xref: /linux/kernel/bpf/verifier.c (revision 8b4483658364f05b2e32845c8f445cdfd9452286)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of version 2 of the GNU General Public
7  * License as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  * General Public License for more details.
13  */
14 #include <uapi/linux/btf.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/bpf.h>
19 #include <linux/btf.h>
20 #include <linux/bpf_verifier.h>
21 #include <linux/filter.h>
22 #include <net/netlink.h>
23 #include <linux/file.h>
24 #include <linux/vmalloc.h>
25 #include <linux/stringify.h>
26 #include <linux/bsearch.h>
27 #include <linux/sort.h>
28 #include <linux/perf_event.h>
29 #include <linux/ctype.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #include <linux/bpf_types.h>
38 #undef BPF_PROG_TYPE
39 #undef BPF_MAP_TYPE
40 };
41 
42 /* bpf_check() is a static code analyzer that walks eBPF program
43  * instruction by instruction and updates register/stack state.
44  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45  *
46  * The first pass is depth-first-search to check that the program is a DAG.
47  * It rejects the following programs:
48  * - larger than BPF_MAXINSNS insns
49  * - if loop is present (detected via back-edge)
50  * - unreachable insns exist (shouldn't be a forest. program = one function)
51  * - out of bounds or malformed jumps
52  * The second pass is all possible path descent from the 1st insn.
53  * Since it's analyzing all pathes through the program, the length of the
54  * analysis is limited to 64k insn, which may be hit even if total number of
55  * insn is less then 4K, but there are too many branches that change stack/regs.
56  * Number of 'branches to be analyzed' is limited to 1k
57  *
58  * On entry to each instruction, each register has a type, and the instruction
59  * changes the types of the registers depending on instruction semantics.
60  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61  * copied to R1.
62  *
63  * All registers are 64-bit.
64  * R0 - return register
65  * R1-R5 argument passing registers
66  * R6-R9 callee saved registers
67  * R10 - frame pointer read-only
68  *
69  * At the start of BPF program the register R1 contains a pointer to bpf_context
70  * and has type PTR_TO_CTX.
71  *
72  * Verifier tracks arithmetic operations on pointers in case:
73  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75  * 1st insn copies R10 (which has FRAME_PTR) type into R1
76  * and 2nd arithmetic instruction is pattern matched to recognize
77  * that it wants to construct a pointer to some element within stack.
78  * So after 2nd insn, the register R1 has type PTR_TO_STACK
79  * (and -20 constant is saved for further stack bounds checking).
80  * Meaning that this reg is a pointer to stack plus known immediate constant.
81  *
82  * Most of the time the registers have SCALAR_VALUE type, which
83  * means the register has some value, but it's not a valid pointer.
84  * (like pointer plus pointer becomes SCALAR_VALUE type)
85  *
86  * When verifier sees load or store instructions the type of base register
87  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88  * four pointer types recognized by check_mem_access() function.
89  *
90  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91  * and the range of [ptr, ptr + map's value_size) is accessible.
92  *
93  * registers used to pass values to function calls are checked against
94  * function argument constraints.
95  *
96  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97  * It means that the register type passed to this function must be
98  * PTR_TO_STACK and it will be used inside the function as
99  * 'pointer to map element key'
100  *
101  * For example the argument constraints for bpf_map_lookup_elem():
102  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103  *   .arg1_type = ARG_CONST_MAP_PTR,
104  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
105  *
106  * ret_type says that this function returns 'pointer to map elem value or null'
107  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108  * 2nd argument should be a pointer to stack, which will be used inside
109  * the helper function as a pointer to map element key.
110  *
111  * On the kernel side the helper function looks like:
112  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113  * {
114  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115  *    void *key = (void *) (unsigned long) r2;
116  *    void *value;
117  *
118  *    here kernel can access 'key' and 'map' pointers safely, knowing that
119  *    [key, key + map->key_size) bytes are valid and were initialized on
120  *    the stack of eBPF program.
121  * }
122  *
123  * Corresponding eBPF program may look like:
124  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
125  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
127  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128  * here verifier looks at prototype of map_lookup_elem() and sees:
129  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131  *
132  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134  * and were initialized prior to this call.
135  * If it's ok, then verifier allows this BPF_CALL insn and looks at
136  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138  * returns ether pointer to map value or NULL.
139  *
140  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141  * insn, the register holding that pointer in the true branch changes state to
142  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143  * branch. See check_cond_jmp_op().
144  *
145  * After the call R0 is set to return type of the function and registers R1-R5
146  * are set to NOT_INIT to indicate that they are no longer readable.
147  *
148  * The following reference types represent a potential reference to a kernel
149  * resource which, after first being allocated, must be checked and freed by
150  * the BPF program:
151  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152  *
153  * When the verifier sees a helper call return a reference type, it allocates a
154  * pointer id for the reference and stores it in the current function state.
155  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157  * passes through a NULL-check conditional. For the branch wherein the state is
158  * changed to CONST_IMM, the verifier releases the reference.
159  *
160  * For each helper function that allocates a reference, such as
161  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162  * bpf_sk_release(). When a reference type passes into the release function,
163  * the verifier also releases the reference. If any unchecked or unreleased
164  * reference remains at the end of the program, the verifier rejects it.
165  */
166 
167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
168 struct bpf_verifier_stack_elem {
169 	/* verifer state is 'st'
170 	 * before processing instruction 'insn_idx'
171 	 * and after processing instruction 'prev_insn_idx'
172 	 */
173 	struct bpf_verifier_state st;
174 	int insn_idx;
175 	int prev_insn_idx;
176 	struct bpf_verifier_stack_elem *next;
177 };
178 
179 #define BPF_COMPLEXITY_LIMIT_STACK	1024
180 #define BPF_COMPLEXITY_LIMIT_STATES	64
181 
182 #define BPF_MAP_PTR_UNPRIV	1UL
183 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
184 					  POISON_POINTER_DELTA))
185 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
186 
187 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
188 {
189 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
190 }
191 
192 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
193 {
194 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
195 }
196 
197 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
198 			      const struct bpf_map *map, bool unpriv)
199 {
200 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
201 	unpriv |= bpf_map_ptr_unpriv(aux);
202 	aux->map_state = (unsigned long)map |
203 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
204 }
205 
206 struct bpf_call_arg_meta {
207 	struct bpf_map *map_ptr;
208 	bool raw_mode;
209 	bool pkt_access;
210 	int regno;
211 	int access_size;
212 	s64 msize_smax_value;
213 	u64 msize_umax_value;
214 	int ref_obj_id;
215 	int func_id;
216 };
217 
218 static DEFINE_MUTEX(bpf_verifier_lock);
219 
220 static const struct bpf_line_info *
221 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
222 {
223 	const struct bpf_line_info *linfo;
224 	const struct bpf_prog *prog;
225 	u32 i, nr_linfo;
226 
227 	prog = env->prog;
228 	nr_linfo = prog->aux->nr_linfo;
229 
230 	if (!nr_linfo || insn_off >= prog->len)
231 		return NULL;
232 
233 	linfo = prog->aux->linfo;
234 	for (i = 1; i < nr_linfo; i++)
235 		if (insn_off < linfo[i].insn_off)
236 			break;
237 
238 	return &linfo[i - 1];
239 }
240 
241 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
242 		       va_list args)
243 {
244 	unsigned int n;
245 
246 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
247 
248 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
249 		  "verifier log line truncated - local buffer too short\n");
250 
251 	n = min(log->len_total - log->len_used - 1, n);
252 	log->kbuf[n] = '\0';
253 
254 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
255 		log->len_used += n;
256 	else
257 		log->ubuf = NULL;
258 }
259 
260 /* log_level controls verbosity level of eBPF verifier.
261  * bpf_verifier_log_write() is used to dump the verification trace to the log,
262  * so the user can figure out what's wrong with the program
263  */
264 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
265 					   const char *fmt, ...)
266 {
267 	va_list args;
268 
269 	if (!bpf_verifier_log_needed(&env->log))
270 		return;
271 
272 	va_start(args, fmt);
273 	bpf_verifier_vlog(&env->log, fmt, args);
274 	va_end(args);
275 }
276 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
277 
278 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
279 {
280 	struct bpf_verifier_env *env = private_data;
281 	va_list args;
282 
283 	if (!bpf_verifier_log_needed(&env->log))
284 		return;
285 
286 	va_start(args, fmt);
287 	bpf_verifier_vlog(&env->log, fmt, args);
288 	va_end(args);
289 }
290 
291 static const char *ltrim(const char *s)
292 {
293 	while (isspace(*s))
294 		s++;
295 
296 	return s;
297 }
298 
299 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
300 					 u32 insn_off,
301 					 const char *prefix_fmt, ...)
302 {
303 	const struct bpf_line_info *linfo;
304 
305 	if (!bpf_verifier_log_needed(&env->log))
306 		return;
307 
308 	linfo = find_linfo(env, insn_off);
309 	if (!linfo || linfo == env->prev_linfo)
310 		return;
311 
312 	if (prefix_fmt) {
313 		va_list args;
314 
315 		va_start(args, prefix_fmt);
316 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
317 		va_end(args);
318 	}
319 
320 	verbose(env, "%s\n",
321 		ltrim(btf_name_by_offset(env->prog->aux->btf,
322 					 linfo->line_off)));
323 
324 	env->prev_linfo = linfo;
325 }
326 
327 static bool type_is_pkt_pointer(enum bpf_reg_type type)
328 {
329 	return type == PTR_TO_PACKET ||
330 	       type == PTR_TO_PACKET_META;
331 }
332 
333 static bool type_is_sk_pointer(enum bpf_reg_type type)
334 {
335 	return type == PTR_TO_SOCKET ||
336 		type == PTR_TO_SOCK_COMMON ||
337 		type == PTR_TO_TCP_SOCK;
338 }
339 
340 static bool reg_type_may_be_null(enum bpf_reg_type type)
341 {
342 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
343 	       type == PTR_TO_SOCKET_OR_NULL ||
344 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
345 	       type == PTR_TO_TCP_SOCK_OR_NULL;
346 }
347 
348 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
349 {
350 	return reg->type == PTR_TO_MAP_VALUE &&
351 		map_value_has_spin_lock(reg->map_ptr);
352 }
353 
354 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
355 {
356 	return type == PTR_TO_SOCKET ||
357 		type == PTR_TO_SOCKET_OR_NULL ||
358 		type == PTR_TO_TCP_SOCK ||
359 		type == PTR_TO_TCP_SOCK_OR_NULL;
360 }
361 
362 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
363 {
364 	return type == ARG_PTR_TO_SOCK_COMMON;
365 }
366 
367 /* Determine whether the function releases some resources allocated by another
368  * function call. The first reference type argument will be assumed to be
369  * released by release_reference().
370  */
371 static bool is_release_function(enum bpf_func_id func_id)
372 {
373 	return func_id == BPF_FUNC_sk_release;
374 }
375 
376 static bool is_acquire_function(enum bpf_func_id func_id)
377 {
378 	return func_id == BPF_FUNC_sk_lookup_tcp ||
379 		func_id == BPF_FUNC_sk_lookup_udp ||
380 		func_id == BPF_FUNC_skc_lookup_tcp;
381 }
382 
383 static bool is_ptr_cast_function(enum bpf_func_id func_id)
384 {
385 	return func_id == BPF_FUNC_tcp_sock ||
386 		func_id == BPF_FUNC_sk_fullsock;
387 }
388 
389 /* string representation of 'enum bpf_reg_type' */
390 static const char * const reg_type_str[] = {
391 	[NOT_INIT]		= "?",
392 	[SCALAR_VALUE]		= "inv",
393 	[PTR_TO_CTX]		= "ctx",
394 	[CONST_PTR_TO_MAP]	= "map_ptr",
395 	[PTR_TO_MAP_VALUE]	= "map_value",
396 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
397 	[PTR_TO_STACK]		= "fp",
398 	[PTR_TO_PACKET]		= "pkt",
399 	[PTR_TO_PACKET_META]	= "pkt_meta",
400 	[PTR_TO_PACKET_END]	= "pkt_end",
401 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
402 	[PTR_TO_SOCKET]		= "sock",
403 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
404 	[PTR_TO_SOCK_COMMON]	= "sock_common",
405 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
406 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
407 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
408 };
409 
410 static char slot_type_char[] = {
411 	[STACK_INVALID]	= '?',
412 	[STACK_SPILL]	= 'r',
413 	[STACK_MISC]	= 'm',
414 	[STACK_ZERO]	= '0',
415 };
416 
417 static void print_liveness(struct bpf_verifier_env *env,
418 			   enum bpf_reg_liveness live)
419 {
420 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
421 	    verbose(env, "_");
422 	if (live & REG_LIVE_READ)
423 		verbose(env, "r");
424 	if (live & REG_LIVE_WRITTEN)
425 		verbose(env, "w");
426 	if (live & REG_LIVE_DONE)
427 		verbose(env, "D");
428 }
429 
430 static struct bpf_func_state *func(struct bpf_verifier_env *env,
431 				   const struct bpf_reg_state *reg)
432 {
433 	struct bpf_verifier_state *cur = env->cur_state;
434 
435 	return cur->frame[reg->frameno];
436 }
437 
438 static void print_verifier_state(struct bpf_verifier_env *env,
439 				 const struct bpf_func_state *state)
440 {
441 	const struct bpf_reg_state *reg;
442 	enum bpf_reg_type t;
443 	int i;
444 
445 	if (state->frameno)
446 		verbose(env, " frame%d:", state->frameno);
447 	for (i = 0; i < MAX_BPF_REG; i++) {
448 		reg = &state->regs[i];
449 		t = reg->type;
450 		if (t == NOT_INIT)
451 			continue;
452 		verbose(env, " R%d", i);
453 		print_liveness(env, reg->live);
454 		verbose(env, "=%s", reg_type_str[t]);
455 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
456 		    tnum_is_const(reg->var_off)) {
457 			/* reg->off should be 0 for SCALAR_VALUE */
458 			verbose(env, "%lld", reg->var_off.value + reg->off);
459 			if (t == PTR_TO_STACK)
460 				verbose(env, ",call_%d", func(env, reg)->callsite);
461 		} else {
462 			verbose(env, "(id=%d", reg->id);
463 			if (reg_type_may_be_refcounted_or_null(t))
464 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
465 			if (t != SCALAR_VALUE)
466 				verbose(env, ",off=%d", reg->off);
467 			if (type_is_pkt_pointer(t))
468 				verbose(env, ",r=%d", reg->range);
469 			else if (t == CONST_PTR_TO_MAP ||
470 				 t == PTR_TO_MAP_VALUE ||
471 				 t == PTR_TO_MAP_VALUE_OR_NULL)
472 				verbose(env, ",ks=%d,vs=%d",
473 					reg->map_ptr->key_size,
474 					reg->map_ptr->value_size);
475 			if (tnum_is_const(reg->var_off)) {
476 				/* Typically an immediate SCALAR_VALUE, but
477 				 * could be a pointer whose offset is too big
478 				 * for reg->off
479 				 */
480 				verbose(env, ",imm=%llx", reg->var_off.value);
481 			} else {
482 				if (reg->smin_value != reg->umin_value &&
483 				    reg->smin_value != S64_MIN)
484 					verbose(env, ",smin_value=%lld",
485 						(long long)reg->smin_value);
486 				if (reg->smax_value != reg->umax_value &&
487 				    reg->smax_value != S64_MAX)
488 					verbose(env, ",smax_value=%lld",
489 						(long long)reg->smax_value);
490 				if (reg->umin_value != 0)
491 					verbose(env, ",umin_value=%llu",
492 						(unsigned long long)reg->umin_value);
493 				if (reg->umax_value != U64_MAX)
494 					verbose(env, ",umax_value=%llu",
495 						(unsigned long long)reg->umax_value);
496 				if (!tnum_is_unknown(reg->var_off)) {
497 					char tn_buf[48];
498 
499 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
500 					verbose(env, ",var_off=%s", tn_buf);
501 				}
502 			}
503 			verbose(env, ")");
504 		}
505 	}
506 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
507 		char types_buf[BPF_REG_SIZE + 1];
508 		bool valid = false;
509 		int j;
510 
511 		for (j = 0; j < BPF_REG_SIZE; j++) {
512 			if (state->stack[i].slot_type[j] != STACK_INVALID)
513 				valid = true;
514 			types_buf[j] = slot_type_char[
515 					state->stack[i].slot_type[j]];
516 		}
517 		types_buf[BPF_REG_SIZE] = 0;
518 		if (!valid)
519 			continue;
520 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
521 		print_liveness(env, state->stack[i].spilled_ptr.live);
522 		if (state->stack[i].slot_type[0] == STACK_SPILL)
523 			verbose(env, "=%s",
524 				reg_type_str[state->stack[i].spilled_ptr.type]);
525 		else
526 			verbose(env, "=%s", types_buf);
527 	}
528 	if (state->acquired_refs && state->refs[0].id) {
529 		verbose(env, " refs=%d", state->refs[0].id);
530 		for (i = 1; i < state->acquired_refs; i++)
531 			if (state->refs[i].id)
532 				verbose(env, ",%d", state->refs[i].id);
533 	}
534 	verbose(env, "\n");
535 }
536 
537 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
538 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
539 			       const struct bpf_func_state *src)	\
540 {									\
541 	if (!src->FIELD)						\
542 		return 0;						\
543 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
544 		/* internal bug, make state invalid to reject the program */ \
545 		memset(dst, 0, sizeof(*dst));				\
546 		return -EFAULT;						\
547 	}								\
548 	memcpy(dst->FIELD, src->FIELD,					\
549 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
550 	return 0;							\
551 }
552 /* copy_reference_state() */
553 COPY_STATE_FN(reference, acquired_refs, refs, 1)
554 /* copy_stack_state() */
555 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
556 #undef COPY_STATE_FN
557 
558 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
559 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
560 				  bool copy_old)			\
561 {									\
562 	u32 old_size = state->COUNT;					\
563 	struct bpf_##NAME##_state *new_##FIELD;				\
564 	int slot = size / SIZE;						\
565 									\
566 	if (size <= old_size || !size) {				\
567 		if (copy_old)						\
568 			return 0;					\
569 		state->COUNT = slot * SIZE;				\
570 		if (!size && old_size) {				\
571 			kfree(state->FIELD);				\
572 			state->FIELD = NULL;				\
573 		}							\
574 		return 0;						\
575 	}								\
576 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
577 				    GFP_KERNEL);			\
578 	if (!new_##FIELD)						\
579 		return -ENOMEM;						\
580 	if (copy_old) {							\
581 		if (state->FIELD)					\
582 			memcpy(new_##FIELD, state->FIELD,		\
583 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
584 		memset(new_##FIELD + old_size / SIZE, 0,		\
585 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
586 	}								\
587 	state->COUNT = slot * SIZE;					\
588 	kfree(state->FIELD);						\
589 	state->FIELD = new_##FIELD;					\
590 	return 0;							\
591 }
592 /* realloc_reference_state() */
593 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
594 /* realloc_stack_state() */
595 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
596 #undef REALLOC_STATE_FN
597 
598 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
599  * make it consume minimal amount of memory. check_stack_write() access from
600  * the program calls into realloc_func_state() to grow the stack size.
601  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
602  * which realloc_stack_state() copies over. It points to previous
603  * bpf_verifier_state which is never reallocated.
604  */
605 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
606 			      int refs_size, bool copy_old)
607 {
608 	int err = realloc_reference_state(state, refs_size, copy_old);
609 	if (err)
610 		return err;
611 	return realloc_stack_state(state, stack_size, copy_old);
612 }
613 
614 /* Acquire a pointer id from the env and update the state->refs to include
615  * this new pointer reference.
616  * On success, returns a valid pointer id to associate with the register
617  * On failure, returns a negative errno.
618  */
619 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
620 {
621 	struct bpf_func_state *state = cur_func(env);
622 	int new_ofs = state->acquired_refs;
623 	int id, err;
624 
625 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
626 	if (err)
627 		return err;
628 	id = ++env->id_gen;
629 	state->refs[new_ofs].id = id;
630 	state->refs[new_ofs].insn_idx = insn_idx;
631 
632 	return id;
633 }
634 
635 /* release function corresponding to acquire_reference_state(). Idempotent. */
636 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
637 {
638 	int i, last_idx;
639 
640 	last_idx = state->acquired_refs - 1;
641 	for (i = 0; i < state->acquired_refs; i++) {
642 		if (state->refs[i].id == ptr_id) {
643 			if (last_idx && i != last_idx)
644 				memcpy(&state->refs[i], &state->refs[last_idx],
645 				       sizeof(*state->refs));
646 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
647 			state->acquired_refs--;
648 			return 0;
649 		}
650 	}
651 	return -EINVAL;
652 }
653 
654 static int transfer_reference_state(struct bpf_func_state *dst,
655 				    struct bpf_func_state *src)
656 {
657 	int err = realloc_reference_state(dst, src->acquired_refs, false);
658 	if (err)
659 		return err;
660 	err = copy_reference_state(dst, src);
661 	if (err)
662 		return err;
663 	return 0;
664 }
665 
666 static void free_func_state(struct bpf_func_state *state)
667 {
668 	if (!state)
669 		return;
670 	kfree(state->refs);
671 	kfree(state->stack);
672 	kfree(state);
673 }
674 
675 static void free_verifier_state(struct bpf_verifier_state *state,
676 				bool free_self)
677 {
678 	int i;
679 
680 	for (i = 0; i <= state->curframe; i++) {
681 		free_func_state(state->frame[i]);
682 		state->frame[i] = NULL;
683 	}
684 	if (free_self)
685 		kfree(state);
686 }
687 
688 /* copy verifier state from src to dst growing dst stack space
689  * when necessary to accommodate larger src stack
690  */
691 static int copy_func_state(struct bpf_func_state *dst,
692 			   const struct bpf_func_state *src)
693 {
694 	int err;
695 
696 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
697 				 false);
698 	if (err)
699 		return err;
700 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
701 	err = copy_reference_state(dst, src);
702 	if (err)
703 		return err;
704 	return copy_stack_state(dst, src);
705 }
706 
707 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
708 			       const struct bpf_verifier_state *src)
709 {
710 	struct bpf_func_state *dst;
711 	int i, err;
712 
713 	/* if dst has more stack frames then src frame, free them */
714 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
715 		free_func_state(dst_state->frame[i]);
716 		dst_state->frame[i] = NULL;
717 	}
718 	dst_state->speculative = src->speculative;
719 	dst_state->curframe = src->curframe;
720 	dst_state->active_spin_lock = src->active_spin_lock;
721 	for (i = 0; i <= src->curframe; i++) {
722 		dst = dst_state->frame[i];
723 		if (!dst) {
724 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
725 			if (!dst)
726 				return -ENOMEM;
727 			dst_state->frame[i] = dst;
728 		}
729 		err = copy_func_state(dst, src->frame[i]);
730 		if (err)
731 			return err;
732 	}
733 	return 0;
734 }
735 
736 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
737 		     int *insn_idx)
738 {
739 	struct bpf_verifier_state *cur = env->cur_state;
740 	struct bpf_verifier_stack_elem *elem, *head = env->head;
741 	int err;
742 
743 	if (env->head == NULL)
744 		return -ENOENT;
745 
746 	if (cur) {
747 		err = copy_verifier_state(cur, &head->st);
748 		if (err)
749 			return err;
750 	}
751 	if (insn_idx)
752 		*insn_idx = head->insn_idx;
753 	if (prev_insn_idx)
754 		*prev_insn_idx = head->prev_insn_idx;
755 	elem = head->next;
756 	free_verifier_state(&head->st, false);
757 	kfree(head);
758 	env->head = elem;
759 	env->stack_size--;
760 	return 0;
761 }
762 
763 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
764 					     int insn_idx, int prev_insn_idx,
765 					     bool speculative)
766 {
767 	struct bpf_verifier_state *cur = env->cur_state;
768 	struct bpf_verifier_stack_elem *elem;
769 	int err;
770 
771 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
772 	if (!elem)
773 		goto err;
774 
775 	elem->insn_idx = insn_idx;
776 	elem->prev_insn_idx = prev_insn_idx;
777 	elem->next = env->head;
778 	env->head = elem;
779 	env->stack_size++;
780 	err = copy_verifier_state(&elem->st, cur);
781 	if (err)
782 		goto err;
783 	elem->st.speculative |= speculative;
784 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
785 		verbose(env, "BPF program is too complex\n");
786 		goto err;
787 	}
788 	return &elem->st;
789 err:
790 	free_verifier_state(env->cur_state, true);
791 	env->cur_state = NULL;
792 	/* pop all elements and return */
793 	while (!pop_stack(env, NULL, NULL));
794 	return NULL;
795 }
796 
797 #define CALLER_SAVED_REGS 6
798 static const int caller_saved[CALLER_SAVED_REGS] = {
799 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
800 };
801 
802 static void __mark_reg_not_init(struct bpf_reg_state *reg);
803 
804 /* Mark the unknown part of a register (variable offset or scalar value) as
805  * known to have the value @imm.
806  */
807 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
808 {
809 	/* Clear id, off, and union(map_ptr, range) */
810 	memset(((u8 *)reg) + sizeof(reg->type), 0,
811 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
812 	reg->var_off = tnum_const(imm);
813 	reg->smin_value = (s64)imm;
814 	reg->smax_value = (s64)imm;
815 	reg->umin_value = imm;
816 	reg->umax_value = imm;
817 }
818 
819 /* Mark the 'variable offset' part of a register as zero.  This should be
820  * used only on registers holding a pointer type.
821  */
822 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
823 {
824 	__mark_reg_known(reg, 0);
825 }
826 
827 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
828 {
829 	__mark_reg_known(reg, 0);
830 	reg->type = SCALAR_VALUE;
831 }
832 
833 static void mark_reg_known_zero(struct bpf_verifier_env *env,
834 				struct bpf_reg_state *regs, u32 regno)
835 {
836 	if (WARN_ON(regno >= MAX_BPF_REG)) {
837 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
838 		/* Something bad happened, let's kill all regs */
839 		for (regno = 0; regno < MAX_BPF_REG; regno++)
840 			__mark_reg_not_init(regs + regno);
841 		return;
842 	}
843 	__mark_reg_known_zero(regs + regno);
844 }
845 
846 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
847 {
848 	return type_is_pkt_pointer(reg->type);
849 }
850 
851 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
852 {
853 	return reg_is_pkt_pointer(reg) ||
854 	       reg->type == PTR_TO_PACKET_END;
855 }
856 
857 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
858 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
859 				    enum bpf_reg_type which)
860 {
861 	/* The register can already have a range from prior markings.
862 	 * This is fine as long as it hasn't been advanced from its
863 	 * origin.
864 	 */
865 	return reg->type == which &&
866 	       reg->id == 0 &&
867 	       reg->off == 0 &&
868 	       tnum_equals_const(reg->var_off, 0);
869 }
870 
871 /* Attempts to improve min/max values based on var_off information */
872 static void __update_reg_bounds(struct bpf_reg_state *reg)
873 {
874 	/* min signed is max(sign bit) | min(other bits) */
875 	reg->smin_value = max_t(s64, reg->smin_value,
876 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
877 	/* max signed is min(sign bit) | max(other bits) */
878 	reg->smax_value = min_t(s64, reg->smax_value,
879 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
880 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
881 	reg->umax_value = min(reg->umax_value,
882 			      reg->var_off.value | reg->var_off.mask);
883 }
884 
885 /* Uses signed min/max values to inform unsigned, and vice-versa */
886 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
887 {
888 	/* Learn sign from signed bounds.
889 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
890 	 * are the same, so combine.  This works even in the negative case, e.g.
891 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
892 	 */
893 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
894 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
895 							  reg->umin_value);
896 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
897 							  reg->umax_value);
898 		return;
899 	}
900 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
901 	 * boundary, so we must be careful.
902 	 */
903 	if ((s64)reg->umax_value >= 0) {
904 		/* Positive.  We can't learn anything from the smin, but smax
905 		 * is positive, hence safe.
906 		 */
907 		reg->smin_value = reg->umin_value;
908 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
909 							  reg->umax_value);
910 	} else if ((s64)reg->umin_value < 0) {
911 		/* Negative.  We can't learn anything from the smax, but smin
912 		 * is negative, hence safe.
913 		 */
914 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
915 							  reg->umin_value);
916 		reg->smax_value = reg->umax_value;
917 	}
918 }
919 
920 /* Attempts to improve var_off based on unsigned min/max information */
921 static void __reg_bound_offset(struct bpf_reg_state *reg)
922 {
923 	reg->var_off = tnum_intersect(reg->var_off,
924 				      tnum_range(reg->umin_value,
925 						 reg->umax_value));
926 }
927 
928 /* Reset the min/max bounds of a register */
929 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
930 {
931 	reg->smin_value = S64_MIN;
932 	reg->smax_value = S64_MAX;
933 	reg->umin_value = 0;
934 	reg->umax_value = U64_MAX;
935 }
936 
937 /* Mark a register as having a completely unknown (scalar) value. */
938 static void __mark_reg_unknown(struct bpf_reg_state *reg)
939 {
940 	/*
941 	 * Clear type, id, off, and union(map_ptr, range) and
942 	 * padding between 'type' and union
943 	 */
944 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
945 	reg->type = SCALAR_VALUE;
946 	reg->var_off = tnum_unknown;
947 	reg->frameno = 0;
948 	__mark_reg_unbounded(reg);
949 }
950 
951 static void mark_reg_unknown(struct bpf_verifier_env *env,
952 			     struct bpf_reg_state *regs, u32 regno)
953 {
954 	if (WARN_ON(regno >= MAX_BPF_REG)) {
955 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
956 		/* Something bad happened, let's kill all regs except FP */
957 		for (regno = 0; regno < BPF_REG_FP; regno++)
958 			__mark_reg_not_init(regs + regno);
959 		return;
960 	}
961 	__mark_reg_unknown(regs + regno);
962 }
963 
964 static void __mark_reg_not_init(struct bpf_reg_state *reg)
965 {
966 	__mark_reg_unknown(reg);
967 	reg->type = NOT_INIT;
968 }
969 
970 static void mark_reg_not_init(struct bpf_verifier_env *env,
971 			      struct bpf_reg_state *regs, u32 regno)
972 {
973 	if (WARN_ON(regno >= MAX_BPF_REG)) {
974 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
975 		/* Something bad happened, let's kill all regs except FP */
976 		for (regno = 0; regno < BPF_REG_FP; regno++)
977 			__mark_reg_not_init(regs + regno);
978 		return;
979 	}
980 	__mark_reg_not_init(regs + regno);
981 }
982 
983 static void init_reg_state(struct bpf_verifier_env *env,
984 			   struct bpf_func_state *state)
985 {
986 	struct bpf_reg_state *regs = state->regs;
987 	int i;
988 
989 	for (i = 0; i < MAX_BPF_REG; i++) {
990 		mark_reg_not_init(env, regs, i);
991 		regs[i].live = REG_LIVE_NONE;
992 		regs[i].parent = NULL;
993 	}
994 
995 	/* frame pointer */
996 	regs[BPF_REG_FP].type = PTR_TO_STACK;
997 	mark_reg_known_zero(env, regs, BPF_REG_FP);
998 	regs[BPF_REG_FP].frameno = state->frameno;
999 
1000 	/* 1st arg to a function */
1001 	regs[BPF_REG_1].type = PTR_TO_CTX;
1002 	mark_reg_known_zero(env, regs, BPF_REG_1);
1003 }
1004 
1005 #define BPF_MAIN_FUNC (-1)
1006 static void init_func_state(struct bpf_verifier_env *env,
1007 			    struct bpf_func_state *state,
1008 			    int callsite, int frameno, int subprogno)
1009 {
1010 	state->callsite = callsite;
1011 	state->frameno = frameno;
1012 	state->subprogno = subprogno;
1013 	init_reg_state(env, state);
1014 }
1015 
1016 enum reg_arg_type {
1017 	SRC_OP,		/* register is used as source operand */
1018 	DST_OP,		/* register is used as destination operand */
1019 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1020 };
1021 
1022 static int cmp_subprogs(const void *a, const void *b)
1023 {
1024 	return ((struct bpf_subprog_info *)a)->start -
1025 	       ((struct bpf_subprog_info *)b)->start;
1026 }
1027 
1028 static int find_subprog(struct bpf_verifier_env *env, int off)
1029 {
1030 	struct bpf_subprog_info *p;
1031 
1032 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1033 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1034 	if (!p)
1035 		return -ENOENT;
1036 	return p - env->subprog_info;
1037 
1038 }
1039 
1040 static int add_subprog(struct bpf_verifier_env *env, int off)
1041 {
1042 	int insn_cnt = env->prog->len;
1043 	int ret;
1044 
1045 	if (off >= insn_cnt || off < 0) {
1046 		verbose(env, "call to invalid destination\n");
1047 		return -EINVAL;
1048 	}
1049 	ret = find_subprog(env, off);
1050 	if (ret >= 0)
1051 		return 0;
1052 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1053 		verbose(env, "too many subprograms\n");
1054 		return -E2BIG;
1055 	}
1056 	env->subprog_info[env->subprog_cnt++].start = off;
1057 	sort(env->subprog_info, env->subprog_cnt,
1058 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1059 	return 0;
1060 }
1061 
1062 static int check_subprogs(struct bpf_verifier_env *env)
1063 {
1064 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1065 	struct bpf_subprog_info *subprog = env->subprog_info;
1066 	struct bpf_insn *insn = env->prog->insnsi;
1067 	int insn_cnt = env->prog->len;
1068 
1069 	/* Add entry function. */
1070 	ret = add_subprog(env, 0);
1071 	if (ret < 0)
1072 		return ret;
1073 
1074 	/* determine subprog starts. The end is one before the next starts */
1075 	for (i = 0; i < insn_cnt; i++) {
1076 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1077 			continue;
1078 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1079 			continue;
1080 		if (!env->allow_ptr_leaks) {
1081 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1082 			return -EPERM;
1083 		}
1084 		ret = add_subprog(env, i + insn[i].imm + 1);
1085 		if (ret < 0)
1086 			return ret;
1087 	}
1088 
1089 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1090 	 * logic. 'subprog_cnt' should not be increased.
