1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 32 #include "disasm.h" 33 34 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 35 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 36 [_id] = & _name ## _verifier_ops, 37 #define BPF_MAP_TYPE(_id, _ops) 38 #define BPF_LINK_TYPE(_id, _name) 39 #include <linux/bpf_types.h> 40 #undef BPF_PROG_TYPE 41 #undef BPF_MAP_TYPE 42 #undef BPF_LINK_TYPE 43 }; 44 45 struct bpf_mem_alloc bpf_global_percpu_ma; 46 static bool bpf_global_percpu_ma_set; 47 48 /* bpf_check() is a static code analyzer that walks eBPF program 49 * instruction by instruction and updates register/stack state. 50 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 51 * 52 * The first pass is depth-first-search to check that the program is a DAG. 53 * It rejects the following programs: 54 * - larger than BPF_MAXINSNS insns 55 * - if loop is present (detected via back-edge) 56 * - unreachable insns exist (shouldn't be a forest. program = one function) 57 * - out of bounds or malformed jumps 58 * The second pass is all possible path descent from the 1st insn. 59 * Since it's analyzing all paths through the program, the length of the 60 * analysis is limited to 64k insn, which may be hit even if total number of 61 * insn is less then 4K, but there are too many branches that change stack/regs. 62 * Number of 'branches to be analyzed' is limited to 1k 63 * 64 * On entry to each instruction, each register has a type, and the instruction 65 * changes the types of the registers depending on instruction semantics. 66 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 67 * copied to R1. 68 * 69 * All registers are 64-bit. 70 * R0 - return register 71 * R1-R5 argument passing registers 72 * R6-R9 callee saved registers 73 * R10 - frame pointer read-only 74 * 75 * At the start of BPF program the register R1 contains a pointer to bpf_context 76 * and has type PTR_TO_CTX. 77 * 78 * Verifier tracks arithmetic operations on pointers in case: 79 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 80 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 81 * 1st insn copies R10 (which has FRAME_PTR) type into R1 82 * and 2nd arithmetic instruction is pattern matched to recognize 83 * that it wants to construct a pointer to some element within stack. 84 * So after 2nd insn, the register R1 has type PTR_TO_STACK 85 * (and -20 constant is saved for further stack bounds checking). 86 * Meaning that this reg is a pointer to stack plus known immediate constant. 87 * 88 * Most of the time the registers have SCALAR_VALUE type, which 89 * means the register has some value, but it's not a valid pointer. 90 * (like pointer plus pointer becomes SCALAR_VALUE type) 91 * 92 * When verifier sees load or store instructions the type of base register 93 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 94 * four pointer types recognized by check_mem_access() function. 95 * 96 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 97 * and the range of [ptr, ptr + map's value_size) is accessible. 98 * 99 * registers used to pass values to function calls are checked against 100 * function argument constraints. 101 * 102 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 103 * It means that the register type passed to this function must be 104 * PTR_TO_STACK and it will be used inside the function as 105 * 'pointer to map element key' 106 * 107 * For example the argument constraints for bpf_map_lookup_elem(): 108 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 109 * .arg1_type = ARG_CONST_MAP_PTR, 110 * .arg2_type = ARG_PTR_TO_MAP_KEY, 111 * 112 * ret_type says that this function returns 'pointer to map elem value or null' 113 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 114 * 2nd argument should be a pointer to stack, which will be used inside 115 * the helper function as a pointer to map element key. 116 * 117 * On the kernel side the helper function looks like: 118 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 119 * { 120 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 121 * void *key = (void *) (unsigned long) r2; 122 * void *value; 123 * 124 * here kernel can access 'key' and 'map' pointers safely, knowing that 125 * [key, key + map->key_size) bytes are valid and were initialized on 126 * the stack of eBPF program. 127 * } 128 * 129 * Corresponding eBPF program may look like: 130 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 131 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 132 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 133 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 134 * here verifier looks at prototype of map_lookup_elem() and sees: 135 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 136 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 137 * 138 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 139 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 140 * and were initialized prior to this call. 141 * If it's ok, then verifier allows this BPF_CALL insn and looks at 142 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 143 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 144 * returns either pointer to map value or NULL. 145 * 146 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 147 * insn, the register holding that pointer in the true branch changes state to 148 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 149 * branch. See check_cond_jmp_op(). 150 * 151 * After the call R0 is set to return type of the function and registers R1-R5 152 * are set to NOT_INIT to indicate that they are no longer readable. 153 * 154 * The following reference types represent a potential reference to a kernel 155 * resource which, after first being allocated, must be checked and freed by 156 * the BPF program: 157 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 158 * 159 * When the verifier sees a helper call return a reference type, it allocates a 160 * pointer id for the reference and stores it in the current function state. 161 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 162 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 163 * passes through a NULL-check conditional. For the branch wherein the state is 164 * changed to CONST_IMM, the verifier releases the reference. 165 * 166 * For each helper function that allocates a reference, such as 167 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 168 * bpf_sk_release(). When a reference type passes into the release function, 169 * the verifier also releases the reference. If any unchecked or unreleased 170 * reference remains at the end of the program, the verifier rejects it. 171 */ 172 173 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 174 struct bpf_verifier_stack_elem { 175 /* verifer state is 'st' 176 * before processing instruction 'insn_idx' 177 * and after processing instruction 'prev_insn_idx' 178 */ 179 struct bpf_verifier_state st; 180 int insn_idx; 181 int prev_insn_idx; 182 struct bpf_verifier_stack_elem *next; 183 /* length of verifier log at the time this state was pushed on stack */ 184 u32 log_pos; 185 }; 186 187 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 188 #define BPF_COMPLEXITY_LIMIT_STATES 64 189 190 #define BPF_MAP_KEY_POISON (1ULL << 63) 191 #define BPF_MAP_KEY_SEEN (1ULL << 62) 192 193 #define BPF_MAP_PTR_UNPRIV 1UL 194 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 195 POISON_POINTER_DELTA)) 196 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 197 198 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 199 200 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 201 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 202 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 203 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 204 static int ref_set_non_owning(struct bpf_verifier_env *env, 205 struct bpf_reg_state *reg); 206 static void specialize_kfunc(struct bpf_verifier_env *env, 207 u32 func_id, u16 offset, unsigned long *addr); 208 static bool is_trusted_reg(const struct bpf_reg_state *reg); 209 210 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 211 { 212 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 213 } 214 215 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 216 { 217 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 218 } 219 220 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 221 const struct bpf_map *map, bool unpriv) 222 { 223 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 224 unpriv |= bpf_map_ptr_unpriv(aux); 225 aux->map_ptr_state = (unsigned long)map | 226 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 227 } 228 229 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 230 { 231 return aux->map_key_state & BPF_MAP_KEY_POISON; 232 } 233 234 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 235 { 236 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 237 } 238 239 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 240 { 241 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 242 } 243 244 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 245 { 246 bool poisoned = bpf_map_key_poisoned(aux); 247 248 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 249 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 250 } 251 252 static bool bpf_helper_call(const struct bpf_insn *insn) 253 { 254 return insn->code == (BPF_JMP | BPF_CALL) && 255 insn->src_reg == 0; 256 } 257 258 static bool bpf_pseudo_call(const struct bpf_insn *insn) 259 { 260 return insn->code == (BPF_JMP | BPF_CALL) && 261 insn->src_reg == BPF_PSEUDO_CALL; 262 } 263 264 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 265 { 266 return insn->code == (BPF_JMP | BPF_CALL) && 267 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 268 } 269 270 struct bpf_call_arg_meta { 271 struct bpf_map *map_ptr; 272 bool raw_mode; 273 bool pkt_access; 274 u8 release_regno; 275 int regno; 276 int access_size; 277 int mem_size; 278 u64 msize_max_value; 279 int ref_obj_id; 280 int dynptr_id; 281 int map_uid; 282 int func_id; 283 struct btf *btf; 284 u32 btf_id; 285 struct btf *ret_btf; 286 u32 ret_btf_id; 287 u32 subprogno; 288 struct btf_field *kptr_field; 289 }; 290 291 struct bpf_kfunc_call_arg_meta { 292 /* In parameters */ 293 struct btf *btf; 294 u32 func_id; 295 u32 kfunc_flags; 296 const struct btf_type *func_proto; 297 const char *func_name; 298 /* Out parameters */ 299 u32 ref_obj_id; 300 u8 release_regno; 301 bool r0_rdonly; 302 u32 ret_btf_id; 303 u64 r0_size; 304 u32 subprogno; 305 struct { 306 u64 value; 307 bool found; 308 } arg_constant; 309 310 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 311 * generally to pass info about user-defined local kptr types to later 312 * verification logic 313 * bpf_obj_drop/bpf_percpu_obj_drop 314 * Record the local kptr type to be drop'd 315 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 316 * Record the local kptr type to be refcount_incr'd and use 317 * arg_owning_ref to determine whether refcount_acquire should be 318 * fallible 319 */ 320 struct btf *arg_btf; 321 u32 arg_btf_id; 322 bool arg_owning_ref; 323 324 struct { 325 struct btf_field *field; 326 } arg_list_head; 327 struct { 328 struct btf_field *field; 329 } arg_rbtree_root; 330 struct { 331 enum bpf_dynptr_type type; 332 u32 id; 333 u32 ref_obj_id; 334 } initialized_dynptr; 335 struct { 336 u8 spi; 337 u8 frameno; 338 } iter; 339 u64 mem_size; 340 }; 341 342 struct btf *btf_vmlinux; 343 344 static const char *btf_type_name(const struct btf *btf, u32 id) 345 { 346 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 347 } 348 349 static DEFINE_MUTEX(bpf_verifier_lock); 350 static DEFINE_MUTEX(bpf_percpu_ma_lock); 351 352 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 353 { 354 struct bpf_verifier_env *env = private_data; 355 va_list args; 356 357 if (!bpf_verifier_log_needed(&env->log)) 358 return; 359 360 va_start(args, fmt); 361 bpf_verifier_vlog(&env->log, fmt, args); 362 va_end(args); 363 } 364 365 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 366 struct bpf_reg_state *reg, 367 struct bpf_retval_range range, const char *ctx, 368 const char *reg_name) 369 { 370 bool unknown = true; 371 372 verbose(env, "%s the register %s has", ctx, reg_name); 373 if (reg->smin_value > S64_MIN) { 374 verbose(env, " smin=%lld", reg->smin_value); 375 unknown = false; 376 } 377 if (reg->smax_value < S64_MAX) { 378 verbose(env, " smax=%lld", reg->smax_value); 379 unknown = false; 380 } 381 if (unknown) 382 verbose(env, " unknown scalar value"); 383 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 384 } 385 386 static bool type_may_be_null(u32 type) 387 { 388 return type & PTR_MAYBE_NULL; 389 } 390 391 static bool reg_not_null(const struct bpf_reg_state *reg) 392 { 393 enum bpf_reg_type type; 394 395 type = reg->type; 396 if (type_may_be_null(type)) 397 return false; 398 399 type = base_type(type); 400 return type == PTR_TO_SOCKET || 401 type == PTR_TO_TCP_SOCK || 402 type == PTR_TO_MAP_VALUE || 403 type == PTR_TO_MAP_KEY || 404 type == PTR_TO_SOCK_COMMON || 405 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 406 type == PTR_TO_MEM; 407 } 408 409 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 410 { 411 struct btf_record *rec = NULL; 412 struct btf_struct_meta *meta; 413 414 if (reg->type == PTR_TO_MAP_VALUE) { 415 rec = reg->map_ptr->record; 416 } else if (type_is_ptr_alloc_obj(reg->type)) { 417 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 418 if (meta) 419 rec = meta->record; 420 } 421 return rec; 422 } 423 424 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 425 { 426 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 427 428 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 429 } 430 431 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 432 { 433 struct bpf_func_info *info; 434 435 if (!env->prog->aux->func_info) 436 return ""; 437 438 info = &env->prog->aux->func_info[subprog]; 439 return btf_type_name(env->prog->aux->btf, info->type_id); 440 } 441 442 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 443 { 444 struct bpf_subprog_info *info = subprog_info(env, subprog); 445 446 info->is_cb = true; 447 info->is_async_cb = true; 448 info->is_exception_cb = true; 449 } 450 451 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 452 { 453 return subprog_info(env, subprog)->is_exception_cb; 454 } 455 456 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 457 { 458 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 459 } 460 461 static bool type_is_rdonly_mem(u32 type) 462 { 463 return type & MEM_RDONLY; 464 } 465 466 static bool is_acquire_function(enum bpf_func_id func_id, 467 const struct bpf_map *map) 468 { 469 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 470 471 if (func_id == BPF_FUNC_sk_lookup_tcp || 472 func_id == BPF_FUNC_sk_lookup_udp || 473 func_id == BPF_FUNC_skc_lookup_tcp || 474 func_id == BPF_FUNC_ringbuf_reserve || 475 func_id == BPF_FUNC_kptr_xchg) 476 return true; 477 478 if (func_id == BPF_FUNC_map_lookup_elem && 479 (map_type == BPF_MAP_TYPE_SOCKMAP || 480 map_type == BPF_MAP_TYPE_SOCKHASH)) 481 return true; 482 483 return false; 484 } 485 486 static bool is_ptr_cast_function(enum bpf_func_id func_id) 487 { 488 return func_id == BPF_FUNC_tcp_sock || 489 func_id == BPF_FUNC_sk_fullsock || 490 func_id == BPF_FUNC_skc_to_tcp_sock || 491 func_id == BPF_FUNC_skc_to_tcp6_sock || 492 func_id == BPF_FUNC_skc_to_udp6_sock || 493 func_id == BPF_FUNC_skc_to_mptcp_sock || 494 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 495 func_id == BPF_FUNC_skc_to_tcp_request_sock; 496 } 497 498 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 499 { 500 return func_id == BPF_FUNC_dynptr_data; 501 } 502 503 static bool is_sync_callback_calling_kfunc(u32 btf_id); 504 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 505 506 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 507 { 508 return func_id == BPF_FUNC_for_each_map_elem || 509 func_id == BPF_FUNC_find_vma || 510 func_id == BPF_FUNC_loop || 511 func_id == BPF_FUNC_user_ringbuf_drain; 512 } 513 514 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 515 { 516 return func_id == BPF_FUNC_timer_set_callback; 517 } 518 519 static bool is_callback_calling_function(enum bpf_func_id func_id) 520 { 521 return is_sync_callback_calling_function(func_id) || 522 is_async_callback_calling_function(func_id); 523 } 524 525 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 526 { 527 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 528 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 529 } 530 531 static bool is_storage_get_function(enum bpf_func_id func_id) 532 { 533 return func_id == BPF_FUNC_sk_storage_get || 534 func_id == BPF_FUNC_inode_storage_get || 535 func_id == BPF_FUNC_task_storage_get || 536 func_id == BPF_FUNC_cgrp_storage_get; 537 } 538 539 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 540 const struct bpf_map *map) 541 { 542 int ref_obj_uses = 0; 543 544 if (is_ptr_cast_function(func_id)) 545 ref_obj_uses++; 546 if (is_acquire_function(func_id, map)) 547 ref_obj_uses++; 548 if (is_dynptr_ref_function(func_id)) 549 ref_obj_uses++; 550 551 return ref_obj_uses > 1; 552 } 553 554 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 555 { 556 return BPF_CLASS(insn->code) == BPF_STX && 557 BPF_MODE(insn->code) == BPF_ATOMIC && 558 insn->imm == BPF_CMPXCHG; 559 } 560 561 static int __get_spi(s32 off) 562 { 563 return (-off - 1) / BPF_REG_SIZE; 564 } 565 566 static struct bpf_func_state *func(struct bpf_verifier_env *env, 567 const struct bpf_reg_state *reg) 568 { 569 struct bpf_verifier_state *cur = env->cur_state; 570 571 return cur->frame[reg->frameno]; 572 } 573 574 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 575 { 576 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 577 578 /* We need to check that slots between [spi - nr_slots + 1, spi] are 579 * within [0, allocated_stack). 580 * 581 * Please note that the spi grows downwards. For example, a dynptr 582 * takes the size of two stack slots; the first slot will be at 583 * spi and the second slot will be at spi - 1. 584 */ 585 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 586 } 587 588 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 589 const char *obj_kind, int nr_slots) 590 { 591 int off, spi; 592 593 if (!tnum_is_const(reg->var_off)) { 594 verbose(env, "%s has to be at a constant offset\n", obj_kind); 595 return -EINVAL; 596 } 597 598 off = reg->off + reg->var_off.value; 599 if (off % BPF_REG_SIZE) { 600 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 601 return -EINVAL; 602 } 603 604 spi = __get_spi(off); 605 if (spi + 1 < nr_slots) { 606 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 607 return -EINVAL; 608 } 609 610 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 611 return -ERANGE; 612 return spi; 613 } 614 615 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 616 { 617 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 618 } 619 620 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 621 { 622 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 623 } 624 625 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 626 { 627 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 628 case DYNPTR_TYPE_LOCAL: 629 return BPF_DYNPTR_TYPE_LOCAL; 630 case DYNPTR_TYPE_RINGBUF: 631 return BPF_DYNPTR_TYPE_RINGBUF; 632 case DYNPTR_TYPE_SKB: 633 return BPF_DYNPTR_TYPE_SKB; 634 case DYNPTR_TYPE_XDP: 635 return BPF_DYNPTR_TYPE_XDP; 636 default: 637 return BPF_DYNPTR_TYPE_INVALID; 638 } 639 } 640 641 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 642 { 643 switch (type) { 644 case BPF_DYNPTR_TYPE_LOCAL: 645 return DYNPTR_TYPE_LOCAL; 646 case BPF_DYNPTR_TYPE_RINGBUF: 647 return DYNPTR_TYPE_RINGBUF; 648 case BPF_DYNPTR_TYPE_SKB: 649 return DYNPTR_TYPE_SKB; 650 case BPF_DYNPTR_TYPE_XDP: 651 return DYNPTR_TYPE_XDP; 652 default: 653 return 0; 654 } 655 } 656 657 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 658 { 659 return type == BPF_DYNPTR_TYPE_RINGBUF; 660 } 661 662 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 663 enum bpf_dynptr_type type, 664 bool first_slot, int dynptr_id); 665 666 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 667 struct bpf_reg_state *reg); 668 669 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 670 struct bpf_reg_state *sreg1, 671 struct bpf_reg_state *sreg2, 672 enum bpf_dynptr_type type) 673 { 674 int id = ++env->id_gen; 675 676 __mark_dynptr_reg(sreg1, type, true, id); 677 __mark_dynptr_reg(sreg2, type, false, id); 678 } 679 680 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 681 struct bpf_reg_state *reg, 682 enum bpf_dynptr_type type) 683 { 684 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 685 } 686 687 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 688 struct bpf_func_state *state, int spi); 689 690 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 691 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 692 { 693 struct bpf_func_state *state = func(env, reg); 694 enum bpf_dynptr_type type; 695 int spi, i, err; 696 697 spi = dynptr_get_spi(env, reg); 698 if (spi < 0) 699 return spi; 700 701 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 702 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 703 * to ensure that for the following example: 704 * [d1][d1][d2][d2] 705 * spi 3 2 1 0 706 * So marking spi = 2 should lead to destruction of both d1 and d2. In 707 * case they do belong to same dynptr, second call won't see slot_type 708 * as STACK_DYNPTR and will simply skip destruction. 709 */ 710 err = destroy_if_dynptr_stack_slot(env, state, spi); 711 if (err) 712 return err; 713 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 714 if (err) 715 return err; 716 717 for (i = 0; i < BPF_REG_SIZE; i++) { 718 state->stack[spi].slot_type[i] = STACK_DYNPTR; 719 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 720 } 721 722 type = arg_to_dynptr_type(arg_type); 723 if (type == BPF_DYNPTR_TYPE_INVALID) 724 return -EINVAL; 725 726 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 727 &state->stack[spi - 1].spilled_ptr, type); 728 729 if (dynptr_type_refcounted(type)) { 730 /* The id is used to track proper releasing */ 731 int id; 732 733 if (clone_ref_obj_id) 734 id = clone_ref_obj_id; 735 else 736 id = acquire_reference_state(env, insn_idx); 737 738 if (id < 0) 739 return id; 740 741 state->stack[spi].spilled_ptr.ref_obj_id = id; 742 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 743 } 744 745 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 746 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 747 748 return 0; 749 } 750 751 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 752 { 753 int i; 754 755 for (i = 0; i < BPF_REG_SIZE; i++) { 756 state->stack[spi].slot_type[i] = STACK_INVALID; 757 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 758 } 759 760 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 761 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 762 763 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 764 * 765 * While we don't allow reading STACK_INVALID, it is still possible to 766 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 767 * helpers or insns can do partial read of that part without failing, 768 * but check_stack_range_initialized, check_stack_read_var_off, and 769 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 770 * the slot conservatively. Hence we need to prevent those liveness 771 * marking walks. 772 * 773 * This was not a problem before because STACK_INVALID is only set by 774 * default (where the default reg state has its reg->parent as NULL), or 775 * in clean_live_states after REG_LIVE_DONE (at which point 776 * mark_reg_read won't walk reg->parent chain), but not randomly during 777 * verifier state exploration (like we did above). Hence, for our case 778 * parentage chain will still be live (i.e. reg->parent may be 779 * non-NULL), while earlier reg->parent was NULL, so we need 780 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 781 * done later on reads or by mark_dynptr_read as well to unnecessary 782 * mark registers in verifier state. 783 */ 784 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 785 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 786 } 787 788 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 789 { 790 struct bpf_func_state *state = func(env, reg); 791 int spi, ref_obj_id, i; 792 793 spi = dynptr_get_spi(env, reg); 794 if (spi < 0) 795 return spi; 796 797 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 798 invalidate_dynptr(env, state, spi); 799 return 0; 800 } 801 802 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 803 804 /* If the dynptr has a ref_obj_id, then we need to invalidate 805 * two things: 806 * 807 * 1) Any dynptrs with a matching ref_obj_id (clones) 808 * 2) Any slices derived from this dynptr. 809 */ 810 811 /* Invalidate any slices associated with this dynptr */ 812 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 813 814 /* Invalidate any dynptr clones */ 815 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 816 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 817 continue; 818 819 /* it should always be the case that if the ref obj id 820 * matches then the stack slot also belongs to a 821 * dynptr 822 */ 823 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 824 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 825 return -EFAULT; 826 } 827 if (state->stack[i].spilled_ptr.dynptr.first_slot) 828 invalidate_dynptr(env, state, i); 829 } 830 831 return 0; 832 } 833 834 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 835 struct bpf_reg_state *reg); 836 837 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 838 { 839 if (!env->allow_ptr_leaks) 840 __mark_reg_not_init(env, reg); 841 else 842 __mark_reg_unknown(env, reg); 843 } 844 845 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 846 struct bpf_func_state *state, int spi) 847 { 848 struct bpf_func_state *fstate; 849 struct bpf_reg_state *dreg; 850 int i, dynptr_id; 851 852 /* We always ensure that STACK_DYNPTR is never set partially, 853 * hence just checking for slot_type[0] is enough. This is 854 * different for STACK_SPILL, where it may be only set for 855 * 1 byte, so code has to use is_spilled_reg. 856 */ 857 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 858 return 0; 859 860 /* Reposition spi to first slot */ 861 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 862 spi = spi + 1; 863 864 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 865 verbose(env, "cannot overwrite referenced dynptr\n"); 866 return -EINVAL; 867 } 868 869 mark_stack_slot_scratched(env, spi); 870 mark_stack_slot_scratched(env, spi - 1); 871 872 /* Writing partially to one dynptr stack slot destroys both. */ 873 for (i = 0; i < BPF_REG_SIZE; i++) { 874 state->stack[spi].slot_type[i] = STACK_INVALID; 875 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 876 } 877 878 dynptr_id = state->stack[spi].spilled_ptr.id; 879 /* Invalidate any slices associated with this dynptr */ 880 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 881 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 882 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 883 continue; 884 if (dreg->dynptr_id == dynptr_id) 885 mark_reg_invalid(env, dreg); 886 })); 887 888 /* Do not release reference state, we are destroying dynptr on stack, 889 * not using some helper to release it. Just reset register. 890 */ 891 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 892 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 893 894 /* Same reason as unmark_stack_slots_dynptr above */ 895 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 896 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 897 898 return 0; 899 } 900 901 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 902 { 903 int spi; 904 905 if (reg->type == CONST_PTR_TO_DYNPTR) 906 return false; 907 908 spi = dynptr_get_spi(env, reg); 909 910 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 911 * error because this just means the stack state hasn't been updated yet. 912 * We will do check_mem_access to check and update stack bounds later. 913 */ 914 if (spi < 0 && spi != -ERANGE) 915 return false; 916 917 /* We don't need to check if the stack slots are marked by previous 918 * dynptr initializations because we allow overwriting existing unreferenced 919 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 920 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 921 * touching are completely destructed before we reinitialize them for a new 922 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 923 * instead of delaying it until the end where the user will get "Unreleased 924 * reference" error. 925 */ 926 return true; 927 } 928 929 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 930 { 931 struct bpf_func_state *state = func(env, reg); 932 int i, spi; 933 934 /* This already represents first slot of initialized bpf_dynptr. 935 * 936 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 937 * check_func_arg_reg_off's logic, so we don't need to check its 938 * offset and alignment. 939 */ 940 if (reg->type == CONST_PTR_TO_DYNPTR) 941 return true; 942 943 spi = dynptr_get_spi(env, reg); 944 if (spi < 0) 945 return false; 946 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 947 return false; 948 949 for (i = 0; i < BPF_REG_SIZE; i++) { 950 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 951 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 952 return false; 953 } 954 955 return true; 956 } 957 958 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 959 enum bpf_arg_type arg_type) 960 { 961 struct bpf_func_state *state = func(env, reg); 962 enum bpf_dynptr_type dynptr_type; 963 int spi; 964 965 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 966 if (arg_type == ARG_PTR_TO_DYNPTR) 967 return true; 968 969 dynptr_type = arg_to_dynptr_type(arg_type); 970 if (reg->type == CONST_PTR_TO_DYNPTR) { 971 return reg->dynptr.type == dynptr_type; 972 } else { 973 spi = dynptr_get_spi(env, reg); 974 if (spi < 0) 975 return false; 976 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 977 } 978 } 979 980 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 981 982 static bool in_rcu_cs(struct bpf_verifier_env *env); 983 984 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 985 986 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 987 struct bpf_kfunc_call_arg_meta *meta, 988 struct bpf_reg_state *reg, int insn_idx, 989 struct btf *btf, u32 btf_id, int nr_slots) 990 { 991 struct bpf_func_state *state = func(env, reg); 992 int spi, i, j, id; 993 994 spi = iter_get_spi(env, reg, nr_slots); 995 if (spi < 0) 996 return spi; 997 998 id = acquire_reference_state(env, insn_idx); 999 if (id < 0) 1000 return id; 1001 1002 for (i = 0; i < nr_slots; i++) { 1003 struct bpf_stack_state *slot = &state->stack[spi - i]; 1004 struct bpf_reg_state *st = &slot->spilled_ptr; 1005 1006 __mark_reg_known_zero(st); 1007 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1008 if (is_kfunc_rcu_protected(meta)) { 1009 if (in_rcu_cs(env)) 1010 st->type |= MEM_RCU; 1011 else 1012 st->type |= PTR_UNTRUSTED; 1013 } 1014 st->live |= REG_LIVE_WRITTEN; 1015 st->ref_obj_id = i == 0 ? id : 0; 1016 st->iter.btf = btf; 1017 st->iter.btf_id = btf_id; 1018 st->iter.state = BPF_ITER_STATE_ACTIVE; 1019 st->iter.depth = 0; 1020 1021 for (j = 0; j < BPF_REG_SIZE; j++) 1022 slot->slot_type[j] = STACK_ITER; 1023 1024 mark_stack_slot_scratched(env, spi - i); 1025 } 1026 1027 return 0; 1028 } 1029 1030 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1031 struct bpf_reg_state *reg, int nr_slots) 1032 { 1033 struct bpf_func_state *state = func(env, reg); 1034 int spi, i, j; 1035 1036 spi = iter_get_spi(env, reg, nr_slots); 1037 if (spi < 0) 1038 return spi; 1039 1040 for (i = 0; i < nr_slots; i++) { 1041 struct bpf_stack_state *slot = &state->stack[spi - i]; 1042 struct bpf_reg_state *st = &slot->spilled_ptr; 1043 1044 if (i == 0) 1045 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1046 1047 __mark_reg_not_init(env, st); 1048 1049 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1050 st->live |= REG_LIVE_WRITTEN; 1051 1052 for (j = 0; j < BPF_REG_SIZE; j++) 1053 slot->slot_type[j] = STACK_INVALID; 1054 1055 mark_stack_slot_scratched(env, spi - i); 1056 } 1057 1058 return 0; 1059 } 1060 1061 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1062 struct bpf_reg_state *reg, int nr_slots) 1063 { 1064 struct bpf_func_state *state = func(env, reg); 1065 int spi, i, j; 1066 1067 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1068 * will do check_mem_access to check and update stack bounds later, so 1069 * return true for that case. 1070 */ 1071 spi = iter_get_spi(env, reg, nr_slots); 1072 if (spi == -ERANGE) 1073 return true; 1074 if (spi < 0) 1075 return false; 1076 1077 for (i = 0; i < nr_slots; i++) { 1078 struct bpf_stack_state *slot = &state->stack[spi - i]; 1079 1080 for (j = 0; j < BPF_REG_SIZE; j++) 1081 if (slot->slot_type[j] == STACK_ITER) 1082 return false; 1083 } 1084 1085 return true; 1086 } 1087 1088 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1089 struct btf *btf, u32 btf_id, int nr_slots) 1090 { 1091 struct bpf_func_state *state = func(env, reg); 1092 int spi, i, j; 1093 1094 spi = iter_get_spi(env, reg, nr_slots); 1095 if (spi < 0) 1096 return -EINVAL; 1097 1098 for (i = 0; i < nr_slots; i++) { 1099 struct bpf_stack_state *slot = &state->stack[spi - i]; 1100 struct bpf_reg_state *st = &slot->spilled_ptr; 1101 1102 if (st->type & PTR_UNTRUSTED) 1103 return -EPROTO; 1104 /* only main (first) slot has ref_obj_id set */ 1105 if (i == 0 && !st->ref_obj_id) 1106 return -EINVAL; 1107 if (i != 0 && st->ref_obj_id) 1108 return -EINVAL; 1109 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1110 return -EINVAL; 1111 1112 for (j = 0; j < BPF_REG_SIZE; j++) 1113 if (slot->slot_type[j] != STACK_ITER) 1114 return -EINVAL; 1115 } 1116 1117 return 0; 1118 } 1119 1120 /* Check if given stack slot is "special": 1121 * - spilled register state (STACK_SPILL); 1122 * - dynptr state (STACK_DYNPTR); 1123 * - iter state (STACK_ITER). 1124 */ 1125 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1126 { 1127 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1128 1129 switch (type) { 1130 case STACK_SPILL: 1131 case STACK_DYNPTR: 1132 case STACK_ITER: 1133 return true; 1134 case STACK_INVALID: 1135 case STACK_MISC: 1136 case STACK_ZERO: 1137 return false; 1138 default: 1139 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1140 return true; 1141 } 1142 } 1143 1144 /* The reg state of a pointer or a bounded scalar was saved when 1145 * it was spilled to the stack. 1146 */ 1147 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1148 { 1149 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1150 } 1151 1152 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1153 { 1154 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1155 stack->spilled_ptr.type == SCALAR_VALUE; 1156 } 1157 1158 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1159 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1160 * more precise STACK_ZERO. 1161 * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take 1162 * env->allow_ptr_leaks into account and force STACK_MISC, if necessary. 1163 */ 1164 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1165 { 1166 if (*stype == STACK_ZERO) 1167 return; 1168 if (env->allow_ptr_leaks && *stype == STACK_INVALID) 1169 return; 1170 *stype = STACK_MISC; 1171 } 1172 1173 static void scrub_spilled_slot(u8 *stype) 1174 { 1175 if (*stype != STACK_INVALID) 1176 *stype = STACK_MISC; 1177 } 1178 1179 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1180 * small to hold src. This is different from krealloc since we don't want to preserve 1181 * the contents of dst. 1182 * 1183 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1184 * not be allocated. 1185 */ 1186 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1187 { 1188 size_t alloc_bytes; 1189 void *orig = dst; 1190 size_t bytes; 1191 1192 if (ZERO_OR_NULL_PTR(src)) 1193 goto out; 1194 1195 if (unlikely(check_mul_overflow(n, size, &bytes))) 1196 return NULL; 1197 1198 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1199 dst = krealloc(orig, alloc_bytes, flags); 1200 if (!dst) { 1201 kfree(orig); 1202 return NULL; 1203 } 1204 1205 memcpy(dst, src, bytes); 1206 out: 1207 return dst ? dst : ZERO_SIZE_PTR; 1208 } 1209 1210 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1211 * small to hold new_n items. new items are zeroed out if the array grows. 1212 * 1213 * Contrary to krealloc_array, does not free arr if new_n is zero. 1214 */ 1215 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1216 { 1217 size_t alloc_size; 1218 void *new_arr; 1219 1220 if (!new_n || old_n == new_n) 1221 goto out; 1222 1223 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1224 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1225 if (!new_arr) { 1226 kfree(arr); 1227 return NULL; 1228 } 1229 arr = new_arr; 1230 1231 if (new_n > old_n) 1232 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1233 1234 out: 1235 return arr ? arr : ZERO_SIZE_PTR; 1236 } 1237 1238 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1239 { 1240 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1241 sizeof(struct bpf_reference_state), GFP_KERNEL); 1242 if (!dst->refs) 1243 return -ENOMEM; 1244 1245 dst->acquired_refs = src->acquired_refs; 1246 return 0; 1247 } 1248 1249 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1250 { 1251 size_t n = src->allocated_stack / BPF_REG_SIZE; 1252 1253 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1254 GFP_KERNEL); 1255 if (!dst->stack) 1256 return -ENOMEM; 1257 1258 dst->allocated_stack = src->allocated_stack; 1259 return 0; 1260 } 1261 1262 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1263 { 1264 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1265 sizeof(struct bpf_reference_state)); 1266 if (!state->refs) 1267 return -ENOMEM; 1268 1269 state->acquired_refs = n; 1270 return 0; 1271 } 1272 1273 /* Possibly update state->allocated_stack to be at least size bytes. Also 1274 * possibly update the function's high-water mark in its bpf_subprog_info. 1275 */ 1276 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1277 { 1278 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1279 1280 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1281 size = round_up(size, BPF_REG_SIZE); 1282 n = size / BPF_REG_SIZE; 1283 1284 if (old_n >= n) 1285 return 0; 1286 1287 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1288 if (!state->stack) 1289 return -ENOMEM; 1290 1291 state->allocated_stack = size; 1292 1293 /* update known max for given subprogram */ 1294 if (env->subprog_info[state->subprogno].stack_depth < size) 1295 env->subprog_info[state->subprogno].stack_depth = size; 1296 1297 return 0; 1298 } 1299 1300 /* Acquire a pointer id from the env and update the state->refs to include 1301 * this new pointer reference. 1302 * On success, returns a valid pointer id to associate with the register 1303 * On failure, returns a negative errno. 1304 */ 1305 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1306 { 1307 struct bpf_func_state *state = cur_func(env); 1308 int new_ofs = state->acquired_refs; 1309 int id, err; 1310 1311 err = resize_reference_state(state, state->acquired_refs + 1); 1312 if (err) 1313 return err; 1314 id = ++env->id_gen; 1315 state->refs[new_ofs].id = id; 1316 state->refs[new_ofs].insn_idx = insn_idx; 1317 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1318 1319 return id; 1320 } 1321 1322 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1323 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1324 { 1325 int i, last_idx; 1326 1327 last_idx = state->acquired_refs - 1; 1328 for (i = 0; i < state->acquired_refs; i++) { 1329 if (state->refs[i].id == ptr_id) { 1330 /* Cannot release caller references in callbacks */ 1331 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1332 return -EINVAL; 1333 if (last_idx && i != last_idx) 1334 memcpy(&state->refs[i], &state->refs[last_idx], 1335 sizeof(*state->refs)); 1336 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1337 state->acquired_refs--; 1338 return 0; 1339 } 1340 } 1341 return -EINVAL; 1342 } 1343 1344 static void free_func_state(struct bpf_func_state *state) 1345 { 1346 if (!state) 1347 return; 1348 kfree(state->refs); 1349 kfree(state->stack); 1350 kfree(state); 1351 } 1352 1353 static void clear_jmp_history(struct bpf_verifier_state *state) 1354 { 1355 kfree(state->jmp_history); 1356 state->jmp_history = NULL; 1357 state->jmp_history_cnt = 0; 1358 } 1359 1360 static void free_verifier_state(struct bpf_verifier_state *state, 1361 bool free_self) 1362 { 1363 int i; 1364 1365 for (i = 0; i <= state->curframe; i++) { 1366 free_func_state(state->frame[i]); 1367 state->frame[i] = NULL; 1368 } 1369 clear_jmp_history(state); 1370 if (free_self) 1371 kfree(state); 1372 } 1373 1374 /* copy verifier state from src to dst growing dst stack space 1375 * when necessary to accommodate larger src stack 1376 */ 1377 static int copy_func_state(struct bpf_func_state *dst, 1378 const struct bpf_func_state *src) 1379 { 1380 int err; 1381 1382 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1383 err = copy_reference_state(dst, src); 1384 if (err) 1385 return err; 1386 return copy_stack_state(dst, src); 1387 } 1388 1389 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1390 const struct bpf_verifier_state *src) 1391 { 1392 struct bpf_func_state *dst; 1393 int i, err; 1394 1395 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1396 src->jmp_history_cnt, sizeof(*dst_state->jmp_history), 1397 GFP_USER); 1398 if (!dst_state->jmp_history) 1399 return -ENOMEM; 1400 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1401 1402 /* if dst has more stack frames then src frame, free them, this is also 1403 * necessary in case of exceptional exits using bpf_throw. 1404 */ 1405 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1406 free_func_state(dst_state->frame[i]); 1407 dst_state->frame[i] = NULL; 1408 } 1409 dst_state->speculative = src->speculative; 1410 dst_state->active_rcu_lock = src->active_rcu_lock; 1411 dst_state->curframe = src->curframe; 1412 dst_state->active_lock.ptr = src->active_lock.ptr; 1413 dst_state->active_lock.id = src->active_lock.id; 1414 dst_state->branches = src->branches; 1415 dst_state->parent = src->parent; 1416 dst_state->first_insn_idx = src->first_insn_idx; 1417 dst_state->last_insn_idx = src->last_insn_idx; 1418 dst_state->dfs_depth = src->dfs_depth; 1419 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1420 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1421 for (i = 0; i <= src->curframe; i++) { 1422 dst = dst_state->frame[i]; 1423 if (!dst) { 1424 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1425 if (!dst) 1426 return -ENOMEM; 1427 dst_state->frame[i] = dst; 1428 } 1429 err = copy_func_state(dst, src->frame[i]); 1430 if (err) 1431 return err; 1432 } 1433 return 0; 1434 } 1435 1436 static u32 state_htab_size(struct bpf_verifier_env *env) 1437 { 1438 return env->prog->len; 1439 } 1440 1441 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1442 { 1443 struct bpf_verifier_state *cur = env->cur_state; 1444 struct bpf_func_state *state = cur->frame[cur->curframe]; 1445 1446 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1447 } 1448 1449 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1450 { 1451 int fr; 1452 1453 if (a->curframe != b->curframe) 1454 return false; 1455 1456 for (fr = a->curframe; fr >= 0; fr--) 1457 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1458 return false; 1459 1460 return true; 1461 } 1462 1463 /* Open coded iterators allow back-edges in the state graph in order to 1464 * check unbounded loops that iterators. 1465 * 1466 * In is_state_visited() it is necessary to know if explored states are 1467 * part of some loops in order to decide whether non-exact states 1468 * comparison could be used: 1469 * - non-exact states comparison establishes sub-state relation and uses 1470 * read and precision marks to do so, these marks are propagated from 1471 * children states and thus are not guaranteed to be final in a loop; 1472 * - exact states comparison just checks if current and explored states 1473 * are identical (and thus form a back-edge). 1474 * 1475 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1476 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1477 * algorithm for loop structure detection and gives an overview of 1478 * relevant terminology. It also has helpful illustrations. 1479 * 1480 * [1] https://api.semanticscholar.org/CorpusID:15784067 1481 * 1482 * We use a similar algorithm but because loop nested structure is 1483 * irrelevant for verifier ours is significantly simpler and resembles 1484 * strongly connected components algorithm from Sedgewick's textbook. 1485 * 1486 * Define topmost loop entry as a first node of the loop traversed in a 1487 * depth first search starting from initial state. The goal of the loop 1488 * tracking algorithm is to associate topmost loop entries with states 1489 * derived from these entries. 1490 * 1491 * For each step in the DFS states traversal algorithm needs to identify 1492 * the following situations: 1493 * 1494 * initial initial initial 1495 * | | | 1496 * V V V 1497 * ... ... .---------> hdr 1498 * | | | | 1499 * V V | V 1500 * cur .-> succ | .------... 1501 * | | | | | | 1502 * V | V | V V 1503 * succ '-- cur | ... ... 1504 * | | | 1505 * | V V 1506 * | succ <- cur 1507 * | | 1508 * | V 1509 * | ... 1510 * | | 1511 * '----' 1512 * 1513 * (A) successor state of cur (B) successor state of cur or it's entry 1514 * not yet traversed are in current DFS path, thus cur and succ 1515 * are members of the same outermost loop 1516 * 1517 * initial initial 1518 * | | 1519 * V V 1520 * ... ... 1521 * | | 1522 * V V 1523 * .------... .------... 1524 * | | | | 1525 * V V V V 1526 * .-> hdr ... ... ... 1527 * | | | | | 1528 * | V V V V 1529 * | succ <- cur succ <- cur 1530 * | | | 1531 * | V V 1532 * | ... ... 1533 * | | | 1534 * '----' exit 1535 * 1536 * (C) successor state of cur is a part of some loop but this loop 1537 * does not include cur or successor state is not in a loop at all. 1538 * 1539 * Algorithm could be described as the following python code: 1540 * 1541 * traversed = set() # Set of traversed nodes 1542 * entries = {} # Mapping from node to loop entry 1543 * depths = {} # Depth level assigned to graph node 1544 * path = set() # Current DFS path 1545 * 1546 * # Find outermost loop entry known for n 1547 * def get_loop_entry(n): 1548 * h = entries.get(n, None) 1549 * while h in entries and entries[h] != h: 1550 * h = entries[h] 1551 * return h 1552 * 1553 * # Update n's loop entry if h's outermost entry comes 1554 * # before n's outermost entry in current DFS path. 1555 * def update_loop_entry(n, h): 1556 * n1 = get_loop_entry(n) or n 1557 * h1 = get_loop_entry(h) or h 1558 * if h1 in path and depths[h1] <= depths[n1]: 1559 * entries[n] = h1 1560 * 1561 * def dfs(n, depth): 1562 * traversed.add(n) 1563 * path.add(n) 1564 * depths[n] = depth 1565 * for succ in G.successors(n): 1566 * if succ not in traversed: 1567 * # Case A: explore succ and update cur's loop entry 1568 * # only if succ's entry is in current DFS path. 1569 * dfs(succ, depth + 1) 1570 * h = get_loop_entry(succ) 1571 * update_loop_entry(n, h) 1572 * else: 1573 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1574 * update_loop_entry(n, succ) 1575 * path.remove(n) 1576 * 1577 * To adapt this algorithm for use with verifier: 1578 * - use st->branch == 0 as a signal that DFS of succ had been finished 1579 * and cur's loop entry has to be updated (case A), handle this in 1580 * update_branch_counts(); 1581 * - use st->branch > 0 as a signal that st is in the current DFS path; 1582 * - handle cases B and C in is_state_visited(); 1583 * - update topmost loop entry for intermediate states in get_loop_entry(). 1584 */ 1585 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1586 { 1587 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1588 1589 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1590 topmost = topmost->loop_entry; 1591 /* Update loop entries for intermediate states to avoid this 1592 * traversal in future get_loop_entry() calls. 1593 */ 1594 while (st && st->loop_entry != topmost) { 1595 old = st->loop_entry; 1596 st->loop_entry = topmost; 1597 st = old; 1598 } 1599 return topmost; 1600 } 1601 1602 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1603 { 1604 struct bpf_verifier_state *cur1, *hdr1; 1605 1606 cur1 = get_loop_entry(cur) ?: cur; 1607 hdr1 = get_loop_entry(hdr) ?: hdr; 1608 /* The head1->branches check decides between cases B and C in 1609 * comment for get_loop_entry(). If hdr1->branches == 0 then 1610 * head's topmost loop entry is not in current DFS path, 1611 * hence 'cur' and 'hdr' are not in the same loop and there is 1612 * no need to update cur->loop_entry. 1613 */ 1614 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1615 cur->loop_entry = hdr; 1616 hdr->used_as_loop_entry = true; 1617 } 1618 } 1619 1620 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1621 { 1622 while (st) { 1623 u32 br = --st->branches; 1624 1625 /* br == 0 signals that DFS exploration for 'st' is finished, 1626 * thus it is necessary to update parent's loop entry if it 1627 * turned out that st is a part of some loop. 1628 * This is a part of 'case A' in get_loop_entry() comment. 1629 */ 1630 if (br == 0 && st->parent && st->loop_entry) 1631 update_loop_entry(st->parent, st->loop_entry); 1632 1633 /* WARN_ON(br > 1) technically makes sense here, 1634 * but see comment in push_stack(), hence: 1635 */ 1636 WARN_ONCE((int)br < 0, 1637 "BUG update_branch_counts:branches_to_explore=%d\n", 1638 br); 1639 if (br) 1640 break; 1641 st = st->parent; 1642 } 1643 } 1644 1645 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1646 int *insn_idx, bool pop_log) 1647 { 1648 struct bpf_verifier_state *cur = env->cur_state; 1649 struct bpf_verifier_stack_elem *elem, *head = env->head; 1650 int err; 1651 1652 if (env->head == NULL) 1653 return -ENOENT; 1654 1655 if (cur) { 1656 err = copy_verifier_state(cur, &head->st); 1657 if (err) 1658 return err; 1659 } 1660 if (pop_log) 1661 bpf_vlog_reset(&env->log, head->log_pos); 1662 if (insn_idx) 1663 *insn_idx = head->insn_idx; 1664 if (prev_insn_idx) 1665 *prev_insn_idx = head->prev_insn_idx; 1666 elem = head->next; 1667 free_verifier_state(&head->st, false); 1668 kfree(head); 1669 env->head = elem; 1670 env->stack_size--; 1671 return 0; 1672 } 1673 1674 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1675 int insn_idx, int prev_insn_idx, 1676 bool speculative) 1677 { 1678 struct bpf_verifier_state *cur = env->cur_state; 1679 struct bpf_verifier_stack_elem *elem; 1680 int err; 1681 1682 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1683 if (!elem) 1684 goto err; 1685 1686 elem->insn_idx = insn_idx; 1687 elem->prev_insn_idx = prev_insn_idx; 1688 elem->next = env->head; 1689 elem->log_pos = env->log.end_pos; 1690 env->head = elem; 1691 env->stack_size++; 1692 err = copy_verifier_state(&elem->st, cur); 1693 if (err) 1694 goto err; 1695 elem->st.speculative |= speculative; 1696 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1697 verbose(env, "The sequence of %d jumps is too complex.\n", 1698 env->stack_size); 1699 goto err; 1700 } 1701 if (elem->st.parent) { 1702 ++elem->st.parent->branches; 1703 /* WARN_ON(branches > 2) technically makes sense here, 1704 * but 1705 * 1. speculative states will bump 'branches' for non-branch 1706 * instructions 1707 * 2. is_state_visited() heuristics may decide not to create 1708 * a new state for a sequence of branches and all such current 1709 * and cloned states will be pointing to a single parent state 1710 * which might have large 'branches' count. 1711 */ 1712 } 1713 return &elem->st; 1714 err: 1715 free_verifier_state(env->cur_state, true); 1716 env->cur_state = NULL; 1717 /* pop all elements and return */ 1718 while (!pop_stack(env, NULL, NULL, false)); 1719 return NULL; 1720 } 1721 1722 #define CALLER_SAVED_REGS 6 1723 static const int caller_saved[CALLER_SAVED_REGS] = { 1724 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1725 }; 1726 1727 /* This helper doesn't clear reg->id */ 1728 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1729 { 1730 reg->var_off = tnum_const(imm); 1731 reg->smin_value = (s64)imm; 1732 reg->smax_value = (s64)imm; 1733 reg->umin_value = imm; 1734 reg->umax_value = imm; 1735 1736 reg->s32_min_value = (s32)imm; 1737 reg->s32_max_value = (s32)imm; 1738 reg->u32_min_value = (u32)imm; 1739 reg->u32_max_value = (u32)imm; 1740 } 1741 1742 /* Mark the unknown part of a register (variable offset or scalar value) as 1743 * known to have the value @imm. 1744 */ 1745 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1746 { 1747 /* Clear off and union(map_ptr, range) */ 1748 memset(((u8 *)reg) + sizeof(reg->type), 0, 1749 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1750 reg->id = 0; 1751 reg->ref_obj_id = 0; 1752 ___mark_reg_known(reg, imm); 1753 } 1754 1755 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1756 { 1757 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1758 reg->s32_min_value = (s32)imm; 1759 reg->s32_max_value = (s32)imm; 1760 reg->u32_min_value = (u32)imm; 1761 reg->u32_max_value = (u32)imm; 1762 } 1763 1764 /* Mark the 'variable offset' part of a register as zero. This should be 1765 * used only on registers holding a pointer type. 1766 */ 1767 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1768 { 1769 __mark_reg_known(reg, 0); 1770 } 1771 1772 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1773 { 1774 __mark_reg_known(reg, 0); 1775 reg->type = SCALAR_VALUE; 1776 /* all scalars are assumed imprecise initially (unless unprivileged, 1777 * in which case everything is forced to be precise) 1778 */ 1779 reg->precise = !env->bpf_capable; 1780 } 1781 1782 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1783 struct bpf_reg_state *regs, u32 regno) 1784 { 1785 if (WARN_ON(regno >= MAX_BPF_REG)) { 1786 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1787 /* Something bad happened, let's kill all regs */ 1788 for (regno = 0; regno < MAX_BPF_REG; regno++) 1789 __mark_reg_not_init(env, regs + regno); 1790 return; 1791 } 1792 __mark_reg_known_zero(regs + regno); 1793 } 1794 1795 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1796 bool first_slot, int dynptr_id) 1797 { 1798 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1799 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1800 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1801 */ 1802 __mark_reg_known_zero(reg); 1803 reg->type = CONST_PTR_TO_DYNPTR; 1804 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1805 reg->id = dynptr_id; 1806 reg->dynptr.type = type; 1807 reg->dynptr.first_slot = first_slot; 1808 } 1809 1810 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1811 { 1812 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1813 const struct bpf_map *map = reg->map_ptr; 1814 1815 if (map->inner_map_meta) { 1816 reg->type = CONST_PTR_TO_MAP; 1817 reg->map_ptr = map->inner_map_meta; 1818 /* transfer reg's id which is unique for every map_lookup_elem 1819 * as UID of the inner map. 1820 */ 1821 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1822 reg->map_uid = reg->id; 1823 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1824 reg->type = PTR_TO_XDP_SOCK; 1825 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1826 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1827 reg->type = PTR_TO_SOCKET; 1828 } else { 1829 reg->type = PTR_TO_MAP_VALUE; 1830 } 1831 return; 1832 } 1833 1834 reg->type &= ~PTR_MAYBE_NULL; 1835 } 1836 1837 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1838 struct btf_field_graph_root *ds_head) 1839 { 1840 __mark_reg_known_zero(®s[regno]); 1841 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1842 regs[regno].btf = ds_head->btf; 1843 regs[regno].btf_id = ds_head->value_btf_id; 1844 regs[regno].off = ds_head->node_offset; 1845 } 1846 1847 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1848 { 1849 return type_is_pkt_pointer(reg->type); 1850 } 1851 1852 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1853 { 1854 return reg_is_pkt_pointer(reg) || 1855 reg->type == PTR_TO_PACKET_END; 1856 } 1857 1858 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 1859 { 1860 return base_type(reg->type) == PTR_TO_MEM && 1861 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 1862 } 1863 1864 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1865 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1866 enum bpf_reg_type which) 1867 { 1868 /* The register can already have a range from prior markings. 1869 * This is fine as long as it hasn't been advanced from its 1870 * origin. 1871 */ 1872 return reg->type == which && 1873 reg->id == 0 && 1874 reg->off == 0 && 1875 tnum_equals_const(reg->var_off, 0); 1876 } 1877 1878 /* Reset the min/max bounds of a register */ 1879 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1880 { 1881 reg->smin_value = S64_MIN; 1882 reg->smax_value = S64_MAX; 1883 reg->umin_value = 0; 1884 reg->umax_value = U64_MAX; 1885 1886 reg->s32_min_value = S32_MIN; 1887 reg->s32_max_value = S32_MAX; 1888 reg->u32_min_value = 0; 1889 reg->u32_max_value = U32_MAX; 1890 } 1891 1892 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1893 { 1894 reg->smin_value = S64_MIN; 1895 reg->smax_value = S64_MAX; 1896 reg->umin_value = 0; 1897 reg->umax_value = U64_MAX; 1898 } 1899 1900 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1901 { 1902 reg->s32_min_value = S32_MIN; 1903 reg->s32_max_value = S32_MAX; 1904 reg->u32_min_value = 0; 1905 reg->u32_max_value = U32_MAX; 1906 } 1907 1908 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1909 { 1910 struct tnum var32_off = tnum_subreg(reg->var_off); 1911 1912 /* min signed is max(sign bit) | min(other bits) */ 1913 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1914 var32_off.value | (var32_off.mask & S32_MIN)); 1915 /* max signed is min(sign bit) | max(other bits) */ 1916 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1917 var32_off.value | (var32_off.mask & S32_MAX)); 1918 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1919 reg->u32_max_value = min(reg->u32_max_value, 1920 (u32)(var32_off.value | var32_off.mask)); 1921 } 1922 1923 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1924 { 1925 /* min signed is max(sign bit) | min(other bits) */ 1926 reg->smin_value = max_t(s64, reg->smin_value, 1927 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1928 /* max signed is min(sign bit) | max(other bits) */ 1929 reg->smax_value = min_t(s64, reg->smax_value, 1930 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1931 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1932 reg->umax_value = min(reg->umax_value, 1933 reg->var_off.value | reg->var_off.mask); 1934 } 1935 1936 static void __update_reg_bounds(struct bpf_reg_state *reg) 1937 { 1938 __update_reg32_bounds(reg); 1939 __update_reg64_bounds(reg); 1940 } 1941 1942 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1943 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1944 { 1945 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 1946 * bits to improve our u32/s32 boundaries. 1947 * 1948 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 1949 * u64) is pretty trivial, it's obvious that in u32 we'll also have 1950 * [10, 20] range. But this property holds for any 64-bit range as 1951 * long as upper 32 bits in that entire range of values stay the same. 1952 * 1953 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 1954 * in decimal) has the same upper 32 bits throughout all the values in 1955 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 1956 * range. 1957 * 1958 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 1959 * following the rules outlined below about u64/s64 correspondence 1960 * (which equally applies to u32 vs s32 correspondence). In general it 1961 * depends on actual hexadecimal values of 32-bit range. They can form 1962 * only valid u32, or only valid s32 ranges in some cases. 1963 * 1964 * So we use all these insights to derive bounds for subregisters here. 1965 */ 1966 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 1967 /* u64 to u32 casting preserves validity of low 32 bits as 1968 * a range, if upper 32 bits are the same 1969 */ 1970 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 1971 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 1972 1973 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 1974 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 1975 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 1976 } 1977 } 1978 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 1979 /* low 32 bits should form a proper u32 range */ 1980 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 1981 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 1982 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 1983 } 1984 /* low 32 bits should form a proper s32 range */ 1985 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 1986 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 1987 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 1988 } 1989 } 1990 /* Special case where upper bits form a small sequence of two 1991 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 1992 * 0x00000000 is also valid), while lower bits form a proper s32 range 1993 * going from negative numbers to positive numbers. E.g., let's say we 1994 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 1995 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 1996 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 1997 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 1998 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 1999 * upper 32 bits. As a random example, s64 range 2000 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 2001 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2002 */ 2003 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2004 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2005 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2006 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2007 } 2008 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2009 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2010 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2011 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2012 } 2013 /* if u32 range forms a valid s32 range (due to matching sign bit), 2014 * try to learn from that 2015 */ 2016 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2017 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2018 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2019 } 2020 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2021 * are the same, so combine. This works even in the negative case, e.g. 2022 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2023 */ 2024 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2025 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2026 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2027 } 2028 } 2029 2030 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2031 { 2032 /* If u64 range forms a valid s64 range (due to matching sign bit), 2033 * try to learn from that. Let's do a bit of ASCII art to see when 2034 * this is happening. Let's take u64 range first: 2035 * 2036 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2037 * |-------------------------------|--------------------------------| 2038 * 2039 * Valid u64 range is formed when umin and umax are anywhere in the 2040 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2041 * straightforward. Let's see how s64 range maps onto the same range 2042 * of values, annotated below the line for comparison: 2043 * 2044 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2045 * |-------------------------------|--------------------------------| 2046 * 0 S64_MAX S64_MIN -1 2047 * 2048 * So s64 values basically start in the middle and they are logically 2049 * contiguous to the right of it, wrapping around from -1 to 0, and 2050 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2051 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2052 * more visually as mapped to sign-agnostic range of hex values. 2053 * 2054 * u64 start u64 end 2055 * _______________________________________________________________ 2056 * / \ 2057 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2058 * |-------------------------------|--------------------------------| 2059 * 0 S64_MAX S64_MIN -1 2060 * / \ 2061 * >------------------------------ -------------------------------> 2062 * s64 continues... s64 end s64 start s64 "midpoint" 2063 * 2064 * What this means is that, in general, we can't always derive 2065 * something new about u64 from any random s64 range, and vice versa. 2066 * 2067 * But we can do that in two particular cases. One is when entire 2068 * u64/s64 range is *entirely* contained within left half of the above 2069 * diagram or when it is *entirely* contained in the right half. I.e.: 2070 * 2071 * |-------------------------------|--------------------------------| 2072 * ^ ^ ^ ^ 2073 * A B C D 2074 * 2075 * [A, B] and [C, D] are contained entirely in their respective halves 2076 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2077 * will be non-negative both as u64 and s64 (and in fact it will be 2078 * identical ranges no matter the signedness). [C, D] treated as s64 2079 * will be a range of negative values, while in u64 it will be 2080 * non-negative range of values larger than 0x8000000000000000. 2081 * 2082 * Now, any other range here can't be represented in both u64 and s64 2083 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2084 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2085 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2086 * for example. Similarly, valid s64 range [D, A] (going from negative 2087 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2088 * ranges as u64. Currently reg_state can't represent two segments per 2089 * numeric domain, so in such situations we can only derive maximal 2090 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2091 * 2092 * So we use these facts to derive umin/umax from smin/smax and vice 2093 * versa only if they stay within the same "half". This is equivalent 2094 * to checking sign bit: lower half will have sign bit as zero, upper 2095 * half have sign bit 1. Below in code we simplify this by just 2096 * casting umin/umax as smin/smax and checking if they form valid 2097 * range, and vice versa. Those are equivalent checks. 2098 */ 2099 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2100 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2101 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2102 } 2103 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2104 * are the same, so combine. This works even in the negative case, e.g. 2105 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2106 */ 2107 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2108 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2109 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2110 } 2111 } 2112 2113 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2114 { 2115 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2116 * values on both sides of 64-bit range in hope to have tigher range. 2117 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2118 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2119 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2120 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2121 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2122 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2123 * We just need to make sure that derived bounds we are intersecting 2124 * with are well-formed ranges in respecitve s64 or u64 domain, just 2125 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2126 */ 2127 __u64 new_umin, new_umax; 2128 __s64 new_smin, new_smax; 2129 2130 /* u32 -> u64 tightening, it's always well-formed */ 2131 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2132 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2133 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2134 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2135 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2136 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2137 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2138 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2139 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2140 2141 /* if s32 can be treated as valid u32 range, we can use it as well */ 2142 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2143 /* s32 -> u64 tightening */ 2144 new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2145 new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2146 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2147 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2148 /* s32 -> s64 tightening */ 2149 new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2150 new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2151 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2152 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2153 } 2154 } 2155 2156 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2157 { 2158 __reg32_deduce_bounds(reg); 2159 __reg64_deduce_bounds(reg); 2160 __reg_deduce_mixed_bounds(reg); 2161 } 2162 2163 /* Attempts to improve var_off based on unsigned min/max information */ 2164 static void __reg_bound_offset(struct bpf_reg_state *reg) 2165 { 2166 struct tnum var64_off = tnum_intersect(reg->var_off, 2167 tnum_range(reg->umin_value, 2168 reg->umax_value)); 2169 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2170 tnum_range(reg->u32_min_value, 2171 reg->u32_max_value)); 2172 2173 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2174 } 2175 2176 static void reg_bounds_sync(struct bpf_reg_state *reg) 2177 { 2178 /* We might have learned new bounds from the var_off. */ 2179 __update_reg_bounds(reg); 2180 /* We might have learned something about the sign bit. */ 2181 __reg_deduce_bounds(reg); 2182 __reg_deduce_bounds(reg); 2183 /* We might have learned some bits from the bounds. */ 2184 __reg_bound_offset(reg); 2185 /* Intersecting with the old var_off might have improved our bounds 2186 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2187 * then new var_off is (0; 0x7f...fc) which improves our umax. 2188 */ 2189 __update_reg_bounds(reg); 2190 } 2191 2192 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2193 struct bpf_reg_state *reg, const char *ctx) 2194 { 2195 const char *msg; 2196 2197 if (reg->umin_value > reg->umax_value || 2198 reg->smin_value > reg->smax_value || 2199 reg->u32_min_value > reg->u32_max_value || 2200 reg->s32_min_value > reg->s32_max_value) { 2201 msg = "range bounds violation"; 2202 goto out; 2203 } 2204 2205 if (tnum_is_const(reg->var_off)) { 2206 u64 uval = reg->var_off.value; 2207 s64 sval = (s64)uval; 2208 2209 if (reg->umin_value != uval || reg->umax_value != uval || 2210 reg->smin_value != sval || reg->smax_value != sval) { 2211 msg = "const tnum out of sync with range bounds"; 2212 goto out; 2213 } 2214 } 2215 2216 if (tnum_subreg_is_const(reg->var_off)) { 2217 u32 uval32 = tnum_subreg(reg->var_off).value; 2218 s32 sval32 = (s32)uval32; 2219 2220 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2221 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2222 msg = "const subreg tnum out of sync with range bounds"; 2223 goto out; 2224 } 2225 } 2226 2227 return 0; 2228 out: 2229 verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2230 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n", 2231 ctx, msg, reg->umin_value, reg->umax_value, 2232 reg->smin_value, reg->smax_value, 2233 reg->u32_min_value, reg->u32_max_value, 2234 reg->s32_min_value, reg->s32_max_value, 2235 reg->var_off.value, reg->var_off.mask); 2236 if (env->test_reg_invariants) 2237 return -EFAULT; 2238 __mark_reg_unbounded(reg); 2239 return 0; 2240 } 2241 2242 static bool __reg32_bound_s64(s32 a) 2243 { 2244 return a >= 0 && a <= S32_MAX; 2245 } 2246 2247 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2248 { 2249 reg->umin_value = reg->u32_min_value; 2250 reg->umax_value = reg->u32_max_value; 2251 2252 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2253 * be positive otherwise set to worse case bounds and refine later 2254 * from tnum. 2255 */ 2256 if (__reg32_bound_s64(reg->s32_min_value) && 2257 __reg32_bound_s64(reg->s32_max_value)) { 2258 reg->smin_value = reg->s32_min_value; 2259 reg->smax_value = reg->s32_max_value; 2260 } else { 2261 reg->smin_value = 0; 2262 reg->smax_value = U32_MAX; 2263 } 2264 } 2265 2266 /* Mark a register as having a completely unknown (scalar) value. */ 2267 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2268 struct bpf_reg_state *reg) 2269 { 2270 /* 2271 * Clear type, off, and union(map_ptr, range) and 2272 * padding between 'type' and union 2273 */ 2274 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2275 reg->type = SCALAR_VALUE; 2276 reg->id = 0; 2277 reg->ref_obj_id = 0; 2278 reg->var_off = tnum_unknown; 2279 reg->frameno = 0; 2280 reg->precise = !env->bpf_capable; 2281 __mark_reg_unbounded(reg); 2282 } 2283 2284 static void mark_reg_unknown(struct bpf_verifier_env *env, 2285 struct bpf_reg_state *regs, u32 regno) 2286 { 2287 if (WARN_ON(regno >= MAX_BPF_REG)) { 2288 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2289 /* Something bad happened, let's kill all regs except FP */ 2290 for (regno = 0; regno < BPF_REG_FP; regno++) 2291 __mark_reg_not_init(env, regs + regno); 2292 return; 2293 } 2294 __mark_reg_unknown(env, regs + regno); 2295 } 2296 2297 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2298 struct bpf_reg_state *reg) 2299 { 2300 __mark_reg_unknown(env, reg); 2301 reg->type = NOT_INIT; 2302 } 2303 2304 static void mark_reg_not_init(struct bpf_verifier_env *env, 2305 struct bpf_reg_state *regs, u32 regno) 2306 { 2307 if (WARN_ON(regno >= MAX_BPF_REG)) { 2308 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2309 /* Something bad happened, let's kill all regs except FP */ 2310 for (regno = 0; regno < BPF_REG_FP; regno++) 2311 __mark_reg_not_init(env, regs + regno); 2312 return; 2313 } 2314 __mark_reg_not_init(env, regs + regno); 2315 } 2316 2317 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2318 struct bpf_reg_state *regs, u32 regno, 2319 enum bpf_reg_type reg_type, 2320 struct btf *btf, u32 btf_id, 2321 enum bpf_type_flag flag) 2322 { 2323 if (reg_type == SCALAR_VALUE) { 2324 mark_reg_unknown(env, regs, regno); 2325 return; 2326 } 2327 mark_reg_known_zero(env, regs, regno); 2328 regs[regno].type = PTR_TO_BTF_ID | flag; 2329 regs[regno].btf = btf; 2330 regs[regno].btf_id = btf_id; 2331 } 2332 2333 #define DEF_NOT_SUBREG (0) 2334 static void init_reg_state(struct bpf_verifier_env *env, 2335 struct bpf_func_state *state) 2336 { 2337 struct bpf_reg_state *regs = state->regs; 2338 int i; 2339 2340 for (i = 0; i < MAX_BPF_REG; i++) { 2341 mark_reg_not_init(env, regs, i); 2342 regs[i].live = REG_LIVE_NONE; 2343 regs[i].parent = NULL; 2344 regs[i].subreg_def = DEF_NOT_SUBREG; 2345 } 2346 2347 /* frame pointer */ 2348 regs[BPF_REG_FP].type = PTR_TO_STACK; 2349 mark_reg_known_zero(env, regs, BPF_REG_FP); 2350 regs[BPF_REG_FP].frameno = state->frameno; 2351 } 2352 2353 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2354 { 2355 return (struct bpf_retval_range){ minval, maxval }; 2356 } 2357 2358 #define BPF_MAIN_FUNC (-1) 2359 static void init_func_state(struct bpf_verifier_env *env, 2360 struct bpf_func_state *state, 2361 int callsite, int frameno, int subprogno) 2362 { 2363 state->callsite = callsite; 2364 state->frameno = frameno; 2365 state->subprogno = subprogno; 2366 state->callback_ret_range = retval_range(0, 0); 2367 init_reg_state(env, state); 2368 mark_verifier_state_scratched(env); 2369 } 2370 2371 /* Similar to push_stack(), but for async callbacks */ 2372 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2373 int insn_idx, int prev_insn_idx, 2374 int subprog) 2375 { 2376 struct bpf_verifier_stack_elem *elem; 2377 struct bpf_func_state *frame; 2378 2379 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2380 if (!elem) 2381 goto err; 2382 2383 elem->insn_idx = insn_idx; 2384 elem->prev_insn_idx = prev_insn_idx; 2385 elem->next = env->head; 2386 elem->log_pos = env->log.end_pos; 2387 env->head = elem; 2388 env->stack_size++; 2389 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2390 verbose(env, 2391 "The sequence of %d jumps is too complex for async cb.\n", 2392 env->stack_size); 2393 goto err; 2394 } 2395 /* Unlike push_stack() do not copy_verifier_state(). 2396 * The caller state doesn't matter. 2397 * This is async callback. It starts in a fresh stack. 2398 * Initialize it similar to do_check_common(). 2399 */ 2400 elem->st.branches = 1; 2401 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2402 if (!frame) 2403 goto err; 2404 init_func_state(env, frame, 2405 BPF_MAIN_FUNC /* callsite */, 2406 0 /* frameno within this callchain */, 2407 subprog /* subprog number within this prog */); 2408 elem->st.frame[0] = frame; 2409 return &elem->st; 2410 err: 2411 free_verifier_state(env->cur_state, true); 2412 env->cur_state = NULL; 2413 /* pop all elements and return */ 2414 while (!pop_stack(env, NULL, NULL, false)); 2415 return NULL; 2416 } 2417 2418 2419 enum reg_arg_type { 2420 SRC_OP, /* register is used as source operand */ 2421 DST_OP, /* register is used as destination operand */ 2422 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2423 }; 2424 2425 static int cmp_subprogs(const void *a, const void *b) 2426 { 2427 return ((struct bpf_subprog_info *)a)->start - 2428 ((struct bpf_subprog_info *)b)->start; 2429 } 2430 2431 static int find_subprog(struct bpf_verifier_env *env, int off) 2432 { 2433 struct bpf_subprog_info *p; 2434 2435 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2436 sizeof(env->subprog_info[0]), cmp_subprogs); 2437 if (!p) 2438 return -ENOENT; 2439 return p - env->subprog_info; 2440 2441 } 2442 2443 static int add_subprog(struct bpf_verifier_env *env, int off) 2444 { 2445 int insn_cnt = env->prog->len; 2446 int ret; 2447 2448 if (off >= insn_cnt || off < 0) { 2449 verbose(env, "call to invalid destination\n"); 2450 return -EINVAL; 2451 } 2452 ret = find_subprog(env, off); 2453 if (ret >= 0) 2454 return ret; 2455 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2456 verbose(env, "too many subprograms\n"); 2457 return -E2BIG; 2458 } 2459 /* determine subprog starts. The end is one before the next starts */ 2460 env->subprog_info[env->subprog_cnt++].start = off; 2461 sort(env->subprog_info, env->subprog_cnt, 2462 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2463 return env->subprog_cnt - 1; 2464 } 2465 2466 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 2467 { 2468 struct bpf_prog_aux *aux = env->prog->aux; 2469 struct btf *btf = aux->btf; 2470 const struct btf_type *t; 2471 u32 main_btf_id, id; 2472 const char *name; 2473 int ret, i; 2474 2475 /* Non-zero func_info_cnt implies valid btf */ 2476 if (!aux->func_info_cnt) 2477 return 0; 2478 main_btf_id = aux->func_info[0].type_id; 2479 2480 t = btf_type_by_id(btf, main_btf_id); 2481 if (!t) { 2482 verbose(env, "invalid btf id for main subprog in func_info\n"); 2483 return -EINVAL; 2484 } 2485 2486 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 2487 if (IS_ERR(name)) { 2488 ret = PTR_ERR(name); 2489 /* If there is no tag present, there is no exception callback */ 2490 if (ret == -ENOENT) 2491 ret = 0; 2492 else if (ret == -EEXIST) 2493 verbose(env, "multiple exception callback tags for main subprog\n"); 2494 return ret; 2495 } 2496 2497 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 2498 if (ret < 0) { 2499 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 2500 return ret; 2501 } 2502 id = ret; 2503 t = btf_type_by_id(btf, id); 2504 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 2505 verbose(env, "exception callback '%s' must have global linkage\n", name); 2506 return -EINVAL; 2507 } 2508 ret = 0; 2509 for (i = 0; i < aux->func_info_cnt; i++) { 2510 if (aux->func_info[i].type_id != id) 2511 continue; 2512 ret = aux->func_info[i].insn_off; 2513 /* Further func_info and subprog checks will also happen 2514 * later, so assume this is the right insn_off for now. 2515 */ 2516 if (!ret) { 2517 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 2518 ret = -EINVAL; 2519 } 2520 } 2521 if (!ret) { 2522 verbose(env, "exception callback type id not found in func_info\n"); 2523 ret = -EINVAL; 2524 } 2525 return ret; 2526 } 2527 2528 #define MAX_KFUNC_DESCS 256 2529 #define MAX_KFUNC_BTFS 256 2530 2531 struct bpf_kfunc_desc { 2532 struct btf_func_model func_model; 2533 u32 func_id; 2534 s32 imm; 2535 u16 offset; 2536 unsigned long addr; 2537 }; 2538 2539 struct bpf_kfunc_btf { 2540 struct btf *btf; 2541 struct module *module; 2542 u16 offset; 2543 }; 2544 2545 struct bpf_kfunc_desc_tab { 2546 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2547 * verification. JITs do lookups by bpf_insn, where func_id may not be 2548 * available, therefore at the end of verification do_misc_fixups() 2549 * sorts this by imm and offset. 2550 */ 2551 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2552 u32 nr_descs; 2553 }; 2554 2555 struct bpf_kfunc_btf_tab { 2556 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2557 u32 nr_descs; 2558 }; 2559 2560 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2561 { 2562 const struct bpf_kfunc_desc *d0 = a; 2563 const struct bpf_kfunc_desc *d1 = b; 2564 2565 /* func_id is not greater than BTF_MAX_TYPE */ 2566 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2567 } 2568 2569 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2570 { 2571 const struct bpf_kfunc_btf *d0 = a; 2572 const struct bpf_kfunc_btf *d1 = b; 2573 2574 return d0->offset - d1->offset; 2575 } 2576 2577 static const struct bpf_kfunc_desc * 2578 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2579 { 2580 struct bpf_kfunc_desc desc = { 2581 .func_id = func_id, 2582 .offset = offset, 2583 }; 2584 struct bpf_kfunc_desc_tab *tab; 2585 2586 tab = prog->aux->kfunc_tab; 2587 return bsearch(&desc, tab->descs, tab->nr_descs, 2588 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2589 } 2590 2591 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2592 u16 btf_fd_idx, u8 **func_addr) 2593 { 2594 const struct bpf_kfunc_desc *desc; 2595 2596 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2597 if (!desc) 2598 return -EFAULT; 2599 2600 *func_addr = (u8 *)desc->addr; 2601 return 0; 2602 } 2603 2604 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2605 s16 offset) 2606 { 2607 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2608 struct bpf_kfunc_btf_tab *tab; 2609 struct bpf_kfunc_btf *b; 2610 struct module *mod; 2611 struct btf *btf; 2612 int btf_fd; 2613 2614 tab = env->prog->aux->kfunc_btf_tab; 2615 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2616 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2617 if (!b) { 2618 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2619 verbose(env, "too many different module BTFs\n"); 2620 return ERR_PTR(-E2BIG); 2621 } 2622 2623 if (bpfptr_is_null(env->fd_array)) { 2624 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2625 return ERR_PTR(-EPROTO); 2626 } 2627 2628 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2629 offset * sizeof(btf_fd), 2630 sizeof(btf_fd))) 2631 return ERR_PTR(-EFAULT); 2632 2633 btf = btf_get_by_fd(btf_fd); 2634 if (IS_ERR(btf)) { 2635 verbose(env, "invalid module BTF fd specified\n"); 2636 return btf; 2637 } 2638 2639 if (!btf_is_module(btf)) { 2640 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2641 btf_put(btf); 2642 return ERR_PTR(-EINVAL); 2643 } 2644 2645 mod = btf_try_get_module(btf); 2646 if (!mod) { 2647 btf_put(btf); 2648 return ERR_PTR(-ENXIO); 2649 } 2650 2651 b = &tab->descs[tab->nr_descs++]; 2652 b->btf = btf; 2653 b->module = mod; 2654 b->offset = offset; 2655 2656 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2657 kfunc_btf_cmp_by_off, NULL); 2658 } 2659 return b->btf; 2660 } 2661 2662 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2663 { 2664 if (!tab) 2665 return; 2666 2667 while (tab->nr_descs--) { 2668 module_put(tab->descs[tab->nr_descs].module); 2669 btf_put(tab->descs[tab->nr_descs].btf); 2670 } 2671 kfree(tab); 2672 } 2673 2674 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2675 { 2676 if (offset) { 2677 if (offset < 0) { 2678 /* In the future, this can be allowed to increase limit 2679 * of fd index into fd_array, interpreted as u16. 