xref: /linux/kernel/bpf/verifier.c (revision 8ab2e96d8ff188006f1e3346a56443cd07fe1858)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 
25 #include "disasm.h"
26 
27 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
28 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
29 	[_id] = & _name ## _verifier_ops,
30 #define BPF_MAP_TYPE(_id, _ops)
31 #include <linux/bpf_types.h>
32 #undef BPF_PROG_TYPE
33 #undef BPF_MAP_TYPE
34 };
35 
36 /* bpf_check() is a static code analyzer that walks eBPF program
37  * instruction by instruction and updates register/stack state.
38  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
39  *
40  * The first pass is depth-first-search to check that the program is a DAG.
41  * It rejects the following programs:
42  * - larger than BPF_MAXINSNS insns
43  * - if loop is present (detected via back-edge)
44  * - unreachable insns exist (shouldn't be a forest. program = one function)
45  * - out of bounds or malformed jumps
46  * The second pass is all possible path descent from the 1st insn.
47  * Since it's analyzing all pathes through the program, the length of the
48  * analysis is limited to 64k insn, which may be hit even if total number of
49  * insn is less then 4K, but there are too many branches that change stack/regs.
50  * Number of 'branches to be analyzed' is limited to 1k
51  *
52  * On entry to each instruction, each register has a type, and the instruction
53  * changes the types of the registers depending on instruction semantics.
54  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
55  * copied to R1.
56  *
57  * All registers are 64-bit.
58  * R0 - return register
59  * R1-R5 argument passing registers
60  * R6-R9 callee saved registers
61  * R10 - frame pointer read-only
62  *
63  * At the start of BPF program the register R1 contains a pointer to bpf_context
64  * and has type PTR_TO_CTX.
65  *
66  * Verifier tracks arithmetic operations on pointers in case:
67  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
68  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
69  * 1st insn copies R10 (which has FRAME_PTR) type into R1
70  * and 2nd arithmetic instruction is pattern matched to recognize
71  * that it wants to construct a pointer to some element within stack.
72  * So after 2nd insn, the register R1 has type PTR_TO_STACK
73  * (and -20 constant is saved for further stack bounds checking).
74  * Meaning that this reg is a pointer to stack plus known immediate constant.
75  *
76  * Most of the time the registers have SCALAR_VALUE type, which
77  * means the register has some value, but it's not a valid pointer.
78  * (like pointer plus pointer becomes SCALAR_VALUE type)
79  *
80  * When verifier sees load or store instructions the type of base register
81  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
82  * four pointer types recognized by check_mem_access() function.
83  *
84  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
85  * and the range of [ptr, ptr + map's value_size) is accessible.
86  *
87  * registers used to pass values to function calls are checked against
88  * function argument constraints.
89  *
90  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
91  * It means that the register type passed to this function must be
92  * PTR_TO_STACK and it will be used inside the function as
93  * 'pointer to map element key'
94  *
95  * For example the argument constraints for bpf_map_lookup_elem():
96  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
97  *   .arg1_type = ARG_CONST_MAP_PTR,
98  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
99  *
100  * ret_type says that this function returns 'pointer to map elem value or null'
101  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
102  * 2nd argument should be a pointer to stack, which will be used inside
103  * the helper function as a pointer to map element key.
104  *
105  * On the kernel side the helper function looks like:
106  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
107  * {
108  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
109  *    void *key = (void *) (unsigned long) r2;
110  *    void *value;
111  *
112  *    here kernel can access 'key' and 'map' pointers safely, knowing that
113  *    [key, key + map->key_size) bytes are valid and were initialized on
114  *    the stack of eBPF program.
115  * }
116  *
117  * Corresponding eBPF program may look like:
118  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
119  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
120  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
121  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
122  * here verifier looks at prototype of map_lookup_elem() and sees:
123  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
124  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
125  *
126  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
127  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
128  * and were initialized prior to this call.
129  * If it's ok, then verifier allows this BPF_CALL insn and looks at
130  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
131  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
132  * returns ether pointer to map value or NULL.
133  *
134  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
135  * insn, the register holding that pointer in the true branch changes state to
136  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
137  * branch. See check_cond_jmp_op().
138  *
139  * After the call R0 is set to return type of the function and registers R1-R5
140  * are set to NOT_INIT to indicate that they are no longer readable.
141  *
142  * The following reference types represent a potential reference to a kernel
143  * resource which, after first being allocated, must be checked and freed by
144  * the BPF program:
145  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
146  *
147  * When the verifier sees a helper call return a reference type, it allocates a
148  * pointer id for the reference and stores it in the current function state.
149  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
150  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
151  * passes through a NULL-check conditional. For the branch wherein the state is
152  * changed to CONST_IMM, the verifier releases the reference.
153  *
154  * For each helper function that allocates a reference, such as
155  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
156  * bpf_sk_release(). When a reference type passes into the release function,
157  * the verifier also releases the reference. If any unchecked or unreleased
158  * reference remains at the end of the program, the verifier rejects it.
159  */
160 
161 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
162 struct bpf_verifier_stack_elem {
163 	/* verifer state is 'st'
164 	 * before processing instruction 'insn_idx'
165 	 * and after processing instruction 'prev_insn_idx'
166 	 */
167 	struct bpf_verifier_state st;
168 	int insn_idx;
169 	int prev_insn_idx;
170 	struct bpf_verifier_stack_elem *next;
171 };
172 
173 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
174 #define BPF_COMPLEXITY_LIMIT_STATES	64
175 
176 #define BPF_MAP_KEY_POISON	(1ULL << 63)
177 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
178 
179 #define BPF_MAP_PTR_UNPRIV	1UL
180 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
181 					  POISON_POINTER_DELTA))
182 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
183 
184 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
185 {
186 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
187 }
188 
189 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
190 {
191 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
192 }
193 
194 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
195 			      const struct bpf_map *map, bool unpriv)
196 {
197 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
198 	unpriv |= bpf_map_ptr_unpriv(aux);
199 	aux->map_ptr_state = (unsigned long)map |
200 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
201 }
202 
203 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
204 {
205 	return aux->map_key_state & BPF_MAP_KEY_POISON;
206 }
207 
208 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
209 {
210 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
211 }
212 
213 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
214 {
215 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
216 }
217 
218 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
219 {
220 	bool poisoned = bpf_map_key_poisoned(aux);
221 
222 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
223 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
224 }
225 
226 struct bpf_call_arg_meta {
227 	struct bpf_map *map_ptr;
228 	bool raw_mode;
229 	bool pkt_access;
230 	int regno;
231 	int access_size;
232 	u64 msize_max_value;
233 	int ref_obj_id;
234 	int func_id;
235 	u32 btf_id;
236 };
237 
238 struct btf *btf_vmlinux;
239 
240 static DEFINE_MUTEX(bpf_verifier_lock);
241 
242 static const struct bpf_line_info *
243 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
244 {
245 	const struct bpf_line_info *linfo;
246 	const struct bpf_prog *prog;
247 	u32 i, nr_linfo;
248 
249 	prog = env->prog;
250 	nr_linfo = prog->aux->nr_linfo;
251 
252 	if (!nr_linfo || insn_off >= prog->len)
253 		return NULL;
254 
255 	linfo = prog->aux->linfo;
256 	for (i = 1; i < nr_linfo; i++)
257 		if (insn_off < linfo[i].insn_off)
258 			break;
259 
260 	return &linfo[i - 1];
261 }
262 
263 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
264 		       va_list args)
265 {
266 	unsigned int n;
267 
268 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
269 
270 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
271 		  "verifier log line truncated - local buffer too short\n");
272 
273 	n = min(log->len_total - log->len_used - 1, n);
274 	log->kbuf[n] = '\0';
275 
276 	if (log->level == BPF_LOG_KERNEL) {
277 		pr_err("BPF:%s\n", log->kbuf);
278 		return;
279 	}
280 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
281 		log->len_used += n;
282 	else
283 		log->ubuf = NULL;
284 }
285 
286 /* log_level controls verbosity level of eBPF verifier.
287  * bpf_verifier_log_write() is used to dump the verification trace to the log,
288  * so the user can figure out what's wrong with the program
289  */
290 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
291 					   const char *fmt, ...)
292 {
293 	va_list args;
294 
295 	if (!bpf_verifier_log_needed(&env->log))
296 		return;
297 
298 	va_start(args, fmt);
299 	bpf_verifier_vlog(&env->log, fmt, args);
300 	va_end(args);
301 }
302 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
303 
304 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
305 {
306 	struct bpf_verifier_env *env = private_data;
307 	va_list args;
308 
309 	if (!bpf_verifier_log_needed(&env->log))
310 		return;
311 
312 	va_start(args, fmt);
313 	bpf_verifier_vlog(&env->log, fmt, args);
314 	va_end(args);
315 }
316 
317 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
318 			    const char *fmt, ...)
319 {
320 	va_list args;
321 
322 	if (!bpf_verifier_log_needed(log))
323 		return;
324 
325 	va_start(args, fmt);
326 	bpf_verifier_vlog(log, fmt, args);
327 	va_end(args);
328 }
329 
330 static const char *ltrim(const char *s)
331 {
332 	while (isspace(*s))
333 		s++;
334 
335 	return s;
336 }
337 
338 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
339 					 u32 insn_off,
340 					 const char *prefix_fmt, ...)
341 {
342 	const struct bpf_line_info *linfo;
343 
344 	if (!bpf_verifier_log_needed(&env->log))
345 		return;
346 
347 	linfo = find_linfo(env, insn_off);
348 	if (!linfo || linfo == env->prev_linfo)
349 		return;
350 
351 	if (prefix_fmt) {
352 		va_list args;
353 
354 		va_start(args, prefix_fmt);
355 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
356 		va_end(args);
357 	}
358 
359 	verbose(env, "%s\n",
360 		ltrim(btf_name_by_offset(env->prog->aux->btf,
361 					 linfo->line_off)));
362 
363 	env->prev_linfo = linfo;
364 }
365 
366 static bool type_is_pkt_pointer(enum bpf_reg_type type)
367 {
368 	return type == PTR_TO_PACKET ||
369 	       type == PTR_TO_PACKET_META;
370 }
371 
372 static bool type_is_sk_pointer(enum bpf_reg_type type)
373 {
374 	return type == PTR_TO_SOCKET ||
375 		type == PTR_TO_SOCK_COMMON ||
376 		type == PTR_TO_TCP_SOCK ||
377 		type == PTR_TO_XDP_SOCK;
378 }
379 
380 static bool reg_type_may_be_null(enum bpf_reg_type type)
381 {
382 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
383 	       type == PTR_TO_SOCKET_OR_NULL ||
384 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
385 	       type == PTR_TO_TCP_SOCK_OR_NULL;
386 }
387 
388 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
389 {
390 	return reg->type == PTR_TO_MAP_VALUE &&
391 		map_value_has_spin_lock(reg->map_ptr);
392 }
393 
394 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
395 {
396 	return type == PTR_TO_SOCKET ||
397 		type == PTR_TO_SOCKET_OR_NULL ||
398 		type == PTR_TO_TCP_SOCK ||
399 		type == PTR_TO_TCP_SOCK_OR_NULL;
400 }
401 
402 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
403 {
404 	return type == ARG_PTR_TO_SOCK_COMMON;
405 }
406 
407 /* Determine whether the function releases some resources allocated by another
408  * function call. The first reference type argument will be assumed to be
409  * released by release_reference().
410  */
411 static bool is_release_function(enum bpf_func_id func_id)
412 {
413 	return func_id == BPF_FUNC_sk_release;
414 }
415 
416 static bool is_acquire_function(enum bpf_func_id func_id)
417 {
418 	return func_id == BPF_FUNC_sk_lookup_tcp ||
419 		func_id == BPF_FUNC_sk_lookup_udp ||
420 		func_id == BPF_FUNC_skc_lookup_tcp;
421 }
422 
423 static bool is_ptr_cast_function(enum bpf_func_id func_id)
424 {
425 	return func_id == BPF_FUNC_tcp_sock ||
426 		func_id == BPF_FUNC_sk_fullsock;
427 }
428 
429 /* string representation of 'enum bpf_reg_type' */
430 static const char * const reg_type_str[] = {
431 	[NOT_INIT]		= "?",
432 	[SCALAR_VALUE]		= "inv",
433 	[PTR_TO_CTX]		= "ctx",
434 	[CONST_PTR_TO_MAP]	= "map_ptr",
435 	[PTR_TO_MAP_VALUE]	= "map_value",
436 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
437 	[PTR_TO_STACK]		= "fp",
438 	[PTR_TO_PACKET]		= "pkt",
439 	[PTR_TO_PACKET_META]	= "pkt_meta",
440 	[PTR_TO_PACKET_END]	= "pkt_end",
441 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
442 	[PTR_TO_SOCKET]		= "sock",
443 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
444 	[PTR_TO_SOCK_COMMON]	= "sock_common",
445 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
446 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
447 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
448 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
449 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
450 	[PTR_TO_BTF_ID]		= "ptr_",
451 };
452 
453 static char slot_type_char[] = {
454 	[STACK_INVALID]	= '?',
455 	[STACK_SPILL]	= 'r',
456 	[STACK_MISC]	= 'm',
457 	[STACK_ZERO]	= '0',
458 };
459 
460 static void print_liveness(struct bpf_verifier_env *env,
461 			   enum bpf_reg_liveness live)
462 {
463 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
464 	    verbose(env, "_");
465 	if (live & REG_LIVE_READ)
466 		verbose(env, "r");
467 	if (live & REG_LIVE_WRITTEN)
468 		verbose(env, "w");
469 	if (live & REG_LIVE_DONE)
470 		verbose(env, "D");
471 }
472 
473 static struct bpf_func_state *func(struct bpf_verifier_env *env,
474 				   const struct bpf_reg_state *reg)
475 {
476 	struct bpf_verifier_state *cur = env->cur_state;
477 
478 	return cur->frame[reg->frameno];
479 }
480 
481 const char *kernel_type_name(u32 id)
482 {
483 	return btf_name_by_offset(btf_vmlinux,
484 				  btf_type_by_id(btf_vmlinux, id)->name_off);
485 }
486 
487 static void print_verifier_state(struct bpf_verifier_env *env,
488 				 const struct bpf_func_state *state)
489 {
490 	const struct bpf_reg_state *reg;
491 	enum bpf_reg_type t;
492 	int i;
493 
494 	if (state->frameno)
495 		verbose(env, " frame%d:", state->frameno);
496 	for (i = 0; i < MAX_BPF_REG; i++) {
497 		reg = &state->regs[i];
498 		t = reg->type;
499 		if (t == NOT_INIT)
500 			continue;
501 		verbose(env, " R%d", i);
502 		print_liveness(env, reg->live);
503 		verbose(env, "=%s", reg_type_str[t]);
504 		if (t == SCALAR_VALUE && reg->precise)
505 			verbose(env, "P");
506 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
507 		    tnum_is_const(reg->var_off)) {
508 			/* reg->off should be 0 for SCALAR_VALUE */
509 			verbose(env, "%lld", reg->var_off.value + reg->off);
510 		} else {
511 			if (t == PTR_TO_BTF_ID)
512 				verbose(env, "%s", kernel_type_name(reg->btf_id));
513 			verbose(env, "(id=%d", reg->id);
514 			if (reg_type_may_be_refcounted_or_null(t))
515 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
516 			if (t != SCALAR_VALUE)
517 				verbose(env, ",off=%d", reg->off);
518 			if (type_is_pkt_pointer(t))
519 				verbose(env, ",r=%d", reg->range);
520 			else if (t == CONST_PTR_TO_MAP ||
521 				 t == PTR_TO_MAP_VALUE ||
522 				 t == PTR_TO_MAP_VALUE_OR_NULL)
523 				verbose(env, ",ks=%d,vs=%d",
524 					reg->map_ptr->key_size,
525 					reg->map_ptr->value_size);
526 			if (tnum_is_const(reg->var_off)) {
527 				/* Typically an immediate SCALAR_VALUE, but
528 				 * could be a pointer whose offset is too big
529 				 * for reg->off
530 				 */
531 				verbose(env, ",imm=%llx", reg->var_off.value);
532 			} else {
533 				if (reg->smin_value != reg->umin_value &&
534 				    reg->smin_value != S64_MIN)
535 					verbose(env, ",smin_value=%lld",
536 						(long long)reg->smin_value);
537 				if (reg->smax_value != reg->umax_value &&
538 				    reg->smax_value != S64_MAX)
539 					verbose(env, ",smax_value=%lld",
540 						(long long)reg->smax_value);
541 				if (reg->umin_value != 0)
542 					verbose(env, ",umin_value=%llu",
543 						(unsigned long long)reg->umin_value);
544 				if (reg->umax_value != U64_MAX)
545 					verbose(env, ",umax_value=%llu",
546 						(unsigned long long)reg->umax_value);
547 				if (!tnum_is_unknown(reg->var_off)) {
548 					char tn_buf[48];
549 
550 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
551 					verbose(env, ",var_off=%s", tn_buf);
552 				}
553 				if (reg->s32_min_value != reg->smin_value &&
554 				    reg->s32_min_value != S32_MIN)
555 					verbose(env, ",s32_min_value=%d",
556 						(int)(reg->s32_min_value));
557 				if (reg->s32_max_value != reg->smax_value &&
558 				    reg->s32_max_value != S32_MAX)
559 					verbose(env, ",s32_max_value=%d",
560 						(int)(reg->s32_max_value));
561 				if (reg->u32_min_value != reg->umin_value &&
562 				    reg->u32_min_value != U32_MIN)
563 					verbose(env, ",u32_min_value=%d",
564 						(int)(reg->u32_min_value));
565 				if (reg->u32_max_value != reg->umax_value &&
566 				    reg->u32_max_value != U32_MAX)
567 					verbose(env, ",u32_max_value=%d",
568 						(int)(reg->u32_max_value));
569 			}
570 			verbose(env, ")");
571 		}
572 	}
573 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
574 		char types_buf[BPF_REG_SIZE + 1];
575 		bool valid = false;
576 		int j;
577 
578 		for (j = 0; j < BPF_REG_SIZE; j++) {
579 			if (state->stack[i].slot_type[j] != STACK_INVALID)
580 				valid = true;
581 			types_buf[j] = slot_type_char[
582 					state->stack[i].slot_type[j]];
583 		}
584 		types_buf[BPF_REG_SIZE] = 0;
585 		if (!valid)
586 			continue;
587 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
588 		print_liveness(env, state->stack[i].spilled_ptr.live);
589 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
590 			reg = &state->stack[i].spilled_ptr;
591 			t = reg->type;
592 			verbose(env, "=%s", reg_type_str[t]);
593 			if (t == SCALAR_VALUE && reg->precise)
594 				verbose(env, "P");
595 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
596 				verbose(env, "%lld", reg->var_off.value + reg->off);
597 		} else {
598 			verbose(env, "=%s", types_buf);
599 		}
600 	}
601 	if (state->acquired_refs && state->refs[0].id) {
602 		verbose(env, " refs=%d", state->refs[0].id);
603 		for (i = 1; i < state->acquired_refs; i++)
604 			if (state->refs[i].id)
605 				verbose(env, ",%d", state->refs[i].id);
606 	}
607 	verbose(env, "\n");
608 }
609 
610 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
611 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
612 			       const struct bpf_func_state *src)	\
613 {									\
614 	if (!src->FIELD)						\
615 		return 0;						\
616 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
617 		/* internal bug, make state invalid to reject the program */ \
618 		memset(dst, 0, sizeof(*dst));				\
619 		return -EFAULT;						\
620 	}								\
621 	memcpy(dst->FIELD, src->FIELD,					\
622 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
623 	return 0;							\
624 }
625 /* copy_reference_state() */
626 COPY_STATE_FN(reference, acquired_refs, refs, 1)
627 /* copy_stack_state() */
628 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
629 #undef COPY_STATE_FN
630 
631 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
632 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
633 				  bool copy_old)			\
634 {									\
635 	u32 old_size = state->COUNT;					\
636 	struct bpf_##NAME##_state *new_##FIELD;				\
637 	int slot = size / SIZE;						\
638 									\
639 	if (size <= old_size || !size) {				\
640 		if (copy_old)						\
641 			return 0;					\
642 		state->COUNT = slot * SIZE;				\
643 		if (!size && old_size) {				\
644 			kfree(state->FIELD);				\
645 			state->FIELD = NULL;				\
646 		}							\
647 		return 0;						\
648 	}								\
649 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
650 				    GFP_KERNEL);			\
651 	if (!new_##FIELD)						\
652 		return -ENOMEM;						\
653 	if (copy_old) {							\
654 		if (state->FIELD)					\
655 			memcpy(new_##FIELD, state->FIELD,		\
656 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
657 		memset(new_##FIELD + old_size / SIZE, 0,		\
658 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
659 	}								\
660 	state->COUNT = slot * SIZE;					\
661 	kfree(state->FIELD);						\
662 	state->FIELD = new_##FIELD;					\
663 	return 0;							\
664 }
665 /* realloc_reference_state() */
666 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
667 /* realloc_stack_state() */
668 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
669 #undef REALLOC_STATE_FN
670 
671 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
672  * make it consume minimal amount of memory. check_stack_write() access from
673  * the program calls into realloc_func_state() to grow the stack size.
674  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
675  * which realloc_stack_state() copies over. It points to previous
676  * bpf_verifier_state which is never reallocated.
677  */
678 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
679 			      int refs_size, bool copy_old)
680 {
681 	int err = realloc_reference_state(state, refs_size, copy_old);
682 	if (err)
683 		return err;
684 	return realloc_stack_state(state, stack_size, copy_old);
685 }
686 
687 /* Acquire a pointer id from the env and update the state->refs to include
688  * this new pointer reference.
689  * On success, returns a valid pointer id to associate with the register
690  * On failure, returns a negative errno.
691  */
692 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
693 {
694 	struct bpf_func_state *state = cur_func(env);
695 	int new_ofs = state->acquired_refs;
696 	int id, err;
697 
698 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
699 	if (err)
700 		return err;
701 	id = ++env->id_gen;
702 	state->refs[new_ofs].id = id;
703 	state->refs[new_ofs].insn_idx = insn_idx;
704 
705 	return id;
706 }
707 
708 /* release function corresponding to acquire_reference_state(). Idempotent. */
709 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
710 {
711 	int i, last_idx;
712 
713 	last_idx = state->acquired_refs - 1;
714 	for (i = 0; i < state->acquired_refs; i++) {
715 		if (state->refs[i].id == ptr_id) {
716 			if (last_idx && i != last_idx)
717 				memcpy(&state->refs[i], &state->refs[last_idx],
718 				       sizeof(*state->refs));
719 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
720 			state->acquired_refs--;
721 			return 0;
722 		}
723 	}
724 	return -EINVAL;
725 }
726 
727 static int transfer_reference_state(struct bpf_func_state *dst,
728 				    struct bpf_func_state *src)
729 {
730 	int err = realloc_reference_state(dst, src->acquired_refs, false);
731 	if (err)
732 		return err;
733 	err = copy_reference_state(dst, src);
734 	if (err)
735 		return err;
736 	return 0;
737 }
738 
739 static void free_func_state(struct bpf_func_state *state)
740 {
741 	if (!state)
742 		return;
743 	kfree(state->refs);
744 	kfree(state->stack);
745 	kfree(state);
746 }
747 
748 static void clear_jmp_history(struct bpf_verifier_state *state)
749 {
750 	kfree(state->jmp_history);
751 	state->jmp_history = NULL;
752 	state->jmp_history_cnt = 0;
753 }
754 
755 static void free_verifier_state(struct bpf_verifier_state *state,
756 				bool free_self)
757 {
758 	int i;
759 
760 	for (i = 0; i <= state->curframe; i++) {
761 		free_func_state(state->frame[i]);
762 		state->frame[i] = NULL;
763 	}
764 	clear_jmp_history(state);
765 	if (free_self)
766 		kfree(state);
767 }
768 
769 /* copy verifier state from src to dst growing dst stack space
770  * when necessary to accommodate larger src stack
771  */
772 static int copy_func_state(struct bpf_func_state *dst,
773 			   const struct bpf_func_state *src)
774 {
775 	int err;
776 
777 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
778 				 false);
779 	if (err)
780 		return err;
781 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
782 	err = copy_reference_state(dst, src);
783 	if (err)
784 		return err;
785 	return copy_stack_state(dst, src);
786 }
787 
788 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
789 			       const struct bpf_verifier_state *src)
790 {
791 	struct bpf_func_state *dst;
792 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
793 	int i, err;
794 
795 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
796 		kfree(dst_state->jmp_history);
797 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
798 		if (!dst_state->jmp_history)
799 			return -ENOMEM;
800 	}
801 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
802 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
803 
804 	/* if dst has more stack frames then src frame, free them */
805 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
806 		free_func_state(dst_state->frame[i]);
807 		dst_state->frame[i] = NULL;
808 	}
809 	dst_state->speculative = src->speculative;
810 	dst_state->curframe = src->curframe;
811 	dst_state->active_spin_lock = src->active_spin_lock;
812 	dst_state->branches = src->branches;
813 	dst_state->parent = src->parent;
814 	dst_state->first_insn_idx = src->first_insn_idx;
815 	dst_state->last_insn_idx = src->last_insn_idx;
816 	for (i = 0; i <= src->curframe; i++) {
817 		dst = dst_state->frame[i];
818 		if (!dst) {
819 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
820 			if (!dst)
821 				return -ENOMEM;
822 			dst_state->frame[i] = dst;
823 		}
824 		err = copy_func_state(dst, src->frame[i]);
825 		if (err)
826 			return err;
827 	}
828 	return 0;
829 }
830 
831 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
832 {
833 	while (st) {
834 		u32 br = --st->branches;
835 
836 		/* WARN_ON(br > 1) technically makes sense here,
837 		 * but see comment in push_stack(), hence:
838 		 */
839 		WARN_ONCE((int)br < 0,
840 			  "BUG update_branch_counts:branches_to_explore=%d\n",
841 			  br);
842 		if (br)
843 			break;
844 		st = st->parent;
845 	}
846 }
847 
848 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
849 		     int *insn_idx)
850 {
851 	struct bpf_verifier_state *cur = env->cur_state;
852 	struct bpf_verifier_stack_elem *elem, *head = env->head;
853 	int err;
854 
855 	if (env->head == NULL)
856 		return -ENOENT;
857 
858 	if (cur) {
859 		err = copy_verifier_state(cur, &head->st);
860 		if (err)
861 			return err;
862 	}
863 	if (insn_idx)
864 		*insn_idx = head->insn_idx;
865 	if (prev_insn_idx)
866 		*prev_insn_idx = head->prev_insn_idx;
867 	elem = head->next;
868 	free_verifier_state(&head->st, false);
869 	kfree(head);
870 	env->head = elem;
871 	env->stack_size--;
872 	return 0;
873 }
874 
875 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
876 					     int insn_idx, int prev_insn_idx,
877 					     bool speculative)
878 {
879 	struct bpf_verifier_state *cur = env->cur_state;
880 	struct bpf_verifier_stack_elem *elem;
881 	int err;
882 
883 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
884 	if (!elem)
885 		goto err;
886 
887 	elem->insn_idx = insn_idx;
888 	elem->prev_insn_idx = prev_insn_idx;
889 	elem->next = env->head;
890 	env->head = elem;
891 	env->stack_size++;
892 	err = copy_verifier_state(&elem->st, cur);
893 	if (err)
894 		goto err;
895 	elem->st.speculative |= speculative;
896 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
897 		verbose(env, "The sequence of %d jumps is too complex.\n",
898 			env->stack_size);
899 		goto err;
900 	}
901 	if (elem->st.parent) {
902 		++elem->st.parent->branches;
903 		/* WARN_ON(branches > 2) technically makes sense here,
904 		 * but
905 		 * 1. speculative states will bump 'branches' for non-branch
906 		 * instructions
907 		 * 2. is_state_visited() heuristics may decide not to create
908 		 * a new state for a sequence of branches and all such current
909 		 * and cloned states will be pointing to a single parent state
910 		 * which might have large 'branches' count.
911 		 */
912 	}
913 	return &elem->st;
914 err:
915 	free_verifier_state(env->cur_state, true);
916 	env->cur_state = NULL;
917 	/* pop all elements and return */
918 	while (!pop_stack(env, NULL, NULL));
919 	return NULL;
920 }
921 
922 #define CALLER_SAVED_REGS 6
923 static const int caller_saved[CALLER_SAVED_REGS] = {
924 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
925 };
926 
927 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
928 				struct bpf_reg_state *reg);
929 
930 /* Mark the unknown part of a register (variable offset or scalar value) as
931  * known to have the value @imm.
932  */
933 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
934 {
935 	/* Clear id, off, and union(map_ptr, range) */
936 	memset(((u8 *)reg) + sizeof(reg->type), 0,
937 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
938 	reg->var_off = tnum_const(imm);
939 	reg->smin_value = (s64)imm;
940 	reg->smax_value = (s64)imm;
941 	reg->umin_value = imm;
942 	reg->umax_value = imm;
943 
944 	reg->s32_min_value = (s32)imm;
945 	reg->s32_max_value = (s32)imm;
946 	reg->u32_min_value = (u32)imm;
947 	reg->u32_max_value = (u32)imm;
948 }
949 
950 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
951 {
952 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
953 	reg->s32_min_value = (s32)imm;
954 	reg->s32_max_value = (s32)imm;
955 	reg->u32_min_value = (u32)imm;
956 	reg->u32_max_value = (u32)imm;
957 }
958 
959 /* Mark the 'variable offset' part of a register as zero.  This should be
960  * used only on registers holding a pointer type.
961  */
962 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
963 {
964 	__mark_reg_known(reg, 0);
965 }
966 
967 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
968 {
969 	__mark_reg_known(reg, 0);
970 	reg->type = SCALAR_VALUE;
971 }
972 
973 static void mark_reg_known_zero(struct bpf_verifier_env *env,
974 				struct bpf_reg_state *regs, u32 regno)
975 {
976 	if (WARN_ON(regno >= MAX_BPF_REG)) {
977 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
978 		/* Something bad happened, let's kill all regs */
979 		for (regno = 0; regno < MAX_BPF_REG; regno++)
980 			__mark_reg_not_init(env, regs + regno);
981 		return;
982 	}
983 	__mark_reg_known_zero(regs + regno);
984 }
985 
986 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
987 {
988 	return type_is_pkt_pointer(reg->type);
989 }
990 
991 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
992 {
993 	return reg_is_pkt_pointer(reg) ||
994 	       reg->type == PTR_TO_PACKET_END;
995 }
996 
997 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
998 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
999 				    enum bpf_reg_type which)
1000 {
1001 	/* The register can already have a range from prior markings.
1002 	 * This is fine as long as it hasn't been advanced from its
1003 	 * origin.
1004 	 */
1005 	return reg->type == which &&
1006 	       reg->id == 0 &&
1007 	       reg->off == 0 &&
1008 	       tnum_equals_const(reg->var_off, 0);
1009 }
1010 
1011 /* Reset the min/max bounds of a register */
1012 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1013 {
1014 	reg->smin_value = S64_MIN;
1015 	reg->smax_value = S64_MAX;
1016 	reg->umin_value = 0;
1017 	reg->umax_value = U64_MAX;
1018 
1019 	reg->s32_min_value = S32_MIN;
1020 	reg->s32_max_value = S32_MAX;
1021 	reg->u32_min_value = 0;
1022 	reg->u32_max_value = U32_MAX;
1023 }
1024 
1025 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1026 {
1027 	reg->smin_value = S64_MIN;
1028 	reg->smax_value = S64_MAX;
1029 	reg->umin_value = 0;
1030 	reg->umax_value = U64_MAX;
1031 }
1032 
1033 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1034 {
1035 	reg->s32_min_value = S32_MIN;
1036 	reg->s32_max_value = S32_MAX;
1037 	reg->u32_min_value = 0;
1038 	reg->u32_max_value = U32_MAX;
1039 }
1040 
1041 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1042 {
1043 	struct tnum var32_off = tnum_subreg(reg->var_off);
1044 
1045 	/* min signed is max(sign bit) | min(other bits) */
1046 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1047 			var32_off.value | (var32_off.mask & S32_MIN));
1048 	/* max signed is min(sign bit) | max(other bits) */
1049 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1050 			var32_off.value | (var32_off.mask & S32_MAX));
1051 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1052 	reg->u32_max_value = min(reg->u32_max_value,
1053 				 (u32)(var32_off.value | var32_off.mask));
1054 }
1055 
1056 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1057 {
1058 	/* min signed is max(sign bit) | min(other bits) */
1059 	reg->smin_value = max_t(s64, reg->smin_value,
1060 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1061 	/* max signed is min(sign bit) | max(other bits) */
1062 	reg->smax_value = min_t(s64, reg->smax_value,
1063 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1064 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1065 	reg->umax_value = min(reg->umax_value,
1066 			      reg->var_off.value | reg->var_off.mask);
1067 }
1068 
1069 static void __update_reg_bounds(struct bpf_reg_state *reg)
1070 {
1071 	__update_reg32_bounds(reg);
1072 	__update_reg64_bounds(reg);
1073 }
1074 
1075 /* Uses signed min/max values to inform unsigned, and vice-versa */
1076 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1077 {
1078 	/* Learn sign from signed bounds.
1079 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1080 	 * are the same, so combine.  This works even in the negative case, e.g.
1081 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1082 	 */
1083 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1084 		reg->s32_min_value = reg->u32_min_value =
1085 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1086 		reg->s32_max_value = reg->u32_max_value =
1087 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1088 		return;
1089 	}
1090 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1091 	 * boundary, so we must be careful.
1092 	 */
1093 	if ((s32)reg->u32_max_value >= 0) {
1094 		/* Positive.  We can't learn anything from the smin, but smax
1095 		 * is positive, hence safe.
1096 		 */
1097 		reg->s32_min_value = reg->u32_min_value;
1098 		reg->s32_max_value = reg->u32_max_value =
1099 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1100 	} else if ((s32)reg->u32_min_value < 0) {
1101 		/* Negative.  We can't learn anything from the smax, but smin
1102 		 * is negative, hence safe.
1103 		 */
1104 		reg->s32_min_value = reg->u32_min_value =
1105 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1106 		reg->s32_max_value = reg->u32_max_value;
1107 	}
1108 }
1109 
1110 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1111 {
1112 	/* Learn sign from signed bounds.
1113 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1114 	 * are the same, so combine.  This works even in the negative case, e.g.
1115 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1116 	 */
1117 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1118 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1119 							  reg->umin_value);
1120 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1121 							  reg->umax_value);
1122 		return;
1123 	}
1124 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1125 	 * boundary, so we must be careful.
1126 	 */
1127 	if ((s64)reg->umax_value >= 0) {
1128 		/* Positive.  We can't learn anything from the smin, but smax
1129 		 * is positive, hence safe.
1130 		 */
1131 		reg->smin_value = reg->umin_value;
1132 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1133 							  reg->umax_value);
1134 	} else if ((s64)reg->umin_value < 0) {
1135 		/* Negative.  We can't learn anything from the smax, but smin
1136 		 * is negative, hence safe.
1137 		 */
1138 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1139 							  reg->umin_value);
1140 		reg->smax_value = reg->umax_value;
1141 	}
1142 }
1143 
1144 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1145 {
1146 	__reg32_deduce_bounds(reg);
1147 	__reg64_deduce_bounds(reg);
1148 }
1149 
1150 /* Attempts to improve var_off based on unsigned min/max information */
1151 static void __reg_bound_offset(struct bpf_reg_state *reg)
1152 {
1153 	struct tnum var64_off = tnum_intersect(reg->var_off,
1154 					       tnum_range(reg->umin_value,
1155 							  reg->umax_value));
1156 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1157 						tnum_range(reg->u32_min_value,
1158 							   reg->u32_max_value));
1159 
1160 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1161 }
1162 
1163 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1164 {
1165 	reg->umin_value = reg->u32_min_value;
1166 	reg->umax_value = reg->u32_max_value;
1167 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1168 	 * but must be positive otherwise set to worse case bounds
1169 	 * and refine later from tnum.
1170 	 */
1171 	if (reg->s32_min_value > 0)
1172 		reg->smin_value = reg->s32_min_value;
1173 	else
1174 		reg->smin_value = 0;
1175 	if (reg->s32_max_value > 0)
1176 		reg->smax_value = reg->s32_max_value;
1177 	else
1178 		reg->smax_value = U32_MAX;
1179 }
1180 
1181 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1182 {
1183 	/* special case when 64-bit register has upper 32-bit register
1184 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1185 	 * allowing us to use 32-bit bounds directly,
1186 	 */
1187 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1188 		__reg_assign_32_into_64(reg);
1189 	} else {
1190 		/* Otherwise the best we can do is push lower 32bit known and
1191 		 * unknown bits into register (var_off set from jmp logic)
1192 		 * then learn as much as possible from the 64-bit tnum
1193 		 * known and unknown bits. The previous smin/smax bounds are
1194 		 * invalid here because of jmp32 compare so mark them unknown
1195 		 * so they do not impact tnum bounds calculation.
1196 		 */
1197 		__mark_reg64_unbounded(reg);
1198 		__update_reg_bounds(reg);
1199 	}
1200 
1201 	/* Intersecting with the old var_off might have improved our bounds
1202 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1203 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1204 	 */
1205 	__reg_deduce_bounds(reg);
1206 	__reg_bound_offset(reg);
1207 	__update_reg_bounds(reg);
1208 }
1209 
1210 static bool __reg64_bound_s32(s64 a)
1211 {
1212 	if (a > S32_MIN && a < S32_MAX)
1213 		return true;
1214 	return false;
1215 }
1216 
1217 static bool __reg64_bound_u32(u64 a)
1218 {
1219 	if (a > U32_MIN && a < U32_MAX)
1220 		return true;
1221 	return false;
1222 }
1223 
1224 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1225 {
1226 	__mark_reg32_unbounded(reg);
1227 
1228 	if (__reg64_bound_s32(reg->smin_value))
1229 		reg->s32_min_value = (s32)reg->smin_value;
1230 	if (__reg64_bound_s32(reg->smax_value))
1231 		reg->s32_max_value = (s32)reg->smax_value;
1232 	if (__reg64_bound_u32(reg->umin_value))
1233 		reg->u32_min_value = (u32)reg->umin_value;
1234 	if (__reg64_bound_u32(reg->umax_value))
1235 		reg->u32_max_value = (u32)reg->umax_value;
1236 
1237 	/* Intersecting with the old var_off might have improved our bounds
1238 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1239 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1240 	 */
1241 	__reg_deduce_bounds(reg);
1242 	__reg_bound_offset(reg);
1243 	__update_reg_bounds(reg);
1244 }
1245 
1246 /* Mark a register as having a completely unknown (scalar) value. */
1247 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1248 			       struct bpf_reg_state *reg)
1249 {
1250 	/*
1251 	 * Clear type, id, off, and union(map_ptr, range) and
1252 	 * padding between 'type' and union
1253 	 */
1254 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1255 	reg->type = SCALAR_VALUE;
1256 	reg->var_off = tnum_unknown;
1257 	reg->frameno = 0;
1258 	reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks;
1259 	__mark_reg_unbounded(reg);
1260 }
1261 
1262 static void mark_reg_unknown(struct bpf_verifier_env *env,
1263 			     struct bpf_reg_state *regs, u32 regno)
1264 {
1265 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1266 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1267 		/* Something bad happened, let's kill all regs except FP */
1268 		for (regno = 0; regno < BPF_REG_FP; regno++)
1269 			__mark_reg_not_init(env, regs + regno);
1270 		return;
1271 	}
1272 	__mark_reg_unknown(env, regs + regno);
1273 }
1274 
1275 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1276 				struct bpf_reg_state *reg)
1277 {
1278 	__mark_reg_unknown(env, reg);
1279 	reg->type = NOT_INIT;
1280 }
1281 
1282 static void mark_reg_not_init(struct bpf_verifier_env *env,
1283 			      struct bpf_reg_state *regs, u32 regno)
1284 {
1285 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1286 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1287 		/* Something bad happened, let's kill all regs except FP */
1288 		for (regno = 0; regno < BPF_REG_FP; regno++)
1289 			__mark_reg_not_init(env, regs + regno);
1290 		return;
1291 	}
1292 	__mark_reg_not_init(env, regs + regno);
1293 }
1294 
1295 #define DEF_NOT_SUBREG	(0)
1296 static void init_reg_state(struct bpf_verifier_env *env,
1297 			   struct bpf_func_state *state)
1298 {
1299 	struct bpf_reg_state *regs = state->regs;
1300 	int i;
1301 
1302 	for (i = 0; i < MAX_BPF_REG; i++) {
1303 		mark_reg_not_init(env, regs, i);
1304 		regs[i].live = REG_LIVE_NONE;
1305 		regs[i].parent = NULL;
1306 		regs[i].subreg_def = DEF_NOT_SUBREG;
1307 	}
1308 
1309 	/* frame pointer */
1310 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1311 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1312 	regs[BPF_REG_FP].frameno = state->frameno;
1313 }
1314 
1315 #define BPF_MAIN_FUNC (-1)
1316 static void init_func_state(struct bpf_verifier_env *env,
1317 			    struct bpf_func_state *state,
1318 			    int callsite, int frameno, int subprogno)
1319 {
1320 	state->callsite = callsite;
1321 	state->frameno = frameno;
1322 	state->subprogno = subprogno;
1323 	init_reg_state(env, state);
1324 }
1325 
1326 enum reg_arg_type {
1327 	SRC_OP,		/* register is used as source operand */
1328 	DST_OP,		/* register is used as destination operand */
1329 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1330 };
1331 
1332 static int cmp_subprogs(const void *a, const void *b)
1333 {
1334 	return ((struct bpf_subprog_info *)a)->start -
1335 	       ((struct bpf_subprog_info *)b)->start;
1336 }
1337 
1338 static int find_subprog(struct bpf_verifier_env *env, int off)
1339 {
1340 	struct bpf_subprog_info *p;
1341 
1342 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1343 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1344 	if (!p)
1345 		return -ENOENT;
1346 	return p - env->subprog_info;
1347 
1348 }
1349 
1350 static int add_subprog(struct bpf_verifier_env *env, int off)
1351 {
1352 	int insn_cnt = env->prog->len;
1353 	int ret;
1354 
1355 	if (off >= insn_cnt || off < 0) {
1356 		verbose(env, "call to invalid destination\n");
1357 		return -EINVAL;
1358 	}
1359 	ret = find_subprog(env, off);
1360 	if (ret >= 0)
1361 		return 0;
1362 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1363 		verbose(env, "too many subprograms\n");
1364 		return -E2BIG;
1365 	}
1366 	env->subprog_info[env->subprog_cnt++].start = off;
1367 	sort(env->subprog_info, env->subprog_cnt,
1368 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1369 	return 0;
1370 }
1371 
1372 static int check_subprogs(struct bpf_verifier_env *env)
1373 {
1374 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1375 	struct bpf_subprog_info *subprog = env->subprog_info;
1376 	struct bpf_insn *insn = env->prog->insnsi;
1377 	int insn_cnt = env->prog->len;
1378 
1379 	/* Add entry function. */
1380 	ret = add_subprog(env, 0);
1381 	if (ret < 0)
1382 		return ret;
1383 
1384 	/* determine subprog starts. The end is one before the next starts */
1385 	for (i = 0; i < insn_cnt; i++) {
1386 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1387 			continue;
1388 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1389 			continue;
1390 		if (!env->allow_ptr_leaks) {
1391 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1392 			return -EPERM;
1393 		}
1394 		ret = add_subprog(env, i + insn[i].imm + 1);
1395 		if (ret < 0)
1396 			return ret;
1397 	}
1398 
1399 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1400 	 * logic. 'subprog_cnt' should not be increased.
1401 	 */
1402 	subprog[env->subprog_cnt].start = insn_cnt;
1403 
1404 	if (env->log.level & BPF_LOG_LEVEL2)
1405 		for (i = 0; i < env->subprog_cnt; i++)
1406 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1407 
1408 	/* now check that all jumps are within the same subprog */
1409 	subprog_start = subprog[cur_subprog].start;
1410 	subprog_end = subprog[cur_subprog + 1].start;
1411 	for (i = 0; i < insn_cnt; i++) {
1412 		u8 code = insn[i].code;
1413 
1414 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1415 			goto next;
1416 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1417 			goto next;
1418 		off = i + insn[i].off + 1;
1419 		if (off < subprog_start || off >= subprog_end) {
1420 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1421 			return -EINVAL;
1422 		}
1423 next:
1424 		if (i == subprog_end - 1) {
1425 			/* to avoid fall-through from one subprog into another
1426 			 * the last insn of the subprog should be either exit
1427 			 * or unconditional jump back
1428 			 */
1429 			if (code != (BPF_JMP | BPF_EXIT) &&
1430 			    code != (BPF_JMP | BPF_JA)) {
1431 				verbose(env, "last insn is not an exit or jmp\n");
1432 				return -EINVAL;
1433 			}
1434 			subprog_start = subprog_end;
1435 			cur_subprog++;
1436 			if (cur_subprog < env->subprog_cnt)
1437 				subprog_end = subprog[cur_subprog + 1].start;
1438 		}
1439 	}
1440 	return 0;
1441 }
1442 
1443 /* Parentage chain of this register (or stack slot) should take care of all
1444  * issues like callee-saved registers, stack slot allocation time, etc.
