1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 25 #include "disasm.h" 26 27 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 28 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 29 [_id] = & _name ## _verifier_ops, 30 #define BPF_MAP_TYPE(_id, _ops) 31 #include <linux/bpf_types.h> 32 #undef BPF_PROG_TYPE 33 #undef BPF_MAP_TYPE 34 }; 35 36 /* bpf_check() is a static code analyzer that walks eBPF program 37 * instruction by instruction and updates register/stack state. 38 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 39 * 40 * The first pass is depth-first-search to check that the program is a DAG. 41 * It rejects the following programs: 42 * - larger than BPF_MAXINSNS insns 43 * - if loop is present (detected via back-edge) 44 * - unreachable insns exist (shouldn't be a forest. program = one function) 45 * - out of bounds or malformed jumps 46 * The second pass is all possible path descent from the 1st insn. 47 * Since it's analyzing all pathes through the program, the length of the 48 * analysis is limited to 64k insn, which may be hit even if total number of 49 * insn is less then 4K, but there are too many branches that change stack/regs. 50 * Number of 'branches to be analyzed' is limited to 1k 51 * 52 * On entry to each instruction, each register has a type, and the instruction 53 * changes the types of the registers depending on instruction semantics. 54 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 55 * copied to R1. 56 * 57 * All registers are 64-bit. 58 * R0 - return register 59 * R1-R5 argument passing registers 60 * R6-R9 callee saved registers 61 * R10 - frame pointer read-only 62 * 63 * At the start of BPF program the register R1 contains a pointer to bpf_context 64 * and has type PTR_TO_CTX. 65 * 66 * Verifier tracks arithmetic operations on pointers in case: 67 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 68 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 69 * 1st insn copies R10 (which has FRAME_PTR) type into R1 70 * and 2nd arithmetic instruction is pattern matched to recognize 71 * that it wants to construct a pointer to some element within stack. 72 * So after 2nd insn, the register R1 has type PTR_TO_STACK 73 * (and -20 constant is saved for further stack bounds checking). 74 * Meaning that this reg is a pointer to stack plus known immediate constant. 75 * 76 * Most of the time the registers have SCALAR_VALUE type, which 77 * means the register has some value, but it's not a valid pointer. 78 * (like pointer plus pointer becomes SCALAR_VALUE type) 79 * 80 * When verifier sees load or store instructions the type of base register 81 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 82 * four pointer types recognized by check_mem_access() function. 83 * 84 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 85 * and the range of [ptr, ptr + map's value_size) is accessible. 86 * 87 * registers used to pass values to function calls are checked against 88 * function argument constraints. 89 * 90 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 91 * It means that the register type passed to this function must be 92 * PTR_TO_STACK and it will be used inside the function as 93 * 'pointer to map element key' 94 * 95 * For example the argument constraints for bpf_map_lookup_elem(): 96 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 97 * .arg1_type = ARG_CONST_MAP_PTR, 98 * .arg2_type = ARG_PTR_TO_MAP_KEY, 99 * 100 * ret_type says that this function returns 'pointer to map elem value or null' 101 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 102 * 2nd argument should be a pointer to stack, which will be used inside 103 * the helper function as a pointer to map element key. 104 * 105 * On the kernel side the helper function looks like: 106 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 107 * { 108 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 109 * void *key = (void *) (unsigned long) r2; 110 * void *value; 111 * 112 * here kernel can access 'key' and 'map' pointers safely, knowing that 113 * [key, key + map->key_size) bytes are valid and were initialized on 114 * the stack of eBPF program. 115 * } 116 * 117 * Corresponding eBPF program may look like: 118 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 119 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 120 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 121 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 122 * here verifier looks at prototype of map_lookup_elem() and sees: 123 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 124 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 125 * 126 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 127 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 128 * and were initialized prior to this call. 129 * If it's ok, then verifier allows this BPF_CALL insn and looks at 130 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 131 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 132 * returns ether pointer to map value or NULL. 133 * 134 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 135 * insn, the register holding that pointer in the true branch changes state to 136 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 137 * branch. See check_cond_jmp_op(). 138 * 139 * After the call R0 is set to return type of the function and registers R1-R5 140 * are set to NOT_INIT to indicate that they are no longer readable. 141 * 142 * The following reference types represent a potential reference to a kernel 143 * resource which, after first being allocated, must be checked and freed by 144 * the BPF program: 145 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 146 * 147 * When the verifier sees a helper call return a reference type, it allocates a 148 * pointer id for the reference and stores it in the current function state. 149 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 150 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 151 * passes through a NULL-check conditional. For the branch wherein the state is 152 * changed to CONST_IMM, the verifier releases the reference. 153 * 154 * For each helper function that allocates a reference, such as 155 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 156 * bpf_sk_release(). When a reference type passes into the release function, 157 * the verifier also releases the reference. If any unchecked or unreleased 158 * reference remains at the end of the program, the verifier rejects it. 159 */ 160 161 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 162 struct bpf_verifier_stack_elem { 163 /* verifer state is 'st' 164 * before processing instruction 'insn_idx' 165 * and after processing instruction 'prev_insn_idx' 166 */ 167 struct bpf_verifier_state st; 168 int insn_idx; 169 int prev_insn_idx; 170 struct bpf_verifier_stack_elem *next; 171 }; 172 173 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 174 #define BPF_COMPLEXITY_LIMIT_STATES 64 175 176 #define BPF_MAP_KEY_POISON (1ULL << 63) 177 #define BPF_MAP_KEY_SEEN (1ULL << 62) 178 179 #define BPF_MAP_PTR_UNPRIV 1UL 180 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 181 POISON_POINTER_DELTA)) 182 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 183 184 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 185 { 186 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 187 } 188 189 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 190 { 191 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 192 } 193 194 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 195 const struct bpf_map *map, bool unpriv) 196 { 197 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 198 unpriv |= bpf_map_ptr_unpriv(aux); 199 aux->map_ptr_state = (unsigned long)map | 200 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 201 } 202 203 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 204 { 205 return aux->map_key_state & BPF_MAP_KEY_POISON; 206 } 207 208 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 209 { 210 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 211 } 212 213 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 214 { 215 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 216 } 217 218 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 219 { 220 bool poisoned = bpf_map_key_poisoned(aux); 221 222 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 223 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 224 } 225 226 struct bpf_call_arg_meta { 227 struct bpf_map *map_ptr; 228 bool raw_mode; 229 bool pkt_access; 230 int regno; 231 int access_size; 232 u64 msize_max_value; 233 int ref_obj_id; 234 int func_id; 235 u32 btf_id; 236 }; 237 238 struct btf *btf_vmlinux; 239 240 static DEFINE_MUTEX(bpf_verifier_lock); 241 242 static const struct bpf_line_info * 243 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 244 { 245 const struct bpf_line_info *linfo; 246 const struct bpf_prog *prog; 247 u32 i, nr_linfo; 248 249 prog = env->prog; 250 nr_linfo = prog->aux->nr_linfo; 251 252 if (!nr_linfo || insn_off >= prog->len) 253 return NULL; 254 255 linfo = prog->aux->linfo; 256 for (i = 1; i < nr_linfo; i++) 257 if (insn_off < linfo[i].insn_off) 258 break; 259 260 return &linfo[i - 1]; 261 } 262 263 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 264 va_list args) 265 { 266 unsigned int n; 267 268 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 269 270 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 271 "verifier log line truncated - local buffer too short\n"); 272 273 n = min(log->len_total - log->len_used - 1, n); 274 log->kbuf[n] = '\0'; 275 276 if (log->level == BPF_LOG_KERNEL) { 277 pr_err("BPF:%s\n", log->kbuf); 278 return; 279 } 280 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 281 log->len_used += n; 282 else 283 log->ubuf = NULL; 284 } 285 286 /* log_level controls verbosity level of eBPF verifier. 287 * bpf_verifier_log_write() is used to dump the verification trace to the log, 288 * so the user can figure out what's wrong with the program 289 */ 290 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 291 const char *fmt, ...) 292 { 293 va_list args; 294 295 if (!bpf_verifier_log_needed(&env->log)) 296 return; 297 298 va_start(args, fmt); 299 bpf_verifier_vlog(&env->log, fmt, args); 300 va_end(args); 301 } 302 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 303 304 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 305 { 306 struct bpf_verifier_env *env = private_data; 307 va_list args; 308 309 if (!bpf_verifier_log_needed(&env->log)) 310 return; 311 312 va_start(args, fmt); 313 bpf_verifier_vlog(&env->log, fmt, args); 314 va_end(args); 315 } 316 317 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 318 const char *fmt, ...) 319 { 320 va_list args; 321 322 if (!bpf_verifier_log_needed(log)) 323 return; 324 325 va_start(args, fmt); 326 bpf_verifier_vlog(log, fmt, args); 327 va_end(args); 328 } 329 330 static const char *ltrim(const char *s) 331 { 332 while (isspace(*s)) 333 s++; 334 335 return s; 336 } 337 338 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 339 u32 insn_off, 340 const char *prefix_fmt, ...) 341 { 342 const struct bpf_line_info *linfo; 343 344 if (!bpf_verifier_log_needed(&env->log)) 345 return; 346 347 linfo = find_linfo(env, insn_off); 348 if (!linfo || linfo == env->prev_linfo) 349 return; 350 351 if (prefix_fmt) { 352 va_list args; 353 354 va_start(args, prefix_fmt); 355 bpf_verifier_vlog(&env->log, prefix_fmt, args); 356 va_end(args); 357 } 358 359 verbose(env, "%s\n", 360 ltrim(btf_name_by_offset(env->prog->aux->btf, 361 linfo->line_off))); 362 363 env->prev_linfo = linfo; 364 } 365 366 static bool type_is_pkt_pointer(enum bpf_reg_type type) 367 { 368 return type == PTR_TO_PACKET || 369 type == PTR_TO_PACKET_META; 370 } 371 372 static bool type_is_sk_pointer(enum bpf_reg_type type) 373 { 374 return type == PTR_TO_SOCKET || 375 type == PTR_TO_SOCK_COMMON || 376 type == PTR_TO_TCP_SOCK || 377 type == PTR_TO_XDP_SOCK; 378 } 379 380 static bool reg_type_may_be_null(enum bpf_reg_type type) 381 { 382 return type == PTR_TO_MAP_VALUE_OR_NULL || 383 type == PTR_TO_SOCKET_OR_NULL || 384 type == PTR_TO_SOCK_COMMON_OR_NULL || 385 type == PTR_TO_TCP_SOCK_OR_NULL; 386 } 387 388 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 389 { 390 return reg->type == PTR_TO_MAP_VALUE && 391 map_value_has_spin_lock(reg->map_ptr); 392 } 393 394 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 395 { 396 return type == PTR_TO_SOCKET || 397 type == PTR_TO_SOCKET_OR_NULL || 398 type == PTR_TO_TCP_SOCK || 399 type == PTR_TO_TCP_SOCK_OR_NULL; 400 } 401 402 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 403 { 404 return type == ARG_PTR_TO_SOCK_COMMON; 405 } 406 407 /* Determine whether the function releases some resources allocated by another 408 * function call. The first reference type argument will be assumed to be 409 * released by release_reference(). 410 */ 411 static bool is_release_function(enum bpf_func_id func_id) 412 { 413 return func_id == BPF_FUNC_sk_release; 414 } 415 416 static bool is_acquire_function(enum bpf_func_id func_id) 417 { 418 return func_id == BPF_FUNC_sk_lookup_tcp || 419 func_id == BPF_FUNC_sk_lookup_udp || 420 func_id == BPF_FUNC_skc_lookup_tcp; 421 } 422 423 static bool is_ptr_cast_function(enum bpf_func_id func_id) 424 { 425 return func_id == BPF_FUNC_tcp_sock || 426 func_id == BPF_FUNC_sk_fullsock; 427 } 428 429 /* string representation of 'enum bpf_reg_type' */ 430 static const char * const reg_type_str[] = { 431 [NOT_INIT] = "?", 432 [SCALAR_VALUE] = "inv", 433 [PTR_TO_CTX] = "ctx", 434 [CONST_PTR_TO_MAP] = "map_ptr", 435 [PTR_TO_MAP_VALUE] = "map_value", 436 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 437 [PTR_TO_STACK] = "fp", 438 [PTR_TO_PACKET] = "pkt", 439 [PTR_TO_PACKET_META] = "pkt_meta", 440 [PTR_TO_PACKET_END] = "pkt_end", 441 [PTR_TO_FLOW_KEYS] = "flow_keys", 442 [PTR_TO_SOCKET] = "sock", 443 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 444 [PTR_TO_SOCK_COMMON] = "sock_common", 445 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 446 [PTR_TO_TCP_SOCK] = "tcp_sock", 447 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 448 [PTR_TO_TP_BUFFER] = "tp_buffer", 449 [PTR_TO_XDP_SOCK] = "xdp_sock", 450 [PTR_TO_BTF_ID] = "ptr_", 451 }; 452 453 static char slot_type_char[] = { 454 [STACK_INVALID] = '?', 455 [STACK_SPILL] = 'r', 456 [STACK_MISC] = 'm', 457 [STACK_ZERO] = '0', 458 }; 459 460 static void print_liveness(struct bpf_verifier_env *env, 461 enum bpf_reg_liveness live) 462 { 463 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 464 verbose(env, "_"); 465 if (live & REG_LIVE_READ) 466 verbose(env, "r"); 467 if (live & REG_LIVE_WRITTEN) 468 verbose(env, "w"); 469 if (live & REG_LIVE_DONE) 470 verbose(env, "D"); 471 } 472 473 static struct bpf_func_state *func(struct bpf_verifier_env *env, 474 const struct bpf_reg_state *reg) 475 { 476 struct bpf_verifier_state *cur = env->cur_state; 477 478 return cur->frame[reg->frameno]; 479 } 480 481 const char *kernel_type_name(u32 id) 482 { 483 return btf_name_by_offset(btf_vmlinux, 484 btf_type_by_id(btf_vmlinux, id)->name_off); 485 } 486 487 static void print_verifier_state(struct bpf_verifier_env *env, 488 const struct bpf_func_state *state) 489 { 490 const struct bpf_reg_state *reg; 491 enum bpf_reg_type t; 492 int i; 493 494 if (state->frameno) 495 verbose(env, " frame%d:", state->frameno); 496 for (i = 0; i < MAX_BPF_REG; i++) { 497 reg = &state->regs[i]; 498 t = reg->type; 499 if (t == NOT_INIT) 500 continue; 501 verbose(env, " R%d", i); 502 print_liveness(env, reg->live); 503 verbose(env, "=%s", reg_type_str[t]); 504 if (t == SCALAR_VALUE && reg->precise) 505 verbose(env, "P"); 506 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 507 tnum_is_const(reg->var_off)) { 508 /* reg->off should be 0 for SCALAR_VALUE */ 509 verbose(env, "%lld", reg->var_off.value + reg->off); 510 } else { 511 if (t == PTR_TO_BTF_ID) 512 verbose(env, "%s", kernel_type_name(reg->btf_id)); 513 verbose(env, "(id=%d", reg->id); 514 if (reg_type_may_be_refcounted_or_null(t)) 515 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 516 if (t != SCALAR_VALUE) 517 verbose(env, ",off=%d", reg->off); 518 if (type_is_pkt_pointer(t)) 519 verbose(env, ",r=%d", reg->range); 520 else if (t == CONST_PTR_TO_MAP || 521 t == PTR_TO_MAP_VALUE || 522 t == PTR_TO_MAP_VALUE_OR_NULL) 523 verbose(env, ",ks=%d,vs=%d", 524 reg->map_ptr->key_size, 525 reg->map_ptr->value_size); 526 if (tnum_is_const(reg->var_off)) { 527 /* Typically an immediate SCALAR_VALUE, but 528 * could be a pointer whose offset is too big 529 * for reg->off 530 */ 531 verbose(env, ",imm=%llx", reg->var_off.value); 532 } else { 533 if (reg->smin_value != reg->umin_value && 534 reg->smin_value != S64_MIN) 535 verbose(env, ",smin_value=%lld", 536 (long long)reg->smin_value); 537 if (reg->smax_value != reg->umax_value && 538 reg->smax_value != S64_MAX) 539 verbose(env, ",smax_value=%lld", 540 (long long)reg->smax_value); 541 if (reg->umin_value != 0) 542 verbose(env, ",umin_value=%llu", 543 (unsigned long long)reg->umin_value); 544 if (reg->umax_value != U64_MAX) 545 verbose(env, ",umax_value=%llu", 546 (unsigned long long)reg->umax_value); 547 if (!tnum_is_unknown(reg->var_off)) { 548 char tn_buf[48]; 549 550 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 551 verbose(env, ",var_off=%s", tn_buf); 552 } 553 if (reg->s32_min_value != reg->smin_value && 554 reg->s32_min_value != S32_MIN) 555 verbose(env, ",s32_min_value=%d", 556 (int)(reg->s32_min_value)); 557 if (reg->s32_max_value != reg->smax_value && 558 reg->s32_max_value != S32_MAX) 559 verbose(env, ",s32_max_value=%d", 560 (int)(reg->s32_max_value)); 561 if (reg->u32_min_value != reg->umin_value && 562 reg->u32_min_value != U32_MIN) 563 verbose(env, ",u32_min_value=%d", 564 (int)(reg->u32_min_value)); 565 if (reg->u32_max_value != reg->umax_value && 