2680 */ 2681 verbose(env, "negative offset disallowed for kernel module function call\n"); 2682 return ERR_PTR(-EINVAL); 2683 } 2684 2685 return __find_kfunc_desc_btf(env, offset); 2686 } 2687 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2688 } 2689 2690 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2691 { 2692 const struct btf_type *func, *func_proto; 2693 struct bpf_kfunc_btf_tab *btf_tab; 2694 struct bpf_kfunc_desc_tab *tab; 2695 struct bpf_prog_aux *prog_aux; 2696 struct bpf_kfunc_desc *desc; 2697 const char *func_name; 2698 struct btf *desc_btf; 2699 unsigned long call_imm; 2700 unsigned long addr; 2701 int err; 2702 2703 prog_aux = env->prog->aux; 2704 tab = prog_aux->kfunc_tab; 2705 btf_tab = prog_aux->kfunc_btf_tab; 2706 if (!tab) { 2707 if (!btf_vmlinux) { 2708 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2709 return -ENOTSUPP; 2710 } 2711 2712 if (!env->prog->jit_requested) { 2713 verbose(env, "JIT is required for calling kernel function\n"); 2714 return -ENOTSUPP; 2715 } 2716 2717 if (!bpf_jit_supports_kfunc_call()) { 2718 verbose(env, "JIT does not support calling kernel function\n"); 2719 return -ENOTSUPP; 2720 } 2721 2722 if (!env->prog->gpl_compatible) { 2723 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2724 return -EINVAL; 2725 } 2726 2727 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2728 if (!tab) 2729 return -ENOMEM; 2730 prog_aux->kfunc_tab = tab; 2731 } 2732 2733 /* func_id == 0 is always invalid, but instead of returning an error, be 2734 * conservative and wait until the code elimination pass before returning 2735 * error, so that invalid calls that get pruned out can be in BPF programs 2736 * loaded from userspace. It is also required that offset be untouched 2737 * for such calls. 2738 */ 2739 if (!func_id && !offset) 2740 return 0; 2741 2742 if (!btf_tab && offset) { 2743 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2744 if (!btf_tab) 2745 return -ENOMEM; 2746 prog_aux->kfunc_btf_tab = btf_tab; 2747 } 2748 2749 desc_btf = find_kfunc_desc_btf(env, offset); 2750 if (IS_ERR(desc_btf)) { 2751 verbose(env, "failed to find BTF for kernel function\n"); 2752 return PTR_ERR(desc_btf); 2753 } 2754 2755 if (find_kfunc_desc(env->prog, func_id, offset)) 2756 return 0; 2757 2758 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2759 verbose(env, "too many different kernel function calls\n"); 2760 return -E2BIG; 2761 } 2762 2763 func = btf_type_by_id(desc_btf, func_id); 2764 if (!func || !btf_type_is_func(func)) { 2765 verbose(env, "kernel btf_id %u is not a function\n", 2766 func_id); 2767 return -EINVAL; 2768 } 2769 func_proto = btf_type_by_id(desc_btf, func->type); 2770 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2771 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2772 func_id); 2773 return -EINVAL; 2774 } 2775 2776 func_name = btf_name_by_offset(desc_btf, func->name_off); 2777 addr = kallsyms_lookup_name(func_name); 2778 if (!addr) { 2779 verbose(env, "cannot find address for kernel function %s\n", 2780 func_name); 2781 return -EINVAL; 2782 } 2783 specialize_kfunc(env, func_id, offset, &addr); 2784 2785 if (bpf_jit_supports_far_kfunc_call()) { 2786 call_imm = func_id; 2787 } else { 2788 call_imm = BPF_CALL_IMM(addr); 2789 /* Check whether the relative offset overflows desc->imm */ 2790 if ((unsigned long)(s32)call_imm != call_imm) { 2791 verbose(env, "address of kernel function %s is out of range\n", 2792 func_name); 2793 return -EINVAL; 2794 } 2795 } 2796 2797 if (bpf_dev_bound_kfunc_id(func_id)) { 2798 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2799 if (err) 2800 return err; 2801 } 2802 2803 desc = &tab->descs[tab->nr_descs++]; 2804 desc->func_id = func_id; 2805 desc->imm = call_imm; 2806 desc->offset = offset; 2807 desc->addr = addr; 2808 err = btf_distill_func_proto(&env->log, desc_btf, 2809 func_proto, func_name, 2810 &desc->func_model); 2811 if (!err) 2812 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2813 kfunc_desc_cmp_by_id_off, NULL); 2814 return err; 2815 } 2816 2817 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2818 { 2819 const struct bpf_kfunc_desc *d0 = a; 2820 const struct bpf_kfunc_desc *d1 = b; 2821 2822 if (d0->imm != d1->imm) 2823 return d0->imm < d1->imm ? -1 : 1; 2824 if (d0->offset != d1->offset) 2825 return d0->offset < d1->offset ? -1 : 1; 2826 return 0; 2827 } 2828 2829 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2830 { 2831 struct bpf_kfunc_desc_tab *tab; 2832 2833 tab = prog->aux->kfunc_tab; 2834 if (!tab) 2835 return; 2836 2837 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2838 kfunc_desc_cmp_by_imm_off, NULL); 2839 } 2840 2841 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2842 { 2843 return !!prog->aux->kfunc_tab; 2844 } 2845 2846 const struct btf_func_model * 2847 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2848 const struct bpf_insn *insn) 2849 { 2850 const struct bpf_kfunc_desc desc = { 2851 .imm = insn->imm, 2852 .offset = insn->off, 2853 }; 2854 const struct bpf_kfunc_desc *res; 2855 struct bpf_kfunc_desc_tab *tab; 2856 2857 tab = prog->aux->kfunc_tab; 2858 res = bsearch(&desc, tab->descs, tab->nr_descs, 2859 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2860 2861 return res ? &res->func_model : NULL; 2862 } 2863 2864 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2865 { 2866 struct bpf_subprog_info *subprog = env->subprog_info; 2867 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 2868 struct bpf_insn *insn = env->prog->insnsi; 2869 2870 /* Add entry function. */ 2871 ret = add_subprog(env, 0); 2872 if (ret) 2873 return ret; 2874 2875 for (i = 0; i < insn_cnt; i++, insn++) { 2876 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2877 !bpf_pseudo_kfunc_call(insn)) 2878 continue; 2879 2880 if (!env->bpf_capable) { 2881 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2882 return -EPERM; 2883 } 2884 2885 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2886 ret = add_subprog(env, i + insn->imm + 1); 2887 else 2888 ret = add_kfunc_call(env, insn->imm, insn->off); 2889 2890 if (ret < 0) 2891 return ret; 2892 } 2893 2894 ret = bpf_find_exception_callback_insn_off(env); 2895 if (ret < 0) 2896 return ret; 2897 ex_cb_insn = ret; 2898 2899 /* If ex_cb_insn > 0, this means that the main program has a subprog 2900 * marked using BTF decl tag to serve as the exception callback. 2901 */ 2902 if (ex_cb_insn) { 2903 ret = add_subprog(env, ex_cb_insn); 2904 if (ret < 0) 2905 return ret; 2906 for (i = 1; i < env->subprog_cnt; i++) { 2907 if (env->subprog_info[i].start != ex_cb_insn) 2908 continue; 2909 env->exception_callback_subprog = i; 2910 mark_subprog_exc_cb(env, i); 2911 break; 2912 } 2913 } 2914 2915 /* Add a fake 'exit' subprog which could simplify subprog iteration 2916 * logic. 'subprog_cnt' should not be increased. 2917 */ 2918 subprog[env->subprog_cnt].start = insn_cnt; 2919 2920 if (env->log.level & BPF_LOG_LEVEL2) 2921 for (i = 0; i < env->subprog_cnt; i++) 2922 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2923 2924 return 0; 2925 } 2926 2927 static int check_subprogs(struct bpf_verifier_env *env) 2928 { 2929 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2930 struct bpf_subprog_info *subprog = env->subprog_info; 2931 struct bpf_insn *insn = env->prog->insnsi; 2932 int insn_cnt = env->prog->len; 2933 2934 /* now check that all jumps are within the same subprog */ 2935 subprog_start = subprog[cur_subprog].start; 2936 subprog_end = subprog[cur_subprog + 1].start; 2937 for (i = 0; i < insn_cnt; i++) { 2938 u8 code = insn[i].code; 2939 2940 if (code == (BPF_JMP | BPF_CALL) && 2941 insn[i].src_reg == 0 && 2942 insn[i].imm == BPF_FUNC_tail_call) 2943 subprog[cur_subprog].has_tail_call = true; 2944 if (BPF_CLASS(code) == BPF_LD && 2945 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2946 subprog[cur_subprog].has_ld_abs = true; 2947 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2948 goto next; 2949 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2950 goto next; 2951 if (code == (BPF_JMP32 | BPF_JA)) 2952 off = i + insn[i].imm + 1; 2953 else 2954 off = i + insn[i].off + 1; 2955 if (off < subprog_start || off >= subprog_end) { 2956 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2957 return -EINVAL; 2958 } 2959 next: 2960 if (i == subprog_end - 1) { 2961 /* to avoid fall-through from one subprog into another 2962 * the last insn of the subprog should be either exit 2963 * or unconditional jump back or bpf_throw call 2964 */ 2965 if (code != (BPF_JMP | BPF_EXIT) && 2966 code != (BPF_JMP32 | BPF_JA) && 2967 code != (BPF_JMP | BPF_JA)) { 2968 verbose(env, "last insn is not an exit or jmp\n"); 2969 return -EINVAL; 2970 } 2971 subprog_start = subprog_end; 2972 cur_subprog++; 2973 if (cur_subprog < env->subprog_cnt) 2974 subprog_end = subprog[cur_subprog + 1].start; 2975 } 2976 } 2977 return 0; 2978 } 2979 2980 /* Parentage chain of this register (or stack slot) should take care of all 2981 * issues like callee-saved registers, stack slot allocation time, etc. 2982 */ 2983 static int mark_reg_read(struct bpf_verifier_env *env, 2984 const struct bpf_reg_state *state, 2985 struct bpf_reg_state *parent, u8 flag) 2986 { 2987 bool writes = parent == state->parent; /* Observe write marks */ 2988 int cnt = 0; 2989 2990 while (parent) { 2991 /* if read wasn't screened by an earlier write ... */ 2992 if (writes && state->live & REG_LIVE_WRITTEN) 2993 break; 2994 if (parent->live & REG_LIVE_DONE) { 2995 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2996 reg_type_str(env, parent->type), 2997 parent->var_off.value, parent->off); 2998 return -EFAULT; 2999 } 3000 /* The first condition is more likely to be true than the 3001 * second, checked it first. 3002 */ 3003 if ((parent->live & REG_LIVE_READ) == flag || 3004 parent->live & REG_LIVE_READ64) 3005 /* The parentage chain never changes and 3006 * this parent was already marked as LIVE_READ. 3007 * There is no need to keep walking the chain again and 3008 * keep re-marking all parents as LIVE_READ. 3009 * This case happens when the same register is read 3010 * multiple times without writes into it in-between. 3011 * Also, if parent has the stronger REG_LIVE_READ64 set, 3012 * then no need to set the weak REG_LIVE_READ32. 3013 */ 3014 break; 3015 /* ... then we depend on parent's value */ 3016 parent->live |= flag; 3017 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3018 if (flag == REG_LIVE_READ64) 3019 parent->live &= ~REG_LIVE_READ32; 3020 state = parent; 3021 parent = state->parent; 3022 writes = true; 3023 cnt++; 3024 } 3025 3026 if (env->longest_mark_read_walk < cnt) 3027 env->longest_mark_read_walk = cnt; 3028 return 0; 3029 } 3030 3031 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3032 { 3033 struct bpf_func_state *state = func(env, reg); 3034 int spi, ret; 3035 3036 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3037 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3038 * check_kfunc_call. 3039 */ 3040 if (reg->type == CONST_PTR_TO_DYNPTR) 3041 return 0; 3042 spi = dynptr_get_spi(env, reg); 3043 if (spi < 0) 3044 return spi; 3045 /* Caller ensures dynptr is valid and initialized, which means spi is in 3046 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3047 * read. 3048 */ 3049 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 3050 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3051 if (ret) 3052 return ret; 3053 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3054 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3055 } 3056 3057 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3058 int spi, int nr_slots) 3059 { 3060 struct bpf_func_state *state = func(env, reg); 3061 int err, i; 3062 3063 for (i = 0; i < nr_slots; i++) { 3064 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3065 3066 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3067 if (err) 3068 return err; 3069 3070 mark_stack_slot_scratched(env, spi - i); 3071 } 3072 3073 return 0; 3074 } 3075 3076 /* This function is supposed to be used by the following 32-bit optimization 3077 * code only. It returns TRUE if the source or destination register operates 3078 * on 64-bit, otherwise return FALSE. 3079 */ 3080 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3081 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3082 { 3083 u8 code, class, op; 3084 3085 code = insn->code; 3086 class = BPF_CLASS(code); 3087 op = BPF_OP(code); 3088 if (class == BPF_JMP) { 3089 /* BPF_EXIT for "main" will reach here. Return TRUE 3090 * conservatively. 3091 */ 3092 if (op == BPF_EXIT) 3093 return true; 3094 if (op == BPF_CALL) { 3095 /* BPF to BPF call will reach here because of marking 3096 * caller saved clobber with DST_OP_NO_MARK for which we 3097 * don't care the register def because they are anyway 3098 * marked as NOT_INIT already. 3099 */ 3100 if (insn->src_reg == BPF_PSEUDO_CALL) 3101 return false; 3102 /* Helper call will reach here because of arg type 3103 * check, conservatively return TRUE. 3104 */ 3105 if (t == SRC_OP) 3106 return true; 3107 3108 return false; 3109 } 3110 } 3111 3112 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3113 return false; 3114 3115 if (class == BPF_ALU64 || class == BPF_JMP || 3116 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3117 return true; 3118 3119 if (class == BPF_ALU || class == BPF_JMP32) 3120 return false; 3121 3122 if (class == BPF_LDX) { 3123 if (t != SRC_OP) 3124 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3125 /* LDX source must be ptr. */ 3126 return true; 3127 } 3128 3129 if (class == BPF_STX) { 3130 /* BPF_STX (including atomic variants) has multiple source 3131 * operands, one of which is a ptr. Check whether the caller is 3132 * asking about it. 3133 */ 3134 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3135 return true; 3136 return BPF_SIZE(code) == BPF_DW; 3137 } 3138 3139 if (class == BPF_LD) { 3140 u8 mode = BPF_MODE(code); 3141 3142 /* LD_IMM64 */ 3143 if (mode == BPF_IMM) 3144 return true; 3145 3146 /* Both LD_IND and LD_ABS return 32-bit data. */ 3147 if (t != SRC_OP) 3148 return false; 3149 3150 /* Implicit ctx ptr. */ 3151 if (regno == BPF_REG_6) 3152 return true; 3153 3154 /* Explicit source could be any width. */ 3155 return true; 3156 } 3157 3158 if (class == BPF_ST) 3159 /* The only source register for BPF_ST is a ptr. */ 3160 return true; 3161 3162 /* Conservatively return true at default. */ 3163 return true; 3164 } 3165 3166 /* Return the regno defined by the insn, or -1. */ 3167 static int insn_def_regno(const struct bpf_insn *insn) 3168 { 3169 switch (BPF_CLASS(insn->code)) { 3170 case BPF_JMP: 3171 case BPF_JMP32: 3172 case BPF_ST: 3173 return -1; 3174 case BPF_STX: 3175 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3176 (insn->imm & BPF_FETCH)) { 3177 if (insn->imm == BPF_CMPXCHG) 3178 return BPF_REG_0; 3179 else 3180 return insn->src_reg; 3181 } else { 3182 return -1; 3183 } 3184 default: 3185 return insn->dst_reg; 3186 } 3187 } 3188 3189 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3190 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3191 { 3192 int dst_reg = insn_def_regno(insn); 3193 3194 if (dst_reg == -1) 3195 return false; 3196 3197 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3198 } 3199 3200 static void mark_insn_zext(struct bpf_verifier_env *env, 3201 struct bpf_reg_state *reg) 3202 { 3203 s32 def_idx = reg->subreg_def; 3204 3205 if (def_idx == DEF_NOT_SUBREG) 3206 return; 3207 3208 env->insn_aux_data[def_idx - 1].zext_dst = true; 3209 /* The dst will be zero extended, so won't be sub-register anymore. */ 3210 reg->subreg_def = DEF_NOT_SUBREG; 3211 } 3212 3213 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3214 enum reg_arg_type t) 3215 { 3216 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3217 struct bpf_reg_state *reg; 3218 bool rw64; 3219 3220 if (regno >= MAX_BPF_REG) { 3221 verbose(env, "R%d is invalid\n", regno); 3222 return -EINVAL; 3223 } 3224 3225 mark_reg_scratched(env, regno); 3226 3227 reg = ®s[regno]; 3228 rw64 = is_reg64(env, insn, regno, reg, t); 3229 if (t == SRC_OP) { 3230 /* check whether register used as source operand can be read */ 3231 if (reg->type == NOT_INIT) { 3232 verbose(env, "R%d !read_ok\n", regno); 3233 return -EACCES; 3234 } 3235 /* We don't need to worry about FP liveness because it's read-only */ 3236 if (regno == BPF_REG_FP) 3237 return 0; 3238 3239 if (rw64) 3240 mark_insn_zext(env, reg); 3241 3242 return mark_reg_read(env, reg, reg->parent, 3243 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3244 } else { 3245 /* check whether register used as dest operand can be written to */ 3246 if (regno == BPF_REG_FP) { 3247 verbose(env, "frame pointer is read only\n"); 3248 return -EACCES; 3249 } 3250 reg->live |= REG_LIVE_WRITTEN; 3251 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3252 if (t == DST_OP) 3253 mark_reg_unknown(env, regs, regno); 3254 } 3255 return 0; 3256 } 3257 3258 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3259 enum reg_arg_type t) 3260 { 3261 struct bpf_verifier_state *vstate = env->cur_state; 3262 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3263 3264 return __check_reg_arg(env, state->regs, regno, t); 3265 } 3266 3267 static int insn_stack_access_flags(int frameno, int spi) 3268 { 3269 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3270 } 3271 3272 static int insn_stack_access_spi(int insn_flags) 3273 { 3274 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3275 } 3276 3277 static int insn_stack_access_frameno(int insn_flags) 3278 { 3279 return insn_flags & INSN_F_FRAMENO_MASK; 3280 } 3281 3282 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3283 { 3284 env->insn_aux_data[idx].jmp_point = true; 3285 } 3286 3287 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3288 { 3289 return env->insn_aux_data[insn_idx].jmp_point; 3290 } 3291 3292 /* for any branch, call, exit record the history of jmps in the given state */ 3293 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 3294 int insn_flags) 3295 { 3296 u32 cnt = cur->jmp_history_cnt; 3297 struct bpf_jmp_history_entry *p; 3298 size_t alloc_size; 3299 3300 /* combine instruction flags if we already recorded this instruction */ 3301 if (env->cur_hist_ent) { 3302 /* atomic instructions push insn_flags twice, for READ and 3303 * WRITE sides, but they should agree on stack slot 3304 */ 3305 WARN_ONCE((env->cur_hist_ent->flags & insn_flags) && 3306 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 3307 "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n", 3308 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 3309 env->cur_hist_ent->flags |= insn_flags; 3310 return 0; 3311 } 3312 3313 cnt++; 3314 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3315 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3316 if (!p) 3317 return -ENOMEM; 3318 cur->jmp_history = p; 3319 3320 p = &cur->jmp_history[cnt - 1]; 3321 p->idx = env->insn_idx; 3322 p->prev_idx = env->prev_insn_idx; 3323 p->flags = insn_flags; 3324 cur->jmp_history_cnt = cnt; 3325 env->cur_hist_ent = p; 3326 3327 return 0; 3328 } 3329 3330 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st, 3331 u32 hist_end, int insn_idx) 3332 { 3333 if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx) 3334 return &st->jmp_history[hist_end - 1]; 3335 return NULL; 3336 } 3337 3338 /* Backtrack one insn at a time. If idx is not at the top of recorded 3339 * history then previous instruction came from straight line execution. 3340 * Return -ENOENT if we exhausted all instructions within given state. 3341 * 3342 * It's legal to have a bit of a looping with the same starting and ending 3343 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3344 * instruction index is the same as state's first_idx doesn't mean we are 3345 * done. If there is still some jump history left, we should keep going. We 3346 * need to take into account that we might have a jump history between given 3347 * state's parent and itself, due to checkpointing. In this case, we'll have 3348 * history entry recording a jump from last instruction of parent state and 3349 * first instruction of given state. 3350 */ 3351 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3352 u32 *history) 3353 { 3354 u32 cnt = *history; 3355 3356 if (i == st->first_insn_idx) { 3357 if (cnt == 0) 3358 return -ENOENT; 3359 if (cnt == 1 && st->jmp_history[0].idx == i) 3360 return -ENOENT; 3361 } 3362 3363 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3364 i = st->jmp_history[cnt - 1].prev_idx; 3365 (*history)--; 3366 } else { 3367 i--; 3368 } 3369 return i; 3370 } 3371 3372 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3373 { 3374 const struct btf_type *func; 3375 struct btf *desc_btf; 3376 3377 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3378 return NULL; 3379 3380 desc_btf = find_kfunc_desc_btf(data, insn->off); 3381 if (IS_ERR(desc_btf)) 3382 return "<error>"; 3383 3384 func = btf_type_by_id(desc_btf, insn->imm); 3385 return btf_name_by_offset(desc_btf, func->name_off); 3386 } 3387 3388 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3389 { 3390 bt->frame = frame; 3391 } 3392 3393 static inline void bt_reset(struct backtrack_state *bt) 3394 { 3395 struct bpf_verifier_env *env = bt->env; 3396 3397 memset(bt, 0, sizeof(*bt)); 3398 bt->env = env; 3399 } 3400 3401 static inline u32 bt_empty(struct backtrack_state *bt) 3402 { 3403 u64 mask = 0; 3404 int i; 3405 3406 for (i = 0; i <= bt->frame; i++) 3407 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3408 3409 return mask == 0; 3410 } 3411 3412 static inline int bt_subprog_enter(struct backtrack_state *bt) 3413 { 3414 if (bt->frame == MAX_CALL_FRAMES - 1) { 3415 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3416 WARN_ONCE(1, "verifier backtracking bug"); 3417 return -EFAULT; 3418 } 3419 bt->frame++; 3420 return 0; 3421 } 3422 3423 static inline int bt_subprog_exit(struct backtrack_state *bt) 3424 { 3425 if (bt->frame == 0) { 3426 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3427 WARN_ONCE(1, "verifier backtracking bug"); 3428 return -EFAULT; 3429 } 3430 bt->frame--; 3431 return 0; 3432 } 3433 3434 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3435 { 3436 bt->reg_masks[frame] |= 1 << reg; 3437 } 3438 3439 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3440 { 3441 bt->reg_masks[frame] &= ~(1 << reg); 3442 } 3443 3444 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3445 { 3446 bt_set_frame_reg(bt, bt->frame, reg); 3447 } 3448 3449 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3450 { 3451 bt_clear_frame_reg(bt, bt->frame, reg); 3452 } 3453 3454 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3455 { 3456 bt->stack_masks[frame] |= 1ull << slot; 3457 } 3458 3459 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3460 { 3461 bt->stack_masks[frame] &= ~(1ull << slot); 3462 } 3463 3464 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3465 { 3466 return bt->reg_masks[frame]; 3467 } 3468 3469 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3470 { 3471 return bt->reg_masks[bt->frame]; 3472 } 3473 3474 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3475 { 3476 return bt->stack_masks[frame]; 3477 } 3478 3479 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3480 { 3481 return bt->stack_masks[bt->frame]; 3482 } 3483 3484 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3485 { 3486 return bt->reg_masks[bt->frame] & (1 << reg); 3487 } 3488 3489 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 3490 { 3491 return bt->stack_masks[frame] & (1ull << slot); 3492 } 3493 3494 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3495 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3496 { 3497 DECLARE_BITMAP(mask, 64); 3498 bool first = true; 3499 int i, n; 3500 3501 buf[0] = '\0'; 3502 3503 bitmap_from_u64(mask, reg_mask); 3504 for_each_set_bit(i, mask, 32) { 3505 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3506 first = false; 3507 buf += n; 3508 buf_sz -= n; 3509 if (buf_sz < 0) 3510 break; 3511 } 3512 } 3513 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3514 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3515 { 3516 DECLARE_BITMAP(mask, 64); 3517 bool first = true; 3518 int i, n; 3519 3520 buf[0] = '\0'; 3521 3522 bitmap_from_u64(mask, stack_mask); 3523 for_each_set_bit(i, mask, 64) { 3524 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3525 first = false; 3526 buf += n; 3527 buf_sz -= n; 3528 if (buf_sz < 0) 3529 break; 3530 } 3531 } 3532 3533 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3534 3535 /* For given verifier state backtrack_insn() is called from the last insn to 3536 * the first insn. Its purpose is to compute a bitmask of registers and 3537 * stack slots that needs precision in the parent verifier state. 3538 * 3539 * @idx is an index of the instruction we are currently processing; 3540 * @subseq_idx is an index of the subsequent instruction that: 3541 * - *would be* executed next, if jump history is viewed in forward order; 3542 * - *was* processed previously during backtracking. 3543 */ 3544 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3545 struct bpf_jmp_history_entry *hist, struct backtrack_state *bt) 3546 { 3547 const struct bpf_insn_cbs cbs = { 3548 .cb_call = disasm_kfunc_name, 3549 .cb_print = verbose, 3550 .private_data = env, 3551 }; 3552 struct bpf_insn *insn = env->prog->insnsi + idx; 3553 u8 class = BPF_CLASS(insn->code); 3554 u8 opcode = BPF_OP(insn->code); 3555 u8 mode = BPF_MODE(insn->code); 3556 u32 dreg = insn->dst_reg; 3557 u32 sreg = insn->src_reg; 3558 u32 spi, i, fr; 3559 3560 if (insn->code == 0) 3561 return 0; 3562 if (env->log.level & BPF_LOG_LEVEL2) { 3563 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3564 verbose(env, "mark_precise: frame%d: regs=%s ", 3565 bt->frame, env->tmp_str_buf); 3566 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3567 verbose(env, "stack=%s before ", env->tmp_str_buf); 3568 verbose(env, "%d: ", idx); 3569 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3570 } 3571 3572 if (class == BPF_ALU || class == BPF_ALU64) { 3573 if (!bt_is_reg_set(bt, dreg)) 3574 return 0; 3575 if (opcode == BPF_END || opcode == BPF_NEG) { 3576 /* sreg is reserved and unused 3577 * dreg still need precision before this insn 3578 */ 3579 return 0; 3580 } else if (opcode == BPF_MOV) { 3581 if (BPF_SRC(insn->code) == BPF_X) { 3582 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3583 * dreg needs precision after this insn 3584 * sreg needs precision before this insn 3585 */ 3586 bt_clear_reg(bt, dreg); 3587 bt_set_reg(bt, sreg); 3588 } else { 3589 /* dreg = K 3590 * dreg needs precision after this insn. 3591 * Corresponding register is already marked 3592 * as precise=true in this verifier state. 3593 * No further markings in parent are necessary 3594 */ 3595 bt_clear_reg(bt, dreg); 3596 } 3597 } else { 3598 if (BPF_SRC(insn->code) == BPF_X) { 3599 /* dreg += sreg 3600 * both dreg and sreg need precision 3601 * before this insn 3602 */ 3603 bt_set_reg(bt, sreg); 3604 } /* else dreg += K 3605 * dreg still needs precision before this insn 3606 */ 3607 } 3608 } else if (class == BPF_LDX) { 3609 if (!bt_is_reg_set(bt, dreg)) 3610 return 0; 3611 bt_clear_reg(bt, dreg); 3612 3613 /* scalars can only be spilled into stack w/o losing precision. 3614 * Load from any other memory can be zero extended. 3615 * The desire to keep that precision is already indicated 3616 * by 'precise' mark in corresponding register of this state. 3617 * No further tracking necessary. 3618 */ 3619 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3620 return 0; 3621 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3622 * that [fp - off] slot contains scalar that needs to be 3623 * tracked with precision 3624 */ 3625 spi = insn_stack_access_spi(hist->flags); 3626 fr = insn_stack_access_frameno(hist->flags); 3627 bt_set_frame_slot(bt, fr, spi); 3628 } else if (class == BPF_STX || class == BPF_ST) { 3629 if (bt_is_reg_set(bt, dreg)) 3630 /* stx & st shouldn't be using _scalar_ dst_reg 3631 * to access memory. It means backtracking 3632 * encountered a case of pointer subtraction. 3633 */ 3634 return -ENOTSUPP; 3635 /* scalars can only be spilled into stack */ 3636 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3637 return 0; 3638 spi = insn_stack_access_spi(hist->flags); 3639 fr = insn_stack_access_frameno(hist->flags); 3640 if (!bt_is_frame_slot_set(bt, fr, spi)) 3641 return 0; 3642 bt_clear_frame_slot(bt, fr, spi); 3643 if (class == BPF_STX) 3644 bt_set_reg(bt, sreg); 3645 } else if (class == BPF_JMP || class == BPF_JMP32) { 3646 if (bpf_pseudo_call(insn)) { 3647 int subprog_insn_idx, subprog; 3648 3649 subprog_insn_idx = idx + insn->imm + 1; 3650 subprog = find_subprog(env, subprog_insn_idx); 3651 if (subprog < 0) 3652 return -EFAULT; 3653 3654 if (subprog_is_global(env, subprog)) { 3655 /* check that jump history doesn't have any 3656 * extra instructions from subprog; the next 3657 * instruction after call to global subprog 3658 * should be literally next instruction in 3659 * caller program 3660 */ 3661 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3662 /* r1-r5 are invalidated after subprog call, 3663 * so for global func call it shouldn't be set 3664 * anymore 3665 */ 3666 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3667 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3668 WARN_ONCE(1, "verifier backtracking bug"); 3669 return -EFAULT; 3670 } 3671 /* global subprog always sets R0 */ 3672 bt_clear_reg(bt, BPF_REG_0); 3673 return 0; 3674 } else { 3675 /* static subprog call instruction, which 3676 * means that we are exiting current subprog, 3677 * so only r1-r5 could be still requested as 3678 * precise, r0 and r6-r10 or any stack slot in 3679 * the current frame should be zero by now 3680 */ 3681 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3682 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3683 WARN_ONCE(1, "verifier backtracking bug"); 3684 return -EFAULT; 3685 } 3686 /* we are now tracking register spills correctly, 3687 * so any instance of leftover slots is a bug 3688 */ 3689 if (bt_stack_mask(bt) != 0) { 3690 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 3691 WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)"); 3692 return -EFAULT; 3693 } 3694 /* propagate r1-r5 to the caller */ 3695 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3696 if (bt_is_reg_set(bt, i)) { 3697 bt_clear_reg(bt, i); 3698 bt_set_frame_reg(bt, bt->frame - 1, i); 3699 } 3700 } 3701 if (bt_subprog_exit(bt)) 3702 return -EFAULT; 3703 return 0; 3704 } 3705 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 3706 /* exit from callback subprog to callback-calling helper or 3707 * kfunc call. Use idx/subseq_idx check to discern it from 3708 * straight line code backtracking. 3709 * Unlike the subprog call handling above, we shouldn't 3710 * propagate precision of r1-r5 (if any requested), as they are 3711 * not actually arguments passed directly to callback subprogs 3712 */ 3713 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3714 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3715 WARN_ONCE(1, "verifier backtracking bug"); 3716 return -EFAULT; 3717 } 3718 if (bt_stack_mask(bt) != 0) { 3719 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 3720 WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)"); 3721 return -EFAULT; 3722 } 3723 /* clear r1-r5 in callback subprog's mask */ 3724 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3725 bt_clear_reg(bt, i); 3726 if (bt_subprog_exit(bt)) 3727 return -EFAULT; 3728 return 0; 3729 } else if (opcode == BPF_CALL) { 3730 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3731 * catch this error later. Make backtracking conservative 3732 * with ENOTSUPP. 3733 */ 3734 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3735 return -ENOTSUPP; 3736 /* regular helper call sets R0 */ 3737 bt_clear_reg(bt, BPF_REG_0); 3738 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3739 /* if backtracing was looking for registers R1-R5 3740 * they should have been found already. 3741 */ 3742 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3743 WARN_ONCE(1, "verifier backtracking bug"); 3744 return -EFAULT; 3745 } 3746 } else if (opcode == BPF_EXIT) { 3747 bool r0_precise; 3748 3749 /* Backtracking to a nested function call, 'idx' is a part of 3750 * the inner frame 'subseq_idx' is a part of the outer frame. 3751 * In case of a regular function call, instructions giving 3752 * precision to registers R1-R5 should have been found already. 3753 * In case of a callback, it is ok to have R1-R5 marked for 3754 * backtracking, as these registers are set by the function 3755 * invoking callback. 3756 */ 3757 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 3758 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3759 bt_clear_reg(bt, i); 3760 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3761 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3762 WARN_ONCE(1, "verifier backtracking bug"); 3763 return -EFAULT; 3764 } 3765 3766 /* BPF_EXIT in subprog or callback always returns 3767 * right after the call instruction, so by checking 3768 * whether the instruction at subseq_idx-1 is subprog 3769 * call or not we can distinguish actual exit from 3770 * *subprog* from exit from *callback*. In the former 3771 * case, we need to propagate r0 precision, if 3772 * necessary. In the former we never do that. 3773 */ 3774 r0_precise = subseq_idx - 1 >= 0 && 3775 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3776 bt_is_reg_set(bt, BPF_REG_0); 3777 3778 bt_clear_reg(bt, BPF_REG_0); 3779 if (bt_subprog_enter(bt)) 3780 return -EFAULT; 3781 3782 if (r0_precise) 3783 bt_set_reg(bt, BPF_REG_0); 3784 /* r6-r9 and stack slots will stay set in caller frame 3785 * bitmasks until we return back from callee(s) 3786 */ 3787 return 0; 3788 } else if (BPF_SRC(insn->code) == BPF_X) { 3789 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3790 return 0; 3791 /* dreg <cond> sreg 3792 * Both dreg and sreg need precision before 3793 * this insn. If only sreg was marked precise 3794 * before it would be equally necessary to 3795 * propagate it to dreg. 3796 */ 3797 bt_set_reg(bt, dreg); 3798 bt_set_reg(bt, sreg); 3799 /* else dreg <cond> K 3800 * Only dreg still needs precision before 3801 * this insn, so for the K-based conditional 3802 * there is nothing new to be marked. 3803 */ 3804 } 3805 } else if (class == BPF_LD) { 3806 if (!bt_is_reg_set(bt, dreg)) 3807 return 0; 3808 bt_clear_reg(bt, dreg); 3809 /* It's ld_imm64 or ld_abs or ld_ind. 3810 * For ld_imm64 no further tracking of precision 3811 * into parent is necessary 3812 */ 3813 if (mode == BPF_IND || mode == BPF_ABS) 3814 /* to be analyzed */ 3815 return -ENOTSUPP; 3816 } 3817 return 0; 3818 } 3819 3820 /* the scalar precision tracking algorithm: 3821 * . at the start all registers have precise=false. 3822 * . scalar ranges are tracked as normal through alu and jmp insns. 3823 * . once precise value of the scalar register is used in: 3824 * . ptr + scalar alu 3825 * . if (scalar cond K|scalar) 3826 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3827 * backtrack through the verifier states and mark all registers and 3828 * stack slots with spilled constants that these scalar regisers 3829 * should be precise. 3830 * . during state pruning two registers (or spilled stack slots) 3831 * are equivalent if both are not precise. 3832 * 3833 * Note the verifier cannot simply walk register parentage chain, 3834 * since many different registers and stack slots could have been 3835 * used to compute single precise scalar. 3836 * 3837 * The approach of starting with precise=true for all registers and then 3838 * backtrack to mark a register as not precise when the verifier detects 3839 * that program doesn't care about specific value (e.g., when helper 3840 * takes register as ARG_ANYTHING parameter) is not safe. 3841 * 3842 * It's ok to walk single parentage chain of the verifier states. 3843 * It's possible that this backtracking will go all the way till 1st insn. 3844 * All other branches will be explored for needing precision later. 3845 * 3846 * The backtracking needs to deal with cases like: 3847 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3848 * r9 -= r8 3849 * r5 = r9 3850 * if r5 > 0x79f goto pc+7 3851 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3852 * r5 += 1 3853 * ... 3854 * call bpf_perf_event_output#25 3855 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3856 * 3857 * and this case: 3858 * r6 = 1 3859 * call foo // uses callee's r6 inside to compute r0 3860 * r0 += r6 3861 * if r0 == 0 goto 3862 * 3863 * to track above reg_mask/stack_mask needs to be independent for each frame. 3864 * 3865 * Also if parent's curframe > frame where backtracking started, 3866 * the verifier need to mark registers in both frames, otherwise callees 3867 * may incorrectly prune callers. This is similar to 3868 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3869 * 3870 * For now backtracking falls back into conservative marking. 3871 */ 3872 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3873 struct bpf_verifier_state *st) 3874 { 3875 struct bpf_func_state *func; 3876 struct bpf_reg_state *reg; 3877 int i, j; 3878 3879 if (env->log.level & BPF_LOG_LEVEL2) { 3880 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3881 st->curframe); 3882 } 3883 3884 /* big hammer: mark all scalars precise in this path. 3885 * pop_stack may still get !precise scalars. 3886 * We also skip current state and go straight to first parent state, 3887 * because precision markings in current non-checkpointed state are 3888 * not needed. See why in the comment in __mark_chain_precision below. 3889 */ 3890 for (st = st->parent; st; st = st->parent) { 3891 for (i = 0; i <= st->curframe; i++) { 3892 func = st->frame[i]; 3893 for (j = 0; j < BPF_REG_FP; j++) { 3894 reg = &func->regs[j]; 3895 if (reg->type != SCALAR_VALUE || reg->precise) 3896 continue; 3897 reg->precise = true; 3898 if (env->log.level & BPF_LOG_LEVEL2) { 3899 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3900 i, j); 3901 } 3902 } 3903 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3904 if (!is_spilled_reg(&func->stack[j])) 3905 continue; 3906 reg = &func->stack[j].spilled_ptr; 3907 if (reg->type != SCALAR_VALUE || reg->precise) 3908 continue; 3909 reg->precise = true; 3910 if (env->log.level & BPF_LOG_LEVEL2) { 3911 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3912 i, -(j + 1) * 8); 3913 } 3914 } 3915 } 3916 } 3917 } 3918 3919 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3920 { 3921 struct bpf_func_state *func; 3922 struct bpf_reg_state *reg; 3923 int i, j; 3924 3925 for (i = 0; i <= st->curframe; i++) { 3926 func = st->frame[i]; 3927 for (j = 0; j < BPF_REG_FP; j++) { 3928 reg = &func->regs[j]; 3929 if (reg->type != SCALAR_VALUE) 3930 continue; 3931 reg->precise = false; 3932 } 3933 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3934 if (!is_spilled_reg(&func->stack[j])) 3935 continue; 3936 reg = &func->stack[j].spilled_ptr; 3937 if (reg->type != SCALAR_VALUE) 3938 continue; 3939 reg->precise = false; 3940 } 3941 } 3942 } 3943 3944 static bool idset_contains(struct bpf_idset *s, u32 id) 3945 { 3946 u32 i; 3947 3948 for (i = 0; i < s->count; ++i) 3949 if (s->ids[i] == id) 3950 return true; 3951 3952 return false; 3953 } 3954 3955 static int idset_push(struct bpf_idset *s, u32 id) 3956 { 3957 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 3958 return -EFAULT; 3959 s->ids[s->count++] = id; 3960 return 0; 3961 } 3962 3963 static void idset_reset(struct bpf_idset *s) 3964 { 3965 s->count = 0; 3966 } 3967 3968 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 3969 * Mark all registers with these IDs as precise. 3970 */ 3971 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3972 { 3973 struct bpf_idset *precise_ids = &env->idset_scratch; 3974 struct backtrack_state *bt = &env->bt; 3975 struct bpf_func_state *func; 3976 struct bpf_reg_state *reg; 3977 DECLARE_BITMAP(mask, 64); 3978 int i, fr; 3979 3980 idset_reset(precise_ids); 3981 3982 for (fr = bt->frame; fr >= 0; fr--) { 3983 func = st->frame[fr]; 3984 3985 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 3986 for_each_set_bit(i, mask, 32) { 3987 reg = &func->regs[i]; 3988 if (!reg->id || reg->type != SCALAR_VALUE) 3989 continue; 3990 if (idset_push(precise_ids, reg->id)) 3991 return -EFAULT; 3992 } 3993 3994 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 3995 for_each_set_bit(i, mask, 64) { 3996 if (i >= func->allocated_stack / BPF_REG_SIZE) 3997 break; 3998 if (!is_spilled_scalar_reg(&func->stack[i])) 3999 continue; 4000 reg = &func->stack[i].spilled_ptr; 4001 if (!reg->id) 4002 continue; 4003 if (idset_push(precise_ids, reg->id)) 4004 return -EFAULT; 4005 } 4006 } 4007 4008 for (fr = 0; fr <= st->curframe; ++fr) { 4009 func = st->frame[fr]; 4010 4011 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 4012 reg = &func->regs[i]; 4013 if (!reg->id) 4014 continue; 4015 if (!idset_contains(precise_ids, reg->id)) 4016 continue; 4017 bt_set_frame_reg(bt, fr, i); 4018 } 4019 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 4020 if (!is_spilled_scalar_reg(&func->stack[i])) 4021 continue; 4022 reg = &func->stack[i].spilled_ptr; 4023 if (!reg->id) 4024 continue; 4025 if (!idset_contains(precise_ids, reg->id)) 4026 continue; 4027 bt_set_frame_slot(bt, fr, i); 4028 } 4029 } 4030 4031 return 0; 4032 } 4033 4034 /* 4035 * __mark_chain_precision() backtracks BPF program instruction sequence and 4036 * chain of verifier states making sure that register *regno* (if regno >= 0) 4037 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4038 * SCALARS, as well as any other registers and slots that contribute to 4039 * a tracked state of given registers/stack slots, depending on specific BPF 4040 * assembly instructions (see backtrack_insns() for exact instruction handling 4041 * logic). This backtracking relies on recorded jmp_history and is able to 4042 * traverse entire chain of parent states. This process ends only when all the 4043 * necessary registers/slots and their transitive dependencies are marked as 4044 * precise. 4045 * 4046 * One important and subtle aspect is that precise marks *do not matter* in 4047 * the currently verified state (current state). It is important to understand 4048 * why this is the case. 4049 * 4050 * First, note that current state is the state that is not yet "checkpointed", 4051 * i.e., it is not yet put into env->explored_states, and it has no children 4052 * states as well. It's ephemeral, and can end up either a) being discarded if 4053 * compatible explored state is found at some point or BPF_EXIT instruction is 4054 * reached or b) checkpointed and put into env->explored_states, branching out 4055 * into one or more children states. 4056 * 4057 * In the former case, precise markings in current state are completely 4058 * ignored by state comparison code (see regsafe() for details). Only 4059 * checkpointed ("old") state precise markings are important, and if old 4060 * state's register/slot is precise, regsafe() assumes current state's 4061 * register/slot as precise and checks value ranges exactly and precisely. If 4062 * states turn out to be compatible, current state's necessary precise 4063 * markings and any required parent states' precise markings are enforced 4064 * after the fact with propagate_precision() logic, after the fact. But it's 4065 * important to realize that in this case, even after marking current state 4066 * registers/slots as precise, we immediately discard current state. So what 4067 * actually matters is any of the precise markings propagated into current 4068 * state's parent states, which are always checkpointed (due to b) case above). 4069 * As such, for scenario a) it doesn't matter if current state has precise 4070 * markings set or not. 4071 * 4072 * Now, for the scenario b), checkpointing and forking into child(ren) 4073 * state(s). Note that before current state gets to checkpointing step, any 4074 * processed instruction always assumes precise SCALAR register/slot 4075 * knowledge: if precise value or range is useful to prune jump branch, BPF 4076 * verifier takes this opportunity enthusiastically. Similarly, when 4077 * register's value is used to calculate offset or memory address, exact 4078 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4079 * what we mentioned above about state comparison ignoring precise markings 4080 * during state comparison, BPF verifier ignores and also assumes precise 4081 * markings *at will* during instruction verification process. But as verifier 4082 * assumes precision, it also propagates any precision dependencies across 4083 * parent states, which are not yet finalized, so can be further restricted 4084 * based on new knowledge gained from restrictions enforced by their children 4085 * states. This is so that once those parent states are finalized, i.e., when 4086 * they have no more active children state, state comparison logic in 4087 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4088 * required for correctness. 4089 * 4090 * To build a bit more intuition, note also that once a state is checkpointed, 4091 * the path we took to get to that state is not important. This is crucial 4092 * property for state pruning. When state is checkpointed and finalized at 4093 * some instruction index, it can be correctly and safely used to "short 4094 * circuit" any *compatible* state that reaches exactly the same instruction 4095 * index. I.e., if we jumped to that instruction from a completely different 4096 * code path than original finalized state was derived from, it doesn't 4097 * matter, current state can be discarded because from that instruction 4098 * forward having a compatible state will ensure we will safely reach the 4099 * exit. States describe preconditions for further exploration, but completely 4100 * forget the history of how we got here. 4101 * 4102 * This also means that even if we needed precise SCALAR range to get to 4103 * finalized state, but from that point forward *that same* SCALAR register is 4104 * never used in a precise context (i.e., it's precise value is not needed for 4105 * correctness), it's correct and safe to mark such register as "imprecise" 4106 * (i.e., precise marking set to false). This is what we rely on when we do 4107 * not set precise marking in current state. If no child state requires 4108 * precision for any given SCALAR register, it's safe to dictate that it can 4109 * be imprecise. If any child state does require this register to be precise, 4110 * we'll mark it precise later retroactively during precise markings 4111 * propagation from child state to parent states. 4112 * 4113 * Skipping precise marking setting in current state is a mild version of 4114 * relying on the above observation. But we can utilize this property even 4115 * more aggressively by proactively forgetting any precise marking in the 4116 * current state (which we inherited from the parent state), right before we 4117 * checkpoint it and branch off into new child state. This is done by 4118 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4119 * finalized states which help in short circuiting more future states. 4120 */ 4121 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4122 { 4123 struct backtrack_state *bt = &env->bt; 4124 struct bpf_verifier_state *st = env->cur_state; 4125 int first_idx = st->first_insn_idx; 4126 int last_idx = env->insn_idx; 4127 int subseq_idx = -1; 4128 struct bpf_func_state *func; 4129 struct bpf_reg_state *reg; 4130 bool skip_first = true; 4131 int i, fr, err; 4132 4133 if (!env->bpf_capable) 4134 return 0; 4135 4136 /* set frame number from which we are starting to backtrack */ 4137 bt_init(bt, env->cur_state->curframe); 4138 4139 /* Do sanity checks against current state of register and/or stack 4140 * slot, but don't set precise flag in current state, as precision 4141 * tracking in the current state is unnecessary. 4142 */ 4143 func = st->frame[bt->frame]; 4144 if (regno >= 0) { 4145 reg = &func->regs[regno]; 4146 if (reg->type != SCALAR_VALUE) { 4147 WARN_ONCE(1, "backtracing misuse"); 4148 return -EFAULT; 4149 } 4150 bt_set_reg(bt, regno); 4151 } 4152 4153 if (bt_empty(bt)) 4154 return 0; 4155 4156 for (;;) { 4157 DECLARE_BITMAP(mask, 64); 4158 u32 history = st->jmp_history_cnt; 4159 struct bpf_jmp_history_entry *hist; 4160 4161 if (env->log.level & BPF_LOG_LEVEL2) { 4162 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4163 bt->frame, last_idx, first_idx, subseq_idx); 4164 } 4165 4166 /* If some register with scalar ID is marked as precise, 4167 * make sure that all registers sharing this ID are also precise. 4168 * This is needed to estimate effect of find_equal_scalars(). 4169 * Do this at the last instruction of each state, 4170 * bpf_reg_state::id fields are valid for these instructions. 4171 * 4172 * Allows to track precision in situation like below: 4173 * 4174 * r2 = unknown value 4175 * ... 4176 * --- state #0 --- 4177 * ... 4178 * r1 = r2 // r1 and r2 now share the same ID 4179 * ... 4180 * --- state #1 {r1.id = A, r2.id = A} --- 4181 * ... 4182 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4183 * ... 4184 * --- state #2 {r1.id = A, r2.id = A} --- 4185 * r3 = r10 4186 * r3 += r1 // need to mark both r1 and r2 4187 */ 4188 if (mark_precise_scalar_ids(env, st)) 4189 return -EFAULT; 4190 4191 if (last_idx < 0) { 4192 /* we are at the entry into subprog, which 4193 * is expected for global funcs, but only if 4194 * requested precise registers are R1-R5 4195 * (which are global func's input arguments) 4196 */ 4197 if (st->curframe == 0 && 4198 st->frame[0]->subprogno > 0 && 4199 st->frame[0]->callsite == BPF_MAIN_FUNC && 4200 bt_stack_mask(bt) == 0 && 4201 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4202 bitmap_from_u64(mask, bt_reg_mask(bt)); 4203 for_each_set_bit(i, mask, 32) { 4204 reg = &st->frame[0]->regs[i]; 4205 bt_clear_reg(bt, i); 4206 if (reg->type == SCALAR_VALUE) 4207 reg->precise = true; 4208 } 4209 return 0; 4210 } 4211 4212 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4213 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4214 WARN_ONCE(1, "verifier backtracking bug"); 4215 return -EFAULT; 4216 } 4217 4218 for (i = last_idx;;) { 4219 if (skip_first) { 4220 err = 0; 4221 skip_first = false; 4222 } else { 4223 hist = get_jmp_hist_entry(st, history, i); 4224 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4225 } 4226 if (err == -ENOTSUPP) { 4227 mark_all_scalars_precise(env, env->cur_state); 4228 bt_reset(bt); 4229 return 0; 4230 } else if (err) { 4231 return err; 4232 } 4233 if (bt_empty(bt)) 4234 /* Found assignment(s) into tracked register in this state. 4235 * Since this state is already marked, just return. 4236 * Nothing to be tracked further in the parent state. 4237 */ 4238 return 0; 4239 subseq_idx = i; 4240 i = get_prev_insn_idx(st, i, &history); 4241 if (i == -ENOENT) 4242 break; 4243 if (i >= env->prog->len) { 4244 /* This can happen if backtracking reached insn 0 4245 * and there are still reg_mask or stack_mask 4246 * to backtrack. 4247 * It means the backtracking missed the spot where 4248 * particular register was initialized with a constant. 4249 */ 4250 verbose(env, "BUG backtracking idx %d\n", i); 4251 WARN_ONCE(1, "verifier backtracking bug"); 4252 return -EFAULT; 4253 } 4254 } 4255 st = st->parent; 4256 if (!st) 4257 break; 4258 4259 for (fr = bt->frame; fr >= 0; fr--) { 4260 func = st->frame[fr]; 4261 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4262 for_each_set_bit(i, mask, 32) { 4263 reg = &func->regs[i]; 4264 if (reg->type != SCALAR_VALUE) { 4265 bt_clear_frame_reg(bt, fr, i); 4266 continue; 4267 } 4268 if (reg->precise) 4269 bt_clear_frame_reg(bt, fr, i); 4270 else 4271 reg->precise = true; 4272 } 4273 4274 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4275 for_each_set_bit(i, mask, 64) { 4276 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4277 verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n", 4278 i, func->allocated_stack / BPF_REG_SIZE); 4279 WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)"); 4280 return -EFAULT; 4281 } 4282 4283 if (!is_spilled_scalar_reg(&func->stack[i])) { 4284 bt_clear_frame_slot(bt, fr, i); 4285 continue; 4286 } 4287 reg = &func->stack[i].spilled_ptr; 4288 if (reg->precise) 4289 bt_clear_frame_slot(bt, fr, i); 4290 else 4291 reg->precise = true; 4292 } 4293 if (env->log.level & BPF_LOG_LEVEL2) { 4294 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4295 bt_frame_reg_mask(bt, fr)); 4296 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4297 fr, env->tmp_str_buf); 4298 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4299 bt_frame_stack_mask(bt, fr)); 4300 verbose(env, "stack=%s: ", env->tmp_str_buf); 4301 print_verifier_state(env, func, true); 4302 } 4303 } 4304 4305 if (bt_empty(bt)) 4306 return 0; 4307 4308 subseq_idx = first_idx; 4309 last_idx = st->last_insn_idx; 4310 first_idx = st->first_insn_idx; 4311 } 4312 4313 /* if we still have requested precise regs or slots, we missed 4314 * something (e.g., stack access through non-r10 register), so 4315 * fallback to marking all precise 4316 */ 4317 if (!bt_empty(bt)) { 4318 mark_all_scalars_precise(env, env->cur_state); 4319 bt_reset(bt); 4320 } 4321 4322 return 0; 4323 } 4324 4325 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4326 { 4327 return __mark_chain_precision(env, regno); 4328 } 4329 4330 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4331 * desired reg and stack masks across all relevant frames 4332 */ 4333 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4334 { 4335 return __mark_chain_precision(env, -1); 4336 } 4337 4338 static bool is_spillable_regtype(enum bpf_reg_type type) 4339 { 4340 switch (base_type(type)) { 4341 case PTR_TO_MAP_VALUE: 4342 case PTR_TO_STACK: 4343 case PTR_TO_CTX: 4344 case PTR_TO_PACKET: 4345 case PTR_TO_PACKET_META: 4346 case PTR_TO_PACKET_END: 4347 case PTR_TO_FLOW_KEYS: 4348 case CONST_PTR_TO_MAP: 4349 case PTR_TO_SOCKET: 4350 case PTR_TO_SOCK_COMMON: 4351 case PTR_TO_TCP_SOCK: 4352 case PTR_TO_XDP_SOCK: 4353 case PTR_TO_BTF_ID: 4354 case PTR_TO_BUF: 4355 case PTR_TO_MEM: 4356 case PTR_TO_FUNC: 4357 case PTR_TO_MAP_KEY: 4358 return true; 4359 default: 4360 return false; 4361 } 4362 } 4363 4364 /* Does this register contain a constant zero? */ 4365 static bool register_is_null(struct bpf_reg_state *reg) 4366 { 4367 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4368 } 4369 4370 /* check if register is a constant scalar value */ 4371 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 4372 { 4373 return reg->type == SCALAR_VALUE && 4374 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 4375 } 4376 4377 /* assuming is_reg_const() is true, return constant value of a register */ 4378 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 4379 { 4380 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 4381 } 4382 4383 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4384 { 4385 return tnum_is_unknown(reg->var_off) && 4386 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4387 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4388 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4389 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4390 } 4391 4392 static bool register_is_bounded(struct bpf_reg_state *reg) 4393 { 4394 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4395 } 4396 4397 static bool __is_pointer_value(bool allow_ptr_leaks, 4398 const struct bpf_reg_state *reg) 4399 { 4400 if (allow_ptr_leaks) 4401 return false; 4402 4403 return reg->type != SCALAR_VALUE; 4404 } 4405 4406 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, 4407 struct bpf_reg_state *src_reg) 4408 { 4409 if (src_reg->type == SCALAR_VALUE && !src_reg->id && 4410 !tnum_is_const(src_reg->var_off)) 4411 /* Ensure that src_reg has a valid ID that will be copied to 4412 * dst_reg and then will be used by find_equal_scalars() to 4413 * propagate min/max range. 4414 */ 4415 src_reg->id = ++env->id_gen; 4416 } 4417 4418 /* Copy src state preserving dst->parent and dst->live fields */ 4419 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4420 { 4421 struct bpf_reg_state *parent = dst->parent; 4422 enum bpf_reg_liveness live = dst->live; 4423 4424 *dst = *src; 4425 dst->parent = parent; 4426 dst->live = live; 4427 } 4428 4429 static void save_register_state(struct bpf_verifier_env *env, 4430 struct bpf_func_state *state, 4431 int spi, struct bpf_reg_state *reg, 4432 int size) 4433 { 4434 int i; 4435 4436 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4437 if (size == BPF_REG_SIZE) 4438 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4439 4440 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4441 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4442 4443 /* size < 8 bytes spill */ 4444 for (; i; i--) 4445 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 4446 } 4447 4448 static bool is_bpf_st_mem(struct bpf_insn *insn) 4449 { 4450 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4451 } 4452 4453 static int get_reg_width(struct bpf_reg_state *reg) 4454 { 4455 return fls64(reg->umax_value); 4456 } 4457 4458 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4459 * stack boundary and alignment are checked in check_mem_access() 4460 */ 4461 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4462 /* stack frame we're writing to */ 4463 struct bpf_func_state *state, 4464 int off, int size, int value_regno, 4465 int insn_idx) 4466 { 4467 struct bpf_func_state *cur; /* state of the current function */ 4468 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4469 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4470 struct bpf_reg_state *reg = NULL; 4471 int insn_flags = insn_stack_access_flags(state->frameno, spi); 4472 4473 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4474 * so it's aligned access and [off, off + size) are within stack limits 4475 */ 4476 if (!env->allow_ptr_leaks && 4477 is_spilled_reg(&state->stack[spi]) && 4478 size != BPF_REG_SIZE) { 4479 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4480 return -EACCES; 4481 } 4482 4483 cur = env->cur_state->frame[env->cur_state->curframe]; 4484 if (value_regno >= 0) 4485 reg = &cur->regs[value_regno]; 4486 if (!env->bypass_spec_v4) { 4487 bool sanitize = reg && is_spillable_regtype(reg->type); 4488 4489 for (i = 0; i < size; i++) { 4490 u8 type = state->stack[spi].slot_type[i]; 4491 4492 if (type != STACK_MISC && type != STACK_ZERO) { 4493 sanitize = true; 4494 break; 4495 } 4496 } 4497 4498 if (sanitize) 4499 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4500 } 4501 4502 err = destroy_if_dynptr_stack_slot(env, state, spi); 4503 if (err) 4504 return err; 4505 4506 mark_stack_slot_scratched(env, spi); 4507 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && env->bpf_capable) { 4508 bool reg_value_fits; 4509 4510 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; 4511 /* Make sure that reg had an ID to build a relation on spill. */ 4512 if (reg_value_fits) 4513 assign_scalar_id_before_mov(env, reg); 4514 save_register_state(env, state, spi, reg, size); 4515 /* Break the relation on a narrowing spill. */ 4516 if (!reg_value_fits) 4517 state->stack[spi].spilled_ptr.id = 0; 4518 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4519 env->bpf_capable) { 4520 struct bpf_reg_state fake_reg = {}; 4521 4522 __mark_reg_known(&fake_reg, insn->imm); 4523 fake_reg.type = SCALAR_VALUE; 4524 save_register_state(env, state, spi, &fake_reg, size); 4525 } else if (reg && is_spillable_regtype(reg->type)) { 4526 /* register containing pointer is being spilled into stack */ 4527 if (size != BPF_REG_SIZE) { 4528 verbose_linfo(env, insn_idx, "; "); 4529 verbose(env, "invalid size of register spill\n"); 4530 return -EACCES; 4531 } 4532 if (state != cur && reg->type == PTR_TO_STACK) { 4533 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4534 return -EINVAL; 4535 } 4536 save_register_state(env, state, spi, reg, size); 4537 } else { 4538 u8 type = STACK_MISC; 4539 4540 /* regular write of data into stack destroys any spilled ptr */ 4541 state->stack[spi].spilled_ptr.type = NOT_INIT; 4542 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4543 if (is_stack_slot_special(&state->stack[spi])) 4544 for (i = 0; i < BPF_REG_SIZE; i++) 4545 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4546 4547 /* only mark the slot as written if all 8 bytes were written 4548 * otherwise read propagation may incorrectly stop too soon 4549 * when stack slots are partially written. 4550 * This heuristic means that read propagation will be 4551 * conservative, since it will add reg_live_read marks 4552 * to stack slots all the way to first state when programs 4553 * writes+reads less than 8 bytes 4554 */ 4555 if (size == BPF_REG_SIZE) 4556 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4557 4558 /* when we zero initialize stack slots mark them as such */ 4559 if ((reg && register_is_null(reg)) || 4560 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4561 /* STACK_ZERO case happened because register spill 4562 * wasn't properly aligned at the stack slot boundary, 4563 * so it's not a register spill anymore; force 4564 * originating register to be precise to make 4565 * STACK_ZERO correct for subsequent states 4566 */ 4567 err = mark_chain_precision(env, value_regno); 4568 if (err) 4569 return err; 4570 type = STACK_ZERO; 4571 } 4572 4573 /* Mark slots affected by this stack write. */ 4574 for (i = 0; i < size; i++) 4575 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 4576 insn_flags = 0; /* not a register spill */ 4577 } 4578 4579 if (insn_flags) 4580 return push_jmp_history(env, env->cur_state, insn_flags); 4581 return 0; 4582 } 4583 4584 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4585 * known to contain a variable offset. 4586 * This function checks whether the write is permitted and conservatively 4587 * tracks the effects of the write, considering that each stack slot in the 4588 * dynamic range is potentially written to. 4589 * 4590 * 'off' includes 'regno->off'. 4591 * 'value_regno' can be -1, meaning that an unknown value is being written to 4592 * the stack. 4593 * 4594 * Spilled pointers in range are not marked as written because we don't know 4595 * what's going to be actually written. This means that read propagation for 4596 * future reads cannot be terminated by this write. 4597 * 4598 * For privileged programs, uninitialized stack slots are considered 4599 * initialized by this write (even though we don't know exactly what offsets 4600 * are going to be written to). The idea is that we don't want the verifier to 4601 * reject future reads that access slots written to through variable offsets. 4602 */ 4603 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4604 /* func where register points to */ 4605 struct bpf_func_state *state, 4606 int ptr_regno, int off, int size, 4607 int value_regno, int insn_idx) 4608 { 4609 struct bpf_func_state *cur; /* state of the current function */ 4610 int min_off, max_off; 4611 int i, err; 4612 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4613 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4614 bool writing_zero = false; 4615 /* set if the fact that we're writing a zero is used to let any 4616 * stack slots remain STACK_ZERO 4617 */ 4618 bool zero_used = false; 4619 4620 cur = env->cur_state->frame[env->cur_state->curframe]; 4621 ptr_reg = &cur->regs[ptr_regno]; 4622 min_off = ptr_reg->smin_value + off; 4623 max_off = ptr_reg->smax_value + off + size; 4624 if (value_regno >= 0) 4625 value_reg = &cur->regs[value_regno]; 4626 if ((value_reg && register_is_null(value_reg)) || 4627 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4628 writing_zero = true; 4629 4630 for (i = min_off; i < max_off; i++) { 4631 int spi; 4632 4633 spi = __get_spi(i); 4634 err = destroy_if_dynptr_stack_slot(env, state, spi); 4635 if (err) 4636 return err; 4637 } 4638 4639 /* Variable offset writes destroy any spilled pointers in range. */ 4640 for (i = min_off; i < max_off; i++) { 4641 u8 new_type, *stype; 4642 int slot, spi; 4643 4644 slot = -i - 1; 4645 spi = slot / BPF_REG_SIZE; 4646 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4647 mark_stack_slot_scratched(env, spi); 4648 4649 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4650 /* Reject the write if range we may write to has not 4651 * been initialized beforehand. If we didn't reject 4652 * here, the ptr status would be erased below (even 4653 * though not all slots are actually overwritten), 4654 * possibly opening the door to leaks. 4655 * 4656 * We do however catch STACK_INVALID case below, and 4657 * only allow reading possibly uninitialized memory 4658 * later for CAP_PERFMON, as the write may not happen to 4659 * that slot. 4660 */ 4661 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4662 insn_idx, i); 4663 return -EINVAL; 4664 } 4665 4666 /* If writing_zero and the spi slot contains a spill of value 0, 4667 * maintain the spill type. 4668 */ 4669 if (writing_zero && *stype == STACK_SPILL && 4670 is_spilled_scalar_reg(&state->stack[spi])) { 4671 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; 4672 4673 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { 4674 zero_used = true; 4675 continue; 4676 } 4677 } 4678 4679 /* Erase all other spilled pointers. */ 4680 state->stack[spi].spilled_ptr.type = NOT_INIT; 4681 4682 /* Update the slot type. */ 4683 new_type = STACK_MISC; 4684 if (writing_zero && *stype == STACK_ZERO) { 4685 new_type = STACK_ZERO; 4686 zero_used = true; 4687 } 4688 /* If the slot is STACK_INVALID, we check whether it's OK to 4689 * pretend that it will be initialized by this write. The slot 4690 * might not actually be written to, and so if we mark it as 4691 * initialized future reads might leak uninitialized memory. 4692 * For privileged programs, we will accept such reads to slots 4693 * that may or may not be written because, if we're reject 4694 * them, the error would be too confusing. 4695 */ 4696 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4697 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4698 insn_idx, i); 4699 return -EINVAL; 4700 } 4701 *stype = new_type; 4702 } 4703 if (zero_used) { 4704 /* backtracking doesn't work for STACK_ZERO yet. */ 4705 err = mark_chain_precision(env, value_regno); 4706 if (err) 4707 return err; 4708 } 4709 return 0; 4710 } 4711 4712 /* When register 'dst_regno' is assigned some values from stack[min_off, 4713 * max_off), we set the register's type according to the types of the 4714 * respective stack slots. If all the stack values are known to be zeros, then 4715 * so is the destination reg. Otherwise, the register is considered to be 4716 * SCALAR. This function does not deal with register filling; the caller must 4717 * ensure that all spilled registers in the stack range have been marked as 4718 * read. 4719 */ 4720 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4721 /* func where src register points to */ 4722 struct bpf_func_state *ptr_state, 4723 int min_off, int max_off, int dst_regno) 4724 { 4725 struct bpf_verifier_state *vstate = env->cur_state; 4726 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4727 int i, slot, spi; 4728 u8 *stype; 4729 int zeros = 0; 4730 4731 for (i = min_off; i < max_off; i++) { 4732 slot = -i - 1; 4733 spi = slot / BPF_REG_SIZE; 4734 mark_stack_slot_scratched(env, spi); 4735 stype = ptr_state->stack[spi].slot_type; 4736 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4737 break; 4738 zeros++; 4739 } 4740 if (zeros == max_off - min_off) { 4741 /* Any access_size read into register is zero extended, 4742 * so the whole register == const_zero. 4743 */ 4744 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4745 } else { 4746 /* have read misc data from the stack */ 4747 mark_reg_unknown(env, state->regs, dst_regno); 4748 } 4749 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4750 } 4751 4752 /* Read the stack at 'off' and put the results into the register indicated by 4753 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4754 * spilled reg. 4755 * 4756 * 'dst_regno' can be -1, meaning that the read value is not going to a 4757 * register. 4758 * 4759 * The access is assumed to be within the current stack bounds. 4760 */ 4761 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4762 /* func where src register points to */ 4763 struct bpf_func_state *reg_state, 4764 int off, int size, int dst_regno) 4765 { 4766 struct bpf_verifier_state *vstate = env->cur_state; 4767 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4768 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4769 struct bpf_reg_state *reg; 4770 u8 *stype, type; 4771 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 4772 4773 stype = reg_state->stack[spi].slot_type; 4774 reg = ®_state->stack[spi].spilled_ptr; 4775 4776 mark_stack_slot_scratched(env, spi); 4777 4778 if (is_spilled_reg(®_state->stack[spi])) { 4779 u8 spill_size = 1; 4780 4781 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4782 spill_size++; 4783 4784 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4785 if (reg->type != SCALAR_VALUE) { 4786 verbose_linfo(env, env->insn_idx, "; "); 4787 verbose(env, "invalid size of register fill\n"); 4788 return -EACCES; 4789 } 4790 4791 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4792 if (dst_regno < 0) 4793 return 0; 4794 4795 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4796 /* The earlier check_reg_arg() has decided the 4797 * subreg_def for this insn. Save it first. 4798 */ 4799 s32 subreg_def = state->regs[dst_regno].subreg_def; 4800 4801 copy_register_state(&state->regs[dst_regno], reg); 4802 state->regs[dst_regno].subreg_def = subreg_def; 4803 } else { 4804 int spill_cnt = 0, zero_cnt = 0; 4805 4806 for (i = 0; i < size; i++) { 4807 type = stype[(slot - i) % BPF_REG_SIZE]; 4808 if (type == STACK_SPILL) { 4809 spill_cnt++; 4810 continue; 4811 } 4812 if (type == STACK_MISC) 4813 continue; 4814 if (type == STACK_ZERO) { 4815 zero_cnt++; 4816 continue; 4817 } 4818 if (type == STACK_INVALID && env->allow_uninit_stack) 4819 continue; 4820 verbose(env, "invalid read from stack off %d+%d size %d\n", 4821 off, i, size); 4822 return -EACCES; 4823 } 4824 4825 if (spill_cnt == size && 4826 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 4827 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4828 /* this IS register fill, so keep insn_flags */ 4829 } else if (zero_cnt == size) { 4830 /* similarly to mark_reg_stack_read(), preserve zeroes */ 4831 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4832 insn_flags = 0; /* not restoring original register state */ 4833 } else { 4834 mark_reg_unknown(env, state->regs, dst_regno); 4835 insn_flags = 0; /* not restoring original register state */ 4836 } 4837 } 4838 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4839 } else if (dst_regno >= 0) { 4840 /* restore register state from stack */ 4841 copy_register_state(&state->regs[dst_regno], reg); 4842 /* mark reg as written since spilled pointer state likely 4843 * has its liveness marks cleared by is_state_visited() 4844 * which resets stack/reg liveness for state transitions 4845 */ 4846 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4847 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4848 /* If dst_regno==-1, the caller is asking us whether 4849 * it is acceptable to use this value as a SCALAR_VALUE 4850 * (e.g. for XADD). 4851 * We must not allow unprivileged callers to do that 4852 * with spilled pointers. 4853 */ 4854 verbose(env, "leaking pointer from stack off %d\n", 4855 off); 4856 return -EACCES; 4857 } 4858 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4859 } else { 4860 for (i = 0; i < size; i++) { 4861 type = stype[(slot - i) % BPF_REG_SIZE]; 4862 if (type == STACK_MISC) 4863 continue; 4864 if (type == STACK_ZERO) 4865 continue; 4866 if (type == STACK_INVALID && env->allow_uninit_stack) 4867 continue; 4868 verbose(env, "invalid read from stack off %d+%d size %d\n", 4869 off, i, size); 4870 return -EACCES; 4871 } 4872 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4873 if (dst_regno >= 0) 4874 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4875 insn_flags = 0; /* we are not restoring spilled register */ 4876 } 4877 if (insn_flags) 4878 return push_jmp_history(env, env->cur_state, insn_flags); 4879 return 0; 4880 } 4881 4882 enum bpf_access_src { 4883 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4884 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4885 }; 4886 4887 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4888 int regno, int off, int access_size, 4889 bool zero_size_allowed, 4890 enum bpf_access_src type, 4891 struct bpf_call_arg_meta *meta); 4892 4893 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4894 { 4895 return cur_regs(env) + regno; 4896 } 4897 4898 /* Read the stack at 'ptr_regno + off' and put the result into the register 4899 * 'dst_regno'. 4900 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4901 * but not its variable offset. 4902 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4903 * 4904 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4905 * filling registers (i.e. reads of spilled register cannot be detected when 4906 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4907 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4908 * offset; for a fixed offset check_stack_read_fixed_off should be used 4909 * instead. 4910 */ 4911 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4912 int ptr_regno, int off, int size, int dst_regno) 4913 { 4914 /* The state of the source register. */ 4915 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4916 struct bpf_func_state *ptr_state = func(env, reg); 4917 int err; 4918 int min_off, max_off; 4919 4920 /* Note that we pass a NULL meta, so raw access will not be permitted. 4921 */ 4922 err = check_stack_range_initialized(env, ptr_regno, off, size, 4923 false, ACCESS_DIRECT, NULL); 4924 if (err) 4925 return err; 4926 4927 min_off = reg->smin_value + off; 4928 max_off = reg->smax_value + off; 4929 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4930 return 0; 4931 } 4932 4933 /* check_stack_read dispatches to check_stack_read_fixed_off or 4934 * check_stack_read_var_off. 4935 * 4936 * The caller must ensure that the offset falls within the allocated stack 4937 * bounds. 4938 * 4939 * 'dst_regno' is a register which will receive the value from the stack. It 4940 * can be -1, meaning that the read value is not going to a register. 4941 */ 4942 static int check_stack_read(struct bpf_verifier_env *env, 4943 int ptr_regno, int off, int size, 4944 int dst_regno) 4945 { 4946 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4947 struct bpf_func_state *state = func(env, reg); 4948 int err; 4949 /* Some accesses are only permitted with a static offset. */ 4950 bool var_off = !tnum_is_const(reg->var_off); 4951 4952 /* The offset is required to be static when reads don't go to a 4953 * register, in order to not leak pointers (see 4954 * check_stack_read_fixed_off). 4955 */ 4956 if (dst_regno < 0 && var_off) { 4957 char tn_buf[48]; 4958 4959 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4960 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4961 tn_buf, off, size); 4962 return -EACCES; 4963 } 4964 /* Variable offset is prohibited for unprivileged mode for simplicity 4965 * since it requires corresponding support in Spectre masking for stack 4966 * ALU. See also retrieve_ptr_limit(). The check in 4967 * check_stack_access_for_ptr_arithmetic() called by 4968 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 4969 * with variable offsets, therefore no check is required here. Further, 4970 * just checking it here would be insufficient as speculative stack 4971 * writes could still lead to unsafe speculative behaviour. 4972 */ 4973 if (!var_off) { 4974 off += reg->var_off.value; 4975 err = check_stack_read_fixed_off(env, state, off, size, 4976 dst_regno); 4977 } else { 4978 /* Variable offset stack reads need more conservative handling 4979 * than fixed offset ones. Note that dst_regno >= 0 on this 4980 * branch. 4981 */ 4982 err = check_stack_read_var_off(env, ptr_regno, off, size, 4983 dst_regno); 4984 } 4985 return err; 4986 } 4987 4988 4989 /* check_stack_write dispatches to check_stack_write_fixed_off or 4990 * check_stack_write_var_off. 4991 * 4992 * 'ptr_regno' is the register used as a pointer into the stack. 4993 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 4994 * 'value_regno' is the register whose value we're writing to the stack. It can 4995 * be -1, meaning that we're not writing from a register. 4996 * 4997 * The caller must ensure that the offset falls within the maximum stack size. 4998 */ 4999 static int check_stack_write(struct bpf_verifier_env *env, 5000 int ptr_regno, int off, int size, 5001 int value_regno, int insn_idx) 5002 { 5003 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5004 struct bpf_func_state *state = func(env, reg); 5005 int err; 5006 5007 if (tnum_is_const(reg->var_off)) { 5008 off += reg->var_off.value; 5009 err = check_stack_write_fixed_off(env, state, off, size, 5010 value_regno, insn_idx); 5011 } else { 5012 /* Variable offset stack reads need more conservative handling 5013 * than fixed offset ones. 5014 */ 5015 err = check_stack_write_var_off(env, state, 5016 ptr_regno, off, size, 5017 value_regno, insn_idx); 5018 } 5019 return err; 5020 } 5021 5022 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5023 int off, int size, enum bpf_access_type type) 5024 { 5025 struct bpf_reg_state *regs = cur_regs(env); 5026 struct bpf_map *map = regs[regno].map_ptr; 5027 u32 cap = bpf_map_flags_to_cap(map); 5028 5029 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5030 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5031 map->value_size, off, size); 5032 return -EACCES; 5033 } 5034 5035 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5036 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5037 map->value_size, off, size); 5038 return -EACCES; 5039 } 5040 5041 return 0; 5042 } 5043 5044 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5045 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5046 int off, int size, u32 mem_size, 5047 bool zero_size_allowed) 5048 { 5049 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5050 struct bpf_reg_state *reg; 5051 5052 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5053 return 0; 5054 5055 reg = &cur_regs(env)[regno]; 5056 switch (reg->type) { 5057 case PTR_TO_MAP_KEY: 5058 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5059 mem_size, off, size); 5060 break; 5061 case PTR_TO_MAP_VALUE: 5062 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5063 mem_size, off, size); 5064 break; 5065 case PTR_TO_PACKET: 5066 case PTR_TO_PACKET_META: 5067 case PTR_TO_PACKET_END: 5068 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5069 off, size, regno, reg->id, off, mem_size); 5070 break; 5071 case PTR_TO_MEM: 5072 default: 5073 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5074 mem_size, off, size); 5075 } 5076 5077 return -EACCES; 5078 } 5079 5080 /* check read/write into a memory region with possible variable offset */ 5081 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5082 int off, int size, u32 mem_size, 5083 bool zero_size_allowed) 5084 { 5085 struct bpf_verifier_state *vstate = env->cur_state; 5086 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5087 struct bpf_reg_state *reg = &state->regs[regno]; 5088 int err; 5089 5090 /* We may have adjusted the register pointing to memory region, so we 5091 * need to try adding each of min_value and max_value to off 5092 * to make sure our theoretical access will be safe. 5093 * 5094 * The minimum value is only important with signed 5095 * comparisons where we can't assume the floor of a 5096 * value is 0. If we are using signed variables for our 5097 * index'es we need to make sure that whatever we use 5098 * will have a set floor within our range. 5099 */ 5100 if (reg->smin_value < 0 && 5101 (reg->smin_value == S64_MIN || 5102 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5103 reg->smin_value + off < 0)) { 5104 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5105 regno); 5106 return -EACCES; 5107 } 5108 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5109 mem_size, zero_size_allowed); 5110 if (err) { 5111 verbose(env, "R%d min value is outside of the allowed memory range\n", 5112 regno); 5113 return err; 5114 } 5115 5116 /* If we haven't set a max value then we need to bail since we can't be 5117 * sure we won't do bad things. 5118 * If reg->umax_value + off could overflow, treat that as unbounded too. 5119 */ 5120 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5121 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5122 regno); 5123 return -EACCES; 5124 } 5125 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5126 mem_size, zero_size_allowed); 5127 if (err) { 5128 verbose(env, "R%d max value is outside of the allowed memory range\n", 5129 regno); 5130 return err; 5131 } 5132 5133 return 0; 5134 } 5135 5136 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5137 const struct bpf_reg_state *reg, int regno, 5138 bool fixed_off_ok) 5139 { 5140 /* Access to this pointer-typed register or passing it to a helper 5141 * is only allowed in its original, unmodified form. 5142 */ 5143 5144 if (reg->off < 0) { 5145 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5146 reg_type_str(env, reg->type), regno, reg->off); 5147 return -EACCES; 5148 } 5149 5150 if (!fixed_off_ok && reg->off) { 5151 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5152 reg_type_str(env, reg->type), regno, reg->off); 5153 return -EACCES; 5154 } 5155 5156 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5157 char tn_buf[48]; 5158 5159 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5160 verbose(env, "variable %s access var_off=%s disallowed\n", 5161 reg_type_str(env, reg->type), tn_buf); 5162 return -EACCES; 5163 } 5164 5165 return 0; 5166 } 5167 5168 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5169 const struct bpf_reg_state *reg, int regno) 5170 { 5171 return __check_ptr_off_reg(env, reg, regno, false); 5172 } 5173 5174 static int map_kptr_match_type(struct bpf_verifier_env *env, 5175 struct btf_field *kptr_field, 5176 struct bpf_reg_state *reg, u32 regno) 5177 { 5178 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5179 int perm_flags; 5180 const char *reg_name = ""; 5181 5182 if (btf_is_kernel(reg->btf)) { 5183 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5184 5185 /* Only unreferenced case accepts untrusted pointers */ 5186 if (kptr_field->type == BPF_KPTR_UNREF) 5187 perm_flags |= PTR_UNTRUSTED; 5188 } else { 5189 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5190 if (kptr_field->type == BPF_KPTR_PERCPU) 5191 perm_flags |= MEM_PERCPU; 5192 } 5193 5194 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5195 goto bad_type; 5196 5197 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5198 reg_name = btf_type_name(reg->btf, reg->btf_id); 5199 5200 /* For ref_ptr case, release function check should ensure we get one 5201 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5202 * normal store of unreferenced kptr, we must ensure var_off is zero. 5203 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5204 * reg->off and reg->ref_obj_id are not needed here. 5205 */ 5206 if (__check_ptr_off_reg(env, reg, regno, true)) 5207 return -EACCES; 5208 5209 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5210 * we also need to take into account the reg->off. 5211 * 5212 * We want to support cases like: 5213 * 5214 * struct foo { 5215 * struct bar br; 5216 * struct baz bz; 5217 * }; 5218 * 5219 * struct foo *v; 5220 * v = func(); // PTR_TO_BTF_ID 5221 * val->foo = v; // reg->off is zero, btf and btf_id match type 5222 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5223 * // first member type of struct after comparison fails 5224 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5225 * // to match type 5226 * 5227 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5228 * is zero. We must also ensure that btf_struct_ids_match does not walk 5229 * the struct to match type against first member of struct, i.e. reject 5230 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5231 * strict mode to true for type match. 