1445  */
1446 static int mark_reg_read(struct bpf_verifier_env *env,
1447 			 const struct bpf_reg_state *state,
1448 			 struct bpf_reg_state *parent, u8 flag)
1449 {
1450 	bool writes = parent == state->parent; /* Observe write marks */
1451 	int cnt = 0;
1452 
1453 	while (parent) {
1454 		/* if read wasn't screened by an earlier write ... */
1455 		if (writes && state->live & REG_LIVE_WRITTEN)
1456 			break;
1457 		if (parent->live & REG_LIVE_DONE) {
1458 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1459 				reg_type_str[parent->type],
1460 				parent->var_off.value, parent->off);
1461 			return -EFAULT;
1462 		}
1463 		/* The first condition is more likely to be true than the
1464 		 * second, checked it first.
1465 		 */
1466 		if ((parent->live & REG_LIVE_READ) == flag ||
1467 		    parent->live & REG_LIVE_READ64)
1468 			/* The parentage chain never changes and
1469 			 * this parent was already marked as LIVE_READ.
1470 			 * There is no need to keep walking the chain again and
1471 			 * keep re-marking all parents as LIVE_READ.
1472 			 * This case happens when the same register is read
1473 			 * multiple times without writes into it in-between.
1474 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1475 			 * then no need to set the weak REG_LIVE_READ32.
1476 			 */
1477 			break;
1478 		/* ... then we depend on parent's value */
1479 		parent->live |= flag;
1480 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1481 		if (flag == REG_LIVE_READ64)
1482 			parent->live &= ~REG_LIVE_READ32;
1483 		state = parent;
1484 		parent = state->parent;
1485 		writes = true;
1486 		cnt++;
1487 	}
1488 
1489 	if (env->longest_mark_read_walk < cnt)
1490 		env->longest_mark_read_walk = cnt;
1491 	return 0;
1492 }
1493 
1494 /* This function is supposed to be used by the following 32-bit optimization
1495  * code only. It returns TRUE if the source or destination register operates
1496  * on 64-bit, otherwise return FALSE.
1497  */
1498 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1499 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1500 {
1501 	u8 code, class, op;
1502 
1503 	code = insn->code;
1504 	class = BPF_CLASS(code);
1505 	op = BPF_OP(code);
1506 	if (class == BPF_JMP) {
1507 		/* BPF_EXIT for "main" will reach here. Return TRUE
1508 		 * conservatively.
1509 		 */
1510 		if (op == BPF_EXIT)
1511 			return true;
1512 		if (op == BPF_CALL) {
1513 			/* BPF to BPF call will reach here because of marking
1514 			 * caller saved clobber with DST_OP_NO_MARK for which we
1515 			 * don't care the register def because they are anyway
1516 			 * marked as NOT_INIT already.
1517 			 */
1518 			if (insn->src_reg == BPF_PSEUDO_CALL)
1519 				return false;
1520 			/* Helper call will reach here because of arg type
1521 			 * check, conservatively return TRUE.
1522 			 */
1523 			if (t == SRC_OP)
1524 				return true;
1525 
1526 			return false;
1527 		}
1528 	}
1529 
1530 	if (class == BPF_ALU64 || class == BPF_JMP ||
1531 	    /* BPF_END always use BPF_ALU class. */
1532 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1533 		return true;
1534 
1535 	if (class == BPF_ALU || class == BPF_JMP32)
1536 		return false;
1537 
1538 	if (class == BPF_LDX) {
1539 		if (t != SRC_OP)
1540 			return BPF_SIZE(code) == BPF_DW;
1541 		/* LDX source must be ptr. */
1542 		return true;
1543 	}
1544 
1545 	if (class == BPF_STX) {
1546 		if (reg->type != SCALAR_VALUE)
1547 			return true;
1548 		return BPF_SIZE(code) == BPF_DW;
1549 	}
1550 
1551 	if (class == BPF_LD) {
1552 		u8 mode = BPF_MODE(code);
1553 
1554 		/* LD_IMM64 */
1555 		if (mode == BPF_IMM)
1556 			return true;
1557 
1558 		/* Both LD_IND and LD_ABS return 32-bit data. */
1559 		if (t != SRC_OP)
1560 			return  false;
1561 
1562 		/* Implicit ctx ptr. */
1563 		if (regno == BPF_REG_6)
1564 			return true;
1565 
1566 		/* Explicit source could be any width. */
1567 		return true;
1568 	}
1569 
1570 	if (class == BPF_ST)
1571 		/* The only source register for BPF_ST is a ptr. */
1572 		return true;
1573 
1574 	/* Conservatively return true at default. */
1575 	return true;
1576 }
1577 
1578 /* Return TRUE if INSN doesn't have explicit value define. */
1579 static bool insn_no_def(struct bpf_insn *insn)
1580 {
1581 	u8 class = BPF_CLASS(insn->code);
1582 
1583 	return (class == BPF_JMP || class == BPF_JMP32 ||
1584 		class == BPF_STX || class == BPF_ST);
1585 }
1586 
1587 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1588 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1589 {
1590 	if (insn_no_def(insn))
1591 		return false;
1592 
1593 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1594 }
1595 
1596 static void mark_insn_zext(struct bpf_verifier_env *env,
1597 			   struct bpf_reg_state *reg)
1598 {
1599 	s32 def_idx = reg->subreg_def;
1600 
1601 	if (def_idx == DEF_NOT_SUBREG)
1602 		return;
1603 
1604 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1605 	/* The dst will be zero extended, so won't be sub-register anymore. */
1606 	reg->subreg_def = DEF_NOT_SUBREG;
1607 }
1608 
1609 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1610 			 enum reg_arg_type t)
1611 {
1612 	struct bpf_verifier_state *vstate = env->cur_state;
1613 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1614 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1615 	struct bpf_reg_state *reg, *regs = state->regs;
1616 	bool rw64;
1617 
1618 	if (regno >= MAX_BPF_REG) {
1619 		verbose(env, "R%d is invalid\n", regno);
1620 		return -EINVAL;
1621 	}
1622 
1623 	reg = &regs[regno];
1624 	rw64 = is_reg64(env, insn, regno, reg, t);
1625 	if (t == SRC_OP) {
1626 		/* check whether register used as source operand can be read */
1627 		if (reg->type == NOT_INIT) {
1628 			verbose(env, "R%d !read_ok\n", regno);
1629 			return -EACCES;
1630 		}
1631 		/* We don't need to worry about FP liveness because it's read-only */
1632 		if (regno == BPF_REG_FP)
1633 			return 0;
1634 
1635 		if (rw64)
1636 			mark_insn_zext(env, reg);
1637 
1638 		return mark_reg_read(env, reg, reg->parent,
1639 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1640 	} else {
1641 		/* check whether register used as dest operand can be written to */
1642 		if (regno == BPF_REG_FP) {
1643 			verbose(env, "frame pointer is read only\n");
1644 			return -EACCES;
1645 		}
1646 		reg->live |= REG_LIVE_WRITTEN;
1647 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1648 		if (t == DST_OP)
1649 			mark_reg_unknown(env, regs, regno);
1650 	}
1651 	return 0;
1652 }
1653 
1654 /* for any branch, call, exit record the history of jmps in the given state */
1655 static int push_jmp_history(struct bpf_verifier_env *env,
1656 			    struct bpf_verifier_state *cur)
1657 {
1658 	u32 cnt = cur->jmp_history_cnt;
1659 	struct bpf_idx_pair *p;
1660 
1661 	cnt++;
1662 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1663 	if (!p)
1664 		return -ENOMEM;
1665 	p[cnt - 1].idx = env->insn_idx;
1666 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1667 	cur->jmp_history = p;
1668 	cur->jmp_history_cnt = cnt;
1669 	return 0;
1670 }
1671 
1672 /* Backtrack one insn at a time. If idx is not at the top of recorded
1673  * history then previous instruction came from straight line execution.
1674  */
1675 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1676 			     u32 *history)
1677 {
1678 	u32 cnt = *history;
1679 
1680 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1681 		i = st->jmp_history[cnt - 1].prev_idx;
1682 		(*history)--;
1683 	} else {
1684 		i--;
1685 	}
1686 	return i;
1687 }
1688 
1689 /* For given verifier state backtrack_insn() is called from the last insn to
1690  * the first insn. Its purpose is to compute a bitmask of registers and
1691  * stack slots that needs precision in the parent verifier state.
1692  */
1693 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1694 			  u32 *reg_mask, u64 *stack_mask)
1695 {
1696 	const struct bpf_insn_cbs cbs = {
1697 		.cb_print	= verbose,
1698 		.private_data	= env,
1699 	};
1700 	struct bpf_insn *insn = env->prog->insnsi + idx;
1701 	u8 class = BPF_CLASS(insn->code);
1702 	u8 opcode = BPF_OP(insn->code);
1703 	u8 mode = BPF_MODE(insn->code);
1704 	u32 dreg = 1u << insn->dst_reg;
1705 	u32 sreg = 1u << insn->src_reg;
1706 	u32 spi;
1707 
1708 	if (insn->code == 0)
1709 		return 0;
1710 	if (env->log.level & BPF_LOG_LEVEL) {
1711 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1712 		verbose(env, "%d: ", idx);
1713 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1714 	}
1715 
1716 	if (class == BPF_ALU || class == BPF_ALU64) {
1717 		if (!(*reg_mask & dreg))
1718 			return 0;
1719 		if (opcode == BPF_MOV) {
1720 			if (BPF_SRC(insn->code) == BPF_X) {
1721 				/* dreg = sreg
1722 				 * dreg needs precision after this insn
1723 				 * sreg needs precision before this insn
1724 				 */
1725 				*reg_mask &= ~dreg;
1726 				*reg_mask |= sreg;
1727 			} else {
1728 				/* dreg = K
1729 				 * dreg needs precision after this insn.
1730 				 * Corresponding register is already marked
1731 				 * as precise=true in this verifier state.
1732 				 * No further markings in parent are necessary
1733 				 */
1734 				*reg_mask &= ~dreg;
1735 			}
1736 		} else {
1737 			if (BPF_SRC(insn->code) == BPF_X) {
1738 				/* dreg += sreg
1739 				 * both dreg and sreg need precision
1740 				 * before this insn
1741 				 */
1742 				*reg_mask |= sreg;
1743 			} /* else dreg += K
1744 			   * dreg still needs precision before this insn
1745 			   */
1746 		}
1747 	} else if (class == BPF_LDX) {
1748 		if (!(*reg_mask & dreg))
1749 			return 0;
1750 		*reg_mask &= ~dreg;
1751 
1752 		/* scalars can only be spilled into stack w/o losing precision.
1753 		 * Load from any other memory can be zero extended.
1754 		 * The desire to keep that precision is already indicated
1755 		 * by 'precise' mark in corresponding register of this state.
1756 		 * No further tracking necessary.
1757 		 */
1758 		if (insn->src_reg != BPF_REG_FP)
1759 			return 0;
1760 		if (BPF_SIZE(insn->code) != BPF_DW)
1761 			return 0;
1762 
1763 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1764 		 * that [fp - off] slot contains scalar that needs to be
1765 		 * tracked with precision
1766 		 */
1767 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1768 		if (spi >= 64) {
1769 			verbose(env, "BUG spi %d\n", spi);
1770 			WARN_ONCE(1, "verifier backtracking bug");
1771 			return -EFAULT;
1772 		}
1773 		*stack_mask |= 1ull << spi;
1774 	} else if (class == BPF_STX || class == BPF_ST) {
1775 		if (*reg_mask & dreg)
1776 			/* stx & st shouldn't be using _scalar_ dst_reg
1777 			 * to access memory. It means backtracking
1778 			 * encountered a case of pointer subtraction.
1779 			 */
1780 			return -ENOTSUPP;
1781 		/* scalars can only be spilled into stack */
1782 		if (insn->dst_reg != BPF_REG_FP)
1783 			return 0;
1784 		if (BPF_SIZE(insn->code) != BPF_DW)
1785 			return 0;
1786 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1787 		if (spi >= 64) {
1788 			verbose(env, "BUG spi %d\n", spi);
1789 			WARN_ONCE(1, "verifier backtracking bug");
1790 			return -EFAULT;
1791 		}
1792 		if (!(*stack_mask & (1ull << spi)))
1793 			return 0;
1794 		*stack_mask &= ~(1ull << spi);
1795 		if (class == BPF_STX)
1796 			*reg_mask |= sreg;
1797 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1798 		if (opcode == BPF_CALL) {
1799 			if (insn->src_reg == BPF_PSEUDO_CALL)
1800 				return -ENOTSUPP;
1801 			/* regular helper call sets R0 */
1802 			*reg_mask &= ~1;
1803 			if (*reg_mask & 0x3f) {
1804 				/* if backtracing was looking for registers R1-R5
1805 				 * they should have been found already.
1806 				 */
1807 				verbose(env, "BUG regs %x\n", *reg_mask);
1808 				WARN_ONCE(1, "verifier backtracking bug");
1809 				return -EFAULT;
1810 			}
1811 		} else if (opcode == BPF_EXIT) {
1812 			return -ENOTSUPP;
1813 		}
1814 	} else if (class == BPF_LD) {
1815 		if (!(*reg_mask & dreg))
1816 			return 0;
1817 		*reg_mask &= ~dreg;
1818 		/* It's ld_imm64 or ld_abs or ld_ind.
1819 		 * For ld_imm64 no further tracking of precision
1820 		 * into parent is necessary
1821 		 */
1822 		if (mode == BPF_IND || mode == BPF_ABS)
1823 			/* to be analyzed */
1824 			return -ENOTSUPP;
1825 	}
1826 	return 0;
1827 }
1828 
1829 /* the scalar precision tracking algorithm:
1830  * . at the start all registers have precise=false.
1831  * . scalar ranges are tracked as normal through alu and jmp insns.
1832  * . once precise value of the scalar register is used in:
1833  *   .  ptr + scalar alu
1834  *   . if (scalar cond K|scalar)
1835  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1836  *   backtrack through the verifier states and mark all registers and
1837  *   stack slots with spilled constants that these scalar regisers
1838  *   should be precise.
1839  * . during state pruning two registers (or spilled stack slots)
1840  *   are equivalent if both are not precise.
1841  *
1842  * Note the verifier cannot simply walk register parentage chain,
1843  * since many different registers and stack slots could have been
1844  * used to compute single precise scalar.
1845  *
1846  * The approach of starting with precise=true for all registers and then
1847  * backtrack to mark a register as not precise when the verifier detects
1848  * that program doesn't care about specific value (e.g., when helper
1849  * takes register as ARG_ANYTHING parameter) is not safe.
1850  *
1851  * It's ok to walk single parentage chain of the verifier states.
1852  * It's possible that this backtracking will go all the way till 1st insn.
1853  * All other branches will be explored for needing precision later.
1854  *
1855  * The backtracking needs to deal with cases like:
1856  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1857  * r9 -= r8
1858  * r5 = r9
1859  * if r5 > 0x79f goto pc+7
1860  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1861  * r5 += 1
1862  * ...
1863  * call bpf_perf_event_output#25
1864  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1865  *
1866  * and this case:
1867  * r6 = 1
1868  * call foo // uses callee's r6 inside to compute r0
1869  * r0 += r6
1870  * if r0 == 0 goto
1871  *
1872  * to track above reg_mask/stack_mask needs to be independent for each frame.
1873  *
1874  * Also if parent's curframe > frame where backtracking started,
1875  * the verifier need to mark registers in both frames, otherwise callees
1876  * may incorrectly prune callers. This is similar to
1877  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1878  *
1879  * For now backtracking falls back into conservative marking.
1880  */
1881 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1882 				     struct bpf_verifier_state *st)
1883 {
1884 	struct bpf_func_state *func;
1885 	struct bpf_reg_state *reg;
1886 	int i, j;
1887 
1888 	/* big hammer: mark all scalars precise in this path.
1889 	 * pop_stack may still get !precise scalars.
1890 	 */
1891 	for (; st; st = st->parent)
1892 		for (i = 0; i <= st->curframe; i++) {
1893 			func = st->frame[i];
1894 			for (j = 0; j < BPF_REG_FP; j++) {
1895 				reg = &func->regs[j];
1896 				if (reg->type != SCALAR_VALUE)
1897 					continue;
1898 				reg->precise = true;
1899 			}
1900 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1901 				if (func->stack[j].slot_type[0] != STACK_SPILL)
1902 					continue;
1903 				reg = &func->stack[j].spilled_ptr;
1904 				if (reg->type != SCALAR_VALUE)
1905 					continue;
1906 				reg->precise = true;
1907 			}
1908 		}
1909 }
1910 
1911 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1912 				  int spi)
1913 {
1914 	struct bpf_verifier_state *st = env->cur_state;
1915 	int first_idx = st->first_insn_idx;
1916 	int last_idx = env->insn_idx;
1917 	struct bpf_func_state *func;
1918 	struct bpf_reg_state *reg;
1919 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1920 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1921 	bool skip_first = true;
1922 	bool new_marks = false;
1923 	int i, err;
1924 
1925 	if (!env->allow_ptr_leaks)
1926 		/* backtracking is root only for now */
1927 		return 0;
1928 
1929 	func = st->frame[st->curframe];
1930 	if (regno >= 0) {
1931 		reg = &func->regs[regno];
1932 		if (reg->type != SCALAR_VALUE) {
1933 			WARN_ONCE(1, "backtracing misuse");
1934 			return -EFAULT;
1935 		}
1936 		if (!reg->precise)
1937 			new_marks = true;
1938 		else
1939 			reg_mask = 0;
1940 		reg->precise = true;
1941 	}
1942 
1943 	while (spi >= 0) {
1944 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1945 			stack_mask = 0;
1946 			break;
1947 		}
1948 		reg = &func->stack[spi].spilled_ptr;
1949 		if (reg->type != SCALAR_VALUE) {
1950 			stack_mask = 0;
1951 			break;
1952 		}
1953 		if (!reg->precise)
1954 			new_marks = true;
1955 		else
1956 			stack_mask = 0;
1957 		reg->precise = true;
1958 		break;
1959 	}
1960 
1961 	if (!new_marks)
1962 		return 0;
1963 	if (!reg_mask && !stack_mask)
1964 		return 0;
1965 	for (;;) {
1966 		DECLARE_BITMAP(mask, 64);
1967 		u32 history = st->jmp_history_cnt;
1968 
1969 		if (env->log.level & BPF_LOG_LEVEL)
1970 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1971 		for (i = last_idx;;) {
1972 			if (skip_first) {
1973 				err = 0;
1974 				skip_first = false;
1975 			} else {
1976 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1977 			}
1978 			if (err == -ENOTSUPP) {
1979 				mark_all_scalars_precise(env, st);
1980 				return 0;
1981 			} else if (err) {
1982 				return err;
1983 			}
1984 			if (!reg_mask && !stack_mask)
1985 				/* Found assignment(s) into tracked register in this state.
1986 				 * Since this state is already marked, just return.
1987 				 * Nothing to be tracked further in the parent state.
1988 				 */
1989 				return 0;
1990 			if (i == first_idx)
1991 				break;
1992 			i = get_prev_insn_idx(st, i, &history);
1993 			if (i >= env->prog->len) {
1994 				/* This can happen if backtracking reached insn 0
1995 				 * and there are still reg_mask or stack_mask
1996 				 * to backtrack.
1997 				 * It means the backtracking missed the spot where
1998 				 * particular register was initialized with a constant.
1999 				 */
2000 				verbose(env, "BUG backtracking idx %d\n", i);
2001 				WARN_ONCE(1, "verifier backtracking bug");
2002 				return -EFAULT;
2003 			}
2004 		}
2005 		st = st->parent;
2006 		if (!st)
2007 			break;
2008 
2009 		new_marks = false;
2010 		func = st->frame[st->curframe];
2011 		bitmap_from_u64(mask, reg_mask);
2012 		for_each_set_bit(i, mask, 32) {
2013 			reg = &func->regs[i];
2014 			if (reg->type != SCALAR_VALUE) {
2015 				reg_mask &= ~(1u << i);
2016 				continue;
2017 			}
2018 			if (!reg->precise)
2019 				new_marks = true;
2020 			reg->precise = true;
2021 		}
2022 
2023 		bitmap_from_u64(mask, stack_mask);
2024 		for_each_set_bit(i, mask, 64) {
2025 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2026 				/* the sequence of instructions:
2027 				 * 2: (bf) r3 = r10
2028 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2029 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2030 				 * doesn't contain jmps. It's backtracked
2031 				 * as a single block.
2032 				 * During backtracking insn 3 is not recognized as
2033 				 * stack access, so at the end of backtracking
2034 				 * stack slot fp-8 is still marked in stack_mask.
2035 				 * However the parent state may not have accessed
2036 				 * fp-8 and it's "unallocated" stack space.
2037 				 * In such case fallback to conservative.
2038 				 */
2039 				mark_all_scalars_precise(env, st);
2040 				return 0;
2041 			}
2042 
2043 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2044 				stack_mask &= ~(1ull << i);
2045 				continue;
2046 			}
2047 			reg = &func->stack[i].spilled_ptr;
2048 			if (reg->type != SCALAR_VALUE) {
2049 				stack_mask &= ~(1ull << i);
2050 				continue;
2051 			}
2052 			if (!reg->precise)
2053 				new_marks = true;
2054 			reg->precise = true;
2055 		}
2056 		if (env->log.level & BPF_LOG_LEVEL) {
2057 			print_verifier_state(env, func);
2058 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2059 				new_marks ? "didn't have" : "already had",
2060 				reg_mask, stack_mask);
2061 		}
2062 
2063 		if (!reg_mask && !stack_mask)
2064 			break;
2065 		if (!new_marks)
2066 			break;
2067 
2068 		last_idx = st->last_insn_idx;
2069 		first_idx = st->first_insn_idx;
2070 	}
2071 	return 0;
2072 }
2073 
2074 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2075 {
2076 	return __mark_chain_precision(env, regno, -1);
2077 }
2078 
2079 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2080 {
2081 	return __mark_chain_precision(env, -1, spi);
2082 }
2083 
2084 static bool is_spillable_regtype(enum bpf_reg_type type)
2085 {
2086 	switch (type) {
2087 	case PTR_TO_MAP_VALUE:
2088 	case PTR_TO_MAP_VALUE_OR_NULL:
2089 	case PTR_TO_STACK:
2090 	case PTR_TO_CTX:
2091 	case PTR_TO_PACKET:
2092 	case PTR_TO_PACKET_META:
2093 	case PTR_TO_PACKET_END:
2094 	case PTR_TO_FLOW_KEYS:
2095 	case CONST_PTR_TO_MAP:
2096 	case PTR_TO_SOCKET:
2097 	case PTR_TO_SOCKET_OR_NULL:
2098 	case PTR_TO_SOCK_COMMON:
2099 	case PTR_TO_SOCK_COMMON_OR_NULL:
2100 	case PTR_TO_TCP_SOCK:
2101 	case PTR_TO_TCP_SOCK_OR_NULL:
2102 	case PTR_TO_XDP_SOCK:
2103 	case PTR_TO_BTF_ID:
2104 		return true;
2105 	default:
2106 		return false;
2107 	}
2108 }
2109 
2110 /* Does this register contain a constant zero? */
2111 static bool register_is_null(struct bpf_reg_state *reg)
2112 {
2113 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2114 }
2115 
2116 static bool register_is_const(struct bpf_reg_state *reg)
2117 {
2118 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2119 }
2120 
2121 static void save_register_state(struct bpf_func_state *state,
2122 				int spi, struct bpf_reg_state *reg)
2123 {
2124 	int i;
2125 
2126 	state->stack[spi].spilled_ptr = *reg;
2127 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2128 
2129 	for (i = 0; i < BPF_REG_SIZE; i++)
2130 		state->stack[spi].slot_type[i] = STACK_SPILL;
2131 }
2132 
2133 /* check_stack_read/write functions track spill/fill of registers,
2134  * stack boundary and alignment are checked in check_mem_access()
2135  */
2136 static int check_stack_write(struct bpf_verifier_env *env,
2137 			     struct bpf_func_state *state, /* func where register points to */
2138 			     int off, int size, int value_regno, int insn_idx)
2139 {
2140 	struct bpf_func_state *cur; /* state of the current function */
2141 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2142 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2143 	struct bpf_reg_state *reg = NULL;
2144 
2145 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2146 				 state->acquired_refs, true);
2147 	if (err)
2148 		return err;
2149 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2150 	 * so it's aligned access and [off, off + size) are within stack limits
2151 	 */
2152 	if (!env->allow_ptr_leaks &&
2153 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2154 	    size != BPF_REG_SIZE) {
2155 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2156 		return -EACCES;
2157 	}
2158 
2159 	cur = env->cur_state->frame[env->cur_state->curframe];
2160 	if (value_regno >= 0)
2161 		reg = &cur->regs[value_regno];
2162 
2163 	if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
2164 	    !register_is_null(reg) && env->allow_ptr_leaks) {
2165 		if (dst_reg != BPF_REG_FP) {
2166 			/* The backtracking logic can only recognize explicit
2167 			 * stack slot address like [fp - 8]. Other spill of
2168 			 * scalar via different register has to be conervative.
2169 			 * Backtrack from here and mark all registers as precise
2170 			 * that contributed into 'reg' being a constant.
2171 			 */
2172 			err = mark_chain_precision(env, value_regno);
2173 			if (err)
2174 				return err;
2175 		}
2176 		save_register_state(state, spi, reg);
2177 	} else if (reg && is_spillable_regtype(reg->type)) {
2178 		/* register containing pointer is being spilled into stack */
2179 		if (size != BPF_REG_SIZE) {
2180 			verbose_linfo(env, insn_idx, "; ");
2181 			verbose(env, "invalid size of register spill\n");
2182 			return -EACCES;
2183 		}
2184 
2185 		if (state != cur && reg->type == PTR_TO_STACK) {
2186 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2187 			return -EINVAL;
2188 		}
2189 
2190 		if (!env->allow_ptr_leaks) {
2191 			bool sanitize = false;
2192 
2193 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2194 			    register_is_const(&state->stack[spi].spilled_ptr))
2195 				sanitize = true;
2196 			for (i = 0; i < BPF_REG_SIZE; i++)
2197 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2198 					sanitize = true;
2199 					break;
2200 				}
2201 			if (sanitize) {
2202 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2203 				int soff = (-spi - 1) * BPF_REG_SIZE;
2204 
2205 				/* detected reuse of integer stack slot with a pointer
2206 				 * which means either llvm is reusing stack slot or
2207 				 * an attacker is trying to exploit CVE-2018-3639
2208 				 * (speculative store bypass)
2209 				 * Have to sanitize that slot with preemptive
2210 				 * store of zero.
2211 				 */
2212 				if (*poff && *poff != soff) {
2213 					/* disallow programs where single insn stores
2214 					 * into two different stack slots, since verifier
2215 					 * cannot sanitize them
2216 					 */
2217 					verbose(env,
2218 						"insn %d cannot access two stack slots fp%d and fp%d",
2219 						insn_idx, *poff, soff);
2220 					return -EINVAL;
2221 				}
2222 				*poff = soff;
2223 			}
2224 		}
2225 		save_register_state(state, spi, reg);
2226 	} else {
2227 		u8 type = STACK_MISC;
2228 
2229 		/* regular write of data into stack destroys any spilled ptr */
2230 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2231 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2232 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2233 			for (i = 0; i < BPF_REG_SIZE; i++)
2234 				state->stack[spi].slot_type[i] = STACK_MISC;
2235 
2236 		/* only mark the slot as written if all 8 bytes were written
2237 		 * otherwise read propagation may incorrectly stop too soon
2238 		 * when stack slots are partially written.
2239 		 * This heuristic means that read propagation will be
2240 		 * conservative, since it will add reg_live_read marks
2241 		 * to stack slots all the way to first state when programs
2242 		 * writes+reads less than 8 bytes
2243 		 */
2244 		if (size == BPF_REG_SIZE)
2245 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2246 
2247 		/* when we zero initialize stack slots mark them as such */
2248 		if (reg && register_is_null(reg)) {
2249 			/* backtracking doesn't work for STACK_ZERO yet. */
2250 			err = mark_chain_precision(env, value_regno);
2251 			if (err)
2252 				return err;
2253 			type = STACK_ZERO;
2254 		}
2255 
2256 		/* Mark slots affected by this stack write. */
2257 		for (i = 0; i < size; i++)
2258 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2259 				type;
2260 	}
2261 	return 0;
2262 }
2263 
2264 static int check_stack_read(struct bpf_verifier_env *env,
2265 			    struct bpf_func_state *reg_state /* func where register points to */,
2266 			    int off, int size, int value_regno)
2267 {
2268 	struct bpf_verifier_state *vstate = env->cur_state;
2269 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2270 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2271 	struct bpf_reg_state *reg;
2272 	u8 *stype;
2273 
2274 	if (reg_state->allocated_stack <= slot) {
2275 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2276 			off, size);
2277 		return -EACCES;
2278 	}
2279 	stype = reg_state->stack[spi].slot_type;
2280 	reg = &reg_state->stack[spi].spilled_ptr;
2281 
2282 	if (stype[0] == STACK_SPILL) {
2283 		if (size != BPF_REG_SIZE) {
2284 			if (reg->type != SCALAR_VALUE) {
2285 				verbose_linfo(env, env->insn_idx, "; ");
2286 				verbose(env, "invalid size of register fill\n");
2287 				return -EACCES;
2288 			}
2289 			if (value_regno >= 0) {
2290 				mark_reg_unknown(env, state->regs, value_regno);
2291 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2292 			}
2293 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2294 			return 0;
2295 		}
2296 		for (i = 1; i < BPF_REG_SIZE; i++) {
2297 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2298 				verbose(env, "corrupted spill memory\n");
2299 				return -EACCES;
2300 			}
2301 		}
2302 
2303 		if (value_regno >= 0) {
2304 			/* restore register state from stack */
2305 			state->regs[value_regno] = *reg;
2306 			/* mark reg as written since spilled pointer state likely
2307 			 * has its liveness marks cleared by is_state_visited()
2308 			 * which resets stack/reg liveness for state transitions
2309 			 */
2310 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2311 		}
2312 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2313 	} else {
2314 		int zeros = 0;
2315 
2316 		for (i = 0; i < size; i++) {
2317 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2318 				continue;
2319 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2320 				zeros++;
2321 				continue;
2322 			}
2323 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2324 				off, i, size);
2325 			return -EACCES;
2326 		}
2327 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2328 		if (value_regno >= 0) {
2329 			if (zeros == size) {
2330 				/* any size read into register is zero extended,
2331 				 * so the whole register == const_zero
2332 				 */
2333 				__mark_reg_const_zero(&state->regs[value_regno]);
2334 				/* backtracking doesn't support STACK_ZERO yet,
2335 				 * so mark it precise here, so that later
2336 				 * backtracking can stop here.
2337 				 * Backtracking may not need this if this register
2338 				 * doesn't participate in pointer adjustment.
2339 				 * Forward propagation of precise flag is not
2340 				 * necessary either. This mark is only to stop
2341 				 * backtracking. Any register that contributed
2342 				 * to const 0 was marked precise before spill.
2343 				 */
2344 				state->regs[value_regno].precise = true;
2345 			} else {
2346 				/* have read misc data from the stack */
2347 				mark_reg_unknown(env, state->regs, value_regno);
2348 			}
2349 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2350 		}
2351 	}
2352 	return 0;
2353 }
2354 
2355 static int check_stack_access(struct bpf_verifier_env *env,
2356 			      const struct bpf_reg_state *reg,
2357 			      int off, int size)
2358 {
2359 	/* Stack accesses must be at a fixed offset, so that we
2360 	 * can determine what type of data were returned. See
2361 	 * check_stack_read().
2362 	 */
2363 	if (!tnum_is_const(reg->var_off)) {
2364 		char tn_buf[48];
2365 
2366 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2367 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2368 			tn_buf, off, size);
2369 		return -EACCES;
2370 	}
2371 
2372 	if (off >= 0 || off < -MAX_BPF_STACK) {
2373 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2374 		return -EACCES;
2375 	}
2376 
2377 	return 0;
2378 }
2379 
2380 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2381 				 int off, int size, enum bpf_access_type type)
2382 {
2383 	struct bpf_reg_state *regs = cur_regs(env);
2384 	struct bpf_map *map = regs[regno].map_ptr;
2385 	u32 cap = bpf_map_flags_to_cap(map);
2386 
2387 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2388 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2389 			map->value_size, off, size);
2390 		return -EACCES;
2391 	}
2392 
2393 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2394 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2395 			map->value_size, off, size);
2396 		return -EACCES;
2397 	}
2398 
2399 	return 0;
2400 }
2401 
2402 /* check read/write into map element returned by bpf_map_lookup_elem() */
2403 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
2404 			      int size, bool zero_size_allowed)
2405 {
2406 	struct bpf_reg_state *regs = cur_regs(env);
2407 	struct bpf_map *map = regs[regno].map_ptr;
2408 
2409 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2410 	    off + size > map->value_size) {
2411 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2412 			map->value_size, off, size);
2413 		return -EACCES;
2414 	}
2415 	return 0;
2416 }
2417 
2418 /* check read/write into a map element with possible variable offset */
2419 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2420 			    int off, int size, bool zero_size_allowed)
2421 {
2422 	struct bpf_verifier_state *vstate = env->cur_state;
2423 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2424 	struct bpf_reg_state *reg = &state->regs[regno];
2425 	int err;
2426 
2427 	/* We may have adjusted the register to this map value, so we
2428 	 * need to try adding each of min_value and max_value to off
2429 	 * to make sure our theoretical access will be safe.
2430 	 */
2431 	if (env->log.level & BPF_LOG_LEVEL)
2432 		print_verifier_state(env, state);
2433 
2434 	/* The minimum value is only important with signed
2435 	 * comparisons where we can't assume the floor of a
2436 	 * value is 0.  If we are using signed variables for our
2437 	 * index'es we need to make sure that whatever we use
2438 	 * will have a set floor within our range.
2439 	 */
2440 	if (reg->smin_value < 0 &&
2441 	    (reg->smin_value == S64_MIN ||
2442 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2443 	      reg->smin_value + off < 0)) {
2444 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2445 			regno);
2446 		return -EACCES;
2447 	}
2448 	err = __check_map_access(env, regno, reg->smin_value + off, size,
2449 				 zero_size_allowed);
2450 	if (err) {
2451 		verbose(env, "R%d min value is outside of the array range\n",
2452 			regno);
2453 		return err;
2454 	}
2455 
2456 	/* If we haven't set a max value then we need to bail since we can't be
2457 	 * sure we won't do bad things.
2458 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2459 	 */
2460 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2461 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
2462 			regno);
2463 		return -EACCES;
2464 	}
2465 	err = __check_map_access(env, regno, reg->umax_value + off, size,
2466 				 zero_size_allowed);
2467 	if (err)
2468 		verbose(env, "R%d max value is outside of the array range\n",
2469 			regno);
2470 
2471 	if (map_value_has_spin_lock(reg->map_ptr)) {
2472 		u32 lock = reg->map_ptr->spin_lock_off;
2473 
2474 		/* if any part of struct bpf_spin_lock can be touched by
2475 		 * load/store reject this program.
2476 		 * To check that [x1, x2) overlaps with [y1, y2)
2477 		 * it is sufficient to check x1 < y2 && y1 < x2.
2478 		 */
2479 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2480 		     lock < reg->umax_value + off + size) {
2481 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2482 			return -EACCES;
2483 		}
2484 	}
2485 	return err;
2486 }
2487 
2488 #define MAX_PACKET_OFF 0xffff
2489 
2490 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2491 				       const struct bpf_call_arg_meta *meta,
2492 				       enum bpf_access_type t)
2493 {
2494 	switch (env->prog->type) {
2495 	/* Program types only with direct read access go here! */
2496 	case BPF_PROG_TYPE_LWT_IN:
2497 	case BPF_PROG_TYPE_LWT_OUT:
2498 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2499 	case BPF_PROG_TYPE_SK_REUSEPORT:
2500 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2501 	case BPF_PROG_TYPE_CGROUP_SKB:
2502 		if (t == BPF_WRITE)
2503 			return false;
2504 		/* fallthrough */
2505 
2506 	/* Program types with direct read + write access go here! */
2507 	case BPF_PROG_TYPE_SCHED_CLS:
2508 	case BPF_PROG_TYPE_SCHED_ACT:
2509 	case BPF_PROG_TYPE_XDP:
2510 	case BPF_PROG_TYPE_LWT_XMIT:
2511 	case BPF_PROG_TYPE_SK_SKB:
2512 	case BPF_PROG_TYPE_SK_MSG:
2513 		if (meta)
2514 			return meta->pkt_access;
2515 
2516 		env->seen_direct_write = true;
2517 		return true;
2518 
2519 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2520 		if (t == BPF_WRITE)
2521 			env->seen_direct_write = true;
2522 
2523 		return true;
2524 
2525 	default:
2526 		return false;
2527 	}
2528 }
2529 
2530 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
2531 				 int off, int size, bool zero_size_allowed)
2532 {
2533 	struct bpf_reg_state *regs = cur_regs(env);
2534 	struct bpf_reg_state *reg = &regs[regno];
2535 
2536 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2537 	    (u64)off + size > reg->range) {
2538 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2539 			off, size, regno, reg->id, reg->off, reg->range);
2540 		return -EACCES;
2541 	}
2542 	return 0;
2543 }
2544 
2545 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2546 			       int size, bool zero_size_allowed)
2547 {
2548 	struct bpf_reg_state *regs = cur_regs(env);
2549 	struct bpf_reg_state *reg = &regs[regno];
2550 	int err;
2551 
2552 	/* We may have added a variable offset to the packet pointer; but any
2553 	 * reg->range we have comes after that.  We are only checking the fixed
2554 	 * offset.
2555 	 */
2556 
2557 	/* We don't allow negative numbers, because we aren't tracking enough
2558 	 * detail to prove they're safe.
2559 	 */
2560 	if (reg->smin_value < 0) {
2561 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2562 			regno);
2563 		return -EACCES;
2564 	}
2565 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
2566 	if (err) {
2567 		verbose(env, "R%d offset is outside of the packet\n", regno);
2568 		return err;
2569 	}
2570 
2571 	/* __check_packet_access has made sure "off + size - 1" is within u16.
2572 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2573 	 * otherwise find_good_pkt_pointers would have refused to set range info
2574 	 * that __check_packet_access would have rejected this pkt access.
2575 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2576 	 */
2577 	env->prog->aux->max_pkt_offset =
2578 		max_t(u32, env->prog->aux->max_pkt_offset,
2579 		      off + reg->umax_value + size - 1);
2580 
2581 	return err;
2582 }
2583 
2584 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2585 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2586 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
2587 			    u32 *btf_id)
2588 {
2589 	struct bpf_insn_access_aux info = {
2590 		.reg_type = *reg_type,
2591 		.log = &env->log,
2592 	};
2593 
2594 	if (env->ops->is_valid_access &&
2595 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2596 		/* A non zero info.ctx_field_size indicates that this field is a
2597 		 * candidate for later verifier transformation to load the whole
2598 		 * field and then apply a mask when accessed with a narrower
2599 		 * access than actual ctx access size. A zero info.ctx_field_size
2600 		 * will only allow for whole field access and rejects any other
2601 		 * type of narrower access.
2602 		 */
2603 		*reg_type = info.reg_type;
2604 
2605 		if (*reg_type == PTR_TO_BTF_ID)
2606 			*btf_id = info.btf_id;
2607 		else
2608 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2609 		/* remember the offset of last byte accessed in ctx */
2610 		if (env->prog->aux->max_ctx_offset < off + size)
2611 			env->prog->aux->max_ctx_offset = off + size;
2612 		return 0;
2613 	}
2614 
2615 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2616 	return -EACCES;
2617 }
2618 
2619 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2620 				  int size)
2621 {
2622 	if (size < 0 || off < 0 ||
2623 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2624 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2625 			off, size);
2626 		return -EACCES;
2627 	}
2628 	return 0;
2629 }
2630 
2631 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2632 			     u32 regno, int off, int size,
2633 			     enum bpf_access_type t)
2634 {
2635 	struct bpf_reg_state *regs = cur_regs(env);
2636 	struct bpf_reg_state *reg = &regs[regno];
2637 	struct bpf_insn_access_aux info = {};
2638 	bool valid;
2639 
2640 	if (reg->smin_value < 0) {
2641 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2642 			regno);
2643 		return -EACCES;
2644 	}
2645 
2646 	switch (reg->type) {
2647 	case PTR_TO_SOCK_COMMON:
2648 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2649 		break;
2650 	case PTR_TO_SOCKET:
2651 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2652 		break;
2653 	case PTR_TO_TCP_SOCK:
2654 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2655 		break;
2656 	case PTR_TO_XDP_SOCK:
2657 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2658 		break;
2659 	default:
2660 		valid = false;
2661 	}
2662 
2663 
2664 	if (valid) {
2665 		env->insn_aux_data[insn_idx].ctx_field_size =
2666 			info.ctx_field_size;
2667 		return 0;
2668 	}
2669 
2670 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2671 		regno, reg_type_str[reg->type], off, size);
2672 
2673 	return -EACCES;
2674 }
2675 
2676 static bool __is_pointer_value(bool allow_ptr_leaks,
2677 			       const struct bpf_reg_state *reg)
2678 {
2679 	if (allow_ptr_leaks)
2680 		return false;
2681 
2682 	return reg->type != SCALAR_VALUE;
2683 }
2684 
2685 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2686 {
2687 	return cur_regs(env) + regno;
2688 }
2689 
2690 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2691 {
2692 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2693 }
2694 
2695 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2696 {
2697 	const struct bpf_reg_state *reg = reg_state(env, regno);
2698 
2699 	return reg->type == PTR_TO_CTX;
2700 }
2701 
2702 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2703 {
2704 	const struct bpf_reg_state *reg = reg_state(env, regno);
2705 
2706 	return type_is_sk_pointer(reg->type);
2707 }
2708 
2709 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2710 {
2711 	const struct bpf_reg_state *reg = reg_state(env, regno);
2712 
2713 	return type_is_pkt_pointer(reg->type);
2714 }
2715 
2716 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2717 {
2718 	const struct bpf_reg_state *reg = reg_state(env, regno);
2719 
2720 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2721 	return reg->type == PTR_TO_FLOW_KEYS;
2722 }
2723 
2724 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2725 				   const struct bpf_reg_state *reg,
2726 				   int off, int size, bool strict)
2727 {
2728 	struct tnum reg_off;
2729 	int ip_align;
2730 
2731 	/* Byte size accesses are always allowed. */
2732 	if (!strict || size == 1)
2733 		return 0;
2734 
2735 	/* For platforms that do not have a Kconfig enabling
2736 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2737 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2738 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2739 	 * to this code only in strict mode where we want to emulate
2740 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2741 	 * unconditional IP align value of '2'.
2742 	 */
2743 	ip_align = 2;
2744 
2745 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2746 	if (!tnum_is_aligned(reg_off, size)) {
2747 		char tn_buf[48];
2748 
2749 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2750 		verbose(env,
2751 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2752 			ip_align, tn_buf, reg->off, off, size);
2753 		return -EACCES;
2754 	}
2755 
2756 	return 0;
2757 }
2758 
2759 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2760 				       const struct bpf_reg_state *reg,
2761 				       const char *pointer_desc,
2762 				       int off, int size, bool strict)
2763 {
2764 	struct tnum reg_off;
2765 
2766 	/* Byte size accesses are always allowed. */
2767 	if (!strict || size == 1)
2768 		return 0;
2769 
2770 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2771 	if (!tnum_is_aligned(reg_off, size)) {
2772 		char tn_buf[48];
2773 
2774 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2775 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2776 			pointer_desc, tn_buf, reg->off, off, size);
2777 		return -EACCES;
2778 	}
2779 
2780 	return 0;
2781 }
2782 
2783 static int check_ptr_alignment(struct bpf_verifier_env *env,
2784 			       const struct bpf_reg_state *reg, int off,
2785 			       int size, bool strict_alignment_once)
2786 {
2787 	bool strict = env->strict_alignment || strict_alignment_once;
2788 	const char *pointer_desc = "";
2789 
2790 	switch (reg->type) {
2791 	case PTR_TO_PACKET:
2792 	case PTR_TO_PACKET_META:
2793 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2794 		 * right in front, treat it the very same way.
2795 		 */
2796 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2797 	case PTR_TO_FLOW_KEYS:
2798 		pointer_desc = "flow keys ";
2799 		break;
2800 	case PTR_TO_MAP_VALUE:
2801 		pointer_desc = "value ";
2802 		break;
2803 	case PTR_TO_CTX:
2804 		pointer_desc = "context ";
2805 		break;
2806 	case PTR_TO_STACK:
2807 		pointer_desc = "stack ";
2808 		/* The stack spill tracking logic in check_stack_write()
2809 		 * and check_stack_read() relies on stack accesses being
2810 		 * aligned.
2811 		 */
2812 		strict = true;
2813 		break;
2814 	case PTR_TO_SOCKET:
2815 		pointer_desc = "sock ";
2816 		break;
2817 	case PTR_TO_SOCK_COMMON:
2818 		pointer_desc = "sock_common ";
2819 		break;
2820 	case PTR_TO_TCP_SOCK:
2821 		pointer_desc = "tcp_sock ";
2822 		break;
2823 	case PTR_TO_XDP_SOCK:
2824 		pointer_desc = "xdp_sock ";
2825 		break;
2826 	default:
2827 		break;
2828 	}
2829 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2830 					   strict);
2831 }
2832 
2833 static int update_stack_depth(struct bpf_verifier_env *env,
2834 			      const struct bpf_func_state *func,
2835 			      int off)
2836 {
2837 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
2838 
2839 	if (stack >= -off)
2840 		return 0;
2841 
2842 	/* update known max for given subprogram */
2843 	env->subprog_info[func->subprogno].stack_depth = -off;
2844 	return 0;
2845 }
2846 
2847 /* starting from main bpf function walk all instructions of the function
2848  * and recursively walk all callees that given function can call.
