xref: /linux/kernel/bpf/verifier.c (revision 8c749ce93ee69e789e46b3be98de9e0cbfcf8ed8)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  *
3  * This program is free software; you can redistribute it and/or
4  * modify it under the terms of version 2 of the GNU General Public
5  * License as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10  * General Public License for more details.
11  */
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/bpf.h>
16 #include <linux/filter.h>
17 #include <net/netlink.h>
18 #include <linux/file.h>
19 #include <linux/vmalloc.h>
20 
21 /* bpf_check() is a static code analyzer that walks eBPF program
22  * instruction by instruction and updates register/stack state.
23  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
24  *
25  * The first pass is depth-first-search to check that the program is a DAG.
26  * It rejects the following programs:
27  * - larger than BPF_MAXINSNS insns
28  * - if loop is present (detected via back-edge)
29  * - unreachable insns exist (shouldn't be a forest. program = one function)
30  * - out of bounds or malformed jumps
31  * The second pass is all possible path descent from the 1st insn.
32  * Since it's analyzing all pathes through the program, the length of the
33  * analysis is limited to 32k insn, which may be hit even if total number of
34  * insn is less then 4K, but there are too many branches that change stack/regs.
35  * Number of 'branches to be analyzed' is limited to 1k
36  *
37  * On entry to each instruction, each register has a type, and the instruction
38  * changes the types of the registers depending on instruction semantics.
39  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
40  * copied to R1.
41  *
42  * All registers are 64-bit.
43  * R0 - return register
44  * R1-R5 argument passing registers
45  * R6-R9 callee saved registers
46  * R10 - frame pointer read-only
47  *
48  * At the start of BPF program the register R1 contains a pointer to bpf_context
49  * and has type PTR_TO_CTX.
50  *
51  * Verifier tracks arithmetic operations on pointers in case:
52  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
53  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
54  * 1st insn copies R10 (which has FRAME_PTR) type into R1
55  * and 2nd arithmetic instruction is pattern matched to recognize
56  * that it wants to construct a pointer to some element within stack.
57  * So after 2nd insn, the register R1 has type PTR_TO_STACK
58  * (and -20 constant is saved for further stack bounds checking).
59  * Meaning that this reg is a pointer to stack plus known immediate constant.
60  *
61  * Most of the time the registers have UNKNOWN_VALUE type, which
62  * means the register has some value, but it's not a valid pointer.
63  * (like pointer plus pointer becomes UNKNOWN_VALUE type)
64  *
65  * When verifier sees load or store instructions the type of base register
66  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
67  * types recognized by check_mem_access() function.
68  *
69  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
70  * and the range of [ptr, ptr + map's value_size) is accessible.
71  *
72  * registers used to pass values to function calls are checked against
73  * function argument constraints.
74  *
75  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
76  * It means that the register type passed to this function must be
77  * PTR_TO_STACK and it will be used inside the function as
78  * 'pointer to map element key'
79  *
80  * For example the argument constraints for bpf_map_lookup_elem():
81  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
82  *   .arg1_type = ARG_CONST_MAP_PTR,
83  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
84  *
85  * ret_type says that this function returns 'pointer to map elem value or null'
86  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
87  * 2nd argument should be a pointer to stack, which will be used inside
88  * the helper function as a pointer to map element key.
89  *
90  * On the kernel side the helper function looks like:
91  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
92  * {
93  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
94  *    void *key = (void *) (unsigned long) r2;
95  *    void *value;
96  *
97  *    here kernel can access 'key' and 'map' pointers safely, knowing that
98  *    [key, key + map->key_size) bytes are valid and were initialized on
99  *    the stack of eBPF program.
100  * }
101  *
102  * Corresponding eBPF program may look like:
103  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
104  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
105  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
106  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
107  * here verifier looks at prototype of map_lookup_elem() and sees:
108  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
109  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
110  *
111  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
112  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
113  * and were initialized prior to this call.
114  * If it's ok, then verifier allows this BPF_CALL insn and looks at
115  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
116  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
117  * returns ether pointer to map value or NULL.
118  *
119  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
120  * insn, the register holding that pointer in the true branch changes state to
121  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
122  * branch. See check_cond_jmp_op().
123  *
124  * After the call R0 is set to return type of the function and registers R1-R5
125  * are set to NOT_INIT to indicate that they are no longer readable.
126  */
127 
128 /* types of values stored in eBPF registers */
129 enum bpf_reg_type {
130 	NOT_INIT = 0,		 /* nothing was written into register */
131 	UNKNOWN_VALUE,		 /* reg doesn't contain a valid pointer */
132 	PTR_TO_CTX,		 /* reg points to bpf_context */
133 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
134 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
135 	PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */
136 	FRAME_PTR,		 /* reg == frame_pointer */
137 	PTR_TO_STACK,		 /* reg == frame_pointer + imm */
138 	CONST_IMM,		 /* constant integer value */
139 };
140 
141 struct reg_state {
142 	enum bpf_reg_type type;
143 	union {
144 		/* valid when type == CONST_IMM | PTR_TO_STACK */
145 		int imm;
146 
147 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
148 		 *   PTR_TO_MAP_VALUE_OR_NULL
149 		 */
150 		struct bpf_map *map_ptr;
151 	};
152 };
153 
154 enum bpf_stack_slot_type {
155 	STACK_INVALID,    /* nothing was stored in this stack slot */
156 	STACK_SPILL,      /* register spilled into stack */
157 	STACK_MISC	  /* BPF program wrote some data into this slot */
158 };
159 
160 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
161 
162 /* state of the program:
163  * type of all registers and stack info
164  */
165 struct verifier_state {
166 	struct reg_state regs[MAX_BPF_REG];
167 	u8 stack_slot_type[MAX_BPF_STACK];
168 	struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
169 };
170 
171 /* linked list of verifier states used to prune search */
172 struct verifier_state_list {
173 	struct verifier_state state;
174 	struct verifier_state_list *next;
175 };
176 
177 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
178 struct verifier_stack_elem {
179 	/* verifer state is 'st'
180 	 * before processing instruction 'insn_idx'
181 	 * and after processing instruction 'prev_insn_idx'
182 	 */
183 	struct verifier_state st;
184 	int insn_idx;
185 	int prev_insn_idx;
186 	struct verifier_stack_elem *next;
187 };
188 
189 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
190 
191 /* single container for all structs
192  * one verifier_env per bpf_check() call
193  */
194 struct verifier_env {
195 	struct bpf_prog *prog;		/* eBPF program being verified */
196 	struct verifier_stack_elem *head; /* stack of verifier states to be processed */
197 	int stack_size;			/* number of states to be processed */
198 	struct verifier_state cur_state; /* current verifier state */
199 	struct verifier_state_list **explored_states; /* search pruning optimization */
200 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
201 	u32 used_map_cnt;		/* number of used maps */
202 	bool allow_ptr_leaks;
203 };
204 
205 /* verbose verifier prints what it's seeing
206  * bpf_check() is called under lock, so no race to access these global vars
207  */
208 static u32 log_level, log_size, log_len;
209 static char *log_buf;
210 
211 static DEFINE_MUTEX(bpf_verifier_lock);
212 
213 /* log_level controls verbosity level of eBPF verifier.
214  * verbose() is used to dump the verification trace to the log, so the user
215  * can figure out what's wrong with the program
216  */
217 static __printf(1, 2) void verbose(const char *fmt, ...)