5232 */ 5233 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5234 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5235 kptr_field->type != BPF_KPTR_UNREF)) 5236 goto bad_type; 5237 return 0; 5238 bad_type: 5239 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5240 reg_type_str(env, reg->type), reg_name); 5241 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5242 if (kptr_field->type == BPF_KPTR_UNREF) 5243 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5244 targ_name); 5245 else 5246 verbose(env, "\n"); 5247 return -EINVAL; 5248 } 5249 5250 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5251 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5252 */ 5253 static bool in_rcu_cs(struct bpf_verifier_env *env) 5254 { 5255 return env->cur_state->active_rcu_lock || 5256 env->cur_state->active_lock.ptr || 5257 !env->prog->aux->sleepable; 5258 } 5259 5260 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5261 BTF_SET_START(rcu_protected_types) 5262 BTF_ID(struct, prog_test_ref_kfunc) 5263 #ifdef CONFIG_CGROUPS 5264 BTF_ID(struct, cgroup) 5265 #endif 5266 #ifdef CONFIG_BPF_JIT 5267 BTF_ID(struct, bpf_cpumask) 5268 #endif 5269 BTF_ID(struct, task_struct) 5270 BTF_SET_END(rcu_protected_types) 5271 5272 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5273 { 5274 if (!btf_is_kernel(btf)) 5275 return true; 5276 return btf_id_set_contains(&rcu_protected_types, btf_id); 5277 } 5278 5279 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5280 { 5281 struct btf_struct_meta *meta; 5282 5283 if (btf_is_kernel(kptr_field->kptr.btf)) 5284 return NULL; 5285 5286 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5287 kptr_field->kptr.btf_id); 5288 5289 return meta ? meta->record : NULL; 5290 } 5291 5292 static bool rcu_safe_kptr(const struct btf_field *field) 5293 { 5294 const struct btf_field_kptr *kptr = &field->kptr; 5295 5296 return field->type == BPF_KPTR_PERCPU || 5297 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5298 } 5299 5300 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5301 { 5302 struct btf_record *rec; 5303 u32 ret; 5304 5305 ret = PTR_MAYBE_NULL; 5306 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5307 ret |= MEM_RCU; 5308 if (kptr_field->type == BPF_KPTR_PERCPU) 5309 ret |= MEM_PERCPU; 5310 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5311 ret |= MEM_ALLOC; 5312 5313 rec = kptr_pointee_btf_record(kptr_field); 5314 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5315 ret |= NON_OWN_REF; 5316 } else { 5317 ret |= PTR_UNTRUSTED; 5318 } 5319 5320 return ret; 5321 } 5322 5323 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5324 int value_regno, int insn_idx, 5325 struct btf_field *kptr_field) 5326 { 5327 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5328 int class = BPF_CLASS(insn->code); 5329 struct bpf_reg_state *val_reg; 5330 5331 /* Things we already checked for in check_map_access and caller: 5332 * - Reject cases where variable offset may touch kptr 5333 * - size of access (must be BPF_DW) 5334 * - tnum_is_const(reg->var_off) 5335 * - kptr_field->offset == off + reg->var_off.value 5336 */ 5337 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5338 if (BPF_MODE(insn->code) != BPF_MEM) { 5339 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5340 return -EACCES; 5341 } 5342 5343 /* We only allow loading referenced kptr, since it will be marked as 5344 * untrusted, similar to unreferenced kptr. 5345 */ 5346 if (class != BPF_LDX && 5347 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 5348 verbose(env, "store to referenced kptr disallowed\n"); 5349 return -EACCES; 5350 } 5351 5352 if (class == BPF_LDX) { 5353 val_reg = reg_state(env, value_regno); 5354 /* We can simply mark the value_regno receiving the pointer 5355 * value from map as PTR_TO_BTF_ID, with the correct type. 5356 */ 5357 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5358 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); 5359 /* For mark_ptr_or_null_reg */ 5360 val_reg->id = ++env->id_gen; 5361 } else if (class == BPF_STX) { 5362 val_reg = reg_state(env, value_regno); 5363 if (!register_is_null(val_reg) && 5364 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5365 return -EACCES; 5366 } else if (class == BPF_ST) { 5367 if (insn->imm) { 5368 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5369 kptr_field->offset); 5370 return -EACCES; 5371 } 5372 } else { 5373 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5374 return -EACCES; 5375 } 5376 return 0; 5377 } 5378 5379 /* check read/write into a map element with possible variable offset */ 5380 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5381 int off, int size, bool zero_size_allowed, 5382 enum bpf_access_src src) 5383 { 5384 struct bpf_verifier_state *vstate = env->cur_state; 5385 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5386 struct bpf_reg_state *reg = &state->regs[regno]; 5387 struct bpf_map *map = reg->map_ptr; 5388 struct btf_record *rec; 5389 int err, i; 5390 5391 err = check_mem_region_access(env, regno, off, size, map->value_size, 5392 zero_size_allowed); 5393 if (err) 5394 return err; 5395 5396 if (IS_ERR_OR_NULL(map->record)) 5397 return 0; 5398 rec = map->record; 5399 for (i = 0; i < rec->cnt; i++) { 5400 struct btf_field *field = &rec->fields[i]; 5401 u32 p = field->offset; 5402 5403 /* If any part of a field can be touched by load/store, reject 5404 * this program. To check that [x1, x2) overlaps with [y1, y2), 5405 * it is sufficient to check x1 < y2 && y1 < x2. 5406 */ 5407 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5408 p < reg->umax_value + off + size) { 5409 switch (field->type) { 5410 case BPF_KPTR_UNREF: 5411 case BPF_KPTR_REF: 5412 case BPF_KPTR_PERCPU: 5413 if (src != ACCESS_DIRECT) { 5414 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5415 return -EACCES; 5416 } 5417 if (!tnum_is_const(reg->var_off)) { 5418 verbose(env, "kptr access cannot have variable offset\n"); 5419 return -EACCES; 5420 } 5421 if (p != off + reg->var_off.value) { 5422 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5423 p, off + reg->var_off.value); 5424 return -EACCES; 5425 } 5426 if (size != bpf_size_to_bytes(BPF_DW)) { 5427 verbose(env, "kptr access size must be BPF_DW\n"); 5428 return -EACCES; 5429 } 5430 break; 5431 default: 5432 verbose(env, "%s cannot be accessed directly by load/store\n", 5433 btf_field_type_name(field->type)); 5434 return -EACCES; 5435 } 5436 } 5437 } 5438 return 0; 5439 } 5440 5441 #define MAX_PACKET_OFF 0xffff 5442 5443 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5444 const struct bpf_call_arg_meta *meta, 5445 enum bpf_access_type t) 5446 { 5447 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5448 5449 switch (prog_type) { 5450 /* Program types only with direct read access go here! */ 5451 case BPF_PROG_TYPE_LWT_IN: 5452 case BPF_PROG_TYPE_LWT_OUT: 5453 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5454 case BPF_PROG_TYPE_SK_REUSEPORT: 5455 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5456 case BPF_PROG_TYPE_CGROUP_SKB: 5457 if (t == BPF_WRITE) 5458 return false; 5459 fallthrough; 5460 5461 /* Program types with direct read + write access go here! */ 5462 case BPF_PROG_TYPE_SCHED_CLS: 5463 case BPF_PROG_TYPE_SCHED_ACT: 5464 case BPF_PROG_TYPE_XDP: 5465 case BPF_PROG_TYPE_LWT_XMIT: 5466 case BPF_PROG_TYPE_SK_SKB: 5467 case BPF_PROG_TYPE_SK_MSG: 5468 if (meta) 5469 return meta->pkt_access; 5470 5471 env->seen_direct_write = true; 5472 return true; 5473 5474 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5475 if (t == BPF_WRITE) 5476 env->seen_direct_write = true; 5477 5478 return true; 5479 5480 default: 5481 return false; 5482 } 5483 } 5484 5485 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5486 int size, bool zero_size_allowed) 5487 { 5488 struct bpf_reg_state *regs = cur_regs(env); 5489 struct bpf_reg_state *reg = ®s[regno]; 5490 int err; 5491 5492 /* We may have added a variable offset to the packet pointer; but any 5493 * reg->range we have comes after that. We are only checking the fixed 5494 * offset. 5495 */ 5496 5497 /* We don't allow negative numbers, because we aren't tracking enough 5498 * detail to prove they're safe. 5499 */ 5500 if (reg->smin_value < 0) { 5501 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5502 regno); 5503 return -EACCES; 5504 } 5505 5506 err = reg->range < 0 ? -EINVAL : 5507 __check_mem_access(env, regno, off, size, reg->range, 5508 zero_size_allowed); 5509 if (err) { 5510 verbose(env, "R%d offset is outside of the packet\n", regno); 5511 return err; 5512 } 5513 5514 /* __check_mem_access has made sure "off + size - 1" is within u16. 5515 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5516 * otherwise find_good_pkt_pointers would have refused to set range info 5517 * that __check_mem_access would have rejected this pkt access. 5518 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5519 */ 5520 env->prog->aux->max_pkt_offset = 5521 max_t(u32, env->prog->aux->max_pkt_offset, 5522 off + reg->umax_value + size - 1); 5523 5524 return err; 5525 } 5526 5527 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5528 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5529 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5530 struct btf **btf, u32 *btf_id) 5531 { 5532 struct bpf_insn_access_aux info = { 5533 .reg_type = *reg_type, 5534 .log = &env->log, 5535 }; 5536 5537 if (env->ops->is_valid_access && 5538 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5539 /* A non zero info.ctx_field_size indicates that this field is a 5540 * candidate for later verifier transformation to load the whole 5541 * field and then apply a mask when accessed with a narrower 5542 * access than actual ctx access size. A zero info.ctx_field_size 5543 * will only allow for whole field access and rejects any other 5544 * type of narrower access. 5545 */ 5546 *reg_type = info.reg_type; 5547 5548 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5549 *btf = info.btf; 5550 *btf_id = info.btf_id; 5551 } else { 5552 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5553 } 5554 /* remember the offset of last byte accessed in ctx */ 5555 if (env->prog->aux->max_ctx_offset < off + size) 5556 env->prog->aux->max_ctx_offset = off + size; 5557 return 0; 5558 } 5559 5560 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5561 return -EACCES; 5562 } 5563 5564 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5565 int size) 5566 { 5567 if (size < 0 || off < 0 || 5568 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5569 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5570 off, size); 5571 return -EACCES; 5572 } 5573 return 0; 5574 } 5575 5576 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5577 u32 regno, int off, int size, 5578 enum bpf_access_type t) 5579 { 5580 struct bpf_reg_state *regs = cur_regs(env); 5581 struct bpf_reg_state *reg = ®s[regno]; 5582 struct bpf_insn_access_aux info = {}; 5583 bool valid; 5584 5585 if (reg->smin_value < 0) { 5586 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5587 regno); 5588 return -EACCES; 5589 } 5590 5591 switch (reg->type) { 5592 case PTR_TO_SOCK_COMMON: 5593 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5594 break; 5595 case PTR_TO_SOCKET: 5596 valid = bpf_sock_is_valid_access(off, size, t, &info); 5597 break; 5598 case PTR_TO_TCP_SOCK: 5599 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5600 break; 5601 case PTR_TO_XDP_SOCK: 5602 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5603 break; 5604 default: 5605 valid = false; 5606 } 5607 5608 5609 if (valid) { 5610 env->insn_aux_data[insn_idx].ctx_field_size = 5611 info.ctx_field_size; 5612 return 0; 5613 } 5614 5615 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5616 regno, reg_type_str(env, reg->type), off, size); 5617 5618 return -EACCES; 5619 } 5620 5621 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5622 { 5623 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5624 } 5625 5626 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5627 { 5628 const struct bpf_reg_state *reg = reg_state(env, regno); 5629 5630 return reg->type == PTR_TO_CTX; 5631 } 5632 5633 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5634 { 5635 const struct bpf_reg_state *reg = reg_state(env, regno); 5636 5637 return type_is_sk_pointer(reg->type); 5638 } 5639 5640 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5641 { 5642 const struct bpf_reg_state *reg = reg_state(env, regno); 5643 5644 return type_is_pkt_pointer(reg->type); 5645 } 5646 5647 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5648 { 5649 const struct bpf_reg_state *reg = reg_state(env, regno); 5650 5651 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5652 return reg->type == PTR_TO_FLOW_KEYS; 5653 } 5654 5655 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5656 #ifdef CONFIG_NET 5657 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5658 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5659 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5660 #endif 5661 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5662 }; 5663 5664 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5665 { 5666 /* A referenced register is always trusted. */ 5667 if (reg->ref_obj_id) 5668 return true; 5669 5670 /* Types listed in the reg2btf_ids are always trusted */ 5671 if (reg2btf_ids[base_type(reg->type)]) 5672 return true; 5673 5674 /* If a register is not referenced, it is trusted if it has the 5675 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5676 * other type modifiers may be safe, but we elect to take an opt-in 5677 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5678 * not. 5679 * 5680 * Eventually, we should make PTR_TRUSTED the single source of truth 5681 * for whether a register is trusted. 5682 */ 5683 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5684 !bpf_type_has_unsafe_modifiers(reg->type); 5685 } 5686 5687 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5688 { 5689 return reg->type & MEM_RCU; 5690 } 5691 5692 static void clear_trusted_flags(enum bpf_type_flag *flag) 5693 { 5694 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5695 } 5696 5697 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5698 const struct bpf_reg_state *reg, 5699 int off, int size, bool strict) 5700 { 5701 struct tnum reg_off; 5702 int ip_align; 5703 5704 /* Byte size accesses are always allowed. */ 5705 if (!strict || size == 1) 5706 return 0; 5707 5708 /* For platforms that do not have a Kconfig enabling 5709 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5710 * NET_IP_ALIGN is universally set to '2'. And on platforms 5711 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5712 * to this code only in strict mode where we want to emulate 5713 * the NET_IP_ALIGN==2 checking. Therefore use an 5714 * unconditional IP align value of '2'. 5715 */ 5716 ip_align = 2; 5717 5718 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5719 if (!tnum_is_aligned(reg_off, size)) { 5720 char tn_buf[48]; 5721 5722 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5723 verbose(env, 5724 "misaligned packet access off %d+%s+%d+%d size %d\n", 5725 ip_align, tn_buf, reg->off, off, size); 5726 return -EACCES; 5727 } 5728 5729 return 0; 5730 } 5731 5732 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5733 const struct bpf_reg_state *reg, 5734 const char *pointer_desc, 5735 int off, int size, bool strict) 5736 { 5737 struct tnum reg_off; 5738 5739 /* Byte size accesses are always allowed. */ 5740 if (!strict || size == 1) 5741 return 0; 5742 5743 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5744 if (!tnum_is_aligned(reg_off, size)) { 5745 char tn_buf[48]; 5746 5747 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5748 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5749 pointer_desc, tn_buf, reg->off, off, size); 5750 return -EACCES; 5751 } 5752 5753 return 0; 5754 } 5755 5756 static int check_ptr_alignment(struct bpf_verifier_env *env, 5757 const struct bpf_reg_state *reg, int off, 5758 int size, bool strict_alignment_once) 5759 { 5760 bool strict = env->strict_alignment || strict_alignment_once; 5761 const char *pointer_desc = ""; 5762 5763 switch (reg->type) { 5764 case PTR_TO_PACKET: 5765 case PTR_TO_PACKET_META: 5766 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5767 * right in front, treat it the very same way. 5768 */ 5769 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5770 case PTR_TO_FLOW_KEYS: 5771 pointer_desc = "flow keys "; 5772 break; 5773 case PTR_TO_MAP_KEY: 5774 pointer_desc = "key "; 5775 break; 5776 case PTR_TO_MAP_VALUE: 5777 pointer_desc = "value "; 5778 break; 5779 case PTR_TO_CTX: 5780 pointer_desc = "context "; 5781 break; 5782 case PTR_TO_STACK: 5783 pointer_desc = "stack "; 5784 /* The stack spill tracking logic in check_stack_write_fixed_off() 5785 * and check_stack_read_fixed_off() relies on stack accesses being 5786 * aligned. 5787 */ 5788 strict = true; 5789 break; 5790 case PTR_TO_SOCKET: 5791 pointer_desc = "sock "; 5792 break; 5793 case PTR_TO_SOCK_COMMON: 5794 pointer_desc = "sock_common "; 5795 break; 5796 case PTR_TO_TCP_SOCK: 5797 pointer_desc = "tcp_sock "; 5798 break; 5799 case PTR_TO_XDP_SOCK: 5800 pointer_desc = "xdp_sock "; 5801 break; 5802 default: 5803 break; 5804 } 5805 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5806 strict); 5807 } 5808 5809 /* starting from main bpf function walk all instructions of the function 5810 * and recursively walk all callees that given function can call. 5811 * Ignore jump and exit insns. 5812 * Since recursion is prevented by check_cfg() this algorithm 5813 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5814 */ 5815 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5816 { 5817 struct bpf_subprog_info *subprog = env->subprog_info; 5818 struct bpf_insn *insn = env->prog->insnsi; 5819 int depth = 0, frame = 0, i, subprog_end; 5820 bool tail_call_reachable = false; 5821 int ret_insn[MAX_CALL_FRAMES]; 5822 int ret_prog[MAX_CALL_FRAMES]; 5823 int j; 5824 5825 i = subprog[idx].start; 5826 process_func: 5827 /* protect against potential stack overflow that might happen when 5828 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5829 * depth for such case down to 256 so that the worst case scenario 5830 * would result in 8k stack size (32 which is tailcall limit * 256 = 5831 * 8k). 5832 * 5833 * To get the idea what might happen, see an example: 5834 * func1 -> sub rsp, 128 5835 * subfunc1 -> sub rsp, 256 5836 * tailcall1 -> add rsp, 256 5837 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5838 * subfunc2 -> sub rsp, 64 5839 * subfunc22 -> sub rsp, 128 5840 * tailcall2 -> add rsp, 128 5841 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5842 * 5843 * tailcall will unwind the current stack frame but it will not get rid 5844 * of caller's stack as shown on the example above. 5845 */ 5846 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5847 verbose(env, 5848 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5849 depth); 5850 return -EACCES; 5851 } 5852 /* round up to 32-bytes, since this is granularity 5853 * of interpreter stack size 5854 */ 5855 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5856 if (depth > MAX_BPF_STACK) { 5857 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5858 frame + 1, depth); 5859 return -EACCES; 5860 } 5861 continue_func: 5862 subprog_end = subprog[idx + 1].start; 5863 for (; i < subprog_end; i++) { 5864 int next_insn, sidx; 5865 5866 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 5867 bool err = false; 5868 5869 if (!is_bpf_throw_kfunc(insn + i)) 5870 continue; 5871 if (subprog[idx].is_cb) 5872 err = true; 5873 for (int c = 0; c < frame && !err; c++) { 5874 if (subprog[ret_prog[c]].is_cb) { 5875 err = true; 5876 break; 5877 } 5878 } 5879 if (!err) 5880 continue; 5881 verbose(env, 5882 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 5883 i, idx); 5884 return -EINVAL; 5885 } 5886 5887 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5888 continue; 5889 /* remember insn and function to return to */ 5890 ret_insn[frame] = i + 1; 5891 ret_prog[frame] = idx; 5892 5893 /* find the callee */ 5894 next_insn = i + insn[i].imm + 1; 5895 sidx = find_subprog(env, next_insn); 5896 if (sidx < 0) { 5897 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5898 next_insn); 5899 return -EFAULT; 5900 } 5901 if (subprog[sidx].is_async_cb) { 5902 if (subprog[sidx].has_tail_call) { 5903 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5904 return -EFAULT; 5905 } 5906 /* async callbacks don't increase bpf prog stack size unless called directly */ 5907 if (!bpf_pseudo_call(insn + i)) 5908 continue; 5909 if (subprog[sidx].is_exception_cb) { 5910 verbose(env, "insn %d cannot call exception cb directly\n", i); 5911 return -EINVAL; 5912 } 5913 } 5914 i = next_insn; 5915 idx = sidx; 5916 5917 if (subprog[idx].has_tail_call) 5918 tail_call_reachable = true; 5919 5920 frame++; 5921 if (frame >= MAX_CALL_FRAMES) { 5922 verbose(env, "the call stack of %d frames is too deep !\n", 5923 frame); 5924 return -E2BIG; 5925 } 5926 goto process_func; 5927 } 5928 /* if tail call got detected across bpf2bpf calls then mark each of the 5929 * currently present subprog frames as tail call reachable subprogs; 5930 * this info will be utilized by JIT so that we will be preserving the 5931 * tail call counter throughout bpf2bpf calls combined with tailcalls 5932 */ 5933 if (tail_call_reachable) 5934 for (j = 0; j < frame; j++) { 5935 if (subprog[ret_prog[j]].is_exception_cb) { 5936 verbose(env, "cannot tail call within exception cb\n"); 5937 return -EINVAL; 5938 } 5939 subprog[ret_prog[j]].tail_call_reachable = true; 5940 } 5941 if (subprog[0].tail_call_reachable) 5942 env->prog->aux->tail_call_reachable = true; 5943 5944 /* end of for() loop means the last insn of the 'subprog' 5945 * was reached. Doesn't matter whether it was JA or EXIT 5946 */ 5947 if (frame == 0) 5948 return 0; 5949 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5950 frame--; 5951 i = ret_insn[frame]; 5952 idx = ret_prog[frame]; 5953 goto continue_func; 5954 } 5955 5956 static int check_max_stack_depth(struct bpf_verifier_env *env) 5957 { 5958 struct bpf_subprog_info *si = env->subprog_info; 5959 int ret; 5960 5961 for (int i = 0; i < env->subprog_cnt; i++) { 5962 if (!i || si[i].is_async_cb) { 5963 ret = check_max_stack_depth_subprog(env, i); 5964 if (ret < 0) 5965 return ret; 5966 } 5967 continue; 5968 } 5969 return 0; 5970 } 5971 5972 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5973 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5974 const struct bpf_insn *insn, int idx) 5975 { 5976 int start = idx + insn->imm + 1, subprog; 5977 5978 subprog = find_subprog(env, start); 5979 if (subprog < 0) { 5980 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5981 start); 5982 return -EFAULT; 5983 } 5984 return env->subprog_info[subprog].stack_depth; 5985 } 5986 #endif 5987 5988 static int __check_buffer_access(struct bpf_verifier_env *env, 5989 const char *buf_info, 5990 const struct bpf_reg_state *reg, 5991 int regno, int off, int size) 5992 { 5993 if (off < 0) { 5994 verbose(env, 5995 "R%d invalid %s buffer access: off=%d, size=%d\n", 5996 regno, buf_info, off, size); 5997 return -EACCES; 5998 } 5999 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6000 char tn_buf[48]; 6001 6002 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6003 verbose(env, 6004 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6005 regno, off, tn_buf); 6006 return -EACCES; 6007 } 6008 6009 return 0; 6010 } 6011 6012 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6013 const struct bpf_reg_state *reg, 6014 int regno, int off, int size) 6015 { 6016 int err; 6017 6018 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6019 if (err) 6020 return err; 6021 6022 if (off + size > env->prog->aux->max_tp_access) 6023 env->prog->aux->max_tp_access = off + size; 6024 6025 return 0; 6026 } 6027 6028 static int check_buffer_access(struct bpf_verifier_env *env, 6029 const struct bpf_reg_state *reg, 6030 int regno, int off, int size, 6031 bool zero_size_allowed, 6032 u32 *max_access) 6033 { 6034 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6035 int err; 6036 6037 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6038 if (err) 6039 return err; 6040 6041 if (off + size > *max_access) 6042 *max_access = off + size; 6043 6044 return 0; 6045 } 6046 6047 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6048 static void zext_32_to_64(struct bpf_reg_state *reg) 6049 { 6050 reg->var_off = tnum_subreg(reg->var_off); 6051 __reg_assign_32_into_64(reg); 6052 } 6053 6054 /* truncate register to smaller size (in bytes) 6055 * must be called with size < BPF_REG_SIZE 6056 */ 6057 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6058 { 6059 u64 mask; 6060 6061 /* clear high bits in bit representation */ 6062 reg->var_off = tnum_cast(reg->var_off, size); 6063 6064 /* fix arithmetic bounds */ 6065 mask = ((u64)1 << (size * 8)) - 1; 6066 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6067 reg->umin_value &= mask; 6068 reg->umax_value &= mask; 6069 } else { 6070 reg->umin_value = 0; 6071 reg->umax_value = mask; 6072 } 6073 reg->smin_value = reg->umin_value; 6074 reg->smax_value = reg->umax_value; 6075 6076 /* If size is smaller than 32bit register the 32bit register 6077 * values are also truncated so we push 64-bit bounds into 6078 * 32-bit bounds. Above were truncated < 32-bits already. 6079 */ 6080 if (size < 4) { 6081 __mark_reg32_unbounded(reg); 6082 reg_bounds_sync(reg); 6083 } 6084 } 6085 6086 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6087 { 6088 if (size == 1) { 6089 reg->smin_value = reg->s32_min_value = S8_MIN; 6090 reg->smax_value = reg->s32_max_value = S8_MAX; 6091 } else if (size == 2) { 6092 reg->smin_value = reg->s32_min_value = S16_MIN; 6093 reg->smax_value = reg->s32_max_value = S16_MAX; 6094 } else { 6095 /* size == 4 */ 6096 reg->smin_value = reg->s32_min_value = S32_MIN; 6097 reg->smax_value = reg->s32_max_value = S32_MAX; 6098 } 6099 reg->umin_value = reg->u32_min_value = 0; 6100 reg->umax_value = U64_MAX; 6101 reg->u32_max_value = U32_MAX; 6102 reg->var_off = tnum_unknown; 6103 } 6104 6105 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6106 { 6107 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6108 u64 top_smax_value, top_smin_value; 6109 u64 num_bits = size * 8; 6110 6111 if (tnum_is_const(reg->var_off)) { 6112 u64_cval = reg->var_off.value; 6113 if (size == 1) 6114 reg->var_off = tnum_const((s8)u64_cval); 6115 else if (size == 2) 6116 reg->var_off = tnum_const((s16)u64_cval); 6117 else 6118 /* size == 4 */ 6119 reg->var_off = tnum_const((s32)u64_cval); 6120 6121 u64_cval = reg->var_off.value; 6122 reg->smax_value = reg->smin_value = u64_cval; 6123 reg->umax_value = reg->umin_value = u64_cval; 6124 reg->s32_max_value = reg->s32_min_value = u64_cval; 6125 reg->u32_max_value = reg->u32_min_value = u64_cval; 6126 return; 6127 } 6128 6129 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6130 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6131 6132 if (top_smax_value != top_smin_value) 6133 goto out; 6134 6135 /* find the s64_min and s64_min after sign extension */ 6136 if (size == 1) { 6137 init_s64_max = (s8)reg->smax_value; 6138 init_s64_min = (s8)reg->smin_value; 6139 } else if (size == 2) { 6140 init_s64_max = (s16)reg->smax_value; 6141 init_s64_min = (s16)reg->smin_value; 6142 } else { 6143 init_s64_max = (s32)reg->smax_value; 6144 init_s64_min = (s32)reg->smin_value; 6145 } 6146 6147 s64_max = max(init_s64_max, init_s64_min); 6148 s64_min = min(init_s64_max, init_s64_min); 6149 6150 /* both of s64_max/s64_min positive or negative */ 6151 if ((s64_max >= 0) == (s64_min >= 0)) { 6152 reg->smin_value = reg->s32_min_value = s64_min; 6153 reg->smax_value = reg->s32_max_value = s64_max; 6154 reg->umin_value = reg->u32_min_value = s64_min; 6155 reg->umax_value = reg->u32_max_value = s64_max; 6156 reg->var_off = tnum_range(s64_min, s64_max); 6157 return; 6158 } 6159 6160 out: 6161 set_sext64_default_val(reg, size); 6162 } 6163 6164 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6165 { 6166 if (size == 1) { 6167 reg->s32_min_value = S8_MIN; 6168 reg->s32_max_value = S8_MAX; 6169 } else { 6170 /* size == 2 */ 6171 reg->s32_min_value = S16_MIN; 6172 reg->s32_max_value = S16_MAX; 6173 } 6174 reg->u32_min_value = 0; 6175 reg->u32_max_value = U32_MAX; 6176 } 6177 6178 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6179 { 6180 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6181 u32 top_smax_value, top_smin_value; 6182 u32 num_bits = size * 8; 6183 6184 if (tnum_is_const(reg->var_off)) { 6185 u32_val = reg->var_off.value; 6186 if (size == 1) 6187 reg->var_off = tnum_const((s8)u32_val); 6188 else 6189 reg->var_off = tnum_const((s16)u32_val); 6190 6191 u32_val = reg->var_off.value; 6192 reg->s32_min_value = reg->s32_max_value = u32_val; 6193 reg->u32_min_value = reg->u32_max_value = u32_val; 6194 return; 6195 } 6196 6197 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6198 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6199 6200 if (top_smax_value != top_smin_value) 6201 goto out; 6202 6203 /* find the s32_min and s32_min after sign extension */ 6204 if (size == 1) { 6205 init_s32_max = (s8)reg->s32_max_value; 6206 init_s32_min = (s8)reg->s32_min_value; 6207 } else { 6208 /* size == 2 */ 6209 init_s32_max = (s16)reg->s32_max_value; 6210 init_s32_min = (s16)reg->s32_min_value; 6211 } 6212 s32_max = max(init_s32_max, init_s32_min); 6213 s32_min = min(init_s32_max, init_s32_min); 6214 6215 if ((s32_min >= 0) == (s32_max >= 0)) { 6216 reg->s32_min_value = s32_min; 6217 reg->s32_max_value = s32_max; 6218 reg->u32_min_value = (u32)s32_min; 6219 reg->u32_max_value = (u32)s32_max; 6220 return; 6221 } 6222 6223 out: 6224 set_sext32_default_val(reg, size); 6225 } 6226 6227 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6228 { 6229 /* A map is considered read-only if the following condition are true: 6230 * 6231 * 1) BPF program side cannot change any of the map content. The 6232 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6233 * and was set at map creation time. 6234 * 2) The map value(s) have been initialized from user space by a 6235 * loader and then "frozen", such that no new map update/delete 6236 * operations from syscall side are possible for the rest of 6237 * the map's lifetime from that point onwards. 6238 * 3) Any parallel/pending map update/delete operations from syscall 6239 * side have been completed. Only after that point, it's safe to 6240 * assume that map value(s) are immutable. 6241 */ 6242 return (map->map_flags & BPF_F_RDONLY_PROG) && 6243 READ_ONCE(map->frozen) && 6244 !bpf_map_write_active(map); 6245 } 6246 6247 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6248 bool is_ldsx) 6249 { 6250 void *ptr; 6251 u64 addr; 6252 int err; 6253 6254 err = map->ops->map_direct_value_addr(map, &addr, off); 6255 if (err) 6256 return err; 6257 ptr = (void *)(long)addr + off; 6258 6259 switch (size) { 6260 case sizeof(u8): 6261 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6262 break; 6263 case sizeof(u16): 6264 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6265 break; 6266 case sizeof(u32): 6267 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6268 break; 6269 case sizeof(u64): 6270 *val = *(u64 *)ptr; 6271 break; 6272 default: 6273 return -EINVAL; 6274 } 6275 return 0; 6276 } 6277 6278 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6279 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6280 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6281 6282 /* 6283 * Allow list few fields as RCU trusted or full trusted. 6284 * This logic doesn't allow mix tagging and will be removed once GCC supports 6285 * btf_type_tag. 6286 */ 6287 6288 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6289 BTF_TYPE_SAFE_RCU(struct task_struct) { 6290 const cpumask_t *cpus_ptr; 6291 struct css_set __rcu *cgroups; 6292 struct task_struct __rcu *real_parent; 6293 struct task_struct *group_leader; 6294 }; 6295 6296 BTF_TYPE_SAFE_RCU(struct cgroup) { 6297 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6298 struct kernfs_node *kn; 6299 }; 6300 6301 BTF_TYPE_SAFE_RCU(struct css_set) { 6302 struct cgroup *dfl_cgrp; 6303 }; 6304 6305 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6306 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6307 struct file __rcu *exe_file; 6308 }; 6309 6310 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6311 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6312 */ 6313 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6314 struct sock *sk; 6315 }; 6316 6317 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6318 struct sock *sk; 6319 }; 6320 6321 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6322 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6323 struct seq_file *seq; 6324 }; 6325 6326 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6327 struct bpf_iter_meta *meta; 6328 struct task_struct *task; 6329 }; 6330 6331 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6332 struct file *file; 6333 }; 6334 6335 BTF_TYPE_SAFE_TRUSTED(struct file) { 6336 struct inode *f_inode; 6337 }; 6338 6339 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6340 /* no negative dentry-s in places where bpf can see it */ 6341 struct inode *d_inode; 6342 }; 6343 6344 BTF_TYPE_SAFE_TRUSTED(struct socket) { 6345 struct sock *sk; 6346 }; 6347 6348 static bool type_is_rcu(struct bpf_verifier_env *env, 6349 struct bpf_reg_state *reg, 6350 const char *field_name, u32 btf_id) 6351 { 6352 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6353 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6354 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6355 6356 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6357 } 6358 6359 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6360 struct bpf_reg_state *reg, 6361 const char *field_name, u32 btf_id) 6362 { 6363 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6364 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6365 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6366 6367 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6368 } 6369 6370 static bool type_is_trusted(struct bpf_verifier_env *env, 6371 struct bpf_reg_state *reg, 6372 const char *field_name, u32 btf_id) 6373 { 6374 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6375 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6376 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6377 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6378 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6379 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 6380 6381 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6382 } 6383 6384 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6385 struct bpf_reg_state *regs, 6386 int regno, int off, int size, 6387 enum bpf_access_type atype, 6388 int value_regno) 6389 { 6390 struct bpf_reg_state *reg = regs + regno; 6391 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6392 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6393 const char *field_name = NULL; 6394 enum bpf_type_flag flag = 0; 6395 u32 btf_id = 0; 6396 int ret; 6397 6398 if (!env->allow_ptr_leaks) { 6399 verbose(env, 6400 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6401 tname); 6402 return -EPERM; 6403 } 6404 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6405 verbose(env, 6406 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6407 tname); 6408 return -EINVAL; 6409 } 6410 if (off < 0) { 6411 verbose(env, 6412 "R%d is ptr_%s invalid negative access: off=%d\n", 6413 regno, tname, off); 6414 return -EACCES; 6415 } 6416 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6417 char tn_buf[48]; 6418 6419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6420 verbose(env, 6421 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6422 regno, tname, off, tn_buf); 6423 return -EACCES; 6424 } 6425 6426 if (reg->type & MEM_USER) { 6427 verbose(env, 6428 "R%d is ptr_%s access user memory: off=%d\n", 6429 regno, tname, off); 6430 return -EACCES; 6431 } 6432 6433 if (reg->type & MEM_PERCPU) { 6434 verbose(env, 6435 "R%d is ptr_%s access percpu memory: off=%d\n", 6436 regno, tname, off); 6437 return -EACCES; 6438 } 6439 6440 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6441 if (!btf_is_kernel(reg->btf)) { 6442 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6443 return -EFAULT; 6444 } 6445 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6446 } else { 6447 /* Writes are permitted with default btf_struct_access for 6448 * program allocated objects (which always have ref_obj_id > 0), 6449 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6450 */ 6451 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6452 verbose(env, "only read is supported\n"); 6453 return -EACCES; 6454 } 6455 6456 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6457 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 6458 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6459 return -EFAULT; 6460 } 6461 6462 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6463 } 6464 6465 if (ret < 0) 6466 return ret; 6467 6468 if (ret != PTR_TO_BTF_ID) { 6469 /* just mark; */ 6470 6471 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6472 /* If this is an untrusted pointer, all pointers formed by walking it 6473 * also inherit the untrusted flag. 6474 */ 6475 flag = PTR_UNTRUSTED; 6476 6477 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6478 /* By default any pointer obtained from walking a trusted pointer is no 6479 * longer trusted, unless the field being accessed has explicitly been 6480 * marked as inheriting its parent's state of trust (either full or RCU). 6481 * For example: 6482 * 'cgroups' pointer is untrusted if task->cgroups dereference 6483 * happened in a sleepable program outside of bpf_rcu_read_lock() 6484 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6485 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6486 * 6487 * A regular RCU-protected pointer with __rcu tag can also be deemed 6488 * trusted if we are in an RCU CS. Such pointer can be NULL. 6489 */ 6490 if (type_is_trusted(env, reg, field_name, btf_id)) { 6491 flag |= PTR_TRUSTED; 6492 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6493 if (type_is_rcu(env, reg, field_name, btf_id)) { 6494 /* ignore __rcu tag and mark it MEM_RCU */ 6495 flag |= MEM_RCU; 6496 } else if (flag & MEM_RCU || 6497 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6498 /* __rcu tagged pointers can be NULL */ 6499 flag |= MEM_RCU | PTR_MAYBE_NULL; 6500 6501 /* We always trust them */ 6502 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6503 flag & PTR_UNTRUSTED) 6504 flag &= ~PTR_UNTRUSTED; 6505 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6506 /* keep as-is */ 6507 } else { 6508 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6509 clear_trusted_flags(&flag); 6510 } 6511 } else { 6512 /* 6513 * If not in RCU CS or MEM_RCU pointer can be NULL then 6514 * aggressively mark as untrusted otherwise such 6515 * pointers will be plain PTR_TO_BTF_ID without flags 6516 * and will be allowed to be passed into helpers for 6517 * compat reasons. 6518 */ 6519 flag = PTR_UNTRUSTED; 6520 } 6521 } else { 6522 /* Old compat. Deprecated */ 6523 clear_trusted_flags(&flag); 6524 } 6525 6526 if (atype == BPF_READ && value_regno >= 0) 6527 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6528 6529 return 0; 6530 } 6531 6532 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6533 struct bpf_reg_state *regs, 6534 int regno, int off, int size, 6535 enum bpf_access_type atype, 6536 int value_regno) 6537 { 6538 struct bpf_reg_state *reg = regs + regno; 6539 struct bpf_map *map = reg->map_ptr; 6540 struct bpf_reg_state map_reg; 6541 enum bpf_type_flag flag = 0; 6542 const struct btf_type *t; 6543 const char *tname; 6544 u32 btf_id; 6545 int ret; 6546 6547 if (!btf_vmlinux) { 6548 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6549 return -ENOTSUPP; 6550 } 6551 6552 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6553 verbose(env, "map_ptr access not supported for map type %d\n", 6554 map->map_type); 6555 return -ENOTSUPP; 6556 } 6557 6558 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6559 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6560 6561 if (!env->allow_ptr_leaks) { 6562 verbose(env, 6563 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6564 tname); 6565 return -EPERM; 6566 } 6567 6568 if (off < 0) { 6569 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6570 regno, tname, off); 6571 return -EACCES; 6572 } 6573 6574 if (atype != BPF_READ) { 6575 verbose(env, "only read from %s is supported\n", tname); 6576 return -EACCES; 6577 } 6578 6579 /* Simulate access to a PTR_TO_BTF_ID */ 6580 memset(&map_reg, 0, sizeof(map_reg)); 6581 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6582 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6583 if (ret < 0) 6584 return ret; 6585 6586 if (value_regno >= 0) 6587 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6588 6589 return 0; 6590 } 6591 6592 /* Check that the stack access at the given offset is within bounds. The 6593 * maximum valid offset is -1. 6594 * 6595 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6596 * -state->allocated_stack for reads. 6597 */ 6598 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 6599 s64 off, 6600 struct bpf_func_state *state, 6601 enum bpf_access_type t) 6602 { 6603 int min_valid_off; 6604 6605 if (t == BPF_WRITE || env->allow_uninit_stack) 6606 min_valid_off = -MAX_BPF_STACK; 6607 else 6608 min_valid_off = -state->allocated_stack; 6609 6610 if (off < min_valid_off || off > -1) 6611 return -EACCES; 6612 return 0; 6613 } 6614 6615 /* Check that the stack access at 'regno + off' falls within the maximum stack 6616 * bounds. 6617 * 6618 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6619 */ 6620 static int check_stack_access_within_bounds( 6621 struct bpf_verifier_env *env, 6622 int regno, int off, int access_size, 6623 enum bpf_access_src src, enum bpf_access_type type) 6624 { 6625 struct bpf_reg_state *regs = cur_regs(env); 6626 struct bpf_reg_state *reg = regs + regno; 6627 struct bpf_func_state *state = func(env, reg); 6628 s64 min_off, max_off; 6629 int err; 6630 char *err_extra; 6631 6632 if (src == ACCESS_HELPER) 6633 /* We don't know if helpers are reading or writing (or both). */ 6634 err_extra = " indirect access to"; 6635 else if (type == BPF_READ) 6636 err_extra = " read from"; 6637 else 6638 err_extra = " write to"; 6639 6640 if (tnum_is_const(reg->var_off)) { 6641 min_off = (s64)reg->var_off.value + off; 6642 max_off = min_off + access_size; 6643 } else { 6644 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6645 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6646 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6647 err_extra, regno); 6648 return -EACCES; 6649 } 6650 min_off = reg->smin_value + off; 6651 max_off = reg->smax_value + off + access_size; 6652 } 6653 6654 err = check_stack_slot_within_bounds(env, min_off, state, type); 6655 if (!err && max_off > 0) 6656 err = -EINVAL; /* out of stack access into non-negative offsets */ 6657 6658 if (err) { 6659 if (tnum_is_const(reg->var_off)) { 6660 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6661 err_extra, regno, off, access_size); 6662 } else { 6663 char tn_buf[48]; 6664 6665 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6666 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 6667 err_extra, regno, tn_buf, off, access_size); 6668 } 6669 return err; 6670 } 6671 6672 /* Note that there is no stack access with offset zero, so the needed stack 6673 * size is -min_off, not -min_off+1. 6674 */ 6675 return grow_stack_state(env, state, -min_off /* size */); 6676 } 6677 6678 /* check whether memory at (regno + off) is accessible for t = (read | write) 6679 * if t==write, value_regno is a register which value is stored into memory 6680 * if t==read, value_regno is a register which will receive the value from memory 6681 * if t==write && value_regno==-1, some unknown value is stored into memory 6682 * if t==read && value_regno==-1, don't care what we read from memory 6683 */ 6684 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6685 int off, int bpf_size, enum bpf_access_type t, 6686 int value_regno, bool strict_alignment_once, bool is_ldsx) 6687 { 6688 struct bpf_reg_state *regs = cur_regs(env); 6689 struct bpf_reg_state *reg = regs + regno; 6690 int size, err = 0; 6691 6692 size = bpf_size_to_bytes(bpf_size); 6693 if (size < 0) 6694 return size; 6695 6696 /* alignment checks will add in reg->off themselves */ 6697 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6698 if (err) 6699 return err; 6700 6701 /* for access checks, reg->off is just part of off */ 6702 off += reg->off; 6703 6704 if (reg->type == PTR_TO_MAP_KEY) { 6705 if (t == BPF_WRITE) { 6706 verbose(env, "write to change key R%d not allowed\n", regno); 6707 return -EACCES; 6708 } 6709 6710 err = check_mem_region_access(env, regno, off, size, 6711 reg->map_ptr->key_size, false); 6712 if (err) 6713 return err; 6714 if (value_regno >= 0) 6715 mark_reg_unknown(env, regs, value_regno); 6716 } else if (reg->type == PTR_TO_MAP_VALUE) { 6717 struct btf_field *kptr_field = NULL; 6718 6719 if (t == BPF_WRITE && value_regno >= 0 && 6720 is_pointer_value(env, value_regno)) { 6721 verbose(env, "R%d leaks addr into map\n", value_regno); 6722 return -EACCES; 6723 } 6724 err = check_map_access_type(env, regno, off, size, t); 6725 if (err) 6726 return err; 6727 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6728 if (err) 6729 return err; 6730 if (tnum_is_const(reg->var_off)) 6731 kptr_field = btf_record_find(reg->map_ptr->record, 6732 off + reg->var_off.value, BPF_KPTR); 6733 if (kptr_field) { 6734 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6735 } else if (t == BPF_READ && value_regno >= 0) { 6736 struct bpf_map *map = reg->map_ptr; 6737 6738 /* if map is read-only, track its contents as scalars */ 6739 if (tnum_is_const(reg->var_off) && 6740 bpf_map_is_rdonly(map) && 6741 map->ops->map_direct_value_addr) { 6742 int map_off = off + reg->var_off.value; 6743 u64 val = 0; 6744 6745 err = bpf_map_direct_read(map, map_off, size, 6746 &val, is_ldsx); 6747 if (err) 6748 return err; 6749 6750 regs[value_regno].type = SCALAR_VALUE; 6751 __mark_reg_known(®s[value_regno], val); 6752 } else { 6753 mark_reg_unknown(env, regs, value_regno); 6754 } 6755 } 6756 } else if (base_type(reg->type) == PTR_TO_MEM) { 6757 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6758 6759 if (type_may_be_null(reg->type)) { 6760 verbose(env, "R%d invalid mem access '%s'\n", regno, 6761 reg_type_str(env, reg->type)); 6762 return -EACCES; 6763 } 6764 6765 if (t == BPF_WRITE && rdonly_mem) { 6766 verbose(env, "R%d cannot write into %s\n", 6767 regno, reg_type_str(env, reg->type)); 6768 return -EACCES; 6769 } 6770 6771 if (t == BPF_WRITE && value_regno >= 0 && 6772 is_pointer_value(env, value_regno)) { 6773 verbose(env, "R%d leaks addr into mem\n", value_regno); 6774 return -EACCES; 6775 } 6776 6777 err = check_mem_region_access(env, regno, off, size, 6778 reg->mem_size, false); 6779 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6780 mark_reg_unknown(env, regs, value_regno); 6781 } else if (reg->type == PTR_TO_CTX) { 6782 enum bpf_reg_type reg_type = SCALAR_VALUE; 6783 struct btf *btf = NULL; 6784 u32 btf_id = 0; 6785 6786 if (t == BPF_WRITE && value_regno >= 0 && 6787 is_pointer_value(env, value_regno)) { 6788 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6789 return -EACCES; 6790 } 6791 6792 err = check_ptr_off_reg(env, reg, regno); 6793 if (err < 0) 6794 return err; 6795 6796 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6797 &btf_id); 6798 if (err) 6799 verbose_linfo(env, insn_idx, "; "); 6800 if (!err && t == BPF_READ && value_regno >= 0) { 6801 /* ctx access returns either a scalar, or a 6802 * PTR_TO_PACKET[_META,_END]. In the latter 6803 * case, we know the offset is zero. 6804 */ 6805 if (reg_type == SCALAR_VALUE) { 6806 mark_reg_unknown(env, regs, value_regno); 6807 } else { 6808 mark_reg_known_zero(env, regs, 6809 value_regno); 6810 if (type_may_be_null(reg_type)) 6811 regs[value_regno].id = ++env->id_gen; 6812 /* A load of ctx field could have different 6813 * actual load size with the one encoded in the 6814 * insn. When the dst is PTR, it is for sure not 6815 * a sub-register. 6816 */ 6817 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6818 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6819 regs[value_regno].btf = btf; 6820 regs[value_regno].btf_id = btf_id; 6821 } 6822 } 6823 regs[value_regno].type = reg_type; 6824 } 6825 6826 } else if (reg->type == PTR_TO_STACK) { 6827 /* Basic bounds checks. */ 6828 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6829 if (err) 6830 return err; 6831 6832 if (t == BPF_READ) 6833 err = check_stack_read(env, regno, off, size, 6834 value_regno); 6835 else 6836 err = check_stack_write(env, regno, off, size, 6837 value_regno, insn_idx); 6838 } else if (reg_is_pkt_pointer(reg)) { 6839 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6840 verbose(env, "cannot write into packet\n"); 6841 return -EACCES; 6842 } 6843 if (t == BPF_WRITE && value_regno >= 0 && 6844 is_pointer_value(env, value_regno)) { 6845 verbose(env, "R%d leaks addr into packet\n", 6846 value_regno); 6847 return -EACCES; 6848 } 6849 err = check_packet_access(env, regno, off, size, false); 6850 if (!err && t == BPF_READ && value_regno >= 0) 6851 mark_reg_unknown(env, regs, value_regno); 6852 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6853 if (t == BPF_WRITE && value_regno >= 0 && 6854 is_pointer_value(env, value_regno)) { 6855 verbose(env, "R%d leaks addr into flow keys\n", 6856 value_regno); 6857 return -EACCES; 6858 } 6859 6860 err = check_flow_keys_access(env, off, size); 6861 if (!err && t == BPF_READ && value_regno >= 0) 6862 mark_reg_unknown(env, regs, value_regno); 6863 } else if (type_is_sk_pointer(reg->type)) { 6864 if (t == BPF_WRITE) { 6865 verbose(env, "R%d cannot write into %s\n", 6866 regno, reg_type_str(env, reg->type)); 6867 return -EACCES; 6868 } 6869 err = check_sock_access(env, insn_idx, regno, off, size, t); 6870 if (!err && value_regno >= 0) 6871 mark_reg_unknown(env, regs, value_regno); 6872 } else if (reg->type == PTR_TO_TP_BUFFER) { 6873 err = check_tp_buffer_access(env, reg, regno, off, size); 6874 if (!err && t == BPF_READ && value_regno >= 0) 6875 mark_reg_unknown(env, regs, value_regno); 6876 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6877 !type_may_be_null(reg->type)) { 6878 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6879 value_regno); 6880 } else if (reg->type == CONST_PTR_TO_MAP) { 6881 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6882 value_regno); 6883 } else if (base_type(reg->type) == PTR_TO_BUF) { 6884 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6885 u32 *max_access; 6886 6887 if (rdonly_mem) { 6888 if (t == BPF_WRITE) { 6889 verbose(env, "R%d cannot write into %s\n", 6890 regno, reg_type_str(env, reg->type)); 6891 return -EACCES; 6892 } 6893 max_access = &env->prog->aux->max_rdonly_access; 6894 } else { 6895 max_access = &env->prog->aux->max_rdwr_access; 6896 } 6897 6898 err = check_buffer_access(env, reg, regno, off, size, false, 6899 max_access); 6900 6901 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6902 mark_reg_unknown(env, regs, value_regno); 6903 } else { 6904 verbose(env, "R%d invalid mem access '%s'\n", regno, 6905 reg_type_str(env, reg->type)); 6906 return -EACCES; 6907 } 6908 6909 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6910 regs[value_regno].type == SCALAR_VALUE) { 6911 if (!is_ldsx) 6912 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6913 coerce_reg_to_size(®s[value_regno], size); 6914 else 6915 coerce_reg_to_size_sx(®s[value_regno], size); 6916 } 6917 return err; 6918 } 6919 6920 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6921 { 6922 int load_reg; 6923 int err; 6924 6925 switch (insn->imm) { 6926 case BPF_ADD: 6927 case BPF_ADD | BPF_FETCH: 6928 case BPF_AND: 6929 case BPF_AND | BPF_FETCH: 6930 case BPF_OR: 6931 case BPF_OR | BPF_FETCH: 6932 case BPF_XOR: 6933 case BPF_XOR | BPF_FETCH: 6934 case BPF_XCHG: 6935 case BPF_CMPXCHG: 6936 break; 6937 default: 6938 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6939 return -EINVAL; 6940 } 6941 6942 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6943 verbose(env, "invalid atomic operand size\n"); 6944 return -EINVAL; 6945 } 6946 6947 /* check src1 operand */ 6948 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6949 if (err) 6950 return err; 6951 6952 /* check src2 operand */ 6953 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6954 if (err) 6955 return err; 6956 6957 if (insn->imm == BPF_CMPXCHG) { 6958 /* Check comparison of R0 with memory location */ 6959 const u32 aux_reg = BPF_REG_0; 6960 6961 err = check_reg_arg(env, aux_reg, SRC_OP); 6962 if (err) 6963 return err; 6964 6965 if (is_pointer_value(env, aux_reg)) { 6966 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6967 return -EACCES; 6968 } 6969 } 6970 6971 if (is_pointer_value(env, insn->src_reg)) { 6972 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6973 return -EACCES; 6974 } 6975 6976 if (is_ctx_reg(env, insn->dst_reg) || 6977 is_pkt_reg(env, insn->dst_reg) || 6978 is_flow_key_reg(env, insn->dst_reg) || 6979 is_sk_reg(env, insn->dst_reg)) { 6980 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6981 insn->dst_reg, 6982 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6983 return -EACCES; 6984 } 6985 6986 if (insn->imm & BPF_FETCH) { 6987 if (insn->imm == BPF_CMPXCHG) 6988 load_reg = BPF_REG_0; 6989 else 6990 load_reg = insn->src_reg; 6991 6992 /* check and record load of old value */ 6993 err = check_reg_arg(env, load_reg, DST_OP); 6994 if (err) 6995 return err; 6996 } else { 6997 /* This instruction accesses a memory location but doesn't 6998 * actually load it into a register. 6999 */ 7000 load_reg = -1; 7001 } 7002 7003 /* Check whether we can read the memory, with second call for fetch 7004 * case to simulate the register fill. 7005 */ 7006 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7007 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7008 if (!err && load_reg >= 0) 7009 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7010 BPF_SIZE(insn->code), BPF_READ, load_reg, 7011 true, false); 7012 if (err) 7013 return err; 7014 7015 /* Check whether we can write into the same memory. */ 7016 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7017 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7018 if (err) 7019 return err; 7020 return 0; 7021 } 7022 7023 /* When register 'regno' is used to read the stack (either directly or through 7024 * a helper function) make sure that it's within stack boundary and, depending 7025 * on the access type and privileges, that all elements of the stack are 7026 * initialized. 7027 * 7028 * 'off' includes 'regno->off', but not its dynamic part (if any). 7029 * 7030 * All registers that have been spilled on the stack in the slots within the 7031 * read offsets are marked as read. 7032 */ 7033 static int check_stack_range_initialized( 7034 struct bpf_verifier_env *env, int regno, int off, 7035 int access_size, bool zero_size_allowed, 7036 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 7037 { 7038 struct bpf_reg_state *reg = reg_state(env, regno); 7039 struct bpf_func_state *state = func(env, reg); 7040 int err, min_off, max_off, i, j, slot, spi; 7041 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 7042 enum bpf_access_type bounds_check_type; 7043 /* Some accesses can write anything into the stack, others are 7044 * read-only. 7045 */ 7046 bool clobber = false; 7047 7048 if (access_size == 0 && !zero_size_allowed) { 7049 verbose(env, "invalid zero-sized read\n"); 7050 return -EACCES; 7051 } 7052 7053 if (type == ACCESS_HELPER) { 7054 /* The bounds checks for writes are more permissive than for 7055 * reads. However, if raw_mode is not set, we'll do extra 7056 * checks below. 7057 */ 7058 bounds_check_type = BPF_WRITE; 7059 clobber = true; 7060 } else { 7061 bounds_check_type = BPF_READ; 7062 } 7063 err = check_stack_access_within_bounds(env, regno, off, access_size, 7064 type, bounds_check_type); 7065 if (err) 7066 return err; 7067 7068 7069 if (tnum_is_const(reg->var_off)) { 7070 min_off = max_off = reg->var_off.value + off; 7071 } else { 7072 /* Variable offset is prohibited for unprivileged mode for 7073 * simplicity since it requires corresponding support in 7074 * Spectre masking for stack ALU. 7075 * See also retrieve_ptr_limit(). 7076 */ 7077 if (!env->bypass_spec_v1) { 7078 char tn_buf[48]; 7079 7080 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7081 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 7082 regno, err_extra, tn_buf); 7083 return -EACCES; 7084 } 7085 /* Only initialized buffer on stack is allowed to be accessed 7086 * with variable offset. With uninitialized buffer it's hard to 7087 * guarantee that whole memory is marked as initialized on 7088 * helper return since specific bounds are unknown what may 7089 * cause uninitialized stack leaking. 7090 */ 7091 if (meta && meta->raw_mode) 7092 meta = NULL; 7093 7094 min_off = reg->smin_value + off; 7095 max_off = reg->smax_value + off; 7096 } 7097 7098 if (meta && meta->raw_mode) { 7099 /* Ensure we won't be overwriting dynptrs when simulating byte 7100 * by byte access in check_helper_call using meta.access_size. 7101 * This would be a problem if we have a helper in the future 7102 * which takes: 7103 * 7104 * helper(uninit_mem, len, dynptr) 7105 * 7106 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7107 * may end up writing to dynptr itself when touching memory from 7108 * arg 1. This can be relaxed on a case by case basis for known 7109 * safe cases, but reject due to the possibilitiy of aliasing by 7110 * default. 7111 */ 7112 for (i = min_off; i < max_off + access_size; i++) { 7113 int stack_off = -i - 1; 7114 7115 spi = __get_spi(i); 7116 /* raw_mode may write past allocated_stack */ 7117 if (state->allocated_stack <= stack_off) 7118 continue; 7119 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7120 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7121 return -EACCES; 7122 } 7123 } 7124 meta->access_size = access_size; 7125 meta->regno = regno; 7126 return 0; 7127 } 7128 7129 for (i = min_off; i < max_off + access_size; i++) { 7130 u8 *stype; 7131 7132 slot = -i - 1; 7133 spi = slot / BPF_REG_SIZE; 7134 if (state->allocated_stack <= slot) { 7135 verbose(env, "verifier bug: allocated_stack too small"); 7136 return -EFAULT; 7137 } 7138 7139 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7140 if (*stype == STACK_MISC) 7141 goto mark; 7142 if ((*stype == STACK_ZERO) || 7143 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7144 if (clobber) { 7145 /* helper can write anything into the stack */ 7146 *stype = STACK_MISC; 7147 } 7148 goto mark; 7149 } 7150 7151 if (is_spilled_reg(&state->stack[spi]) && 7152 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7153 env->allow_ptr_leaks)) { 7154 if (clobber) { 7155 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7156 for (j = 0; j < BPF_REG_SIZE; j++) 7157 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7158 } 7159 goto mark; 7160 } 7161 7162 if (tnum_is_const(reg->var_off)) { 7163 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7164 err_extra, regno, min_off, i - min_off, access_size); 7165 } else { 7166 char tn_buf[48]; 7167 7168 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7169 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7170 err_extra, regno, tn_buf, i - min_off, access_size); 7171 } 7172 return -EACCES; 7173 mark: 7174 /* reading any byte out of 8-byte 'spill_slot' will cause 7175 * the whole slot to be marked as 'read' 7176 */ 7177 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7178 state->stack[spi].spilled_ptr.parent, 7179 REG_LIVE_READ64); 7180 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7181 * be sure that whether stack slot is written to or not. Hence, 7182 * we must still conservatively propagate reads upwards even if 7183 * helper may write to the entire memory range. 7184 */ 7185 } 7186 return 0; 7187 } 7188 7189 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7190 int access_size, bool zero_size_allowed, 7191 struct bpf_call_arg_meta *meta) 7192 { 7193 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7194 u32 *max_access; 7195 7196 switch (base_type(reg->type)) { 7197 case PTR_TO_PACKET: 7198 case PTR_TO_PACKET_META: 7199 return check_packet_access(env, regno, reg->off, access_size, 7200 zero_size_allowed); 7201 case PTR_TO_MAP_KEY: 7202 if (meta && meta->raw_mode) { 7203 verbose(env, "R%d cannot write into %s\n", regno, 7204 reg_type_str(env, reg->type)); 7205 return -EACCES; 7206 } 7207 return check_mem_region_access(env, regno, reg->off, access_size, 7208 reg->map_ptr->key_size, false); 7209 case PTR_TO_MAP_VALUE: 7210 if (check_map_access_type(env, regno, reg->off, access_size, 7211 meta && meta->raw_mode ? BPF_WRITE : 7212 BPF_READ)) 7213 return -EACCES; 7214 return check_map_access(env, regno, reg->off, access_size, 7215 zero_size_allowed, ACCESS_HELPER); 7216 case PTR_TO_MEM: 7217 if (type_is_rdonly_mem(reg->type)) { 7218 if (meta && meta->raw_mode) { 7219 verbose(env, "R%d cannot write into %s\n", regno, 7220 reg_type_str(env, reg->type)); 7221 return -EACCES; 7222 } 7223 } 7224 return check_mem_region_access(env, regno, reg->off, 7225 access_size, reg->mem_size, 7226 zero_size_allowed); 7227 case PTR_TO_BUF: 7228 if (type_is_rdonly_mem(reg->type)) { 7229 if (meta && meta->raw_mode) { 7230 verbose(env, "R%d cannot write into %s\n", regno, 7231 reg_type_str(env, reg->type)); 7232 return -EACCES; 7233 } 7234 7235 max_access = &env->prog->aux->max_rdonly_access; 7236 } else { 7237 max_access = &env->prog->aux->max_rdwr_access; 7238 } 7239 return check_buffer_access(env, reg, regno, reg->off, 7240 access_size, zero_size_allowed, 7241 max_access); 7242 case PTR_TO_STACK: 7243 return check_stack_range_initialized( 7244 env, 7245 regno, reg->off, access_size, 7246 zero_size_allowed, ACCESS_HELPER, meta); 7247 case PTR_TO_BTF_ID: 7248 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7249 access_size, BPF_READ, -1); 7250 case PTR_TO_CTX: 7251 /* in case the function doesn't know how to access the context, 7252 * (because we are in a program of type SYSCALL for example), we 7253 * can not statically check its size. 7254 * Dynamically check it now. 7255 */ 7256 if (!env->ops->convert_ctx_access) { 7257 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7258 int offset = access_size - 1; 7259 7260 /* Allow zero-byte read from PTR_TO_CTX */ 7261 if (access_size == 0) 7262 return zero_size_allowed ? 0 : -EACCES; 7263 7264 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7265 atype, -1, false, false); 7266 } 7267 7268 fallthrough; 7269 default: /* scalar_value or invalid ptr */ 7270 /* Allow zero-byte read from NULL, regardless of pointer type */ 7271 if (zero_size_allowed && access_size == 0 && 7272 register_is_null(reg)) 7273 return 0; 7274 7275 verbose(env, "R%d type=%s ", regno, 7276 reg_type_str(env, reg->type)); 7277 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7278 return -EACCES; 7279 } 7280 } 7281 7282 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 7283 * size. 7284 * 7285 * @regno is the register containing the access size. regno-1 is the register 7286 * containing the pointer. 7287 */ 7288 static int check_mem_size_reg(struct bpf_verifier_env *env, 7289 struct bpf_reg_state *reg, u32 regno, 7290 bool zero_size_allowed, 7291 struct bpf_call_arg_meta *meta) 7292 { 7293 int err; 7294 7295 /* This is used to refine r0 return value bounds for helpers 7296 * that enforce this value as an upper bound on return values. 7297 * See do_refine_retval_range() for helpers that can refine 7298 * the return value. C type of helper is u32 so we pull register 7299 * bound from umax_value however, if negative verifier errors 7300 * out. Only upper bounds can be learned because retval is an 7301 * int type and negative retvals are allowed. 7302 */ 7303 meta->msize_max_value = reg->umax_value; 7304 7305 /* The register is SCALAR_VALUE; the access check 7306 * happens using its boundaries. 7307 */ 7308 if (!tnum_is_const(reg->var_off)) 7309 /* For unprivileged variable accesses, disable raw 7310 * mode so that the program is required to 7311 * initialize all the memory that the helper could 7312 * just partially fill up. 7313 */ 7314 meta = NULL; 7315 7316 if (reg->smin_value < 0) { 7317 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7318 regno); 7319 return -EACCES; 7320 } 7321 7322 if (reg->umin_value == 0 && !zero_size_allowed) { 7323 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 7324 regno, reg->umin_value, reg->umax_value); 7325 return -EACCES; 7326 } 7327 7328 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7329 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7330 regno); 7331 return -EACCES; 7332 } 7333 err = check_helper_mem_access(env, regno - 1, 7334 reg->umax_value, 7335 zero_size_allowed, meta); 7336 if (!err) 7337 err = mark_chain_precision(env, regno); 7338 return err; 7339 } 7340 7341 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7342 u32 regno, u32 mem_size) 7343 { 7344 bool may_be_null = type_may_be_null(reg->type); 7345 struct bpf_reg_state saved_reg; 7346 struct bpf_call_arg_meta meta; 7347 int err; 7348 7349 if (register_is_null(reg)) 7350 return 0; 7351 7352 memset(&meta, 0, sizeof(meta)); 7353 /* Assuming that the register contains a value check if the memory 7354 * access is safe. Temporarily save and restore the register's state as 7355 * the conversion shouldn't be visible to a caller. 7356 */ 7357 if (may_be_null) { 7358 saved_reg = *reg; 7359 mark_ptr_not_null_reg(reg); 7360 } 7361 7362 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7363 /* Check access for BPF_WRITE */ 7364 meta.raw_mode = true; 7365 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7366 7367 if (may_be_null) 7368 *reg = saved_reg; 7369 7370 return err; 7371 } 7372 7373 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7374 u32 regno) 7375 { 7376 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7377 bool may_be_null = type_may_be_null(mem_reg->type); 7378 struct bpf_reg_state saved_reg; 7379 struct bpf_call_arg_meta meta; 7380 int err; 7381 7382 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7383 7384 memset(&meta, 0, sizeof(meta)); 7385 7386 if (may_be_null) { 7387 saved_reg = *mem_reg; 7388 mark_ptr_not_null_reg(mem_reg); 7389 } 7390 7391 err = check_mem_size_reg(env, reg, regno, true, &meta); 7392 /* Check access for BPF_WRITE */ 7393 meta.raw_mode = true; 7394 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7395 7396 if (may_be_null) 7397 *mem_reg = saved_reg; 7398 return err; 7399 } 7400 7401 /* Implementation details: 7402 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7403 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7404 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7405 * Two separate bpf_obj_new will also have different reg->id. 7406 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7407 * clears reg->id after value_or_null->value transition, since the verifier only 7408 * cares about the range of access to valid map value pointer and doesn't care 7409 * about actual address of the map element. 7410 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7411 * reg->id > 0 after value_or_null->value transition. By doing so 7412 * two bpf_map_lookups will be considered two different pointers that 7413 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7414 * returned from bpf_obj_new. 7415 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7416 * dead-locks. 7417 * Since only one bpf_spin_lock is allowed the checks are simpler than 7418 * reg_is_refcounted() logic. The verifier needs to remember only 7419 * one spin_lock instead of array of acquired_refs. 7420 * cur_state->active_lock remembers which map value element or allocated 7421 * object got locked and clears it after bpf_spin_unlock. 7422 */ 7423 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7424 bool is_lock) 7425 { 7426 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7427 struct bpf_verifier_state *cur = env->cur_state; 7428 bool is_const = tnum_is_const(reg->var_off); 7429 u64 val = reg->var_off.value; 7430 struct bpf_map *map = NULL; 7431 struct btf *btf = NULL; 7432 struct btf_record *rec; 7433 7434 if (!is_const) { 7435 verbose(env, 7436 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7437 regno); 7438 return -EINVAL; 7439 } 7440 if (reg->type == PTR_TO_MAP_VALUE) { 7441 map = reg->map_ptr; 7442 if (!map->btf) { 7443 verbose(env, 7444 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7445 map->name); 7446 return -EINVAL; 7447 } 7448 } else { 7449 btf = reg->btf; 7450 } 7451 7452 rec = reg_btf_record(reg); 7453 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7454 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7455 map ? map->name : "kptr"); 7456 return -EINVAL; 7457 } 7458 if (rec->spin_lock_off != val + reg->off) { 7459 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7460 val + reg->off, rec->spin_lock_off); 7461 return -EINVAL; 7462 } 7463 if (is_lock) { 7464 if (cur->active_lock.ptr) { 7465 verbose(env, 7466 "Locking two bpf_spin_locks are not allowed\n"); 7467 return -EINVAL; 7468 } 7469 if (map) 7470 cur->active_lock.ptr = map; 7471 else 7472 cur->active_lock.ptr = btf; 7473 cur->active_lock.id = reg->id; 7474 } else { 7475 void *ptr; 7476 7477 if (map) 7478 ptr = map; 7479 else 7480 ptr = btf; 7481 7482 if (!cur->active_lock.ptr) { 7483 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7484 return -EINVAL; 7485 } 7486 if (cur->active_lock.ptr != ptr || 7487 cur->active_lock.id != reg->id) { 7488 verbose(env, "bpf_spin_unlock of different lock\n"); 7489 return -EINVAL; 7490 } 7491 7492 invalidate_non_owning_refs(env); 7493 7494 cur->active_lock.ptr = NULL; 7495 cur->active_lock.id = 0; 7496 } 7497 return 0; 7498 } 7499 7500 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7501 struct bpf_call_arg_meta *meta) 7502 { 7503 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7504 bool is_const = tnum_is_const(reg->var_off); 7505 struct bpf_map *map = reg->map_ptr; 7506 u64 val = reg->var_off.value; 7507 7508 if (!is_const) { 7509 verbose(env, 7510 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7511 regno); 7512 return -EINVAL; 7513 } 7514 if (!map->btf) { 7515 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7516 map->name); 7517 return -EINVAL; 7518 } 7519 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7520 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7521 return -EINVAL; 7522 } 7523 if (map->record->timer_off != val + reg->off) { 7524 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7525 val + reg->off, map->record->timer_off); 7526 return -EINVAL; 7527 } 7528 if (meta->map_ptr) { 7529 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7530 return -EFAULT; 7531 } 7532 meta->map_uid = reg->map_uid; 7533 meta->map_ptr = map; 7534 return 0; 7535 } 7536 7537 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7538 struct bpf_call_arg_meta *meta) 7539 { 7540 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7541 struct bpf_map *map_ptr = reg->map_ptr; 7542 struct btf_field *kptr_field; 7543 u32 kptr_off; 7544 7545 if (!tnum_is_const(reg->var_off)) { 7546 verbose(env, 7547 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7548 regno); 7549 return -EINVAL; 7550 } 7551 if (!map_ptr->btf) { 7552 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7553 map_ptr->name); 7554 return -EINVAL; 7555 } 7556 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7557 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7558 return -EINVAL; 7559 } 7560 7561 meta->map_ptr = map_ptr; 7562 kptr_off = reg->off + reg->var_off.value; 7563 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7564 if (!kptr_field) { 7565 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7566 return -EACCES; 7567 } 7568 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 7569 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7570 return -EACCES; 7571 } 7572 meta->kptr_field = kptr_field; 7573 return 0; 7574 } 7575 7576 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7577 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7578 * 7579 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7580 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7581 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7582 * 7583 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7584 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7585 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7586 * mutate the view of the dynptr and also possibly destroy it. In the latter 7587 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7588 * memory that dynptr points to. 7589 * 7590 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7591 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7592 * readonly dynptr view yet, hence only the first case is tracked and checked. 7593 * 7594 * This is consistent with how C applies the const modifier to a struct object, 7595 * where the pointer itself inside bpf_dynptr becomes const but not what it 7596 * points to. 7597 * 7598 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7599 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7600 */ 7601 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7602 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7603 { 7604 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7605 int err; 7606 7607 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7608 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7609 */ 7610 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7611 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7612 return -EFAULT; 7613 } 7614 7615 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7616 * constructing a mutable bpf_dynptr object. 7617 * 7618 * Currently, this is only possible with PTR_TO_STACK 7619 * pointing to a region of at least 16 bytes which doesn't 7620 * contain an existing bpf_dynptr. 7621 * 7622 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7623 * mutated or destroyed. However, the memory it points to 7624 * may be mutated. 7625 * 7626 * None - Points to a initialized dynptr that can be mutated and 7627 * destroyed, including mutation of the memory it points 7628 * to. 7629 */ 7630 if (arg_type & MEM_UNINIT) { 7631 int i; 7632 7633 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7634 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7635 return -EINVAL; 7636 } 7637 7638 /* we write BPF_DW bits (8 bytes) at a time */ 7639 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7640 err = check_mem_access(env, insn_idx, regno, 7641 i, BPF_DW, BPF_WRITE, -1, false, false); 7642 if (err) 7643 return err; 7644 } 7645 7646 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7647 } else /* MEM_RDONLY and None case from above */ { 7648 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7649 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7650 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7651 return -EINVAL; 7652 } 7653 7654 if (!is_dynptr_reg_valid_init(env, reg)) { 7655 verbose(env, 7656 "Expected an initialized dynptr as arg #%d\n", 7657 regno); 7658 return -EINVAL; 7659 } 7660 7661 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7662 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7663 verbose(env, 7664 "Expected a dynptr of type %s as arg #%d\n", 7665 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7666 return -EINVAL; 7667 } 7668 7669 err = mark_dynptr_read(env, reg); 7670 } 7671 return err; 7672 } 7673 7674 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7675 { 7676 struct bpf_func_state *state = func(env, reg); 7677 7678 return state->stack[spi].spilled_ptr.ref_obj_id; 7679 } 7680 7681 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7682 { 7683 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7684 } 7685 7686 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7687 { 7688 return meta->kfunc_flags & KF_ITER_NEW; 7689 } 7690 7691 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7692 { 7693 return meta->kfunc_flags & KF_ITER_NEXT; 7694 } 7695 7696 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7697 { 7698 return meta->kfunc_flags & KF_ITER_DESTROY; 7699 } 7700 7701 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7702 { 7703 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7704 * kfunc is iter state pointer 7705 */ 7706 return arg == 0 && is_iter_kfunc(meta); 7707 } 7708 7709 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7710 struct bpf_kfunc_call_arg_meta *meta) 7711 { 7712 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7713 const struct btf_type *t; 7714 const struct btf_param *arg; 7715 int spi, err, i, nr_slots; 7716 u32 btf_id; 7717 7718 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7719 arg = &btf_params(meta->func_proto)[0]; 7720 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7721 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7722 nr_slots = t->size / BPF_REG_SIZE; 7723 7724 if (is_iter_new_kfunc(meta)) { 7725 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7726 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7727 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7728 iter_type_str(meta->btf, btf_id), regno); 7729 return -EINVAL; 7730 } 7731 7732 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7733 err = check_mem_access(env, insn_idx, regno, 7734 i, BPF_DW, BPF_WRITE, -1, false, false); 7735 if (err) 7736 return err; 7737 } 7738 7739 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 7740 if (err) 7741 return err; 7742 } else { 7743 /* iter_next() or iter_destroy() expect initialized iter state*/ 7744 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 7745 switch (err) { 7746 case 0: 7747 break; 7748 case -EINVAL: 7749 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7750 iter_type_str(meta->btf, btf_id), regno); 7751 return err; 7752 case -EPROTO: 7753 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 7754 return err; 7755 default: 7756 return err; 7757 } 7758 7759 spi = iter_get_spi(env, reg, nr_slots); 7760 if (spi < 0) 7761 return spi; 7762 7763 err = mark_iter_read(env, reg, spi, nr_slots); 7764 if (err) 7765 return err; 7766 7767 /* remember meta->iter info for process_iter_next_call() */ 7768 meta->iter.spi = spi; 7769 meta->iter.frameno = reg->frameno; 7770 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7771 7772 if (is_iter_destroy_kfunc(meta)) { 7773 err = unmark_stack_slots_iter(env, reg, nr_slots); 7774 if (err) 7775 return err; 7776 } 7777 } 7778 7779 return 0; 7780 } 7781 7782 /* Look for a previous loop entry at insn_idx: nearest parent state 7783 * stopped at insn_idx with callsites matching those in cur->frame. 7784 */ 7785 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 7786 struct bpf_verifier_state *cur, 7787 int insn_idx) 7788 { 7789 struct bpf_verifier_state_list *sl; 7790 struct bpf_verifier_state *st; 7791 7792 /* Explored states are pushed in stack order, most recent states come first */ 7793 sl = *explored_state(env, insn_idx); 7794 for (; sl; sl = sl->next) { 7795 /* If st->branches != 0 state is a part of current DFS verification path, 7796 * hence cur & st for a loop. 7797 */ 7798 st = &sl->state; 7799 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 7800 st->dfs_depth < cur->dfs_depth) 7801 return st; 7802 } 7803 7804 return NULL; 7805 } 7806 7807 static void reset_idmap_scratch(struct bpf_verifier_env *env); 7808 static bool regs_exact(const struct bpf_reg_state *rold, 7809 const struct bpf_reg_state *rcur, 7810 struct bpf_idmap *idmap); 7811 7812 static void maybe_widen_reg(struct bpf_verifier_env *env, 7813 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7814 struct bpf_idmap *idmap) 7815 { 7816 if (rold->type != SCALAR_VALUE) 7817 return; 7818 if (rold->type != rcur->type) 7819 return; 7820 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 7821 return; 7822 __mark_reg_unknown(env, rcur); 7823 } 7824 7825 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 7826 struct bpf_verifier_state *old, 7827 struct bpf_verifier_state *cur) 7828 { 7829 struct bpf_func_state *fold, *fcur; 7830 int i, fr; 7831 7832 reset_idmap_scratch(env); 7833 for (fr = old->curframe; fr >= 0; fr--) { 7834 fold = old->frame[fr]; 7835 fcur = cur->frame[fr]; 7836 7837 for (i = 0; i < MAX_BPF_REG; i++) 7838 maybe_widen_reg(env, 7839 &fold->regs[i], 7840 &fcur->regs[i], 7841 &env->idmap_scratch); 7842 7843 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 7844 if (!is_spilled_reg(&fold->stack[i]) || 7845 !is_spilled_reg(&fcur->stack[i])) 7846 continue; 7847 7848 maybe_widen_reg(env, 7849 &fold->stack[i].spilled_ptr, 7850 &fcur->stack[i].spilled_ptr, 7851 &env->idmap_scratch); 7852 } 7853 } 7854 return 0; 7855 } 7856 7857 /* process_iter_next_call() is called when verifier gets to iterator's next 7858 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7859 * to it as just "iter_next()" in comments below. 7860 * 7861 * BPF verifier relies on a crucial contract for any iter_next() 7862 * implementation: it should *eventually* return NULL, and once that happens 7863 * it should keep returning NULL. That is, once iterator exhausts elements to 7864 * iterate, it should never reset or spuriously return new elements. 7865 * 7866 * With the assumption of such contract, process_iter_next_call() simulates 7867 * a fork in the verifier state to validate loop logic correctness and safety 7868 * without having to simulate infinite amount of iterations. 7869 * 7870 * In current state, we first assume that iter_next() returned NULL and 7871 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7872 * conditions we should not form an infinite loop and should eventually reach 7873 * exit. 7874 * 7875 * Besides that, we also fork current state and enqueue it for later 7876 * verification. In a forked state we keep iterator state as ACTIVE 7877 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7878 * also bump iteration depth to prevent erroneous infinite loop detection 7879 * later on (see iter_active_depths_differ() comment for details). In this 7880 * state we assume that we'll eventually loop back to another iter_next() 7881 * calls (it could be in exactly same location or in some other instruction, 7882 * it doesn't matter, we don't make any unnecessary assumptions about this, 7883 * everything revolves around iterator state in a stack slot, not which 7884 * instruction is calling iter_next()). When that happens, we either will come 7885 * to iter_next() with equivalent state and can conclude that next iteration 7886 * will proceed in exactly the same way as we just verified, so it's safe to 7887 * assume that loop converges. If not, we'll go on another iteration 7888 * simulation with a different input state, until all possible starting states 7889 * are validated or we reach maximum number of instructions limit. 7890 * 7891 * This way, we will either exhaustively discover all possible input states 7892 * that iterator loop can start with and eventually will converge, or we'll 7893 * effectively regress into bounded loop simulation logic and either reach 7894 * maximum number of instructions if loop is not provably convergent, or there 7895 * is some statically known limit on number of iterations (e.g., if there is 7896 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7897 * 7898 * Iteration convergence logic in is_state_visited() relies on exact 7899 * states comparison, which ignores read and precision marks. 7900 * This is necessary because read and precision marks are not finalized 7901 * while in the loop. Exact comparison might preclude convergence for 7902 * simple programs like below: 7903 * 7904 * i = 0; 7905 * while(iter_next(&it)) 7906 * i++; 7907 * 7908 * At each iteration step i++ would produce a new distinct state and 7909 * eventually instruction processing limit would be reached. 7910 * 7911 * To avoid such behavior speculatively forget (widen) range for 7912 * imprecise scalar registers, if those registers were not precise at the 7913 * end of the previous iteration and do not match exactly. 7914 * 7915 * This is a conservative heuristic that allows to verify wide range of programs, 7916 * however it precludes verification of programs that conjure an 7917 * imprecise value on the first loop iteration and use it as precise on a second. 7918 * For example, the following safe program would fail to verify: 7919 * 7920 * struct bpf_num_iter it; 7921 * int arr[10]; 7922 * int i = 0, a = 0; 7923 * bpf_iter_num_new(&it, 0, 10); 7924 * while (bpf_iter_num_next(&it)) { 7925 * if (a == 0) { 7926 * a = 1; 7927 * i = 7; // Because i changed verifier would forget 7928 * // it's range on second loop entry. 7929 * } else { 7930 * arr[i] = 42; // This would fail to verify. 