2849  * Ignore jump and exit insns.
2850  * Since recursion is prevented by check_cfg() this algorithm
2851  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2852  */
2853 static int check_max_stack_depth(struct bpf_verifier_env *env)
2854 {
2855 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2856 	struct bpf_subprog_info *subprog = env->subprog_info;
2857 	struct bpf_insn *insn = env->prog->insnsi;
2858 	int ret_insn[MAX_CALL_FRAMES];
2859 	int ret_prog[MAX_CALL_FRAMES];
2860 
2861 process_func:
2862 	/* round up to 32-bytes, since this is granularity
2863 	 * of interpreter stack size
2864 	 */
2865 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2866 	if (depth > MAX_BPF_STACK) {
2867 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
2868 			frame + 1, depth);
2869 		return -EACCES;
2870 	}
2871 continue_func:
2872 	subprog_end = subprog[idx + 1].start;
2873 	for (; i < subprog_end; i++) {
2874 		if (insn[i].code != (BPF_JMP | BPF_CALL))
2875 			continue;
2876 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
2877 			continue;
2878 		/* remember insn and function to return to */
2879 		ret_insn[frame] = i + 1;
2880 		ret_prog[frame] = idx;
2881 
2882 		/* find the callee */
2883 		i = i + insn[i].imm + 1;
2884 		idx = find_subprog(env, i);
2885 		if (idx < 0) {
2886 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2887 				  i);
2888 			return -EFAULT;
2889 		}
2890 		frame++;
2891 		if (frame >= MAX_CALL_FRAMES) {
2892 			verbose(env, "the call stack of %d frames is too deep !\n",
2893 				frame);
2894 			return -E2BIG;
2895 		}
2896 		goto process_func;
2897 	}
2898 	/* end of for() loop means the last insn of the 'subprog'
2899 	 * was reached. Doesn't matter whether it was JA or EXIT
2900 	 */
2901 	if (frame == 0)
2902 		return 0;
2903 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2904 	frame--;
2905 	i = ret_insn[frame];
2906 	idx = ret_prog[frame];
2907 	goto continue_func;
2908 }
2909 
2910 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2911 static int get_callee_stack_depth(struct bpf_verifier_env *env,
2912 				  const struct bpf_insn *insn, int idx)
2913 {
2914 	int start = idx + insn->imm + 1, subprog;
2915 
2916 	subprog = find_subprog(env, start);
2917 	if (subprog < 0) {
2918 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2919 			  start);
2920 		return -EFAULT;
2921 	}
2922 	return env->subprog_info[subprog].stack_depth;
2923 }
2924 #endif
2925 
2926 int check_ctx_reg(struct bpf_verifier_env *env,
2927 		  const struct bpf_reg_state *reg, int regno)
2928 {
2929 	/* Access to ctx or passing it to a helper is only allowed in
2930 	 * its original, unmodified form.
2931 	 */
2932 
2933 	if (reg->off) {
2934 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2935 			regno, reg->off);
2936 		return -EACCES;
2937 	}
2938 
2939 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2940 		char tn_buf[48];
2941 
2942 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2943 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2944 		return -EACCES;
2945 	}
2946 
2947 	return 0;
2948 }
2949 
2950 static int check_tp_buffer_access(struct bpf_verifier_env *env,
2951 				  const struct bpf_reg_state *reg,
2952 				  int regno, int off, int size)
2953 {
2954 	if (off < 0) {
2955 		verbose(env,
2956 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
2957 			regno, off, size);
2958 		return -EACCES;
2959 	}
2960 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2961 		char tn_buf[48];
2962 
2963 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2964 		verbose(env,
2965 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
2966 			regno, off, tn_buf);
2967 		return -EACCES;
2968 	}
2969 	if (off + size > env->prog->aux->max_tp_access)
2970 		env->prog->aux->max_tp_access = off + size;
2971 
2972 	return 0;
2973 }
2974 
2975 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
2976 static void zext_32_to_64(struct bpf_reg_state *reg)
2977 {
2978 	reg->var_off = tnum_subreg(reg->var_off);
2979 	__reg_assign_32_into_64(reg);
2980 }
2981 
2982 /* truncate register to smaller size (in bytes)
2983  * must be called with size < BPF_REG_SIZE
2984  */
2985 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2986 {
2987 	u64 mask;
2988 
2989 	/* clear high bits in bit representation */
2990 	reg->var_off = tnum_cast(reg->var_off, size);
2991 
2992 	/* fix arithmetic bounds */
2993 	mask = ((u64)1 << (size * 8)) - 1;
2994 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2995 		reg->umin_value &= mask;
2996 		reg->umax_value &= mask;
2997 	} else {
2998 		reg->umin_value = 0;
2999 		reg->umax_value = mask;
3000 	}
3001 	reg->smin_value = reg->umin_value;
3002 	reg->smax_value = reg->umax_value;
3003 
3004 	/* If size is smaller than 32bit register the 32bit register
3005 	 * values are also truncated so we push 64-bit bounds into
3006 	 * 32-bit bounds. Above were truncated < 32-bits already.
3007 	 */
3008 	if (size >= 4)
3009 		return;
3010 	__reg_combine_64_into_32(reg);
3011 }
3012 
3013 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3014 {
3015 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3016 }
3017 
3018 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3019 {
3020 	void *ptr;
3021 	u64 addr;
3022 	int err;
3023 
3024 	err = map->ops->map_direct_value_addr(map, &addr, off);
3025 	if (err)
3026 		return err;
3027 	ptr = (void *)(long)addr + off;
3028 
3029 	switch (size) {
3030 	case sizeof(u8):
3031 		*val = (u64)*(u8 *)ptr;
3032 		break;
3033 	case sizeof(u16):
3034 		*val = (u64)*(u16 *)ptr;
3035 		break;
3036 	case sizeof(u32):
3037 		*val = (u64)*(u32 *)ptr;
3038 		break;
3039 	case sizeof(u64):
3040 		*val = *(u64 *)ptr;
3041 		break;
3042 	default:
3043 		return -EINVAL;
3044 	}
3045 	return 0;
3046 }
3047 
3048 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3049 				   struct bpf_reg_state *regs,
3050 				   int regno, int off, int size,
3051 				   enum bpf_access_type atype,
3052 				   int value_regno)
3053 {
3054 	struct bpf_reg_state *reg = regs + regno;
3055 	const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3056 	const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3057 	u32 btf_id;
3058 	int ret;
3059 
3060 	if (off < 0) {
3061 		verbose(env,
3062 			"R%d is ptr_%s invalid negative access: off=%d\n",
3063 			regno, tname, off);
3064 		return -EACCES;
3065 	}
3066 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3067 		char tn_buf[48];
3068 
3069 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3070 		verbose(env,
3071 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3072 			regno, tname, off, tn_buf);
3073 		return -EACCES;
3074 	}
3075 
3076 	if (env->ops->btf_struct_access) {
3077 		ret = env->ops->btf_struct_access(&env->log, t, off, size,
3078 						  atype, &btf_id);
3079 	} else {
3080 		if (atype != BPF_READ) {
3081 			verbose(env, "only read is supported\n");
3082 			return -EACCES;
3083 		}
3084 
3085 		ret = btf_struct_access(&env->log, t, off, size, atype,
3086 					&btf_id);
3087 	}
3088 
3089 	if (ret < 0)
3090 		return ret;
3091 
3092 	if (atype == BPF_READ) {
3093 		if (ret == SCALAR_VALUE) {
3094 			mark_reg_unknown(env, regs, value_regno);
3095 			return 0;
3096 		}
3097 		mark_reg_known_zero(env, regs, value_regno);
3098 		regs[value_regno].type = PTR_TO_BTF_ID;
3099 		regs[value_regno].btf_id = btf_id;
3100 	}
3101 
3102 	return 0;
3103 }
3104 
3105 /* check whether memory at (regno + off) is accessible for t = (read | write)
3106  * if t==write, value_regno is a register which value is stored into memory
3107  * if t==read, value_regno is a register which will receive the value from memory
3108  * if t==write && value_regno==-1, some unknown value is stored into memory
3109  * if t==read && value_regno==-1, don't care what we read from memory
3110  */
3111 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3112 			    int off, int bpf_size, enum bpf_access_type t,
3113 			    int value_regno, bool strict_alignment_once)
3114 {
3115 	struct bpf_reg_state *regs = cur_regs(env);
3116 	struct bpf_reg_state *reg = regs + regno;
3117 	struct bpf_func_state *state;
3118 	int size, err = 0;
3119 
3120 	size = bpf_size_to_bytes(bpf_size);
3121 	if (size < 0)
3122 		return size;
3123 
3124 	/* alignment checks will add in reg->off themselves */
3125 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3126 	if (err)
3127 		return err;
3128 
3129 	/* for access checks, reg->off is just part of off */
3130 	off += reg->off;
3131 
3132 	if (reg->type == PTR_TO_MAP_VALUE) {
3133 		if (t == BPF_WRITE && value_regno >= 0 &&
3134 		    is_pointer_value(env, value_regno)) {
3135 			verbose(env, "R%d leaks addr into map\n", value_regno);
3136 			return -EACCES;
3137 		}
3138 		err = check_map_access_type(env, regno, off, size, t);
3139 		if (err)
3140 			return err;
3141 		err = check_map_access(env, regno, off, size, false);
3142 		if (!err && t == BPF_READ && value_regno >= 0) {
3143 			struct bpf_map *map = reg->map_ptr;
3144 
3145 			/* if map is read-only, track its contents as scalars */
3146 			if (tnum_is_const(reg->var_off) &&
3147 			    bpf_map_is_rdonly(map) &&
3148 			    map->ops->map_direct_value_addr) {
3149 				int map_off = off + reg->var_off.value;
3150 				u64 val = 0;
3151 
3152 				err = bpf_map_direct_read(map, map_off, size,
3153 							  &val);
3154 				if (err)
3155 					return err;
3156 
3157 				regs[value_regno].type = SCALAR_VALUE;
3158 				__mark_reg_known(&regs[value_regno], val);
3159 			} else {
3160 				mark_reg_unknown(env, regs, value_regno);
3161 			}
3162 		}
3163 	} else if (reg->type == PTR_TO_CTX) {
3164 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3165 		u32 btf_id = 0;
3166 
3167 		if (t == BPF_WRITE && value_regno >= 0 &&
3168 		    is_pointer_value(env, value_regno)) {
3169 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3170 			return -EACCES;
3171 		}
3172 
3173 		err = check_ctx_reg(env, reg, regno);
3174 		if (err < 0)
3175 			return err;
3176 
3177 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3178 		if (err)
3179 			verbose_linfo(env, insn_idx, "; ");
3180 		if (!err && t == BPF_READ && value_regno >= 0) {
3181 			/* ctx access returns either a scalar, or a
3182 			 * PTR_TO_PACKET[_META,_END]. In the latter
3183 			 * case, we know the offset is zero.
3184 			 */
3185 			if (reg_type == SCALAR_VALUE) {
3186 				mark_reg_unknown(env, regs, value_regno);
3187 			} else {
3188 				mark_reg_known_zero(env, regs,
3189 						    value_regno);
3190 				if (reg_type_may_be_null(reg_type))
3191 					regs[value_regno].id = ++env->id_gen;
3192 				/* A load of ctx field could have different
3193 				 * actual load size with the one encoded in the
3194 				 * insn. When the dst is PTR, it is for sure not
3195 				 * a sub-register.
3196 				 */
3197 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3198 				if (reg_type == PTR_TO_BTF_ID)
3199 					regs[value_regno].btf_id = btf_id;
3200 			}
3201 			regs[value_regno].type = reg_type;
3202 		}
3203 
3204 	} else if (reg->type == PTR_TO_STACK) {
3205 		off += reg->var_off.value;
3206 		err = check_stack_access(env, reg, off, size);
3207 		if (err)
3208 			return err;
3209 
3210 		state = func(env, reg);
3211 		err = update_stack_depth(env, state, off);
3212 		if (err)
3213 			return err;
3214 
3215 		if (t == BPF_WRITE)
3216 			err = check_stack_write(env, state, off, size,
3217 						value_regno, insn_idx);
3218 		else
3219 			err = check_stack_read(env, state, off, size,
3220 					       value_regno);
3221 	} else if (reg_is_pkt_pointer(reg)) {
3222 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3223 			verbose(env, "cannot write into packet\n");
3224 			return -EACCES;
3225 		}
3226 		if (t == BPF_WRITE && value_regno >= 0 &&
3227 		    is_pointer_value(env, value_regno)) {
3228 			verbose(env, "R%d leaks addr into packet\n",
3229 				value_regno);
3230 			return -EACCES;
3231 		}
3232 		err = check_packet_access(env, regno, off, size, false);
3233 		if (!err && t == BPF_READ && value_regno >= 0)
3234 			mark_reg_unknown(env, regs, value_regno);
3235 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3236 		if (t == BPF_WRITE && value_regno >= 0 &&
3237 		    is_pointer_value(env, value_regno)) {
3238 			verbose(env, "R%d leaks addr into flow keys\n",
3239 				value_regno);
3240 			return -EACCES;
3241 		}
3242 
3243 		err = check_flow_keys_access(env, off, size);
3244 		if (!err && t == BPF_READ && value_regno >= 0)
3245 			mark_reg_unknown(env, regs, value_regno);
3246 	} else if (type_is_sk_pointer(reg->type)) {
3247 		if (t == BPF_WRITE) {
3248 			verbose(env, "R%d cannot write into %s\n",
3249 				regno, reg_type_str[reg->type]);
3250 			return -EACCES;
3251 		}
3252 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3253 		if (!err && value_regno >= 0)
3254 			mark_reg_unknown(env, regs, value_regno);
3255 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3256 		err = check_tp_buffer_access(env, reg, regno, off, size);
3257 		if (!err && t == BPF_READ && value_regno >= 0)
3258 			mark_reg_unknown(env, regs, value_regno);
3259 	} else if (reg->type == PTR_TO_BTF_ID) {
3260 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3261 					      value_regno);
3262 	} else {
3263 		verbose(env, "R%d invalid mem access '%s'\n", regno,
3264 			reg_type_str[reg->type]);
3265 		return -EACCES;
3266 	}
3267 
3268 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3269 	    regs[value_regno].type == SCALAR_VALUE) {
3270 		/* b/h/w load zero-extends, mark upper bits as known 0 */
3271 		coerce_reg_to_size(&regs[value_regno], size);
3272 	}
3273 	return err;
3274 }
3275 
3276 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3277 {
3278 	int err;
3279 
3280 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3281 	    insn->imm != 0) {
3282 		verbose(env, "BPF_XADD uses reserved fields\n");
3283 		return -EINVAL;
3284 	}
3285 
3286 	/* check src1 operand */
3287 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
3288 	if (err)
3289 		return err;
3290 
3291 	/* check src2 operand */
3292 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3293 	if (err)
3294 		return err;
3295 
3296 	if (is_pointer_value(env, insn->src_reg)) {
3297 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3298 		return -EACCES;
3299 	}
3300 
3301 	if (is_ctx_reg(env, insn->dst_reg) ||
3302 	    is_pkt_reg(env, insn->dst_reg) ||
3303 	    is_flow_key_reg(env, insn->dst_reg) ||
3304 	    is_sk_reg(env, insn->dst_reg)) {
3305 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3306 			insn->dst_reg,
3307 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
3308 		return -EACCES;
3309 	}
3310 
3311 	/* check whether atomic_add can read the memory */
3312 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3313 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
3314 	if (err)
3315 		return err;
3316 
3317 	/* check whether atomic_add can write into the same memory */
3318 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3319 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3320 }
3321 
3322 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3323 				  int off, int access_size,
3324 				  bool zero_size_allowed)
3325 {
3326 	struct bpf_reg_state *reg = reg_state(env, regno);
3327 
3328 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3329 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3330 		if (tnum_is_const(reg->var_off)) {
3331 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3332 				regno, off, access_size);
3333 		} else {
3334 			char tn_buf[48];
3335 
3336 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3337 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3338 				regno, tn_buf, access_size);
3339 		}
3340 		return -EACCES;
3341 	}
3342 	return 0;
3343 }
3344 
3345 /* when register 'regno' is passed into function that will read 'access_size'
3346  * bytes from that pointer, make sure that it's within stack boundary
3347  * and all elements of stack are initialized.
3348  * Unlike most pointer bounds-checking functions, this one doesn't take an
3349  * 'off' argument, so it has to add in reg->off itself.
3350  */
3351 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3352 				int access_size, bool zero_size_allowed,
3353 				struct bpf_call_arg_meta *meta)
3354 {
3355 	struct bpf_reg_state *reg = reg_state(env, regno);
3356 	struct bpf_func_state *state = func(env, reg);
3357 	int err, min_off, max_off, i, j, slot, spi;
3358 
3359 	if (reg->type != PTR_TO_STACK) {
3360 		/* Allow zero-byte read from NULL, regardless of pointer type */
3361 		if (zero_size_allowed && access_size == 0 &&
3362 		    register_is_null(reg))
3363 			return 0;
3364 
3365 		verbose(env, "R%d type=%s expected=%s\n", regno,
3366 			reg_type_str[reg->type],
3367 			reg_type_str[PTR_TO_STACK]);
3368 		return -EACCES;
3369 	}
3370 
3371 	if (tnum_is_const(reg->var_off)) {
3372 		min_off = max_off = reg->var_off.value + reg->off;
3373 		err = __check_stack_boundary(env, regno, min_off, access_size,
3374 					     zero_size_allowed);
3375 		if (err)
3376 			return err;
3377 	} else {
3378 		/* Variable offset is prohibited for unprivileged mode for
3379 		 * simplicity since it requires corresponding support in
3380 		 * Spectre masking for stack ALU.
3381 		 * See also retrieve_ptr_limit().
3382 		 */
3383 		if (!env->allow_ptr_leaks) {
3384 			char tn_buf[48];
3385 
3386 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3387 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3388 				regno, tn_buf);
3389 			return -EACCES;
3390 		}
3391 		/* Only initialized buffer on stack is allowed to be accessed
3392 		 * with variable offset. With uninitialized buffer it's hard to
3393 		 * guarantee that whole memory is marked as initialized on
3394 		 * helper return since specific bounds are unknown what may
3395 		 * cause uninitialized stack leaking.
3396 		 */
3397 		if (meta && meta->raw_mode)
3398 			meta = NULL;
3399 
3400 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3401 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3402 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3403 				regno);
3404 			return -EACCES;
3405 		}
3406 		min_off = reg->smin_value + reg->off;
3407 		max_off = reg->smax_value + reg->off;
3408 		err = __check_stack_boundary(env, regno, min_off, access_size,
3409 					     zero_size_allowed);
3410 		if (err) {
3411 			verbose(env, "R%d min value is outside of stack bound\n",
3412 				regno);
3413 			return err;
3414 		}
3415 		err = __check_stack_boundary(env, regno, max_off, access_size,
3416 					     zero_size_allowed);
3417 		if (err) {
3418 			verbose(env, "R%d max value is outside of stack bound\n",
3419 				regno);
3420 			return err;
3421 		}
3422 	}
3423 
3424 	if (meta && meta->raw_mode) {
3425 		meta->access_size = access_size;
3426 		meta->regno = regno;
3427 		return 0;
3428 	}
3429 
3430 	for (i = min_off; i < max_off + access_size; i++) {
3431 		u8 *stype;
3432 
3433 		slot = -i - 1;
3434 		spi = slot / BPF_REG_SIZE;
3435 		if (state->allocated_stack <= slot)
3436 			goto err;
3437 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3438 		if (*stype == STACK_MISC)
3439 			goto mark;
3440 		if (*stype == STACK_ZERO) {
3441 			/* helper can write anything into the stack */
3442 			*stype = STACK_MISC;
3443 			goto mark;
3444 		}
3445 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3446 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3447 			__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3448 			for (j = 0; j < BPF_REG_SIZE; j++)
3449 				state->stack[spi].slot_type[j] = STACK_MISC;
3450 			goto mark;
3451 		}
3452 
3453 err:
3454 		if (tnum_is_const(reg->var_off)) {
3455 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3456 				min_off, i - min_off, access_size);
3457 		} else {
3458 			char tn_buf[48];
3459 
3460 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3461 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3462 				tn_buf, i - min_off, access_size);
3463 		}
3464 		return -EACCES;
3465 mark:
3466 		/* reading any byte out of 8-byte 'spill_slot' will cause
3467 		 * the whole slot to be marked as 'read'
3468 		 */
3469 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3470 			      state->stack[spi].spilled_ptr.parent,
3471 			      REG_LIVE_READ64);
3472 	}
3473 	return update_stack_depth(env, state, min_off);
3474 }
3475 
3476 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3477 				   int access_size, bool zero_size_allowed,
3478 				   struct bpf_call_arg_meta *meta)
3479 {
3480 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3481 
3482 	switch (reg->type) {
3483 	case PTR_TO_PACKET:
3484 	case PTR_TO_PACKET_META:
3485 		return check_packet_access(env, regno, reg->off, access_size,
3486 					   zero_size_allowed);
3487 	case PTR_TO_MAP_VALUE:
3488 		if (check_map_access_type(env, regno, reg->off, access_size,
3489 					  meta && meta->raw_mode ? BPF_WRITE :
3490 					  BPF_READ))
3491 			return -EACCES;
3492 		return check_map_access(env, regno, reg->off, access_size,
3493 					zero_size_allowed);
3494 	default: /* scalar_value|ptr_to_stack or invalid ptr */
3495 		return check_stack_boundary(env, regno, access_size,
3496 					    zero_size_allowed, meta);
3497 	}
3498 }
3499 
3500 /* Implementation details:
3501  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3502  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3503  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3504  * value_or_null->value transition, since the verifier only cares about
3505  * the range of access to valid map value pointer and doesn't care about actual
3506  * address of the map element.
3507  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3508  * reg->id > 0 after value_or_null->value transition. By doing so
3509  * two bpf_map_lookups will be considered two different pointers that
3510  * point to different bpf_spin_locks.
3511  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3512  * dead-locks.
3513  * Since only one bpf_spin_lock is allowed the checks are simpler than
3514  * reg_is_refcounted() logic. The verifier needs to remember only
3515  * one spin_lock instead of array of acquired_refs.
3516  * cur_state->active_spin_lock remembers which map value element got locked
3517  * and clears it after bpf_spin_unlock.
3518  */
3519 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3520 			     bool is_lock)
3521 {
3522 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3523 	struct bpf_verifier_state *cur = env->cur_state;
3524 	bool is_const = tnum_is_const(reg->var_off);
3525 	struct bpf_map *map = reg->map_ptr;
3526 	u64 val = reg->var_off.value;
3527 
3528 	if (reg->type != PTR_TO_MAP_VALUE) {
3529 		verbose(env, "R%d is not a pointer to map_value\n", regno);
3530 		return -EINVAL;
3531 	}
3532 	if (!is_const) {
3533 		verbose(env,
3534 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3535 			regno);
3536 		return -EINVAL;
3537 	}
3538 	if (!map->btf) {
3539 		verbose(env,
3540 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3541 			map->name);
3542 		return -EINVAL;
3543 	}
3544 	if (!map_value_has_spin_lock(map)) {
3545 		if (map->spin_lock_off == -E2BIG)
3546 			verbose(env,
3547 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3548 				map->name);
3549 		else if (map->spin_lock_off == -ENOENT)
3550 			verbose(env,
3551 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3552 				map->name);
3553 		else
3554 			verbose(env,
3555 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3556 				map->name);
3557 		return -EINVAL;
3558 	}
3559 	if (map->spin_lock_off != val + reg->off) {
3560 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3561 			val + reg->off);
3562 		return -EINVAL;
3563 	}
3564 	if (is_lock) {
3565 		if (cur->active_spin_lock) {
3566 			verbose(env,
3567 				"Locking two bpf_spin_locks are not allowed\n");
3568 			return -EINVAL;
3569 		}
3570 		cur->active_spin_lock = reg->id;
3571 	} else {
3572 		if (!cur->active_spin_lock) {
3573 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3574 			return -EINVAL;
3575 		}
3576 		if (cur->active_spin_lock != reg->id) {
3577 			verbose(env, "bpf_spin_unlock of different lock\n");
3578 			return -EINVAL;
3579 		}
3580 		cur->active_spin_lock = 0;
3581 	}
3582 	return 0;
3583 }
3584 
3585 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3586 {
3587 	return type == ARG_PTR_TO_MEM ||
3588 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3589 	       type == ARG_PTR_TO_UNINIT_MEM;
3590 }
3591 
3592 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3593 {
3594 	return type == ARG_CONST_SIZE ||
3595 	       type == ARG_CONST_SIZE_OR_ZERO;
3596 }
3597 
3598 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3599 {
3600 	return type == ARG_PTR_TO_INT ||
3601 	       type == ARG_PTR_TO_LONG;
3602 }
3603 
3604 static int int_ptr_type_to_size(enum bpf_arg_type type)
3605 {
3606 	if (type == ARG_PTR_TO_INT)
3607 		return sizeof(u32);
3608 	else if (type == ARG_PTR_TO_LONG)
3609 		return sizeof(u64);
3610 
3611 	return -EINVAL;
3612 }
3613 
3614 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
3615 			  enum bpf_arg_type arg_type,
3616 			  struct bpf_call_arg_meta *meta)
3617 {
3618 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3619 	enum bpf_reg_type expected_type, type = reg->type;
3620 	int err = 0;
3621 
3622 	if (arg_type == ARG_DONTCARE)
3623 		return 0;
3624 
3625 	err = check_reg_arg(env, regno, SRC_OP);
3626 	if (err)
3627 		return err;
3628 
3629 	if (arg_type == ARG_ANYTHING) {
3630 		if (is_pointer_value(env, regno)) {
3631 			verbose(env, "R%d leaks addr into helper function\n",
3632 				regno);
3633 			return -EACCES;
3634 		}
3635 		return 0;
3636 	}
3637 
3638 	if (type_is_pkt_pointer(type) &&
3639 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3640 		verbose(env, "helper access to the packet is not allowed\n");
3641 		return -EACCES;
3642 	}
3643 
3644 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
3645 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
3646 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3647 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3648 		expected_type = PTR_TO_STACK;
3649 		if (register_is_null(reg) &&
3650 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3651 			/* final test in check_stack_boundary() */;
3652 		else if (!type_is_pkt_pointer(type) &&
3653 			 type != PTR_TO_MAP_VALUE &&
3654 			 type != expected_type)
3655 			goto err_type;
3656 	} else if (arg_type == ARG_CONST_SIZE ||
3657 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
3658 		expected_type = SCALAR_VALUE;
3659 		if (type != expected_type)
3660 			goto err_type;
3661 	} else if (arg_type == ARG_CONST_MAP_PTR) {
3662 		expected_type = CONST_PTR_TO_MAP;
3663 		if (type != expected_type)
3664 			goto err_type;
3665 	} else if (arg_type == ARG_PTR_TO_CTX ||
3666 		   arg_type == ARG_PTR_TO_CTX_OR_NULL) {
3667 		expected_type = PTR_TO_CTX;
3668 		if (!(register_is_null(reg) &&
3669 		      arg_type == ARG_PTR_TO_CTX_OR_NULL)) {
3670 			if (type != expected_type)
3671 				goto err_type;
3672 			err = check_ctx_reg(env, reg, regno);
3673 			if (err < 0)
3674 				return err;
3675 		}
3676 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3677 		expected_type = PTR_TO_SOCK_COMMON;
3678 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3679 		if (!type_is_sk_pointer(type))
3680 			goto err_type;
3681 		if (reg->ref_obj_id) {
3682 			if (meta->ref_obj_id) {
3683 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3684 					regno, reg->ref_obj_id,
3685 					meta->ref_obj_id);
3686 				return -EFAULT;
3687 			}
3688 			meta->ref_obj_id = reg->ref_obj_id;
3689 		}
3690 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
3691 		expected_type = PTR_TO_SOCKET;
3692 		if (type != expected_type)
3693 			goto err_type;
3694 	} else if (arg_type == ARG_PTR_TO_BTF_ID) {
3695 		expected_type = PTR_TO_BTF_ID;
3696 		if (type != expected_type)
3697 			goto err_type;
3698 		if (reg->btf_id != meta->btf_id) {
3699 			verbose(env, "Helper has type %s got %s in R%d\n",
3700 				kernel_type_name(meta->btf_id),
3701 				kernel_type_name(reg->btf_id), regno);
3702 
3703 			return -EACCES;
3704 		}
3705 		if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
3706 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
3707 				regno);
3708 			return -EACCES;
3709 		}
3710 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3711 		if (meta->func_id == BPF_FUNC_spin_lock) {
3712 			if (process_spin_lock(env, regno, true))
3713 				return -EACCES;
3714 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
3715 			if (process_spin_lock(env, regno, false))
3716 				return -EACCES;
3717 		} else {
3718 			verbose(env, "verifier internal error\n");
3719 			return -EFAULT;
3720 		}
3721 	} else if (arg_type_is_mem_ptr(arg_type)) {
3722 		expected_type = PTR_TO_STACK;
3723 		/* One exception here. In case function allows for NULL to be
3724 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
3725 		 * happens during stack boundary checking.
3726 		 */
3727 		if (register_is_null(reg) &&
3728 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
3729 			/* final test in check_stack_boundary() */;
3730 		else if (!type_is_pkt_pointer(type) &&
3731 			 type != PTR_TO_MAP_VALUE &&
3732 			 type != expected_type)
3733 			goto err_type;
3734 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
3735 	} else if (arg_type_is_int_ptr(arg_type)) {
3736 		expected_type = PTR_TO_STACK;
3737 		if (!type_is_pkt_pointer(type) &&
3738 		    type != PTR_TO_MAP_VALUE &&
3739 		    type != expected_type)
3740 			goto err_type;
3741 	} else {
3742 		verbose(env, "unsupported arg_type %d\n", arg_type);
3743 		return -EFAULT;
3744 	}
3745 
3746 	if (arg_type == ARG_CONST_MAP_PTR) {
3747 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3748 		meta->map_ptr = reg->map_ptr;
3749 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3750 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
3751 		 * check that [key, key + map->key_size) are within
3752 		 * stack limits and initialized
3753 		 */
3754 		if (!meta->map_ptr) {
3755 			/* in function declaration map_ptr must come before
3756 			 * map_key, so that it's verified and known before
3757 			 * we have to check map_key here. Otherwise it means
3758 			 * that kernel subsystem misconfigured verifier
3759 			 */
3760 			verbose(env, "invalid map_ptr to access map->key\n");
3761 			return -EACCES;
3762 		}
3763 		err = check_helper_mem_access(env, regno,
3764 					      meta->map_ptr->key_size, false,
3765 					      NULL);
3766 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3767 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3768 		    !register_is_null(reg)) ||
3769 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
3770 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
3771 		 * check [value, value + map->value_size) validity
3772 		 */
3773 		if (!meta->map_ptr) {
3774 			/* kernel subsystem misconfigured verifier */
3775 			verbose(env, "invalid map_ptr to access map->value\n");
3776 			return -EACCES;
3777 		}
3778 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
3779 		err = check_helper_mem_access(env, regno,
3780 					      meta->map_ptr->value_size, false,
3781 					      meta);
3782 	} else if (arg_type_is_mem_size(arg_type)) {
3783 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
3784 
3785 		/* This is used to refine r0 return value bounds for helpers
3786 		 * that enforce this value as an upper bound on return values.
3787 		 * See do_refine_retval_range() for helpers that can refine
3788 		 * the return value. C type of helper is u32 so we pull register
3789 		 * bound from umax_value however, if negative verifier errors
3790 		 * out. Only upper bounds can be learned because retval is an
3791 		 * int type and negative retvals are allowed.
3792 		 */
3793 		meta->msize_max_value = reg->umax_value;
3794 
3795 		/* The register is SCALAR_VALUE; the access check
3796 		 * happens using its boundaries.
3797 		 */
3798 		if (!tnum_is_const(reg->var_off))
3799 			/* For unprivileged variable accesses, disable raw
3800 			 * mode so that the program is required to
3801 			 * initialize all the memory that the helper could
3802 			 * just partially fill up.
3803 			 */
3804 			meta = NULL;
3805 
3806 		if (reg->smin_value < 0) {
3807 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
3808 				regno);
3809 			return -EACCES;
3810 		}
3811 
3812 		if (reg->umin_value == 0) {
3813 			err = check_helper_mem_access(env, regno - 1, 0,
3814 						      zero_size_allowed,
3815 						      meta);
3816 			if (err)
3817 				return err;
3818 		}
3819 
3820 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
3821 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
3822 				regno);
3823 			return -EACCES;
3824 		}
3825 		err = check_helper_mem_access(env, regno - 1,
3826 					      reg->umax_value,
3827 					      zero_size_allowed, meta);
3828 		if (!err)
3829 			err = mark_chain_precision(env, regno);
3830 	} else if (arg_type_is_int_ptr(arg_type)) {
3831 		int size = int_ptr_type_to_size(arg_type);
3832 
3833 		err = check_helper_mem_access(env, regno, size, false, meta);
3834 		if (err)
3835 			return err;
3836 		err = check_ptr_alignment(env, reg, 0, size, true);
3837 	}
3838 
3839 	return err;
3840 err_type:
3841 	verbose(env, "R%d type=%s expected=%s\n", regno,
3842 		reg_type_str[type], reg_type_str[expected_type]);
3843 	return -EACCES;
3844 }
3845 
3846 static int check_map_func_compatibility(struct bpf_verifier_env *env,
3847 					struct bpf_map *map, int func_id)
3848 {
3849 	if (!map)
3850 		return 0;
3851 
3852 	/* We need a two way check, first is from map perspective ... */
3853 	switch (map->map_type) {
3854 	case BPF_MAP_TYPE_PROG_ARRAY:
3855 		if (func_id != BPF_FUNC_tail_call)
3856 			goto error;
3857 		break;
3858 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3859 		if (func_id != BPF_FUNC_perf_event_read &&
3860 		    func_id != BPF_FUNC_perf_event_output &&
3861 		    func_id != BPF_FUNC_skb_output &&
3862 		    func_id != BPF_FUNC_perf_event_read_value &&
3863 		    func_id != BPF_FUNC_xdp_output)
3864 			goto error;
3865 		break;
3866 	case BPF_MAP_TYPE_STACK_TRACE:
3867 		if (func_id != BPF_FUNC_get_stackid)
3868 			goto error;
3869 		break;
3870 	case BPF_MAP_TYPE_CGROUP_ARRAY:
3871 		if (func_id != BPF_FUNC_skb_under_cgroup &&
3872 		    func_id != BPF_FUNC_current_task_under_cgroup)
3873 			goto error;
3874 		break;
3875 	case BPF_MAP_TYPE_CGROUP_STORAGE:
3876 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
3877 		if (func_id != BPF_FUNC_get_local_storage)
3878 			goto error;
3879 		break;
3880 	case BPF_MAP_TYPE_DEVMAP:
3881 	case BPF_MAP_TYPE_DEVMAP_HASH:
3882 		if (func_id != BPF_FUNC_redirect_map &&
3883 		    func_id != BPF_FUNC_map_lookup_elem)
3884 			goto error;
3885 		break;
3886 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
3887 	 * appear.
3888 	 */
3889 	case BPF_MAP_TYPE_CPUMAP:
3890 		if (func_id != BPF_FUNC_redirect_map)
3891 			goto error;
3892 		break;
3893 	case BPF_MAP_TYPE_XSKMAP:
3894 		if (func_id != BPF_FUNC_redirect_map &&
3895 		    func_id != BPF_FUNC_map_lookup_elem)
3896 			goto error;
3897 		break;
3898 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
3899 	case BPF_MAP_TYPE_HASH_OF_MAPS:
3900 		if (func_id != BPF_FUNC_map_lookup_elem)
3901 			goto error;
3902 		break;
3903 	case BPF_MAP_TYPE_SOCKMAP:
3904 		if (func_id != BPF_FUNC_sk_redirect_map &&
3905 		    func_id != BPF_FUNC_sock_map_update &&
3906 		    func_id != BPF_FUNC_map_delete_elem &&
3907 		    func_id != BPF_FUNC_msg_redirect_map &&
3908 		    func_id != BPF_FUNC_sk_select_reuseport)
3909 			goto error;
3910 		break;
3911 	case BPF_MAP_TYPE_SOCKHASH:
3912 		if (func_id != BPF_FUNC_sk_redirect_hash &&
3913 		    func_id != BPF_FUNC_sock_hash_update &&
3914 		    func_id != BPF_FUNC_map_delete_elem &&
3915 		    func_id != BPF_FUNC_msg_redirect_hash &&
3916 		    func_id != BPF_FUNC_sk_select_reuseport)
3917 			goto error;
3918 		break;
3919 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3920 		if (func_id != BPF_FUNC_sk_select_reuseport)
3921 			goto error;
3922 		break;
3923 	case BPF_MAP_TYPE_QUEUE:
3924 	case BPF_MAP_TYPE_STACK:
3925 		if (func_id != BPF_FUNC_map_peek_elem &&
3926 		    func_id != BPF_FUNC_map_pop_elem &&
3927 		    func_id != BPF_FUNC_map_push_elem)
3928 			goto error;
3929 		break;
3930 	case BPF_MAP_TYPE_SK_STORAGE:
3931 		if (func_id != BPF_FUNC_sk_storage_get &&
3932 		    func_id != BPF_FUNC_sk_storage_delete)
3933 			goto error;
3934 		break;
3935 	default:
3936 		break;
3937 	}
3938 
3939 	/* ... and second from the function itself. */
3940 	switch (func_id) {
3941 	case BPF_FUNC_tail_call:
3942 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3943 			goto error;
3944 		if (env->subprog_cnt > 1) {
3945 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3946 			return -EINVAL;
3947 		}
3948 		break;
3949 	case BPF_FUNC_perf_event_read:
3950 	case BPF_FUNC_perf_event_output:
3951 	case BPF_FUNC_perf_event_read_value:
3952 	case BPF_FUNC_skb_output:
3953 	case BPF_FUNC_xdp_output:
3954 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3955 			goto error;
3956 		break;
3957 	case BPF_FUNC_get_stackid:
3958 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3959 			goto error;
3960 		break;
3961 	case BPF_FUNC_current_task_under_cgroup:
3962 	case BPF_FUNC_skb_under_cgroup:
3963 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3964 			goto error;
3965 		break;
3966 	case BPF_FUNC_redirect_map:
3967 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
3968 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
3969 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
3970 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
3971 			goto error;
3972 		break;
3973 	case BPF_FUNC_sk_redirect_map:
3974 	case BPF_FUNC_msg_redirect_map:
3975 	case BPF_FUNC_sock_map_update:
3976 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3977 			goto error;
3978 		break;
3979 	case BPF_FUNC_sk_redirect_hash:
3980 	case BPF_FUNC_msg_redirect_hash:
3981 	case BPF_FUNC_sock_hash_update:
3982 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
3983 			goto error;
3984 		break;
3985 	case BPF_FUNC_get_local_storage:
3986 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3987 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
3988 			goto error;
3989 		break;
3990 	case BPF_FUNC_sk_select_reuseport:
3991 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
3992 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
3993 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
3994 			goto error;
3995 		break;
3996 	case BPF_FUNC_map_peek_elem:
3997 	case BPF_FUNC_map_pop_elem:
3998 	case BPF_FUNC_map_push_elem:
3999 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4000 		    map->map_type != BPF_MAP_TYPE_STACK)
4001 			goto error;
4002 		break;
4003 	case BPF_FUNC_sk_storage_get:
4004 	case BPF_FUNC_sk_storage_delete:
4005 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4006 			goto error;
4007 		break;
4008 	default:
4009 		break;
4010 	}
4011 
4012 	return 0;
4013 error:
4014 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
4015 		map->map_type, func_id_name(func_id), func_id);
4016 	return -EINVAL;
4017 }
4018 
4019 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4020 {
4021 	int count = 0;
4022 
4023 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4024 		count++;
4025 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4026 		count++;
4027 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4028 		count++;
4029 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4030 		count++;
4031 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4032 		count++;
4033 
4034 	/* We only support one arg being in raw mode at the moment,
4035 	 * which is sufficient for the helper functions we have
4036 	 * right now.
4037 	 */
4038 	return count <= 1;
4039 }
4040 
4041 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4042 				    enum bpf_arg_type arg_next)
4043 {
4044 	return (arg_type_is_mem_ptr(arg_curr) &&
4045 	        !arg_type_is_mem_size(arg_next)) ||
4046 	       (!arg_type_is_mem_ptr(arg_curr) &&
4047 		arg_type_is_mem_size(arg_next));
4048 }
4049 
4050 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4051 {
4052 	/* bpf_xxx(..., buf, len) call will access 'len'
4053 	 * bytes from memory 'buf'. Both arg types need
4054 	 * to be paired, so make sure there's no buggy
4055 	 * helper function specification.
4056 	 */
4057 	if (arg_type_is_mem_size(fn->arg1_type) ||
4058 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
4059 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4060 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4061 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4062 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4063 		return false;
4064 
4065 	return true;
4066 }
4067 
4068 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4069 {
4070 	int count = 0;
4071 
4072 	if (arg_type_may_be_refcounted(fn->arg1_type))
4073 		count++;
4074 	if (arg_type_may_be_refcounted(fn->arg2_type))
4075 		count++;
4076 	if (arg_type_may_be_refcounted(fn->arg3_type))
4077 		count++;
4078 	if (arg_type_may_be_refcounted(fn->arg4_type))
4079 		count++;
4080 	if (arg_type_may_be_refcounted(fn->arg5_type))
4081 		count++;
4082 
4083 	/* A reference acquiring function cannot acquire
4084 	 * another refcounted ptr.
4085 	 */
4086 	if (is_acquire_function(func_id) && count)
4087 		return false;
4088 
4089 	/* We only support one arg being unreferenced at the moment,
4090 	 * which is sufficient for the helper functions we have right now.
4091 	 */
4092 	return count <= 1;
4093 }
4094 
4095 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
4096 {
4097 	return check_raw_mode_ok(fn) &&
4098 	       check_arg_pair_ok(fn) &&
4099 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
4100 }
4101 
4102 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4103  * are now invalid, so turn them into unknown SCALAR_VALUE.
4104  */
4105 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4106 				     struct bpf_func_state *state)
4107 {
4108 	struct bpf_reg_state *regs = state->regs, *reg;
4109 	int i;
4110 
4111 	for (i = 0; i < MAX_BPF_REG; i++)
4112 		if (reg_is_pkt_pointer_any(&regs[i]))
4113 			mark_reg_unknown(env, regs, i);
4114 
4115 	bpf_for_each_spilled_reg(i, state, reg) {
4116 		if (!reg)
4117 			continue;
4118 		if (reg_is_pkt_pointer_any(reg))
4119 			__mark_reg_unknown(env, reg);
4120 	}
4121 }
4122 
4123 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4124 {
4125 	struct bpf_verifier_state *vstate = env->cur_state;
4126 	int i;
4127 
4128 	for (i = 0; i <= vstate->curframe; i++)
4129 		__clear_all_pkt_pointers(env, vstate->frame[i]);
4130 }
4131 
4132 static void release_reg_references(struct bpf_verifier_env *env,
4133 				   struct bpf_func_state *state,
4134 				   int ref_obj_id)
4135 {
4136 	struct bpf_reg_state *regs = state->regs, *reg;
4137 	int i;
4138 
4139 	for (i = 0; i < MAX_BPF_REG; i++)
4140 		if (regs[i].ref_obj_id == ref_obj_id)
4141 			mark_reg_unknown(env, regs, i);
4142 
4143 	bpf_for_each_spilled_reg(i, state, reg) {
4144 		if (!reg)
4145 			continue;
4146 		if (reg->ref_obj_id == ref_obj_id)
4147 			__mark_reg_unknown(env, reg);
4148 	}
4149 }
4150 
4151 /* The pointer with the specified id has released its reference to kernel
4152  * resources. Identify all copies of the same pointer and clear the reference.