1091 	 */
1092 	subprog[env->subprog_cnt].start = insn_cnt;
1093 
1094 	if (env->log.level & BPF_LOG_LEVEL2)
1095 		for (i = 0; i < env->subprog_cnt; i++)
1096 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1097 
1098 	/* now check that all jumps are within the same subprog */
1099 	subprog_start = subprog[cur_subprog].start;
1100 	subprog_end = subprog[cur_subprog + 1].start;
1101 	for (i = 0; i < insn_cnt; i++) {
1102 		u8 code = insn[i].code;
1103 
1104 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1105 			goto next;
1106 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1107 			goto next;
1108 		off = i + insn[i].off + 1;
1109 		if (off < subprog_start || off >= subprog_end) {
1110 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1111 			return -EINVAL;
1112 		}
1113 next:
1114 		if (i == subprog_end - 1) {
1115 			/* to avoid fall-through from one subprog into another
1116 			 * the last insn of the subprog should be either exit
1117 			 * or unconditional jump back
1118 			 */
1119 			if (code != (BPF_JMP | BPF_EXIT) &&
1120 			    code != (BPF_JMP | BPF_JA)) {
1121 				verbose(env, "last insn is not an exit or jmp\n");
1122 				return -EINVAL;
1123 			}
1124 			subprog_start = subprog_end;
1125 			cur_subprog++;
1126 			if (cur_subprog < env->subprog_cnt)
1127 				subprog_end = subprog[cur_subprog + 1].start;
1128 		}
1129 	}
1130 	return 0;
1131 }
1132 
1133 /* Parentage chain of this register (or stack slot) should take care of all
1134  * issues like callee-saved registers, stack slot allocation time, etc.
1135  */
1136 static int mark_reg_read(struct bpf_verifier_env *env,
1137 			 const struct bpf_reg_state *state,
1138 			 struct bpf_reg_state *parent)
1139 {
1140 	bool writes = parent == state->parent; /* Observe write marks */
1141 	int cnt = 0;
1142 
1143 	while (parent) {
1144 		/* if read wasn't screened by an earlier write ... */
1145 		if (writes && state->live & REG_LIVE_WRITTEN)
1146 			break;
1147 		if (parent->live & REG_LIVE_DONE) {
1148 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1149 				reg_type_str[parent->type],
1150 				parent->var_off.value, parent->off);
1151 			return -EFAULT;
1152 		}
1153 		if (parent->live & REG_LIVE_READ)
1154 			/* The parentage chain never changes and
1155 			 * this parent was already marked as LIVE_READ.
1156 			 * There is no need to keep walking the chain again and
1157 			 * keep re-marking all parents as LIVE_READ.
1158 			 * This case happens when the same register is read
1159 			 * multiple times without writes into it in-between.
1160 			 */
1161 			break;
1162 		/* ... then we depend on parent's value */
1163 		parent->live |= REG_LIVE_READ;
1164 		state = parent;
1165 		parent = state->parent;
1166 		writes = true;
1167 		cnt++;
1168 	}
1169 
1170 	if (env->longest_mark_read_walk < cnt)
1171 		env->longest_mark_read_walk = cnt;
1172 	return 0;
1173 }
1174 
1175 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1176 			 enum reg_arg_type t)
1177 {
1178 	struct bpf_verifier_state *vstate = env->cur_state;
1179 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1180 	struct bpf_reg_state *reg, *regs = state->regs;
1181 
1182 	if (regno >= MAX_BPF_REG) {
1183 		verbose(env, "R%d is invalid\n", regno);
1184 		return -EINVAL;
1185 	}
1186 
1187 	reg = &regs[regno];
1188 	if (t == SRC_OP) {
1189 		/* check whether register used as source operand can be read */
1190 		if (reg->type == NOT_INIT) {
1191 			verbose(env, "R%d !read_ok\n", regno);
1192 			return -EACCES;
1193 		}
1194 		/* We don't need to worry about FP liveness because it's read-only */
1195 		if (regno == BPF_REG_FP)
1196 			return 0;
1197 
1198 		return mark_reg_read(env, reg, reg->parent);
1199 	} else {
1200 		/* check whether register used as dest operand can be written to */
1201 		if (regno == BPF_REG_FP) {
1202 			verbose(env, "frame pointer is read only\n");
1203 			return -EACCES;
1204 		}
1205 		reg->live |= REG_LIVE_WRITTEN;
1206 		if (t == DST_OP)
1207 			mark_reg_unknown(env, regs, regno);
1208 	}
1209 	return 0;
1210 }
1211 
1212 static bool is_spillable_regtype(enum bpf_reg_type type)
1213 {
1214 	switch (type) {
1215 	case PTR_TO_MAP_VALUE:
1216 	case PTR_TO_MAP_VALUE_OR_NULL:
1217 	case PTR_TO_STACK:
1218 	case PTR_TO_CTX:
1219 	case PTR_TO_PACKET:
1220 	case PTR_TO_PACKET_META:
1221 	case PTR_TO_PACKET_END:
1222 	case PTR_TO_FLOW_KEYS:
1223 	case CONST_PTR_TO_MAP:
1224 	case PTR_TO_SOCKET:
1225 	case PTR_TO_SOCKET_OR_NULL:
1226 	case PTR_TO_SOCK_COMMON:
1227 	case PTR_TO_SOCK_COMMON_OR_NULL:
1228 	case PTR_TO_TCP_SOCK:
1229 	case PTR_TO_TCP_SOCK_OR_NULL:
1230 		return true;
1231 	default:
1232 		return false;
1233 	}
1234 }
1235 
1236 /* Does this register contain a constant zero? */
1237 static bool register_is_null(struct bpf_reg_state *reg)
1238 {
1239 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1240 }
1241 
1242 /* check_stack_read/write functions track spill/fill of registers,
1243  * stack boundary and alignment are checked in check_mem_access()
1244  */
1245 static int check_stack_write(struct bpf_verifier_env *env,
1246 			     struct bpf_func_state *state, /* func where register points to */
1247 			     int off, int size, int value_regno, int insn_idx)
1248 {
1249 	struct bpf_func_state *cur; /* state of the current function */
1250 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1251 	enum bpf_reg_type type;
1252 
1253 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1254 				 state->acquired_refs, true);
1255 	if (err)
1256 		return err;
1257 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1258 	 * so it's aligned access and [off, off + size) are within stack limits
1259 	 */
1260 	if (!env->allow_ptr_leaks &&
1261 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1262 	    size != BPF_REG_SIZE) {
1263 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1264 		return -EACCES;
1265 	}
1266 
1267 	cur = env->cur_state->frame[env->cur_state->curframe];
1268 	if (value_regno >= 0 &&
1269 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1270 
1271 		/* register containing pointer is being spilled into stack */
1272 		if (size != BPF_REG_SIZE) {
1273 			verbose(env, "invalid size of register spill\n");
1274 			return -EACCES;
1275 		}
1276 
1277 		if (state != cur && type == PTR_TO_STACK) {
1278 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1279 			return -EINVAL;
1280 		}
1281 
1282 		/* save register state */
1283 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1284 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1285 
1286 		for (i = 0; i < BPF_REG_SIZE; i++) {
1287 			if (state->stack[spi].slot_type[i] == STACK_MISC &&
1288 			    !env->allow_ptr_leaks) {
1289 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1290 				int soff = (-spi - 1) * BPF_REG_SIZE;
1291 
1292 				/* detected reuse of integer stack slot with a pointer
1293 				 * which means either llvm is reusing stack slot or
1294 				 * an attacker is trying to exploit CVE-2018-3639
1295 				 * (speculative store bypass)
1296 				 * Have to sanitize that slot with preemptive
1297 				 * store of zero.
1298 				 */
1299 				if (*poff && *poff != soff) {
1300 					/* disallow programs where single insn stores
1301 					 * into two different stack slots, since verifier
1302 					 * cannot sanitize them
1303 					 */
1304 					verbose(env,
1305 						"insn %d cannot access two stack slots fp%d and fp%d",
1306 						insn_idx, *poff, soff);
1307 					return -EINVAL;
1308 				}
1309 				*poff = soff;
1310 			}
1311 			state->stack[spi].slot_type[i] = STACK_SPILL;
1312 		}
1313 	} else {
1314 		u8 type = STACK_MISC;
1315 
1316 		/* regular write of data into stack destroys any spilled ptr */
1317 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1318 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1319 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
1320 			for (i = 0; i < BPF_REG_SIZE; i++)
1321 				state->stack[spi].slot_type[i] = STACK_MISC;
1322 
1323 		/* only mark the slot as written if all 8 bytes were written
1324 		 * otherwise read propagation may incorrectly stop too soon
1325 		 * when stack slots are partially written.
1326 		 * This heuristic means that read propagation will be
1327 		 * conservative, since it will add reg_live_read marks
1328 		 * to stack slots all the way to first state when programs
1329 		 * writes+reads less than 8 bytes
1330 		 */
1331 		if (size == BPF_REG_SIZE)
1332 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1333 
1334 		/* when we zero initialize stack slots mark them as such */
1335 		if (value_regno >= 0 &&
1336 		    register_is_null(&cur->regs[value_regno]))
1337 			type = STACK_ZERO;
1338 
1339 		/* Mark slots affected by this stack write. */
1340 		for (i = 0; i < size; i++)
1341 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1342 				type;
1343 	}
1344 	return 0;
1345 }
1346 
1347 static int check_stack_read(struct bpf_verifier_env *env,
1348 			    struct bpf_func_state *reg_state /* func where register points to */,
1349 			    int off, int size, int value_regno)
1350 {
1351 	struct bpf_verifier_state *vstate = env->cur_state;
1352 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1353 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1354 	u8 *stype;
1355 
1356 	if (reg_state->allocated_stack <= slot) {
1357 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1358 			off, size);
1359 		return -EACCES;
1360 	}
1361 	stype = reg_state->stack[spi].slot_type;
1362 
1363 	if (stype[0] == STACK_SPILL) {
1364 		if (size != BPF_REG_SIZE) {
1365 			verbose(env, "invalid size of register spill\n");
1366 			return -EACCES;
1367 		}
1368 		for (i = 1; i < BPF_REG_SIZE; i++) {
1369 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1370 				verbose(env, "corrupted spill memory\n");
1371 				return -EACCES;
1372 			}
1373 		}
1374 
1375 		if (value_regno >= 0) {
1376 			/* restore register state from stack */
1377 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1378 			/* mark reg as written since spilled pointer state likely
1379 			 * has its liveness marks cleared by is_state_visited()
1380 			 * which resets stack/reg liveness for state transitions
1381 			 */
1382 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1383 		}
1384 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1385 			      reg_state->stack[spi].spilled_ptr.parent);
1386 		return 0;
1387 	} else {
1388 		int zeros = 0;
1389 
1390 		for (i = 0; i < size; i++) {
1391 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1392 				continue;
1393 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1394 				zeros++;
1395 				continue;
1396 			}
1397 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1398 				off, i, size);
1399 			return -EACCES;
1400 		}
1401 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1402 			      reg_state->stack[spi].spilled_ptr.parent);
1403 		if (value_regno >= 0) {
1404 			if (zeros == size) {
1405 				/* any size read into register is zero extended,
1406 				 * so the whole register == const_zero
1407 				 */
1408 				__mark_reg_const_zero(&state->regs[value_regno]);
1409 			} else {
1410 				/* have read misc data from the stack */
1411 				mark_reg_unknown(env, state->regs, value_regno);
1412 			}
1413 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1414 		}
1415 		return 0;
1416 	}
1417 }
1418 
1419 static int check_stack_access(struct bpf_verifier_env *env,
1420 			      const struct bpf_reg_state *reg,
1421 			      int off, int size)
1422 {
1423 	/* Stack accesses must be at a fixed offset, so that we
1424 	 * can determine what type of data were returned. See
1425 	 * check_stack_read().
1426 	 */
1427 	if (!tnum_is_const(reg->var_off)) {
1428 		char tn_buf[48];
1429 
1430 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1431 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
1432 			tn_buf, off, size);
1433 		return -EACCES;
1434 	}
1435 
1436 	if (off >= 0 || off < -MAX_BPF_STACK) {
1437 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
1438 		return -EACCES;
1439 	}
1440 
1441 	return 0;
1442 }
1443 
1444 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
1445 				 int off, int size, enum bpf_access_type type)
1446 {
1447 	struct bpf_reg_state *regs = cur_regs(env);
1448 	struct bpf_map *map = regs[regno].map_ptr;
1449 	u32 cap = bpf_map_flags_to_cap(map);
1450 
1451 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
1452 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
1453 			map->value_size, off, size);
1454 		return -EACCES;
1455 	}
1456 
1457 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
1458 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
1459 			map->value_size, off, size);
1460 		return -EACCES;
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 /* check read/write into map element returned by bpf_map_lookup_elem() */
1467 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1468 			      int size, bool zero_size_allowed)
1469 {
1470 	struct bpf_reg_state *regs = cur_regs(env);
1471 	struct bpf_map *map = regs[regno].map_ptr;
1472 
1473 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1474 	    off + size > map->value_size) {
1475 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1476 			map->value_size, off, size);
1477 		return -EACCES;
1478 	}
1479 	return 0;
1480 }
1481 
1482 /* check read/write into a map element with possible variable offset */
1483 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1484 			    int off, int size, bool zero_size_allowed)
1485 {
1486 	struct bpf_verifier_state *vstate = env->cur_state;
1487 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1488 	struct bpf_reg_state *reg = &state->regs[regno];
1489 	int err;
1490 
1491 	/* We may have adjusted the register to this map value, so we
1492 	 * need to try adding each of min_value and max_value to off
1493 	 * to make sure our theoretical access will be safe.
1494 	 */
1495 	if (env->log.level & BPF_LOG_LEVEL)
1496 		print_verifier_state(env, state);
1497 
1498 	/* The minimum value is only important with signed
1499 	 * comparisons where we can't assume the floor of a
1500 	 * value is 0.  If we are using signed variables for our
1501 	 * index'es we need to make sure that whatever we use
1502 	 * will have a set floor within our range.
1503 	 */
1504 	if (reg->smin_value < 0 &&
1505 	    (reg->smin_value == S64_MIN ||
1506 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1507 	      reg->smin_value + off < 0)) {
1508 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1509 			regno);
1510 		return -EACCES;
1511 	}
1512 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1513 				 zero_size_allowed);
1514 	if (err) {
1515 		verbose(env, "R%d min value is outside of the array range\n",
1516 			regno);
1517 		return err;
1518 	}
1519 
1520 	/* If we haven't set a max value then we need to bail since we can't be
1521 	 * sure we won't do bad things.
1522 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1523 	 */
1524 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1525 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1526 			regno);
1527 		return -EACCES;
1528 	}
1529 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1530 				 zero_size_allowed);
1531 	if (err)
1532 		verbose(env, "R%d max value is outside of the array range\n",
1533 			regno);
1534 
1535 	if (map_value_has_spin_lock(reg->map_ptr)) {
1536 		u32 lock = reg->map_ptr->spin_lock_off;
1537 
1538 		/* if any part of struct bpf_spin_lock can be touched by
1539 		 * load/store reject this program.
1540 		 * To check that [x1, x2) overlaps with [y1, y2)
1541 		 * it is sufficient to check x1 < y2 && y1 < x2.
1542 		 */
1543 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
1544 		     lock < reg->umax_value + off + size) {
1545 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
1546 			return -EACCES;
1547 		}
1548 	}
1549 	return err;
1550 }
1551 
1552 #define MAX_PACKET_OFF 0xffff
1553 
1554 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1555 				       const struct bpf_call_arg_meta *meta,
1556 				       enum bpf_access_type t)
1557 {
1558 	switch (env->prog->type) {
1559 	/* Program types only with direct read access go here! */
1560 	case BPF_PROG_TYPE_LWT_IN:
1561 	case BPF_PROG_TYPE_LWT_OUT:
1562 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1563 	case BPF_PROG_TYPE_SK_REUSEPORT:
1564 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
1565 	case BPF_PROG_TYPE_CGROUP_SKB:
1566 		if (t == BPF_WRITE)
1567 			return false;
1568 		/* fallthrough */
1569 
1570 	/* Program types with direct read + write access go here! */
1571 	case BPF_PROG_TYPE_SCHED_CLS:
1572 	case BPF_PROG_TYPE_SCHED_ACT:
1573 	case BPF_PROG_TYPE_XDP:
1574 	case BPF_PROG_TYPE_LWT_XMIT:
1575 	case BPF_PROG_TYPE_SK_SKB:
1576 	case BPF_PROG_TYPE_SK_MSG:
1577 		if (meta)
1578 			return meta->pkt_access;
1579 
1580 		env->seen_direct_write = true;
1581 		return true;
1582 	default:
1583 		return false;
1584 	}
1585 }
1586 
1587 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1588 				 int off, int size, bool zero_size_allowed)
1589 {
1590 	struct bpf_reg_state *regs = cur_regs(env);
1591 	struct bpf_reg_state *reg = &regs[regno];
1592 
1593 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1594 	    (u64)off + size > reg->range) {
1595 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1596 			off, size, regno, reg->id, reg->off, reg->range);
1597 		return -EACCES;
1598 	}
1599 	return 0;
1600 }
1601 
1602 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1603 			       int size, bool zero_size_allowed)
1604 {
1605 	struct bpf_reg_state *regs = cur_regs(env);
1606 	struct bpf_reg_state *reg = &regs[regno];
1607 	int err;
1608 
1609 	/* We may have added a variable offset to the packet pointer; but any
1610 	 * reg->range we have comes after that.  We are only checking the fixed
1611 	 * offset.
1612 	 */
1613 
1614 	/* We don't allow negative numbers, because we aren't tracking enough
1615 	 * detail to prove they're safe.
1616 	 */
1617 	if (reg->smin_value < 0) {
1618 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1619 			regno);
1620 		return -EACCES;
1621 	}
1622 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1623 	if (err) {
1624 		verbose(env, "R%d offset is outside of the packet\n", regno);
1625 		return err;
1626 	}
1627 
1628 	/* __check_packet_access has made sure "off + size - 1" is within u16.
1629 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1630 	 * otherwise find_good_pkt_pointers would have refused to set range info
1631 	 * that __check_packet_access would have rejected this pkt access.
1632 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1633 	 */
1634 	env->prog->aux->max_pkt_offset =
1635 		max_t(u32, env->prog->aux->max_pkt_offset,
1636 		      off + reg->umax_value + size - 1);
1637 
1638 	return err;
1639 }
1640 
1641 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1642 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1643 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1644 {
1645 	struct bpf_insn_access_aux info = {
1646 		.reg_type = *reg_type,
1647 	};
1648 
1649 	if (env->ops->is_valid_access &&
1650 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1651 		/* A non zero info.ctx_field_size indicates that this field is a
1652 		 * candidate for later verifier transformation to load the whole
1653 		 * field and then apply a mask when accessed with a narrower
1654 		 * access than actual ctx access size. A zero info.ctx_field_size
1655 		 * will only allow for whole field access and rejects any other
1656 		 * type of narrower access.
1657 		 */
1658 		*reg_type = info.reg_type;
1659 
1660 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1661 		/* remember the offset of last byte accessed in ctx */
1662 		if (env->prog->aux->max_ctx_offset < off + size)
1663 			env->prog->aux->max_ctx_offset = off + size;
1664 		return 0;
1665 	}
1666 
1667 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1668 	return -EACCES;
1669 }
1670 
1671 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1672 				  int size)
1673 {
1674 	if (size < 0 || off < 0 ||
1675 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
1676 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
1677 			off, size);
1678 		return -EACCES;
1679 	}
1680 	return 0;
1681 }
1682 
1683 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
1684 			     u32 regno, int off, int size,
1685 			     enum bpf_access_type t)
1686 {
1687 	struct bpf_reg_state *regs = cur_regs(env);
1688 	struct bpf_reg_state *reg = &regs[regno];
1689 	struct bpf_insn_access_aux info = {};
1690 	bool valid;
1691 
1692 	if (reg->smin_value < 0) {
1693 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1694 			regno);
1695 		return -EACCES;
1696 	}
1697 
1698 	switch (reg->type) {
1699 	case PTR_TO_SOCK_COMMON:
1700 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
1701 		break;
1702 	case PTR_TO_SOCKET:
1703 		valid = bpf_sock_is_valid_access(off, size, t, &info);
1704 		break;
1705 	case PTR_TO_TCP_SOCK:
1706 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
1707 		break;
1708 	default:
1709 		valid = false;
1710 	}
1711 
1712 
1713 	if (valid) {
1714 		env->insn_aux_data[insn_idx].ctx_field_size =
1715 			info.ctx_field_size;
1716 		return 0;
1717 	}
1718 
1719 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
1720 		regno, reg_type_str[reg->type], off, size);
1721 
1722 	return -EACCES;
1723 }
1724 
1725 static bool __is_pointer_value(bool allow_ptr_leaks,
1726 			       const struct bpf_reg_state *reg)
1727 {
1728 	if (allow_ptr_leaks)
1729 		return false;
1730 
1731 	return reg->type != SCALAR_VALUE;
1732 }
1733 
1734 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1735 {
1736 	return cur_regs(env) + regno;
1737 }
1738 
1739 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1740 {
1741 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1742 }
1743 
1744 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1745 {
1746 	const struct bpf_reg_state *reg = reg_state(env, regno);
1747 
1748 	return reg->type == PTR_TO_CTX;
1749 }
1750 
1751 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
1752 {
1753 	const struct bpf_reg_state *reg = reg_state(env, regno);
1754 
1755 	return type_is_sk_pointer(reg->type);
1756 }
1757 
1758 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1759 {
1760 	const struct bpf_reg_state *reg = reg_state(env, regno);
1761 
1762 	return type_is_pkt_pointer(reg->type);
1763 }
1764 
1765 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1766 {
1767 	const struct bpf_reg_state *reg = reg_state(env, regno);
1768 
1769 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1770 	return reg->type == PTR_TO_FLOW_KEYS;
1771 }
1772 
1773 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1774 				   const struct bpf_reg_state *reg,
1775 				   int off, int size, bool strict)
1776 {
1777 	struct tnum reg_off;
1778 	int ip_align;
1779 
1780 	/* Byte size accesses are always allowed. */
1781 	if (!strict || size == 1)
1782 		return 0;
1783 
1784 	/* For platforms that do not have a Kconfig enabling
1785 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1786 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1787 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1788 	 * to this code only in strict mode where we want to emulate
1789 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1790 	 * unconditional IP align value of '2'.
1791 	 */
1792 	ip_align = 2;
1793 
1794 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1795 	if (!tnum_is_aligned(reg_off, size)) {
1796 		char tn_buf[48];
1797 
1798 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1799 		verbose(env,
1800 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1801 			ip_align, tn_buf, reg->off, off, size);
1802 		return -EACCES;
1803 	}
1804 
1805 	return 0;
1806 }
1807 
1808 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1809 				       const struct bpf_reg_state *reg,
1810 				       const char *pointer_desc,
1811 				       int off, int size, bool strict)
1812 {
1813 	struct tnum reg_off;
1814 
1815 	/* Byte size accesses are always allowed. */
1816 	if (!strict || size == 1)
1817 		return 0;
1818 
1819 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1820 	if (!tnum_is_aligned(reg_off, size)) {
1821 		char tn_buf[48];
1822 
1823 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1824 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1825 			pointer_desc, tn_buf, reg->off, off, size);
1826 		return -EACCES;
1827 	}
1828 
1829 	return 0;
1830 }
1831 
1832 static int check_ptr_alignment(struct bpf_verifier_env *env,
1833 			       const struct bpf_reg_state *reg, int off,
1834 			       int size, bool strict_alignment_once)
1835 {
1836 	bool strict = env->strict_alignment || strict_alignment_once;
1837 	const char *pointer_desc = "";
1838 
1839 	switch (reg->type) {
1840 	case PTR_TO_PACKET:
1841 	case PTR_TO_PACKET_META:
1842 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1843 		 * right in front, treat it the very same way.
1844 		 */
1845 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1846 	case PTR_TO_FLOW_KEYS:
1847 		pointer_desc = "flow keys ";
1848 		break;
1849 	case PTR_TO_MAP_VALUE:
1850 		pointer_desc = "value ";
1851 		break;
1852 	case PTR_TO_CTX:
1853 		pointer_desc = "context ";
1854 		break;
1855 	case PTR_TO_STACK:
1856 		pointer_desc = "stack ";
1857 		/* The stack spill tracking logic in check_stack_write()
1858 		 * and check_stack_read() relies on stack accesses being
1859 		 * aligned.
1860 		 */
1861 		strict = true;
1862 		break;
1863 	case PTR_TO_SOCKET:
1864 		pointer_desc = "sock ";
1865 		break;
1866 	case PTR_TO_SOCK_COMMON:
1867 		pointer_desc = "sock_common ";
1868 		break;
1869 	case PTR_TO_TCP_SOCK:
1870 		pointer_desc = "tcp_sock ";
1871 		break;
1872 	default:
1873 		break;
1874 	}
1875 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1876 					   strict);
1877 }
1878 
1879 static int update_stack_depth(struct bpf_verifier_env *env,
1880 			      const struct bpf_func_state *func,
1881 			      int off)
1882 {
1883 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1884 
1885 	if (stack >= -off)
1886 		return 0;
1887 
1888 	/* update known max for given subprogram */
1889 	env->subprog_info[func->subprogno].stack_depth = -off;
1890 	return 0;
1891 }
1892 
1893 /* starting from main bpf function walk all instructions of the function
1894  * and recursively walk all callees that given function can call.
1895  * Ignore jump and exit insns.
1896  * Since recursion is prevented by check_cfg() this algorithm
1897  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1898  */
1899 static int check_max_stack_depth(struct bpf_verifier_env *env)
1900 {
1901 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1902 	struct bpf_subprog_info *subprog = env->subprog_info;
1903 	struct bpf_insn *insn = env->prog->insnsi;
1904 	int ret_insn[MAX_CALL_FRAMES];
1905 	int ret_prog[MAX_CALL_FRAMES];
1906 
1907 process_func:
1908 	/* round up to 32-bytes, since this is granularity
1909 	 * of interpreter stack size
1910 	 */
1911 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1912 	if (depth > MAX_BPF_STACK) {
1913 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1914 			frame + 1, depth);
1915 		return -EACCES;
1916 	}
1917 continue_func:
1918 	subprog_end = subprog[idx + 1].start;
1919 	for (; i < subprog_end; i++) {
1920 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1921 			continue;
1922 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1923 			continue;
1924 		/* remember insn and function to return to */
1925 		ret_insn[frame] = i + 1;
1926 		ret_prog[frame] = idx;
1927 
1928 		/* find the callee */
1929 		i = i + insn[i].imm + 1;
1930 		idx = find_subprog(env, i);
1931 		if (idx < 0) {
1932 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1933 				  i);
1934 			return -EFAULT;
1935 		}
1936 		frame++;
1937 		if (frame >= MAX_CALL_FRAMES) {
1938 			verbose(env, "the call stack of %d frames is too deep !\n",
1939 				frame);
1940 			return -E2BIG;
1941 		}
1942 		goto process_func;
1943 	}
1944 	/* end of for() loop means the last insn of the 'subprog'
1945 	 * was reached. Doesn't matter whether it was JA or EXIT
1946 	 */
1947 	if (frame == 0)
1948 		return 0;
1949 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1950 	frame--;
1951 	i = ret_insn[frame];
1952 	idx = ret_prog[frame];
1953 	goto continue_func;
1954 }
1955 
1956 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1957 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1958 				  const struct bpf_insn *insn, int idx)
1959 {
1960 	int start = idx + insn->imm + 1, subprog;
1961 
1962 	subprog = find_subprog(env, start);
1963 	if (subprog < 0) {
1964 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1965 			  start);
1966 		return -EFAULT;
1967 	}
1968 	return env->subprog_info[subprog].stack_depth;
1969 }
1970 #endif
1971 
1972 static int check_ctx_reg(struct bpf_verifier_env *env,
1973 			 const struct bpf_reg_state *reg, int regno)
1974 {
1975 	/* Access to ctx or passing it to a helper is only allowed in
1976 	 * its original, unmodified form.
1977 	 */
1978 
1979 	if (reg->off) {
1980 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1981 			regno, reg->off);
1982 		return -EACCES;
1983 	}
1984 
1985 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1986 		char tn_buf[48];
1987 
1988 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1989 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1990 		return -EACCES;
1991 	}
1992 
1993 	return 0;
1994 }
1995 
1996 /* truncate register to smaller size (in bytes)
1997  * must be called with size < BPF_REG_SIZE
1998  */
1999 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2000 {
2001 	u64 mask;
2002 
2003 	/* clear high bits in bit representation */
2004 	reg->var_off = tnum_cast(reg->var_off, size);
2005 
2006 	/* fix arithmetic bounds */
2007 	mask = ((u64)1 << (size * 8)) - 1;
2008 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2009 		reg->umin_value &= mask;
2010 		reg->umax_value &= mask;
2011 	} else {
2012 		reg->umin_value = 0;
2013 		reg->umax_value = mask;
2014 	}
2015 	reg->smin_value = reg->umin_value;
2016 	reg->smax_value = reg->umax_value;
2017 }
2018 
2019 /* check whether memory at (regno + off) is accessible for t = (read | write)
2020  * if t==write, value_regno is a register which value is stored into memory
2021  * if t==read, value_regno is a register which will receive the value from memory
2022  * if t==write && value_regno==-1, some unknown value is stored into memory
2023  * if t==read && value_regno==-1, don't care what we read from memory
2024  */
2025 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2026 			    int off, int bpf_size, enum bpf_access_type t,
2027 			    int value_regno, bool strict_alignment_once)
2028 {
2029 	struct bpf_reg_state *regs = cur_regs(env);
2030 	struct bpf_reg_state *reg = regs + regno;
2031 	struct bpf_func_state *state;
2032 	int size, err = 0;
2033 
2034 	size = bpf_size_to_bytes(bpf_size);
2035 	if (size < 0)
2036 		return size;
2037 
2038 	/* alignment checks will add in reg->off themselves */
2039 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2040 	if (err)
2041 		return err;
2042 
2043 	/* for access checks, reg->off is just part of off */
2044 	off += reg->off;
2045 
2046 	if (reg->type == PTR_TO_MAP_VALUE) {
2047 		if (t == BPF_WRITE && value_regno >= 0 &&
2048 		    is_pointer_value(env, value_regno)) {
2049 			verbose(env, "R%d leaks addr into map\n", value_regno);
2050 			return -EACCES;
2051 		}
2052 		err = check_map_access_type(env, regno, off, size, t);
2053 		if (err)
2054 			return err;
2055 		err = check_map_access(env, regno, off, size, false);
2056 		if (!err && t == BPF_READ && value_regno >= 0)
2057 			mark_reg_unknown(env, regs, value_regno);
2058 
2059 	} else if (reg->type == PTR_TO_CTX) {
2060 		enum bpf_reg_type reg_type = SCALAR_VALUE;
2061 
2062 		if (t == BPF_WRITE && value_regno >= 0 &&
2063 		    is_pointer_value(env, value_regno)) {
2064 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
2065 			return -EACCES;
2066 		}
2067 
2068 		err = check_ctx_reg(env, reg, regno);
2069 		if (err < 0)
2070 			return err;
2071 
2072 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2073 		if (!err && t == BPF_READ && value_regno >= 0) {
2074 			/* ctx access returns either a scalar, or a
2075 			 * PTR_TO_PACKET[_META,_END]. In the latter
2076 			 * case, we know the offset is zero.
2077 			 */
2078 			if (reg_type == SCALAR_VALUE) {
2079 				mark_reg_unknown(env, regs, value_regno);
2080 			} else {
2081 				mark_reg_known_zero(env, regs,
2082 						    value_regno);
2083 				if (reg_type_may_be_null(reg_type))
2084 					regs[value_regno].id = ++env->id_gen;
2085 			}
2086 			regs[value_regno].type = reg_type;
2087 		}
2088 
2089 	} else if (reg->type == PTR_TO_STACK) {
2090 		off += reg->var_off.value;
2091 		err = check_stack_access(env, reg, off, size);
2092 		if (err)
2093 			return err;
2094 
2095 		state = func(env, reg);
2096 		err = update_stack_depth(env, state, off);
2097 		if (err)
2098 			return err;
2099 
2100 		if (t == BPF_WRITE)
2101 			err = check_stack_write(env, state, off, size,
2102 						value_regno, insn_idx);
2103 		else
2104 			err = check_stack_read(env, state, off, size,
2105 					       value_regno);
2106 	} else if (reg_is_pkt_pointer(reg)) {
2107 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2108 			verbose(env, "cannot write into packet\n");
2109 			return -EACCES;
2110 		}
2111 		if (t == BPF_WRITE && value_regno >= 0 &&
2112 		    is_pointer_value(env, value_regno)) {
2113 			verbose(env, "R%d leaks addr into packet\n",
2114 				value_regno);
2115 			return -EACCES;
2116 		}
2117 		err = check_packet_access(env, regno, off, size, false);
2118 		if (!err && t == BPF_READ && value_regno >= 0)
2119 			mark_reg_unknown(env, regs, value_regno);
2120 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
2121 		if (t == BPF_WRITE && value_regno >= 0 &&
2122 		    is_pointer_value(env, value_regno)) {
2123 			verbose(env, "R%d leaks addr into flow keys\n",
2124 				value_regno);
2125 			return -EACCES;
2126 		}
2127 
2128 		err = check_flow_keys_access(env, off, size);
2129 		if (!err && t == BPF_READ && value_regno >= 0)
2130 			mark_reg_unknown(env, regs, value_regno);
2131 	} else if (type_is_sk_pointer(reg->type)) {
2132 		if (t == BPF_WRITE) {
2133 			verbose(env, "R%d cannot write into %s\n",
2134 				regno, reg_type_str[reg->type]);
2135 			return -EACCES;
2136 		}
2137 		err = check_sock_access(env, insn_idx, regno, off, size, t);
2138 		if (!err && value_regno >= 0)
2139 			mark_reg_unknown(env, regs, value_regno);
2140 	} else {
2141 		verbose(env, "R%d invalid mem access '%s'\n", regno,
2142 			reg_type_str[reg->type]);
2143 		return -EACCES;
2144 	}
2145 
2146 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2147 	    regs[value_regno].type == SCALAR_VALUE) {
2148 		/* b/h/w load zero-extends, mark upper bits as known 0 */
2149 		coerce_reg_to_size(&regs[value_regno], size);
2150 	}
2151 	return err;
2152 }
2153 
2154 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2155 {
2156 	int err;
2157 
2158 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2159 	    insn->imm != 0) {
2160 		verbose(env, "BPF_XADD uses reserved fields\n");
2161 		return -EINVAL;
2162 	}
2163 
2164 	/* check src1 operand */
2165 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
2166 	if (err)
2167 		return err;
2168 
2169 	/* check src2 operand */
2170 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2171 	if (err)
2172 		return err;
2173 
2174 	if (is_pointer_value(env, insn->src_reg)) {
2175 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2176 		return -EACCES;
2177 	}
2178 
2179 	if (is_ctx_reg(env, insn->dst_reg) ||
2180 	    is_pkt_reg(env, insn->dst_reg) ||
2181 	    is_flow_key_reg(env, insn->dst_reg) ||
2182 	    is_sk_reg(env, insn->dst_reg)) {
2183 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2184 			insn->dst_reg,
2185 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
2186 		return -EACCES;
2187 	}
2188 
2189 	/* check whether atomic_add can read the memory */
2190 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2191 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
2192 	if (err)
2193 		return err;
2194 
2195 	/* check whether atomic_add can write into the same memory */
2196 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2197 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2198 }
2199 
2200 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2201 				  int off, int access_size,
2202 				  bool zero_size_allowed)
2203 {
2204 	struct bpf_reg_state *reg = reg_state(env, regno);
2205 
2206 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2207 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2208 		if (tnum_is_const(reg->var_off)) {
2209 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2210 				regno, off, access_size);
2211 		} else {
2212 			char tn_buf[48];
2213 
2214 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2215 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2216 				regno, tn_buf, access_size);
2217 		}
2218 		return -EACCES;
2219 	}
2220 	return 0;
2221 }
2222 
2223 /* when register 'regno' is passed into function that will read 'access_size'
2224  * bytes from that pointer, make sure that it's within stack boundary
2225  * and all elements of stack are initialized.