7931 * } 7932 * } 7933 * bpf_iter_num_destroy(&it); 7934 */ 7935 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7936 struct bpf_kfunc_call_arg_meta *meta) 7937 { 7938 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 7939 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7940 struct bpf_reg_state *cur_iter, *queued_iter; 7941 int iter_frameno = meta->iter.frameno; 7942 int iter_spi = meta->iter.spi; 7943 7944 BTF_TYPE_EMIT(struct bpf_iter); 7945 7946 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7947 7948 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7949 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7950 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7951 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7952 return -EFAULT; 7953 } 7954 7955 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7956 /* Because iter_next() call is a checkpoint is_state_visitied() 7957 * should guarantee parent state with same call sites and insn_idx. 7958 */ 7959 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 7960 !same_callsites(cur_st->parent, cur_st)) { 7961 verbose(env, "bug: bad parent state for iter next call"); 7962 return -EFAULT; 7963 } 7964 /* Note cur_st->parent in the call below, it is necessary to skip 7965 * checkpoint created for cur_st by is_state_visited() 7966 * right at this instruction. 7967 */ 7968 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 7969 /* branch out active iter state */ 7970 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7971 if (!queued_st) 7972 return -ENOMEM; 7973 7974 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7975 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7976 queued_iter->iter.depth++; 7977 if (prev_st) 7978 widen_imprecise_scalars(env, prev_st, queued_st); 7979 7980 queued_fr = queued_st->frame[queued_st->curframe]; 7981 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7982 } 7983 7984 /* switch to DRAINED state, but keep the depth unchanged */ 7985 /* mark current iter state as drained and assume returned NULL */ 7986 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7987 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 7988 7989 return 0; 7990 } 7991 7992 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7993 { 7994 return type == ARG_CONST_SIZE || 7995 type == ARG_CONST_SIZE_OR_ZERO; 7996 } 7997 7998 static bool arg_type_is_release(enum bpf_arg_type type) 7999 { 8000 return type & OBJ_RELEASE; 8001 } 8002 8003 static bool arg_type_is_dynptr(enum bpf_arg_type type) 8004 { 8005 return base_type(type) == ARG_PTR_TO_DYNPTR; 8006 } 8007 8008 static int int_ptr_type_to_size(enum bpf_arg_type type) 8009 { 8010 if (type == ARG_PTR_TO_INT) 8011 return sizeof(u32); 8012 else if (type == ARG_PTR_TO_LONG) 8013 return sizeof(u64); 8014 8015 return -EINVAL; 8016 } 8017 8018 static int resolve_map_arg_type(struct bpf_verifier_env *env, 8019 const struct bpf_call_arg_meta *meta, 8020 enum bpf_arg_type *arg_type) 8021 { 8022 if (!meta->map_ptr) { 8023 /* kernel subsystem misconfigured verifier */ 8024 verbose(env, "invalid map_ptr to access map->type\n"); 8025 return -EACCES; 8026 } 8027 8028 switch (meta->map_ptr->map_type) { 8029 case BPF_MAP_TYPE_SOCKMAP: 8030 case BPF_MAP_TYPE_SOCKHASH: 8031 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8032 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8033 } else { 8034 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8035 return -EINVAL; 8036 } 8037 break; 8038 case BPF_MAP_TYPE_BLOOM_FILTER: 8039 if (meta->func_id == BPF_FUNC_map_peek_elem) 8040 *arg_type = ARG_PTR_TO_MAP_VALUE; 8041 break; 8042 default: 8043 break; 8044 } 8045 return 0; 8046 } 8047 8048 struct bpf_reg_types { 8049 const enum bpf_reg_type types[10]; 8050 u32 *btf_id; 8051 }; 8052 8053 static const struct bpf_reg_types sock_types = { 8054 .types = { 8055 PTR_TO_SOCK_COMMON, 8056 PTR_TO_SOCKET, 8057 PTR_TO_TCP_SOCK, 8058 PTR_TO_XDP_SOCK, 8059 }, 8060 }; 8061 8062 #ifdef CONFIG_NET 8063 static const struct bpf_reg_types btf_id_sock_common_types = { 8064 .types = { 8065 PTR_TO_SOCK_COMMON, 8066 PTR_TO_SOCKET, 8067 PTR_TO_TCP_SOCK, 8068 PTR_TO_XDP_SOCK, 8069 PTR_TO_BTF_ID, 8070 PTR_TO_BTF_ID | PTR_TRUSTED, 8071 }, 8072 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8073 }; 8074 #endif 8075 8076 static const struct bpf_reg_types mem_types = { 8077 .types = { 8078 PTR_TO_STACK, 8079 PTR_TO_PACKET, 8080 PTR_TO_PACKET_META, 8081 PTR_TO_MAP_KEY, 8082 PTR_TO_MAP_VALUE, 8083 PTR_TO_MEM, 8084 PTR_TO_MEM | MEM_RINGBUF, 8085 PTR_TO_BUF, 8086 PTR_TO_BTF_ID | PTR_TRUSTED, 8087 }, 8088 }; 8089 8090 static const struct bpf_reg_types int_ptr_types = { 8091 .types = { 8092 PTR_TO_STACK, 8093 PTR_TO_PACKET, 8094 PTR_TO_PACKET_META, 8095 PTR_TO_MAP_KEY, 8096 PTR_TO_MAP_VALUE, 8097 }, 8098 }; 8099 8100 static const struct bpf_reg_types spin_lock_types = { 8101 .types = { 8102 PTR_TO_MAP_VALUE, 8103 PTR_TO_BTF_ID | MEM_ALLOC, 8104 } 8105 }; 8106 8107 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8108 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8109 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8110 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8111 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8112 static const struct bpf_reg_types btf_ptr_types = { 8113 .types = { 8114 PTR_TO_BTF_ID, 8115 PTR_TO_BTF_ID | PTR_TRUSTED, 8116 PTR_TO_BTF_ID | MEM_RCU, 8117 }, 8118 }; 8119 static const struct bpf_reg_types percpu_btf_ptr_types = { 8120 .types = { 8121 PTR_TO_BTF_ID | MEM_PERCPU, 8122 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 8123 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8124 } 8125 }; 8126 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8127 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8128 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8129 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8130 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8131 static const struct bpf_reg_types dynptr_types = { 8132 .types = { 8133 PTR_TO_STACK, 8134 CONST_PTR_TO_DYNPTR, 8135 } 8136 }; 8137 8138 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8139 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8140 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8141 [ARG_CONST_SIZE] = &scalar_types, 8142 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8143 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8144 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8145 [ARG_PTR_TO_CTX] = &context_types, 8146 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8147 #ifdef CONFIG_NET 8148 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8149 #endif 8150 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8151 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8152 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8153 [ARG_PTR_TO_MEM] = &mem_types, 8154 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8155 [ARG_PTR_TO_INT] = &int_ptr_types, 8156 [ARG_PTR_TO_LONG] = &int_ptr_types, 8157 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8158 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8159 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8160 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8161 [ARG_PTR_TO_TIMER] = &timer_types, 8162 [ARG_PTR_TO_KPTR] = &kptr_types, 8163 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8164 }; 8165 8166 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8167 enum bpf_arg_type arg_type, 8168 const u32 *arg_btf_id, 8169 struct bpf_call_arg_meta *meta) 8170 { 8171 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8172 enum bpf_reg_type expected, type = reg->type; 8173 const struct bpf_reg_types *compatible; 8174 int i, j; 8175 8176 compatible = compatible_reg_types[base_type(arg_type)]; 8177 if (!compatible) { 8178 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8179 return -EFAULT; 8180 } 8181 8182 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8183 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8184 * 8185 * Same for MAYBE_NULL: 8186 * 8187 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8188 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8189 * 8190 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8191 * 8192 * Therefore we fold these flags depending on the arg_type before comparison. 8193 */ 8194 if (arg_type & MEM_RDONLY) 8195 type &= ~MEM_RDONLY; 8196 if (arg_type & PTR_MAYBE_NULL) 8197 type &= ~PTR_MAYBE_NULL; 8198 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8199 type &= ~DYNPTR_TYPE_FLAG_MASK; 8200 8201 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) { 8202 type &= ~MEM_ALLOC; 8203 type &= ~MEM_PERCPU; 8204 } 8205 8206 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8207 expected = compatible->types[i]; 8208 if (expected == NOT_INIT) 8209 break; 8210 8211 if (type == expected) 8212 goto found; 8213 } 8214 8215 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8216 for (j = 0; j + 1 < i; j++) 8217 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8218 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8219 return -EACCES; 8220 8221 found: 8222 if (base_type(reg->type) != PTR_TO_BTF_ID) 8223 return 0; 8224 8225 if (compatible == &mem_types) { 8226 if (!(arg_type & MEM_RDONLY)) { 8227 verbose(env, 8228 "%s() may write into memory pointed by R%d type=%s\n", 8229 func_id_name(meta->func_id), 8230 regno, reg_type_str(env, reg->type)); 8231 return -EACCES; 8232 } 8233 return 0; 8234 } 8235 8236 switch ((int)reg->type) { 8237 case PTR_TO_BTF_ID: 8238 case PTR_TO_BTF_ID | PTR_TRUSTED: 8239 case PTR_TO_BTF_ID | MEM_RCU: 8240 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8241 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8242 { 8243 /* For bpf_sk_release, it needs to match against first member 8244 * 'struct sock_common', hence make an exception for it. This 8245 * allows bpf_sk_release to work for multiple socket types. 8246 */ 8247 bool strict_type_match = arg_type_is_release(arg_type) && 8248 meta->func_id != BPF_FUNC_sk_release; 8249 8250 if (type_may_be_null(reg->type) && 8251 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8252 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8253 return -EACCES; 8254 } 8255 8256 if (!arg_btf_id) { 8257 if (!compatible->btf_id) { 8258 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8259 return -EFAULT; 8260 } 8261 arg_btf_id = compatible->btf_id; 8262 } 8263 8264 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8265 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8266 return -EACCES; 8267 } else { 8268 if (arg_btf_id == BPF_PTR_POISON) { 8269 verbose(env, "verifier internal error:"); 8270 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8271 regno); 8272 return -EACCES; 8273 } 8274 8275 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8276 btf_vmlinux, *arg_btf_id, 8277 strict_type_match)) { 8278 verbose(env, "R%d is of type %s but %s is expected\n", 8279 regno, btf_type_name(reg->btf, reg->btf_id), 8280 btf_type_name(btf_vmlinux, *arg_btf_id)); 8281 return -EACCES; 8282 } 8283 } 8284 break; 8285 } 8286 case PTR_TO_BTF_ID | MEM_ALLOC: 8287 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 8288 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8289 meta->func_id != BPF_FUNC_kptr_xchg) { 8290 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8291 return -EFAULT; 8292 } 8293 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8294 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8295 return -EACCES; 8296 } 8297 break; 8298 case PTR_TO_BTF_ID | MEM_PERCPU: 8299 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 8300 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8301 /* Handled by helper specific checks */ 8302 break; 8303 default: 8304 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8305 return -EFAULT; 8306 } 8307 return 0; 8308 } 8309 8310 static struct btf_field * 8311 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8312 { 8313 struct btf_field *field; 8314 struct btf_record *rec; 8315 8316 rec = reg_btf_record(reg); 8317 if (!rec) 8318 return NULL; 8319 8320 field = btf_record_find(rec, off, fields); 8321 if (!field) 8322 return NULL; 8323 8324 return field; 8325 } 8326 8327 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 8328 const struct bpf_reg_state *reg, int regno, 8329 enum bpf_arg_type arg_type) 8330 { 8331 u32 type = reg->type; 8332 8333 /* When referenced register is passed to release function, its fixed 8334 * offset must be 0. 8335 * 8336 * We will check arg_type_is_release reg has ref_obj_id when storing 8337 * meta->release_regno. 8338 */ 8339 if (arg_type_is_release(arg_type)) { 8340 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8341 * may not directly point to the object being released, but to 8342 * dynptr pointing to such object, which might be at some offset 8343 * on the stack. In that case, we simply to fallback to the 8344 * default handling. 8345 */ 8346 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8347 return 0; 8348 8349 /* Doing check_ptr_off_reg check for the offset will catch this 8350 * because fixed_off_ok is false, but checking here allows us 8351 * to give the user a better error message. 8352 */ 8353 if (reg->off) { 8354 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8355 regno); 8356 return -EINVAL; 8357 } 8358 return __check_ptr_off_reg(env, reg, regno, false); 8359 } 8360 8361 switch (type) { 8362 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8363 case PTR_TO_STACK: 8364 case PTR_TO_PACKET: 8365 case PTR_TO_PACKET_META: 8366 case PTR_TO_MAP_KEY: 8367 case PTR_TO_MAP_VALUE: 8368 case PTR_TO_MEM: 8369 case PTR_TO_MEM | MEM_RDONLY: 8370 case PTR_TO_MEM | MEM_RINGBUF: 8371 case PTR_TO_BUF: 8372 case PTR_TO_BUF | MEM_RDONLY: 8373 case SCALAR_VALUE: 8374 return 0; 8375 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8376 * fixed offset. 8377 */ 8378 case PTR_TO_BTF_ID: 8379 case PTR_TO_BTF_ID | MEM_ALLOC: 8380 case PTR_TO_BTF_ID | PTR_TRUSTED: 8381 case PTR_TO_BTF_ID | MEM_RCU: 8382 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8383 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8384 /* When referenced PTR_TO_BTF_ID is passed to release function, 8385 * its fixed offset must be 0. In the other cases, fixed offset 8386 * can be non-zero. This was already checked above. So pass 8387 * fixed_off_ok as true to allow fixed offset for all other 8388 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8389 * still need to do checks instead of returning. 8390 */ 8391 return __check_ptr_off_reg(env, reg, regno, true); 8392 default: 8393 return __check_ptr_off_reg(env, reg, regno, false); 8394 } 8395 } 8396 8397 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8398 const struct bpf_func_proto *fn, 8399 struct bpf_reg_state *regs) 8400 { 8401 struct bpf_reg_state *state = NULL; 8402 int i; 8403 8404 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8405 if (arg_type_is_dynptr(fn->arg_type[i])) { 8406 if (state) { 8407 verbose(env, "verifier internal error: multiple dynptr args\n"); 8408 return NULL; 8409 } 8410 state = ®s[BPF_REG_1 + i]; 8411 } 8412 8413 if (!state) 8414 verbose(env, "verifier internal error: no dynptr arg found\n"); 8415 8416 return state; 8417 } 8418 8419 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8420 { 8421 struct bpf_func_state *state = func(env, reg); 8422 int spi; 8423 8424 if (reg->type == CONST_PTR_TO_DYNPTR) 8425 return reg->id; 8426 spi = dynptr_get_spi(env, reg); 8427 if (spi < 0) 8428 return spi; 8429 return state->stack[spi].spilled_ptr.id; 8430 } 8431 8432 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8433 { 8434 struct bpf_func_state *state = func(env, reg); 8435 int spi; 8436 8437 if (reg->type == CONST_PTR_TO_DYNPTR) 8438 return reg->ref_obj_id; 8439 spi = dynptr_get_spi(env, reg); 8440 if (spi < 0) 8441 return spi; 8442 return state->stack[spi].spilled_ptr.ref_obj_id; 8443 } 8444 8445 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8446 struct bpf_reg_state *reg) 8447 { 8448 struct bpf_func_state *state = func(env, reg); 8449 int spi; 8450 8451 if (reg->type == CONST_PTR_TO_DYNPTR) 8452 return reg->dynptr.type; 8453 8454 spi = __get_spi(reg->off); 8455 if (spi < 0) { 8456 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8457 return BPF_DYNPTR_TYPE_INVALID; 8458 } 8459 8460 return state->stack[spi].spilled_ptr.dynptr.type; 8461 } 8462 8463 static int check_reg_const_str(struct bpf_verifier_env *env, 8464 struct bpf_reg_state *reg, u32 regno) 8465 { 8466 struct bpf_map *map = reg->map_ptr; 8467 int err; 8468 int map_off; 8469 u64 map_addr; 8470 char *str_ptr; 8471 8472 if (reg->type != PTR_TO_MAP_VALUE) 8473 return -EINVAL; 8474 8475 if (!bpf_map_is_rdonly(map)) { 8476 verbose(env, "R%d does not point to a readonly map'\n", regno); 8477 return -EACCES; 8478 } 8479 8480 if (!tnum_is_const(reg->var_off)) { 8481 verbose(env, "R%d is not a constant address'\n", regno); 8482 return -EACCES; 8483 } 8484 8485 if (!map->ops->map_direct_value_addr) { 8486 verbose(env, "no direct value access support for this map type\n"); 8487 return -EACCES; 8488 } 8489 8490 err = check_map_access(env, regno, reg->off, 8491 map->value_size - reg->off, false, 8492 ACCESS_HELPER); 8493 if (err) 8494 return err; 8495 8496 map_off = reg->off + reg->var_off.value; 8497 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8498 if (err) { 8499 verbose(env, "direct value access on string failed\n"); 8500 return err; 8501 } 8502 8503 str_ptr = (char *)(long)(map_addr); 8504 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8505 verbose(env, "string is not zero-terminated\n"); 8506 return -EINVAL; 8507 } 8508 return 0; 8509 } 8510 8511 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8512 struct bpf_call_arg_meta *meta, 8513 const struct bpf_func_proto *fn, 8514 int insn_idx) 8515 { 8516 u32 regno = BPF_REG_1 + arg; 8517 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8518 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8519 enum bpf_reg_type type = reg->type; 8520 u32 *arg_btf_id = NULL; 8521 int err = 0; 8522 8523 if (arg_type == ARG_DONTCARE) 8524 return 0; 8525 8526 err = check_reg_arg(env, regno, SRC_OP); 8527 if (err) 8528 return err; 8529 8530 if (arg_type == ARG_ANYTHING) { 8531 if (is_pointer_value(env, regno)) { 8532 verbose(env, "R%d leaks addr into helper function\n", 8533 regno); 8534 return -EACCES; 8535 } 8536 return 0; 8537 } 8538 8539 if (type_is_pkt_pointer(type) && 8540 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8541 verbose(env, "helper access to the packet is not allowed\n"); 8542 return -EACCES; 8543 } 8544 8545 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8546 err = resolve_map_arg_type(env, meta, &arg_type); 8547 if (err) 8548 return err; 8549 } 8550 8551 if (register_is_null(reg) && type_may_be_null(arg_type)) 8552 /* A NULL register has a SCALAR_VALUE type, so skip 8553 * type checking. 8554 */ 8555 goto skip_type_check; 8556 8557 /* arg_btf_id and arg_size are in a union. */ 8558 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8559 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8560 arg_btf_id = fn->arg_btf_id[arg]; 8561 8562 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8563 if (err) 8564 return err; 8565 8566 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8567 if (err) 8568 return err; 8569 8570 skip_type_check: 8571 if (arg_type_is_release(arg_type)) { 8572 if (arg_type_is_dynptr(arg_type)) { 8573 struct bpf_func_state *state = func(env, reg); 8574 int spi; 8575 8576 /* Only dynptr created on stack can be released, thus 8577 * the get_spi and stack state checks for spilled_ptr 8578 * should only be done before process_dynptr_func for 8579 * PTR_TO_STACK. 8580 */ 8581 if (reg->type == PTR_TO_STACK) { 8582 spi = dynptr_get_spi(env, reg); 8583 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8584 verbose(env, "arg %d is an unacquired reference\n", regno); 8585 return -EINVAL; 8586 } 8587 } else { 8588 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8589 return -EINVAL; 8590 } 8591 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8592 verbose(env, "R%d must be referenced when passed to release function\n", 8593 regno); 8594 return -EINVAL; 8595 } 8596 if (meta->release_regno) { 8597 verbose(env, "verifier internal error: more than one release argument\n"); 8598 return -EFAULT; 8599 } 8600 meta->release_regno = regno; 8601 } 8602 8603 if (reg->ref_obj_id) { 8604 if (meta->ref_obj_id) { 8605 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8606 regno, reg->ref_obj_id, 8607 meta->ref_obj_id); 8608 return -EFAULT; 8609 } 8610 meta->ref_obj_id = reg->ref_obj_id; 8611 } 8612 8613 switch (base_type(arg_type)) { 8614 case ARG_CONST_MAP_PTR: 8615 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8616 if (meta->map_ptr) { 8617 /* Use map_uid (which is unique id of inner map) to reject: 8618 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8619 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8620 * if (inner_map1 && inner_map2) { 8621 * timer = bpf_map_lookup_elem(inner_map1); 8622 * if (timer) 8623 * // mismatch would have been allowed 8624 * bpf_timer_init(timer, inner_map2); 8625 * } 8626 * 8627 * Comparing map_ptr is enough to distinguish normal and outer maps. 8628 */ 8629 if (meta->map_ptr != reg->map_ptr || 8630 meta->map_uid != reg->map_uid) { 8631 verbose(env, 8632 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8633 meta->map_uid, reg->map_uid); 8634 return -EINVAL; 8635 } 8636 } 8637 meta->map_ptr = reg->map_ptr; 8638 meta->map_uid = reg->map_uid; 8639 break; 8640 case ARG_PTR_TO_MAP_KEY: 8641 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8642 * check that [key, key + map->key_size) are within 8643 * stack limits and initialized 8644 */ 8645 if (!meta->map_ptr) { 8646 /* in function declaration map_ptr must come before 8647 * map_key, so that it's verified and known before 8648 * we have to check map_key here. Otherwise it means 8649 * that kernel subsystem misconfigured verifier 8650 */ 8651 verbose(env, "invalid map_ptr to access map->key\n"); 8652 return -EACCES; 8653 } 8654 err = check_helper_mem_access(env, regno, 8655 meta->map_ptr->key_size, false, 8656 NULL); 8657 break; 8658 case ARG_PTR_TO_MAP_VALUE: 8659 if (type_may_be_null(arg_type) && register_is_null(reg)) 8660 return 0; 8661 8662 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8663 * check [value, value + map->value_size) validity 8664 */ 8665 if (!meta->map_ptr) { 8666 /* kernel subsystem misconfigured verifier */ 8667 verbose(env, "invalid map_ptr to access map->value\n"); 8668 return -EACCES; 8669 } 8670 meta->raw_mode = arg_type & MEM_UNINIT; 8671 err = check_helper_mem_access(env, regno, 8672 meta->map_ptr->value_size, false, 8673 meta); 8674 break; 8675 case ARG_PTR_TO_PERCPU_BTF_ID: 8676 if (!reg->btf_id) { 8677 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8678 return -EACCES; 8679 } 8680 meta->ret_btf = reg->btf; 8681 meta->ret_btf_id = reg->btf_id; 8682 break; 8683 case ARG_PTR_TO_SPIN_LOCK: 8684 if (in_rbtree_lock_required_cb(env)) { 8685 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8686 return -EACCES; 8687 } 8688 if (meta->func_id == BPF_FUNC_spin_lock) { 8689 err = process_spin_lock(env, regno, true); 8690 if (err) 8691 return err; 8692 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8693 err = process_spin_lock(env, regno, false); 8694 if (err) 8695 return err; 8696 } else { 8697 verbose(env, "verifier internal error\n"); 8698 return -EFAULT; 8699 } 8700 break; 8701 case ARG_PTR_TO_TIMER: 8702 err = process_timer_func(env, regno, meta); 8703 if (err) 8704 return err; 8705 break; 8706 case ARG_PTR_TO_FUNC: 8707 meta->subprogno = reg->subprogno; 8708 break; 8709 case ARG_PTR_TO_MEM: 8710 /* The access to this pointer is only checked when we hit the 8711 * next is_mem_size argument below. 8712 */ 8713 meta->raw_mode = arg_type & MEM_UNINIT; 8714 if (arg_type & MEM_FIXED_SIZE) { 8715 err = check_helper_mem_access(env, regno, 8716 fn->arg_size[arg], false, 8717 meta); 8718 } 8719 break; 8720 case ARG_CONST_SIZE: 8721 err = check_mem_size_reg(env, reg, regno, false, meta); 8722 break; 8723 case ARG_CONST_SIZE_OR_ZERO: 8724 err = check_mem_size_reg(env, reg, regno, true, meta); 8725 break; 8726 case ARG_PTR_TO_DYNPTR: 8727 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8728 if (err) 8729 return err; 8730 break; 8731 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8732 if (!tnum_is_const(reg->var_off)) { 8733 verbose(env, "R%d is not a known constant'\n", 8734 regno); 8735 return -EACCES; 8736 } 8737 meta->mem_size = reg->var_off.value; 8738 err = mark_chain_precision(env, regno); 8739 if (err) 8740 return err; 8741 break; 8742 case ARG_PTR_TO_INT: 8743 case ARG_PTR_TO_LONG: 8744 { 8745 int size = int_ptr_type_to_size(arg_type); 8746 8747 err = check_helper_mem_access(env, regno, size, false, meta); 8748 if (err) 8749 return err; 8750 err = check_ptr_alignment(env, reg, 0, size, true); 8751 break; 8752 } 8753 case ARG_PTR_TO_CONST_STR: 8754 { 8755 err = check_reg_const_str(env, reg, regno); 8756 if (err) 8757 return err; 8758 break; 8759 } 8760 case ARG_PTR_TO_KPTR: 8761 err = process_kptr_func(env, regno, meta); 8762 if (err) 8763 return err; 8764 break; 8765 } 8766 8767 return err; 8768 } 8769 8770 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8771 { 8772 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8773 enum bpf_prog_type type = resolve_prog_type(env->prog); 8774 8775 if (func_id != BPF_FUNC_map_update_elem) 8776 return false; 8777 8778 /* It's not possible to get access to a locked struct sock in these 8779 * contexts, so updating is safe. 8780 */ 8781 switch (type) { 8782 case BPF_PROG_TYPE_TRACING: 8783 if (eatype == BPF_TRACE_ITER) 8784 return true; 8785 break; 8786 case BPF_PROG_TYPE_SOCKET_FILTER: 8787 case BPF_PROG_TYPE_SCHED_CLS: 8788 case BPF_PROG_TYPE_SCHED_ACT: 8789 case BPF_PROG_TYPE_XDP: 8790 case BPF_PROG_TYPE_SK_REUSEPORT: 8791 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8792 case BPF_PROG_TYPE_SK_LOOKUP: 8793 return true; 8794 default: 8795 break; 8796 } 8797 8798 verbose(env, "cannot update sockmap in this context\n"); 8799 return false; 8800 } 8801 8802 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8803 { 8804 return env->prog->jit_requested && 8805 bpf_jit_supports_subprog_tailcalls(); 8806 } 8807 8808 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8809 struct bpf_map *map, int func_id) 8810 { 8811 if (!map) 8812 return 0; 8813 8814 /* We need a two way check, first is from map perspective ... */ 8815 switch (map->map_type) { 8816 case BPF_MAP_TYPE_PROG_ARRAY: 8817 if (func_id != BPF_FUNC_tail_call) 8818 goto error; 8819 break; 8820 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8821 if (func_id != BPF_FUNC_perf_event_read && 8822 func_id != BPF_FUNC_perf_event_output && 8823 func_id != BPF_FUNC_skb_output && 8824 func_id != BPF_FUNC_perf_event_read_value && 8825 func_id != BPF_FUNC_xdp_output) 8826 goto error; 8827 break; 8828 case BPF_MAP_TYPE_RINGBUF: 8829 if (func_id != BPF_FUNC_ringbuf_output && 8830 func_id != BPF_FUNC_ringbuf_reserve && 8831 func_id != BPF_FUNC_ringbuf_query && 8832 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8833 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8834 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8835 goto error; 8836 break; 8837 case BPF_MAP_TYPE_USER_RINGBUF: 8838 if (func_id != BPF_FUNC_user_ringbuf_drain) 8839 goto error; 8840 break; 8841 case BPF_MAP_TYPE_STACK_TRACE: 8842 if (func_id != BPF_FUNC_get_stackid) 8843 goto error; 8844 break; 8845 case BPF_MAP_TYPE_CGROUP_ARRAY: 8846 if (func_id != BPF_FUNC_skb_under_cgroup && 8847 func_id != BPF_FUNC_current_task_under_cgroup) 8848 goto error; 8849 break; 8850 case BPF_MAP_TYPE_CGROUP_STORAGE: 8851 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8852 if (func_id != BPF_FUNC_get_local_storage) 8853 goto error; 8854 break; 8855 case BPF_MAP_TYPE_DEVMAP: 8856 case BPF_MAP_TYPE_DEVMAP_HASH: 8857 if (func_id != BPF_FUNC_redirect_map && 8858 func_id != BPF_FUNC_map_lookup_elem) 8859 goto error; 8860 break; 8861 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8862 * appear. 8863 */ 8864 case BPF_MAP_TYPE_CPUMAP: 8865 if (func_id != BPF_FUNC_redirect_map) 8866 goto error; 8867 break; 8868 case BPF_MAP_TYPE_XSKMAP: 8869 if (func_id != BPF_FUNC_redirect_map && 8870 func_id != BPF_FUNC_map_lookup_elem) 8871 goto error; 8872 break; 8873 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8874 case BPF_MAP_TYPE_HASH_OF_MAPS: 8875 if (func_id != BPF_FUNC_map_lookup_elem) 8876 goto error; 8877 break; 8878 case BPF_MAP_TYPE_SOCKMAP: 8879 if (func_id != BPF_FUNC_sk_redirect_map && 8880 func_id != BPF_FUNC_sock_map_update && 8881 func_id != BPF_FUNC_map_delete_elem && 8882 func_id != BPF_FUNC_msg_redirect_map && 8883 func_id != BPF_FUNC_sk_select_reuseport && 8884 func_id != BPF_FUNC_map_lookup_elem && 8885 !may_update_sockmap(env, func_id)) 8886 goto error; 8887 break; 8888 case BPF_MAP_TYPE_SOCKHASH: 8889 if (func_id != BPF_FUNC_sk_redirect_hash && 8890 func_id != BPF_FUNC_sock_hash_update && 8891 func_id != BPF_FUNC_map_delete_elem && 8892 func_id != BPF_FUNC_msg_redirect_hash && 8893 func_id != BPF_FUNC_sk_select_reuseport && 8894 func_id != BPF_FUNC_map_lookup_elem && 8895 !may_update_sockmap(env, func_id)) 8896 goto error; 8897 break; 8898 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8899 if (func_id != BPF_FUNC_sk_select_reuseport) 8900 goto error; 8901 break; 8902 case BPF_MAP_TYPE_QUEUE: 8903 case BPF_MAP_TYPE_STACK: 8904 if (func_id != BPF_FUNC_map_peek_elem && 8905 func_id != BPF_FUNC_map_pop_elem && 8906 func_id != BPF_FUNC_map_push_elem) 8907 goto error; 8908 break; 8909 case BPF_MAP_TYPE_SK_STORAGE: 8910 if (func_id != BPF_FUNC_sk_storage_get && 8911 func_id != BPF_FUNC_sk_storage_delete && 8912 func_id != BPF_FUNC_kptr_xchg) 8913 goto error; 8914 break; 8915 case BPF_MAP_TYPE_INODE_STORAGE: 8916 if (func_id != BPF_FUNC_inode_storage_get && 8917 func_id != BPF_FUNC_inode_storage_delete && 8918 func_id != BPF_FUNC_kptr_xchg) 8919 goto error; 8920 break; 8921 case BPF_MAP_TYPE_TASK_STORAGE: 8922 if (func_id != BPF_FUNC_task_storage_get && 8923 func_id != BPF_FUNC_task_storage_delete && 8924 func_id != BPF_FUNC_kptr_xchg) 8925 goto error; 8926 break; 8927 case BPF_MAP_TYPE_CGRP_STORAGE: 8928 if (func_id != BPF_FUNC_cgrp_storage_get && 8929 func_id != BPF_FUNC_cgrp_storage_delete && 8930 func_id != BPF_FUNC_kptr_xchg) 8931 goto error; 8932 break; 8933 case BPF_MAP_TYPE_BLOOM_FILTER: 8934 if (func_id != BPF_FUNC_map_peek_elem && 8935 func_id != BPF_FUNC_map_push_elem) 8936 goto error; 8937 break; 8938 default: 8939 break; 8940 } 8941 8942 /* ... and second from the function itself. */ 8943 switch (func_id) { 8944 case BPF_FUNC_tail_call: 8945 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8946 goto error; 8947 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8948 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8949 return -EINVAL; 8950 } 8951 break; 8952 case BPF_FUNC_perf_event_read: 8953 case BPF_FUNC_perf_event_output: 8954 case BPF_FUNC_perf_event_read_value: 8955 case BPF_FUNC_skb_output: 8956 case BPF_FUNC_xdp_output: 8957 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8958 goto error; 8959 break; 8960 case BPF_FUNC_ringbuf_output: 8961 case BPF_FUNC_ringbuf_reserve: 8962 case BPF_FUNC_ringbuf_query: 8963 case BPF_FUNC_ringbuf_reserve_dynptr: 8964 case BPF_FUNC_ringbuf_submit_dynptr: 8965 case BPF_FUNC_ringbuf_discard_dynptr: 8966 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8967 goto error; 8968 break; 8969 case BPF_FUNC_user_ringbuf_drain: 8970 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8971 goto error; 8972 break; 8973 case BPF_FUNC_get_stackid: 8974 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8975 goto error; 8976 break; 8977 case BPF_FUNC_current_task_under_cgroup: 8978 case BPF_FUNC_skb_under_cgroup: 8979 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8980 goto error; 8981 break; 8982 case BPF_FUNC_redirect_map: 8983 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8984 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8985 map->map_type != BPF_MAP_TYPE_CPUMAP && 8986 map->map_type != BPF_MAP_TYPE_XSKMAP) 8987 goto error; 8988 break; 8989 case BPF_FUNC_sk_redirect_map: 8990 case BPF_FUNC_msg_redirect_map: 8991 case BPF_FUNC_sock_map_update: 8992 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8993 goto error; 8994 break; 8995 case BPF_FUNC_sk_redirect_hash: 8996 case BPF_FUNC_msg_redirect_hash: 8997 case BPF_FUNC_sock_hash_update: 8998 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8999 goto error; 9000 break; 9001 case BPF_FUNC_get_local_storage: 9002 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 9003 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 9004 goto error; 9005 break; 9006 case BPF_FUNC_sk_select_reuseport: 9007 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 9008 map->map_type != BPF_MAP_TYPE_SOCKMAP && 9009 map->map_type != BPF_MAP_TYPE_SOCKHASH) 9010 goto error; 9011 break; 9012 case BPF_FUNC_map_pop_elem: 9013 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9014 map->map_type != BPF_MAP_TYPE_STACK) 9015 goto error; 9016 break; 9017 case BPF_FUNC_map_peek_elem: 9018 case BPF_FUNC_map_push_elem: 9019 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9020 map->map_type != BPF_MAP_TYPE_STACK && 9021 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 9022 goto error; 9023 break; 9024 case BPF_FUNC_map_lookup_percpu_elem: 9025 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 9026 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9027 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 9028 goto error; 9029 break; 9030 case BPF_FUNC_sk_storage_get: 9031 case BPF_FUNC_sk_storage_delete: 9032 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 9033 goto error; 9034 break; 9035 case BPF_FUNC_inode_storage_get: 9036 case BPF_FUNC_inode_storage_delete: 9037 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 9038 goto error; 9039 break; 9040 case BPF_FUNC_task_storage_get: 9041 case BPF_FUNC_task_storage_delete: 9042 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 9043 goto error; 9044 break; 9045 case BPF_FUNC_cgrp_storage_get: 9046 case BPF_FUNC_cgrp_storage_delete: 9047 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9048 goto error; 9049 break; 9050 default: 9051 break; 9052 } 9053 9054 return 0; 9055 error: 9056 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9057 map->map_type, func_id_name(func_id), func_id); 9058 return -EINVAL; 9059 } 9060 9061 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9062 { 9063 int count = 0; 9064 9065 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 9066 count++; 9067 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 9068 count++; 9069 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 9070 count++; 9071 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 9072 count++; 9073 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 9074 count++; 9075 9076 /* We only support one arg being in raw mode at the moment, 9077 * which is sufficient for the helper functions we have 9078 * right now. 9079 */ 9080 return count <= 1; 9081 } 9082 9083 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9084 { 9085 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9086 bool has_size = fn->arg_size[arg] != 0; 9087 bool is_next_size = false; 9088 9089 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9090 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9091 9092 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9093 return is_next_size; 9094 9095 return has_size == is_next_size || is_next_size == is_fixed; 9096 } 9097 9098 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9099 { 9100 /* bpf_xxx(..., buf, len) call will access 'len' 9101 * bytes from memory 'buf'. Both arg types need 9102 * to be paired, so make sure there's no buggy 9103 * helper function specification. 9104 */ 9105 if (arg_type_is_mem_size(fn->arg1_type) || 9106 check_args_pair_invalid(fn, 0) || 9107 check_args_pair_invalid(fn, 1) || 9108 check_args_pair_invalid(fn, 2) || 9109 check_args_pair_invalid(fn, 3) || 9110 check_args_pair_invalid(fn, 4)) 9111 return false; 9112 9113 return true; 9114 } 9115 9116 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9117 { 9118 int i; 9119 9120 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9121 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9122 return !!fn->arg_btf_id[i]; 9123 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9124 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9125 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9126 /* arg_btf_id and arg_size are in a union. */ 9127 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9128 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9129 return false; 9130 } 9131 9132 return true; 9133 } 9134 9135 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9136 { 9137 return check_raw_mode_ok(fn) && 9138 check_arg_pair_ok(fn) && 9139 check_btf_id_ok(fn) ? 0 : -EINVAL; 9140 } 9141 9142 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9143 * are now invalid, so turn them into unknown SCALAR_VALUE. 9144 * 9145 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9146 * since these slices point to packet data. 9147 */ 9148 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9149 { 9150 struct bpf_func_state *state; 9151 struct bpf_reg_state *reg; 9152 9153 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9154 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9155 mark_reg_invalid(env, reg); 9156 })); 9157 } 9158 9159 enum { 9160 AT_PKT_END = -1, 9161 BEYOND_PKT_END = -2, 9162 }; 9163 9164 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9165 { 9166 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9167 struct bpf_reg_state *reg = &state->regs[regn]; 9168 9169 if (reg->type != PTR_TO_PACKET) 9170 /* PTR_TO_PACKET_META is not supported yet */ 9171 return; 9172 9173 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9174 * How far beyond pkt_end it goes is unknown. 9175 * if (!range_open) it's the case of pkt >= pkt_end 9176 * if (range_open) it's the case of pkt > pkt_end 9177 * hence this pointer is at least 1 byte bigger than pkt_end 9178 */ 9179 if (range_open) 9180 reg->range = BEYOND_PKT_END; 9181 else 9182 reg->range = AT_PKT_END; 9183 } 9184 9185 /* The pointer with the specified id has released its reference to kernel 9186 * resources. Identify all copies of the same pointer and clear the reference. 9187 */ 9188 static int release_reference(struct bpf_verifier_env *env, 9189 int ref_obj_id) 9190 { 9191 struct bpf_func_state *state; 9192 struct bpf_reg_state *reg; 9193 int err; 9194 9195 err = release_reference_state(cur_func(env), ref_obj_id); 9196 if (err) 9197 return err; 9198 9199 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9200 if (reg->ref_obj_id == ref_obj_id) 9201 mark_reg_invalid(env, reg); 9202 })); 9203 9204 return 0; 9205 } 9206 9207 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9208 { 9209 struct bpf_func_state *unused; 9210 struct bpf_reg_state *reg; 9211 9212 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9213 if (type_is_non_owning_ref(reg->type)) 9214 mark_reg_invalid(env, reg); 9215 })); 9216 } 9217 9218 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9219 struct bpf_reg_state *regs) 9220 { 9221 int i; 9222 9223 /* after the call registers r0 - r5 were scratched */ 9224 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9225 mark_reg_not_init(env, regs, caller_saved[i]); 9226 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9227 } 9228 } 9229 9230 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9231 struct bpf_func_state *caller, 9232 struct bpf_func_state *callee, 9233 int insn_idx); 9234 9235 static int set_callee_state(struct bpf_verifier_env *env, 9236 struct bpf_func_state *caller, 9237 struct bpf_func_state *callee, int insn_idx); 9238 9239 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9240 set_callee_state_fn set_callee_state_cb, 9241 struct bpf_verifier_state *state) 9242 { 9243 struct bpf_func_state *caller, *callee; 9244 int err; 9245 9246 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9247 verbose(env, "the call stack of %d frames is too deep\n", 9248 state->curframe + 2); 9249 return -E2BIG; 9250 } 9251 9252 if (state->frame[state->curframe + 1]) { 9253 verbose(env, "verifier bug. Frame %d already allocated\n", 9254 state->curframe + 1); 9255 return -EFAULT; 9256 } 9257 9258 caller = state->frame[state->curframe]; 9259 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9260 if (!callee) 9261 return -ENOMEM; 9262 state->frame[state->curframe + 1] = callee; 9263 9264 /* callee cannot access r0, r6 - r9 for reading and has to write 9265 * into its own stack before reading from it. 9266 * callee can read/write into caller's stack 9267 */ 9268 init_func_state(env, callee, 9269 /* remember the callsite, it will be used by bpf_exit */ 9270 callsite, 9271 state->curframe + 1 /* frameno within this callchain */, 9272 subprog /* subprog number within this prog */); 9273 /* Transfer references to the callee */ 9274 err = copy_reference_state(callee, caller); 9275 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9276 if (err) 9277 goto err_out; 9278 9279 /* only increment it after check_reg_arg() finished */ 9280 state->curframe++; 9281 9282 return 0; 9283 9284 err_out: 9285 free_func_state(callee); 9286 state->frame[state->curframe + 1] = NULL; 9287 return err; 9288 } 9289 9290 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 9291 const struct btf *btf, 9292 struct bpf_reg_state *regs) 9293 { 9294 struct bpf_subprog_info *sub = subprog_info(env, subprog); 9295 struct bpf_verifier_log *log = &env->log; 9296 u32 i; 9297 int ret; 9298 9299 ret = btf_prepare_func_args(env, subprog); 9300 if (ret) 9301 return ret; 9302 9303 /* check that BTF function arguments match actual types that the 9304 * verifier sees. 9305 */ 9306 for (i = 0; i < sub->arg_cnt; i++) { 9307 u32 regno = i + 1; 9308 struct bpf_reg_state *reg = ®s[regno]; 9309 struct bpf_subprog_arg_info *arg = &sub->args[i]; 9310 9311 if (arg->arg_type == ARG_ANYTHING) { 9312 if (reg->type != SCALAR_VALUE) { 9313 bpf_log(log, "R%d is not a scalar\n", regno); 9314 return -EINVAL; 9315 } 9316 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 9317 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9318 if (ret < 0) 9319 return ret; 9320 /* If function expects ctx type in BTF check that caller 9321 * is passing PTR_TO_CTX. 9322 */ 9323 if (reg->type != PTR_TO_CTX) { 9324 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 9325 return -EINVAL; 9326 } 9327 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 9328 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9329 if (ret < 0) 9330 return ret; 9331 if (check_mem_reg(env, reg, regno, arg->mem_size)) 9332 return -EINVAL; 9333 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 9334 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 9335 return -EINVAL; 9336 } 9337 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 9338 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 9339 if (ret) 9340 return ret; 9341 } else { 9342 bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n", 9343 i, arg->arg_type); 9344 return -EFAULT; 9345 } 9346 } 9347 9348 return 0; 9349 } 9350 9351 /* Compare BTF of a function call with given bpf_reg_state. 9352 * Returns: 9353 * EFAULT - there is a verifier bug. Abort verification. 9354 * EINVAL - there is a type mismatch or BTF is not available. 9355 * 0 - BTF matches with what bpf_reg_state expects. 9356 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 9357 */ 9358 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 9359 struct bpf_reg_state *regs) 9360 { 9361 struct bpf_prog *prog = env->prog; 9362 struct btf *btf = prog->aux->btf; 9363 u32 btf_id; 9364 int err; 9365 9366 if (!prog->aux->func_info) 9367 return -EINVAL; 9368 9369 btf_id = prog->aux->func_info[subprog].type_id; 9370 if (!btf_id) 9371 return -EFAULT; 9372 9373 if (prog->aux->func_info_aux[subprog].unreliable) 9374 return -EINVAL; 9375 9376 err = btf_check_func_arg_match(env, subprog, btf, regs); 9377 /* Compiler optimizations can remove arguments from static functions 9378 * or mismatched type can be passed into a global function. 9379 * In such cases mark the function as unreliable from BTF point of view. 9380 */ 9381 if (err) 9382 prog->aux->func_info_aux[subprog].unreliable = true; 9383 return err; 9384 } 9385 9386 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9387 int insn_idx, int subprog, 9388 set_callee_state_fn set_callee_state_cb) 9389 { 9390 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9391 struct bpf_func_state *caller, *callee; 9392 int err; 9393 9394 caller = state->frame[state->curframe]; 9395 err = btf_check_subprog_call(env, subprog, caller->regs); 9396 if (err == -EFAULT) 9397 return err; 9398 9399 /* set_callee_state is used for direct subprog calls, but we are 9400 * interested in validating only BPF helpers that can call subprogs as 9401 * callbacks 9402 */ 9403 env->subprog_info[subprog].is_cb = true; 9404 if (bpf_pseudo_kfunc_call(insn) && 9405 !is_sync_callback_calling_kfunc(insn->imm)) { 9406 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9407 func_id_name(insn->imm), insn->imm); 9408 return -EFAULT; 9409 } else if (!bpf_pseudo_kfunc_call(insn) && 9410 !is_callback_calling_function(insn->imm)) { /* helper */ 9411 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9412 func_id_name(insn->imm), insn->imm); 9413 return -EFAULT; 9414 } 9415 9416 if (insn->code == (BPF_JMP | BPF_CALL) && 9417 insn->src_reg == 0 && 9418 insn->imm == BPF_FUNC_timer_set_callback) { 9419 struct bpf_verifier_state *async_cb; 9420 9421 /* there is no real recursion here. timer callbacks are async */ 9422 env->subprog_info[subprog].is_async_cb = true; 9423 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9424 insn_idx, subprog); 9425 if (!async_cb) 9426 return -EFAULT; 9427 callee = async_cb->frame[0]; 9428 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9429 9430 /* Convert bpf_timer_set_callback() args into timer callback args */ 9431 err = set_callee_state_cb(env, caller, callee, insn_idx); 9432 if (err) 9433 return err; 9434 9435 return 0; 9436 } 9437 9438 /* for callback functions enqueue entry to callback and 9439 * proceed with next instruction within current frame. 9440 */ 9441 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9442 if (!callback_state) 9443 return -ENOMEM; 9444 9445 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9446 callback_state); 9447 if (err) 9448 return err; 9449 9450 callback_state->callback_unroll_depth++; 9451 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9452 caller->callback_depth = 0; 9453 return 0; 9454 } 9455 9456 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9457 int *insn_idx) 9458 { 9459 struct bpf_verifier_state *state = env->cur_state; 9460 struct bpf_func_state *caller; 9461 int err, subprog, target_insn; 9462 9463 target_insn = *insn_idx + insn->imm + 1; 9464 subprog = find_subprog(env, target_insn); 9465 if (subprog < 0) { 9466 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9467 return -EFAULT; 9468 } 9469 9470 caller = state->frame[state->curframe]; 9471 err = btf_check_subprog_call(env, subprog, caller->regs); 9472 if (err == -EFAULT) 9473 return err; 9474 if (subprog_is_global(env, subprog)) { 9475 const char *sub_name = subprog_name(env, subprog); 9476 9477 if (err) { 9478 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 9479 subprog, sub_name); 9480 return err; 9481 } 9482 9483 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 9484 subprog, sub_name); 9485 /* mark global subprog for verifying after main prog */ 9486 subprog_aux(env, subprog)->called = true; 9487 clear_caller_saved_regs(env, caller->regs); 9488 9489 /* All global functions return a 64-bit SCALAR_VALUE */ 9490 mark_reg_unknown(env, caller->regs, BPF_REG_0); 9491 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9492 9493 /* continue with next insn after call */ 9494 return 0; 9495 } 9496 9497 /* for regular function entry setup new frame and continue 9498 * from that frame. 9499 */ 9500 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 9501 if (err) 9502 return err; 9503 9504 clear_caller_saved_regs(env, caller->regs); 9505 9506 /* and go analyze first insn of the callee */ 9507 *insn_idx = env->subprog_info[subprog].start - 1; 9508 9509 if (env->log.level & BPF_LOG_LEVEL) { 9510 verbose(env, "caller:\n"); 9511 print_verifier_state(env, caller, true); 9512 verbose(env, "callee:\n"); 9513 print_verifier_state(env, state->frame[state->curframe], true); 9514 } 9515 9516 return 0; 9517 } 9518 9519 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9520 struct bpf_func_state *caller, 9521 struct bpf_func_state *callee) 9522 { 9523 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9524 * void *callback_ctx, u64 flags); 9525 * callback_fn(struct bpf_map *map, void *key, void *value, 9526 * void *callback_ctx); 9527 */ 9528 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9529 9530 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9531 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9532 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9533 9534 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9535 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9536 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9537 9538 /* pointer to stack or null */ 9539 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9540 9541 /* unused */ 9542 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9543 return 0; 9544 } 9545 9546 static int set_callee_state(struct bpf_verifier_env *env, 9547 struct bpf_func_state *caller, 9548 struct bpf_func_state *callee, int insn_idx) 9549 { 9550 int i; 9551 9552 /* copy r1 - r5 args that callee can access. The copy includes parent 9553 * pointers, which connects us up to the liveness chain 9554 */ 9555 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9556 callee->regs[i] = caller->regs[i]; 9557 return 0; 9558 } 9559 9560 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9561 struct bpf_func_state *caller, 9562 struct bpf_func_state *callee, 9563 int insn_idx) 9564 { 9565 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9566 struct bpf_map *map; 9567 int err; 9568 9569 if (bpf_map_ptr_poisoned(insn_aux)) { 9570 verbose(env, "tail_call abusing map_ptr\n"); 9571 return -EINVAL; 9572 } 9573 9574 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9575 if (!map->ops->map_set_for_each_callback_args || 9576 !map->ops->map_for_each_callback) { 9577 verbose(env, "callback function not allowed for map\n"); 9578 return -ENOTSUPP; 9579 } 9580 9581 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9582 if (err) 9583 return err; 9584 9585 callee->in_callback_fn = true; 9586 callee->callback_ret_range = retval_range(0, 1); 9587 return 0; 9588 } 9589 9590 static int set_loop_callback_state(struct bpf_verifier_env *env, 9591 struct bpf_func_state *caller, 9592 struct bpf_func_state *callee, 9593 int insn_idx) 9594 { 9595 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9596 * u64 flags); 9597 * callback_fn(u32 index, void *callback_ctx); 9598 */ 9599 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9600 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9601 9602 /* unused */ 9603 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9604 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9605 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9606 9607 callee->in_callback_fn = true; 9608 callee->callback_ret_range = retval_range(0, 1); 9609 return 0; 9610 } 9611 9612 static int set_timer_callback_state(struct bpf_verifier_env *env, 9613 struct bpf_func_state *caller, 9614 struct bpf_func_state *callee, 9615 int insn_idx) 9616 { 9617 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9618 9619 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9620 * callback_fn(struct bpf_map *map, void *key, void *value); 9621 */ 9622 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9623 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9624 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9625 9626 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9627 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9628 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9629 9630 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9631 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9632 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9633 9634 /* unused */ 9635 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9636 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9637 callee->in_async_callback_fn = true; 9638 callee->callback_ret_range = retval_range(0, 1); 9639 return 0; 9640 } 9641 9642 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9643 struct bpf_func_state *caller, 9644 struct bpf_func_state *callee, 9645 int insn_idx) 9646 { 9647 /* bpf_find_vma(struct task_struct *task, u64 addr, 9648 * void *callback_fn, void *callback_ctx, u64 flags) 9649 * (callback_fn)(struct task_struct *task, 9650 * struct vm_area_struct *vma, void *callback_ctx); 9651 */ 9652 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9653 9654 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9655 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9656 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9657 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 9658 9659 /* pointer to stack or null */ 9660 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9661 9662 /* unused */ 9663 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9664 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9665 callee->in_callback_fn = true; 9666 callee->callback_ret_range = retval_range(0, 1); 9667 return 0; 9668 } 9669 9670 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9671 struct bpf_func_state *caller, 9672 struct bpf_func_state *callee, 9673 int insn_idx) 9674 { 9675 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9676 * callback_ctx, u64 flags); 9677 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9678 */ 9679 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9680 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9681 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9682 9683 /* unused */ 9684 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9685 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9686 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9687 9688 callee->in_callback_fn = true; 9689 callee->callback_ret_range = retval_range(0, 1); 9690 return 0; 9691 } 9692 9693 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9694 struct bpf_func_state *caller, 9695 struct bpf_func_state *callee, 9696 int insn_idx) 9697 { 9698 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9699 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9700 * 9701 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9702 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9703 * by this point, so look at 'root' 9704 */ 9705 struct btf_field *field; 9706 9707 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9708 BPF_RB_ROOT); 9709 if (!field || !field->graph_root.value_btf_id) 9710 return -EFAULT; 9711 9712 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9713 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9714 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9715 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9716 9717 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9718 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9719 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9720 callee->in_callback_fn = true; 9721 callee->callback_ret_range = retval_range(0, 1); 9722 return 0; 9723 } 9724 9725 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9726 9727 /* Are we currently verifying the callback for a rbtree helper that must 9728 * be called with lock held? If so, no need to complain about unreleased 9729 * lock 9730 */ 9731 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9732 { 9733 struct bpf_verifier_state *state = env->cur_state; 9734 struct bpf_insn *insn = env->prog->insnsi; 9735 struct bpf_func_state *callee; 9736 int kfunc_btf_id; 9737 9738 if (!state->curframe) 9739 return false; 9740 9741 callee = state->frame[state->curframe]; 9742 9743 if (!callee->in_callback_fn) 9744 return false; 9745 9746 kfunc_btf_id = insn[callee->callsite].imm; 9747 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9748 } 9749 9750 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg) 9751 { 9752 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 9753 } 9754 9755 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9756 { 9757 struct bpf_verifier_state *state = env->cur_state, *prev_st; 9758 struct bpf_func_state *caller, *callee; 9759 struct bpf_reg_state *r0; 9760 bool in_callback_fn; 9761 int err; 9762 9763 callee = state->frame[state->curframe]; 9764 r0 = &callee->regs[BPF_REG_0]; 9765 if (r0->type == PTR_TO_STACK) { 9766 /* technically it's ok to return caller's stack pointer 9767 * (or caller's caller's pointer) back to the caller, 9768 * since these pointers are valid. Only current stack 9769 * pointer will be invalid as soon as function exits, 9770 * but let's be conservative 9771 */ 9772 verbose(env, "cannot return stack pointer to the caller\n"); 9773 return -EINVAL; 9774 } 9775 9776 caller = state->frame[state->curframe - 1]; 9777 if (callee->in_callback_fn) { 9778 if (r0->type != SCALAR_VALUE) { 9779 verbose(env, "R0 not a scalar value\n"); 9780 return -EACCES; 9781 } 9782 9783 /* we are going to rely on register's precise value */ 9784 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 9785 err = err ?: mark_chain_precision(env, BPF_REG_0); 9786 if (err) 9787 return err; 9788 9789 /* enforce R0 return value range */ 9790 if (!retval_range_within(callee->callback_ret_range, r0)) { 9791 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 9792 "At callback return", "R0"); 9793 return -EINVAL; 9794 } 9795 if (!calls_callback(env, callee->callsite)) { 9796 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 9797 *insn_idx, callee->callsite); 9798 return -EFAULT; 9799 } 9800 } else { 9801 /* return to the caller whatever r0 had in the callee */ 9802 caller->regs[BPF_REG_0] = *r0; 9803 } 9804 9805 /* callback_fn frame should have released its own additions to parent's 9806 * reference state at this point, or check_reference_leak would 9807 * complain, hence it must be the same as the caller. There is no need 9808 * to copy it back. 9809 */ 9810 if (!callee->in_callback_fn) { 9811 /* Transfer references to the caller */ 9812 err = copy_reference_state(caller, callee); 9813 if (err) 9814 return err; 9815 } 9816 9817 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 9818 * there function call logic would reschedule callback visit. If iteration 9819 * converges is_state_visited() would prune that visit eventually. 9820 */ 9821 in_callback_fn = callee->in_callback_fn; 9822 if (in_callback_fn) 9823 *insn_idx = callee->callsite; 9824 else 9825 *insn_idx = callee->callsite + 1; 9826 9827 if (env->log.level & BPF_LOG_LEVEL) { 9828 verbose(env, "returning from callee:\n"); 9829 print_verifier_state(env, callee, true); 9830 verbose(env, "to caller at %d:\n", *insn_idx); 9831 print_verifier_state(env, caller, true); 9832 } 9833 /* clear everything in the callee. In case of exceptional exits using 9834 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 9835 free_func_state(callee); 9836 state->frame[state->curframe--] = NULL; 9837 9838 /* for callbacks widen imprecise scalars to make programs like below verify: 9839 * 9840 * struct ctx { int i; } 9841 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 9842 * ... 9843 * struct ctx = { .i = 0; } 9844 * bpf_loop(100, cb, &ctx, 0); 9845 * 9846 * This is similar to what is done in process_iter_next_call() for open 9847 * coded iterators. 9848 */ 9849 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 9850 if (prev_st) { 9851 err = widen_imprecise_scalars(env, prev_st, state); 9852 if (err) 9853 return err; 9854 } 9855 return 0; 9856 } 9857 9858 static int do_refine_retval_range(struct bpf_verifier_env *env, 9859 struct bpf_reg_state *regs, int ret_type, 9860 int func_id, 9861 struct bpf_call_arg_meta *meta) 9862 { 9863 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9864 9865 if (ret_type != RET_INTEGER) 9866 return 0; 9867 9868 switch (func_id) { 9869 case BPF_FUNC_get_stack: 9870 case BPF_FUNC_get_task_stack: 9871 case BPF_FUNC_probe_read_str: 9872 case BPF_FUNC_probe_read_kernel_str: 9873 case BPF_FUNC_probe_read_user_str: 9874 ret_reg->smax_value = meta->msize_max_value; 9875 ret_reg->s32_max_value = meta->msize_max_value; 9876 ret_reg->smin_value = -MAX_ERRNO; 9877 ret_reg->s32_min_value = -MAX_ERRNO; 9878 reg_bounds_sync(ret_reg); 9879 break; 9880 case BPF_FUNC_get_smp_processor_id: 9881 ret_reg->umax_value = nr_cpu_ids - 1; 9882 ret_reg->u32_max_value = nr_cpu_ids - 1; 9883 ret_reg->smax_value = nr_cpu_ids - 1; 9884 ret_reg->s32_max_value = nr_cpu_ids - 1; 9885 ret_reg->umin_value = 0; 9886 ret_reg->u32_min_value = 0; 9887 ret_reg->smin_value = 0; 9888 ret_reg->s32_min_value = 0; 9889 reg_bounds_sync(ret_reg); 9890 break; 9891 } 9892 9893 return reg_bounds_sanity_check(env, ret_reg, "retval"); 9894 } 9895 9896 static int 9897 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9898 int func_id, int insn_idx) 9899 { 9900 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9901 struct bpf_map *map = meta->map_ptr; 9902 9903 if (func_id != BPF_FUNC_tail_call && 9904 func_id != BPF_FUNC_map_lookup_elem && 9905 func_id != BPF_FUNC_map_update_elem && 9906 func_id != BPF_FUNC_map_delete_elem && 9907 func_id != BPF_FUNC_map_push_elem && 9908 func_id != BPF_FUNC_map_pop_elem && 9909 func_id != BPF_FUNC_map_peek_elem && 9910 func_id != BPF_FUNC_for_each_map_elem && 9911 func_id != BPF_FUNC_redirect_map && 9912 func_id != BPF_FUNC_map_lookup_percpu_elem) 9913 return 0; 9914 9915 if (map == NULL) { 9916 verbose(env, "kernel subsystem misconfigured verifier\n"); 9917 return -EINVAL; 9918 } 9919 9920 /* In case of read-only, some additional restrictions 9921 * need to be applied in order to prevent altering the 9922 * state of the map from program side. 9923 */ 9924 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9925 (func_id == BPF_FUNC_map_delete_elem || 9926 func_id == BPF_FUNC_map_update_elem || 9927 func_id == BPF_FUNC_map_push_elem || 9928 func_id == BPF_FUNC_map_pop_elem)) { 9929 verbose(env, "write into map forbidden\n"); 9930 return -EACCES; 9931 } 9932 9933 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9934 bpf_map_ptr_store(aux, meta->map_ptr, 9935 !meta->map_ptr->bypass_spec_v1); 9936 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9937 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9938 !meta->map_ptr->bypass_spec_v1); 9939 return 0; 9940 } 9941 9942 static int 9943 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9944 int func_id, int insn_idx) 9945 { 9946 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9947 struct bpf_reg_state *regs = cur_regs(env), *reg; 9948 struct bpf_map *map = meta->map_ptr; 9949 u64 val, max; 9950 int err; 9951 9952 if (func_id != BPF_FUNC_tail_call) 9953 return 0; 9954 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9955 verbose(env, "kernel subsystem misconfigured verifier\n"); 9956 return -EINVAL; 9957 } 9958 9959 reg = ®s[BPF_REG_3]; 9960 val = reg->var_off.value; 9961 max = map->max_entries; 9962 9963 if (!(is_reg_const(reg, false) && val < max)) { 9964 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9965 return 0; 9966 } 9967 9968 err = mark_chain_precision(env, BPF_REG_3); 9969 if (err) 9970 return err; 9971 if (bpf_map_key_unseen(aux)) 9972 bpf_map_key_store(aux, val); 9973 else if (!bpf_map_key_poisoned(aux) && 9974 bpf_map_key_immediate(aux) != val) 9975 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9976 return 0; 9977 } 9978 9979 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 9980 { 9981 struct bpf_func_state *state = cur_func(env); 9982 bool refs_lingering = false; 9983 int i; 9984 9985 if (!exception_exit && state->frameno && !state->in_callback_fn) 9986 return 0; 9987 9988 for (i = 0; i < state->acquired_refs; i++) { 9989 if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9990 continue; 9991 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9992 state->refs[i].id, state->refs[i].insn_idx); 9993 refs_lingering = true; 9994 } 9995 return refs_lingering ? -EINVAL : 0; 9996 } 9997 9998 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9999 struct bpf_reg_state *regs) 10000 { 10001 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 10002 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 10003 struct bpf_map *fmt_map = fmt_reg->map_ptr; 10004 struct bpf_bprintf_data data = {}; 10005 int err, fmt_map_off, num_args; 10006 u64 fmt_addr; 10007 char *fmt; 10008 10009 /* data must be an array of u64 */ 10010 if (data_len_reg->var_off.value % 8) 10011 return -EINVAL; 10012 num_args = data_len_reg->var_off.value / 8; 10013 10014 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 10015 * and map_direct_value_addr is set. 10016 */ 10017 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 10018 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 10019 fmt_map_off); 10020 if (err) { 10021 verbose(env, "verifier bug\n"); 10022 return -EFAULT; 10023 } 10024 fmt = (char *)(long)fmt_addr + fmt_map_off; 10025 10026 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 10027 * can focus on validating the format specifiers. 10028 */ 10029 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 10030 if (err < 0) 10031 verbose(env, "Invalid format string\n"); 10032 10033 return err; 10034 } 10035 10036 static int check_get_func_ip(struct bpf_verifier_env *env) 10037 { 10038 enum bpf_prog_type type = resolve_prog_type(env->prog); 10039 int func_id = BPF_FUNC_get_func_ip; 10040 10041 if (type == BPF_PROG_TYPE_TRACING) { 10042 if (!bpf_prog_has_trampoline(env->prog)) { 10043 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 10044 func_id_name(func_id), func_id); 10045 return -ENOTSUPP; 10046 } 10047 return 0; 10048 } else if (type == BPF_PROG_TYPE_KPROBE) { 10049 return 0; 10050 } 10051 10052 verbose(env, "func %s#%d not supported for program type %d\n", 10053 func_id_name(func_id), func_id, type); 10054 return -ENOTSUPP; 10055 } 10056 10057 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 10058 { 10059 return &env->insn_aux_data[env->insn_idx]; 10060 } 10061 10062 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 10063 { 10064 struct bpf_reg_state *regs = cur_regs(env); 10065 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 10066 bool reg_is_null = register_is_null(reg); 10067 10068 if (reg_is_null) 10069 mark_chain_precision(env, BPF_REG_4); 10070 10071 return reg_is_null; 10072 } 10073 10074 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 10075 { 10076 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 10077 10078 if (!state->initialized) { 10079 state->initialized = 1; 10080 state->fit_for_inline = loop_flag_is_zero(env); 10081 state->callback_subprogno = subprogno; 10082 return; 10083 } 10084 10085 if (!state->fit_for_inline) 10086 return; 10087 10088 state->fit_for_inline = (loop_flag_is_zero(env) && 10089 state->callback_subprogno == subprogno); 10090 } 10091 10092 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10093 int *insn_idx_p) 10094 { 10095 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10096 bool returns_cpu_specific_alloc_ptr = false; 10097 const struct bpf_func_proto *fn = NULL; 10098 enum bpf_return_type ret_type; 10099 enum bpf_type_flag ret_flag; 10100 struct bpf_reg_state *regs; 10101 struct bpf_call_arg_meta meta; 10102 int insn_idx = *insn_idx_p; 10103 bool changes_data; 10104 int i, err, func_id; 10105 10106 /* find function prototype */ 10107 func_id = insn->imm; 10108 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 10109 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 10110 func_id); 10111 return -EINVAL; 10112 } 10113 10114 if (env->ops->get_func_proto) 10115 fn = env->ops->get_func_proto(func_id, env->prog); 10116 if (!fn) { 10117 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 10118 func_id); 10119 return -EINVAL; 10120 } 10121 10122 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 10123 if (!env->prog->gpl_compatible && fn->gpl_only) { 10124 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 10125 return -EINVAL; 10126 } 10127 10128 if (fn->allowed && !fn->allowed(env->prog)) { 10129 verbose(env, "helper call is not allowed in probe\n"); 10130 return -EINVAL; 10131 } 10132 10133 if (!env->prog->aux->sleepable && fn->might_sleep) { 10134 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 10135 return -EINVAL; 10136 } 10137 10138 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 10139 changes_data = bpf_helper_changes_pkt_data(fn->func); 10140 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 10141 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 10142 func_id_name(func_id), func_id); 10143 return -EINVAL; 10144 } 10145 10146 memset(&meta, 0, sizeof(meta)); 10147 meta.pkt_access = fn->pkt_access; 10148 10149 err = check_func_proto(fn, func_id); 10150 if (err) { 10151 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 10152 func_id_name(func_id), func_id); 10153 return err; 10154 } 10155 10156 if (env->cur_state->active_rcu_lock) { 10157 if (fn->might_sleep) { 10158 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10159 func_id_name(func_id), func_id); 10160 return -EINVAL; 10161 } 10162 10163 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 10164 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10165 } 10166 10167 meta.func_id = func_id; 10168 /* check args */ 10169 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 10170 err = check_func_arg(env, i, &meta, fn, insn_idx); 10171 if (err) 10172 return err; 10173 } 10174 10175 err = record_func_map(env, &meta, func_id, insn_idx); 10176 if (err) 10177 return err; 10178 10179 err = record_func_key(env, &meta, func_id, insn_idx); 10180 if (err) 10181 return err; 10182 10183 /* Mark slots with STACK_MISC in case of raw mode, stack offset 10184 * is inferred from register state. 10185 */ 10186 for (i = 0; i < meta.access_size; i++) { 10187 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 10188 BPF_WRITE, -1, false, false); 10189 if (err) 10190 return err; 10191 } 10192 10193 regs = cur_regs(env); 10194 10195 if (meta.release_regno) { 10196 err = -EINVAL; 10197 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10198 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10199 * is safe to do directly. 10200 */ 10201 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10202 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10203 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10204 return -EFAULT; 10205 } 10206 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10207 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 10208 u32 ref_obj_id = meta.ref_obj_id; 10209 bool in_rcu = in_rcu_cs(env); 10210 struct bpf_func_state *state; 10211 struct bpf_reg_state *reg; 10212 10213 err = release_reference_state(cur_func(env), ref_obj_id); 10214 if (!err) { 10215 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10216 if (reg->ref_obj_id == ref_obj_id) { 10217 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 10218 reg->ref_obj_id = 0; 10219 reg->type &= ~MEM_ALLOC; 10220 reg->type |= MEM_RCU; 10221 } else { 10222 mark_reg_invalid(env, reg); 10223 } 10224 } 10225 })); 10226 } 10227 } else if (meta.ref_obj_id) { 10228 err = release_reference(env, meta.ref_obj_id); 10229 } else if (register_is_null(®s[meta.release_regno])) { 10230 /* meta.ref_obj_id can only be 0 if register that is meant to be 10231 * released is NULL, which must be > R0. 10232 */ 10233 err = 0; 10234 } 10235 if (err) { 10236 verbose(env, "func %s#%d reference has not been acquired before\n", 10237 func_id_name(func_id), func_id); 10238 return err; 10239 } 10240 } 10241 10242 switch (func_id) { 10243 case BPF_FUNC_tail_call: 10244 err = check_reference_leak(env, false); 10245 if (err) { 10246 verbose(env, "tail_call would lead to reference leak\n"); 10247 return err; 10248 } 10249 break; 10250 case BPF_FUNC_get_local_storage: 10251 /* check that flags argument in get_local_storage(map, flags) is 0, 10252 * this is required because get_local_storage() can't return an error. 10253 */ 10254 if (!register_is_null(®s[BPF_REG_2])) { 10255 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10256 return -EINVAL; 10257 } 10258 break; 10259 case BPF_FUNC_for_each_map_elem: 10260 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10261 set_map_elem_callback_state); 10262 break; 10263 case BPF_FUNC_timer_set_callback: 10264 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10265 set_timer_callback_state); 10266 break; 10267 case BPF_FUNC_find_vma: 10268 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10269 set_find_vma_callback_state); 10270 break; 10271 case BPF_FUNC_snprintf: 10272 err = check_bpf_snprintf_call(env, regs); 10273 break; 10274 case BPF_FUNC_loop: 10275 update_loop_inline_state(env, meta.subprogno); 10276 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10277 * is finished, thus mark it precise. 10278 */ 10279 err = mark_chain_precision(env, BPF_REG_1); 10280 if (err) 10281 return err; 10282 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10283 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10284 set_loop_callback_state); 10285 } else { 10286 cur_func(env)->callback_depth = 0; 10287 if (env->log.level & BPF_LOG_LEVEL2) 10288 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10289 env->cur_state->curframe); 10290 } 10291 break; 10292 case BPF_FUNC_dynptr_from_mem: 10293 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10294 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10295 reg_type_str(env, regs[BPF_REG_1].type)); 10296 return -EACCES; 10297 } 10298 break; 10299 case BPF_FUNC_set_retval: 10300 if (prog_type == BPF_PROG_TYPE_LSM && 10301 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10302 if (!env->prog->aux->attach_func_proto->type) { 10303 /* Make sure programs that attach to void 10304 * hooks don't try to modify return value. 10305 */ 10306 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10307 return -EINVAL; 10308 } 10309 } 10310 break; 10311 case BPF_FUNC_dynptr_data: 10312 { 10313 struct bpf_reg_state *reg; 10314 int id, ref_obj_id; 10315 10316 reg = get_dynptr_arg_reg(env, fn, regs); 10317 if (!reg) 10318 return -EFAULT; 10319 10320 10321 if (meta.dynptr_id) { 10322 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10323 return -EFAULT; 10324 } 10325 if (meta.ref_obj_id) { 10326 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10327 return -EFAULT; 10328 } 10329 10330 id = dynptr_id(env, reg); 10331 if (id < 0) { 10332 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10333 return id; 10334 } 10335 10336 ref_obj_id = dynptr_ref_obj_id(env, reg); 10337 if (ref_obj_id < 0) { 10338 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10339 return ref_obj_id; 10340 } 10341 10342 meta.dynptr_id = id; 10343 meta.ref_obj_id = ref_obj_id; 10344 10345 break; 10346 } 10347 case BPF_FUNC_dynptr_write: 10348 { 10349 enum bpf_dynptr_type dynptr_type; 10350 struct bpf_reg_state *reg; 10351 10352 reg = get_dynptr_arg_reg(env, fn, regs); 10353 if (!reg) 10354 return -EFAULT; 10355 10356 dynptr_type = dynptr_get_type(env, reg); 10357 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10358 return -EFAULT; 10359 10360 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10361 /* this will trigger clear_all_pkt_pointers(), which will 10362 * invalidate all dynptr slices associated with the skb 10363 */ 10364 changes_data = true; 10365 10366 break; 10367 } 10368 case BPF_FUNC_per_cpu_ptr: 10369 case BPF_FUNC_this_cpu_ptr: 10370 { 10371 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 10372 const struct btf_type *type; 10373 10374 if (reg->type & MEM_RCU) { 10375 type = btf_type_by_id(reg->btf, reg->btf_id); 10376 if (!type || !btf_type_is_struct(type)) { 10377 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 10378 return -EFAULT; 10379 } 10380 returns_cpu_specific_alloc_ptr = true; 10381 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 10382 } 10383 break; 10384 } 10385 case BPF_FUNC_user_ringbuf_drain: 10386 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10387 set_user_ringbuf_callback_state); 10388 break; 10389 } 10390 10391 if (err) 10392 return err; 10393 10394 /* reset caller saved regs */ 10395 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10396 mark_reg_not_init(env, regs, caller_saved[i]); 10397 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10398 } 10399 10400 /* helper call returns 64-bit value. */ 10401 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10402 10403 /* update return register (already marked as written above) */ 10404 ret_type = fn->ret_type; 10405 ret_flag = type_flag(ret_type); 10406 10407 switch (base_type(ret_type)) { 10408 case RET_INTEGER: 10409 /* sets type to SCALAR_VALUE */ 10410 mark_reg_unknown(env, regs, BPF_REG_0); 10411 break; 10412 case RET_VOID: 10413 regs[BPF_REG_0].type = NOT_INIT; 10414 break; 10415 case RET_PTR_TO_MAP_VALUE: 10416 /* There is no offset yet applied, variable or fixed */ 10417 mark_reg_known_zero(env, regs, BPF_REG_0); 10418 /* remember map_ptr, so that check_map_access() 10419 * can check 'value_size' boundary of memory access 10420 * to map element returned from bpf_map_lookup_elem() 10421 */ 10422 if (meta.map_ptr == NULL) { 10423 verbose(env, 10424 "kernel subsystem misconfigured verifier\n"); 10425 return -EINVAL; 10426 } 10427 regs[BPF_REG_0].map_ptr = meta.map_ptr; 10428 regs[BPF_REG_0].map_uid = meta.map_uid; 10429 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 10430 if (!type_may_be_null(ret_type) && 10431 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 10432 regs[BPF_REG_0].id = ++env->id_gen; 10433 } 10434 break; 10435 case RET_PTR_TO_SOCKET: 10436 mark_reg_known_zero(env, regs, BPF_REG_0); 10437 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 10438 break; 10439 case RET_PTR_TO_SOCK_COMMON: 10440 mark_reg_known_zero(env, regs, BPF_REG_0); 10441 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 10442 break; 10443 case RET_PTR_TO_TCP_SOCK: 10444 mark_reg_known_zero(env, regs, BPF_REG_0); 10445 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 10446 break; 10447 case RET_PTR_TO_MEM: 10448 mark_reg_known_zero(env, regs, BPF_REG_0); 10449 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10450 regs[BPF_REG_0].mem_size = meta.mem_size; 10451 break; 10452 case RET_PTR_TO_MEM_OR_BTF_ID: 10453 { 10454 const struct btf_type *t; 10455 10456 mark_reg_known_zero(env, regs, BPF_REG_0); 10457 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 10458 if (!btf_type_is_struct(t)) { 10459 u32 tsize; 10460 const struct btf_type *ret; 10461 const char *tname; 10462 10463 /* resolve the type size of ksym. */ 10464 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 10465 if (IS_ERR(ret)) { 10466 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 10467 verbose(env, "unable to resolve the size of type '%s': %ld\n", 10468 tname, PTR_ERR(ret)); 10469 return -EINVAL; 10470 } 10471 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10472 regs[BPF_REG_0].mem_size = tsize; 10473 } else { 10474 if (returns_cpu_specific_alloc_ptr) { 10475 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 10476 } else { 10477 /* MEM_RDONLY may be carried from ret_flag, but it 10478 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 10479 * it will confuse the check of PTR_TO_BTF_ID in 10480 * check_mem_access(). 10481 */ 10482 ret_flag &= ~MEM_RDONLY; 10483 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10484 } 10485 10486 regs[BPF_REG_0].btf = meta.ret_btf; 10487 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 10488 } 10489 break; 10490 } 10491 case RET_PTR_TO_BTF_ID: 10492 { 10493 struct btf *ret_btf; 10494 int ret_btf_id; 10495 10496 mark_reg_known_zero(env, regs, BPF_REG_0); 10497 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10498 if (func_id == BPF_FUNC_kptr_xchg) { 10499 ret_btf = meta.kptr_field->kptr.btf; 10500 ret_btf_id = meta.kptr_field->kptr.btf_id; 10501 if (!btf_is_kernel(ret_btf)) { 10502 regs[BPF_REG_0].type |= MEM_ALLOC; 10503 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 10504 regs[BPF_REG_0].type |= MEM_PERCPU; 10505 } 10506 } else { 10507 if (fn->ret_btf_id == BPF_PTR_POISON) { 10508 verbose(env, "verifier internal error:"); 10509 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 10510 func_id_name(func_id)); 10511 return -EINVAL; 10512 } 10513 ret_btf = btf_vmlinux; 10514 ret_btf_id = *fn->ret_btf_id; 10515 } 10516 if (ret_btf_id == 0) { 10517 verbose(env, "invalid return type %u of func %s#%d\n", 10518 base_type(ret_type), func_id_name(func_id), 10519 func_id); 10520 return -EINVAL; 10521 } 10522 regs[BPF_REG_0].btf = ret_btf; 10523 regs[BPF_REG_0].btf_id = ret_btf_id; 10524 break; 10525 } 10526 default: 10527 verbose(env, "unknown return type %u of func %s#%d\n", 10528 base_type(ret_type), func_id_name(func_id), func_id); 10529 return -EINVAL; 10530 } 10531 10532 if (type_may_be_null(regs[BPF_REG_0].type)) 10533 regs[BPF_REG_0].id = ++env->id_gen; 10534 10535 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 10536 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 10537 func_id_name(func_id), func_id); 10538 return -EFAULT; 10539 } 10540 10541 if (is_dynptr_ref_function(func_id)) 10542 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 10543 10544 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 10545 /* For release_reference() */ 10546 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10547 } else if (is_acquire_function(func_id, meta.map_ptr)) { 10548 int id = acquire_reference_state(env, insn_idx); 10549 10550 if (id < 0) 10551 return id; 10552 /* For mark_ptr_or_null_reg() */ 10553 regs[BPF_REG_0].id = id; 10554 /* For release_reference() */ 10555 regs[BPF_REG_0].ref_obj_id = id; 10556 } 10557 10558 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 10559 if (err) 10560 return err; 10561 10562 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 10563 if (err) 10564 return err; 10565 10566 if ((func_id == BPF_FUNC_get_stack || 10567 func_id == BPF_FUNC_get_task_stack) && 10568 !env->prog->has_callchain_buf) { 10569 const char *err_str; 10570 10571 #ifdef CONFIG_PERF_EVENTS 10572 err = get_callchain_buffers(sysctl_perf_event_max_stack); 10573 err_str = "cannot get callchain buffer for func %s#%d\n"; 10574 #else 10575 err = -ENOTSUPP; 10576 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 10577 #endif 10578 if (err) { 10579 verbose(env, err_str, func_id_name(func_id), func_id); 10580 return err; 10581 } 10582 10583 env->prog->has_callchain_buf = true; 10584 } 10585 10586 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 10587 env->prog->call_get_stack = true; 10588 10589 if (func_id == BPF_FUNC_get_func_ip) { 10590 if (check_get_func_ip(env)) 10591 return -ENOTSUPP; 10592 env->prog->call_get_func_ip = true; 10593 } 10594 10595 if (changes_data) 10596 clear_all_pkt_pointers(env); 10597 return 0; 10598 } 10599 10600 /* mark_btf_func_reg_size() is used when the reg size is determined by 10601 * the BTF func_proto's return value size and argument. 10602 */ 10603 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 10604 size_t reg_size) 10605 { 10606 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10607 10608 if (regno == BPF_REG_0) { 10609 /* Function return value */ 10610 reg->live |= REG_LIVE_WRITTEN; 10611 reg->subreg_def = reg_size == sizeof(u64) ? 