4153  */
4154 static int release_reference(struct bpf_verifier_env *env,
4155 			     int ref_obj_id)
4156 {
4157 	struct bpf_verifier_state *vstate = env->cur_state;
4158 	int err;
4159 	int i;
4160 
4161 	err = release_reference_state(cur_func(env), ref_obj_id);
4162 	if (err)
4163 		return err;
4164 
4165 	for (i = 0; i <= vstate->curframe; i++)
4166 		release_reg_references(env, vstate->frame[i], ref_obj_id);
4167 
4168 	return 0;
4169 }
4170 
4171 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4172 				    struct bpf_reg_state *regs)
4173 {
4174 	int i;
4175 
4176 	/* after the call registers r0 - r5 were scratched */
4177 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4178 		mark_reg_not_init(env, regs, caller_saved[i]);
4179 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4180 	}
4181 }
4182 
4183 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4184 			   int *insn_idx)
4185 {
4186 	struct bpf_verifier_state *state = env->cur_state;
4187 	struct bpf_func_info_aux *func_info_aux;
4188 	struct bpf_func_state *caller, *callee;
4189 	int i, err, subprog, target_insn;
4190 	bool is_global = false;
4191 
4192 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
4193 		verbose(env, "the call stack of %d frames is too deep\n",
4194 			state->curframe + 2);
4195 		return -E2BIG;
4196 	}
4197 
4198 	target_insn = *insn_idx + insn->imm;
4199 	subprog = find_subprog(env, target_insn + 1);
4200 	if (subprog < 0) {
4201 		verbose(env, "verifier bug. No program starts at insn %d\n",
4202 			target_insn + 1);
4203 		return -EFAULT;
4204 	}
4205 
4206 	caller = state->frame[state->curframe];
4207 	if (state->frame[state->curframe + 1]) {
4208 		verbose(env, "verifier bug. Frame %d already allocated\n",
4209 			state->curframe + 1);
4210 		return -EFAULT;
4211 	}
4212 
4213 	func_info_aux = env->prog->aux->func_info_aux;
4214 	if (func_info_aux)
4215 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4216 	err = btf_check_func_arg_match(env, subprog, caller->regs);
4217 	if (err == -EFAULT)
4218 		return err;
4219 	if (is_global) {
4220 		if (err) {
4221 			verbose(env, "Caller passes invalid args into func#%d\n",
4222 				subprog);
4223 			return err;
4224 		} else {
4225 			if (env->log.level & BPF_LOG_LEVEL)
4226 				verbose(env,
4227 					"Func#%d is global and valid. Skipping.\n",
4228 					subprog);
4229 			clear_caller_saved_regs(env, caller->regs);
4230 
4231 			/* All global functions return SCALAR_VALUE */
4232 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
4233 
4234 			/* continue with next insn after call */
4235 			return 0;
4236 		}
4237 	}
4238 
4239 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4240 	if (!callee)
4241 		return -ENOMEM;
4242 	state->frame[state->curframe + 1] = callee;
4243 
4244 	/* callee cannot access r0, r6 - r9 for reading and has to write
4245 	 * into its own stack before reading from it.
4246 	 * callee can read/write into caller's stack
4247 	 */
4248 	init_func_state(env, callee,
4249 			/* remember the callsite, it will be used by bpf_exit */
4250 			*insn_idx /* callsite */,
4251 			state->curframe + 1 /* frameno within this callchain */,
4252 			subprog /* subprog number within this prog */);
4253 
4254 	/* Transfer references to the callee */
4255 	err = transfer_reference_state(callee, caller);
4256 	if (err)
4257 		return err;
4258 
4259 	/* copy r1 - r5 args that callee can access.  The copy includes parent
4260 	 * pointers, which connects us up to the liveness chain
4261 	 */
4262 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4263 		callee->regs[i] = caller->regs[i];
4264 
4265 	clear_caller_saved_regs(env, caller->regs);
4266 
4267 	/* only increment it after check_reg_arg() finished */
4268 	state->curframe++;
4269 
4270 	/* and go analyze first insn of the callee */
4271 	*insn_idx = target_insn;
4272 
4273 	if (env->log.level & BPF_LOG_LEVEL) {
4274 		verbose(env, "caller:\n");
4275 		print_verifier_state(env, caller);
4276 		verbose(env, "callee:\n");
4277 		print_verifier_state(env, callee);
4278 	}
4279 	return 0;
4280 }
4281 
4282 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4283 {
4284 	struct bpf_verifier_state *state = env->cur_state;
4285 	struct bpf_func_state *caller, *callee;
4286 	struct bpf_reg_state *r0;
4287 	int err;
4288 
4289 	callee = state->frame[state->curframe];
4290 	r0 = &callee->regs[BPF_REG_0];
4291 	if (r0->type == PTR_TO_STACK) {
4292 		/* technically it's ok to return caller's stack pointer
4293 		 * (or caller's caller's pointer) back to the caller,
4294 		 * since these pointers are valid. Only current stack
4295 		 * pointer will be invalid as soon as function exits,
4296 		 * but let's be conservative
4297 		 */
4298 		verbose(env, "cannot return stack pointer to the caller\n");
4299 		return -EINVAL;
4300 	}
4301 
4302 	state->curframe--;
4303 	caller = state->frame[state->curframe];
4304 	/* return to the caller whatever r0 had in the callee */
4305 	caller->regs[BPF_REG_0] = *r0;
4306 
4307 	/* Transfer references to the caller */
4308 	err = transfer_reference_state(caller, callee);
4309 	if (err)
4310 		return err;
4311 
4312 	*insn_idx = callee->callsite + 1;
4313 	if (env->log.level & BPF_LOG_LEVEL) {
4314 		verbose(env, "returning from callee:\n");
4315 		print_verifier_state(env, callee);
4316 		verbose(env, "to caller at %d:\n", *insn_idx);
4317 		print_verifier_state(env, caller);
4318 	}
4319 	/* clear everything in the callee */
4320 	free_func_state(callee);
4321 	state->frame[state->curframe + 1] = NULL;
4322 	return 0;
4323 }
4324 
4325 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4326 				   int func_id,
4327 				   struct bpf_call_arg_meta *meta)
4328 {
4329 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4330 
4331 	if (ret_type != RET_INTEGER ||
4332 	    (func_id != BPF_FUNC_get_stack &&
4333 	     func_id != BPF_FUNC_probe_read_str))
4334 		return;
4335 
4336 	ret_reg->smax_value = meta->msize_max_value;
4337 	ret_reg->s32_max_value = meta->msize_max_value;
4338 	__reg_deduce_bounds(ret_reg);
4339 	__reg_bound_offset(ret_reg);
4340 	__update_reg_bounds(ret_reg);
4341 }
4342 
4343 static int
4344 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4345 		int func_id, int insn_idx)
4346 {
4347 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4348 	struct bpf_map *map = meta->map_ptr;
4349 
4350 	if (func_id != BPF_FUNC_tail_call &&
4351 	    func_id != BPF_FUNC_map_lookup_elem &&
4352 	    func_id != BPF_FUNC_map_update_elem &&
4353 	    func_id != BPF_FUNC_map_delete_elem &&
4354 	    func_id != BPF_FUNC_map_push_elem &&
4355 	    func_id != BPF_FUNC_map_pop_elem &&
4356 	    func_id != BPF_FUNC_map_peek_elem)
4357 		return 0;
4358 
4359 	if (map == NULL) {
4360 		verbose(env, "kernel subsystem misconfigured verifier\n");
4361 		return -EINVAL;
4362 	}
4363 
4364 	/* In case of read-only, some additional restrictions
4365 	 * need to be applied in order to prevent altering the
4366 	 * state of the map from program side.
4367 	 */
4368 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4369 	    (func_id == BPF_FUNC_map_delete_elem ||
4370 	     func_id == BPF_FUNC_map_update_elem ||
4371 	     func_id == BPF_FUNC_map_push_elem ||
4372 	     func_id == BPF_FUNC_map_pop_elem)) {
4373 		verbose(env, "write into map forbidden\n");
4374 		return -EACCES;
4375 	}
4376 
4377 	if (!BPF_MAP_PTR(aux->map_ptr_state))
4378 		bpf_map_ptr_store(aux, meta->map_ptr,
4379 				  meta->map_ptr->unpriv_array);
4380 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4381 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4382 				  meta->map_ptr->unpriv_array);
4383 	return 0;
4384 }
4385 
4386 static int
4387 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4388 		int func_id, int insn_idx)
4389 {
4390 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4391 	struct bpf_reg_state *regs = cur_regs(env), *reg;
4392 	struct bpf_map *map = meta->map_ptr;
4393 	struct tnum range;
4394 	u64 val;
4395 	int err;
4396 
4397 	if (func_id != BPF_FUNC_tail_call)
4398 		return 0;
4399 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4400 		verbose(env, "kernel subsystem misconfigured verifier\n");
4401 		return -EINVAL;
4402 	}
4403 
4404 	range = tnum_range(0, map->max_entries - 1);
4405 	reg = &regs[BPF_REG_3];
4406 
4407 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4408 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4409 		return 0;
4410 	}
4411 
4412 	err = mark_chain_precision(env, BPF_REG_3);
4413 	if (err)
4414 		return err;
4415 
4416 	val = reg->var_off.value;
4417 	if (bpf_map_key_unseen(aux))
4418 		bpf_map_key_store(aux, val);
4419 	else if (!bpf_map_key_poisoned(aux) &&
4420 		  bpf_map_key_immediate(aux) != val)
4421 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4422 	return 0;
4423 }
4424 
4425 static int check_reference_leak(struct bpf_verifier_env *env)
4426 {
4427 	struct bpf_func_state *state = cur_func(env);
4428 	int i;
4429 
4430 	for (i = 0; i < state->acquired_refs; i++) {
4431 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4432 			state->refs[i].id, state->refs[i].insn_idx);
4433 	}
4434 	return state->acquired_refs ? -EINVAL : 0;
4435 }
4436 
4437 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
4438 {
4439 	const struct bpf_func_proto *fn = NULL;
4440 	struct bpf_reg_state *regs;
4441 	struct bpf_call_arg_meta meta;
4442 	bool changes_data;
4443 	int i, err;
4444 
4445 	/* find function prototype */
4446 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
4447 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4448 			func_id);
4449 		return -EINVAL;
4450 	}
4451 
4452 	if (env->ops->get_func_proto)
4453 		fn = env->ops->get_func_proto(func_id, env->prog);
4454 	if (!fn) {
4455 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4456 			func_id);
4457 		return -EINVAL;
4458 	}
4459 
4460 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
4461 	if (!env->prog->gpl_compatible && fn->gpl_only) {
4462 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
4463 		return -EINVAL;
4464 	}
4465 
4466 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
4467 	changes_data = bpf_helper_changes_pkt_data(fn->func);
4468 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4469 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4470 			func_id_name(func_id), func_id);
4471 		return -EINVAL;
4472 	}
4473 
4474 	memset(&meta, 0, sizeof(meta));
4475 	meta.pkt_access = fn->pkt_access;
4476 
4477 	err = check_func_proto(fn, func_id);
4478 	if (err) {
4479 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
4480 			func_id_name(func_id), func_id);
4481 		return err;
4482 	}
4483 
4484 	meta.func_id = func_id;
4485 	/* check args */
4486 	for (i = 0; i < 5; i++) {
4487 		err = btf_resolve_helper_id(&env->log, fn, i);
4488 		if (err > 0)
4489 			meta.btf_id = err;
4490 		err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta);
4491 		if (err)
4492 			return err;
4493 	}
4494 
4495 	err = record_func_map(env, &meta, func_id, insn_idx);
4496 	if (err)
4497 		return err;
4498 
4499 	err = record_func_key(env, &meta, func_id, insn_idx);
4500 	if (err)
4501 		return err;
4502 
4503 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
4504 	 * is inferred from register state.
4505 	 */
4506 	for (i = 0; i < meta.access_size; i++) {
4507 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4508 				       BPF_WRITE, -1, false);
4509 		if (err)
4510 			return err;
4511 	}
4512 
4513 	if (func_id == BPF_FUNC_tail_call) {
4514 		err = check_reference_leak(env);
4515 		if (err) {
4516 			verbose(env, "tail_call would lead to reference leak\n");
4517 			return err;
4518 		}
4519 	} else if (is_release_function(func_id)) {
4520 		err = release_reference(env, meta.ref_obj_id);
4521 		if (err) {
4522 			verbose(env, "func %s#%d reference has not been acquired before\n",
4523 				func_id_name(func_id), func_id);
4524 			return err;
4525 		}
4526 	}
4527 
4528 	regs = cur_regs(env);
4529 
4530 	/* check that flags argument in get_local_storage(map, flags) is 0,
4531 	 * this is required because get_local_storage() can't return an error.
4532 	 */
4533 	if (func_id == BPF_FUNC_get_local_storage &&
4534 	    !register_is_null(&regs[BPF_REG_2])) {
4535 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4536 		return -EINVAL;
4537 	}
4538 
4539 	/* reset caller saved regs */
4540 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4541 		mark_reg_not_init(env, regs, caller_saved[i]);
4542 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4543 	}
4544 
4545 	/* helper call returns 64-bit value. */
4546 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4547 
4548 	/* update return register (already marked as written above) */
4549 	if (fn->ret_type == RET_INTEGER) {
4550 		/* sets type to SCALAR_VALUE */
4551 		mark_reg_unknown(env, regs, BPF_REG_0);
4552 	} else if (fn->ret_type == RET_VOID) {
4553 		regs[BPF_REG_0].type = NOT_INIT;
4554 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4555 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4556 		/* There is no offset yet applied, variable or fixed */
4557 		mark_reg_known_zero(env, regs, BPF_REG_0);
4558 		/* remember map_ptr, so that check_map_access()
4559 		 * can check 'value_size' boundary of memory access
4560 		 * to map element returned from bpf_map_lookup_elem()
4561 		 */
4562 		if (meta.map_ptr == NULL) {
4563 			verbose(env,
4564 				"kernel subsystem misconfigured verifier\n");
4565 			return -EINVAL;
4566 		}
4567 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
4568 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4569 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4570 			if (map_value_has_spin_lock(meta.map_ptr))
4571 				regs[BPF_REG_0].id = ++env->id_gen;
4572 		} else {
4573 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4574 			regs[BPF_REG_0].id = ++env->id_gen;
4575 		}
4576 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4577 		mark_reg_known_zero(env, regs, BPF_REG_0);
4578 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4579 		regs[BPF_REG_0].id = ++env->id_gen;
4580 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4581 		mark_reg_known_zero(env, regs, BPF_REG_0);
4582 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4583 		regs[BPF_REG_0].id = ++env->id_gen;
4584 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4585 		mark_reg_known_zero(env, regs, BPF_REG_0);
4586 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4587 		regs[BPF_REG_0].id = ++env->id_gen;
4588 	} else {
4589 		verbose(env, "unknown return type %d of func %s#%d\n",
4590 			fn->ret_type, func_id_name(func_id), func_id);
4591 		return -EINVAL;
4592 	}
4593 
4594 	if (is_ptr_cast_function(func_id)) {
4595 		/* For release_reference() */
4596 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4597 	} else if (is_acquire_function(func_id)) {
4598 		int id = acquire_reference_state(env, insn_idx);
4599 
4600 		if (id < 0)
4601 			return id;
4602 		/* For mark_ptr_or_null_reg() */
4603 		regs[BPF_REG_0].id = id;
4604 		/* For release_reference() */
4605 		regs[BPF_REG_0].ref_obj_id = id;
4606 	}
4607 
4608 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4609 
4610 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4611 	if (err)
4612 		return err;
4613 
4614 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4615 		const char *err_str;
4616 
4617 #ifdef CONFIG_PERF_EVENTS
4618 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
4619 		err_str = "cannot get callchain buffer for func %s#%d\n";
4620 #else
4621 		err = -ENOTSUPP;
4622 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4623 #endif
4624 		if (err) {
4625 			verbose(env, err_str, func_id_name(func_id), func_id);
4626 			return err;
4627 		}
4628 
4629 		env->prog->has_callchain_buf = true;
4630 	}
4631 
4632 	if (changes_data)
4633 		clear_all_pkt_pointers(env);
4634 	return 0;
4635 }
4636 
4637 static bool signed_add_overflows(s64 a, s64 b)
4638 {
4639 	/* Do the add in u64, where overflow is well-defined */
4640 	s64 res = (s64)((u64)a + (u64)b);
4641 
4642 	if (b < 0)
4643 		return res > a;
4644 	return res < a;
4645 }
4646 
4647 static bool signed_add32_overflows(s64 a, s64 b)
4648 {
4649 	/* Do the add in u32, where overflow is well-defined */
4650 	s32 res = (s32)((u32)a + (u32)b);
4651 
4652 	if (b < 0)
4653 		return res > a;
4654 	return res < a;
4655 }
4656 
4657 static bool signed_sub_overflows(s32 a, s32 b)
4658 {
4659 	/* Do the sub in u64, where overflow is well-defined */
4660 	s64 res = (s64)((u64)a - (u64)b);
4661 
4662 	if (b < 0)
4663 		return res < a;
4664 	return res > a;
4665 }
4666 
4667 static bool signed_sub32_overflows(s32 a, s32 b)
4668 {
4669 	/* Do the sub in u64, where overflow is well-defined */
4670 	s32 res = (s32)((u32)a - (u32)b);
4671 
4672 	if (b < 0)
4673 		return res < a;
4674 	return res > a;
4675 }
4676 
4677 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4678 				  const struct bpf_reg_state *reg,
4679 				  enum bpf_reg_type type)
4680 {
4681 	bool known = tnum_is_const(reg->var_off);
4682 	s64 val = reg->var_off.value;
4683 	s64 smin = reg->smin_value;
4684 
4685 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4686 		verbose(env, "math between %s pointer and %lld is not allowed\n",
4687 			reg_type_str[type], val);
4688 		return false;
4689 	}
4690 
4691 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4692 		verbose(env, "%s pointer offset %d is not allowed\n",
4693 			reg_type_str[type], reg->off);
4694 		return false;
4695 	}
4696 
4697 	if (smin == S64_MIN) {
4698 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4699 			reg_type_str[type]);
4700 		return false;
4701 	}
4702 
4703 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4704 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
4705 			smin, reg_type_str[type]);
4706 		return false;
4707 	}
4708 
4709 	return true;
4710 }
4711 
4712 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4713 {
4714 	return &env->insn_aux_data[env->insn_idx];
4715 }
4716 
4717 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4718 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
4719 {
4720 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
4721 			    (opcode == BPF_SUB && !off_is_neg);
4722 	u32 off;
4723 
4724 	switch (ptr_reg->type) {
4725 	case PTR_TO_STACK:
4726 		/* Indirect variable offset stack access is prohibited in
4727 		 * unprivileged mode so it's not handled here.
4728 		 */
4729 		off = ptr_reg->off + ptr_reg->var_off.value;
4730 		if (mask_to_left)
4731 			*ptr_limit = MAX_BPF_STACK + off;
4732 		else
4733 			*ptr_limit = -off;
4734 		return 0;
4735 	case PTR_TO_MAP_VALUE:
4736 		if (mask_to_left) {
4737 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4738 		} else {
4739 			off = ptr_reg->smin_value + ptr_reg->off;
4740 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
4741 		}
4742 		return 0;
4743 	default:
4744 		return -EINVAL;
4745 	}
4746 }
4747 
4748 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4749 				    const struct bpf_insn *insn)
4750 {
4751 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4752 }
4753 
4754 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4755 				       u32 alu_state, u32 alu_limit)
4756 {
4757 	/* If we arrived here from different branches with different
4758 	 * state or limits to sanitize, then this won't work.
4759 	 */
4760 	if (aux->alu_state &&
4761 	    (aux->alu_state != alu_state ||
4762 	     aux->alu_limit != alu_limit))
4763 		return -EACCES;
4764 
4765 	/* Corresponding fixup done in fixup_bpf_calls(). */
4766 	aux->alu_state = alu_state;
4767 	aux->alu_limit = alu_limit;
4768 	return 0;
4769 }
4770 
4771 static int sanitize_val_alu(struct bpf_verifier_env *env,
4772 			    struct bpf_insn *insn)
4773 {
4774 	struct bpf_insn_aux_data *aux = cur_aux(env);
4775 
4776 	if (can_skip_alu_sanitation(env, insn))
4777 		return 0;
4778 
4779 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4780 }
4781 
4782 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4783 			    struct bpf_insn *insn,
4784 			    const struct bpf_reg_state *ptr_reg,
4785 			    struct bpf_reg_state *dst_reg,
4786 			    bool off_is_neg)
4787 {
4788 	struct bpf_verifier_state *vstate = env->cur_state;
4789 	struct bpf_insn_aux_data *aux = cur_aux(env);
4790 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
4791 	u8 opcode = BPF_OP(insn->code);
4792 	u32 alu_state, alu_limit;
4793 	struct bpf_reg_state tmp;
4794 	bool ret;
4795 
4796 	if (can_skip_alu_sanitation(env, insn))
4797 		return 0;
4798 
4799 	/* We already marked aux for masking from non-speculative
4800 	 * paths, thus we got here in the first place. We only care
4801 	 * to explore bad access from here.
4802 	 */
4803 	if (vstate->speculative)
4804 		goto do_sim;
4805 
4806 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4807 	alu_state |= ptr_is_dst_reg ?
4808 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4809 
4810 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4811 		return 0;
4812 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
4813 		return -EACCES;
4814 do_sim:
4815 	/* Simulate and find potential out-of-bounds access under
4816 	 * speculative execution from truncation as a result of
4817 	 * masking when off was not within expected range. If off
4818 	 * sits in dst, then we temporarily need to move ptr there
4819 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4820 	 * for cases where we use K-based arithmetic in one direction
4821 	 * and truncated reg-based in the other in order to explore
4822 	 * bad access.
4823 	 */
4824 	if (!ptr_is_dst_reg) {
4825 		tmp = *dst_reg;
4826 		*dst_reg = *ptr_reg;
4827 	}
4828 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
4829 	if (!ptr_is_dst_reg && ret)
4830 		*dst_reg = tmp;
4831 	return !ret ? -EFAULT : 0;
4832 }
4833 
4834 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
4835  * Caller should also handle BPF_MOV case separately.
4836  * If we return -EACCES, caller may want to try again treating pointer as a
4837  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
4838  */
4839 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4840 				   struct bpf_insn *insn,
4841 				   const struct bpf_reg_state *ptr_reg,
4842 				   const struct bpf_reg_state *off_reg)
4843 {
4844 	struct bpf_verifier_state *vstate = env->cur_state;
4845 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4846 	struct bpf_reg_state *regs = state->regs, *dst_reg;
4847 	bool known = tnum_is_const(off_reg->var_off);
4848 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4849 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4850 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4851 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
4852 	u32 dst = insn->dst_reg, src = insn->src_reg;
4853 	u8 opcode = BPF_OP(insn->code);
4854 	int ret;
4855 
4856 	dst_reg = &regs[dst];
4857 
4858 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4859 	    smin_val > smax_val || umin_val > umax_val) {
4860 		/* Taint dst register if offset had invalid bounds derived from
4861 		 * e.g. dead branches.
4862 		 */
4863 		__mark_reg_unknown(env, dst_reg);
4864 		return 0;
4865 	}
4866 
4867 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4868 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
4869 		verbose(env,
4870 			"R%d 32-bit pointer arithmetic prohibited\n",
4871 			dst);
4872 		return -EACCES;
4873 	}
4874 
4875 	switch (ptr_reg->type) {
4876 	case PTR_TO_MAP_VALUE_OR_NULL:
4877 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4878 			dst, reg_type_str[ptr_reg->type]);
4879 		return -EACCES;
4880 	case CONST_PTR_TO_MAP:
4881 	case PTR_TO_PACKET_END:
4882 	case PTR_TO_SOCKET:
4883 	case PTR_TO_SOCKET_OR_NULL:
4884 	case PTR_TO_SOCK_COMMON:
4885 	case PTR_TO_SOCK_COMMON_OR_NULL:
4886 	case PTR_TO_TCP_SOCK:
4887 	case PTR_TO_TCP_SOCK_OR_NULL:
4888 	case PTR_TO_XDP_SOCK:
4889 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4890 			dst, reg_type_str[ptr_reg->type]);
4891 		return -EACCES;
4892 	case PTR_TO_MAP_VALUE:
4893 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4894 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4895 				off_reg == dst_reg ? dst : src);
4896 			return -EACCES;
4897 		}
4898 		/* fall-through */
4899 	default:
4900 		break;
4901 	}
4902 
4903 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4904 	 * The id may be overwritten later if we create a new variable offset.
4905 	 */
4906 	dst_reg->type = ptr_reg->type;
4907 	dst_reg->id = ptr_reg->id;
4908 
4909 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4910 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4911 		return -EINVAL;
4912 
4913 	/* pointer types do not carry 32-bit bounds at the moment. */
4914 	__mark_reg32_unbounded(dst_reg);
4915 
4916 	switch (opcode) {
4917 	case BPF_ADD:
4918 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4919 		if (ret < 0) {
4920 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
4921 			return ret;
4922 		}
4923 		/* We can take a fixed offset as long as it doesn't overflow
4924 		 * the s32 'off' field
4925 		 */
4926 		if (known && (ptr_reg->off + smin_val ==
4927 			      (s64)(s32)(ptr_reg->off + smin_val))) {
4928 			/* pointer += K.  Accumulate it into fixed offset */
4929 			dst_reg->smin_value = smin_ptr;
4930 			dst_reg->smax_value = smax_ptr;
4931 			dst_reg->umin_value = umin_ptr;
4932 			dst_reg->umax_value = umax_ptr;
4933 			dst_reg->var_off = ptr_reg->var_off;
4934 			dst_reg->off = ptr_reg->off + smin_val;
4935 			dst_reg->raw = ptr_reg->raw;
4936 			break;
4937 		}
4938 		/* A new variable offset is created.  Note that off_reg->off
4939 		 * == 0, since it's a scalar.
4940 		 * dst_reg gets the pointer type and since some positive
4941 		 * integer value was added to the pointer, give it a new 'id'
4942 		 * if it's a PTR_TO_PACKET.
4943 		 * this creates a new 'base' pointer, off_reg (variable) gets
4944 		 * added into the variable offset, and we copy the fixed offset
4945 		 * from ptr_reg.
4946 		 */
4947 		if (signed_add_overflows(smin_ptr, smin_val) ||
4948 		    signed_add_overflows(smax_ptr, smax_val)) {
4949 			dst_reg->smin_value = S64_MIN;
4950 			dst_reg->smax_value = S64_MAX;
4951 		} else {
4952 			dst_reg->smin_value = smin_ptr + smin_val;
4953 			dst_reg->smax_value = smax_ptr + smax_val;
4954 		}
4955 		if (umin_ptr + umin_val < umin_ptr ||
4956 		    umax_ptr + umax_val < umax_ptr) {
4957 			dst_reg->umin_value = 0;
4958 			dst_reg->umax_value = U64_MAX;
4959 		} else {
4960 			dst_reg->umin_value = umin_ptr + umin_val;
4961 			dst_reg->umax_value = umax_ptr + umax_val;
4962 		}
4963 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4964 		dst_reg->off = ptr_reg->off;
4965 		dst_reg->raw = ptr_reg->raw;
4966 		if (reg_is_pkt_pointer(ptr_reg)) {
4967 			dst_reg->id = ++env->id_gen;
4968 			/* something was added to pkt_ptr, set range to zero */
4969 			dst_reg->raw = 0;
4970 		}
4971 		break;
4972 	case BPF_SUB:
4973 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4974 		if (ret < 0) {
4975 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4976 			return ret;
4977 		}
4978 		if (dst_reg == off_reg) {
4979 			/* scalar -= pointer.  Creates an unknown scalar */
4980 			verbose(env, "R%d tried to subtract pointer from scalar\n",
4981 				dst);
4982 			return -EACCES;
4983 		}
4984 		/* We don't allow subtraction from FP, because (according to
4985 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
4986 		 * be able to deal with it.
4987 		 */
4988 		if (ptr_reg->type == PTR_TO_STACK) {
4989 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
4990 				dst);
4991 			return -EACCES;
4992 		}
4993 		if (known && (ptr_reg->off - smin_val ==
4994 			      (s64)(s32)(ptr_reg->off - smin_val))) {
4995 			/* pointer -= K.  Subtract it from fixed offset */
4996 			dst_reg->smin_value = smin_ptr;
4997 			dst_reg->smax_value = smax_ptr;
4998 			dst_reg->umin_value = umin_ptr;
4999 			dst_reg->umax_value = umax_ptr;
5000 			dst_reg->var_off = ptr_reg->var_off;
5001 			dst_reg->id = ptr_reg->id;
5002 			dst_reg->off = ptr_reg->off - smin_val;
5003 			dst_reg->raw = ptr_reg->raw;
5004 			break;
5005 		}
5006 		/* A new variable offset is created.  If the subtrahend is known
5007 		 * nonnegative, then any reg->range we had before is still good.
5008 		 */
5009 		if (signed_sub_overflows(smin_ptr, smax_val) ||
5010 		    signed_sub_overflows(smax_ptr, smin_val)) {
5011 			/* Overflow possible, we know nothing */
5012 			dst_reg->smin_value = S64_MIN;
5013 			dst_reg->smax_value = S64_MAX;
5014 		} else {
5015 			dst_reg->smin_value = smin_ptr - smax_val;
5016 			dst_reg->smax_value = smax_ptr - smin_val;
5017 		}
5018 		if (umin_ptr < umax_val) {
5019 			/* Overflow possible, we know nothing */
5020 			dst_reg->umin_value = 0;
5021 			dst_reg->umax_value = U64_MAX;
5022 		} else {
5023 			/* Cannot overflow (as long as bounds are consistent) */
5024 			dst_reg->umin_value = umin_ptr - umax_val;
5025 			dst_reg->umax_value = umax_ptr - umin_val;
5026 		}
5027 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5028 		dst_reg->off = ptr_reg->off;
5029 		dst_reg->raw = ptr_reg->raw;
5030 		if (reg_is_pkt_pointer(ptr_reg)) {
5031 			dst_reg->id = ++env->id_gen;
5032 			/* something was added to pkt_ptr, set range to zero */
5033 			if (smin_val < 0)
5034 				dst_reg->raw = 0;
5035 		}
5036 		break;
5037 	case BPF_AND:
5038 	case BPF_OR:
5039 	case BPF_XOR:
5040 		/* bitwise ops on pointers are troublesome, prohibit. */
5041 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5042 			dst, bpf_alu_string[opcode >> 4]);
5043 		return -EACCES;
5044 	default:
5045 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
5046 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5047 			dst, bpf_alu_string[opcode >> 4]);
5048 		return -EACCES;
5049 	}
5050 
5051 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5052 		return -EINVAL;
5053 
5054 	__update_reg_bounds(dst_reg);
5055 	__reg_deduce_bounds(dst_reg);
5056 	__reg_bound_offset(dst_reg);
5057 
5058 	/* For unprivileged we require that resulting offset must be in bounds
5059 	 * in order to be able to sanitize access later on.
5060 	 */
5061 	if (!env->allow_ptr_leaks) {
5062 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
5063 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
5064 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5065 				"prohibited for !root\n", dst);
5066 			return -EACCES;
5067 		} else if (dst_reg->type == PTR_TO_STACK &&
5068 			   check_stack_access(env, dst_reg, dst_reg->off +
5069 					      dst_reg->var_off.value, 1)) {
5070 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
5071 				"prohibited for !root\n", dst);
5072 			return -EACCES;
5073 		}
5074 	}
5075 
5076 	return 0;
5077 }
5078 
5079 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5080 				 struct bpf_reg_state *src_reg)
5081 {
5082 	s32 smin_val = src_reg->s32_min_value;
5083 	s32 smax_val = src_reg->s32_max_value;
5084 	u32 umin_val = src_reg->u32_min_value;
5085 	u32 umax_val = src_reg->u32_max_value;
5086 
5087 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5088 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5089 		dst_reg->s32_min_value = S32_MIN;
5090 		dst_reg->s32_max_value = S32_MAX;
5091 	} else {
5092 		dst_reg->s32_min_value += smin_val;
5093 		dst_reg->s32_max_value += smax_val;
5094 	}
5095 	if (dst_reg->u32_min_value + umin_val < umin_val ||
5096 	    dst_reg->u32_max_value + umax_val < umax_val) {
5097 		dst_reg->u32_min_value = 0;
5098 		dst_reg->u32_max_value = U32_MAX;
5099 	} else {
5100 		dst_reg->u32_min_value += umin_val;
5101 		dst_reg->u32_max_value += umax_val;
5102 	}
5103 }
5104 
5105 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5106 			       struct bpf_reg_state *src_reg)
5107 {
5108 	s64 smin_val = src_reg->smin_value;
5109 	s64 smax_val = src_reg->smax_value;
5110 	u64 umin_val = src_reg->umin_value;
5111 	u64 umax_val = src_reg->umax_value;
5112 
5113 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5114 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
5115 		dst_reg->smin_value = S64_MIN;
5116 		dst_reg->smax_value = S64_MAX;
5117 	} else {
5118 		dst_reg->smin_value += smin_val;
5119 		dst_reg->smax_value += smax_val;
5120 	}
5121 	if (dst_reg->umin_value + umin_val < umin_val ||
5122 	    dst_reg->umax_value + umax_val < umax_val) {
5123 		dst_reg->umin_value = 0;
5124 		dst_reg->umax_value = U64_MAX;
5125 	} else {
5126 		dst_reg->umin_value += umin_val;
5127 		dst_reg->umax_value += umax_val;
5128 	}
5129 }
5130 
5131 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5132 				 struct bpf_reg_state *src_reg)
5133 {
5134 	s32 smin_val = src_reg->s32_min_value;
5135 	s32 smax_val = src_reg->s32_max_value;
5136 	u32 umin_val = src_reg->u32_min_value;
5137 	u32 umax_val = src_reg->u32_max_value;
5138 
5139 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5140 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5141 		/* Overflow possible, we know nothing */
5142 		dst_reg->s32_min_value = S32_MIN;
5143 		dst_reg->s32_max_value = S32_MAX;
5144 	} else {
5145 		dst_reg->s32_min_value -= smax_val;
5146 		dst_reg->s32_max_value -= smin_val;
5147 	}
5148 	if (dst_reg->u32_min_value < umax_val) {
5149 		/* Overflow possible, we know nothing */
5150 		dst_reg->u32_min_value = 0;
5151 		dst_reg->u32_max_value = U32_MAX;
5152 	} else {
5153 		/* Cannot overflow (as long as bounds are consistent) */
5154 		dst_reg->u32_min_value -= umax_val;
5155 		dst_reg->u32_max_value -= umin_val;
5156 	}
5157 }
5158 
5159 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5160 			       struct bpf_reg_state *src_reg)
5161 {
5162 	s64 smin_val = src_reg->smin_value;
5163 	s64 smax_val = src_reg->smax_value;
5164 	u64 umin_val = src_reg->umin_value;
5165 	u64 umax_val = src_reg->umax_value;
5166 
5167 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5168 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5169 		/* Overflow possible, we know nothing */
5170 		dst_reg->smin_value = S64_MIN;
5171 		dst_reg->smax_value = S64_MAX;
5172 	} else {
5173 		dst_reg->smin_value -= smax_val;
5174 		dst_reg->smax_value -= smin_val;
5175 	}
5176 	if (dst_reg->umin_value < umax_val) {
5177 		/* Overflow possible, we know nothing */
5178 		dst_reg->umin_value = 0;
5179 		dst_reg->umax_value = U64_MAX;
5180 	} else {
5181 		/* Cannot overflow (as long as bounds are consistent) */
5182 		dst_reg->umin_value -= umax_val;
5183 		dst_reg->umax_value -= umin_val;
5184 	}
5185 }
5186 
5187 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5188 				 struct bpf_reg_state *src_reg)
5189 {
5190 	s32 smin_val = src_reg->s32_min_value;
5191 	u32 umin_val = src_reg->u32_min_value;
5192 	u32 umax_val = src_reg->u32_max_value;
5193 
5194 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5195 		/* Ain't nobody got time to multiply that sign */
5196 		__mark_reg32_unbounded(dst_reg);
5197 		return;
5198 	}
5199 	/* Both values are positive, so we can work with unsigned and
5200 	 * copy the result to signed (unless it exceeds S32_MAX).
5201 	 */
5202 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5203 		/* Potential overflow, we know nothing */
5204 		__mark_reg32_unbounded(dst_reg);
5205 		return;
5206 	}
5207 	dst_reg->u32_min_value *= umin_val;
5208 	dst_reg->u32_max_value *= umax_val;
5209 	if (dst_reg->u32_max_value > S32_MAX) {
5210 		/* Overflow possible, we know nothing */
5211 		dst_reg->s32_min_value = S32_MIN;
5212 		dst_reg->s32_max_value = S32_MAX;
5213 	} else {
5214 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5215 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5216 	}
5217 }
5218 
5219 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5220 			       struct bpf_reg_state *src_reg)
5221 {
5222 	s64 smin_val = src_reg->smin_value;
5223 	u64 umin_val = src_reg->umin_value;
5224 	u64 umax_val = src_reg->umax_value;
5225 
5226 	if (smin_val < 0 || dst_reg->smin_value < 0) {
5227 		/* Ain't nobody got time to multiply that sign */
5228 		__mark_reg64_unbounded(dst_reg);
5229 		return;
5230 	}
5231 	/* Both values are positive, so we can work with unsigned and
5232 	 * copy the result to signed (unless it exceeds S64_MAX).
5233 	 */
5234 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5235 		/* Potential overflow, we know nothing */
5236 		__mark_reg64_unbounded(dst_reg);
5237 		return;
5238 	}
5239 	dst_reg->umin_value *= umin_val;
5240 	dst_reg->umax_value *= umax_val;
5241 	if (dst_reg->umax_value > S64_MAX) {
5242 		/* Overflow possible, we know nothing */
5243 		dst_reg->smin_value = S64_MIN;
5244 		dst_reg->smax_value = S64_MAX;
5245 	} else {
5246 		dst_reg->smin_value = dst_reg->umin_value;
5247 		dst_reg->smax_value = dst_reg->umax_value;
5248 	}
5249 }
5250 
5251 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5252 				 struct bpf_reg_state *src_reg)
5253 {
5254 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5255 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5256 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5257 	s32 smin_val = src_reg->s32_min_value;
5258 	u32 umax_val = src_reg->u32_max_value;
5259 
5260 	/* Assuming scalar64_min_max_and will be called so its safe
5261 	 * to skip updating register for known 32-bit case.
5262 	 */
5263 	if (src_known && dst_known)
5264 		return;
5265 
5266 	/* We get our minimum from the var_off, since that's inherently
5267 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5268 	 */
5269 	dst_reg->u32_min_value = var32_off.value;
5270 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5271 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5272 		/* Lose signed bounds when ANDing negative numbers,
5273 		 * ain't nobody got time for that.
5274 		 */
5275 		dst_reg->s32_min_value = S32_MIN;
5276 		dst_reg->s32_max_value = S32_MAX;
5277 	} else {
5278 		/* ANDing two positives gives a positive, so safe to
5279 		 * cast result into s64.
5280 		 */
5281 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5282 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5283 	}
5284 
5285 }
5286 
5287 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5288 			       struct bpf_reg_state *src_reg)
5289 {
5290 	bool src_known = tnum_is_const(src_reg->var_off);
5291 	bool dst_known = tnum_is_const(dst_reg->var_off);
5292 	s64 smin_val = src_reg->smin_value;
5293 	u64 umax_val = src_reg->umax_value;
5294 
5295 	if (src_known && dst_known) {
5296 		__mark_reg_known(dst_reg, dst_reg->var_off.value &
5297 					  src_reg->var_off.value);
5298 		return;
5299 	}
5300 
5301 	/* We get our minimum from the var_off, since that's inherently
5302 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5303 	 */
5304 	dst_reg->umin_value = dst_reg->var_off.value;
5305 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5306 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5307 		/* Lose signed bounds when ANDing negative numbers,
5308 		 * ain't nobody got time for that.
5309 		 */
5310 		dst_reg->smin_value = S64_MIN;
5311 		dst_reg->smax_value = S64_MAX;
5312 	} else {
5313 		/* ANDing two positives gives a positive, so safe to
5314 		 * cast result into s64.
5315 		 */
5316 		dst_reg->smin_value = dst_reg->umin_value;
5317 		dst_reg->smax_value = dst_reg->umax_value;
5318 	}
5319 	/* We may learn something more from the var_off */
5320 	__update_reg_bounds(dst_reg);
5321 }
5322 
5323 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5324 				struct bpf_reg_state *src_reg)
5325 {
5326 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5327 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5328 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5329 	s32 smin_val = src_reg->smin_value;
5330 	u32 umin_val = src_reg->umin_value;
5331 
5332 	/* Assuming scalar64_min_max_or will be called so it is safe
5333 	 * to skip updating register for known case.
5334 	 */
5335 	if (src_known && dst_known)
5336 		return;
5337 
5338 	/* We get our maximum from the var_off, and our minimum is the
5339 	 * maximum of the operands' minima
5340 	 */
5341 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5342 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5343 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5344 		/* Lose signed bounds when ORing negative numbers,
5345 		 * ain't nobody got time for that.
5346 		 */
5347 		dst_reg->s32_min_value = S32_MIN;
5348 		dst_reg->s32_max_value = S32_MAX;
5349 	} else {
5350 		/* ORing two positives gives a positive, so safe to
5351 		 * cast result into s64.
5352 		 */
5353 		dst_reg->s32_min_value = dst_reg->umin_value;
5354 		dst_reg->s32_max_value = dst_reg->umax_value;
5355 	}
5356 }
5357 
5358 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5359 			      struct bpf_reg_state *src_reg)
5360 {
5361 	bool src_known = tnum_is_const(src_reg->var_off);
5362 	bool dst_known = tnum_is_const(dst_reg->var_off);
5363 	s64 smin_val = src_reg->smin_value;
5364 	u64 umin_val = src_reg->umin_value;
5365 
5366 	if (src_known && dst_known) {
5367 		__mark_reg_known(dst_reg, dst_reg->var_off.value |
5368 					  src_reg->var_off.value);
5369 		return;
5370 	}
5371 
5372 	/* We get our maximum from the var_off, and our minimum is the
5373 	 * maximum of the operands' minima
5374 	 */
5375 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5376 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5377 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5378 		/* Lose signed bounds when ORing negative numbers,
5379 		 * ain't nobody got time for that.
5380 		 */
5381 		dst_reg->smin_value = S64_MIN;
5382 		dst_reg->smax_value = S64_MAX;
5383 	} else {
5384 		/* ORing two positives gives a positive, so safe to
5385 		 * cast result into s64.
5386 		 */
5387 		dst_reg->smin_value = dst_reg->umin_value;
5388 		dst_reg->smax_value = dst_reg->umax_value;
5389 	}
5390 	/* We may learn something more from the var_off */
5391 	__update_reg_bounds(dst_reg);
5392 }
5393 
5394 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5395 				   u64 umin_val, u64 umax_val)
5396 {
5397 	/* We lose all sign bit information (except what we can pick
5398 	 * up from var_off)
5399 	 */
5400 	dst_reg->s32_min_value = S32_MIN;
5401 	dst_reg->s32_max_value = S32_MAX;
5402 	/* If we might shift our top bit out, then we know nothing */
5403 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
5404 		dst_reg->u32_min_value = 0;
5405 		dst_reg->u32_max_value = U32_MAX;
5406 	} else {
5407 		dst_reg->u32_min_value <<= umin_val;
5408 		dst_reg->u32_max_value <<= umax_val;
5409 	}
5410 }
5411 
5412 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5413 				 struct bpf_reg_state *src_reg)
5414 {
5415 	u32 umax_val = src_reg->u32_max_value;
5416 	u32 umin_val = src_reg->u32_min_value;
5417 	/* u32 alu operation will zext upper bits */
5418 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
5419 
5420 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5421 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
5422 	/* Not required but being careful mark reg64 bounds as unknown so
5423 	 * that we are forced to pick them up from tnum and zext later and
5424 	 * if some path skips this step we are still safe.
5425 	 */
5426 	__mark_reg64_unbounded(dst_reg);
5427 	__update_reg32_bounds(dst_reg);
5428 }
5429 
5430 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
5431 				   u64 umin_val, u64 umax_val)
5432 {
5433 	/* Special case <<32 because it is a common compiler pattern to sign
5434 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
5435 	 * positive we know this shift will also be positive so we can track
5436 	 * bounds correctly. Otherwise we lose all sign bit information except
5437 	 * what we can pick up from var_off. Perhaps we can generalize this
5438 	 * later to shifts of any length.
5439 	 */
5440 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
5441 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
5442 	else
5443 		dst_reg->smax_value = S64_MAX;
5444 
5445 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
5446 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
5447 	else
5448 		dst_reg->smin_value = S64_MIN;
5449 
5450 	/* If we might shift our top bit out, then we know nothing */
5451 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5452 		dst_reg->umin_value = 0;
5453 		dst_reg->umax_value = U64_MAX;
5454 	} else {
5455 		dst_reg->umin_value <<= umin_val;
5456 		dst_reg->umax_value <<= umax_val;
5457 	}
5458 }
5459 
5460 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
5461 			       struct bpf_reg_state *src_reg)
5462 {
5463 	u64 umax_val = src_reg->umax_value;
5464 	u64 umin_val = src_reg->umin_value;
5465 
5466 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
5467 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
5468 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5469 
5470 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
5471 	/* We may learn something more from the var_off */
5472 	__update_reg_bounds(dst_reg);
5473 }
5474 
5475 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
5476 				 struct bpf_reg_state *src_reg)
5477 {
5478 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
5479 	u32 umax_val = src_reg->u32_max_value;
5480 	u32 umin_val = src_reg->u32_min_value;
5481 
5482 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5483 	 * be negative, then either:
5484 	 * 1) src_reg might be zero, so the sign bit of the result is
5485 	 *    unknown, so we lose our signed bounds
5486 	 * 2) it's known negative, thus the unsigned bounds capture the
5487 	 *    signed bounds
5488 	 * 3) the signed bounds cross zero, so they tell us nothing
5489 	 *    about the result
5490 	 * If the value in dst_reg is known nonnegative, then again the
5491 	 * unsigned bounts capture the signed bounds.
5492 	 * Thus, in all cases it suffices to blow away our signed bounds
5493 	 * and rely on inferring new ones from the unsigned bounds and
5494 	 * var_off of the result.