218 {
219 	va_list args;
220 
221 	if (log_level == 0 || log_len >= log_size - 1)
222 		return;
223 
224 	va_start(args, fmt);
225 	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
226 	va_end(args);
227 }
228 
229 /* string representation of 'enum bpf_reg_type' */
230 static const char * const reg_type_str[] = {
231 	[NOT_INIT]		= "?",
232 	[UNKNOWN_VALUE]		= "inv",
233 	[PTR_TO_CTX]		= "ctx",
234 	[CONST_PTR_TO_MAP]	= "map_ptr",
235 	[PTR_TO_MAP_VALUE]	= "map_value",
236 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
237 	[FRAME_PTR]		= "fp",
238 	[PTR_TO_STACK]		= "fp",
239 	[CONST_IMM]		= "imm",
240 };
241 
242 static const struct {
243 	int map_type;
244 	int func_id;
245 } func_limit[] = {
246 	{BPF_MAP_TYPE_PROG_ARRAY, BPF_FUNC_tail_call},
247 	{BPF_MAP_TYPE_PERF_EVENT_ARRAY, BPF_FUNC_perf_event_read},
248 	{BPF_MAP_TYPE_PERF_EVENT_ARRAY, BPF_FUNC_perf_event_output},
249 };
250 
251 static void print_verifier_state(struct verifier_env *env)
252 {
253 	enum bpf_reg_type t;
254 	int i;
255 
256 	for (i = 0; i < MAX_BPF_REG; i++) {
257 		t = env->cur_state.regs[i].type;
258 		if (t == NOT_INIT)
259 			continue;
260 		verbose(" R%d=%s", i, reg_type_str[t]);
261 		if (t == CONST_IMM || t == PTR_TO_STACK)
262 			verbose("%d", env->cur_state.regs[i].imm);
263 		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
264 			 t == PTR_TO_MAP_VALUE_OR_NULL)
265 			verbose("(ks=%d,vs=%d)",
266 				env->cur_state.regs[i].map_ptr->key_size,
267 				env->cur_state.regs[i].map_ptr->value_size);
268 	}
269 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
270 		if (env->cur_state.stack_slot_type[i] == STACK_SPILL)
271 			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
272 				reg_type_str[env->cur_state.spilled_regs[i / BPF_REG_SIZE].type]);
273 	}
274 	verbose("\n");
275 }
276 
277 static const char *const bpf_class_string[] = {
278 	[BPF_LD]    = "ld",
279 	[BPF_LDX]   = "ldx",
280 	[BPF_ST]    = "st",
281 	[BPF_STX]   = "stx",
282 	[BPF_ALU]   = "alu",
283 	[BPF_JMP]   = "jmp",
284 	[BPF_RET]   = "BUG",
285 	[BPF_ALU64] = "alu64",
286 };
287 
288 static const char *const bpf_alu_string[16] = {
289 	[BPF_ADD >> 4]  = "+=",
290 	[BPF_SUB >> 4]  = "-=",
291 	[BPF_MUL >> 4]  = "*=",
292 	[BPF_DIV >> 4]  = "/=",
293 	[BPF_OR  >> 4]  = "|=",
294 	[BPF_AND >> 4]  = "&=",
295 	[BPF_LSH >> 4]  = "<<=",
296 	[BPF_RSH >> 4]  = ">>=",
297 	[BPF_NEG >> 4]  = "neg",
298 	[BPF_MOD >> 4]  = "%=",
299 	[BPF_XOR >> 4]  = "^=",
300 	[BPF_MOV >> 4]  = "=",
301 	[BPF_ARSH >> 4] = "s>>=",
302 	[BPF_END >> 4]  = "endian",
303 };
304 
305 static const char *const bpf_ldst_string[] = {
306 	[BPF_W >> 3]  = "u32",
307 	[BPF_H >> 3]  = "u16",
308 	[BPF_B >> 3]  = "u8",
309 	[BPF_DW >> 3] = "u64",
310 };
311 
312 static const char *const bpf_jmp_string[16] = {
313 	[BPF_JA >> 4]   = "jmp",
314 	[BPF_JEQ >> 4]  = "==",
315 	[BPF_JGT >> 4]  = ">",
316 	[BPF_JGE >> 4]  = ">=",
317 	[BPF_JSET >> 4] = "&",
318 	[BPF_JNE >> 4]  = "!=",
319 	[BPF_JSGT >> 4] = "s>",
320 	[BPF_JSGE >> 4] = "s>=",
321 	[BPF_CALL >> 4] = "call",
322 	[BPF_EXIT >> 4] = "exit",
323 };
324 
325 static void print_bpf_insn(struct bpf_insn *insn)
326 {
327 	u8 class = BPF_CLASS(insn->code);
328 
329 	if (class == BPF_ALU || class == BPF_ALU64) {
330 		if (BPF_SRC(insn->code) == BPF_X)
331 			verbose("(%02x) %sr%d %s %sr%d\n",
332 				insn->code, class == BPF_ALU ? "(u32) " : "",
333 				insn->dst_reg,
334 				bpf_alu_string[BPF_OP(insn->code) >> 4],
335 				class == BPF_ALU ? "(u32) " : "",
336 				insn->src_reg);
337 		else
338 			verbose("(%02x) %sr%d %s %s%d\n",
339 				insn->code, class == BPF_ALU ? "(u32) " : "",
340 				insn->dst_reg,
341 				bpf_alu_string[BPF_OP(insn->code) >> 4],
342 				class == BPF_ALU ? "(u32) " : "",
343 				insn->imm);
344 	} else if (class == BPF_STX) {
345 		if (BPF_MODE(insn->code) == BPF_MEM)
346 			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
347 				insn->code,
348 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
349 				insn->dst_reg,
350 				insn->off, insn->src_reg);
351 		else if (BPF_MODE(insn->code) == BPF_XADD)
352 			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
353 				insn->code,
354 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
355 				insn->dst_reg, insn->off,
356 				insn->src_reg);
357 		else
358 			verbose("BUG_%02x\n", insn->code);
359 	} else if (class == BPF_ST) {
360 		if (BPF_MODE(insn->code) != BPF_MEM) {
361 			verbose("BUG_st_%02x\n", insn->code);
362 			return;
363 		}
364 		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
365 			insn->code,
366 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
367 			insn->dst_reg,
368 			insn->off, insn->imm);
369 	} else if (class == BPF_LDX) {
370 		if (BPF_MODE(insn->code) != BPF_MEM) {
371 			verbose("BUG_ldx_%02x\n", insn->code);
372 			return;
373 		}
374 		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
375 			insn->code, insn->dst_reg,
376 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
377 			insn->src_reg, insn->off);
378 	} else if (class == BPF_LD) {
379 		if (BPF_MODE(insn->code) == BPF_ABS) {
380 			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
381 				insn->code,
382 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
383 				insn->imm);
384 		} else if (BPF_MODE(insn->code) == BPF_IND) {
385 			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
386 				insn->code,
387 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
388 				insn->src_reg, insn->imm);
389 		} else if (BPF_MODE(insn->code) == BPF_IMM) {
390 			verbose("(%02x) r%d = 0x%x\n",
391 				insn->code, insn->dst_reg, insn->imm);
392 		} else {
393 			verbose("BUG_ld_%02x\n", insn->code);
394 			return;
395 		}
396 	} else if (class == BPF_JMP) {
397 		u8 opcode = BPF_OP(insn->code);
398 
399 		if (opcode == BPF_CALL) {
400 			verbose("(%02x) call %d\n", insn->code, insn->imm);
401 		} else if (insn->code == (BPF_JMP | BPF_JA)) {
402 			verbose("(%02x) goto pc%+d\n",
403 				insn->code, insn->off);
404 		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
405 			verbose("(%02x) exit\n", insn->code);
406 		} else if (BPF_SRC(insn->code) == BPF_X) {
407 			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
408 				insn->code, insn->dst_reg,
409 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
410 				insn->src_reg, insn->off);
411 		} else {
412 			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
413 				insn->code, insn->dst_reg,
414 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
415 				insn->imm, insn->off);
416 		}
417 	} else {
418 		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
419 	}
420 }
421 
422 static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
423 {
424 	struct verifier_stack_elem *elem;
425 	int insn_idx;
426 
427 	if (env->head == NULL)
428 		return -1;
429 
430 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
431 	insn_idx = env->head->insn_idx;
432 	if (prev_insn_idx)
433 		*prev_insn_idx = env->head->prev_insn_idx;
434 	elem = env->head->next;
435 	kfree(env->head);
436 	env->head = elem;
437 	env->stack_size--;
438 	return insn_idx;
439 }
440 
441 static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
442 					 int prev_insn_idx)
443 {
444 	struct verifier_stack_elem *elem;
445 
446 	elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
447 	if (!elem)
448 		goto err;
449 
450 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
451 	elem->insn_idx = insn_idx;
452 	elem->prev_insn_idx = prev_insn_idx;
453 	elem->next = env->head;
454 	env->head = elem;
455 	env->stack_size++;
456 	if (env->stack_size > 1024) {
457 		verbose("BPF program is too complex\n");
458 		goto err;
459 	}
460 	return &elem->st;
461 err:
462 	/* pop all elements and return */
463 	while (pop_stack(env, NULL) >= 0);
464 	return NULL;
465 }
466 
467 #define CALLER_SAVED_REGS 6
468 static const int caller_saved[CALLER_SAVED_REGS] = {
469 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
470 };
471 
472 static void init_reg_state(struct reg_state *regs)
473 {
474 	int i;
475 
476 	for (i = 0; i < MAX_BPF_REG; i++) {
477 		regs[i].type = NOT_INIT;
478 		regs[i].imm = 0;
479 		regs[i].map_ptr = NULL;
480 	}
481 
482 	/* frame pointer */
483 	regs[BPF_REG_FP].type = FRAME_PTR;
484 
485 	/* 1st arg to a function */
486 	regs[BPF_REG_1].type = PTR_TO_CTX;
487 }
488 
489 static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
490 {
491 	BUG_ON(regno >= MAX_BPF_REG);
492 	regs[regno].type = UNKNOWN_VALUE;
493 	regs[regno].imm = 0;
494 	regs[regno].map_ptr = NULL;
495 }
496 
497 enum reg_arg_type {
498 	SRC_OP,		/* register is used as source operand */
499 	DST_OP,		/* register is used as destination operand */
500 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
501 };
502 
503 static int check_reg_arg(struct reg_state *regs, u32 regno,
504 			 enum reg_arg_type t)
505 {
506 	if (regno >= MAX_BPF_REG) {
507 		verbose("R%d is invalid\n", regno);
508 		return -EINVAL;
509 	}
510 
511 	if (t == SRC_OP) {
512 		/* check whether register used as source operand can be read */
513 		if (regs[regno].type == NOT_INIT) {
514 			verbose("R%d !read_ok\n", regno);
515 			return -EACCES;
516 		}
517 	} else {
518 		/* check whether register used as dest operand can be written to */
519 		if (regno == BPF_REG_FP) {
520 			verbose("frame pointer is read only\n");
521 			return -EACCES;
522 		}
523 		if (t == DST_OP)
524 			mark_reg_unknown_value(regs, regno);
525 	}
526 	return 0;
527 }
528 
529 static int bpf_size_to_bytes(int bpf_size)
530 {
531 	if (bpf_size == BPF_W)
532 		return 4;
533 	else if (bpf_size == BPF_H)
534 		return 2;
535 	else if (bpf_size == BPF_B)
536 		return 1;
537 	else if (bpf_size == BPF_DW)
538 		return 8;
539 	else
540 		return -EINVAL;
541 }
542 
543 static bool is_spillable_regtype(enum bpf_reg_type type)
544 {
545 	switch (type) {
546 	case PTR_TO_MAP_VALUE:
547 	case PTR_TO_MAP_VALUE_OR_NULL:
548 	case PTR_TO_STACK:
549 	case PTR_TO_CTX:
550 	case FRAME_PTR:
551 	case CONST_PTR_TO_MAP:
552 		return true;
553 	default:
554 		return false;
555 	}
556 }
557 
558 /* check_stack_read/write functions track spill/fill of registers,
559  * stack boundary and alignment are checked in check_mem_access()
560  */
561 static int check_stack_write(struct verifier_state *state, int off, int size,
562 			     int value_regno)
563 {
564 	int i;
565 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
566 	 * so it's aligned access and [off, off + size) are within stack limits
567 	 */
568 
569 	if (value_regno >= 0 &&
570 	    is_spillable_regtype(state->regs[value_regno].type)) {
571 
572 		/* register containing pointer is being spilled into stack */
573 		if (size != BPF_REG_SIZE) {
574 			verbose("invalid size of register spill\n");