10612 DEF_NOT_SUBREG : env->insn_idx + 1; 10613 } else { 10614 /* Function argument */ 10615 if (reg_size == sizeof(u64)) { 10616 mark_insn_zext(env, reg); 10617 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10618 } else { 10619 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10620 } 10621 } 10622 } 10623 10624 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10625 { 10626 return meta->kfunc_flags & KF_ACQUIRE; 10627 } 10628 10629 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10630 { 10631 return meta->kfunc_flags & KF_RELEASE; 10632 } 10633 10634 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10635 { 10636 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10637 } 10638 10639 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10640 { 10641 return meta->kfunc_flags & KF_SLEEPABLE; 10642 } 10643 10644 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10645 { 10646 return meta->kfunc_flags & KF_DESTRUCTIVE; 10647 } 10648 10649 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10650 { 10651 return meta->kfunc_flags & KF_RCU; 10652 } 10653 10654 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 10655 { 10656 return meta->kfunc_flags & KF_RCU_PROTECTED; 10657 } 10658 10659 static bool __kfunc_param_match_suffix(const struct btf *btf, 10660 const struct btf_param *arg, 10661 const char *suffix) 10662 { 10663 int suffix_len = strlen(suffix), len; 10664 const char *param_name; 10665 10666 /* In the future, this can be ported to use BTF tagging */ 10667 param_name = btf_name_by_offset(btf, arg->name_off); 10668 if (str_is_empty(param_name)) 10669 return false; 10670 len = strlen(param_name); 10671 if (len < suffix_len) 10672 return false; 10673 param_name += len - suffix_len; 10674 return !strncmp(param_name, suffix, suffix_len); 10675 } 10676 10677 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10678 const struct btf_param *arg, 10679 const struct bpf_reg_state *reg) 10680 { 10681 const struct btf_type *t; 10682 10683 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10684 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10685 return false; 10686 10687 return __kfunc_param_match_suffix(btf, arg, "__sz"); 10688 } 10689 10690 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10691 const struct btf_param *arg, 10692 const struct bpf_reg_state *reg) 10693 { 10694 const struct btf_type *t; 10695 10696 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10697 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10698 return false; 10699 10700 return __kfunc_param_match_suffix(btf, arg, "__szk"); 10701 } 10702 10703 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10704 { 10705 return __kfunc_param_match_suffix(btf, arg, "__opt"); 10706 } 10707 10708 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10709 { 10710 return __kfunc_param_match_suffix(btf, arg, "__k"); 10711 } 10712 10713 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10714 { 10715 return __kfunc_param_match_suffix(btf, arg, "__ign"); 10716 } 10717 10718 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10719 { 10720 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 10721 } 10722 10723 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10724 { 10725 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 10726 } 10727 10728 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10729 { 10730 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 10731 } 10732 10733 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 10734 { 10735 return __kfunc_param_match_suffix(btf, arg, "__nullable"); 10736 } 10737 10738 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 10739 { 10740 return __kfunc_param_match_suffix(btf, arg, "__str"); 10741 } 10742 10743 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10744 const struct btf_param *arg, 10745 const char *name) 10746 { 10747 int len, target_len = strlen(name); 10748 const char *param_name; 10749 10750 param_name = btf_name_by_offset(btf, arg->name_off); 10751 if (str_is_empty(param_name)) 10752 return false; 10753 len = strlen(param_name); 10754 if (len != target_len) 10755 return false; 10756 if (strcmp(param_name, name)) 10757 return false; 10758 10759 return true; 10760 } 10761 10762 enum { 10763 KF_ARG_DYNPTR_ID, 10764 KF_ARG_LIST_HEAD_ID, 10765 KF_ARG_LIST_NODE_ID, 10766 KF_ARG_RB_ROOT_ID, 10767 KF_ARG_RB_NODE_ID, 10768 }; 10769 10770 BTF_ID_LIST(kf_arg_btf_ids) 10771 BTF_ID(struct, bpf_dynptr_kern) 10772 BTF_ID(struct, bpf_list_head) 10773 BTF_ID(struct, bpf_list_node) 10774 BTF_ID(struct, bpf_rb_root) 10775 BTF_ID(struct, bpf_rb_node) 10776 10777 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10778 const struct btf_param *arg, int type) 10779 { 10780 const struct btf_type *t; 10781 u32 res_id; 10782 10783 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10784 if (!t) 10785 return false; 10786 if (!btf_type_is_ptr(t)) 10787 return false; 10788 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10789 if (!t) 10790 return false; 10791 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10792 } 10793 10794 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10795 { 10796 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10797 } 10798 10799 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10800 { 10801 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10802 } 10803 10804 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10805 { 10806 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10807 } 10808 10809 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10810 { 10811 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10812 } 10813 10814 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10815 { 10816 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10817 } 10818 10819 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10820 const struct btf_param *arg) 10821 { 10822 const struct btf_type *t; 10823 10824 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10825 if (!t) 10826 return false; 10827 10828 return true; 10829 } 10830 10831 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10832 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10833 const struct btf *btf, 10834 const struct btf_type *t, int rec) 10835 { 10836 const struct btf_type *member_type; 10837 const struct btf_member *member; 10838 u32 i; 10839 10840 if (!btf_type_is_struct(t)) 10841 return false; 10842 10843 for_each_member(i, t, member) { 10844 const struct btf_array *array; 10845 10846 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10847 if (btf_type_is_struct(member_type)) { 10848 if (rec >= 3) { 10849 verbose(env, "max struct nesting depth exceeded\n"); 10850 return false; 10851 } 10852 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10853 return false; 10854 continue; 10855 } 10856 if (btf_type_is_array(member_type)) { 10857 array = btf_array(member_type); 10858 if (!array->nelems) 10859 return false; 10860 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10861 if (!btf_type_is_scalar(member_type)) 10862 return false; 10863 continue; 10864 } 10865 if (!btf_type_is_scalar(member_type)) 10866 return false; 10867 } 10868 return true; 10869 } 10870 10871 enum kfunc_ptr_arg_type { 10872 KF_ARG_PTR_TO_CTX, 10873 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10874 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10875 KF_ARG_PTR_TO_DYNPTR, 10876 KF_ARG_PTR_TO_ITER, 10877 KF_ARG_PTR_TO_LIST_HEAD, 10878 KF_ARG_PTR_TO_LIST_NODE, 10879 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10880 KF_ARG_PTR_TO_MEM, 10881 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10882 KF_ARG_PTR_TO_CALLBACK, 10883 KF_ARG_PTR_TO_RB_ROOT, 10884 KF_ARG_PTR_TO_RB_NODE, 10885 KF_ARG_PTR_TO_NULL, 10886 KF_ARG_PTR_TO_CONST_STR, 10887 }; 10888 10889 enum special_kfunc_type { 10890 KF_bpf_obj_new_impl, 10891 KF_bpf_obj_drop_impl, 10892 KF_bpf_refcount_acquire_impl, 10893 KF_bpf_list_push_front_impl, 10894 KF_bpf_list_push_back_impl, 10895 KF_bpf_list_pop_front, 10896 KF_bpf_list_pop_back, 10897 KF_bpf_cast_to_kern_ctx, 10898 KF_bpf_rdonly_cast, 10899 KF_bpf_rcu_read_lock, 10900 KF_bpf_rcu_read_unlock, 10901 KF_bpf_rbtree_remove, 10902 KF_bpf_rbtree_add_impl, 10903 KF_bpf_rbtree_first, 10904 KF_bpf_dynptr_from_skb, 10905 KF_bpf_dynptr_from_xdp, 10906 KF_bpf_dynptr_slice, 10907 KF_bpf_dynptr_slice_rdwr, 10908 KF_bpf_dynptr_clone, 10909 KF_bpf_percpu_obj_new_impl, 10910 KF_bpf_percpu_obj_drop_impl, 10911 KF_bpf_throw, 10912 KF_bpf_iter_css_task_new, 10913 }; 10914 10915 BTF_SET_START(special_kfunc_set) 10916 BTF_ID(func, bpf_obj_new_impl) 10917 BTF_ID(func, bpf_obj_drop_impl) 10918 BTF_ID(func, bpf_refcount_acquire_impl) 10919 BTF_ID(func, bpf_list_push_front_impl) 10920 BTF_ID(func, bpf_list_push_back_impl) 10921 BTF_ID(func, bpf_list_pop_front) 10922 BTF_ID(func, bpf_list_pop_back) 10923 BTF_ID(func, bpf_cast_to_kern_ctx) 10924 BTF_ID(func, bpf_rdonly_cast) 10925 BTF_ID(func, bpf_rbtree_remove) 10926 BTF_ID(func, bpf_rbtree_add_impl) 10927 BTF_ID(func, bpf_rbtree_first) 10928 BTF_ID(func, bpf_dynptr_from_skb) 10929 BTF_ID(func, bpf_dynptr_from_xdp) 10930 BTF_ID(func, bpf_dynptr_slice) 10931 BTF_ID(func, bpf_dynptr_slice_rdwr) 10932 BTF_ID(func, bpf_dynptr_clone) 10933 BTF_ID(func, bpf_percpu_obj_new_impl) 10934 BTF_ID(func, bpf_percpu_obj_drop_impl) 10935 BTF_ID(func, bpf_throw) 10936 #ifdef CONFIG_CGROUPS 10937 BTF_ID(func, bpf_iter_css_task_new) 10938 #endif 10939 BTF_SET_END(special_kfunc_set) 10940 10941 BTF_ID_LIST(special_kfunc_list) 10942 BTF_ID(func, bpf_obj_new_impl) 10943 BTF_ID(func, bpf_obj_drop_impl) 10944 BTF_ID(func, bpf_refcount_acquire_impl) 10945 BTF_ID(func, bpf_list_push_front_impl) 10946 BTF_ID(func, bpf_list_push_back_impl) 10947 BTF_ID(func, bpf_list_pop_front) 10948 BTF_ID(func, bpf_list_pop_back) 10949 BTF_ID(func, bpf_cast_to_kern_ctx) 10950 BTF_ID(func, bpf_rdonly_cast) 10951 BTF_ID(func, bpf_rcu_read_lock) 10952 BTF_ID(func, bpf_rcu_read_unlock) 10953 BTF_ID(func, bpf_rbtree_remove) 10954 BTF_ID(func, bpf_rbtree_add_impl) 10955 BTF_ID(func, bpf_rbtree_first) 10956 BTF_ID(func, bpf_dynptr_from_skb) 10957 BTF_ID(func, bpf_dynptr_from_xdp) 10958 BTF_ID(func, bpf_dynptr_slice) 10959 BTF_ID(func, bpf_dynptr_slice_rdwr) 10960 BTF_ID(func, bpf_dynptr_clone) 10961 BTF_ID(func, bpf_percpu_obj_new_impl) 10962 BTF_ID(func, bpf_percpu_obj_drop_impl) 10963 BTF_ID(func, bpf_throw) 10964 #ifdef CONFIG_CGROUPS 10965 BTF_ID(func, bpf_iter_css_task_new) 10966 #else 10967 BTF_ID_UNUSED 10968 #endif 10969 10970 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10971 { 10972 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10973 meta->arg_owning_ref) { 10974 return false; 10975 } 10976 10977 return meta->kfunc_flags & KF_RET_NULL; 10978 } 10979 10980 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10981 { 10982 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10983 } 10984 10985 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10986 { 10987 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10988 } 10989 10990 static enum kfunc_ptr_arg_type 10991 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10992 struct bpf_kfunc_call_arg_meta *meta, 10993 const struct btf_type *t, const struct btf_type *ref_t, 10994 const char *ref_tname, const struct btf_param *args, 10995 int argno, int nargs) 10996 { 10997 u32 regno = argno + 1; 10998 struct bpf_reg_state *regs = cur_regs(env); 10999 struct bpf_reg_state *reg = ®s[regno]; 11000 bool arg_mem_size = false; 11001 11002 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 11003 return KF_ARG_PTR_TO_CTX; 11004 11005 /* In this function, we verify the kfunc's BTF as per the argument type, 11006 * leaving the rest of the verification with respect to the register 11007 * type to our caller. When a set of conditions hold in the BTF type of 11008 * arguments, we resolve it to a known kfunc_ptr_arg_type. 11009 */ 11010 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 11011 return KF_ARG_PTR_TO_CTX; 11012 11013 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 11014 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 11015 11016 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 11017 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 11018 11019 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 11020 return KF_ARG_PTR_TO_DYNPTR; 11021 11022 if (is_kfunc_arg_iter(meta, argno)) 11023 return KF_ARG_PTR_TO_ITER; 11024 11025 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 11026 return KF_ARG_PTR_TO_LIST_HEAD; 11027 11028 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 11029 return KF_ARG_PTR_TO_LIST_NODE; 11030 11031 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 11032 return KF_ARG_PTR_TO_RB_ROOT; 11033 11034 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 11035 return KF_ARG_PTR_TO_RB_NODE; 11036 11037 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 11038 return KF_ARG_PTR_TO_CONST_STR; 11039 11040 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 11041 if (!btf_type_is_struct(ref_t)) { 11042 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 11043 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 11044 return -EINVAL; 11045 } 11046 return KF_ARG_PTR_TO_BTF_ID; 11047 } 11048 11049 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 11050 return KF_ARG_PTR_TO_CALLBACK; 11051 11052 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 11053 return KF_ARG_PTR_TO_NULL; 11054 11055 if (argno + 1 < nargs && 11056 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 11057 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 11058 arg_mem_size = true; 11059 11060 /* This is the catch all argument type of register types supported by 11061 * check_helper_mem_access. However, we only allow when argument type is 11062 * pointer to scalar, or struct composed (recursively) of scalars. When 11063 * arg_mem_size is true, the pointer can be void *. 11064 */ 11065 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 11066 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 11067 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 11068 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 11069 return -EINVAL; 11070 } 11071 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 11072 } 11073 11074 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 11075 struct bpf_reg_state *reg, 11076 const struct btf_type *ref_t, 11077 const char *ref_tname, u32 ref_id, 11078 struct bpf_kfunc_call_arg_meta *meta, 11079 int argno) 11080 { 11081 const struct btf_type *reg_ref_t; 11082 bool strict_type_match = false; 11083 const struct btf *reg_btf; 11084 const char *reg_ref_tname; 11085 u32 reg_ref_id; 11086 11087 if (base_type(reg->type) == PTR_TO_BTF_ID) { 11088 reg_btf = reg->btf; 11089 reg_ref_id = reg->btf_id; 11090 } else { 11091 reg_btf = btf_vmlinux; 11092 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 11093 } 11094 11095 /* Enforce strict type matching for calls to kfuncs that are acquiring 11096 * or releasing a reference, or are no-cast aliases. We do _not_ 11097 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 11098 * as we want to enable BPF programs to pass types that are bitwise 11099 * equivalent without forcing them to explicitly cast with something 11100 * like bpf_cast_to_kern_ctx(). 11101 * 11102 * For example, say we had a type like the following: 11103 * 11104 * struct bpf_cpumask { 11105 * cpumask_t cpumask; 11106 * refcount_t usage; 11107 * }; 11108 * 11109 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 11110 * to a struct cpumask, so it would be safe to pass a struct 11111 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 11112 * 11113 * The philosophy here is similar to how we allow scalars of different 11114 * types to be passed to kfuncs as long as the size is the same. The 11115 * only difference here is that we're simply allowing 11116 * btf_struct_ids_match() to walk the struct at the 0th offset, and 11117 * resolve types. 11118 */ 11119 if (is_kfunc_acquire(meta) || 11120 (is_kfunc_release(meta) && reg->ref_obj_id) || 11121 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 11122 strict_type_match = true; 11123 11124 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 11125 11126 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 11127 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 11128 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 11129 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 11130 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 11131 btf_type_str(reg_ref_t), reg_ref_tname); 11132 return -EINVAL; 11133 } 11134 return 0; 11135 } 11136 11137 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11138 { 11139 struct bpf_verifier_state *state = env->cur_state; 11140 struct btf_record *rec = reg_btf_record(reg); 11141 11142 if (!state->active_lock.ptr) { 11143 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 11144 return -EFAULT; 11145 } 11146 11147 if (type_flag(reg->type) & NON_OWN_REF) { 11148 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 11149 return -EFAULT; 11150 } 11151 11152 reg->type |= NON_OWN_REF; 11153 if (rec->refcount_off >= 0) 11154 reg->type |= MEM_RCU; 11155 11156 return 0; 11157 } 11158 11159 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 11160 { 11161 struct bpf_func_state *state, *unused; 11162 struct bpf_reg_state *reg; 11163 int i; 11164 11165 state = cur_func(env); 11166 11167 if (!ref_obj_id) { 11168 verbose(env, "verifier internal error: ref_obj_id is zero for " 11169 "owning -> non-owning conversion\n"); 11170 return -EFAULT; 11171 } 11172 11173 for (i = 0; i < state->acquired_refs; i++) { 11174 if (state->refs[i].id != ref_obj_id) 11175 continue; 11176 11177 /* Clear ref_obj_id here so release_reference doesn't clobber 11178 * the whole reg 11179 */ 11180 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 11181 if (reg->ref_obj_id == ref_obj_id) { 11182 reg->ref_obj_id = 0; 11183 ref_set_non_owning(env, reg); 11184 } 11185 })); 11186 return 0; 11187 } 11188 11189 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 11190 return -EFAULT; 11191 } 11192 11193 /* Implementation details: 11194 * 11195 * Each register points to some region of memory, which we define as an 11196 * allocation. Each allocation may embed a bpf_spin_lock which protects any 11197 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 11198 * allocation. The lock and the data it protects are colocated in the same 11199 * memory region. 11200 * 11201 * Hence, everytime a register holds a pointer value pointing to such 11202 * allocation, the verifier preserves a unique reg->id for it. 11203 * 11204 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 11205 * bpf_spin_lock is called. 11206 * 11207 * To enable this, lock state in the verifier captures two values: 11208 * active_lock.ptr = Register's type specific pointer 11209 * active_lock.id = A unique ID for each register pointer value 11210 * 11211 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 11212 * supported register types. 11213 * 11214 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 11215 * allocated objects is the reg->btf pointer. 11216 * 11217 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 11218 * can establish the provenance of the map value statically for each distinct 11219 * lookup into such maps. They always contain a single map value hence unique 11220 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 11221 * 11222 * So, in case of global variables, they use array maps with max_entries = 1, 11223 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 11224 * into the same map value as max_entries is 1, as described above). 11225 * 11226 * In case of inner map lookups, the inner map pointer has same map_ptr as the 11227 * outer map pointer (in verifier context), but each lookup into an inner map 11228 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 11229 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 11230 * will get different reg->id assigned to each lookup, hence different 11231 * active_lock.id. 11232 * 11233 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 11234 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 11235 * returned from bpf_obj_new. Each allocation receives a new reg->id. 11236 */ 11237 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11238 { 11239 void *ptr; 11240 u32 id; 11241 11242 switch ((int)reg->type) { 11243 case PTR_TO_MAP_VALUE: 11244 ptr = reg->map_ptr; 11245 break; 11246 case PTR_TO_BTF_ID | MEM_ALLOC: 11247 ptr = reg->btf; 11248 break; 11249 default: 11250 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11251 return -EFAULT; 11252 } 11253 id = reg->id; 11254 11255 if (!env->cur_state->active_lock.ptr) 11256 return -EINVAL; 11257 if (env->cur_state->active_lock.ptr != ptr || 11258 env->cur_state->active_lock.id != id) { 11259 verbose(env, "held lock and object are not in the same allocation\n"); 11260 return -EINVAL; 11261 } 11262 return 0; 11263 } 11264 11265 static bool is_bpf_list_api_kfunc(u32 btf_id) 11266 { 11267 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11268 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11269 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11270 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11271 } 11272 11273 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11274 { 11275 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11276 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11277 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11278 } 11279 11280 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11281 { 11282 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11283 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11284 } 11285 11286 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11287 { 11288 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11289 } 11290 11291 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 11292 { 11293 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 11294 insn->imm == special_kfunc_list[KF_bpf_throw]; 11295 } 11296 11297 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11298 { 11299 return is_bpf_rbtree_api_kfunc(btf_id); 11300 } 11301 11302 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11303 enum btf_field_type head_field_type, 11304 u32 kfunc_btf_id) 11305 { 11306 bool ret; 11307 11308 switch (head_field_type) { 11309 case BPF_LIST_HEAD: 11310 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11311 break; 11312 case BPF_RB_ROOT: 11313 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11314 break; 11315 default: 11316 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11317 btf_field_type_name(head_field_type)); 11318 return false; 11319 } 11320 11321 if (!ret) 11322 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11323 btf_field_type_name(head_field_type)); 11324 return ret; 11325 } 11326 11327 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11328 enum btf_field_type node_field_type, 11329 u32 kfunc_btf_id) 11330 { 11331 bool ret; 11332 11333 switch (node_field_type) { 11334 case BPF_LIST_NODE: 11335 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11336 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11337 break; 11338 case BPF_RB_NODE: 11339 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11340 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11341 break; 11342 default: 11343 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11344 btf_field_type_name(node_field_type)); 11345 return false; 11346 } 11347 11348 if (!ret) 11349 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11350 btf_field_type_name(node_field_type)); 11351 return ret; 11352 } 11353 11354 static int 11355 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11356 struct bpf_reg_state *reg, u32 regno, 11357 struct bpf_kfunc_call_arg_meta *meta, 11358 enum btf_field_type head_field_type, 11359 struct btf_field **head_field) 11360 { 11361 const char *head_type_name; 11362 struct btf_field *field; 11363 struct btf_record *rec; 11364 u32 head_off; 11365 11366 if (meta->btf != btf_vmlinux) { 11367 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11368 return -EFAULT; 11369 } 11370 11371 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 11372 return -EFAULT; 11373 11374 head_type_name = btf_field_type_name(head_field_type); 11375 if (!tnum_is_const(reg->var_off)) { 11376 verbose(env, 11377 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11378 regno, head_type_name); 11379 return -EINVAL; 11380 } 11381 11382 rec = reg_btf_record(reg); 11383 head_off = reg->off + reg->var_off.value; 11384 field = btf_record_find(rec, head_off, head_field_type); 11385 if (!field) { 11386 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 11387 return -EINVAL; 11388 } 11389 11390 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 11391 if (check_reg_allocation_locked(env, reg)) { 11392 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 11393 rec->spin_lock_off, head_type_name); 11394 return -EINVAL; 11395 } 11396 11397 if (*head_field) { 11398 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 11399 return -EFAULT; 11400 } 11401 *head_field = field; 11402 return 0; 11403 } 11404 11405 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 11406 struct bpf_reg_state *reg, u32 regno, 11407 struct bpf_kfunc_call_arg_meta *meta) 11408 { 11409 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 11410 &meta->arg_list_head.field); 11411 } 11412 11413 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 11414 struct bpf_reg_state *reg, u32 regno, 11415 struct bpf_kfunc_call_arg_meta *meta) 11416 { 11417 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 11418 &meta->arg_rbtree_root.field); 11419 } 11420 11421 static int 11422 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 11423 struct bpf_reg_state *reg, u32 regno, 11424 struct bpf_kfunc_call_arg_meta *meta, 11425 enum btf_field_type head_field_type, 11426 enum btf_field_type node_field_type, 11427 struct btf_field **node_field) 11428 { 11429 const char *node_type_name; 11430 const struct btf_type *et, *t; 11431 struct btf_field *field; 11432 u32 node_off; 11433 11434 if (meta->btf != btf_vmlinux) { 11435 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11436 return -EFAULT; 11437 } 11438 11439 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 11440 return -EFAULT; 11441 11442 node_type_name = btf_field_type_name(node_field_type); 11443 if (!tnum_is_const(reg->var_off)) { 11444 verbose(env, 11445 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11446 regno, node_type_name); 11447 return -EINVAL; 11448 } 11449 11450 node_off = reg->off + reg->var_off.value; 11451 field = reg_find_field_offset(reg, node_off, node_field_type); 11452 if (!field || field->offset != node_off) { 11453 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 11454 return -EINVAL; 11455 } 11456 11457 field = *node_field; 11458 11459 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 11460 t = btf_type_by_id(reg->btf, reg->btf_id); 11461 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 11462 field->graph_root.value_btf_id, true)) { 11463 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 11464 "in struct %s, but arg is at offset=%d in struct %s\n", 11465 btf_field_type_name(head_field_type), 11466 btf_field_type_name(node_field_type), 11467 field->graph_root.node_offset, 11468 btf_name_by_offset(field->graph_root.btf, et->name_off), 11469 node_off, btf_name_by_offset(reg->btf, t->name_off)); 11470 return -EINVAL; 11471 } 11472 meta->arg_btf = reg->btf; 11473 meta->arg_btf_id = reg->btf_id; 11474 11475 if (node_off != field->graph_root.node_offset) { 11476 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 11477 node_off, btf_field_type_name(node_field_type), 11478 field->graph_root.node_offset, 11479 btf_name_by_offset(field->graph_root.btf, et->name_off)); 11480 return -EINVAL; 11481 } 11482 11483 return 0; 11484 } 11485 11486 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 11487 struct bpf_reg_state *reg, u32 regno, 11488 struct bpf_kfunc_call_arg_meta *meta) 11489 { 11490 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11491 BPF_LIST_HEAD, BPF_LIST_NODE, 11492 &meta->arg_list_head.field); 11493 } 11494 11495 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 11496 struct bpf_reg_state *reg, u32 regno, 11497 struct bpf_kfunc_call_arg_meta *meta) 11498 { 11499 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11500 BPF_RB_ROOT, BPF_RB_NODE, 11501 &meta->arg_rbtree_root.field); 11502 } 11503 11504 /* 11505 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 11506 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 11507 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 11508 * them can only be attached to some specific hook points. 11509 */ 11510 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 11511 { 11512 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 11513 11514 switch (prog_type) { 11515 case BPF_PROG_TYPE_LSM: 11516 return true; 11517 case BPF_PROG_TYPE_TRACING: 11518 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 11519 return true; 11520 fallthrough; 11521 default: 11522 return env->prog->aux->sleepable; 11523 } 11524 } 11525 11526 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 11527 int insn_idx) 11528 { 11529 const char *func_name = meta->func_name, *ref_tname; 11530 const struct btf *btf = meta->btf; 11531 const struct btf_param *args; 11532 struct btf_record *rec; 11533 u32 i, nargs; 11534 int ret; 11535 11536 args = (const struct btf_param *)(meta->func_proto + 1); 11537 nargs = btf_type_vlen(meta->func_proto); 11538 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 11539 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 11540 MAX_BPF_FUNC_REG_ARGS); 11541 return -EINVAL; 11542 } 11543 11544 /* Check that BTF function arguments match actual types that the 11545 * verifier sees. 11546 */ 11547 for (i = 0; i < nargs; i++) { 11548 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 11549 const struct btf_type *t, *ref_t, *resolve_ret; 11550 enum bpf_arg_type arg_type = ARG_DONTCARE; 11551 u32 regno = i + 1, ref_id, type_size; 11552 bool is_ret_buf_sz = false; 11553 int kf_arg_type; 11554 11555 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 11556 11557 if (is_kfunc_arg_ignore(btf, &args[i])) 11558 continue; 11559 11560 if (btf_type_is_scalar(t)) { 11561 if (reg->type != SCALAR_VALUE) { 11562 verbose(env, "R%d is not a scalar\n", regno); 11563 return -EINVAL; 11564 } 11565 11566 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 11567 if (meta->arg_constant.found) { 11568 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11569 return -EFAULT; 11570 } 11571 if (!tnum_is_const(reg->var_off)) { 11572 verbose(env, "R%d must be a known constant\n", regno); 11573 return -EINVAL; 11574 } 11575 ret = mark_chain_precision(env, regno); 11576 if (ret < 0) 11577 return ret; 11578 meta->arg_constant.found = true; 11579 meta->arg_constant.value = reg->var_off.value; 11580 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 11581 meta->r0_rdonly = true; 11582 is_ret_buf_sz = true; 11583 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 11584 is_ret_buf_sz = true; 11585 } 11586 11587 if (is_ret_buf_sz) { 11588 if (meta->r0_size) { 11589 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 11590 return -EINVAL; 11591 } 11592 11593 if (!tnum_is_const(reg->var_off)) { 11594 verbose(env, "R%d is not a const\n", regno); 11595 return -EINVAL; 11596 } 11597 11598 meta->r0_size = reg->var_off.value; 11599 ret = mark_chain_precision(env, regno); 11600 if (ret) 11601 return ret; 11602 } 11603 continue; 11604 } 11605 11606 if (!btf_type_is_ptr(t)) { 11607 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 11608 return -EINVAL; 11609 } 11610 11611 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 11612 (register_is_null(reg) || type_may_be_null(reg->type)) && 11613 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 11614 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 11615 return -EACCES; 11616 } 11617 11618 if (reg->ref_obj_id) { 11619 if (is_kfunc_release(meta) && meta->ref_obj_id) { 11620 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 11621 regno, reg->ref_obj_id, 11622 meta->ref_obj_id); 11623 return -EFAULT; 11624 } 11625 meta->ref_obj_id = reg->ref_obj_id; 11626 if (is_kfunc_release(meta)) 11627 meta->release_regno = regno; 11628 } 11629 11630 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 11631 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 11632 11633 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 11634 if (kf_arg_type < 0) 11635 return kf_arg_type; 11636 11637 switch (kf_arg_type) { 11638 case KF_ARG_PTR_TO_NULL: 11639 continue; 11640 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11641 case KF_ARG_PTR_TO_BTF_ID: 11642 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 11643 break; 11644 11645 if (!is_trusted_reg(reg)) { 11646 if (!is_kfunc_rcu(meta)) { 11647 verbose(env, "R%d must be referenced or trusted\n", regno); 11648 return -EINVAL; 11649 } 11650 if (!is_rcu_reg(reg)) { 11651 verbose(env, "R%d must be a rcu pointer\n", regno); 11652 return -EINVAL; 11653 } 11654 } 11655 11656 fallthrough; 11657 case KF_ARG_PTR_TO_CTX: 11658 /* Trusted arguments have the same offset checks as release arguments */ 11659 arg_type |= OBJ_RELEASE; 11660 break; 11661 case KF_ARG_PTR_TO_DYNPTR: 11662 case KF_ARG_PTR_TO_ITER: 11663 case KF_ARG_PTR_TO_LIST_HEAD: 11664 case KF_ARG_PTR_TO_LIST_NODE: 11665 case KF_ARG_PTR_TO_RB_ROOT: 11666 case KF_ARG_PTR_TO_RB_NODE: 11667 case KF_ARG_PTR_TO_MEM: 11668 case KF_ARG_PTR_TO_MEM_SIZE: 11669 case KF_ARG_PTR_TO_CALLBACK: 11670 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11671 case KF_ARG_PTR_TO_CONST_STR: 11672 /* Trusted by default */ 11673 break; 11674 default: 11675 WARN_ON_ONCE(1); 11676 return -EFAULT; 11677 } 11678 11679 if (is_kfunc_release(meta) && reg->ref_obj_id) 11680 arg_type |= OBJ_RELEASE; 11681 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 11682 if (ret < 0) 11683 return ret; 11684 11685 switch (kf_arg_type) { 11686 case KF_ARG_PTR_TO_CTX: 11687 if (reg->type != PTR_TO_CTX) { 11688 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 11689 return -EINVAL; 11690 } 11691 11692 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11693 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11694 if (ret < 0) 11695 return -EINVAL; 11696 meta->ret_btf_id = ret; 11697 } 11698 break; 11699 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11700 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 11701 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 11702 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 11703 return -EINVAL; 11704 } 11705 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 11706 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 11707 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 11708 return -EINVAL; 11709 } 11710 } else { 11711 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11712 return -EINVAL; 11713 } 11714 if (!reg->ref_obj_id) { 11715 verbose(env, "allocated object must be referenced\n"); 11716 return -EINVAL; 11717 } 11718 if (meta->btf == btf_vmlinux) { 11719 meta->arg_btf = reg->btf; 11720 meta->arg_btf_id = reg->btf_id; 11721 } 11722 break; 11723 case KF_ARG_PTR_TO_DYNPTR: 11724 { 11725 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11726 int clone_ref_obj_id = 0; 11727 11728 if (reg->type != PTR_TO_STACK && 11729 reg->type != CONST_PTR_TO_DYNPTR) { 11730 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11731 return -EINVAL; 11732 } 11733 11734 if (reg->type == CONST_PTR_TO_DYNPTR) 11735 dynptr_arg_type |= MEM_RDONLY; 11736 11737 if (is_kfunc_arg_uninit(btf, &args[i])) 11738 dynptr_arg_type |= MEM_UNINIT; 11739 11740 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11741 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11742 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11743 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11744 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11745 (dynptr_arg_type & MEM_UNINIT)) { 11746 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11747 11748 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11749 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11750 return -EFAULT; 11751 } 11752 11753 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11754 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11755 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11756 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11757 return -EFAULT; 11758 } 11759 } 11760 11761 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11762 if (ret < 0) 11763 return ret; 11764 11765 if (!(dynptr_arg_type & MEM_UNINIT)) { 11766 int id = dynptr_id(env, reg); 11767 11768 if (id < 0) { 11769 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11770 return id; 11771 } 11772 meta->initialized_dynptr.id = id; 11773 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11774 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11775 } 11776 11777 break; 11778 } 11779 case KF_ARG_PTR_TO_ITER: 11780 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 11781 if (!check_css_task_iter_allowlist(env)) { 11782 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 11783 return -EINVAL; 11784 } 11785 } 11786 ret = process_iter_arg(env, regno, insn_idx, meta); 11787 if (ret < 0) 11788 return ret; 11789 break; 11790 case KF_ARG_PTR_TO_LIST_HEAD: 11791 if (reg->type != PTR_TO_MAP_VALUE && 11792 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11793 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11794 return -EINVAL; 11795 } 11796 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11797 verbose(env, "allocated object must be referenced\n"); 11798 return -EINVAL; 11799 } 11800 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11801 if (ret < 0) 11802 return ret; 11803 break; 11804 case KF_ARG_PTR_TO_RB_ROOT: 11805 if (reg->type != PTR_TO_MAP_VALUE && 11806 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11807 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11808 return -EINVAL; 11809 } 11810 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11811 verbose(env, "allocated object must be referenced\n"); 11812 return -EINVAL; 11813 } 11814 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11815 if (ret < 0) 11816 return ret; 11817 break; 11818 case KF_ARG_PTR_TO_LIST_NODE: 11819 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11820 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11821 return -EINVAL; 11822 } 11823 if (!reg->ref_obj_id) { 11824 verbose(env, "allocated object must be referenced\n"); 11825 return -EINVAL; 11826 } 11827 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11828 if (ret < 0) 11829 return ret; 11830 break; 11831 case KF_ARG_PTR_TO_RB_NODE: 11832 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11833 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11834 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11835 return -EINVAL; 11836 } 11837 if (in_rbtree_lock_required_cb(env)) { 11838 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11839 return -EINVAL; 11840 } 11841 } else { 11842 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11843 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11844 return -EINVAL; 11845 } 11846 if (!reg->ref_obj_id) { 11847 verbose(env, "allocated object must be referenced\n"); 11848 return -EINVAL; 11849 } 11850 } 11851 11852 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11853 if (ret < 0) 11854 return ret; 11855 break; 11856 case KF_ARG_PTR_TO_BTF_ID: 11857 /* Only base_type is checked, further checks are done here */ 11858 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11859 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11860 !reg2btf_ids[base_type(reg->type)]) { 11861 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11862 verbose(env, "expected %s or socket\n", 11863 reg_type_str(env, base_type(reg->type) | 11864 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11865 return -EINVAL; 11866 } 11867 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11868 if (ret < 0) 11869 return ret; 11870 break; 11871 case KF_ARG_PTR_TO_MEM: 11872 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11873 if (IS_ERR(resolve_ret)) { 11874 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11875 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11876 return -EINVAL; 11877 } 11878 ret = check_mem_reg(env, reg, regno, type_size); 11879 if (ret < 0) 11880 return ret; 11881 break; 11882 case KF_ARG_PTR_TO_MEM_SIZE: 11883 { 11884 struct bpf_reg_state *buff_reg = ®s[regno]; 11885 const struct btf_param *buff_arg = &args[i]; 11886 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11887 const struct btf_param *size_arg = &args[i + 1]; 11888 11889 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11890 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11891 if (ret < 0) { 11892 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11893 return ret; 11894 } 11895 } 11896 11897 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11898 if (meta->arg_constant.found) { 11899 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11900 return -EFAULT; 11901 } 11902 if (!tnum_is_const(size_reg->var_off)) { 11903 verbose(env, "R%d must be a known constant\n", regno + 1); 11904 return -EINVAL; 11905 } 11906 meta->arg_constant.found = true; 11907 meta->arg_constant.value = size_reg->var_off.value; 11908 } 11909 11910 /* Skip next '__sz' or '__szk' argument */ 11911 i++; 11912 break; 11913 } 11914 case KF_ARG_PTR_TO_CALLBACK: 11915 if (reg->type != PTR_TO_FUNC) { 11916 verbose(env, "arg%d expected pointer to func\n", i); 11917 return -EINVAL; 11918 } 11919 meta->subprogno = reg->subprogno; 11920 break; 11921 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11922 if (!type_is_ptr_alloc_obj(reg->type)) { 11923 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11924 return -EINVAL; 11925 } 11926 if (!type_is_non_owning_ref(reg->type)) 11927 meta->arg_owning_ref = true; 11928 11929 rec = reg_btf_record(reg); 11930 if (!rec) { 11931 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11932 return -EFAULT; 11933 } 11934 11935 if (rec->refcount_off < 0) { 11936 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11937 return -EINVAL; 11938 } 11939 11940 meta->arg_btf = reg->btf; 11941 meta->arg_btf_id = reg->btf_id; 11942 break; 11943 case KF_ARG_PTR_TO_CONST_STR: 11944 if (reg->type != PTR_TO_MAP_VALUE) { 11945 verbose(env, "arg#%d doesn't point to a const string\n", i); 11946 return -EINVAL; 11947 } 11948 ret = check_reg_const_str(env, reg, regno); 11949 if (ret) 11950 return ret; 11951 break; 11952 } 11953 } 11954 11955 if (is_kfunc_release(meta) && !meta->release_regno) { 11956 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11957 func_name); 11958 return -EINVAL; 11959 } 11960 11961 return 0; 11962 } 11963 11964 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11965 struct bpf_insn *insn, 11966 struct bpf_kfunc_call_arg_meta *meta, 11967 const char **kfunc_name) 11968 { 11969 const struct btf_type *func, *func_proto; 11970 u32 func_id, *kfunc_flags; 11971 const char *func_name; 11972 struct btf *desc_btf; 11973 11974 if (kfunc_name) 11975 *kfunc_name = NULL; 11976 11977 if (!insn->imm) 11978 return -EINVAL; 11979 11980 desc_btf = find_kfunc_desc_btf(env, insn->off); 11981 if (IS_ERR(desc_btf)) 11982 return PTR_ERR(desc_btf); 11983 11984 func_id = insn->imm; 11985 func = btf_type_by_id(desc_btf, func_id); 11986 func_name = btf_name_by_offset(desc_btf, func->name_off); 11987 if (kfunc_name) 11988 *kfunc_name = func_name; 11989 func_proto = btf_type_by_id(desc_btf, func->type); 11990 11991 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11992 if (!kfunc_flags) { 11993 return -EACCES; 11994 } 11995 11996 memset(meta, 0, sizeof(*meta)); 11997 meta->btf = desc_btf; 11998 meta->func_id = func_id; 11999 meta->kfunc_flags = *kfunc_flags; 12000 meta->func_proto = func_proto; 12001 meta->func_name = func_name; 12002 12003 return 0; 12004 } 12005 12006 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 12007 12008 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 12009 int *insn_idx_p) 12010 { 12011 const struct btf_type *t, *ptr_type; 12012 u32 i, nargs, ptr_type_id, release_ref_obj_id; 12013 struct bpf_reg_state *regs = cur_regs(env); 12014 const char *func_name, *ptr_type_name; 12015 bool sleepable, rcu_lock, rcu_unlock; 12016 struct bpf_kfunc_call_arg_meta meta; 12017 struct bpf_insn_aux_data *insn_aux; 12018 int err, insn_idx = *insn_idx_p; 12019 const struct btf_param *args; 12020 const struct btf_type *ret_t; 12021 struct btf *desc_btf; 12022 12023 /* skip for now, but return error when we find this in fixup_kfunc_call */ 12024 if (!insn->imm) 12025 return 0; 12026 12027 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 12028 if (err == -EACCES && func_name) 12029 verbose(env, "calling kernel function %s is not allowed\n", func_name); 12030 if (err) 12031 return err; 12032 desc_btf = meta.btf; 12033 insn_aux = &env->insn_aux_data[insn_idx]; 12034 12035 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 12036 12037 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 12038 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 12039 return -EACCES; 12040 } 12041 12042 sleepable = is_kfunc_sleepable(&meta); 12043 if (sleepable && !env->prog->aux->sleepable) { 12044 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 12045 return -EACCES; 12046 } 12047 12048 /* Check the arguments */ 12049 err = check_kfunc_args(env, &meta, insn_idx); 12050 if (err < 0) 12051 return err; 12052 12053 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12054 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 12055 set_rbtree_add_callback_state); 12056 if (err) { 12057 verbose(env, "kfunc %s#%d failed callback verification\n", 12058 func_name, meta.func_id); 12059 return err; 12060 } 12061 } 12062 12063 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 12064 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 12065 12066 if (env->cur_state->active_rcu_lock) { 12067 struct bpf_func_state *state; 12068 struct bpf_reg_state *reg; 12069 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 12070 12071 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 12072 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 12073 return -EACCES; 12074 } 12075 12076 if (rcu_lock) { 12077 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 12078 return -EINVAL; 12079 } else if (rcu_unlock) { 12080 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 12081 if (reg->type & MEM_RCU) { 12082 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 12083 reg->type |= PTR_UNTRUSTED; 12084 } 12085 })); 12086 env->cur_state->active_rcu_lock = false; 12087 } else if (sleepable) { 12088 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 12089 return -EACCES; 12090 } 12091 } else if (rcu_lock) { 12092 env->cur_state->active_rcu_lock = true; 12093 } else if (rcu_unlock) { 12094 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 12095 return -EINVAL; 12096 } 12097 12098 /* In case of release function, we get register number of refcounted 12099 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 12100 */ 12101 if (meta.release_regno) { 12102 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 12103 if (err) { 12104 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12105 func_name, meta.func_id); 12106 return err; 12107 } 12108 } 12109 12110 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12111 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12112 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12113 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 12114 insn_aux->insert_off = regs[BPF_REG_2].off; 12115 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 12116 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 12117 if (err) { 12118 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 12119 func_name, meta.func_id); 12120 return err; 12121 } 12122 12123 err = release_reference(env, release_ref_obj_id); 12124 if (err) { 12125 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12126 func_name, meta.func_id); 12127 return err; 12128 } 12129 } 12130 12131 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 12132 if (!bpf_jit_supports_exceptions()) { 12133 verbose(env, "JIT does not support calling kfunc %s#%d\n", 12134 func_name, meta.func_id); 12135 return -ENOTSUPP; 12136 } 12137 env->seen_exception = true; 12138 12139 /* In the case of the default callback, the cookie value passed 12140 * to bpf_throw becomes the return value of the program. 12141 */ 12142 if (!env->exception_callback_subprog) { 12143 err = check_return_code(env, BPF_REG_1, "R1"); 12144 if (err < 0) 12145 return err; 12146 } 12147 } 12148 12149 for (i = 0; i < CALLER_SAVED_REGS; i++) 12150 mark_reg_not_init(env, regs, caller_saved[i]); 12151 12152 /* Check return type */ 12153 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 12154 12155 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 12156 /* Only exception is bpf_obj_new_impl */ 12157 if (meta.btf != btf_vmlinux || 12158 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 12159 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 12160 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 12161 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 12162 return -EINVAL; 12163 } 12164 } 12165 12166 if (btf_type_is_scalar(t)) { 12167 mark_reg_unknown(env, regs, BPF_REG_0); 12168 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 12169 } else if (btf_type_is_ptr(t)) { 12170 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 12171 12172 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12173 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 12174 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12175 struct btf_struct_meta *struct_meta; 12176 struct btf *ret_btf; 12177 u32 ret_btf_id; 12178 12179 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 12180 return -ENOMEM; 12181 12182 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 12183 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 12184 return -EINVAL; 12185 } 12186 12187 ret_btf = env->prog->aux->btf; 12188 ret_btf_id = meta.arg_constant.value; 12189 12190 /* This may be NULL due to user not supplying a BTF */ 12191 if (!ret_btf) { 12192 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 12193 return -EINVAL; 12194 } 12195 12196 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 12197 if (!ret_t || !__btf_type_is_struct(ret_t)) { 12198 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 12199 return -EINVAL; 12200 } 12201 12202 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12203 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { 12204 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", 12205 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); 12206 return -EINVAL; 12207 } 12208 12209 if (!bpf_global_percpu_ma_set) { 12210 mutex_lock(&bpf_percpu_ma_lock); 12211 if (!bpf_global_percpu_ma_set) { 12212 /* Charge memory allocated with bpf_global_percpu_ma to 12213 * root memcg. The obj_cgroup for root memcg is NULL. 12214 */ 12215 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); 12216 if (!err) 12217 bpf_global_percpu_ma_set = true; 12218 } 12219 mutex_unlock(&bpf_percpu_ma_lock); 12220 if (err) 12221 return err; 12222 } 12223 12224 mutex_lock(&bpf_percpu_ma_lock); 12225 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); 12226 mutex_unlock(&bpf_percpu_ma_lock); 12227 if (err) 12228 return err; 12229 } 12230 12231 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 12232 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12233 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 12234 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 12235 return -EINVAL; 12236 } 12237 12238 if (struct_meta) { 12239 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 12240 return -EINVAL; 12241 } 12242 } 12243 12244 mark_reg_known_zero(env, regs, BPF_REG_0); 12245 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12246 regs[BPF_REG_0].btf = ret_btf; 12247 regs[BPF_REG_0].btf_id = ret_btf_id; 12248 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 12249 regs[BPF_REG_0].type |= MEM_PERCPU; 12250 12251 insn_aux->obj_new_size = ret_t->size; 12252 insn_aux->kptr_struct_meta = struct_meta; 12253 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 12254 mark_reg_known_zero(env, regs, BPF_REG_0); 12255 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12256 regs[BPF_REG_0].btf = meta.arg_btf; 12257 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 12258 12259 insn_aux->kptr_struct_meta = 12260 btf_find_struct_meta(meta.arg_btf, 12261 meta.arg_btf_id); 12262 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 12263 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 12264 struct btf_field *field = meta.arg_list_head.field; 12265 12266 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12267 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12268 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12269 struct btf_field *field = meta.arg_rbtree_root.field; 12270 12271 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12272 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 12273 mark_reg_known_zero(env, regs, BPF_REG_0); 12274 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 12275 regs[BPF_REG_0].btf = desc_btf; 12276 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 12277 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 12278 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 12279 if (!ret_t || !btf_type_is_struct(ret_t)) { 12280 verbose(env, 12281 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 12282 return -EINVAL; 12283 } 12284 12285 mark_reg_known_zero(env, regs, BPF_REG_0); 12286 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 12287 regs[BPF_REG_0].btf = desc_btf; 12288 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 12289 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 12290 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 12291 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 12292 12293 mark_reg_known_zero(env, regs, BPF_REG_0); 12294 12295 if (!meta.arg_constant.found) { 12296 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 12297 return -EFAULT; 12298 } 12299 12300 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 12301 12302 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 12303 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 12304 12305 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 12306 regs[BPF_REG_0].type |= MEM_RDONLY; 12307 } else { 12308 /* this will set env->seen_direct_write to true */ 12309 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 12310 verbose(env, "the prog does not allow writes to packet data\n"); 12311 return -EINVAL; 12312 } 12313 } 12314 12315 if (!meta.initialized_dynptr.id) { 12316 verbose(env, "verifier internal error: no dynptr id\n"); 12317 return -EFAULT; 12318 } 12319 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 12320 12321 /* we don't need to set BPF_REG_0's ref obj id 12322 * because packet slices are not refcounted (see 12323 * dynptr_type_refcounted) 12324 */ 12325 } else { 12326 verbose(env, "kernel function %s unhandled dynamic return type\n", 12327 meta.func_name); 12328 return -EFAULT; 12329 } 12330 } else if (!__btf_type_is_struct(ptr_type)) { 12331 if (!meta.r0_size) { 12332 __u32 sz; 12333 12334 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 12335 meta.r0_size = sz; 12336 meta.r0_rdonly = true; 12337 } 12338 } 12339 if (!meta.r0_size) { 12340 ptr_type_name = btf_name_by_offset(desc_btf, 12341 ptr_type->name_off); 12342 verbose(env, 12343 "kernel function %s returns pointer type %s %s is not supported\n", 12344 func_name, 12345 btf_type_str(ptr_type), 12346 ptr_type_name); 12347 return -EINVAL; 12348 } 12349 12350 mark_reg_known_zero(env, regs, BPF_REG_0); 12351 regs[BPF_REG_0].type = PTR_TO_MEM; 12352 regs[BPF_REG_0].mem_size = meta.r0_size; 12353 12354 if (meta.r0_rdonly) 12355 regs[BPF_REG_0].type |= MEM_RDONLY; 12356 12357 /* Ensures we don't access the memory after a release_reference() */ 12358 if (meta.ref_obj_id) 12359 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 12360 } else { 12361 mark_reg_known_zero(env, regs, BPF_REG_0); 12362 regs[BPF_REG_0].btf = desc_btf; 12363 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 12364 regs[BPF_REG_0].btf_id = ptr_type_id; 12365 } 12366 12367 if (is_kfunc_ret_null(&meta)) { 12368 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 12369 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 12370 regs[BPF_REG_0].id = ++env->id_gen; 12371 } 12372 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 12373 if (is_kfunc_acquire(&meta)) { 12374 int id = acquire_reference_state(env, insn_idx); 12375 12376 if (id < 0) 12377 return id; 12378 if (is_kfunc_ret_null(&meta)) 12379 regs[BPF_REG_0].id = id; 12380 regs[BPF_REG_0].ref_obj_id = id; 12381 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12382 ref_set_non_owning(env, ®s[BPF_REG_0]); 12383 } 12384 12385 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 12386 regs[BPF_REG_0].id = ++env->id_gen; 12387 } else if (btf_type_is_void(t)) { 12388 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12389 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 12390 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 12391 insn_aux->kptr_struct_meta = 12392 btf_find_struct_meta(meta.arg_btf, 12393 meta.arg_btf_id); 12394 } 12395 } 12396 } 12397 12398 nargs = btf_type_vlen(meta.func_proto); 12399 args = (const struct btf_param *)(meta.func_proto + 1); 12400 for (i = 0; i < nargs; i++) { 12401 u32 regno = i + 1; 12402 12403 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 12404 if (btf_type_is_ptr(t)) 12405 mark_btf_func_reg_size(env, regno, sizeof(void *)); 12406 else 12407 /* scalar. ensured by btf_check_kfunc_arg_match() */ 12408 mark_btf_func_reg_size(env, regno, t->size); 12409 } 12410 12411 if (is_iter_next_kfunc(&meta)) { 12412 err = process_iter_next_call(env, insn_idx, &meta); 12413 if (err) 12414 return err; 12415 } 12416 12417 return 0; 12418 } 12419 12420 static bool signed_add_overflows(s64 a, s64 b) 12421 { 12422 /* Do the add in u64, where overflow is well-defined */ 12423 s64 res = (s64)((u64)a + (u64)b); 12424 12425 if (b < 0) 12426 return res > a; 12427 return res < a; 12428 } 12429 12430 static bool signed_add32_overflows(s32 a, s32 b) 12431 { 12432 /* Do the add in u32, where overflow is well-defined */ 12433 s32 res = (s32)((u32)a + (u32)b); 12434 12435 if (b < 0) 12436 return res > a; 12437 return res < a; 12438 } 12439 12440 static bool signed_sub_overflows(s64 a, s64 b) 12441 { 12442 /* Do the sub in u64, where overflow is well-defined */ 12443 s64 res = (s64)((u64)a - (u64)b); 12444 12445 if (b < 0) 12446 return res < a; 12447 return res > a; 12448 } 12449 12450 static bool signed_sub32_overflows(s32 a, s32 b) 12451 { 12452 /* Do the sub in u32, where overflow is well-defined */ 12453 s32 res = (s32)((u32)a - (u32)b); 12454 12455 if (b < 0) 12456 return res < a; 12457 return res > a; 12458 } 12459 12460 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 12461 const struct bpf_reg_state *reg, 12462 enum bpf_reg_type type) 12463 { 12464 bool known = tnum_is_const(reg->var_off); 12465 s64 val = reg->var_off.value; 12466 s64 smin = reg->smin_value; 12467 12468 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 12469 verbose(env, "math between %s pointer and %lld is not allowed\n", 12470 reg_type_str(env, type), val); 12471 return false; 12472 } 12473 12474 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 12475 verbose(env, "%s pointer offset %d is not allowed\n", 12476 reg_type_str(env, type), reg->off); 12477 return false; 12478 } 12479 12480 if (smin == S64_MIN) { 12481 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 12482 reg_type_str(env, type)); 12483 return false; 12484 } 12485 12486 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 12487 verbose(env, "value %lld makes %s pointer be out of bounds\n", 12488 smin, reg_type_str(env, type)); 12489 return false; 12490 } 12491 12492 return true; 12493 } 12494 12495 enum { 12496 REASON_BOUNDS = -1, 12497 REASON_TYPE = -2, 12498 REASON_PATHS = -3, 12499 REASON_LIMIT = -4, 12500 REASON_STACK = -5, 12501 }; 12502 12503 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 12504 u32 *alu_limit, bool mask_to_left) 12505 { 12506 u32 max = 0, ptr_limit = 0; 12507 12508 switch (ptr_reg->type) { 12509 case PTR_TO_STACK: 12510 /* Offset 0 is out-of-bounds, but acceptable start for the 12511 * left direction, see BPF_REG_FP. Also, unknown scalar 12512 * offset where we would need to deal with min/max bounds is 12513 * currently prohibited for unprivileged. 12514 */ 12515 max = MAX_BPF_STACK + mask_to_left; 12516 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 12517 break; 12518 case PTR_TO_MAP_VALUE: 12519 max = ptr_reg->map_ptr->value_size; 12520 ptr_limit = (mask_to_left ? 12521 ptr_reg->smin_value : 12522 ptr_reg->umax_value) + ptr_reg->off; 12523 break; 12524 default: 12525 return REASON_TYPE; 12526 } 12527 12528 if (ptr_limit >= max) 12529 return REASON_LIMIT; 12530 *alu_limit = ptr_limit; 12531 return 0; 12532 } 12533 12534 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 12535 const struct bpf_insn *insn) 12536 { 12537 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 12538 } 12539 12540 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 12541 u32 alu_state, u32 alu_limit) 12542 { 12543 /* If we arrived here from different branches with different 12544 * state or limits to sanitize, then this won't work. 12545 */ 12546 if (aux->alu_state && 12547 (aux->alu_state != alu_state || 12548 aux->alu_limit != alu_limit)) 12549 return REASON_PATHS; 12550 12551 /* Corresponding fixup done in do_misc_fixups(). */ 12552 aux->alu_state = alu_state; 12553 aux->alu_limit = alu_limit; 12554 return 0; 12555 } 12556 12557 static int sanitize_val_alu(struct bpf_verifier_env *env, 12558 struct bpf_insn *insn) 12559 { 12560 struct bpf_insn_aux_data *aux = cur_aux(env); 12561 12562 if (can_skip_alu_sanitation(env, insn)) 12563 return 0; 12564 12565 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 12566 } 12567 12568 static bool sanitize_needed(u8 opcode) 12569 { 12570 return opcode == BPF_ADD || opcode == BPF_SUB; 12571 } 12572 12573 struct bpf_sanitize_info { 12574 struct bpf_insn_aux_data aux; 12575 bool mask_to_left; 12576 }; 12577 12578 static struct bpf_verifier_state * 12579 sanitize_speculative_path(struct bpf_verifier_env *env, 12580 const struct bpf_insn *insn, 12581 u32 next_idx, u32 curr_idx) 12582 { 12583 struct bpf_verifier_state *branch; 12584 struct bpf_reg_state *regs; 12585 12586 branch = push_stack(env, next_idx, curr_idx, true); 12587 if (branch && insn) { 12588 regs = branch->frame[branch->curframe]->regs; 12589 if (BPF_SRC(insn->code) == BPF_K) { 12590 mark_reg_unknown(env, regs, insn->dst_reg); 12591 } else if (BPF_SRC(insn->code) == BPF_X) { 12592 mark_reg_unknown(env, regs, insn->dst_reg); 12593 mark_reg_unknown(env, regs, insn->src_reg); 12594 } 12595 } 12596 return branch; 12597 } 12598 12599 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 12600 struct bpf_insn *insn, 12601 const struct bpf_reg_state *ptr_reg, 12602 const struct bpf_reg_state *off_reg, 12603 struct bpf_reg_state *dst_reg, 12604 struct bpf_sanitize_info *info, 12605 const bool commit_window) 12606 { 12607 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 12608 struct bpf_verifier_state *vstate = env->cur_state; 12609 bool off_is_imm = tnum_is_const(off_reg->var_off); 12610 bool off_is_neg = off_reg->smin_value < 0; 12611 bool ptr_is_dst_reg = ptr_reg == dst_reg; 12612 u8 opcode = BPF_OP(insn->code); 12613 u32 alu_state, alu_limit; 12614 struct bpf_reg_state tmp; 12615 bool ret; 12616 int err; 12617 12618 if (can_skip_alu_sanitation(env, insn)) 12619 return 0; 12620 12621 /* We already marked aux for masking from non-speculative 12622 * paths, thus we got here in the first place. We only care 12623 * to explore bad access from here. 12624 */ 12625 if (vstate->speculative) 12626 goto do_sim; 12627 12628 if (!commit_window) { 12629 if (!tnum_is_const(off_reg->var_off) && 12630 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 12631 return REASON_BOUNDS; 12632 12633 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 12634 (opcode == BPF_SUB && !off_is_neg); 12635 } 12636 12637 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 12638 if (err < 0) 12639 return err; 12640 12641 if (commit_window) { 12642 /* In commit phase we narrow the masking window based on 12643 * the observed pointer move after the simulated operation. 12644 */ 12645 alu_state = info->aux.alu_state; 12646 alu_limit = abs(info->aux.alu_limit - alu_limit); 12647 } else { 12648 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 12649 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 12650 alu_state |= ptr_is_dst_reg ? 12651 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 12652 12653 /* Limit pruning on unknown scalars to enable deep search for 12654 * potential masking differences from other program paths. 12655 */ 12656 if (!off_is_imm) 12657 env->explore_alu_limits = true; 12658 } 12659 12660 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 12661 if (err < 0) 12662 return err; 12663 do_sim: 12664 /* If we're in commit phase, we're done here given we already 12665 * pushed the truncated dst_reg into the speculative verification 12666 * stack. 12667 * 12668 * Also, when register is a known constant, we rewrite register-based 12669 * operation to immediate-based, and thus do not need masking (and as 12670 * a consequence, do not need to simulate the zero-truncation either). 12671 */ 12672 if (commit_window || off_is_imm) 12673 return 0; 12674 12675 /* Simulate and find potential out-of-bounds access under 12676 * speculative execution from truncation as a result of 12677 * masking when off was not within expected range. If off 12678 * sits in dst, then we temporarily need to move ptr there 12679 * to simulate dst (== 0) +/-= ptr. Needed, for example, 12680 * for cases where we use K-based arithmetic in one direction 12681 * and truncated reg-based in the other in order to explore 12682 * bad access. 12683 */ 12684 if (!ptr_is_dst_reg) { 12685 tmp = *dst_reg; 12686 copy_register_state(dst_reg, ptr_reg); 12687 } 12688 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 12689 env->insn_idx); 12690 if (!ptr_is_dst_reg && ret) 12691 *dst_reg = tmp; 12692 return !ret ? REASON_STACK : 0; 12693 } 12694 12695 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 12696 { 12697 struct bpf_verifier_state *vstate = env->cur_state; 12698 12699 /* If we simulate paths under speculation, we don't update the 12700 * insn as 'seen' such that when we verify unreachable paths in 12701 * the non-speculative domain, sanitize_dead_code() can still 12702 * rewrite/sanitize them. 12703 */ 12704 if (!vstate->speculative) 12705 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 12706 } 12707 12708 static int sanitize_err(struct bpf_verifier_env *env, 12709 const struct bpf_insn *insn, int reason, 12710 const struct bpf_reg_state *off_reg, 12711 const struct bpf_reg_state *dst_reg) 12712 { 12713 static const char *err = "pointer arithmetic with it prohibited for !root"; 12714 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 12715 u32 dst = insn->dst_reg, src = insn->src_reg; 12716 12717 switch (reason) { 12718 case REASON_BOUNDS: 12719 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 12720 off_reg == dst_reg ? dst : src, err); 12721 break; 12722 case REASON_TYPE: 12723 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 12724 off_reg == dst_reg ? src : dst, err); 12725 break; 12726 case REASON_PATHS: 12727 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 12728 dst, op, err); 12729 break; 12730 case REASON_LIMIT: 12731 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 12732 dst, op, err); 12733 break; 12734 case REASON_STACK: 12735 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 12736 dst, err); 12737 break; 12738 default: 12739 verbose(env, "verifier internal error: unknown reason (%d)\n", 12740 reason); 12741 break; 12742 } 12743 12744 return -EACCES; 12745 } 12746 12747 /* check that stack access falls within stack limits and that 'reg' doesn't 12748 * have a variable offset. 12749 * 12750 * Variable offset is prohibited for unprivileged mode for simplicity since it 12751 * requires corresponding support in Spectre masking for stack ALU. See also 12752 * retrieve_ptr_limit(). 12753 * 12754 * 12755 * 'off' includes 'reg->off'. 12756 */ 12757 static int check_stack_access_for_ptr_arithmetic( 12758 struct bpf_verifier_env *env, 12759 int regno, 12760 const struct bpf_reg_state *reg, 12761 int off) 12762 { 12763 if (!tnum_is_const(reg->var_off)) { 12764 char tn_buf[48]; 12765 12766 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 12767 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 12768 regno, tn_buf, off); 12769 return -EACCES; 12770 } 12771 12772 if (off >= 0 || off < -MAX_BPF_STACK) { 12773 verbose(env, "R%d stack pointer arithmetic goes out of range, " 12774 "prohibited for !root; off=%d\n", regno, off); 12775 return -EACCES; 12776 } 12777 12778 return 0; 12779 } 12780 12781 static int sanitize_check_bounds(struct bpf_verifier_env *env, 12782 const struct bpf_insn *insn, 12783 const struct bpf_reg_state *dst_reg) 12784 { 12785 u32 dst = insn->dst_reg; 12786 12787 /* For unprivileged we require that resulting offset must be in bounds 12788 * in order to be able to sanitize access later on. 12789 */ 12790 if (env->bypass_spec_v1) 12791 return 0; 12792 12793 switch (dst_reg->type) { 12794 case PTR_TO_STACK: 12795 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12796 dst_reg->off + dst_reg->var_off.value)) 12797 return -EACCES; 12798 break; 12799 case PTR_TO_MAP_VALUE: 12800 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12801 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12802 "prohibited for !root\n", dst); 12803 return -EACCES; 12804 } 12805 break; 12806 default: 12807 break; 12808 } 12809 12810 return 0; 12811 } 12812 12813 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12814 * Caller should also handle BPF_MOV case separately. 12815 * If we return -EACCES, caller may want to try again treating pointer as a 12816 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12817 */ 12818 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12819 struct bpf_insn *insn, 12820 const struct bpf_reg_state *ptr_reg, 12821 const struct bpf_reg_state *off_reg) 12822 { 12823 struct bpf_verifier_state *vstate = env->cur_state; 12824 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12825 struct bpf_reg_state *regs = state->regs, *dst_reg; 12826 bool known = tnum_is_const(off_reg->var_off); 12827 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12828 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12829 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12830 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12831 struct bpf_sanitize_info info = {}; 12832 u8 opcode = BPF_OP(insn->code); 12833 u32 dst = insn->dst_reg; 12834 int ret; 12835 12836 dst_reg = ®s[dst]; 12837 12838 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12839 smin_val > smax_val || umin_val > umax_val) { 12840 /* Taint dst register if offset had invalid bounds derived from 12841 * e.g. dead branches. 12842 */ 12843 __mark_reg_unknown(env, dst_reg); 12844 return 0; 12845 } 12846 12847 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12848 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12849 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12850 __mark_reg_unknown(env, dst_reg); 12851 return 0; 12852 } 12853 12854 verbose(env, 12855 "R%d 32-bit pointer arithmetic prohibited\n", 12856 dst); 12857 return -EACCES; 12858 } 12859 12860 if (ptr_reg->type & PTR_MAYBE_NULL) { 12861 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12862 dst, reg_type_str(env, ptr_reg->type)); 12863 return -EACCES; 12864 } 12865 12866 switch (base_type(ptr_reg->type)) { 12867 case PTR_TO_CTX: 12868 case PTR_TO_MAP_VALUE: 12869 case PTR_TO_MAP_KEY: 12870 case PTR_TO_STACK: 12871 case PTR_TO_PACKET_META: 12872 case PTR_TO_PACKET: 12873 case PTR_TO_TP_BUFFER: 12874 case PTR_TO_BTF_ID: 12875 case PTR_TO_MEM: 12876 case PTR_TO_BUF: 12877 case PTR_TO_FUNC: 12878 case CONST_PTR_TO_DYNPTR: 12879 break; 12880 case PTR_TO_FLOW_KEYS: 12881 if (known) 12882 break; 12883 fallthrough; 12884 case CONST_PTR_TO_MAP: 12885 /* smin_val represents the known value */ 12886 if (known && smin_val == 0 && opcode == BPF_ADD) 12887 break; 12888 fallthrough; 12889 default: 12890 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12891 dst, reg_type_str(env, ptr_reg->type)); 12892 return -EACCES; 12893 } 12894 12895 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12896 * The id may be overwritten later if we create a new variable offset. 12897 */ 12898 dst_reg->type = ptr_reg->type; 12899 dst_reg->id = ptr_reg->id; 12900 12901 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12902 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12903 return -EINVAL; 12904 12905 /* pointer types do not carry 32-bit bounds at the moment. */ 12906 __mark_reg32_unbounded(dst_reg); 12907 12908 if (sanitize_needed(opcode)) { 12909 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12910 &info, false); 12911 if (ret < 0) 12912 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12913 } 12914 12915 switch (opcode) { 12916 case BPF_ADD: 12917 /* We can take a fixed offset as long as it doesn't overflow 12918 * the s32 'off' field 12919 */ 12920 if (known && (ptr_reg->off + smin_val == 12921 (s64)(s32)(ptr_reg->off + smin_val))) { 12922 /* pointer += K. Accumulate it into fixed offset */ 12923 dst_reg->smin_value = smin_ptr; 12924 dst_reg->smax_value = smax_ptr; 12925 dst_reg->umin_value = umin_ptr; 12926 dst_reg->umax_value = umax_ptr; 12927 dst_reg->var_off = ptr_reg->var_off; 12928 dst_reg->off = ptr_reg->off + smin_val; 12929 dst_reg->raw = ptr_reg->raw; 12930 break; 12931 } 12932 /* A new variable offset is created. Note that off_reg->off 12933 * == 0, since it's a scalar. 12934 * dst_reg gets the pointer type and since some positive 12935 * integer value was added to the pointer, give it a new 'id' 12936 * if it's a PTR_TO_PACKET. 12937 * this creates a new 'base' pointer, off_reg (variable) gets 12938 * added into the variable offset, and we copy the fixed offset 12939 * from ptr_reg. 12940 */ 12941 if (signed_add_overflows(smin_ptr, smin_val) || 12942 signed_add_overflows(smax_ptr, smax_val)) { 12943 dst_reg->smin_value = S64_MIN; 12944 dst_reg->smax_value = S64_MAX; 12945 } else { 12946 dst_reg->smin_value = smin_ptr + smin_val; 12947 dst_reg->smax_value = smax_ptr + smax_val; 12948 } 12949 if (umin_ptr + umin_val < umin_ptr || 12950 umax_ptr + umax_val < umax_ptr) { 12951 dst_reg->umin_value = 0; 12952 dst_reg->umax_value = U64_MAX; 12953 } else { 12954 dst_reg->umin_value = umin_ptr + umin_val; 12955 dst_reg->umax_value = umax_ptr + umax_val; 12956 } 12957 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12958 dst_reg->off = ptr_reg->off; 12959 dst_reg->raw = ptr_reg->raw; 12960 if (reg_is_pkt_pointer(ptr_reg)) { 12961 dst_reg->id = ++env->id_gen; 12962 /* something was added to pkt_ptr, set range to zero */ 12963 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12964 } 12965 break; 12966 case BPF_SUB: 12967 if (dst_reg == off_reg) { 12968 /* scalar -= pointer. Creates an unknown scalar */ 12969 verbose(env, "R%d tried to subtract pointer from scalar\n", 12970 dst); 12971 return -EACCES; 12972 } 12973 /* We don't allow subtraction from FP, because (according to 12974 * test_verifier.c test "invalid fp arithmetic", JITs might not 12975 * be able to deal with it. 12976 */ 12977 if (ptr_reg->type == PTR_TO_STACK) { 12978 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12979 dst); 12980 return -EACCES; 12981 } 12982 if (known && (ptr_reg->off - smin_val == 12983 (s64)(s32)(ptr_reg->off - smin_val))) { 12984 /* pointer -= K. Subtract it from fixed offset */ 12985 dst_reg->smin_value = smin_ptr; 12986 dst_reg->smax_value = smax_ptr; 12987 dst_reg->umin_value = umin_ptr; 12988 dst_reg->umax_value = umax_ptr; 12989 dst_reg->var_off = ptr_reg->var_off; 12990 dst_reg->id = ptr_reg->id; 12991 dst_reg->off = ptr_reg->off - smin_val; 12992 dst_reg->raw = ptr_reg->raw; 12993 break; 12994 } 12995 /* A new variable offset is created. If the subtrahend is known 12996 * nonnegative, then any reg->range we had before is still good. 12997 */ 12998 if (signed_sub_overflows(smin_ptr, smax_val) || 12999 signed_sub_overflows(smax_ptr, smin_val)) { 13000 /* Overflow possible, we know nothing */ 13001 dst_reg->smin_value = S64_MIN; 13002 dst_reg->smax_value = S64_MAX; 13003 } else { 13004 dst_reg->smin_value = smin_ptr - smax_val; 13005 dst_reg->smax_value = smax_ptr - smin_val; 13006 } 13007 if (umin_ptr < umax_val) { 13008 /* Overflow possible, we know nothing */ 13009 dst_reg->umin_value = 0; 13010 dst_reg->umax_value = U64_MAX; 13011 } else { 13012 /* Cannot overflow (as long as bounds are consistent) */ 13013 dst_reg->umin_value = umin_ptr - umax_val; 13014 dst_reg->umax_value = umax_ptr - umin_val; 13015 } 13016 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 13017 dst_reg->off = ptr_reg->off; 13018 dst_reg->raw = ptr_reg->raw; 13019 if (reg_is_pkt_pointer(ptr_reg)) { 13020 dst_reg->id = ++env->id_gen; 13021 /* something was added to pkt_ptr, set range to zero */ 13022 if (smin_val < 0) 13023 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 13024 } 13025 break; 13026 case BPF_AND: 13027 case BPF_OR: 13028 case BPF_XOR: 13029 /* bitwise ops on pointers are troublesome, prohibit. */ 13030 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 13031 dst, bpf_alu_string[opcode >> 4]); 13032 return -EACCES; 13033 default: 13034 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 13035 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 13036 dst, bpf_alu_string[opcode >> 4]); 13037 return -EACCES; 13038 } 13039 13040 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 13041 return -EINVAL; 13042 reg_bounds_sync(dst_reg); 13043 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 13044 return -EACCES; 13045 if (sanitize_needed(opcode)) { 13046 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 13047 &info, true); 13048 if (ret < 0) 13049 return sanitize_err(env, insn, ret, off_reg, dst_reg); 13050 } 13051 13052 return 0; 13053 } 13054 13055 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 13056 struct bpf_reg_state *src_reg) 13057 { 13058 s32 smin_val = src_reg->s32_min_value; 13059 s32 smax_val = src_reg->s32_max_value; 13060 u32 umin_val = src_reg->u32_min_value; 13061 u32 umax_val = src_reg->u32_max_value; 13062 13063 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 13064 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 13065 dst_reg->s32_min_value = S32_MIN; 13066 dst_reg->s32_max_value = S32_MAX; 13067 } else { 13068 dst_reg->s32_min_value += smin_val; 13069 dst_reg->s32_max_value += smax_val; 13070 } 13071 if (dst_reg->u32_min_value + umin_val < umin_val || 13072 dst_reg->u32_max_value + umax_val < umax_val) { 13073 dst_reg->u32_min_value = 0; 13074 dst_reg->u32_max_value = U32_MAX; 13075 } else { 13076 dst_reg->u32_min_value += umin_val; 13077 dst_reg->u32_max_value += umax_val; 13078 } 13079 } 13080 13081 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 13082 struct bpf_reg_state *src_reg) 13083 { 13084 s64 smin_val = src_reg->smin_value; 13085 s64 smax_val = src_reg->smax_value; 13086 u64 umin_val = src_reg->umin_value; 13087 u64 umax_val = src_reg->umax_value; 13088 13089 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 13090 signed_add_overflows(dst_reg->smax_value, smax_val)) { 13091 dst_reg->smin_value = S64_MIN; 13092 dst_reg->smax_value = S64_MAX; 13093 } else { 13094 dst_reg->smin_value += smin_val; 13095 dst_reg->smax_value += smax_val; 13096 } 13097 if (dst_reg->umin_value + umin_val < umin_val || 13098 dst_reg->umax_value + umax_val < umax_val) { 13099 dst_reg->umin_value = 0; 13100 dst_reg->umax_value = U64_MAX; 13101 } else { 13102 dst_reg->umin_value += umin_val; 13103 dst_reg->umax_value += umax_val; 13104 } 13105 } 13106 13107 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 13108 struct bpf_reg_state *src_reg) 13109 { 13110 s32 smin_val = src_reg->s32_min_value; 13111 s32 smax_val = src_reg->s32_max_value; 13112 u32 umin_val = src_reg->u32_min_value; 13113 u32 umax_val = src_reg->u32_max_value; 13114 13115 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 13116 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 13117 /* Overflow possible, we know nothing */ 13118 dst_reg->s32_min_value = S32_MIN; 13119 dst_reg->s32_max_value = S32_MAX; 13120 } else { 13121 dst_reg->s32_min_value -= smax_val; 13122 dst_reg->s32_max_value -= smin_val; 13123 } 13124 if (dst_reg->u32_min_value < umax_val) { 13125 /* Overflow possible, we know nothing */ 13126 dst_reg->u32_min_value = 0; 13127 dst_reg->u32_max_value = U32_MAX; 13128 } else { 13129 /* Cannot overflow (as long as bounds are consistent) */ 13130 dst_reg->u32_min_value -= umax_val; 13131 dst_reg->u32_max_value -= umin_val; 13132 } 13133 } 13134 13135 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 13136 struct bpf_reg_state *src_reg) 13137 { 13138 s64 smin_val = src_reg->smin_value; 13139 s64 smax_val = src_reg->smax_value; 13140 u64 umin_val = src_reg->umin_value; 13141 u64 umax_val = src_reg->umax_value; 13142 13143 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 13144 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 13145 /* Overflow possible, we know nothing */ 13146 dst_reg->smin_value = S64_MIN; 13147 dst_reg->smax_value = S64_MAX; 13148 } else { 13149 dst_reg->smin_value -= smax_val; 13150 dst_reg->smax_value -= smin_val; 13151 } 13152 if (dst_reg->umin_value < umax_val) { 13153 /* Overflow possible, we know nothing */ 13154 dst_reg->umin_value = 0; 13155 dst_reg->umax_value = U64_MAX; 13156 } else { 13157 /* Cannot overflow (as long as bounds are consistent) */ 13158 dst_reg->umin_value -= umax_val; 13159 dst_reg->umax_value -= umin_val; 13160 } 13161 } 13162 13163 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 13164 struct bpf_reg_state *src_reg) 13165 { 13166 s32 smin_val = src_reg->s32_min_value; 13167 u32 umin_val = src_reg->u32_min_value; 13168 u32 umax_val = src_reg->u32_max_value; 13169 13170 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 13171 /* Ain't nobody got time to multiply that sign */ 13172 __mark_reg32_unbounded(dst_reg); 13173 return; 13174 } 13175 /* Both values are positive, so we can work with unsigned and 13176 * copy the result to signed (unless it exceeds S32_MAX). 13177 */ 13178 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 13179 /* Potential overflow, we know nothing */ 13180 __mark_reg32_unbounded(dst_reg); 13181 return; 13182 } 13183 dst_reg->u32_min_value *= umin_val; 13184 dst_reg->u32_max_value *= umax_val; 13185 if (dst_reg->u32_max_value > S32_MAX) { 13186 /* Overflow possible, we know nothing */ 13187 dst_reg->s32_min_value = S32_MIN; 13188 dst_reg->s32_max_value = S32_MAX; 13189 } else { 13190 dst_reg->s32_min_value = dst_reg->u32_min_value; 13191 dst_reg->s32_max_value = dst_reg->u32_max_value; 13192 } 13193 } 13194 13195 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 13196 struct bpf_reg_state *src_reg) 13197 { 13198 s64 smin_val = src_reg->smin_value; 13199 u64 umin_val = src_reg->umin_value; 13200 u64 umax_val = src_reg->umax_value; 13201 13202 if (smin_val < 0 || dst_reg->smin_value < 0) { 13203 /* Ain't nobody got time to multiply that sign */ 13204 __mark_reg64_unbounded(dst_reg); 13205 return; 13206 } 13207 /* Both values are positive, so we can work with unsigned and 13208 * copy the result to signed (unless it exceeds S64_MAX). 13209 */ 13210 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 13211 /* Potential overflow, we know nothing */ 13212 __mark_reg64_unbounded(dst_reg); 13213 return; 13214 } 13215 dst_reg->umin_value *= umin_val; 13216 dst_reg->umax_value *= umax_val; 13217 if (dst_reg->umax_value > S64_MAX) { 13218 /* Overflow possible, we know nothing */ 13219 dst_reg->smin_value = S64_MIN; 13220 dst_reg->smax_value = S64_MAX; 13221 } else { 13222 dst_reg->smin_value = dst_reg->umin_value; 13223 dst_reg->smax_value = dst_reg->umax_value; 13224 } 13225 } 13226 13227 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 13228 struct bpf_reg_state *src_reg) 13229 { 13230 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13231 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13232 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13233 s32 smin_val = src_reg->s32_min_value; 13234 u32 umax_val = src_reg->u32_max_value; 13235 13236 if (src_known && dst_known) { 13237 __mark_reg32_known(dst_reg, var32_off.value); 13238 return; 13239 } 13240 13241 /* We get our minimum from the var_off, since that's inherently 13242 * bitwise. Our maximum is the minimum of the operands' maxima. 13243 */ 13244 dst_reg->u32_min_value = var32_off.value; 13245 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 13246 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 13247 /* Lose signed bounds when ANDing negative numbers, 13248 * ain't nobody got time for that. 13249 */ 13250 dst_reg->s32_min_value = S32_MIN; 13251 dst_reg->s32_max_value = S32_MAX; 13252 } else { 13253 /* ANDing two positives gives a positive, so safe to 13254 * cast result into s64. 