5495 	 */
5496 	dst_reg->s32_min_value = S32_MIN;
5497 	dst_reg->s32_max_value = S32_MAX;
5498 
5499 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
5500 	dst_reg->u32_min_value >>= umax_val;
5501 	dst_reg->u32_max_value >>= umin_val;
5502 
5503 	__mark_reg64_unbounded(dst_reg);
5504 	__update_reg32_bounds(dst_reg);
5505 }
5506 
5507 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
5508 			       struct bpf_reg_state *src_reg)
5509 {
5510 	u64 umax_val = src_reg->umax_value;
5511 	u64 umin_val = src_reg->umin_value;
5512 
5513 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5514 	 * be negative, then either:
5515 	 * 1) src_reg might be zero, so the sign bit of the result is
5516 	 *    unknown, so we lose our signed bounds
5517 	 * 2) it's known negative, thus the unsigned bounds capture the
5518 	 *    signed bounds
5519 	 * 3) the signed bounds cross zero, so they tell us nothing
5520 	 *    about the result
5521 	 * If the value in dst_reg is known nonnegative, then again the
5522 	 * unsigned bounts capture the signed bounds.
5523 	 * Thus, in all cases it suffices to blow away our signed bounds
5524 	 * and rely on inferring new ones from the unsigned bounds and
5525 	 * var_off of the result.
5526 	 */
5527 	dst_reg->smin_value = S64_MIN;
5528 	dst_reg->smax_value = S64_MAX;
5529 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
5530 	dst_reg->umin_value >>= umax_val;
5531 	dst_reg->umax_value >>= umin_val;
5532 
5533 	/* Its not easy to operate on alu32 bounds here because it depends
5534 	 * on bits being shifted in. Take easy way out and mark unbounded
5535 	 * so we can recalculate later from tnum.
5536 	 */
5537 	__mark_reg32_unbounded(dst_reg);
5538 	__update_reg_bounds(dst_reg);
5539 }
5540 
5541 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
5542 				  struct bpf_reg_state *src_reg)
5543 {
5544 	u64 umin_val = src_reg->u32_min_value;
5545 
5546 	/* Upon reaching here, src_known is true and
5547 	 * umax_val is equal to umin_val.
5548 	 */
5549 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
5550 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
5551 
5552 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
5553 
5554 	/* blow away the dst_reg umin_value/umax_value and rely on
5555 	 * dst_reg var_off to refine the result.
5556 	 */
5557 	dst_reg->u32_min_value = 0;
5558 	dst_reg->u32_max_value = U32_MAX;
5559 
5560 	__mark_reg64_unbounded(dst_reg);
5561 	__update_reg32_bounds(dst_reg);
5562 }
5563 
5564 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
5565 				struct bpf_reg_state *src_reg)
5566 {
5567 	u64 umin_val = src_reg->umin_value;
5568 
5569 	/* Upon reaching here, src_known is true and umax_val is equal
5570 	 * to umin_val.
5571 	 */
5572 	dst_reg->smin_value >>= umin_val;
5573 	dst_reg->smax_value >>= umin_val;
5574 
5575 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
5576 
5577 	/* blow away the dst_reg umin_value/umax_value and rely on
5578 	 * dst_reg var_off to refine the result.
5579 	 */
5580 	dst_reg->umin_value = 0;
5581 	dst_reg->umax_value = U64_MAX;
5582 
5583 	/* Its not easy to operate on alu32 bounds here because it depends
5584 	 * on bits being shifted in from upper 32-bits. Take easy way out
5585 	 * and mark unbounded so we can recalculate later from tnum.
5586 	 */
5587 	__mark_reg32_unbounded(dst_reg);
5588 	__update_reg_bounds(dst_reg);
5589 }
5590 
5591 /* WARNING: This function does calculations on 64-bit values, but the actual
5592  * execution may occur on 32-bit values. Therefore, things like bitshifts
5593  * need extra checks in the 32-bit case.
5594  */
5595 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
5596 				      struct bpf_insn *insn,
5597 				      struct bpf_reg_state *dst_reg,
5598 				      struct bpf_reg_state src_reg)
5599 {
5600 	struct bpf_reg_state *regs = cur_regs(env);
5601 	u8 opcode = BPF_OP(insn->code);
5602 	bool src_known, dst_known;
5603 	s64 smin_val, smax_val;
5604 	u64 umin_val, umax_val;
5605 	s32 s32_min_val, s32_max_val;
5606 	u32 u32_min_val, u32_max_val;
5607 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
5608 	u32 dst = insn->dst_reg;
5609 	int ret;
5610 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
5611 
5612 	smin_val = src_reg.smin_value;
5613 	smax_val = src_reg.smax_value;
5614 	umin_val = src_reg.umin_value;
5615 	umax_val = src_reg.umax_value;
5616 
5617 	s32_min_val = src_reg.s32_min_value;
5618 	s32_max_val = src_reg.s32_max_value;
5619 	u32_min_val = src_reg.u32_min_value;
5620 	u32_max_val = src_reg.u32_max_value;
5621 
5622 	if (alu32) {
5623 		src_known = tnum_subreg_is_const(src_reg.var_off);
5624 		dst_known = tnum_subreg_is_const(dst_reg->var_off);
5625 		if ((src_known &&
5626 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
5627 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
5628 			/* Taint dst register if offset had invalid bounds
5629 			 * derived from e.g. dead branches.
5630 			 */
5631 			__mark_reg_unknown(env, dst_reg);
5632 			return 0;
5633 		}
5634 	} else {
5635 		src_known = tnum_is_const(src_reg.var_off);
5636 		dst_known = tnum_is_const(dst_reg->var_off);
5637 		if ((src_known &&
5638 		     (smin_val != smax_val || umin_val != umax_val)) ||
5639 		    smin_val > smax_val || umin_val > umax_val) {
5640 			/* Taint dst register if offset had invalid bounds
5641 			 * derived from e.g. dead branches.
5642 			 */
5643 			__mark_reg_unknown(env, dst_reg);
5644 			return 0;
5645 		}
5646 	}
5647 
5648 	if (!src_known &&
5649 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
5650 		__mark_reg_unknown(env, dst_reg);
5651 		return 0;
5652 	}
5653 
5654 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
5655 	 * There are two classes of instructions: The first class we track both
5656 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
5657 	 * greatest amount of precision when alu operations are mixed with jmp32
5658 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
5659 	 * and BPF_OR. This is possible because these ops have fairly easy to
5660 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
5661 	 * See alu32 verifier tests for examples. The second class of
5662 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
5663 	 * with regards to tracking sign/unsigned bounds because the bits may
5664 	 * cross subreg boundaries in the alu64 case. When this happens we mark
5665 	 * the reg unbounded in the subreg bound space and use the resulting
5666 	 * tnum to calculate an approximation of the sign/unsigned bounds.
5667 	 */
5668 	switch (opcode) {
5669 	case BPF_ADD:
5670 		ret = sanitize_val_alu(env, insn);
5671 		if (ret < 0) {
5672 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
5673 			return ret;
5674 		}
5675 		scalar32_min_max_add(dst_reg, &src_reg);
5676 		scalar_min_max_add(dst_reg, &src_reg);
5677 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
5678 		break;
5679 	case BPF_SUB:
5680 		ret = sanitize_val_alu(env, insn);
5681 		if (ret < 0) {
5682 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
5683 			return ret;
5684 		}
5685 		scalar32_min_max_sub(dst_reg, &src_reg);
5686 		scalar_min_max_sub(dst_reg, &src_reg);
5687 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
5688 		break;
5689 	case BPF_MUL:
5690 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
5691 		scalar32_min_max_mul(dst_reg, &src_reg);
5692 		scalar_min_max_mul(dst_reg, &src_reg);
5693 		break;
5694 	case BPF_AND:
5695 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
5696 		scalar32_min_max_and(dst_reg, &src_reg);
5697 		scalar_min_max_and(dst_reg, &src_reg);
5698 		break;
5699 	case BPF_OR:
5700 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
5701 		scalar32_min_max_or(dst_reg, &src_reg);
5702 		scalar_min_max_or(dst_reg, &src_reg);
5703 		break;
5704 	case BPF_LSH:
5705 		if (umax_val >= insn_bitness) {
5706 			/* Shifts greater than 31 or 63 are undefined.
5707 			 * This includes shifts by a negative number.
5708 			 */
5709 			mark_reg_unknown(env, regs, insn->dst_reg);
5710 			break;
5711 		}
5712 		if (alu32)
5713 			scalar32_min_max_lsh(dst_reg, &src_reg);
5714 		else
5715 			scalar_min_max_lsh(dst_reg, &src_reg);
5716 		break;
5717 	case BPF_RSH:
5718 		if (umax_val >= insn_bitness) {
5719 			/* Shifts greater than 31 or 63 are undefined.
5720 			 * This includes shifts by a negative number.
5721 			 */
5722 			mark_reg_unknown(env, regs, insn->dst_reg);
5723 			break;
5724 		}
5725 		if (alu32)
5726 			scalar32_min_max_rsh(dst_reg, &src_reg);
5727 		else
5728 			scalar_min_max_rsh(dst_reg, &src_reg);
5729 		break;
5730 	case BPF_ARSH:
5731 		if (umax_val >= insn_bitness) {
5732 			/* Shifts greater than 31 or 63 are undefined.
5733 			 * This includes shifts by a negative number.
5734 			 */
5735 			mark_reg_unknown(env, regs, insn->dst_reg);
5736 			break;
5737 		}
5738 		if (alu32)
5739 			scalar32_min_max_arsh(dst_reg, &src_reg);
5740 		else
5741 			scalar_min_max_arsh(dst_reg, &src_reg);
5742 		break;
5743 	default:
5744 		mark_reg_unknown(env, regs, insn->dst_reg);
5745 		break;
5746 	}
5747 
5748 	/* ALU32 ops are zero extended into 64bit register */
5749 	if (alu32)
5750 		zext_32_to_64(dst_reg);
5751 
5752 	__update_reg_bounds(dst_reg);
5753 	__reg_deduce_bounds(dst_reg);
5754 	__reg_bound_offset(dst_reg);
5755 	return 0;
5756 }
5757 
5758 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
5759  * and var_off.
5760  */
5761 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
5762 				   struct bpf_insn *insn)
5763 {
5764 	struct bpf_verifier_state *vstate = env->cur_state;
5765 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5766 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
5767 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
5768 	u8 opcode = BPF_OP(insn->code);
5769 	int err;
5770 
5771 	dst_reg = &regs[insn->dst_reg];
5772 	src_reg = NULL;
5773 	if (dst_reg->type != SCALAR_VALUE)
5774 		ptr_reg = dst_reg;
5775 	if (BPF_SRC(insn->code) == BPF_X) {
5776 		src_reg = &regs[insn->src_reg];
5777 		if (src_reg->type != SCALAR_VALUE) {
5778 			if (dst_reg->type != SCALAR_VALUE) {
5779 				/* Combining two pointers by any ALU op yields
5780 				 * an arbitrary scalar. Disallow all math except
5781 				 * pointer subtraction
5782 				 */
5783 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5784 					mark_reg_unknown(env, regs, insn->dst_reg);
5785 					return 0;
5786 				}
5787 				verbose(env, "R%d pointer %s pointer prohibited\n",
5788 					insn->dst_reg,
5789 					bpf_alu_string[opcode >> 4]);
5790 				return -EACCES;
5791 			} else {
5792 				/* scalar += pointer
5793 				 * This is legal, but we have to reverse our
5794 				 * src/dest handling in computing the range
5795 				 */
5796 				err = mark_chain_precision(env, insn->dst_reg);
5797 				if (err)
5798 					return err;
5799 				return adjust_ptr_min_max_vals(env, insn,
5800 							       src_reg, dst_reg);
5801 			}
5802 		} else if (ptr_reg) {
5803 			/* pointer += scalar */
5804 			err = mark_chain_precision(env, insn->src_reg);
5805 			if (err)
5806 				return err;
5807 			return adjust_ptr_min_max_vals(env, insn,
5808 						       dst_reg, src_reg);
5809 		}
5810 	} else {
5811 		/* Pretend the src is a reg with a known value, since we only
5812 		 * need to be able to read from this state.
5813 		 */
5814 		off_reg.type = SCALAR_VALUE;
5815 		__mark_reg_known(&off_reg, insn->imm);
5816 		src_reg = &off_reg;
5817 		if (ptr_reg) /* pointer += K */
5818 			return adjust_ptr_min_max_vals(env, insn,
5819 						       ptr_reg, src_reg);
5820 	}
5821 
5822 	/* Got here implies adding two SCALAR_VALUEs */
5823 	if (WARN_ON_ONCE(ptr_reg)) {
5824 		print_verifier_state(env, state);
5825 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
5826 		return -EINVAL;
5827 	}
5828 	if (WARN_ON(!src_reg)) {
5829 		print_verifier_state(env, state);
5830 		verbose(env, "verifier internal error: no src_reg\n");
5831 		return -EINVAL;
5832 	}
5833 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
5834 }
5835 
5836 /* check validity of 32-bit and 64-bit arithmetic operations */
5837 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
5838 {
5839 	struct bpf_reg_state *regs = cur_regs(env);
5840 	u8 opcode = BPF_OP(insn->code);
5841 	int err;
5842 
5843 	if (opcode == BPF_END || opcode == BPF_NEG) {
5844 		if (opcode == BPF_NEG) {
5845 			if (BPF_SRC(insn->code) != 0 ||
5846 			    insn->src_reg != BPF_REG_0 ||
5847 			    insn->off != 0 || insn->imm != 0) {
5848 				verbose(env, "BPF_NEG uses reserved fields\n");
5849 				return -EINVAL;
5850 			}
5851 		} else {
5852 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
5853 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
5854 			    BPF_CLASS(insn->code) == BPF_ALU64) {
5855 				verbose(env, "BPF_END uses reserved fields\n");
5856 				return -EINVAL;
5857 			}
5858 		}
5859 
5860 		/* check src operand */
5861 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5862 		if (err)
5863 			return err;
5864 
5865 		if (is_pointer_value(env, insn->dst_reg)) {
5866 			verbose(env, "R%d pointer arithmetic prohibited\n",
5867 				insn->dst_reg);
5868 			return -EACCES;
5869 		}
5870 
5871 		/* check dest operand */
5872 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
5873 		if (err)
5874 			return err;
5875 
5876 	} else if (opcode == BPF_MOV) {
5877 
5878 		if (BPF_SRC(insn->code) == BPF_X) {
5879 			if (insn->imm != 0 || insn->off != 0) {
5880 				verbose(env, "BPF_MOV uses reserved fields\n");
5881 				return -EINVAL;
5882 			}
5883 
5884 			/* check src operand */
5885 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5886 			if (err)
5887 				return err;
5888 		} else {
5889 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5890 				verbose(env, "BPF_MOV uses reserved fields\n");
5891 				return -EINVAL;
5892 			}
5893 		}
5894 
5895 		/* check dest operand, mark as required later */
5896 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5897 		if (err)
5898 			return err;
5899 
5900 		if (BPF_SRC(insn->code) == BPF_X) {
5901 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
5902 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
5903 
5904 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5905 				/* case: R1 = R2
5906 				 * copy register state to dest reg
5907 				 */
5908 				*dst_reg = *src_reg;
5909 				dst_reg->live |= REG_LIVE_WRITTEN;
5910 				dst_reg->subreg_def = DEF_NOT_SUBREG;
5911 			} else {
5912 				/* R1 = (u32) R2 */
5913 				if (is_pointer_value(env, insn->src_reg)) {
5914 					verbose(env,
5915 						"R%d partial copy of pointer\n",
5916 						insn->src_reg);
5917 					return -EACCES;
5918 				} else if (src_reg->type == SCALAR_VALUE) {
5919 					*dst_reg = *src_reg;
5920 					dst_reg->live |= REG_LIVE_WRITTEN;
5921 					dst_reg->subreg_def = env->insn_idx + 1;
5922 				} else {
5923 					mark_reg_unknown(env, regs,
5924 							 insn->dst_reg);
5925 				}
5926 				zext_32_to_64(dst_reg);
5927 			}
5928 		} else {
5929 			/* case: R = imm
5930 			 * remember the value we stored into this reg
5931 			 */
5932 			/* clear any state __mark_reg_known doesn't set */
5933 			mark_reg_unknown(env, regs, insn->dst_reg);
5934 			regs[insn->dst_reg].type = SCALAR_VALUE;
5935 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5936 				__mark_reg_known(regs + insn->dst_reg,
5937 						 insn->imm);
5938 			} else {
5939 				__mark_reg_known(regs + insn->dst_reg,
5940 						 (u32)insn->imm);
5941 			}
5942 		}
5943 
5944 	} else if (opcode > BPF_END) {
5945 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
5946 		return -EINVAL;
5947 
5948 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
5949 
5950 		if (BPF_SRC(insn->code) == BPF_X) {
5951 			if (insn->imm != 0 || insn->off != 0) {
5952 				verbose(env, "BPF_ALU uses reserved fields\n");
5953 				return -EINVAL;
5954 			}
5955 			/* check src1 operand */
5956 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5957 			if (err)
5958 				return err;
5959 		} else {
5960 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5961 				verbose(env, "BPF_ALU uses reserved fields\n");
5962 				return -EINVAL;
5963 			}
5964 		}
5965 
5966 		/* check src2 operand */
5967 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5968 		if (err)
5969 			return err;
5970 
5971 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5972 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
5973 			verbose(env, "div by zero\n");
5974 			return -EINVAL;
5975 		}
5976 
5977 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5978 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5979 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5980 
5981 			if (insn->imm < 0 || insn->imm >= size) {
5982 				verbose(env, "invalid shift %d\n", insn->imm);
5983 				return -EINVAL;
5984 			}
5985 		}
5986 
5987 		/* check dest operand */
5988 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5989 		if (err)
5990 			return err;
5991 
5992 		return adjust_reg_min_max_vals(env, insn);
5993 	}
5994 
5995 	return 0;
5996 }
5997 
5998 static void __find_good_pkt_pointers(struct bpf_func_state *state,
5999 				     struct bpf_reg_state *dst_reg,
6000 				     enum bpf_reg_type type, u16 new_range)
6001 {
6002 	struct bpf_reg_state *reg;
6003 	int i;
6004 
6005 	for (i = 0; i < MAX_BPF_REG; i++) {
6006 		reg = &state->regs[i];
6007 		if (reg->type == type && reg->id == dst_reg->id)
6008 			/* keep the maximum range already checked */
6009 			reg->range = max(reg->range, new_range);
6010 	}
6011 
6012 	bpf_for_each_spilled_reg(i, state, reg) {
6013 		if (!reg)
6014 			continue;
6015 		if (reg->type == type && reg->id == dst_reg->id)
6016 			reg->range = max(reg->range, new_range);
6017 	}
6018 }
6019 
6020 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
6021 				   struct bpf_reg_state *dst_reg,
6022 				   enum bpf_reg_type type,
6023 				   bool range_right_open)
6024 {
6025 	u16 new_range;
6026 	int i;
6027 
6028 	if (dst_reg->off < 0 ||
6029 	    (dst_reg->off == 0 && range_right_open))
6030 		/* This doesn't give us any range */
6031 		return;
6032 
6033 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
6034 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
6035 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
6036 		 * than pkt_end, but that's because it's also less than pkt.
6037 		 */
6038 		return;
6039 
6040 	new_range = dst_reg->off;
6041 	if (range_right_open)
6042 		new_range--;
6043 
6044 	/* Examples for register markings:
6045 	 *
6046 	 * pkt_data in dst register:
6047 	 *
6048 	 *   r2 = r3;
6049 	 *   r2 += 8;
6050 	 *   if (r2 > pkt_end) goto <handle exception>
6051 	 *   <access okay>
6052 	 *
6053 	 *   r2 = r3;
6054 	 *   r2 += 8;
6055 	 *   if (r2 < pkt_end) goto <access okay>
6056 	 *   <handle exception>
6057 	 *
6058 	 *   Where:
6059 	 *     r2 == dst_reg, pkt_end == src_reg
6060 	 *     r2=pkt(id=n,off=8,r=0)
6061 	 *     r3=pkt(id=n,off=0,r=0)
6062 	 *
6063 	 * pkt_data in src register:
6064 	 *
6065 	 *   r2 = r3;
6066 	 *   r2 += 8;
6067 	 *   if (pkt_end >= r2) goto <access okay>
6068 	 *   <handle exception>
6069 	 *
6070 	 *   r2 = r3;
6071 	 *   r2 += 8;
6072 	 *   if (pkt_end <= r2) goto <handle exception>
6073 	 *   <access okay>
6074 	 *
6075 	 *   Where:
6076 	 *     pkt_end == dst_reg, r2 == src_reg
6077 	 *     r2=pkt(id=n,off=8,r=0)
6078 	 *     r3=pkt(id=n,off=0,r=0)
6079 	 *
6080 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
6081 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6082 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
6083 	 * the check.
6084 	 */
6085 
6086 	/* If our ids match, then we must have the same max_value.  And we
6087 	 * don't care about the other reg's fixed offset, since if it's too big
6088 	 * the range won't allow anything.
6089 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6090 	 */
6091 	for (i = 0; i <= vstate->curframe; i++)
6092 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6093 					 new_range);
6094 }
6095 
6096 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
6097 {
6098 	struct tnum subreg = tnum_subreg(reg->var_off);
6099 	s32 sval = (s32)val;
6100 
6101 	switch (opcode) {
6102 	case BPF_JEQ:
6103 		if (tnum_is_const(subreg))
6104 			return !!tnum_equals_const(subreg, val);
6105 		break;
6106 	case BPF_JNE:
6107 		if (tnum_is_const(subreg))
6108 			return !tnum_equals_const(subreg, val);
6109 		break;
6110 	case BPF_JSET:
6111 		if ((~subreg.mask & subreg.value) & val)
6112 			return 1;
6113 		if (!((subreg.mask | subreg.value) & val))
6114 			return 0;
6115 		break;
6116 	case BPF_JGT:
6117 		if (reg->u32_min_value > val)
6118 			return 1;
6119 		else if (reg->u32_max_value <= val)
6120 			return 0;
6121 		break;
6122 	case BPF_JSGT:
6123 		if (reg->s32_min_value > sval)
6124 			return 1;
6125 		else if (reg->s32_max_value < sval)
6126 			return 0;
6127 		break;
6128 	case BPF_JLT:
6129 		if (reg->u32_max_value < val)
6130 			return 1;
6131 		else if (reg->u32_min_value >= val)
6132 			return 0;
6133 		break;
6134 	case BPF_JSLT:
6135 		if (reg->s32_max_value < sval)
6136 			return 1;
6137 		else if (reg->s32_min_value >= sval)
6138 			return 0;
6139 		break;
6140 	case BPF_JGE:
6141 		if (reg->u32_min_value >= val)
6142 			return 1;
6143 		else if (reg->u32_max_value < val)
6144 			return 0;
6145 		break;
6146 	case BPF_JSGE:
6147 		if (reg->s32_min_value >= sval)
6148 			return 1;
6149 		else if (reg->s32_max_value < sval)
6150 			return 0;
6151 		break;
6152 	case BPF_JLE:
6153 		if (reg->u32_max_value <= val)
6154 			return 1;
6155 		else if (reg->u32_min_value > val)
6156 			return 0;
6157 		break;
6158 	case BPF_JSLE:
6159 		if (reg->s32_max_value <= sval)
6160 			return 1;
6161 		else if (reg->s32_min_value > sval)
6162 			return 0;
6163 		break;
6164 	}
6165 
6166 	return -1;
6167 }
6168 
6169 
6170 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6171 {
6172 	s64 sval = (s64)val;
6173 
6174 	switch (opcode) {
6175 	case BPF_JEQ:
6176 		if (tnum_is_const(reg->var_off))
6177 			return !!tnum_equals_const(reg->var_off, val);
6178 		break;
6179 	case BPF_JNE:
6180 		if (tnum_is_const(reg->var_off))
6181 			return !tnum_equals_const(reg->var_off, val);
6182 		break;
6183 	case BPF_JSET:
6184 		if ((~reg->var_off.mask & reg->var_off.value) & val)
6185 			return 1;
6186 		if (!((reg->var_off.mask | reg->var_off.value) & val))
6187 			return 0;
6188 		break;
6189 	case BPF_JGT:
6190 		if (reg->umin_value > val)
6191 			return 1;
6192 		else if (reg->umax_value <= val)
6193 			return 0;
6194 		break;
6195 	case BPF_JSGT:
6196 		if (reg->smin_value > sval)
6197 			return 1;
6198 		else if (reg->smax_value < sval)
6199 			return 0;
6200 		break;
6201 	case BPF_JLT:
6202 		if (reg->umax_value < val)
6203 			return 1;
6204 		else if (reg->umin_value >= val)
6205 			return 0;
6206 		break;
6207 	case BPF_JSLT:
6208 		if (reg->smax_value < sval)
6209 			return 1;
6210 		else if (reg->smin_value >= sval)
6211 			return 0;
6212 		break;
6213 	case BPF_JGE:
6214 		if (reg->umin_value >= val)
6215 			return 1;
6216 		else if (reg->umax_value < val)
6217 			return 0;
6218 		break;
6219 	case BPF_JSGE:
6220 		if (reg->smin_value >= sval)
6221 			return 1;
6222 		else if (reg->smax_value < sval)
6223 			return 0;
6224 		break;
6225 	case BPF_JLE:
6226 		if (reg->umax_value <= val)
6227 			return 1;
6228 		else if (reg->umin_value > val)
6229 			return 0;
6230 		break;
6231 	case BPF_JSLE:
6232 		if (reg->smax_value <= sval)
6233 			return 1;
6234 		else if (reg->smin_value > sval)
6235 			return 0;
6236 		break;
6237 	}
6238 
6239 	return -1;
6240 }
6241 
6242 /* compute branch direction of the expression "if (reg opcode val) goto target;"
6243  * and return:
6244  *  1 - branch will be taken and "goto target" will be executed
6245  *  0 - branch will not be taken and fall-through to next insn
6246  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6247  *      range [0,10]
6248  */
6249 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6250 			   bool is_jmp32)
6251 {
6252 	if (__is_pointer_value(false, reg))
6253 		return -1;
6254 
6255 	if (is_jmp32)
6256 		return is_branch32_taken(reg, val, opcode);
6257 	return is_branch64_taken(reg, val, opcode);
6258 }
6259 
6260 /* Adjusts the register min/max values in the case that the dst_reg is the
6261  * variable register that we are working on, and src_reg is a constant or we're
6262  * simply doing a BPF_K check.
6263  * In JEQ/JNE cases we also adjust the var_off values.
6264  */
6265 static void reg_set_min_max(struct bpf_reg_state *true_reg,
6266 			    struct bpf_reg_state *false_reg,
6267 			    u64 val, u32 val32,
6268 			    u8 opcode, bool is_jmp32)
6269 {
6270 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
6271 	struct tnum false_64off = false_reg->var_off;
6272 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
6273 	struct tnum true_64off = true_reg->var_off;
6274 	s64 sval = (s64)val;
6275 	s32 sval32 = (s32)val32;
6276 
6277 	/* If the dst_reg is a pointer, we can't learn anything about its
6278 	 * variable offset from the compare (unless src_reg were a pointer into
6279 	 * the same object, but we don't bother with that.
6280 	 * Since false_reg and true_reg have the same type by construction, we
6281 	 * only need to check one of them for pointerness.
6282 	 */
6283 	if (__is_pointer_value(false, false_reg))
6284 		return;
6285 
6286 	switch (opcode) {
6287 	case BPF_JEQ:
6288 	case BPF_JNE:
6289 	{
6290 		struct bpf_reg_state *reg =
6291 			opcode == BPF_JEQ ? true_reg : false_reg;
6292 
6293 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
6294 		 * if it is true we know the value for sure. Likewise for
6295 		 * BPF_JNE.
6296 		 */
6297 		if (is_jmp32)
6298 			__mark_reg32_known(reg, val32);
6299 		else
6300 			__mark_reg_known(reg, val);
6301 		break;
6302 	}
6303 	case BPF_JSET:
6304 		if (is_jmp32) {
6305 			false_32off = tnum_and(false_32off, tnum_const(~val32));
6306 			if (is_power_of_2(val32))
6307 				true_32off = tnum_or(true_32off,
6308 						     tnum_const(val32));
6309 		} else {
6310 			false_64off = tnum_and(false_64off, tnum_const(~val));
6311 			if (is_power_of_2(val))
6312 				true_64off = tnum_or(true_64off,
6313 						     tnum_const(val));
6314 		}
6315 		break;
6316 	case BPF_JGE:
6317 	case BPF_JGT:
6318 	{
6319 		if (is_jmp32) {
6320 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
6321 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
6322 
6323 			false_reg->u32_max_value = min(false_reg->u32_max_value,
6324 						       false_umax);
6325 			true_reg->u32_min_value = max(true_reg->u32_min_value,
6326 						      true_umin);
6327 		} else {
6328 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
6329 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
6330 
6331 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
6332 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
6333 		}
6334 		break;
6335 	}
6336 	case BPF_JSGE:
6337 	case BPF_JSGT:
6338 	{
6339 		if (is_jmp32) {
6340 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
6341 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
6342 
6343 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
6344 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
6345 		} else {
6346 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
6347 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
6348 
6349 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
6350 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
6351 		}
6352 		break;
6353 	}
6354 	case BPF_JLE:
6355 	case BPF_JLT:
6356 	{
6357 		if (is_jmp32) {
6358 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
6359 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
6360 
6361 			false_reg->u32_min_value = max(false_reg->u32_min_value,
6362 						       false_umin);
6363 			true_reg->u32_max_value = min(true_reg->u32_max_value,
6364 						      true_umax);
6365 		} else {
6366 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
6367 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
6368 
6369 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
6370 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
6371 		}
6372 		break;
6373 	}
6374 	case BPF_JSLE:
6375 	case BPF_JSLT:
6376 	{
6377 		if (is_jmp32) {
6378 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
6379 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
6380 
6381 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
6382 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
6383 		} else {
6384 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
6385 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
6386 
6387 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
6388 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
6389 		}
6390 		break;
6391 	}
6392 	default:
6393 		return;
6394 	}
6395 
6396 	if (is_jmp32) {
6397 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
6398 					     tnum_subreg(false_32off));
6399 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
6400 					    tnum_subreg(true_32off));
6401 		__reg_combine_32_into_64(false_reg);
6402 		__reg_combine_32_into_64(true_reg);
6403 	} else {
6404 		false_reg->var_off = false_64off;
6405 		true_reg->var_off = true_64off;
6406 		__reg_combine_64_into_32(false_reg);
6407 		__reg_combine_64_into_32(true_reg);
6408 	}
6409 }
6410 
6411 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
6412  * the variable reg.
6413  */
6414 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
6415 				struct bpf_reg_state *false_reg,
6416 				u64 val, u32 val32,
6417 				u8 opcode, bool is_jmp32)
6418 {
6419 	/* How can we transform "a <op> b" into "b <op> a"? */
6420 	static const u8 opcode_flip[16] = {
6421 		/* these stay the same */
6422 		[BPF_JEQ  >> 4] = BPF_JEQ,
6423 		[BPF_JNE  >> 4] = BPF_JNE,
6424 		[BPF_JSET >> 4] = BPF_JSET,
6425 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
6426 		[BPF_JGE  >> 4] = BPF_JLE,
6427 		[BPF_JGT  >> 4] = BPF_JLT,
6428 		[BPF_JLE  >> 4] = BPF_JGE,
6429 		[BPF_JLT  >> 4] = BPF_JGT,
6430 		[BPF_JSGE >> 4] = BPF_JSLE,
6431 		[BPF_JSGT >> 4] = BPF_JSLT,
6432 		[BPF_JSLE >> 4] = BPF_JSGE,
6433 		[BPF_JSLT >> 4] = BPF_JSGT
6434 	};
6435 	opcode = opcode_flip[opcode >> 4];
6436 	/* This uses zero as "not present in table"; luckily the zero opcode,
6437 	 * BPF_JA, can't get here.
6438 	 */
6439 	if (opcode)
6440 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
6441 }
6442 
6443 /* Regs are known to be equal, so intersect their min/max/var_off */
6444 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
6445 				  struct bpf_reg_state *dst_reg)
6446 {
6447 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
6448 							dst_reg->umin_value);
6449 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
6450 							dst_reg->umax_value);
6451 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
6452 							dst_reg->smin_value);
6453 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
6454 							dst_reg->smax_value);
6455 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
6456 							     dst_reg->var_off);
6457 	/* We might have learned new bounds from the var_off. */
6458 	__update_reg_bounds(src_reg);
6459 	__update_reg_bounds(dst_reg);
6460 	/* We might have learned something about the sign bit. */
6461 	__reg_deduce_bounds(src_reg);
6462 	__reg_deduce_bounds(dst_reg);
6463 	/* We might have learned some bits from the bounds. */
6464 	__reg_bound_offset(src_reg);
6465 	__reg_bound_offset(dst_reg);
6466 	/* Intersecting with the old var_off might have improved our bounds
6467 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
6468 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
6469 	 */
6470 	__update_reg_bounds(src_reg);
6471 	__update_reg_bounds(dst_reg);
6472 }
6473 
6474 static void reg_combine_min_max(struct bpf_reg_state *true_src,
6475 				struct bpf_reg_state *true_dst,
6476 				struct bpf_reg_state *false_src,
6477 				struct bpf_reg_state *false_dst,
6478 				u8 opcode)
6479 {
6480 	switch (opcode) {
6481 	case BPF_JEQ:
6482 		__reg_combine_min_max(true_src, true_dst);
6483 		break;
6484 	case BPF_JNE:
6485 		__reg_combine_min_max(false_src, false_dst);
6486 		break;
6487 	}
6488 }
6489 
6490 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
6491 				 struct bpf_reg_state *reg, u32 id,
6492 				 bool is_null)
6493 {
6494 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
6495 		/* Old offset (both fixed and variable parts) should
6496 		 * have been known-zero, because we don't allow pointer
6497 		 * arithmetic on pointers that might be NULL.
6498 		 */
6499 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
6500 				 !tnum_equals_const(reg->var_off, 0) ||
6501 				 reg->off)) {
6502 			__mark_reg_known_zero(reg);
6503 			reg->off = 0;
6504 		}
6505 		if (is_null) {
6506 			reg->type = SCALAR_VALUE;
6507 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
6508 			if (reg->map_ptr->inner_map_meta) {
6509 				reg->type = CONST_PTR_TO_MAP;
6510 				reg->map_ptr = reg->map_ptr->inner_map_meta;
6511 			} else if (reg->map_ptr->map_type ==
6512 				   BPF_MAP_TYPE_XSKMAP) {
6513 				reg->type = PTR_TO_XDP_SOCK;
6514 			} else {
6515 				reg->type = PTR_TO_MAP_VALUE;
6516 			}
6517 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
6518 			reg->type = PTR_TO_SOCKET;
6519 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
6520 			reg->type = PTR_TO_SOCK_COMMON;
6521 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
6522 			reg->type = PTR_TO_TCP_SOCK;
6523 		}
6524 		if (is_null) {
6525 			/* We don't need id and ref_obj_id from this point
6526 			 * onwards anymore, thus we should better reset it,
6527 			 * so that state pruning has chances to take effect.
6528 			 */
6529 			reg->id = 0;
6530 			reg->ref_obj_id = 0;
6531 		} else if (!reg_may_point_to_spin_lock(reg)) {
6532 			/* For not-NULL ptr, reg->ref_obj_id will be reset
6533 			 * in release_reg_references().
6534 			 *
6535 			 * reg->id is still used by spin_lock ptr. Other
6536 			 * than spin_lock ptr type, reg->id can be reset.
6537 			 */
6538 			reg->id = 0;
6539 		}
6540 	}
6541 }
6542 
6543 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
6544 				    bool is_null)
6545 {
6546 	struct bpf_reg_state *reg;
6547 	int i;
6548 
6549 	for (i = 0; i < MAX_BPF_REG; i++)
6550 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
6551 
6552 	bpf_for_each_spilled_reg(i, state, reg) {
6553 		if (!reg)
6554 			continue;
6555 		mark_ptr_or_null_reg(state, reg, id, is_null);
6556 	}
6557 }
6558 
6559 /* The logic is similar to find_good_pkt_pointers(), both could eventually
6560  * be folded together at some point.
6561  */
6562 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
6563 				  bool is_null)
6564 {
6565 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6566 	struct bpf_reg_state *regs = state->regs;
6567 	u32 ref_obj_id = regs[regno].ref_obj_id;
6568 	u32 id = regs[regno].id;
6569 	int i;
6570 
6571 	if (ref_obj_id && ref_obj_id == id && is_null)
6572 		/* regs[regno] is in the " == NULL" branch.
6573 		 * No one could have freed the reference state before
6574 		 * doing the NULL check.
6575 		 */
6576 		WARN_ON_ONCE(release_reference_state(state, id));
6577 
6578 	for (i = 0; i <= vstate->curframe; i++)
6579 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
6580 }
6581 
6582 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
6583 				   struct bpf_reg_state *dst_reg,
6584 				   struct bpf_reg_state *src_reg,
6585 				   struct bpf_verifier_state *this_branch,
6586 				   struct bpf_verifier_state *other_branch)
6587 {
6588 	if (BPF_SRC(insn->code) != BPF_X)
6589 		return false;
6590 
6591 	/* Pointers are always 64-bit. */
6592 	if (BPF_CLASS(insn->code) == BPF_JMP32)
6593 		return false;
6594 
6595 	switch (BPF_OP(insn->code)) {
6596 	case BPF_JGT:
6597 		if ((dst_reg->type == PTR_TO_PACKET &&
6598 		     src_reg->type == PTR_TO_PACKET_END) ||
6599 		    (dst_reg->type == PTR_TO_PACKET_META &&
6600 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6601 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
6602 			find_good_pkt_pointers(this_branch, dst_reg,
6603 					       dst_reg->type, false);
6604 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6605 			    src_reg->type == PTR_TO_PACKET) ||
6606 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6607 			    src_reg->type == PTR_TO_PACKET_META)) {
6608 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
6609 			find_good_pkt_pointers(other_branch, src_reg,
6610 					       src_reg->type, true);
6611 		} else {
6612 			return false;
6613 		}
6614 		break;
6615 	case BPF_JLT:
6616 		if ((dst_reg->type == PTR_TO_PACKET &&
6617 		     src_reg->type == PTR_TO_PACKET_END) ||
6618 		    (dst_reg->type == PTR_TO_PACKET_META &&
6619 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6620 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
6621 			find_good_pkt_pointers(other_branch, dst_reg,
6622 					       dst_reg->type, true);
6623 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6624 			    src_reg->type == PTR_TO_PACKET) ||
6625 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6626 			    src_reg->type == PTR_TO_PACKET_META)) {
6627 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
6628 			find_good_pkt_pointers(this_branch, src_reg,
6629 					       src_reg->type, false);
6630 		} else {
6631 			return false;
6632 		}
6633 		break;
6634 	case BPF_JGE:
6635 		if ((dst_reg->type == PTR_TO_PACKET &&
6636 		     src_reg->type == PTR_TO_PACKET_END) ||
6637 		    (dst_reg->type == PTR_TO_PACKET_META &&
6638 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6639 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
6640 			find_good_pkt_pointers(this_branch, dst_reg,
6641 					       dst_reg->type, true);
6642 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6643 			    src_reg->type == PTR_TO_PACKET) ||
6644 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6645 			    src_reg->type == PTR_TO_PACKET_META)) {
6646 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
6647 			find_good_pkt_pointers(other_branch, src_reg,
6648 					       src_reg->type, false);
6649 		} else {
6650 			return false;
6651 		}
6652 		break;
6653 	case BPF_JLE:
6654 		if ((dst_reg->type == PTR_TO_PACKET &&
6655 		     src_reg->type == PTR_TO_PACKET_END) ||
6656 		    (dst_reg->type == PTR_TO_PACKET_META &&
6657 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6658 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
6659 			find_good_pkt_pointers(other_branch, dst_reg,
6660 					       dst_reg->type, false);
6661 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6662 			    src_reg->type == PTR_TO_PACKET) ||
6663 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6664 			    src_reg->type == PTR_TO_PACKET_META)) {
6665 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
6666 			find_good_pkt_pointers(this_branch, src_reg,
6667 					       src_reg->type, true);
6668 		} else {
6669 			return false;
6670 		}
6671 		break;
6672 	default:
6673 		return false;
6674 	}
6675 
6676 	return true;
6677 }
6678 
6679 static int check_cond_jmp_op(struct bpf_verifier_env *env,
6680 			     struct bpf_insn *insn, int *insn_idx)
6681 {
6682 	struct bpf_verifier_state *this_branch = env->cur_state;
6683 	struct bpf_verifier_state *other_branch;
6684 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
6685 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
6686 	u8 opcode = BPF_OP(insn->code);
6687 	bool is_jmp32;
6688 	int pred = -1;
6689 	int err;
6690 
6691 	/* Only conditional jumps are expected to reach here. */
6692 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
6693 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
6694 		return -EINVAL;
6695 	}
6696 
6697 	if (BPF_SRC(insn->code) == BPF_X) {
6698 		if (insn->imm != 0) {
6699 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6700 			return -EINVAL;
6701 		}
6702 
6703 		/* check src1 operand */
6704 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6705 		if (err)
6706 			return err;
6707 
6708 		if (is_pointer_value(env, insn->src_reg)) {
6709 			verbose(env, "R%d pointer comparison prohibited\n",
6710 				insn->src_reg);
6711 			return -EACCES;
6712 		}
6713 		src_reg = &regs[insn->src_reg];
6714 	} else {
6715 		if (insn->src_reg != BPF_REG_0) {
6716 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6717 			return -EINVAL;
6718 		}
6719 	}
6720 
6721 	/* check src2 operand */
6722 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6723 	if (err)
6724 		return err;
6725 
6726 	dst_reg = &regs[insn->dst_reg];
6727 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
6728 
6729 	if (BPF_SRC(insn->code) == BPF_K) {
6730 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
6731 	} else if (src_reg->type == SCALAR_VALUE &&
6732 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
6733 		pred = is_branch_taken(dst_reg,
6734 				       tnum_subreg(src_reg->var_off).value,
6735 				       opcode,
6736 				       is_jmp32);
6737 	} else if (src_reg->type == SCALAR_VALUE &&
6738 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
6739 		pred = is_branch_taken(dst_reg,
6740 				       src_reg->var_off.value,
6741 				       opcode,
6742 				       is_jmp32);
6743 	}
6744 
6745 	if (pred >= 0) {
6746 		err = mark_chain_precision(env, insn->dst_reg);
6747 		if (BPF_SRC(insn->code) == BPF_X && !err)
6748 			err = mark_chain_precision(env, insn->src_reg);
6749 		if (err)
6750 			return err;
6751 	}
6752 	if (pred == 1) {
6753 		/* only follow the goto, ignore fall-through */
6754 		*insn_idx += insn->off;
6755 		return 0;
6756 	} else if (pred == 0) {
6757 		/* only follow fall-through branch, since
6758 		 * that's where the program will go
6759 		 */
6760 		return 0;
6761 	}
6762 
6763 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
6764 				  false);
6765 	if (!other_branch)
6766 		return -EFAULT;
6767 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
6768 
6769 	/* detect if we are comparing against a constant value so we can adjust
6770 	 * our min/max values for our dst register.
6771 	 * this is only legit if both are scalars (or pointers to the same
6772 	 * object, I suppose, but we don't support that right now), because
6773 	 * otherwise the different base pointers mean the offsets aren't
6774 	 * comparable.
6775 	 */
6776 	if (BPF_SRC(insn->code) == BPF_X) {
6777 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
6778 
6779 		if (dst_reg->type == SCALAR_VALUE &&
6780 		    src_reg->type == SCALAR_VALUE) {
6781 			if (tnum_is_const(src_reg->var_off) ||
6782 			    (is_jmp32 &&
6783 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
6784 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
6785 						dst_reg,
6786 						src_reg->var_off.value,
6787 						tnum_subreg(src_reg->var_off).value,
6788 						opcode, is_jmp32);
6789 			else if (tnum_is_const(dst_reg->var_off) ||
6790 				 (is_jmp32 &&
6791 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
6792 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
6793 						    src_reg,
6794 						    dst_reg->var_off.value,
6795 						    tnum_subreg(dst_reg->var_off).value,
6796 						    opcode, is_jmp32);
6797 			else if (!is_jmp32 &&
6798 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
6799 				/* Comparing for equality, we can combine knowledge */
6800 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
6801 						    &other_branch_regs[insn->dst_reg],
6802 						    src_reg, dst_reg, opcode);
6803 		}
6804 	} else if (dst_reg->type == SCALAR_VALUE) {
6805 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
6806 					dst_reg, insn->imm, (u32)insn->imm,
6807 					opcode, is_jmp32);
6808 	}
6809 
6810 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
6811 	 * NOTE: these optimizations below are related with pointer comparison
6812 	 *       which will never be JMP32.
6813 	 */
6814 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
6815 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
6816 	    reg_type_may_be_null(dst_reg->type)) {
6817 		/* Mark all identical registers in each branch as either
6818 		 * safe or unknown depending R == 0 or R != 0 conditional.