575 			return -EACCES;
576 		}
577 
578 		/* save register state */
579 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
580 			state->regs[value_regno];
581 
582 		for (i = 0; i < BPF_REG_SIZE; i++)
583 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
584 	} else {
585 		/* regular write of data into stack */
586 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
587 			(struct reg_state) {};
588 
589 		for (i = 0; i < size; i++)
590 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
591 	}
592 	return 0;
593 }
594 
595 static int check_stack_read(struct verifier_state *state, int off, int size,
596 			    int value_regno)
597 {
598 	u8 *slot_type;
599 	int i;
600 
601 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
602 
603 	if (slot_type[0] == STACK_SPILL) {
604 		if (size != BPF_REG_SIZE) {
605 			verbose("invalid size of register spill\n");
606 			return -EACCES;
607 		}
608 		for (i = 1; i < BPF_REG_SIZE; i++) {
609 			if (slot_type[i] != STACK_SPILL) {
610 				verbose("corrupted spill memory\n");
611 				return -EACCES;
612 			}
613 		}
614 
615 		if (value_regno >= 0)
616 			/* restore register state from stack */
617 			state->regs[value_regno] =
618 				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
619 		return 0;
620 	} else {
621 		for (i = 0; i < size; i++) {
622 			if (slot_type[i] != STACK_MISC) {
623 				verbose("invalid read from stack off %d+%d size %d\n",
624 					off, i, size);
625 				return -EACCES;
626 			}
627 		}
628 		if (value_regno >= 0)
629 			/* have read misc data from the stack */
630 			mark_reg_unknown_value(state->regs, value_regno);
631 		return 0;
632 	}
633 }
634 
635 /* check read/write into map element returned by bpf_map_lookup_elem() */
636 static int check_map_access(struct verifier_env *env, u32 regno, int off,
637 			    int size)
638 {
639 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
640 
641 	if (off < 0 || off + size > map->value_size) {
642 		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
643 			map->value_size, off, size);
644 		return -EACCES;
645 	}
646 	return 0;
647 }
648 
649 /* check access to 'struct bpf_context' fields */
650 static int check_ctx_access(struct verifier_env *env, int off, int size,
651 			    enum bpf_access_type t)
652 {
653 	if (env->prog->aux->ops->is_valid_access &&
654 	    env->prog->aux->ops->is_valid_access(off, size, t))
655 		return 0;
656 
657 	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
658 	return -EACCES;
659 }
660 
661 static bool is_pointer_value(struct verifier_env *env, int regno)
662 {
663 	if (env->allow_ptr_leaks)
664 		return false;
665 
666 	switch (env->cur_state.regs[regno].type) {
667 	case UNKNOWN_VALUE:
668 	case CONST_IMM:
669 		return false;
670 	default:
671 		return true;
672 	}
673 }
674 
675 /* check whether memory at (regno + off) is accessible for t = (read | write)
676  * if t==write, value_regno is a register which value is stored into memory
677  * if t==read, value_regno is a register which will receive the value from memory
678  * if t==write && value_regno==-1, some unknown value is stored into memory
679  * if t==read && value_regno==-1, don't care what we read from memory
680  */
681 static int check_mem_access(struct verifier_env *env, u32 regno, int off,
682 			    int bpf_size, enum bpf_access_type t,
683 			    int value_regno)
684 {
685 	struct verifier_state *state = &env->cur_state;
686 	int size, err = 0;
687 
688 	if (state->regs[regno].type == PTR_TO_STACK)
689 		off += state->regs[regno].imm;
690 
691 	size = bpf_size_to_bytes(bpf_size);
692 	if (size < 0)
693 		return size;
694 
695 	if (off % size != 0) {
696 		verbose("misaligned access off %d size %d\n", off, size);
697 		return -EACCES;
698 	}
699 
700 	if (state->regs[regno].type == PTR_TO_MAP_VALUE) {
701 		if (t == BPF_WRITE && value_regno >= 0 &&
702 		    is_pointer_value(env, value_regno)) {
703 			verbose("R%d leaks addr into map\n", value_regno);
704 			return -EACCES;
705 		}
706 		err = check_map_access(env, regno, off, size);
707 		if (!err && t == BPF_READ && value_regno >= 0)
708 			mark_reg_unknown_value(state->regs, value_regno);
709 
710 	} else if (state->regs[regno].type == PTR_TO_CTX) {
711 		if (t == BPF_WRITE && value_regno >= 0 &&
712 		    is_pointer_value(env, value_regno)) {
713 			verbose("R%d leaks addr into ctx\n", value_regno);
714 			return -EACCES;
715 		}
716 		err = check_ctx_access(env, off, size, t);
717 		if (!err && t == BPF_READ && value_regno >= 0)
718 			mark_reg_unknown_value(state->regs, value_regno);
719 
720 	} else if (state->regs[regno].type == FRAME_PTR ||
721 		   state->regs[regno].type == PTR_TO_STACK) {
722 		if (off >= 0 || off < -MAX_BPF_STACK) {
723 			verbose("invalid stack off=%d size=%d\n", off, size);
724 			return -EACCES;
725 		}
726 		if (t == BPF_WRITE) {
727 			if (!env->allow_ptr_leaks &&
728 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
729 			    size != BPF_REG_SIZE) {
730 				verbose("attempt to corrupt spilled pointer on stack\n");
731 				return -EACCES;
732 			}
733 			err = check_stack_write(state, off, size, value_regno);
734 		} else {
735 			err = check_stack_read(state, off, size, value_regno);
736 		}
737 	} else {
738 		verbose("R%d invalid mem access '%s'\n",
739 			regno, reg_type_str[state->regs[regno].type]);
740 		return -EACCES;
741 	}
742 	return err;
743 }
744 
745 static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
746 {
747 	struct reg_state *regs = env->cur_state.regs;
748 	int err;
749 
750 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
751 	    insn->imm != 0) {
752 		verbose("BPF_XADD uses reserved fields\n");
753 		return -EINVAL;
754 	}
755 
756 	/* check src1 operand */
757 	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
758 	if (err)
759 		return err;
760 
761 	/* check src2 operand */
762 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
763 	if (err)
764 		return err;
765 
766 	/* check whether atomic_add can read the memory */
767 	err = check_mem_access(env, insn->dst_reg, insn->off,
768 			       BPF_SIZE(insn->code), BPF_READ, -1);
769 	if (err)
770 		return err;
771 
772 	/* check whether atomic_add can write into the same memory */
773 	return check_mem_access(env, insn->dst_reg, insn->off,
774 				BPF_SIZE(insn->code), BPF_WRITE, -1);
775 }
776 
777 /* when register 'regno' is passed into function that will read 'access_size'
778  * bytes from that pointer, make sure that it's within stack boundary
779  * and all elements of stack are initialized
780  */
781 static int check_stack_boundary(struct verifier_env *env,
782 				int regno, int access_size)
783 {
784 	struct verifier_state *state = &env->cur_state;
785 	struct reg_state *regs = state->regs;
786 	int off, i;
787 
788 	if (regs[regno].type != PTR_TO_STACK)
789 		return -EACCES;
790 
791 	off = regs[regno].imm;
792 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
793 	    access_size <= 0) {
794 		verbose("invalid stack type R%d off=%d access_size=%d\n",
795 			regno, off, access_size);
796 		return -EACCES;
797 	}
798 
799 	for (i = 0; i < access_size; i++) {
800 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
801 			verbose("invalid indirect read from stack off %d+%d size %d\n",
802 				off, i, access_size);
803 			return -EACCES;
804 		}
805 	}
806 	return 0;
807 }
808 
809 static int check_func_arg(struct verifier_env *env, u32 regno,
810 			  enum bpf_arg_type arg_type, struct bpf_map **mapp)
811 {
812 	struct reg_state *reg = env->cur_state.regs + regno;
813 	enum bpf_reg_type expected_type;
814 	int err = 0;
815 
816 	if (arg_type == ARG_DONTCARE)
817 		return 0;
818 
819 	if (reg->type == NOT_INIT) {
820 		verbose("R%d !read_ok\n", regno);
821 		return -EACCES;
822 	}
823 
824 	if (arg_type == ARG_ANYTHING) {
825 		if (is_pointer_value(env, regno)) {
826 			verbose("R%d leaks addr into helper function\n", regno);
827 			return -EACCES;
828 		}
829 		return 0;
830 	}
831 
832 	if (arg_type == ARG_PTR_TO_STACK || arg_type == ARG_PTR_TO_MAP_KEY ||
833 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
834 		expected_type = PTR_TO_STACK;
835 	} else if (arg_type == ARG_CONST_STACK_SIZE) {
836 		expected_type = CONST_IMM;
837 	} else if (arg_type == ARG_CONST_MAP_PTR) {
838 		expected_type = CONST_PTR_TO_MAP;
839 	} else if (arg_type == ARG_PTR_TO_CTX) {
840 		expected_type = PTR_TO_CTX;
841 	} else {
842 		verbose("unsupported arg_type %d\n", arg_type);
843 		return -EFAULT;
844 	}
845 
846 	if (reg->type != expected_type) {
847 		verbose("R%d type=%s expected=%s\n", regno,
848 			reg_type_str[reg->type], reg_type_str[expected_type]);
849 		return -EACCES;
850 	}
851 
852 	if (arg_type == ARG_CONST_MAP_PTR) {
853 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
854 		*mapp = reg->map_ptr;
855 
856 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
857 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
858 		 * check that [key, key + map->key_size) are within
859 		 * stack limits and initialized
860 		 */
861 		if (!*mapp) {
862 			/* in function declaration map_ptr must come before
863 			 * map_key, so that it's verified and known before
864 			 * we have to check map_key here. Otherwise it means
865 			 * that kernel subsystem misconfigured verifier
866 			 */
867 			verbose("invalid map_ptr to access map->key\n");
868 			return -EACCES;
869 		}
870 		err = check_stack_boundary(env, regno, (*mapp)->key_size);
871 
872 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
873 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
874 		 * check [value, value + map->value_size) validity
875 		 */
876 		if (!*mapp) {
877 			/* kernel subsystem misconfigured verifier */
878 			verbose("invalid map_ptr to access map->value\n");
879 			return -EACCES;
880 		}
881 		err = check_stack_boundary(env, regno, (*mapp)->value_size);
882 
883 	} else if (arg_type == ARG_CONST_STACK_SIZE) {
884 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
885 		 * from stack pointer 'buf'. Check it
886 		 * note: regno == len, regno - 1 == buf
887 		 */
888 		if (regno == 0) {
889 			/* kernel subsystem misconfigured verifier */
890 			verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
891 			return -EACCES;
892 		}
893 		err = check_stack_boundary(env, regno - 1, reg->imm);
894 	}
895 
896 	return err;
897 }
898 
899 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
900 {
901 	bool bool_map, bool_func;
902 	int i;
903 
904 	if (!map)
905 		return 0;
906 
907 	for (i = 0; i < ARRAY_SIZE(func_limit); i++) {
908 		bool_map = (map->map_type == func_limit[i].map_type);
909 		bool_func = (func_id == func_limit[i].func_id);
910 		/* only when map & func pair match it can continue.