2226  * Unlike most pointer bounds-checking functions, this one doesn't take an
2227  * 'off' argument, so it has to add in reg->off itself.
2228  */
2229 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2230 				int access_size, bool zero_size_allowed,
2231 				struct bpf_call_arg_meta *meta)
2232 {
2233 	struct bpf_reg_state *reg = reg_state(env, regno);
2234 	struct bpf_func_state *state = func(env, reg);
2235 	int err, min_off, max_off, i, slot, spi;
2236 
2237 	if (reg->type != PTR_TO_STACK) {
2238 		/* Allow zero-byte read from NULL, regardless of pointer type */
2239 		if (zero_size_allowed && access_size == 0 &&
2240 		    register_is_null(reg))
2241 			return 0;
2242 
2243 		verbose(env, "R%d type=%s expected=%s\n", regno,
2244 			reg_type_str[reg->type],
2245 			reg_type_str[PTR_TO_STACK]);
2246 		return -EACCES;
2247 	}
2248 
2249 	if (tnum_is_const(reg->var_off)) {
2250 		min_off = max_off = reg->var_off.value + reg->off;
2251 		err = __check_stack_boundary(env, regno, min_off, access_size,
2252 					     zero_size_allowed);
2253 		if (err)
2254 			return err;
2255 	} else {
2256 		/* Variable offset is prohibited for unprivileged mode for
2257 		 * simplicity since it requires corresponding support in
2258 		 * Spectre masking for stack ALU.
2259 		 * See also retrieve_ptr_limit().
2260 		 */
2261 		if (!env->allow_ptr_leaks) {
2262 			char tn_buf[48];
2263 
2264 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2265 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2266 				regno, tn_buf);
2267 			return -EACCES;
2268 		}
2269 		/* Only initialized buffer on stack is allowed to be accessed
2270 		 * with variable offset. With uninitialized buffer it's hard to
2271 		 * guarantee that whole memory is marked as initialized on
2272 		 * helper return since specific bounds are unknown what may
2273 		 * cause uninitialized stack leaking.
2274 		 */
2275 		if (meta && meta->raw_mode)
2276 			meta = NULL;
2277 
2278 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
2279 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
2280 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
2281 				regno);
2282 			return -EACCES;
2283 		}
2284 		min_off = reg->smin_value + reg->off;
2285 		max_off = reg->smax_value + reg->off;
2286 		err = __check_stack_boundary(env, regno, min_off, access_size,
2287 					     zero_size_allowed);
2288 		if (err) {
2289 			verbose(env, "R%d min value is outside of stack bound\n",
2290 				regno);
2291 			return err;
2292 		}
2293 		err = __check_stack_boundary(env, regno, max_off, access_size,
2294 					     zero_size_allowed);
2295 		if (err) {
2296 			verbose(env, "R%d max value is outside of stack bound\n",
2297 				regno);
2298 			return err;
2299 		}
2300 	}
2301 
2302 	if (meta && meta->raw_mode) {
2303 		meta->access_size = access_size;
2304 		meta->regno = regno;
2305 		return 0;
2306 	}
2307 
2308 	for (i = min_off; i < max_off + access_size; i++) {
2309 		u8 *stype;
2310 
2311 		slot = -i - 1;
2312 		spi = slot / BPF_REG_SIZE;
2313 		if (state->allocated_stack <= slot)
2314 			goto err;
2315 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2316 		if (*stype == STACK_MISC)
2317 			goto mark;
2318 		if (*stype == STACK_ZERO) {
2319 			/* helper can write anything into the stack */
2320 			*stype = STACK_MISC;
2321 			goto mark;
2322 		}
2323 err:
2324 		if (tnum_is_const(reg->var_off)) {
2325 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2326 				min_off, i - min_off, access_size);
2327 		} else {
2328 			char tn_buf[48];
2329 
2330 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2331 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
2332 				tn_buf, i - min_off, access_size);
2333 		}
2334 		return -EACCES;
2335 mark:
2336 		/* reading any byte out of 8-byte 'spill_slot' will cause
2337 		 * the whole slot to be marked as 'read'
2338 		 */
2339 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
2340 			      state->stack[spi].spilled_ptr.parent);
2341 	}
2342 	return update_stack_depth(env, state, min_off);
2343 }
2344 
2345 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2346 				   int access_size, bool zero_size_allowed,
2347 				   struct bpf_call_arg_meta *meta)
2348 {
2349 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2350 
2351 	switch (reg->type) {
2352 	case PTR_TO_PACKET:
2353 	case PTR_TO_PACKET_META:
2354 		return check_packet_access(env, regno, reg->off, access_size,
2355 					   zero_size_allowed);
2356 	case PTR_TO_MAP_VALUE:
2357 		if (check_map_access_type(env, regno, reg->off, access_size,
2358 					  meta && meta->raw_mode ? BPF_WRITE :
2359 					  BPF_READ))
2360 			return -EACCES;
2361 		return check_map_access(env, regno, reg->off, access_size,
2362 					zero_size_allowed);
2363 	default: /* scalar_value|ptr_to_stack or invalid ptr */
2364 		return check_stack_boundary(env, regno, access_size,
2365 					    zero_size_allowed, meta);
2366 	}
2367 }
2368 
2369 /* Implementation details:
2370  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2371  * Two bpf_map_lookups (even with the same key) will have different reg->id.
2372  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2373  * value_or_null->value transition, since the verifier only cares about
2374  * the range of access to valid map value pointer and doesn't care about actual
2375  * address of the map element.
2376  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2377  * reg->id > 0 after value_or_null->value transition. By doing so
2378  * two bpf_map_lookups will be considered two different pointers that
2379  * point to different bpf_spin_locks.
2380  * The verifier allows taking only one bpf_spin_lock at a time to avoid
2381  * dead-locks.
2382  * Since only one bpf_spin_lock is allowed the checks are simpler than
2383  * reg_is_refcounted() logic. The verifier needs to remember only
2384  * one spin_lock instead of array of acquired_refs.
2385  * cur_state->active_spin_lock remembers which map value element got locked
2386  * and clears it after bpf_spin_unlock.
2387  */
2388 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
2389 			     bool is_lock)
2390 {
2391 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2392 	struct bpf_verifier_state *cur = env->cur_state;
2393 	bool is_const = tnum_is_const(reg->var_off);
2394 	struct bpf_map *map = reg->map_ptr;
2395 	u64 val = reg->var_off.value;
2396 
2397 	if (reg->type != PTR_TO_MAP_VALUE) {
2398 		verbose(env, "R%d is not a pointer to map_value\n", regno);
2399 		return -EINVAL;
2400 	}
2401 	if (!is_const) {
2402 		verbose(env,
2403 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2404 			regno);
2405 		return -EINVAL;
2406 	}
2407 	if (!map->btf) {
2408 		verbose(env,
2409 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
2410 			map->name);
2411 		return -EINVAL;
2412 	}
2413 	if (!map_value_has_spin_lock(map)) {
2414 		if (map->spin_lock_off == -E2BIG)
2415 			verbose(env,
2416 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
2417 				map->name);
2418 		else if (map->spin_lock_off == -ENOENT)
2419 			verbose(env,
2420 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
2421 				map->name);
2422 		else
2423 			verbose(env,
2424 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2425 				map->name);
2426 		return -EINVAL;
2427 	}
2428 	if (map->spin_lock_off != val + reg->off) {
2429 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2430 			val + reg->off);
2431 		return -EINVAL;
2432 	}
2433 	if (is_lock) {
2434 		if (cur->active_spin_lock) {
2435 			verbose(env,
2436 				"Locking two bpf_spin_locks are not allowed\n");
2437 			return -EINVAL;
2438 		}
2439 		cur->active_spin_lock = reg->id;
2440 	} else {
2441 		if (!cur->active_spin_lock) {
2442 			verbose(env, "bpf_spin_unlock without taking a lock\n");
2443 			return -EINVAL;
2444 		}
2445 		if (cur->active_spin_lock != reg->id) {
2446 			verbose(env, "bpf_spin_unlock of different lock\n");
2447 			return -EINVAL;
2448 		}
2449 		cur->active_spin_lock = 0;
2450 	}
2451 	return 0;
2452 }
2453 
2454 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2455 {
2456 	return type == ARG_PTR_TO_MEM ||
2457 	       type == ARG_PTR_TO_MEM_OR_NULL ||
2458 	       type == ARG_PTR_TO_UNINIT_MEM;
2459 }
2460 
2461 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2462 {
2463 	return type == ARG_CONST_SIZE ||
2464 	       type == ARG_CONST_SIZE_OR_ZERO;
2465 }
2466 
2467 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
2468 {
2469 	return type == ARG_PTR_TO_INT ||
2470 	       type == ARG_PTR_TO_LONG;
2471 }
2472 
2473 static int int_ptr_type_to_size(enum bpf_arg_type type)
2474 {
2475 	if (type == ARG_PTR_TO_INT)
2476 		return sizeof(u32);
2477 	else if (type == ARG_PTR_TO_LONG)
2478 		return sizeof(u64);
2479 
2480 	return -EINVAL;
2481 }
2482 
2483 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2484 			  enum bpf_arg_type arg_type,
2485 			  struct bpf_call_arg_meta *meta)
2486 {
2487 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2488 	enum bpf_reg_type expected_type, type = reg->type;
2489 	int err = 0;
2490 
2491 	if (arg_type == ARG_DONTCARE)
2492 		return 0;
2493 
2494 	err = check_reg_arg(env, regno, SRC_OP);
2495 	if (err)
2496 		return err;
2497 
2498 	if (arg_type == ARG_ANYTHING) {
2499 		if (is_pointer_value(env, regno)) {
2500 			verbose(env, "R%d leaks addr into helper function\n",
2501 				regno);
2502 			return -EACCES;
2503 		}
2504 		return 0;
2505 	}
2506 
2507 	if (type_is_pkt_pointer(type) &&
2508 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2509 		verbose(env, "helper access to the packet is not allowed\n");
2510 		return -EACCES;
2511 	}
2512 
2513 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
2514 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
2515 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2516 		expected_type = PTR_TO_STACK;
2517 		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
2518 		    type != expected_type)
2519 			goto err_type;
2520 	} else if (arg_type == ARG_CONST_SIZE ||
2521 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
2522 		expected_type = SCALAR_VALUE;
2523 		if (type != expected_type)
2524 			goto err_type;
2525 	} else if (arg_type == ARG_CONST_MAP_PTR) {
2526 		expected_type = CONST_PTR_TO_MAP;
2527 		if (type != expected_type)
2528 			goto err_type;
2529 	} else if (arg_type == ARG_PTR_TO_CTX) {
2530 		expected_type = PTR_TO_CTX;
2531 		if (type != expected_type)
2532 			goto err_type;
2533 		err = check_ctx_reg(env, reg, regno);
2534 		if (err < 0)
2535 			return err;
2536 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
2537 		expected_type = PTR_TO_SOCK_COMMON;
2538 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
2539 		if (!type_is_sk_pointer(type))
2540 			goto err_type;
2541 		if (reg->ref_obj_id) {
2542 			if (meta->ref_obj_id) {
2543 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
2544 					regno, reg->ref_obj_id,
2545 					meta->ref_obj_id);
2546 				return -EFAULT;
2547 			}
2548 			meta->ref_obj_id = reg->ref_obj_id;
2549 		}
2550 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
2551 		if (meta->func_id == BPF_FUNC_spin_lock) {
2552 			if (process_spin_lock(env, regno, true))
2553 				return -EACCES;
2554 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
2555 			if (process_spin_lock(env, regno, false))
2556 				return -EACCES;
2557 		} else {
2558 			verbose(env, "verifier internal error\n");
2559 			return -EFAULT;
2560 		}
2561 	} else if (arg_type_is_mem_ptr(arg_type)) {
2562 		expected_type = PTR_TO_STACK;
2563 		/* One exception here. In case function allows for NULL to be
2564 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
2565 		 * happens during stack boundary checking.
2566 		 */
2567 		if (register_is_null(reg) &&
2568 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
2569 			/* final test in check_stack_boundary() */;
2570 		else if (!type_is_pkt_pointer(type) &&
2571 			 type != PTR_TO_MAP_VALUE &&
2572 			 type != expected_type)
2573 			goto err_type;
2574 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2575 	} else if (arg_type_is_int_ptr(arg_type)) {
2576 		expected_type = PTR_TO_STACK;
2577 		if (!type_is_pkt_pointer(type) &&
2578 		    type != PTR_TO_MAP_VALUE &&
2579 		    type != expected_type)
2580 			goto err_type;
2581 	} else {
2582 		verbose(env, "unsupported arg_type %d\n", arg_type);
2583 		return -EFAULT;
2584 	}
2585 
2586 	if (arg_type == ARG_CONST_MAP_PTR) {
2587 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2588 		meta->map_ptr = reg->map_ptr;
2589 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2590 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
2591 		 * check that [key, key + map->key_size) are within
2592 		 * stack limits and initialized
2593 		 */
2594 		if (!meta->map_ptr) {
2595 			/* in function declaration map_ptr must come before
2596 			 * map_key, so that it's verified and known before
2597 			 * we have to check map_key here. Otherwise it means
2598 			 * that kernel subsystem misconfigured verifier
2599 			 */
2600 			verbose(env, "invalid map_ptr to access map->key\n");
2601 			return -EACCES;
2602 		}
2603 		err = check_helper_mem_access(env, regno,
2604 					      meta->map_ptr->key_size, false,
2605 					      NULL);
2606 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2607 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2608 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
2609 		 * check [value, value + map->value_size) validity
2610 		 */
2611 		if (!meta->map_ptr) {
2612 			/* kernel subsystem misconfigured verifier */
2613 			verbose(env, "invalid map_ptr to access map->value\n");
2614 			return -EACCES;
2615 		}
2616 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2617 		err = check_helper_mem_access(env, regno,
2618 					      meta->map_ptr->value_size, false,
2619 					      meta);
2620 	} else if (arg_type_is_mem_size(arg_type)) {
2621 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2622 
2623 		/* remember the mem_size which may be used later
2624 		 * to refine return values.
2625 		 */
2626 		meta->msize_smax_value = reg->smax_value;
2627 		meta->msize_umax_value = reg->umax_value;
2628 
2629 		/* The register is SCALAR_VALUE; the access check
2630 		 * happens using its boundaries.
2631 		 */
2632 		if (!tnum_is_const(reg->var_off))
2633 			/* For unprivileged variable accesses, disable raw
2634 			 * mode so that the program is required to
2635 			 * initialize all the memory that the helper could
2636 			 * just partially fill up.
2637 			 */
2638 			meta = NULL;
2639 
2640 		if (reg->smin_value < 0) {
2641 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2642 				regno);
2643 			return -EACCES;
2644 		}
2645 
2646 		if (reg->umin_value == 0) {
2647 			err = check_helper_mem_access(env, regno - 1, 0,
2648 						      zero_size_allowed,
2649 						      meta);
2650 			if (err)
2651 				return err;
2652 		}
2653 
2654 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2655 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2656 				regno);
2657 			return -EACCES;
2658 		}
2659 		err = check_helper_mem_access(env, regno - 1,
2660 					      reg->umax_value,
2661 					      zero_size_allowed, meta);
2662 	} else if (arg_type_is_int_ptr(arg_type)) {
2663 		int size = int_ptr_type_to_size(arg_type);
2664 
2665 		err = check_helper_mem_access(env, regno, size, false, meta);
2666 		if (err)
2667 			return err;
2668 		err = check_ptr_alignment(env, reg, 0, size, true);
2669 	}
2670 
2671 	return err;
2672 err_type:
2673 	verbose(env, "R%d type=%s expected=%s\n", regno,
2674 		reg_type_str[type], reg_type_str[expected_type]);
2675 	return -EACCES;
2676 }
2677 
2678 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2679 					struct bpf_map *map, int func_id)
2680 {
2681 	if (!map)
2682 		return 0;
2683 
2684 	/* We need a two way check, first is from map perspective ... */
2685 	switch (map->map_type) {
2686 	case BPF_MAP_TYPE_PROG_ARRAY:
2687 		if (func_id != BPF_FUNC_tail_call)
2688 			goto error;
2689 		break;
2690 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2691 		if (func_id != BPF_FUNC_perf_event_read &&
2692 		    func_id != BPF_FUNC_perf_event_output &&
2693 		    func_id != BPF_FUNC_perf_event_read_value)
2694 			goto error;
2695 		break;
2696 	case BPF_MAP_TYPE_STACK_TRACE:
2697 		if (func_id != BPF_FUNC_get_stackid)
2698 			goto error;
2699 		break;
2700 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2701 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2702 		    func_id != BPF_FUNC_current_task_under_cgroup)
2703 			goto error;
2704 		break;
2705 	case BPF_MAP_TYPE_CGROUP_STORAGE:
2706 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2707 		if (func_id != BPF_FUNC_get_local_storage)
2708 			goto error;
2709 		break;
2710 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2711 	 * allow to be modified from bpf side. So do not allow lookup elements
2712 	 * for now.
2713 	 */
2714 	case BPF_MAP_TYPE_DEVMAP:
2715 		if (func_id != BPF_FUNC_redirect_map)
2716 			goto error;
2717 		break;
2718 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2719 	 * appear.
2720 	 */
2721 	case BPF_MAP_TYPE_CPUMAP:
2722 	case BPF_MAP_TYPE_XSKMAP:
2723 		if (func_id != BPF_FUNC_redirect_map)
2724 			goto error;
2725 		break;
2726 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2727 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2728 		if (func_id != BPF_FUNC_map_lookup_elem)
2729 			goto error;
2730 		break;
2731 	case BPF_MAP_TYPE_SOCKMAP:
2732 		if (func_id != BPF_FUNC_sk_redirect_map &&
2733 		    func_id != BPF_FUNC_sock_map_update &&
2734 		    func_id != BPF_FUNC_map_delete_elem &&
2735 		    func_id != BPF_FUNC_msg_redirect_map)
2736 			goto error;
2737 		break;
2738 	case BPF_MAP_TYPE_SOCKHASH:
2739 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2740 		    func_id != BPF_FUNC_sock_hash_update &&
2741 		    func_id != BPF_FUNC_map_delete_elem &&
2742 		    func_id != BPF_FUNC_msg_redirect_hash)
2743 			goto error;
2744 		break;
2745 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2746 		if (func_id != BPF_FUNC_sk_select_reuseport)
2747 			goto error;
2748 		break;
2749 	case BPF_MAP_TYPE_QUEUE:
2750 	case BPF_MAP_TYPE_STACK:
2751 		if (func_id != BPF_FUNC_map_peek_elem &&
2752 		    func_id != BPF_FUNC_map_pop_elem &&
2753 		    func_id != BPF_FUNC_map_push_elem)
2754 			goto error;
2755 		break;
2756 	default:
2757 		break;
2758 	}
2759 
2760 	/* ... and second from the function itself. */
2761 	switch (func_id) {
2762 	case BPF_FUNC_tail_call:
2763 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2764 			goto error;
2765 		if (env->subprog_cnt > 1) {
2766 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2767 			return -EINVAL;
2768 		}
2769 		break;
2770 	case BPF_FUNC_perf_event_read:
2771 	case BPF_FUNC_perf_event_output:
2772 	case BPF_FUNC_perf_event_read_value:
2773 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2774 			goto error;
2775 		break;
2776 	case BPF_FUNC_get_stackid:
2777 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2778 			goto error;
2779 		break;
2780 	case BPF_FUNC_current_task_under_cgroup:
2781 	case BPF_FUNC_skb_under_cgroup:
2782 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2783 			goto error;
2784 		break;
2785 	case BPF_FUNC_redirect_map:
2786 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2787 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2788 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2789 			goto error;
2790 		break;
2791 	case BPF_FUNC_sk_redirect_map:
2792 	case BPF_FUNC_msg_redirect_map:
2793 	case BPF_FUNC_sock_map_update:
2794 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2795 			goto error;
2796 		break;
2797 	case BPF_FUNC_sk_redirect_hash:
2798 	case BPF_FUNC_msg_redirect_hash:
2799 	case BPF_FUNC_sock_hash_update:
2800 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2801 			goto error;
2802 		break;
2803 	case BPF_FUNC_get_local_storage:
2804 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2805 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2806 			goto error;
2807 		break;
2808 	case BPF_FUNC_sk_select_reuseport:
2809 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2810 			goto error;
2811 		break;
2812 	case BPF_FUNC_map_peek_elem:
2813 	case BPF_FUNC_map_pop_elem:
2814 	case BPF_FUNC_map_push_elem:
2815 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2816 		    map->map_type != BPF_MAP_TYPE_STACK)
2817 			goto error;
2818 		break;
2819 	default:
2820 		break;
2821 	}
2822 
2823 	return 0;
2824 error:
2825 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2826 		map->map_type, func_id_name(func_id), func_id);
2827 	return -EINVAL;
2828 }
2829 
2830 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2831 {
2832 	int count = 0;
2833 
2834 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2835 		count++;
2836 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2837 		count++;
2838 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2839 		count++;
2840 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2841 		count++;
2842 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2843 		count++;
2844 
2845 	/* We only support one arg being in raw mode at the moment,
2846 	 * which is sufficient for the helper functions we have
2847 	 * right now.
2848 	 */
2849 	return count <= 1;
2850 }
2851 
2852 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2853 				    enum bpf_arg_type arg_next)
2854 {
2855 	return (arg_type_is_mem_ptr(arg_curr) &&
2856 	        !arg_type_is_mem_size(arg_next)) ||
2857 	       (!arg_type_is_mem_ptr(arg_curr) &&
2858 		arg_type_is_mem_size(arg_next));
2859 }
2860 
2861 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2862 {
2863 	/* bpf_xxx(..., buf, len) call will access 'len'
2864 	 * bytes from memory 'buf'. Both arg types need
2865 	 * to be paired, so make sure there's no buggy
2866 	 * helper function specification.
2867 	 */
2868 	if (arg_type_is_mem_size(fn->arg1_type) ||
2869 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2870 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2871 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2872 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2873 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2874 		return false;
2875 
2876 	return true;
2877 }
2878 
2879 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
2880 {
2881 	int count = 0;
2882 
2883 	if (arg_type_may_be_refcounted(fn->arg1_type))
2884 		count++;
2885 	if (arg_type_may_be_refcounted(fn->arg2_type))
2886 		count++;
2887 	if (arg_type_may_be_refcounted(fn->arg3_type))
2888 		count++;
2889 	if (arg_type_may_be_refcounted(fn->arg4_type))
2890 		count++;
2891 	if (arg_type_may_be_refcounted(fn->arg5_type))
2892 		count++;
2893 
2894 	/* A reference acquiring function cannot acquire
2895 	 * another refcounted ptr.
2896 	 */
2897 	if (is_acquire_function(func_id) && count)
2898 		return false;
2899 
2900 	/* We only support one arg being unreferenced at the moment,
2901 	 * which is sufficient for the helper functions we have right now.
2902 	 */
2903 	return count <= 1;
2904 }
2905 
2906 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
2907 {
2908 	return check_raw_mode_ok(fn) &&
2909 	       check_arg_pair_ok(fn) &&
2910 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
2911 }
2912 
2913 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2914  * are now invalid, so turn them into unknown SCALAR_VALUE.
2915  */
2916 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2917 				     struct bpf_func_state *state)
2918 {
2919 	struct bpf_reg_state *regs = state->regs, *reg;
2920 	int i;
2921 
2922 	for (i = 0; i < MAX_BPF_REG; i++)
2923 		if (reg_is_pkt_pointer_any(&regs[i]))
2924 			mark_reg_unknown(env, regs, i);
2925 
2926 	bpf_for_each_spilled_reg(i, state, reg) {
2927 		if (!reg)
2928 			continue;
2929 		if (reg_is_pkt_pointer_any(reg))
2930 			__mark_reg_unknown(reg);
2931 	}
2932 }
2933 
2934 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2935 {
2936 	struct bpf_verifier_state *vstate = env->cur_state;
2937 	int i;
2938 
2939 	for (i = 0; i <= vstate->curframe; i++)
2940 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2941 }
2942 
2943 static void release_reg_references(struct bpf_verifier_env *env,
2944 				   struct bpf_func_state *state,
2945 				   int ref_obj_id)
2946 {
2947 	struct bpf_reg_state *regs = state->regs, *reg;
2948 	int i;
2949 
2950 	for (i = 0; i < MAX_BPF_REG; i++)
2951 		if (regs[i].ref_obj_id == ref_obj_id)
2952 			mark_reg_unknown(env, regs, i);
2953 
2954 	bpf_for_each_spilled_reg(i, state, reg) {
2955 		if (!reg)
2956 			continue;
2957 		if (reg->ref_obj_id == ref_obj_id)
2958 			__mark_reg_unknown(reg);
2959 	}
2960 }
2961 
2962 /* The pointer with the specified id has released its reference to kernel
2963  * resources. Identify all copies of the same pointer and clear the reference.
2964  */
2965 static int release_reference(struct bpf_verifier_env *env,
2966 			     int ref_obj_id)
2967 {
2968 	struct bpf_verifier_state *vstate = env->cur_state;
2969 	int err;
2970 	int i;
2971 
2972 	err = release_reference_state(cur_func(env), ref_obj_id);
2973 	if (err)
2974 		return err;
2975 
2976 	for (i = 0; i <= vstate->curframe; i++)
2977 		release_reg_references(env, vstate->frame[i], ref_obj_id);
2978 
2979 	return 0;
2980 }
2981 
2982 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2983 			   int *insn_idx)
2984 {
2985 	struct bpf_verifier_state *state = env->cur_state;
2986 	struct bpf_func_state *caller, *callee;
2987 	int i, err, subprog, target_insn;
2988 
2989 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2990 		verbose(env, "the call stack of %d frames is too deep\n",
2991 			state->curframe + 2);
2992 		return -E2BIG;
2993 	}
2994 
2995 	target_insn = *insn_idx + insn->imm;
2996 	subprog = find_subprog(env, target_insn + 1);
2997 	if (subprog < 0) {
2998 		verbose(env, "verifier bug. No program starts at insn %d\n",
2999 			target_insn + 1);
3000 		return -EFAULT;
3001 	}
3002 
3003 	caller = state->frame[state->curframe];
3004 	if (state->frame[state->curframe + 1]) {
3005 		verbose(env, "verifier bug. Frame %d already allocated\n",
3006 			state->curframe + 1);
3007 		return -EFAULT;
3008 	}
3009 
3010 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3011 	if (!callee)
3012 		return -ENOMEM;
3013 	state->frame[state->curframe + 1] = callee;
3014 
3015 	/* callee cannot access r0, r6 - r9 for reading and has to write
3016 	 * into its own stack before reading from it.
3017 	 * callee can read/write into caller's stack
3018 	 */
3019 	init_func_state(env, callee,
3020 			/* remember the callsite, it will be used by bpf_exit */
3021 			*insn_idx /* callsite */,
3022 			state->curframe + 1 /* frameno within this callchain */,
3023 			subprog /* subprog number within this prog */);
3024 
3025 	/* Transfer references to the callee */
3026 	err = transfer_reference_state(callee, caller);
3027 	if (err)
3028 		return err;
3029 
3030 	/* copy r1 - r5 args that callee can access.  The copy includes parent
3031 	 * pointers, which connects us up to the liveness chain
3032 	 */
3033 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3034 		callee->regs[i] = caller->regs[i];
3035 
3036 	/* after the call registers r0 - r5 were scratched */
3037 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3038 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
3039 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3040 	}
3041 
3042 	/* only increment it after check_reg_arg() finished */
3043 	state->curframe++;
3044 
3045 	/* and go analyze first insn of the callee */
3046 	*insn_idx = target_insn;
3047 
3048 	if (env->log.level & BPF_LOG_LEVEL) {
3049 		verbose(env, "caller:\n");
3050 		print_verifier_state(env, caller);
3051 		verbose(env, "callee:\n");
3052 		print_verifier_state(env, callee);
3053 	}
3054 	return 0;
3055 }
3056 
3057 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3058 {
3059 	struct bpf_verifier_state *state = env->cur_state;
3060 	struct bpf_func_state *caller, *callee;
3061 	struct bpf_reg_state *r0;
3062 	int err;
3063 
3064 	callee = state->frame[state->curframe];
3065 	r0 = &callee->regs[BPF_REG_0];
3066 	if (r0->type == PTR_TO_STACK) {
3067 		/* technically it's ok to return caller's stack pointer
3068 		 * (or caller's caller's pointer) back to the caller,
3069 		 * since these pointers are valid. Only current stack
3070 		 * pointer will be invalid as soon as function exits,
3071 		 * but let's be conservative
3072 		 */
3073 		verbose(env, "cannot return stack pointer to the caller\n");
3074 		return -EINVAL;
3075 	}
3076 
3077 	state->curframe--;
3078 	caller = state->frame[state->curframe];
3079 	/* return to the caller whatever r0 had in the callee */
3080 	caller->regs[BPF_REG_0] = *r0;
3081 
3082 	/* Transfer references to the caller */
3083 	err = transfer_reference_state(caller, callee);
3084 	if (err)
3085 		return err;
3086 
3087 	*insn_idx = callee->callsite + 1;
3088 	if (env->log.level & BPF_LOG_LEVEL) {
3089 		verbose(env, "returning from callee:\n");
3090 		print_verifier_state(env, callee);
3091 		verbose(env, "to caller at %d:\n", *insn_idx);
3092 		print_verifier_state(env, caller);
3093 	}
3094 	/* clear everything in the callee */
3095 	free_func_state(callee);
3096 	state->frame[state->curframe + 1] = NULL;
3097 	return 0;
3098 }
3099 
3100 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3101 				   int func_id,
3102 				   struct bpf_call_arg_meta *meta)
3103 {
3104 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3105 
3106 	if (ret_type != RET_INTEGER ||
3107 	    (func_id != BPF_FUNC_get_stack &&
3108 	     func_id != BPF_FUNC_probe_read_str))
3109 		return;
3110 
3111 	ret_reg->smax_value = meta->msize_smax_value;
3112 	ret_reg->umax_value = meta->msize_umax_value;
3113 	__reg_deduce_bounds(ret_reg);
3114 	__reg_bound_offset(ret_reg);
3115 }
3116 
3117 static int
3118 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3119 		int func_id, int insn_idx)
3120 {
3121 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
3122 	struct bpf_map *map = meta->map_ptr;
3123 
3124 	if (func_id != BPF_FUNC_tail_call &&
3125 	    func_id != BPF_FUNC_map_lookup_elem &&
3126 	    func_id != BPF_FUNC_map_update_elem &&
3127 	    func_id != BPF_FUNC_map_delete_elem &&
3128 	    func_id != BPF_FUNC_map_push_elem &&
3129 	    func_id != BPF_FUNC_map_pop_elem &&
3130 	    func_id != BPF_FUNC_map_peek_elem)
3131 		return 0;
3132 
3133 	if (map == NULL) {
3134 		verbose(env, "kernel subsystem misconfigured verifier\n");
3135 		return -EINVAL;
3136 	}
3137 
3138 	/* In case of read-only, some additional restrictions
3139 	 * need to be applied in order to prevent altering the
3140 	 * state of the map from program side.
3141 	 */
3142 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3143 	    (func_id == BPF_FUNC_map_delete_elem ||
3144 	     func_id == BPF_FUNC_map_update_elem ||
3145 	     func_id == BPF_FUNC_map_push_elem ||
3146 	     func_id == BPF_FUNC_map_pop_elem)) {
3147 		verbose(env, "write into map forbidden\n");
3148 		return -EACCES;
3149 	}
3150 
3151 	if (!BPF_MAP_PTR(aux->map_state))
3152 		bpf_map_ptr_store(aux, meta->map_ptr,
3153 				  meta->map_ptr->unpriv_array);
3154 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3155 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3156 				  meta->map_ptr->unpriv_array);
3157 	return 0;
3158 }
3159 
3160 static int check_reference_leak(struct bpf_verifier_env *env)
3161 {
3162 	struct bpf_func_state *state = cur_func(env);
3163 	int i;
3164 
3165 	for (i = 0; i < state->acquired_refs; i++) {
3166 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3167 			state->refs[i].id, state->refs[i].insn_idx);
3168 	}
3169 	return state->acquired_refs ? -EINVAL : 0;
3170 }
3171 
3172 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
3173 {
3174 	const struct bpf_func_proto *fn = NULL;
3175 	struct bpf_reg_state *regs;
3176 	struct bpf_call_arg_meta meta;
3177 	bool changes_data;
3178 	int i, err;
3179 
3180 	/* find function prototype */
3181 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
3182 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3183 			func_id);
3184 		return -EINVAL;
3185 	}
3186 
3187 	if (env->ops->get_func_proto)
3188 		fn = env->ops->get_func_proto(func_id, env->prog);
3189 	if (!fn) {
3190 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3191 			func_id);
3192 		return -EINVAL;
3193 	}
3194 
3195 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
3196 	if (!env->prog->gpl_compatible && fn->gpl_only) {
3197 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
3198 		return -EINVAL;
3199 	}
3200 
3201 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
3202 	changes_data = bpf_helper_changes_pkt_data(fn->func);
3203 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3204 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3205 			func_id_name(func_id), func_id);
3206 		return -EINVAL;
3207 	}
3208 
3209 	memset(&meta, 0, sizeof(meta));
3210 	meta.pkt_access = fn->pkt_access;
3211 
3212 	err = check_func_proto(fn, func_id);
3213 	if (err) {
3214 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
3215 			func_id_name(func_id), func_id);
3216 		return err;
3217 	}
3218 
3219 	meta.func_id = func_id;
3220 	/* check args */
3221 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
3222 	if (err)
3223 		return err;
3224 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
3225 	if (err)
3226 		return err;
3227 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
3228 	if (err)
3229 		return err;
3230 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
3231 	if (err)
3232 		return err;
3233 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
3234 	if (err)
3235 		return err;
3236 
3237 	err = record_func_map(env, &meta, func_id, insn_idx);
3238 	if (err)
3239 		return err;
3240 
3241 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
3242 	 * is inferred from register state.