13255 */ 13256 dst_reg->s32_min_value = dst_reg->u32_min_value; 13257 dst_reg->s32_max_value = dst_reg->u32_max_value; 13258 } 13259 } 13260 13261 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 13262 struct bpf_reg_state *src_reg) 13263 { 13264 bool src_known = tnum_is_const(src_reg->var_off); 13265 bool dst_known = tnum_is_const(dst_reg->var_off); 13266 s64 smin_val = src_reg->smin_value; 13267 u64 umax_val = src_reg->umax_value; 13268 13269 if (src_known && dst_known) { 13270 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13271 return; 13272 } 13273 13274 /* We get our minimum from the var_off, since that's inherently 13275 * bitwise. Our maximum is the minimum of the operands' maxima. 13276 */ 13277 dst_reg->umin_value = dst_reg->var_off.value; 13278 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 13279 if (dst_reg->smin_value < 0 || smin_val < 0) { 13280 /* Lose signed bounds when ANDing negative numbers, 13281 * ain't nobody got time for that. 13282 */ 13283 dst_reg->smin_value = S64_MIN; 13284 dst_reg->smax_value = S64_MAX; 13285 } else { 13286 /* ANDing two positives gives a positive, so safe to 13287 * cast result into s64. 13288 */ 13289 dst_reg->smin_value = dst_reg->umin_value; 13290 dst_reg->smax_value = dst_reg->umax_value; 13291 } 13292 /* We may learn something more from the var_off */ 13293 __update_reg_bounds(dst_reg); 13294 } 13295 13296 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 13297 struct bpf_reg_state *src_reg) 13298 { 13299 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13300 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13301 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13302 s32 smin_val = src_reg->s32_min_value; 13303 u32 umin_val = src_reg->u32_min_value; 13304 13305 if (src_known && dst_known) { 13306 __mark_reg32_known(dst_reg, var32_off.value); 13307 return; 13308 } 13309 13310 /* We get our maximum from the var_off, and our minimum is the 13311 * maximum of the operands' minima 13312 */ 13313 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 13314 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13315 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 13316 /* Lose signed bounds when ORing negative numbers, 13317 * ain't nobody got time for that. 13318 */ 13319 dst_reg->s32_min_value = S32_MIN; 13320 dst_reg->s32_max_value = S32_MAX; 13321 } else { 13322 /* ORing two positives gives a positive, so safe to 13323 * cast result into s64. 13324 */ 13325 dst_reg->s32_min_value = dst_reg->u32_min_value; 13326 dst_reg->s32_max_value = dst_reg->u32_max_value; 13327 } 13328 } 13329 13330 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 13331 struct bpf_reg_state *src_reg) 13332 { 13333 bool src_known = tnum_is_const(src_reg->var_off); 13334 bool dst_known = tnum_is_const(dst_reg->var_off); 13335 s64 smin_val = src_reg->smin_value; 13336 u64 umin_val = src_reg->umin_value; 13337 13338 if (src_known && dst_known) { 13339 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13340 return; 13341 } 13342 13343 /* We get our maximum from the var_off, and our minimum is the 13344 * maximum of the operands' minima 13345 */ 13346 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 13347 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13348 if (dst_reg->smin_value < 0 || smin_val < 0) { 13349 /* Lose signed bounds when ORing negative numbers, 13350 * ain't nobody got time for that. 13351 */ 13352 dst_reg->smin_value = S64_MIN; 13353 dst_reg->smax_value = S64_MAX; 13354 } else { 13355 /* ORing two positives gives a positive, so safe to 13356 * cast result into s64. 13357 */ 13358 dst_reg->smin_value = dst_reg->umin_value; 13359 dst_reg->smax_value = dst_reg->umax_value; 13360 } 13361 /* We may learn something more from the var_off */ 13362 __update_reg_bounds(dst_reg); 13363 } 13364 13365 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 13366 struct bpf_reg_state *src_reg) 13367 { 13368 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13369 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13370 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13371 s32 smin_val = src_reg->s32_min_value; 13372 13373 if (src_known && dst_known) { 13374 __mark_reg32_known(dst_reg, var32_off.value); 13375 return; 13376 } 13377 13378 /* We get both minimum and maximum from the var32_off. */ 13379 dst_reg->u32_min_value = var32_off.value; 13380 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13381 13382 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 13383 /* XORing two positive sign numbers gives a positive, 13384 * so safe to cast u32 result into s32. 13385 */ 13386 dst_reg->s32_min_value = dst_reg->u32_min_value; 13387 dst_reg->s32_max_value = dst_reg->u32_max_value; 13388 } else { 13389 dst_reg->s32_min_value = S32_MIN; 13390 dst_reg->s32_max_value = S32_MAX; 13391 } 13392 } 13393 13394 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 13395 struct bpf_reg_state *src_reg) 13396 { 13397 bool src_known = tnum_is_const(src_reg->var_off); 13398 bool dst_known = tnum_is_const(dst_reg->var_off); 13399 s64 smin_val = src_reg->smin_value; 13400 13401 if (src_known && dst_known) { 13402 /* dst_reg->var_off.value has been updated earlier */ 13403 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13404 return; 13405 } 13406 13407 /* We get both minimum and maximum from the var_off. */ 13408 dst_reg->umin_value = dst_reg->var_off.value; 13409 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13410 13411 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 13412 /* XORing two positive sign numbers gives a positive, 13413 * so safe to cast u64 result into s64. 13414 */ 13415 dst_reg->smin_value = dst_reg->umin_value; 13416 dst_reg->smax_value = dst_reg->umax_value; 13417 } else { 13418 dst_reg->smin_value = S64_MIN; 13419 dst_reg->smax_value = S64_MAX; 13420 } 13421 13422 __update_reg_bounds(dst_reg); 13423 } 13424 13425 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13426 u64 umin_val, u64 umax_val) 13427 { 13428 /* We lose all sign bit information (except what we can pick 13429 * up from var_off) 13430 */ 13431 dst_reg->s32_min_value = S32_MIN; 13432 dst_reg->s32_max_value = S32_MAX; 13433 /* If we might shift our top bit out, then we know nothing */ 13434 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 13435 dst_reg->u32_min_value = 0; 13436 dst_reg->u32_max_value = U32_MAX; 13437 } else { 13438 dst_reg->u32_min_value <<= umin_val; 13439 dst_reg->u32_max_value <<= umax_val; 13440 } 13441 } 13442 13443 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13444 struct bpf_reg_state *src_reg) 13445 { 13446 u32 umax_val = src_reg->u32_max_value; 13447 u32 umin_val = src_reg->u32_min_value; 13448 /* u32 alu operation will zext upper bits */ 13449 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13450 13451 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13452 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 13453 /* Not required but being careful mark reg64 bounds as unknown so 13454 * that we are forced to pick them up from tnum and zext later and 13455 * if some path skips this step we are still safe. 13456 */ 13457 __mark_reg64_unbounded(dst_reg); 13458 __update_reg32_bounds(dst_reg); 13459 } 13460 13461 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 13462 u64 umin_val, u64 umax_val) 13463 { 13464 /* Special case <<32 because it is a common compiler pattern to sign 13465 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 13466 * positive we know this shift will also be positive so we can track 13467 * bounds correctly. Otherwise we lose all sign bit information except 13468 * what we can pick up from var_off. Perhaps we can generalize this 13469 * later to shifts of any length. 13470 */ 13471 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 13472 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 13473 else 13474 dst_reg->smax_value = S64_MAX; 13475 13476 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 13477 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 13478 else 13479 dst_reg->smin_value = S64_MIN; 13480 13481 /* If we might shift our top bit out, then we know nothing */ 13482 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 13483 dst_reg->umin_value = 0; 13484 dst_reg->umax_value = U64_MAX; 13485 } else { 13486 dst_reg->umin_value <<= umin_val; 13487 dst_reg->umax_value <<= umax_val; 13488 } 13489 } 13490 13491 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 13492 struct bpf_reg_state *src_reg) 13493 { 13494 u64 umax_val = src_reg->umax_value; 13495 u64 umin_val = src_reg->umin_value; 13496 13497 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 13498 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 13499 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13500 13501 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 13502 /* We may learn something more from the var_off */ 13503 __update_reg_bounds(dst_reg); 13504 } 13505 13506 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 13507 struct bpf_reg_state *src_reg) 13508 { 13509 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13510 u32 umax_val = src_reg->u32_max_value; 13511 u32 umin_val = src_reg->u32_min_value; 13512 13513 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13514 * be negative, then either: 13515 * 1) src_reg might be zero, so the sign bit of the result is 13516 * unknown, so we lose our signed bounds 13517 * 2) it's known negative, thus the unsigned bounds capture the 13518 * signed bounds 13519 * 3) the signed bounds cross zero, so they tell us nothing 13520 * about the result 13521 * If the value in dst_reg is known nonnegative, then again the 13522 * unsigned bounds capture the signed bounds. 13523 * Thus, in all cases it suffices to blow away our signed bounds 13524 * and rely on inferring new ones from the unsigned bounds and 13525 * var_off of the result. 13526 */ 13527 dst_reg->s32_min_value = S32_MIN; 13528 dst_reg->s32_max_value = S32_MAX; 13529 13530 dst_reg->var_off = tnum_rshift(subreg, umin_val); 13531 dst_reg->u32_min_value >>= umax_val; 13532 dst_reg->u32_max_value >>= umin_val; 13533 13534 __mark_reg64_unbounded(dst_reg); 13535 __update_reg32_bounds(dst_reg); 13536 } 13537 13538 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 13539 struct bpf_reg_state *src_reg) 13540 { 13541 u64 umax_val = src_reg->umax_value; 13542 u64 umin_val = src_reg->umin_value; 13543 13544 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13545 * be negative, then either: 13546 * 1) src_reg might be zero, so the sign bit of the result is 13547 * unknown, so we lose our signed bounds 13548 * 2) it's known negative, thus the unsigned bounds capture the 13549 * signed bounds 13550 * 3) the signed bounds cross zero, so they tell us nothing 13551 * about the result 13552 * If the value in dst_reg is known nonnegative, then again the 13553 * unsigned bounds capture the signed bounds. 13554 * Thus, in all cases it suffices to blow away our signed bounds 13555 * and rely on inferring new ones from the unsigned bounds and 13556 * var_off of the result. 13557 */ 13558 dst_reg->smin_value = S64_MIN; 13559 dst_reg->smax_value = S64_MAX; 13560 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 13561 dst_reg->umin_value >>= umax_val; 13562 dst_reg->umax_value >>= umin_val; 13563 13564 /* Its not easy to operate on alu32 bounds here because it depends 13565 * on bits being shifted in. Take easy way out and mark unbounded 13566 * so we can recalculate later from tnum. 13567 */ 13568 __mark_reg32_unbounded(dst_reg); 13569 __update_reg_bounds(dst_reg); 13570 } 13571 13572 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 13573 struct bpf_reg_state *src_reg) 13574 { 13575 u64 umin_val = src_reg->u32_min_value; 13576 13577 /* Upon reaching here, src_known is true and 13578 * umax_val is equal to umin_val. 13579 */ 13580 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 13581 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 13582 13583 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 13584 13585 /* blow away the dst_reg umin_value/umax_value and rely on 13586 * dst_reg var_off to refine the result. 13587 */ 13588 dst_reg->u32_min_value = 0; 13589 dst_reg->u32_max_value = U32_MAX; 13590 13591 __mark_reg64_unbounded(dst_reg); 13592 __update_reg32_bounds(dst_reg); 13593 } 13594 13595 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 13596 struct bpf_reg_state *src_reg) 13597 { 13598 u64 umin_val = src_reg->umin_value; 13599 13600 /* Upon reaching here, src_known is true and umax_val is equal 13601 * to umin_val. 13602 */ 13603 dst_reg->smin_value >>= umin_val; 13604 dst_reg->smax_value >>= umin_val; 13605 13606 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 13607 13608 /* blow away the dst_reg umin_value/umax_value and rely on 13609 * dst_reg var_off to refine the result. 13610 */ 13611 dst_reg->umin_value = 0; 13612 dst_reg->umax_value = U64_MAX; 13613 13614 /* Its not easy to operate on alu32 bounds here because it depends 13615 * on bits being shifted in from upper 32-bits. Take easy way out 13616 * and mark unbounded so we can recalculate later from tnum. 13617 */ 13618 __mark_reg32_unbounded(dst_reg); 13619 __update_reg_bounds(dst_reg); 13620 } 13621 13622 /* WARNING: This function does calculations on 64-bit values, but the actual 13623 * execution may occur on 32-bit values. Therefore, things like bitshifts 13624 * need extra checks in the 32-bit case. 13625 */ 13626 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 13627 struct bpf_insn *insn, 13628 struct bpf_reg_state *dst_reg, 13629 struct bpf_reg_state src_reg) 13630 { 13631 struct bpf_reg_state *regs = cur_regs(env); 13632 u8 opcode = BPF_OP(insn->code); 13633 bool src_known; 13634 s64 smin_val, smax_val; 13635 u64 umin_val, umax_val; 13636 s32 s32_min_val, s32_max_val; 13637 u32 u32_min_val, u32_max_val; 13638 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 13639 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 13640 int ret; 13641 13642 smin_val = src_reg.smin_value; 13643 smax_val = src_reg.smax_value; 13644 umin_val = src_reg.umin_value; 13645 umax_val = src_reg.umax_value; 13646 13647 s32_min_val = src_reg.s32_min_value; 13648 s32_max_val = src_reg.s32_max_value; 13649 u32_min_val = src_reg.u32_min_value; 13650 u32_max_val = src_reg.u32_max_value; 13651 13652 if (alu32) { 13653 src_known = tnum_subreg_is_const(src_reg.var_off); 13654 if ((src_known && 13655 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 13656 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 13657 /* Taint dst register if offset had invalid bounds 13658 * derived from e.g. dead branches. 13659 */ 13660 __mark_reg_unknown(env, dst_reg); 13661 return 0; 13662 } 13663 } else { 13664 src_known = tnum_is_const(src_reg.var_off); 13665 if ((src_known && 13666 (smin_val != smax_val || umin_val != umax_val)) || 13667 smin_val > smax_val || umin_val > umax_val) { 13668 /* Taint dst register if offset had invalid bounds 13669 * derived from e.g. dead branches. 13670 */ 13671 __mark_reg_unknown(env, dst_reg); 13672 return 0; 13673 } 13674 } 13675 13676 if (!src_known && 13677 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 13678 __mark_reg_unknown(env, dst_reg); 13679 return 0; 13680 } 13681 13682 if (sanitize_needed(opcode)) { 13683 ret = sanitize_val_alu(env, insn); 13684 if (ret < 0) 13685 return sanitize_err(env, insn, ret, NULL, NULL); 13686 } 13687 13688 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 13689 * There are two classes of instructions: The first class we track both 13690 * alu32 and alu64 sign/unsigned bounds independently this provides the 13691 * greatest amount of precision when alu operations are mixed with jmp32 13692 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 13693 * and BPF_OR. This is possible because these ops have fairly easy to 13694 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 13695 * See alu32 verifier tests for examples. The second class of 13696 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 13697 * with regards to tracking sign/unsigned bounds because the bits may 13698 * cross subreg boundaries in the alu64 case. When this happens we mark 13699 * the reg unbounded in the subreg bound space and use the resulting 13700 * tnum to calculate an approximation of the sign/unsigned bounds. 13701 */ 13702 switch (opcode) { 13703 case BPF_ADD: 13704 scalar32_min_max_add(dst_reg, &src_reg); 13705 scalar_min_max_add(dst_reg, &src_reg); 13706 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 13707 break; 13708 case BPF_SUB: 13709 scalar32_min_max_sub(dst_reg, &src_reg); 13710 scalar_min_max_sub(dst_reg, &src_reg); 13711 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 13712 break; 13713 case BPF_MUL: 13714 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 13715 scalar32_min_max_mul(dst_reg, &src_reg); 13716 scalar_min_max_mul(dst_reg, &src_reg); 13717 break; 13718 case BPF_AND: 13719 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 13720 scalar32_min_max_and(dst_reg, &src_reg); 13721 scalar_min_max_and(dst_reg, &src_reg); 13722 break; 13723 case BPF_OR: 13724 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 13725 scalar32_min_max_or(dst_reg, &src_reg); 13726 scalar_min_max_or(dst_reg, &src_reg); 13727 break; 13728 case BPF_XOR: 13729 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 13730 scalar32_min_max_xor(dst_reg, &src_reg); 13731 scalar_min_max_xor(dst_reg, &src_reg); 13732 break; 13733 case BPF_LSH: 13734 if (umax_val >= insn_bitness) { 13735 /* Shifts greater than 31 or 63 are undefined. 13736 * This includes shifts by a negative number. 13737 */ 13738 mark_reg_unknown(env, regs, insn->dst_reg); 13739 break; 13740 } 13741 if (alu32) 13742 scalar32_min_max_lsh(dst_reg, &src_reg); 13743 else 13744 scalar_min_max_lsh(dst_reg, &src_reg); 13745 break; 13746 case BPF_RSH: 13747 if (umax_val >= insn_bitness) { 13748 /* Shifts greater than 31 or 63 are undefined. 13749 * This includes shifts by a negative number. 13750 */ 13751 mark_reg_unknown(env, regs, insn->dst_reg); 13752 break; 13753 } 13754 if (alu32) 13755 scalar32_min_max_rsh(dst_reg, &src_reg); 13756 else 13757 scalar_min_max_rsh(dst_reg, &src_reg); 13758 break; 13759 case BPF_ARSH: 13760 if (umax_val >= insn_bitness) { 13761 /* Shifts greater than 31 or 63 are undefined. 13762 * This includes shifts by a negative number. 13763 */ 13764 mark_reg_unknown(env, regs, insn->dst_reg); 13765 break; 13766 } 13767 if (alu32) 13768 scalar32_min_max_arsh(dst_reg, &src_reg); 13769 else 13770 scalar_min_max_arsh(dst_reg, &src_reg); 13771 break; 13772 default: 13773 mark_reg_unknown(env, regs, insn->dst_reg); 13774 break; 13775 } 13776 13777 /* ALU32 ops are zero extended into 64bit register */ 13778 if (alu32) 13779 zext_32_to_64(dst_reg); 13780 reg_bounds_sync(dst_reg); 13781 return 0; 13782 } 13783 13784 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 13785 * and var_off. 13786 */ 13787 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 13788 struct bpf_insn *insn) 13789 { 13790 struct bpf_verifier_state *vstate = env->cur_state; 13791 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13792 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 13793 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 13794 u8 opcode = BPF_OP(insn->code); 13795 int err; 13796 13797 dst_reg = ®s[insn->dst_reg]; 13798 src_reg = NULL; 13799 if (dst_reg->type != SCALAR_VALUE) 13800 ptr_reg = dst_reg; 13801 else 13802 /* Make sure ID is cleared otherwise dst_reg min/max could be 13803 * incorrectly propagated into other registers by find_equal_scalars() 13804 */ 13805 dst_reg->id = 0; 13806 if (BPF_SRC(insn->code) == BPF_X) { 13807 src_reg = ®s[insn->src_reg]; 13808 if (src_reg->type != SCALAR_VALUE) { 13809 if (dst_reg->type != SCALAR_VALUE) { 13810 /* Combining two pointers by any ALU op yields 13811 * an arbitrary scalar. Disallow all math except 13812 * pointer subtraction 13813 */ 13814 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13815 mark_reg_unknown(env, regs, insn->dst_reg); 13816 return 0; 13817 } 13818 verbose(env, "R%d pointer %s pointer prohibited\n", 13819 insn->dst_reg, 13820 bpf_alu_string[opcode >> 4]); 13821 return -EACCES; 13822 } else { 13823 /* scalar += pointer 13824 * This is legal, but we have to reverse our 13825 * src/dest handling in computing the range 13826 */ 13827 err = mark_chain_precision(env, insn->dst_reg); 13828 if (err) 13829 return err; 13830 return adjust_ptr_min_max_vals(env, insn, 13831 src_reg, dst_reg); 13832 } 13833 } else if (ptr_reg) { 13834 /* pointer += scalar */ 13835 err = mark_chain_precision(env, insn->src_reg); 13836 if (err) 13837 return err; 13838 return adjust_ptr_min_max_vals(env, insn, 13839 dst_reg, src_reg); 13840 } else if (dst_reg->precise) { 13841 /* if dst_reg is precise, src_reg should be precise as well */ 13842 err = mark_chain_precision(env, insn->src_reg); 13843 if (err) 13844 return err; 13845 } 13846 } else { 13847 /* Pretend the src is a reg with a known value, since we only 13848 * need to be able to read from this state. 13849 */ 13850 off_reg.type = SCALAR_VALUE; 13851 __mark_reg_known(&off_reg, insn->imm); 13852 src_reg = &off_reg; 13853 if (ptr_reg) /* pointer += K */ 13854 return adjust_ptr_min_max_vals(env, insn, 13855 ptr_reg, src_reg); 13856 } 13857 13858 /* Got here implies adding two SCALAR_VALUEs */ 13859 if (WARN_ON_ONCE(ptr_reg)) { 13860 print_verifier_state(env, state, true); 13861 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13862 return -EINVAL; 13863 } 13864 if (WARN_ON(!src_reg)) { 13865 print_verifier_state(env, state, true); 13866 verbose(env, "verifier internal error: no src_reg\n"); 13867 return -EINVAL; 13868 } 13869 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13870 } 13871 13872 /* check validity of 32-bit and 64-bit arithmetic operations */ 13873 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13874 { 13875 struct bpf_reg_state *regs = cur_regs(env); 13876 u8 opcode = BPF_OP(insn->code); 13877 int err; 13878 13879 if (opcode == BPF_END || opcode == BPF_NEG) { 13880 if (opcode == BPF_NEG) { 13881 if (BPF_SRC(insn->code) != BPF_K || 13882 insn->src_reg != BPF_REG_0 || 13883 insn->off != 0 || insn->imm != 0) { 13884 verbose(env, "BPF_NEG uses reserved fields\n"); 13885 return -EINVAL; 13886 } 13887 } else { 13888 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13889 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13890 (BPF_CLASS(insn->code) == BPF_ALU64 && 13891 BPF_SRC(insn->code) != BPF_TO_LE)) { 13892 verbose(env, "BPF_END uses reserved fields\n"); 13893 return -EINVAL; 13894 } 13895 } 13896 13897 /* check src operand */ 13898 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13899 if (err) 13900 return err; 13901 13902 if (is_pointer_value(env, insn->dst_reg)) { 13903 verbose(env, "R%d pointer arithmetic prohibited\n", 13904 insn->dst_reg); 13905 return -EACCES; 13906 } 13907 13908 /* check dest operand */ 13909 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13910 if (err) 13911 return err; 13912 13913 } else if (opcode == BPF_MOV) { 13914 13915 if (BPF_SRC(insn->code) == BPF_X) { 13916 if (insn->imm != 0) { 13917 verbose(env, "BPF_MOV uses reserved fields\n"); 13918 return -EINVAL; 13919 } 13920 13921 if (BPF_CLASS(insn->code) == BPF_ALU) { 13922 if (insn->off != 0 && insn->off != 8 && insn->off != 16) { 13923 verbose(env, "BPF_MOV uses reserved fields\n"); 13924 return -EINVAL; 13925 } 13926 } else { 13927 if (insn->off != 0 && insn->off != 8 && insn->off != 16 && 13928 insn->off != 32) { 13929 verbose(env, "BPF_MOV uses reserved fields\n"); 13930 return -EINVAL; 13931 } 13932 } 13933 13934 /* check src operand */ 13935 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13936 if (err) 13937 return err; 13938 } else { 13939 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13940 verbose(env, "BPF_MOV uses reserved fields\n"); 13941 return -EINVAL; 13942 } 13943 } 13944 13945 /* check dest operand, mark as required later */ 13946 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13947 if (err) 13948 return err; 13949 13950 if (BPF_SRC(insn->code) == BPF_X) { 13951 struct bpf_reg_state *src_reg = regs + insn->src_reg; 13952 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 13953 13954 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13955 if (insn->off == 0) { 13956 /* case: R1 = R2 13957 * copy register state to dest reg 13958 */ 13959 assign_scalar_id_before_mov(env, src_reg); 13960 copy_register_state(dst_reg, src_reg); 13961 dst_reg->live |= REG_LIVE_WRITTEN; 13962 dst_reg->subreg_def = DEF_NOT_SUBREG; 13963 } else { 13964 /* case: R1 = (s8, s16 s32)R2 */ 13965 if (is_pointer_value(env, insn->src_reg)) { 13966 verbose(env, 13967 "R%d sign-extension part of pointer\n", 13968 insn->src_reg); 13969 return -EACCES; 13970 } else if (src_reg->type == SCALAR_VALUE) { 13971 bool no_sext; 13972 13973 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13974 if (no_sext) 13975 assign_scalar_id_before_mov(env, src_reg); 13976 copy_register_state(dst_reg, src_reg); 13977 if (!no_sext) 13978 dst_reg->id = 0; 13979 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 13980 dst_reg->live |= REG_LIVE_WRITTEN; 13981 dst_reg->subreg_def = DEF_NOT_SUBREG; 13982 } else { 13983 mark_reg_unknown(env, regs, insn->dst_reg); 13984 } 13985 } 13986 } else { 13987 /* R1 = (u32) R2 */ 13988 if (is_pointer_value(env, insn->src_reg)) { 13989 verbose(env, 13990 "R%d partial copy of pointer\n", 13991 insn->src_reg); 13992 return -EACCES; 13993 } else if (src_reg->type == SCALAR_VALUE) { 13994 if (insn->off == 0) { 13995 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; 13996 13997 if (is_src_reg_u32) 13998 assign_scalar_id_before_mov(env, src_reg); 13999 copy_register_state(dst_reg, src_reg); 14000 /* Make sure ID is cleared if src_reg is not in u32 14001 * range otherwise dst_reg min/max could be incorrectly 14002 * propagated into src_reg by find_equal_scalars() 14003 */ 14004 if (!is_src_reg_u32) 14005 dst_reg->id = 0; 14006 dst_reg->live |= REG_LIVE_WRITTEN; 14007 dst_reg->subreg_def = env->insn_idx + 1; 14008 } else { 14009 /* case: W1 = (s8, s16)W2 */ 14010 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 14011 14012 if (no_sext) 14013 assign_scalar_id_before_mov(env, src_reg); 14014 copy_register_state(dst_reg, src_reg); 14015 if (!no_sext) 14016 dst_reg->id = 0; 14017 dst_reg->live |= REG_LIVE_WRITTEN; 14018 dst_reg->subreg_def = env->insn_idx + 1; 14019 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 14020 } 14021 } else { 14022 mark_reg_unknown(env, regs, 14023 insn->dst_reg); 14024 } 14025 zext_32_to_64(dst_reg); 14026 reg_bounds_sync(dst_reg); 14027 } 14028 } else { 14029 /* case: R = imm 14030 * remember the value we stored into this reg 14031 */ 14032 /* clear any state __mark_reg_known doesn't set */ 14033 mark_reg_unknown(env, regs, insn->dst_reg); 14034 regs[insn->dst_reg].type = SCALAR_VALUE; 14035 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14036 __mark_reg_known(regs + insn->dst_reg, 14037 insn->imm); 14038 } else { 14039 __mark_reg_known(regs + insn->dst_reg, 14040 (u32)insn->imm); 14041 } 14042 } 14043 14044 } else if (opcode > BPF_END) { 14045 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 14046 return -EINVAL; 14047 14048 } else { /* all other ALU ops: and, sub, xor, add, ... */ 14049 14050 if (BPF_SRC(insn->code) == BPF_X) { 14051 if (insn->imm != 0 || insn->off > 1 || 14052 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14053 verbose(env, "BPF_ALU uses reserved fields\n"); 14054 return -EINVAL; 14055 } 14056 /* check src1 operand */ 14057 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14058 if (err) 14059 return err; 14060 } else { 14061 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 14062 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14063 verbose(env, "BPF_ALU uses reserved fields\n"); 14064 return -EINVAL; 14065 } 14066 } 14067 14068 /* check src2 operand */ 14069 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14070 if (err) 14071 return err; 14072 14073 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 14074 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 14075 verbose(env, "div by zero\n"); 14076 return -EINVAL; 14077 } 14078 14079 if ((opcode == BPF_LSH || opcode == BPF_RSH || 14080 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 14081 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 14082 14083 if (insn->imm < 0 || insn->imm >= size) { 14084 verbose(env, "invalid shift %d\n", insn->imm); 14085 return -EINVAL; 14086 } 14087 } 14088 14089 /* check dest operand */ 14090 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14091 err = err ?: adjust_reg_min_max_vals(env, insn); 14092 if (err) 14093 return err; 14094 } 14095 14096 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 14097 } 14098 14099 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 14100 struct bpf_reg_state *dst_reg, 14101 enum bpf_reg_type type, 14102 bool range_right_open) 14103 { 14104 struct bpf_func_state *state; 14105 struct bpf_reg_state *reg; 14106 int new_range; 14107 14108 if (dst_reg->off < 0 || 14109 (dst_reg->off == 0 && range_right_open)) 14110 /* This doesn't give us any range */ 14111 return; 14112 14113 if (dst_reg->umax_value > MAX_PACKET_OFF || 14114 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 14115 /* Risk of overflow. For instance, ptr + (1<<63) may be less 14116 * than pkt_end, but that's because it's also less than pkt. 14117 */ 14118 return; 14119 14120 new_range = dst_reg->off; 14121 if (range_right_open) 14122 new_range++; 14123 14124 /* Examples for register markings: 14125 * 14126 * pkt_data in dst register: 14127 * 14128 * r2 = r3; 14129 * r2 += 8; 14130 * if (r2 > pkt_end) goto <handle exception> 14131 * <access okay> 14132 * 14133 * r2 = r3; 14134 * r2 += 8; 14135 * if (r2 < pkt_end) goto <access okay> 14136 * <handle exception> 14137 * 14138 * Where: 14139 * r2 == dst_reg, pkt_end == src_reg 14140 * r2=pkt(id=n,off=8,r=0) 14141 * r3=pkt(id=n,off=0,r=0) 14142 * 14143 * pkt_data in src register: 14144 * 14145 * r2 = r3; 14146 * r2 += 8; 14147 * if (pkt_end >= r2) goto <access okay> 14148 * <handle exception> 14149 * 14150 * r2 = r3; 14151 * r2 += 8; 14152 * if (pkt_end <= r2) goto <handle exception> 14153 * <access okay> 14154 * 14155 * Where: 14156 * pkt_end == dst_reg, r2 == src_reg 14157 * r2=pkt(id=n,off=8,r=0) 14158 * r3=pkt(id=n,off=0,r=0) 14159 * 14160 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 14161 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 14162 * and [r3, r3 + 8-1) respectively is safe to access depending on 14163 * the check. 14164 */ 14165 14166 /* If our ids match, then we must have the same max_value. And we 14167 * don't care about the other reg's fixed offset, since if it's too big 14168 * the range won't allow anything. 14169 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 14170 */ 14171 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14172 if (reg->type == type && reg->id == dst_reg->id) 14173 /* keep the maximum range already checked */ 14174 reg->range = max(reg->range, new_range); 14175 })); 14176 } 14177 14178 /* 14179 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 14180 */ 14181 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14182 u8 opcode, bool is_jmp32) 14183 { 14184 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 14185 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 14186 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 14187 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 14188 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 14189 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 14190 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 14191 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 14192 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 14193 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 14194 14195 switch (opcode) { 14196 case BPF_JEQ: 14197 /* constants, umin/umax and smin/smax checks would be 14198 * redundant in this case because they all should match 14199 */ 14200 if (tnum_is_const(t1) && tnum_is_const(t2)) 14201 return t1.value == t2.value; 14202 /* non-overlapping ranges */ 14203 if (umin1 > umax2 || umax1 < umin2) 14204 return 0; 14205 if (smin1 > smax2 || smax1 < smin2) 14206 return 0; 14207 if (!is_jmp32) { 14208 /* if 64-bit ranges are inconclusive, see if we can 14209 * utilize 32-bit subrange knowledge to eliminate 14210 * branches that can't be taken a priori 14211 */ 14212 if (reg1->u32_min_value > reg2->u32_max_value || 14213 reg1->u32_max_value < reg2->u32_min_value) 14214 return 0; 14215 if (reg1->s32_min_value > reg2->s32_max_value || 14216 reg1->s32_max_value < reg2->s32_min_value) 14217 return 0; 14218 } 14219 break; 14220 case BPF_JNE: 14221 /* constants, umin/umax and smin/smax checks would be 14222 * redundant in this case because they all should match 14223 */ 14224 if (tnum_is_const(t1) && tnum_is_const(t2)) 14225 return t1.value != t2.value; 14226 /* non-overlapping ranges */ 14227 if (umin1 > umax2 || umax1 < umin2) 14228 return 1; 14229 if (smin1 > smax2 || smax1 < smin2) 14230 return 1; 14231 if (!is_jmp32) { 14232 /* if 64-bit ranges are inconclusive, see if we can 14233 * utilize 32-bit subrange knowledge to eliminate 14234 * branches that can't be taken a priori 14235 */ 14236 if (reg1->u32_min_value > reg2->u32_max_value || 14237 reg1->u32_max_value < reg2->u32_min_value) 14238 return 1; 14239 if (reg1->s32_min_value > reg2->s32_max_value || 14240 reg1->s32_max_value < reg2->s32_min_value) 14241 return 1; 14242 } 14243 break; 14244 case BPF_JSET: 14245 if (!is_reg_const(reg2, is_jmp32)) { 14246 swap(reg1, reg2); 14247 swap(t1, t2); 14248 } 14249 if (!is_reg_const(reg2, is_jmp32)) 14250 return -1; 14251 if ((~t1.mask & t1.value) & t2.value) 14252 return 1; 14253 if (!((t1.mask | t1.value) & t2.value)) 14254 return 0; 14255 break; 14256 case BPF_JGT: 14257 if (umin1 > umax2) 14258 return 1; 14259 else if (umax1 <= umin2) 14260 return 0; 14261 break; 14262 case BPF_JSGT: 14263 if (smin1 > smax2) 14264 return 1; 14265 else if (smax1 <= smin2) 14266 return 0; 14267 break; 14268 case BPF_JLT: 14269 if (umax1 < umin2) 14270 return 1; 14271 else if (umin1 >= umax2) 14272 return 0; 14273 break; 14274 case BPF_JSLT: 14275 if (smax1 < smin2) 14276 return 1; 14277 else if (smin1 >= smax2) 14278 return 0; 14279 break; 14280 case BPF_JGE: 14281 if (umin1 >= umax2) 14282 return 1; 14283 else if (umax1 < umin2) 14284 return 0; 14285 break; 14286 case BPF_JSGE: 14287 if (smin1 >= smax2) 14288 return 1; 14289 else if (smax1 < smin2) 14290 return 0; 14291 break; 14292 case BPF_JLE: 14293 if (umax1 <= umin2) 14294 return 1; 14295 else if (umin1 > umax2) 14296 return 0; 14297 break; 14298 case BPF_JSLE: 14299 if (smax1 <= smin2) 14300 return 1; 14301 else if (smin1 > smax2) 14302 return 0; 14303 break; 14304 } 14305 14306 return -1; 14307 } 14308 14309 static int flip_opcode(u32 opcode) 14310 { 14311 /* How can we transform "a <op> b" into "b <op> a"? */ 14312 static const u8 opcode_flip[16] = { 14313 /* these stay the same */ 14314 [BPF_JEQ >> 4] = BPF_JEQ, 14315 [BPF_JNE >> 4] = BPF_JNE, 14316 [BPF_JSET >> 4] = BPF_JSET, 14317 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 14318 [BPF_JGE >> 4] = BPF_JLE, 14319 [BPF_JGT >> 4] = BPF_JLT, 14320 [BPF_JLE >> 4] = BPF_JGE, 14321 [BPF_JLT >> 4] = BPF_JGT, 14322 [BPF_JSGE >> 4] = BPF_JSLE, 14323 [BPF_JSGT >> 4] = BPF_JSLT, 14324 [BPF_JSLE >> 4] = BPF_JSGE, 14325 [BPF_JSLT >> 4] = BPF_JSGT 14326 }; 14327 return opcode_flip[opcode >> 4]; 14328 } 14329 14330 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 14331 struct bpf_reg_state *src_reg, 14332 u8 opcode) 14333 { 14334 struct bpf_reg_state *pkt; 14335 14336 if (src_reg->type == PTR_TO_PACKET_END) { 14337 pkt = dst_reg; 14338 } else if (dst_reg->type == PTR_TO_PACKET_END) { 14339 pkt = src_reg; 14340 opcode = flip_opcode(opcode); 14341 } else { 14342 return -1; 14343 } 14344 14345 if (pkt->range >= 0) 14346 return -1; 14347 14348 switch (opcode) { 14349 case BPF_JLE: 14350 /* pkt <= pkt_end */ 14351 fallthrough; 14352 case BPF_JGT: 14353 /* pkt > pkt_end */ 14354 if (pkt->range == BEYOND_PKT_END) 14355 /* pkt has at last one extra byte beyond pkt_end */ 14356 return opcode == BPF_JGT; 14357 break; 14358 case BPF_JLT: 14359 /* pkt < pkt_end */ 14360 fallthrough; 14361 case BPF_JGE: 14362 /* pkt >= pkt_end */ 14363 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 14364 return opcode == BPF_JGE; 14365 break; 14366 } 14367 return -1; 14368 } 14369 14370 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 14371 * and return: 14372 * 1 - branch will be taken and "goto target" will be executed 14373 * 0 - branch will not be taken and fall-through to next insn 14374 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 14375 * range [0,10] 14376 */ 14377 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14378 u8 opcode, bool is_jmp32) 14379 { 14380 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 14381 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 14382 14383 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 14384 u64 val; 14385 14386 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 14387 if (!is_reg_const(reg2, is_jmp32)) { 14388 opcode = flip_opcode(opcode); 14389 swap(reg1, reg2); 14390 } 14391 /* and ensure that reg2 is a constant */ 14392 if (!is_reg_const(reg2, is_jmp32)) 14393 return -1; 14394 14395 if (!reg_not_null(reg1)) 14396 return -1; 14397 14398 /* If pointer is valid tests against zero will fail so we can 14399 * use this to direct branch taken. 14400 */ 14401 val = reg_const_value(reg2, is_jmp32); 14402 if (val != 0) 14403 return -1; 14404 14405 switch (opcode) { 14406 case BPF_JEQ: 14407 return 0; 14408 case BPF_JNE: 14409 return 1; 14410 default: 14411 return -1; 14412 } 14413 } 14414 14415 /* now deal with two scalars, but not necessarily constants */ 14416 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 14417 } 14418 14419 /* Opcode that corresponds to a *false* branch condition. 14420 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 14421 */ 14422 static u8 rev_opcode(u8 opcode) 14423 { 14424 switch (opcode) { 14425 case BPF_JEQ: return BPF_JNE; 14426 case BPF_JNE: return BPF_JEQ; 14427 /* JSET doesn't have it's reverse opcode in BPF, so add 14428 * BPF_X flag to denote the reverse of that operation 14429 */ 14430 case BPF_JSET: return BPF_JSET | BPF_X; 14431 case BPF_JSET | BPF_X: return BPF_JSET; 14432 case BPF_JGE: return BPF_JLT; 14433 case BPF_JGT: return BPF_JLE; 14434 case BPF_JLE: return BPF_JGT; 14435 case BPF_JLT: return BPF_JGE; 14436 case BPF_JSGE: return BPF_JSLT; 14437 case BPF_JSGT: return BPF_JSLE; 14438 case BPF_JSLE: return BPF_JSGT; 14439 case BPF_JSLT: return BPF_JSGE; 14440 default: return 0; 14441 } 14442 } 14443 14444 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 14445 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14446 u8 opcode, bool is_jmp32) 14447 { 14448 struct tnum t; 14449 u64 val; 14450 14451 again: 14452 switch (opcode) { 14453 case BPF_JEQ: 14454 if (is_jmp32) { 14455 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 14456 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 14457 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 14458 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 14459 reg2->u32_min_value = reg1->u32_min_value; 14460 reg2->u32_max_value = reg1->u32_max_value; 14461 reg2->s32_min_value = reg1->s32_min_value; 14462 reg2->s32_max_value = reg1->s32_max_value; 14463 14464 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 14465 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14466 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 14467 } else { 14468 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 14469 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 14470 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 14471 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 14472 reg2->umin_value = reg1->umin_value; 14473 reg2->umax_value = reg1->umax_value; 14474 reg2->smin_value = reg1->smin_value; 14475 reg2->smax_value = reg1->smax_value; 14476 14477 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 14478 reg2->var_off = reg1->var_off; 14479 } 14480 break; 14481 case BPF_JNE: 14482 if (!is_reg_const(reg2, is_jmp32)) 14483 swap(reg1, reg2); 14484 if (!is_reg_const(reg2, is_jmp32)) 14485 break; 14486 14487 /* try to recompute the bound of reg1 if reg2 is a const and 14488 * is exactly the edge of reg1. 14489 */ 14490 val = reg_const_value(reg2, is_jmp32); 14491 if (is_jmp32) { 14492 /* u32_min_value is not equal to 0xffffffff at this point, 14493 * because otherwise u32_max_value is 0xffffffff as well, 14494 * in such a case both reg1 and reg2 would be constants, 14495 * jump would be predicted and reg_set_min_max() won't 14496 * be called. 14497 * 14498 * Same reasoning works for all {u,s}{min,max}{32,64} cases 14499 * below. 14500 */ 14501 if (reg1->u32_min_value == (u32)val) 14502 reg1->u32_min_value++; 14503 if (reg1->u32_max_value == (u32)val) 14504 reg1->u32_max_value--; 14505 if (reg1->s32_min_value == (s32)val) 14506 reg1->s32_min_value++; 14507 if (reg1->s32_max_value == (s32)val) 14508 reg1->s32_max_value--; 14509 } else { 14510 if (reg1->umin_value == (u64)val) 14511 reg1->umin_value++; 14512 if (reg1->umax_value == (u64)val) 14513 reg1->umax_value--; 14514 if (reg1->smin_value == (s64)val) 14515 reg1->smin_value++; 14516 if (reg1->smax_value == (s64)val) 14517 reg1->smax_value--; 14518 } 14519 break; 14520 case BPF_JSET: 14521 if (!is_reg_const(reg2, is_jmp32)) 14522 swap(reg1, reg2); 14523 if (!is_reg_const(reg2, is_jmp32)) 14524 break; 14525 val = reg_const_value(reg2, is_jmp32); 14526 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 14527 * requires single bit to learn something useful. E.g., if we 14528 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 14529 * are actually set? We can learn something definite only if 14530 * it's a single-bit value to begin with. 14531 * 14532 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 14533 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 14534 * bit 1 is set, which we can readily use in adjustments. 14535 */ 14536 if (!is_power_of_2(val)) 14537 break; 14538 if (is_jmp32) { 14539 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 14540 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14541 } else { 14542 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 14543 } 14544 break; 14545 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 14546 if (!is_reg_const(reg2, is_jmp32)) 14547 swap(reg1, reg2); 14548 if (!is_reg_const(reg2, is_jmp32)) 14549 break; 14550 val = reg_const_value(reg2, is_jmp32); 14551 if (is_jmp32) { 14552 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 14553 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14554 } else { 14555 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 14556 } 14557 break; 14558 case BPF_JLE: 14559 if (is_jmp32) { 14560 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 14561 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 14562 } else { 14563 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 14564 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 14565 } 14566 break; 14567 case BPF_JLT: 14568 if (is_jmp32) { 14569 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 14570 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 14571 } else { 14572 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 14573 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 14574 } 14575 break; 14576 case BPF_JSLE: 14577 if (is_jmp32) { 14578 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 14579 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 14580 } else { 14581 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 14582 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 14583 } 14584 break; 14585 case BPF_JSLT: 14586 if (is_jmp32) { 14587 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 14588 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 14589 } else { 14590 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 14591 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 14592 } 14593 break; 14594 case BPF_JGE: 14595 case BPF_JGT: 14596 case BPF_JSGE: 14597 case BPF_JSGT: 14598 /* just reuse LE/LT logic above */ 14599 opcode = flip_opcode(opcode); 14600 swap(reg1, reg2); 14601 goto again; 14602 default: 14603 return; 14604 } 14605 } 14606 14607 /* Adjusts the register min/max values in the case that the dst_reg and 14608 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 14609 * check, in which case we havea fake SCALAR_VALUE representing insn->imm). 14610 * Technically we can do similar adjustments for pointers to the same object, 14611 * but we don't support that right now. 14612 */ 14613 static int reg_set_min_max(struct bpf_verifier_env *env, 14614 struct bpf_reg_state *true_reg1, 14615 struct bpf_reg_state *true_reg2, 14616 struct bpf_reg_state *false_reg1, 14617 struct bpf_reg_state *false_reg2, 14618 u8 opcode, bool is_jmp32) 14619 { 14620 int err; 14621 14622 /* If either register is a pointer, we can't learn anything about its 14623 * variable offset from the compare (unless they were a pointer into 14624 * the same object, but we don't bother with that). 14625 */ 14626 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 14627 return 0; 14628 14629 /* fallthrough (FALSE) branch */ 14630 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 14631 reg_bounds_sync(false_reg1); 14632 reg_bounds_sync(false_reg2); 14633 14634 /* jump (TRUE) branch */ 14635 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 14636 reg_bounds_sync(true_reg1); 14637 reg_bounds_sync(true_reg2); 14638 14639 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 14640 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 14641 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 14642 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 14643 return err; 14644 } 14645 14646 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 14647 struct bpf_reg_state *reg, u32 id, 14648 bool is_null) 14649 { 14650 if (type_may_be_null(reg->type) && reg->id == id && 14651 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 14652 /* Old offset (both fixed and variable parts) should have been 14653 * known-zero, because we don't allow pointer arithmetic on 14654 * pointers that might be NULL. If we see this happening, don't 14655 * convert the register. 14656 * 14657 * But in some cases, some helpers that return local kptrs 14658 * advance offset for the returned pointer. In those cases, it 14659 * is fine to expect to see reg->off. 14660 */ 14661 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 14662 return; 14663 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 14664 WARN_ON_ONCE(reg->off)) 14665 return; 14666 14667 if (is_null) { 14668 reg->type = SCALAR_VALUE; 14669 /* We don't need id and ref_obj_id from this point 14670 * onwards anymore, thus we should better reset it, 14671 * so that state pruning has chances to take effect. 14672 */ 14673 reg->id = 0; 14674 reg->ref_obj_id = 0; 14675 14676 return; 14677 } 14678 14679 mark_ptr_not_null_reg(reg); 14680 14681 if (!reg_may_point_to_spin_lock(reg)) { 14682 /* For not-NULL ptr, reg->ref_obj_id will be reset 14683 * in release_reference(). 14684 * 14685 * reg->id is still used by spin_lock ptr. Other 14686 * than spin_lock ptr type, reg->id can be reset. 14687 */ 14688 reg->id = 0; 14689 } 14690 } 14691 } 14692 14693 /* The logic is similar to find_good_pkt_pointers(), both could eventually 14694 * be folded together at some point. 14695 */ 14696 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 14697 bool is_null) 14698 { 14699 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14700 struct bpf_reg_state *regs = state->regs, *reg; 14701 u32 ref_obj_id = regs[regno].ref_obj_id; 14702 u32 id = regs[regno].id; 14703 14704 if (ref_obj_id && ref_obj_id == id && is_null) 14705 /* regs[regno] is in the " == NULL" branch. 14706 * No one could have freed the reference state before 14707 * doing the NULL check. 14708 */ 14709 WARN_ON_ONCE(release_reference_state(state, id)); 14710 14711 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14712 mark_ptr_or_null_reg(state, reg, id, is_null); 14713 })); 14714 } 14715 14716 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 14717 struct bpf_reg_state *dst_reg, 14718 struct bpf_reg_state *src_reg, 14719 struct bpf_verifier_state *this_branch, 14720 struct bpf_verifier_state *other_branch) 14721 { 14722 if (BPF_SRC(insn->code) != BPF_X) 14723 return false; 14724 14725 /* Pointers are always 64-bit. */ 14726 if (BPF_CLASS(insn->code) == BPF_JMP32) 14727 return false; 14728 14729 switch (BPF_OP(insn->code)) { 14730 case BPF_JGT: 14731 if ((dst_reg->type == PTR_TO_PACKET && 14732 src_reg->type == PTR_TO_PACKET_END) || 14733 (dst_reg->type == PTR_TO_PACKET_META && 14734 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14735 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 14736 find_good_pkt_pointers(this_branch, dst_reg, 14737 dst_reg->type, false); 14738 mark_pkt_end(other_branch, insn->dst_reg, true); 14739 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14740 src_reg->type == PTR_TO_PACKET) || 14741 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14742 src_reg->type == PTR_TO_PACKET_META)) { 14743 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 14744 find_good_pkt_pointers(other_branch, src_reg, 14745 src_reg->type, true); 14746 mark_pkt_end(this_branch, insn->src_reg, false); 14747 } else { 14748 return false; 14749 } 14750 break; 14751 case BPF_JLT: 14752 if ((dst_reg->type == PTR_TO_PACKET && 14753 src_reg->type == PTR_TO_PACKET_END) || 14754 (dst_reg->type == PTR_TO_PACKET_META && 14755 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14756 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 14757 find_good_pkt_pointers(other_branch, dst_reg, 14758 dst_reg->type, true); 14759 mark_pkt_end(this_branch, insn->dst_reg, false); 14760 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14761 src_reg->type == PTR_TO_PACKET) || 14762 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14763 src_reg->type == PTR_TO_PACKET_META)) { 14764 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 14765 find_good_pkt_pointers(this_branch, src_reg, 14766 src_reg->type, false); 14767 mark_pkt_end(other_branch, insn->src_reg, true); 14768 } else { 14769 return false; 14770 } 14771 break; 14772 case BPF_JGE: 14773 if ((dst_reg->type == PTR_TO_PACKET && 14774 src_reg->type == PTR_TO_PACKET_END) || 14775 (dst_reg->type == PTR_TO_PACKET_META && 14776 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14777 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 14778 find_good_pkt_pointers(this_branch, dst_reg, 14779 dst_reg->type, true); 14780 mark_pkt_end(other_branch, insn->dst_reg, false); 14781 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14782 src_reg->type == PTR_TO_PACKET) || 14783 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14784 src_reg->type == PTR_TO_PACKET_META)) { 14785 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 14786 find_good_pkt_pointers(other_branch, src_reg, 14787 src_reg->type, false); 14788 mark_pkt_end(this_branch, insn->src_reg, true); 14789 } else { 14790 return false; 14791 } 14792 break; 14793 case BPF_JLE: 14794 if ((dst_reg->type == PTR_TO_PACKET && 14795 src_reg->type == PTR_TO_PACKET_END) || 14796 (dst_reg->type == PTR_TO_PACKET_META && 14797 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14798 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 14799 find_good_pkt_pointers(other_branch, dst_reg, 14800 dst_reg->type, false); 14801 mark_pkt_end(this_branch, insn->dst_reg, true); 14802 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14803 src_reg->type == PTR_TO_PACKET) || 14804 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14805 src_reg->type == PTR_TO_PACKET_META)) { 14806 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 14807 find_good_pkt_pointers(this_branch, src_reg, 14808 src_reg->type, true); 14809 mark_pkt_end(other_branch, insn->src_reg, false); 14810 } else { 14811 return false; 14812 } 14813 break; 14814 default: 14815 return false; 14816 } 14817 14818 return true; 14819 } 14820 14821 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14822 struct bpf_reg_state *known_reg) 14823 { 14824 struct bpf_func_state *state; 14825 struct bpf_reg_state *reg; 14826 14827 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14828 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14829 copy_register_state(reg, known_reg); 14830 })); 14831 } 14832 14833 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14834 struct bpf_insn *insn, int *insn_idx) 14835 { 14836 struct bpf_verifier_state *this_branch = env->cur_state; 14837 struct bpf_verifier_state *other_branch; 14838 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14839 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14840 struct bpf_reg_state *eq_branch_regs; 14841 struct bpf_reg_state fake_reg = {}; 14842 u8 opcode = BPF_OP(insn->code); 14843 bool is_jmp32; 14844 int pred = -1; 14845 int err; 14846 14847 /* Only conditional jumps are expected to reach here. */ 14848 if (opcode == BPF_JA || opcode > BPF_JSLE) { 14849 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14850 return -EINVAL; 14851 } 14852 14853 /* check src2 operand */ 14854 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14855 if (err) 14856 return err; 14857 14858 dst_reg = ®s[insn->dst_reg]; 14859 if (BPF_SRC(insn->code) == BPF_X) { 14860 if (insn->imm != 0) { 14861 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14862 return -EINVAL; 14863 } 14864 14865 /* check src1 operand */ 14866 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14867 if (err) 14868 return err; 14869 14870 src_reg = ®s[insn->src_reg]; 14871 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 14872 is_pointer_value(env, insn->src_reg)) { 14873 verbose(env, "R%d pointer comparison prohibited\n", 14874 insn->src_reg); 14875 return -EACCES; 14876 } 14877 } else { 14878 if (insn->src_reg != BPF_REG_0) { 14879 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14880 return -EINVAL; 14881 } 14882 src_reg = &fake_reg; 14883 src_reg->type = SCALAR_VALUE; 14884 __mark_reg_known(src_reg, insn->imm); 14885 } 14886 14887 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 14888 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 14889 if (pred >= 0) { 14890 /* If we get here with a dst_reg pointer type it is because 14891 * above is_branch_taken() special cased the 0 comparison. 14892 */ 14893 if (!__is_pointer_value(false, dst_reg)) 14894 err = mark_chain_precision(env, insn->dst_reg); 14895 if (BPF_SRC(insn->code) == BPF_X && !err && 14896 !__is_pointer_value(false, src_reg)) 14897 err = mark_chain_precision(env, insn->src_reg); 14898 if (err) 14899 return err; 14900 } 14901 14902 if (pred == 1) { 14903 /* Only follow the goto, ignore fall-through. If needed, push 14904 * the fall-through branch for simulation under speculative 14905 * execution. 14906 */ 14907 if (!env->bypass_spec_v1 && 14908 !sanitize_speculative_path(env, insn, *insn_idx + 1, 14909 *insn_idx)) 14910 return -EFAULT; 14911 if (env->log.level & BPF_LOG_LEVEL) 14912 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14913 *insn_idx += insn->off; 14914 return 0; 14915 } else if (pred == 0) { 14916 /* Only follow the fall-through branch, since that's where the 14917 * program will go. If needed, push the goto branch for 14918 * simulation under speculative execution. 14919 */ 14920 if (!env->bypass_spec_v1 && 14921 !sanitize_speculative_path(env, insn, 14922 *insn_idx + insn->off + 1, 14923 *insn_idx)) 14924 return -EFAULT; 14925 if (env->log.level & BPF_LOG_LEVEL) 14926 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14927 return 0; 14928 } 14929 14930 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 14931 false); 14932 if (!other_branch) 14933 return -EFAULT; 14934 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 14935 14936 if (BPF_SRC(insn->code) == BPF_X) { 14937 err = reg_set_min_max(env, 14938 &other_branch_regs[insn->dst_reg], 14939 &other_branch_regs[insn->src_reg], 14940 dst_reg, src_reg, opcode, is_jmp32); 14941 } else /* BPF_SRC(insn->code) == BPF_K */ { 14942 err = reg_set_min_max(env, 14943 &other_branch_regs[insn->dst_reg], 14944 src_reg /* fake one */, 14945 dst_reg, src_reg /* same fake one */, 14946 opcode, is_jmp32); 14947 } 14948 if (err) 14949 return err; 14950 14951 if (BPF_SRC(insn->code) == BPF_X && 14952 src_reg->type == SCALAR_VALUE && src_reg->id && 14953 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 14954 find_equal_scalars(this_branch, src_reg); 14955 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 14956 } 14957 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 14958 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 14959 find_equal_scalars(this_branch, dst_reg); 14960 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 14961 } 14962 14963 /* if one pointer register is compared to another pointer 14964 * register check if PTR_MAYBE_NULL could be lifted. 14965 * E.g. register A - maybe null 14966 * register B - not null 14967 * for JNE A, B, ... - A is not null in the false branch; 14968 * for JEQ A, B, ... - A is not null in the true branch. 14969 * 14970 * Since PTR_TO_BTF_ID points to a kernel struct that does 14971 * not need to be null checked by the BPF program, i.e., 14972 * could be null even without PTR_MAYBE_NULL marking, so 14973 * only propagate nullness when neither reg is that type. 14974 */ 14975 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 14976 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 14977 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 14978 base_type(src_reg->type) != PTR_TO_BTF_ID && 14979 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 14980 eq_branch_regs = NULL; 14981 switch (opcode) { 14982 case BPF_JEQ: 14983 eq_branch_regs = other_branch_regs; 14984 break; 14985 case BPF_JNE: 14986 eq_branch_regs = regs; 14987 break; 14988 default: 14989 /* do nothing */ 14990 break; 14991 } 14992 if (eq_branch_regs) { 14993 if (type_may_be_null(src_reg->type)) 14994 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14995 else 14996 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14997 } 14998 } 14999 15000 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 15001 * NOTE: these optimizations below are related with pointer comparison 15002 * which will never be JMP32. 15003 */ 15004 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 15005 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 15006 type_may_be_null(dst_reg->type)) { 15007 /* Mark all identical registers in each branch as either 15008 * safe or unknown depending R == 0 or R != 0 conditional. 15009 */ 15010 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 15011 opcode == BPF_JNE); 15012 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 15013 opcode == BPF_JEQ); 15014 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 15015 this_branch, other_branch) && 15016 is_pointer_value(env, insn->dst_reg)) { 15017 verbose(env, "R%d pointer comparison prohibited\n", 15018 insn->dst_reg); 15019 return -EACCES; 15020 } 15021 if (env->log.level & BPF_LOG_LEVEL) 15022 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15023 return 0; 15024 } 15025 15026 /* verify BPF_LD_IMM64 instruction */ 15027 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 15028 { 15029 struct bpf_insn_aux_data *aux = cur_aux(env); 15030 struct bpf_reg_state *regs = cur_regs(env); 15031 struct bpf_reg_state *dst_reg; 15032 struct bpf_map *map; 15033 int err; 15034 15035 if (BPF_SIZE(insn->code) != BPF_DW) { 15036 verbose(env, "invalid BPF_LD_IMM insn\n"); 15037 return -EINVAL; 15038 } 15039 if (insn->off != 0) { 15040 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 15041 return -EINVAL; 15042 } 15043 15044 err = check_reg_arg(env, insn->dst_reg, DST_OP); 15045 if (err) 15046 return err; 15047 15048 dst_reg = ®s[insn->dst_reg]; 15049 if (insn->src_reg == 0) { 15050 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 15051 15052 dst_reg->type = SCALAR_VALUE; 15053 __mark_reg_known(®s[insn->dst_reg], imm); 15054 return 0; 15055 } 15056 15057 /* All special src_reg cases are listed below. From this point onwards 15058 * we either succeed and assign a corresponding dst_reg->type after 15059 * zeroing the offset, or fail and reject the program. 15060 */ 15061 mark_reg_known_zero(env, regs, insn->dst_reg); 15062 15063 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 15064 dst_reg->type = aux->btf_var.reg_type; 15065 switch (base_type(dst_reg->type)) { 15066 case PTR_TO_MEM: 15067 dst_reg->mem_size = aux->btf_var.mem_size; 15068 break; 15069 case PTR_TO_BTF_ID: 15070 dst_reg->btf = aux->btf_var.btf; 15071 dst_reg->btf_id = aux->btf_var.btf_id; 15072 break; 15073 default: 15074 verbose(env, "bpf verifier is misconfigured\n"); 15075 return -EFAULT; 15076 } 15077 return 0; 15078 } 15079 15080 if (insn->src_reg == BPF_PSEUDO_FUNC) { 15081 struct bpf_prog_aux *aux = env->prog->aux; 15082 u32 subprogno = find_subprog(env, 15083 env->insn_idx + insn->imm + 1); 15084 15085 if (!aux->func_info) { 15086 verbose(env, "missing btf func_info\n"); 15087 return -EINVAL; 15088 } 15089 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 15090 verbose(env, "callback function not static\n"); 15091 return -EINVAL; 15092 } 15093 15094 dst_reg->type = PTR_TO_FUNC; 15095 dst_reg->subprogno = subprogno; 15096 return 0; 15097 } 15098 15099 map = env->used_maps[aux->map_index]; 15100 dst_reg->map_ptr = map; 15101 15102 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 15103 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 15104 dst_reg->type = PTR_TO_MAP_VALUE; 15105 dst_reg->off = aux->map_off; 15106 WARN_ON_ONCE(map->max_entries != 1); 15107 /* We want reg->id to be same (0) as map_value is not distinct */ 15108 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 15109 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 15110 dst_reg->type = CONST_PTR_TO_MAP; 15111 } else { 15112 verbose(env, "bpf verifier is misconfigured\n"); 15113 return -EINVAL; 15114 } 15115 15116 return 0; 15117 } 15118 15119 static bool may_access_skb(enum bpf_prog_type type) 15120 { 15121 switch (type) { 15122 case BPF_PROG_TYPE_SOCKET_FILTER: 15123 case BPF_PROG_TYPE_SCHED_CLS: 15124 case BPF_PROG_TYPE_SCHED_ACT: 15125 return true; 15126 default: 15127 return false; 15128 } 15129 } 15130 15131 /* verify safety of LD_ABS|LD_IND instructions: 15132 * - they can only appear in the programs where ctx == skb 15133 * - since they are wrappers of function calls, they scratch R1-R5 registers, 15134 * preserve R6-R9, and store return value into R0 15135 * 15136 * Implicit input: 15137 * ctx == skb == R6 == CTX 15138 * 15139 * Explicit input: 15140 * SRC == any register 15141 * IMM == 32-bit immediate 15142 * 15143 * Output: 15144 * R0 - 8/16/32-bit skb data converted to cpu endianness 15145 */ 15146 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 15147 { 15148 struct bpf_reg_state *regs = cur_regs(env); 15149 static const int ctx_reg = BPF_REG_6; 15150 u8 mode = BPF_MODE(insn->code); 15151 int i, err; 15152 15153 if (!may_access_skb(resolve_prog_type(env->prog))) { 15154 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 15155 return -EINVAL; 15156 } 15157 15158 if (!env->ops->gen_ld_abs) { 15159 verbose(env, "bpf verifier is misconfigured\n"); 15160 return -EINVAL; 15161 } 15162 15163 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 15164 BPF_SIZE(insn->code) == BPF_DW || 15165 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 15166 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 15167 return -EINVAL; 15168 } 15169 15170 /* check whether implicit source operand (register R6) is readable */ 15171 err = check_reg_arg(env, ctx_reg, SRC_OP); 15172 if (err) 15173 return err; 15174 15175 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 15176 * gen_ld_abs() may terminate the program at runtime, leading to 15177 * reference leak. 15178 */ 15179 err = check_reference_leak(env, false); 15180 if (err) { 15181 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 15182 return err; 15183 } 15184 15185 if (env->cur_state->active_lock.ptr) { 15186 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 15187 return -EINVAL; 15188 } 15189 15190 if (env->cur_state->active_rcu_lock) { 15191 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 15192 return -EINVAL; 15193 } 15194 15195 if (regs[ctx_reg].type != PTR_TO_CTX) { 15196 verbose(env, 15197 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 15198 return -EINVAL; 15199 } 15200 15201 if (mode == BPF_IND) { 15202 /* check explicit source operand */ 15203 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15204 if (err) 15205 return err; 15206 } 15207 15208 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 15209 if (err < 0) 15210 return err; 15211 15212 /* reset caller saved regs to unreadable */ 15213 for (i = 0; i < CALLER_SAVED_REGS; i++) { 15214 mark_reg_not_init(env, regs, caller_saved[i]); 15215 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 15216 } 15217 15218 /* mark destination R0 register as readable, since it contains 15219 * the value fetched from the packet. 15220 * Already marked as written above. 15221 */ 15222 mark_reg_unknown(env, regs, BPF_REG_0); 15223 /* ld_abs load up to 32-bit skb data. */ 15224 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 15225 return 0; 15226 } 15227 15228 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 15229 { 15230 const char *exit_ctx = "At program exit"; 15231 struct tnum enforce_attach_type_range = tnum_unknown; 15232 const struct bpf_prog *prog = env->prog; 15233 struct bpf_reg_state *reg; 15234 struct bpf_retval_range range = retval_range(0, 1); 15235 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 15236 int err; 15237 struct bpf_func_state *frame = env->cur_state->frame[0]; 15238 const bool is_subprog = frame->subprogno; 15239 15240 /* LSM and struct_ops func-ptr's return type could be "void" */ 15241 if (!is_subprog || frame->in_exception_callback_fn) { 15242 switch (prog_type) { 15243 case BPF_PROG_TYPE_LSM: 15244 if (prog->expected_attach_type == BPF_LSM_CGROUP) 15245 /* See below, can be 0 or 0-1 depending on hook. */ 15246 break; 15247 fallthrough; 15248 case BPF_PROG_TYPE_STRUCT_OPS: 15249 if (!prog->aux->attach_func_proto->type) 15250 return 0; 15251 break; 15252 default: 15253 break; 15254 } 15255 } 15256 15257 /* eBPF calling convention is such that R0 is used 15258 * to return the value from eBPF program. 15259 * Make sure that it's readable at this time 15260 * of bpf_exit, which means that program wrote 15261 * something into it earlier 15262 */ 15263 err = check_reg_arg(env, regno, SRC_OP); 15264 if (err) 15265 return err; 15266 15267 if (is_pointer_value(env, regno)) { 15268 verbose(env, "R%d leaks addr as return value\n", regno); 15269 return -EACCES; 15270 } 15271 15272 reg = cur_regs(env) + regno; 15273 15274 if (frame->in_async_callback_fn) { 15275 /* enforce return zero from async callbacks like timer */ 15276 exit_ctx = "At async callback return"; 15277 range = retval_range(0, 0); 15278 goto enforce_retval; 15279 } 15280 15281 if (is_subprog && !frame->in_exception_callback_fn) { 15282 if (reg->type != SCALAR_VALUE) { 15283 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 15284 regno, reg_type_str(env, reg->type)); 15285 return -EINVAL; 15286 } 15287 return 0; 15288 } 15289 15290 switch (prog_type) { 15291 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 15292 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 15293 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 15294 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 15295 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 15296 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 15297 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 15298 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 15299 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 15300 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 15301 range = retval_range(1, 1); 15302 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 15303 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 15304 range = retval_range(0, 3); 15305 break; 15306 case BPF_PROG_TYPE_CGROUP_SKB: 15307 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 15308 range = retval_range(0, 3); 15309 enforce_attach_type_range = tnum_range(2, 3); 15310 } 15311 break; 15312 case BPF_PROG_TYPE_CGROUP_SOCK: 15313 case BPF_PROG_TYPE_SOCK_OPS: 15314 case BPF_PROG_TYPE_CGROUP_DEVICE: 15315 case BPF_PROG_TYPE_CGROUP_SYSCTL: 15316 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 15317 break; 15318 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15319 if (!env->prog->aux->attach_btf_id) 15320 return 0; 15321 range = retval_range(0, 0); 15322 break; 15323 case BPF_PROG_TYPE_TRACING: 15324 switch (env->prog->expected_attach_type) { 15325 case BPF_TRACE_FENTRY: 15326 case BPF_TRACE_FEXIT: 15327 range = retval_range(0, 0); 15328 break; 15329 case BPF_TRACE_RAW_TP: 15330 case BPF_MODIFY_RETURN: 15331 return 0; 15332 case BPF_TRACE_ITER: 15333 break; 15334 default: 15335 return -ENOTSUPP; 15336 } 15337 break; 15338 case BPF_PROG_TYPE_SK_LOOKUP: 15339 range = retval_range(SK_DROP, SK_PASS); 15340 break; 15341 15342 case BPF_PROG_TYPE_LSM: 15343 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 15344 /* Regular BPF_PROG_TYPE_LSM programs can return 15345 * any value. 15346 */ 15347 return 0; 15348 } 15349 if (!env->prog->aux->attach_func_proto->type) { 15350 /* Make sure programs that attach to void 15351 * hooks don't try to modify return value. 15352 */ 15353 range = retval_range(1, 1); 15354 } 15355 break; 15356 15357 case BPF_PROG_TYPE_NETFILTER: 15358 range = retval_range(NF_DROP, NF_ACCEPT); 15359 break; 15360 case BPF_PROG_TYPE_EXT: 15361 /* freplace program can return anything as its return value 15362 * depends on the to-be-replaced kernel func or bpf program. 15363 */ 15364 default: 15365 return 0; 15366 } 15367 15368 enforce_retval: 15369 if (reg->type != SCALAR_VALUE) { 15370 verbose(env, "%s the register R%d is not a known value (%s)\n", 15371 exit_ctx, regno, reg_type_str(env, reg->type)); 15372 return -EINVAL; 15373 } 15374 15375 err = mark_chain_precision(env, regno); 15376 if (err) 15377 return err; 15378 15379 if (!retval_range_within(range, reg)) { 15380 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 15381 if (!is_subprog && 15382 prog->expected_attach_type == BPF_LSM_CGROUP && 15383 prog_type == BPF_PROG_TYPE_LSM && 15384 !prog->aux->attach_func_proto->type) 15385 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 15386 return -EINVAL; 15387 } 15388 15389 if (!tnum_is_unknown(enforce_attach_type_range) && 15390 tnum_in(enforce_attach_type_range, reg->var_off)) 15391 env->prog->enforce_expected_attach_type = 1; 15392 return 0; 15393 } 15394 15395 /* non-recursive DFS pseudo code 15396 * 1 procedure DFS-iterative(G,v): 15397 * 2 label v as discovered 15398 * 3 let S be a stack 15399 * 4 S.push(v) 15400 * 5 while S is not empty 15401 * 6 t <- S.peek() 15402 * 7 if t is what we're looking for: 15403 * 8 return t 15404 * 9 for all edges e in G.adjacentEdges(t) do 15405 * 10 if edge e is already labelled 15406 * 11 continue with the next edge 15407 * 12 w <- G.adjacentVertex(t,e) 15408 * 13 if vertex w is not discovered and not explored 15409 * 14 label e as tree-edge 15410 * 15 label w as discovered 15411 * 16 S.push(w) 15412 * 17 continue at 5 15413 * 18 else if vertex w is discovered 15414 * 19 label e as back-edge 15415 * 20 else 15416 * 21 // vertex w is explored 15417 * 22 label e as forward- or cross-edge 15418 * 23 label t as explored 15419 * 24 S.pop() 15420 * 15421 * convention: 15422 * 0x10 - discovered 15423 * 0x11 - discovered and fall-through edge labelled 15424 * 0x12 - discovered and fall-through and branch edges labelled 15425 * 0x20 - explored 15426 */ 15427 15428 enum { 15429 DISCOVERED = 0x10, 15430 EXPLORED = 0x20, 15431 FALLTHROUGH = 1, 15432 BRANCH = 2, 15433 }; 15434 15435 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 15436 { 15437 env->insn_aux_data[idx].prune_point = true; 15438 } 15439 15440 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 15441 { 15442 return env->insn_aux_data[insn_idx].prune_point; 15443 } 15444 15445 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 15446 { 15447 env->insn_aux_data[idx].force_checkpoint = true; 15448 } 15449 15450 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 15451 { 15452 return env->insn_aux_data[insn_idx].force_checkpoint; 15453 } 15454 15455 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 15456 { 15457 env->insn_aux_data[idx].calls_callback = true; 15458 } 15459 15460 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 15461 { 15462 return env->insn_aux_data[insn_idx].calls_callback; 15463 } 15464 15465 enum { 15466 DONE_EXPLORING = 0, 15467 KEEP_EXPLORING = 1, 15468 }; 15469 15470 /* t, w, e - match pseudo-code above: 15471 * t - index of current instruction 15472 * w - next instruction 15473 * e - edge 15474 */ 15475 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 15476 { 15477 int *insn_stack = env->cfg.insn_stack; 15478 int *insn_state = env->cfg.insn_state; 15479 15480 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 15481 return DONE_EXPLORING; 15482 15483 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 15484 return DONE_EXPLORING; 15485 15486 if (w < 0 || w >= env->prog->len) { 15487 verbose_linfo(env, t, "%d: ", t); 15488 verbose(env, "jump out of range from insn %d to %d\n", t, w); 15489 return -EINVAL; 15490 } 15491 15492 if (e == BRANCH) { 15493 /* mark branch target for state pruning */ 15494 mark_prune_point(env, w); 15495 mark_jmp_point(env, w); 15496 } 15497 15498 if (insn_state[w] == 0) { 15499 /* tree-edge */ 15500 insn_state[t] = DISCOVERED | e; 15501 insn_state[w] = DISCOVERED; 15502 if (env->cfg.cur_stack >= env->prog->len) 15503 return -E2BIG; 15504 insn_stack[env->cfg.cur_stack++] = w; 15505 return KEEP_EXPLORING; 15506 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 15507 if (env->bpf_capable) 15508 return DONE_EXPLORING; 15509 verbose_linfo(env, t, "%d: ", t); 15510 verbose_linfo(env, w, "%d: ", w); 15511 verbose(env, "back-edge from insn %d to %d\n", t, w); 15512 return -EINVAL; 15513 } else if (insn_state[w] == EXPLORED) { 15514 /* forward- or cross-edge */ 15515 insn_state[t] = DISCOVERED | e; 15516 } else { 15517 verbose(env, "insn state internal bug\n"); 15518 return -EFAULT; 15519 } 15520 return DONE_EXPLORING; 15521 } 15522 15523 static int visit_func_call_insn(int t, struct bpf_insn *insns, 15524 struct bpf_verifier_env *env, 15525 bool visit_callee) 15526 { 15527 int ret, insn_sz; 15528 15529 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 15530 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 15531 if (ret) 15532 return ret; 15533 15534 mark_prune_point(env, t + insn_sz); 15535 /* when we exit from subprog, we need to record non-linear history */ 15536 mark_jmp_point(env, t + insn_sz); 15537 15538 if (visit_callee) { 15539 mark_prune_point(env, t); 15540 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 15541 } 15542 return ret; 15543 } 15544 15545 /* Visits the instruction at index t and returns one of the following: 15546 * < 0 - an error occurred 15547 * DONE_EXPLORING - the instruction was fully explored 15548 * KEEP_EXPLORING - there is still work to be done before it is fully explored 15549 */ 15550 static int visit_insn(int t, struct bpf_verifier_env *env) 15551 { 15552 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 15553 int ret, off, insn_sz; 15554 15555 if (bpf_pseudo_func(insn)) 15556 return visit_func_call_insn(t, insns, env, true); 15557 15558 /* All non-branch instructions have a single fall-through edge. */ 15559 if (BPF_CLASS(insn->code) != BPF_JMP && 15560 BPF_CLASS(insn->code) != BPF_JMP32) { 15561 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 15562 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 15563 } 15564 15565 switch (BPF_OP(insn->code)) { 15566 case BPF_EXIT: 15567 return DONE_EXPLORING; 15568 15569 case BPF_CALL: 15570 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 15571 /* Mark this call insn as a prune point to trigger 15572 * is_state_visited() check before call itself is 15573 * processed by __check_func_call(). Otherwise new 15574 * async state will be pushed for further exploration. 15575 */ 15576 mark_prune_point(env, t); 15577 /* For functions that invoke callbacks it is not known how many times 15578 * callback would be called. Verifier models callback calling functions 15579 * by repeatedly visiting callback bodies and returning to origin call 15580 * instruction. 15581 * In order to stop such iteration verifier needs to identify when a 15582 * state identical some state from a previous iteration is reached. 15583 * Check below forces creation of checkpoint before callback calling 15584 * instruction to allow search for such identical states. 15585 */ 15586 if (is_sync_callback_calling_insn(insn)) { 15587 mark_calls_callback(env, t); 15588 mark_force_checkpoint(env, t); 15589 mark_prune_point(env, t); 15590 mark_jmp_point(env, t); 15591 } 15592 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15593 struct bpf_kfunc_call_arg_meta meta; 15594 15595 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 15596 if (ret == 0 && is_iter_next_kfunc(&meta)) { 15597 mark_prune_point(env, t); 15598 /* Checking and saving state checkpoints at iter_next() call 15599 * is crucial for fast convergence of open-coded iterator loop 15600 * logic, so we need to force it. If we don't do that, 15601 * is_state_visited() might skip saving a checkpoint, causing 15602 * unnecessarily long sequence of not checkpointed 15603 * instructions and jumps, leading to exhaustion of jump 15604 * history buffer, and potentially other undesired outcomes. 15605 * It is expected that with correct open-coded iterators 15606 * convergence will happen quickly, so we don't run a risk of 15607 * exhausting memory. 15608 */ 15609 mark_force_checkpoint(env, t); 15610 } 15611 } 15612 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 15613 15614 case BPF_JA: 15615 if (BPF_SRC(insn->code) != BPF_K) 15616 return -EINVAL; 15617 15618 if (BPF_CLASS(insn->code) == BPF_JMP) 15619 off = insn->off; 15620 else 15621 off = insn->imm; 15622 15623 /* unconditional jump with single edge */ 15624 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 15625 if (ret) 15626 return ret; 15627 15628 mark_prune_point(env, t + off + 1); 15629 mark_jmp_point(env, t + off + 1); 15630 15631 return ret; 15632 15633 default: 15634 /* conditional jump with two edges */ 15635 mark_prune_point(env, t); 15636 15637 ret = push_insn(t, t + 1, FALLTHROUGH, env); 15638 if (ret) 15639 return ret; 15640 15641 return push_insn(t, t + insn->off + 1, BRANCH, env); 15642 } 15643 } 15644 15645 /* non-recursive depth-first-search to detect loops in BPF program 15646 * loop == back-edge in directed graph 15647 */ 15648 static int check_cfg(struct bpf_verifier_env *env) 15649 { 15650 int insn_cnt = env->prog->len; 15651 int *insn_stack, *insn_state; 15652 int ex_insn_beg, i, ret = 0; 15653 bool ex_done = false; 15654 15655 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15656 if (!insn_state) 15657 return -ENOMEM; 15658 15659 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15660 if (!insn_stack) { 15661 kvfree(insn_state); 15662 return -ENOMEM; 15663 } 15664 15665 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 15666 insn_stack[0] = 0; /* 0 is the first instruction */ 15667 env->cfg.cur_stack = 1; 15668 15669 walk_cfg: 15670 while (env->cfg.cur_stack > 0) { 15671 int t = insn_stack[env->cfg.cur_stack - 1]; 15672 15673 ret = visit_insn(t, env); 15674 switch (ret) { 15675 case DONE_EXPLORING: 15676 insn_state[t] = EXPLORED; 15677 env->cfg.cur_stack--; 15678 break; 15679 case KEEP_EXPLORING: 15680 break; 15681 default: 15682 if (ret > 0) { 15683 verbose(env, "visit_insn internal bug\n"); 15684 ret = -EFAULT; 15685 } 15686 goto err_free; 15687 } 15688 } 15689 15690 if (env->cfg.cur_stack < 0) { 15691 verbose(env, "pop stack internal bug\n"); 15692 ret = -EFAULT; 15693 goto err_free; 15694 } 15695 15696 if (env->exception_callback_subprog && !ex_done) { 15697 ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start; 15698 15699 insn_state[ex_insn_beg] = DISCOVERED; 15700 insn_stack[0] = ex_insn_beg; 15701 env->cfg.cur_stack = 1; 15702 ex_done = true; 15703 goto walk_cfg; 15704 } 15705 15706 for (i = 0; i < insn_cnt; i++) { 15707 struct bpf_insn *insn = &env->prog->insnsi[i]; 15708 15709 if (insn_state[i] != EXPLORED) { 15710 verbose(env, "unreachable insn %d\n", i); 15711 ret = -EINVAL; 15712 goto err_free; 15713 } 15714 if (bpf_is_ldimm64(insn)) { 15715 if (insn_state[i + 1] != 0) { 15716 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 15717 ret = -EINVAL; 15718 goto err_free; 15719 } 15720 i++; /* skip second half of ldimm64 */ 15721 } 15722 } 15723 ret = 0; /* cfg looks good */ 15724 15725 err_free: 15726 kvfree(insn_state); 15727 kvfree(insn_stack); 15728 env->cfg.insn_state = env->cfg.insn_stack = NULL; 15729 return ret; 15730 } 15731 15732 static int check_abnormal_return(struct bpf_verifier_env *env) 15733 { 15734 int i; 15735 15736 for (i = 1; i < env->subprog_cnt; i++) { 15737 if (env->subprog_info[i].has_ld_abs) { 15738 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 15739 return -EINVAL; 15740 } 15741 if (env->subprog_info[i].has_tail_call) { 15742 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 15743 return -EINVAL; 15744 } 15745 } 15746 return 0; 15747 } 15748 15749 /* The minimum supported BTF func info size */ 15750 #define MIN_BPF_FUNCINFO_SIZE 8 15751 #define MAX_FUNCINFO_REC_SIZE 252 15752 15753 static int check_btf_func_early(struct bpf_verifier_env *env, 15754 const union bpf_attr *attr, 15755 bpfptr_t uattr) 15756 { 15757 u32 krec_size = sizeof(struct bpf_func_info); 15758 const struct btf_type *type, *func_proto; 15759 u32 i, nfuncs, urec_size, min_size; 15760 struct bpf_func_info *krecord; 15761 struct bpf_prog *prog; 15762 const struct btf *btf; 15763 u32 prev_offset = 0; 15764 bpfptr_t urecord; 15765 int ret = -ENOMEM; 15766 15767 nfuncs = attr->func_info_cnt; 15768 if (!nfuncs) { 15769 if (check_abnormal_return(env)) 15770 return -EINVAL; 15771 return 0; 15772 } 15773 15774 urec_size = attr->func_info_rec_size; 15775 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 15776 urec_size > MAX_FUNCINFO_REC_SIZE || 15777 urec_size % sizeof(u32)) { 15778 verbose(env, "invalid func info rec size %u\n", urec_size); 15779 return -EINVAL; 15780 } 15781 15782 prog = env->prog; 15783 btf = prog->aux->btf; 15784 15785 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15786 min_size = min_t(u32, krec_size, urec_size); 15787 15788 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15789 if (!krecord) 15790 return -ENOMEM; 15791 15792 for (i = 0; i < nfuncs; i++) { 15793 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15794 if (ret) { 15795 if (ret == -E2BIG) { 15796 verbose(env, "nonzero tailing record in func info"); 15797 /* set the size kernel expects so loader can zero 15798 * out the rest of the record. 