do_check_main(env); 24065 ret = ret ?: do_check_subprogs(env); 24066 24067 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 24068 ret = bpf_prog_offload_finalize(env); 24069 24070 skip_full_check: 24071 kvfree(env->explored_states); 24072 24073 /* might decrease stack depth, keep it before passes that 24074 * allocate additional slots. 24075 */ 24076 if (ret == 0) 24077 ret = remove_fastcall_spills_fills(env); 24078 24079 if (ret == 0) 24080 ret = check_max_stack_depth(env); 24081 24082 /* instruction rewrites happen after this point */ 24083 if (ret == 0) 24084 ret = optimize_bpf_loop(env); 24085 24086 if (is_priv) { 24087 if (ret == 0) 24088 opt_hard_wire_dead_code_branches(env); 24089 if (ret == 0) 24090 ret = opt_remove_dead_code(env); 24091 if (ret == 0) 24092 ret = opt_remove_nops(env); 24093 } else { 24094 if (ret == 0) 24095 sanitize_dead_code(env); 24096 } 24097 24098 if (ret == 0) 24099 /* program is valid, convert *(u32*)(ctx + off) accesses */ 24100 ret = convert_ctx_accesses(env); 24101 24102 if (ret == 0) 24103 ret = do_misc_fixups(env); 24104 24105 /* do 32-bit optimization after insn patching has done so those patched 24106 * insns could be handled correctly. 24107 */ 24108 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 24109 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 24110 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 24111 : false; 24112 } 24113 24114 if (ret == 0) 24115 ret = fixup_call_args(env); 24116 24117 env->verification_time = ktime_get_ns() - start_time; 24118 print_verification_stats(env); 24119 env->prog->aux->verified_insns = env->insn_processed; 24120 24121 /* preserve original error even if log finalization is successful */ 24122 err = bpf_vlog_finalize(&env->log, &log_true_size); 24123 if (err) 24124 ret = err; 24125 24126 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 24127 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 24128 &log_true_size, sizeof(log_true_size))) { 24129 ret = -EFAULT; 24130 goto err_release_maps; 24131 } 24132 24133 if (ret) 24134 goto err_release_maps; 24135 24136 if (env->used_map_cnt) { 24137 /* if program passed verifier, update used_maps in bpf_prog_info */ 24138 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 24139 sizeof(env->used_maps[0]), 24140 GFP_KERNEL); 24141 24142 if (!env->prog->aux->used_maps) { 24143 ret = -ENOMEM; 24144 goto err_release_maps; 24145 } 24146 24147 memcpy(env->prog->aux->used_maps, env->used_maps, 24148 sizeof(env->used_maps[0]) * env->used_map_cnt); 24149 env->prog->aux->used_map_cnt = env->used_map_cnt; 24150 } 24151 if (env->used_btf_cnt) { 24152 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 24153 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 24154 sizeof(env->used_btfs[0]), 24155 GFP_KERNEL); 24156 if (!env->prog->aux->used_btfs) { 24157 ret = -ENOMEM; 24158 goto err_release_maps; 24159 } 24160 24161 memcpy(env->prog->aux->used_btfs, env->used_btfs, 24162 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 24163 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 24164 } 24165 if (env->used_map_cnt || env->used_btf_cnt) { 24166 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 24167 * bpf_ld_imm64 instructions 24168 */ 24169 convert_pseudo_ld_imm64(env); 24170 } 24171 24172 adjust_btf_func(env); 24173 24174 err_release_maps: 24175 if (!env->prog->aux->used_maps) 24176 /* if we didn't copy map pointers into bpf_prog_info, release 24177 * them now. Otherwise free_used_maps() will release them. 24178 */ 24179 release_maps(env); 24180 if (!env->prog->aux->used_btfs) 24181 release_btfs(env); 24182 24183 /* extension progs temporarily inherit the attach_type of their targets 24184 for verification purposes, so set it back to zero before returning 24185 */ 24186 if (env->prog->type == BPF_PROG_TYPE_EXT) 24187 env->prog->expected_attach_type = 0; 24188 24189 *prog = env->prog; 24190 24191 module_put(env->attach_btf_mod); 24192 err_unlock: 24193 if (!is_priv) 24194 mutex_unlock(&bpf_verifier_lock); 24195 vfree(env->insn_aux_data); 24196 kvfree(env->insn_hist); 24197 err_free_env: 24198 kvfree(env->cfg.insn_postorder); 24199 kvfree(env); 24200 return ret; 24201 } 24202