3243 	 */
3244 	for (i = 0; i < meta.access_size; i++) {
3245 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3246 				       BPF_WRITE, -1, false);
3247 		if (err)
3248 			return err;
3249 	}
3250 
3251 	if (func_id == BPF_FUNC_tail_call) {
3252 		err = check_reference_leak(env);
3253 		if (err) {
3254 			verbose(env, "tail_call would lead to reference leak\n");
3255 			return err;
3256 		}
3257 	} else if (is_release_function(func_id)) {
3258 		err = release_reference(env, meta.ref_obj_id);
3259 		if (err) {
3260 			verbose(env, "func %s#%d reference has not been acquired before\n",
3261 				func_id_name(func_id), func_id);
3262 			return err;
3263 		}
3264 	}
3265 
3266 	regs = cur_regs(env);
3267 
3268 	/* check that flags argument in get_local_storage(map, flags) is 0,
3269 	 * this is required because get_local_storage() can't return an error.
3270 	 */
3271 	if (func_id == BPF_FUNC_get_local_storage &&
3272 	    !register_is_null(&regs[BPF_REG_2])) {
3273 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3274 		return -EINVAL;
3275 	}
3276 
3277 	/* reset caller saved regs */
3278 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3279 		mark_reg_not_init(env, regs, caller_saved[i]);
3280 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3281 	}
3282 
3283 	/* update return register (already marked as written above) */
3284 	if (fn->ret_type == RET_INTEGER) {
3285 		/* sets type to SCALAR_VALUE */
3286 		mark_reg_unknown(env, regs, BPF_REG_0);
3287 	} else if (fn->ret_type == RET_VOID) {
3288 		regs[BPF_REG_0].type = NOT_INIT;
3289 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
3290 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3291 		/* There is no offset yet applied, variable or fixed */
3292 		mark_reg_known_zero(env, regs, BPF_REG_0);
3293 		/* remember map_ptr, so that check_map_access()
3294 		 * can check 'value_size' boundary of memory access
3295 		 * to map element returned from bpf_map_lookup_elem()
3296 		 */
3297 		if (meta.map_ptr == NULL) {
3298 			verbose(env,
3299 				"kernel subsystem misconfigured verifier\n");
3300 			return -EINVAL;
3301 		}
3302 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
3303 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3304 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
3305 			if (map_value_has_spin_lock(meta.map_ptr))
3306 				regs[BPF_REG_0].id = ++env->id_gen;
3307 		} else {
3308 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
3309 			regs[BPF_REG_0].id = ++env->id_gen;
3310 		}
3311 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
3312 		mark_reg_known_zero(env, regs, BPF_REG_0);
3313 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
3314 		regs[BPF_REG_0].id = ++env->id_gen;
3315 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
3316 		mark_reg_known_zero(env, regs, BPF_REG_0);
3317 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
3318 		regs[BPF_REG_0].id = ++env->id_gen;
3319 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
3320 		mark_reg_known_zero(env, regs, BPF_REG_0);
3321 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
3322 		regs[BPF_REG_0].id = ++env->id_gen;
3323 	} else {
3324 		verbose(env, "unknown return type %d of func %s#%d\n",
3325 			fn->ret_type, func_id_name(func_id), func_id);
3326 		return -EINVAL;
3327 	}
3328 
3329 	if (is_ptr_cast_function(func_id)) {
3330 		/* For release_reference() */
3331 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
3332 	} else if (is_acquire_function(func_id)) {
3333 		int id = acquire_reference_state(env, insn_idx);
3334 
3335 		if (id < 0)
3336 			return id;
3337 		/* For mark_ptr_or_null_reg() */
3338 		regs[BPF_REG_0].id = id;
3339 		/* For release_reference() */
3340 		regs[BPF_REG_0].ref_obj_id = id;
3341 	}
3342 
3343 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
3344 
3345 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
3346 	if (err)
3347 		return err;
3348 
3349 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
3350 		const char *err_str;
3351 
3352 #ifdef CONFIG_PERF_EVENTS
3353 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
3354 		err_str = "cannot get callchain buffer for func %s#%d\n";
3355 #else
3356 		err = -ENOTSUPP;
3357 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3358 #endif
3359 		if (err) {
3360 			verbose(env, err_str, func_id_name(func_id), func_id);
3361 			return err;
3362 		}
3363 
3364 		env->prog->has_callchain_buf = true;
3365 	}
3366 
3367 	if (changes_data)
3368 		clear_all_pkt_pointers(env);
3369 	return 0;
3370 }
3371 
3372 static bool signed_add_overflows(s64 a, s64 b)
3373 {
3374 	/* Do the add in u64, where overflow is well-defined */
3375 	s64 res = (s64)((u64)a + (u64)b);
3376 
3377 	if (b < 0)
3378 		return res > a;
3379 	return res < a;
3380 }
3381 
3382 static bool signed_sub_overflows(s64 a, s64 b)
3383 {
3384 	/* Do the sub in u64, where overflow is well-defined */
3385 	s64 res = (s64)((u64)a - (u64)b);
3386 
3387 	if (b < 0)
3388 		return res < a;
3389 	return res > a;
3390 }
3391 
3392 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3393 				  const struct bpf_reg_state *reg,
3394 				  enum bpf_reg_type type)
3395 {
3396 	bool known = tnum_is_const(reg->var_off);
3397 	s64 val = reg->var_off.value;
3398 	s64 smin = reg->smin_value;
3399 
3400 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3401 		verbose(env, "math between %s pointer and %lld is not allowed\n",
3402 			reg_type_str[type], val);
3403 		return false;
3404 	}
3405 
3406 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3407 		verbose(env, "%s pointer offset %d is not allowed\n",
3408 			reg_type_str[type], reg->off);
3409 		return false;
3410 	}
3411 
3412 	if (smin == S64_MIN) {
3413 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3414 			reg_type_str[type]);
3415 		return false;
3416 	}
3417 
3418 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3419 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
3420 			smin, reg_type_str[type]);
3421 		return false;
3422 	}
3423 
3424 	return true;
3425 }
3426 
3427 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
3428 {
3429 	return &env->insn_aux_data[env->insn_idx];
3430 }
3431 
3432 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
3433 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
3434 {
3435 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
3436 			    (opcode == BPF_SUB && !off_is_neg);
3437 	u32 off;
3438 
3439 	switch (ptr_reg->type) {
3440 	case PTR_TO_STACK:
3441 		/* Indirect variable offset stack access is prohibited in
3442 		 * unprivileged mode so it's not handled here.
3443 		 */
3444 		off = ptr_reg->off + ptr_reg->var_off.value;
3445 		if (mask_to_left)
3446 			*ptr_limit = MAX_BPF_STACK + off;
3447 		else
3448 			*ptr_limit = -off;
3449 		return 0;
3450 	case PTR_TO_MAP_VALUE:
3451 		if (mask_to_left) {
3452 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
3453 		} else {
3454 			off = ptr_reg->smin_value + ptr_reg->off;
3455 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
3456 		}
3457 		return 0;
3458 	default:
3459 		return -EINVAL;
3460 	}
3461 }
3462 
3463 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
3464 				    const struct bpf_insn *insn)
3465 {
3466 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
3467 }
3468 
3469 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
3470 				       u32 alu_state, u32 alu_limit)
3471 {
3472 	/* If we arrived here from different branches with different
3473 	 * state or limits to sanitize, then this won't work.
3474 	 */
3475 	if (aux->alu_state &&
3476 	    (aux->alu_state != alu_state ||
3477 	     aux->alu_limit != alu_limit))
3478 		return -EACCES;
3479 
3480 	/* Corresponding fixup done in fixup_bpf_calls(). */
3481 	aux->alu_state = alu_state;
3482 	aux->alu_limit = alu_limit;
3483 	return 0;
3484 }
3485 
3486 static int sanitize_val_alu(struct bpf_verifier_env *env,
3487 			    struct bpf_insn *insn)
3488 {
3489 	struct bpf_insn_aux_data *aux = cur_aux(env);
3490 
3491 	if (can_skip_alu_sanitation(env, insn))
3492 		return 0;
3493 
3494 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
3495 }
3496 
3497 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
3498 			    struct bpf_insn *insn,
3499 			    const struct bpf_reg_state *ptr_reg,
3500 			    struct bpf_reg_state *dst_reg,
3501 			    bool off_is_neg)
3502 {
3503 	struct bpf_verifier_state *vstate = env->cur_state;
3504 	struct bpf_insn_aux_data *aux = cur_aux(env);
3505 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
3506 	u8 opcode = BPF_OP(insn->code);
3507 	u32 alu_state, alu_limit;
3508 	struct bpf_reg_state tmp;
3509 	bool ret;
3510 
3511 	if (can_skip_alu_sanitation(env, insn))
3512 		return 0;
3513 
3514 	/* We already marked aux for masking from non-speculative
3515 	 * paths, thus we got here in the first place. We only care
3516 	 * to explore bad access from here.
3517 	 */
3518 	if (vstate->speculative)
3519 		goto do_sim;
3520 
3521 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
3522 	alu_state |= ptr_is_dst_reg ?
3523 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
3524 
3525 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
3526 		return 0;
3527 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
3528 		return -EACCES;
3529 do_sim:
3530 	/* Simulate and find potential out-of-bounds access under
3531 	 * speculative execution from truncation as a result of
3532 	 * masking when off was not within expected range. If off
3533 	 * sits in dst, then we temporarily need to move ptr there
3534 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3535 	 * for cases where we use K-based arithmetic in one direction
3536 	 * and truncated reg-based in the other in order to explore
3537 	 * bad access.
3538 	 */
3539 	if (!ptr_is_dst_reg) {
3540 		tmp = *dst_reg;
3541 		*dst_reg = *ptr_reg;
3542 	}
3543 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
3544 	if (!ptr_is_dst_reg && ret)
3545 		*dst_reg = tmp;
3546 	return !ret ? -EFAULT : 0;
3547 }
3548 
3549 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
3550  * Caller should also handle BPF_MOV case separately.
3551  * If we return -EACCES, caller may want to try again treating pointer as a
3552  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
3553  */
3554 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3555 				   struct bpf_insn *insn,
3556 				   const struct bpf_reg_state *ptr_reg,
3557 				   const struct bpf_reg_state *off_reg)
3558 {
3559 	struct bpf_verifier_state *vstate = env->cur_state;
3560 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3561 	struct bpf_reg_state *regs = state->regs, *dst_reg;
3562 	bool known = tnum_is_const(off_reg->var_off);
3563 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3564 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3565 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3566 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3567 	u32 dst = insn->dst_reg, src = insn->src_reg;
3568 	u8 opcode = BPF_OP(insn->code);
3569 	int ret;
3570 
3571 	dst_reg = &regs[dst];
3572 
3573 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3574 	    smin_val > smax_val || umin_val > umax_val) {
3575 		/* Taint dst register if offset had invalid bounds derived from
3576 		 * e.g. dead branches.
3577 		 */
3578 		__mark_reg_unknown(dst_reg);
3579 		return 0;
3580 	}
3581 
3582 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3583 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
3584 		verbose(env,
3585 			"R%d 32-bit pointer arithmetic prohibited\n",
3586 			dst);
3587 		return -EACCES;
3588 	}
3589 
3590 	switch (ptr_reg->type) {
3591 	case PTR_TO_MAP_VALUE_OR_NULL:
3592 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3593 			dst, reg_type_str[ptr_reg->type]);
3594 		return -EACCES;
3595 	case CONST_PTR_TO_MAP:
3596 	case PTR_TO_PACKET_END:
3597 	case PTR_TO_SOCKET:
3598 	case PTR_TO_SOCKET_OR_NULL:
3599 	case PTR_TO_SOCK_COMMON:
3600 	case PTR_TO_SOCK_COMMON_OR_NULL:
3601 	case PTR_TO_TCP_SOCK:
3602 	case PTR_TO_TCP_SOCK_OR_NULL:
3603 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3604 			dst, reg_type_str[ptr_reg->type]);
3605 		return -EACCES;
3606 	case PTR_TO_MAP_VALUE:
3607 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
3608 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3609 				off_reg == dst_reg ? dst : src);
3610 			return -EACCES;
3611 		}
3612 		/* fall-through */
3613 	default:
3614 		break;
3615 	}
3616 
3617 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3618 	 * The id may be overwritten later if we create a new variable offset.
3619 	 */
3620 	dst_reg->type = ptr_reg->type;
3621 	dst_reg->id = ptr_reg->id;
3622 
3623 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3624 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3625 		return -EINVAL;
3626 
3627 	switch (opcode) {
3628 	case BPF_ADD:
3629 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3630 		if (ret < 0) {
3631 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
3632 			return ret;
3633 		}
3634 		/* We can take a fixed offset as long as it doesn't overflow
3635 		 * the s32 'off' field
3636 		 */
3637 		if (known && (ptr_reg->off + smin_val ==
3638 			      (s64)(s32)(ptr_reg->off + smin_val))) {
3639 			/* pointer += K.  Accumulate it into fixed offset */
3640 			dst_reg->smin_value = smin_ptr;
3641 			dst_reg->smax_value = smax_ptr;
3642 			dst_reg->umin_value = umin_ptr;
3643 			dst_reg->umax_value = umax_ptr;
3644 			dst_reg->var_off = ptr_reg->var_off;
3645 			dst_reg->off = ptr_reg->off + smin_val;
3646 			dst_reg->raw = ptr_reg->raw;
3647 			break;
3648 		}
3649 		/* A new variable offset is created.  Note that off_reg->off
3650 		 * == 0, since it's a scalar.
3651 		 * dst_reg gets the pointer type and since some positive
3652 		 * integer value was added to the pointer, give it a new 'id'
3653 		 * if it's a PTR_TO_PACKET.
3654 		 * this creates a new 'base' pointer, off_reg (variable) gets
3655 		 * added into the variable offset, and we copy the fixed offset
3656 		 * from ptr_reg.
3657 		 */
3658 		if (signed_add_overflows(smin_ptr, smin_val) ||
3659 		    signed_add_overflows(smax_ptr, smax_val)) {
3660 			dst_reg->smin_value = S64_MIN;
3661 			dst_reg->smax_value = S64_MAX;
3662 		} else {
3663 			dst_reg->smin_value = smin_ptr + smin_val;
3664 			dst_reg->smax_value = smax_ptr + smax_val;
3665 		}
3666 		if (umin_ptr + umin_val < umin_ptr ||
3667 		    umax_ptr + umax_val < umax_ptr) {
3668 			dst_reg->umin_value = 0;
3669 			dst_reg->umax_value = U64_MAX;
3670 		} else {
3671 			dst_reg->umin_value = umin_ptr + umin_val;
3672 			dst_reg->umax_value = umax_ptr + umax_val;
3673 		}
3674 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3675 		dst_reg->off = ptr_reg->off;
3676 		dst_reg->raw = ptr_reg->raw;
3677 		if (reg_is_pkt_pointer(ptr_reg)) {
3678 			dst_reg->id = ++env->id_gen;
3679 			/* something was added to pkt_ptr, set range to zero */
3680 			dst_reg->raw = 0;
3681 		}
3682 		break;
3683 	case BPF_SUB:
3684 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3685 		if (ret < 0) {
3686 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
3687 			return ret;
3688 		}
3689 		if (dst_reg == off_reg) {
3690 			/* scalar -= pointer.  Creates an unknown scalar */
3691 			verbose(env, "R%d tried to subtract pointer from scalar\n",
3692 				dst);
3693 			return -EACCES;
3694 		}
3695 		/* We don't allow subtraction from FP, because (according to
3696 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
3697 		 * be able to deal with it.
3698 		 */
3699 		if (ptr_reg->type == PTR_TO_STACK) {
3700 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
3701 				dst);
3702 			return -EACCES;
3703 		}
3704 		if (known && (ptr_reg->off - smin_val ==
3705 			      (s64)(s32)(ptr_reg->off - smin_val))) {
3706 			/* pointer -= K.  Subtract it from fixed offset */
3707 			dst_reg->smin_value = smin_ptr;
3708 			dst_reg->smax_value = smax_ptr;
3709 			dst_reg->umin_value = umin_ptr;
3710 			dst_reg->umax_value = umax_ptr;
3711 			dst_reg->var_off = ptr_reg->var_off;
3712 			dst_reg->id = ptr_reg->id;
3713 			dst_reg->off = ptr_reg->off - smin_val;
3714 			dst_reg->raw = ptr_reg->raw;
3715 			break;
3716 		}
3717 		/* A new variable offset is created.  If the subtrahend is known
3718 		 * nonnegative, then any reg->range we had before is still good.
3719 		 */
3720 		if (signed_sub_overflows(smin_ptr, smax_val) ||
3721 		    signed_sub_overflows(smax_ptr, smin_val)) {
3722 			/* Overflow possible, we know nothing */
3723 			dst_reg->smin_value = S64_MIN;
3724 			dst_reg->smax_value = S64_MAX;
3725 		} else {
3726 			dst_reg->smin_value = smin_ptr - smax_val;
3727 			dst_reg->smax_value = smax_ptr - smin_val;
3728 		}
3729 		if (umin_ptr < umax_val) {
3730 			/* Overflow possible, we know nothing */
3731 			dst_reg->umin_value = 0;
3732 			dst_reg->umax_value = U64_MAX;
3733 		} else {
3734 			/* Cannot overflow (as long as bounds are consistent) */
3735 			dst_reg->umin_value = umin_ptr - umax_val;
3736 			dst_reg->umax_value = umax_ptr - umin_val;
3737 		}
3738 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3739 		dst_reg->off = ptr_reg->off;
3740 		dst_reg->raw = ptr_reg->raw;
3741 		if (reg_is_pkt_pointer(ptr_reg)) {
3742 			dst_reg->id = ++env->id_gen;
3743 			/* something was added to pkt_ptr, set range to zero */
3744 			if (smin_val < 0)
3745 				dst_reg->raw = 0;
3746 		}
3747 		break;
3748 	case BPF_AND:
3749 	case BPF_OR:
3750 	case BPF_XOR:
3751 		/* bitwise ops on pointers are troublesome, prohibit. */
3752 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3753 			dst, bpf_alu_string[opcode >> 4]);
3754 		return -EACCES;
3755 	default:
3756 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
3757 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3758 			dst, bpf_alu_string[opcode >> 4]);
3759 		return -EACCES;
3760 	}
3761 
3762 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3763 		return -EINVAL;
3764 
3765 	__update_reg_bounds(dst_reg);
3766 	__reg_deduce_bounds(dst_reg);
3767 	__reg_bound_offset(dst_reg);
3768 
3769 	/* For unprivileged we require that resulting offset must be in bounds
3770 	 * in order to be able to sanitize access later on.
3771 	 */
3772 	if (!env->allow_ptr_leaks) {
3773 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
3774 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
3775 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3776 				"prohibited for !root\n", dst);
3777 			return -EACCES;
3778 		} else if (dst_reg->type == PTR_TO_STACK &&
3779 			   check_stack_access(env, dst_reg, dst_reg->off +
3780 					      dst_reg->var_off.value, 1)) {
3781 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
3782 				"prohibited for !root\n", dst);
3783 			return -EACCES;
3784 		}
3785 	}
3786 
3787 	return 0;
3788 }
3789 
3790 /* WARNING: This function does calculations on 64-bit values, but the actual
3791  * execution may occur on 32-bit values. Therefore, things like bitshifts
3792  * need extra checks in the 32-bit case.
3793  */
3794 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3795 				      struct bpf_insn *insn,
3796 				      struct bpf_reg_state *dst_reg,
3797 				      struct bpf_reg_state src_reg)
3798 {
3799 	struct bpf_reg_state *regs = cur_regs(env);
3800 	u8 opcode = BPF_OP(insn->code);
3801 	bool src_known, dst_known;
3802 	s64 smin_val, smax_val;
3803 	u64 umin_val, umax_val;
3804 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3805 	u32 dst = insn->dst_reg;
3806 	int ret;
3807 
3808 	if (insn_bitness == 32) {
3809 		/* Relevant for 32-bit RSH: Information can propagate towards
3810 		 * LSB, so it isn't sufficient to only truncate the output to
3811 		 * 32 bits.
3812 		 */
3813 		coerce_reg_to_size(dst_reg, 4);
3814 		coerce_reg_to_size(&src_reg, 4);
3815 	}
3816 
3817 	smin_val = src_reg.smin_value;
3818 	smax_val = src_reg.smax_value;
3819 	umin_val = src_reg.umin_value;
3820 	umax_val = src_reg.umax_value;
3821 	src_known = tnum_is_const(src_reg.var_off);
3822 	dst_known = tnum_is_const(dst_reg->var_off);
3823 
3824 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3825 	    smin_val > smax_val || umin_val > umax_val) {
3826 		/* Taint dst register if offset had invalid bounds derived from
3827 		 * e.g. dead branches.
3828 		 */
3829 		__mark_reg_unknown(dst_reg);
3830 		return 0;
3831 	}
3832 
3833 	if (!src_known &&
3834 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3835 		__mark_reg_unknown(dst_reg);
3836 		return 0;
3837 	}
3838 
3839 	switch (opcode) {
3840 	case BPF_ADD:
3841 		ret = sanitize_val_alu(env, insn);
3842 		if (ret < 0) {
3843 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
3844 			return ret;
3845 		}
3846 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3847 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
3848 			dst_reg->smin_value = S64_MIN;
3849 			dst_reg->smax_value = S64_MAX;
3850 		} else {
3851 			dst_reg->smin_value += smin_val;
3852 			dst_reg->smax_value += smax_val;
3853 		}
3854 		if (dst_reg->umin_value + umin_val < umin_val ||
3855 		    dst_reg->umax_value + umax_val < umax_val) {
3856 			dst_reg->umin_value = 0;
3857 			dst_reg->umax_value = U64_MAX;
3858 		} else {
3859 			dst_reg->umin_value += umin_val;
3860 			dst_reg->umax_value += umax_val;
3861 		}
3862 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3863 		break;
3864 	case BPF_SUB:
3865 		ret = sanitize_val_alu(env, insn);
3866 		if (ret < 0) {
3867 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
3868 			return ret;
3869 		}
3870 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3871 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3872 			/* Overflow possible, we know nothing */
3873 			dst_reg->smin_value = S64_MIN;
3874 			dst_reg->smax_value = S64_MAX;
3875 		} else {
3876 			dst_reg->smin_value -= smax_val;
3877 			dst_reg->smax_value -= smin_val;
3878 		}
3879 		if (dst_reg->umin_value < umax_val) {
3880 			/* Overflow possible, we know nothing */
3881 			dst_reg->umin_value = 0;
3882 			dst_reg->umax_value = U64_MAX;
3883 		} else {
3884 			/* Cannot overflow (as long as bounds are consistent) */
3885 			dst_reg->umin_value -= umax_val;
3886 			dst_reg->umax_value -= umin_val;
3887 		}
3888 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3889 		break;
3890 	case BPF_MUL:
3891 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3892 		if (smin_val < 0 || dst_reg->smin_value < 0) {
3893 			/* Ain't nobody got time to multiply that sign */
3894 			__mark_reg_unbounded(dst_reg);
3895 			__update_reg_bounds(dst_reg);
3896 			break;
3897 		}
3898 		/* Both values are positive, so we can work with unsigned and
3899 		 * copy the result to signed (unless it exceeds S64_MAX).
3900 		 */
3901 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3902 			/* Potential overflow, we know nothing */
3903 			__mark_reg_unbounded(dst_reg);
3904 			/* (except what we can learn from the var_off) */
3905 			__update_reg_bounds(dst_reg);
3906 			break;
3907 		}
3908 		dst_reg->umin_value *= umin_val;
3909 		dst_reg->umax_value *= umax_val;
3910 		if (dst_reg->umax_value > S64_MAX) {
3911 			/* Overflow possible, we know nothing */
3912 			dst_reg->smin_value = S64_MIN;
3913 			dst_reg->smax_value = S64_MAX;
3914 		} else {
3915 			dst_reg->smin_value = dst_reg->umin_value;
3916 			dst_reg->smax_value = dst_reg->umax_value;
3917 		}
3918 		break;
3919 	case BPF_AND:
3920 		if (src_known && dst_known) {
3921 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
3922 						  src_reg.var_off.value);
3923 			break;
3924 		}
3925 		/* We get our minimum from the var_off, since that's inherently
3926 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
3927 		 */
3928 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3929 		dst_reg->umin_value = dst_reg->var_off.value;
3930 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3931 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3932 			/* Lose signed bounds when ANDing negative numbers,
3933 			 * ain't nobody got time for that.
3934 			 */
3935 			dst_reg->smin_value = S64_MIN;
3936 			dst_reg->smax_value = S64_MAX;
3937 		} else {
3938 			/* ANDing two positives gives a positive, so safe to
3939 			 * cast result into s64.
3940 			 */
3941 			dst_reg->smin_value = dst_reg->umin_value;
3942 			dst_reg->smax_value = dst_reg->umax_value;
3943 		}
3944 		/* We may learn something more from the var_off */
3945 		__update_reg_bounds(dst_reg);
3946 		break;
3947 	case BPF_OR:
3948 		if (src_known && dst_known) {
3949 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
3950 						  src_reg.var_off.value);
3951 			break;
3952 		}
3953 		/* We get our maximum from the var_off, and our minimum is the
3954 		 * maximum of the operands' minima
3955 		 */
3956 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
3957 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3958 		dst_reg->umax_value = dst_reg->var_off.value |
3959 				      dst_reg->var_off.mask;
3960 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3961 			/* Lose signed bounds when ORing negative numbers,
3962 			 * ain't nobody got time for that.
3963 			 */
3964 			dst_reg->smin_value = S64_MIN;
3965 			dst_reg->smax_value = S64_MAX;
3966 		} else {
3967 			/* ORing two positives gives a positive, so safe to
3968 			 * cast result into s64.
3969 			 */
3970 			dst_reg->smin_value = dst_reg->umin_value;
3971 			dst_reg->smax_value = dst_reg->umax_value;
3972 		}
3973 		/* We may learn something more from the var_off */
3974 		__update_reg_bounds(dst_reg);
3975 		break;
3976 	case BPF_LSH:
3977 		if (umax_val >= insn_bitness) {
3978 			/* Shifts greater than 31 or 63 are undefined.
3979 			 * This includes shifts by a negative number.
3980 			 */
3981 			mark_reg_unknown(env, regs, insn->dst_reg);
3982 			break;
3983 		}
3984 		/* We lose all sign bit information (except what we can pick
3985 		 * up from var_off)
3986 		 */
3987 		dst_reg->smin_value = S64_MIN;
3988 		dst_reg->smax_value = S64_MAX;
3989 		/* If we might shift our top bit out, then we know nothing */
3990 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3991 			dst_reg->umin_value = 0;
3992 			dst_reg->umax_value = U64_MAX;
3993 		} else {
3994 			dst_reg->umin_value <<= umin_val;
3995 			dst_reg->umax_value <<= umax_val;
3996 		}
3997 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3998 		/* We may learn something more from the var_off */
3999 		__update_reg_bounds(dst_reg);
4000 		break;
4001 	case BPF_RSH:
4002 		if (umax_val >= insn_bitness) {
4003 			/* Shifts greater than 31 or 63 are undefined.
4004 			 * This includes shifts by a negative number.
4005 			 */
4006 			mark_reg_unknown(env, regs, insn->dst_reg);
4007 			break;
4008 		}
4009 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
4010 		 * be negative, then either:
4011 		 * 1) src_reg might be zero, so the sign bit of the result is
4012 		 *    unknown, so we lose our signed bounds
4013 		 * 2) it's known negative, thus the unsigned bounds capture the
4014 		 *    signed bounds
4015 		 * 3) the signed bounds cross zero, so they tell us nothing
4016 		 *    about the result
4017 		 * If the value in dst_reg is known nonnegative, then again the
4018 		 * unsigned bounts capture the signed bounds.
4019 		 * Thus, in all cases it suffices to blow away our signed bounds
4020 		 * and rely on inferring new ones from the unsigned bounds and
4021 		 * var_off of the result.
4022 		 */
4023 		dst_reg->smin_value = S64_MIN;
4024 		dst_reg->smax_value = S64_MAX;
4025 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
4026 		dst_reg->umin_value >>= umax_val;
4027 		dst_reg->umax_value >>= umin_val;
4028 		/* We may learn something more from the var_off */
4029 		__update_reg_bounds(dst_reg);
4030 		break;
4031 	case BPF_ARSH:
4032 		if (umax_val >= insn_bitness) {
4033 			/* Shifts greater than 31 or 63 are undefined.
4034 			 * This includes shifts by a negative number.
4035 			 */
4036 			mark_reg_unknown(env, regs, insn->dst_reg);
4037 			break;
4038 		}
4039 
4040 		/* Upon reaching here, src_known is true and
4041 		 * umax_val is equal to umin_val.
4042 		 */
4043 		dst_reg->smin_value >>= umin_val;
4044 		dst_reg->smax_value >>= umin_val;
4045 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4046 
4047 		/* blow away the dst_reg umin_value/umax_value and rely on
4048 		 * dst_reg var_off to refine the result.
4049 		 */
4050 		dst_reg->umin_value = 0;
4051 		dst_reg->umax_value = U64_MAX;
4052 		__update_reg_bounds(dst_reg);
4053 		break;
4054 	default:
4055 		mark_reg_unknown(env, regs, insn->dst_reg);
4056 		break;
4057 	}
4058 
4059 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4060 		/* 32-bit ALU ops are (32,32)->32 */
4061 		coerce_reg_to_size(dst_reg, 4);
4062 	}
4063 
4064 	__reg_deduce_bounds(dst_reg);
4065 	__reg_bound_offset(dst_reg);
4066 	return 0;
4067 }
4068 
4069 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4070  * and var_off.
4071  */
4072 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4073 				   struct bpf_insn *insn)
4074 {
4075 	struct bpf_verifier_state *vstate = env->cur_state;
4076 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4077 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
4078 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4079 	u8 opcode = BPF_OP(insn->code);
4080 
4081 	dst_reg = &regs[insn->dst_reg];
4082 	src_reg = NULL;
4083 	if (dst_reg->type != SCALAR_VALUE)
4084 		ptr_reg = dst_reg;
4085 	if (BPF_SRC(insn->code) == BPF_X) {
4086 		src_reg = &regs[insn->src_reg];
4087 		if (src_reg->type != SCALAR_VALUE) {
4088 			if (dst_reg->type != SCALAR_VALUE) {
4089 				/* Combining two pointers by any ALU op yields
4090 				 * an arbitrary scalar. Disallow all math except
4091 				 * pointer subtraction
4092 				 */
4093 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
4094 					mark_reg_unknown(env, regs, insn->dst_reg);
4095 					return 0;
4096 				}
4097 				verbose(env, "R%d pointer %s pointer prohibited\n",
4098 					insn->dst_reg,
4099 					bpf_alu_string[opcode >> 4]);
4100 				return -EACCES;
4101 			} else {
4102 				/* scalar += pointer
4103 				 * This is legal, but we have to reverse our
4104 				 * src/dest handling in computing the range
4105 				 */
4106 				return adjust_ptr_min_max_vals(env, insn,
4107 							       src_reg, dst_reg);
4108 			}
4109 		} else if (ptr_reg) {
4110 			/* pointer += scalar */
4111 			return adjust_ptr_min_max_vals(env, insn,
4112 						       dst_reg, src_reg);
4113 		}
4114 	} else {
4115 		/* Pretend the src is a reg with a known value, since we only
4116 		 * need to be able to read from this state.