566 reg->u32_max_value != U32_MAX) 567 verbose(env, ",u32_max_value=%d", 568 (int)(reg->u32_max_value)); 569 } 570 verbose(env, ")"); 571 } 572 } 573 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 574 char types_buf[BPF_REG_SIZE + 1]; 575 bool valid = false; 576 int j; 577 578 for (j = 0; j < BPF_REG_SIZE; j++) { 579 if (state->stack[i].slot_type[j] != STACK_INVALID) 580 valid = true; 581 types_buf[j] = slot_type_char[ 582 state->stack[i].slot_type[j]]; 583 } 584 types_buf[BPF_REG_SIZE] = 0; 585 if (!valid) 586 continue; 587 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 588 print_liveness(env, state->stack[i].spilled_ptr.live); 589 if (state->stack[i].slot_type[0] == STACK_SPILL) { 590 reg = &state->stack[i].spilled_ptr; 591 t = reg->type; 592 verbose(env, "=%s", reg_type_str[t]); 593 if (t == SCALAR_VALUE && reg->precise) 594 verbose(env, "P"); 595 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 596 verbose(env, "%lld", reg->var_off.value + reg->off); 597 } else { 598 verbose(env, "=%s", types_buf); 599 } 600 } 601 if (state->acquired_refs && state->refs[0].id) { 602 verbose(env, " refs=%d", state->refs[0].id); 603 for (i = 1; i < state->acquired_refs; i++) 604 if (state->refs[i].id) 605 verbose(env, ",%d", state->refs[i].id); 606 } 607 verbose(env, "\n"); 608 } 609 610 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 611 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 612 const struct bpf_func_state *src) \ 613 { \ 614 if (!src->FIELD) \ 615 return 0; \ 616 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 617 /* internal bug, make state invalid to reject the program */ \ 618 memset(dst, 0, sizeof(*dst)); \ 619 return -EFAULT; \ 620 } \ 621 memcpy(dst->FIELD, src->FIELD, \ 622 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 623 return 0; \ 624 } 625 /* copy_reference_state() */ 626 COPY_STATE_FN(reference, acquired_refs, refs, 1) 627 /* copy_stack_state() */ 628 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 629 #undef COPY_STATE_FN 630 631 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 632 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 633 bool copy_old) \ 634 { \ 635 u32 old_size = state->COUNT; \ 636 struct bpf_##NAME##_state *new_##FIELD; \ 637 int slot = size / SIZE; \ 638 \ 639 if (size <= old_size || !size) { \ 640 if (copy_old) \ 641 return 0; \ 642 state->COUNT = slot * SIZE; \ 643 if (!size && old_size) { \ 644 kfree(state->FIELD); \ 645 state->FIELD = NULL; \ 646 } \ 647 return 0; \ 648 } \ 649 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 650 GFP_KERNEL); \ 651 if (!new_##FIELD) \ 652 return -ENOMEM; \ 653 if (copy_old) { \ 654 if (state->FIELD) \ 655 memcpy(new_##FIELD, state->FIELD, \ 656 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 657 memset(new_##FIELD + old_size / SIZE, 0, \ 658 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 659 } \ 660 state->COUNT = slot * SIZE; \ 661 kfree(state->FIELD); \ 662 state->FIELD = new_##FIELD; \ 663 return 0; \ 664 } 665 /* realloc_reference_state() */ 666 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 667 /* realloc_stack_state() */ 668 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 669 #undef REALLOC_STATE_FN 670 671 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 672 * make it consume minimal amount of memory. check_stack_write() access from 673 * the program calls into realloc_func_state() to grow the stack size. 674 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 675 * which realloc_stack_state() copies over. It points to previous 676 * bpf_verifier_state which is never reallocated. 677 */ 678 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 679 int refs_size, bool copy_old) 680 { 681 int err = realloc_reference_state(state, refs_size, copy_old); 682 if (err) 683 return err; 684 return realloc_stack_state(state, stack_size, copy_old); 685 } 686 687 /* Acquire a pointer id from the env and update the state->refs to include 688 * this new pointer reference. 689 * On success, returns a valid pointer id to associate with the register 690 * On failure, returns a negative errno. 691 */ 692 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 693 { 694 struct bpf_func_state *state = cur_func(env); 695 int new_ofs = state->acquired_refs; 696 int id, err; 697 698 err = realloc_reference_state(state, state->acquired_refs + 1, true); 699 if (err) 700 return err; 701 id = ++env->id_gen; 702 state->refs[new_ofs].id = id; 703 state->refs[new_ofs].insn_idx = insn_idx; 704 705 return id; 706 } 707 708 /* release function corresponding to acquire_reference_state(). Idempotent. */ 709 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 710 { 711 int i, last_idx; 712 713 last_idx = state->acquired_refs - 1; 714 for (i = 0; i < state->acquired_refs; i++) { 715 if (state->refs[i].id == ptr_id) { 716 if (last_idx && i != last_idx) 717 memcpy(&state->refs[i], &state->refs[last_idx], 718 sizeof(*state->refs)); 719 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 720 state->acquired_refs--; 721 return 0; 722 } 723 } 724 return -EINVAL; 725 } 726 727 static int transfer_reference_state(struct bpf_func_state *dst, 728 struct bpf_func_state *src) 729 { 730 int err = realloc_reference_state(dst, src->acquired_refs, false); 731 if (err) 732 return err; 733 err = copy_reference_state(dst, src); 734 if (err) 735 return err; 736 return 0; 737 } 738 739 static void free_func_state(struct bpf_func_state *state) 740 { 741 if (!state) 742 return; 743 kfree(state->refs); 744 kfree(state->stack); 745 kfree(state); 746 } 747 748 static void clear_jmp_history(struct bpf_verifier_state *state) 749 { 750 kfree(state->jmp_history); 751 state->jmp_history = NULL; 752 state->jmp_history_cnt = 0; 753 } 754 755 static void free_verifier_state(struct bpf_verifier_state *state, 756 bool free_self) 757 { 758 int i; 759 760 for (i = 0; i <= state->curframe; i++) { 761 free_func_state(state->frame[i]); 762 state->frame[i] = NULL; 763 } 764 clear_jmp_history(state); 765 if (free_self) 766 kfree(state); 767 } 768 769 /* copy verifier state from src to dst growing dst stack space 770 * when necessary to accommodate larger src stack 771 */ 772 static int copy_func_state(struct bpf_func_state *dst, 773 const struct bpf_func_state *src) 774 { 775 int err; 776 777 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 778 false); 779 if (err) 780 return err; 781 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 782 err = copy_reference_state(dst, src); 783 if (err) 784 return err; 785 return copy_stack_state(dst, src); 786 } 787 788 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 789 const struct bpf_verifier_state *src) 790 { 791 struct bpf_func_state *dst; 792 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 793 int i, err; 794 795 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 796 kfree(dst_state->jmp_history); 797 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 798 if (!dst_state->jmp_history) 799 return -ENOMEM; 800 } 801 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 802 dst_state->jmp_history_cnt = src->jmp_history_cnt; 803 804 /* if dst has more stack frames then src frame, free them */ 805 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 806 free_func_state(dst_state->frame[i]); 807 dst_state->frame[i] = NULL; 808 } 809 dst_state->speculative = src->speculative; 810 dst_state->curframe = src->curframe; 811 dst_state->active_spin_lock = src->active_spin_lock; 812 dst_state->branches = src->branches; 813 dst_state->parent = src->parent; 814 dst_state->first_insn_idx = src->first_insn_idx; 815 dst_state->last_insn_idx = src->last_insn_idx; 816 for (i = 0; i <= src->curframe; i++) { 817 dst = dst_state->frame[i]; 818 if (!dst) { 819 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 820 if (!dst) 821 return -ENOMEM; 822 dst_state->frame[i] = dst; 823 } 824 err = copy_func_state(dst, src->frame[i]); 825 if (err) 826 return err; 827 } 828 return 0; 829 } 830 831 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 832 { 833 while (st) { 834 u32 br = --st->branches; 835 836 /* WARN_ON(br > 1) technically makes sense here, 837 * but see comment in push_stack(), hence: 838 */ 839 WARN_ONCE((int)br < 0, 840 "BUG update_branch_counts:branches_to_explore=%d\n", 841 br); 842 if (br) 843 break; 844 st = st->parent; 845 } 846 } 847 848 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 849 int *insn_idx) 850 { 851 struct bpf_verifier_state *cur = env->cur_state; 852 struct bpf_verifier_stack_elem *elem, *head = env->head; 853 int err; 854 855 if (env->head == NULL) 856 return -ENOENT; 857 858 if (cur) { 859 err = copy_verifier_state(cur, &head->st); 860 if (err) 861 return err; 862 } 863 if (insn_idx) 864 *insn_idx = head->insn_idx; 865 if (prev_insn_idx) 866 *prev_insn_idx = head->prev_insn_idx; 867 elem = head->next; 868 free_verifier_state(&head->st, false); 869 kfree(head); 870 env->head = elem; 871 env->stack_size--; 872 return 0; 873 } 874 875 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 876 int insn_idx, int prev_insn_idx, 877 bool speculative) 878 { 879 struct bpf_verifier_state *cur = env->cur_state; 880 struct bpf_verifier_stack_elem *elem; 881 int err; 882 883 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 884 if (!elem) 885 goto err; 886 887 elem->insn_idx = insn_idx; 888 elem->prev_insn_idx = prev_insn_idx; 889 elem->next = env->head; 890 env->head = elem; 891 env->stack_size++; 892 err = copy_verifier_state(&elem->st, cur); 893 if (err) 894 goto err; 895 elem->st.speculative |= speculative; 896 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 897 verbose(env, "The sequence of %d jumps is too complex.\n", 898 env->stack_size); 899 goto err; 900 } 901 if (elem->st.parent) { 902 ++elem->st.parent->branches; 903 /* WARN_ON(branches > 2) technically makes sense here, 904 * but 905 * 1. speculative states will bump 'branches' for non-branch 906 * instructions 907 * 2. is_state_visited() heuristics may decide not to create 908 * a new state for a sequence of branches and all such current 909 * and cloned states will be pointing to a single parent state 910 * which might have large 'branches' count. 911 */ 912 } 913 return &elem->st; 914 err: 915 free_verifier_state(env->cur_state, true); 916 env->cur_state = NULL; 917 /* pop all elements and return */ 918 while (!pop_stack(env, NULL, NULL)); 919 return NULL; 920 } 921 922 #define CALLER_SAVED_REGS 6 923 static const int caller_saved[CALLER_SAVED_REGS] = { 924 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 925 }; 926 927 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 928 struct bpf_reg_state *reg); 929 930 /* Mark the unknown part of a register (variable offset or scalar value) as 931 * known to have the value @imm. 932 */ 933 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 934 { 935 /* Clear id, off, and union(map_ptr, range) */ 936 memset(((u8 *)reg) + sizeof(reg->type), 0, 937 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 938 reg->var_off = tnum_const(imm); 939 reg->smin_value = (s64)imm; 940 reg->smax_value = (s64)imm; 941 reg->umin_value = imm; 942 reg->umax_value = imm; 943 944 reg->s32_min_value = (s32)imm; 945 reg->s32_max_value = (s32)imm; 946 reg->u32_min_value = (u32)imm; 947 reg->u32_max_value = (u32)imm; 948 } 949 950 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 951 { 952 reg->var_off = tnum_const_subreg(reg->var_off, imm); 953 reg->s32_min_value = (s32)imm; 954 reg->s32_max_value = (s32)imm; 955 reg->u32_min_value = (u32)imm; 956 reg->u32_max_value = (u32)imm; 957 } 958 959 /* Mark the 'variable offset' part of a register as zero. This should be 960 * used only on registers holding a pointer type. 961 */ 962 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 963 { 964 __mark_reg_known(reg, 0); 965 } 966 967 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 968 { 969 __mark_reg_known(reg, 0); 970 reg->type = SCALAR_VALUE; 971 } 972 973 static void mark_reg_known_zero(struct bpf_verifier_env *env, 974 struct bpf_reg_state *regs, u32 regno) 975 { 976 if (WARN_ON(regno >= MAX_BPF_REG)) { 977 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 978 /* Something bad happened, let's kill all regs */ 979 for (regno = 0; regno < MAX_BPF_REG; regno++) 980 __mark_reg_not_init(env, regs + regno); 981 return; 982 } 983 __mark_reg_known_zero(regs + regno); 984 } 985 986 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 987 { 988 return type_is_pkt_pointer(reg->type); 989 } 990 991 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 992 { 993 return reg_is_pkt_pointer(reg) || 994 reg->type == PTR_TO_PACKET_END; 995 } 996 997 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 998 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 999 enum bpf_reg_type which) 1000 { 1001 /* The register can already have a range from prior markings. 1002 * This is fine as long as it hasn't been advanced from its 1003 * origin. 1004 */ 1005 return reg->type == which && 1006 reg->id == 0 && 1007 reg->off == 0 && 1008 tnum_equals_const(reg->var_off, 0); 1009 } 1010 1011 /* Reset the min/max bounds of a register */ 1012 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1013 { 1014 reg->smin_value = S64_MIN; 1015 reg->smax_value = S64_MAX; 1016 reg->umin_value = 0; 1017 reg->umax_value = U64_MAX; 1018 1019 reg->s32_min_value = S32_MIN; 1020 reg->s32_max_value = S32_MAX; 1021 reg->u32_min_value = 0; 1022 reg->u32_max_value = U32_MAX; 1023 } 1024 1025 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1026 { 1027 reg->smin_value = S64_MIN; 1028 reg->smax_value = S64_MAX; 1029 reg->umin_value = 0; 1030 reg->umax_value = U64_MAX; 1031 } 1032 1033 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1034 { 1035 reg->s32_min_value = S32_MIN; 1036 reg->s32_max_value = S32_MAX; 1037 reg->u32_min_value = 0; 1038 reg->u32_max_value = U32_MAX; 1039 } 1040 1041 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1042 { 1043 struct tnum var32_off = tnum_subreg(reg->var_off); 1044 1045 /* min signed is max(sign bit) | min(other bits) */ 1046 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1047 var32_off.value | (var32_off.mask & S32_MIN)); 1048 /* max signed is min(sign bit) | max(other bits) */ 1049 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1050 var32_off.value | (var32_off.mask & S32_MAX)); 1051 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1052 reg->u32_max_value = min(reg->u32_max_value, 1053 (u32)(var32_off.value | var32_off.mask)); 1054 } 1055 1056 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1057 { 1058 /* min signed is max(sign bit) | min(other bits) */ 1059 reg->smin_value = max_t(s64, reg->smin_value, 1060 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1061 /* max signed is min(sign bit) | max(other bits) */ 1062 reg->smax_value = min_t(s64, reg->smax_value, 1063 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1064 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1065 reg->umax_value = min(reg->umax_value, 1066 reg->var_off.value | reg->var_off.mask); 1067 } 1068 1069 static void __update_reg_bounds(struct bpf_reg_state *reg) 1070 { 1071 __update_reg32_bounds(reg); 1072 __update_reg64_bounds(reg); 1073 } 1074 1075 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1076 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1077 { 1078 /* Learn sign from signed bounds. 1079 * If we cannot cross the sign boundary, then signed and unsigned bounds 1080 * are the same, so combine. This works even in the negative case, e.g. 1081 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1082 */ 1083 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1084 reg->s32_min_value = reg->u32_min_value = 1085 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1086 reg->s32_max_value = reg->u32_max_value = 1087 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1088 return; 1089 } 1090 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1091 * boundary, so we must be careful. 1092 */ 1093 if ((s32)reg->u32_max_value >= 0) { 1094 /* Positive. We can't learn anything from the smin, but smax 1095 * is positive, hence safe. 1096 */ 1097 reg->s32_min_value = reg->u32_min_value; 1098 reg->s32_max_value = reg->u32_max_value = 1099 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1100 } else if ((s32)reg->u32_min_value < 0) { 1101 /* Negative. We can't learn anything from the smax, but smin 1102 * is negative, hence safe. 1103 */ 1104 reg->s32_min_value = reg->u32_min_value = 1105 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1106 reg->s32_max_value = reg->u32_max_value; 1107 } 1108 } 1109 1110 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1111 { 1112 /* Learn sign from signed bounds. 1113 * If we cannot cross the sign boundary, then signed and unsigned bounds 1114 * are the same, so combine. This works even in the negative case, e.g. 1115 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1116 */ 1117 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1118 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1119 reg->umin_value); 1120 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1121 reg->umax_value); 1122 return; 1123 } 1124 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1125 * boundary, so we must be careful. 