15799 */ 15800 if (copy_to_bpfptr_offset(uattr, 15801 offsetof(union bpf_attr, func_info_rec_size), 15802 &min_size, sizeof(min_size))) 15803 ret = -EFAULT; 15804 } 15805 goto err_free; 15806 } 15807 15808 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15809 ret = -EFAULT; 15810 goto err_free; 15811 } 15812 15813 /* check insn_off */ 15814 ret = -EINVAL; 15815 if (i == 0) { 15816 if (krecord[i].insn_off) { 15817 verbose(env, 15818 "nonzero insn_off %u for the first func info record", 15819 krecord[i].insn_off); 15820 goto err_free; 15821 } 15822 } else if (krecord[i].insn_off <= prev_offset) { 15823 verbose(env, 15824 "same or smaller insn offset (%u) than previous func info record (%u)", 15825 krecord[i].insn_off, prev_offset); 15826 goto err_free; 15827 } 15828 15829 /* check type_id */ 15830 type = btf_type_by_id(btf, krecord[i].type_id); 15831 if (!type || !btf_type_is_func(type)) { 15832 verbose(env, "invalid type id %d in func info", 15833 krecord[i].type_id); 15834 goto err_free; 15835 } 15836 15837 func_proto = btf_type_by_id(btf, type->type); 15838 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15839 /* btf_func_check() already verified it during BTF load */ 15840 goto err_free; 15841 15842 prev_offset = krecord[i].insn_off; 15843 bpfptr_add(&urecord, urec_size); 15844 } 15845 15846 prog->aux->func_info = krecord; 15847 prog->aux->func_info_cnt = nfuncs; 15848 return 0; 15849 15850 err_free: 15851 kvfree(krecord); 15852 return ret; 15853 } 15854 15855 static int check_btf_func(struct bpf_verifier_env *env, 15856 const union bpf_attr *attr, 15857 bpfptr_t uattr) 15858 { 15859 const struct btf_type *type, *func_proto, *ret_type; 15860 u32 i, nfuncs, urec_size; 15861 struct bpf_func_info *krecord; 15862 struct bpf_func_info_aux *info_aux = NULL; 15863 struct bpf_prog *prog; 15864 const struct btf *btf; 15865 bpfptr_t urecord; 15866 bool scalar_return; 15867 int ret = -ENOMEM; 15868 15869 nfuncs = attr->func_info_cnt; 15870 if (!nfuncs) { 15871 if (check_abnormal_return(env)) 15872 return -EINVAL; 15873 return 0; 15874 } 15875 if (nfuncs != env->subprog_cnt) { 15876 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 15877 return -EINVAL; 15878 } 15879 15880 urec_size = attr->func_info_rec_size; 15881 15882 prog = env->prog; 15883 btf = prog->aux->btf; 15884 15885 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15886 15887 krecord = prog->aux->func_info; 15888 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 15889 if (!info_aux) 15890 return -ENOMEM; 15891 15892 for (i = 0; i < nfuncs; i++) { 15893 /* check insn_off */ 15894 ret = -EINVAL; 15895 15896 if (env->subprog_info[i].start != krecord[i].insn_off) { 15897 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 15898 goto err_free; 15899 } 15900 15901 /* Already checked type_id */ 15902 type = btf_type_by_id(btf, krecord[i].type_id); 15903 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 15904 /* Already checked func_proto */ 15905 func_proto = btf_type_by_id(btf, type->type); 15906 15907 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 15908 scalar_return = 15909 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 15910 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 15911 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 15912 goto err_free; 15913 } 15914 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 15915 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 15916 goto err_free; 15917 } 15918 15919 bpfptr_add(&urecord, urec_size); 15920 } 15921 15922 prog->aux->func_info_aux = info_aux; 15923 return 0; 15924 15925 err_free: 15926 kfree(info_aux); 15927 return ret; 15928 } 15929 15930 static void adjust_btf_func(struct bpf_verifier_env *env) 15931 { 15932 struct bpf_prog_aux *aux = env->prog->aux; 15933 int i; 15934 15935 if (!aux->func_info) 15936 return; 15937 15938 /* func_info is not available for hidden subprogs */ 15939 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 15940 aux->func_info[i].insn_off = env->subprog_info[i].start; 15941 } 15942 15943 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 15944 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 15945 15946 static int check_btf_line(struct bpf_verifier_env *env, 15947 const union bpf_attr *attr, 15948 bpfptr_t uattr) 15949 { 15950 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 15951 struct bpf_subprog_info *sub; 15952 struct bpf_line_info *linfo; 15953 struct bpf_prog *prog; 15954 const struct btf *btf; 15955 bpfptr_t ulinfo; 15956 int err; 15957 15958 nr_linfo = attr->line_info_cnt; 15959 if (!nr_linfo) 15960 return 0; 15961 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 15962 return -EINVAL; 15963 15964 rec_size = attr->line_info_rec_size; 15965 if (rec_size < MIN_BPF_LINEINFO_SIZE || 15966 rec_size > MAX_LINEINFO_REC_SIZE || 15967 rec_size & (sizeof(u32) - 1)) 15968 return -EINVAL; 15969 15970 /* Need to zero it in case the userspace may 15971 * pass in a smaller bpf_line_info object. 15972 */ 15973 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 15974 GFP_KERNEL | __GFP_NOWARN); 15975 if (!linfo) 15976 return -ENOMEM; 15977 15978 prog = env->prog; 15979 btf = prog->aux->btf; 15980 15981 s = 0; 15982 sub = env->subprog_info; 15983 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 15984 expected_size = sizeof(struct bpf_line_info); 15985 ncopy = min_t(u32, expected_size, rec_size); 15986 for (i = 0; i < nr_linfo; i++) { 15987 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 15988 if (err) { 15989 if (err == -E2BIG) { 15990 verbose(env, "nonzero tailing record in line_info"); 15991 if (copy_to_bpfptr_offset(uattr, 15992 offsetof(union bpf_attr, line_info_rec_size), 15993 &expected_size, sizeof(expected_size))) 15994 err = -EFAULT; 15995 } 15996 goto err_free; 15997 } 15998 15999 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 16000 err = -EFAULT; 16001 goto err_free; 16002 } 16003 16004 /* 16005 * Check insn_off to ensure 16006 * 1) strictly increasing AND 16007 * 2) bounded by prog->len 16008 * 16009 * The linfo[0].insn_off == 0 check logically falls into 16010 * the later "missing bpf_line_info for func..." case 16011 * because the first linfo[0].insn_off must be the 16012 * first sub also and the first sub must have 16013 * subprog_info[0].start == 0. 16014 */ 16015 if ((i && linfo[i].insn_off <= prev_offset) || 16016 linfo[i].insn_off >= prog->len) { 16017 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 16018 i, linfo[i].insn_off, prev_offset, 16019 prog->len); 16020 err = -EINVAL; 16021 goto err_free; 16022 } 16023 16024 if (!prog->insnsi[linfo[i].insn_off].code) { 16025 verbose(env, 16026 "Invalid insn code at line_info[%u].insn_off\n", 16027 i); 16028 err = -EINVAL; 16029 goto err_free; 16030 } 16031 16032 if (!btf_name_by_offset(btf, linfo[i].line_off) || 16033 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 16034 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 16035 err = -EINVAL; 16036 goto err_free; 16037 } 16038 16039 if (s != env->subprog_cnt) { 16040 if (linfo[i].insn_off == sub[s].start) { 16041 sub[s].linfo_idx = i; 16042 s++; 16043 } else if (sub[s].start < linfo[i].insn_off) { 16044 verbose(env, "missing bpf_line_info for func#%u\n", s); 16045 err = -EINVAL; 16046 goto err_free; 16047 } 16048 } 16049 16050 prev_offset = linfo[i].insn_off; 16051 bpfptr_add(&ulinfo, rec_size); 16052 } 16053 16054 if (s != env->subprog_cnt) { 16055 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 16056 env->subprog_cnt - s, s); 16057 err = -EINVAL; 16058 goto err_free; 16059 } 16060 16061 prog->aux->linfo = linfo; 16062 prog->aux->nr_linfo = nr_linfo; 16063 16064 return 0; 16065 16066 err_free: 16067 kvfree(linfo); 16068 return err; 16069 } 16070 16071 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 16072 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 16073 16074 static int check_core_relo(struct bpf_verifier_env *env, 16075 const union bpf_attr *attr, 16076 bpfptr_t uattr) 16077 { 16078 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 16079 struct bpf_core_relo core_relo = {}; 16080 struct bpf_prog *prog = env->prog; 16081 const struct btf *btf = prog->aux->btf; 16082 struct bpf_core_ctx ctx = { 16083 .log = &env->log, 16084 .btf = btf, 16085 }; 16086 bpfptr_t u_core_relo; 16087 int err; 16088 16089 nr_core_relo = attr->core_relo_cnt; 16090 if (!nr_core_relo) 16091 return 0; 16092 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 16093 return -EINVAL; 16094 16095 rec_size = attr->core_relo_rec_size; 16096 if (rec_size < MIN_CORE_RELO_SIZE || 16097 rec_size > MAX_CORE_RELO_SIZE || 16098 rec_size % sizeof(u32)) 16099 return -EINVAL; 16100 16101 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 16102 expected_size = sizeof(struct bpf_core_relo); 16103 ncopy = min_t(u32, expected_size, rec_size); 16104 16105 /* Unlike func_info and line_info, copy and apply each CO-RE 16106 * relocation record one at a time. 16107 */ 16108 for (i = 0; i < nr_core_relo; i++) { 16109 /* future proofing when sizeof(bpf_core_relo) changes */ 16110 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 16111 if (err) { 16112 if (err == -E2BIG) { 16113 verbose(env, "nonzero tailing record in core_relo"); 16114 if (copy_to_bpfptr_offset(uattr, 16115 offsetof(union bpf_attr, core_relo_rec_size), 16116 &expected_size, sizeof(expected_size))) 16117 err = -EFAULT; 16118 } 16119 break; 16120 } 16121 16122 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 16123 err = -EFAULT; 16124 break; 16125 } 16126 16127 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 16128 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 16129 i, core_relo.insn_off, prog->len); 16130 err = -EINVAL; 16131 break; 16132 } 16133 16134 err = bpf_core_apply(&ctx, &core_relo, i, 16135 &prog->insnsi[core_relo.insn_off / 8]); 16136 if (err) 16137 break; 16138 bpfptr_add(&u_core_relo, rec_size); 16139 } 16140 return err; 16141 } 16142 16143 static int check_btf_info_early(struct bpf_verifier_env *env, 16144 const union bpf_attr *attr, 16145 bpfptr_t uattr) 16146 { 16147 struct btf *btf; 16148 int err; 16149 16150 if (!attr->func_info_cnt && !attr->line_info_cnt) { 16151 if (check_abnormal_return(env)) 16152 return -EINVAL; 16153 return 0; 16154 } 16155 16156 btf = btf_get_by_fd(attr->prog_btf_fd); 16157 if (IS_ERR(btf)) 16158 return PTR_ERR(btf); 16159 if (btf_is_kernel(btf)) { 16160 btf_put(btf); 16161 return -EACCES; 16162 } 16163 env->prog->aux->btf = btf; 16164 16165 err = check_btf_func_early(env, attr, uattr); 16166 if (err) 16167 return err; 16168 return 0; 16169 } 16170 16171 static int check_btf_info(struct bpf_verifier_env *env, 16172 const union bpf_attr *attr, 16173 bpfptr_t uattr) 16174 { 16175 int err; 16176 16177 if (!attr->func_info_cnt && !attr->line_info_cnt) { 16178 if (check_abnormal_return(env)) 16179 return -EINVAL; 16180 return 0; 16181 } 16182 16183 err = check_btf_func(env, attr, uattr); 16184 if (err) 16185 return err; 16186 16187 err = check_btf_line(env, attr, uattr); 16188 if (err) 16189 return err; 16190 16191 err = check_core_relo(env, attr, uattr); 16192 if (err) 16193 return err; 16194 16195 return 0; 16196 } 16197 16198 /* check %cur's range satisfies %old's */ 16199 static bool range_within(struct bpf_reg_state *old, 16200 struct bpf_reg_state *cur) 16201 { 16202 return old->umin_value <= cur->umin_value && 16203 old->umax_value >= cur->umax_value && 16204 old->smin_value <= cur->smin_value && 16205 old->smax_value >= cur->smax_value && 16206 old->u32_min_value <= cur->u32_min_value && 16207 old->u32_max_value >= cur->u32_max_value && 16208 old->s32_min_value <= cur->s32_min_value && 16209 old->s32_max_value >= cur->s32_max_value; 16210 } 16211 16212 /* If in the old state two registers had the same id, then they need to have 16213 * the same id in the new state as well. But that id could be different from 16214 * the old state, so we need to track the mapping from old to new ids. 16215 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 16216 * regs with old id 5 must also have new id 9 for the new state to be safe. But 16217 * regs with a different old id could still have new id 9, we don't care about 16218 * that. 16219 * So we look through our idmap to see if this old id has been seen before. If 16220 * so, we require the new id to match; otherwise, we add the id pair to the map. 16221 */ 16222 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 16223 { 16224 struct bpf_id_pair *map = idmap->map; 16225 unsigned int i; 16226 16227 /* either both IDs should be set or both should be zero */ 16228 if (!!old_id != !!cur_id) 16229 return false; 16230 16231 if (old_id == 0) /* cur_id == 0 as well */ 16232 return true; 16233 16234 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 16235 if (!map[i].old) { 16236 /* Reached an empty slot; haven't seen this id before */ 16237 map[i].old = old_id; 16238 map[i].cur = cur_id; 16239 return true; 16240 } 16241 if (map[i].old == old_id) 16242 return map[i].cur == cur_id; 16243 if (map[i].cur == cur_id) 16244 return false; 16245 } 16246 /* We ran out of idmap slots, which should be impossible */ 16247 WARN_ON_ONCE(1); 16248 return false; 16249 } 16250 16251 /* Similar to check_ids(), but allocate a unique temporary ID 16252 * for 'old_id' or 'cur_id' of zero. 16253 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 16254 */ 16255 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 16256 { 16257 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 16258 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 16259 16260 return check_ids(old_id, cur_id, idmap); 16261 } 16262 16263 static void clean_func_state(struct bpf_verifier_env *env, 16264 struct bpf_func_state *st) 16265 { 16266 enum bpf_reg_liveness live; 16267 int i, j; 16268 16269 for (i = 0; i < BPF_REG_FP; i++) { 16270 live = st->regs[i].live; 16271 /* liveness must not touch this register anymore */ 16272 st->regs[i].live |= REG_LIVE_DONE; 16273 if (!(live & REG_LIVE_READ)) 16274 /* since the register is unused, clear its state 16275 * to make further comparison simpler 16276 */ 16277 __mark_reg_not_init(env, &st->regs[i]); 16278 } 16279 16280 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 16281 live = st->stack[i].spilled_ptr.live; 16282 /* liveness must not touch this stack slot anymore */ 16283 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 16284 if (!(live & REG_LIVE_READ)) { 16285 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 16286 for (j = 0; j < BPF_REG_SIZE; j++) 16287 st->stack[i].slot_type[j] = STACK_INVALID; 16288 } 16289 } 16290 } 16291 16292 static void clean_verifier_state(struct bpf_verifier_env *env, 16293 struct bpf_verifier_state *st) 16294 { 16295 int i; 16296 16297 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 16298 /* all regs in this state in all frames were already marked */ 16299 return; 16300 16301 for (i = 0; i <= st->curframe; i++) 16302 clean_func_state(env, st->frame[i]); 16303 } 16304 16305 /* the parentage chains form a tree. 16306 * the verifier states are added to state lists at given insn and 16307 * pushed into state stack for future exploration. 16308 * when the verifier reaches bpf_exit insn some of the verifer states 16309 * stored in the state lists have their final liveness state already, 16310 * but a lot of states will get revised from liveness point of view when 16311 * the verifier explores other branches. 16312 * Example: 16313 * 1: r0 = 1 16314 * 2: if r1 == 100 goto pc+1 16315 * 3: r0 = 2 16316 * 4: exit 16317 * when the verifier reaches exit insn the register r0 in the state list of 16318 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 16319 * of insn 2 and goes exploring further. At the insn 4 it will walk the 16320 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 16321 * 16322 * Since the verifier pushes the branch states as it sees them while exploring 16323 * the program the condition of walking the branch instruction for the second 16324 * time means that all states below this branch were already explored and 16325 * their final liveness marks are already propagated. 16326 * Hence when the verifier completes the search of state list in is_state_visited() 16327 * we can call this clean_live_states() function to mark all liveness states 16328 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 16329 * will not be used. 16330 * This function also clears the registers and stack for states that !READ 16331 * to simplify state merging. 16332 * 16333 * Important note here that walking the same branch instruction in the callee 16334 * doesn't meant that the states are DONE. The verifier has to compare 16335 * the callsites 16336 */ 16337 static void clean_live_states(struct bpf_verifier_env *env, int insn, 16338 struct bpf_verifier_state *cur) 16339 { 16340 struct bpf_verifier_state_list *sl; 16341 16342 sl = *explored_state(env, insn); 16343 while (sl) { 16344 if (sl->state.branches) 16345 goto next; 16346 if (sl->state.insn_idx != insn || 16347 !same_callsites(&sl->state, cur)) 16348 goto next; 16349 clean_verifier_state(env, &sl->state); 16350 next: 16351 sl = sl->next; 16352 } 16353 } 16354 16355 static bool regs_exact(const struct bpf_reg_state *rold, 16356 const struct bpf_reg_state *rcur, 16357 struct bpf_idmap *idmap) 16358 { 16359 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16360 check_ids(rold->id, rcur->id, idmap) && 16361 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16362 } 16363 16364 /* Returns true if (rold safe implies rcur safe) */ 16365 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 16366 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact) 16367 { 16368 if (exact) 16369 return regs_exact(rold, rcur, idmap); 16370 16371 if (!(rold->live & REG_LIVE_READ)) 16372 /* explored state didn't use this */ 16373 return true; 16374 if (rold->type == NOT_INIT) 16375 /* explored state can't have used this */ 16376 return true; 16377 if (rcur->type == NOT_INIT) 16378 return false; 16379 16380 /* Enforce that register types have to match exactly, including their 16381 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 16382 * rule. 16383 * 16384 * One can make a point that using a pointer register as unbounded 16385 * SCALAR would be technically acceptable, but this could lead to 16386 * pointer leaks because scalars are allowed to leak while pointers 16387 * are not. We could make this safe in special cases if root is 16388 * calling us, but it's probably not worth the hassle. 16389 * 16390 * Also, register types that are *not* MAYBE_NULL could technically be 16391 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 16392 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 16393 * to the same map). 16394 * However, if the old MAYBE_NULL register then got NULL checked, 16395 * doing so could have affected others with the same id, and we can't 16396 * check for that because we lost the id when we converted to 16397 * a non-MAYBE_NULL variant. 16398 * So, as a general rule we don't allow mixing MAYBE_NULL and 16399 * non-MAYBE_NULL registers as well. 16400 */ 16401 if (rold->type != rcur->type) 16402 return false; 16403 16404 switch (base_type(rold->type)) { 16405 case SCALAR_VALUE: 16406 if (env->explore_alu_limits) { 16407 /* explore_alu_limits disables tnum_in() and range_within() 16408 * logic and requires everything to be strict 16409 */ 16410 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16411 check_scalar_ids(rold->id, rcur->id, idmap); 16412 } 16413 if (!rold->precise) 16414 return true; 16415 /* Why check_ids() for scalar registers? 16416 * 16417 * Consider the following BPF code: 16418 * 1: r6 = ... unbound scalar, ID=a ... 16419 * 2: r7 = ... unbound scalar, ID=b ... 16420 * 3: if (r6 > r7) goto +1 16421 * 4: r6 = r7 16422 * 5: if (r6 > X) goto ... 16423 * 6: ... memory operation using r7 ... 16424 * 16425 * First verification path is [1-6]: 16426 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 16427 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 16428 * r7 <= X, because r6 and r7 share same id. 16429 * Next verification path is [1-4, 6]. 16430 * 16431 * Instruction (6) would be reached in two states: 16432 * I. r6{.id=b}, r7{.id=b} via path 1-6; 16433 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 16434 * 16435 * Use check_ids() to distinguish these states. 16436 * --- 16437 * Also verify that new value satisfies old value range knowledge. 16438 */ 16439 return range_within(rold, rcur) && 16440 tnum_in(rold->var_off, rcur->var_off) && 16441 check_scalar_ids(rold->id, rcur->id, idmap); 16442 case PTR_TO_MAP_KEY: 16443 case PTR_TO_MAP_VALUE: 16444 case PTR_TO_MEM: 16445 case PTR_TO_BUF: 16446 case PTR_TO_TP_BUFFER: 16447 /* If the new min/max/var_off satisfy the old ones and 16448 * everything else matches, we are OK. 16449 */ 16450 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 16451 range_within(rold, rcur) && 16452 tnum_in(rold->var_off, rcur->var_off) && 16453 check_ids(rold->id, rcur->id, idmap) && 16454 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16455 case PTR_TO_PACKET_META: 16456 case PTR_TO_PACKET: 16457 /* We must have at least as much range as the old ptr 16458 * did, so that any accesses which were safe before are 16459 * still safe. This is true even if old range < old off, 16460 * since someone could have accessed through (ptr - k), or 16461 * even done ptr -= k in a register, to get a safe access. 16462 */ 16463 if (rold->range > rcur->range) 16464 return false; 16465 /* If the offsets don't match, we can't trust our alignment; 16466 * nor can we be sure that we won't fall out of range. 16467 */ 16468 if (rold->off != rcur->off) 16469 return false; 16470 /* id relations must be preserved */ 16471 if (!check_ids(rold->id, rcur->id, idmap)) 16472 return false; 16473 /* new val must satisfy old val knowledge */ 16474 return range_within(rold, rcur) && 16475 tnum_in(rold->var_off, rcur->var_off); 16476 case PTR_TO_STACK: 16477 /* two stack pointers are equal only if they're pointing to 16478 * the same stack frame, since fp-8 in foo != fp-8 in bar 16479 */ 16480 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 16481 default: 16482 return regs_exact(rold, rcur, idmap); 16483 } 16484 } 16485 16486 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 16487 struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact) 16488 { 16489 int i, spi; 16490 16491 /* walk slots of the explored stack and ignore any additional 16492 * slots in the current stack, since explored(safe) state 16493 * didn't use them 16494 */ 16495 for (i = 0; i < old->allocated_stack; i++) { 16496 struct bpf_reg_state *old_reg, *cur_reg; 16497 16498 spi = i / BPF_REG_SIZE; 16499 16500 if (exact && 16501 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16502 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16503 return false; 16504 16505 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) { 16506 i += BPF_REG_SIZE - 1; 16507 /* explored state didn't use this */ 16508 continue; 16509 } 16510 16511 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 16512 continue; 16513 16514 if (env->allow_uninit_stack && 16515 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 16516 continue; 16517 16518 /* explored stack has more populated slots than current stack 16519 * and these slots were used 16520 */ 16521 if (i >= cur->allocated_stack) 16522 return false; 16523 16524 /* if old state was safe with misc data in the stack 16525 * it will be safe with zero-initialized stack. 16526 * The opposite is not true 16527 */ 16528 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 16529 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 16530 continue; 16531 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16532 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16533 /* Ex: old explored (safe) state has STACK_SPILL in 16534 * this stack slot, but current has STACK_MISC -> 16535 * this verifier states are not equivalent, 16536 * return false to continue verification of this path 16537 */ 16538 return false; 16539 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 16540 continue; 16541 /* Both old and cur are having same slot_type */ 16542 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 16543 case STACK_SPILL: 16544 /* when explored and current stack slot are both storing 16545 * spilled registers, check that stored pointers types 16546 * are the same as well. 16547 * Ex: explored safe path could have stored 16548 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 16549 * but current path has stored: 16550 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 16551 * such verifier states are not equivalent. 16552 * return false to continue verification of this path 16553 */ 16554 if (!regsafe(env, &old->stack[spi].spilled_ptr, 16555 &cur->stack[spi].spilled_ptr, idmap, exact)) 16556 return false; 16557 break; 16558 case STACK_DYNPTR: 16559 old_reg = &old->stack[spi].spilled_ptr; 16560 cur_reg = &cur->stack[spi].spilled_ptr; 16561 if (old_reg->dynptr.type != cur_reg->dynptr.type || 16562 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 16563 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16564 return false; 16565 break; 16566 case STACK_ITER: 16567 old_reg = &old->stack[spi].spilled_ptr; 16568 cur_reg = &cur->stack[spi].spilled_ptr; 16569 /* iter.depth is not compared between states as it 16570 * doesn't matter for correctness and would otherwise 16571 * prevent convergence; we maintain it only to prevent 16572 * infinite loop check triggering, see 16573 * iter_active_depths_differ() 16574 */ 16575 if (old_reg->iter.btf != cur_reg->iter.btf || 16576 old_reg->iter.btf_id != cur_reg->iter.btf_id || 16577 old_reg->iter.state != cur_reg->iter.state || 16578 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 16579 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16580 return false; 16581 break; 16582 case STACK_MISC: 16583 case STACK_ZERO: 16584 case STACK_INVALID: 16585 continue; 16586 /* Ensure that new unhandled slot types return false by default */ 16587 default: 16588 return false; 16589 } 16590 } 16591 return true; 16592 } 16593 16594 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 16595 struct bpf_idmap *idmap) 16596 { 16597 int i; 16598 16599 if (old->acquired_refs != cur->acquired_refs) 16600 return false; 16601 16602 for (i = 0; i < old->acquired_refs; i++) { 16603 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 16604 return false; 16605 } 16606 16607 return true; 16608 } 16609 16610 /* compare two verifier states 16611 * 16612 * all states stored in state_list are known to be valid, since 16613 * verifier reached 'bpf_exit' instruction through them 16614 * 16615 * this function is called when verifier exploring different branches of 16616 * execution popped from the state stack. If it sees an old state that has 16617 * more strict register state and more strict stack state then this execution 16618 * branch doesn't need to be explored further, since verifier already 16619 * concluded that more strict state leads to valid finish. 16620 * 16621 * Therefore two states are equivalent if register state is more conservative 16622 * and explored stack state is more conservative than the current one. 16623 * Example: 16624 * explored current 16625 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 16626 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 16627 * 16628 * In other words if current stack state (one being explored) has more 16629 * valid slots than old one that already passed validation, it means 16630 * the verifier can stop exploring and conclude that current state is valid too 16631 * 16632 * Similarly with registers. If explored state has register type as invalid 16633 * whereas register type in current state is meaningful, it means that 16634 * the current state will reach 'bpf_exit' instruction safely 16635 */ 16636 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 16637 struct bpf_func_state *cur, bool exact) 16638 { 16639 int i; 16640 16641 for (i = 0; i < MAX_BPF_REG; i++) 16642 if (!regsafe(env, &old->regs[i], &cur->regs[i], 16643 &env->idmap_scratch, exact)) 16644 return false; 16645 16646 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 16647 return false; 16648 16649 if (!refsafe(old, cur, &env->idmap_scratch)) 16650 return false; 16651 16652 return true; 16653 } 16654 16655 static void reset_idmap_scratch(struct bpf_verifier_env *env) 16656 { 16657 env->idmap_scratch.tmp_id_gen = env->id_gen; 16658 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 16659 } 16660 16661 static bool states_equal(struct bpf_verifier_env *env, 16662 struct bpf_verifier_state *old, 16663 struct bpf_verifier_state *cur, 16664 bool exact) 16665 { 16666 int i; 16667 16668 if (old->curframe != cur->curframe) 16669 return false; 16670 16671 reset_idmap_scratch(env); 16672 16673 /* Verification state from speculative execution simulation 16674 * must never prune a non-speculative execution one. 16675 */ 16676 if (old->speculative && !cur->speculative) 16677 return false; 16678 16679 if (old->active_lock.ptr != cur->active_lock.ptr) 16680 return false; 16681 16682 /* Old and cur active_lock's have to be either both present 16683 * or both absent. 16684 */ 16685 if (!!old->active_lock.id != !!cur->active_lock.id) 16686 return false; 16687 16688 if (old->active_lock.id && 16689 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 16690 return false; 16691 16692 if (old->active_rcu_lock != cur->active_rcu_lock) 16693 return false; 16694 16695 /* for states to be equal callsites have to be the same 16696 * and all frame states need to be equivalent 16697 */ 16698 for (i = 0; i <= old->curframe; i++) { 16699 if (old->frame[i]->callsite != cur->frame[i]->callsite) 16700 return false; 16701 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 16702 return false; 16703 } 16704 return true; 16705 } 16706 16707 /* Return 0 if no propagation happened. Return negative error code if error 16708 * happened. Otherwise, return the propagated bit. 16709 */ 16710 static int propagate_liveness_reg(struct bpf_verifier_env *env, 16711 struct bpf_reg_state *reg, 16712 struct bpf_reg_state *parent_reg) 16713 { 16714 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 16715 u8 flag = reg->live & REG_LIVE_READ; 16716 int err; 16717 16718 /* When comes here, read flags of PARENT_REG or REG could be any of 16719 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 16720 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 16721 */ 16722 if (parent_flag == REG_LIVE_READ64 || 16723 /* Or if there is no read flag from REG. */ 16724 !flag || 16725 /* Or if the read flag from REG is the same as PARENT_REG. */ 16726 parent_flag == flag) 16727 return 0; 16728 16729 err = mark_reg_read(env, reg, parent_reg, flag); 16730 if (err) 16731 return err; 16732 16733 return flag; 16734 } 16735 16736 /* A write screens off any subsequent reads; but write marks come from the 16737 * straight-line code between a state and its parent. When we arrive at an 16738 * equivalent state (jump target or such) we didn't arrive by the straight-line 16739 * code, so read marks in the state must propagate to the parent regardless 16740 * of the state's write marks. That's what 'parent == state->parent' comparison 16741 * in mark_reg_read() is for. 16742 */ 16743 static int propagate_liveness(struct bpf_verifier_env *env, 16744 const struct bpf_verifier_state *vstate, 16745 struct bpf_verifier_state *vparent) 16746 { 16747 struct bpf_reg_state *state_reg, *parent_reg; 16748 struct bpf_func_state *state, *parent; 16749 int i, frame, err = 0; 16750 16751 if (vparent->curframe != vstate->curframe) { 16752 WARN(1, "propagate_live: parent frame %d current frame %d\n", 16753 vparent->curframe, vstate->curframe); 16754 return -EFAULT; 16755 } 16756 /* Propagate read liveness of registers... */ 16757 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 16758 for (frame = 0; frame <= vstate->curframe; frame++) { 16759 parent = vparent->frame[frame]; 16760 state = vstate->frame[frame]; 16761 parent_reg = parent->regs; 16762 state_reg = state->regs; 16763 /* We don't need to worry about FP liveness, it's read-only */ 16764 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 16765 err = propagate_liveness_reg(env, &state_reg[i], 16766 &parent_reg[i]); 16767 if (err < 0) 16768 return err; 16769 if (err == REG_LIVE_READ64) 16770 mark_insn_zext(env, &parent_reg[i]); 16771 } 16772 16773 /* Propagate stack slots. */ 16774 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 16775 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 16776 parent_reg = &parent->stack[i].spilled_ptr; 16777 state_reg = &state->stack[i].spilled_ptr; 16778 err = propagate_liveness_reg(env, state_reg, 16779 parent_reg); 16780 if (err < 0) 16781 return err; 16782 } 16783 } 16784 return 0; 16785 } 16786 16787 /* find precise scalars in the previous equivalent state and 16788 * propagate them into the current state 16789 */ 16790 static int propagate_precision(struct bpf_verifier_env *env, 16791 const struct bpf_verifier_state *old) 16792 { 16793 struct bpf_reg_state *state_reg; 16794 struct bpf_func_state *state; 16795 int i, err = 0, fr; 16796 bool first; 16797 16798 for (fr = old->curframe; fr >= 0; fr--) { 16799 state = old->frame[fr]; 16800 state_reg = state->regs; 16801 first = true; 16802 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 16803 if (state_reg->type != SCALAR_VALUE || 16804 !state_reg->precise || 16805 !(state_reg->live & REG_LIVE_READ)) 16806 continue; 16807 if (env->log.level & BPF_LOG_LEVEL2) { 16808 if (first) 16809 verbose(env, "frame %d: propagating r%d", fr, i); 16810 else 16811 verbose(env, ",r%d", i); 16812 } 16813 bt_set_frame_reg(&env->bt, fr, i); 16814 first = false; 16815 } 16816 16817 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16818 if (!is_spilled_reg(&state->stack[i])) 16819 continue; 16820 state_reg = &state->stack[i].spilled_ptr; 16821 if (state_reg->type != SCALAR_VALUE || 16822 !state_reg->precise || 16823 !(state_reg->live & REG_LIVE_READ)) 16824 continue; 16825 if (env->log.level & BPF_LOG_LEVEL2) { 16826 if (first) 16827 verbose(env, "frame %d: propagating fp%d", 16828 fr, (-i - 1) * BPF_REG_SIZE); 16829 else 16830 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 16831 } 16832 bt_set_frame_slot(&env->bt, fr, i); 16833 first = false; 16834 } 16835 if (!first) 16836 verbose(env, "\n"); 16837 } 16838 16839 err = mark_chain_precision_batch(env); 16840 if (err < 0) 16841 return err; 16842 16843 return 0; 16844 } 16845 16846 static bool states_maybe_looping(struct bpf_verifier_state *old, 16847 struct bpf_verifier_state *cur) 16848 { 16849 struct bpf_func_state *fold, *fcur; 16850 int i, fr = cur->curframe; 16851 16852 if (old->curframe != fr) 16853 return false; 16854 16855 fold = old->frame[fr]; 16856 fcur = cur->frame[fr]; 16857 for (i = 0; i < MAX_BPF_REG; i++) 16858 if (memcmp(&fold->regs[i], &fcur->regs[i], 16859 offsetof(struct bpf_reg_state, parent))) 16860 return false; 16861 return true; 16862 } 16863 16864 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 16865 { 16866 return env->insn_aux_data[insn_idx].is_iter_next; 16867 } 16868 16869 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 16870 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 16871 * states to match, which otherwise would look like an infinite loop. So while 16872 * iter_next() calls are taken care of, we still need to be careful and 16873 * prevent erroneous and too eager declaration of "ininite loop", when 16874 * iterators are involved. 16875 * 16876 * Here's a situation in pseudo-BPF assembly form: 16877 * 16878 * 0: again: ; set up iter_next() call args 16879 * 1: r1 = &it ; <CHECKPOINT HERE> 16880 * 2: call bpf_iter_num_next ; this is iter_next() call 16881 * 3: if r0 == 0 goto done 16882 * 4: ... something useful here ... 16883 * 5: goto again ; another iteration 16884 * 6: done: 16885 * 7: r1 = &it 16886 * 8: call bpf_iter_num_destroy ; clean up iter state 16887 * 9: exit 16888 * 16889 * This is a typical loop. Let's assume that we have a prune point at 1:, 16890 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 16891 * again`, assuming other heuristics don't get in a way). 16892 * 16893 * When we first time come to 1:, let's say we have some state X. We proceed 16894 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 16895 * Now we come back to validate that forked ACTIVE state. We proceed through 16896 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 16897 * are converging. But the problem is that we don't know that yet, as this 16898 * convergence has to happen at iter_next() call site only. So if nothing is 16899 * done, at 1: verifier will use bounded loop logic and declare infinite 16900 * looping (and would be *technically* correct, if not for iterator's 16901 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 16902 * don't want that. So what we do in process_iter_next_call() when we go on 16903 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 16904 * a different iteration. So when we suspect an infinite loop, we additionally 16905 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 16906 * pretend we are not looping and wait for next iter_next() call. 16907 * 16908 * This only applies to ACTIVE state. In DRAINED state we don't expect to 16909 * loop, because that would actually mean infinite loop, as DRAINED state is 16910 * "sticky", and so we'll keep returning into the same instruction with the 16911 * same state (at least in one of possible code paths). 16912 * 16913 * This approach allows to keep infinite loop heuristic even in the face of 16914 * active iterator. E.g., C snippet below is and will be detected as 16915 * inifintely looping: 16916 * 16917 * struct bpf_iter_num it; 16918 * int *p, x; 16919 * 16920 * bpf_iter_num_new(&it, 0, 10); 16921 * while ((p = bpf_iter_num_next(&t))) { 16922 * x = p; 16923 * while (x--) {} // <<-- infinite loop here 16924 * } 16925 * 16926 */ 16927 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 16928 { 16929 struct bpf_reg_state *slot, *cur_slot; 16930 struct bpf_func_state *state; 16931 int i, fr; 16932 16933 for (fr = old->curframe; fr >= 0; fr--) { 16934 state = old->frame[fr]; 16935 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16936 if (state->stack[i].slot_type[0] != STACK_ITER) 16937 continue; 16938 16939 slot = &state->stack[i].spilled_ptr; 16940 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 16941 continue; 16942 16943 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 16944 if (cur_slot->iter.depth != slot->iter.depth) 16945 return true; 16946 } 16947 } 16948 return false; 16949 } 16950 16951 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 16952 { 16953 struct bpf_verifier_state_list *new_sl; 16954 struct bpf_verifier_state_list *sl, **pprev; 16955 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 16956 int i, j, n, err, states_cnt = 0; 16957 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 16958 bool add_new_state = force_new_state; 16959 bool force_exact; 16960 16961 /* bpf progs typically have pruning point every 4 instructions 16962 * http://vger.kernel.org/bpfconf2019.html#session-1 16963 * Do not add new state for future pruning if the verifier hasn't seen 16964 * at least 2 jumps and at least 8 instructions. 16965 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 16966 * In tests that amounts to up to 50% reduction into total verifier 16967 * memory consumption and 20% verifier time speedup. 16968 */ 16969 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 16970 env->insn_processed - env->prev_insn_processed >= 8) 16971 add_new_state = true; 16972 16973 pprev = explored_state(env, insn_idx); 16974 sl = *pprev; 16975 16976 clean_live_states(env, insn_idx, cur); 16977 16978 while (sl) { 16979 states_cnt++; 16980 if (sl->state.insn_idx != insn_idx) 16981 goto next; 16982 16983 if (sl->state.branches) { 16984 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 16985 16986 if (frame->in_async_callback_fn && 16987 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 16988 /* Different async_entry_cnt means that the verifier is 16989 * processing another entry into async callback. 16990 * Seeing the same state is not an indication of infinite 16991 * loop or infinite recursion. 16992 * But finding the same state doesn't mean that it's safe 16993 * to stop processing the current state. The previous state 16994 * hasn't yet reached bpf_exit, since state.branches > 0. 16995 * Checking in_async_callback_fn alone is not enough either. 16996 * Since the verifier still needs to catch infinite loops 16997 * inside async callbacks. 16998 */ 16999 goto skip_inf_loop_check; 17000 } 17001 /* BPF open-coded iterators loop detection is special. 17002 * states_maybe_looping() logic is too simplistic in detecting 17003 * states that *might* be equivalent, because it doesn't know 17004 * about ID remapping, so don't even perform it. 17005 * See process_iter_next_call() and iter_active_depths_differ() 17006 * for overview of the logic. When current and one of parent 17007 * states are detected as equivalent, it's a good thing: we prove 17008 * convergence and can stop simulating further iterations. 17009 * It's safe to assume that iterator loop will finish, taking into 17010 * account iter_next() contract of eventually returning 17011 * sticky NULL result. 17012 * 17013 * Note, that states have to be compared exactly in this case because 17014 * read and precision marks might not be finalized inside the loop. 17015 * E.g. as in the program below: 17016 * 17017 * 1. r7 = -16 17018 * 2. r6 = bpf_get_prandom_u32() 17019 * 3. while (bpf_iter_num_next(&fp[-8])) { 17020 * 4. if (r6 != 42) { 17021 * 5. r7 = -32 17022 * 6. r6 = bpf_get_prandom_u32() 17023 * 7. continue 17024 * 8. } 17025 * 9. r0 = r10 17026 * 10. r0 += r7 17027 * 11. r8 = *(u64 *)(r0 + 0) 17028 * 12. r6 = bpf_get_prandom_u32() 17029 * 13. } 17030 * 17031 * Here verifier would first visit path 1-3, create a checkpoint at 3 17032 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 17033 * not have read or precision mark for r7 yet, thus inexact states 17034 * comparison would discard current state with r7=-32 17035 * => unsafe memory access at 11 would not be caught. 17036 */ 17037 if (is_iter_next_insn(env, insn_idx)) { 17038 if (states_equal(env, &sl->state, cur, true)) { 17039 struct bpf_func_state *cur_frame; 17040 struct bpf_reg_state *iter_state, *iter_reg; 17041 int spi; 17042 17043 cur_frame = cur->frame[cur->curframe]; 17044 /* btf_check_iter_kfuncs() enforces that 17045 * iter state pointer is always the first arg 17046 */ 17047 iter_reg = &cur_frame->regs[BPF_REG_1]; 17048 /* current state is valid due to states_equal(), 17049 * so we can assume valid iter and reg state, 17050 * no need for extra (re-)validations 17051 */ 17052 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 17053 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 17054 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 17055 update_loop_entry(cur, &sl->state); 17056 goto hit; 17057 } 17058 } 17059 goto skip_inf_loop_check; 17060 } 17061 if (calls_callback(env, insn_idx)) { 17062 if (states_equal(env, &sl->state, cur, true)) 17063 goto hit; 17064 goto skip_inf_loop_check; 17065 } 17066 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 17067 if (states_maybe_looping(&sl->state, cur) && 17068 states_equal(env, &sl->state, cur, true) && 17069 !iter_active_depths_differ(&sl->state, cur) && 17070 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 17071 verbose_linfo(env, insn_idx, "; "); 17072 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 17073 verbose(env, "cur state:"); 17074 print_verifier_state(env, cur->frame[cur->curframe], true); 17075 verbose(env, "old state:"); 17076 print_verifier_state(env, sl->state.frame[cur->curframe], true); 17077 return -EINVAL; 17078 } 17079 /* if the verifier is processing a loop, avoid adding new state 17080 * too often, since different loop iterations have distinct 17081 * states and may not help future pruning. 17082 * This threshold shouldn't be too low to make sure that 17083 * a loop with large bound will be rejected quickly. 17084 * The most abusive loop will be: 17085 * r1 += 1 17086 * if r1 < 1000000 goto pc-2 17087 * 1M insn_procssed limit / 100 == 10k peak states. 17088 * This threshold shouldn't be too high either, since states 17089 * at the end of the loop are likely to be useful in pruning. 17090 */ 17091 skip_inf_loop_check: 17092 if (!force_new_state && 17093 env->jmps_processed - env->prev_jmps_processed < 20 && 17094 env->insn_processed - env->prev_insn_processed < 100) 17095 add_new_state = false; 17096 goto miss; 17097 } 17098 /* If sl->state is a part of a loop and this loop's entry is a part of 17099 * current verification path then states have to be compared exactly. 17100 * 'force_exact' is needed to catch the following case: 17101 * 17102 * initial Here state 'succ' was processed first, 17103 * | it was eventually tracked to produce a 17104 * V state identical to 'hdr'. 17105 * .---------> hdr All branches from 'succ' had been explored 17106 * | | and thus 'succ' has its .branches == 0. 17107 * | V 17108 * | .------... Suppose states 'cur' and 'succ' correspond 17109 * | | | to the same instruction + callsites. 17110 * | V V In such case it is necessary to check 17111 * | ... ... if 'succ' and 'cur' are states_equal(). 17112 * | | | If 'succ' and 'cur' are a part of the 17113 * | V V same loop exact flag has to be set. 17114 * | succ <- cur To check if that is the case, verify 17115 * | | if loop entry of 'succ' is in current 17116 * | V DFS path. 17117 * | ... 17118 * | | 17119 * '----' 17120 * 17121 * Additional details are in the comment before get_loop_entry(). 17122 */ 17123 loop_entry = get_loop_entry(&sl->state); 17124 force_exact = loop_entry && loop_entry->branches > 0; 17125 if (states_equal(env, &sl->state, cur, force_exact)) { 17126 if (force_exact) 17127 update_loop_entry(cur, loop_entry); 17128 hit: 17129 sl->hit_cnt++; 17130 /* reached equivalent register/stack state, 17131 * prune the search. 17132 * Registers read by the continuation are read by us. 17133 * If we have any write marks in env->cur_state, they 17134 * will prevent corresponding reads in the continuation 17135 * from reaching our parent (an explored_state). Our 17136 * own state will get the read marks recorded, but 17137 * they'll be immediately forgotten as we're pruning 17138 * this state and will pop a new one. 17139 */ 17140 err = propagate_liveness(env, &sl->state, cur); 17141 17142 /* if previous state reached the exit with precision and 17143 * current state is equivalent to it (except precsion marks) 17144 * the precision needs to be propagated back in 17145 * the current state. 17146 */ 17147 if (is_jmp_point(env, env->insn_idx)) 17148 err = err ? : push_jmp_history(env, cur, 0); 17149 err = err ? : propagate_precision(env, &sl->state); 17150 if (err) 17151 return err; 17152 return 1; 17153 } 17154 miss: 17155 /* when new state is not going to be added do not increase miss count. 17156 * Otherwise several loop iterations will remove the state 17157 * recorded earlier. The goal of these heuristics is to have 17158 * states from some iterations of the loop (some in the beginning 17159 * and some at the end) to help pruning. 17160 */ 17161 if (add_new_state) 17162 sl->miss_cnt++; 17163 /* heuristic to determine whether this state is beneficial 17164 * to keep checking from state equivalence point of view. 17165 * Higher numbers increase max_states_per_insn and verification time, 17166 * but do not meaningfully decrease insn_processed. 17167 * 'n' controls how many times state could miss before eviction. 17168 * Use bigger 'n' for checkpoints because evicting checkpoint states 17169 * too early would hinder iterator convergence. 17170 */ 17171 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 17172 if (sl->miss_cnt > sl->hit_cnt * n + n) { 17173 /* the state is unlikely to be useful. Remove it to 17174 * speed up verification 17175 */ 17176 *pprev = sl->next; 17177 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 17178 !sl->state.used_as_loop_entry) { 17179 u32 br = sl->state.branches; 17180 17181 WARN_ONCE(br, 17182 "BUG live_done but branches_to_explore %d\n", 17183 br); 17184 free_verifier_state(&sl->state, false); 17185 kfree(sl); 17186 env->peak_states--; 17187 } else { 17188 /* cannot free this state, since parentage chain may 17189 * walk it later. Add it for free_list instead to 17190 * be freed at the end of verification 17191 */ 17192 sl->next = env->free_list; 17193 env->free_list = sl; 17194 } 17195 sl = *pprev; 17196 continue; 17197 } 17198 next: 17199 pprev = &sl->next; 17200 sl = *pprev; 17201 } 17202 17203 if (env->max_states_per_insn < states_cnt) 17204 env->max_states_per_insn = states_cnt; 17205 17206 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 17207 return 0; 17208 17209 if (!add_new_state) 17210 return 0; 17211 17212 /* There were no equivalent states, remember the current one. 17213 * Technically the current state is not proven to be safe yet, 17214 * but it will either reach outer most bpf_exit (which means it's safe) 17215 * or it will be rejected. When there are no loops the verifier won't be 17216 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 17217 * again on the way to bpf_exit. 17218 * When looping the sl->state.branches will be > 0 and this state 17219 * will not be considered for equivalence until branches == 0. 17220 */ 17221 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 17222 if (!new_sl) 17223 return -ENOMEM; 17224 env->total_states++; 17225 env->peak_states++; 17226 env->prev_jmps_processed = env->jmps_processed; 17227 env->prev_insn_processed = env->insn_processed; 17228 17229 /* forget precise markings we inherited, see __mark_chain_precision */ 17230 if (env->bpf_capable) 17231 mark_all_scalars_imprecise(env, cur); 17232 17233 /* add new state to the head of linked list */ 17234 new = &new_sl->state; 17235 err = copy_verifier_state(new, cur); 17236 if (err) { 17237 free_verifier_state(new, false); 17238 kfree(new_sl); 17239 return err; 17240 } 17241 new->insn_idx = insn_idx; 17242 WARN_ONCE(new->branches != 1, 17243 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 17244 17245 cur->parent = new; 17246 cur->first_insn_idx = insn_idx; 17247 cur->dfs_depth = new->dfs_depth + 1; 17248 clear_jmp_history(cur); 17249 new_sl->next = *explored_state(env, insn_idx); 17250 *explored_state(env, insn_idx) = new_sl; 17251 /* connect new state to parentage chain. Current frame needs all 17252 * registers connected. Only r6 - r9 of the callers are alive (pushed 17253 * to the stack implicitly by JITs) so in callers' frames connect just 17254 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 17255 * the state of the call instruction (with WRITTEN set), and r0 comes 17256 * from callee with its full parentage chain, anyway. 17257 */ 17258 /* clear write marks in current state: the writes we did are not writes 17259 * our child did, so they don't screen off its reads from us. 17260 * (There are no read marks in current state, because reads always mark 17261 * their parent and current state never has children yet. Only 17262 * explored_states can get read marks.) 17263 */ 17264 for (j = 0; j <= cur->curframe; j++) { 17265 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 17266 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 17267 for (i = 0; i < BPF_REG_FP; i++) 17268 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 17269 } 17270 17271 /* all stack frames are accessible from callee, clear them all */ 17272 for (j = 0; j <= cur->curframe; j++) { 17273 struct bpf_func_state *frame = cur->frame[j]; 17274 struct bpf_func_state *newframe = new->frame[j]; 17275 17276 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 17277 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 17278 frame->stack[i].spilled_ptr.parent = 17279 &newframe->stack[i].spilled_ptr; 17280 } 17281 } 17282 return 0; 17283 } 17284 17285 /* Return true if it's OK to have the same insn return a different type. */ 17286 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 17287 { 17288 switch (base_type(type)) { 17289 case PTR_TO_CTX: 17290 case PTR_TO_SOCKET: 17291 case PTR_TO_SOCK_COMMON: 17292 case PTR_TO_TCP_SOCK: 17293 case PTR_TO_XDP_SOCK: 17294 case PTR_TO_BTF_ID: 17295 return false; 17296 default: 17297 return true; 17298 } 17299 } 17300 17301 /* If an instruction was previously used with particular pointer types, then we 17302 * need to be careful to avoid cases such as the below, where it may be ok 17303 * for one branch accessing the pointer, but not ok for the other branch: 17304 * 17305 * R1 = sock_ptr 17306 * goto X; 17307 * ... 17308 * R1 = some_other_valid_ptr; 17309 * goto X; 17310 * ... 17311 * R2 = *(u32 *)(R1 + 0); 17312 */ 17313 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 17314 { 17315 return src != prev && (!reg_type_mismatch_ok(src) || 17316 !reg_type_mismatch_ok(prev)); 17317 } 17318 17319 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 17320 bool allow_trust_missmatch) 17321 { 17322 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 17323 17324 if (*prev_type == NOT_INIT) { 17325 /* Saw a valid insn 17326 * dst_reg = *(u32 *)(src_reg + off) 17327 * save type to validate intersecting paths 17328 */ 17329 *prev_type = type; 17330 } else if (reg_type_mismatch(type, *prev_type)) { 17331 /* Abuser program is trying to use the same insn 17332 * dst_reg = *(u32*) (src_reg + off) 17333 * with different pointer types: 17334 * src_reg == ctx in one branch and 17335 * src_reg == stack|map in some other branch. 17336 * Reject it. 17337 */ 17338 if (allow_trust_missmatch && 17339 base_type(type) == PTR_TO_BTF_ID && 17340 base_type(*prev_type) == PTR_TO_BTF_ID) { 17341 /* 17342 * Have to support a use case when one path through 17343 * the program yields TRUSTED pointer while another 17344 * is UNTRUSTED. Fallback to UNTRUSTED to generate 17345 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 17346 */ 17347 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 17348 } else { 17349 verbose(env, "same insn cannot be used with different pointers\n"); 17350 return -EINVAL; 17351 } 17352 } 17353 17354 return 0; 17355 } 17356 17357 static int do_check(struct bpf_verifier_env *env) 17358 { 17359 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 17360 struct bpf_verifier_state *state = env->cur_state; 17361 struct bpf_insn *insns = env->prog->insnsi; 17362 struct bpf_reg_state *regs; 17363 int insn_cnt = env->prog->len; 17364 bool do_print_state = false; 17365 int prev_insn_idx = -1; 17366 17367 for (;;) { 17368 bool exception_exit = false; 17369 struct bpf_insn *insn; 17370 u8 class; 17371 int err; 17372 17373 /* reset current history entry on each new instruction */ 17374 env->cur_hist_ent = NULL; 17375 17376 env->prev_insn_idx = prev_insn_idx; 17377 if (env->insn_idx >= insn_cnt) { 17378 verbose(env, "invalid insn idx %d insn_cnt %d\n", 17379 env->insn_idx, insn_cnt); 17380 return -EFAULT; 17381 } 17382 17383 insn = &insns[env->insn_idx]; 17384 class = BPF_CLASS(insn->code); 17385 17386 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 17387 verbose(env, 17388 "BPF program is too large. Processed %d insn\n", 17389 env->insn_processed); 17390 return -E2BIG; 17391 } 17392 17393 state->last_insn_idx = env->prev_insn_idx; 17394 17395 if (is_prune_point(env, env->insn_idx)) { 17396 err = is_state_visited(env, env->insn_idx); 17397 if (err < 0) 17398 return err; 17399 if (err == 1) { 17400 /* found equivalent state, can prune the search */ 17401 if (env->log.level & BPF_LOG_LEVEL) { 17402 if (do_print_state) 17403 verbose(env, "\nfrom %d to %d%s: safe\n", 17404 env->prev_insn_idx, env->insn_idx, 17405 env->cur_state->speculative ? 17406 " (speculative execution)" : ""); 17407 else 17408 verbose(env, "%d: safe\n", env->insn_idx); 17409 } 17410 goto process_bpf_exit; 17411 } 17412 } 17413 17414 if (is_jmp_point(env, env->insn_idx)) { 17415 err = push_jmp_history(env, state, 0); 17416 if (err) 17417 return err; 17418 } 17419 17420 if (signal_pending(current)) 17421 return -EAGAIN; 17422 17423 if (need_resched()) 17424 cond_resched(); 17425 17426 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 17427 verbose(env, "\nfrom %d to %d%s:", 17428 env->prev_insn_idx, env->insn_idx, 17429 env->cur_state->speculative ? 17430 " (speculative execution)" : ""); 17431 print_verifier_state(env, state->frame[state->curframe], true); 17432 do_print_state = false; 17433 } 17434 17435 if (env->log.level & BPF_LOG_LEVEL) { 17436 const struct bpf_insn_cbs cbs = { 17437 .cb_call = disasm_kfunc_name, 17438 .cb_print = verbose, 17439 .private_data = env, 17440 }; 17441 17442 if (verifier_state_scratched(env)) 17443 print_insn_state(env, state->frame[state->curframe]); 17444 17445 verbose_linfo(env, env->insn_idx, "; "); 17446 env->prev_log_pos = env->log.end_pos; 17447 verbose(env, "%d: ", env->insn_idx); 17448 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 17449 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 17450 env->prev_log_pos = env->log.end_pos; 17451 } 17452 17453 if (bpf_prog_is_offloaded(env->prog->aux)) { 17454 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 17455 env->prev_insn_idx); 17456 if (err) 17457 return err; 17458 } 17459 17460 regs = cur_regs(env); 17461 sanitize_mark_insn_seen(env); 17462 prev_insn_idx = env->insn_idx; 17463 17464 if (class == BPF_ALU || class == BPF_ALU64) { 17465 err = check_alu_op(env, insn); 17466 if (err) 17467 return err; 17468 17469 } else if (class == BPF_LDX) { 17470 enum bpf_reg_type src_reg_type; 17471 17472 /* check for reserved fields is already done */ 17473 17474 /* check src operand */ 17475 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17476 if (err) 17477 return err; 17478 17479 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 17480 if (err) 17481 return err; 17482 17483 src_reg_type = regs[insn->src_reg].type; 17484 17485 /* check that memory (src_reg + off) is readable, 17486 * the state of dst_reg will be updated by this func 17487 */ 17488 err = check_mem_access(env, env->insn_idx, insn->src_reg, 17489 insn->off, BPF_SIZE(insn->code), 17490 BPF_READ, insn->dst_reg, false, 17491 BPF_MODE(insn->code) == BPF_MEMSX); 17492 err = err ?: save_aux_ptr_type(env, src_reg_type, true); 17493 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx"); 17494 if (err) 17495 return err; 17496 } else if (class == BPF_STX) { 17497 enum bpf_reg_type dst_reg_type; 17498 17499 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 17500 err = check_atomic(env, env->insn_idx, insn); 17501 if (err) 17502 return err; 17503 env->insn_idx++; 17504 continue; 17505 } 17506 17507 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 17508 verbose(env, "BPF_STX uses reserved fields\n"); 17509 return -EINVAL; 17510 } 17511 17512 /* check src1 operand */ 17513 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17514 if (err) 17515 return err; 17516 /* check src2 operand */ 17517 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17518 if (err) 17519 return err; 17520 17521 dst_reg_type = regs[insn->dst_reg].type; 17522 17523 /* check that memory (dst_reg + off) is writeable */ 17524 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17525 insn->off, BPF_SIZE(insn->code), 17526 BPF_WRITE, insn->src_reg, false, false); 17527 if (err) 17528 return err; 17529 17530 err = save_aux_ptr_type(env, dst_reg_type, false); 17531 if (err) 17532 return err; 17533 } else if (class == BPF_ST) { 17534 enum bpf_reg_type dst_reg_type; 17535 17536 if (BPF_MODE(insn->code) != BPF_MEM || 17537 insn->src_reg != BPF_REG_0) { 17538 verbose(env, "BPF_ST uses reserved fields\n"); 17539 return -EINVAL; 17540 } 17541 /* check src operand */ 17542 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17543 if (err) 17544 return err; 17545 17546 dst_reg_type = regs[insn->dst_reg].type; 17547 17548 /* check that memory (dst_reg + off) is writeable */ 17549 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17550 insn->off, BPF_SIZE(insn->code), 17551 BPF_WRITE, -1, false, false); 17552 if (err) 17553 return err; 17554 17555 err = save_aux_ptr_type(env, dst_reg_type, false); 17556 if (err) 17557 return err; 17558 } else if (class == BPF_JMP || class == BPF_JMP32) { 17559 u8 opcode = BPF_OP(insn->code); 17560 17561 env->jmps_processed++; 17562 if (opcode == BPF_CALL) { 17563 if (BPF_SRC(insn->code) != BPF_K || 17564 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 17565 && insn->off != 0) || 17566 (insn->src_reg != BPF_REG_0 && 17567 insn->src_reg != BPF_PSEUDO_CALL && 17568 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 17569 insn->dst_reg != BPF_REG_0 || 17570 class == BPF_JMP32) { 17571 verbose(env, "BPF_CALL uses reserved fields\n"); 17572 return -EINVAL; 17573 } 17574 17575 if (env->cur_state->active_lock.ptr) { 17576 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 17577 (insn->src_reg == BPF_PSEUDO_CALL) || 17578 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 17579 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 17580 verbose(env, "function calls are not allowed while holding a lock\n"); 17581 return -EINVAL; 17582 } 17583 } 17584 if (insn->src_reg == BPF_PSEUDO_CALL) { 17585 err = check_func_call(env, insn, &env->insn_idx); 17586 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 17587 err = check_kfunc_call(env, insn, &env->insn_idx); 17588 if (!err && is_bpf_throw_kfunc(insn)) { 17589 exception_exit = true; 17590 goto process_bpf_exit_full; 17591 } 17592 } else { 17593 err = check_helper_call(env, insn, &env->insn_idx); 17594 } 17595 if (err) 17596 return err; 17597 17598 mark_reg_scratched(env, BPF_REG_0); 17599 } else if (opcode == BPF_JA) { 17600 if (BPF_SRC(insn->code) != BPF_K || 17601 insn->src_reg != BPF_REG_0 || 17602 insn->dst_reg != BPF_REG_0 || 17603 (class == BPF_JMP && insn->imm != 0) || 17604 (class == BPF_JMP32 && insn->off != 0)) { 17605 verbose(env, "BPF_JA uses reserved fields\n"); 17606 return -EINVAL; 17607 } 17608 17609 if (class == BPF_JMP) 17610 env->insn_idx += insn->off + 1; 17611 else 17612 env->insn_idx += insn->imm + 1; 17613 continue; 17614 17615 } else if (opcode == BPF_EXIT) { 17616 if (BPF_SRC(insn->code) != BPF_K || 17617 insn->imm != 0 || 17618 insn->src_reg != BPF_REG_0 || 17619 insn->dst_reg != BPF_REG_0 || 17620 class == BPF_JMP32) { 17621 verbose(env, "BPF_EXIT uses reserved fields\n"); 17622 return -EINVAL; 17623 } 17624 process_bpf_exit_full: 17625 if (env->cur_state->active_lock.ptr && 17626 !in_rbtree_lock_required_cb(env)) { 17627 verbose(env, "bpf_spin_unlock is missing\n"); 17628 return -EINVAL; 17629 } 17630 17631 if (env->cur_state->active_rcu_lock && 17632 !in_rbtree_lock_required_cb(env)) { 17633 verbose(env, "bpf_rcu_read_unlock is missing\n"); 17634 return -EINVAL; 17635 } 17636 17637 /* We must do check_reference_leak here before 17638 * prepare_func_exit to handle the case when 17639 * state->curframe > 0, it may be a callback 17640 * function, for which reference_state must 17641 * match caller reference state when it exits. 17642 */ 17643 err = check_reference_leak(env, exception_exit); 17644 if (err) 17645 return err; 17646 17647 /* The side effect of the prepare_func_exit 17648 * which is being skipped is that it frees 17649 * bpf_func_state. Typically, process_bpf_exit 17650 * will only be hit with outermost exit. 17651 * copy_verifier_state in pop_stack will handle 17652 * freeing of any extra bpf_func_state left over 17653 * from not processing all nested function 17654 * exits. We also skip return code checks as 17655 * they are not needed for exceptional exits. 17656 */ 17657 if (exception_exit) 17658 goto process_bpf_exit; 17659 17660 if (state->curframe) { 17661 /* exit from nested function */ 17662 err = prepare_func_exit(env, &env->insn_idx); 17663 if (err) 17664 return err; 17665 do_print_state = true; 17666 continue; 17667 } 17668 17669 err = check_return_code(env, BPF_REG_0, "R0"); 17670 if (err) 17671 return err; 17672 process_bpf_exit: 17673 mark_verifier_state_scratched(env); 17674 update_branch_counts(env, env->cur_state); 17675 err = pop_stack(env, &prev_insn_idx, 17676 &env->insn_idx, pop_log); 17677 if (err < 0) { 17678 if (err != -ENOENT) 17679 return err; 17680 break; 17681 } else { 17682 do_print_state = true; 17683 continue; 17684 } 17685 } else { 17686 err = check_cond_jmp_op(env, insn, &env->insn_idx); 17687 if (err) 17688 return err; 17689 } 17690 } else if (class == BPF_LD) { 17691 u8 mode = BPF_MODE(insn->code); 17692 17693 if (mode == BPF_ABS || mode == BPF_IND) { 17694 err = check_ld_abs(env, insn); 17695 if (err) 17696 return err; 17697 17698 } else if (mode == BPF_IMM) { 17699 err = check_ld_imm(env, insn); 17700 if (err) 17701 return err; 17702 17703 env->insn_idx++; 17704 sanitize_mark_insn_seen(env); 17705 } else { 17706 verbose(env, "invalid BPF_LD mode\n"); 17707 return -EINVAL; 17708 } 17709 } else { 17710 verbose(env, "unknown insn class %d\n", class); 17711 return -EINVAL; 17712 } 17713 17714 env->insn_idx++; 17715 } 17716 17717 return 0; 17718 } 17719 17720 static int find_btf_percpu_datasec(struct btf *btf) 17721 { 17722 const struct btf_type *t; 17723 const char *tname; 17724 int i, n; 17725 17726 /* 17727 * Both vmlinux and module each have their own ".data..percpu" 17728 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 17729 * types to look at only module's own BTF types. 17730 */ 17731 n = btf_nr_types(btf); 17732 if (btf_is_module(btf)) 17733 i = btf_nr_types(btf_vmlinux); 17734 else 17735 i = 1; 17736 17737 for(; i < n; i++) { 17738 t = btf_type_by_id(btf, i); 17739 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 17740 continue; 17741 17742 tname = btf_name_by_offset(btf, t->name_off); 17743 if (!strcmp(tname, ".data..percpu")) 17744 return i; 17745 } 17746 17747 return -ENOENT; 17748 } 17749 17750 /* replace pseudo btf_id with kernel symbol address */ 17751 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 17752 struct bpf_insn *insn, 17753 struct bpf_insn_aux_data *aux) 17754 { 17755 const struct btf_var_secinfo *vsi; 17756 const struct btf_type *datasec; 17757 struct btf_mod_pair *btf_mod; 17758 const struct btf_type *t; 17759 const char *sym_name; 17760 bool percpu = false; 17761 u32 type, id = insn->imm; 17762 struct btf *btf; 17763 s32 datasec_id; 17764 u64 addr; 17765 int i, btf_fd, err; 17766 17767 btf_fd = insn[1].imm; 17768 if (btf_fd) { 17769 btf = btf_get_by_fd(btf_fd); 17770 if (IS_ERR(btf)) { 17771 verbose(env, "invalid module BTF object FD specified.\n"); 17772 return -EINVAL; 17773 } 17774 } else { 17775 if (!btf_vmlinux) { 17776 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 17777 return -EINVAL; 17778 } 17779 btf = btf_vmlinux; 17780 btf_get(btf); 17781 } 17782 17783 t = btf_type_by_id(btf, id); 17784 if (!t) { 17785 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 17786 err = -ENOENT; 17787 goto err_put; 17788 } 17789 17790 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 17791 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 17792 err = -EINVAL; 17793 goto err_put; 17794 } 17795 17796 sym_name = btf_name_by_offset(btf, t->name_off); 17797 addr = kallsyms_lookup_name(sym_name); 17798 if (!addr) { 17799 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 17800 sym_name); 17801 err = -ENOENT; 17802 goto err_put; 17803 } 17804 insn[0].imm = (u32)addr; 17805 insn[1].imm = addr >> 32; 17806 17807 if (btf_type_is_func(t)) { 17808 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17809 aux->btf_var.mem_size = 0; 17810 goto check_btf; 17811 } 17812 17813 datasec_id = find_btf_percpu_datasec(btf); 17814 if (datasec_id > 0) { 17815 datasec = btf_type_by_id(btf, datasec_id); 17816 for_each_vsi(i, datasec, vsi) { 17817 if (vsi->type == id) { 17818 percpu = true; 17819 break; 17820 } 17821 } 17822 } 17823 17824 type = t->type; 17825 t = btf_type_skip_modifiers(btf, type, NULL); 17826 if (percpu) { 17827 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 17828 aux->btf_var.btf = btf; 17829 aux->btf_var.btf_id = type; 17830 } else if (!btf_type_is_struct(t)) { 17831 const struct btf_type *ret; 17832 const char *tname; 17833 u32 tsize; 17834 17835 /* resolve the type size of ksym. */ 17836 ret = btf_resolve_size(btf, t, &tsize); 17837 if (IS_ERR(ret)) { 17838 tname = btf_name_by_offset(btf, t->name_off); 17839 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 17840 tname, PTR_ERR(ret)); 17841 err = -EINVAL; 17842 goto err_put; 17843 } 17844 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17845 aux->btf_var.mem_size = tsize; 17846 } else { 17847 aux->btf_var.reg_type = PTR_TO_BTF_ID; 17848 aux->btf_var.btf = btf; 17849 aux->btf_var.btf_id = type; 17850 } 17851 check_btf: 17852 /* check whether we recorded this BTF (and maybe module) already */ 17853 for (i = 0; i < env->used_btf_cnt; i++) { 17854 if (env->used_btfs[i].btf == btf) { 17855 btf_put(btf); 17856 return 0; 17857 } 17858 } 17859 17860 if (env->used_btf_cnt >= MAX_USED_BTFS) { 17861 err = -E2BIG; 17862 goto err_put; 17863 } 17864 17865 btf_mod = &env->used_btfs[env->used_btf_cnt]; 17866 btf_mod->btf = btf; 17867 btf_mod->module = NULL; 17868 17869 /* if we reference variables from kernel module, bump its refcount */ 17870 if (btf_is_module(btf)) { 17871 btf_mod->module = btf_try_get_module(btf); 17872 if (!btf_mod->module) { 17873 err = -ENXIO; 17874 goto err_put; 17875 } 17876 } 17877 17878 env->used_btf_cnt++; 17879 17880 return 0; 17881 err_put: 17882 btf_put(btf); 17883 return err; 17884 } 17885 17886 static bool is_tracing_prog_type(enum bpf_prog_type type) 17887 { 17888 switch (type) { 17889 case BPF_PROG_TYPE_KPROBE: 17890 case BPF_PROG_TYPE_TRACEPOINT: 17891 case BPF_PROG_TYPE_PERF_EVENT: 17892 case BPF_PROG_TYPE_RAW_TRACEPOINT: 17893 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 17894 return true; 17895 default: 17896 return false; 17897 } 17898 } 17899 17900 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 17901 struct bpf_map *map, 17902 struct bpf_prog *prog) 17903 17904 { 17905 enum bpf_prog_type prog_type = resolve_prog_type(prog); 17906 17907 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 17908 btf_record_has_field(map->record, BPF_RB_ROOT)) { 17909 if (is_tracing_prog_type(prog_type)) { 17910 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 17911 return -EINVAL; 17912 } 17913 } 17914 17915 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 17916 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 17917 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 17918 return -EINVAL; 17919 } 17920 17921 if (is_tracing_prog_type(prog_type)) { 17922 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 17923 return -EINVAL; 17924 } 17925 } 17926 17927 if (btf_record_has_field(map->record, BPF_TIMER)) { 17928 if (is_tracing_prog_type(prog_type)) { 17929 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 17930 return -EINVAL; 17931 } 17932 } 17933 17934 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 17935 !bpf_offload_prog_map_match(prog, map)) { 17936 verbose(env, "offload device mismatch between prog and map\n"); 17937 return -EINVAL; 17938 } 17939 17940 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 17941 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 17942 return -EINVAL; 17943 } 17944 17945 if (prog->aux->sleepable) 17946 switch (map->map_type) { 17947 case BPF_MAP_TYPE_HASH: 17948 case BPF_MAP_TYPE_LRU_HASH: 17949 case BPF_MAP_TYPE_ARRAY: 17950 case BPF_MAP_TYPE_PERCPU_HASH: 17951 case BPF_MAP_TYPE_PERCPU_ARRAY: 17952 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 17953 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 17954 case BPF_MAP_TYPE_HASH_OF_MAPS: 17955 case BPF_MAP_TYPE_RINGBUF: 17956 case BPF_MAP_TYPE_USER_RINGBUF: 17957 case BPF_MAP_TYPE_INODE_STORAGE: 17958 case BPF_MAP_TYPE_SK_STORAGE: 17959 case BPF_MAP_TYPE_TASK_STORAGE: 17960 case BPF_MAP_TYPE_CGRP_STORAGE: 17961 break; 17962 default: 17963 verbose(env, 17964 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 17965 return -EINVAL; 17966 } 17967 17968 return 0; 17969 } 17970 17971 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 17972 { 17973 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 17974 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 17975 } 17976 17977 /* find and rewrite pseudo imm in ld_imm64 instructions: 17978 * 17979 * 1. if it accesses map FD, replace it with actual map pointer. 17980 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 17981 * 17982 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 17983 */ 17984 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 17985 { 17986 struct bpf_insn *insn = env->prog->insnsi; 17987 int insn_cnt = env->prog->len; 17988 int i, j, err; 17989 17990 err = bpf_prog_calc_tag(env->prog); 17991 if (err) 17992 return err; 17993 17994 for (i = 0; i < insn_cnt; i++, insn++) { 17995 if (BPF_CLASS(insn->code) == BPF_LDX && 17996 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 17997 insn->imm != 0)) { 17998 verbose(env, "BPF_LDX uses reserved fields\n"); 17999 return -EINVAL; 18000 } 18001 18002 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 18003 struct bpf_insn_aux_data *aux; 18004 struct bpf_map *map; 18005 struct fd f; 18006 u64 addr; 18007 u32 fd; 18008 18009 if (i == insn_cnt - 1 || insn[1].code != 0 || 18010 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 18011 insn[1].off != 0) { 18012 verbose(env, "invalid bpf_ld_imm64 insn\n"); 18013 return -EINVAL; 18014 } 18015 18016 if (insn[0].src_reg == 0) 18017 /* valid generic load 64-bit imm */ 18018 goto next_insn; 18019 18020 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 18021 aux = &env->insn_aux_data[i]; 18022 err = check_pseudo_btf_id(env, insn, aux); 18023 if (err) 18024 return err; 18025 goto next_insn; 18026 } 18027 18028 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 18029 aux = &env->insn_aux_data[i]; 18030 aux->ptr_type = PTR_TO_FUNC; 18031 goto next_insn; 18032 } 18033 18034 /* In final convert_pseudo_ld_imm64() step, this is 18035 * converted into regular 64-bit imm load insn. 18036 */ 18037 switch (insn[0].src_reg) { 18038 case BPF_PSEUDO_MAP_VALUE: 18039 case BPF_PSEUDO_MAP_IDX_VALUE: 18040 break; 18041 case BPF_PSEUDO_MAP_FD: 18042 case BPF_PSEUDO_MAP_IDX: 18043 if (insn[1].imm == 0) 18044 break; 18045 fallthrough; 18046 default: 18047 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 18048 return -EINVAL; 18049 } 18050 18051 switch (insn[0].src_reg) { 18052 case BPF_PSEUDO_MAP_IDX_VALUE: 18053 case BPF_PSEUDO_MAP_IDX: 18054 if (bpfptr_is_null(env->fd_array)) { 18055 verbose(env, "fd_idx without fd_array is invalid\n"); 18056 return -EPROTO; 18057 } 18058 if (copy_from_bpfptr_offset(&fd, env->fd_array, 18059 insn[0].imm * sizeof(fd), 18060 sizeof(fd))) 18061 return -EFAULT; 18062 break; 18063 default: 18064 fd = insn[0].imm; 18065 break; 18066 } 18067 18068 f = fdget(fd); 18069 map = __bpf_map_get(f); 18070 if (IS_ERR(map)) { 18071 verbose(env, "fd %d is not pointing to valid bpf_map\n", 18072 insn[0].imm); 18073 return PTR_ERR(map); 18074 } 18075 18076 err = check_map_prog_compatibility(env, map, env->prog); 18077 if (err) { 18078 fdput(f); 18079 return err; 18080 } 18081 18082 aux = &env->insn_aux_data[i]; 18083 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 18084 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 18085 addr = (unsigned long)map; 18086 } else { 18087 u32 off = insn[1].imm; 18088 18089 if (off >= BPF_MAX_VAR_OFF) { 18090 verbose(env, "direct value offset of %u is not allowed\n", off); 18091 fdput(f); 18092 return -EINVAL; 18093 } 18094 18095 if (!map->ops->map_direct_value_addr) { 18096 verbose(env, "no direct value access support for this map type\n"); 18097 fdput(f); 18098 return -EINVAL; 18099 } 18100 18101 err = map->ops->map_direct_value_addr(map, &addr, off); 18102 if (err) { 18103 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 18104 map->value_size, off); 18105 fdput(f); 18106 return err; 18107 } 18108 18109 aux->map_off = off; 18110 addr += off; 18111 } 18112 18113 insn[0].imm = (u32)addr; 18114 insn[1].imm = addr >> 32; 18115 18116 /* check whether we recorded this map already */ 18117 for (j = 0; j < env->used_map_cnt; j++) { 18118 if (env->used_maps[j] == map) { 18119 aux->map_index = j; 18120 fdput(f); 18121 goto next_insn; 18122 } 18123 } 18124 18125 if (env->used_map_cnt >= MAX_USED_MAPS) { 18126 fdput(f); 18127 return -E2BIG; 18128 } 18129 18130 if (env->prog->aux->sleepable) 18131 atomic64_inc(&map->sleepable_refcnt); 18132 /* hold the map. If the program is rejected by verifier, 18133 * the map will be released by release_maps() or it 18134 * will be used by the valid program until it's unloaded 18135 * and all maps are released in bpf_free_used_maps() 18136 */ 18137 bpf_map_inc(map); 18138 18139 aux->map_index = env->used_map_cnt; 18140 env->used_maps[env->used_map_cnt++] = map; 18141 18142 if (bpf_map_is_cgroup_storage(map) && 18143 bpf_cgroup_storage_assign(env->prog->aux, map)) { 18144 verbose(env, "only one cgroup storage of each type is allowed\n"); 18145 fdput(f); 18146 return -EBUSY; 18147 } 18148 18149 fdput(f); 18150 next_insn: 18151 insn++; 18152 i++; 18153 continue; 18154 } 18155 18156 /* Basic sanity check before we invest more work here. */ 18157 if (!bpf_opcode_in_insntable(insn->code)) { 18158 verbose(env, "unknown opcode %02x\n", insn->code); 18159 return -EINVAL; 18160 } 18161 } 18162 18163 /* now all pseudo BPF_LD_IMM64 instructions load valid 18164 * 'struct bpf_map *' into a register instead of user map_fd. 18165 * These pointers will be used later by verifier to validate map access. 18166 */ 18167 return 0; 18168 } 18169 18170 /* drop refcnt of maps used by the rejected program */ 18171 static void release_maps(struct bpf_verifier_env *env) 18172 { 18173 __bpf_free_used_maps(env->prog->aux, env->used_maps, 18174 env->used_map_cnt); 18175 } 18176 18177 /* drop refcnt of maps used by the rejected program */ 18178 static void release_btfs(struct bpf_verifier_env *env) 18179 { 18180 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 18181 env->used_btf_cnt); 18182 } 18183 18184 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 18185 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 18186 { 18187 struct bpf_insn *insn = env->prog->insnsi; 18188 int insn_cnt = env->prog->len; 18189 int i; 18190 18191 for (i = 0; i < insn_cnt; i++, insn++) { 18192 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 18193 continue; 18194 if (insn->src_reg == BPF_PSEUDO_FUNC) 18195 continue; 18196 insn->src_reg = 0; 18197 } 18198 } 18199 18200 /* single env->prog->insni[off] instruction was replaced with the range 18201 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 18202 * [0, off) and [off, end) to new locations, so the patched range stays zero 18203 */ 18204 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 18205 struct bpf_insn_aux_data *new_data, 18206 struct bpf_prog *new_prog, u32 off, u32 cnt) 18207 { 18208 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 18209 struct bpf_insn *insn = new_prog->insnsi; 18210 u32 old_seen = old_data[off].seen; 18211 u32 prog_len; 18212 int i; 18213 18214 /* aux info at OFF always needs adjustment, no matter fast path 18215 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 18216 * original insn at old prog. 18217 */ 18218 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 18219 18220 if (cnt == 1) 18221 return; 18222 prog_len = new_prog->len; 18223 18224 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 18225 memcpy(new_data + off + cnt - 1, old_data + off, 18226 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 18227 for (i = off; i < off + cnt - 1; i++) { 18228 /* Expand insni[off]'s seen count to the patched range. */ 18229 new_data[i].seen = old_seen; 18230 new_data[i].zext_dst = insn_has_def32(env, insn + i); 18231 } 18232 env->insn_aux_data = new_data; 18233 vfree(old_data); 18234 } 18235 18236 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 18237 { 18238 int i; 18239 18240 if (len == 1) 18241 return; 18242 /* NOTE: fake 'exit' subprog should be updated as well. */ 18243 for (i = 0; i <= env->subprog_cnt; i++) { 18244 if (env->subprog_info[i].start <= off) 18245 continue; 18246 env->subprog_info[i].start += len - 1; 18247 } 18248 } 18249 18250 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 18251 { 18252 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 18253 int i, sz = prog->aux->size_poke_tab; 18254 struct bpf_jit_poke_descriptor *desc; 18255 18256 for (i = 0; i < sz; i++) { 18257 desc = &tab[i]; 18258 if (desc->insn_idx <= off) 18259 continue; 18260 desc->insn_idx += len - 1; 18261 } 18262 } 18263 18264 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 18265 const struct bpf_insn *patch, u32 len) 18266 { 18267 struct bpf_prog *new_prog; 18268 struct bpf_insn_aux_data *new_data = NULL; 18269 18270 if (len > 1) { 18271 new_data = vzalloc(array_size(env->prog->len + len - 1, 18272 sizeof(struct bpf_insn_aux_data))); 18273 if (!new_data) 18274 return NULL; 18275 } 18276 18277 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 18278 if (IS_ERR(new_prog)) { 18279 if (PTR_ERR(new_prog) == -ERANGE) 18280 verbose(env, 18281 "insn %d cannot be patched due to 16-bit range\n", 18282 env->insn_aux_data[off].orig_idx); 18283 vfree(new_data); 18284 return NULL; 18285 } 18286 adjust_insn_aux_data(env, new_data, new_prog, off, len); 18287 adjust_subprog_starts(env, off, len); 18288 adjust_poke_descs(new_prog, off, len); 18289 return new_prog; 18290 } 18291 18292 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 18293 u32 off, u32 cnt) 18294 { 18295 int i, j; 18296 18297 /* find first prog starting at or after off (first to remove) */ 18298 for (i = 0; i < env->subprog_cnt; i++) 18299 if (env->subprog_info[i].start >= off) 18300 break; 18301 /* find first prog starting at or after off + cnt (first to stay) */ 18302 for (j = i; j < env->subprog_cnt; j++) 18303 if (env->subprog_info[j].start >= off + cnt) 18304 break; 18305 /* if j doesn't start exactly at off + cnt, we are just removing 18306 * the front of previous prog 18307 */ 18308 if (env->subprog_info[j].start != off + cnt) 18309 j--; 18310 18311 if (j > i) { 18312 struct bpf_prog_aux *aux = env->prog->aux; 18313 int move; 18314 18315 /* move fake 'exit' subprog as well */ 18316 move = env->subprog_cnt + 1 - j; 18317 18318 memmove(env->subprog_info + i, 18319 env->subprog_info + j, 18320 sizeof(*env->subprog_info) * move); 18321 env->subprog_cnt -= j - i; 18322 18323 /* remove func_info */ 18324 if (aux->func_info) { 18325 move = aux->func_info_cnt - j; 18326 18327 memmove(aux->func_info + i, 18328 aux->func_info + j, 18329 sizeof(*aux->func_info) * move); 18330 aux->func_info_cnt -= j - i; 18331 /* func_info->insn_off is set after all code rewrites, 18332 * in adjust_btf_func() - no need to adjust 18333 */ 18334 } 18335 } else { 18336 /* convert i from "first prog to remove" to "first to adjust" */ 18337 if (env->subprog_info[i].start == off) 18338 i++; 18339 } 18340 18341 /* update fake 'exit' subprog as well */ 18342 for (; i <= env->subprog_cnt; i++) 18343 env->subprog_info[i].start -= cnt; 18344 18345 return 0; 18346 } 18347 18348 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 18349 u32 cnt) 18350 { 18351 struct bpf_prog *prog = env->prog; 18352 u32 i, l_off, l_cnt, nr_linfo; 18353 struct bpf_line_info *linfo; 18354 18355 nr_linfo = prog->aux->nr_linfo; 18356 if (!nr_linfo) 18357 return 0; 18358 18359 linfo = prog->aux->linfo; 18360 18361 /* find first line info to remove, count lines to be removed */ 18362 for (i = 0; i < nr_linfo; i++) 18363 if (linfo[i].insn_off >= off) 18364 break; 18365 18366 l_off = i; 18367 l_cnt = 0; 18368 for (; i < nr_linfo; i++) 18369 if (linfo[i].insn_off < off + cnt) 18370 l_cnt++; 18371 else 18372 break; 18373 18374 /* First live insn doesn't match first live linfo, it needs to "inherit" 18375 * last removed linfo. prog is already modified, so prog->len == off 18376 * means no live instructions after (tail of the program was removed). 18377 */ 18378 if (prog->len != off && l_cnt && 18379 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 18380 l_cnt--; 18381 linfo[--i].insn_off = off + cnt; 18382 } 18383 18384 /* remove the line info which refer to the removed instructions */ 18385 if (l_cnt) { 18386 memmove(linfo + l_off, linfo + i, 18387 sizeof(*linfo) * (nr_linfo - i)); 18388 18389 prog->aux->nr_linfo -= l_cnt; 18390 nr_linfo = prog->aux->nr_linfo; 18391 } 18392 18393 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 18394 for (i = l_off; i < nr_linfo; i++) 18395 linfo[i].insn_off -= cnt; 18396 18397 /* fix up all subprogs (incl. 'exit') which start >= off */ 18398 for (i = 0; i <= env->subprog_cnt; i++) 18399 if (env->subprog_info[i].linfo_idx > l_off) { 18400 /* program may have started in the removed region but 18401 * may not be fully removed 18402 */ 18403 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 18404 env->subprog_info[i].linfo_idx -= l_cnt; 18405 else 18406 env->subprog_info[i].linfo_idx = l_off; 18407 } 18408 18409 return 0; 18410 } 18411 18412 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 18413 { 18414 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18415 unsigned int orig_prog_len = env->prog->len; 18416 int err; 18417 18418 if (bpf_prog_is_offloaded(env->prog->aux)) 18419 bpf_prog_offload_remove_insns(env, off, cnt); 18420 18421 err = bpf_remove_insns(env->prog, off, cnt); 18422 if (err) 18423 return err; 18424 18425 err = adjust_subprog_starts_after_remove(env, off, cnt); 18426 if (err) 18427 return err; 18428 18429 err = bpf_adj_linfo_after_remove(env, off, cnt); 18430 if (err) 18431 return err; 18432 18433 memmove(aux_data + off, aux_data + off + cnt, 18434 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 18435 18436 return 0; 18437 } 18438 18439 /* The verifier does more data flow analysis than llvm and will not 18440 * explore branches that are dead at run time. Malicious programs can 18441 * have dead code too. Therefore replace all dead at-run-time code 18442 * with 'ja -1'. 