4117 		 */
4118 		off_reg.type = SCALAR_VALUE;
4119 		__mark_reg_known(&off_reg, insn->imm);
4120 		src_reg = &off_reg;
4121 		if (ptr_reg) /* pointer += K */
4122 			return adjust_ptr_min_max_vals(env, insn,
4123 						       ptr_reg, src_reg);
4124 	}
4125 
4126 	/* Got here implies adding two SCALAR_VALUEs */
4127 	if (WARN_ON_ONCE(ptr_reg)) {
4128 		print_verifier_state(env, state);
4129 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
4130 		return -EINVAL;
4131 	}
4132 	if (WARN_ON(!src_reg)) {
4133 		print_verifier_state(env, state);
4134 		verbose(env, "verifier internal error: no src_reg\n");
4135 		return -EINVAL;
4136 	}
4137 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
4138 }
4139 
4140 /* check validity of 32-bit and 64-bit arithmetic operations */
4141 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
4142 {
4143 	struct bpf_reg_state *regs = cur_regs(env);
4144 	u8 opcode = BPF_OP(insn->code);
4145 	int err;
4146 
4147 	if (opcode == BPF_END || opcode == BPF_NEG) {
4148 		if (opcode == BPF_NEG) {
4149 			if (BPF_SRC(insn->code) != 0 ||
4150 			    insn->src_reg != BPF_REG_0 ||
4151 			    insn->off != 0 || insn->imm != 0) {
4152 				verbose(env, "BPF_NEG uses reserved fields\n");
4153 				return -EINVAL;
4154 			}
4155 		} else {
4156 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
4157 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4158 			    BPF_CLASS(insn->code) == BPF_ALU64) {
4159 				verbose(env, "BPF_END uses reserved fields\n");
4160 				return -EINVAL;
4161 			}
4162 		}
4163 
4164 		/* check src operand */
4165 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4166 		if (err)
4167 			return err;
4168 
4169 		if (is_pointer_value(env, insn->dst_reg)) {
4170 			verbose(env, "R%d pointer arithmetic prohibited\n",
4171 				insn->dst_reg);
4172 			return -EACCES;
4173 		}
4174 
4175 		/* check dest operand */
4176 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
4177 		if (err)
4178 			return err;
4179 
4180 	} else if (opcode == BPF_MOV) {
4181 
4182 		if (BPF_SRC(insn->code) == BPF_X) {
4183 			if (insn->imm != 0 || insn->off != 0) {
4184 				verbose(env, "BPF_MOV uses reserved fields\n");
4185 				return -EINVAL;
4186 			}
4187 
4188 			/* check src operand */
4189 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4190 			if (err)
4191 				return err;
4192 		} else {
4193 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4194 				verbose(env, "BPF_MOV uses reserved fields\n");
4195 				return -EINVAL;
4196 			}
4197 		}
4198 
4199 		/* check dest operand, mark as required later */
4200 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4201 		if (err)
4202 			return err;
4203 
4204 		if (BPF_SRC(insn->code) == BPF_X) {
4205 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
4206 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4207 
4208 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4209 				/* case: R1 = R2
4210 				 * copy register state to dest reg
4211 				 */
4212 				*dst_reg = *src_reg;
4213 				dst_reg->live |= REG_LIVE_WRITTEN;
4214 			} else {
4215 				/* R1 = (u32) R2 */
4216 				if (is_pointer_value(env, insn->src_reg)) {
4217 					verbose(env,
4218 						"R%d partial copy of pointer\n",
4219 						insn->src_reg);
4220 					return -EACCES;
4221 				} else if (src_reg->type == SCALAR_VALUE) {
4222 					*dst_reg = *src_reg;
4223 					dst_reg->live |= REG_LIVE_WRITTEN;
4224 				} else {
4225 					mark_reg_unknown(env, regs,
4226 							 insn->dst_reg);
4227 				}
4228 				coerce_reg_to_size(dst_reg, 4);
4229 			}
4230 		} else {
4231 			/* case: R = imm
4232 			 * remember the value we stored into this reg
4233 			 */
4234 			/* clear any state __mark_reg_known doesn't set */
4235 			mark_reg_unknown(env, regs, insn->dst_reg);
4236 			regs[insn->dst_reg].type = SCALAR_VALUE;
4237 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4238 				__mark_reg_known(regs + insn->dst_reg,
4239 						 insn->imm);
4240 			} else {
4241 				__mark_reg_known(regs + insn->dst_reg,
4242 						 (u32)insn->imm);
4243 			}
4244 		}
4245 
4246 	} else if (opcode > BPF_END) {
4247 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
4248 		return -EINVAL;
4249 
4250 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
4251 
4252 		if (BPF_SRC(insn->code) == BPF_X) {
4253 			if (insn->imm != 0 || insn->off != 0) {
4254 				verbose(env, "BPF_ALU uses reserved fields\n");
4255 				return -EINVAL;
4256 			}
4257 			/* check src1 operand */
4258 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4259 			if (err)
4260 				return err;
4261 		} else {
4262 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4263 				verbose(env, "BPF_ALU uses reserved fields\n");
4264 				return -EINVAL;
4265 			}
4266 		}
4267 
4268 		/* check src2 operand */
4269 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4270 		if (err)
4271 			return err;
4272 
4273 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
4274 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
4275 			verbose(env, "div by zero\n");
4276 			return -EINVAL;
4277 		}
4278 
4279 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
4280 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
4281 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
4282 
4283 			if (insn->imm < 0 || insn->imm >= size) {
4284 				verbose(env, "invalid shift %d\n", insn->imm);
4285 				return -EINVAL;
4286 			}
4287 		}
4288 
4289 		/* check dest operand */
4290 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4291 		if (err)
4292 			return err;
4293 
4294 		return adjust_reg_min_max_vals(env, insn);
4295 	}
4296 
4297 	return 0;
4298 }
4299 
4300 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
4301 				   struct bpf_reg_state *dst_reg,
4302 				   enum bpf_reg_type type,
4303 				   bool range_right_open)
4304 {
4305 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4306 	struct bpf_reg_state *regs = state->regs, *reg;
4307 	u16 new_range;
4308 	int i, j;
4309 
4310 	if (dst_reg->off < 0 ||
4311 	    (dst_reg->off == 0 && range_right_open))
4312 		/* This doesn't give us any range */
4313 		return;
4314 
4315 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
4316 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
4317 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
4318 		 * than pkt_end, but that's because it's also less than pkt.
4319 		 */
4320 		return;
4321 
4322 	new_range = dst_reg->off;
4323 	if (range_right_open)
4324 		new_range--;
4325 
4326 	/* Examples for register markings:
4327 	 *
4328 	 * pkt_data in dst register:
4329 	 *
4330 	 *   r2 = r3;
4331 	 *   r2 += 8;
4332 	 *   if (r2 > pkt_end) goto <handle exception>
4333 	 *   <access okay>
4334 	 *
4335 	 *   r2 = r3;
4336 	 *   r2 += 8;
4337 	 *   if (r2 < pkt_end) goto <access okay>
4338 	 *   <handle exception>
4339 	 *
4340 	 *   Where:
4341 	 *     r2 == dst_reg, pkt_end == src_reg
4342 	 *     r2=pkt(id=n,off=8,r=0)
4343 	 *     r3=pkt(id=n,off=0,r=0)
4344 	 *
4345 	 * pkt_data in src register:
4346 	 *
4347 	 *   r2 = r3;
4348 	 *   r2 += 8;
4349 	 *   if (pkt_end >= r2) goto <access okay>
4350 	 *   <handle exception>
4351 	 *
4352 	 *   r2 = r3;
4353 	 *   r2 += 8;
4354 	 *   if (pkt_end <= r2) goto <handle exception>
4355 	 *   <access okay>
4356 	 *
4357 	 *   Where:
4358 	 *     pkt_end == dst_reg, r2 == src_reg
4359 	 *     r2=pkt(id=n,off=8,r=0)
4360 	 *     r3=pkt(id=n,off=0,r=0)
4361 	 *
4362 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
4363 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4364 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
4365 	 * the check.
4366 	 */
4367 
4368 	/* If our ids match, then we must have the same max_value.  And we
4369 	 * don't care about the other reg's fixed offset, since if it's too big
4370 	 * the range won't allow anything.
4371 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4372 	 */
4373 	for (i = 0; i < MAX_BPF_REG; i++)
4374 		if (regs[i].type == type && regs[i].id == dst_reg->id)
4375 			/* keep the maximum range already checked */
4376 			regs[i].range = max(regs[i].range, new_range);
4377 
4378 	for (j = 0; j <= vstate->curframe; j++) {
4379 		state = vstate->frame[j];
4380 		bpf_for_each_spilled_reg(i, state, reg) {
4381 			if (!reg)
4382 				continue;
4383 			if (reg->type == type && reg->id == dst_reg->id)
4384 				reg->range = max(reg->range, new_range);
4385 		}
4386 	}
4387 }
4388 
4389 /* compute branch direction of the expression "if (reg opcode val) goto target;"
4390  * and return:
4391  *  1 - branch will be taken and "goto target" will be executed
4392  *  0 - branch will not be taken and fall-through to next insn
4393  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4394  */
4395 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
4396 			   bool is_jmp32)
4397 {
4398 	struct bpf_reg_state reg_lo;
4399 	s64 sval;
4400 
4401 	if (__is_pointer_value(false, reg))
4402 		return -1;
4403 
4404 	if (is_jmp32) {
4405 		reg_lo = *reg;
4406 		reg = &reg_lo;
4407 		/* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4408 		 * could truncate high bits and update umin/umax according to
4409 		 * information of low bits.
4410 		 */
4411 		coerce_reg_to_size(reg, 4);
4412 		/* smin/smax need special handling. For example, after coerce,
4413 		 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4414 		 * used as operand to JMP32. It is a negative number from s32's
4415 		 * point of view, while it is a positive number when seen as
4416 		 * s64. The smin/smax are kept as s64, therefore, when used with
4417 		 * JMP32, they need to be transformed into s32, then sign
4418 		 * extended back to s64.
4419 		 *
4420 		 * Also, smin/smax were copied from umin/umax. If umin/umax has
4421 		 * different sign bit, then min/max relationship doesn't
4422 		 * maintain after casting into s32, for this case, set smin/smax
4423 		 * to safest range.
4424 		 */
4425 		if ((reg->umax_value ^ reg->umin_value) &
4426 		    (1ULL << 31)) {
4427 			reg->smin_value = S32_MIN;
4428 			reg->smax_value = S32_MAX;
4429 		}
4430 		reg->smin_value = (s64)(s32)reg->smin_value;
4431 		reg->smax_value = (s64)(s32)reg->smax_value;
4432 
4433 		val = (u32)val;
4434 		sval = (s64)(s32)val;
4435 	} else {
4436 		sval = (s64)val;
4437 	}
4438 
4439 	switch (opcode) {
4440 	case BPF_JEQ:
4441 		if (tnum_is_const(reg->var_off))
4442 			return !!tnum_equals_const(reg->var_off, val);
4443 		break;
4444 	case BPF_JNE:
4445 		if (tnum_is_const(reg->var_off))
4446 			return !tnum_equals_const(reg->var_off, val);
4447 		break;
4448 	case BPF_JSET:
4449 		if ((~reg->var_off.mask & reg->var_off.value) & val)
4450 			return 1;
4451 		if (!((reg->var_off.mask | reg->var_off.value) & val))
4452 			return 0;
4453 		break;
4454 	case BPF_JGT:
4455 		if (reg->umin_value > val)
4456 			return 1;
4457 		else if (reg->umax_value <= val)
4458 			return 0;
4459 		break;
4460 	case BPF_JSGT:
4461 		if (reg->smin_value > sval)
4462 			return 1;
4463 		else if (reg->smax_value < sval)
4464 			return 0;
4465 		break;
4466 	case BPF_JLT:
4467 		if (reg->umax_value < val)
4468 			return 1;
4469 		else if (reg->umin_value >= val)
4470 			return 0;
4471 		break;
4472 	case BPF_JSLT:
4473 		if (reg->smax_value < sval)
4474 			return 1;
4475 		else if (reg->smin_value >= sval)
4476 			return 0;
4477 		break;
4478 	case BPF_JGE:
4479 		if (reg->umin_value >= val)
4480 			return 1;
4481 		else if (reg->umax_value < val)
4482 			return 0;
4483 		break;
4484 	case BPF_JSGE:
4485 		if (reg->smin_value >= sval)
4486 			return 1;
4487 		else if (reg->smax_value < sval)
4488 			return 0;
4489 		break;
4490 	case BPF_JLE:
4491 		if (reg->umax_value <= val)
4492 			return 1;
4493 		else if (reg->umin_value > val)
4494 			return 0;
4495 		break;
4496 	case BPF_JSLE:
4497 		if (reg->smax_value <= sval)
4498 			return 1;
4499 		else if (reg->smin_value > sval)
4500 			return 0;
4501 		break;
4502 	}
4503 
4504 	return -1;
4505 }
4506 
4507 /* Generate min value of the high 32-bit from TNUM info. */
4508 static u64 gen_hi_min(struct tnum var)
4509 {
4510 	return var.value & ~0xffffffffULL;
4511 }
4512 
4513 /* Generate max value of the high 32-bit from TNUM info. */
4514 static u64 gen_hi_max(struct tnum var)
4515 {
4516 	return (var.value | var.mask) & ~0xffffffffULL;
4517 }
4518 
4519 /* Return true if VAL is compared with a s64 sign extended from s32, and they
4520  * are with the same signedness.
4521  */
4522 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
4523 {
4524 	return ((s32)sval >= 0 &&
4525 		reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
4526 	       ((s32)sval < 0 &&
4527 		reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
4528 }
4529 
4530 /* Adjusts the register min/max values in the case that the dst_reg is the
4531  * variable register that we are working on, and src_reg is a constant or we're
4532  * simply doing a BPF_K check.
4533  * In JEQ/JNE cases we also adjust the var_off values.
4534  */
4535 static void reg_set_min_max(struct bpf_reg_state *true_reg,
4536 			    struct bpf_reg_state *false_reg, u64 val,
4537 			    u8 opcode, bool is_jmp32)
4538 {
4539 	s64 sval;
4540 
4541 	/* If the dst_reg is a pointer, we can't learn anything about its
4542 	 * variable offset from the compare (unless src_reg were a pointer into
4543 	 * the same object, but we don't bother with that.
4544 	 * Since false_reg and true_reg have the same type by construction, we
4545 	 * only need to check one of them for pointerness.
4546 	 */
4547 	if (__is_pointer_value(false, false_reg))
4548 		return;
4549 
4550 	val = is_jmp32 ? (u32)val : val;
4551 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4552 
4553 	switch (opcode) {
4554 	case BPF_JEQ:
4555 	case BPF_JNE:
4556 	{
4557 		struct bpf_reg_state *reg =
4558 			opcode == BPF_JEQ ? true_reg : false_reg;
4559 
4560 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4561 		 * if it is true we know the value for sure. Likewise for
4562 		 * BPF_JNE.
4563 		 */
4564 		if (is_jmp32) {
4565 			u64 old_v = reg->var_off.value;
4566 			u64 hi_mask = ~0xffffffffULL;
4567 
4568 			reg->var_off.value = (old_v & hi_mask) | val;
4569 			reg->var_off.mask &= hi_mask;
4570 		} else {
4571 			__mark_reg_known(reg, val);
4572 		}
4573 		break;
4574 	}
4575 	case BPF_JSET:
4576 		false_reg->var_off = tnum_and(false_reg->var_off,
4577 					      tnum_const(~val));
4578 		if (is_power_of_2(val))
4579 			true_reg->var_off = tnum_or(true_reg->var_off,
4580 						    tnum_const(val));
4581 		break;
4582 	case BPF_JGE:
4583 	case BPF_JGT:
4584 	{
4585 		u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
4586 		u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
4587 
4588 		if (is_jmp32) {
4589 			false_umax += gen_hi_max(false_reg->var_off);
4590 			true_umin += gen_hi_min(true_reg->var_off);
4591 		}
4592 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4593 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4594 		break;
4595 	}
4596 	case BPF_JSGE:
4597 	case BPF_JSGT:
4598 	{
4599 		s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
4600 		s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
4601 
4602 		/* If the full s64 was not sign-extended from s32 then don't
4603 		 * deduct further info.
4604 		 */
4605 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4606 			break;
4607 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4608 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4609 		break;
4610 	}
4611 	case BPF_JLE:
4612 	case BPF_JLT:
4613 	{
4614 		u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
4615 		u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
4616 
4617 		if (is_jmp32) {
4618 			false_umin += gen_hi_min(false_reg->var_off);
4619 			true_umax += gen_hi_max(true_reg->var_off);
4620 		}
4621 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4622 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4623 		break;
4624 	}
4625 	case BPF_JSLE:
4626 	case BPF_JSLT:
4627 	{
4628 		s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
4629 		s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4630 
4631 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4632 			break;
4633 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4634 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4635 		break;
4636 	}
4637 	default:
4638 		break;
4639 	}
4640 
4641 	__reg_deduce_bounds(false_reg);
4642 	__reg_deduce_bounds(true_reg);
4643 	/* We might have learned some bits from the bounds. */
4644 	__reg_bound_offset(false_reg);
4645 	__reg_bound_offset(true_reg);
4646 	/* Intersecting with the old var_off might have improved our bounds
4647 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4648 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4649 	 */
4650 	__update_reg_bounds(false_reg);
4651 	__update_reg_bounds(true_reg);
4652 }
4653 
4654 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
4655  * the variable reg.
4656  */
4657 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4658 				struct bpf_reg_state *false_reg, u64 val,
4659 				u8 opcode, bool is_jmp32)
4660 {
4661 	s64 sval;
4662 
4663 	if (__is_pointer_value(false, false_reg))
4664 		return;
4665 
4666 	val = is_jmp32 ? (u32)val : val;
4667 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4668 
4669 	switch (opcode) {
4670 	case BPF_JEQ:
4671 	case BPF_JNE:
4672 	{
4673 		struct bpf_reg_state *reg =
4674 			opcode == BPF_JEQ ? true_reg : false_reg;
4675 
4676 		if (is_jmp32) {
4677 			u64 old_v = reg->var_off.value;
4678 			u64 hi_mask = ~0xffffffffULL;
4679 
4680 			reg->var_off.value = (old_v & hi_mask) | val;
4681 			reg->var_off.mask &= hi_mask;
4682 		} else {
4683 			__mark_reg_known(reg, val);
4684 		}
4685 		break;
4686 	}
4687 	case BPF_JSET:
4688 		false_reg->var_off = tnum_and(false_reg->var_off,
4689 					      tnum_const(~val));
4690 		if (is_power_of_2(val))
4691 			true_reg->var_off = tnum_or(true_reg->var_off,
4692 						    tnum_const(val));
4693 		break;
4694 	case BPF_JGE:
4695 	case BPF_JGT:
4696 	{
4697 		u64 false_umin = opcode == BPF_JGT ? val    : val + 1;
4698 		u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4699 
4700 		if (is_jmp32) {
4701 			false_umin += gen_hi_min(false_reg->var_off);
4702 			true_umax += gen_hi_max(true_reg->var_off);
4703 		}
4704 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4705 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4706 		break;
4707 	}
4708 	case BPF_JSGE:
4709 	case BPF_JSGT:
4710 	{
4711 		s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
4712 		s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4713 
4714 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4715 			break;
4716 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4717 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4718 		break;
4719 	}
4720 	case BPF_JLE:
4721 	case BPF_JLT:
4722 	{
4723 		u64 false_umax = opcode == BPF_JLT ? val    : val - 1;
4724 		u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4725 
4726 		if (is_jmp32) {
4727 			false_umax += gen_hi_max(false_reg->var_off);
4728 			true_umin += gen_hi_min(true_reg->var_off);
4729 		}
4730 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4731 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4732 		break;
4733 	}
4734 	case BPF_JSLE:
4735 	case BPF_JSLT:
4736 	{
4737 		s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
4738 		s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4739 
4740 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4741 			break;
4742 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4743 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4744 		break;
4745 	}
4746 	default:
4747 		break;
4748 	}
4749 
4750 	__reg_deduce_bounds(false_reg);
4751 	__reg_deduce_bounds(true_reg);
4752 	/* We might have learned some bits from the bounds. */
4753 	__reg_bound_offset(false_reg);
4754 	__reg_bound_offset(true_reg);
4755 	/* Intersecting with the old var_off might have improved our bounds
4756 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4757 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4758 	 */
4759 	__update_reg_bounds(false_reg);
4760 	__update_reg_bounds(true_reg);
4761 }
4762 
4763 /* Regs are known to be equal, so intersect their min/max/var_off */
4764 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4765 				  struct bpf_reg_state *dst_reg)
4766 {
4767 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4768 							dst_reg->umin_value);
4769 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4770 							dst_reg->umax_value);
4771 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4772 							dst_reg->smin_value);
4773 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4774 							dst_reg->smax_value);
4775 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4776 							     dst_reg->var_off);
4777 	/* We might have learned new bounds from the var_off. */
4778 	__update_reg_bounds(src_reg);
4779 	__update_reg_bounds(dst_reg);
4780 	/* We might have learned something about the sign bit. */
4781 	__reg_deduce_bounds(src_reg);
4782 	__reg_deduce_bounds(dst_reg);
4783 	/* We might have learned some bits from the bounds. */
4784 	__reg_bound_offset(src_reg);
4785 	__reg_bound_offset(dst_reg);
4786 	/* Intersecting with the old var_off might have improved our bounds
4787 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4788 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4789 	 */
4790 	__update_reg_bounds(src_reg);
4791 	__update_reg_bounds(dst_reg);
4792 }
4793 
4794 static void reg_combine_min_max(struct bpf_reg_state *true_src,
4795 				struct bpf_reg_state *true_dst,
4796 				struct bpf_reg_state *false_src,
4797 				struct bpf_reg_state *false_dst,
4798 				u8 opcode)
4799 {
4800 	switch (opcode) {
4801 	case BPF_JEQ:
4802 		__reg_combine_min_max(true_src, true_dst);
4803 		break;
4804 	case BPF_JNE:
4805 		__reg_combine_min_max(false_src, false_dst);
4806 		break;
4807 	}
4808 }
4809 
4810 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4811 				 struct bpf_reg_state *reg, u32 id,
4812 				 bool is_null)
4813 {
4814 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
4815 		/* Old offset (both fixed and variable parts) should
4816 		 * have been known-zero, because we don't allow pointer
4817 		 * arithmetic on pointers that might be NULL.
4818 		 */
4819 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4820 				 !tnum_equals_const(reg->var_off, 0) ||
4821 				 reg->off)) {
4822 			__mark_reg_known_zero(reg);
4823 			reg->off = 0;
4824 		}
4825 		if (is_null) {
4826 			reg->type = SCALAR_VALUE;
4827 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4828 			if (reg->map_ptr->inner_map_meta) {
4829 				reg->type = CONST_PTR_TO_MAP;
4830 				reg->map_ptr = reg->map_ptr->inner_map_meta;
4831 			} else {
4832 				reg->type = PTR_TO_MAP_VALUE;
4833 			}
4834 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4835 			reg->type = PTR_TO_SOCKET;
4836 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
4837 			reg->type = PTR_TO_SOCK_COMMON;
4838 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
4839 			reg->type = PTR_TO_TCP_SOCK;
4840 		}
4841 		if (is_null) {
4842 			/* We don't need id and ref_obj_id from this point
4843 			 * onwards anymore, thus we should better reset it,
4844 			 * so that state pruning has chances to take effect.
4845 			 */
4846 			reg->id = 0;
4847 			reg->ref_obj_id = 0;
4848 		} else if (!reg_may_point_to_spin_lock(reg)) {
4849 			/* For not-NULL ptr, reg->ref_obj_id will be reset
4850 			 * in release_reg_references().
4851 			 *
4852 			 * reg->id is still used by spin_lock ptr. Other
4853 			 * than spin_lock ptr type, reg->id can be reset.
4854 			 */
4855 			reg->id = 0;
4856 		}
4857 	}
4858 }
4859 
4860 /* The logic is similar to find_good_pkt_pointers(), both could eventually
4861  * be folded together at some point.
4862  */
4863 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4864 				  bool is_null)
4865 {
4866 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4867 	struct bpf_reg_state *reg, *regs = state->regs;
4868 	u32 ref_obj_id = regs[regno].ref_obj_id;
4869 	u32 id = regs[regno].id;
4870 	int i, j;
4871 
4872 	if (ref_obj_id && ref_obj_id == id && is_null)
4873 		/* regs[regno] is in the " == NULL" branch.
4874 		 * No one could have freed the reference state before
4875 		 * doing the NULL check.
4876 		 */
4877 		WARN_ON_ONCE(release_reference_state(state, id));
4878 
4879 	for (i = 0; i < MAX_BPF_REG; i++)
4880 		mark_ptr_or_null_reg(state, &regs[i], id, is_null);
4881 
4882 	for (j = 0; j <= vstate->curframe; j++) {
4883 		state = vstate->frame[j];
4884 		bpf_for_each_spilled_reg(i, state, reg) {
4885 			if (!reg)
4886 				continue;
4887 			mark_ptr_or_null_reg(state, reg, id, is_null);
4888 		}
4889 	}
4890 }
4891 
4892 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4893 				   struct bpf_reg_state *dst_reg,
4894 				   struct bpf_reg_state *src_reg,
4895 				   struct bpf_verifier_state *this_branch,
4896 				   struct bpf_verifier_state *other_branch)
4897 {
4898 	if (BPF_SRC(insn->code) != BPF_X)
4899 		return false;
4900 
4901 	/* Pointers are always 64-bit. */
4902 	if (BPF_CLASS(insn->code) == BPF_JMP32)
4903 		return false;
4904 
4905 	switch (BPF_OP(insn->code)) {
4906 	case BPF_JGT:
4907 		if ((dst_reg->type == PTR_TO_PACKET &&
4908 		     src_reg->type == PTR_TO_PACKET_END) ||
4909 		    (dst_reg->type == PTR_TO_PACKET_META &&
4910 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4911 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4912 			find_good_pkt_pointers(this_branch, dst_reg,
4913 					       dst_reg->type, false);
4914 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4915 			    src_reg->type == PTR_TO_PACKET) ||
4916 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4917 			    src_reg->type == PTR_TO_PACKET_META)) {
4918 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
4919 			find_good_pkt_pointers(other_branch, src_reg,
4920 					       src_reg->type, true);
4921 		} else {
4922 			return false;
4923 		}
4924 		break;
4925 	case BPF_JLT:
4926 		if ((dst_reg->type == PTR_TO_PACKET &&
4927 		     src_reg->type == PTR_TO_PACKET_END) ||
4928 		    (dst_reg->type == PTR_TO_PACKET_META &&
4929 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4930 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4931 			find_good_pkt_pointers(other_branch, dst_reg,
4932 					       dst_reg->type, true);
4933 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4934 			    src_reg->type == PTR_TO_PACKET) ||
4935 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4936 			    src_reg->type == PTR_TO_PACKET_META)) {
4937 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
4938 			find_good_pkt_pointers(this_branch, src_reg,
4939 					       src_reg->type, false);
4940 		} else {
4941 			return false;
4942 		}
4943 		break;
4944 	case BPF_JGE:
4945 		if ((dst_reg->type == PTR_TO_PACKET &&
4946 		     src_reg->type == PTR_TO_PACKET_END) ||
4947 		    (dst_reg->type == PTR_TO_PACKET_META &&
4948 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4949 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4950 			find_good_pkt_pointers(this_branch, dst_reg,
4951 					       dst_reg->type, true);
4952 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4953 			    src_reg->type == PTR_TO_PACKET) ||
4954 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4955 			    src_reg->type == PTR_TO_PACKET_META)) {
4956 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4957 			find_good_pkt_pointers(other_branch, src_reg,
4958 					       src_reg->type, false);
4959 		} else {
4960 			return false;
4961 		}
4962 		break;
4963 	case BPF_JLE:
4964 		if ((dst_reg->type == PTR_TO_PACKET &&
4965 		     src_reg->type == PTR_TO_PACKET_END) ||
4966 		    (dst_reg->type == PTR_TO_PACKET_META &&
4967 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4968 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4969 			find_good_pkt_pointers(other_branch, dst_reg,
4970 					       dst_reg->type, false);
4971 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4972 			    src_reg->type == PTR_TO_PACKET) ||
4973 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4974 			    src_reg->type == PTR_TO_PACKET_META)) {
4975 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4976 			find_good_pkt_pointers(this_branch, src_reg,
4977 					       src_reg->type, true);
4978 		} else {
4979 			return false;
4980 		}
4981 		break;
4982 	default:
4983 		return false;
4984 	}
4985 
4986 	return true;
4987 }
4988 
4989 static int check_cond_jmp_op(struct bpf_verifier_env *env,
4990 			     struct bpf_insn *insn, int *insn_idx)
4991 {
4992 	struct bpf_verifier_state *this_branch = env->cur_state;
4993 	struct bpf_verifier_state *other_branch;
4994 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4995 	struct bpf_reg_state *dst_reg, *other_branch_regs;
4996 	u8 opcode = BPF_OP(insn->code);
4997 	bool is_jmp32;
4998 	int err;
4999 
5000 	/* Only conditional jumps are expected to reach here. */
5001 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
5002 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
5003 		return -EINVAL;
5004 	}
5005 
5006 	if (BPF_SRC(insn->code) == BPF_X) {
5007 		if (insn->imm != 0) {
5008 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5009 			return -EINVAL;
5010 		}
5011 
5012 		/* check src1 operand */
5013 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
5014 		if (err)
5015 			return err;
5016 
5017 		if (is_pointer_value(env, insn->src_reg)) {
5018 			verbose(env, "R%d pointer comparison prohibited\n",
5019 				insn->src_reg);
5020 			return -EACCES;
5021 		}
5022 	} else {
5023 		if (insn->src_reg != BPF_REG_0) {
5024 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5025 			return -EINVAL;
5026 		}
5027 	}
5028 
5029 	/* check src2 operand */
5030 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5031 	if (err)
5032 		return err;
5033 
5034 	dst_reg = &regs[insn->dst_reg];
5035 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
5036 
5037 	if (BPF_SRC(insn->code) == BPF_K) {
5038 		int pred = is_branch_taken(dst_reg, insn->imm, opcode,
5039 					   is_jmp32);
5040 
5041 		if (pred == 1) {
5042 			 /* only follow the goto, ignore fall-through */
5043 			*insn_idx += insn->off;
5044 			return 0;
5045 		} else if (pred == 0) {
5046 			/* only follow fall-through branch, since
5047 			 * that's where the program will go
5048 			 */
5049 			return 0;
5050 		}
5051 	}
5052 
5053 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5054 				  false);
5055 	if (!other_branch)
5056 		return -EFAULT;
5057 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
5058 
5059 	/* detect if we are comparing against a constant value so we can adjust
5060 	 * our min/max values for our dst register.
5061 	 * this is only legit if both are scalars (or pointers to the same
5062 	 * object, I suppose, but we don't support that right now), because
5063 	 * otherwise the different base pointers mean the offsets aren't
5064 	 * comparable.
5065 	 */
5066 	if (BPF_SRC(insn->code) == BPF_X) {
5067 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5068 		struct bpf_reg_state lo_reg0 = *dst_reg;
5069 		struct bpf_reg_state lo_reg1 = *src_reg;
5070 		struct bpf_reg_state *src_lo, *dst_lo;
5071 
5072 		dst_lo = &lo_reg0;
5073 		src_lo = &lo_reg1;
5074 		coerce_reg_to_size(dst_lo, 4);
5075 		coerce_reg_to_size(src_lo, 4);
5076 
5077 		if (dst_reg->type == SCALAR_VALUE &&
5078 		    src_reg->type == SCALAR_VALUE) {
5079 			if (tnum_is_const(src_reg->var_off) ||
5080 			    (is_jmp32 && tnum_is_const(src_lo->var_off)))
5081 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
5082 						dst_reg,
5083 						is_jmp32
5084 						? src_lo->var_off.value
5085 						: src_reg->var_off.value,
5086 						opcode, is_jmp32);
5087 			else if (tnum_is_const(dst_reg->var_off) ||
5088 				 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
5089 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
5090 						    src_reg,
5091 						    is_jmp32
5092 						    ? dst_lo->var_off.value
5093 						    : dst_reg->var_off.value,
5094 						    opcode, is_jmp32);
5095 			else if (!is_jmp32 &&
5096 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
5097 				/* Comparing for equality, we can combine knowledge */
5098 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
5099 						    &other_branch_regs[insn->dst_reg],
5100 						    src_reg, dst_reg, opcode);
5101 		}
5102 	} else if (dst_reg->type == SCALAR_VALUE) {
5103 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
5104 					dst_reg, insn->imm, opcode, is_jmp32);
5105 	}
5106 
5107 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5108 	 * NOTE: these optimizations below are related with pointer comparison
5109 	 *       which will never be JMP32.
5110 	 */
5111 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
5112 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
5113 	    reg_type_may_be_null(dst_reg->type)) {
5114 		/* Mark all identical registers in each branch as either
5115 		 * safe or unknown depending R == 0 or R != 0 conditional.
5116 		 */
5117 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5118 				      opcode == BPF_JNE);
5119 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5120 				      opcode == BPF_JEQ);
5121 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5122 					   this_branch, other_branch) &&
5123 		   is_pointer_value(env, insn->dst_reg)) {
5124 		verbose(env, "R%d pointer comparison prohibited\n",
5125 			insn->dst_reg);
5126 		return -EACCES;
5127 	}
5128 	if (env->log.level & BPF_LOG_LEVEL)
5129 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
5130 	return 0;
5131 }
5132 
5133 /* verify BPF_LD_IMM64 instruction */
5134 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
5135 {
5136 	struct bpf_insn_aux_data *aux = cur_aux(env);
5137 	struct bpf_reg_state *regs = cur_regs(env);
5138 	struct bpf_map *map;
5139 	int err;
5140 
5141 	if (BPF_SIZE(insn->code) != BPF_DW) {
5142 		verbose(env, "invalid BPF_LD_IMM insn\n");
5143 		return -EINVAL;
5144 	}
5145 	if (insn->off != 0) {
5146 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
5147 		return -EINVAL;
5148 	}
5149 
5150 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
5151 	if (err)
5152 		return err;
5153 
5154 	if (insn->src_reg == 0) {
5155 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5156 
5157 		regs[insn->dst_reg].type = SCALAR_VALUE;
5158 		__mark_reg_known(&regs[insn->dst_reg], imm);
5159 		return 0;
5160 	}
5161 
5162 	map = env->used_maps[aux->map_index];
5163 	mark_reg_known_zero(env, regs, insn->dst_reg);
5164 	regs[insn->dst_reg].map_ptr = map;
5165 
5166 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5167 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5168 		regs[insn->dst_reg].off = aux->map_off;
5169 		if (map_value_has_spin_lock(map))
5170 			regs[insn->dst_reg].id = ++env->id_gen;
5171 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5172 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5173 	} else {
5174 		verbose(env, "bpf verifier is misconfigured\n");
5175 		return -EINVAL;
5176 	}
5177 
5178 	return 0;
5179 }
5180 
5181 static bool may_access_skb(enum bpf_prog_type type)
5182 {
5183 	switch (type) {
5184 	case BPF_PROG_TYPE_SOCKET_FILTER:
5185 	case BPF_PROG_TYPE_SCHED_CLS:
5186 	case BPF_PROG_TYPE_SCHED_ACT:
5187 		return true;
5188 	default:
5189 		return false;
5190 	}
5191 }
5192 
5193 /* verify safety of LD_ABS|LD_IND instructions:
5194  * - they can only appear in the programs where ctx == skb
5195  * - since they are wrappers of function calls, they scratch R1-R5 registers,
5196  *   preserve R6-R9, and store return value into R0
5197  *
5198  * Implicit input:
5199  *   ctx == skb == R6 == CTX
5200  *
5201  * Explicit input:
5202  *   SRC == any register
5203  *   IMM == 32-bit immediate
5204  *
5205  * Output:
5206  *   R0 - 8/16/32-bit skb data converted to cpu endianness
5207  */
5208 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
5209 {
5210 	struct bpf_reg_state *regs = cur_regs(env);
5211 	u8 mode = BPF_MODE(insn->code);
5212 	int i, err;
5213 
5214 	if (!may_access_skb(env->prog->type)) {
5215 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
5216 		return -EINVAL;
5217 	}
5218 
5219 	if (!env->ops->gen_ld_abs) {
5220 		verbose(env, "bpf verifier is misconfigured\n");
5221 		return -EINVAL;
5222 	}
5223 
5224 	if (env->subprog_cnt > 1) {
5225 		/* when program has LD_ABS insn JITs and interpreter assume
5226 		 * that r1 == ctx == skb which is not the case for callees
5227 		 * that can have arbitrary arguments. It's problematic
5228 		 * for main prog as well since JITs would need to analyze
5229 		 * all functions in order to make proper register save/restore
5230 		 * decisions in the main prog. Hence disallow LD_ABS with calls
5231 		 */
5232 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5233 		return -EINVAL;
5234 	}
5235 
5236 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
5237 	    BPF_SIZE(insn->code) == BPF_DW ||
5238 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
5239 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
5240 		return -EINVAL;
5241 	}
5242 
5243 	/* check whether implicit source operand (register R6) is readable */
5244 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
5245 	if (err)
5246 		return err;
5247 
5248 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
5249 	 * gen_ld_abs() may terminate the program at runtime, leading to
5250 	 * reference leak.