6819 		 */
6820 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
6821 				      opcode == BPF_JNE);
6822 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
6823 				      opcode == BPF_JEQ);
6824 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
6825 					   this_branch, other_branch) &&
6826 		   is_pointer_value(env, insn->dst_reg)) {
6827 		verbose(env, "R%d pointer comparison prohibited\n",
6828 			insn->dst_reg);
6829 		return -EACCES;
6830 	}
6831 	if (env->log.level & BPF_LOG_LEVEL)
6832 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
6833 	return 0;
6834 }
6835 
6836 /* verify BPF_LD_IMM64 instruction */
6837 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
6838 {
6839 	struct bpf_insn_aux_data *aux = cur_aux(env);
6840 	struct bpf_reg_state *regs = cur_regs(env);
6841 	struct bpf_map *map;
6842 	int err;
6843 
6844 	if (BPF_SIZE(insn->code) != BPF_DW) {
6845 		verbose(env, "invalid BPF_LD_IMM insn\n");
6846 		return -EINVAL;
6847 	}
6848 	if (insn->off != 0) {
6849 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
6850 		return -EINVAL;
6851 	}
6852 
6853 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
6854 	if (err)
6855 		return err;
6856 
6857 	if (insn->src_reg == 0) {
6858 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
6859 
6860 		regs[insn->dst_reg].type = SCALAR_VALUE;
6861 		__mark_reg_known(&regs[insn->dst_reg], imm);
6862 		return 0;
6863 	}
6864 
6865 	map = env->used_maps[aux->map_index];
6866 	mark_reg_known_zero(env, regs, insn->dst_reg);
6867 	regs[insn->dst_reg].map_ptr = map;
6868 
6869 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
6870 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
6871 		regs[insn->dst_reg].off = aux->map_off;
6872 		if (map_value_has_spin_lock(map))
6873 			regs[insn->dst_reg].id = ++env->id_gen;
6874 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6875 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
6876 	} else {
6877 		verbose(env, "bpf verifier is misconfigured\n");
6878 		return -EINVAL;
6879 	}
6880 
6881 	return 0;
6882 }
6883 
6884 static bool may_access_skb(enum bpf_prog_type type)
6885 {
6886 	switch (type) {
6887 	case BPF_PROG_TYPE_SOCKET_FILTER:
6888 	case BPF_PROG_TYPE_SCHED_CLS:
6889 	case BPF_PROG_TYPE_SCHED_ACT:
6890 		return true;
6891 	default:
6892 		return false;
6893 	}
6894 }
6895 
6896 /* verify safety of LD_ABS|LD_IND instructions:
6897  * - they can only appear in the programs where ctx == skb
6898  * - since they are wrappers of function calls, they scratch R1-R5 registers,
6899  *   preserve R6-R9, and store return value into R0
6900  *
6901  * Implicit input:
6902  *   ctx == skb == R6 == CTX
6903  *
6904  * Explicit input:
6905  *   SRC == any register
6906  *   IMM == 32-bit immediate
6907  *
6908  * Output:
6909  *   R0 - 8/16/32-bit skb data converted to cpu endianness
6910  */
6911 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
6912 {
6913 	struct bpf_reg_state *regs = cur_regs(env);
6914 	static const int ctx_reg = BPF_REG_6;
6915 	u8 mode = BPF_MODE(insn->code);
6916 	int i, err;
6917 
6918 	if (!may_access_skb(env->prog->type)) {
6919 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
6920 		return -EINVAL;
6921 	}
6922 
6923 	if (!env->ops->gen_ld_abs) {
6924 		verbose(env, "bpf verifier is misconfigured\n");
6925 		return -EINVAL;
6926 	}
6927 
6928 	if (env->subprog_cnt > 1) {
6929 		/* when program has LD_ABS insn JITs and interpreter assume
6930 		 * that r1 == ctx == skb which is not the case for callees
6931 		 * that can have arbitrary arguments. It's problematic
6932 		 * for main prog as well since JITs would need to analyze
6933 		 * all functions in order to make proper register save/restore
6934 		 * decisions in the main prog. Hence disallow LD_ABS with calls
6935 		 */
6936 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6937 		return -EINVAL;
6938 	}
6939 
6940 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
6941 	    BPF_SIZE(insn->code) == BPF_DW ||
6942 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
6943 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
6944 		return -EINVAL;
6945 	}
6946 
6947 	/* check whether implicit source operand (register R6) is readable */
6948 	err = check_reg_arg(env, ctx_reg, SRC_OP);
6949 	if (err)
6950 		return err;
6951 
6952 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6953 	 * gen_ld_abs() may terminate the program at runtime, leading to
6954 	 * reference leak.
6955 	 */
6956 	err = check_reference_leak(env);
6957 	if (err) {
6958 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6959 		return err;
6960 	}
6961 
6962 	if (env->cur_state->active_spin_lock) {
6963 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6964 		return -EINVAL;
6965 	}
6966 
6967 	if (regs[ctx_reg].type != PTR_TO_CTX) {
6968 		verbose(env,
6969 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
6970 		return -EINVAL;
6971 	}
6972 
6973 	if (mode == BPF_IND) {
6974 		/* check explicit source operand */
6975 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6976 		if (err)
6977 			return err;
6978 	}
6979 
6980 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
6981 	if (err < 0)
6982 		return err;
6983 
6984 	/* reset caller saved regs to unreadable */
6985 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6986 		mark_reg_not_init(env, regs, caller_saved[i]);
6987 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6988 	}
6989 
6990 	/* mark destination R0 register as readable, since it contains
6991 	 * the value fetched from the packet.
6992 	 * Already marked as written above.
6993 	 */
6994 	mark_reg_unknown(env, regs, BPF_REG_0);
6995 	/* ld_abs load up to 32-bit skb data. */
6996 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
6997 	return 0;
6998 }
6999 
7000 static int check_return_code(struct bpf_verifier_env *env)
7001 {
7002 	struct tnum enforce_attach_type_range = tnum_unknown;
7003 	const struct bpf_prog *prog = env->prog;
7004 	struct bpf_reg_state *reg;
7005 	struct tnum range = tnum_range(0, 1);
7006 	int err;
7007 
7008 	/* LSM and struct_ops func-ptr's return type could be "void" */
7009 	if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
7010 	     env->prog->type == BPF_PROG_TYPE_LSM) &&
7011 	    !prog->aux->attach_func_proto->type)
7012 		return 0;
7013 
7014 	/* eBPF calling convetion is such that R0 is used
7015 	 * to return the value from eBPF program.
7016 	 * Make sure that it's readable at this time
7017 	 * of bpf_exit, which means that program wrote
7018 	 * something into it earlier
7019 	 */
7020 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7021 	if (err)
7022 		return err;
7023 
7024 	if (is_pointer_value(env, BPF_REG_0)) {
7025 		verbose(env, "R0 leaks addr as return value\n");
7026 		return -EACCES;
7027 	}
7028 
7029 	switch (env->prog->type) {
7030 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7031 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
7032 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
7033 			range = tnum_range(1, 1);
7034 		break;
7035 	case BPF_PROG_TYPE_CGROUP_SKB:
7036 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7037 			range = tnum_range(0, 3);
7038 			enforce_attach_type_range = tnum_range(2, 3);
7039 		}
7040 		break;
7041 	case BPF_PROG_TYPE_CGROUP_SOCK:
7042 	case BPF_PROG_TYPE_SOCK_OPS:
7043 	case BPF_PROG_TYPE_CGROUP_DEVICE:
7044 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
7045 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
7046 		break;
7047 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
7048 		if (!env->prog->aux->attach_btf_id)
7049 			return 0;
7050 		range = tnum_const(0);
7051 		break;
7052 	default:
7053 		return 0;
7054 	}
7055 
7056 	reg = cur_regs(env) + BPF_REG_0;
7057 	if (reg->type != SCALAR_VALUE) {
7058 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
7059 			reg_type_str[reg->type]);
7060 		return -EINVAL;
7061 	}
7062 
7063 	if (!tnum_in(range, reg->var_off)) {
7064 		char tn_buf[48];
7065 
7066 		verbose(env, "At program exit the register R0 ");
7067 		if (!tnum_is_unknown(reg->var_off)) {
7068 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7069 			verbose(env, "has value %s", tn_buf);
7070 		} else {
7071 			verbose(env, "has unknown scalar value");
7072 		}
7073 		tnum_strn(tn_buf, sizeof(tn_buf), range);
7074 		verbose(env, " should have been in %s\n", tn_buf);
7075 		return -EINVAL;
7076 	}
7077 
7078 	if (!tnum_is_unknown(enforce_attach_type_range) &&
7079 	    tnum_in(enforce_attach_type_range, reg->var_off))
7080 		env->prog->enforce_expected_attach_type = 1;
7081 	return 0;
7082 }
7083 
7084 /* non-recursive DFS pseudo code
7085  * 1  procedure DFS-iterative(G,v):
7086  * 2      label v as discovered
7087  * 3      let S be a stack
7088  * 4      S.push(v)
7089  * 5      while S is not empty
7090  * 6            t <- S.pop()
7091  * 7            if t is what we're looking for:
7092  * 8                return t
7093  * 9            for all edges e in G.adjacentEdges(t) do
7094  * 10               if edge e is already labelled
7095  * 11                   continue with the next edge
7096  * 12               w <- G.adjacentVertex(t,e)
7097  * 13               if vertex w is not discovered and not explored
7098  * 14                   label e as tree-edge
7099  * 15                   label w as discovered
7100  * 16                   S.push(w)
7101  * 17                   continue at 5
7102  * 18               else if vertex w is discovered
7103  * 19                   label e as back-edge
7104  * 20               else
7105  * 21                   // vertex w is explored
7106  * 22                   label e as forward- or cross-edge
7107  * 23           label t as explored
7108  * 24           S.pop()
7109  *
7110  * convention:
7111  * 0x10 - discovered
7112  * 0x11 - discovered and fall-through edge labelled
7113  * 0x12 - discovered and fall-through and branch edges labelled
7114  * 0x20 - explored
7115  */
7116 
7117 enum {
7118 	DISCOVERED = 0x10,
7119 	EXPLORED = 0x20,
7120 	FALLTHROUGH = 1,
7121 	BRANCH = 2,
7122 };
7123 
7124 static u32 state_htab_size(struct bpf_verifier_env *env)
7125 {
7126 	return env->prog->len;
7127 }
7128 
7129 static struct bpf_verifier_state_list **explored_state(
7130 					struct bpf_verifier_env *env,
7131 					int idx)
7132 {
7133 	struct bpf_verifier_state *cur = env->cur_state;
7134 	struct bpf_func_state *state = cur->frame[cur->curframe];
7135 
7136 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
7137 }
7138 
7139 static void init_explored_state(struct bpf_verifier_env *env, int idx)
7140 {
7141 	env->insn_aux_data[idx].prune_point = true;
7142 }
7143 
7144 /* t, w, e - match pseudo-code above:
7145  * t - index of current instruction
7146  * w - next instruction
7147  * e - edge
7148  */
7149 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7150 		     bool loop_ok)
7151 {
7152 	int *insn_stack = env->cfg.insn_stack;
7153 	int *insn_state = env->cfg.insn_state;
7154 
7155 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7156 		return 0;
7157 
7158 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7159 		return 0;
7160 
7161 	if (w < 0 || w >= env->prog->len) {
7162 		verbose_linfo(env, t, "%d: ", t);
7163 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
7164 		return -EINVAL;
7165 	}
7166 
7167 	if (e == BRANCH)
7168 		/* mark branch target for state pruning */
7169 		init_explored_state(env, w);
7170 
7171 	if (insn_state[w] == 0) {
7172 		/* tree-edge */
7173 		insn_state[t] = DISCOVERED | e;
7174 		insn_state[w] = DISCOVERED;
7175 		if (env->cfg.cur_stack >= env->prog->len)
7176 			return -E2BIG;
7177 		insn_stack[env->cfg.cur_stack++] = w;
7178 		return 1;
7179 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
7180 		if (loop_ok && env->allow_ptr_leaks)
7181 			return 0;
7182 		verbose_linfo(env, t, "%d: ", t);
7183 		verbose_linfo(env, w, "%d: ", w);
7184 		verbose(env, "back-edge from insn %d to %d\n", t, w);
7185 		return -EINVAL;
7186 	} else if (insn_state[w] == EXPLORED) {
7187 		/* forward- or cross-edge */
7188 		insn_state[t] = DISCOVERED | e;
7189 	} else {
7190 		verbose(env, "insn state internal bug\n");
7191 		return -EFAULT;
7192 	}
7193 	return 0;
7194 }
7195 
7196 /* non-recursive depth-first-search to detect loops in BPF program
7197  * loop == back-edge in directed graph
7198  */
7199 static int check_cfg(struct bpf_verifier_env *env)
7200 {
7201 	struct bpf_insn *insns = env->prog->insnsi;
7202 	int insn_cnt = env->prog->len;
7203 	int *insn_stack, *insn_state;
7204 	int ret = 0;
7205 	int i, t;
7206 
7207 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7208 	if (!insn_state)
7209 		return -ENOMEM;
7210 
7211 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7212 	if (!insn_stack) {
7213 		kvfree(insn_state);
7214 		return -ENOMEM;
7215 	}
7216 
7217 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
7218 	insn_stack[0] = 0; /* 0 is the first instruction */
7219 	env->cfg.cur_stack = 1;
7220 
7221 peek_stack:
7222 	if (env->cfg.cur_stack == 0)
7223 		goto check_state;
7224 	t = insn_stack[env->cfg.cur_stack - 1];
7225 
7226 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
7227 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
7228 		u8 opcode = BPF_OP(insns[t].code);
7229 
7230 		if (opcode == BPF_EXIT) {
7231 			goto mark_explored;
7232 		} else if (opcode == BPF_CALL) {
7233 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7234 			if (ret == 1)
7235 				goto peek_stack;
7236 			else if (ret < 0)
7237 				goto err_free;
7238 			if (t + 1 < insn_cnt)
7239 				init_explored_state(env, t + 1);
7240 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
7241 				init_explored_state(env, t);
7242 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
7243 						env, false);
7244 				if (ret == 1)
7245 					goto peek_stack;
7246 				else if (ret < 0)
7247 					goto err_free;
7248 			}
7249 		} else if (opcode == BPF_JA) {
7250 			if (BPF_SRC(insns[t].code) != BPF_K) {
7251 				ret = -EINVAL;
7252 				goto err_free;
7253 			}
7254 			/* unconditional jump with single edge */
7255 			ret = push_insn(t, t + insns[t].off + 1,
7256 					FALLTHROUGH, env, true);
7257 			if (ret == 1)
7258 				goto peek_stack;
7259 			else if (ret < 0)
7260 				goto err_free;
7261 			/* unconditional jmp is not a good pruning point,
7262 			 * but it's marked, since backtracking needs
7263 			 * to record jmp history in is_state_visited().
7264 			 */
7265 			init_explored_state(env, t + insns[t].off + 1);
7266 			/* tell verifier to check for equivalent states
7267 			 * after every call and jump
7268 			 */
7269 			if (t + 1 < insn_cnt)
7270 				init_explored_state(env, t + 1);
7271 		} else {
7272 			/* conditional jump with two edges */
7273 			init_explored_state(env, t);
7274 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
7275 			if (ret == 1)
7276 				goto peek_stack;
7277 			else if (ret < 0)
7278 				goto err_free;
7279 
7280 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
7281 			if (ret == 1)
7282 				goto peek_stack;
7283 			else if (ret < 0)
7284 				goto err_free;
7285 		}
7286 	} else {
7287 		/* all other non-branch instructions with single
7288 		 * fall-through edge
7289 		 */
7290 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7291 		if (ret == 1)
7292 			goto peek_stack;
7293 		else if (ret < 0)
7294 			goto err_free;
7295 	}
7296 
7297 mark_explored:
7298 	insn_state[t] = EXPLORED;
7299 	if (env->cfg.cur_stack-- <= 0) {
7300 		verbose(env, "pop stack internal bug\n");
7301 		ret = -EFAULT;
7302 		goto err_free;
7303 	}
7304 	goto peek_stack;
7305 
7306 check_state:
7307 	for (i = 0; i < insn_cnt; i++) {
7308 		if (insn_state[i] != EXPLORED) {
7309 			verbose(env, "unreachable insn %d\n", i);
7310 			ret = -EINVAL;
7311 			goto err_free;
7312 		}
7313 	}
7314 	ret = 0; /* cfg looks good */
7315 
7316 err_free:
7317 	kvfree(insn_state);
7318 	kvfree(insn_stack);
7319 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
7320 	return ret;
7321 }
7322 
7323 /* The minimum supported BTF func info size */
7324 #define MIN_BPF_FUNCINFO_SIZE	8
7325 #define MAX_FUNCINFO_REC_SIZE	252
7326 
7327 static int check_btf_func(struct bpf_verifier_env *env,
7328 			  const union bpf_attr *attr,
7329 			  union bpf_attr __user *uattr)
7330 {
7331 	u32 i, nfuncs, urec_size, min_size;
7332 	u32 krec_size = sizeof(struct bpf_func_info);
7333 	struct bpf_func_info *krecord;
7334 	struct bpf_func_info_aux *info_aux = NULL;
7335 	const struct btf_type *type;
7336 	struct bpf_prog *prog;
7337 	const struct btf *btf;
7338 	void __user *urecord;
7339 	u32 prev_offset = 0;
7340 	int ret = 0;
7341 
7342 	nfuncs = attr->func_info_cnt;
7343 	if (!nfuncs)
7344 		return 0;
7345 
7346 	if (nfuncs != env->subprog_cnt) {
7347 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
7348 		return -EINVAL;
7349 	}
7350 
7351 	urec_size = attr->func_info_rec_size;
7352 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
7353 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
7354 	    urec_size % sizeof(u32)) {
7355 		verbose(env, "invalid func info rec size %u\n", urec_size);
7356 		return -EINVAL;
7357 	}
7358 
7359 	prog = env->prog;
7360 	btf = prog->aux->btf;
7361 
7362 	urecord = u64_to_user_ptr(attr->func_info);
7363 	min_size = min_t(u32, krec_size, urec_size);
7364 
7365 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
7366 	if (!krecord)
7367 		return -ENOMEM;
7368 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
7369 	if (!info_aux)
7370 		goto err_free;
7371 
7372 	for (i = 0; i < nfuncs; i++) {
7373 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
7374 		if (ret) {
7375 			if (ret == -E2BIG) {
7376 				verbose(env, "nonzero tailing record in func info");
7377 				/* set the size kernel expects so loader can zero
7378 				 * out the rest of the record.
7379 				 */
7380 				if (put_user(min_size, &uattr->func_info_rec_size))
7381 					ret = -EFAULT;
7382 			}
7383 			goto err_free;
7384 		}
7385 
7386 		if (copy_from_user(&krecord[i], urecord, min_size)) {
7387 			ret = -EFAULT;
7388 			goto err_free;
7389 		}
7390 
7391 		/* check insn_off */
7392 		if (i == 0) {
7393 			if (krecord[i].insn_off) {
7394 				verbose(env,
7395 					"nonzero insn_off %u for the first func info record",
7396 					krecord[i].insn_off);
7397 				ret = -EINVAL;
7398 				goto err_free;
7399 			}
7400 		} else if (krecord[i].insn_off <= prev_offset) {
7401 			verbose(env,
7402 				"same or smaller insn offset (%u) than previous func info record (%u)",
7403 				krecord[i].insn_off, prev_offset);
7404 			ret = -EINVAL;
7405 			goto err_free;
7406 		}
7407 
7408 		if (env->subprog_info[i].start != krecord[i].insn_off) {
7409 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
7410 			ret = -EINVAL;
7411 			goto err_free;
7412 		}
7413 
7414 		/* check type_id */
7415 		type = btf_type_by_id(btf, krecord[i].type_id);
7416 		if (!type || !btf_type_is_func(type)) {
7417 			verbose(env, "invalid type id %d in func info",
7418 				krecord[i].type_id);
7419 			ret = -EINVAL;
7420 			goto err_free;
7421 		}
7422 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
7423 		prev_offset = krecord[i].insn_off;
7424 		urecord += urec_size;
7425 	}
7426 
7427 	prog->aux->func_info = krecord;
7428 	prog->aux->func_info_cnt = nfuncs;
7429 	prog->aux->func_info_aux = info_aux;
7430 	return 0;
7431 
7432 err_free:
7433 	kvfree(krecord);
7434 	kfree(info_aux);
7435 	return ret;
7436 }
7437 
7438 static void adjust_btf_func(struct bpf_verifier_env *env)
7439 {
7440 	struct bpf_prog_aux *aux = env->prog->aux;
7441 	int i;
7442 
7443 	if (!aux->func_info)
7444 		return;
7445 
7446 	for (i = 0; i < env->subprog_cnt; i++)
7447 		aux->func_info[i].insn_off = env->subprog_info[i].start;
7448 }
7449 
7450 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
7451 		sizeof(((struct bpf_line_info *)(0))->line_col))
7452 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
7453 
7454 static int check_btf_line(struct bpf_verifier_env *env,
7455 			  const union bpf_attr *attr,
7456 			  union bpf_attr __user *uattr)
7457 {
7458 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
7459 	struct bpf_subprog_info *sub;
7460 	struct bpf_line_info *linfo;
7461 	struct bpf_prog *prog;
7462 	const struct btf *btf;
7463 	void __user *ulinfo;
7464 	int err;
7465 
7466 	nr_linfo = attr->line_info_cnt;
7467 	if (!nr_linfo)
7468 		return 0;
7469 
7470 	rec_size = attr->line_info_rec_size;
7471 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
7472 	    rec_size > MAX_LINEINFO_REC_SIZE ||
7473 	    rec_size & (sizeof(u32) - 1))
7474 		return -EINVAL;
7475 
7476 	/* Need to zero it in case the userspace may
7477 	 * pass in a smaller bpf_line_info object.
7478 	 */
7479 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
7480 			 GFP_KERNEL | __GFP_NOWARN);
7481 	if (!linfo)
7482 		return -ENOMEM;
7483 
7484 	prog = env->prog;
7485 	btf = prog->aux->btf;
7486 
7487 	s = 0;
7488 	sub = env->subprog_info;
7489 	ulinfo = u64_to_user_ptr(attr->line_info);
7490 	expected_size = sizeof(struct bpf_line_info);
7491 	ncopy = min_t(u32, expected_size, rec_size);
7492 	for (i = 0; i < nr_linfo; i++) {
7493 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
7494 		if (err) {
7495 			if (err == -E2BIG) {
7496 				verbose(env, "nonzero tailing record in line_info");
7497 				if (put_user(expected_size,
7498 					     &uattr->line_info_rec_size))
7499 					err = -EFAULT;
7500 			}
7501 			goto err_free;
7502 		}
7503 
7504 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
7505 			err = -EFAULT;
7506 			goto err_free;
7507 		}
7508 
7509 		/*
7510 		 * Check insn_off to ensure
7511 		 * 1) strictly increasing AND
7512 		 * 2) bounded by prog->len
7513 		 *
7514 		 * The linfo[0].insn_off == 0 check logically falls into
7515 		 * the later "missing bpf_line_info for func..." case
7516 		 * because the first linfo[0].insn_off must be the
7517 		 * first sub also and the first sub must have
7518 		 * subprog_info[0].start == 0.
7519 		 */
7520 		if ((i && linfo[i].insn_off <= prev_offset) ||
7521 		    linfo[i].insn_off >= prog->len) {
7522 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
7523 				i, linfo[i].insn_off, prev_offset,
7524 				prog->len);
7525 			err = -EINVAL;
7526 			goto err_free;
7527 		}
7528 
7529 		if (!prog->insnsi[linfo[i].insn_off].code) {
7530 			verbose(env,
7531 				"Invalid insn code at line_info[%u].insn_off\n",
7532 				i);
7533 			err = -EINVAL;
7534 			goto err_free;
7535 		}
7536 
7537 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
7538 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
7539 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
7540 			err = -EINVAL;
7541 			goto err_free;
7542 		}
7543 
7544 		if (s != env->subprog_cnt) {
7545 			if (linfo[i].insn_off == sub[s].start) {
7546 				sub[s].linfo_idx = i;
7547 				s++;
7548 			} else if (sub[s].start < linfo[i].insn_off) {
7549 				verbose(env, "missing bpf_line_info for func#%u\n", s);
7550 				err = -EINVAL;
7551 				goto err_free;
7552 			}
7553 		}
7554 
7555 		prev_offset = linfo[i].insn_off;
7556 		ulinfo += rec_size;
7557 	}
7558 
7559 	if (s != env->subprog_cnt) {
7560 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
7561 			env->subprog_cnt - s, s);
7562 		err = -EINVAL;
7563 		goto err_free;
7564 	}
7565 
7566 	prog->aux->linfo = linfo;
7567 	prog->aux->nr_linfo = nr_linfo;
7568 
7569 	return 0;
7570 
7571 err_free:
7572 	kvfree(linfo);
7573 	return err;
7574 }
7575 
7576 static int check_btf_info(struct bpf_verifier_env *env,
7577 			  const union bpf_attr *attr,
7578 			  union bpf_attr __user *uattr)
7579 {
7580 	struct btf *btf;
7581 	int err;
7582 
7583 	if (!attr->func_info_cnt && !attr->line_info_cnt)
7584 		return 0;
7585 
7586 	btf = btf_get_by_fd(attr->prog_btf_fd);
7587 	if (IS_ERR(btf))
7588 		return PTR_ERR(btf);
7589 	env->prog->aux->btf = btf;
7590 
7591 	err = check_btf_func(env, attr, uattr);
7592 	if (err)
7593 		return err;
7594 
7595 	err = check_btf_line(env, attr, uattr);
7596 	if (err)
7597 		return err;
7598 
7599 	return 0;
7600 }
7601 
7602 /* check %cur's range satisfies %old's */
7603 static bool range_within(struct bpf_reg_state *old,
7604 			 struct bpf_reg_state *cur)
7605 {
7606 	return old->umin_value <= cur->umin_value &&
7607 	       old->umax_value >= cur->umax_value &&
7608 	       old->smin_value <= cur->smin_value &&
7609 	       old->smax_value >= cur->smax_value;
7610 }
7611 
7612 /* Maximum number of register states that can exist at once */
7613 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
7614 struct idpair {
7615 	u32 old;
7616 	u32 cur;
7617 };
7618 
7619 /* If in the old state two registers had the same id, then they need to have
7620  * the same id in the new state as well.  But that id could be different from
7621  * the old state, so we need to track the mapping from old to new ids.
7622  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
7623  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
7624  * regs with a different old id could still have new id 9, we don't care about
7625  * that.
7626  * So we look through our idmap to see if this old id has been seen before.  If
7627  * so, we require the new id to match; otherwise, we add the id pair to the map.
7628  */
7629 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
7630 {
7631 	unsigned int i;
7632 
7633 	for (i = 0; i < ID_MAP_SIZE; i++) {
7634 		if (!idmap[i].old) {
7635 			/* Reached an empty slot; haven't seen this id before */
7636 			idmap[i].old = old_id;
7637 			idmap[i].cur = cur_id;
7638 			return true;
7639 		}
7640 		if (idmap[i].old == old_id)
7641 			return idmap[i].cur == cur_id;
7642 	}
7643 	/* We ran out of idmap slots, which should be impossible */
7644 	WARN_ON_ONCE(1);
7645 	return false;
7646 }
7647 
7648 static void clean_func_state(struct bpf_verifier_env *env,
7649 			     struct bpf_func_state *st)
7650 {
7651 	enum bpf_reg_liveness live;
7652 	int i, j;
7653 
7654 	for (i = 0; i < BPF_REG_FP; i++) {
7655 		live = st->regs[i].live;
7656 		/* liveness must not touch this register anymore */
7657 		st->regs[i].live |= REG_LIVE_DONE;
7658 		if (!(live & REG_LIVE_READ))
7659 			/* since the register is unused, clear its state
7660 			 * to make further comparison simpler
7661 			 */
7662 			__mark_reg_not_init(env, &st->regs[i]);
7663 	}
7664 
7665 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
7666 		live = st->stack[i].spilled_ptr.live;
7667 		/* liveness must not touch this stack slot anymore */
7668 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
7669 		if (!(live & REG_LIVE_READ)) {
7670 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
7671 			for (j = 0; j < BPF_REG_SIZE; j++)
7672 				st->stack[i].slot_type[j] = STACK_INVALID;
7673 		}
7674 	}
7675 }
7676 
7677 static void clean_verifier_state(struct bpf_verifier_env *env,
7678 				 struct bpf_verifier_state *st)
7679 {
7680 	int i;
7681 
7682 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
7683 		/* all regs in this state in all frames were already marked */
7684 		return;
7685 
7686 	for (i = 0; i <= st->curframe; i++)
7687 		clean_func_state(env, st->frame[i]);
7688 }
7689 
7690 /* the parentage chains form a tree.
7691  * the verifier states are added to state lists at given insn and
7692  * pushed into state stack for future exploration.
7693  * when the verifier reaches bpf_exit insn some of the verifer states
7694  * stored in the state lists have their final liveness state already,
7695  * but a lot of states will get revised from liveness point of view when
7696  * the verifier explores other branches.
7697  * Example:
7698  * 1: r0 = 1
7699  * 2: if r1 == 100 goto pc+1
7700  * 3: r0 = 2
7701  * 4: exit
7702  * when the verifier reaches exit insn the register r0 in the state list of
7703  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
7704  * of insn 2 and goes exploring further. At the insn 4 it will walk the
7705  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
7706  *
7707  * Since the verifier pushes the branch states as it sees them while exploring
7708  * the program the condition of walking the branch instruction for the second
7709  * time means that all states below this branch were already explored and
7710  * their final liveness markes are already propagated.
7711  * Hence when the verifier completes the search of state list in is_state_visited()
7712  * we can call this clean_live_states() function to mark all liveness states
7713  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
7714  * will not be used.
7715  * This function also clears the registers and stack for states that !READ
7716  * to simplify state merging.
7717  *
7718  * Important note here that walking the same branch instruction in the callee
7719  * doesn't meant that the states are DONE. The verifier has to compare
7720  * the callsites
7721  */
7722 static void clean_live_states(struct bpf_verifier_env *env, int insn,
7723 			      struct bpf_verifier_state *cur)
7724 {
7725 	struct bpf_verifier_state_list *sl;
7726 	int i;
7727 
7728 	sl = *explored_state(env, insn);
7729 	while (sl) {
7730 		if (sl->state.branches)
7731 			goto next;
7732 		if (sl->state.insn_idx != insn ||
7733 		    sl->state.curframe != cur->curframe)
7734 			goto next;
7735 		for (i = 0; i <= cur->curframe; i++)
7736 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
7737 				goto next;
7738 		clean_verifier_state(env, &sl->state);
7739 next:
7740 		sl = sl->next;
7741 	}
7742 }
7743 
7744 /* Returns true if (rold safe implies rcur safe) */
7745 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7746 		    struct idpair *idmap)
7747 {
7748 	bool equal;
7749 
7750 	if (!(rold->live & REG_LIVE_READ))
7751 		/* explored state didn't use this */
7752 		return true;
7753 
7754 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
7755 
7756 	if (rold->type == PTR_TO_STACK)
7757 		/* two stack pointers are equal only if they're pointing to
7758 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
7759 		 */
7760 		return equal && rold->frameno == rcur->frameno;
7761 
7762 	if (equal)
7763 		return true;
7764 
7765 	if (rold->type == NOT_INIT)
7766 		/* explored state can't have used this */
7767 		return true;
7768 	if (rcur->type == NOT_INIT)
7769 		return false;
7770 	switch (rold->type) {
7771 	case SCALAR_VALUE:
7772 		if (rcur->type == SCALAR_VALUE) {
7773 			if (!rold->precise && !rcur->precise)
7774 				return true;
7775 			/* new val must satisfy old val knowledge */
7776 			return range_within(rold, rcur) &&
7777 			       tnum_in(rold->var_off, rcur->var_off);
7778 		} else {
7779 			/* We're trying to use a pointer in place of a scalar.
7780 			 * Even if the scalar was unbounded, this could lead to
7781 			 * pointer leaks because scalars are allowed to leak
7782 			 * while pointers are not. We could make this safe in
7783 			 * special cases if root is calling us, but it's
7784 			 * probably not worth the hassle.
7785 			 */
7786 			return false;
7787 		}
7788 	case PTR_TO_MAP_VALUE:
7789 		/* If the new min/max/var_off satisfy the old ones and
7790 		 * everything else matches, we are OK.
7791 		 * 'id' is not compared, since it's only used for maps with
7792 		 * bpf_spin_lock inside map element and in such cases if
7793 		 * the rest of the prog is valid for one map element then
7794 		 * it's valid for all map elements regardless of the key
7795 		 * used in bpf_map_lookup()
7796 		 */
7797 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
7798 		       range_within(rold, rcur) &&
7799 		       tnum_in(rold->var_off, rcur->var_off);
7800 	case PTR_TO_MAP_VALUE_OR_NULL:
7801 		/* a PTR_TO_MAP_VALUE could be safe to use as a
7802 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
7803 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
7804 		 * checked, doing so could have affected others with the same
7805 		 * id, and we can't check for that because we lost the id when
7806 		 * we converted to a PTR_TO_MAP_VALUE.
7807 		 */
7808 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
7809 			return false;
7810 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
7811 			return false;
7812 		/* Check our ids match any regs they're supposed to */
7813 		return check_ids(rold->id, rcur->id, idmap);
7814 	case PTR_TO_PACKET_META:
7815 	case PTR_TO_PACKET:
7816 		if (rcur->type != rold->type)
7817 			return false;
7818 		/* We must have at least as much range as the old ptr
7819 		 * did, so that any accesses which were safe before are
7820 		 * still safe.  This is true even if old range < old off,
7821 		 * since someone could have accessed through (ptr - k), or
7822 		 * even done ptr -= k in a register, to get a safe access.
7823 		 */
7824 		if (rold->range > rcur->range)
7825 			return false;
7826 		/* If the offsets don't match, we can't trust our alignment;
7827 		 * nor can we be sure that we won't fall out of range.
7828 		 */
7829 		if (rold->off != rcur->off)
7830 			return false;
7831 		/* id relations must be preserved */
7832 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
7833 			return false;
7834 		/* new val must satisfy old val knowledge */
7835 		return range_within(rold, rcur) &&
7836 		       tnum_in(rold->var_off, rcur->var_off);
7837 	case PTR_TO_CTX:
7838 	case CONST_PTR_TO_MAP:
7839 	case PTR_TO_PACKET_END:
7840 	case PTR_TO_FLOW_KEYS:
7841 	case PTR_TO_SOCKET:
7842 	case PTR_TO_SOCKET_OR_NULL:
7843 	case PTR_TO_SOCK_COMMON:
7844 	case PTR_TO_SOCK_COMMON_OR_NULL:
7845 	case PTR_TO_TCP_SOCK:
7846 	case PTR_TO_TCP_SOCK_OR_NULL:
7847 	case PTR_TO_XDP_SOCK:
7848 		/* Only valid matches are exact, which memcmp() above
7849 		 * would have accepted
7850 		 */
7851 	default:
7852 		/* Don't know what's going on, just say it's not safe */
7853 		return false;
7854 	}
7855 
7856 	/* Shouldn't get here; if we do, say it's not safe */
7857 	WARN_ON_ONCE(1);
7858 	return false;
7859 }
7860 
7861 static bool stacksafe(struct bpf_func_state *old,
7862 		      struct bpf_func_state *cur,
7863 		      struct idpair *idmap)
7864 {
7865 	int i, spi;
7866 
7867 	/* walk slots of the explored stack and ignore any additional
7868 	 * slots in the current stack, since explored(safe) state
7869 	 * didn't use them
7870 	 */
7871 	for (i = 0; i < old->allocated_stack; i++) {
7872 		spi = i / BPF_REG_SIZE;
7873 
7874 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
7875 			i += BPF_REG_SIZE - 1;
7876 			/* explored state didn't use this */
7877 			continue;
7878 		}
7879 
7880 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
7881 			continue;
7882 
7883 		/* explored stack has more populated slots than current stack
7884 		 * and these slots were used
7885 		 */
7886 		if (i >= cur->allocated_stack)
7887 			return false;
7888 
7889 		/* if old state was safe with misc data in the stack
7890 		 * it will be safe with zero-initialized stack.
7891 		 * The opposite is not true
7892 		 */
7893 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
7894 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
7895 			continue;
7896 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
7897 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
7898 			/* Ex: old explored (safe) state has STACK_SPILL in
7899 			 * this stack slot, but current has has STACK_MISC ->
7900 			 * this verifier states are not equivalent,
7901 			 * return false to continue verification of this path
7902 			 */
7903 			return false;
7904 		if (i % BPF_REG_SIZE)
7905 			continue;
7906 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
7907 			continue;
7908 		if (!regsafe(&old->stack[spi].spilled_ptr,
7909 			     &cur->stack[spi].spilled_ptr,
7910 			     idmap))
7911 			/* when explored and current stack slot are both storing
7912 			 * spilled registers, check that stored pointers types
7913 			 * are the same as well.
7914 			 * Ex: explored safe path could have stored
7915 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
7916 			 * but current path has stored:
7917 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
7918 			 * such verifier states are not equivalent.
7919 			 * return false to continue verification of this path
7920 			 */
7921 			return false;
7922 	}
7923 	return true;
7924 }
7925 
7926 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
7927 {
7928 	if (old->acquired_refs != cur->acquired_refs)
7929 		return false;
7930 	return !memcmp(old->refs, cur->refs,
7931 		       sizeof(*old->refs) * old->acquired_refs);
7932 }
7933 
7934 /* compare two verifier states
7935  *
7936  * all states stored in state_list are known to be valid, since
7937  * verifier reached 'bpf_exit' instruction through them
7938  *
7939  * this function is called when verifier exploring different branches of
7940  * execution popped from the state stack. If it sees an old state that has
7941  * more strict register state and more strict stack state then this execution
7942  * branch doesn't need to be explored further, since verifier already
7943  * concluded that more strict state leads to valid finish.
7944  *
7945  * Therefore two states are equivalent if register state is more conservative
7946  * and explored stack state is more conservative than the current one.
7947  * Example:
7948  *       explored                   current
7949  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7950  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7951  *
7952  * In other words if current stack state (one being explored) has more
7953  * valid slots than old one that already passed validation, it means
7954  * the verifier can stop exploring and conclude that current state is valid too
7955  *
7956  * Similarly with registers. If explored state has register type as invalid
7957  * whereas register type in current state is meaningful, it means that
7958  * the current state will reach 'bpf_exit' instruction safely
7959  */
7960 static bool func_states_equal(struct bpf_func_state *old,
7961 			      struct bpf_func_state *cur)
7962 {
7963 	struct idpair *idmap;
7964 	bool ret = false;
7965 	int i;
7966 
7967 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
7968 	/* If we failed to allocate the idmap, just say it's not safe */
7969 	if (!idmap)
7970 		return false;
7971 
7972 	for (i = 0; i < MAX_BPF_REG; i++) {
7973 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
7974 			goto out_free;
7975 	}
7976 
7977 	if (!stacksafe(old, cur, idmap))
7978 		goto out_free;
7979 
7980 	if (!refsafe(old, cur))
7981 		goto out_free;
7982 	ret = true;
7983 out_free:
7984 	kfree(idmap);
7985 	return ret;
7986 }
7987 
7988 static bool states_equal(struct bpf_verifier_env *env,
7989 			 struct bpf_verifier_state *old,
7990 			 struct bpf_verifier_state *cur)
7991 {
7992 	int i;
7993 
7994 	if (old->curframe != cur->curframe)
7995 		return false;
7996 
7997 	/* Verification state from speculative execution simulation
7998 	 * must never prune a non-speculative execution one.
7999 	 */
8000 	if (old->speculative && !cur->speculative)
8001 		return false;
8002 
8003 	if (old->active_spin_lock != cur->active_spin_lock)
8004 		return false;
8005 
8006 	/* for states to be equal callsites have to be the same
8007 	 * and all frame states need to be equivalent
8008 	 */
8009 	for (i = 0; i <= old->curframe; i++) {
8010 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
8011 			return false;
8012 		if (!func_states_equal(old->frame[i], cur->frame[i]))
8013 			return false;
8014 	}
8015 	return true;
8016 }
8017 
8018 /* Return 0 if no propagation happened. Return negative error code if error
8019  * happened. Otherwise, return the propagated bit.
8020  */
8021 static int propagate_liveness_reg(struct bpf_verifier_env *env,
8022 				  struct bpf_reg_state *reg,
8023 				  struct bpf_reg_state *parent_reg)
8024 {
8025 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8026 	u8 flag = reg->live & REG_LIVE_READ;
8027 	int err;
8028 
8029 	/* When comes here, read flags of PARENT_REG or REG could be any of
8030 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8031 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8032 	 */
8033 	if (parent_flag == REG_LIVE_READ64 ||
8034 	    /* Or if there is no read flag from REG. */
8035 	    !flag ||
8036 	    /* Or if the read flag from REG is the same as PARENT_REG. */
8037 	    parent_flag == flag)
8038 		return 0;
8039 
8040 	err = mark_reg_read(env, reg, parent_reg, flag);
8041 	if (err)
8042 		return err;
8043 
8044 	return flag;
8045 }
8046 
8047 /* A write screens off any subsequent reads; but write marks come from the
8048  * straight-line code between a state and its parent.  When we arrive at an
8049  * equivalent state (jump target or such) we didn't arrive by the straight-line
8050  * code, so read marks in the state must propagate to the parent regardless
8051  * of the state's write marks. That's what 'parent == state->parent' comparison
8052  * in mark_reg_read() is for.
8053  */
8054 static int propagate_liveness(struct bpf_verifier_env *env,
8055 			      const struct bpf_verifier_state *vstate,
8056 			      struct bpf_verifier_state *vparent)
8057 {
8058 	struct bpf_reg_state *state_reg, *parent_reg;
8059 	struct bpf_func_state *state, *parent;
8060 	int i, frame, err = 0;
8061 
8062 	if (vparent->curframe != vstate->curframe) {
8063 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
8064 		     vparent->curframe, vstate->curframe);
8065 		return -EFAULT;
8066 	}
8067 	/* Propagate read liveness of registers... */
8068 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
8069 	for (frame = 0; frame <= vstate->curframe; frame++) {
8070 		parent = vparent->frame[frame];
8071 		state = vstate->frame[frame];
8072 		parent_reg = parent->regs;
8073 		state_reg = state->regs;
8074 		/* We don't need to worry about FP liveness, it's read-only */
8075 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
8076 			err = propagate_liveness_reg(env, &state_reg[i],
8077 						     &parent_reg[i]);
8078 			if (err < 0)
8079 				return err;
8080 			if (err == REG_LIVE_READ64)
8081 				mark_insn_zext(env, &parent_reg[i]);
8082 		}
8083 
8084 		/* Propagate stack slots. */
8085 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8086 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
8087 			parent_reg = &parent->stack[i].spilled_ptr;
8088 			state_reg = &state->stack[i].spilled_ptr;
8089 			err = propagate_liveness_reg(env, state_reg,
8090 						     parent_reg);
8091 			if (err < 0)
8092 				return err;
8093 		}
8094 	}
8095 	return 0;
8096 }
8097 
8098 /* find precise scalars in the previous equivalent state and
8099  * propagate them into the current state
8100  */
8101 static int propagate_precision(struct bpf_verifier_env *env,
8102 			       const struct bpf_verifier_state *old)
8103 {
8104 	struct bpf_reg_state *state_reg;
8105 	struct bpf_func_state *state;
8106 	int i, err = 0;
8107 
8108 	state = old->frame[old->curframe];
8109 	state_reg = state->regs;
8110 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8111 		if (state_reg->type != SCALAR_VALUE ||
8112 		    !state_reg->precise)
8113 			continue;
8114 		if (env->log.level & BPF_LOG_LEVEL2)
8115 			verbose(env, "propagating r%d\n", i);
8116 		err = mark_chain_precision(env, i);
8117 		if (err < 0)
8118 			return err;
8119 	}
8120 
8121 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8122 		if (state->stack[i].slot_type[0] != STACK_SPILL)
8123 			continue;
8124 		state_reg = &state->stack[i].spilled_ptr;
8125 		if (state_reg->type != SCALAR_VALUE ||
8126 		    !state_reg->precise)
8127 			continue;
8128 		if (env->log.level & BPF_LOG_LEVEL2)
8129 			verbose(env, "propagating fp%d\n",
8130 				(-i - 1) * BPF_REG_SIZE);
8131 		err = mark_chain_precision_stack(env, i);
8132 		if (err < 0)
8133 			return err;
8134 	}
8135 	return 0;
8136 }
8137 
8138 static bool states_maybe_looping(struct bpf_verifier_state *old,
8139 				 struct bpf_verifier_state *cur)
8140 {
8141 	struct bpf_func_state *fold, *fcur;
8142 	int i, fr = cur->curframe;
8143 
8144 	if (old->curframe != fr)
8145 		return false;
8146 
8147 	fold = old->frame[fr];
8148 	fcur = cur->frame[fr];
8149 	for (i = 0; i < MAX_BPF_REG; i++)
8150 		if (memcmp(&fold->regs[i], &fcur->regs[i],
8151 			   offsetof(struct bpf_reg_state, parent)))
8152 			return false;
8153 	return true;
8154 }
8155 
8156 
8157 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
8158 {
8159 	struct bpf_verifier_state_list *new_sl;
8160 	struct bpf_verifier_state_list *sl, **pprev;
8161 	struct bpf_verifier_state *cur = env->cur_state, *new;
8162 	int i, j, err, states_cnt = 0;
8163 	bool add_new_state = env->test_state_freq ? true : false;
8164 
8165 	cur->last_insn_idx = env->prev_insn_idx;
8166 	if (!env->insn_aux_data[insn_idx].prune_point)
8167 		/* this 'insn_idx' instruction wasn't marked, so we will not
8168 		 * be doing state search here
8169 		 */
8170 		return 0;
8171 
8172 	/* bpf progs typically have pruning point every 4 instructions
8173 	 * http://vger.kernel.org/bpfconf2019.html#session-1
8174 	 * Do not add new state for future pruning if the verifier hasn't seen
8175 	 * at least 2 jumps and at least 8 instructions.