1126 */ 1127 if ((s64)reg->umax_value >= 0) { 1128 /* Positive. We can't learn anything from the smin, but smax 1129 * is positive, hence safe. 1130 */ 1131 reg->smin_value = reg->umin_value; 1132 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1133 reg->umax_value); 1134 } else if ((s64)reg->umin_value < 0) { 1135 /* Negative. We can't learn anything from the smax, but smin 1136 * is negative, hence safe. 1137 */ 1138 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1139 reg->umin_value); 1140 reg->smax_value = reg->umax_value; 1141 } 1142 } 1143 1144 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1145 { 1146 __reg32_deduce_bounds(reg); 1147 __reg64_deduce_bounds(reg); 1148 } 1149 1150 /* Attempts to improve var_off based on unsigned min/max information */ 1151 static void __reg_bound_offset(struct bpf_reg_state *reg) 1152 { 1153 struct tnum var64_off = tnum_intersect(reg->var_off, 1154 tnum_range(reg->umin_value, 1155 reg->umax_value)); 1156 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1157 tnum_range(reg->u32_min_value, 1158 reg->u32_max_value)); 1159 1160 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1161 } 1162 1163 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1164 { 1165 reg->umin_value = reg->u32_min_value; 1166 reg->umax_value = reg->u32_max_value; 1167 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1168 * but must be positive otherwise set to worse case bounds 1169 * and refine later from tnum. 1170 */ 1171 if (reg->s32_min_value > 0) 1172 reg->smin_value = reg->s32_min_value; 1173 else 1174 reg->smin_value = 0; 1175 if (reg->s32_max_value > 0) 1176 reg->smax_value = reg->s32_max_value; 1177 else 1178 reg->smax_value = U32_MAX; 1179 } 1180 1181 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1182 { 1183 /* special case when 64-bit register has upper 32-bit register 1184 * zeroed. Typically happens after zext or <<32, >>32 sequence 1185 * allowing us to use 32-bit bounds directly, 1186 */ 1187 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1188 __reg_assign_32_into_64(reg); 1189 } else { 1190 /* Otherwise the best we can do is push lower 32bit known and 1191 * unknown bits into register (var_off set from jmp logic) 1192 * then learn as much as possible from the 64-bit tnum 1193 * known and unknown bits. The previous smin/smax bounds are 1194 * invalid here because of jmp32 compare so mark them unknown 1195 * so they do not impact tnum bounds calculation. 1196 */ 1197 __mark_reg64_unbounded(reg); 1198 __update_reg_bounds(reg); 1199 } 1200 1201 /* Intersecting with the old var_off might have improved our bounds 1202 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1203 * then new var_off is (0; 0x7f...fc) which improves our umax. 1204 */ 1205 __reg_deduce_bounds(reg); 1206 __reg_bound_offset(reg); 1207 __update_reg_bounds(reg); 1208 } 1209 1210 static bool __reg64_bound_s32(s64 a) 1211 { 1212 if (a > S32_MIN && a < S32_MAX) 1213 return true; 1214 return false; 1215 } 1216 1217 static bool __reg64_bound_u32(u64 a) 1218 { 1219 if (a > U32_MIN && a < U32_MAX) 1220 return true; 1221 return false; 1222 } 1223 1224 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1225 { 1226 __mark_reg32_unbounded(reg); 1227 1228 if (__reg64_bound_s32(reg->smin_value)) 1229 reg->s32_min_value = (s32)reg->smin_value; 1230 if (__reg64_bound_s32(reg->smax_value)) 1231 reg->s32_max_value = (s32)reg->smax_value; 1232 if (__reg64_bound_u32(reg->umin_value)) 1233 reg->u32_min_value = (u32)reg->umin_value; 1234 if (__reg64_bound_u32(reg->umax_value)) 1235 reg->u32_max_value = (u32)reg->umax_value; 1236 1237 /* Intersecting with the old var_off might have improved our bounds 1238 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1239 * then new var_off is (0; 0x7f...fc) which improves our umax. 1240 */ 1241 __reg_deduce_bounds(reg); 1242 __reg_bound_offset(reg); 1243 __update_reg_bounds(reg); 1244 } 1245 1246 /* Mark a register as having a completely unknown (scalar) value. */ 1247 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1248 struct bpf_reg_state *reg) 1249 { 1250 /* 1251 * Clear type, id, off, and union(map_ptr, range) and 1252 * padding between 'type' and union 1253 */ 1254 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1255 reg->type = SCALAR_VALUE; 1256 reg->var_off = tnum_unknown; 1257 reg->frameno = 0; 1258 reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks; 1259 __mark_reg_unbounded(reg); 1260 } 1261 1262 static void mark_reg_unknown(struct bpf_verifier_env *env, 1263 struct bpf_reg_state *regs, u32 regno) 1264 { 1265 if (WARN_ON(regno >= MAX_BPF_REG)) { 1266 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1267 /* Something bad happened, let's kill all regs except FP */ 1268 for (regno = 0; regno < BPF_REG_FP; regno++) 1269 __mark_reg_not_init(env, regs + regno); 1270 return; 1271 } 1272 __mark_reg_unknown(env, regs + regno); 1273 } 1274 1275 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1276 struct bpf_reg_state *reg) 1277 { 1278 __mark_reg_unknown(env, reg); 1279 reg->type = NOT_INIT; 1280 } 1281 1282 static void mark_reg_not_init(struct bpf_verifier_env *env, 1283 struct bpf_reg_state *regs, u32 regno) 1284 { 1285 if (WARN_ON(regno >= MAX_BPF_REG)) { 1286 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1287 /* Something bad happened, let's kill all regs except FP */ 1288 for (regno = 0; regno < BPF_REG_FP; regno++) 1289 __mark_reg_not_init(env, regs + regno); 1290 return; 1291 } 1292 __mark_reg_not_init(env, regs + regno); 1293 } 1294 1295 #define DEF_NOT_SUBREG (0) 1296 static void init_reg_state(struct bpf_verifier_env *env, 1297 struct bpf_func_state *state) 1298 { 1299 struct bpf_reg_state *regs = state->regs; 1300 int i; 1301 1302 for (i = 0; i < MAX_BPF_REG; i++) { 1303 mark_reg_not_init(env, regs, i); 1304 regs[i].live = REG_LIVE_NONE; 1305 regs[i].parent = NULL; 1306 regs[i].subreg_def = DEF_NOT_SUBREG; 1307 } 1308 1309 /* frame pointer */ 1310 regs[BPF_REG_FP].type = PTR_TO_STACK; 1311 mark_reg_known_zero(env, regs, BPF_REG_FP); 1312 regs[BPF_REG_FP].frameno = state->frameno; 1313 } 1314 1315 #define BPF_MAIN_FUNC (-1) 1316 static void init_func_state(struct bpf_verifier_env *env, 1317 struct bpf_func_state *state, 1318 int callsite, int frameno, int subprogno) 1319 { 1320 state->callsite = callsite; 1321 state->frameno = frameno; 1322 state->subprogno = subprogno; 1323 init_reg_state(env, state); 1324 } 1325 1326 enum reg_arg_type { 1327 SRC_OP, /* register is used as source operand */ 1328 DST_OP, /* register is used as destination operand */ 1329 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1330 }; 1331 1332 static int cmp_subprogs(const void *a, const void *b) 1333 { 1334 return ((struct bpf_subprog_info *)a)->start - 1335 ((struct bpf_subprog_info *)b)->start; 1336 } 1337 1338 static int find_subprog(struct bpf_verifier_env *env, int off) 1339 { 1340 struct bpf_subprog_info *p; 1341 1342 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1343 sizeof(env->subprog_info[0]), cmp_subprogs); 1344 if (!p) 1345 return -ENOENT; 1346 return p - env->subprog_info; 1347 1348 } 1349 1350 static int add_subprog(struct bpf_verifier_env *env, int off) 1351 { 1352 int insn_cnt = env->prog->len; 1353 int ret; 1354 1355 if (off >= insn_cnt || off < 0) { 1356 verbose(env, "call to invalid destination\n"); 1357 return -EINVAL; 1358 } 1359 ret = find_subprog(env, off); 1360 if (ret >= 0) 1361 return 0; 1362 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1363 verbose(env, "too many subprograms\n"); 1364 return -E2BIG; 1365 } 1366 env->subprog_info[env->subprog_cnt++].start = off; 1367 sort(env->subprog_info, env->subprog_cnt, 1368 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1369 return 0; 1370 } 1371 1372 static int check_subprogs(struct bpf_verifier_env *env) 1373 { 1374 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1375 struct bpf_subprog_info *subprog = env->subprog_info; 1376 struct bpf_insn *insn = env->prog->insnsi; 1377 int insn_cnt = env->prog->len; 1378 1379 /* Add entry function. */ 1380 ret = add_subprog(env, 0); 1381 if (ret < 0) 1382 return ret; 1383 1384 /* determine subprog starts. The end is one before the next starts */ 1385 for (i = 0; i < insn_cnt; i++) { 1386 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1387 continue; 1388 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1389 continue; 1390 if (!env->allow_ptr_leaks) { 1391 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1392 return -EPERM; 1393 } 1394 ret = add_subprog(env, i + insn[i].imm + 1); 1395 if (ret < 0) 1396 return ret; 1397 } 1398 1399 /* Add a fake 'exit' subprog which could simplify subprog iteration 1400 * logic. 'subprog_cnt' should not be increased. 1401 */ 1402 subprog[env->subprog_cnt].start = insn_cnt; 1403 1404 if (env->log.level & BPF_LOG_LEVEL2) 1405 for (i = 0; i < env->subprog_cnt; i++) 1406 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1407 1408 /* now check that all jumps are within the same subprog */ 1409 subprog_start = subprog[cur_subprog].start; 1410 subprog_end = subprog[cur_subprog + 1].start; 1411 for (i = 0; i < insn_cnt; i++) { 1412 u8 code = insn[i].code; 1413 1414 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1415 goto next; 1416 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1417 goto next; 1418 off = i + insn[i].off + 1; 1419 if (off < subprog_start || off >= subprog_end) { 1420 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1421 return -EINVAL; 1422 } 1423 next: 1424 if (i == subprog_end - 1) { 1425 /* to avoid fall-through from one subprog into another 1426 * the last insn of the subprog should be either exit 1427 * or unconditional jump back 1428 */ 1429 if (code != (BPF_JMP | BPF_EXIT) && 1430 code != (BPF_JMP | BPF_JA)) { 1431 verbose(env, "last insn is not an exit or jmp\n"); 1432 return -EINVAL; 1433 } 1434 subprog_start = subprog_end; 1435 cur_subprog++; 1436 if (cur_subprog < env->subprog_cnt) 1437 subprog_end = subprog[cur_subprog + 1].start; 1438 } 1439 } 1440 return 0; 1441 } 1442 1443 /* Parentage chain of this register (or stack slot) should take care of all 1444 * issues like callee-saved registers, stack slot allocation time, etc. 1445 */ 1446 static int mark_reg_read(struct bpf_verifier_env *env, 1447 const struct bpf_reg_state *state, 1448 struct bpf_reg_state *parent, u8 flag) 1449 { 1450 bool writes = parent == state->parent; /* Observe write marks */ 1451 int cnt = 0; 1452 1453 while (parent) { 1454 /* if read wasn't screened by an earlier write ... */ 1455 if (writes && state->live & REG_LIVE_WRITTEN) 1456 break; 1457 if (parent->live & REG_LIVE_DONE) { 1458 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1459 reg_type_str[parent->type], 1460 parent->var_off.value, parent->off); 1461 return -EFAULT; 1462 } 1463 /* The first condition is more likely to be true than the 1464 * second, checked it first. 1465 */ 1466 if ((parent->live & REG_LIVE_READ) == flag || 1467 parent->live & REG_LIVE_READ64) 1468 /* The parentage chain never changes and 1469 * this parent was already marked as LIVE_READ. 1470 * There is no need to keep walking the chain again and 1471 * keep re-marking all parents as LIVE_READ. 1472 * This case happens when the same register is read 1473 * multiple times without writes into it in-between. 1474 * Also, if parent has the stronger REG_LIVE_READ64 set, 1475 * then no need to set the weak REG_LIVE_READ32. 1476 */ 1477 break; 1478 /* ... then we depend on parent's value */ 1479 parent->live |= flag; 1480 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1481 if (flag == REG_LIVE_READ64) 1482 parent->live &= ~REG_LIVE_READ32; 1483 state = parent; 1484 parent = state->parent; 1485 writes = true; 1486 cnt++; 1487 } 1488 1489 if (env->longest_mark_read_walk < cnt) 1490 env->longest_mark_read_walk = cnt; 1491 return 0; 1492 } 1493 1494 /* This function is supposed to be used by the following 32-bit optimization 1495 * code only. It returns TRUE if the source or destination register operates 1496 * on 64-bit, otherwise return FALSE. 1497 */ 1498 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1499 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1500 { 1501 u8 code, class, op; 1502 1503 code = insn->code; 1504 class = BPF_CLASS(code); 1505 op = BPF_OP(code); 1506 if (class == BPF_JMP) { 1507 /* BPF_EXIT for "main" will reach here. Return TRUE 1508 * conservatively. 1509 */ 1510 if (op == BPF_EXIT) 1511 return true; 1512 if (op == BPF_CALL) { 1513 /* BPF to BPF call will reach here because of marking 1514 * caller saved clobber with DST_OP_NO_MARK for which we 1515 * don't care the register def because they are anyway 1516 * marked as NOT_INIT already. 1517 */ 1518 if (insn->src_reg == BPF_PSEUDO_CALL) 1519 return false; 1520 /* Helper call will reach here because of arg type 1521 * check, conservatively return TRUE. 1522 */ 1523 if (t == SRC_OP) 1524 return true; 1525 1526 return false; 1527 } 1528 } 1529 1530 if (class == BPF_ALU64 || class == BPF_JMP || 1531 /* BPF_END always use BPF_ALU class. */ 1532 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1533 return true; 1534 1535 if (class == BPF_ALU || class == BPF_JMP32) 1536 return false; 1537 1538 if (class == BPF_LDX) { 1539 if (t != SRC_OP) 1540 return BPF_SIZE(code) == BPF_DW; 1541 /* LDX source must be ptr. */ 1542 return true; 1543 } 1544 1545 if (class == BPF_STX) { 1546 if (reg->type != SCALAR_VALUE) 1547 return true; 1548 return BPF_SIZE(code) == BPF_DW; 1549 } 1550 1551 if (class == BPF_LD) { 1552 u8 mode = BPF_MODE(code); 1553 1554 /* LD_IMM64 */ 1555 if (mode == BPF_IMM) 1556 return true; 1557 1558 /* Both LD_IND and LD_ABS return 32-bit data. */ 1559 if (t != SRC_OP) 1560 return false; 1561 1562 /* Implicit ctx ptr. */ 1563 if (regno == BPF_REG_6) 1564 return true; 1565 1566 /* Explicit source could be any width. */ 1567 return true; 1568 } 1569 1570 if (class == BPF_ST) 1571 /* The only source register for BPF_ST is a ptr. */ 1572 return true; 1573 1574 /* Conservatively return true at default. */ 1575 return true; 1576 } 1577 1578 /* Return TRUE if INSN doesn't have explicit value define. */ 1579 static bool insn_no_def(struct bpf_insn *insn) 1580 { 1581 u8 class = BPF_CLASS(insn->code); 1582 1583 return (class == BPF_JMP || class == BPF_JMP32 || 1584 class == BPF_STX || class == BPF_ST); 1585 } 1586 1587 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1588 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1589 { 1590 if (insn_no_def(insn)) 1591 return false; 1592 1593 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1594 } 1595 1596 static void mark_insn_zext(struct bpf_verifier_env *env, 1597 struct bpf_reg_state *reg) 1598 { 1599 s32 def_idx = reg->subreg_def; 1600 1601 if (def_idx == DEF_NOT_SUBREG) 1602 return; 1603 1604 env->insn_aux_data[def_idx - 1].zext_dst = true; 1605 /* The dst will be zero extended, so won't be sub-register anymore. */ 1606 reg->subreg_def = DEF_NOT_SUBREG; 1607 } 1608 1609 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1610 enum reg_arg_type t) 1611 { 1612 struct bpf_verifier_state *vstate = env->cur_state; 1613 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1614 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1615 struct bpf_reg_state *reg, *regs = state->regs; 1616 bool rw64; 1617 1618 if (regno >= MAX_BPF_REG) { 1619 verbose(env, "R%d is invalid\n", regno); 1620 return -EINVAL; 1621 } 1622 1623 reg = ®s[regno]; 1624 rw64 = is_reg64(env, insn, regno, reg, t); 1625 if (t == SRC_OP) { 1626 /* check whether register used as source operand can be read */ 1627 if (reg->type == NOT_INIT) { 1628 verbose(env, "R%d !read_ok\n", regno); 1629 return -EACCES; 1630 } 1631 /* We don't need to worry about FP liveness because it's read-only */ 1632 if (regno == BPF_REG_FP) 1633 return 0; 1634 1635 if (rw64) 1636 mark_insn_zext(env, reg); 1637 1638 return mark_reg_read(env, reg, reg->parent, 1639 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1640 } else { 1641 /* check whether register used as dest operand can be written to */ 1642 if (regno == BPF_REG_FP) { 1643 verbose(env, "frame pointer is read only\n"); 1644 return -EACCES; 1645 } 1646 reg->live |= REG_LIVE_WRITTEN; 1647 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1648 if (t == DST_OP) 1649 mark_reg_unknown(env, regs, regno); 1650 } 1651 return 0; 1652 } 1653 1654 /* for any branch, call, exit record the history of jmps in the given state */ 1655 static int push_jmp_history(struct bpf_verifier_env *env, 1656 struct bpf_verifier_state *cur) 1657 { 1658 u32 cnt = cur->jmp_history_cnt; 1659 struct bpf_idx_pair *p; 1660 1661 cnt++; 1662 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1663 if (!p) 1664 return -ENOMEM; 1665 p[cnt - 1].idx = env->insn_idx; 1666 p[cnt - 1].prev_idx = env->prev_insn_idx; 1667 cur->jmp_history = p; 1668 cur->jmp_history_cnt = cnt; 1669 return 0; 1670 } 1671 1672 /* Backtrack one insn at a time. If idx is not at the top of recorded 1673 * history then previous instruction came from straight line execution. 1674 */ 1675 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1676 u32 *history) 1677 { 1678 u32 cnt = *history; 1679 1680 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1681 i = st->jmp_history[cnt - 1].prev_idx; 1682 (*history)--; 1683 } else { 1684 i--; 1685 } 1686 return i; 1687 } 1688 1689 /* For given verifier state backtrack_insn() is called from the last insn to 1690 * the first insn. Its purpose is to compute a bitmask of registers and 1691 * stack slots that needs precision in the parent verifier state. 1692 */ 1693 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1694 u32 *reg_mask, u64 *stack_mask) 1695 { 1696 const struct bpf_insn_cbs cbs = { 1697 .cb_print = verbose, 1698 .private_data = env, 1699 }; 1700 struct bpf_insn *insn = env->prog->insnsi + idx; 1701 u8 class = BPF_CLASS(insn->code); 1702 u8 opcode = BPF_OP(insn->code); 1703 u8 mode = BPF_MODE(insn->code); 1704 u32 dreg = 1u << insn->dst_reg; 1705 u32 sreg = 1u << insn->src_reg; 1706 u32 spi; 1707 1708 if (insn->code == 0) 1709 return 0; 1710 if (env->log.level & BPF_LOG_LEVEL) { 1711 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1712 verbose(env, "%d: ", idx); 1713 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1714 } 1715 1716 if (class == BPF_ALU || class == BPF_ALU64) { 1717 if (!