911 		 * don't allow any other map type to be passed into
912 		 * the special func;
913 		 */
914 		if (bool_func && bool_map != bool_func)
915 			return -EINVAL;
916 	}
917 
918 	return 0;
919 }
920 
921 static int check_call(struct verifier_env *env, int func_id)
922 {
923 	struct verifier_state *state = &env->cur_state;
924 	const struct bpf_func_proto *fn = NULL;
925 	struct reg_state *regs = state->regs;
926 	struct bpf_map *map = NULL;
927 	struct reg_state *reg;
928 	int i, err;
929 
930 	/* find function prototype */
931 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
932 		verbose("invalid func %d\n", func_id);
933 		return -EINVAL;
934 	}
935 
936 	if (env->prog->aux->ops->get_func_proto)
937 		fn = env->prog->aux->ops->get_func_proto(func_id);
938 
939 	if (!fn) {
940 		verbose("unknown func %d\n", func_id);
941 		return -EINVAL;
942 	}
943 
944 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
945 	if (!env->prog->gpl_compatible && fn->gpl_only) {
946 		verbose("cannot call GPL only function from proprietary program\n");
947 		return -EINVAL;
948 	}
949 
950 	/* check args */
951 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &map);
952 	if (err)
953 		return err;
954 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map);
955 	if (err)
956 		return err;
957 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map);
958 	if (err)
959 		return err;
960 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &map);
961 	if (err)
962 		return err;
963 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &map);
964 	if (err)
965 		return err;
966 
967 	/* reset caller saved regs */
968 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
969 		reg = regs + caller_saved[i];
970 		reg->type = NOT_INIT;
971 		reg->imm = 0;
972 	}
973 
974 	/* update return register */
975 	if (fn->ret_type == RET_INTEGER) {
976 		regs[BPF_REG_0].type = UNKNOWN_VALUE;
977 	} else if (fn->ret_type == RET_VOID) {
978 		regs[BPF_REG_0].type = NOT_INIT;
979 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
980 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
981 		/* remember map_ptr, so that check_map_access()
982 		 * can check 'value_size' boundary of memory access
983 		 * to map element returned from bpf_map_lookup_elem()
984 		 */
985 		if (map == NULL) {
986 			verbose("kernel subsystem misconfigured verifier\n");
987 			return -EINVAL;
988 		}
989 		regs[BPF_REG_0].map_ptr = map;
990 	} else {
991 		verbose("unknown return type %d of func %d\n",
992 			fn->ret_type, func_id);
993 		return -EINVAL;
994 	}
995 
996 	err = check_map_func_compatibility(map, func_id);
997 	if (err)
998 		return err;
999 
1000 	return 0;
1001 }
1002 
1003 /* check validity of 32-bit and 64-bit arithmetic operations */
1004 static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn)
1005 {
1006 	struct reg_state *regs = env->cur_state.regs;
1007 	u8 opcode = BPF_OP(insn->code);
1008 	int err;
1009 
1010 	if (opcode == BPF_END || opcode == BPF_NEG) {
1011 		if (opcode == BPF_NEG) {
1012 			if (BPF_SRC(insn->code) != 0 ||
1013 			    insn->src_reg != BPF_REG_0 ||
1014 			    insn->off != 0 || insn->imm != 0) {
1015 				verbose("BPF_NEG uses reserved fields\n");
1016 				return -EINVAL;
1017 			}
1018 		} else {
1019 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1020 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1021 				verbose("BPF_END uses reserved fields\n");
1022 				return -EINVAL;
1023 			}
1024 		}
1025 
1026 		/* check src operand */
1027 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1028 		if (err)
1029 			return err;
1030 
1031 		if (is_pointer_value(env, insn->dst_reg)) {
1032 			verbose("R%d pointer arithmetic prohibited\n",
1033 				insn->dst_reg);
1034 			return -EACCES;
1035 		}
1036 
1037 		/* check dest operand */
1038 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1039 		if (err)
1040 			return err;
1041 
1042 	} else if (opcode == BPF_MOV) {
1043 
1044 		if (BPF_SRC(insn->code) == BPF_X) {
1045 			if (insn->imm != 0 || insn->off != 0) {
1046 				verbose("BPF_MOV uses reserved fields\n");
1047 				return -EINVAL;
1048 			}
1049 
1050 			/* check src operand */
1051 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1052 			if (err)
1053 				return err;
1054 		} else {
1055 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1056 				verbose("BPF_MOV uses reserved fields\n");
1057 				return -EINVAL;
1058 			}
1059 		}
1060 
1061 		/* check dest operand */
1062 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1063 		if (err)
1064 			return err;
1065 
1066 		if (BPF_SRC(insn->code) == BPF_X) {
1067 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
1068 				/* case: R1 = R2
1069 				 * copy register state to dest reg
1070 				 */
1071 				regs[insn->dst_reg] = regs[insn->src_reg];
1072 			} else {
1073 				if (is_pointer_value(env, insn->src_reg)) {
1074 					verbose("R%d partial copy of pointer\n",
1075 						insn->src_reg);
1076 					return -EACCES;
1077 				}
1078 				regs[insn->dst_reg].type = UNKNOWN_VALUE;
1079 				regs[insn->dst_reg].map_ptr = NULL;
1080 			}
1081 		} else {
1082 			/* case: R = imm
1083 			 * remember the value we stored into this reg
1084 			 */
1085 			regs[insn->dst_reg].type = CONST_IMM;
1086 			regs[insn->dst_reg].imm = insn->imm;
1087 		}
1088 
1089 	} else if (opcode > BPF_END) {
1090 		verbose("invalid BPF_ALU opcode %x\n", opcode);
1091 		return -EINVAL;
1092 
1093 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
1094 
1095 		bool stack_relative = false;
1096 
1097 		if (BPF_SRC(insn->code) == BPF_X) {
1098 			if (insn->imm != 0 || insn->off != 0) {
1099 				verbose("BPF_ALU uses reserved fields\n");
1100 				return -EINVAL;
1101 			}
1102 			/* check src1 operand */
1103 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1104 			if (err)
1105 				return err;
1106 		} else {
1107 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1108 				verbose("BPF_ALU uses reserved fields\n");
1109 				return -EINVAL;
1110 			}
1111 		}
1112 
1113 		/* check src2 operand */
1114 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1115 		if (err)
1116 			return err;
1117 
1118 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1119 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1120 			verbose("div by zero\n");
1121 			return -EINVAL;
1122 		}
1123 
1124 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1125 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1126 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1127 
1128 			if (insn->imm < 0 || insn->imm >= size) {
1129 				verbose("invalid shift %d\n", insn->imm);
1130 				return -EINVAL;
1131 			}
1132 		}
1133 
1134 		/* pattern match 'bpf_add Rx, imm' instruction */
1135 		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1136 		    regs[insn->dst_reg].type == FRAME_PTR &&
1137 		    BPF_SRC(insn->code) == BPF_K) {
1138 			stack_relative = true;
1139 		} else if (is_pointer_value(env, insn->dst_reg)) {
1140 			verbose("R%d pointer arithmetic prohibited\n",
1141 				insn->dst_reg);
1142 			return -EACCES;
1143 		} else if (BPF_SRC(insn->code) == BPF_X &&
1144 			   is_pointer_value(env, insn->src_reg)) {
1145 			verbose("R%d pointer arithmetic prohibited\n",
1146 				insn->src_reg);
1147 			return -EACCES;
1148 		}
1149 
1150 		/* check dest operand */
1151 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1152 		if (err)
1153 			return err;
1154 
1155 		if (stack_relative) {
1156 			regs[insn->dst_reg].type = PTR_TO_STACK;
1157 			regs[insn->dst_reg].imm = insn->imm;
1158 		}
1159 	}
1160 
1161 	return 0;
1162 }
1163 
1164 static int check_cond_jmp_op(struct verifier_env *env,
1165 			     struct bpf_insn *insn, int *insn_idx)
1166 {
1167 	struct reg_state *regs = env->cur_state.regs;
1168 	struct verifier_state *other_branch;
1169 	u8 opcode = BPF_OP(insn->code);
1170 	int err;
1171 
1172 	if (opcode > BPF_EXIT) {
1173 		verbose("invalid BPF_JMP opcode %x\n", opcode);
1174 		return -EINVAL;
1175 	}
1176 
1177 	if (BPF_SRC(insn->code) == BPF_X) {
1178 		if (insn->imm != 0) {