8176 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
8177 	 * In tests that amounts to up to 50% reduction into total verifier
8178 	 * memory consumption and 20% verifier time speedup.
8179 	 */
8180 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
8181 	    env->insn_processed - env->prev_insn_processed >= 8)
8182 		add_new_state = true;
8183 
8184 	pprev = explored_state(env, insn_idx);
8185 	sl = *pprev;
8186 
8187 	clean_live_states(env, insn_idx, cur);
8188 
8189 	while (sl) {
8190 		states_cnt++;
8191 		if (sl->state.insn_idx != insn_idx)
8192 			goto next;
8193 		if (sl->state.branches) {
8194 			if (states_maybe_looping(&sl->state, cur) &&
8195 			    states_equal(env, &sl->state, cur)) {
8196 				verbose_linfo(env, insn_idx, "; ");
8197 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
8198 				return -EINVAL;
8199 			}
8200 			/* if the verifier is processing a loop, avoid adding new state
8201 			 * too often, since different loop iterations have distinct
8202 			 * states and may not help future pruning.
8203 			 * This threshold shouldn't be too low to make sure that
8204 			 * a loop with large bound will be rejected quickly.
8205 			 * The most abusive loop will be:
8206 			 * r1 += 1
8207 			 * if r1 < 1000000 goto pc-2
8208 			 * 1M insn_procssed limit / 100 == 10k peak states.
8209 			 * This threshold shouldn't be too high either, since states
8210 			 * at the end of the loop are likely to be useful in pruning.
8211 			 */
8212 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
8213 			    env->insn_processed - env->prev_insn_processed < 100)
8214 				add_new_state = false;
8215 			goto miss;
8216 		}
8217 		if (states_equal(env, &sl->state, cur)) {
8218 			sl->hit_cnt++;
8219 			/* reached equivalent register/stack state,
8220 			 * prune the search.
8221 			 * Registers read by the continuation are read by us.
8222 			 * If we have any write marks in env->cur_state, they
8223 			 * will prevent corresponding reads in the continuation
8224 			 * from reaching our parent (an explored_state).  Our
8225 			 * own state will get the read marks recorded, but
8226 			 * they'll be immediately forgotten as we're pruning
8227 			 * this state and will pop a new one.
8228 			 */
8229 			err = propagate_liveness(env, &sl->state, cur);
8230 
8231 			/* if previous state reached the exit with precision and
8232 			 * current state is equivalent to it (except precsion marks)
8233 			 * the precision needs to be propagated back in
8234 			 * the current state.
8235 			 */
8236 			err = err ? : push_jmp_history(env, cur);
8237 			err = err ? : propagate_precision(env, &sl->state);
8238 			if (err)
8239 				return err;
8240 			return 1;
8241 		}
8242 miss:
8243 		/* when new state is not going to be added do not increase miss count.
8244 		 * Otherwise several loop iterations will remove the state
8245 		 * recorded earlier. The goal of these heuristics is to have
8246 		 * states from some iterations of the loop (some in the beginning
8247 		 * and some at the end) to help pruning.
8248 		 */
8249 		if (add_new_state)
8250 			sl->miss_cnt++;
8251 		/* heuristic to determine whether this state is beneficial
8252 		 * to keep checking from state equivalence point of view.
8253 		 * Higher numbers increase max_states_per_insn and verification time,
8254 		 * but do not meaningfully decrease insn_processed.
8255 		 */
8256 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
8257 			/* the state is unlikely to be useful. Remove it to
8258 			 * speed up verification
8259 			 */
8260 			*pprev = sl->next;
8261 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
8262 				u32 br = sl->state.branches;
8263 
8264 				WARN_ONCE(br,
8265 					  "BUG live_done but branches_to_explore %d\n",
8266 					  br);
8267 				free_verifier_state(&sl->state, false);
8268 				kfree(sl);
8269 				env->peak_states--;
8270 			} else {
8271 				/* cannot free this state, since parentage chain may
8272 				 * walk it later. Add it for free_list instead to
8273 				 * be freed at the end of verification
8274 				 */
8275 				sl->next = env->free_list;
8276 				env->free_list = sl;
8277 			}
8278 			sl = *pprev;
8279 			continue;
8280 		}
8281 next:
8282 		pprev = &sl->next;
8283 		sl = *pprev;
8284 	}
8285 
8286 	if (env->max_states_per_insn < states_cnt)
8287 		env->max_states_per_insn = states_cnt;
8288 
8289 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
8290 		return push_jmp_history(env, cur);
8291 
8292 	if (!add_new_state)
8293 		return push_jmp_history(env, cur);
8294 
8295 	/* There were no equivalent states, remember the current one.
8296 	 * Technically the current state is not proven to be safe yet,
8297 	 * but it will either reach outer most bpf_exit (which means it's safe)
8298 	 * or it will be rejected. When there are no loops the verifier won't be
8299 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
8300 	 * again on the way to bpf_exit.
8301 	 * When looping the sl->state.branches will be > 0 and this state
8302 	 * will not be considered for equivalence until branches == 0.
8303 	 */
8304 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
8305 	if (!new_sl)
8306 		return -ENOMEM;
8307 	env->total_states++;
8308 	env->peak_states++;
8309 	env->prev_jmps_processed = env->jmps_processed;
8310 	env->prev_insn_processed = env->insn_processed;
8311 
8312 	/* add new state to the head of linked list */
8313 	new = &new_sl->state;
8314 	err = copy_verifier_state(new, cur);
8315 	if (err) {
8316 		free_verifier_state(new, false);
8317 		kfree(new_sl);
8318 		return err;
8319 	}
8320 	new->insn_idx = insn_idx;
8321 	WARN_ONCE(new->branches != 1,
8322 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
8323 
8324 	cur->parent = new;
8325 	cur->first_insn_idx = insn_idx;
8326 	clear_jmp_history(cur);
8327 	new_sl->next = *explored_state(env, insn_idx);
8328 	*explored_state(env, insn_idx) = new_sl;
8329 	/* connect new state to parentage chain. Current frame needs all
8330 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
8331 	 * to the stack implicitly by JITs) so in callers' frames connect just
8332 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
8333 	 * the state of the call instruction (with WRITTEN set), and r0 comes
8334 	 * from callee with its full parentage chain, anyway.
8335 	 */
8336 	/* clear write marks in current state: the writes we did are not writes
8337 	 * our child did, so they don't screen off its reads from us.
8338 	 * (There are no read marks in current state, because reads always mark
8339 	 * their parent and current state never has children yet.  Only
8340 	 * explored_states can get read marks.)
8341 	 */
8342 	for (j = 0; j <= cur->curframe; j++) {
8343 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
8344 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
8345 		for (i = 0; i < BPF_REG_FP; i++)
8346 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
8347 	}
8348 
8349 	/* all stack frames are accessible from callee, clear them all */
8350 	for (j = 0; j <= cur->curframe; j++) {
8351 		struct bpf_func_state *frame = cur->frame[j];
8352 		struct bpf_func_state *newframe = new->frame[j];
8353 
8354 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
8355 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
8356 			frame->stack[i].spilled_ptr.parent =
8357 						&newframe->stack[i].spilled_ptr;
8358 		}
8359 	}
8360 	return 0;
8361 }
8362 
8363 /* Return true if it's OK to have the same insn return a different type. */
8364 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
8365 {
8366 	switch (type) {
8367 	case PTR_TO_CTX:
8368 	case PTR_TO_SOCKET:
8369 	case PTR_TO_SOCKET_OR_NULL:
8370 	case PTR_TO_SOCK_COMMON:
8371 	case PTR_TO_SOCK_COMMON_OR_NULL:
8372 	case PTR_TO_TCP_SOCK:
8373 	case PTR_TO_TCP_SOCK_OR_NULL:
8374 	case PTR_TO_XDP_SOCK:
8375 	case PTR_TO_BTF_ID:
8376 		return false;
8377 	default:
8378 		return true;
8379 	}
8380 }
8381 
8382 /* If an instruction was previously used with particular pointer types, then we
8383  * need to be careful to avoid cases such as the below, where it may be ok
8384  * for one branch accessing the pointer, but not ok for the other branch:
8385  *
8386  * R1 = sock_ptr
8387  * goto X;
8388  * ...
8389  * R1 = some_other_valid_ptr;
8390  * goto X;
8391  * ...
8392  * R2 = *(u32 *)(R1 + 0);
8393  */
8394 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
8395 {
8396 	return src != prev && (!reg_type_mismatch_ok(src) ||
8397 			       !reg_type_mismatch_ok(prev));
8398 }
8399 
8400 static int do_check(struct bpf_verifier_env *env)
8401 {
8402 	struct bpf_verifier_state *state = env->cur_state;
8403 	struct bpf_insn *insns = env->prog->insnsi;
8404 	struct bpf_reg_state *regs;
8405 	int insn_cnt = env->prog->len;
8406 	bool do_print_state = false;
8407 	int prev_insn_idx = -1;
8408 
8409 	for (;;) {
8410 		struct bpf_insn *insn;
8411 		u8 class;
8412 		int err;
8413 
8414 		env->prev_insn_idx = prev_insn_idx;
8415 		if (env->insn_idx >= insn_cnt) {
8416 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
8417 				env->insn_idx, insn_cnt);
8418 			return -EFAULT;
8419 		}
8420 
8421 		insn = &insns[env->insn_idx];
8422 		class = BPF_CLASS(insn->code);
8423 
8424 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
8425 			verbose(env,
8426 				"BPF program is too large. Processed %d insn\n",
8427 				env->insn_processed);
8428 			return -E2BIG;
8429 		}
8430 
8431 		err = is_state_visited(env, env->insn_idx);
8432 		if (err < 0)
8433 			return err;
8434 		if (err == 1) {
8435 			/* found equivalent state, can prune the search */
8436 			if (env->log.level & BPF_LOG_LEVEL) {
8437 				if (do_print_state)
8438 					verbose(env, "\nfrom %d to %d%s: safe\n",
8439 						env->prev_insn_idx, env->insn_idx,
8440 						env->cur_state->speculative ?
8441 						" (speculative execution)" : "");
8442 				else
8443 					verbose(env, "%d: safe\n", env->insn_idx);
8444 			}
8445 			goto process_bpf_exit;
8446 		}
8447 
8448 		if (signal_pending(current))
8449 			return -EAGAIN;
8450 
8451 		if (need_resched())
8452 			cond_resched();
8453 
8454 		if (env->log.level & BPF_LOG_LEVEL2 ||
8455 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
8456 			if (env->log.level & BPF_LOG_LEVEL2)
8457 				verbose(env, "%d:", env->insn_idx);
8458 			else
8459 				verbose(env, "\nfrom %d to %d%s:",
8460 					env->prev_insn_idx, env->insn_idx,
8461 					env->cur_state->speculative ?
8462 					" (speculative execution)" : "");
8463 			print_verifier_state(env, state->frame[state->curframe]);
8464 			do_print_state = false;
8465 		}
8466 
8467 		if (env->log.level & BPF_LOG_LEVEL) {
8468 			const struct bpf_insn_cbs cbs = {
8469 				.cb_print	= verbose,
8470 				.private_data	= env,
8471 			};
8472 
8473 			verbose_linfo(env, env->insn_idx, "; ");
8474 			verbose(env, "%d: ", env->insn_idx);
8475 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
8476 		}
8477 
8478 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
8479 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
8480 							   env->prev_insn_idx);
8481 			if (err)
8482 				return err;
8483 		}
8484 
8485 		regs = cur_regs(env);
8486 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8487 		prev_insn_idx = env->insn_idx;
8488 
8489 		if (class == BPF_ALU || class == BPF_ALU64) {
8490 			err = check_alu_op(env, insn);
8491 			if (err)
8492 				return err;
8493 
8494 		} else if (class == BPF_LDX) {
8495 			enum bpf_reg_type *prev_src_type, src_reg_type;
8496 
8497 			/* check for reserved fields is already done */
8498 
8499 			/* check src operand */
8500 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8501 			if (err)
8502 				return err;
8503 
8504 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8505 			if (err)
8506 				return err;
8507 
8508 			src_reg_type = regs[insn->src_reg].type;
8509 
8510 			/* check that memory (src_reg + off) is readable,
8511 			 * the state of dst_reg will be updated by this func
8512 			 */
8513 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
8514 					       insn->off, BPF_SIZE(insn->code),
8515 					       BPF_READ, insn->dst_reg, false);
8516 			if (err)
8517 				return err;
8518 
8519 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
8520 
8521 			if (*prev_src_type == NOT_INIT) {
8522 				/* saw a valid insn
8523 				 * dst_reg = *(u32 *)(src_reg + off)
8524 				 * save type to validate intersecting paths
8525 				 */
8526 				*prev_src_type = src_reg_type;
8527 
8528 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
8529 				/* ABuser program is trying to use the same insn
8530 				 * dst_reg = *(u32*) (src_reg + off)
8531 				 * with different pointer types:
8532 				 * src_reg == ctx in one branch and
8533 				 * src_reg == stack|map in some other branch.
8534 				 * Reject it.
8535 				 */
8536 				verbose(env, "same insn cannot be used with different pointers\n");
8537 				return -EINVAL;
8538 			}
8539 
8540 		} else if (class == BPF_STX) {
8541 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
8542 
8543 			if (BPF_MODE(insn->code) == BPF_XADD) {
8544 				err = check_xadd(env, env->insn_idx, insn);
8545 				if (err)
8546 					return err;
8547 				env->insn_idx++;
8548 				continue;
8549 			}
8550 
8551 			/* check src1 operand */
8552 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8553 			if (err)
8554 				return err;
8555 			/* check src2 operand */
8556 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8557 			if (err)
8558 				return err;
8559 
8560 			dst_reg_type = regs[insn->dst_reg].type;
8561 
8562 			/* check that memory (dst_reg + off) is writeable */
8563 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8564 					       insn->off, BPF_SIZE(insn->code),
8565 					       BPF_WRITE, insn->src_reg, false);
8566 			if (err)
8567 				return err;
8568 
8569 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
8570 
8571 			if (*prev_dst_type == NOT_INIT) {
8572 				*prev_dst_type = dst_reg_type;
8573 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
8574 				verbose(env, "same insn cannot be used with different pointers\n");
8575 				return -EINVAL;
8576 			}
8577 
8578 		} else if (class == BPF_ST) {
8579 			if (BPF_MODE(insn->code) != BPF_MEM ||
8580 			    insn->src_reg != BPF_REG_0) {
8581 				verbose(env, "BPF_ST uses reserved fields\n");
8582 				return -EINVAL;
8583 			}
8584 			/* check src operand */
8585 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8586 			if (err)
8587 				return err;
8588 
8589 			if (is_ctx_reg(env, insn->dst_reg)) {
8590 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
8591 					insn->dst_reg,
8592 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
8593 				return -EACCES;
8594 			}
8595 
8596 			/* check that memory (dst_reg + off) is writeable */
8597 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8598 					       insn->off, BPF_SIZE(insn->code),
8599 					       BPF_WRITE, -1, false);
8600 			if (err)
8601 				return err;
8602 
8603 		} else if (class == BPF_JMP || class == BPF_JMP32) {
8604 			u8 opcode = BPF_OP(insn->code);
8605 
8606 			env->jmps_processed++;
8607 			if (opcode == BPF_CALL) {
8608 				if (BPF_SRC(insn->code) != BPF_K ||
8609 				    insn->off != 0 ||
8610 				    (insn->src_reg != BPF_REG_0 &&
8611 				     insn->src_reg != BPF_PSEUDO_CALL) ||
8612 				    insn->dst_reg != BPF_REG_0 ||
8613 				    class == BPF_JMP32) {
8614 					verbose(env, "BPF_CALL uses reserved fields\n");
8615 					return -EINVAL;
8616 				}
8617 
8618 				if (env->cur_state->active_spin_lock &&
8619 				    (insn->src_reg == BPF_PSEUDO_CALL ||
8620 				     insn->imm != BPF_FUNC_spin_unlock)) {
8621 					verbose(env, "function calls are not allowed while holding a lock\n");
8622 					return -EINVAL;
8623 				}
8624 				if (insn->src_reg == BPF_PSEUDO_CALL)
8625 					err = check_func_call(env, insn, &env->insn_idx);
8626 				else
8627 					err = check_helper_call(env, insn->imm, env->insn_idx);
8628 				if (err)
8629 					return err;
8630 
8631 			} else if (opcode == BPF_JA) {
8632 				if (BPF_SRC(insn->code) != BPF_K ||
8633 				    insn->imm != 0 ||
8634 				    insn->src_reg != BPF_REG_0 ||
8635 				    insn->dst_reg != BPF_REG_0 ||
8636 				    class == BPF_JMP32) {
8637 					verbose(env, "BPF_JA uses reserved fields\n");
8638 					return -EINVAL;
8639 				}
8640 
8641 				env->insn_idx += insn->off + 1;
8642 				continue;
8643 
8644 			} else if (opcode == BPF_EXIT) {
8645 				if (BPF_SRC(insn->code) != BPF_K ||
8646 				    insn->imm != 0 ||
8647 				    insn->src_reg != BPF_REG_0 ||
8648 				    insn->dst_reg != BPF_REG_0 ||
8649 				    class == BPF_JMP32) {
8650 					verbose(env, "BPF_EXIT uses reserved fields\n");
8651 					return -EINVAL;
8652 				}
8653 
8654 				if (env->cur_state->active_spin_lock) {
8655 					verbose(env, "bpf_spin_unlock is missing\n");
8656 					return -EINVAL;
8657 				}
8658 
8659 				if (state->curframe) {
8660 					/* exit from nested function */
8661 					err = prepare_func_exit(env, &env->insn_idx);
8662 					if (err)
8663 						return err;
8664 					do_print_state = true;
8665 					continue;
8666 				}
8667 
8668 				err = check_reference_leak(env);
8669 				if (err)
8670 					return err;
8671 
8672 				err = check_return_code(env);
8673 				if (err)
8674 					return err;
8675 process_bpf_exit:
8676 				update_branch_counts(env, env->cur_state);
8677 				err = pop_stack(env, &prev_insn_idx,
8678 						&env->insn_idx);
8679 				if (err < 0) {
8680 					if (err != -ENOENT)
8681 						return err;
8682 					break;
8683 				} else {
8684 					do_print_state = true;
8685 					continue;
8686 				}
8687 			} else {
8688 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
8689 				if (err)
8690 					return err;
8691 			}
8692 		} else if (class == BPF_LD) {
8693 			u8 mode = BPF_MODE(insn->code);
8694 
8695 			if (mode == BPF_ABS || mode == BPF_IND) {
8696 				err = check_ld_abs(env, insn);
8697 				if (err)
8698 					return err;
8699 
8700 			} else if (mode == BPF_IMM) {
8701 				err = check_ld_imm(env, insn);
8702 				if (err)
8703 					return err;
8704 
8705 				env->insn_idx++;
8706 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8707 			} else {
8708 				verbose(env, "invalid BPF_LD mode\n");
8709 				return -EINVAL;
8710 			}
8711 		} else {
8712 			verbose(env, "unknown insn class %d\n", class);
8713 			return -EINVAL;
8714 		}
8715 
8716 		env->insn_idx++;
8717 	}
8718 
8719 	return 0;
8720 }
8721 
8722 static int check_map_prealloc(struct bpf_map *map)
8723 {
8724 	return (map->map_type != BPF_MAP_TYPE_HASH &&
8725 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8726 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
8727 		!(map->map_flags & BPF_F_NO_PREALLOC);
8728 }
8729 
8730 static bool is_tracing_prog_type(enum bpf_prog_type type)
8731 {
8732 	switch (type) {
8733 	case BPF_PROG_TYPE_KPROBE:
8734 	case BPF_PROG_TYPE_TRACEPOINT:
8735 	case BPF_PROG_TYPE_PERF_EVENT:
8736 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8737 		return true;
8738 	default:
8739 		return false;
8740 	}
8741 }
8742 
8743 static bool is_preallocated_map(struct bpf_map *map)
8744 {
8745 	if (!check_map_prealloc(map))
8746 		return false;
8747 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
8748 		return false;
8749 	return true;
8750 }
8751 
8752 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
8753 					struct bpf_map *map,
8754 					struct bpf_prog *prog)
8755 
8756 {
8757 	/*
8758 	 * Validate that trace type programs use preallocated hash maps.
8759 	 *
8760 	 * For programs attached to PERF events this is mandatory as the
8761 	 * perf NMI can hit any arbitrary code sequence.
8762 	 *
8763 	 * All other trace types using preallocated hash maps are unsafe as
8764 	 * well because tracepoint or kprobes can be inside locked regions
8765 	 * of the memory allocator or at a place where a recursion into the
8766 	 * memory allocator would see inconsistent state.
8767 	 *
8768 	 * On RT enabled kernels run-time allocation of all trace type
8769 	 * programs is strictly prohibited due to lock type constraints. On
8770 	 * !RT kernels it is allowed for backwards compatibility reasons for
8771 	 * now, but warnings are emitted so developers are made aware of
8772 	 * the unsafety and can fix their programs before this is enforced.
8773 	 */
8774 	if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) {
8775 		if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
8776 			verbose(env, "perf_event programs can only use preallocated hash map\n");
8777 			return -EINVAL;
8778 		}
8779 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
8780 			verbose(env, "trace type programs can only use preallocated hash map\n");
8781 			return -EINVAL;
8782 		}
8783 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
8784 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
8785 	}
8786 
8787 	if ((is_tracing_prog_type(prog->type) ||
8788 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
8789 	    map_value_has_spin_lock(map)) {
8790 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
8791 		return -EINVAL;
8792 	}
8793 
8794 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
8795 	    !bpf_offload_prog_map_match(prog, map)) {
8796 		verbose(env, "offload device mismatch between prog and map\n");
8797 		return -EINVAL;
8798 	}
8799 
8800 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
8801 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
8802 		return -EINVAL;
8803 	}
8804 
8805 	return 0;
8806 }
8807 
8808 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
8809 {
8810 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
8811 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
8812 }
8813 
8814 /* look for pseudo eBPF instructions that access map FDs and
8815  * replace them with actual map pointers
8816  */
8817 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
8818 {
8819 	struct bpf_insn *insn = env->prog->insnsi;
8820 	int insn_cnt = env->prog->len;
8821 	int i, j, err;
8822 
8823 	err = bpf_prog_calc_tag(env->prog);
8824 	if (err)
8825 		return err;
8826 
8827 	for (i = 0; i < insn_cnt; i++, insn++) {
8828 		if (BPF_CLASS(insn->code) == BPF_LDX &&
8829 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
8830 			verbose(env, "BPF_LDX uses reserved fields\n");
8831 			return -EINVAL;
8832 		}
8833 
8834 		if (BPF_CLASS(insn->code) == BPF_STX &&
8835 		    ((BPF_MODE(insn->code) != BPF_MEM &&
8836 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
8837 			verbose(env, "BPF_STX uses reserved fields\n");
8838 			return -EINVAL;
8839 		}
8840 
8841 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
8842 			struct bpf_insn_aux_data *aux;
8843 			struct bpf_map *map;
8844 			struct fd f;
8845 			u64 addr;
8846 
8847 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
8848 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
8849 			    insn[1].off != 0) {
8850 				verbose(env, "invalid bpf_ld_imm64 insn\n");
8851 				return -EINVAL;
8852 			}
8853 
8854 			if (insn[0].src_reg == 0)
8855 				/* valid generic load 64-bit imm */
8856 				goto next_insn;
8857 
8858 			/* In final convert_pseudo_ld_imm64() step, this is
8859 			 * converted into regular 64-bit imm load insn.
8860 			 */
8861 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
8862 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
8863 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
8864 			     insn[1].imm != 0)) {
8865 				verbose(env,
8866 					"unrecognized bpf_ld_imm64 insn\n");
8867 				return -EINVAL;
8868 			}
8869 
8870 			f = fdget(insn[0].imm);
8871 			map = __bpf_map_get(f);
8872 			if (IS_ERR(map)) {
8873 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
8874 					insn[0].imm);
8875 				return PTR_ERR(map);
8876 			}
8877 
8878 			err = check_map_prog_compatibility(env, map, env->prog);
8879 			if (err) {
8880 				fdput(f);
8881 				return err;
8882 			}
8883 
8884 			aux = &env->insn_aux_data[i];
8885 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8886 				addr = (unsigned long)map;
8887 			} else {
8888 				u32 off = insn[1].imm;
8889 
8890 				if (off >= BPF_MAX_VAR_OFF) {
8891 					verbose(env, "direct value offset of %u is not allowed\n", off);
8892 					fdput(f);
8893 					return -EINVAL;
8894 				}
8895 
8896 				if (!map->ops->map_direct_value_addr) {
8897 					verbose(env, "no direct value access support for this map type\n");
8898 					fdput(f);
8899 					return -EINVAL;
8900 				}
8901 
8902 				err = map->ops->map_direct_value_addr(map, &addr, off);
8903 				if (err) {
8904 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
8905 						map->value_size, off);
8906 					fdput(f);
8907 					return err;
8908 				}
8909 
8910 				aux->map_off = off;
8911 				addr += off;
8912 			}
8913 
8914 			insn[0].imm = (u32)addr;
8915 			insn[1].imm = addr >> 32;
8916 
8917 			/* check whether we recorded this map already */
8918 			for (j = 0; j < env->used_map_cnt; j++) {
8919 				if (env->used_maps[j] == map) {
8920 					aux->map_index = j;
8921 					fdput(f);
8922 					goto next_insn;
8923 				}
8924 			}
8925 
8926 			if (env->used_map_cnt >= MAX_USED_MAPS) {
8927 				fdput(f);
8928 				return -E2BIG;
8929 			}
8930 
8931 			/* hold the map. If the program is rejected by verifier,
8932 			 * the map will be released by release_maps() or it
8933 			 * will be used by the valid program until it's unloaded
8934 			 * and all maps are released in free_used_maps()
8935 			 */
8936 			bpf_map_inc(map);
8937 
8938 			aux->map_index = env->used_map_cnt;
8939 			env->used_maps[env->used_map_cnt++] = map;
8940 
8941 			if (bpf_map_is_cgroup_storage(map) &&
8942 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
8943 				verbose(env, "only one cgroup storage of each type is allowed\n");
8944 				fdput(f);
8945 				return -EBUSY;
8946 			}
8947 
8948 			fdput(f);
8949 next_insn:
8950 			insn++;
8951 			i++;
8952 			continue;
8953 		}
8954 
8955 		/* Basic sanity check before we invest more work here. */
8956 		if (!bpf_opcode_in_insntable(insn->code)) {
8957 			verbose(env, "unknown opcode %02x\n", insn->code);
8958 			return -EINVAL;
8959 		}
8960 	}
8961 
8962 	/* now all pseudo BPF_LD_IMM64 instructions load valid
8963 	 * 'struct bpf_map *' into a register instead of user map_fd.
8964 	 * These pointers will be used later by verifier to validate map access.
8965 	 */
8966 	return 0;
8967 }
8968 
8969 /* drop refcnt of maps used by the rejected program */
8970 static void release_maps(struct bpf_verifier_env *env)
8971 {
8972 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
8973 			     env->used_map_cnt);
8974 }
8975 
8976 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
8977 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
8978 {
8979 	struct bpf_insn *insn = env->prog->insnsi;
8980 	int insn_cnt = env->prog->len;
8981 	int i;
8982 
8983 	for (i = 0; i < insn_cnt; i++, insn++)
8984 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8985 			insn->src_reg = 0;
8986 }
8987 
8988 /* single env->prog->insni[off] instruction was replaced with the range
8989  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
8990  * [0, off) and [off, end) to new locations, so the patched range stays zero
8991  */
8992 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
8993 				struct bpf_prog *new_prog, u32 off, u32 cnt)
8994 {
8995 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
8996 	struct bpf_insn *insn = new_prog->insnsi;
8997 	u32 prog_len;
8998 	int i;
8999 
9000 	/* aux info at OFF always needs adjustment, no matter fast path
9001 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9002 	 * original insn at old prog.
9003 	 */
9004 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9005 
9006 	if (cnt == 1)
9007 		return 0;
9008 	prog_len = new_prog->len;
9009 	new_data = vzalloc(array_size(prog_len,
9010 				      sizeof(struct bpf_insn_aux_data)));
9011 	if (!new_data)
9012 		return -ENOMEM;
9013 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9014 	memcpy(new_data + off + cnt - 1, old_data + off,
9015 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
9016 	for (i = off; i < off + cnt - 1; i++) {
9017 		new_data[i].seen = env->pass_cnt;
9018 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
9019 	}
9020 	env->insn_aux_data = new_data;
9021 	vfree(old_data);
9022 	return 0;
9023 }
9024 
9025 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
9026 {
9027 	int i;
9028 
9029 	if (len == 1)
9030 		return;
9031 	/* NOTE: fake 'exit' subprog should be updated as well. */
9032 	for (i = 0; i <= env->subprog_cnt; i++) {
9033 		if (env->subprog_info[i].start <= off)
9034 			continue;
9035 		env->subprog_info[i].start += len - 1;
9036 	}
9037 }
9038 
9039 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
9040 					    const struct bpf_insn *patch, u32 len)
9041 {
9042 	struct bpf_prog *new_prog;
9043 
9044 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
9045 	if (IS_ERR(new_prog)) {
9046 		if (PTR_ERR(new_prog) == -ERANGE)
9047 			verbose(env,
9048 				"insn %d cannot be patched due to 16-bit range\n",
9049 				env->insn_aux_data[off].orig_idx);
9050 		return NULL;
9051 	}
9052 	if (adjust_insn_aux_data(env, new_prog, off, len))
9053 		return NULL;
9054 	adjust_subprog_starts(env, off, len);
9055 	return new_prog;
9056 }
9057 
9058 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
9059 					      u32 off, u32 cnt)
9060 {
9061 	int i, j;
9062 
9063 	/* find first prog starting at or after off (first to remove) */
9064 	for (i = 0; i < env->subprog_cnt; i++)
9065 		if (env->subprog_info[i].start >= off)
9066 			break;
9067 	/* find first prog starting at or after off + cnt (first to stay) */
9068 	for (j = i; j < env->subprog_cnt; j++)
9069 		if (env->subprog_info[j].start >= off + cnt)
9070 			break;
9071 	/* if j doesn't start exactly at off + cnt, we are just removing
9072 	 * the front of previous prog
9073 	 */
9074 	if (env->subprog_info[j].start != off + cnt)
9075 		j--;
9076 
9077 	if (j > i) {
9078 		struct bpf_prog_aux *aux = env->prog->aux;
9079 		int move;
9080 
9081 		/* move fake 'exit' subprog as well */
9082 		move = env->subprog_cnt + 1 - j;
9083 
9084 		memmove(env->subprog_info + i,
9085 			env->subprog_info + j,
9086 			sizeof(*env->subprog_info) * move);
9087 		env->subprog_cnt -= j - i;
9088 
9089 		/* remove func_info */
9090 		if (aux->func_info) {
9091 			move = aux->func_info_cnt - j;
9092 
9093 			memmove(aux->func_info + i,
9094 				aux->func_info + j,
9095 				sizeof(*aux->func_info) * move);
9096 			aux->func_info_cnt -= j - i;
9097 			/* func_info->insn_off is set after all code rewrites,
9098 			 * in adjust_btf_func() - no need to adjust
9099 			 */
9100 		}
9101 	} else {
9102 		/* convert i from "first prog to remove" to "first to adjust" */
9103 		if (env->subprog_info[i].start == off)
9104 			i++;
9105 	}
9106 
9107 	/* update fake 'exit' subprog as well */
9108 	for (; i <= env->subprog_cnt; i++)
9109 		env->subprog_info[i].start -= cnt;
9110 
9111 	return 0;
9112 }
9113 
9114 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
9115 				      u32 cnt)
9116 {
9117 	struct bpf_prog *prog = env->prog;
9118 	u32 i, l_off, l_cnt, nr_linfo;
9119 	struct bpf_line_info *linfo;
9120 
9121 	nr_linfo = prog->aux->nr_linfo;
9122 	if (!nr_linfo)
9123 		return 0;
9124 
9125 	linfo = prog->aux->linfo;
9126 
9127 	/* find first line info to remove, count lines to be removed */
9128 	for (i = 0; i < nr_linfo; i++)
9129 		if (linfo[i].insn_off >= off)
9130 			break;
9131 
9132 	l_off = i;
9133 	l_cnt = 0;
9134 	for (; i < nr_linfo; i++)
9135 		if (linfo[i].insn_off < off + cnt)
9136 			l_cnt++;
9137 		else
9138 			break;
9139 
9140 	/* First live insn doesn't match first live linfo, it needs to "inherit"
9141 	 * last removed linfo.  prog is already modified, so prog->len == off
9142 	 * means no live instructions after (tail of the program was removed).
9143 	 */
9144 	if (prog->len != off && l_cnt &&
9145 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
9146 		l_cnt--;
9147 		linfo[--i].insn_off = off + cnt;
9148 	}
9149 
9150 	/* remove the line info which refer to the removed instructions */
9151 	if (l_cnt) {
9152 		memmove(linfo + l_off, linfo + i,
9153 			sizeof(*linfo) * (nr_linfo - i));
9154 
9155 		prog->aux->nr_linfo -= l_cnt;
9156 		nr_linfo = prog->aux->nr_linfo;
9157 	}
9158 
9159 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
9160 	for (i = l_off; i < nr_linfo; i++)
9161 		linfo[i].insn_off -= cnt;
9162 
9163 	/* fix up all subprogs (incl. 'exit') which start >= off */
9164 	for (i = 0; i <= env->subprog_cnt; i++)
9165 		if (env->subprog_info[i].linfo_idx > l_off) {
9166 			/* program may have started in the removed region but
9167 			 * may not be fully removed
9168 			 */
9169 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
9170 				env->subprog_info[i].linfo_idx -= l_cnt;
9171 			else
9172 				env->subprog_info[i].linfo_idx = l_off;
9173 		}
9174 
9175 	return 0;
9176 }
9177 
9178 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
9179 {
9180 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9181 	unsigned int orig_prog_len = env->prog->len;
9182 	int err;
9183 
9184 	if (bpf_prog_is_dev_bound(env->prog->aux))
9185 		bpf_prog_offload_remove_insns(env, off, cnt);
9186 
9187 	err = bpf_remove_insns(env->prog, off, cnt);
9188 	if (err)
9189 		return err;
9190 
9191 	err = adjust_subprog_starts_after_remove(env, off, cnt);
9192 	if (err)
9193 		return err;
9194 
9195 	err = bpf_adj_linfo_after_remove(env, off, cnt);
9196 	if (err)
9197 		return err;
9198 
9199 	memmove(aux_data + off,	aux_data + off + cnt,
9200 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
9201 
9202 	return 0;
9203 }
9204 
9205 /* The verifier does more data flow analysis than llvm and will not
9206  * explore branches that are dead at run time. Malicious programs can
9207  * have dead code too. Therefore replace all dead at-run-time code
9208  * with 'ja -1'.
9209  *
9210  * Just nops are not optimal, e.g. if they would sit at the end of the
9211  * program and through another bug we would manage to jump there, then
9212  * we'd execute beyond program memory otherwise. Returning exception
9213  * code also wouldn't work since we can have subprogs where the dead
9214  * code could be located.
9215  */
9216 static void sanitize_dead_code(struct bpf_verifier_env *env)
9217 {
9218 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9219 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
9220 	struct bpf_insn *insn = env->prog->insnsi;
9221 	const int insn_cnt = env->prog->len;
9222 	int i;
9223 
9224 	for (i = 0; i < insn_cnt; i++) {
9225 		if (aux_data[i].seen)
9226 			continue;
9227 		memcpy(insn + i, &trap, sizeof(trap));
9228 	}
9229 }
9230 
9231 static bool insn_is_cond_jump(u8 code)
9232 {
9233 	u8 op;
9234 
9235 	if (BPF_CLASS(code) == BPF_JMP32)
9236 		return true;
9237 
9238 	if (BPF_CLASS(code) != BPF_JMP)
9239 		return false;
9240 
9241 	op = BPF_OP(code);
9242 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
9243 }
9244 
9245 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
9246 {
9247 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9248 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9249 	struct bpf_insn *insn = env->prog->insnsi;
9250 	const int insn_cnt = env->prog->len;
9251 	int i;
9252 
9253 	for (i = 0; i < insn_cnt; i++, insn++) {
9254 		if (!insn_is_cond_jump(insn->code))
9255 			continue;
9256 
9257 		if (!aux_data[i + 1].seen)
9258 			ja.off = insn->off;
9259 		else if (!aux_data[i + 1 + insn->off].seen)
9260 			ja.off = 0;
9261 		else
9262 			continue;
9263 
9264 		if (bpf_prog_is_dev_bound(env->prog->aux))
9265 			bpf_prog_offload_replace_insn(env, i, &ja);
9266 
9267 		memcpy(insn, &ja, sizeof(ja));
9268 	}
9269 }
9270 
9271 static int opt_remove_dead_code(struct bpf_verifier_env *env)
9272 {
9273 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9274 	int insn_cnt = env->prog->len;
9275 	int i, err;
9276 
9277 	for (i = 0; i < insn_cnt; i++) {
9278 		int j;
9279 
9280 		j = 0;
9281 		while (i + j < insn_cnt && !aux_data[i + j].seen)
9282 			j++;
9283 		if (!j)
9284 			continue;
9285 
9286 		err = verifier_remove_insns(env, i, j);
9287 		if (err)
9288 			return err;
9289 		insn_cnt = env->prog->len;
9290 	}
9291 
9292 	return 0;
9293 }
9294 
9295 static int opt_remove_nops(struct bpf_verifier_env *env)
9296 {
9297 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9298 	struct bpf_insn *insn = env->prog->insnsi;
9299 	int insn_cnt = env->prog->len;
9300 	int i, err;
9301 
9302 	for (i = 0; i < insn_cnt; i++) {
9303 		if (memcmp(&insn[i], &ja, sizeof(ja)))
9304 			continue;
9305 
9306 		err = verifier_remove_insns(env, i, 1);
9307 		if (err)
9308 			return err;
9309 		insn_cnt--;
9310 		i--;
9311 	}
9312 
9313 	return 0;
9314 }
9315 
9316 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
9317 					 const union bpf_attr *attr)
9318 {
9319 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
9320 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
9321 	int i, patch_len, delta = 0, len = env->prog->len;
9322 	struct bpf_insn *insns = env->prog->insnsi;
9323 	struct bpf_prog *new_prog;
9324 	bool rnd_hi32;
9325 
9326 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
9327 	zext_patch[1] = BPF_ZEXT_REG(0);
9328 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
9329 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
9330 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
9331 	for (i = 0; i < len; i++) {
9332 		int adj_idx = i + delta;
9333 		struct bpf_insn insn;
9334 
9335 		insn = insns[adj_idx];
9336 		if (!aux[adj_idx].zext_dst) {
9337 			u8 code, class;
9338 			u32 imm_rnd;
9339 
9340 			if (!rnd_hi32)
9341 				continue;
9342 
9343 			code = insn.code;
9344 			class = BPF_CLASS(code);
9345 			if (insn_no_def(&insn))
9346 				continue;
9347 
9348 			/* NOTE: arg "reg" (the fourth one) is only used for
9349 			 *       BPF_STX which has been ruled out in above
9350 			 *       check, it is safe to pass NULL here.
9351 			 */
9352 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
9353 				if (class == BPF_LD &&
9354 				    BPF_MODE(code) == BPF_IMM)
9355 					i++;
9356 				continue;
9357 			}
9358 
9359 			/* ctx load could be transformed into wider load. */
9360 			if (class == BPF_LDX &&
9361 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
9362 				continue;
9363 
9364 			imm_rnd = get_random_int();
9365 			rnd_hi32_patch[0] = insn;
9366 			rnd_hi32_patch[1].imm = imm_rnd;
9367 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
9368 			patch = rnd_hi32_patch;
9369 			patch_len = 4;
9370 			goto apply_patch_buffer;
9371 		}
9372 
9373 		if (!bpf_jit_needs_zext())
9374 			continue;
9375 
9376 		zext_patch[0] = insn;
9377 		zext_patch[1].dst_reg = insn.dst_reg;
9378 		zext_patch[1].src_reg = insn.dst_reg;
9379 		patch = zext_patch;
9380 		patch_len = 2;
9381 apply_patch_buffer:
9382 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
9383 		if (!new_prog)
9384 			return -ENOMEM;
9385 		env->prog = new_prog;
9386 		insns = new_prog->insnsi;
9387 		aux = env->insn_aux_data;
9388 		delta += patch_len - 1;
9389 	}
9390 
9391 	return 0;
9392 }
9393 
9394 /* convert load instructions that access fields of a context type into a
9395  * sequence of instructions that access fields of the underlying structure:
9396  *     struct __sk_buff    -> struct sk_buff
9397  *     struct bpf_sock_ops -> struct sock
9398  */
9399 static int convert_ctx_accesses(struct bpf_verifier_env *env)
9400 {
9401 	const struct bpf_verifier_ops *ops = env->ops;
9402 	int i, cnt, size, ctx_field_size, delta = 0;
9403 	const int insn_cnt = env->prog->len;
9404 	struct bpf_insn insn_buf[16], *insn;
9405 	u32 target_size, size_default, off;
9406 	struct bpf_prog *new_prog;
9407 	enum bpf_access_type type;
9408 	bool is_narrower_load;
9409 
9410 	if (ops->gen_prologue || env->seen_direct_write) {
9411 		if (!ops->gen_prologue) {
9412 			verbose(env, "bpf verifier is misconfigured\n");
9413 			return -EINVAL;
9414 		}
9415 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
9416 					env->prog);
9417 		if (cnt >= ARRAY_SIZE(insn_buf)) {
9418 			verbose(env, "bpf verifier is misconfigured\n");
9419 			return -EINVAL;
9420 		} else if (cnt) {
9421 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
9422 			if (!new_prog)
9423 				return -ENOMEM;
9424 
9425 			env->prog = new_prog;
9426 			delta += cnt - 1;
9427 		}
9428 	}
9429 
9430 	if (bpf_prog_is_dev_bound(env->prog->aux))
9431 		return 0;
9432 
9433 	insn = env->prog->insnsi + delta;
9434 
9435 	for (i = 0; i < insn_cnt; i++, insn++) {
9436 		bpf_convert_ctx_access_t convert_ctx_access;
9437 
9438 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
9439 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
9440 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
9441 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
9442 			type = BPF_READ;
9443 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
9444 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
9445 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
9446 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
9447 			type = BPF_WRITE;
9448 		else
9449 			continue;
9450 
9451 		if (type == BPF_WRITE &&
9452 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
9453 			struct bpf_insn patch[] = {
9454 				/* Sanitize suspicious stack slot with zero.
9455 				 * There are no memory dependencies for this store,
9456 				 * since it's only using frame pointer and immediate
9457 				 * constant of zero
9458 				 */
9459 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
9460 					   env->insn_aux_data[i + delta].sanitize_stack_off,
9461 					   0),
9462 				/* the original STX instruction will immediately
9463 				 * overwrite the same stack slot with appropriate value
9464 				 */
9465 				*insn,
9466 			};
9467 
9468 			cnt = ARRAY_SIZE(patch);
9469 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
9470 			if (!new_prog)
9471 				return -ENOMEM;
9472 
9473 			delta    += cnt - 1;
9474 			env->prog = new_prog;
9475 			insn      = new_prog->insnsi + i + delta;
9476 			continue;
9477 		}
9478 
9479 		switch (env->insn_aux_data[i + delta].ptr_type) {
9480 		case PTR_TO_CTX:
9481 			if (!ops->convert_ctx_access)
9482 				continue;
9483 			convert_ctx_access = ops->convert_ctx_access;
9484 			break;
9485 		case PTR_TO_SOCKET:
9486 		case PTR_TO_SOCK_COMMON:
9487 			convert_ctx_access = bpf_sock_convert_ctx_access;
9488 			break;
9489 		case PTR_TO_TCP_SOCK:
9490 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
9491 			break;
9492 		case PTR_TO_XDP_SOCK:
9493 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
9494 			break;
9495 		case PTR_TO_BTF_ID:
9496 			if (type == BPF_READ) {
9497 				insn->code = BPF_LDX | BPF_PROBE_MEM |
9498 					BPF_SIZE((insn)->code);
9499 				env->prog->aux->num_exentries++;
9500 			} else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9501 				verbose(env, "Writes through BTF pointers are not allowed\n");
9502 				return -EINVAL;
9503 			}
9504 			continue;
9505 		default:
9506 			continue;
9507 		}
9508 
9509 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
9510 		size = BPF_LDST_BYTES(insn);
9511 
9512 		/* If the read access is a narrower load of the field,
9513 		 * convert to a 4/8-byte load, to minimum program type specific
9514 		 * convert_ctx_access changes. If conversion is successful,
9515 		 * we will apply proper mask to the result.