(*reg_mask & dreg)) 1718 return 0; 1719 if (opcode == BPF_MOV) { 1720 if (BPF_SRC(insn->code) == BPF_X) { 1721 /* dreg = sreg 1722 * dreg needs precision after this insn 1723 * sreg needs precision before this insn 1724 */ 1725 *reg_mask &= ~dreg; 1726 *reg_mask |= sreg; 1727 } else { 1728 /* dreg = K 1729 * dreg needs precision after this insn. 1730 * Corresponding register is already marked 1731 * as precise=true in this verifier state. 1732 * No further markings in parent are necessary 1733 */ 1734 *reg_mask &= ~dreg; 1735 } 1736 } else { 1737 if (BPF_SRC(insn->code) == BPF_X) { 1738 /* dreg += sreg 1739 * both dreg and sreg need precision 1740 * before this insn 1741 */ 1742 *reg_mask |= sreg; 1743 } /* else dreg += K 1744 * dreg still needs precision before this insn 1745 */ 1746 } 1747 } else if (class == BPF_LDX) { 1748 if (!(*reg_mask & dreg)) 1749 return 0; 1750 *reg_mask &= ~dreg; 1751 1752 /* scalars can only be spilled into stack w/o losing precision. 1753 * Load from any other memory can be zero extended. 1754 * The desire to keep that precision is already indicated 1755 * by 'precise' mark in corresponding register of this state. 1756 * No further tracking necessary. 1757 */ 1758 if (insn->src_reg != BPF_REG_FP) 1759 return 0; 1760 if (BPF_SIZE(insn->code) != BPF_DW) 1761 return 0; 1762 1763 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1764 * that [fp - off] slot contains scalar that needs to be 1765 * tracked with precision 1766 */ 1767 spi = (-insn->off - 1) / BPF_REG_SIZE; 1768 if (spi >= 64) { 1769 verbose(env, "BUG spi %d\n", spi); 1770 WARN_ONCE(1, "verifier backtracking bug"); 1771 return -EFAULT; 1772 } 1773 *stack_mask |= 1ull << spi; 1774 } else if (class == BPF_STX || class == BPF_ST) { 1775 if (*reg_mask & dreg) 1776 /* stx & st shouldn't be using _scalar_ dst_reg 1777 * to access memory. It means backtracking 1778 * encountered a case of pointer subtraction. 1779 */ 1780 return -ENOTSUPP; 1781 /* scalars can only be spilled into stack */ 1782 if (insn->dst_reg != BPF_REG_FP) 1783 return 0; 1784 if (BPF_SIZE(insn->code) != BPF_DW) 1785 return 0; 1786 spi = (-insn->off - 1) / BPF_REG_SIZE; 1787 if (spi >= 64) { 1788 verbose(env, "BUG spi %d\n", spi); 1789 WARN_ONCE(1, "verifier backtracking bug"); 1790 return -EFAULT; 1791 } 1792 if (!(*stack_mask & (1ull << spi))) 1793 return 0; 1794 *stack_mask &= ~(1ull << spi); 1795 if (class == BPF_STX) 1796 *reg_mask |= sreg; 1797 } else if (class == BPF_JMP || class == BPF_JMP32) { 1798 if (opcode == BPF_CALL) { 1799 if (insn->src_reg == BPF_PSEUDO_CALL) 1800 return -ENOTSUPP; 1801 /* regular helper call sets R0 */ 1802 *reg_mask &= ~1; 1803 if (*reg_mask & 0x3f) { 1804 /* if backtracing was looking for registers R1-R5 1805 * they should have been found already. 1806 */ 1807 verbose(env, "BUG regs %x\n", *reg_mask); 1808 WARN_ONCE(1, "verifier backtracking bug"); 1809 return -EFAULT; 1810 } 1811 } else if (opcode == BPF_EXIT) { 1812 return -ENOTSUPP; 1813 } 1814 } else if (class == BPF_LD) { 1815 if (!(*reg_mask & dreg)) 1816 return 0; 1817 *reg_mask &= ~dreg; 1818 /* It's ld_imm64 or ld_abs or ld_ind. 1819 * For ld_imm64 no further tracking of precision 1820 * into parent is necessary 1821 */ 1822 if (mode == BPF_IND || mode == BPF_ABS) 1823 /* to be analyzed */ 1824 return -ENOTSUPP; 1825 } 1826 return 0; 1827 } 1828 1829 /* the scalar precision tracking algorithm: 1830 * . at the start all registers have precise=false. 1831 * . scalar ranges are tracked as normal through alu and jmp insns. 1832 * . once precise value of the scalar register is used in: 1833 * . ptr + scalar alu 1834 * . if (scalar cond K|scalar) 1835 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1836 * backtrack through the verifier states and mark all registers and 1837 * stack slots with spilled constants that these scalar regisers 1838 * should be precise. 1839 * . during state pruning two registers (or spilled stack slots) 1840 * are equivalent if both are not precise. 1841 * 1842 * Note the verifier cannot simply walk register parentage chain, 1843 * since many different registers and stack slots could have been 1844 * used to compute single precise scalar. 1845 * 1846 * The approach of starting with precise=true for all registers and then 1847 * backtrack to mark a register as not precise when the verifier detects 1848 * that program doesn't care about specific value (e.g., when helper 1849 * takes register as ARG_ANYTHING parameter) is not safe. 1850 * 1851 * It's ok to walk single parentage chain of the verifier states. 1852 * It's possible that this backtracking will go all the way till 1st insn. 1853 * All other branches will be explored for needing precision later. 1854 * 1855 * The backtracking needs to deal with cases like: 1856 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1857 * r9 -= r8 1858 * r5 = r9 1859 * if r5 > 0x79f goto pc+7 1860 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1861 * r5 += 1 1862 * ... 1863 * call bpf_perf_event_output#25 1864 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1865 * 1866 * and this case: 1867 * r6 = 1 1868 * call foo // uses callee's r6 inside to compute r0 1869 * r0 += r6 1870 * if r0 == 0 goto 1871 * 1872 * to track above reg_mask/stack_mask needs to be independent for each frame. 1873 * 1874 * Also if parent's curframe > frame where backtracking started, 1875 * the verifier need to mark registers in both frames, otherwise callees 1876 * may incorrectly prune callers. This is similar to 1877 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1878 * 1879 * For now backtracking falls back into conservative marking. 1880 */ 1881 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1882 struct bpf_verifier_state *st) 1883 { 1884 struct bpf_func_state *func; 1885 struct bpf_reg_state *reg; 1886 int i, j; 1887 1888 /* big hammer: mark all scalars precise in this path. 1889 * pop_stack may still get !precise scalars. 1890 */ 1891 for (; st; st = st->parent) 1892 for (i = 0; i <= st->curframe; i++) { 1893 func = st->frame[i]; 1894 for (j = 0; j < BPF_REG_FP; j++) { 1895 reg = &func->regs[j]; 1896 if (reg->type != SCALAR_VALUE) 1897 continue; 1898 reg->precise = true; 1899 } 1900 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1901 if (func->stack[j].slot_type[0] != STACK_SPILL) 1902 continue; 1903 reg = &func->stack[j].spilled_ptr; 1904 if (reg->type != SCALAR_VALUE) 1905 continue; 1906 reg->precise = true; 1907 } 1908 } 1909 } 1910 1911 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1912 int spi) 1913 { 1914 struct bpf_verifier_state *st = env->cur_state; 1915 int first_idx = st->first_insn_idx; 1916 int last_idx = env->insn_idx; 1917 struct bpf_func_state *func; 1918 struct bpf_reg_state *reg; 1919 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1920 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1921 bool skip_first = true; 1922 bool new_marks = false; 1923 int i, err; 1924 1925 if (!env->allow_ptr_leaks) 1926 /* backtracking is root only for now */ 1927 return 0; 1928 1929 func = st->frame[st->curframe]; 1930 if (regno >= 0) { 1931 reg = &func->regs[regno]; 1932 if (reg->type != SCALAR_VALUE) { 1933 WARN_ONCE(1, "backtracing misuse"); 1934 return -EFAULT; 1935 } 1936 if (!reg->precise) 1937 new_marks = true; 1938 else 1939 reg_mask = 0; 1940 reg->precise = true; 1941 } 1942 1943 while (spi >= 0) { 1944 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 1945 stack_mask = 0; 1946 break; 1947 } 1948 reg = &func->stack[spi].spilled_ptr; 1949 if (reg->type != SCALAR_VALUE) { 1950 stack_mask = 0; 1951 break; 1952 } 1953 if (!reg->precise) 1954 new_marks = true; 1955 else 1956 stack_mask = 0; 1957 reg->precise = true; 1958 break; 1959 } 1960 1961 if (!new_marks) 1962 return 0; 1963 if (!reg_mask && !stack_mask) 1964 return 0; 1965 for (;;) { 1966 DECLARE_BITMAP(mask, 64); 1967 u32 history = st->jmp_history_cnt; 1968 1969 if (env->log.level & BPF_LOG_LEVEL) 1970 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 1971 for (i = last_idx;;) { 1972 if (skip_first) { 1973 err = 0; 1974 skip_first = false; 1975 } else { 1976 err = backtrack_insn(env, i, ®_mask, &stack_mask); 1977 } 1978 if (err == -ENOTSUPP) { 1979 mark_all_scalars_precise(env, st); 1980 return 0; 1981 } else if (err) { 1982 return err; 1983 } 1984 if (!reg_mask && !stack_mask) 1985 /* Found assignment(s) into tracked register in this state. 1986 * Since this state is already marked, just return. 1987 * Nothing to be tracked further in the parent state. 1988 */ 1989 return 0; 1990 if (i == first_idx) 1991 break; 1992 i = get_prev_insn_idx(st, i, &history); 1993 if (i >= env->prog->len) { 1994 /* This can happen if backtracking reached insn 0 1995 * and there are still reg_mask or stack_mask 1996 * to backtrack. 1997 * It means the backtracking missed the spot where 1998 * particular register was initialized with a constant. 1999 */ 2000 verbose(env, "BUG backtracking idx %d\n", i); 2001 WARN_ONCE(1, "verifier backtracking bug"); 2002 return -EFAULT; 2003 } 2004 } 2005 st = st->parent; 2006 if (!st) 2007 break; 2008 2009 new_marks = false; 2010 func = st->frame[st->curframe]; 2011 bitmap_from_u64(mask, reg_mask); 2012 for_each_set_bit(i, mask, 32) { 2013 reg = &func->regs[i]; 2014 if (reg->type != SCALAR_VALUE) { 2015 reg_mask &= ~(1u << i); 2016 continue; 2017 } 2018 if (!reg->precise) 2019 new_marks = true; 2020 reg->precise = true; 2021 } 2022 2023 bitmap_from_u64(mask, stack_mask); 2024 for_each_set_bit(i, mask, 64) { 2025 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2026 /* the sequence of instructions: 2027 * 2: (bf) r3 = r10 2028 * 3: (7b) *(u64 *)(r3 -8) = r0 2029 * 4: (79) r4 = *(u64 *)(r10 -8) 2030 * doesn't contain jmps. It's backtracked 2031 * as a single block. 2032 * During backtracking insn 3 is not recognized as 2033 * stack access, so at the end of backtracking 2034 * stack slot fp-8 is still marked in stack_mask. 2035 * However the parent state may not have accessed 2036 * fp-8 and it's "unallocated" stack space. 2037 * In such case fallback to conservative. 2038 */ 2039 mark_all_scalars_precise(env, st); 2040 return 0; 2041 } 2042 2043 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2044 stack_mask &= ~(1ull << i); 2045 continue; 2046 } 2047 reg = &func->stack[i].spilled_ptr; 2048 if (reg->type != SCALAR_VALUE) { 2049 stack_mask &= ~(1ull << i); 2050 continue; 2051 } 2052 if (!reg->precise) 2053 new_marks = true; 2054 reg->precise = true; 2055 } 2056 if (env->log.level & BPF_LOG_LEVEL) { 2057 print_verifier_state(env, func); 2058 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2059 new_marks ? "didn't have" : "already had", 2060 reg_mask, stack_mask); 2061 } 2062 2063 if (!reg_mask && !stack_mask) 2064 break; 2065 if (!new_marks) 2066 break; 2067 2068 last_idx = st->last_insn_idx; 2069 first_idx = st->first_insn_idx; 2070 } 2071 return 0; 2072 } 2073 2074 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2075 { 2076 return __mark_chain_precision(env, regno, -1); 2077 } 2078 2079 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2080 { 2081 return __mark_chain_precision(env, -1, spi); 2082 } 2083 2084 static bool is_spillable_regtype(enum bpf_reg_type type) 2085 { 2086 switch (type) { 2087 case PTR_TO_MAP_VALUE: 2088 case PTR_TO_MAP_VALUE_OR_NULL: 2089 case PTR_TO_STACK: 2090 case PTR_TO_CTX: 2091 case PTR_TO_PACKET: 2092 case PTR_TO_PACKET_META: 2093 case PTR_TO_PACKET_END: 2094 case PTR_TO_FLOW_KEYS: 2095 case CONST_PTR_TO_MAP: 2096 case PTR_TO_SOCKET: 2097 case PTR_TO_SOCKET_OR_NULL: 2098 case PTR_TO_SOCK_COMMON: 2099 case PTR_TO_SOCK_COMMON_OR_NULL: 2100 case PTR_TO_TCP_SOCK: 2101 case PTR_TO_TCP_SOCK_OR_NULL: 2102 case PTR_TO_XDP_SOCK: 2103 case PTR_TO_BTF_ID: 2104 return true; 2105 default: 2106 return false; 2107 } 2108 } 2109 2110 /* Does this register contain a constant zero? */ 2111 static bool register_is_null(struct bpf_reg_state *reg) 2112 { 2113 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2114 } 2115 2116 static bool register_is_const(struct bpf_reg_state *reg) 2117 { 2118 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2119 } 2120 2121 static void save_register_state(struct bpf_func_state *state, 2122 int spi, struct bpf_reg_state *reg) 2123 { 2124 int i; 2125 2126 state->stack[spi].spilled_ptr = *reg; 2127 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2128 2129 for (i = 0; i < BPF_REG_SIZE; i++) 2130 state->stack[spi].slot_type[i] = STACK_SPILL; 2131 } 2132 2133 /* check_stack_read/write functions track spill/fill of registers, 2134 * stack boundary and alignment are checked in check_mem_access() 2135 */ 2136 static int check_stack_write(struct bpf_verifier_env *env, 2137 struct bpf_func_state *state, /* func where register points to */ 2138 int off, int size, int value_regno, int insn_idx) 2139 { 2140 struct bpf_func_state *cur; /* state of the current function */ 2141 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2142 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2143 struct bpf_reg_state *reg = NULL; 2144 2145 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2146 state->acquired_refs, true); 2147 if (err) 2148 return err; 2149 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2150 * so it's aligned access and [off, off + size) are within stack limits 2151 */ 2152 if (!env->allow_ptr_leaks && 2153 state->stack[spi].slot_type[0] == STACK_SPILL && 2154 size != BPF_REG_SIZE) { 2155 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2156 return -EACCES; 2157 } 2158 2159 cur = env->cur_state->frame[env->cur_state->curframe]; 2160 if (value_regno >= 0) 2161 reg = &cur->regs[value_regno]; 2162 2163 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 2164 !register_is_null(reg) && env->allow_ptr_leaks) { 2165 if (dst_reg != BPF_REG_FP) { 2166 /* The backtracking logic can only recognize explicit 2167 * stack slot address like [fp - 8]. Other spill of 2168 * scalar via different register has to be conervative. 2169 * Backtrack from here and mark all registers as precise 2170 * that contributed into 'reg' being a constant. 2171 */ 2172 err = mark_chain_precision(env, value_regno); 2173 if (err) 2174 return err; 2175 } 2176 save_register_state(state, spi, reg); 2177 } else if (reg && is_spillable_regtype(reg->type)) { 2178 /* register containing pointer is being spilled into stack */ 2179 if (size != BPF_REG_SIZE) { 2180 verbose_linfo(env, insn_idx, "; "); 2181 verbose(env, "invalid size of register spill\n"); 2182 return -EACCES; 2183 } 2184 2185 if (state != cur && reg->type == PTR_TO_STACK) { 2186 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2187 return -EINVAL; 2188 } 2189 2190 if (!env->allow_ptr_leaks) { 2191 bool sanitize = false; 2192 2193 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2194 register_is_const(&state->stack[spi].spilled_ptr)) 2195 sanitize = true; 2196 for (i = 0; i < BPF_REG_SIZE; i++) 2197 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2198 sanitize = true; 2199 break; 2200 } 2201 if (sanitize) { 2202 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2203 int soff = (-spi - 1) * BPF_REG_SIZE; 2204 2205 /* detected reuse of integer stack slot with a pointer 2206 * which means either llvm is reusing stack slot or 2207 * an attacker is trying to exploit CVE-2018-3639 2208 * (speculative store bypass) 2209 * Have to sanitize that slot with preemptive 2210 * store of zero. 2211 */ 2212 if (*poff && *poff != soff) { 2213 /* disallow programs where single insn stores 2214 * into two different stack slots, since verifier 2215 * cannot sanitize them 2216 */ 2217 verbose(env, 2218 "insn %d cannot access two stack slots fp%d and fp%d", 2219 insn_idx, *poff, soff); 2220 return -EINVAL; 2221 } 2222 *poff = soff; 2223 } 2224 } 2225 save_register_state(state, spi, reg); 2226 } else { 2227 u8 type = STACK_MISC; 2228 2229 /* regular write of data into stack destroys any spilled ptr */ 2230 state->stack[spi].spilled_ptr.type = NOT_INIT; 2231 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2232 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2233 for (i = 0; i < BPF_REG_SIZE; i++) 2234 state->stack[spi].slot_type[i] = STACK_MISC; 2235 2236 /* only mark the slot as written if all 8 bytes were written 2237 * otherwise read propagation may incorrectly stop too soon 2238 * when stack slots are partially written. 2239 * This heuristic means that read propagation will be 2240 * conservative, since it will add reg_live_read marks 2241 * to stack slots all the way to first state when programs 2242 * writes+reads less than 8 bytes 2243 */ 2244 if (size == BPF_REG_SIZE) 2245 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2246 2247 /* when we zero initialize stack slots mark them as such */ 2248 if (reg && register_is_null(reg)) { 2249 /* backtracking doesn't work for STACK_ZERO yet. */ 2250 err = mark_chain_precision(env, value_regno); 2251 if (err) 2252 return err; 2253 type = STACK_ZERO; 2254 } 2255 2256 /* Mark slots affected by this stack write. */ 2257 for (i = 0; i < size; i++) 2258 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2259 type; 2260 } 2261 return 0; 2262 } 2263 2264 static int check_stack_read(struct bpf_verifier_env *env, 2265 struct bpf_func_state *reg_state /* func where register points to */, 2266 int off, int size, int value_regno) 2267 { 2268 struct bpf_verifier_state *vstate = env->cur_state; 2269 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2270 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2271 struct bpf_reg_state *reg; 2272 u8 *stype; 2273 2274 if (reg_state->allocated_stack <= slot) { 2275 verbose(env, "invalid read from stack off %d+0 size %d\n", 2276 off, size); 2277 return -EACCES; 2278 } 2279 stype = reg_state->stack[spi].slot_type; 2280 reg = ®_state->stack[spi].spilled_ptr; 2281 2282 if (stype[0] == STACK_SPILL) { 2283 if (size != BPF_REG_SIZE) { 2284 if (reg->type != SCALAR_VALUE) { 2285 verbose_linfo(env, env->insn_idx, "; "); 2286 verbose(env, "invalid size of register fill\n"); 2287 return -EACCES; 2288 } 2289 if (value_regno >= 0) { 2290 mark_reg_unknown(env, state->regs, value_regno); 2291 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2292 } 2293 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2294 return 0; 2295 } 2296 for (i = 1; i < BPF_REG_SIZE; i++) { 2297 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2298 verbose(env, "corrupted spill memory\n"); 2299 return -EACCES; 2300 } 2301 } 2302 2303 if (value_regno >= 0) { 2304 /* restore register state from stack */ 2305 state->regs[value_regno] = *reg; 2306 /* mark reg as written since spilled pointer state likely 2307 * has its liveness marks cleared by is_state_visited() 2308 * which resets stack/reg liveness for state transitions 2309 */ 2310 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2311 } 2312 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2313 } else { 2314 int zeros = 0; 2315 2316 for (i = 0; i < size; i++) { 2317 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2318 continue; 2319 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2320 zeros++; 2321 continue; 2322 } 2323 verbose(env, "invalid read from stack off %d+%d size %d\n", 2324 off, i, size); 2325 return -EACCES; 2326 } 2327 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2328 if (value_regno >= 0) { 2329 if (zeros == size) { 2330 /* any size read into register is zero extended, 2331 * so the whole register == const_zero 2332 */ 2333 __mark_reg_const_zero(&state->regs[value_regno]); 2334 /* backtracking doesn't support STACK_ZERO yet, 2335 * so mark it precise here, so that later 2336 * backtracking can stop here. 2337 * Backtracking may not need this if this register 2338 * doesn't participate in pointer adjustment. 