5251 	 */
5252 	err = check_reference_leak(env);
5253 	if (err) {
5254 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
5255 		return err;
5256 	}
5257 
5258 	if (env->cur_state->active_spin_lock) {
5259 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
5260 		return -EINVAL;
5261 	}
5262 
5263 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
5264 		verbose(env,
5265 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
5266 		return -EINVAL;
5267 	}
5268 
5269 	if (mode == BPF_IND) {
5270 		/* check explicit source operand */
5271 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
5272 		if (err)
5273 			return err;
5274 	}
5275 
5276 	/* reset caller saved regs to unreadable */
5277 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5278 		mark_reg_not_init(env, regs, caller_saved[i]);
5279 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5280 	}
5281 
5282 	/* mark destination R0 register as readable, since it contains
5283 	 * the value fetched from the packet.
5284 	 * Already marked as written above.
5285 	 */
5286 	mark_reg_unknown(env, regs, BPF_REG_0);
5287 	return 0;
5288 }
5289 
5290 static int check_return_code(struct bpf_verifier_env *env)
5291 {
5292 	struct bpf_reg_state *reg;
5293 	struct tnum range = tnum_range(0, 1);
5294 
5295 	switch (env->prog->type) {
5296 	case BPF_PROG_TYPE_CGROUP_SKB:
5297 	case BPF_PROG_TYPE_CGROUP_SOCK:
5298 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
5299 	case BPF_PROG_TYPE_SOCK_OPS:
5300 	case BPF_PROG_TYPE_CGROUP_DEVICE:
5301 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
5302 		break;
5303 	default:
5304 		return 0;
5305 	}
5306 
5307 	reg = cur_regs(env) + BPF_REG_0;
5308 	if (reg->type != SCALAR_VALUE) {
5309 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
5310 			reg_type_str[reg->type]);
5311 		return -EINVAL;
5312 	}
5313 
5314 	if (!tnum_in(range, reg->var_off)) {
5315 		verbose(env, "At program exit the register R0 ");
5316 		if (!tnum_is_unknown(reg->var_off)) {
5317 			char tn_buf[48];
5318 
5319 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5320 			verbose(env, "has value %s", tn_buf);
5321 		} else {
5322 			verbose(env, "has unknown scalar value");
5323 		}
5324 		verbose(env, " should have been 0 or 1\n");
5325 		return -EINVAL;
5326 	}
5327 	return 0;
5328 }
5329 
5330 /* non-recursive DFS pseudo code
5331  * 1  procedure DFS-iterative(G,v):
5332  * 2      label v as discovered
5333  * 3      let S be a stack
5334  * 4      S.push(v)
5335  * 5      while S is not empty
5336  * 6            t <- S.pop()
5337  * 7            if t is what we're looking for:
5338  * 8                return t
5339  * 9            for all edges e in G.adjacentEdges(t) do
5340  * 10               if edge e is already labelled
5341  * 11                   continue with the next edge
5342  * 12               w <- G.adjacentVertex(t,e)
5343  * 13               if vertex w is not discovered and not explored
5344  * 14                   label e as tree-edge
5345  * 15                   label w as discovered
5346  * 16                   S.push(w)
5347  * 17                   continue at 5
5348  * 18               else if vertex w is discovered
5349  * 19                   label e as back-edge
5350  * 20               else
5351  * 21                   // vertex w is explored
5352  * 22                   label e as forward- or cross-edge
5353  * 23           label t as explored
5354  * 24           S.pop()
5355  *
5356  * convention:
5357  * 0x10 - discovered
5358  * 0x11 - discovered and fall-through edge labelled
5359  * 0x12 - discovered and fall-through and branch edges labelled
5360  * 0x20 - explored
5361  */
5362 
5363 enum {
5364 	DISCOVERED = 0x10,
5365 	EXPLORED = 0x20,
5366 	FALLTHROUGH = 1,
5367 	BRANCH = 2,
5368 };
5369 
5370 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
5371 
5372 /* t, w, e - match pseudo-code above:
5373  * t - index of current instruction
5374  * w - next instruction
5375  * e - edge
5376  */
5377 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
5378 {
5379 	int *insn_stack = env->cfg.insn_stack;
5380 	int *insn_state = env->cfg.insn_state;
5381 
5382 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
5383 		return 0;
5384 
5385 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
5386 		return 0;
5387 
5388 	if (w < 0 || w >= env->prog->len) {
5389 		verbose_linfo(env, t, "%d: ", t);
5390 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
5391 		return -EINVAL;
5392 	}
5393 
5394 	if (e == BRANCH)
5395 		/* mark branch target for state pruning */
5396 		env->explored_states[w] = STATE_LIST_MARK;
5397 
5398 	if (insn_state[w] == 0) {
5399 		/* tree-edge */
5400 		insn_state[t] = DISCOVERED | e;
5401 		insn_state[w] = DISCOVERED;
5402 		if (env->cfg.cur_stack >= env->prog->len)
5403 			return -E2BIG;
5404 		insn_stack[env->cfg.cur_stack++] = w;
5405 		return 1;
5406 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
5407 		verbose_linfo(env, t, "%d: ", t);
5408 		verbose_linfo(env, w, "%d: ", w);
5409 		verbose(env, "back-edge from insn %d to %d\n", t, w);
5410 		return -EINVAL;
5411 	} else if (insn_state[w] == EXPLORED) {
5412 		/* forward- or cross-edge */
5413 		insn_state[t] = DISCOVERED | e;
5414 	} else {
5415 		verbose(env, "insn state internal bug\n");
5416 		return -EFAULT;
5417 	}
5418 	return 0;
5419 }
5420 
5421 /* non-recursive depth-first-search to detect loops in BPF program
5422  * loop == back-edge in directed graph
5423  */
5424 static int check_cfg(struct bpf_verifier_env *env)
5425 {
5426 	struct bpf_insn *insns = env->prog->insnsi;
5427 	int insn_cnt = env->prog->len;
5428 	int *insn_stack, *insn_state;
5429 	int ret = 0;
5430 	int i, t;
5431 
5432 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5433 	if (!insn_state)
5434 		return -ENOMEM;
5435 
5436 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5437 	if (!insn_stack) {
5438 		kvfree(insn_state);
5439 		return -ENOMEM;
5440 	}
5441 
5442 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
5443 	insn_stack[0] = 0; /* 0 is the first instruction */
5444 	env->cfg.cur_stack = 1;
5445 
5446 peek_stack:
5447 	if (env->cfg.cur_stack == 0)
5448 		goto check_state;
5449 	t = insn_stack[env->cfg.cur_stack - 1];
5450 
5451 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
5452 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
5453 		u8 opcode = BPF_OP(insns[t].code);
5454 
5455 		if (opcode == BPF_EXIT) {
5456 			goto mark_explored;
5457 		} else if (opcode == BPF_CALL) {
5458 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5459 			if (ret == 1)
5460 				goto peek_stack;
5461 			else if (ret < 0)
5462 				goto err_free;
5463 			if (t + 1 < insn_cnt)
5464 				env->explored_states[t + 1] = STATE_LIST_MARK;
5465 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5466 				env->explored_states[t] = STATE_LIST_MARK;
5467 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
5468 				if (ret == 1)
5469 					goto peek_stack;
5470 				else if (ret < 0)
5471 					goto err_free;
5472 			}
5473 		} else if (opcode == BPF_JA) {
5474 			if (BPF_SRC(insns[t].code) != BPF_K) {
5475 				ret = -EINVAL;
5476 				goto err_free;
5477 			}
5478 			/* unconditional jump with single edge */
5479 			ret = push_insn(t, t + insns[t].off + 1,
5480 					FALLTHROUGH, env);
5481 			if (ret == 1)
5482 				goto peek_stack;
5483 			else if (ret < 0)
5484 				goto err_free;
5485 			/* tell verifier to check for equivalent states
5486 			 * after every call and jump
5487 			 */
5488 			if (t + 1 < insn_cnt)
5489 				env->explored_states[t + 1] = STATE_LIST_MARK;
5490 		} else {
5491 			/* conditional jump with two edges */
5492 			env->explored_states[t] = STATE_LIST_MARK;
5493 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5494 			if (ret == 1)
5495 				goto peek_stack;
5496 			else if (ret < 0)
5497 				goto err_free;
5498 
5499 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
5500 			if (ret == 1)
5501 				goto peek_stack;
5502 			else if (ret < 0)
5503 				goto err_free;
5504 		}
5505 	} else {
5506 		/* all other non-branch instructions with single
5507 		 * fall-through edge
5508 		 */
5509 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
5510 		if (ret == 1)
5511 			goto peek_stack;
5512 		else if (ret < 0)
5513 			goto err_free;
5514 	}
5515 
5516 mark_explored:
5517 	insn_state[t] = EXPLORED;
5518 	if (env->cfg.cur_stack-- <= 0) {
5519 		verbose(env, "pop stack internal bug\n");
5520 		ret = -EFAULT;
5521 		goto err_free;
5522 	}
5523 	goto peek_stack;
5524 
5525 check_state:
5526 	for (i = 0; i < insn_cnt; i++) {
5527 		if (insn_state[i] != EXPLORED) {
5528 			verbose(env, "unreachable insn %d\n", i);
5529 			ret = -EINVAL;
5530 			goto err_free;
5531 		}
5532 	}
5533 	ret = 0; /* cfg looks good */
5534 
5535 err_free:
5536 	kvfree(insn_state);
5537 	kvfree(insn_stack);
5538 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
5539 	return ret;
5540 }
5541 
5542 /* The minimum supported BTF func info size */
5543 #define MIN_BPF_FUNCINFO_SIZE	8
5544 #define MAX_FUNCINFO_REC_SIZE	252
5545 
5546 static int check_btf_func(struct bpf_verifier_env *env,
5547 			  const union bpf_attr *attr,
5548 			  union bpf_attr __user *uattr)
5549 {
5550 	u32 i, nfuncs, urec_size, min_size;
5551 	u32 krec_size = sizeof(struct bpf_func_info);
5552 	struct bpf_func_info *krecord;
5553 	const struct btf_type *type;
5554 	struct bpf_prog *prog;
5555 	const struct btf *btf;
5556 	void __user *urecord;
5557 	u32 prev_offset = 0;
5558 	int ret = 0;
5559 
5560 	nfuncs = attr->func_info_cnt;
5561 	if (!nfuncs)
5562 		return 0;
5563 
5564 	if (nfuncs != env->subprog_cnt) {
5565 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
5566 		return -EINVAL;
5567 	}
5568 
5569 	urec_size = attr->func_info_rec_size;
5570 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
5571 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
5572 	    urec_size % sizeof(u32)) {
5573 		verbose(env, "invalid func info rec size %u\n", urec_size);
5574 		return -EINVAL;
5575 	}
5576 
5577 	prog = env->prog;
5578 	btf = prog->aux->btf;
5579 
5580 	urecord = u64_to_user_ptr(attr->func_info);
5581 	min_size = min_t(u32, krec_size, urec_size);
5582 
5583 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
5584 	if (!krecord)
5585 		return -ENOMEM;
5586 
5587 	for (i = 0; i < nfuncs; i++) {
5588 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
5589 		if (ret) {
5590 			if (ret == -E2BIG) {
5591 				verbose(env, "nonzero tailing record in func info");
5592 				/* set the size kernel expects so loader can zero
5593 				 * out the rest of the record.
5594 				 */
5595 				if (put_user(min_size, &uattr->func_info_rec_size))
5596 					ret = -EFAULT;
5597 			}
5598 			goto err_free;
5599 		}
5600 
5601 		if (copy_from_user(&krecord[i], urecord, min_size)) {
5602 			ret = -EFAULT;
5603 			goto err_free;
5604 		}
5605 
5606 		/* check insn_off */
5607 		if (i == 0) {
5608 			if (krecord[i].insn_off) {
5609 				verbose(env,
5610 					"nonzero insn_off %u for the first func info record",
5611 					krecord[i].insn_off);
5612 				ret = -EINVAL;
5613 				goto err_free;
5614 			}
5615 		} else if (krecord[i].insn_off <= prev_offset) {
5616 			verbose(env,
5617 				"same or smaller insn offset (%u) than previous func info record (%u)",
5618 				krecord[i].insn_off, prev_offset);
5619 			ret = -EINVAL;
5620 			goto err_free;
5621 		}
5622 
5623 		if (env->subprog_info[i].start != krecord[i].insn_off) {
5624 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
5625 			ret = -EINVAL;
5626 			goto err_free;
5627 		}
5628 
5629 		/* check type_id */
5630 		type = btf_type_by_id(btf, krecord[i].type_id);
5631 		if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
5632 			verbose(env, "invalid type id %d in func info",
5633 				krecord[i].type_id);
5634 			ret = -EINVAL;
5635 			goto err_free;
5636 		}
5637 
5638 		prev_offset = krecord[i].insn_off;
5639 		urecord += urec_size;
5640 	}
5641 
5642 	prog->aux->func_info = krecord;
5643 	prog->aux->func_info_cnt = nfuncs;
5644 	return 0;
5645 
5646 err_free:
5647 	kvfree(krecord);
5648 	return ret;
5649 }
5650 
5651 static void adjust_btf_func(struct bpf_verifier_env *env)
5652 {
5653 	int i;
5654 
5655 	if (!env->prog->aux->func_info)
5656 		return;
5657 
5658 	for (i = 0; i < env->subprog_cnt; i++)
5659 		env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
5660 }
5661 
5662 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
5663 		sizeof(((struct bpf_line_info *)(0))->line_col))
5664 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
5665 
5666 static int check_btf_line(struct bpf_verifier_env *env,
5667 			  const union bpf_attr *attr,
5668 			  union bpf_attr __user *uattr)
5669 {
5670 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
5671 	struct bpf_subprog_info *sub;
5672 	struct bpf_line_info *linfo;
5673 	struct bpf_prog *prog;
5674 	const struct btf *btf;
5675 	void __user *ulinfo;
5676 	int err;
5677 
5678 	nr_linfo = attr->line_info_cnt;
5679 	if (!nr_linfo)
5680 		return 0;
5681 
5682 	rec_size = attr->line_info_rec_size;
5683 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
5684 	    rec_size > MAX_LINEINFO_REC_SIZE ||
5685 	    rec_size & (sizeof(u32) - 1))
5686 		return -EINVAL;
5687 
5688 	/* Need to zero it in case the userspace may
5689 	 * pass in a smaller bpf_line_info object.
5690 	 */
5691 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
5692 			 GFP_KERNEL | __GFP_NOWARN);
5693 	if (!linfo)
5694 		return -ENOMEM;
5695 
5696 	prog = env->prog;
5697 	btf = prog->aux->btf;
5698 
5699 	s = 0;
5700 	sub = env->subprog_info;
5701 	ulinfo = u64_to_user_ptr(attr->line_info);
5702 	expected_size = sizeof(struct bpf_line_info);
5703 	ncopy = min_t(u32, expected_size, rec_size);
5704 	for (i = 0; i < nr_linfo; i++) {
5705 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
5706 		if (err) {
5707 			if (err == -E2BIG) {
5708 				verbose(env, "nonzero tailing record in line_info");
5709 				if (put_user(expected_size,
5710 					     &uattr->line_info_rec_size))
5711 					err = -EFAULT;
5712 			}
5713 			goto err_free;
5714 		}
5715 
5716 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5717 			err = -EFAULT;
5718 			goto err_free;
5719 		}
5720 
5721 		/*
5722 		 * Check insn_off to ensure
5723 		 * 1) strictly increasing AND
5724 		 * 2) bounded by prog->len
5725 		 *
5726 		 * The linfo[0].insn_off == 0 check logically falls into
5727 		 * the later "missing bpf_line_info for func..." case
5728 		 * because the first linfo[0].insn_off must be the
5729 		 * first sub also and the first sub must have
5730 		 * subprog_info[0].start == 0.
5731 		 */
5732 		if ((i && linfo[i].insn_off <= prev_offset) ||
5733 		    linfo[i].insn_off >= prog->len) {
5734 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5735 				i, linfo[i].insn_off, prev_offset,
5736 				prog->len);
5737 			err = -EINVAL;
5738 			goto err_free;
5739 		}
5740 
5741 		if (!prog->insnsi[linfo[i].insn_off].code) {
5742 			verbose(env,
5743 				"Invalid insn code at line_info[%u].insn_off\n",
5744 				i);
5745 			err = -EINVAL;
5746 			goto err_free;
5747 		}
5748 
5749 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5750 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
5751 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5752 			err = -EINVAL;
5753 			goto err_free;
5754 		}
5755 
5756 		if (s != env->subprog_cnt) {
5757 			if (linfo[i].insn_off == sub[s].start) {
5758 				sub[s].linfo_idx = i;
5759 				s++;
5760 			} else if (sub[s].start < linfo[i].insn_off) {
5761 				verbose(env, "missing bpf_line_info for func#%u\n", s);
5762 				err = -EINVAL;
5763 				goto err_free;
5764 			}
5765 		}
5766 
5767 		prev_offset = linfo[i].insn_off;
5768 		ulinfo += rec_size;
5769 	}
5770 
5771 	if (s != env->subprog_cnt) {
5772 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
5773 			env->subprog_cnt - s, s);
5774 		err = -EINVAL;
5775 		goto err_free;
5776 	}
5777 
5778 	prog->aux->linfo = linfo;
5779 	prog->aux->nr_linfo = nr_linfo;
5780 
5781 	return 0;
5782 
5783 err_free:
5784 	kvfree(linfo);
5785 	return err;
5786 }
5787 
5788 static int check_btf_info(struct bpf_verifier_env *env,
5789 			  const union bpf_attr *attr,
5790 			  union bpf_attr __user *uattr)
5791 {
5792 	struct btf *btf;
5793 	int err;
5794 
5795 	if (!attr->func_info_cnt && !attr->line_info_cnt)
5796 		return 0;
5797 
5798 	btf = btf_get_by_fd(attr->prog_btf_fd);
5799 	if (IS_ERR(btf))
5800 		return PTR_ERR(btf);
5801 	env->prog->aux->btf = btf;
5802 
5803 	err = check_btf_func(env, attr, uattr);
5804 	if (err)
5805 		return err;
5806 
5807 	err = check_btf_line(env, attr, uattr);
5808 	if (err)
5809 		return err;
5810 
5811 	return 0;
5812 }
5813 
5814 /* check %cur's range satisfies %old's */
5815 static bool range_within(struct bpf_reg_state *old,
5816 			 struct bpf_reg_state *cur)
5817 {
5818 	return old->umin_value <= cur->umin_value &&
5819 	       old->umax_value >= cur->umax_value &&
5820 	       old->smin_value <= cur->smin_value &&
5821 	       old->smax_value >= cur->smax_value;
5822 }
5823 
5824 /* Maximum number of register states that can exist at once */
5825 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5826 struct idpair {
5827 	u32 old;
5828 	u32 cur;
5829 };
5830 
5831 /* If in the old state two registers had the same id, then they need to have
5832  * the same id in the new state as well.  But that id could be different from
5833  * the old state, so we need to track the mapping from old to new ids.
5834  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5835  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
5836  * regs with a different old id could still have new id 9, we don't care about
5837  * that.
5838  * So we look through our idmap to see if this old id has been seen before.  If
5839  * so, we require the new id to match; otherwise, we add the id pair to the map.
5840  */
5841 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
5842 {
5843 	unsigned int i;
5844 
5845 	for (i = 0; i < ID_MAP_SIZE; i++) {
5846 		if (!idmap[i].old) {
5847 			/* Reached an empty slot; haven't seen this id before */
5848 			idmap[i].old = old_id;
5849 			idmap[i].cur = cur_id;
5850 			return true;
5851 		}
5852 		if (idmap[i].old == old_id)
5853 			return idmap[i].cur == cur_id;
5854 	}
5855 	/* We ran out of idmap slots, which should be impossible */
5856 	WARN_ON_ONCE(1);
5857 	return false;
5858 }
5859 
5860 static void clean_func_state(struct bpf_verifier_env *env,
5861 			     struct bpf_func_state *st)
5862 {
5863 	enum bpf_reg_liveness live;
5864 	int i, j;
5865 
5866 	for (i = 0; i < BPF_REG_FP; i++) {
5867 		live = st->regs[i].live;
5868 		/* liveness must not touch this register anymore */
5869 		st->regs[i].live |= REG_LIVE_DONE;
5870 		if (!(live & REG_LIVE_READ))
5871 			/* since the register is unused, clear its state
5872 			 * to make further comparison simpler
5873 			 */
5874 			__mark_reg_not_init(&st->regs[i]);
5875 	}
5876 
5877 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
5878 		live = st->stack[i].spilled_ptr.live;
5879 		/* liveness must not touch this stack slot anymore */
5880 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
5881 		if (!(live & REG_LIVE_READ)) {
5882 			__mark_reg_not_init(&st->stack[i].spilled_ptr);
5883 			for (j = 0; j < BPF_REG_SIZE; j++)
5884 				st->stack[i].slot_type[j] = STACK_INVALID;
5885 		}
5886 	}
5887 }
5888 
5889 static void clean_verifier_state(struct bpf_verifier_env *env,
5890 				 struct bpf_verifier_state *st)
5891 {
5892 	int i;
5893 
5894 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
5895 		/* all regs in this state in all frames were already marked */
5896 		return;
5897 
5898 	for (i = 0; i <= st->curframe; i++)
5899 		clean_func_state(env, st->frame[i]);
5900 }
5901 
5902 /* the parentage chains form a tree.
5903  * the verifier states are added to state lists at given insn and
5904  * pushed into state stack for future exploration.
5905  * when the verifier reaches bpf_exit insn some of the verifer states
5906  * stored in the state lists have their final liveness state already,
5907  * but a lot of states will get revised from liveness point of view when
5908  * the verifier explores other branches.
5909  * Example:
5910  * 1: r0 = 1
5911  * 2: if r1 == 100 goto pc+1
5912  * 3: r0 = 2
5913  * 4: exit
5914  * when the verifier reaches exit insn the register r0 in the state list of
5915  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
5916  * of insn 2 and goes exploring further. At the insn 4 it will walk the
5917  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
5918  *
5919  * Since the verifier pushes the branch states as it sees them while exploring
5920  * the program the condition of walking the branch instruction for the second
5921  * time means that all states below this branch were already explored and
5922  * their final liveness markes are already propagated.
5923  * Hence when the verifier completes the search of state list in is_state_visited()
5924  * we can call this clean_live_states() function to mark all liveness states
5925  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
5926  * will not be used.
5927  * This function also clears the registers and stack for states that !READ
5928  * to simplify state merging.
5929  *
5930  * Important note here that walking the same branch instruction in the callee
5931  * doesn't meant that the states are DONE. The verifier has to compare
5932  * the callsites
5933  */
5934 static void clean_live_states(struct bpf_verifier_env *env, int insn,
5935 			      struct bpf_verifier_state *cur)
5936 {
5937 	struct bpf_verifier_state_list *sl;
5938 	int i;
5939 
5940 	sl = env->explored_states[insn];
5941 	if (!sl)
5942 		return;
5943 
5944 	while (sl != STATE_LIST_MARK) {
5945 		if (sl->state.curframe != cur->curframe)
5946 			goto next;
5947 		for (i = 0; i <= cur->curframe; i++)
5948 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
5949 				goto next;
5950 		clean_verifier_state(env, &sl->state);
5951 next:
5952 		sl = sl->next;
5953 	}
5954 }
5955 
5956 /* Returns true if (rold safe implies rcur safe) */
5957 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
5958 		    struct idpair *idmap)
5959 {
5960 	bool equal;
5961 
5962 	if (!(rold->live & REG_LIVE_READ))
5963 		/* explored state didn't use this */
5964 		return true;
5965 
5966 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
5967 
5968 	if (rold->type == PTR_TO_STACK)
5969 		/* two stack pointers are equal only if they're pointing to
5970 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
5971 		 */
5972 		return equal && rold->frameno == rcur->frameno;
5973 
5974 	if (equal)
5975 		return true;
5976 
5977 	if (rold->type == NOT_INIT)
5978 		/* explored state can't have used this */
5979 		return true;
5980 	if (rcur->type == NOT_INIT)
5981 		return false;
5982 	switch (rold->type) {
5983 	case SCALAR_VALUE:
5984 		if (rcur->type == SCALAR_VALUE) {
5985 			/* new val must satisfy old val knowledge */
5986 			return range_within(rold, rcur) &&
5987 			       tnum_in(rold->var_off, rcur->var_off);
5988 		} else {
5989 			/* We're trying to use a pointer in place of a scalar.
5990 			 * Even if the scalar was unbounded, this could lead to
5991 			 * pointer leaks because scalars are allowed to leak
5992 			 * while pointers are not. We could make this safe in
5993 			 * special cases if root is calling us, but it's
5994 			 * probably not worth the hassle.
5995 			 */
5996 			return false;
5997 		}
5998 	case PTR_TO_MAP_VALUE:
5999 		/* If the new min/max/var_off satisfy the old ones and
6000 		 * everything else matches, we are OK.
6001 		 * 'id' is not compared, since it's only used for maps with
6002 		 * bpf_spin_lock inside map element and in such cases if
6003 		 * the rest of the prog is valid for one map element then
6004 		 * it's valid for all map elements regardless of the key
6005 		 * used in bpf_map_lookup()
6006 		 */
6007 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6008 		       range_within(rold, rcur) &&
6009 		       tnum_in(rold->var_off, rcur->var_off);
6010 	case PTR_TO_MAP_VALUE_OR_NULL:
6011 		/* a PTR_TO_MAP_VALUE could be safe to use as a
6012 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6013 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6014 		 * checked, doing so could have affected others with the same
6015 		 * id, and we can't check for that because we lost the id when
6016 		 * we converted to a PTR_TO_MAP_VALUE.
6017 		 */
6018 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6019 			return false;
6020 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6021 			return false;
6022 		/* Check our ids match any regs they're supposed to */
6023 		return check_ids(rold->id, rcur->id, idmap);
6024 	case PTR_TO_PACKET_META:
6025 	case PTR_TO_PACKET:
6026 		if (rcur->type != rold->type)
6027 			return false;
6028 		/* We must have at least as much range as the old ptr
6029 		 * did, so that any accesses which were safe before are
6030 		 * still safe.  This is true even if old range < old off,
6031 		 * since someone could have accessed through (ptr - k), or
6032 		 * even done ptr -= k in a register, to get a safe access.
6033 		 */
6034 		if (rold->range > rcur->range)
6035 			return false;
6036 		/* If the offsets don't match, we can't trust our alignment;
6037 		 * nor can we be sure that we won't fall out of range.
6038 		 */
6039 		if (rold->off != rcur->off)
6040 			return false;
6041 		/* id relations must be preserved */
6042 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6043 			return false;
6044 		/* new val must satisfy old val knowledge */
6045 		return range_within(rold, rcur) &&
6046 		       tnum_in(rold->var_off, rcur->var_off);
6047 	case PTR_TO_CTX:
6048 	case CONST_PTR_TO_MAP:
6049 	case PTR_TO_PACKET_END:
6050 	case PTR_TO_FLOW_KEYS:
6051 	case PTR_TO_SOCKET:
6052 	case PTR_TO_SOCKET_OR_NULL:
6053 	case PTR_TO_SOCK_COMMON:
6054 	case PTR_TO_SOCK_COMMON_OR_NULL:
6055 	case PTR_TO_TCP_SOCK:
6056 	case PTR_TO_TCP_SOCK_OR_NULL:
6057 		/* Only valid matches are exact, which memcmp() above
6058 		 * would have accepted
6059 		 */
6060 	default:
6061 		/* Don't know what's going on, just say it's not safe */
6062 		return false;
6063 	}
6064 
6065 	/* Shouldn't get here; if we do, say it's not safe */
6066 	WARN_ON_ONCE(1);
6067 	return false;
6068 }
6069 
6070 static bool stacksafe(struct bpf_func_state *old,
6071 		      struct bpf_func_state *cur,
6072 		      struct idpair *idmap)
6073 {
6074 	int i, spi;
6075 
6076 	/* walk slots of the explored stack and ignore any additional
6077 	 * slots in the current stack, since explored(safe) state
6078 	 * didn't use them
6079 	 */
6080 	for (i = 0; i < old->allocated_stack; i++) {
6081 		spi = i / BPF_REG_SIZE;
6082 
6083 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6084 			i += BPF_REG_SIZE - 1;
6085 			/* explored state didn't use this */
6086 			continue;
6087 		}
6088 
6089 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6090 			continue;
6091 
6092 		/* explored stack has more populated slots than current stack
6093 		 * and these slots were used
6094 		 */
6095 		if (i >= cur->allocated_stack)
6096 			return false;
6097 
6098 		/* if old state was safe with misc data in the stack
6099 		 * it will be safe with zero-initialized stack.
6100 		 * The opposite is not true
6101 		 */
6102 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6103 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6104 			continue;
6105 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6106 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6107 			/* Ex: old explored (safe) state has STACK_SPILL in
6108 			 * this stack slot, but current has has STACK_MISC ->
6109 			 * this verifier states are not equivalent,
6110 			 * return false to continue verification of this path
6111 			 */
6112 			return false;
6113 		if (i % BPF_REG_SIZE)
6114 			continue;
6115 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
6116 			continue;
6117 		if (!regsafe(&old->stack[spi].spilled_ptr,
6118 			     &cur->stack[spi].spilled_ptr,
6119 			     idmap))
6120 			/* when explored and current stack slot are both storing
6121 			 * spilled registers, check that stored pointers types
6122 			 * are the same as well.
6123 			 * Ex: explored safe path could have stored
6124 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6125 			 * but current path has stored:
6126 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6127 			 * such verifier states are not equivalent.
6128 			 * return false to continue verification of this path
6129 			 */
6130 			return false;
6131 	}
6132 	return true;
6133 }
6134 
6135 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6136 {
6137 	if (old->acquired_refs != cur->acquired_refs)
6138 		return false;
6139 	return !memcmp(old->refs, cur->refs,
6140 		       sizeof(*old->refs) * old->acquired_refs);
6141 }
6142 
6143 /* compare two verifier states
6144  *
6145  * all states stored in state_list are known to be valid, since
6146  * verifier reached 'bpf_exit' instruction through them
6147  *
6148  * this function is called when verifier exploring different branches of
6149  * execution popped from the state stack. If it sees an old state that has
6150  * more strict register state and more strict stack state then this execution
6151  * branch doesn't need to be explored further, since verifier already
6152  * concluded that more strict state leads to valid finish.
6153  *
6154  * Therefore two states are equivalent if register state is more conservative
6155  * and explored stack state is more conservative than the current one.
6156  * Example:
6157  *       explored                   current
6158  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
6159  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
6160  *
6161  * In other words if current stack state (one being explored) has more
6162  * valid slots than old one that already passed validation, it means
6163  * the verifier can stop exploring and conclude that current state is valid too
6164  *
6165  * Similarly with registers. If explored state has register type as invalid
6166  * whereas register type in current state is meaningful, it means that
6167  * the current state will reach 'bpf_exit' instruction safely
6168  */
6169 static bool func_states_equal(struct bpf_func_state *old,
6170 			      struct bpf_func_state *cur)
6171 {
6172 	struct idpair *idmap;
6173 	bool ret = false;
6174 	int i;
6175 
6176 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
6177 	/* If we failed to allocate the idmap, just say it's not safe */
6178 	if (!idmap)
6179 		return false;
6180 
6181 	for (i = 0; i < MAX_BPF_REG; i++) {
6182 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
6183 			goto out_free;
6184 	}
6185 
6186 	if (!stacksafe(old, cur, idmap))
6187 		goto out_free;
6188 
6189 	if (!refsafe(old, cur))
6190 		goto out_free;
6191 	ret = true;
6192 out_free:
6193 	kfree(idmap);
6194 	return ret;
6195 }
6196 
6197 static bool states_equal(struct bpf_verifier_env *env,
6198 			 struct bpf_verifier_state *old,
6199 			 struct bpf_verifier_state *cur)
6200 {
6201 	int i;
6202 
6203 	if (old->curframe != cur->curframe)
6204 		return false;
6205 
6206 	/* Verification state from speculative execution simulation
6207 	 * must never prune a non-speculative execution one.