9516 		 */
9517 		is_narrower_load = size < ctx_field_size;
9518 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
9519 		off = insn->off;
9520 		if (is_narrower_load) {
9521 			u8 size_code;
9522 
9523 			if (type == BPF_WRITE) {
9524 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
9525 				return -EINVAL;
9526 			}
9527 
9528 			size_code = BPF_H;
9529 			if (ctx_field_size == 4)
9530 				size_code = BPF_W;
9531 			else if (ctx_field_size == 8)
9532 				size_code = BPF_DW;
9533 
9534 			insn->off = off & ~(size_default - 1);
9535 			insn->code = BPF_LDX | BPF_MEM | size_code;
9536 		}
9537 
9538 		target_size = 0;
9539 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
9540 					 &target_size);
9541 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
9542 		    (ctx_field_size && !target_size)) {
9543 			verbose(env, "bpf verifier is misconfigured\n");
9544 			return -EINVAL;
9545 		}
9546 
9547 		if (is_narrower_load && size < target_size) {
9548 			u8 shift = bpf_ctx_narrow_access_offset(
9549 				off, size, size_default) * 8;
9550 			if (ctx_field_size <= 4) {
9551 				if (shift)
9552 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
9553 									insn->dst_reg,
9554 									shift);
9555 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
9556 								(1 << size * 8) - 1);
9557 			} else {
9558 				if (shift)
9559 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
9560 									insn->dst_reg,
9561 									shift);
9562 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
9563 								(1ULL << size * 8) - 1);
9564 			}
9565 		}
9566 
9567 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9568 		if (!new_prog)
9569 			return -ENOMEM;
9570 
9571 		delta += cnt - 1;
9572 
9573 		/* keep walking new program and skip insns we just inserted */
9574 		env->prog = new_prog;
9575 		insn      = new_prog->insnsi + i + delta;
9576 	}
9577 
9578 	return 0;
9579 }
9580 
9581 static int jit_subprogs(struct bpf_verifier_env *env)
9582 {
9583 	struct bpf_prog *prog = env->prog, **func, *tmp;
9584 	int i, j, subprog_start, subprog_end = 0, len, subprog;
9585 	struct bpf_insn *insn;
9586 	void *old_bpf_func;
9587 	int err;
9588 
9589 	if (env->subprog_cnt <= 1)
9590 		return 0;
9591 
9592 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9593 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9594 		    insn->src_reg != BPF_PSEUDO_CALL)
9595 			continue;
9596 		/* Upon error here we cannot fall back to interpreter but
9597 		 * need a hard reject of the program. Thus -EFAULT is
9598 		 * propagated in any case.
9599 		 */
9600 		subprog = find_subprog(env, i + insn->imm + 1);
9601 		if (subprog < 0) {
9602 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
9603 				  i + insn->imm + 1);
9604 			return -EFAULT;
9605 		}
9606 		/* temporarily remember subprog id inside insn instead of
9607 		 * aux_data, since next loop will split up all insns into funcs
9608 		 */
9609 		insn->off = subprog;
9610 		/* remember original imm in case JIT fails and fallback
9611 		 * to interpreter will be needed
9612 		 */
9613 		env->insn_aux_data[i].call_imm = insn->imm;
9614 		/* point imm to __bpf_call_base+1 from JITs point of view */
9615 		insn->imm = 1;
9616 	}
9617 
9618 	err = bpf_prog_alloc_jited_linfo(prog);
9619 	if (err)
9620 		goto out_undo_insn;
9621 
9622 	err = -ENOMEM;
9623 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
9624 	if (!func)
9625 		goto out_undo_insn;
9626 
9627 	for (i = 0; i < env->subprog_cnt; i++) {
9628 		subprog_start = subprog_end;
9629 		subprog_end = env->subprog_info[i + 1].start;
9630 
9631 		len = subprog_end - subprog_start;
9632 		/* BPF_PROG_RUN doesn't call subprogs directly,
9633 		 * hence main prog stats include the runtime of subprogs.
9634 		 * subprogs don't have IDs and not reachable via prog_get_next_id
9635 		 * func[i]->aux->stats will never be accessed and stays NULL
9636 		 */
9637 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
9638 		if (!func[i])
9639 			goto out_free;
9640 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
9641 		       len * sizeof(struct bpf_insn));
9642 		func[i]->type = prog->type;
9643 		func[i]->len = len;
9644 		if (bpf_prog_calc_tag(func[i]))
9645 			goto out_free;
9646 		func[i]->is_func = 1;
9647 		func[i]->aux->func_idx = i;
9648 		/* the btf and func_info will be freed only at prog->aux */
9649 		func[i]->aux->btf = prog->aux->btf;
9650 		func[i]->aux->func_info = prog->aux->func_info;
9651 
9652 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
9653 		 * Long term would need debug info to populate names
9654 		 */
9655 		func[i]->aux->name[0] = 'F';
9656 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
9657 		func[i]->jit_requested = 1;
9658 		func[i]->aux->linfo = prog->aux->linfo;
9659 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
9660 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
9661 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
9662 		func[i] = bpf_int_jit_compile(func[i]);
9663 		if (!func[i]->jited) {
9664 			err = -ENOTSUPP;
9665 			goto out_free;
9666 		}
9667 		cond_resched();
9668 	}
9669 	/* at this point all bpf functions were successfully JITed
9670 	 * now populate all bpf_calls with correct addresses and
9671 	 * run last pass of JIT
9672 	 */
9673 	for (i = 0; i < env->subprog_cnt; i++) {
9674 		insn = func[i]->insnsi;
9675 		for (j = 0; j < func[i]->len; j++, insn++) {
9676 			if (insn->code != (BPF_JMP | BPF_CALL) ||
9677 			    insn->src_reg != BPF_PSEUDO_CALL)
9678 				continue;
9679 			subprog = insn->off;
9680 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
9681 				    __bpf_call_base;
9682 		}
9683 
9684 		/* we use the aux data to keep a list of the start addresses
9685 		 * of the JITed images for each function in the program
9686 		 *
9687 		 * for some architectures, such as powerpc64, the imm field
9688 		 * might not be large enough to hold the offset of the start
9689 		 * address of the callee's JITed image from __bpf_call_base
9690 		 *
9691 		 * in such cases, we can lookup the start address of a callee
9692 		 * by using its subprog id, available from the off field of
9693 		 * the call instruction, as an index for this list
9694 		 */
9695 		func[i]->aux->func = func;
9696 		func[i]->aux->func_cnt = env->subprog_cnt;
9697 	}
9698 	for (i = 0; i < env->subprog_cnt; i++) {
9699 		old_bpf_func = func[i]->bpf_func;
9700 		tmp = bpf_int_jit_compile(func[i]);
9701 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
9702 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
9703 			err = -ENOTSUPP;
9704 			goto out_free;
9705 		}
9706 		cond_resched();
9707 	}
9708 
9709 	/* finally lock prog and jit images for all functions and
9710 	 * populate kallsysm
9711 	 */
9712 	for (i = 0; i < env->subprog_cnt; i++) {
9713 		bpf_prog_lock_ro(func[i]);
9714 		bpf_prog_kallsyms_add(func[i]);
9715 	}
9716 
9717 	/* Last step: make now unused interpreter insns from main
9718 	 * prog consistent for later dump requests, so they can
9719 	 * later look the same as if they were interpreted only.
9720 	 */
9721 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9722 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9723 		    insn->src_reg != BPF_PSEUDO_CALL)
9724 			continue;
9725 		insn->off = env->insn_aux_data[i].call_imm;
9726 		subprog = find_subprog(env, i + insn->off + 1);
9727 		insn->imm = subprog;
9728 	}
9729 
9730 	prog->jited = 1;
9731 	prog->bpf_func = func[0]->bpf_func;
9732 	prog->aux->func = func;
9733 	prog->aux->func_cnt = env->subprog_cnt;
9734 	bpf_prog_free_unused_jited_linfo(prog);
9735 	return 0;
9736 out_free:
9737 	for (i = 0; i < env->subprog_cnt; i++)
9738 		if (func[i])
9739 			bpf_jit_free(func[i]);
9740 	kfree(func);
9741 out_undo_insn:
9742 	/* cleanup main prog to be interpreted */
9743 	prog->jit_requested = 0;
9744 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9745 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9746 		    insn->src_reg != BPF_PSEUDO_CALL)
9747 			continue;
9748 		insn->off = 0;
9749 		insn->imm = env->insn_aux_data[i].call_imm;
9750 	}
9751 	bpf_prog_free_jited_linfo(prog);
9752 	return err;
9753 }
9754 
9755 static int fixup_call_args(struct bpf_verifier_env *env)
9756 {
9757 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9758 	struct bpf_prog *prog = env->prog;
9759 	struct bpf_insn *insn = prog->insnsi;
9760 	int i, depth;
9761 #endif
9762 	int err = 0;
9763 
9764 	if (env->prog->jit_requested &&
9765 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
9766 		err = jit_subprogs(env);
9767 		if (err == 0)
9768 			return 0;
9769 		if (err == -EFAULT)
9770 			return err;
9771 	}
9772 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9773 	for (i = 0; i < prog->len; i++, insn++) {
9774 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9775 		    insn->src_reg != BPF_PSEUDO_CALL)
9776 			continue;
9777 		depth = get_callee_stack_depth(env, insn, i);
9778 		if (depth < 0)
9779 			return depth;
9780 		bpf_patch_call_args(insn, depth);
9781 	}
9782 	err = 0;
9783 #endif
9784 	return err;
9785 }
9786 
9787 /* fixup insn->imm field of bpf_call instructions
9788  * and inline eligible helpers as explicit sequence of BPF instructions
9789  *
9790  * this function is called after eBPF program passed verification
9791  */
9792 static int fixup_bpf_calls(struct bpf_verifier_env *env)
9793 {
9794 	struct bpf_prog *prog = env->prog;
9795 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
9796 	struct bpf_insn *insn = prog->insnsi;
9797 	const struct bpf_func_proto *fn;
9798 	const int insn_cnt = prog->len;
9799 	const struct bpf_map_ops *ops;
9800 	struct bpf_insn_aux_data *aux;
9801 	struct bpf_insn insn_buf[16];
9802 	struct bpf_prog *new_prog;
9803 	struct bpf_map *map_ptr;
9804 	int i, ret, cnt, delta = 0;
9805 
9806 	for (i = 0; i < insn_cnt; i++, insn++) {
9807 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
9808 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9809 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
9810 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9811 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
9812 			struct bpf_insn mask_and_div[] = {
9813 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9814 				/* Rx div 0 -> 0 */
9815 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
9816 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
9817 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
9818 				*insn,
9819 			};
9820 			struct bpf_insn mask_and_mod[] = {
9821 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9822 				/* Rx mod 0 -> Rx */
9823 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
9824 				*insn,
9825 			};
9826 			struct bpf_insn *patchlet;
9827 
9828 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9829 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9830 				patchlet = mask_and_div + (is64 ? 1 : 0);
9831 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
9832 			} else {
9833 				patchlet = mask_and_mod + (is64 ? 1 : 0);
9834 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
9835 			}
9836 
9837 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
9838 			if (!new_prog)
9839 				return -ENOMEM;
9840 
9841 			delta    += cnt - 1;
9842 			env->prog = prog = new_prog;
9843 			insn      = new_prog->insnsi + i + delta;
9844 			continue;
9845 		}
9846 
9847 		if (BPF_CLASS(insn->code) == BPF_LD &&
9848 		    (BPF_MODE(insn->code) == BPF_ABS ||
9849 		     BPF_MODE(insn->code) == BPF_IND)) {
9850 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
9851 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9852 				verbose(env, "bpf verifier is misconfigured\n");
9853 				return -EINVAL;
9854 			}
9855 
9856 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9857 			if (!new_prog)
9858 				return -ENOMEM;
9859 
9860 			delta    += cnt - 1;
9861 			env->prog = prog = new_prog;
9862 			insn      = new_prog->insnsi + i + delta;
9863 			continue;
9864 		}
9865 
9866 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
9867 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
9868 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
9869 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
9870 			struct bpf_insn insn_buf[16];
9871 			struct bpf_insn *patch = &insn_buf[0];
9872 			bool issrc, isneg;
9873 			u32 off_reg;
9874 
9875 			aux = &env->insn_aux_data[i + delta];
9876 			if (!aux->alu_state ||
9877 			    aux->alu_state == BPF_ALU_NON_POINTER)
9878 				continue;
9879 
9880 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
9881 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
9882 				BPF_ALU_SANITIZE_SRC;
9883 
9884 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
9885 			if (isneg)
9886 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9887 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
9888 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
9889 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
9890 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
9891 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
9892 			if (issrc) {
9893 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
9894 							 off_reg);
9895 				insn->src_reg = BPF_REG_AX;
9896 			} else {
9897 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
9898 							 BPF_REG_AX);
9899 			}
9900 			if (isneg)
9901 				insn->code = insn->code == code_add ?
9902 					     code_sub : code_add;
9903 			*patch++ = *insn;
9904 			if (issrc && isneg)
9905 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9906 			cnt = patch - insn_buf;
9907 
9908 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9909 			if (!new_prog)
9910 				return -ENOMEM;
9911 
9912 			delta    += cnt - 1;
9913 			env->prog = prog = new_prog;
9914 			insn      = new_prog->insnsi + i + delta;
9915 			continue;
9916 		}
9917 
9918 		if (insn->code != (BPF_JMP | BPF_CALL))
9919 			continue;
9920 		if (insn->src_reg == BPF_PSEUDO_CALL)
9921 			continue;
9922 
9923 		if (insn->imm == BPF_FUNC_get_route_realm)
9924 			prog->dst_needed = 1;
9925 		if (insn->imm == BPF_FUNC_get_prandom_u32)
9926 			bpf_user_rnd_init_once();
9927 		if (insn->imm == BPF_FUNC_override_return)
9928 			prog->kprobe_override = 1;
9929 		if (insn->imm == BPF_FUNC_tail_call) {
9930 			/* If we tail call into other programs, we
9931 			 * cannot make any assumptions since they can
9932 			 * be replaced dynamically during runtime in
9933 			 * the program array.
9934 			 */
9935 			prog->cb_access = 1;
9936 			env->prog->aux->stack_depth = MAX_BPF_STACK;
9937 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
9938 
9939 			/* mark bpf_tail_call as different opcode to avoid
9940 			 * conditional branch in the interpeter for every normal
9941 			 * call and to prevent accidental JITing by JIT compiler
9942 			 * that doesn't support bpf_tail_call yet
9943 			 */
9944 			insn->imm = 0;
9945 			insn->code = BPF_JMP | BPF_TAIL_CALL;
9946 
9947 			aux = &env->insn_aux_data[i + delta];
9948 			if (env->allow_ptr_leaks && !expect_blinding &&
9949 			    prog->jit_requested &&
9950 			    !bpf_map_key_poisoned(aux) &&
9951 			    !bpf_map_ptr_poisoned(aux) &&
9952 			    !bpf_map_ptr_unpriv(aux)) {
9953 				struct bpf_jit_poke_descriptor desc = {
9954 					.reason = BPF_POKE_REASON_TAIL_CALL,
9955 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
9956 					.tail_call.key = bpf_map_key_immediate(aux),
9957 				};
9958 
9959 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
9960 				if (ret < 0) {
9961 					verbose(env, "adding tail call poke descriptor failed\n");
9962 					return ret;
9963 				}
9964 
9965 				insn->imm = ret + 1;
9966 				continue;
9967 			}
9968 
9969 			if (!bpf_map_ptr_unpriv(aux))
9970 				continue;
9971 
9972 			/* instead of changing every JIT dealing with tail_call
9973 			 * emit two extra insns:
9974 			 * if (index >= max_entries) goto out;
9975 			 * index &= array->index_mask;
9976 			 * to avoid out-of-bounds cpu speculation
9977 			 */
9978 			if (bpf_map_ptr_poisoned(aux)) {
9979 				verbose(env, "tail_call abusing map_ptr\n");
9980 				return -EINVAL;
9981 			}
9982 
9983 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
9984 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9985 						  map_ptr->max_entries, 2);
9986 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9987 						    container_of(map_ptr,
9988 								 struct bpf_array,
9989 								 map)->index_mask);
9990 			insn_buf[2] = *insn;
9991 			cnt = 3;
9992 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9993 			if (!new_prog)
9994 				return -ENOMEM;
9995 
9996 			delta    += cnt - 1;
9997 			env->prog = prog = new_prog;
9998 			insn      = new_prog->insnsi + i + delta;
9999 			continue;
10000 		}
10001 
10002 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
10003 		 * and other inlining handlers are currently limited to 64 bit
10004 		 * only.
10005 		 */
10006 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
10007 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
10008 		     insn->imm == BPF_FUNC_map_update_elem ||
10009 		     insn->imm == BPF_FUNC_map_delete_elem ||
10010 		     insn->imm == BPF_FUNC_map_push_elem   ||
10011 		     insn->imm == BPF_FUNC_map_pop_elem    ||
10012 		     insn->imm == BPF_FUNC_map_peek_elem)) {
10013 			aux = &env->insn_aux_data[i + delta];
10014 			if (bpf_map_ptr_poisoned(aux))
10015 				goto patch_call_imm;
10016 
10017 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
10018 			ops = map_ptr->ops;
10019 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
10020 			    ops->map_gen_lookup) {
10021 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
10022 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10023 					verbose(env, "bpf verifier is misconfigured\n");
10024 					return -EINVAL;
10025 				}
10026 
10027 				new_prog = bpf_patch_insn_data(env, i + delta,
10028 							       insn_buf, cnt);
10029 				if (!new_prog)
10030 					return -ENOMEM;
10031 
10032 				delta    += cnt - 1;
10033 				env->prog = prog = new_prog;
10034 				insn      = new_prog->insnsi + i + delta;
10035 				continue;
10036 			}
10037 
10038 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
10039 				     (void *(*)(struct bpf_map *map, void *key))NULL));
10040 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
10041 				     (int (*)(struct bpf_map *map, void *key))NULL));
10042 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
10043 				     (int (*)(struct bpf_map *map, void *key, void *value,
10044 					      u64 flags))NULL));
10045 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
10046 				     (int (*)(struct bpf_map *map, void *value,
10047 					      u64 flags))NULL));
10048 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
10049 				     (int (*)(struct bpf_map *map, void *value))NULL));
10050 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
10051 				     (int (*)(struct bpf_map *map, void *value))NULL));
10052 
10053 			switch (insn->imm) {
10054 			case BPF_FUNC_map_lookup_elem:
10055 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
10056 					    __bpf_call_base;
10057 				continue;
10058 			case BPF_FUNC_map_update_elem:
10059 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
10060 					    __bpf_call_base;
10061 				continue;
10062 			case BPF_FUNC_map_delete_elem:
10063 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
10064 					    __bpf_call_base;
10065 				continue;
10066 			case BPF_FUNC_map_push_elem:
10067 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
10068 					    __bpf_call_base;
10069 				continue;
10070 			case BPF_FUNC_map_pop_elem:
10071 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
10072 					    __bpf_call_base;
10073 				continue;
10074 			case BPF_FUNC_map_peek_elem:
10075 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
10076 					    __bpf_call_base;
10077 				continue;
10078 			}
10079 
10080 			goto patch_call_imm;
10081 		}
10082 
10083 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
10084 		    insn->imm == BPF_FUNC_jiffies64) {
10085 			struct bpf_insn ld_jiffies_addr[2] = {
10086 				BPF_LD_IMM64(BPF_REG_0,
10087 					     (unsigned long)&jiffies),
10088 			};
10089 
10090 			insn_buf[0] = ld_jiffies_addr[0];
10091 			insn_buf[1] = ld_jiffies_addr[1];
10092 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
10093 						  BPF_REG_0, 0);
10094 			cnt = 3;
10095 
10096 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
10097 						       cnt);
10098 			if (!new_prog)
10099 				return -ENOMEM;
10100 
10101 			delta    += cnt - 1;
10102 			env->prog = prog = new_prog;
10103 			insn      = new_prog->insnsi + i + delta;
10104 			continue;
10105 		}
10106 
10107 patch_call_imm:
10108 		fn = env->ops->get_func_proto(insn->imm, env->prog);
10109 		/* all functions that have prototype and verifier allowed
10110 		 * programs to call them, must be real in-kernel functions
10111 		 */
10112 		if (!fn->func) {
10113 			verbose(env,
10114 				"kernel subsystem misconfigured func %s#%d\n",
10115 				func_id_name(insn->imm), insn->imm);
10116 			return -EFAULT;
10117 		}
10118 		insn->imm = fn->func - __bpf_call_base;
10119 	}
10120 
10121 	/* Since poke tab is now finalized, publish aux to tracker. */
10122 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
10123 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
10124 		if (!map_ptr->ops->map_poke_track ||
10125 		    !map_ptr->ops->map_poke_untrack ||
10126 		    !map_ptr->ops->map_poke_run) {
10127 			verbose(env, "bpf verifier is misconfigured\n");
10128 			return -EINVAL;
10129 		}
10130 
10131 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
10132 		if (ret < 0) {
10133 			verbose(env, "tracking tail call prog failed\n");
10134 			return ret;
10135 		}
10136 	}
10137 
10138 	return 0;
10139 }
10140 
10141 static void free_states(struct bpf_verifier_env *env)
10142 {
10143 	struct bpf_verifier_state_list *sl, *sln;
10144 	int i;
10145 
10146 	sl = env->free_list;
10147 	while (sl) {
10148 		sln = sl->next;
10149 		free_verifier_state(&sl->state, false);
10150 		kfree(sl);
10151 		sl = sln;
10152 	}
10153 	env->free_list = NULL;
10154 
10155 	if (!env->explored_states)
10156 		return;
10157 
10158 	for (i = 0; i < state_htab_size(env); i++) {
10159 		sl = env->explored_states[i];
10160 
10161 		while (sl) {
10162 			sln = sl->next;
10163 			free_verifier_state(&sl->state, false);
10164 			kfree(sl);
10165 			sl = sln;
10166 		}
10167 		env->explored_states[i] = NULL;
10168 	}
10169 }
10170 
10171 /* The verifier is using insn_aux_data[] to store temporary data during
10172  * verification and to store information for passes that run after the
10173  * verification like dead code sanitization. do_check_common() for subprogram N
10174  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
10175  * temporary data after do_check_common() finds that subprogram N cannot be
10176  * verified independently. pass_cnt counts the number of times
10177  * do_check_common() was run and insn->aux->seen tells the pass number
10178  * insn_aux_data was touched. These variables are compared to clear temporary
10179  * data from failed pass. For testing and experiments do_check_common() can be
10180  * run multiple times even when prior attempt to verify is unsuccessful.
10181  */
10182 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
10183 {
10184 	struct bpf_insn *insn = env->prog->insnsi;
10185 	struct bpf_insn_aux_data *aux;
10186 	int i, class;
10187 
10188 	for (i = 0; i < env->prog->len; i++) {
10189 		class = BPF_CLASS(insn[i].code);
10190 		if (class != BPF_LDX && class != BPF_STX)
10191 			continue;
10192 		aux = &env->insn_aux_data[i];
10193 		if (aux->seen != env->pass_cnt)
10194 			continue;
10195 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
10196 	}
10197 }
10198 
10199 static int do_check_common(struct bpf_verifier_env *env, int subprog)
10200 {
10201 	struct bpf_verifier_state *state;
10202 	struct bpf_reg_state *regs;
10203 	int ret, i;
10204 
10205 	env->prev_linfo = NULL;
10206 	env->pass_cnt++;
10207 
10208 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
10209 	if (!state)
10210 		return -ENOMEM;
10211 	state->curframe = 0;
10212 	state->speculative = false;
10213 	state->branches = 1;
10214 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
10215 	if (!state->frame[0]) {
10216 		kfree(state);
10217 		return -ENOMEM;
10218 	}
10219 	env->cur_state = state;
10220 	init_func_state(env, state->frame[0],
10221 			BPF_MAIN_FUNC /* callsite */,
10222 			0 /* frameno */,
10223 			subprog);
10224 
10225 	regs = state->frame[state->curframe]->regs;
10226 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
10227 		ret = btf_prepare_func_args(env, subprog, regs);
10228 		if (ret)
10229 			goto out;
10230 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
10231 			if (regs[i].type == PTR_TO_CTX)
10232 				mark_reg_known_zero(env, regs, i);
10233 			else if (regs[i].type == SCALAR_VALUE)
10234 				mark_reg_unknown(env, regs, i);
10235 		}
10236 	} else {
10237 		/* 1st arg to a function */
10238 		regs[BPF_REG_1].type = PTR_TO_CTX;
10239 		mark_reg_known_zero(env, regs, BPF_REG_1);
10240 		ret = btf_check_func_arg_match(env, subprog, regs);
10241 		if (ret == -EFAULT)
10242 			/* unlikely verifier bug. abort.
10243 			 * ret == 0 and ret < 0 are sadly acceptable for
10244 			 * main() function due to backward compatibility.
10245 			 * Like socket filter program may be written as:
10246 			 * int bpf_prog(struct pt_regs *ctx)
10247 			 * and never dereference that ctx in the program.
10248 			 * 'struct pt_regs' is a type mismatch for socket
10249 			 * filter that should be using 'struct __sk_buff'.
10250 			 */
10251 			goto out;
10252 	}
10253 
10254 	ret = do_check(env);
10255 out:
10256 	/* check for NULL is necessary, since cur_state can be freed inside
10257 	 * do_check() under memory pressure.
10258 	 */
10259 	if (env->cur_state) {
10260 		free_verifier_state(env->cur_state, true);
10261 		env->cur_state = NULL;
10262 	}
10263 	while (!pop_stack(env, NULL, NULL));
10264 	free_states(env);
10265 	if (ret)
10266 		/* clean aux data in case subprog was rejected */
10267 		sanitize_insn_aux_data(env);
10268 	return ret;
10269 }
10270 
10271 /* Verify all global functions in a BPF program one by one based on their BTF.
10272  * All global functions must pass verification. Otherwise the whole program is rejected.
10273  * Consider:
10274  * int bar(int);
10275  * int foo(int f)
10276  * {
10277  *    return bar(f);
10278  * }
10279  * int bar(int b)
10280  * {
10281  *    ...
10282  * }
10283  * foo() will be verified first for R1=any_scalar_value. During verification it
10284  * will be assumed that bar() already verified successfully and call to bar()
10285  * from foo() will be checked for type match only. Later bar() will be verified
10286  * independently to check that it's safe for R1=any_scalar_value.
10287  */
10288 static int do_check_subprogs(struct bpf_verifier_env *env)
10289 {
10290 	struct bpf_prog_aux *aux = env->prog->aux;
10291 	int i, ret;
10292 
10293 	if (!aux->func_info)
10294 		return 0;
10295 
10296 	for (i = 1; i < env->subprog_cnt; i++) {
10297 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
10298 			continue;
10299 		env->insn_idx = env->subprog_info[i].start;
10300 		WARN_ON_ONCE(env->insn_idx == 0);
10301 		ret = do_check_common(env, i);
10302 		if (ret) {
10303 			return ret;
10304 		} else if (env->log.level & BPF_LOG_LEVEL) {
10305 			verbose(env,
10306 				"Func#%d is safe for any args that match its prototype\n",
10307 				i);
10308 		}
10309 	}
10310 	return 0;
10311 }
10312 
10313 static int do_check_main(struct bpf_verifier_env *env)
10314 {
10315 	int ret;
10316 
10317 	env->insn_idx = 0;
10318 	ret = do_check_common(env, 0);
10319 	if (!ret)
10320 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
10321 	return ret;
10322 }
10323 
10324 
10325 static void print_verification_stats(struct bpf_verifier_env *env)
10326 {
10327 	int i;
10328 
10329 	if (env->log.level & BPF_LOG_STATS) {
10330 		verbose(env, "verification time %lld usec\n",
10331 			div_u64(env->verification_time, 1000));
10332 		verbose(env, "stack depth ");
10333 		for (i = 0; i < env->subprog_cnt; i++) {
10334 			u32 depth = env->subprog_info[i].stack_depth;
10335 
10336 			verbose(env, "%d", depth);
10337 			if (i + 1 < env->subprog_cnt)
10338 				verbose(env, "+");
10339 		}
10340 		verbose(env, "\n");
10341 	}
10342 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
10343 		"total_states %d peak_states %d mark_read %d\n",
10344 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
10345 		env->max_states_per_insn, env->total_states,
10346 		env->peak_states, env->longest_mark_read_walk);
10347 }
10348 
10349 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
10350 {
10351 	const struct btf_type *t, *func_proto;
10352 	const struct bpf_struct_ops *st_ops;
10353 	const struct btf_member *member;
10354 	struct bpf_prog *prog = env->prog;
10355 	u32 btf_id, member_idx;
10356 	const char *mname;
10357 
10358 	btf_id = prog->aux->attach_btf_id;
10359 	st_ops = bpf_struct_ops_find(btf_id);
10360 	if (!st_ops) {
10361 		verbose(env, "attach_btf_id %u is not a supported struct\n",
10362 			btf_id);
10363 		return -ENOTSUPP;
10364 	}
10365 
10366 	t = st_ops->type;
10367 	member_idx = prog->expected_attach_type;
10368 	if (member_idx >= btf_type_vlen(t)) {
10369 		verbose(env, "attach to invalid member idx %u of struct %s\n",
10370 			member_idx, st_ops->name);
10371 		return -EINVAL;
10372 	}
10373 
10374 	member = &btf_type_member(t)[member_idx];
10375 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
10376 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
10377 					       NULL);
10378 	if (!func_proto) {
10379 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
10380 			mname, member_idx, st_ops->name);
10381 		return -EINVAL;
10382 	}
10383 
10384 	if (st_ops->check_member) {
10385 		int err = st_ops->check_member(t, member);
10386 
10387 		if (err) {
10388 			verbose(env, "attach to unsupported member %s of struct %s\n",
10389 				mname, st_ops->name);
10390 			return err;
10391 		}
10392 	}
10393 
10394 	prog->aux->attach_func_proto = func_proto;
10395 	prog->aux->attach_func_name = mname;
10396 	env->ops = st_ops->verifier_ops;
10397 
10398 	return 0;
10399 }
10400 #define SECURITY_PREFIX "security_"
10401 
10402 static int check_attach_modify_return(struct bpf_verifier_env *env)
10403 {
10404 	struct bpf_prog *prog = env->prog;
10405 	unsigned long addr = (unsigned long) prog->aux->trampoline->func.addr;
10406 
10407 	/* This is expected to be cleaned up in the future with the KRSI effort
10408 	 * introducing the LSM_HOOK macro for cleaning up lsm_hooks.h.
10409 	 */
10410 	if (within_error_injection_list(addr) ||
10411 	    !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name,
10412 		     sizeof(SECURITY_PREFIX) - 1))
10413 		return 0;
10414 
10415 	verbose(env, "fmod_ret attach_btf_id %u (%s) is not modifiable\n",
10416 		prog->aux->attach_btf_id, prog->aux->attach_func_name);
10417 
10418 	return -EINVAL;
10419 }
10420 
10421 static int check_attach_btf_id(struct bpf_verifier_env *env)
10422 {
10423 	struct bpf_prog *prog = env->prog;
10424 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
10425 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
10426 	u32 btf_id = prog->aux->attach_btf_id;
10427 	const char prefix[] = "btf_trace_";
10428 	int ret = 0, subprog = -1, i;
10429 	struct bpf_trampoline *tr;
10430 	const struct btf_type *t;
10431 	bool conservative = true;
10432 	const char *tname;
10433 	struct btf *btf;
10434 	long addr;
10435 	u64 key;
10436 
10437 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
10438 		return check_struct_ops_btf_id(env);
10439 
10440 	if (prog->type != BPF_PROG_TYPE_TRACING &&
10441 	    prog->type != BPF_PROG_TYPE_LSM &&
10442 	    !prog_extension)
10443 		return 0;
10444 
10445 	if (!btf_id) {
10446 		verbose(env, "Tracing programs must provide btf_id\n");
10447 		return -EINVAL;
10448 	}
10449 	btf = bpf_prog_get_target_btf(prog);
10450 	if (!btf) {
10451 		verbose(env,
10452 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
10453 		return -EINVAL;
10454 	}
10455 	t = btf_type_by_id(btf, btf_id);
10456 	if (!t) {
10457 		verbose(env, "attach_btf_id %u is invalid\n", btf_id);
10458 		return -EINVAL;
10459 	}
10460 	tname = btf_name_by_offset(btf, t->name_off);
10461 	if (!tname) {
10462 		verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
10463 		return -EINVAL;
10464 	}
10465 	if (tgt_prog) {
10466 		struct bpf_prog_aux *aux = tgt_prog->aux;
10467 
10468 		for (i = 0; i < aux->func_info_cnt; i++)
10469 			if (aux->func_info[i].type_id == btf_id) {
10470 				subprog = i;
10471 				break;
10472 			}
10473 		if (subprog == -1) {
10474 			verbose(env, "Subprog %s doesn't exist\n", tname);
10475 			return -EINVAL;
10476 		}
10477 		conservative = aux->func_info_aux[subprog].unreliable;
10478 		if (prog_extension) {
10479 			if (conservative) {
10480 				verbose(env,
10481 					"Cannot replace static functions\n");
10482 				return -EINVAL;
10483 			}
10484 			if (!prog->jit_requested) {
10485 				verbose(env,
10486 					"Extension programs should be JITed\n");
10487 				return -EINVAL;
10488 			}
10489 			env->ops = bpf_verifier_ops[tgt_prog->type];
10490 		}
10491 		if (!tgt_prog->jited) {
10492 			verbose(env, "Can attach to only JITed progs\n");
10493 			return -EINVAL;
10494 		}
10495 		if (tgt_prog->type == prog->type) {
10496 			/* Cannot fentry/fexit another fentry/fexit program.
10497 			 * Cannot attach program extension to another extension.
10498 			 * It's ok to attach fentry/fexit to extension program.
10499 			 */
10500 			verbose(env, "Cannot recursively attach\n");
10501 			return -EINVAL;
10502 		}
10503 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
10504 		    prog_extension &&
10505 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
10506 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
10507 			/* Program extensions can extend all program types
10508 			 * except fentry/fexit. The reason is the following.
10509 			 * The fentry/fexit programs are used for performance
10510 			 * analysis, stats and can be attached to any program
10511 			 * type except themselves. When extension program is
10512 			 * replacing XDP function it is necessary to allow
10513 			 * performance analysis of all functions. Both original
10514 			 * XDP program and its program extension. Hence
10515 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
10516 			 * allowed. If extending of fentry/fexit was allowed it
10517 			 * would be possible to create long call chain
10518 			 * fentry->extension->fentry->extension beyond
10519 			 * reasonable stack size. Hence extending fentry is not
10520 			 * allowed.
10521 			 */
10522 			verbose(env, "Cannot extend fentry/fexit\n");
10523 			return -EINVAL;
10524 		}
10525 		key = ((u64)aux->id) << 32 | btf_id;
10526 	} else {
10527 		if (prog_extension) {
10528 			verbose(env, "Cannot replace kernel functions\n");
10529 			return -EINVAL;
10530 		}
10531 		key = btf_id;
10532 	}
10533 
10534 	switch (prog->expected_attach_type) {
10535 	case BPF_TRACE_RAW_TP:
10536 		if (tgt_prog) {
10537 			verbose(env,
10538 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
10539 			return -EINVAL;
10540 		}
10541 		if (!btf_type_is_typedef(t)) {
10542 			verbose(env, "attach_btf_id %u is not a typedef\n",
10543 				btf_id);
10544 			return -EINVAL;
10545 		}
10546 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
10547 			verbose(env, "attach_btf_id %u points to wrong type name %s\n",
10548 				btf_id, tname);
10549 			return -EINVAL;
10550 		}
10551 		tname += sizeof(prefix) - 1;
10552 		t = btf_type_by_id(btf, t->type);
10553 		if (!btf_type_is_ptr(t))
10554 			/* should never happen in valid vmlinux build */
10555 			return -EINVAL;
10556 		t = btf_type_by_id(btf, t->type);
10557 		if (!btf_type_is_func_proto(t))
10558 			/* should never happen in valid vmlinux build */
10559 			return -EINVAL;
10560 
10561 		/* remember two read only pointers that are valid for
10562 		 * the life time of the kernel
10563 		 */
10564 		prog->aux->attach_func_name = tname;
10565 		prog->aux->attach_func_proto = t;
10566 		prog->aux->attach_btf_trace = true;
10567 		return 0;
10568 	default:
10569 		if (!prog_extension)
10570 			return -EINVAL;
10571 		/* fallthrough */
10572 	case BPF_MODIFY_RETURN:
10573 	case BPF_LSM_MAC:
10574 	case BPF_TRACE_FENTRY:
10575 	case BPF_TRACE_FEXIT:
10576 		prog->aux->attach_func_name = tname;
10577 		if (prog->type == BPF_PROG_TYPE_LSM) {
10578 			ret = bpf_lsm_verify_prog(&env->log, prog);
10579 			if (ret < 0)
10580 				return ret;
10581 		}
10582 
10583 		if (!btf_type_is_func(t)) {
10584 			verbose(env, "attach_btf_id %u is not a function\n",
10585 				btf_id);
10586 			return -EINVAL;
10587 		}
10588 		if (prog_extension &&
10589 		    btf_check_type_match(env, prog, btf, t))
10590 			return -EINVAL;
10591 		t = btf_type_by_id(btf, t->type);
10592 		if (!btf_type_is_func_proto(t))
10593 			return -EINVAL;
10594 		tr = bpf_trampoline_lookup(key);
10595 		if (!tr)
10596 			return -ENOMEM;
10597 		/* t is either vmlinux type or another program's type */
10598 		prog->aux->attach_func_proto = t;
10599 		mutex_lock(&tr->mutex);
10600 		if (tr->func.addr) {
10601 			prog->aux->trampoline = tr;
10602 			goto out;
10603 		}
10604 		if (tgt_prog && conservative) {
10605 			prog->aux->attach_func_proto = NULL;
10606 			t = NULL;
10607 		}
10608 		ret = btf_distill_func_proto(&env->log, btf, t,
10609 					     tname, &tr->func.model);
10610 		if (ret < 0)
10611 			goto out;
10612 		if (tgt_prog) {
10613 			if (subprog == 0)
10614 				addr = (long) tgt_prog->bpf_func;
10615 			else
10616 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
10617 		} else {
10618 			addr = kallsyms_lookup_name(tname);
10619 			if (!addr) {
10620 				verbose(env,
10621 					"The address of function %s cannot be found\n",
10622 					tname);
10623 				ret = -ENOENT;
10624 				goto out;
10625 			}
10626 		}
10627 		tr->func.addr = (void *)addr;
10628 		prog->aux->trampoline = tr;
10629 
10630 		if (prog->expected_attach_type == BPF_MODIFY_RETURN)
10631 			ret = check_attach_modify_return(env);
10632 out:
10633 		mutex_unlock(&tr->mutex);
10634 		if (ret)
10635 			bpf_trampoline_put(tr);
10636 		return ret;
10637 	}
10638 }
10639 
10640 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
10641 	      union bpf_attr __user *uattr)
10642 {
10643 	u64 start_time = ktime_get_ns();
10644 	struct bpf_verifier_env *env;
10645 	struct bpf_verifier_log *log;
10646 	int i, len, ret = -EINVAL;
10647 	bool is_priv;
10648 
10649 	/* no program is valid */
10650 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
10651 		return -EINVAL;
10652 
10653 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
10654 	 * allocate/free it every time bpf_check() is called
10655 	 */
10656 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
10657 	if (!env)
10658 		return -ENOMEM;
10659 	log = &env->log;
10660 
10661 	len = (*prog)->len;
10662 	env->insn_aux_data =
10663 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
10664 	ret = -ENOMEM;
10665 	if (!env->insn_aux_data)
10666 		goto err_free_env;
10667 	for (i = 0; i < len; i++)
10668 		env->insn_aux_data[i].orig_idx = i;
10669 	env->prog = *prog;
10670 	env->ops = bpf_verifier_ops[env->prog->type];
10671 	is_priv = capable(CAP_SYS_ADMIN);
10672 
10673 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
10674 		mutex_lock(&bpf_verifier_lock);
10675 		if (!btf_vmlinux)
10676 			btf_vmlinux = btf_parse_vmlinux();
10677 		mutex_unlock(&bpf_verifier_lock);
10678 	}
10679 
10680 	/* grab the mutex to protect few globals used by verifier */
10681 	if (!is_priv)
10682 		mutex_lock(&bpf_verifier_lock);
10683 
10684 	if (attr->log_level || attr->log_buf || attr->log_size) {
10685 		/* user requested verbose verifier output
10686 		 * and supplied buffer to store the verification trace
10687 		 */
10688 		log->level = attr->log_level;
10689 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
10690 		log->len_total = attr->log_size;
10691 
10692 		ret = -EINVAL;
10693 		/* log attributes have to be sane */
10694 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
10695 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
10696 			goto err_unlock;
10697 	}
10698 
10699 	if (IS_ERR(btf_vmlinux)) {
10700 		/* Either gcc or pahole or kernel are broken. */
10701 		verbose(env, "in-kernel BTF is malformed\n");
10702 		ret = PTR_ERR(btf_vmlinux);
10703 		goto skip_full_check;
10704 	}
10705 
10706 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
10707 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
10708 		env->strict_alignment = true;
10709 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
10710 		env->strict_alignment = false;
10711 
10712 	env->allow_ptr_leaks = is_priv;
10713 
10714 	if (is_priv)
10715 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
10716 
10717 	ret = replace_map_fd_with_map_ptr(env);
10718 	if (ret < 0)
10719 		goto skip_full_check;
10720 
10721 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
10722 		ret = bpf_prog_offload_verifier_prep(env->prog);
10723 		if (ret)
10724 			goto skip_full_check;
10725 	}
10726 
10727 	env->explored_states = kvcalloc(state_htab_size(env),
10728 				       sizeof(struct bpf_verifier_state_list *),
10729 				       GFP_USER);
10730 	ret = -ENOMEM;
10731 	if (!env->explored_states)
10732 		goto skip_full_check;
10733 
10734 	ret = check_subprogs(env);
10735 	if (ret < 0)
10736 		goto skip_full_check;
10737 
10738 	ret = check_btf_info(env, attr, uattr);
10739 	if (ret < 0)
10740 		goto skip_full_check;
10741 
10742 	ret = check_attach_btf_id(env);
10743 	if (ret)
10744 		goto skip_full_check;
10745 
10746 	ret = check_cfg(env);
10747 	if (ret < 0)
10748 		goto skip_full_check;
10749 
10750 	ret = do_check_subprogs(env);
10751 	ret = ret ?: do_check_main(env);
10752 
10753 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
10754 		ret = bpf_prog_offload_finalize(env);
10755 
10756 skip_full_check:
10757 	kvfree(env->explored_states);
10758 
10759 	if (ret == 0)
10760 		ret = check_max_stack_depth(env);
10761 
10762 	/* instruction rewrites happen after this point */
10763 	if (is_priv) {
10764 		if (ret == 0)
10765 			opt_hard_wire_dead_code_branches(env);
10766 		if (ret == 0)
10767 			ret = opt_remove_dead_code(env);
10768 		if (ret == 0)
10769 			ret = opt_remove_nops(env);
10770 	} else {
10771 		if (ret == 0)
10772 			sanitize_dead_code(env);
10773 	}
10774 
10775 	if (ret == 0)
10776 		/* program is valid, convert *(u32*)(ctx + off) accesses */
10777 		ret = convert_ctx_accesses(env);
10778 
10779 	if (ret == 0)
10780 		ret = fixup_bpf_calls(env);
10781 
10782 	/* do 32-bit optimization after insn patching has done so those patched
10783 	 * insns could be handled correctly.
10784 	 */
10785 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
10786 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
10787 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
10788 								     : false;
10789 	}
10790 
10791 	if (ret == 0)
10792 		ret = fixup_call_args(env);
10793 
10794 	env->verification_time = ktime_get_ns() - start_time;
10795 	print_verification_stats(env);
10796 
10797 	if (log->level && bpf_verifier_log_full(log))
10798 		ret = -ENOSPC;
10799 	if (log->level && !log->ubuf) {
10800 		ret = -EFAULT;
10801 		goto err_release_maps;
10802 	}
10803 
10804 	if (ret == 0 && env->used_map_cnt) {
10805 		/* if program passed verifier, update used_maps in bpf_prog_info */
10806 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
10807 							  sizeof(env->used_maps[0]),
10808 							  GFP_KERNEL);
10809 
10810 		if (!env->prog->aux->used_maps) {
10811 			ret = -ENOMEM;
10812 			goto err_release_maps;
10813 		}
10814 
10815 		memcpy(env->prog->aux->used_maps, env->used_maps,
10816 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
10817 		env->prog->aux->used_map_cnt = env->used_map_cnt;
10818 
10819 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
10820 		 * bpf_ld_imm64 instructions
10821 		 */
10822 		convert_pseudo_ld_imm64(env);
10823 	}
10824 
10825 	if (ret == 0)
10826 		adjust_btf_func(env);
10827 
10828 err_release_maps:
10829 	if (!env->prog->aux->used_maps)
10830 		/* if we didn't copy map pointers into bpf_prog_info, release
10831 		 * them now. Otherwise free_used_maps() will release them.
10832 		 */
10833 		release_maps(env);
10834 	*prog = env->prog;
10835 err_unlock:
10836 	if (!is_priv)
10837 		mutex_unlock(&bpf_verifier_lock);
10838 	vfree(env->insn_aux_data);
10839 err_free_env:
10840 	kfree(env);
10841 	return ret;
10842 }
10843