2339 * Forward propagation of precise flag is not 2340 * necessary either. This mark is only to stop 2341 * backtracking. Any register that contributed 2342 * to const 0 was marked precise before spill. 2343 */ 2344 state->regs[value_regno].precise = true; 2345 } else { 2346 /* have read misc data from the stack */ 2347 mark_reg_unknown(env, state->regs, value_regno); 2348 } 2349 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2350 } 2351 } 2352 return 0; 2353 } 2354 2355 static int check_stack_access(struct bpf_verifier_env *env, 2356 const struct bpf_reg_state *reg, 2357 int off, int size) 2358 { 2359 /* Stack accesses must be at a fixed offset, so that we 2360 * can determine what type of data were returned. See 2361 * check_stack_read(). 2362 */ 2363 if (!tnum_is_const(reg->var_off)) { 2364 char tn_buf[48]; 2365 2366 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2367 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2368 tn_buf, off, size); 2369 return -EACCES; 2370 } 2371 2372 if (off >= 0 || off < -MAX_BPF_STACK) { 2373 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2374 return -EACCES; 2375 } 2376 2377 return 0; 2378 } 2379 2380 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2381 int off, int size, enum bpf_access_type type) 2382 { 2383 struct bpf_reg_state *regs = cur_regs(env); 2384 struct bpf_map *map = regs[regno].map_ptr; 2385 u32 cap = bpf_map_flags_to_cap(map); 2386 2387 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2388 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2389 map->value_size, off, size); 2390 return -EACCES; 2391 } 2392 2393 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2394 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2395 map->value_size, off, size); 2396 return -EACCES; 2397 } 2398 2399 return 0; 2400 } 2401 2402 /* check read/write into map element returned by bpf_map_lookup_elem() */ 2403 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 2404 int size, bool zero_size_allowed) 2405 { 2406 struct bpf_reg_state *regs = cur_regs(env); 2407 struct bpf_map *map = regs[regno].map_ptr; 2408 2409 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2410 off + size > map->value_size) { 2411 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2412 map->value_size, off, size); 2413 return -EACCES; 2414 } 2415 return 0; 2416 } 2417 2418 /* check read/write into a map element with possible variable offset */ 2419 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2420 int off, int size, bool zero_size_allowed) 2421 { 2422 struct bpf_verifier_state *vstate = env->cur_state; 2423 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2424 struct bpf_reg_state *reg = &state->regs[regno]; 2425 int err; 2426 2427 /* We may have adjusted the register to this map value, so we 2428 * need to try adding each of min_value and max_value to off 2429 * to make sure our theoretical access will be safe. 2430 */ 2431 if (env->log.level & BPF_LOG_LEVEL) 2432 print_verifier_state(env, state); 2433 2434 /* The minimum value is only important with signed 2435 * comparisons where we can't assume the floor of a 2436 * value is 0. If we are using signed variables for our 2437 * index'es we need to make sure that whatever we use 2438 * will have a set floor within our range. 2439 */ 2440 if (reg->smin_value < 0 && 2441 (reg->smin_value == S64_MIN || 2442 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2443 reg->smin_value + off < 0)) { 2444 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2445 regno); 2446 return -EACCES; 2447 } 2448 err = __check_map_access(env, regno, reg->smin_value + off, size, 2449 zero_size_allowed); 2450 if (err) { 2451 verbose(env, "R%d min value is outside of the array range\n", 2452 regno); 2453 return err; 2454 } 2455 2456 /* If we haven't set a max value then we need to bail since we can't be 2457 * sure we won't do bad things. 2458 * If reg->umax_value + off could overflow, treat that as unbounded too. 2459 */ 2460 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2461 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 2462 regno); 2463 return -EACCES; 2464 } 2465 err = __check_map_access(env, regno, reg->umax_value + off, size, 2466 zero_size_allowed); 2467 if (err) 2468 verbose(env, "R%d max value is outside of the array range\n", 2469 regno); 2470 2471 if (map_value_has_spin_lock(reg->map_ptr)) { 2472 u32 lock = reg->map_ptr->spin_lock_off; 2473 2474 /* if any part of struct bpf_spin_lock can be touched by 2475 * load/store reject this program. 2476 * To check that [x1, x2) overlaps with [y1, y2) 2477 * it is sufficient to check x1 < y2 && y1 < x2. 2478 */ 2479 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2480 lock < reg->umax_value + off + size) { 2481 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2482 return -EACCES; 2483 } 2484 } 2485 return err; 2486 } 2487 2488 #define MAX_PACKET_OFF 0xffff 2489 2490 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2491 const struct bpf_call_arg_meta *meta, 2492 enum bpf_access_type t) 2493 { 2494 switch (env->prog->type) { 2495 /* Program types only with direct read access go here! */ 2496 case BPF_PROG_TYPE_LWT_IN: 2497 case BPF_PROG_TYPE_LWT_OUT: 2498 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2499 case BPF_PROG_TYPE_SK_REUSEPORT: 2500 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2501 case BPF_PROG_TYPE_CGROUP_SKB: 2502 if (t == BPF_WRITE) 2503 return false; 2504 /* fallthrough */ 2505 2506 /* Program types with direct read + write access go here! */ 2507 case BPF_PROG_TYPE_SCHED_CLS: 2508 case BPF_PROG_TYPE_SCHED_ACT: 2509 case BPF_PROG_TYPE_XDP: 2510 case BPF_PROG_TYPE_LWT_XMIT: 2511 case BPF_PROG_TYPE_SK_SKB: 2512 case BPF_PROG_TYPE_SK_MSG: 2513 if (meta) 2514 return meta->pkt_access; 2515 2516 env->seen_direct_write = true; 2517 return true; 2518 2519 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2520 if (t == BPF_WRITE) 2521 env->seen_direct_write = true; 2522 2523 return true; 2524 2525 default: 2526 return false; 2527 } 2528 } 2529 2530 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 2531 int off, int size, bool zero_size_allowed) 2532 { 2533 struct bpf_reg_state *regs = cur_regs(env); 2534 struct bpf_reg_state *reg = ®s[regno]; 2535 2536 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2537 (u64)off + size > reg->range) { 2538 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2539 off, size, regno, reg->id, reg->off, reg->range); 2540 return -EACCES; 2541 } 2542 return 0; 2543 } 2544 2545 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2546 int size, bool zero_size_allowed) 2547 { 2548 struct bpf_reg_state *regs = cur_regs(env); 2549 struct bpf_reg_state *reg = ®s[regno]; 2550 int err; 2551 2552 /* We may have added a variable offset to the packet pointer; but any 2553 * reg->range we have comes after that. We are only checking the fixed 2554 * offset. 2555 */ 2556 2557 /* We don't allow negative numbers, because we aren't tracking enough 2558 * detail to prove they're safe. 2559 */ 2560 if (reg->smin_value < 0) { 2561 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2562 regno); 2563 return -EACCES; 2564 } 2565 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 2566 if (err) { 2567 verbose(env, "R%d offset is outside of the packet\n", regno); 2568 return err; 2569 } 2570 2571 /* __check_packet_access has made sure "off + size - 1" is within u16. 2572 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2573 * otherwise find_good_pkt_pointers would have refused to set range info 2574 * that __check_packet_access would have rejected this pkt access. 2575 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2576 */ 2577 env->prog->aux->max_pkt_offset = 2578 max_t(u32, env->prog->aux->max_pkt_offset, 2579 off + reg->umax_value + size - 1); 2580 2581 return err; 2582 } 2583 2584 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2585 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2586 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2587 u32 *btf_id) 2588 { 2589 struct bpf_insn_access_aux info = { 2590 .reg_type = *reg_type, 2591 .log = &env->log, 2592 }; 2593 2594 if (env->ops->is_valid_access && 2595 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2596 /* A non zero info.ctx_field_size indicates that this field is a 2597 * candidate for later verifier transformation to load the whole 2598 * field and then apply a mask when accessed with a narrower 2599 * access than actual ctx access size. A zero info.ctx_field_size 2600 * will only allow for whole field access and rejects any other 2601 * type of narrower access. 2602 */ 2603 *reg_type = info.reg_type; 2604 2605 if (*reg_type == PTR_TO_BTF_ID) 2606 *btf_id = info.btf_id; 2607 else 2608 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2609 /* remember the offset of last byte accessed in ctx */ 2610 if (env->prog->aux->max_ctx_offset < off + size) 2611 env->prog->aux->max_ctx_offset = off + size; 2612 return 0; 2613 } 2614 2615 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2616 return -EACCES; 2617 } 2618 2619 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2620 int size) 2621 { 2622 if (size < 0 || off < 0 || 2623 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2624 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2625 off, size); 2626 return -EACCES; 2627 } 2628 return 0; 2629 } 2630 2631 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2632 u32 regno, int off, int size, 2633 enum bpf_access_type t) 2634 { 2635 struct bpf_reg_state *regs = cur_regs(env); 2636 struct bpf_reg_state *reg = ®s[regno]; 2637 struct bpf_insn_access_aux info = {}; 2638 bool valid; 2639 2640 if (reg->smin_value < 0) { 2641 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2642 regno); 2643 return -EACCES; 2644 } 2645 2646 switch (reg->type) { 2647 case PTR_TO_SOCK_COMMON: 2648 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2649 break; 2650 case PTR_TO_SOCKET: 2651 valid = bpf_sock_is_valid_access(off, size, t, &info); 2652 break; 2653 case PTR_TO_TCP_SOCK: 2654 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2655 break; 2656 case PTR_TO_XDP_SOCK: 2657 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2658 break; 2659 default: 2660 valid = false; 2661 } 2662 2663 2664 if (valid) { 2665 env->insn_aux_data[insn_idx].ctx_field_size = 2666 info.ctx_field_size; 2667 return 0; 2668 } 2669 2670 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2671 regno, reg_type_str[reg->type], off, size); 2672 2673 return -EACCES; 2674 } 2675 2676 static bool __is_pointer_value(bool allow_ptr_leaks, 2677 const struct bpf_reg_state *reg) 2678 { 2679 if (allow_ptr_leaks) 2680 return false; 2681 2682 return reg->type != SCALAR_VALUE; 2683 } 2684 2685 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2686 { 2687 return cur_regs(env) + regno; 2688 } 2689 2690 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2691 { 2692 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2693 } 2694 2695 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2696 { 2697 const struct bpf_reg_state *reg = reg_state(env, regno); 2698 2699 return reg->type == PTR_TO_CTX; 2700 } 2701 2702 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2703 { 2704 const struct bpf_reg_state *reg = reg_state(env, regno); 2705 2706 return type_is_sk_pointer(reg->type); 2707 } 2708 2709 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2710 { 2711 const struct bpf_reg_state *reg = reg_state(env, regno); 2712 2713 return type_is_pkt_pointer(reg->type); 2714 } 2715 2716 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2717 { 2718 const struct bpf_reg_state *reg = reg_state(env, regno); 2719 2720 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2721 return reg->type == PTR_TO_FLOW_KEYS; 2722 } 2723 2724 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2725 const struct bpf_reg_state *reg, 2726 int off, int size, bool strict) 2727 { 2728 struct tnum reg_off; 2729 int ip_align; 2730 2731 /* Byte size accesses are always allowed. */ 2732 if (!strict || size == 1) 2733 return 0; 2734 2735 /* For platforms that do not have a Kconfig enabling 2736 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2737 * NET_IP_ALIGN is universally set to '2'. And on platforms 2738 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2739 * to this code only in strict mode where we want to emulate 2740 * the NET_IP_ALIGN==2 checking. Therefore use an 2741 * unconditional IP align value of '2'. 2742 */ 2743 ip_align = 2; 2744 2745 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2746 if (!tnum_is_aligned(reg_off, size)) { 2747 char tn_buf[48]; 2748 2749 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2750 verbose(env, 2751 "misaligned packet access off %d+%s+%d+%d size %d\n", 2752 ip_align, tn_buf, reg->off, off, size); 2753 return -EACCES; 2754 } 2755 2756 return 0; 2757 } 2758 2759 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2760 const struct bpf_reg_state *reg, 2761 const char *pointer_desc, 2762 int off, int size, bool strict) 2763 { 2764 struct tnum reg_off; 2765 2766 /* Byte size accesses are always allowed. */ 2767 if (!strict || size == 1) 2768 return 0; 2769 2770 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2771 if (!tnum_is_aligned(reg_off, size)) { 2772 char tn_buf[48]; 2773 2774 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2775 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2776 pointer_desc, tn_buf, reg->off, off, size); 2777 return -EACCES; 2778 } 2779 2780 return 0; 2781 } 2782 2783 static int check_ptr_alignment(struct bpf_verifier_env *env, 2784 const struct bpf_reg_state *reg, int off, 2785 int size, bool strict_alignment_once) 2786 { 2787 bool strict = env->strict_alignment || strict_alignment_once; 2788 const char *pointer_desc = ""; 2789 2790 switch (reg->type) { 2791 case PTR_TO_PACKET: 2792 case PTR_TO_PACKET_META: 2793 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2794 * right in front, treat it the very same way. 2795 */ 2796 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2797 case PTR_TO_FLOW_KEYS: 2798 pointer_desc = "flow keys "; 2799 break; 2800 case PTR_TO_MAP_VALUE: 2801 pointer_desc = "value "; 2802 break; 2803 case PTR_TO_CTX: 2804 pointer_desc = "context "; 2805 break; 2806 case PTR_TO_STACK: 2807 pointer_desc = "stack "; 2808 /* The stack spill tracking logic in check_stack_write() 2809 * and check_stack_read() relies on stack accesses being 2810 * aligned. 2811 */ 2812 strict = true; 2813 break; 2814 case PTR_TO_SOCKET: 2815 pointer_desc = "sock "; 2816 break; 2817 case PTR_TO_SOCK_COMMON: 2818 pointer_desc = "sock_common "; 2819 break; 2820 case PTR_TO_TCP_SOCK: 2821 pointer_desc = "tcp_sock "; 2822 break; 2823 case PTR_TO_XDP_SOCK: 2824 pointer_desc = "xdp_sock "; 2825 break; 2826 default: 2827 break; 2828 } 2829 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2830 strict); 2831 } 2832 2833 static int update_stack_depth(struct bpf_verifier_env *env, 2834 const struct bpf_func_state *func, 2835 int off) 2836 { 2837 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2838 2839 if (stack >= -off) 2840 return 0; 2841 2842 /* update known max for given subprogram */ 2843 env->subprog_info[func->subprogno].stack_depth = -off; 2844 return 0; 2845 } 2846 2847 /* starting from main bpf function walk all instructions of the function 2848 * and recursively walk all callees that given function can call. 2849 * Ignore jump and exit insns. 2850 * Since recursion is prevented by check_cfg() this algorithm 2851 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2852 */ 2853 static int check_max_stack_depth(struct bpf_verifier_env *env) 2854 { 2855 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2856 struct bpf_subprog_info *subprog = env->subprog_info; 2857 struct bpf_insn *insn = env->prog->insnsi; 2858 int ret_insn[MAX_CALL_FRAMES]; 2859 int ret_prog[MAX_CALL_FRAMES]; 2860 2861 process_func: 2862 /* round up to 32-bytes, since this is granularity 2863 * of interpreter stack size 2864 */ 2865 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2866 if (depth > MAX_BPF_STACK) { 2867 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2868 frame + 1, depth); 2869 return -EACCES; 2870 } 2871 continue_func: 2872 subprog_end = subprog[idx + 1].start; 2873 for (; i < subprog_end; i++) { 2874 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2875 continue; 2876 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2877 continue; 2878 /* remember insn and function to return to */ 2879 ret_insn[frame] = i + 1; 2880 ret_prog[frame] = idx; 2881 2882 /* find the callee */ 2883 i = i + insn[i].imm + 1; 2884 idx = find_subprog(env, i); 2885 if (idx < 0) { 2886 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2887 i); 2888 return -EFAULT; 2889 } 2890 frame++; 2891 if (frame >= MAX_CALL_FRAMES) { 2892 verbose(env, "the call stack of %d frames is too deep !