6208 	 */
6209 	if (old->speculative && !cur->speculative)
6210 		return false;
6211 
6212 	if (old->active_spin_lock != cur->active_spin_lock)
6213 		return false;
6214 
6215 	/* for states to be equal callsites have to be the same
6216 	 * and all frame states need to be equivalent
6217 	 */
6218 	for (i = 0; i <= old->curframe; i++) {
6219 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
6220 			return false;
6221 		if (!func_states_equal(old->frame[i], cur->frame[i]))
6222 			return false;
6223 	}
6224 	return true;
6225 }
6226 
6227 static int propagate_liveness_reg(struct bpf_verifier_env *env,
6228 				  struct bpf_reg_state *reg,
6229 				  struct bpf_reg_state *parent_reg)
6230 {
6231 	int err;
6232 
6233 	if (parent_reg->live & REG_LIVE_READ || !(reg->live & REG_LIVE_READ))
6234 		return 0;
6235 
6236 	err = mark_reg_read(env, reg, parent_reg);
6237 	if (err)
6238 		return err;
6239 
6240 	return 0;
6241 }
6242 
6243 /* A write screens off any subsequent reads; but write marks come from the
6244  * straight-line code between a state and its parent.  When we arrive at an
6245  * equivalent state (jump target or such) we didn't arrive by the straight-line
6246  * code, so read marks in the state must propagate to the parent regardless
6247  * of the state's write marks. That's what 'parent == state->parent' comparison
6248  * in mark_reg_read() is for.
6249  */
6250 static int propagate_liveness(struct bpf_verifier_env *env,
6251 			      const struct bpf_verifier_state *vstate,
6252 			      struct bpf_verifier_state *vparent)
6253 {
6254 	struct bpf_reg_state *state_reg, *parent_reg;
6255 	struct bpf_func_state *state, *parent;
6256 	int i, frame, err = 0;
6257 
6258 	if (vparent->curframe != vstate->curframe) {
6259 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
6260 		     vparent->curframe, vstate->curframe);
6261 		return -EFAULT;
6262 	}
6263 	/* Propagate read liveness of registers... */
6264 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
6265 	for (frame = 0; frame <= vstate->curframe; frame++) {
6266 		parent = vparent->frame[frame];
6267 		state = vstate->frame[frame];
6268 		parent_reg = parent->regs;
6269 		state_reg = state->regs;
6270 		/* We don't need to worry about FP liveness, it's read-only */
6271 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
6272 			err = propagate_liveness_reg(env, &state_reg[i],
6273 						     &parent_reg[i]);
6274 			if (err)
6275 				return err;
6276 		}
6277 
6278 		/* Propagate stack slots. */
6279 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
6280 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
6281 			parent_reg = &parent->stack[i].spilled_ptr;
6282 			state_reg = &state->stack[i].spilled_ptr;
6283 			err = propagate_liveness_reg(env, state_reg,
6284 						     parent_reg);
6285 			if (err)
6286 				return err;
6287 		}
6288 	}
6289 	return err;
6290 }
6291 
6292 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
6293 {
6294 	struct bpf_verifier_state_list *new_sl;
6295 	struct bpf_verifier_state_list *sl, **pprev;
6296 	struct bpf_verifier_state *cur = env->cur_state, *new;
6297 	int i, j, err, states_cnt = 0;
6298 
6299 	pprev = &env->explored_states[insn_idx];
6300 	sl = *pprev;
6301 
6302 	if (!sl)
6303 		/* this 'insn_idx' instruction wasn't marked, so we will not
6304 		 * be doing state search here
6305 		 */
6306 		return 0;
6307 
6308 	clean_live_states(env, insn_idx, cur);
6309 
6310 	while (sl != STATE_LIST_MARK) {
6311 		if (states_equal(env, &sl->state, cur)) {
6312 			sl->hit_cnt++;
6313 			/* reached equivalent register/stack state,
6314 			 * prune the search.
6315 			 * Registers read by the continuation are read by us.
6316 			 * If we have any write marks in env->cur_state, they
6317 			 * will prevent corresponding reads in the continuation
6318 			 * from reaching our parent (an explored_state).  Our
6319 			 * own state will get the read marks recorded, but
6320 			 * they'll be immediately forgotten as we're pruning
6321 			 * this state and will pop a new one.
6322 			 */
6323 			err = propagate_liveness(env, &sl->state, cur);
6324 			if (err)
6325 				return err;
6326 			return 1;
6327 		}
6328 		states_cnt++;
6329 		sl->miss_cnt++;
6330 		/* heuristic to determine whether this state is beneficial
6331 		 * to keep checking from state equivalence point of view.
6332 		 * Higher numbers increase max_states_per_insn and verification time,
6333 		 * but do not meaningfully decrease insn_processed.
6334 		 */
6335 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
6336 			/* the state is unlikely to be useful. Remove it to
6337 			 * speed up verification
6338 			 */
6339 			*pprev = sl->next;
6340 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
6341 				free_verifier_state(&sl->state, false);
6342 				kfree(sl);
6343 				env->peak_states--;
6344 			} else {
6345 				/* cannot free this state, since parentage chain may
6346 				 * walk it later. Add it for free_list instead to
6347 				 * be freed at the end of verification
6348 				 */
6349 				sl->next = env->free_list;
6350 				env->free_list = sl;
6351 			}
6352 			sl = *pprev;
6353 			continue;
6354 		}
6355 		pprev = &sl->next;
6356 		sl = *pprev;
6357 	}
6358 
6359 	if (env->max_states_per_insn < states_cnt)
6360 		env->max_states_per_insn = states_cnt;
6361 
6362 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
6363 		return 0;
6364 
6365 	/* there were no equivalent states, remember current one.
6366 	 * technically the current state is not proven to be safe yet,
6367 	 * but it will either reach outer most bpf_exit (which means it's safe)
6368 	 * or it will be rejected. Since there are no loops, we won't be
6369 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6370 	 * again on the way to bpf_exit
6371 	 */
6372 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
6373 	if (!new_sl)
6374 		return -ENOMEM;
6375 	env->total_states++;
6376 	env->peak_states++;
6377 
6378 	/* add new state to the head of linked list */
6379 	new = &new_sl->state;
6380 	err = copy_verifier_state(new, cur);
6381 	if (err) {
6382 		free_verifier_state(new, false);
6383 		kfree(new_sl);
6384 		return err;
6385 	}
6386 	new_sl->next = env->explored_states[insn_idx];
6387 	env->explored_states[insn_idx] = new_sl;
6388 	/* connect new state to parentage chain. Current frame needs all
6389 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
6390 	 * to the stack implicitly by JITs) so in callers' frames connect just
6391 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6392 	 * the state of the call instruction (with WRITTEN set), and r0 comes
6393 	 * from callee with its full parentage chain, anyway.
6394 	 */
6395 	for (j = 0; j <= cur->curframe; j++)
6396 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
6397 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
6398 	/* clear write marks in current state: the writes we did are not writes
6399 	 * our child did, so they don't screen off its reads from us.
6400 	 * (There are no read marks in current state, because reads always mark
6401 	 * their parent and current state never has children yet.  Only
6402 	 * explored_states can get read marks.)
6403 	 */
6404 	for (i = 0; i < BPF_REG_FP; i++)
6405 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
6406 
6407 	/* all stack frames are accessible from callee, clear them all */
6408 	for (j = 0; j <= cur->curframe; j++) {
6409 		struct bpf_func_state *frame = cur->frame[j];
6410 		struct bpf_func_state *newframe = new->frame[j];
6411 
6412 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
6413 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
6414 			frame->stack[i].spilled_ptr.parent =
6415 						&newframe->stack[i].spilled_ptr;
6416 		}
6417 	}
6418 	return 0;
6419 }
6420 
6421 /* Return true if it's OK to have the same insn return a different type. */
6422 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
6423 {
6424 	switch (type) {
6425 	case PTR_TO_CTX:
6426 	case PTR_TO_SOCKET:
6427 	case PTR_TO_SOCKET_OR_NULL:
6428 	case PTR_TO_SOCK_COMMON:
6429 	case PTR_TO_SOCK_COMMON_OR_NULL:
6430 	case PTR_TO_TCP_SOCK:
6431 	case PTR_TO_TCP_SOCK_OR_NULL:
6432 		return false;
6433 	default:
6434 		return true;
6435 	}
6436 }
6437 
6438 /* If an instruction was previously used with particular pointer types, then we
6439  * need to be careful to avoid cases such as the below, where it may be ok
6440  * for one branch accessing the pointer, but not ok for the other branch:
6441  *
6442  * R1 = sock_ptr
6443  * goto X;
6444  * ...
6445  * R1 = some_other_valid_ptr;
6446  * goto X;
6447  * ...
6448  * R2 = *(u32 *)(R1 + 0);
6449  */
6450 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
6451 {
6452 	return src != prev && (!reg_type_mismatch_ok(src) ||
6453 			       !reg_type_mismatch_ok(prev));
6454 }
6455 
6456 static int do_check(struct bpf_verifier_env *env)
6457 {
6458 	struct bpf_verifier_state *state;
6459 	struct bpf_insn *insns = env->prog->insnsi;
6460 	struct bpf_reg_state *regs;
6461 	int insn_cnt = env->prog->len;
6462 	bool do_print_state = false;
6463 
6464 	env->prev_linfo = NULL;
6465 
6466 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
6467 	if (!state)
6468 		return -ENOMEM;
6469 	state->curframe = 0;
6470 	state->speculative = false;
6471 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
6472 	if (!state->frame[0]) {
6473 		kfree(state);
6474 		return -ENOMEM;
6475 	}
6476 	env->cur_state = state;
6477 	init_func_state(env, state->frame[0],
6478 			BPF_MAIN_FUNC /* callsite */,
6479 			0 /* frameno */,
6480 			0 /* subprogno, zero == main subprog */);
6481 
6482 	for (;;) {
6483 		struct bpf_insn *insn;
6484 		u8 class;
6485 		int err;
6486 
6487 		if (env->insn_idx >= insn_cnt) {
6488 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
6489 				env->insn_idx, insn_cnt);
6490 			return -EFAULT;
6491 		}
6492 
6493 		insn = &insns[env->insn_idx];
6494 		class = BPF_CLASS(insn->code);
6495 
6496 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
6497 			verbose(env,
6498 				"BPF program is too large. Processed %d insn\n",
6499 				env->insn_processed);
6500 			return -E2BIG;
6501 		}
6502 
6503 		err = is_state_visited(env, env->insn_idx);
6504 		if (err < 0)
6505 			return err;
6506 		if (err == 1) {
6507 			/* found equivalent state, can prune the search */
6508 			if (env->log.level & BPF_LOG_LEVEL) {
6509 				if (do_print_state)
6510 					verbose(env, "\nfrom %d to %d%s: safe\n",
6511 						env->prev_insn_idx, env->insn_idx,
6512 						env->cur_state->speculative ?
6513 						" (speculative execution)" : "");
6514 				else
6515 					verbose(env, "%d: safe\n", env->insn_idx);
6516 			}
6517 			goto process_bpf_exit;
6518 		}
6519 
6520 		if (signal_pending(current))
6521 			return -EAGAIN;
6522 
6523 		if (need_resched())
6524 			cond_resched();
6525 
6526 		if (env->log.level & BPF_LOG_LEVEL2 ||
6527 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
6528 			if (env->log.level & BPF_LOG_LEVEL2)
6529 				verbose(env, "%d:", env->insn_idx);
6530 			else
6531 				verbose(env, "\nfrom %d to %d%s:",
6532 					env->prev_insn_idx, env->insn_idx,
6533 					env->cur_state->speculative ?
6534 					" (speculative execution)" : "");
6535 			print_verifier_state(env, state->frame[state->curframe]);
6536 			do_print_state = false;
6537 		}
6538 
6539 		if (env->log.level & BPF_LOG_LEVEL) {
6540 			const struct bpf_insn_cbs cbs = {
6541 				.cb_print	= verbose,
6542 				.private_data	= env,
6543 			};
6544 
6545 			verbose_linfo(env, env->insn_idx, "; ");
6546 			verbose(env, "%d: ", env->insn_idx);
6547 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
6548 		}
6549 
6550 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
6551 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
6552 							   env->prev_insn_idx);
6553 			if (err)
6554 				return err;
6555 		}
6556 
6557 		regs = cur_regs(env);
6558 		env->insn_aux_data[env->insn_idx].seen = true;
6559 
6560 		if (class == BPF_ALU || class == BPF_ALU64) {
6561 			err = check_alu_op(env, insn);
6562 			if (err)
6563 				return err;
6564 
6565 		} else if (class == BPF_LDX) {
6566 			enum bpf_reg_type *prev_src_type, src_reg_type;
6567 
6568 			/* check for reserved fields is already done */
6569 
6570 			/* check src operand */
6571 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6572 			if (err)
6573 				return err;
6574 
6575 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6576 			if (err)
6577 				return err;
6578 
6579 			src_reg_type = regs[insn->src_reg].type;
6580 
6581 			/* check that memory (src_reg + off) is readable,
6582 			 * the state of dst_reg will be updated by this func
6583 			 */
6584 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
6585 					       insn->off, BPF_SIZE(insn->code),
6586 					       BPF_READ, insn->dst_reg, false);
6587 			if (err)
6588 				return err;
6589 
6590 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6591 
6592 			if (*prev_src_type == NOT_INIT) {
6593 				/* saw a valid insn
6594 				 * dst_reg = *(u32 *)(src_reg + off)
6595 				 * save type to validate intersecting paths
6596 				 */
6597 				*prev_src_type = src_reg_type;
6598 
6599 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
6600 				/* ABuser program is trying to use the same insn
6601 				 * dst_reg = *(u32*) (src_reg + off)
6602 				 * with different pointer types:
6603 				 * src_reg == ctx in one branch and
6604 				 * src_reg == stack|map in some other branch.
6605 				 * Reject it.
6606 				 */
6607 				verbose(env, "same insn cannot be used with different pointers\n");
6608 				return -EINVAL;
6609 			}
6610 
6611 		} else if (class == BPF_STX) {
6612 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
6613 
6614 			if (BPF_MODE(insn->code) == BPF_XADD) {
6615 				err = check_xadd(env, env->insn_idx, insn);
6616 				if (err)
6617 					return err;
6618 				env->insn_idx++;
6619 				continue;
6620 			}
6621 
6622 			/* check src1 operand */
6623 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6624 			if (err)
6625 				return err;
6626 			/* check src2 operand */
6627 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6628 			if (err)
6629 				return err;
6630 
6631 			dst_reg_type = regs[insn->dst_reg].type;
6632 
6633 			/* check that memory (dst_reg + off) is writeable */
6634 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6635 					       insn->off, BPF_SIZE(insn->code),
6636 					       BPF_WRITE, insn->src_reg, false);
6637 			if (err)
6638 				return err;
6639 
6640 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6641 
6642 			if (*prev_dst_type == NOT_INIT) {
6643 				*prev_dst_type = dst_reg_type;
6644 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
6645 				verbose(env, "same insn cannot be used with different pointers\n");
6646 				return -EINVAL;
6647 			}
6648 
6649 		} else if (class == BPF_ST) {
6650 			if (BPF_MODE(insn->code) != BPF_MEM ||
6651 			    insn->src_reg != BPF_REG_0) {
6652 				verbose(env, "BPF_ST uses reserved fields\n");
6653 				return -EINVAL;
6654 			}
6655 			/* check src operand */
6656 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6657 			if (err)
6658 				return err;
6659 
6660 			if (is_ctx_reg(env, insn->dst_reg)) {
6661 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
6662 					insn->dst_reg,
6663 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
6664 				return -EACCES;
6665 			}
6666 
6667 			/* check that memory (dst_reg + off) is writeable */
6668 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6669 					       insn->off, BPF_SIZE(insn->code),
6670 					       BPF_WRITE, -1, false);
6671 			if (err)
6672 				return err;
6673 
6674 		} else if (class == BPF_JMP || class == BPF_JMP32) {
6675 			u8 opcode = BPF_OP(insn->code);
6676 
6677 			if (opcode == BPF_CALL) {
6678 				if (BPF_SRC(insn->code) != BPF_K ||
6679 				    insn->off != 0 ||
6680 				    (insn->src_reg != BPF_REG_0 &&
6681 				     insn->src_reg != BPF_PSEUDO_CALL) ||
6682 				    insn->dst_reg != BPF_REG_0 ||
6683 				    class == BPF_JMP32) {
6684 					verbose(env, "BPF_CALL uses reserved fields\n");
6685 					return -EINVAL;
6686 				}
6687 
6688 				if (env->cur_state->active_spin_lock &&
6689 				    (insn->src_reg == BPF_PSEUDO_CALL ||
6690 				     insn->imm != BPF_FUNC_spin_unlock)) {
6691 					verbose(env, "function calls are not allowed while holding a lock\n");
6692 					return -EINVAL;
6693 				}
6694 				if (insn->src_reg == BPF_PSEUDO_CALL)
6695 					err = check_func_call(env, insn, &env->insn_idx);
6696 				else
6697 					err = check_helper_call(env, insn->imm, env->insn_idx);
6698 				if (err)
6699 					return err;
6700 
6701 			} else if (opcode == BPF_JA) {
6702 				if (BPF_SRC(insn->code) != BPF_K ||
6703 				    insn->imm != 0 ||
6704 				    insn->src_reg != BPF_REG_0 ||
6705 				    insn->dst_reg != BPF_REG_0 ||
6706 				    class == BPF_JMP32) {
6707 					verbose(env, "BPF_JA uses reserved fields\n");
6708 					return -EINVAL;
6709 				}
6710 
6711 				env->insn_idx += insn->off + 1;
6712 				continue;
6713 
6714 			} else if (opcode == BPF_EXIT) {
6715 				if (BPF_SRC(insn->code) != BPF_K ||
6716 				    insn->imm != 0 ||
6717 				    insn->src_reg != BPF_REG_0 ||
6718 				    insn->dst_reg != BPF_REG_0 ||
6719 				    class == BPF_JMP32) {
6720 					verbose(env, "BPF_EXIT uses reserved fields\n");
6721 					return -EINVAL;
6722 				}
6723 
6724 				if (env->cur_state->active_spin_lock) {
6725 					verbose(env, "bpf_spin_unlock is missing\n");
6726 					return -EINVAL;
6727 				}
6728 
6729 				if (state->curframe) {
6730 					/* exit from nested function */
6731 					env->prev_insn_idx = env->insn_idx;
6732 					err = prepare_func_exit(env, &env->insn_idx);
6733 					if (err)
6734 						return err;
6735 					do_print_state = true;
6736 					continue;
6737 				}
6738 
6739 				err = check_reference_leak(env);
6740 				if (err)
6741 					return err;
6742 
6743 				/* eBPF calling convetion is such that R0 is used
6744 				 * to return the value from eBPF program.
6745 				 * Make sure that it's readable at this time
6746 				 * of bpf_exit, which means that program wrote
6747 				 * something into it earlier
6748 				 */
6749 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
6750 				if (err)
6751 					return err;
6752 
6753 				if (is_pointer_value(env, BPF_REG_0)) {
6754 					verbose(env, "R0 leaks addr as return value\n");
6755 					return -EACCES;
6756 				}
6757 
6758 				err = check_return_code(env);
6759 				if (err)
6760 					return err;
6761 process_bpf_exit:
6762 				err = pop_stack(env, &env->prev_insn_idx,
6763 						&env->insn_idx);
6764 				if (err < 0) {
6765 					if (err != -ENOENT)
6766 						return err;
6767 					break;
6768 				} else {
6769 					do_print_state = true;
6770 					continue;
6771 				}
6772 			} else {
6773 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
6774 				if (err)
6775 					return err;
6776 			}
6777 		} else if (class == BPF_LD) {
6778 			u8 mode = BPF_MODE(insn->code);
6779 
6780 			if (mode == BPF_ABS || mode == BPF_IND) {
6781 				err = check_ld_abs(env, insn);
6782 				if (err)
6783 					return err;
6784 
6785 			} else if (mode == BPF_IMM) {
6786 				err = check_ld_imm(env, insn);
6787 				if (err)
6788 					return err;
6789 
6790 				env->insn_idx++;
6791 				env->insn_aux_data[env->insn_idx].seen = true;
6792 			} else {
6793 				verbose(env, "invalid BPF_LD mode\n");
6794 				return -EINVAL;
6795 			}
6796 		} else {
6797 			verbose(env, "unknown insn class %d\n", class);
6798 			return -EINVAL;
6799 		}
6800 
6801 		env->insn_idx++;
6802 	}
6803 
6804 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
6805 	return 0;
6806 }
6807 
6808 static int check_map_prealloc(struct bpf_map *map)
6809 {
6810 	return (map->map_type != BPF_MAP_TYPE_HASH &&
6811 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6812 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
6813 		!(map->map_flags & BPF_F_NO_PREALLOC);
6814 }
6815 
6816 static bool is_tracing_prog_type(enum bpf_prog_type type)
6817 {
6818 	switch (type) {
6819 	case BPF_PROG_TYPE_KPROBE:
6820 	case BPF_PROG_TYPE_TRACEPOINT:
6821 	case BPF_PROG_TYPE_PERF_EVENT:
6822 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6823 		return true;
6824 	default:
6825 		return false;
6826 	}
6827 }
6828 
6829 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
6830 					struct bpf_map *map,
6831 					struct bpf_prog *prog)
6832 
6833 {
6834 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
6835 	 * preallocated hash maps, since doing memory allocation
6836 	 * in overflow_handler can crash depending on where nmi got
6837 	 * triggered.
6838 	 */
6839 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
6840 		if (!check_map_prealloc(map)) {
6841 			verbose(env, "perf_event programs can only use preallocated hash map\n");
6842 			return -EINVAL;
6843 		}
6844 		if (map->inner_map_meta &&
6845 		    !check_map_prealloc(map->inner_map_meta)) {
6846 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
6847 			return -EINVAL;
6848 		}
6849 	}
6850 
6851 	if ((is_tracing_prog_type(prog->type) ||
6852 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
6853 	    map_value_has_spin_lock(map)) {
6854 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
6855 		return -EINVAL;
6856 	}
6857 
6858 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
6859 	    !bpf_offload_prog_map_match(prog, map)) {
6860 		verbose(env, "offload device mismatch between prog and map\n");
6861 		return -EINVAL;
6862 	}
6863 
6864 	return 0;
6865 }
6866 
6867 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
6868 {
6869 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
6870 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
6871 }
6872 
6873 /* look for pseudo eBPF instructions that access map FDs and
6874  * replace them with actual map pointers
6875  */
6876 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
6877 {
6878 	struct bpf_insn *insn = env->prog->insnsi;
6879 	int insn_cnt = env->prog->len;
6880 	int i, j, err;
6881 
6882 	err = bpf_prog_calc_tag(env->prog);
6883 	if (err)
6884 		return err;
6885 
6886 	for (i = 0; i < insn_cnt; i++, insn++) {
6887 		if (BPF_CLASS(insn->code) == BPF_LDX &&
6888 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
6889 			verbose(env, "BPF_LDX uses reserved fields\n");
6890 			return -EINVAL;
6891 		}
6892 
6893 		if (BPF_CLASS(insn->code) == BPF_STX &&
6894 		    ((BPF_MODE(insn->code) != BPF_MEM &&
6895 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
6896 			verbose(env, "BPF_STX uses reserved fields\n");
6897 			return -EINVAL;
6898 		}
6899 
6900 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
6901 			struct bpf_insn_aux_data *aux;
6902 			struct bpf_map *map;
6903 			struct fd f;
6904 			u64 addr;
6905 
6906 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
6907 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
6908 			    insn[1].off != 0) {
6909 				verbose(env, "invalid bpf_ld_imm64 insn\n");
6910 				return -EINVAL;
6911 			}
6912 
6913 			if (insn[0].src_reg == 0)
6914 				/* valid generic load 64-bit imm */
6915 				goto next_insn;
6916 
6917 			/* In final convert_pseudo_ld_imm64() step, this is
6918 			 * converted into regular 64-bit imm load insn.
6919 			 */
6920 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
6921 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
6922 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
6923 			     insn[1].imm != 0)) {
6924 				verbose(env,
6925 					"unrecognized bpf_ld_imm64 insn\n");
6926 				return -EINVAL;
6927 			}
6928 
6929 			f = fdget(insn[0].imm);
6930 			map = __bpf_map_get(f);
6931 			if (IS_ERR(map)) {
6932 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
6933 					insn[0].imm);
6934 				return PTR_ERR(map);
6935 			}
6936 
6937 			err = check_map_prog_compatibility(env, map, env->prog);
6938 			if (err) {
6939 				fdput(f);
6940 				return err;
6941 			}
6942 
6943 			aux = &env->insn_aux_data[i];
6944 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6945 				addr = (unsigned long)map;
6946 			} else {
6947 				u32 off = insn[1].imm;
6948 
6949 				if (off >= BPF_MAX_VAR_OFF) {
6950 					verbose(env, "direct value offset of %u is not allowed\n", off);
6951 					fdput(f);
6952 					return -EINVAL;
6953 				}
6954 
6955 				if (!map->ops->map_direct_value_addr) {
6956 					verbose(env, "no direct value access support for this map type\n");
6957 					fdput(f);
6958 					return -EINVAL;
6959 				}
6960 
6961 				err = map->ops->map_direct_value_addr(map, &addr, off);
6962 				if (err) {
6963 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
6964 						map->value_size, off);
6965 					fdput(f);
6966 					return err;
6967 				}
6968 
6969 				aux->map_off = off;
6970 				addr += off;
6971 			}
6972 
6973 			insn[0].imm = (u32)addr;
6974 			insn[1].imm = addr >> 32;
6975 
6976 			/* check whether we recorded this map already */
6977 			for (j = 0; j < env->used_map_cnt; j++) {
6978 				if (env->used_maps[j] == map) {
6979 					aux->map_index = j;
6980 					fdput(f);
6981 					goto next_insn;
6982 				}
6983 			}
6984 
6985 			if (env->used_map_cnt >= MAX_USED_MAPS) {
6986 				fdput(f);
6987 				return -E2BIG;
6988 			}
6989 
6990 			/* hold the map. If the program is rejected by verifier,
6991 			 * the map will be released by release_maps() or it
6992 			 * will be used by the valid program until it's unloaded
6993 			 * and all maps are released in free_used_maps()
6994 			 */
6995 			map = bpf_map_inc(map, false);
6996 			if (IS_ERR(map)) {
6997 				fdput(f);
6998 				return PTR_ERR(map);
6999 			}
7000 
7001 			aux->map_index = env->used_map_cnt;
7002 			env->used_maps[env->used_map_cnt++] = map;
7003 
7004 			if (bpf_map_is_cgroup_storage(map) &&
7005 			    bpf_cgroup_storage_assign(env->prog, map)) {
7006 				verbose(env, "only one cgroup storage of each type is allowed\n");
7007 				fdput(f);
7008 				return -EBUSY;
7009 			}
7010 
7011 			fdput(f);
7012 next_insn:
7013 			insn++;
7014 			i++;
7015 			continue;
7016 		}
7017 
7018 		/* Basic sanity check before we invest more work here. */
7019 		if (!bpf_opcode_in_insntable(insn->code)) {
7020 			verbose(env, "unknown opcode %02x\n", insn->code);
7021 			return -EINVAL;
7022 		}
7023 	}
7024 
7025 	/* now all pseudo BPF_LD_IMM64 instructions load valid
7026 	 * 'struct bpf_map *' into a register instead of user map_fd.
7027 	 * These pointers will be used later by verifier to validate map access.
7028 	 */
7029 	return 0;
7030 }
7031 
7032 /* drop refcnt of maps used by the rejected program */
7033 static void release_maps(struct bpf_verifier_env *env)
7034 {
7035 	enum bpf_cgroup_storage_type stype;
7036 	int i;
7037 
7038 	for_each_cgroup_storage_type(stype) {
7039 		if (!env->prog->aux->cgroup_storage[stype])
7040 			continue;
7041 		bpf_cgroup_storage_release(env->prog,
7042 			env->prog->aux->cgroup_storage[stype]);
7043 	}
7044 
7045 	for (i = 0; i < env->used_map_cnt; i++)
7046 		bpf_map_put(env->used_maps[i]);
7047 }
7048 
7049 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
7050 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
7051 {
7052 	struct bpf_insn *insn = env->prog->insnsi;
7053 	int insn_cnt = env->prog->len;
7054 	int i;
7055 
7056 	for (i = 0; i < insn_cnt; i++, insn++)
7057 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
7058 			insn->src_reg = 0;
7059 }
7060 
7061 /* single env->prog->insni[off] instruction was replaced with the range
7062  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
7063  * [0, off) and [off, end) to new locations, so the patched range stays zero
7064  */
7065 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
7066 				u32 off, u32 cnt)
7067 {
7068 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
7069 	int i;
7070 
7071 	if (cnt == 1)
7072 		return 0;
7073 	new_data = vzalloc(array_size(prog_len,
7074 				      sizeof(struct bpf_insn_aux_data)));
7075 	if (!new_data)
7076 		return -ENOMEM;
7077 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
7078 	memcpy(new_data + off + cnt - 1, old_data + off,
7079 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
7080 	for (i = off; i < off + cnt - 1; i++)
7081 		new_data[i].seen = true;
7082 	env->insn_aux_data = new_data;
7083 	vfree(old_data);
7084 	return 0;
7085 }
7086 
7087 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
7088 {
7089 	int i;
7090 
7091 	if (len == 1)
7092 		return;
7093 	/* NOTE: fake 'exit' subprog should be updated as well. */
7094 	for (i = 0; i <= env->subprog_cnt; i++) {
7095 		if (env->subprog_info[i].start <= off)
7096 			continue;
7097 		env->subprog_info[i].start += len - 1;
7098 	}
7099 }
7100 
7101 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
7102 					    const struct bpf_insn *patch, u32 len)
7103 {
7104 	struct bpf_prog *new_prog;
7105 
7106 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
7107 	if (IS_ERR(new_prog)) {
7108 		if (PTR_ERR(new_prog) == -ERANGE)
7109 			verbose(env,
7110 				"insn %d cannot be patched due to 16-bit range\n",
7111 				env->insn_aux_data[off].orig_idx);
7112 		return NULL;
7113 	}
7114 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
7115 		return NULL;
7116 	adjust_subprog_starts(env, off, len);
7117 	return new_prog;
7118 }
7119 
7120 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
7121 					      u32 off, u32 cnt)
7122 {
7123 	int i, j;
7124 
7125 	/* find first prog starting at or after off (first to remove) */
7126 	for (i = 0; i < env->subprog_cnt; i++)
7127 		if (env->subprog_info[i].start >= off)
7128 			break;
7129 	/* find first prog starting at or after off + cnt (first to stay) */
7130 	for (j = i; j < env->subprog_cnt; j++)
7131 		if (env->subprog_info[j].start >= off + cnt)
7132 			break;
7133 	/* if j doesn't start exactly at off + cnt, we are just removing
7134 	 * the front of previous prog
7135 	 */
7136 	if (env->subprog_info[j].start != off + cnt)
7137 		j--;
7138 
7139 	if (j > i) {
7140 		struct bpf_prog_aux *aux = env->prog->aux;
7141 		int move;
7142 
7143 		/* move fake 'exit' subprog as well */
7144 		move = env->subprog_cnt + 1 - j;
7145 
7146 		memmove(env->subprog_info + i,
7147 			env->subprog_info + j,
7148 			sizeof(*env->subprog_info) * move);
7149 		env->subprog_cnt -= j - i;
7150 
7151 		/* remove func_info */
7152 		if (aux->func_info) {
7153 			move = aux->func_info_cnt - j;
7154 
7155 			memmove(aux->func_info + i,
7156 				aux->func_info + j,
7157 				sizeof(*aux->func_info) * move);
7158 			aux->func_info_cnt -= j - i;
7159 			/* func_info->insn_off is set after all code rewrites,
7160 			 * in adjust_btf_func() - no need to adjust
7161 			 */
7162 		}
7163 	} else {
7164 		/* convert i from "first prog to remove" to "first to adjust" */
7165 		if (env->subprog_info[i].start == off)
7166 			i++;
7167 	}
7168 
7169 	/* update fake 'exit' subprog as well */
7170 	for (; i <= env->subprog_cnt; i++)
7171 		env->subprog_info[i].start -= cnt;
7172 
7173 	return 0;
7174 }
7175 
7176 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
7177 				      u32 cnt)
7178 {
7179 	struct bpf_prog *prog = env->prog;
7180 	u32 i, l_off, l_cnt, nr_linfo;
7181 	struct bpf_line_info *linfo;
7182 
7183 	nr_linfo = prog->aux->nr_linfo;
7184 	if (!nr_linfo)
7185 		return 0;
7186 
7187 	linfo = prog->aux->linfo;
7188 
7189 	/* find first line info to remove, count lines to be removed */
7190 	for (i = 0; i < nr_linfo; i++)
7191 		if (linfo[i].insn_off >= off)
7192 			break;
7193 
7194 	l_off = i;
7195 	l_cnt = 0;
7196 	for (; i < nr_linfo; i++)
7197 		if (linfo[i].insn_off < off + cnt)
7198 			l_cnt++;
7199 		else
7200 			break;
7201 
7202 	/* First live insn doesn't match first live linfo, it needs to "inherit"
7203 	 * last removed linfo.  prog is already modified, so prog->len == off
7204 	 * means no live instructions after (tail of the program was removed).
7205 	 */
7206 	if (prog->len != off && l_cnt &&
7207 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
7208 		l_cnt--;
7209 		linfo[--i].insn_off = off + cnt;
7210 	}
7211 
7212 	/* remove the line info which refer to the removed instructions */
7213 	if (l_cnt) {
7214 		memmove(linfo + l_off, linfo + i,
7215 			sizeof(*linfo) * (nr_linfo - i));
7216 
7217 		prog->aux->nr_linfo -= l_cnt;
7218 		nr_linfo = prog->aux->nr_linfo;
7219 	}
7220 
7221 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
7222 	for (i = l_off; i < nr_linfo; i++)
7223 		linfo[i].insn_off -= cnt;
7224 
7225 	/* fix up all subprogs (incl. 'exit') which start >= off */
7226 	for (i = 0; i <= env->subprog_cnt; i++)
7227 		if (env->subprog_info[i].linfo_idx > l_off) {
7228 			/* program may have started in the removed region but
7229 			 * may not be fully removed
7230 			 */
7231 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
7232 				env->subprog_info[i].linfo_idx -= l_cnt;
7233 			else
7234 				env->subprog_info[i].linfo_idx = l_off;
7235 		}
7236 
7237 	return 0;
7238 }
7239 
7240 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
7241 {
7242 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7243 	unsigned int orig_prog_len = env->prog->len;
7244 	int err;
7245 
7246 	if (bpf_prog_is_dev_bound(env->prog->aux))
7247 		bpf_prog_offload_remove_insns(env, off, cnt);
7248 
7249 	err = bpf_remove_insns(env->prog, off, cnt);
7250 	if (err)
7251 		return err;
7252 
7253 	err = adjust_subprog_starts_after_remove(env, off, cnt);
7254 	if (err)
7255 		return err;
7256 
7257 	err = bpf_adj_linfo_after_remove(env, off, cnt);
7258 	if (err)
7259 		return err;
7260 
7261 	memmove(aux_data + off,	aux_data + off + cnt,
7262 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
7263 
7264 	return 0;
7265 }
7266 
7267 /* The verifier does more data flow analysis than llvm and will not
7268  * explore branches that are dead at run time. Malicious programs can
7269  * have dead code too. Therefore replace all dead at-run-time code
7270  * with 'ja -1'.