18443 * 18444 * Just nops are not optimal, e.g. if they would sit at the end of the 18445 * program and through another bug we would manage to jump there, then 18446 * we'd execute beyond program memory otherwise. Returning exception 18447 * code also wouldn't work since we can have subprogs where the dead 18448 * code could be located. 18449 */ 18450 static void sanitize_dead_code(struct bpf_verifier_env *env) 18451 { 18452 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18453 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 18454 struct bpf_insn *insn = env->prog->insnsi; 18455 const int insn_cnt = env->prog->len; 18456 int i; 18457 18458 for (i = 0; i < insn_cnt; i++) { 18459 if (aux_data[i].seen) 18460 continue; 18461 memcpy(insn + i, &trap, sizeof(trap)); 18462 aux_data[i].zext_dst = false; 18463 } 18464 } 18465 18466 static bool insn_is_cond_jump(u8 code) 18467 { 18468 u8 op; 18469 18470 op = BPF_OP(code); 18471 if (BPF_CLASS(code) == BPF_JMP32) 18472 return op != BPF_JA; 18473 18474 if (BPF_CLASS(code) != BPF_JMP) 18475 return false; 18476 18477 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 18478 } 18479 18480 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 18481 { 18482 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18483 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18484 struct bpf_insn *insn = env->prog->insnsi; 18485 const int insn_cnt = env->prog->len; 18486 int i; 18487 18488 for (i = 0; i < insn_cnt; i++, insn++) { 18489 if (!insn_is_cond_jump(insn->code)) 18490 continue; 18491 18492 if (!aux_data[i + 1].seen) 18493 ja.off = insn->off; 18494 else if (!aux_data[i + 1 + insn->off].seen) 18495 ja.off = 0; 18496 else 18497 continue; 18498 18499 if (bpf_prog_is_offloaded(env->prog->aux)) 18500 bpf_prog_offload_replace_insn(env, i, &ja); 18501 18502 memcpy(insn, &ja, sizeof(ja)); 18503 } 18504 } 18505 18506 static int opt_remove_dead_code(struct bpf_verifier_env *env) 18507 { 18508 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18509 int insn_cnt = env->prog->len; 18510 int i, err; 18511 18512 for (i = 0; i < insn_cnt; i++) { 18513 int j; 18514 18515 j = 0; 18516 while (i + j < insn_cnt && !aux_data[i + j].seen) 18517 j++; 18518 if (!j) 18519 continue; 18520 18521 err = verifier_remove_insns(env, i, j); 18522 if (err) 18523 return err; 18524 insn_cnt = env->prog->len; 18525 } 18526 18527 return 0; 18528 } 18529 18530 static int opt_remove_nops(struct bpf_verifier_env *env) 18531 { 18532 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18533 struct bpf_insn *insn = env->prog->insnsi; 18534 int insn_cnt = env->prog->len; 18535 int i, err; 18536 18537 for (i = 0; i < insn_cnt; i++) { 18538 if (memcmp(&insn[i], &ja, sizeof(ja))) 18539 continue; 18540 18541 err = verifier_remove_insns(env, i, 1); 18542 if (err) 18543 return err; 18544 insn_cnt--; 18545 i--; 18546 } 18547 18548 return 0; 18549 } 18550 18551 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 18552 const union bpf_attr *attr) 18553 { 18554 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 18555 struct bpf_insn_aux_data *aux = env->insn_aux_data; 18556 int i, patch_len, delta = 0, len = env->prog->len; 18557 struct bpf_insn *insns = env->prog->insnsi; 18558 struct bpf_prog *new_prog; 18559 bool rnd_hi32; 18560 18561 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 18562 zext_patch[1] = BPF_ZEXT_REG(0); 18563 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 18564 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 18565 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 18566 for (i = 0; i < len; i++) { 18567 int adj_idx = i + delta; 18568 struct bpf_insn insn; 18569 int load_reg; 18570 18571 insn = insns[adj_idx]; 18572 load_reg = insn_def_regno(&insn); 18573 if (!aux[adj_idx].zext_dst) { 18574 u8 code, class; 18575 u32 imm_rnd; 18576 18577 if (!rnd_hi32) 18578 continue; 18579 18580 code = insn.code; 18581 class = BPF_CLASS(code); 18582 if (load_reg == -1) 18583 continue; 18584 18585 /* NOTE: arg "reg" (the fourth one) is only used for 18586 * BPF_STX + SRC_OP, so it is safe to pass NULL 18587 * here. 18588 */ 18589 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 18590 if (class == BPF_LD && 18591 BPF_MODE(code) == BPF_IMM) 18592 i++; 18593 continue; 18594 } 18595 18596 /* ctx load could be transformed into wider load. */ 18597 if (class == BPF_LDX && 18598 aux[adj_idx].ptr_type == PTR_TO_CTX) 18599 continue; 18600 18601 imm_rnd = get_random_u32(); 18602 rnd_hi32_patch[0] = insn; 18603 rnd_hi32_patch[1].imm = imm_rnd; 18604 rnd_hi32_patch[3].dst_reg = load_reg; 18605 patch = rnd_hi32_patch; 18606 patch_len = 4; 18607 goto apply_patch_buffer; 18608 } 18609 18610 /* Add in an zero-extend instruction if a) the JIT has requested 18611 * it or b) it's a CMPXCHG. 18612 * 18613 * The latter is because: BPF_CMPXCHG always loads a value into 18614 * R0, therefore always zero-extends. However some archs' 18615 * equivalent instruction only does this load when the 18616 * comparison is successful. This detail of CMPXCHG is 18617 * orthogonal to the general zero-extension behaviour of the 18618 * CPU, so it's treated independently of bpf_jit_needs_zext. 18619 */ 18620 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 18621 continue; 18622 18623 /* Zero-extension is done by the caller. */ 18624 if (bpf_pseudo_kfunc_call(&insn)) 18625 continue; 18626 18627 if (WARN_ON(load_reg == -1)) { 18628 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 18629 return -EFAULT; 18630 } 18631 18632 zext_patch[0] = insn; 18633 zext_patch[1].dst_reg = load_reg; 18634 zext_patch[1].src_reg = load_reg; 18635 patch = zext_patch; 18636 patch_len = 2; 18637 apply_patch_buffer: 18638 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 18639 if (!new_prog) 18640 return -ENOMEM; 18641 env->prog = new_prog; 18642 insns = new_prog->insnsi; 18643 aux = env->insn_aux_data; 18644 delta += patch_len - 1; 18645 } 18646 18647 return 0; 18648 } 18649 18650 /* convert load instructions that access fields of a context type into a 18651 * sequence of instructions that access fields of the underlying structure: 18652 * struct __sk_buff -> struct sk_buff 18653 * struct bpf_sock_ops -> struct sock 18654 */ 18655 static int convert_ctx_accesses(struct bpf_verifier_env *env) 18656 { 18657 const struct bpf_verifier_ops *ops = env->ops; 18658 int i, cnt, size, ctx_field_size, delta = 0; 18659 const int insn_cnt = env->prog->len; 18660 struct bpf_insn insn_buf[16], *insn; 18661 u32 target_size, size_default, off; 18662 struct bpf_prog *new_prog; 18663 enum bpf_access_type type; 18664 bool is_narrower_load; 18665 18666 if (ops->gen_prologue || env->seen_direct_write) { 18667 if (!ops->gen_prologue) { 18668 verbose(env, "bpf verifier is misconfigured\n"); 18669 return -EINVAL; 18670 } 18671 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 18672 env->prog); 18673 if (cnt >= ARRAY_SIZE(insn_buf)) { 18674 verbose(env, "bpf verifier is misconfigured\n"); 18675 return -EINVAL; 18676 } else if (cnt) { 18677 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 18678 if (!new_prog) 18679 return -ENOMEM; 18680 18681 env->prog = new_prog; 18682 delta += cnt - 1; 18683 } 18684 } 18685 18686 if (bpf_prog_is_offloaded(env->prog->aux)) 18687 return 0; 18688 18689 insn = env->prog->insnsi + delta; 18690 18691 for (i = 0; i < insn_cnt; i++, insn++) { 18692 bpf_convert_ctx_access_t convert_ctx_access; 18693 u8 mode; 18694 18695 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 18696 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 18697 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 18698 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 18699 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 18700 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 18701 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 18702 type = BPF_READ; 18703 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 18704 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 18705 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 18706 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 18707 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 18708 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 18709 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 18710 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 18711 type = BPF_WRITE; 18712 } else { 18713 continue; 18714 } 18715 18716 if (type == BPF_WRITE && 18717 env->insn_aux_data[i + delta].sanitize_stack_spill) { 18718 struct bpf_insn patch[] = { 18719 *insn, 18720 BPF_ST_NOSPEC(), 18721 }; 18722 18723 cnt = ARRAY_SIZE(patch); 18724 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 18725 if (!new_prog) 18726 return -ENOMEM; 18727 18728 delta += cnt - 1; 18729 env->prog = new_prog; 18730 insn = new_prog->insnsi + i + delta; 18731 continue; 18732 } 18733 18734 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 18735 case PTR_TO_CTX: 18736 if (!ops->convert_ctx_access) 18737 continue; 18738 convert_ctx_access = ops->convert_ctx_access; 18739 break; 18740 case PTR_TO_SOCKET: 18741 case PTR_TO_SOCK_COMMON: 18742 convert_ctx_access = bpf_sock_convert_ctx_access; 18743 break; 18744 case PTR_TO_TCP_SOCK: 18745 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 18746 break; 18747 case PTR_TO_XDP_SOCK: 18748 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 18749 break; 18750 case PTR_TO_BTF_ID: 18751 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 18752 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 18753 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 18754 * be said once it is marked PTR_UNTRUSTED, hence we must handle 18755 * any faults for loads into such types. BPF_WRITE is disallowed 18756 * for this case. 18757 */ 18758 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 18759 if (type == BPF_READ) { 18760 if (BPF_MODE(insn->code) == BPF_MEM) 18761 insn->code = BPF_LDX | BPF_PROBE_MEM | 18762 BPF_SIZE((insn)->code); 18763 else 18764 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 18765 BPF_SIZE((insn)->code); 18766 env->prog->aux->num_exentries++; 18767 } 18768 continue; 18769 default: 18770 continue; 18771 } 18772 18773 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 18774 size = BPF_LDST_BYTES(insn); 18775 mode = BPF_MODE(insn->code); 18776 18777 /* If the read access is a narrower load of the field, 18778 * convert to a 4/8-byte load, to minimum program type specific 18779 * convert_ctx_access changes. If conversion is successful, 18780 * we will apply proper mask to the result. 18781 */ 18782 is_narrower_load = size < ctx_field_size; 18783 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 18784 off = insn->off; 18785 if (is_narrower_load) { 18786 u8 size_code; 18787 18788 if (type == BPF_WRITE) { 18789 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 18790 return -EINVAL; 18791 } 18792 18793 size_code = BPF_H; 18794 if (ctx_field_size == 4) 18795 size_code = BPF_W; 18796 else if (ctx_field_size == 8) 18797 size_code = BPF_DW; 18798 18799 insn->off = off & ~(size_default - 1); 18800 insn->code = BPF_LDX | BPF_MEM | size_code; 18801 } 18802 18803 target_size = 0; 18804 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 18805 &target_size); 18806 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 18807 (ctx_field_size && !target_size)) { 18808 verbose(env, "bpf verifier is misconfigured\n"); 18809 return -EINVAL; 18810 } 18811 18812 if (is_narrower_load && size < target_size) { 18813 u8 shift = bpf_ctx_narrow_access_offset( 18814 off, size, size_default) * 8; 18815 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 18816 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 18817 return -EINVAL; 18818 } 18819 if (ctx_field_size <= 4) { 18820 if (shift) 18821 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 18822 insn->dst_reg, 18823 shift); 18824 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18825 (1 << size * 8) - 1); 18826 } else { 18827 if (shift) 18828 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 18829 insn->dst_reg, 18830 shift); 18831 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18832 (1ULL << size * 8) - 1); 18833 } 18834 } 18835 if (mode == BPF_MEMSX) 18836 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 18837 insn->dst_reg, insn->dst_reg, 18838 size * 8, 0); 18839 18840 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18841 if (!new_prog) 18842 return -ENOMEM; 18843 18844 delta += cnt - 1; 18845 18846 /* keep walking new program and skip insns we just inserted */ 18847 env->prog = new_prog; 18848 insn = new_prog->insnsi + i + delta; 18849 } 18850 18851 return 0; 18852 } 18853 18854 static int jit_subprogs(struct bpf_verifier_env *env) 18855 { 18856 struct bpf_prog *prog = env->prog, **func, *tmp; 18857 int i, j, subprog_start, subprog_end = 0, len, subprog; 18858 struct bpf_map *map_ptr; 18859 struct bpf_insn *insn; 18860 void *old_bpf_func; 18861 int err, num_exentries; 18862 18863 if (env->subprog_cnt <= 1) 18864 return 0; 18865 18866 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18867 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 18868 continue; 18869 18870 /* Upon error here we cannot fall back to interpreter but 18871 * need a hard reject of the program. Thus -EFAULT is 18872 * propagated in any case. 18873 */ 18874 subprog = find_subprog(env, i + insn->imm + 1); 18875 if (subprog < 0) { 18876 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 18877 i + insn->imm + 1); 18878 return -EFAULT; 18879 } 18880 /* temporarily remember subprog id inside insn instead of 18881 * aux_data, since next loop will split up all insns into funcs 18882 */ 18883 insn->off = subprog; 18884 /* remember original imm in case JIT fails and fallback 18885 * to interpreter will be needed 18886 */ 18887 env->insn_aux_data[i].call_imm = insn->imm; 18888 /* point imm to __bpf_call_base+1 from JITs point of view */ 18889 insn->imm = 1; 18890 if (bpf_pseudo_func(insn)) 18891 /* jit (e.g. x86_64) may emit fewer instructions 18892 * if it learns a u32 imm is the same as a u64 imm. 18893 * Force a non zero here. 18894 */ 18895 insn[1].imm = 1; 18896 } 18897 18898 err = bpf_prog_alloc_jited_linfo(prog); 18899 if (err) 18900 goto out_undo_insn; 18901 18902 err = -ENOMEM; 18903 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 18904 if (!func) 18905 goto out_undo_insn; 18906 18907 for (i = 0; i < env->subprog_cnt; i++) { 18908 subprog_start = subprog_end; 18909 subprog_end = env->subprog_info[i + 1].start; 18910 18911 len = subprog_end - subprog_start; 18912 /* bpf_prog_run() doesn't call subprogs directly, 18913 * hence main prog stats include the runtime of subprogs. 18914 * subprogs don't have IDs and not reachable via prog_get_next_id 18915 * func[i]->stats will never be accessed and stays NULL 18916 */ 18917 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 18918 if (!func[i]) 18919 goto out_free; 18920 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 18921 len * sizeof(struct bpf_insn)); 18922 func[i]->type = prog->type; 18923 func[i]->len = len; 18924 if (bpf_prog_calc_tag(func[i])) 18925 goto out_free; 18926 func[i]->is_func = 1; 18927 func[i]->aux->func_idx = i; 18928 /* Below members will be freed only at prog->aux */ 18929 func[i]->aux->btf = prog->aux->btf; 18930 func[i]->aux->func_info = prog->aux->func_info; 18931 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 18932 func[i]->aux->poke_tab = prog->aux->poke_tab; 18933 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 18934 18935 for (j = 0; j < prog->aux->size_poke_tab; j++) { 18936 struct bpf_jit_poke_descriptor *poke; 18937 18938 poke = &prog->aux->poke_tab[j]; 18939 if (poke->insn_idx < subprog_end && 18940 poke->insn_idx >= subprog_start) 18941 poke->aux = func[i]->aux; 18942 } 18943 18944 func[i]->aux->name[0] = 'F'; 18945 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 18946 func[i]->jit_requested = 1; 18947 func[i]->blinding_requested = prog->blinding_requested; 18948 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 18949 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 18950 func[i]->aux->linfo = prog->aux->linfo; 18951 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 18952 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 18953 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 18954 num_exentries = 0; 18955 insn = func[i]->insnsi; 18956 for (j = 0; j < func[i]->len; j++, insn++) { 18957 if (BPF_CLASS(insn->code) == BPF_LDX && 18958 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 18959 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 18960 num_exentries++; 18961 } 18962 func[i]->aux->num_exentries = num_exentries; 18963 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 18964 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 18965 if (!i) 18966 func[i]->aux->exception_boundary = env->seen_exception; 18967 func[i] = bpf_int_jit_compile(func[i]); 18968 if (!func[i]->jited) { 18969 err = -ENOTSUPP; 18970 goto out_free; 18971 } 18972 cond_resched(); 18973 } 18974 18975 /* at this point all bpf functions were successfully JITed 18976 * now populate all bpf_calls with correct addresses and 18977 * run last pass of JIT 18978 */ 18979 for (i = 0; i < env->subprog_cnt; i++) { 18980 insn = func[i]->insnsi; 18981 for (j = 0; j < func[i]->len; j++, insn++) { 18982 if (bpf_pseudo_func(insn)) { 18983 subprog = insn->off; 18984 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 18985 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 18986 continue; 18987 } 18988 if (!bpf_pseudo_call(insn)) 18989 continue; 18990 subprog = insn->off; 18991 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 18992 } 18993 18994 /* we use the aux data to keep a list of the start addresses 18995 * of the JITed images for each function in the program 18996 * 18997 * for some architectures, such as powerpc64, the imm field 18998 * might not be large enough to hold the offset of the start 18999 * address of the callee's JITed image from __bpf_call_base 19000 * 19001 * in such cases, we can lookup the start address of a callee 19002 * by using its subprog id, available from the off field of 19003 * the call instruction, as an index for this list 19004 */ 19005 func[i]->aux->func = func; 19006 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 19007 func[i]->aux->real_func_cnt = env->subprog_cnt; 19008 } 19009 for (i = 0; i < env->subprog_cnt; i++) { 19010 old_bpf_func = func[i]->bpf_func; 19011 tmp = bpf_int_jit_compile(func[i]); 19012 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 19013 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 19014 err = -ENOTSUPP; 19015 goto out_free; 19016 } 19017 cond_resched(); 19018 } 19019 19020 /* finally lock prog and jit images for all functions and 19021 * populate kallsysm. Begin at the first subprogram, since 19022 * bpf_prog_load will add the kallsyms for the main program. 19023 */ 19024 for (i = 1; i < env->subprog_cnt; i++) { 19025 bpf_prog_lock_ro(func[i]); 19026 bpf_prog_kallsyms_add(func[i]); 19027 } 19028 19029 /* Last step: make now unused interpreter insns from main 19030 * prog consistent for later dump requests, so they can 19031 * later look the same as if they were interpreted only. 19032 */ 19033 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 19034 if (bpf_pseudo_func(insn)) { 19035 insn[0].imm = env->insn_aux_data[i].call_imm; 19036 insn[1].imm = insn->off; 19037 insn->off = 0; 19038 continue; 19039 } 19040 if (!bpf_pseudo_call(insn)) 19041 continue; 19042 insn->off = env->insn_aux_data[i].call_imm; 19043 subprog = find_subprog(env, i + insn->off + 1); 19044 insn->imm = subprog; 19045 } 19046 19047 prog->jited = 1; 19048 prog->bpf_func = func[0]->bpf_func; 19049 prog->jited_len = func[0]->jited_len; 19050 prog->aux->extable = func[0]->aux->extable; 19051 prog->aux->num_exentries = func[0]->aux->num_exentries; 19052 prog->aux->func = func; 19053 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 19054 prog->aux->real_func_cnt = env->subprog_cnt; 19055 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 19056 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 19057 bpf_prog_jit_attempt_done(prog); 19058 return 0; 19059 out_free: 19060 /* We failed JIT'ing, so at this point we need to unregister poke 19061 * descriptors from subprogs, so that kernel is not attempting to 19062 * patch it anymore as we're freeing the subprog JIT memory. 19063 */ 19064 for (i = 0; i < prog->aux->size_poke_tab; i++) { 19065 map_ptr = prog->aux->poke_tab[i].tail_call.map; 19066 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 19067 } 19068 /* At this point we're guaranteed that poke descriptors are not 19069 * live anymore. We can just unlink its descriptor table as it's 19070 * released with the main prog. 19071 */ 19072 for (i = 0; i < env->subprog_cnt; i++) { 19073 if (!func[i]) 19074 continue; 19075 func[i]->aux->poke_tab = NULL; 19076 bpf_jit_free(func[i]); 19077 } 19078 kfree(func); 19079 out_undo_insn: 19080 /* cleanup main prog to be interpreted */ 19081 prog->jit_requested = 0; 19082 prog->blinding_requested = 0; 19083 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 19084 if (!bpf_pseudo_call(insn)) 19085 continue; 19086 insn->off = 0; 19087 insn->imm = env->insn_aux_data[i].call_imm; 19088 } 19089 bpf_prog_jit_attempt_done(prog); 19090 return err; 19091 } 19092 19093 static int fixup_call_args(struct bpf_verifier_env *env) 19094 { 19095 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 19096 struct bpf_prog *prog = env->prog; 19097 struct bpf_insn *insn = prog->insnsi; 19098 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 19099 int i, depth; 19100 #endif 19101 int err = 0; 19102 19103 if (env->prog->jit_requested && 19104 !bpf_prog_is_offloaded(env->prog->aux)) { 19105 err = jit_subprogs(env); 19106 if (err == 0) 19107 return 0; 19108 if (err == -EFAULT) 19109 return err; 19110 } 19111 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 19112 if (has_kfunc_call) { 19113 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 19114 return -EINVAL; 19115 } 19116 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 19117 /* When JIT fails the progs with bpf2bpf calls and tail_calls 19118 * have to be rejected, since interpreter doesn't support them yet. 19119 */ 19120 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 19121 return -EINVAL; 19122 } 19123 for (i = 0; i < prog->len; i++, insn++) { 19124 if (bpf_pseudo_func(insn)) { 19125 /* When JIT fails the progs with callback calls 19126 * have to be rejected, since interpreter doesn't support them yet. 19127 */ 19128 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 19129 return -EINVAL; 19130 } 19131 19132 if (!bpf_pseudo_call(insn)) 19133 continue; 19134 depth = get_callee_stack_depth(env, insn, i); 19135 if (depth < 0) 19136 return depth; 19137 bpf_patch_call_args(insn, depth); 19138 } 19139 err = 0; 19140 #endif 19141 return err; 19142 } 19143 19144 /* replace a generic kfunc with a specialized version if necessary */ 19145 static void specialize_kfunc(struct bpf_verifier_env *env, 19146 u32 func_id, u16 offset, unsigned long *addr) 19147 { 19148 struct bpf_prog *prog = env->prog; 19149 bool seen_direct_write; 19150 void *xdp_kfunc; 19151 bool is_rdonly; 19152 19153 if (bpf_dev_bound_kfunc_id(func_id)) { 19154 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 19155 if (xdp_kfunc) { 19156 *addr = (unsigned long)xdp_kfunc; 19157 return; 19158 } 19159 /* fallback to default kfunc when not supported by netdev */ 19160 } 19161 19162 if (offset) 19163 return; 19164 19165 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 19166 seen_direct_write = env->seen_direct_write; 19167 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 19168 19169 if (is_rdonly) 19170 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 19171 19172 /* restore env->seen_direct_write to its original value, since 19173 * may_access_direct_pkt_data mutates it 19174 */ 19175 env->seen_direct_write = seen_direct_write; 19176 } 19177 } 19178 19179 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 19180 u16 struct_meta_reg, 19181 u16 node_offset_reg, 19182 struct bpf_insn *insn, 19183 struct bpf_insn *insn_buf, 19184 int *cnt) 19185 { 19186 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 19187 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 19188 19189 insn_buf[0] = addr[0]; 19190 insn_buf[1] = addr[1]; 19191 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 19192 insn_buf[3] = *insn; 19193 *cnt = 4; 19194 } 19195 19196 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 19197 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 19198 { 19199 const struct bpf_kfunc_desc *desc; 19200 19201 if (!insn->imm) { 19202 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 19203 return -EINVAL; 19204 } 19205 19206 *cnt = 0; 19207 19208 /* insn->imm has the btf func_id. Replace it with an offset relative to 19209 * __bpf_call_base, unless the JIT needs to call functions that are 19210 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 19211 */ 19212 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 19213 if (!desc) { 19214 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 19215 insn->imm); 19216 return -EFAULT; 19217 } 19218 19219 if (!bpf_jit_supports_far_kfunc_call()) 19220 insn->imm = BPF_CALL_IMM(desc->addr); 19221 if (insn->off) 19222 return 0; 19223 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 19224 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 19225 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19226 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 19227 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 19228 19229 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 19230 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 19231 insn_idx); 19232 return -EFAULT; 19233 } 19234 19235 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 19236 insn_buf[1] = addr[0]; 19237 insn_buf[2] = addr[1]; 19238 insn_buf[3] = *insn; 19239 *cnt = 4; 19240 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 19241 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 19242 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 19243 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19244 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 19245 19246 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 19247 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 19248 insn_idx); 19249 return -EFAULT; 19250 } 19251 19252 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 19253 !kptr_struct_meta) { 19254 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 19255 insn_idx); 19256 return -EFAULT; 19257 } 19258 19259 insn_buf[0] = addr[0]; 19260 insn_buf[1] = addr[1]; 19261 insn_buf[2] = *insn; 19262 *cnt = 3; 19263 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 19264 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 19265 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 19266 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19267 int struct_meta_reg = BPF_REG_3; 19268 int node_offset_reg = BPF_REG_4; 19269 19270 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 19271 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 19272 struct_meta_reg = BPF_REG_4; 19273 node_offset_reg = BPF_REG_5; 19274 } 19275 19276 if (!kptr_struct_meta) { 19277 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 19278 insn_idx); 19279 return -EFAULT; 19280 } 19281 19282 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 19283 node_offset_reg, insn, insn_buf, cnt); 19284 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 19285 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 19286 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 19287 *cnt = 1; 19288 } 19289 return 0; 19290 } 19291 19292 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 19293 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 19294 { 19295 struct bpf_subprog_info *info = env->subprog_info; 19296 int cnt = env->subprog_cnt; 19297 struct bpf_prog *prog; 19298 19299 /* We only reserve one slot for hidden subprogs in subprog_info. */ 19300 if (env->hidden_subprog_cnt) { 19301 verbose(env, "verifier internal error: only one hidden subprog supported\n"); 19302 return -EFAULT; 19303 } 19304 /* We're not patching any existing instruction, just appending the new 19305 * ones for the hidden subprog. Hence all of the adjustment operations 19306 * in bpf_patch_insn_data are no-ops. 19307 */ 19308 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 19309 if (!prog) 19310 return -ENOMEM; 19311 env->prog = prog; 19312 info[cnt + 1].start = info[cnt].start; 19313 info[cnt].start = prog->len - len + 1; 19314 env->subprog_cnt++; 19315 env->hidden_subprog_cnt++; 19316 return 0; 19317 } 19318 19319 /* Do various post-verification rewrites in a single program pass. 19320 * These rewrites simplify JIT and interpreter implementations. 19321 */ 19322 static int do_misc_fixups(struct bpf_verifier_env *env) 19323 { 19324 struct bpf_prog *prog = env->prog; 19325 enum bpf_attach_type eatype = prog->expected_attach_type; 19326 enum bpf_prog_type prog_type = resolve_prog_type(prog); 19327 struct bpf_insn *insn = prog->insnsi; 19328 const struct bpf_func_proto *fn; 19329 const int insn_cnt = prog->len; 19330 const struct bpf_map_ops *ops; 19331 struct bpf_insn_aux_data *aux; 19332 struct bpf_insn insn_buf[16]; 19333 struct bpf_prog *new_prog; 19334 struct bpf_map *map_ptr; 19335 int i, ret, cnt, delta = 0; 19336 19337 if (env->seen_exception && !env->exception_callback_subprog) { 19338 struct bpf_insn patch[] = { 19339 env->prog->insnsi[insn_cnt - 1], 19340 BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), 19341 BPF_EXIT_INSN(), 19342 }; 19343 19344 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); 19345 if (ret < 0) 19346 return ret; 19347 prog = env->prog; 19348 insn = prog->insnsi; 19349 19350 env->exception_callback_subprog = env->subprog_cnt - 1; 19351 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 19352 mark_subprog_exc_cb(env, env->exception_callback_subprog); 19353 } 19354 19355 for (i = 0; i < insn_cnt; i++, insn++) { 19356 /* Make divide-by-zero exceptions impossible. */ 19357 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 19358 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 19359 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 19360 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 19361 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 19362 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 19363 struct bpf_insn *patchlet; 19364 struct bpf_insn chk_and_div[] = { 19365 /* [R,W]x div 0 -> 0 */ 19366 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 19367 BPF_JNE | BPF_K, insn->src_reg, 19368 0, 2, 0), 19369 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 19370 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 19371 *insn, 19372 }; 19373 struct bpf_insn chk_and_mod[] = { 19374 /* [R,W]x mod 0 -> [R,W]x */ 19375 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 19376 BPF_JEQ | BPF_K, insn->src_reg, 19377 0, 1 + (is64 ? 0 : 1), 0), 19378 *insn, 19379 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 19380 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 19381 }; 19382 19383 patchlet = isdiv ? chk_and_div : chk_and_mod; 19384 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 19385 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 19386 19387 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 19388 if (!new_prog) 19389 return -ENOMEM; 19390 19391 delta += cnt - 1; 19392 env->prog = prog = new_prog; 19393 insn = new_prog->insnsi + i + delta; 19394 continue; 19395 } 19396 19397 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 19398 if (BPF_CLASS(insn->code) == BPF_LD && 19399 (BPF_MODE(insn->code) == BPF_ABS || 19400 BPF_MODE(insn->code) == BPF_IND)) { 19401 cnt = env->ops->gen_ld_abs(insn, insn_buf); 19402 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19403 verbose(env, "bpf verifier is misconfigured\n"); 19404 return -EINVAL; 19405 } 19406 19407 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19408 if (!new_prog) 19409 return -ENOMEM; 19410 19411 delta += cnt - 1; 19412 env->prog = prog = new_prog; 19413 insn = new_prog->insnsi + i + delta; 19414 continue; 19415 } 19416 19417 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 19418 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 19419 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 19420 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 19421 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 19422 struct bpf_insn *patch = &insn_buf[0]; 19423 bool issrc, isneg, isimm; 19424 u32 off_reg; 19425 19426 aux = &env->insn_aux_data[i + delta]; 19427 if (!aux->alu_state || 19428 aux->alu_state == BPF_ALU_NON_POINTER) 19429 continue; 19430 19431 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 19432 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 19433 BPF_ALU_SANITIZE_SRC; 19434 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 19435 19436 off_reg = issrc ? insn->src_reg : insn->dst_reg; 19437 if (isimm) { 19438 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 19439 } else { 19440 if (isneg) 19441 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 19442 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 19443 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 19444 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 19445 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 19446 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 19447 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 19448 } 19449 if (!issrc) 19450 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 19451 insn->src_reg = BPF_REG_AX; 19452 if (isneg) 19453 insn->code = insn->code == code_add ? 19454 code_sub : code_add; 19455 *patch++ = *insn; 19456 if (issrc && isneg && !isimm) 19457 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 19458 cnt = patch - insn_buf; 19459 19460 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19461 if (!new_prog) 19462 return -ENOMEM; 19463 19464 delta += cnt - 1; 19465 env->prog = prog = new_prog; 19466 insn = new_prog->insnsi + i + delta; 19467 continue; 19468 } 19469 19470 if (insn->code != (BPF_JMP | BPF_CALL)) 19471 continue; 19472 if (insn->src_reg == BPF_PSEUDO_CALL) 19473 continue; 19474 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 19475 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 19476 if (ret) 19477 return ret; 19478 if (cnt == 0) 19479 continue; 19480 19481 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19482 if (!new_prog) 19483 return -ENOMEM; 19484 19485 delta += cnt - 1; 19486 env->prog = prog = new_prog; 19487 insn = new_prog->insnsi + i + delta; 19488 continue; 19489 } 19490 19491 if (insn->imm == BPF_FUNC_get_route_realm) 19492 prog->dst_needed = 1; 19493 if (insn->imm == BPF_FUNC_get_prandom_u32) 19494 bpf_user_rnd_init_once(); 19495 if (insn->imm == BPF_FUNC_override_return) 19496 prog->kprobe_override = 1; 19497 if (insn->imm == BPF_FUNC_tail_call) { 19498 /* If we tail call into other programs, we 19499 * cannot make any assumptions since they can 19500 * be replaced dynamically during runtime in 19501 * the program array. 19502 */ 19503 prog->cb_access = 1; 19504 if (!allow_tail_call_in_subprogs(env)) 19505 prog->aux->stack_depth = MAX_BPF_STACK; 19506 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 19507 19508 /* mark bpf_tail_call as different opcode to avoid 19509 * conditional branch in the interpreter for every normal 19510 * call and to prevent accidental JITing by JIT compiler 19511 * that doesn't support bpf_tail_call yet 19512 */ 19513 insn->imm = 0; 19514 insn->code = BPF_JMP | BPF_TAIL_CALL; 19515 19516 aux = &env->insn_aux_data[i + delta]; 19517 if (env->bpf_capable && !prog->blinding_requested && 19518 prog->jit_requested && 19519 !bpf_map_key_poisoned(aux) && 19520 !bpf_map_ptr_poisoned(aux) && 19521 !bpf_map_ptr_unpriv(aux)) { 19522 struct bpf_jit_poke_descriptor desc = { 19523 .reason = BPF_POKE_REASON_TAIL_CALL, 19524 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 19525 .tail_call.key = bpf_map_key_immediate(aux), 19526 .insn_idx = i + delta, 19527 }; 19528 19529 ret = bpf_jit_add_poke_descriptor(prog, &desc); 19530 if (ret < 0) { 19531 verbose(env, "adding tail call poke descriptor failed\n"); 19532 return ret; 19533 } 19534 19535 insn->imm = ret + 1; 19536 continue; 19537 } 19538 19539 if (!bpf_map_ptr_unpriv(aux)) 19540 continue; 19541 19542 /* instead of changing every JIT dealing with tail_call 19543 * emit two extra insns: 19544 * if (index >= max_entries) goto out; 19545 * index &= array->index_mask; 19546 * to avoid out-of-bounds cpu speculation 19547 */ 19548 if (bpf_map_ptr_poisoned(aux)) { 19549 verbose(env, "tail_call abusing map_ptr\n"); 19550 return -EINVAL; 19551 } 19552 19553 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19554 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 19555 map_ptr->max_entries, 2); 19556 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 19557 container_of(map_ptr, 19558 struct bpf_array, 19559 map)->index_mask); 19560 insn_buf[2] = *insn; 19561 cnt = 3; 19562 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19563 if (!new_prog) 19564 return -ENOMEM; 19565 19566 delta += cnt - 1; 19567 env->prog = prog = new_prog; 19568 insn = new_prog->insnsi + i + delta; 19569 continue; 19570 } 19571 19572 if (insn->imm == BPF_FUNC_timer_set_callback) { 19573 /* The verifier will process callback_fn as many times as necessary 19574 * with different maps and the register states prepared by 19575 * set_timer_callback_state will be accurate. 19576 * 19577 * The following use case is valid: 19578 * map1 is shared by prog1, prog2, prog3. 19579 * prog1 calls bpf_timer_init for some map1 elements 19580 * prog2 calls bpf_timer_set_callback for some map1 elements. 19581 * Those that were not bpf_timer_init-ed will return -EINVAL. 19582 * prog3 calls bpf_timer_start for some map1 elements. 19583 * Those that were not both bpf_timer_init-ed and 19584 * bpf_timer_set_callback-ed will return -EINVAL. 19585 */ 19586 struct bpf_insn ld_addrs[2] = { 19587 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 19588 }; 19589 19590 insn_buf[0] = ld_addrs[0]; 19591 insn_buf[1] = ld_addrs[1]; 19592 insn_buf[2] = *insn; 19593 cnt = 3; 19594 19595 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19596 if (!new_prog) 19597 return -ENOMEM; 19598 19599 delta += cnt - 1; 19600 env->prog = prog = new_prog; 19601 insn = new_prog->insnsi + i + delta; 19602 goto patch_call_imm; 19603 } 19604 19605 if (is_storage_get_function(insn->imm)) { 19606 if (!env->prog->aux->sleepable || 19607 env->insn_aux_data[i + delta].storage_get_func_atomic) 19608 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 19609 else 19610 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 19611 insn_buf[1] = *insn; 19612 cnt = 2; 19613 19614 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19615 if (!new_prog) 19616 return -ENOMEM; 19617 19618 delta += cnt - 1; 19619 env->prog = prog = new_prog; 19620 insn = new_prog->insnsi + i + delta; 19621 goto patch_call_imm; 19622 } 19623 19624 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 19625 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 19626 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 19627 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 19628 */ 19629 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 19630 insn_buf[1] = *insn; 19631 cnt = 2; 19632 19633 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19634 if (!new_prog) 19635 return -ENOMEM; 19636 19637 delta += cnt - 1; 19638 env->prog = prog = new_prog; 19639 insn = new_prog->insnsi + i + delta; 19640 goto patch_call_imm; 19641 } 19642 19643 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 19644 * and other inlining handlers are currently limited to 64 bit 19645 * only. 19646 */ 19647 if (prog->jit_requested && BITS_PER_LONG == 64 && 19648 (insn->imm == BPF_FUNC_map_lookup_elem || 19649 insn->imm == BPF_FUNC_map_update_elem || 19650 insn->imm == BPF_FUNC_map_delete_elem || 19651 insn->imm == BPF_FUNC_map_push_elem || 19652 insn->imm == BPF_FUNC_map_pop_elem || 19653 insn->imm == BPF_FUNC_map_peek_elem || 19654 insn->imm == BPF_FUNC_redirect_map || 19655 insn->imm == BPF_FUNC_for_each_map_elem || 19656 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 19657 aux = &env->insn_aux_data[i + delta]; 19658 if (bpf_map_ptr_poisoned(aux)) 19659 goto patch_call_imm; 19660 19661 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19662 ops = map_ptr->ops; 19663 if (insn->imm == BPF_FUNC_map_lookup_elem && 19664 ops->map_gen_lookup) { 19665 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 19666 if (cnt == -EOPNOTSUPP) 19667 goto patch_map_ops_generic; 19668 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19669 verbose(env, "bpf verifier is misconfigured\n"); 19670 return -EINVAL; 19671 } 19672 19673 new_prog = bpf_patch_insn_data(env, i + delta, 19674 insn_buf, cnt); 19675 if (!new_prog) 19676 return -ENOMEM; 19677 19678 delta += cnt - 1; 19679 env->prog = prog = new_prog; 19680 insn = new_prog->insnsi + i + delta; 19681 continue; 19682 } 19683 19684 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 19685 (void *(*)(struct bpf_map *map, void *key))NULL)); 19686 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 19687 (long (*)(struct bpf_map *map, void *key))NULL)); 19688 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 19689 (long (*)(struct bpf_map *map, void *key, void *value, 19690 u64 flags))NULL)); 19691 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 19692 (long (*)(struct bpf_map *map, void *value, 19693 u64 flags))NULL)); 19694 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 19695 (long (*)(struct bpf_map *map, void *value))NULL)); 19696 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 19697 (long (*)(struct bpf_map *map, void *value))NULL)); 19698 BUILD_BUG_ON(!__same_type(ops->map_redirect, 19699 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 19700 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 19701 (long (*)(struct bpf_map *map, 19702 bpf_callback_t callback_fn, 19703 void *callback_ctx, 19704 u64 flags))NULL)); 19705 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 19706 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 19707 19708 patch_map_ops_generic: 19709 switch (insn->imm) { 19710 case BPF_FUNC_map_lookup_elem: 19711 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 19712 continue; 19713 case BPF_FUNC_map_update_elem: 19714 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 19715 continue; 19716 case BPF_FUNC_map_delete_elem: 19717 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 19718 continue; 19719 case BPF_FUNC_map_push_elem: 19720 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 19721 continue; 19722 case BPF_FUNC_map_pop_elem: 19723 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 19724 continue; 19725 case BPF_FUNC_map_peek_elem: 19726 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 19727 continue; 19728 case BPF_FUNC_redirect_map: 19729 insn->imm = BPF_CALL_IMM(ops->map_redirect); 19730 continue; 19731 case BPF_FUNC_for_each_map_elem: 19732 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 19733 continue; 19734 case BPF_FUNC_map_lookup_percpu_elem: 19735 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 19736 continue; 19737 } 19738 19739 goto patch_call_imm; 19740 } 19741 19742 /* Implement bpf_jiffies64 inline. */ 19743 if (prog->jit_requested && BITS_PER_LONG == 64 && 19744 insn->imm == BPF_FUNC_jiffies64) { 19745 struct bpf_insn ld_jiffies_addr[2] = { 19746 BPF_LD_IMM64(BPF_REG_0, 19747 (unsigned long)&jiffies), 19748 }; 19749 19750 insn_buf[0] = ld_jiffies_addr[0]; 19751 insn_buf[1] = ld_jiffies_addr[1]; 19752 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 19753 BPF_REG_0, 0); 19754 cnt = 3; 19755 19756 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 19757 cnt); 19758 if (!new_prog) 19759 return -ENOMEM; 19760 19761 delta += cnt - 1; 19762 env->prog = prog = new_prog; 19763 insn = new_prog->insnsi + i + delta; 19764 continue; 19765 } 19766 19767 /* Implement bpf_get_func_arg inline. */ 19768 if (prog_type == BPF_PROG_TYPE_TRACING && 19769 insn->imm == BPF_FUNC_get_func_arg) { 19770 /* Load nr_args from ctx - 8 */ 19771 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19772 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 19773 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 19774 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 19775 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 19776 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19777 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 19778 insn_buf[7] = BPF_JMP_A(1); 19779 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 19780 cnt = 9; 19781 19782 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19783 if (!new_prog) 19784 return -ENOMEM; 19785 19786 delta += cnt - 1; 19787 env->prog = prog = new_prog; 19788 insn = new_prog->insnsi + i + delta; 19789 continue; 19790 } 19791 19792 /* Implement bpf_get_func_ret inline. */ 19793 if (prog_type == BPF_PROG_TYPE_TRACING && 19794 insn->imm == BPF_FUNC_get_func_ret) { 19795 if (eatype == BPF_TRACE_FEXIT || 19796 eatype == BPF_MODIFY_RETURN) { 19797 /* Load nr_args from ctx - 8 */ 19798 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19799 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 19800 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 19801 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19802 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 19803 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 19804 cnt = 6; 19805 } else { 19806 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 19807 cnt = 1; 19808 } 19809 19810 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19811 if (!new_prog) 19812 return -ENOMEM; 19813 19814 delta += cnt - 1; 19815 env->prog = prog = new_prog; 19816 insn = new_prog->insnsi + i + delta; 19817 continue; 19818 } 19819 19820 /* Implement get_func_arg_cnt inline. */ 19821 if (prog_type == BPF_PROG_TYPE_TRACING && 19822 insn->imm == BPF_FUNC_get_func_arg_cnt) { 19823 /* Load nr_args from ctx - 8 */ 19824 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19825 19826 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19827 if (!new_prog) 19828 return -ENOMEM; 19829 19830 env->prog = prog = new_prog; 19831 insn = new_prog->insnsi + i + delta; 19832 continue; 19833 } 19834 19835 /* Implement bpf_get_func_ip inline. */ 19836 if (prog_type == BPF_PROG_TYPE_TRACING && 19837 insn->imm == BPF_FUNC_get_func_ip) { 19838 /* Load IP address from ctx - 16 */ 19839 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 19840 19841 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19842 if (!new_prog) 19843 return -ENOMEM; 19844 19845 env->prog = prog = new_prog; 19846 insn = new_prog->insnsi + i + delta; 19847 continue; 19848 } 19849 19850 /* Implement bpf_kptr_xchg inline */ 19851 if (prog->jit_requested && BITS_PER_LONG == 64 && 19852 insn->imm == BPF_FUNC_kptr_xchg && 19853 bpf_jit_supports_ptr_xchg()) { 19854 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); 19855 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); 19856 cnt = 2; 19857 19858 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19859 if (!new_prog) 19860 return -ENOMEM; 19861 19862 delta += cnt - 1; 19863 env->prog = prog = new_prog; 19864 insn = new_prog->insnsi + i + delta; 19865 continue; 19866 } 19867 patch_call_imm: 19868 fn = env->ops->get_func_proto(insn->imm, env->prog); 19869 /* all functions that have prototype and verifier allowed 19870 * programs to call them, must be real in-kernel functions 19871 */ 19872 if (!fn->func) { 19873 verbose(env, 19874 "kernel subsystem misconfigured func %s#%d\n", 19875 func_id_name(insn->imm), insn->imm); 19876 return -EFAULT; 19877 } 19878 insn->imm = fn->func - __bpf_call_base; 19879 } 19880 19881 /* Since poke tab is now finalized, publish aux to tracker. */ 19882 for (i = 0; i < prog->aux->size_poke_tab; i++) { 19883 map_ptr = prog->aux->poke_tab[i].tail_call.map; 19884 if (!map_ptr->ops->map_poke_track || 19885 !map_ptr->ops->map_poke_untrack || 19886 !map_ptr->ops->map_poke_run) { 19887 verbose(env, "bpf verifier is misconfigured\n"); 19888 return -EINVAL; 19889 } 19890 19891 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 19892 if (ret < 0) { 19893 verbose(env, "tracking tail call prog failed\n"); 19894 return ret; 19895 } 19896 } 19897 19898 sort_kfunc_descs_by_imm_off(env->prog); 19899 19900 return 0; 19901 } 19902 19903 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 19904 int position, 19905 s32 stack_base, 19906 u32 callback_subprogno, 19907 u32 *cnt) 19908 { 19909 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 19910 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 19911 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 19912 int reg_loop_max = BPF_REG_6; 19913 int reg_loop_cnt = BPF_REG_7; 19914 int reg_loop_ctx = BPF_REG_8; 19915 19916 struct bpf_prog *new_prog; 19917 u32 callback_start; 19918 u32 call_insn_offset; 19919 s32 callback_offset; 19920 19921 /* This represents an inlined version of bpf_iter.c:bpf_loop, 19922 * be careful to modify this code in sync. 19923 */ 19924 struct bpf_insn insn_buf[] = { 19925 /* Return error and jump to the end of the patch if 19926 * expected number of iterations is too big. 19927 */ 19928 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 19929 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 19930 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 19931 /* spill R6, R7, R8 to use these as loop vars */ 19932 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 19933 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 19934 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 19935 /* initialize loop vars */ 19936 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 19937 BPF_MOV32_IMM(reg_loop_cnt, 0), 19938 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 19939 /* loop header, 19940 * if reg_loop_cnt >= reg_loop_max skip the loop body 19941 */ 19942 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 19943 /* callback call, 19944 * correct callback offset would be set after patching 19945 */ 19946 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 19947 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 19948 BPF_CALL_REL(0), 19949 /* increment loop counter */ 19950 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 19951 /* jump to loop header if callback returned 0 */ 19952 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 19953 /* return value of bpf_loop, 19954 * set R0 to the number of iterations 19955 */ 19956 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 19957 /* restore original values of R6, R7, R8 */ 19958 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 19959 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 19960 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 19961 }; 19962 19963 *cnt = ARRAY_SIZE(insn_buf); 19964 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 19965 if (!new_prog) 19966 return new_prog; 19967 19968 /* callback start is known only after patching */ 19969 callback_start = env->subprog_info[callback_subprogno].start; 19970 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 19971 call_insn_offset = position + 12; 19972 callback_offset = callback_start - call_insn_offset - 1; 19973 new_prog->insnsi[call_insn_offset].imm = callback_offset; 19974 19975 return new_prog; 19976 } 19977 19978 static bool is_bpf_loop_call(struct bpf_insn *insn) 19979 { 19980 return insn->code == (BPF_JMP | BPF_CALL) && 19981 insn->src_reg == 0 && 19982 insn->imm == BPF_FUNC_loop; 19983 } 19984 19985 /* For all sub-programs in the program (including main) check 19986 * insn_aux_data to see if there are bpf_loop calls that require 19987 * inlining. If such calls are found the calls are replaced with a 19988 * sequence of instructions produced by `inline_bpf_loop` function and 19989 * subprog stack_depth is increased by the size of 3 registers. 19990 * This stack space is used to spill values of the R6, R7, R8. These 19991 * registers are used to store the loop bound, counter and context 19992 * variables. 19993 */ 19994 static int optimize_bpf_loop(struct bpf_verifier_env *env) 19995 { 19996 struct bpf_subprog_info *subprogs = env->subprog_info; 19997 int i, cur_subprog = 0, cnt, delta = 0; 19998 struct bpf_insn *insn = env->prog->insnsi; 19999 int insn_cnt = env->prog->len; 20000 u16 stack_depth = subprogs[cur_subprog].stack_depth; 20001 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 20002 u16 stack_depth_extra = 0; 20003 20004 for (i = 0; i < insn_cnt; i++, insn++) { 20005 struct bpf_loop_inline_state *inline_state = 20006 &env->insn_aux_data[i + delta].loop_inline_state; 20007 20008 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 20009 struct bpf_prog *new_prog; 20010 20011 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 20012 new_prog = inline_bpf_loop(env, 20013 i + delta, 20014 -(stack_depth + stack_depth_extra), 20015 inline_state->callback_subprogno, 20016 &cnt); 20017 if (!new_prog) 20018 return -ENOMEM; 20019 20020 delta += cnt - 1; 20021 env->prog = new_prog; 20022 insn = new_prog->insnsi + i + delta; 20023 } 20024 20025 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 20026 subprogs[cur_subprog].stack_depth += stack_depth_extra; 20027 cur_subprog++; 20028 stack_depth = subprogs[cur_subprog].stack_depth; 20029 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 20030 stack_depth_extra = 0; 20031 } 20032 } 20033 20034 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 20035 20036 return 0; 20037 } 20038 20039 static void free_states(struct bpf_verifier_env *env) 20040 { 20041 struct bpf_verifier_state_list *sl, *sln; 20042 int i; 20043 20044 sl = env->free_list; 20045 while (sl) { 20046 sln = sl->next; 20047 free_verifier_state(&sl->state, false); 20048 kfree(sl); 20049 sl = sln; 20050 } 20051 env->free_list = NULL; 20052 20053 if (!env->explored_states) 20054 return; 20055 20056 for (i = 0; i < state_htab_size(env); i++) { 20057 sl = env->explored_states[i]; 20058 20059 while (sl) { 20060 sln = sl->next; 20061 free_verifier_state(&sl->state, false); 20062 kfree(sl); 20063 sl = sln; 20064 } 20065 env->explored_states[i] = NULL; 20066 } 20067 } 20068 20069 static int do_check_common(struct bpf_verifier_env *env, int subprog) 20070 { 20071 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 20072 struct bpf_subprog_info *sub = subprog_info(env, subprog); 20073 struct bpf_verifier_state *state; 20074 struct bpf_reg_state *regs; 20075 int ret, i; 20076 20077 env->prev_linfo = NULL; 20078 env->pass_cnt++; 20079 20080 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 20081 if (!state) 20082 return -ENOMEM; 20083 state->curframe = 0; 20084 state->speculative = false; 20085 state->branches = 1; 20086 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 20087 if (!state->frame[0]) { 20088 kfree(state); 20089 return -ENOMEM; 20090 } 20091 env->cur_state = state; 20092 init_func_state(env, state->frame[0], 20093 BPF_MAIN_FUNC /* callsite */, 20094 0 /* frameno */, 20095 subprog); 20096 state->first_insn_idx = env->subprog_info[subprog].start; 20097 state->last_insn_idx = -1; 20098 20099 regs = state->frame[state->curframe]->regs; 20100 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 20101 const char *sub_name = subprog_name(env, subprog); 20102 struct bpf_subprog_arg_info *arg; 20103 struct bpf_reg_state *reg; 20104 20105 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 20106 ret = btf_prepare_func_args(env, subprog); 20107 if (ret) 20108 goto out; 20109 20110 if (subprog_is_exc_cb(env, subprog)) { 20111 state->frame[0]->in_exception_callback_fn = true; 20112 /* We have already ensured that the callback returns an integer, just 20113 * like all global subprogs. We need to determine it only has a single 20114 * scalar argument. 20115 */ 20116 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 20117 verbose(env, "exception cb only supports single integer argument\n"); 20118 ret = -EINVAL; 20119 goto out; 20120 } 20121 } 20122 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 20123 arg = &sub->args[i - BPF_REG_1]; 20124 reg = ®s[i]; 20125 20126 if (arg->arg_type == ARG_PTR_TO_CTX) { 20127 reg->type = PTR_TO_CTX; 20128 mark_reg_known_zero(env, regs, i); 20129 } else if (arg->arg_type == ARG_ANYTHING) { 20130 reg->type = SCALAR_VALUE; 20131 mark_reg_unknown(env, regs, i); 20132 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 20133 /* assume unspecial LOCAL dynptr type */ 20134 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 20135 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 20136 reg->type = PTR_TO_MEM; 20137 if (arg->arg_type & PTR_MAYBE_NULL) 20138 reg->type |= PTR_MAYBE_NULL; 20139 mark_reg_known_zero(env, regs, i); 20140 reg->mem_size = arg->mem_size; 20141 reg->id = ++env->id_gen; 20142 } else { 20143 WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n", 20144 i - BPF_REG_1, arg->arg_type); 20145 ret = -EFAULT; 20146 goto out; 20147 } 20148 } 20149 } else { 20150 /* if main BPF program has associated BTF info, validate that 20151 * it's matching expected signature, and otherwise mark BTF 20152 * info for main program as unreliable 20153 */ 20154 if (env->prog->aux->func_info_aux) { 20155 ret = btf_prepare_func_args(env, 0); 20156 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 20157 env->prog->aux->func_info_aux[0].unreliable = true; 20158 } 20159 20160 /* 1st arg to a function */ 20161 regs[BPF_REG_1].type = PTR_TO_CTX; 20162 mark_reg_known_zero(env, regs, BPF_REG_1); 20163 } 20164 20165 ret = do_check(env); 20166 out: 20167 /* check for NULL is necessary, since cur_state can be freed inside 20168 * do_check() under memory pressure. 20169 */ 20170 if (env->cur_state) { 20171 free_verifier_state(env->cur_state, true); 20172 env->cur_state = NULL; 20173 } 20174 while (!pop_stack(env, NULL, NULL, false)); 20175 if (!ret && pop_log) 20176 bpf_vlog_reset(&env->log, 0); 20177 free_states(env); 20178 return ret; 20179 } 20180 20181 /* Lazily verify all global functions based on their BTF, if they are called 20182 * from main BPF program or any of subprograms transitively. 20183 * BPF global subprogs called from dead code are not validated. 20184 * All callable global functions must pass verification. 20185 * Otherwise the whole program is rejected. 20186 * Consider: 20187 * int bar(int); 20188 * int foo(int f) 20189 * { 20190 * return bar(f); 20191 * } 20192 * int bar(int b) 20193 * { 20194 * ... 20195 * } 20196 * foo() will be verified first for R1=any_scalar_value. During verification it 20197 * will be assumed that bar() already verified successfully and call to bar() 20198 * from foo() will be checked for type match only. Later bar() will be verified 20199 * independently to check that it's safe for R1=any_scalar_value. 20200 */ 20201 static int do_check_subprogs(struct bpf_verifier_env *env) 20202 { 20203 struct bpf_prog_aux *aux = env->prog->aux; 20204 struct bpf_func_info_aux *sub_aux; 20205 int i, ret, new_cnt; 20206 20207 if (!aux->func_info) 20208 return 0; 20209 20210 /* exception callback is presumed to be always called */ 20211 if (env->exception_callback_subprog) 20212 subprog_aux(env, env->exception_callback_subprog)->called = true; 20213 20214 again: 20215 new_cnt = 0; 20216 for (i = 1; i < env->subprog_cnt; i++) { 20217 if (!subprog_is_global(env, i)) 20218 continue; 20219 20220 sub_aux = subprog_aux(env, i); 20221 if (!sub_aux->called || sub_aux->verified) 20222 continue; 20223 20224 env->insn_idx = env->subprog_info[i].start; 20225 WARN_ON_ONCE(env->insn_idx == 0); 20226 ret = do_check_common(env, i); 20227 if (ret) { 20228 return ret; 20229 } else if (env->log.level & BPF_LOG_LEVEL) { 20230 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 20231 i, subprog_name(env, i)); 20232 } 20233 20234 /* We verified new global subprog, it might have called some 20235 * more global subprogs that we haven't verified yet, so we 20236 * need to do another pass over subprogs to verify those. 20237 */ 20238 sub_aux->verified = true; 20239 new_cnt++; 20240 } 20241 20242 /* We can't loop forever as we verify at least one global subprog on 20243 * each pass. 20244 */ 20245 if (new_cnt) 20246 goto again; 20247 20248 return 0; 20249 } 20250 20251 static int do_check_main(struct bpf_verifier_env *env) 20252 { 20253 int ret; 20254 20255 env->insn_idx = 0; 20256 ret = do_check_common(env, 0); 20257 if (!ret) 20258 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 20259 return ret; 20260 } 20261 20262 20263 static void print_verification_stats(struct bpf_verifier_env *env) 20264 { 20265 int i; 20266 20267 if (env->log.level & BPF_LOG_STATS) { 20268 verbose(env, "verification time %lld usec\n", 20269 div_u64(env->verification_time, 1000)); 20270 verbose(env, "stack depth "); 20271 for (i = 0; i < env->subprog_cnt; i++) { 20272 u32 depth = env->subprog_info[i].stack_depth; 20273 20274 verbose(env, "%d", depth); 20275 if (i + 1 < env->subprog_cnt) 20276 verbose(env, "+"); 20277 } 20278 verbose(env, "\n"); 20279 } 20280 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 20281 "total_states %d peak_states %d mark_read %d\n", 20282 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 20283 env->max_states_per_insn, env->total_states, 20284 env->peak_states, env->longest_mark_read_walk); 20285 } 20286 20287 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 20288 { 20289 const struct btf_type *t, *func_proto; 20290 const struct bpf_struct_ops_desc *st_ops_desc; 20291 const struct bpf_struct_ops *st_ops; 20292 const struct btf_member *member; 20293 struct bpf_prog *prog = env->prog; 20294 u32 btf_id, member_idx; 20295 struct btf *btf; 20296 const char *mname; 20297 20298 if (!prog->gpl_compatible) { 20299 verbose(env, "struct ops programs must have a GPL compatible license\n"); 20300 return -EINVAL; 20301 } 20302 20303 if (!prog->aux->attach_btf_id) 20304 return -ENOTSUPP; 20305 20306 btf = prog->aux->attach_btf; 20307 if (btf_is_module(btf)) { 20308 /* Make sure st_ops is valid through the lifetime of env */ 20309 env->attach_btf_mod = btf_try_get_module(btf); 20310 if (!env->attach_btf_mod) { 20311 verbose(env, "struct_ops module %s is not found\n", 20312 btf_get_name(btf)); 20313 return -ENOTSUPP; 20314 } 20315 } 20316 20317 btf_id = prog->aux->attach_btf_id; 20318 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 20319 if (!st_ops_desc) { 20320 verbose(env, "attach_btf_id %u is not a supported struct\n", 20321 btf_id); 20322 return -ENOTSUPP; 20323 } 20324 st_ops = st_ops_desc->st_ops; 20325 20326 t = st_ops_desc->type; 20327 member_idx = prog->expected_attach_type; 20328 if (member_idx >= btf_type_vlen(t)) { 20329 verbose(env, "attach to invalid member idx %u of struct %s\n", 20330 member_idx, st_ops->name); 20331 return -EINVAL; 20332 } 20333 20334 member = &btf_type_member(t)[member_idx]; 20335 mname = btf_name_by_offset(btf, member->name_off); 20336 func_proto = btf_type_resolve_func_ptr(btf, member->type, 20337 NULL); 20338 if (!func_proto) { 20339 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 20340 mname, member_idx, st_ops->name); 20341 return -EINVAL; 20342 } 20343 20344 if (st_ops->check_member) { 20345 int err = st_ops->check_member(t, member, prog); 20346 20347 if (err) { 20348 verbose(env, "attach to unsupported member %s of struct %s\n", 20349 mname, st_ops->name); 20350 return err; 20351 } 20352 } 20353 20354 prog->aux->attach_func_proto = func_proto; 20355 prog->aux->attach_func_name = mname; 20356 env->ops = st_ops->verifier_ops; 20357 20358 return 0; 20359 } 20360 #define SECURITY_PREFIX "security_" 20361 20362 static int check_attach_modify_return(unsigned long addr, const char *func_name) 20363 { 20364 if (within_error_injection_list(addr) || 20365 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 20366 return 0; 20367 20368 return -EINVAL; 20369 } 20370 20371 /* list of non-sleepable functions that are otherwise on 20372 * ALLOW_ERROR_INJECTION list 20373 */ 20374 BTF_SET_START(btf_non_sleepable_error_inject) 20375 /* Three functions below can be called from sleepable and non-sleepable context. 20376 * Assume non-sleepable from bpf safety point of view. 20377 */ 20378 BTF_ID(func, __filemap_add_folio) 20379 BTF_ID(func, should_fail_alloc_page) 20380 BTF_ID(func, should_failslab) 20381 BTF_SET_END(btf_non_sleepable_error_inject) 20382 20383 static int check_non_sleepable_error_inject(u32 btf_id) 20384 { 20385 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 20386 } 20387 20388 int bpf_check_attach_target(struct bpf_verifier_log *log, 20389 const struct bpf_prog *prog, 20390 const struct bpf_prog *tgt_prog, 20391 u32 btf_id, 20392 struct bpf_attach_target_info *tgt_info) 20393 { 20394 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 20395 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; 20396 const char prefix[] = "btf_trace_"; 20397 int ret = 0, subprog = -1, i; 20398 const struct btf_type *t; 20399 bool conservative = true; 20400 const char *tname; 20401 struct btf *btf; 20402 long addr = 0; 20403 struct module *mod = NULL; 20404 20405 if (!btf_id) { 20406 bpf_log(log, "Tracing programs must provide btf_id\n"); 20407 return -EINVAL; 20408 } 20409 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 20410 if (!btf) { 20411 bpf_log(log, 20412 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 20413 return -EINVAL; 20414 } 20415 t = btf_type_by_id(btf, btf_id); 20416 if (!t) { 20417 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 20418 return -EINVAL; 20419 } 20420 tname = btf_name_by_offset(btf, t->name_off); 20421 if (!tname) { 20422 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 20423 return -EINVAL; 20424 } 20425 if (tgt_prog) { 20426 struct bpf_prog_aux *aux = tgt_prog->aux; 20427 20428 if (bpf_prog_is_dev_bound(prog->aux) && 20429 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 20430 bpf_log(log, "Target program bound device mismatch"); 20431 return -EINVAL; 20432 } 20433 20434 for (i = 0; i < aux->func_info_cnt; i++) 20435 if (aux->func_info[i].type_id == btf_id) { 20436 subprog = i; 20437 break; 20438 } 20439 if (subprog == -1) { 20440 bpf_log(log, "Subprog %s doesn't exist\n", tname); 20441 return -EINVAL; 20442 } 20443 if (aux->func && aux->func[subprog]->aux->exception_cb) { 20444 bpf_log(log, 20445 "%s programs cannot attach to exception callback\n", 20446 prog_extension ? "Extension" : "FENTRY/FEXIT"); 20447 return -EINVAL; 20448 } 20449 conservative = aux->func_info_aux[subprog].unreliable; 20450 if (prog_extension) { 20451 if (conservative) { 20452 bpf_log(log, 20453 "Cannot replace static functions\n"); 20454 return -EINVAL; 20455 } 20456 if (!prog->jit_requested) { 20457 bpf_log(log, 20458 "Extension programs should be JITed\n"); 20459 return -EINVAL; 20460 } 20461 } 20462 if (!tgt_prog->jited) { 20463 bpf_log(log, "Can attach to only JITed progs\n"); 20464 return -EINVAL; 20465 } 20466 if (prog_tracing) { 20467 if (aux->attach_tracing_prog) { 20468 /* 20469 * Target program is an fentry/fexit which is already attached 20470 * to another tracing program. More levels of nesting 20471 * attachment are not allowed. 20472 */ 20473 bpf_log(log, "Cannot nest tracing program attach more than once\n"); 20474 return -EINVAL; 20475 } 20476 } else if (tgt_prog->type == prog->type) { 20477 /* 20478 * To avoid potential call chain cycles, prevent attaching of a 20479 * program extension to another extension. It's ok to attach 20480 * fentry/fexit to extension program. 20481 */ 20482 bpf_log(log, "Cannot recursively attach\n"); 20483 return -EINVAL; 20484 } 20485 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 20486 prog_extension && 20487 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 20488 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 20489 /* Program extensions can extend all program types 20490 * except fentry/fexit. The reason is the following. 20491 * The fentry/fexit programs are used for performance 20492 * analysis, stats and can be attached to any program 20493 * type. When extension program is replacing XDP function 20494 * it is necessary to allow performance analysis of all 20495 * functions. Both original XDP program and its program 20496 * extension. Hence attaching fentry/fexit to 20497 * BPF_PROG_TYPE_EXT is allowed. If extending of 20498 * fentry/fexit was allowed it would be possible to create 20499 * long call chain fentry->extension->fentry->extension 20500 * beyond reasonable stack size. Hence extending fentry 20501 * is not allowed. 20502 */ 20503 bpf_log(log, "Cannot extend fentry/fexit\n"); 20504 return -EINVAL; 20505 } 20506 } else { 20507 if (prog_extension) { 20508 bpf_log(log, "Cannot replace kernel functions\n"); 20509 return -EINVAL; 20510 } 20511 } 20512 20513 switch (prog->expected_attach_type) { 20514 case BPF_TRACE_RAW_TP: 20515 if (tgt_prog) { 20516 bpf_log(log, 20517 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 20518 return -EINVAL; 20519 } 20520 if (!btf_type_is_typedef(t)) { 20521 bpf_log(log, "attach_btf_id %u is not a typedef\n", 20522 btf_id); 20523 return -EINVAL; 20524 } 20525 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 20526 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 20527 btf_id, tname); 20528 return -EINVAL; 20529 } 20530 tname += sizeof(prefix) - 1; 20531 t = btf_type_by_id(btf, t->type); 20532 if (!btf_type_is_ptr(t)) 20533 /* should never happen in valid vmlinux build */ 20534 return -EINVAL; 20535 t = btf_type_by_id(btf, t->type); 20536 if (!btf_type_is_func_proto(t)) 20537 /* should never happen in valid vmlinux build */ 20538 return -EINVAL; 20539 20540 break; 20541 case BPF_TRACE_ITER: 20542 if (!btf_type_is_func(t)) { 20543 bpf_log(log, "attach_btf_id %u is not a function\n", 20544 btf_id); 20545 return -EINVAL; 20546 } 20547 t = btf_type_by_id(btf, t->type); 20548 if (!btf_type_is_func_proto(t)) 20549 return -EINVAL; 20550 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 20551 if (ret) 20552 return ret; 20553 break; 20554 default: 20555 if (!prog_extension) 20556 return -EINVAL; 20557 fallthrough; 20558 case BPF_MODIFY_RETURN: 20559 case BPF_LSM_MAC: 20560 case BPF_LSM_CGROUP: 20561 case BPF_TRACE_FENTRY: 20562 case BPF_TRACE_FEXIT: 20563 if (!btf_type_is_func(t)) { 20564 bpf_log(log, "attach_btf_id %u is not a function\n", 20565 btf_id); 20566 return -EINVAL; 20567 } 20568 if (prog_extension && 20569 btf_check_type_match(log, prog, btf, t)) 20570 return -EINVAL; 20571 t = btf_type_by_id(btf, t->type); 20572 if (!btf_type_is_func_proto(t)) 20573 return -EINVAL; 20574 20575 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 20576 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 20577 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 20578 return -EINVAL; 20579 20580 if (tgt_prog && conservative) 20581 t = NULL; 20582 20583 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 20584 if (ret < 0) 20585 return ret; 20586 20587 if (tgt_prog) { 20588 if (subprog == 0) 20589 addr = (long) tgt_prog->bpf_func; 20590 else 20591 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 20592 } else { 20593 if (btf_is_module(btf)) { 20594 mod = btf_try_get_module(btf); 20595 if (mod) 20596 addr = find_kallsyms_symbol_value(mod, tname); 20597 else 20598 addr = 0; 20599 } else { 20600 addr = kallsyms_lookup_name(tname); 20601 } 20602 if (!addr) { 20603 module_put(mod); 20604 bpf_log(log, 20605 "The address of function %s cannot be found\n", 20606 tname); 20607 return -ENOENT; 20608 } 20609 } 20610 20611 if (prog->aux->sleepable) { 20612 ret = -EINVAL; 20613 switch (prog->type) { 20614 case BPF_PROG_TYPE_TRACING: 20615 20616 /* fentry/fexit/fmod_ret progs can be sleepable if they are 20617 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 20618 */ 20619 if (!check_non_sleepable_error_inject(btf_id) && 20620 within_error_injection_list(addr)) 20621 ret = 0; 20622 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 20623 * in the fmodret id set with the KF_SLEEPABLE flag. 20624 */ 20625 else { 20626 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 20627 prog); 20628 20629 if (flags && (*flags & KF_SLEEPABLE)) 20630 ret = 0; 20631 } 20632 break; 20633 case BPF_PROG_TYPE_LSM: 20634 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 20635 * Only some of them are sleepable. 20636 */ 20637 if (bpf_lsm_is_sleepable_hook(btf_id)) 20638 ret = 0; 20639 break; 20640 default: 20641 break; 20642 } 20643 if (ret) { 20644 module_put(mod); 20645 bpf_log(log, "%s is not sleepable\n", tname); 20646 return ret; 20647 } 20648 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 20649 if (tgt_prog) { 20650 module_put(mod); 20651 bpf_log(log, "can't modify return codes of BPF programs\n"); 20652 return -EINVAL; 20653 } 20654 ret = -EINVAL; 20655 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 20656 !check_attach_modify_return(addr, tname)) 20657 ret = 0; 20658 if (ret) { 20659 module_put(mod); 20660 bpf_log(log, "%s() is not modifiable\n", tname); 20661 return ret; 20662 } 20663 } 20664 20665 break; 20666 } 20667 tgt_info->tgt_addr = addr; 20668 tgt_info->tgt_name = tname; 20669 tgt_info->tgt_type = t; 20670 tgt_info->tgt_mod = mod; 20671 return 0; 20672 } 20673 20674 BTF_SET_START(btf_id_deny) 20675 BTF_ID_UNUSED 20676 #ifdef CONFIG_SMP 20677 BTF_ID(func, migrate_disable) 20678 BTF_ID(func, migrate_enable) 20679 #endif 20680 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 20681 BTF_ID(func, rcu_read_unlock_strict) 20682 #endif 20683 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 20684 BTF_ID(func, preempt_count_add) 20685 BTF_ID(func, preempt_count_sub) 20686 #endif 20687 #ifdef CONFIG_PREEMPT_RCU 20688 BTF_ID(func, __rcu_read_lock) 20689 BTF_ID(func, __rcu_read_unlock) 20690 #endif 20691 BTF_SET_END(btf_id_deny) 20692 20693 static bool can_be_sleepable(struct bpf_prog *prog) 20694 { 20695 if (prog->type == BPF_PROG_TYPE_TRACING) { 20696 switch (prog->expected_attach_type) { 20697 case BPF_TRACE_FENTRY: 20698 case BPF_TRACE_FEXIT: 20699 case BPF_MODIFY_RETURN: 20700 case BPF_TRACE_ITER: 20701 return true; 20702 default: 20703 return false; 20704 } 20705 } 20706 return prog->type == BPF_PROG_TYPE_LSM || 20707 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 20708 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 20709 } 20710 20711 static int check_attach_btf_id(struct bpf_verifier_env *env) 20712 { 20713 struct bpf_prog *prog = env->prog; 20714 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 20715 struct bpf_attach_target_info tgt_info = {}; 20716 u32 btf_id = prog->aux->attach_btf_id; 20717 struct bpf_trampoline *tr; 20718 int ret; 20719 u64 key; 20720 20721 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 20722 if (prog->aux->sleepable) 20723 /* attach_btf_id checked to be zero already */ 20724 return 0; 20725 verbose(env, "Syscall programs can only be sleepable\n"); 20726 return -EINVAL; 20727 } 20728 20729 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 20730 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 20731 return -EINVAL; 20732 } 20733 20734 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 20735 return check_struct_ops_btf_id(env); 20736 20737 if (prog->type != BPF_PROG_TYPE_TRACING && 20738 prog->type != BPF_PROG_TYPE_LSM && 20739 prog->type != BPF_PROG_TYPE_EXT) 20740 return 0; 20741 20742 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 20743 if (ret) 20744 return ret; 20745 20746 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 20747 /* to make freplace equivalent to their targets, they need to 20748 * inherit env->ops and expected_attach_type for the rest of the 20749 * verification 20750 */ 20751 env->ops = bpf_verifier_ops[tgt_prog->type]; 20752 prog->expected_attach_type = tgt_prog->expected_attach_type; 20753 } 20754 20755 /* store info about the attachment target that will be used later */ 20756 prog->aux->attach_func_proto = tgt_info.tgt_type; 20757 prog->aux->attach_func_name = tgt_info.tgt_name; 20758 prog->aux->mod = tgt_info.tgt_mod; 20759 20760 if (tgt_prog) { 20761 prog->aux->saved_dst_prog_type = tgt_prog->type; 20762 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 20763 } 20764 20765 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 20766 prog->aux->attach_btf_trace = true; 20767 return 0; 20768 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 20769 if (!bpf_iter_prog_supported(prog)) 20770 return -EINVAL; 20771 return 0; 20772 } 20773 20774 if (prog->type == BPF_PROG_TYPE_LSM) { 20775 ret = bpf_lsm_verify_prog(&env->log, prog); 20776 if (ret < 0) 20777 return ret; 20778 } else if (prog->type == BPF_PROG_TYPE_TRACING && 20779 btf_id_set_contains(&btf_id_deny, btf_id)) { 20780 return -EINVAL; 20781 } 20782 20783 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 20784 tr = bpf_trampoline_get(key, &tgt_info); 20785 if (!tr) 20786 return -ENOMEM; 20787 20788 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 20789 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 20790 20791 prog->aux->dst_trampoline = tr; 20792 return 0; 20793 } 20794 20795 struct btf *bpf_get_btf_vmlinux(void) 20796 { 20797 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 20798 mutex_lock(&bpf_verifier_lock); 20799 if (!btf_vmlinux) 20800 btf_vmlinux = btf_parse_vmlinux(); 20801 mutex_unlock(&bpf_verifier_lock); 20802 } 20803 return btf_vmlinux; 20804 } 20805 20806 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 20807 { 20808 u64 start_time = ktime_get_ns(); 20809 struct bpf_verifier_env *env; 20810 int i, len, ret = -EINVAL, err; 20811 u32 log_true_size; 20812 bool is_priv; 20813 20814 /* no program is valid */ 20815 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 20816 return -EINVAL; 20817 20818 /* 'struct bpf_verifier_env' can be global, but since it's not small, 20819 * allocate/free it every time bpf_check() is called 20820 */ 20821 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 20822 if (!env) 20823 return -ENOMEM; 20824 20825 env->bt.env = env; 20826 20827 len = (*prog)->len; 20828 env->insn_aux_data = 20829 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 20830 ret = -ENOMEM; 20831 if (!env->insn_aux_data) 20832 goto err_free_env; 20833 for (i = 0; i < len; i++) 20834 env->insn_aux_data[i].orig_idx = i; 20835 env->prog = *prog; 20836 env->ops = bpf_verifier_ops[env->prog->type]; 20837 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 20838 20839 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); 20840 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); 20841 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); 20842 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); 20843 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); 20844 20845 bpf_get_btf_vmlinux(); 20846 20847 /* grab the mutex to protect few globals used by verifier */ 20848 if (!is_priv) 20849 mutex_lock(&bpf_verifier_lock); 20850 20851 /* user could have requested verbose verifier output 20852 * and supplied buffer to store the verification trace 20853 */ 20854 ret = bpf_vlog_init(&env->log, attr->log_level, 20855 (char __user *) (unsigned long) attr->log_buf, 20856 attr->log_size); 20857 if (ret) 20858 goto err_unlock; 20859 20860 mark_verifier_state_clean(env); 20861 20862 if (IS_ERR(btf_vmlinux)) { 20863 /* Either gcc or pahole or kernel are broken. */ 20864 verbose(env, "in-kernel BTF is malformed\n"); 20865 ret = PTR_ERR(btf_vmlinux); 20866 goto skip_full_check; 20867 } 20868 20869 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 20870 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 20871 env->strict_alignment = true; 20872 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 20873 env->strict_alignment = false; 20874 20875 if (is_priv) 20876 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 20877 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 20878 20879 env->explored_states = kvcalloc(state_htab_size(env), 20880 sizeof(struct bpf_verifier_state_list *), 20881 GFP_USER); 20882 ret = -ENOMEM; 20883 if (!env->explored_states) 20884 goto skip_full_check; 20885 20886 ret = check_btf_info_early(env, attr, uattr); 20887 if (ret < 0) 20888 goto skip_full_check; 20889 20890 ret = add_subprog_and_kfunc(env); 20891 if (ret < 0) 20892 goto skip_full_check; 20893 20894 ret = check_subprogs(env); 20895 if (ret < 0) 20896 goto skip_full_check; 20897 20898 ret = check_btf_info(env, attr, uattr); 20899 if (ret < 0) 20900 goto skip_full_check; 20901 20902 ret = check_attach_btf_id(env); 20903 if (ret) 20904 goto skip_full_check; 20905 20906 ret = resolve_pseudo_ldimm64(env); 20907 if (ret < 0) 20908 goto skip_full_check; 20909 20910 if (bpf_prog_is_offloaded(env->prog->aux)) { 20911 ret = bpf_prog_offload_verifier_prep(env->prog); 20912 if (ret) 20913 goto skip_full_check; 20914 } 20915 20916 ret = check_cfg(env); 20917 if (ret < 0) 20918 goto skip_full_check; 20919 20920 ret = do_check_main(env); 20921 ret = ret ?: do_check_subprogs(env); 20922 20923 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 20924 ret = bpf_prog_offload_finalize(env); 20925 20926 skip_full_check: 20927 kvfree(env->explored_states); 20928 20929 if (ret == 0) 20930 ret = check_max_stack_depth(env); 20931 20932 /* instruction rewrites happen after this point */ 20933 if (ret == 0) 20934 ret = optimize_bpf_loop(env); 20935 20936 if (is_priv) { 20937 if (ret == 0) 20938 opt_hard_wire_dead_code_branches(env); 20939 if (ret == 0) 20940 ret = opt_remove_dead_code(env); 20941 if (ret == 0) 20942 ret = opt_remove_nops(env); 20943 } else { 20944 if (ret == 0) 20945 sanitize_dead_code(env); 20946 } 20947 20948 if (ret == 0) 20949 /* program is valid, convert *(u32*)(ctx + off) accesses */ 20950 ret = convert_ctx_accesses(env); 20951 20952 if (ret == 0) 20953 ret = do_misc_fixups(env); 20954 20955 /* do 32-bit optimization after insn patching has done so those patched 20956 * insns could be handled correctly. 20957 */ 20958 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 20959 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 20960 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 20961 : false; 20962 } 20963 20964 if (ret == 0) 20965 ret = fixup_call_args(env); 20966 20967 env->verification_time = ktime_get_ns() - start_time; 20968 print_verification_stats(env); 20969 env->prog->aux->verified_insns = env->insn_processed; 20970 20971 /* preserve original error even if log finalization is successful */ 20972 err = bpf_vlog_finalize(&env->log, &log_true_size); 20973 if (err) 20974 ret = err; 20975 20976 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 20977 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 20978 &log_true_size, sizeof(log_true_size))) { 20979 ret = -EFAULT; 20980 goto err_release_maps; 20981 } 20982 20983 if (ret) 20984 goto err_release_maps; 20985 20986 if (env->used_map_cnt) { 20987 /* if program passed verifier, update used_maps in bpf_prog_info */ 20988 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 20989 sizeof(env->used_maps[0]), 20990 GFP_KERNEL); 20991 20992 if (!env->prog->aux->used_maps) { 20993 ret = -ENOMEM; 20994 goto err_release_maps; 20995 } 20996 20997 memcpy(env->prog->aux->used_maps, env->used_maps, 20998 sizeof(env->used_maps[0]) * env->used_map_cnt); 20999 env->prog->aux->used_map_cnt = env->used_map_cnt; 21000 } 21001 if (env->used_btf_cnt) { 21002 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 21003 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 21004 sizeof(env->used_btfs[0]), 21005 GFP_KERNEL); 21006 if (!env->prog->aux->used_btfs) { 21007 ret = -ENOMEM; 21008 goto err_release_maps; 21009 } 21010 21011 memcpy(env->prog->aux->used_btfs, env->used_btfs, 21012 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 21013 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 21014 } 21015 if (env->used_map_cnt || env->used_btf_cnt) { 21016 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 21017 * bpf_ld_imm64 instructions 21018 */ 21019 convert_pseudo_ld_imm64(env); 21020 } 21021 21022 adjust_btf_func(env); 21023 21024 err_release_maps: 21025 if (!env->prog->aux->used_maps) 21026 /* if we didn't copy map pointers into bpf_prog_info, release 21027 * them now. Otherwise free_used_maps() will release them. 21028 */ 21029 release_maps(env); 21030 if (!env->prog->aux->used_btfs) 21031 release_btfs(env); 21032 21033 /* extension progs temporarily inherit the attach_type of their targets 21034 for verification purposes, so set it back to zero before returning 21035 */ 21036 if (env->prog->type == BPF_PROG_TYPE_EXT) 21037 env->prog->expected_attach_type = 0; 21038 21039 *prog = env->prog; 21040 21041 module_put(env->attach_btf_mod); 21042 err_unlock: 21043 if (!is_priv) 21044 mutex_unlock(&bpf_verifier_lock); 21045 vfree(env->insn_aux_data); 21046 err_free_env: 21047 kfree(env); 21048 return ret; 21049 } 21050