1179 			verbose("BPF_JMP uses reserved fields\n");
1180 			return -EINVAL;
1181 		}
1182 
1183 		/* check src1 operand */
1184 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1185 		if (err)
1186 			return err;
1187 
1188 		if (is_pointer_value(env, insn->src_reg)) {
1189 			verbose("R%d pointer comparison prohibited\n",
1190 				insn->src_reg);
1191 			return -EACCES;
1192 		}
1193 	} else {
1194 		if (insn->src_reg != BPF_REG_0) {
1195 			verbose("BPF_JMP uses reserved fields\n");
1196 			return -EINVAL;
1197 		}
1198 	}
1199 
1200 	/* check src2 operand */
1201 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1202 	if (err)
1203 		return err;
1204 
1205 	/* detect if R == 0 where R was initialized to zero earlier */
1206 	if (BPF_SRC(insn->code) == BPF_K &&
1207 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1208 	    regs[insn->dst_reg].type == CONST_IMM &&
1209 	    regs[insn->dst_reg].imm == insn->imm) {
1210 		if (opcode == BPF_JEQ) {
1211 			/* if (imm == imm) goto pc+off;
1212 			 * only follow the goto, ignore fall-through
1213 			 */
1214 			*insn_idx += insn->off;
1215 			return 0;
1216 		} else {
1217 			/* if (imm != imm) goto pc+off;
1218 			 * only follow fall-through branch, since
1219 			 * that's where the program will go
1220 			 */
1221 			return 0;
1222 		}
1223 	}
1224 
1225 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
1226 	if (!other_branch)
1227 		return -EFAULT;
1228 
1229 	/* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
1230 	if (BPF_SRC(insn->code) == BPF_K &&
1231 	    insn->imm == 0 && (opcode == BPF_JEQ ||
1232 			       opcode == BPF_JNE) &&
1233 	    regs[insn->dst_reg].type == PTR_TO_MAP_VALUE_OR_NULL) {
1234 		if (opcode == BPF_JEQ) {
1235 			/* next fallthrough insn can access memory via
1236 			 * this register
1237 			 */
1238 			regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1239 			/* branch targer cannot access it, since reg == 0 */
1240 			other_branch->regs[insn->dst_reg].type = CONST_IMM;
1241 			other_branch->regs[insn->dst_reg].imm = 0;
1242 		} else {
1243 			other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1244 			regs[insn->dst_reg].type = CONST_IMM;
1245 			regs[insn->dst_reg].imm = 0;
1246 		}
1247 	} else if (is_pointer_value(env, insn->dst_reg)) {
1248 		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
1249 		return -EACCES;
1250 	} else if (BPF_SRC(insn->code) == BPF_K &&
1251 		   (opcode == BPF_JEQ || opcode == BPF_JNE)) {
1252 
1253 		if (opcode == BPF_JEQ) {
1254 			/* detect if (R == imm) goto
1255 			 * and in the target state recognize that R = imm
1256 			 */
1257 			other_branch->regs[insn->dst_reg].type = CONST_IMM;
1258 			other_branch->regs[insn->dst_reg].imm = insn->imm;
1259 		} else {
1260 			/* detect if (R != imm) goto
1261 			 * and in the fall-through state recognize that R = imm
1262 			 */
1263 			regs[insn->dst_reg].type = CONST_IMM;
1264 			regs[insn->dst_reg].imm = insn->imm;
1265 		}
1266 	}
1267 	if (log_level)
1268 		print_verifier_state(env);
1269 	return 0;
1270 }
1271 
1272 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
1273 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
1274 {
1275 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
1276 
1277 	return (struct bpf_map *) (unsigned long) imm64;
1278 }
1279 
1280 /* verify BPF_LD_IMM64 instruction */
1281 static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
1282 {
1283 	struct reg_state *regs = env->cur_state.regs;
1284 	int err;
1285 
1286 	if (BPF_SIZE(insn->code) != BPF_DW) {
1287 		verbose("invalid BPF_LD_IMM insn\n");
1288 		return -EINVAL;
1289 	}
1290 	if (insn->off != 0) {
1291 		verbose("BPF_LD_IMM64 uses reserved fields\n");
1292 		return -EINVAL;
1293 	}
1294 
1295 	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1296 	if (err)
1297 		return err;
1298 
1299 	if (insn->src_reg == 0)
1300 		/* generic move 64-bit immediate into a register */
1301 		return 0;
1302 
1303 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
1304 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
1305 
1306 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
1307 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
1308 	return 0;
1309 }
1310 
1311 static bool may_access_skb(enum bpf_prog_type type)
1312 {
1313 	switch (type) {
1314 	case BPF_PROG_TYPE_SOCKET_FILTER:
1315 	case BPF_PROG_TYPE_SCHED_CLS:
1316 	case BPF_PROG_TYPE_SCHED_ACT:
1317 		return true;
1318 	default:
1319 		return false;
1320 	}
1321 }
1322 
1323 /* verify safety of LD_ABS|LD_IND instructions:
1324  * - they can only appear in the programs where ctx == skb
1325  * - since they are wrappers of function calls, they scratch R1-R5 registers,
1326  *   preserve R6-R9, and store return value into R0
1327  *
1328  * Implicit input:
1329  *   ctx == skb == R6 == CTX
1330  *
1331  * Explicit input:
1332  *   SRC == any register
1333  *   IMM == 32-bit immediate
1334  *
1335  * Output:
1336  *   R0 - 8/16/32-bit skb data converted to cpu endianness
1337  */
1338 static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn)
1339 {
1340 	struct reg_state *regs = env->cur_state.regs;
1341 	u8 mode = BPF_MODE(insn->code);
1342 	struct reg_state *reg;
1343 	int i, err;
1344 
1345 	if (!may_access_skb(env->prog->type)) {
1346 		verbose("BPF_LD_ABS|IND instructions not allowed for this program type\n");
1347 		return -EINVAL;
1348 	}
1349 
1350 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
1351 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1352 		verbose("BPF_LD_ABS uses reserved fields\n");
1353 		return -EINVAL;
1354 	}
1355 
1356 	/* check whether implicit source operand (register R6) is readable */
1357 	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
1358 	if (err)
1359 		return err;
1360 
1361 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
1362 		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
1363 		return -EINVAL;
1364 	}
1365 
1366 	if (mode == BPF_IND) {
1367 		/* check explicit source operand */
1368 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1369 		if (err)
1370 			return err;
1371 	}
1372 
1373 	/* reset caller saved regs to unreadable */
1374 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1375 		reg = regs + caller_saved[i];
1376 		reg->type = NOT_INIT;
1377 		reg->imm = 0;
1378 	}
1379 
1380 	/* mark destination R0 register as readable, since it contains
1381 	 * the value fetched from the packet
1382 	 */
1383 	regs[BPF_REG_0].type = UNKNOWN_VALUE;
1384 	return 0;
1385 }
1386 
1387 /* non-recursive DFS pseudo code
1388  * 1  procedure DFS-iterative(G,v):
1389  * 2      label v as discovered
1390  * 3      let S be a stack
1391  * 4      S.push(v)
1392  * 5      while S is not empty
1393  * 6            t <- S.pop()
1394  * 7            if t is what we're looking for:
1395  * 8                return t
1396  * 9            for all edges e in G.adjacentEdges(t) do
1397  * 10               if edge e is already labelled
1398  * 11                   continue with the next edge
1399  * 12               w <- G.adjacentVertex(t,e)
1400  * 13               if vertex w is not discovered and not explored
1401  * 14                   label e as tree-edge
1402  * 15                   label w as discovered
1403  * 16                   S.push(w)
1404  * 17                   continue at 5
1405  * 18               else if vertex w is discovered
1406  * 19                   label e as back-edge
1407  * 20               else
1408  * 21                   // vertex w is explored
1409  * 22                   label e as forward- or cross-edge
1410  * 23           label t as explored
1411  * 24           S.pop()
1412  *
1413  * convention:
1414  * 0x10 - discovered
1415  * 0x11 - discovered and fall-through edge labelled
1416  * 0x12 - discovered and fall-through and branch edges labelled
1417  * 0x20 - explored
1418  */
1419 
1420 enum {
1421 	DISCOVERED = 0x10,
1422 	EXPLORED = 0x20,
1423 	FALLTHROUGH = 1,
1424 	BRANCH = 2,
1425 };
1426 
1427 #define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
1428 