7271  *
7272  * Just nops are not optimal, e.g. if they would sit at the end of the
7273  * program and through another bug we would manage to jump there, then
7274  * we'd execute beyond program memory otherwise. Returning exception
7275  * code also wouldn't work since we can have subprogs where the dead
7276  * code could be located.
7277  */
7278 static void sanitize_dead_code(struct bpf_verifier_env *env)
7279 {
7280 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7281 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
7282 	struct bpf_insn *insn = env->prog->insnsi;
7283 	const int insn_cnt = env->prog->len;
7284 	int i;
7285 
7286 	for (i = 0; i < insn_cnt; i++) {
7287 		if (aux_data[i].seen)
7288 			continue;
7289 		memcpy(insn + i, &trap, sizeof(trap));
7290 	}
7291 }
7292 
7293 static bool insn_is_cond_jump(u8 code)
7294 {
7295 	u8 op;
7296 
7297 	if (BPF_CLASS(code) == BPF_JMP32)
7298 		return true;
7299 
7300 	if (BPF_CLASS(code) != BPF_JMP)
7301 		return false;
7302 
7303 	op = BPF_OP(code);
7304 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
7305 }
7306 
7307 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
7308 {
7309 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7310 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7311 	struct bpf_insn *insn = env->prog->insnsi;
7312 	const int insn_cnt = env->prog->len;
7313 	int i;
7314 
7315 	for (i = 0; i < insn_cnt; i++, insn++) {
7316 		if (!insn_is_cond_jump(insn->code))
7317 			continue;
7318 
7319 		if (!aux_data[i + 1].seen)
7320 			ja.off = insn->off;
7321 		else if (!aux_data[i + 1 + insn->off].seen)
7322 			ja.off = 0;
7323 		else
7324 			continue;
7325 
7326 		if (bpf_prog_is_dev_bound(env->prog->aux))
7327 			bpf_prog_offload_replace_insn(env, i, &ja);
7328 
7329 		memcpy(insn, &ja, sizeof(ja));
7330 	}
7331 }
7332 
7333 static int opt_remove_dead_code(struct bpf_verifier_env *env)
7334 {
7335 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7336 	int insn_cnt = env->prog->len;
7337 	int i, err;
7338 
7339 	for (i = 0; i < insn_cnt; i++) {
7340 		int j;
7341 
7342 		j = 0;
7343 		while (i + j < insn_cnt && !aux_data[i + j].seen)
7344 			j++;
7345 		if (!j)
7346 			continue;
7347 
7348 		err = verifier_remove_insns(env, i, j);
7349 		if (err)
7350 			return err;
7351 		insn_cnt = env->prog->len;
7352 	}
7353 
7354 	return 0;
7355 }
7356 
7357 static int opt_remove_nops(struct bpf_verifier_env *env)
7358 {
7359 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7360 	struct bpf_insn *insn = env->prog->insnsi;
7361 	int insn_cnt = env->prog->len;
7362 	int i, err;
7363 
7364 	for (i = 0; i < insn_cnt; i++) {
7365 		if (memcmp(&insn[i], &ja, sizeof(ja)))
7366 			continue;
7367 
7368 		err = verifier_remove_insns(env, i, 1);
7369 		if (err)
7370 			return err;
7371 		insn_cnt--;
7372 		i--;
7373 	}
7374 
7375 	return 0;
7376 }
7377 
7378 /* convert load instructions that access fields of a context type into a
7379  * sequence of instructions that access fields of the underlying structure:
7380  *     struct __sk_buff    -> struct sk_buff
7381  *     struct bpf_sock_ops -> struct sock
7382  */
7383 static int convert_ctx_accesses(struct bpf_verifier_env *env)
7384 {
7385 	const struct bpf_verifier_ops *ops = env->ops;
7386 	int i, cnt, size, ctx_field_size, delta = 0;
7387 	const int insn_cnt = env->prog->len;
7388 	struct bpf_insn insn_buf[16], *insn;
7389 	u32 target_size, size_default, off;
7390 	struct bpf_prog *new_prog;
7391 	enum bpf_access_type type;
7392 	bool is_narrower_load;
7393 
7394 	if (ops->gen_prologue || env->seen_direct_write) {
7395 		if (!ops->gen_prologue) {
7396 			verbose(env, "bpf verifier is misconfigured\n");
7397 			return -EINVAL;
7398 		}
7399 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
7400 					env->prog);
7401 		if (cnt >= ARRAY_SIZE(insn_buf)) {
7402 			verbose(env, "bpf verifier is misconfigured\n");
7403 			return -EINVAL;
7404 		} else if (cnt) {
7405 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
7406 			if (!new_prog)
7407 				return -ENOMEM;
7408 
7409 			env->prog = new_prog;
7410 			delta += cnt - 1;
7411 		}
7412 	}
7413 
7414 	if (bpf_prog_is_dev_bound(env->prog->aux))
7415 		return 0;
7416 
7417 	insn = env->prog->insnsi + delta;
7418 
7419 	for (i = 0; i < insn_cnt; i++, insn++) {
7420 		bpf_convert_ctx_access_t convert_ctx_access;
7421 
7422 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
7423 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
7424 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
7425 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
7426 			type = BPF_READ;
7427 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
7428 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
7429 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
7430 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
7431 			type = BPF_WRITE;
7432 		else
7433 			continue;
7434 
7435 		if (type == BPF_WRITE &&
7436 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
7437 			struct bpf_insn patch[] = {
7438 				/* Sanitize suspicious stack slot with zero.
7439 				 * There are no memory dependencies for this store,
7440 				 * since it's only using frame pointer and immediate
7441 				 * constant of zero
7442 				 */
7443 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
7444 					   env->insn_aux_data[i + delta].sanitize_stack_off,
7445 					   0),
7446 				/* the original STX instruction will immediately
7447 				 * overwrite the same stack slot with appropriate value
7448 				 */
7449 				*insn,
7450 			};
7451 
7452 			cnt = ARRAY_SIZE(patch);
7453 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
7454 			if (!new_prog)
7455 				return -ENOMEM;
7456 
7457 			delta    += cnt - 1;
7458 			env->prog = new_prog;
7459 			insn      = new_prog->insnsi + i + delta;
7460 			continue;
7461 		}
7462 
7463 		switch (env->insn_aux_data[i + delta].ptr_type) {
7464 		case PTR_TO_CTX:
7465 			if (!ops->convert_ctx_access)
7466 				continue;
7467 			convert_ctx_access = ops->convert_ctx_access;
7468 			break;
7469 		case PTR_TO_SOCKET:
7470 		case PTR_TO_SOCK_COMMON:
7471 			convert_ctx_access = bpf_sock_convert_ctx_access;
7472 			break;
7473 		case PTR_TO_TCP_SOCK:
7474 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
7475 			break;
7476 		default:
7477 			continue;
7478 		}
7479 
7480 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
7481 		size = BPF_LDST_BYTES(insn);
7482 
7483 		/* If the read access is a narrower load of the field,
7484 		 * convert to a 4/8-byte load, to minimum program type specific
7485 		 * convert_ctx_access changes. If conversion is successful,
7486 		 * we will apply proper mask to the result.
7487 		 */
7488 		is_narrower_load = size < ctx_field_size;
7489 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
7490 		off = insn->off;
7491 		if (is_narrower_load) {
7492 			u8 size_code;
7493 
7494 			if (type == BPF_WRITE) {
7495 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
7496 				return -EINVAL;
7497 			}
7498 
7499 			size_code = BPF_H;
7500 			if (ctx_field_size == 4)
7501 				size_code = BPF_W;
7502 			else if (ctx_field_size == 8)
7503 				size_code = BPF_DW;
7504 
7505 			insn->off = off & ~(size_default - 1);
7506 			insn->code = BPF_LDX | BPF_MEM | size_code;
7507 		}
7508 
7509 		target_size = 0;
7510 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
7511 					 &target_size);
7512 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
7513 		    (ctx_field_size && !target_size)) {
7514 			verbose(env, "bpf verifier is misconfigured\n");
7515 			return -EINVAL;
7516 		}
7517 
7518 		if (is_narrower_load && size < target_size) {
7519 			u8 shift = (off & (size_default - 1)) * 8;
7520 
7521 			if (ctx_field_size <= 4) {
7522 				if (shift)
7523 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
7524 									insn->dst_reg,
7525 									shift);
7526 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
7527 								(1 << size * 8) - 1);
7528 			} else {
7529 				if (shift)
7530 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
7531 									insn->dst_reg,
7532 									shift);
7533 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
7534 								(1 << size * 8) - 1);
7535 			}
7536 		}
7537 
7538 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7539 		if (!new_prog)
7540 			return -ENOMEM;
7541 
7542 		delta += cnt - 1;
7543 
7544 		/* keep walking new program and skip insns we just inserted */
7545 		env->prog = new_prog;
7546 		insn      = new_prog->insnsi + i + delta;
7547 	}
7548 
7549 	return 0;
7550 }
7551 
7552 static int jit_subprogs(struct bpf_verifier_env *env)
7553 {
7554 	struct bpf_prog *prog = env->prog, **func, *tmp;
7555 	int i, j, subprog_start, subprog_end = 0, len, subprog;
7556 	struct bpf_insn *insn;
7557 	void *old_bpf_func;
7558 	int err;
7559 
7560 	if (env->subprog_cnt <= 1)
7561 		return 0;
7562 
7563 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7564 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7565 		    insn->src_reg != BPF_PSEUDO_CALL)
7566 			continue;
7567 		/* Upon error here we cannot fall back to interpreter but
7568 		 * need a hard reject of the program. Thus -EFAULT is
7569 		 * propagated in any case.
7570 		 */
7571 		subprog = find_subprog(env, i + insn->imm + 1);
7572 		if (subprog < 0) {
7573 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7574 				  i + insn->imm + 1);
7575 			return -EFAULT;
7576 		}
7577 		/* temporarily remember subprog id inside insn instead of
7578 		 * aux_data, since next loop will split up all insns into funcs
7579 		 */
7580 		insn->off = subprog;
7581 		/* remember original imm in case JIT fails and fallback
7582 		 * to interpreter will be needed
7583 		 */
7584 		env->insn_aux_data[i].call_imm = insn->imm;
7585 		/* point imm to __bpf_call_base+1 from JITs point of view */
7586 		insn->imm = 1;
7587 	}
7588 
7589 	err = bpf_prog_alloc_jited_linfo(prog);
7590 	if (err)
7591 		goto out_undo_insn;
7592 
7593 	err = -ENOMEM;
7594 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
7595 	if (!func)
7596 		goto out_undo_insn;
7597 
7598 	for (i = 0; i < env->subprog_cnt; i++) {
7599 		subprog_start = subprog_end;
7600 		subprog_end = env->subprog_info[i + 1].start;
7601 
7602 		len = subprog_end - subprog_start;
7603 		/* BPF_PROG_RUN doesn't call subprogs directly,
7604 		 * hence main prog stats include the runtime of subprogs.
7605 		 * subprogs don't have IDs and not reachable via prog_get_next_id
7606 		 * func[i]->aux->stats will never be accessed and stays NULL
7607 		 */
7608 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
7609 		if (!func[i])
7610 			goto out_free;
7611 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
7612 		       len * sizeof(struct bpf_insn));
7613 		func[i]->type = prog->type;
7614 		func[i]->len = len;
7615 		if (bpf_prog_calc_tag(func[i]))
7616 			goto out_free;
7617 		func[i]->is_func = 1;
7618 		func[i]->aux->func_idx = i;
7619 		/* the btf and func_info will be freed only at prog->aux */
7620 		func[i]->aux->btf = prog->aux->btf;
7621 		func[i]->aux->func_info = prog->aux->func_info;
7622 
7623 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
7624 		 * Long term would need debug info to populate names
7625 		 */
7626 		func[i]->aux->name[0] = 'F';
7627 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
7628 		func[i]->jit_requested = 1;
7629 		func[i]->aux->linfo = prog->aux->linfo;
7630 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
7631 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
7632 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
7633 		func[i] = bpf_int_jit_compile(func[i]);
7634 		if (!func[i]->jited) {
7635 			err = -ENOTSUPP;
7636 			goto out_free;
7637 		}
7638 		cond_resched();
7639 	}
7640 	/* at this point all bpf functions were successfully JITed
7641 	 * now populate all bpf_calls with correct addresses and
7642 	 * run last pass of JIT
7643 	 */
7644 	for (i = 0; i < env->subprog_cnt; i++) {
7645 		insn = func[i]->insnsi;
7646 		for (j = 0; j < func[i]->len; j++, insn++) {
7647 			if (insn->code != (BPF_JMP | BPF_CALL) ||
7648 			    insn->src_reg != BPF_PSEUDO_CALL)
7649 				continue;
7650 			subprog = insn->off;
7651 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
7652 				    __bpf_call_base;
7653 		}
7654 
7655 		/* we use the aux data to keep a list of the start addresses
7656 		 * of the JITed images for each function in the program
7657 		 *
7658 		 * for some architectures, such as powerpc64, the imm field
7659 		 * might not be large enough to hold the offset of the start
7660 		 * address of the callee's JITed image from __bpf_call_base
7661 		 *
7662 		 * in such cases, we can lookup the start address of a callee
7663 		 * by using its subprog id, available from the off field of
7664 		 * the call instruction, as an index for this list
7665 		 */
7666 		func[i]->aux->func = func;
7667 		func[i]->aux->func_cnt = env->subprog_cnt;
7668 	}
7669 	for (i = 0; i < env->subprog_cnt; i++) {
7670 		old_bpf_func = func[i]->bpf_func;
7671 		tmp = bpf_int_jit_compile(func[i]);
7672 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
7673 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
7674 			err = -ENOTSUPP;
7675 			goto out_free;
7676 		}
7677 		cond_resched();
7678 	}
7679 
7680 	/* finally lock prog and jit images for all functions and
7681 	 * populate kallsysm
7682 	 */
7683 	for (i = 0; i < env->subprog_cnt; i++) {
7684 		bpf_prog_lock_ro(func[i]);
7685 		bpf_prog_kallsyms_add(func[i]);
7686 	}
7687 
7688 	/* Last step: make now unused interpreter insns from main
7689 	 * prog consistent for later dump requests, so they can
7690 	 * later look the same as if they were interpreted only.
7691 	 */
7692 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7693 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7694 		    insn->src_reg != BPF_PSEUDO_CALL)
7695 			continue;
7696 		insn->off = env->insn_aux_data[i].call_imm;
7697 		subprog = find_subprog(env, i + insn->off + 1);
7698 		insn->imm = subprog;
7699 	}
7700 
7701 	prog->jited = 1;
7702 	prog->bpf_func = func[0]->bpf_func;
7703 	prog->aux->func = func;
7704 	prog->aux->func_cnt = env->subprog_cnt;
7705 	bpf_prog_free_unused_jited_linfo(prog);
7706 	return 0;
7707 out_free:
7708 	for (i = 0; i < env->subprog_cnt; i++)
7709 		if (func[i])
7710 			bpf_jit_free(func[i]);
7711 	kfree(func);
7712 out_undo_insn:
7713 	/* cleanup main prog to be interpreted */
7714 	prog->jit_requested = 0;
7715 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7716 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7717 		    insn->src_reg != BPF_PSEUDO_CALL)
7718 			continue;
7719 		insn->off = 0;
7720 		insn->imm = env->insn_aux_data[i].call_imm;
7721 	}
7722 	bpf_prog_free_jited_linfo(prog);
7723 	return err;
7724 }
7725 
7726 static int fixup_call_args(struct bpf_verifier_env *env)
7727 {
7728 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7729 	struct bpf_prog *prog = env->prog;
7730 	struct bpf_insn *insn = prog->insnsi;
7731 	int i, depth;
7732 #endif
7733 	int err = 0;
7734 
7735 	if (env->prog->jit_requested &&
7736 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
7737 		err = jit_subprogs(env);
7738 		if (err == 0)
7739 			return 0;
7740 		if (err == -EFAULT)
7741 			return err;
7742 	}
7743 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7744 	for (i = 0; i < prog->len; i++, insn++) {
7745 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7746 		    insn->src_reg != BPF_PSEUDO_CALL)
7747 			continue;
7748 		depth = get_callee_stack_depth(env, insn, i);
7749 		if (depth < 0)
7750 			return depth;
7751 		bpf_patch_call_args(insn, depth);
7752 	}
7753 	err = 0;
7754 #endif
7755 	return err;
7756 }
7757 
7758 /* fixup insn->imm field of bpf_call instructions
7759  * and inline eligible helpers as explicit sequence of BPF instructions
7760  *
7761  * this function is called after eBPF program passed verification
7762  */
7763 static int fixup_bpf_calls(struct bpf_verifier_env *env)
7764 {
7765 	struct bpf_prog *prog = env->prog;
7766 	struct bpf_insn *insn = prog->insnsi;
7767 	const struct bpf_func_proto *fn;
7768 	const int insn_cnt = prog->len;
7769 	const struct bpf_map_ops *ops;
7770 	struct bpf_insn_aux_data *aux;
7771 	struct bpf_insn insn_buf[16];
7772 	struct bpf_prog *new_prog;
7773 	struct bpf_map *map_ptr;
7774 	int i, cnt, delta = 0;
7775 
7776 	for (i = 0; i < insn_cnt; i++, insn++) {
7777 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
7778 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7779 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
7780 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7781 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
7782 			struct bpf_insn mask_and_div[] = {
7783 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7784 				/* Rx div 0 -> 0 */
7785 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
7786 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
7787 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
7788 				*insn,
7789 			};
7790 			struct bpf_insn mask_and_mod[] = {
7791 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7792 				/* Rx mod 0 -> Rx */
7793 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
7794 				*insn,
7795 			};
7796 			struct bpf_insn *patchlet;
7797 
7798 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7799 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7800 				patchlet = mask_and_div + (is64 ? 1 : 0);
7801 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
7802 			} else {
7803 				patchlet = mask_and_mod + (is64 ? 1 : 0);
7804 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
7805 			}
7806 
7807 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
7808 			if (!new_prog)
7809 				return -ENOMEM;
7810 
7811 			delta    += cnt - 1;
7812 			env->prog = prog = new_prog;
7813 			insn      = new_prog->insnsi + i + delta;
7814 			continue;
7815 		}
7816 
7817 		if (BPF_CLASS(insn->code) == BPF_LD &&
7818 		    (BPF_MODE(insn->code) == BPF_ABS ||
7819 		     BPF_MODE(insn->code) == BPF_IND)) {
7820 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
7821 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7822 				verbose(env, "bpf verifier is misconfigured\n");
7823 				return -EINVAL;
7824 			}
7825 
7826 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7827 			if (!new_prog)
7828 				return -ENOMEM;
7829 
7830 			delta    += cnt - 1;
7831 			env->prog = prog = new_prog;
7832 			insn      = new_prog->insnsi + i + delta;
7833 			continue;
7834 		}
7835 
7836 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
7837 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
7838 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
7839 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
7840 			struct bpf_insn insn_buf[16];
7841 			struct bpf_insn *patch = &insn_buf[0];
7842 			bool issrc, isneg;
7843 			u32 off_reg;
7844 
7845 			aux = &env->insn_aux_data[i + delta];
7846 			if (!aux->alu_state ||
7847 			    aux->alu_state == BPF_ALU_NON_POINTER)
7848 				continue;
7849 
7850 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
7851 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
7852 				BPF_ALU_SANITIZE_SRC;
7853 
7854 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
7855 			if (isneg)
7856 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7857 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
7858 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
7859 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
7860 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
7861 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
7862 			if (issrc) {
7863 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
7864 							 off_reg);
7865 				insn->src_reg = BPF_REG_AX;
7866 			} else {
7867 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
7868 							 BPF_REG_AX);
7869 			}
7870 			if (isneg)
7871 				insn->code = insn->code == code_add ?
7872 					     code_sub : code_add;
7873 			*patch++ = *insn;
7874 			if (issrc && isneg)
7875 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7876 			cnt = patch - insn_buf;
7877 
7878 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7879 			if (!new_prog)
7880 				return -ENOMEM;
7881 
7882 			delta    += cnt - 1;
7883 			env->prog = prog = new_prog;
7884 			insn      = new_prog->insnsi + i + delta;
7885 			continue;
7886 		}
7887 
7888 		if (insn->code != (BPF_JMP | BPF_CALL))
7889 			continue;
7890 		if (insn->src_reg == BPF_PSEUDO_CALL)
7891 			continue;
7892 
7893 		if (insn->imm == BPF_FUNC_get_route_realm)
7894 			prog->dst_needed = 1;
7895 		if (insn->imm == BPF_FUNC_get_prandom_u32)
7896 			bpf_user_rnd_init_once();
7897 		if (insn->imm == BPF_FUNC_override_return)
7898 			prog->kprobe_override = 1;
7899 		if (insn->imm == BPF_FUNC_tail_call) {
7900 			/* If we tail call into other programs, we
7901 			 * cannot make any assumptions since they can
7902 			 * be replaced dynamically during runtime in
7903 			 * the program array.
7904 			 */
7905 			prog->cb_access = 1;
7906 			env->prog->aux->stack_depth = MAX_BPF_STACK;
7907 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7908 
7909 			/* mark bpf_tail_call as different opcode to avoid
7910 			 * conditional branch in the interpeter for every normal
7911 			 * call and to prevent accidental JITing by JIT compiler
7912 			 * that doesn't support bpf_tail_call yet
7913 			 */
7914 			insn->imm = 0;
7915 			insn->code = BPF_JMP | BPF_TAIL_CALL;
7916 
7917 			aux = &env->insn_aux_data[i + delta];
7918 			if (!bpf_map_ptr_unpriv(aux))
7919 				continue;
7920 
7921 			/* instead of changing every JIT dealing with tail_call
7922 			 * emit two extra insns:
7923 			 * if (index >= max_entries) goto out;
7924 			 * index &= array->index_mask;
7925 			 * to avoid out-of-bounds cpu speculation
7926 			 */
7927 			if (bpf_map_ptr_poisoned(aux)) {
7928 				verbose(env, "tail_call abusing map_ptr\n");
7929 				return -EINVAL;
7930 			}
7931 
7932 			map_ptr = BPF_MAP_PTR(aux->map_state);
7933 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
7934 						  map_ptr->max_entries, 2);
7935 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
7936 						    container_of(map_ptr,
7937 								 struct bpf_array,
7938 								 map)->index_mask);
7939 			insn_buf[2] = *insn;
7940 			cnt = 3;
7941 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7942 			if (!new_prog)
7943 				return -ENOMEM;
7944 
7945 			delta    += cnt - 1;
7946 			env->prog = prog = new_prog;
7947 			insn      = new_prog->insnsi + i + delta;
7948 			continue;
7949 		}
7950 
7951 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
7952 		 * and other inlining handlers are currently limited to 64 bit
7953 		 * only.
7954 		 */
7955 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
7956 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
7957 		     insn->imm == BPF_FUNC_map_update_elem ||
7958 		     insn->imm == BPF_FUNC_map_delete_elem ||
7959 		     insn->imm == BPF_FUNC_map_push_elem   ||
7960 		     insn->imm == BPF_FUNC_map_pop_elem    ||
7961 		     insn->imm == BPF_FUNC_map_peek_elem)) {
7962 			aux = &env->insn_aux_data[i + delta];
7963 			if (bpf_map_ptr_poisoned(aux))
7964 				goto patch_call_imm;
7965 
7966 			map_ptr = BPF_MAP_PTR(aux->map_state);
7967 			ops = map_ptr->ops;
7968 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
7969 			    ops->map_gen_lookup) {
7970 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
7971 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7972 					verbose(env, "bpf verifier is misconfigured\n");
7973 					return -EINVAL;
7974 				}
7975 
7976 				new_prog = bpf_patch_insn_data(env, i + delta,
7977 							       insn_buf, cnt);
7978 				if (!new_prog)
7979 					return -ENOMEM;
7980 
7981 				delta    += cnt - 1;
7982 				env->prog = prog = new_prog;
7983 				insn      = new_prog->insnsi + i + delta;
7984 				continue;
7985 			}
7986 
7987 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
7988 				     (void *(*)(struct bpf_map *map, void *key))NULL));
7989 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
7990 				     (int (*)(struct bpf_map *map, void *key))NULL));
7991 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
7992 				     (int (*)(struct bpf_map *map, void *key, void *value,
7993 					      u64 flags))NULL));
7994 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
7995 				     (int (*)(struct bpf_map *map, void *value,
7996 					      u64 flags))NULL));
7997 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
7998 				     (int (*)(struct bpf_map *map, void *value))NULL));
7999 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
8000 				     (int (*)(struct bpf_map *map, void *value))NULL));
8001 
8002 			switch (insn->imm) {
8003 			case BPF_FUNC_map_lookup_elem:
8004 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
8005 					    __bpf_call_base;
8006 				continue;
8007 			case BPF_FUNC_map_update_elem:
8008 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
8009 					    __bpf_call_base;
8010 				continue;
8011 			case BPF_FUNC_map_delete_elem:
8012 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
8013 					    __bpf_call_base;
8014 				continue;
8015 			case BPF_FUNC_map_push_elem:
8016 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
8017 					    __bpf_call_base;
8018 				continue;
8019 			case BPF_FUNC_map_pop_elem:
8020 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
8021 					    __bpf_call_base;
8022 				continue;
8023 			case BPF_FUNC_map_peek_elem:
8024 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
8025 					    __bpf_call_base;
8026 				continue;
8027 			}
8028 
8029 			goto patch_call_imm;
8030 		}
8031 
8032 patch_call_imm:
8033 		fn = env->ops->get_func_proto(insn->imm, env->prog);
8034 		/* all functions that have prototype and verifier allowed
8035 		 * programs to call them, must be real in-kernel functions
8036 		 */
8037 		if (!fn->func) {
8038 			verbose(env,
8039 				"kernel subsystem misconfigured func %s#%d\n",
8040 				func_id_name(insn->imm), insn->imm);
8041 			return -EFAULT;
8042 		}
8043 		insn->imm = fn->func - __bpf_call_base;
8044 	}
8045 
8046 	return 0;
8047 }
8048 
8049 static void free_states(struct bpf_verifier_env *env)
8050 {
8051 	struct bpf_verifier_state_list *sl, *sln;
8052 	int i;
8053 
8054 	sl = env->free_list;
8055 	while (sl) {
8056 		sln = sl->next;
8057 		free_verifier_state(&sl->state, false);
8058 		kfree(sl);
8059 		sl = sln;
8060 	}
8061 
8062 	if (!env->explored_states)
8063 		return;
8064 
8065 	for (i = 0; i < env->prog->len; i++) {
8066 		sl = env->explored_states[i];
8067 
8068 		if (sl)
8069 			while (sl != STATE_LIST_MARK) {
8070 				sln = sl->next;
8071 				free_verifier_state(&sl->state, false);
8072 				kfree(sl);
8073 				sl = sln;
8074 			}
8075 	}
8076 
8077 	kvfree(env->explored_states);
8078 }
8079 
8080 static void print_verification_stats(struct bpf_verifier_env *env)
8081 {
8082 	int i;
8083 
8084 	if (env->log.level & BPF_LOG_STATS) {
8085 		verbose(env, "verification time %lld usec\n",
8086 			div_u64(env->verification_time, 1000));
8087 		verbose(env, "stack depth ");
8088 		for (i = 0; i < env->subprog_cnt; i++) {
8089 			u32 depth = env->subprog_info[i].stack_depth;
8090 
8091 			verbose(env, "%d", depth);
8092 			if (i + 1 < env->subprog_cnt)
8093 				verbose(env, "+");
8094 		}
8095 		verbose(env, "\n");
8096 	}
8097 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
8098 		"total_states %d peak_states %d mark_read %d\n",
8099 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
8100 		env->max_states_per_insn, env->total_states,
8101 		env->peak_states, env->longest_mark_read_walk);
8102 }
8103 
8104 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
8105 	      union bpf_attr __user *uattr)
8106 {
8107 	u64 start_time = ktime_get_ns();
8108 	struct bpf_verifier_env *env;
8109 	struct bpf_verifier_log *log;
8110 	int i, len, ret = -EINVAL;
8111 	bool is_priv;
8112 
8113 	/* no program is valid */
8114 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
8115 		return -EINVAL;
8116 
8117 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
8118 	 * allocate/free it every time bpf_check() is called
8119 	 */
8120 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
8121 	if (!env)
8122 		return -ENOMEM;
8123 	log = &env->log;
8124 
8125 	len = (*prog)->len;
8126 	env->insn_aux_data =
8127 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
8128 	ret = -ENOMEM;
8129 	if (!env->insn_aux_data)
8130 		goto err_free_env;
8131 	for (i = 0; i < len; i++)
8132 		env->insn_aux_data[i].orig_idx = i;
8133 	env->prog = *prog;
8134 	env->ops = bpf_verifier_ops[env->prog->type];
8135 	is_priv = capable(CAP_SYS_ADMIN);
8136 
8137 	/* grab the mutex to protect few globals used by verifier */
8138 	if (!is_priv)
8139 		mutex_lock(&bpf_verifier_lock);
8140 
8141 	if (attr->log_level || attr->log_buf || attr->log_size) {
8142 		/* user requested verbose verifier output
8143 		 * and supplied buffer to store the verification trace
8144 		 */
8145 		log->level = attr->log_level;
8146 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
8147 		log->len_total = attr->log_size;
8148 
8149 		ret = -EINVAL;
8150 		/* log attributes have to be sane */
8151 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
8152 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
8153 			goto err_unlock;
8154 	}
8155 
8156 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
8157 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
8158 		env->strict_alignment = true;
8159 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
8160 		env->strict_alignment = false;
8161 
8162 	env->allow_ptr_leaks = is_priv;
8163 
8164 	ret = replace_map_fd_with_map_ptr(env);
8165 	if (ret < 0)
8166 		goto skip_full_check;
8167 
8168 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
8169 		ret = bpf_prog_offload_verifier_prep(env->prog);
8170 		if (ret)
8171 			goto skip_full_check;
8172 	}
8173 
8174 	env->explored_states = kvcalloc(env->prog->len,
8175 				       sizeof(struct bpf_verifier_state_list *),
8176 				       GFP_USER);
8177 	ret = -ENOMEM;
8178 	if (!env->explored_states)
8179 		goto skip_full_check;
8180 
8181 	ret = check_subprogs(env);
8182 	if (ret < 0)
8183 		goto skip_full_check;
8184 
8185 	ret = check_btf_info(env, attr, uattr);
8186 	if (ret < 0)
8187 		goto skip_full_check;
8188 
8189 	ret = check_cfg(env);
8190 	if (ret < 0)
8191 		goto skip_full_check;
8192 
8193 	ret = do_check(env);
8194 	if (env->cur_state) {
8195 		free_verifier_state(env->cur_state, true);
8196 		env->cur_state = NULL;
8197 	}
8198 
8199 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
8200 		ret = bpf_prog_offload_finalize(env);
8201 
8202 skip_full_check:
8203 	while (!pop_stack(env, NULL, NULL));
8204 	free_states(env);
8205 
8206 	if (ret == 0)
8207 		ret = check_max_stack_depth(env);
8208 
8209 	/* instruction rewrites happen after this point */
8210 	if (is_priv) {
8211 		if (ret == 0)
8212 			opt_hard_wire_dead_code_branches(env);
8213 		if (ret == 0)
8214 			ret = opt_remove_dead_code(env);
8215 		if (ret == 0)
8216 			ret = opt_remove_nops(env);
8217 	} else {
8218 		if (ret == 0)
8219 			sanitize_dead_code(env);
8220 	}
8221 
8222 	if (ret == 0)
8223 		/* program is valid, convert *(u32*)(ctx + off) accesses */
8224 		ret = convert_ctx_accesses(env);
8225 
8226 	if (ret == 0)
8227 		ret = fixup_bpf_calls(env);
8228 
8229 	if (ret == 0)
8230 		ret = fixup_call_args(env);
8231 
8232 	env->verification_time = ktime_get_ns() - start_time;
8233 	print_verification_stats(env);
8234 
8235 	if (log->level && bpf_verifier_log_full(log))
8236 		ret = -ENOSPC;
8237 	if (log->level && !log->ubuf) {
8238 		ret = -EFAULT;
8239 		goto err_release_maps;
8240 	}
8241 
8242 	if (ret == 0 && env->used_map_cnt) {
8243 		/* if program passed verifier, update used_maps in bpf_prog_info */
8244 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
8245 							  sizeof(env->used_maps[0]),
8246 							  GFP_KERNEL);
8247 
8248 		if (!env->prog->aux->used_maps) {
8249 			ret = -ENOMEM;
8250 			goto err_release_maps;
8251 		}
8252 
8253 		memcpy(env->prog->aux->used_maps, env->used_maps,
8254 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
8255 		env->prog->aux->used_map_cnt = env->used_map_cnt;
8256 
8257 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
8258 		 * bpf_ld_imm64 instructions
8259 		 */
8260 		convert_pseudo_ld_imm64(env);
8261 	}
8262 
8263 	if (ret == 0)
8264 		adjust_btf_func(env);
8265 
8266 err_release_maps:
8267 	if (!env->prog->aux->used_maps)
8268 		/* if we didn't copy map pointers into bpf_prog_info, release
8269 		 * them now. Otherwise free_used_maps() will release them.
8270 		 */
8271 		release_maps(env);
8272 	*prog = env->prog;
8273 err_unlock:
8274 	if (!is_priv)
8275 		mutex_unlock(&bpf_verifier_lock);
8276 	vfree(env->insn_aux_data);
8277 err_free_env:
8278 	kfree(env);
8279 	return ret;
8280 }
8281