\n", 2893 frame); 2894 return -E2BIG; 2895 } 2896 goto process_func; 2897 } 2898 /* end of for() loop means the last insn of the 'subprog' 2899 * was reached. Doesn't matter whether it was JA or EXIT 2900 */ 2901 if (frame == 0) 2902 return 0; 2903 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2904 frame--; 2905 i = ret_insn[frame]; 2906 idx = ret_prog[frame]; 2907 goto continue_func; 2908 } 2909 2910 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2911 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2912 const struct bpf_insn *insn, int idx) 2913 { 2914 int start = idx + insn->imm + 1, subprog; 2915 2916 subprog = find_subprog(env, start); 2917 if (subprog < 0) { 2918 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2919 start); 2920 return -EFAULT; 2921 } 2922 return env->subprog_info[subprog].stack_depth; 2923 } 2924 #endif 2925 2926 int check_ctx_reg(struct bpf_verifier_env *env, 2927 const struct bpf_reg_state *reg, int regno) 2928 { 2929 /* Access to ctx or passing it to a helper is only allowed in 2930 * its original, unmodified form. 2931 */ 2932 2933 if (reg->off) { 2934 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2935 regno, reg->off); 2936 return -EACCES; 2937 } 2938 2939 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2940 char tn_buf[48]; 2941 2942 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2943 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2944 return -EACCES; 2945 } 2946 2947 return 0; 2948 } 2949 2950 static int check_tp_buffer_access(struct bpf_verifier_env *env, 2951 const struct bpf_reg_state *reg, 2952 int regno, int off, int size) 2953 { 2954 if (off < 0) { 2955 verbose(env, 2956 "R%d invalid tracepoint buffer access: off=%d, size=%d", 2957 regno, off, size); 2958 return -EACCES; 2959 } 2960 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2961 char tn_buf[48]; 2962 2963 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2964 verbose(env, 2965 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2966 regno, off, tn_buf); 2967 return -EACCES; 2968 } 2969 if (off + size > env->prog->aux->max_tp_access) 2970 env->prog->aux->max_tp_access = off + size; 2971 2972 return 0; 2973 } 2974 2975 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 2976 static void zext_32_to_64(struct bpf_reg_state *reg) 2977 { 2978 reg->var_off = tnum_subreg(reg->var_off); 2979 __reg_assign_32_into_64(reg); 2980 } 2981 2982 /* truncate register to smaller size (in bytes) 2983 * must be called with size < BPF_REG_SIZE 2984 */ 2985 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 2986 { 2987 u64 mask; 2988 2989 /* clear high bits in bit representation */ 2990 reg->var_off = tnum_cast(reg->var_off, size); 2991 2992 /* fix arithmetic bounds */ 2993 mask = ((u64)1 << (size * 8)) - 1; 2994 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 2995 reg->umin_value &= mask; 2996 reg->umax_value &= mask; 2997 } else { 2998 reg->umin_value = 0; 2999 reg->umax_value = mask; 3000 } 3001 reg->smin_value = reg->umin_value; 3002 reg->smax_value = reg->umax_value; 3003 3004 /* If size is smaller than 32bit register the 32bit register 3005 * values are also truncated so we push 64-bit bounds into 3006 * 32-bit bounds. Above were truncated < 32-bits already. 3007 */ 3008 if (size >= 4) 3009 return; 3010 __reg_combine_64_into_32(reg); 3011 } 3012 3013 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3014 { 3015 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3016 } 3017 3018 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3019 { 3020 void *ptr; 3021 u64 addr; 3022 int err; 3023 3024 err = map->ops->map_direct_value_addr(map, &addr, off); 3025 if (err) 3026 return err; 3027 ptr = (void *)(long)addr + off; 3028 3029 switch (size) { 3030 case sizeof(u8): 3031 *val = (u64)*(u8 *)ptr; 3032 break; 3033 case sizeof(u16): 3034 *val = (u64)*(u16 *)ptr; 3035 break; 3036 case sizeof(u32): 3037 *val = (u64)*(u32 *)ptr; 3038 break; 3039 case sizeof(u64): 3040 *val = *(u64 *)ptr; 3041 break; 3042 default: 3043 return -EINVAL; 3044 } 3045 return 0; 3046 } 3047 3048 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3049 struct bpf_reg_state *regs, 3050 int regno, int off, int size, 3051 enum bpf_access_type atype, 3052 int value_regno) 3053 { 3054 struct bpf_reg_state *reg = regs + regno; 3055 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 3056 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3057 u32 btf_id; 3058 int ret; 3059 3060 if (off < 0) { 3061 verbose(env, 3062 "R%d is ptr_%s invalid negative access: off=%d\n", 3063 regno, tname, off); 3064 return -EACCES; 3065 } 3066 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3067 char tn_buf[48]; 3068 3069 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3070 verbose(env, 3071 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3072 regno, tname, off, tn_buf); 3073 return -EACCES; 3074 } 3075 3076 if (env->ops->btf_struct_access) { 3077 ret = env->ops->btf_struct_access(&env->log, t, off, size, 3078 atype, &btf_id); 3079 } else { 3080 if (atype != BPF_READ) { 3081 verbose(env, "only read is supported\n"); 3082 return -EACCES; 3083 } 3084 3085 ret = btf_struct_access(&env->log, t, off, size, atype, 3086 &btf_id); 3087 } 3088 3089 if (ret < 0) 3090 return ret; 3091 3092 if (atype == BPF_READ) { 3093 if (ret == SCALAR_VALUE) { 3094 mark_reg_unknown(env, regs, value_regno); 3095 return 0; 3096 } 3097 mark_reg_known_zero(env, regs, value_regno); 3098 regs[value_regno].type = PTR_TO_BTF_ID; 3099 regs[value_regno].btf_id = btf_id; 3100 } 3101 3102 return 0; 3103 } 3104 3105 /* check whether memory at (regno + off) is accessible for t = (read | write) 3106 * if t==write, value_regno is a register which value is stored into memory 3107 * if t==read, value_regno is a register which will receive the value from memory 3108 * if t==write && value_regno==-1, some unknown value is stored into memory 3109 * if t==read && value_regno==-1, don't care what we read from memory 3110 */ 3111 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 3112 int off, int bpf_size, enum bpf_access_type t, 3113 int value_regno, bool strict_alignment_once) 3114 { 3115 struct bpf_reg_state *regs = cur_regs(env); 3116 struct bpf_reg_state *reg = regs + regno; 3117 struct bpf_func_state *state; 3118 int size, err = 0; 3119 3120 size = bpf_size_to_bytes(bpf_size); 3121 if (size < 0) 3122 return size; 3123 3124 /* alignment checks will add in reg->off themselves */ 3125 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3126 if (err) 3127 return err; 3128 3129 /* for access checks, reg->off is just part of off */ 3130 off += reg->off; 3131 3132 if (reg->type == PTR_TO_MAP_VALUE) { 3133 if (t == BPF_WRITE && value_regno >= 0 && 3134 is_pointer_value(env, value_regno)) { 3135 verbose(env, "R%d leaks addr into map\n", value_regno); 3136 return -EACCES; 3137 } 3138 err = check_map_access_type(env, regno, off, size, t); 3139 if (err) 3140 return err; 3141 err = check_map_access(env, regno, off, size, false); 3142 if (!err && t == BPF_READ && value_regno >= 0) { 3143 struct bpf_map *map = reg->map_ptr; 3144 3145 /* if map is read-only, track its contents as scalars */ 3146 if (tnum_is_const(reg->var_off) && 3147 bpf_map_is_rdonly(map) && 3148 map->ops->map_direct_value_addr) { 3149 int map_off = off + reg->var_off.value; 3150 u64 val = 0; 3151 3152 err = bpf_map_direct_read(map, map_off, size, 3153 &val); 3154 if (err) 3155 return err; 3156 3157 regs[value_regno].type = SCALAR_VALUE; 3158 __mark_reg_known(®s[value_regno], val); 3159 } else { 3160 mark_reg_unknown(env, regs, value_regno); 3161 } 3162 } 3163 } else if (reg->type == PTR_TO_CTX) { 3164 enum bpf_reg_type reg_type = SCALAR_VALUE; 3165 u32 btf_id = 0; 3166 3167 if (t == BPF_WRITE && value_regno >= 0 && 3168 is_pointer_value(env, value_regno)) { 3169 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3170 return -EACCES; 3171 } 3172 3173 err = check_ctx_reg(env, reg, regno); 3174 if (err < 0) 3175 return err; 3176 3177 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 3178 if (err) 3179 verbose_linfo(env, insn_idx, "; "); 3180 if (!err && t == BPF_READ && value_regno >= 0) { 3181 /* ctx access returns either a scalar, or a 3182 * PTR_TO_PACKET[_META,_END]. In the latter 3183 * case, we know the offset is zero. 3184 */ 3185 if (reg_type == SCALAR_VALUE) { 3186 mark_reg_unknown(env, regs, value_regno); 3187 } else { 3188 mark_reg_known_zero(env, regs, 3189 value_regno); 3190 if (reg_type_may_be_null(reg_type)) 3191 regs[value_regno].id = ++env->id_gen; 3192 /* A load of ctx field could have different 3193 * actual load size with the one encoded in the 3194 * insn. When the dst is PTR, it is for sure not 3195 * a sub-register. 3196 */ 3197 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3198 if (reg_type == PTR_TO_BTF_ID) 3199 regs[value_regno].btf_id = btf_id; 3200 } 3201 regs[value_regno].type = reg_type; 3202 } 3203 3204 } else if (reg->type == PTR_TO_STACK) { 3205 off += reg->var_off.value; 3206 err = check_stack_access(env, reg, off, size); 3207 if (err) 3208 return err; 3209 3210 state = func(env, reg); 3211 err = update_stack_depth(env, state, off); 3212 if (err) 3213 return err; 3214 3215 if (t == BPF_WRITE) 3216 err = check_stack_write(env, state, off, size, 3217 value_regno, insn_idx); 3218 else 3219 err = check_stack_read(env, state, off, size, 3220 value_regno); 3221 } else if (reg_is_pkt_pointer(reg)) { 3222 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3223 verbose(env, "cannot write into packet\n"); 3224 return -EACCES; 3225 } 3226 if (t == BPF_WRITE && value_regno >= 0 && 3227 is_pointer_value(env, value_regno)) { 3228 verbose(env, "R%d leaks addr into packet\n", 3229 value_regno); 3230 return -EACCES; 3231 } 3232 err = check_packet_access(env, regno, off, size, false); 3233 if (!err && t == BPF_READ && value_regno >= 0) 3234 mark_reg_unknown(env, regs, value_regno); 3235 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3236 if (t == BPF_WRITE && value_regno >= 0 && 3237 is_pointer_value(env, value_regno)) { 3238 verbose(env, "R%d leaks addr into flow keys\n", 3239 value_regno); 3240 return -EACCES; 3241 } 3242 3243 err = check_flow_keys_access(env, off, size); 3244 if (!err && t == BPF_READ && value_regno >= 0) 3245 mark_reg_unknown(env, regs, value_regno); 3246 } else if (type_is_sk_pointer(reg->type)) { 3247 if (t == BPF_WRITE) { 3248 verbose(env, "R%d cannot write into %s\n", 3249 regno, reg_type_str[reg->type]); 3250 return -EACCES; 3251 } 3252 err = check_sock_access(env, insn_idx, regno, off, size, t); 3253 if (!err && value_regno >= 0) 3254 mark_reg_unknown(env, regs, value_regno); 3255 } else if (reg->type == PTR_TO_TP_BUFFER) { 3256 err = check_tp_buffer_access(env, reg, regno, off, size); 3257 if (!err && t == BPF_READ && value_regno >= 0) 3258 mark_reg_unknown(env, regs, value_regno); 3259 } else if (reg->type == PTR_TO_BTF_ID) { 3260 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3261 value_regno); 3262 } else { 3263 verbose(env, "R%d invalid mem access '%s'\n", regno, 3264 reg_type_str[reg->type]); 3265 return -EACCES; 3266 } 3267 3268 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3269 regs[value_regno].type == SCALAR_VALUE) { 3270 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3271 coerce_reg_to_size(®s[value_regno], size); 3272 } 3273 return err; 3274 } 3275 3276 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3277 { 3278 int err; 3279 3280 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3281 insn->imm != 0) { 3282 verbose(env, "BPF_XADD uses reserved fields\n"); 3283 return -EINVAL; 3284 } 3285 3286 /* check src1 operand */ 3287 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3288 if (err) 3289 return err; 3290 3291 /* check src2 operand */ 3292 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3293 if (err) 3294 return err; 3295 3296 if (is_pointer_value(env, insn->src_reg)) { 3297 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3298 return -EACCES; 3299 } 3300 3301 if (is_ctx_reg(env, insn->dst_reg) || 3302 is_pkt_reg(env, insn->dst_reg) || 3303 is_flow_key_reg(env, insn->dst_reg) || 3304 is_sk_reg(env, insn->dst_reg)) { 3305 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3306 insn->dst_reg, 3307 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3308 return -EACCES; 3309 } 3310 3311 /* check whether atomic_add can read the memory */ 3312 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3313 BPF_SIZE(insn->code), BPF_READ, -1, true); 3314 if (err) 3315 return err; 3316 3317 /* check whether atomic_add can write into the same memory */ 3318 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3319 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3320 } 3321 3322 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3323 int off, int access_size, 3324 bool zero_size_allowed) 3325 { 3326 struct bpf_reg_state *reg = reg_state(env, regno); 3327 3328 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3329 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3330 if (tnum_is_const(reg->var_off)) { 3331 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3332 regno, off, access_size); 3333 } else { 3334 char tn_buf[48]; 3335 3336 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3337 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3338 regno, tn_buf, access_size); 3339 } 3340 return -EACCES; 3341 } 3342 return 0; 3343 } 3344 3345 /* when register 'regno' is passed into function that will read 'access_size' 3346 * bytes from that pointer, make sure that it's within stack boundary 3347 * and all elements of stack are initialized. 3348 * Unlike most pointer bounds-checking functions, this one doesn't take an 3349 * 'off' argument, so it has to add in reg->off itself. 3350 */ 3351 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3352 int access_size, bool zero_size_allowed, 3353 struct bpf_call_arg_meta *meta) 3354 { 3355 struct bpf_reg_state *reg = reg_state(env, regno); 3356 struct bpf_func_state *state = func(env, reg); 3357 int err, min_off, max_off, i, j, slot, spi; 3358 3359 if (reg->type != PTR_TO_STACK) { 3360 /* Allow zero-byte read from NULL, regardless of pointer type */ 3361 if (zero_size_allowed && access_size == 0 && 3362 register_is_null(reg)) 3363 return 0; 3364 3365 verbose(env, "R%d type=%s expected=%s\n", regno, 3366 reg_type_str[reg->type], 3367 reg_type_str[PTR_TO_STACK]); 3368 return -EACCES; 3369 } 3370 3371 if (tnum_is_const(reg->var_off)) { 3372 min_off = max_off = reg->var_off.value + reg->off; 3373 err = __check_stack_boundary(env, regno, min_off, access_size, 3374 zero_size_allowed); 3375 if (err) 3376 return err; 3377 } else { 3378 /* Variable offset is prohibited for unprivileged mode for 3379 * simplicity since it requires corresponding support in 3380 * Spectre masking for stack ALU. 3381 * See also retrieve_ptr_limit(). 3382 */ 3383 if (!env->allow_ptr_leaks) { 3384 char tn_buf[48]; 3385 3386 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3387 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3388 regno, tn_buf); 3389 return -EACCES; 3390 } 3391 /* Only initialized buffer on stack is allowed to be accessed 3392 * with variable offset. With uninitialized buffer it's hard to 3393 * guarantee that whole memory is marked as initialized on 3394 * helper return since specific bounds are unknown what may 3395 * cause uninitialized stack leaking. 3396 */ 3397 if (meta && meta->raw_mode) 3398 meta = NULL; 3399 3400 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3401 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3402 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3403 regno); 3404 return -EACCES; 3405 } 3406 min_off = reg->smin_value + reg->off; 3407 max_off = reg->smax_value + reg->off; 3408 err = __check_stack_boundary(env, regno, min_off, access_size, 3409 zero_size_allowed); 3410 if (err) { 3411 verbose(env, "R%d min value is outside of stack bound\n", 3412 regno); 3413 return err; 3414 } 3415 err = __check_stack_boundary(env, regno, max_off, access_size, 3416 zero_size_allowed); 3417 if (err) { 3418 verbose(env, "R%d max value is outside of stack bound\n", 3419 regno); 3420 return err; 3421 } 3422 } 3423 3424 if (meta && meta->raw_mode) { 3425 meta->access_size = access_size; 3426 meta->regno = regno; 3427 return 0; 3428 } 3429 3430 for (i = min_off; i < max_off + access_size; i++) { 3431 u8 *stype; 3432 3433 slot = -i - 1; 3434 spi = slot / BPF_REG_SIZE; 3435 if (state->allocated_stack <= slot) 3436 goto err; 3437 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3438 if (*stype == STACK_MISC) 3439 goto mark; 3440 if (*stype == STACK_ZERO) { 3441 /* helper can write anything into the stack */ 3442 *stype = STACK_MISC; 3443 goto mark; 3444 } 3445 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3446 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3447 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3448 for (j = 0; j < BPF_REG_SIZE; j++) 3449 state->stack[spi].slot_type[j] = STACK_MISC; 3450 goto mark; 3451 } 3452 3453 err: 3454 if (tnum_is_const(reg->var_off)) { 3455 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3456 min_off, i - min_off, access_size); 3457 } else { 3458 char tn_buf[48]; 3459 3460 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3461 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3462 tn_buf, i - min_off, access_size); 3463 } 3464 return -EACCES; 3465 mark: 3466 /* reading any byte out of 8-byte 'spill_slot' will cause 3467 * the whole slot to be marked as 'read' 3468 */ 3469 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3470 state->stack[spi].spilled_ptr.parent, 3471 REG_LIVE_READ64); 3472 } 3473 return update_stack_depth(env, state, min_off); 3474 } 3475 3476 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3477 int access_size, bool zero_size_allowed, 3478 struct bpf_call_arg_meta *meta) 3479 { 3480 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3481 3482 switch (reg->type) { 3483 case PTR_TO_PACKET: 3484 case PTR_TO_PACKET_META: 3485 return check_packet_access(env, regno, reg->off, access_size, 3486 zero_size_allowed); 3487 case PTR_TO_MAP_VALUE: 3488 if (check_map_access_type(env, regno, reg->off, access_size, 3489 meta && meta->raw_mode ? BPF_WRITE : 3490 BPF_READ)) 3491 return -EACCES; 3492 return check_map_access(env, regno, reg->off, access_size, 3493 zero_size_allowed); 3494 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3495 return check_stack_boundary(env, regno, access_size, 3496 zero_size_allowed, meta); 3497 } 3498 } 3499 3500 /* Implementation details: 3501 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3502 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3503 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3504 * value_or_null->value transition, since the verifier only cares about 3505 * the range of access to valid map value pointer and doesn't care about actual 3506 * address of the map element. 