1429 static int *insn_stack;	/* stack of insns to process */
1430 static int cur_stack;	/* current stack index */
1431 static int *insn_state;
1432 
1433 /* t, w, e - match pseudo-code above:
1434  * t - index of current instruction
1435  * w - next instruction
1436  * e - edge
1437  */
1438 static int push_insn(int t, int w, int e, struct verifier_env *env)
1439 {
1440 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
1441 		return 0;
1442 
1443 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
1444 		return 0;
1445 
1446 	if (w < 0 || w >= env->prog->len) {
1447 		verbose("jump out of range from insn %d to %d\n", t, w);
1448 		return -EINVAL;
1449 	}
1450 
1451 	if (e == BRANCH)
1452 		/* mark branch target for state pruning */
1453 		env->explored_states[w] = STATE_LIST_MARK;
1454 
1455 	if (insn_state[w] == 0) {
1456 		/* tree-edge */
1457 		insn_state[t] = DISCOVERED | e;
1458 		insn_state[w] = DISCOVERED;
1459 		if (cur_stack >= env->prog->len)
1460 			return -E2BIG;
1461 		insn_stack[cur_stack++] = w;
1462 		return 1;
1463 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
1464 		verbose("back-edge from insn %d to %d\n", t, w);
1465 		return -EINVAL;
1466 	} else if (insn_state[w] == EXPLORED) {
1467 		/* forward- or cross-edge */
1468 		insn_state[t] = DISCOVERED | e;
1469 	} else {
1470 		verbose("insn state internal bug\n");
1471 		return -EFAULT;
1472 	}
1473 	return 0;
1474 }
1475 
1476 /* non-recursive depth-first-search to detect loops in BPF program
1477  * loop == back-edge in directed graph
1478  */
1479 static int check_cfg(struct verifier_env *env)
1480 {
1481 	struct bpf_insn *insns = env->prog->insnsi;
1482 	int insn_cnt = env->prog->len;
1483 	int ret = 0;
1484 	int i, t;
1485 
1486 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1487 	if (!insn_state)
1488 		return -ENOMEM;
1489 
1490 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1491 	if (!insn_stack) {
1492 		kfree(insn_state);
1493 		return -ENOMEM;
1494 	}
1495 
1496 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
1497 	insn_stack[0] = 0; /* 0 is the first instruction */
1498 	cur_stack = 1;
1499 
1500 peek_stack:
1501 	if (cur_stack == 0)
1502 		goto check_state;
1503 	t = insn_stack[cur_stack - 1];
1504 
1505 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
1506 		u8 opcode = BPF_OP(insns[t].code);
1507 
1508 		if (opcode == BPF_EXIT) {
1509 			goto mark_explored;
1510 		} else if (opcode == BPF_CALL) {
1511 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
1512 			if (ret == 1)
1513 				goto peek_stack;
1514 			else if (ret < 0)
1515 				goto err_free;
1516 		} else if (opcode == BPF_JA) {
1517 			if (BPF_SRC(insns[t].code) != BPF_K) {
1518 				ret = -EINVAL;
1519 				goto err_free;
1520 			}
1521 			/* unconditional jump with single edge */
1522 			ret = push_insn(t, t + insns[t].off + 1,
1523 					FALLTHROUGH, env);
1524 			if (ret == 1)
1525 				goto peek_stack;
1526 			else if (ret < 0)
1527 				goto err_free;
1528 			/* tell verifier to check for equivalent states
1529 			 * after every call and jump
1530 			 */
1531 			if (t + 1 < insn_cnt)
1532 				env->explored_states[t + 1] = STATE_LIST_MARK;
1533 		} else {
1534 			/* conditional jump with two edges */
1535 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
1536 			if (ret == 1)
1537 				goto peek_stack;
1538 			else if (ret < 0)
1539 				goto err_free;
1540 
1541 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
1542 			if (ret == 1)
1543 				goto peek_stack;
1544 			else if (ret < 0)
1545 				goto err_free;
1546 		}
1547 	} else {
1548 		/* all other non-branch instructions with single
1549 		 * fall-through edge
1550 		 */
1551 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
1552 		if (ret == 1)
1553 			goto peek_stack;
1554 		else if (ret < 0)
1555 			goto err_free;
1556 	}
1557 
1558 mark_explored:
1559 	insn_state[t] = EXPLORED;
1560 	if (cur_stack-- <= 0) {
1561 		verbose("pop stack internal bug\n");
1562 		ret = -EFAULT;
1563 		goto err_free;
1564 	}
1565 	goto peek_stack;
1566 
1567 check_state:
1568 	for (i = 0; i < insn_cnt; i++) {
1569 		if (insn_state[i] != EXPLORED) {
1570 			verbose("unreachable insn %d\n", i);
1571 			ret = -EINVAL;
1572 			goto err_free;
1573 		}
1574 	}
1575 	ret = 0; /* cfg looks good */
1576 
1577 err_free:
1578 	kfree(insn_state);
1579 	kfree(insn_stack);
1580 	return ret;
1581 }
1582 
1583 /* compare two verifier states
1584  *
1585  * all states stored in state_list are known to be valid, since
1586  * verifier reached 'bpf_exit' instruction through them
1587  *
1588  * this function is called when verifier exploring different branches of
1589  * execution popped from the state stack. If it sees an old state that has
1590  * more strict register state and more strict stack state then this execution
1591  * branch doesn't need to be explored further, since verifier already
1592  * concluded that more strict state leads to valid finish.
1593  *
1594  * Therefore two states are equivalent if register state is more conservative
1595  * and explored stack state is more conservative than the current one.
1596  * Example:
1597  *       explored                   current
1598  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
1599  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
1600  *
1601  * In other words if current stack state (one being explored) has more
1602  * valid slots than old one that already passed validation, it means
1603  * the verifier can stop exploring and conclude that current state is valid too
1604  *
1605  * Similarly with registers. If explored state has register type as invalid
1606  * whereas register type in current state is meaningful, it means that
1607  * the current state will reach 'bpf_exit' instruction safely
1608  */
1609 static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
1610 {
1611 	int i;
1612 
1613 	for (i = 0; i < MAX_BPF_REG; i++) {
1614 		if (memcmp(&old->regs[i], &cur->regs[i],
1615 			   sizeof(old->regs[0])) != 0) {
1616 			if (old->regs[i].type == NOT_INIT ||
1617 			    (old->regs[i].type == UNKNOWN_VALUE &&
1618 			     cur->regs[i].type != NOT_INIT))
1619 				continue;
1620 			return false;
1621 		}
1622 	}
1623 
1624 	for (i = 0; i < MAX_BPF_STACK; i++) {
1625 		if (old->stack_slot_type[i] == STACK_INVALID)
1626 			continue;
1627 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
1628 			/* Ex: old explored (safe) state has STACK_SPILL in
1629 			 * this stack slot, but current has has STACK_MISC ->
1630 			 * this verifier states are not equivalent,
1631 			 * return false to continue verification of this path
1632 			 */
1633 			return false;
1634 		if (i % BPF_REG_SIZE)
1635 			continue;
1636 		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
1637 			   &cur->spilled_regs[i / BPF_REG_SIZE],
1638 			   sizeof(old->spilled_regs[0])))
1639 			/* when explored and current stack slot types are
1640 			 * the same, check that stored pointers types
1641 			 * are the same as well.
1642 			 * Ex: explored safe path could have stored
1643 			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
1644 			 * but current path has stored:
1645 			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
1646 			 * such verifier states are not equivalent.
1647 			 * return false to continue verification of this path
1648 			 */
1649 			return false;
1650 		else
1651 			continue;
1652 	}
1653 	return true;
1654 }
1655 
1656 static int is_state_visited(struct verifier_env *env, int insn_idx)
1657 {
1658 	struct verifier_state_list *new_sl;
1659 	struct verifier_state_list *sl;
1660 
1661 	sl = env->explored_states[insn_idx];
1662 	if (!sl)
1663 		/* this 'insn_idx' instruction wasn't marked, so we will not
1664 		 * be doing state search here
1665 		 */
1666 		return 0;
1667 
1668 	while (sl != STATE_LIST_MARK) {
1669 		if (states_equal(&sl->state, &env->cur_state))
1670 			/* reached equivalent register/stack state,
1671 			 * prune the search
1672 			 */
1673 			return 1;
1674 		sl = sl->next;
1675 	}
1676 
1677 	/* there were no equivalent states, remember current one.
1678 	 * technically the current state is not proven to be safe yet,
1679 	 * but it will either reach bpf_exit (which means it's safe) or
1680 	 * it will be rejected. Since there are no loops, we won't be
1681 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
1682 	 */
1683 	new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
1684 	if (!new_sl)
1685 		return -ENOMEM;
1686 
1687 	/* add new state to the head of linked list */
1688 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
1689 	new_sl->next = env->explored_states[insn_idx];
1690 	env->explored_states[insn_idx] = new_sl;
1691 	return 0;
1692 }
1693 
1694 static int do_check(struct verifier_env *env)
1695 {
1696 	struct verifier_state *state = &env->cur_state;
1697 	struct bpf_insn *insns = env->prog->insnsi;
1698 	struct reg_state *regs = state->regs;
1699 	int insn_cnt = env->prog->len;
1700 	int insn_idx, prev_insn_idx = 0;
1701 	int insn_processed = 0;
1702 	bool do_print_state = false;
1703 
1704 	init_reg_state(regs);
1705 	insn_idx = 0;
1706 	for (;;) {
1707 		struct bpf_insn *insn;
1708 		u8 class;
1709 		int err;
1710 
1711 		if (insn_idx >= insn_cnt) {
1712 			verbose("invalid insn idx %d insn_cnt %d\n",
1713 				insn_idx, insn_cnt);
1714 			return -EFAULT;
1715 		}
1716 
1717 		insn = &insns[insn_idx];
1718 		class = BPF_CLASS(insn->code);
1719 
1720 		if (++insn_processed > 32768) {
1721 			verbose("BPF program is too large. Proccessed %d insn\n",
1722 				insn_processed);
1723 			return -E2BIG;
1724 		}
1725 
1726 		err = is_state_visited(env, insn_idx);
1727 		if (err < 0)
1728 			return err;
1729 		if (err == 1) {
1730 			/* found equivalent state, can prune the search */
1731 			if (log_level) {
1732 				if (do_print_state)
1733 					verbose("\nfrom %d to %d: safe\n",
1734 						prev_insn_idx, insn_idx);
1735 				else
1736 					verbose("%d: safe\n", insn_idx);
1737 			}
1738 			goto process_bpf_exit;
1739 		}
1740 
1741 		if (log_level && do_print_state) {
1742 			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1743 			print_verifier_state(env);
1744 			do_print_state = false;
1745 		}
1746 
1747 		if (log_level) {
1748 			verbose("%d: ", insn_idx);
1749 			print_bpf_insn(insn);
1750 		}
1751 
1752 		if (class == BPF_ALU || class == BPF_ALU64) {
1753 			err = check_alu_op(env, insn);
1754 			if (err)
1755 				return err;
1756 
1757 		} else if (class == BPF_LDX) {
1758 			enum bpf_reg_type src_reg_type;
1759 
1760 			/* check for reserved fields is already done */
1761 
1762 			/* check src operand */
1763 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1764 			if (err)
1765 				return err;
1766 
1767 			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1768 			if (err)
1769 				return err;
1770 
1771 			src_reg_type = regs[insn->src_reg].type;
1772 
1773 			/* check that memory (src_reg + off) is readable,
1774 			 * the state of dst_reg will be updated by this func
1775 			 */
1776 			err = check_mem_access(env, insn->src_reg, insn->off,
1777 					       BPF_SIZE(insn->code), BPF_READ,
1778 					       insn->dst_reg);
1779 			if (err)
1780 				return err;
1781 
1782 			if (BPF_SIZE(insn->code) != BPF_W) {
1783 				insn_idx++;
1784 				continue;
1785 			}
1786 
1787 			if (insn->imm == 0) {
1788 				/* saw a valid insn
1789 				 * dst_reg = *(u32 *)(src_reg + off)
1790 				 * use reserved 'imm' field to mark this insn
1791 				 */
1792 				insn->imm = src_reg_type;
1793 
1794 			} else if (src_reg_type != insn->imm &&
1795 				   (src_reg_type == PTR_TO_CTX ||
1796 				    insn->imm == PTR_TO_CTX)) {
1797 				/* ABuser program is trying to use the same insn
1798 				 * dst_reg = *(u32*) (src_reg + off)
1799 				 * with different pointer types:
1800 				 * src_reg == ctx in one branch and
1801 				 * src_reg == stack|map in some other branch.
1802 				 * Reject it.
1803 				 */
1804 				verbose("same insn cannot be used with different pointers\n");
1805 				return -EINVAL;
1806 			}
1807 
1808 		} else if (class == BPF_STX) {
1809 			enum bpf_reg_type dst_reg_type;
1810 
1811 			if (BPF_MODE(insn->code) == BPF_XADD) {
1812 				err = check_xadd(env, insn);
1813 				if (err)
1814 					return err;
1815 				insn_idx++;
1816 				continue;
1817 			}
1818 
1819 			/* check src1 operand */
1820 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1821 			if (err)
1822 				return err;
1823 			/* check src2 operand */
1824 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1825 			if (err)
1826 				return err;
1827 
1828 			dst_reg_type = regs[insn->dst_reg].type;
1829 
1830 			/* check that memory (dst_reg + off) is writeable */
1831 			err = check_mem_access(env, insn->dst_reg, insn->off,
1832 					       BPF_SIZE(insn->code), BPF_WRITE,
1833 					       insn->src_reg);
1834 			if (err)
1835 				return err;
1836 
1837 			if (insn->imm == 0) {
1838 				insn->imm = dst_reg_type;
1839 			} else if (dst_reg_type != insn->imm &&
1840 				   (dst_reg_type == PTR_TO_CTX ||
1841 				    insn->imm == PTR_TO_CTX)) {
1842 				verbose("same insn cannot be used with different pointers\n");
1843 				return -EINVAL;
1844 			}
1845 
1846 		} else if (class == BPF_ST) {
1847 			if (BPF_MODE(insn->code) != BPF_MEM ||
1848 			    insn->src_reg != BPF_REG_0) {
1849 				verbose("BPF_ST uses reserved fields\n");
1850 				return -EINVAL;
1851 			}
1852 			/* check src operand */
1853 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1854 			if (err)
1855 				return err;
1856 
1857 			/* check that memory (dst_reg + off) is writeable */
1858 			err = check_mem_access(env, insn->dst_reg, insn->off,
1859 					       BPF_SIZE(insn->code), BPF_WRITE,
1860 					       -1);
1861 			if (err)
1862 				return err;
1863 
1864 		} else if (class == BPF_JMP) {
1865 			u8 opcode = BPF_OP(insn->code);
1866 
1867 			if (opcode == BPF_CALL) {
1868 				if (BPF_SRC(insn->code) != BPF_K ||
1869 				    insn->off != 0 ||
1870 				    insn->src_reg != BPF_REG_0 ||
1871 				    insn->dst_reg != BPF_REG_0) {
1872 					verbose("BPF_CALL uses reserved fields\n");
1873 					return -EINVAL;
1874 				}
1875 
1876 				err = check_call(env, insn->imm);
1877 				if (err)
1878 					return err;
1879 
1880 			} else if (opcode == BPF_JA) {
1881 				if (BPF_SRC(insn->code) != BPF_K ||
1882 				    insn->imm != 0 ||
1883 				    insn->src_reg != BPF_REG_0 ||
1884 				    insn->dst_reg != BPF_REG_0) {
1885 					verbose("BPF_JA uses reserved fields\n");
1886 					return -EINVAL;
1887 				}
1888 
1889 				insn_idx += insn->off + 1;
1890 				continue;
1891 
1892 			} else if (opcode == BPF_EXIT) {
1893 				if (BPF_SRC(insn->code) != BPF_K ||
1894 				    insn->imm != 0 ||
1895 				    insn->src_reg != BPF_REG_0 ||
1896 				    insn->dst_reg != BPF_REG_0) {
1897 					verbose("BPF_EXIT uses reserved fields\n");
1898 					return -EINVAL;
1899 				}
1900 
1901 				/* eBPF calling convetion is such that R0 is used
1902 				 * to return the value from eBPF program.
1903 				 * Make sure that it's readable at this time
1904 				 * of bpf_exit, which means that program wrote
1905 				 * something into it earlier
1906 				 */
1907 				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
1908 				if (err)
1909 					return err;
1910 
1911 				if (is_pointer_value(env, BPF_REG_0)) {
1912 					verbose("R0 leaks addr as return value\n");
1913 					return -EACCES;
1914 				}
1915 
1916 process_bpf_exit:
1917 				insn_idx = pop_stack(env, &prev_insn_idx);
1918 				if (insn_idx < 0) {
1919 					break;
1920 				} else {
1921 					do_print_state = true;
1922 					continue;
1923 				}
1924 			} else {
1925 				err = check_cond_jmp_op(env, insn, &insn_idx);
1926 				if (err)
1927 					return err;
1928 			}
1929 		} else if (class == BPF_LD) {
1930 			u8 mode = BPF_MODE(insn->code);
1931 
1932 			if (mode == BPF_ABS || mode == BPF_IND) {
1933 				err = check_ld_abs(env, insn);
1934 				if (err)
1935 					return err;
1936 
1937 			} else if (mode == BPF_IMM) {
1938 				err = check_ld_imm(env, insn);
1939 				if (err)
1940 					return err;
1941 
1942 				insn_idx++;
1943 			} else {
1944 				verbose("invalid BPF_LD mode\n");
1945 				return -EINVAL;
1946 			}
1947 		} else {
1948 			verbose("unknown insn class %d\n", class);
1949 			return -EINVAL;
1950 		}
1951 
1952 		insn_idx++;
1953 	}
1954 
1955 	return 0;
1956 }
1957 
1958 /* look for pseudo eBPF instructions that access map FDs and
1959  * replace them with actual map pointers
1960  */
1961 static int replace_map_fd_with_map_ptr(struct verifier_env *env)
1962 {
1963 	struct bpf_insn *insn = env->prog->insnsi;
1964 	int insn_cnt = env->prog->len;
1965 	int i, j;
1966 
1967 	for (i = 0; i < insn_cnt; i++, insn++) {
1968 		if (BPF_CLASS(insn->code) == BPF_LDX &&
1969 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
1970 			verbose("BPF_LDX uses reserved fields\n");
1971 			return -EINVAL;
1972 		}
1973 
1974 		if (BPF_CLASS(insn->code) == BPF_STX &&
1975 		    ((BPF_MODE(insn->code) != BPF_MEM &&
1976 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
1977 			verbose("BPF_STX uses reserved fields\n");
1978 			return -EINVAL;
1979 		}
1980 
1981 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
1982 			struct bpf_map *map;
1983 			struct fd f;
1984 
1985 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
1986 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
1987 			    insn[1].off != 0) {
1988 				verbose("invalid bpf_ld_imm64 insn\n");
1989 				return -EINVAL;
1990 			}
1991 
1992 			if (insn->src_reg == 0)
1993 				/* valid generic load 64-bit imm */
1994 				goto next_insn;
1995 
1996 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
1997 				verbose("unrecognized bpf_ld_imm64 insn\n");
1998 				return -EINVAL;
1999 			}
2000 
2001 			f = fdget(insn->imm);
2002 			map = __bpf_map_get(f);
2003 			if (IS_ERR(map)) {
2004 				verbose("fd %d is not pointing to valid bpf_map\n",
2005 					insn->imm);
2006 				fdput(f);
2007 				return PTR_ERR(map);
2008 			}
2009 
2010 			/* store map pointer inside BPF_LD_IMM64 instruction */
2011 			insn[0].imm = (u32) (unsigned long) map;
2012 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
2013 
2014 			/* check whether we recorded this map already */
2015 			for (j = 0; j < env->used_map_cnt; j++)
2016 				if (env->used_maps[j] == map) {
2017 					fdput(f);
2018 					goto next_insn;
2019 				}
2020 
2021 			if (env->used_map_cnt >= MAX_USED_MAPS) {
2022 				fdput(f);
2023 				return -E2BIG;
2024 			}
2025 
2026 			/* remember this map */
2027 			env->used_maps[env->used_map_cnt++] = map;
2028 
2029 			/* hold the map. If the program is rejected by verifier,
2030 			 * the map will be released by release_maps() or it
2031 			 * will be used by the valid program until it's unloaded
2032 			 * and all maps are released in free_bpf_prog_info()
2033 			 */
2034 			bpf_map_inc(map, false);
2035 			fdput(f);
2036 next_insn:
2037 			insn++;
2038 			i++;
2039 		}
2040 	}
2041 
2042 	/* now all pseudo BPF_LD_IMM64 instructions load valid
2043 	 * 'struct bpf_map *' into a register instead of user map_fd.