3507 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3508 * reg->id > 0 after value_or_null->value transition. By doing so 3509 * two bpf_map_lookups will be considered two different pointers that 3510 * point to different bpf_spin_locks. 3511 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3512 * dead-locks. 3513 * Since only one bpf_spin_lock is allowed the checks are simpler than 3514 * reg_is_refcounted() logic. The verifier needs to remember only 3515 * one spin_lock instead of array of acquired_refs. 3516 * cur_state->active_spin_lock remembers which map value element got locked 3517 * and clears it after bpf_spin_unlock. 3518 */ 3519 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3520 bool is_lock) 3521 { 3522 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3523 struct bpf_verifier_state *cur = env->cur_state; 3524 bool is_const = tnum_is_const(reg->var_off); 3525 struct bpf_map *map = reg->map_ptr; 3526 u64 val = reg->var_off.value; 3527 3528 if (reg->type != PTR_TO_MAP_VALUE) { 3529 verbose(env, "R%d is not a pointer to map_value\n", regno); 3530 return -EINVAL; 3531 } 3532 if (!is_const) { 3533 verbose(env, 3534 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3535 regno); 3536 return -EINVAL; 3537 } 3538 if (!map->btf) { 3539 verbose(env, 3540 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3541 map->name); 3542 return -EINVAL; 3543 } 3544 if (!map_value_has_spin_lock(map)) { 3545 if (map->spin_lock_off == -E2BIG) 3546 verbose(env, 3547 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3548 map->name); 3549 else if (map->spin_lock_off == -ENOENT) 3550 verbose(env, 3551 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3552 map->name); 3553 else 3554 verbose(env, 3555 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3556 map->name); 3557 return -EINVAL; 3558 } 3559 if (map->spin_lock_off != val + reg->off) { 3560 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3561 val + reg->off); 3562 return -EINVAL; 3563 } 3564 if (is_lock) { 3565 if (cur->active_spin_lock) { 3566 verbose(env, 3567 "Locking two bpf_spin_locks are not allowed\n"); 3568 return -EINVAL; 3569 } 3570 cur->active_spin_lock = reg->id; 3571 } else { 3572 if (!cur->active_spin_lock) { 3573 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3574 return -EINVAL; 3575 } 3576 if (cur->active_spin_lock != reg->id) { 3577 verbose(env, "bpf_spin_unlock of different lock\n"); 3578 return -EINVAL; 3579 } 3580 cur->active_spin_lock = 0; 3581 } 3582 return 0; 3583 } 3584 3585 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3586 { 3587 return type == ARG_PTR_TO_MEM || 3588 type == ARG_PTR_TO_MEM_OR_NULL || 3589 type == ARG_PTR_TO_UNINIT_MEM; 3590 } 3591 3592 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3593 { 3594 return type == ARG_CONST_SIZE || 3595 type == ARG_CONST_SIZE_OR_ZERO; 3596 } 3597 3598 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3599 { 3600 return type == ARG_PTR_TO_INT || 3601 type == ARG_PTR_TO_LONG; 3602 } 3603 3604 static int int_ptr_type_to_size(enum bpf_arg_type type) 3605 { 3606 if (type == ARG_PTR_TO_INT) 3607 return sizeof(u32); 3608 else if (type == ARG_PTR_TO_LONG) 3609 return sizeof(u64); 3610 3611 return -EINVAL; 3612 } 3613 3614 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3615 enum bpf_arg_type arg_type, 3616 struct bpf_call_arg_meta *meta) 3617 { 3618 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3619 enum bpf_reg_type expected_type, type = reg->type; 3620 int err = 0; 3621 3622 if (arg_type == ARG_DONTCARE) 3623 return 0; 3624 3625 err = check_reg_arg(env, regno, SRC_OP); 3626 if (err) 3627 return err; 3628 3629 if (arg_type == ARG_ANYTHING) { 3630 if (is_pointer_value(env, regno)) { 3631 verbose(env, "R%d leaks addr into helper function\n", 3632 regno); 3633 return -EACCES; 3634 } 3635 return 0; 3636 } 3637 3638 if (type_is_pkt_pointer(type) && 3639 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3640 verbose(env, "helper access to the packet is not allowed\n"); 3641 return -EACCES; 3642 } 3643 3644 if (arg_type == ARG_PTR_TO_MAP_KEY || 3645 arg_type == ARG_PTR_TO_MAP_VALUE || 3646 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3647 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3648 expected_type = PTR_TO_STACK; 3649 if (register_is_null(reg) && 3650 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3651 /* final test in check_stack_boundary() */; 3652 else if (!type_is_pkt_pointer(type) && 3653 type != PTR_TO_MAP_VALUE && 3654 type != expected_type) 3655 goto err_type; 3656 } else if (arg_type == ARG_CONST_SIZE || 3657 arg_type == ARG_CONST_SIZE_OR_ZERO) { 3658 expected_type = SCALAR_VALUE; 3659 if (type != expected_type) 3660 goto err_type; 3661 } else if (arg_type == ARG_CONST_MAP_PTR) { 3662 expected_type = CONST_PTR_TO_MAP; 3663 if (type != expected_type) 3664 goto err_type; 3665 } else if (arg_type == ARG_PTR_TO_CTX || 3666 arg_type == ARG_PTR_TO_CTX_OR_NULL) { 3667 expected_type = PTR_TO_CTX; 3668 if (!(register_is_null(reg) && 3669 arg_type == ARG_PTR_TO_CTX_OR_NULL)) { 3670 if (type != expected_type) 3671 goto err_type; 3672 err = check_ctx_reg(env, reg, regno); 3673 if (err < 0) 3674 return err; 3675 } 3676 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3677 expected_type = PTR_TO_SOCK_COMMON; 3678 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3679 if (!type_is_sk_pointer(type)) 3680 goto err_type; 3681 if (reg->ref_obj_id) { 3682 if (meta->ref_obj_id) { 3683 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3684 regno, reg->ref_obj_id, 3685 meta->ref_obj_id); 3686 return -EFAULT; 3687 } 3688 meta->ref_obj_id = reg->ref_obj_id; 3689 } 3690 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3691 expected_type = PTR_TO_SOCKET; 3692 if (type != expected_type) 3693 goto err_type; 3694 } else if (arg_type == ARG_PTR_TO_BTF_ID) { 3695 expected_type = PTR_TO_BTF_ID; 3696 if (type != expected_type) 3697 goto err_type; 3698 if (reg->btf_id != meta->btf_id) { 3699 verbose(env, "Helper has type %s got %s in R%d\n", 3700 kernel_type_name(meta->btf_id), 3701 kernel_type_name(reg->btf_id), regno); 3702 3703 return -EACCES; 3704 } 3705 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) { 3706 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 3707 regno); 3708 return -EACCES; 3709 } 3710 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3711 if (meta->func_id == BPF_FUNC_spin_lock) { 3712 if (process_spin_lock(env, regno, true)) 3713 return -EACCES; 3714 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3715 if (process_spin_lock(env, regno, false)) 3716 return -EACCES; 3717 } else { 3718 verbose(env, "verifier internal error\n"); 3719 return -EFAULT; 3720 } 3721 } else if (arg_type_is_mem_ptr(arg_type)) { 3722 expected_type = PTR_TO_STACK; 3723 /* One exception here. In case function allows for NULL to be 3724 * passed in as argument, it's a SCALAR_VALUE type. Final test 3725 * happens during stack boundary checking. 3726 */ 3727 if (register_is_null(reg) && 3728 arg_type == ARG_PTR_TO_MEM_OR_NULL) 3729 /* final test in check_stack_boundary() */; 3730 else if (!type_is_pkt_pointer(type) && 3731 type != PTR_TO_MAP_VALUE && 3732 type != expected_type) 3733 goto err_type; 3734 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3735 } else if (arg_type_is_int_ptr(arg_type)) { 3736 expected_type = PTR_TO_STACK; 3737 if (!type_is_pkt_pointer(type) && 3738 type != PTR_TO_MAP_VALUE && 3739 type != expected_type) 3740 goto err_type; 3741 } else { 3742 verbose(env, "unsupported arg_type %d\n", arg_type); 3743 return -EFAULT; 3744 } 3745 3746 if (arg_type == ARG_CONST_MAP_PTR) { 3747 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3748 meta->map_ptr = reg->map_ptr; 3749 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3750 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3751 * check that [key, key + map->key_size) are within 3752 * stack limits and initialized 3753 */ 3754 if (!meta->map_ptr) { 3755 /* in function declaration map_ptr must come before 3756 * map_key, so that it's verified and known before 3757 * we have to check map_key here. Otherwise it means 3758 * that kernel subsystem misconfigured verifier 3759 */ 3760 verbose(env, "invalid map_ptr to access map->key\n"); 3761 return -EACCES; 3762 } 3763 err = check_helper_mem_access(env, regno, 3764 meta->map_ptr->key_size, false, 3765 NULL); 3766 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3767 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3768 !register_is_null(reg)) || 3769 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3770 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3771 * check [value, value + map->value_size) validity 3772 */ 3773 if (!meta->map_ptr) { 3774 /* kernel subsystem misconfigured verifier */ 3775 verbose(env, "invalid map_ptr to access map->value\n"); 3776 return -EACCES; 3777 } 3778 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3779 err = check_helper_mem_access(env, regno, 3780 meta->map_ptr->value_size, false, 3781 meta); 3782 } else if (arg_type_is_mem_size(arg_type)) { 3783 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3784 3785 /* This is used to refine r0 return value bounds for helpers 3786 * that enforce this value as an upper bound on return values. 3787 * See do_refine_retval_range() for helpers that can refine 3788 * the return value. C type of helper is u32 so we pull register 3789 * bound from umax_value however, if negative verifier errors 3790 * out. Only upper bounds can be learned because retval is an 3791 * int type and negative retvals are allowed. 3792 */ 3793 meta->msize_max_value = reg->umax_value; 3794 3795 /* The register is SCALAR_VALUE; the access check 3796 * happens using its boundaries. 3797 */ 3798 if (!tnum_is_const(reg->var_off)) 3799 /* For unprivileged variable accesses, disable raw 3800 * mode so that the program is required to 3801 * initialize all the memory that the helper could 3802 * just partially fill up. 3803 */ 3804 meta = NULL; 3805 3806 if (reg->smin_value < 0) { 3807 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3808 regno); 3809 return -EACCES; 3810 } 3811 3812 if (reg->umin_value == 0) { 3813 err = check_helper_mem_access(env, regno - 1, 0, 3814 zero_size_allowed, 3815 meta); 3816 if (err) 3817 return err; 3818 } 3819 3820 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3821 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3822 regno); 3823 return -EACCES; 3824 } 3825 err = check_helper_mem_access(env, regno - 1, 3826 reg->umax_value, 3827 zero_size_allowed, meta); 3828 if (!err) 3829 err = mark_chain_precision(env, regno); 3830 } else if (arg_type_is_int_ptr(arg_type)) { 3831 int size = int_ptr_type_to_size(arg_type); 3832 3833 err = check_helper_mem_access(env, regno, size, false, meta); 3834 if (err) 3835 return err; 3836 err = check_ptr_alignment(env, reg, 0, size, true); 3837 } 3838 3839 return err; 3840 err_type: 3841 verbose(env, "R%d type=%s expected=%s\n", regno, 3842 reg_type_str[type], reg_type_str[expected_type]); 3843 return -EACCES; 3844 } 3845 3846 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3847 struct bpf_map *map, int func_id) 3848 { 3849 if (!map) 3850 return 0; 3851 3852 /* We need a two way check, first is from map perspective ... */ 3853 switch (map->map_type) { 3854 case BPF_MAP_TYPE_PROG_ARRAY: 3855 if (func_id != BPF_FUNC_tail_call) 3856 goto error; 3857 break; 3858 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 3859 if (func_id != BPF_FUNC_perf_event_read && 3860 func_id != BPF_FUNC_perf_event_output && 3861 func_id != BPF_FUNC_skb_output && 3862 func_id != BPF_FUNC_perf_event_read_value && 3863 func_id != BPF_FUNC_xdp_output) 3864 goto error; 3865 break; 3866 case BPF_MAP_TYPE_STACK_TRACE: 3867 if (func_id != BPF_FUNC_get_stackid) 3868 goto error; 3869 break; 3870 case BPF_MAP_TYPE_CGROUP_ARRAY: 3871 if (func_id != BPF_FUNC_skb_under_cgroup && 3872 func_id != BPF_FUNC_current_task_under_cgroup) 3873 goto error; 3874 break; 3875 case BPF_MAP_TYPE_CGROUP_STORAGE: 3876 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 3877 if (func_id != BPF_FUNC_get_local_storage) 3878 goto error; 3879 break; 3880 case BPF_MAP_TYPE_DEVMAP: 3881 case BPF_MAP_TYPE_DEVMAP_HASH: 3882 if (func_id != BPF_FUNC_redirect_map && 3883 func_id != BPF_FUNC_map_lookup_elem) 3884 goto error; 3885 break; 3886 /* Restrict bpf side of cpumap and xskmap, open when use-cases 3887 * appear. 3888 */ 3889 case BPF_MAP_TYPE_CPUMAP: 3890 if (func_id != BPF_FUNC_redirect_map) 3891 goto error; 3892 break; 3893 case BPF_MAP_TYPE_XSKMAP: 3894 if (func_id != BPF_FUNC_redirect_map && 3895 func_id != BPF_FUNC_map_lookup_elem) 3896 goto error; 3897 break; 3898 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 3899 case BPF_MAP_TYPE_HASH_OF_MAPS: 3900 if (func_id != BPF_FUNC_map_lookup_elem) 3901 goto error; 3902 break; 3903 case BPF_MAP_TYPE_SOCKMAP: 3904 if (func_id != BPF_FUNC_sk_redirect_map && 3905 func_id != BPF_FUNC_sock_map_update && 3906 func_id != BPF_FUNC_map_delete_elem && 3907 func_id != BPF_FUNC_msg_redirect_map && 3908 func_id != BPF_FUNC_sk_select_reuseport) 3909 goto error; 3910 break; 3911 case BPF_MAP_TYPE_SOCKHASH: 3912 if (func_id != BPF_FUNC_sk_redirect_hash && 3913 func_id != BPF_FUNC_sock_hash_update && 3914 func_id != BPF_FUNC_map_delete_elem && 3915 func_id != BPF_FUNC_msg_redirect_hash && 3916 func_id != BPF_FUNC_sk_select_reuseport) 3917 goto error; 3918 break; 3919 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 3920 if (func_id != BPF_FUNC_sk_select_reuseport) 3921 goto error; 3922 break; 3923 case BPF_MAP_TYPE_QUEUE: 3924 case BPF_MAP_TYPE_STACK: 3925 if (func_id != BPF_FUNC_map_peek_elem && 3926 func_id != BPF_FUNC_map_pop_elem && 3927 func_id != BPF_FUNC_map_push_elem) 3928 goto error; 3929 break; 3930 case BPF_MAP_TYPE_SK_STORAGE: 3931 if (func_id != BPF_FUNC_sk_storage_get && 3932 func_id != BPF_FUNC_sk_storage_delete) 3933 goto error; 3934 break; 3935 default: 3936 break; 3937 } 3938 3939 /* ... and second from the function itself. */ 3940 switch (func_id) { 3941 case BPF_FUNC_tail_call: 3942 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 3943 goto error; 3944 if (env->subprog_cnt > 1) { 3945 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 3946 return -EINVAL; 3947 } 3948 break; 3949 case BPF_FUNC_perf_event_read: 3950 case BPF_FUNC_perf_event_output: 3951 case BPF_FUNC_perf_event_read_value: 3952 case BPF_FUNC_skb_output: 3953 case BPF_FUNC_xdp_output: 3954 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 3955 goto error; 3956 break; 3957 case BPF_FUNC_get_stackid: 3958 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 3959 goto error; 3960 break; 3961 case BPF_FUNC_current_task_under_cgroup: 3962 case BPF_FUNC_skb_under_cgroup: 3963 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 3964 goto error; 3965 break; 3966 case BPF_FUNC_redirect_map: 3967 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 3968 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 3969 map->map_type != BPF_MAP_TYPE_CPUMAP && 3970 map->map_type != BPF_MAP_TYPE_XSKMAP) 3971 goto error; 3972 break; 3973 case BPF_FUNC_sk_redirect_map: 3974 case BPF_FUNC_msg_redirect_map: 3975 case BPF_FUNC_sock_map_update: 3976 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 3977 goto error; 3978 break; 3979 case BPF_FUNC_sk_redirect_hash: 3980 case BPF_FUNC_msg_redirect_hash: 3981 case BPF_FUNC_sock_hash_update: 3982 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 3983 goto error; 3984 break; 3985 case BPF_FUNC_get_local_storage: 3986 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 3987 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 3988 goto error; 3989 break; 3990 case BPF_FUNC_sk_select_reuseport: 3991 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 3992 map->map_type != BPF_MAP_TYPE_SOCKMAP && 3993 map->map_type != BPF_MAP_TYPE_SOCKHASH) 3994 goto error; 3995 break; 3996 case BPF_FUNC_map_peek_elem: 3997 case BPF_FUNC_map_pop_elem: 3998 case BPF_FUNC_map_push_elem: 3999 if (map->map_type != BPF_MAP_TYPE_QUEUE && 4000 map->map_type != BPF_MAP_TYPE_STACK) 4001 goto error; 4002 break; 4003 case BPF_FUNC_sk_storage_get: 4004 case BPF_FUNC_sk_storage_delete: 4005 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 4006 goto error; 4007 break; 4008 default: 4009 break; 4010 } 4011 4012 return 0; 4013 error: 4014 verbose(env, "cannot pass map_type %d into func %s#%d\n", 4015 map->map_type, func_id_name(func_id), func_id); 4016 return -EINVAL; 4017 } 4018 4019 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 4020 { 4021 int count = 0; 4022 4023 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 4024 count++; 4025 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 4026 count++; 4027 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 4028 count++; 4029 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 4030 count++; 4031 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 4032 count++; 4033 4034 /* We only support one arg being in raw mode at the moment, 4035 * which is sufficient for the helper functions we have 4036 * right now. 4037 */ 4038 return count <= 1; 4039 } 4040 4041 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 4042 enum bpf_arg_type arg_next) 4043 { 4044 return (arg_type_is_mem_ptr(arg_curr) && 4045 !arg_type_is_mem_size(arg_next)) || 4046 (!arg_type_is_mem_ptr(arg_curr) && 4047 arg_type_is_mem_size(arg_next)); 4048 } 4049 4050 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 4051 { 4052 /* bpf_xxx(..., buf, len) call will access 'len' 4053 * bytes from memory 'buf'. Both arg types need 4054 * to be paired, so make sure there's no buggy 4055 * helper function specification. 