2044 	 * These pointers will be used later by verifier to validate map access.
2045 	 */
2046 	return 0;
2047 }
2048 
2049 /* drop refcnt of maps used by the rejected program */
2050 static void release_maps(struct verifier_env *env)
2051 {
2052 	int i;
2053 
2054 	for (i = 0; i < env->used_map_cnt; i++)
2055 		bpf_map_put(env->used_maps[i]);
2056 }
2057 
2058 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
2059 static void convert_pseudo_ld_imm64(struct verifier_env *env)
2060 {
2061 	struct bpf_insn *insn = env->prog->insnsi;
2062 	int insn_cnt = env->prog->len;
2063 	int i;
2064 
2065 	for (i = 0; i < insn_cnt; i++, insn++)
2066 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
2067 			insn->src_reg = 0;
2068 }
2069 
2070 static void adjust_branches(struct bpf_prog *prog, int pos, int delta)
2071 {
2072 	struct bpf_insn *insn = prog->insnsi;
2073 	int insn_cnt = prog->len;
2074 	int i;
2075 
2076 	for (i = 0; i < insn_cnt; i++, insn++) {
2077 		if (BPF_CLASS(insn->code) != BPF_JMP ||
2078 		    BPF_OP(insn->code) == BPF_CALL ||
2079 		    BPF_OP(insn->code) == BPF_EXIT)
2080 			continue;
2081 
2082 		/* adjust offset of jmps if necessary */
2083 		if (i < pos && i + insn->off + 1 > pos)
2084 			insn->off += delta;
2085 		else if (i > pos && i + insn->off + 1 < pos)
2086 			insn->off -= delta;
2087 	}
2088 }
2089 
2090 /* convert load instructions that access fields of 'struct __sk_buff'
2091  * into sequence of instructions that access fields of 'struct sk_buff'
2092  */
2093 static int convert_ctx_accesses(struct verifier_env *env)
2094 {
2095 	struct bpf_insn *insn = env->prog->insnsi;
2096 	int insn_cnt = env->prog->len;
2097 	struct bpf_insn insn_buf[16];
2098 	struct bpf_prog *new_prog;
2099 	u32 cnt;
2100 	int i;
2101 	enum bpf_access_type type;
2102 
2103 	if (!env->prog->aux->ops->convert_ctx_access)
2104 		return 0;
2105 
2106 	for (i = 0; i < insn_cnt; i++, insn++) {
2107 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_W))
2108 			type = BPF_READ;
2109 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_W))
2110 			type = BPF_WRITE;
2111 		else
2112 			continue;
2113 
2114 		if (insn->imm != PTR_TO_CTX) {
2115 			/* clear internal mark */
2116 			insn->imm = 0;
2117 			continue;
2118 		}
2119 
2120 		cnt = env->prog->aux->ops->
2121 			convert_ctx_access(type, insn->dst_reg, insn->src_reg,
2122 					   insn->off, insn_buf, env->prog);
2123 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
2124 			verbose("bpf verifier is misconfigured\n");
2125 			return -EINVAL;
2126 		}
2127 
2128 		if (cnt == 1) {
2129 			memcpy(insn, insn_buf, sizeof(*insn));
2130 			continue;
2131 		}
2132 
2133 		/* several new insns need to be inserted. Make room for them */
2134 		insn_cnt += cnt - 1;
2135 		new_prog = bpf_prog_realloc(env->prog,
2136 					    bpf_prog_size(insn_cnt),
2137 					    GFP_USER);
2138 		if (!new_prog)
2139 			return -ENOMEM;
2140 
2141 		new_prog->len = insn_cnt;
2142 
2143 		memmove(new_prog->insnsi + i + cnt, new_prog->insns + i + 1,
2144 			sizeof(*insn) * (insn_cnt - i - cnt));
2145 
2146 		/* copy substitute insns in place of load instruction */
2147 		memcpy(new_prog->insnsi + i, insn_buf, sizeof(*insn) * cnt);
2148 
2149 		/* adjust branches in the whole program */
2150 		adjust_branches(new_prog, i, cnt - 1);
2151 
2152 		/* keep walking new program and skip insns we just inserted */
2153 		env->prog = new_prog;
2154 		insn = new_prog->insnsi + i + cnt - 1;
2155 		i += cnt - 1;
2156 	}
2157 
2158 	return 0;
2159 }
2160 
2161 static void free_states(struct verifier_env *env)
2162 {
2163 	struct verifier_state_list *sl, *sln;
2164 	int i;
2165 
2166 	if (!env->explored_states)
2167 		return;
2168 
2169 	for (i = 0; i < env->prog->len; i++) {
2170 		sl = env->explored_states[i];
2171 
2172 		if (sl)
2173 			while (sl != STATE_LIST_MARK) {
2174 				sln = sl->next;
2175 				kfree(sl);
2176 				sl = sln;
2177 			}
2178 	}
2179 
2180 	kfree(env->explored_states);
2181 }
2182 
2183 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
2184 {
2185 	char __user *log_ubuf = NULL;
2186 	struct verifier_env *env;
2187 	int ret = -EINVAL;
2188 
2189 	if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
2190 		return -E2BIG;
2191 
2192 	/* 'struct verifier_env' can be global, but since it's not small,
2193 	 * allocate/free it every time bpf_check() is called
2194 	 */
2195 	env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
2196 	if (!env)
2197 		return -ENOMEM;
2198 
2199 	env->prog = *prog;
2200 
2201 	/* grab the mutex to protect few globals used by verifier */
2202 	mutex_lock(&bpf_verifier_lock);
2203 
2204 	if (attr->log_level || attr->log_buf || attr->log_size) {
2205 		/* user requested verbose verifier output
2206 		 * and supplied buffer to store the verification trace
2207 		 */
2208 		log_level = attr->log_level;
2209 		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
2210 		log_size = attr->log_size;
2211 		log_len = 0;
2212 
2213 		ret = -EINVAL;
2214 		/* log_* values have to be sane */
2215 		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
2216 		    log_level == 0 || log_ubuf == NULL)
2217 			goto free_env;
2218 
2219 		ret = -ENOMEM;
2220 		log_buf = vmalloc(log_size);
2221 		if (!log_buf)
2222 			goto free_env;
2223 	} else {
2224 		log_level = 0;
2225 	}
2226 
2227 	ret = replace_map_fd_with_map_ptr(env);
2228 	if (ret < 0)
2229 		goto skip_full_check;
2230 
2231 	env->explored_states = kcalloc(env->prog->len,
2232 				       sizeof(struct verifier_state_list *),
2233 				       GFP_USER);
2234 	ret = -ENOMEM;
2235 	if (!env->explored_states)
2236 		goto skip_full_check;
2237 
2238 	ret = check_cfg(env);
2239 	if (ret < 0)
2240 		goto skip_full_check;
2241 
2242 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
2243 
2244 	ret = do_check(env);
2245 
2246 skip_full_check:
2247 	while (pop_stack(env, NULL) >= 0);
2248 	free_states(env);
2249 
2250 	if (ret == 0)
2251 		/* program is valid, convert *(u32*)(ctx + off) accesses */
2252 		ret = convert_ctx_accesses(env);
2253 
2254 	if (log_level && log_len >= log_size - 1) {
2255 		BUG_ON(log_len >= log_size);
2256 		/* verifier log exceeded user supplied buffer */
2257 		ret = -ENOSPC;
2258 		/* fall through to return what was recorded */
2259 	}
2260 
2261 	/* copy verifier log back to user space including trailing zero */
2262 	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
2263 		ret = -EFAULT;
2264 		goto free_log_buf;
2265 	}
2266 
2267 	if (ret == 0 && env->used_map_cnt) {
2268 		/* if program passed verifier, update used_maps in bpf_prog_info */
2269 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
2270 							  sizeof(env->used_maps[0]),
2271 							  GFP_KERNEL);
2272 
2273 		if (!env->prog->aux->used_maps) {
2274 			ret = -ENOMEM;
2275 			goto free_log_buf;
2276 		}
2277 
2278 		memcpy(env->prog->aux->used_maps, env->used_maps,
2279 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
2280 		env->prog->aux->used_map_cnt = env->used_map_cnt;
2281 
2282 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
2283 		 * bpf_ld_imm64 instructions
2284 		 */
2285 		convert_pseudo_ld_imm64(env);
2286 	}
2287 
2288 free_log_buf:
2289 	if (log_level)
2290 		vfree(log_buf);
2291 free_env:
2292 	if (!env->prog->aux->used_maps)
2293 		/* if we didn't copy map pointers into bpf_prog_info, release
2294 		 * them now. Otherwise free_bpf_prog_info() will release them.
2295 		 */
2296 		release_maps(env);
2297 	*prog = env->prog;
2298 	kfree(env);
2299 	mutex_unlock(&bpf_verifier_lock);
2300 	return ret;
2301 }
2302