4056 */ 4057 if (arg_type_is_mem_size(fn->arg1_type) || 4058 arg_type_is_mem_ptr(fn->arg5_type) || 4059 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 4060 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 4061 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 4062 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 4063 return false; 4064 4065 return true; 4066 } 4067 4068 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 4069 { 4070 int count = 0; 4071 4072 if (arg_type_may_be_refcounted(fn->arg1_type)) 4073 count++; 4074 if (arg_type_may_be_refcounted(fn->arg2_type)) 4075 count++; 4076 if (arg_type_may_be_refcounted(fn->arg3_type)) 4077 count++; 4078 if (arg_type_may_be_refcounted(fn->arg4_type)) 4079 count++; 4080 if (arg_type_may_be_refcounted(fn->arg5_type)) 4081 count++; 4082 4083 /* A reference acquiring function cannot acquire 4084 * another refcounted ptr. 4085 */ 4086 if (is_acquire_function(func_id) && count) 4087 return false; 4088 4089 /* We only support one arg being unreferenced at the moment, 4090 * which is sufficient for the helper functions we have right now. 4091 */ 4092 return count <= 1; 4093 } 4094 4095 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 4096 { 4097 return check_raw_mode_ok(fn) && 4098 check_arg_pair_ok(fn) && 4099 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 4100 } 4101 4102 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 4103 * are now invalid, so turn them into unknown SCALAR_VALUE. 4104 */ 4105 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 4106 struct bpf_func_state *state) 4107 { 4108 struct bpf_reg_state *regs = state->regs, *reg; 4109 int i; 4110 4111 for (i = 0; i < MAX_BPF_REG; i++) 4112 if (reg_is_pkt_pointer_any(®s[i])) 4113 mark_reg_unknown(env, regs, i); 4114 4115 bpf_for_each_spilled_reg(i, state, reg) { 4116 if (!reg) 4117 continue; 4118 if (reg_is_pkt_pointer_any(reg)) 4119 __mark_reg_unknown(env, reg); 4120 } 4121 } 4122 4123 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 4124 { 4125 struct bpf_verifier_state *vstate = env->cur_state; 4126 int i; 4127 4128 for (i = 0; i <= vstate->curframe; i++) 4129 __clear_all_pkt_pointers(env, vstate->frame[i]); 4130 } 4131 4132 static void release_reg_references(struct bpf_verifier_env *env, 4133 struct bpf_func_state *state, 4134 int ref_obj_id) 4135 { 4136 struct bpf_reg_state *regs = state->regs, *reg; 4137 int i; 4138 4139 for (i = 0; i < MAX_BPF_REG; i++) 4140 if (regs[i].ref_obj_id == ref_obj_id) 4141 mark_reg_unknown(env, regs, i); 4142 4143 bpf_for_each_spilled_reg(i, state, reg) { 4144 if (!reg) 4145 continue; 4146 if (reg->ref_obj_id == ref_obj_id) 4147 __mark_reg_unknown(env, reg); 4148 } 4149 } 4150 4151 /* The pointer with the specified id has released its reference to kernel 4152 * resources. Identify all copies of the same pointer and clear the reference. 4153 */ 4154 static int release_reference(struct bpf_verifier_env *env, 4155 int ref_obj_id) 4156 { 4157 struct bpf_verifier_state *vstate = env->cur_state; 4158 int err; 4159 int i; 4160 4161 err = release_reference_state(cur_func(env), ref_obj_id); 4162 if (err) 4163 return err; 4164 4165 for (i = 0; i <= vstate->curframe; i++) 4166 release_reg_references(env, vstate->frame[i], ref_obj_id); 4167 4168 return 0; 4169 } 4170 4171 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 4172 struct bpf_reg_state *regs) 4173 { 4174 int i; 4175 4176 /* after the call registers r0 - r5 were scratched */ 4177 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4178 mark_reg_not_init(env, regs, caller_saved[i]); 4179 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4180 } 4181 } 4182 4183 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 4184 int *insn_idx) 4185 { 4186 struct bpf_verifier_state *state = env->cur_state; 4187 struct bpf_func_info_aux *func_info_aux; 4188 struct bpf_func_state *caller, *callee; 4189 int i, err, subprog, target_insn; 4190 bool is_global = false; 4191 4192 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 4193 verbose(env, "the call stack of %d frames is too deep\n", 4194 state->curframe + 2); 4195 return -E2BIG; 4196 } 4197 4198 target_insn = *insn_idx + insn->imm; 4199 subprog = find_subprog(env, target_insn + 1); 4200 if (subprog < 0) { 4201 verbose(env, "verifier bug. No program starts at insn %d\n", 4202 target_insn + 1); 4203 return -EFAULT; 4204 } 4205 4206 caller = state->frame[state->curframe]; 4207 if (state->frame[state->curframe + 1]) { 4208 verbose(env, "verifier bug. Frame %d already allocated\n", 4209 state->curframe + 1); 4210 return -EFAULT; 4211 } 4212 4213 func_info_aux = env->prog->aux->func_info_aux; 4214 if (func_info_aux) 4215 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 4216 err = btf_check_func_arg_match(env, subprog, caller->regs); 4217 if (err == -EFAULT) 4218 return err; 4219 if (is_global) { 4220 if (err) { 4221 verbose(env, "Caller passes invalid args into func#%d\n", 4222 subprog); 4223 return err; 4224 } else { 4225 if (env->log.level & BPF_LOG_LEVEL) 4226 verbose(env, 4227 "Func#%d is global and valid. Skipping.\n", 4228 subprog); 4229 clear_caller_saved_regs(env, caller->regs); 4230 4231 /* All global functions return SCALAR_VALUE */ 4232 mark_reg_unknown(env, caller->regs, BPF_REG_0); 4233 4234 /* continue with next insn after call */ 4235 return 0; 4236 } 4237 } 4238 4239 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 4240 if (!callee) 4241 return -ENOMEM; 4242 state->frame[state->curframe + 1] = callee; 4243 4244 /* callee cannot access r0, r6 - r9 for reading and has to write 4245 * into its own stack before reading from it. 4246 * callee can read/write into caller's stack 4247 */ 4248 init_func_state(env, callee, 4249 /* remember the callsite, it will be used by bpf_exit */ 4250 *insn_idx /* callsite */, 4251 state->curframe + 1 /* frameno within this callchain */, 4252 subprog /* subprog number within this prog */); 4253 4254 /* Transfer references to the callee */ 4255 err = transfer_reference_state(callee, caller); 4256 if (err) 4257 return err; 4258 4259 /* copy r1 - r5 args that callee can access. The copy includes parent 4260 * pointers, which connects us up to the liveness chain 4261 */ 4262 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4263 callee->regs[i] = caller->regs[i]; 4264 4265 clear_caller_saved_regs(env, caller->regs); 4266 4267 /* only increment it after check_reg_arg() finished */ 4268 state->curframe++; 4269 4270 /* and go analyze first insn of the callee */ 4271 *insn_idx = target_insn; 4272 4273 if (env->log.level & BPF_LOG_LEVEL) { 4274 verbose(env, "caller:\n"); 4275 print_verifier_state(env, caller); 4276 verbose(env, "callee:\n"); 4277 print_verifier_state(env, callee); 4278 } 4279 return 0; 4280 } 4281 4282 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4283 { 4284 struct bpf_verifier_state *state = env->cur_state; 4285 struct bpf_func_state *caller, *callee; 4286 struct bpf_reg_state *r0; 4287 int err; 4288 4289 callee = state->frame[state->curframe]; 4290 r0 = &callee->regs[BPF_REG_0]; 4291 if (r0->type == PTR_TO_STACK) { 4292 /* technically it's ok to return caller's stack pointer 4293 * (or caller's caller's pointer) back to the caller, 4294 * since these pointers are valid. Only current stack 4295 * pointer will be invalid as soon as function exits, 4296 * but let's be conservative 4297 */ 4298 verbose(env, "cannot return stack pointer to the caller\n"); 4299 return -EINVAL; 4300 } 4301 4302 state->curframe--; 4303 caller = state->frame[state->curframe]; 4304 /* return to the caller whatever r0 had in the callee */ 4305 caller->regs[BPF_REG_0] = *r0; 4306 4307 /* Transfer references to the caller */ 4308 err = transfer_reference_state(caller, callee); 4309 if (err) 4310 return err; 4311 4312 *insn_idx = callee->callsite + 1; 4313 if (env->log.level & BPF_LOG_LEVEL) { 4314 verbose(env, "returning from callee:\n"); 4315 print_verifier_state(env, callee); 4316 verbose(env, "to caller at %d:\n", *insn_idx); 4317 print_verifier_state(env, caller); 4318 } 4319 /* clear everything in the callee */ 4320 free_func_state(callee); 4321 state->frame[state->curframe + 1] = NULL; 4322 return 0; 4323 } 4324 4325 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4326 int func_id, 4327 struct bpf_call_arg_meta *meta) 4328 { 4329 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4330 4331 if (ret_type != RET_INTEGER || 4332 (func_id != BPF_FUNC_get_stack && 4333 func_id != BPF_FUNC_probe_read_str)) 4334 return; 4335 4336 ret_reg->smax_value = meta->msize_max_value; 4337 ret_reg->s32_max_value = meta->msize_max_value; 4338 __reg_deduce_bounds(ret_reg); 4339 __reg_bound_offset(ret_reg); 4340 __update_reg_bounds(ret_reg); 4341 } 4342 4343 static int 4344 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4345 int func_id, int insn_idx) 4346 { 4347 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4348 struct bpf_map *map = meta->map_ptr; 4349 4350 if (func_id != BPF_FUNC_tail_call && 4351 func_id != BPF_FUNC_map_lookup_elem && 4352 func_id != BPF_FUNC_map_update_elem && 4353 func_id != BPF_FUNC_map_delete_elem && 4354 func_id != BPF_FUNC_map_push_elem && 4355 func_id != BPF_FUNC_map_pop_elem && 4356 func_id != BPF_FUNC_map_peek_elem) 4357 return 0; 4358 4359 if (map == NULL) { 4360 verbose(env, "kernel subsystem misconfigured verifier\n"); 4361 return -EINVAL; 4362 } 4363 4364 /* In case of read-only, some additional restrictions 4365 * need to be applied in order to prevent altering the 4366 * state of the map from program side. 4367 */ 4368 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4369 (func_id == BPF_FUNC_map_delete_elem || 4370 func_id == BPF_FUNC_map_update_elem || 4371 func_id == BPF_FUNC_map_push_elem || 4372 func_id == BPF_FUNC_map_pop_elem)) { 4373 verbose(env, "write into map forbidden\n"); 4374 return -EACCES; 4375 } 4376 4377 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4378 bpf_map_ptr_store(aux, meta->map_ptr, 4379 meta->map_ptr->unpriv_array); 4380 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4381 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4382 meta->map_ptr->unpriv_array); 4383 return 0; 4384 } 4385 4386 static int 4387 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4388 int func_id, int insn_idx) 4389 { 4390 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4391 struct bpf_reg_state *regs = cur_regs(env), *reg; 4392 struct bpf_map *map = meta->map_ptr; 4393 struct tnum range; 4394 u64 val; 4395 int err; 4396 4397 if (func_id != BPF_FUNC_tail_call) 4398 return 0; 4399 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4400 verbose(env, "kernel subsystem misconfigured verifier\n"); 4401 return -EINVAL; 4402 } 4403 4404 range = tnum_range(0, map->max_entries - 1); 4405 reg = ®s[BPF_REG_3]; 4406 4407 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 4408 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4409 return 0; 4410 } 4411 4412 err = mark_chain_precision(env, BPF_REG_3); 4413 if (err) 4414 return err; 4415 4416 val = reg->var_off.value; 4417 if (bpf_map_key_unseen(aux)) 4418 bpf_map_key_store(aux, val); 4419 else if (!bpf_map_key_poisoned(aux) && 4420 bpf_map_key_immediate(aux) != val) 4421 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4422 return 0; 4423 } 4424 4425 static int check_reference_leak(struct bpf_verifier_env *env) 4426 { 4427 struct bpf_func_state *state = cur_func(env); 4428 int i; 4429 4430 for (i = 0; i < state->acquired_refs; i++) { 4431 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 4432 state->refs[i].id, state->refs[i].insn_idx); 4433 } 4434 return state->acquired_refs ? -EINVAL : 0; 4435 } 4436 4437 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 4438 { 4439 const struct bpf_func_proto *fn = NULL; 4440 struct bpf_reg_state *regs; 4441 struct bpf_call_arg_meta meta; 4442 bool changes_data; 4443 int i, err; 4444 4445 /* find function prototype */ 4446 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 4447 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 4448 func_id); 4449 return -EINVAL; 4450 } 4451 4452 if (env->ops->get_func_proto) 4453 fn = env->ops->get_func_proto(func_id, env->prog); 4454 if (!fn) { 4455 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 4456 func_id); 4457 return -EINVAL; 4458 } 4459 4460 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 4461 if (!env->prog->gpl_compatible && fn->gpl_only) { 4462 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 4463 return -EINVAL; 4464 } 4465 4466 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 4467 changes_data = bpf_helper_changes_pkt_data(fn->func); 4468 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 4469 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 4470 func_id_name(func_id), func_id); 4471 return -EINVAL; 4472 } 4473 4474 memset(&meta, 0, sizeof(meta)); 4475 meta.pkt_access = fn->pkt_access; 4476 4477 err = check_func_proto(fn, func_id); 4478 if (err) { 4479 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 4480 func_id_name(func_id), func_id); 4481 return err; 4482 } 4483 4484 meta.func_id = func_id; 4485 /* check args */ 4486 for (i = 0; i < 5; i++) { 4487 err = btf_resolve_helper_id(&env->log, fn, i); 4488 if (err > 0) 4489 meta.btf_id = err; 4490 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta); 4491 if (err) 4492 return err; 4493 } 4494 4495 err = record_func_map(env, &meta, func_id, insn_idx); 4496 if (err) 4497 return err; 4498 4499 err = record_func_key(env, &meta, func_id, insn_idx); 4500 if (err) 4501 return err; 4502 4503 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4504 * is inferred from register state. 4505 */ 4506 for (i = 0; i < meta.access_size; i++) { 4507 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4508 BPF_WRITE, -1, false); 4509 if (err) 4510 return err; 4511 } 4512 4513 if (func_id == BPF_FUNC_tail_call) { 4514 err = check_reference_leak(env); 4515 if (err) { 4516 verbose(env, "tail_call would lead to reference leak\n"); 4517 return err; 4518 } 4519 } else if (is_release_function(func_id)) { 4520 err = release_reference(env, meta.ref_obj_id); 4521 if (err) { 4522 verbose(env, "func %s#%d reference has not been acquired before\n", 4523 func_id_name(func_id), func_id); 4524 return err; 4525 } 4526 } 4527 4528 regs = cur_regs(env); 4529 4530 /* check that flags argument in get_local_storage(map, flags) is 0, 4531 * this is required because get_local_storage() can't return an error. 4532 */ 4533 if (func_id == BPF_FUNC_get_local_storage && 4534 !register_is_null(®s[BPF_REG_2])) { 4535 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4536 return -EINVAL; 4537 } 4538 4539 /* reset caller saved regs */ 4540 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4541 mark_reg_not_init(env, regs, caller_saved[i]); 4542 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4543 } 4544 4545 /* helper call returns 64-bit value. */ 4546 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4547 4548 /* update return register (already marked as written above) */ 4549 if (fn->ret_type == RET_INTEGER) { 4550 /* sets type to SCALAR_VALUE */ 4551 mark_reg_unknown(env, regs, BPF_REG_0); 4552 } else if (fn->ret_type == RET_VOID) { 4553 regs[BPF_REG_0].type = NOT_INIT; 4554 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4555 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4556 /* There is no offset yet applied, variable or fixed */ 4557 mark_reg_known_zero(env, regs, BPF_REG_0); 4558 /* remember map_ptr, so that check_map_access() 4559 * can check 'value_size' boundary of memory access 4560 * to map element returned from bpf_map_lookup_elem() 4561 */ 4562 if (meta.map_ptr == NULL) { 4563 verbose(env, 4564 "kernel subsystem misconfigured verifier\n"); 4565 return -EINVAL; 4566 } 4567 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4568 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4569 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4570 if (map_value_has_spin_lock(meta.map_ptr)) 4571 regs[BPF_REG_0].id = ++env->id_gen; 4572 } else { 4573 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4574 regs[BPF_REG_0].id = ++env->id_gen; 4575 } 4576 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4577 mark_reg_known_zero(env, regs, BPF_REG_0); 4578 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4579 regs[BPF_REG_0].id = ++env->id_gen; 4580 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4581 mark_reg_known_zero(env, regs, BPF_REG_0); 4582 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4583 regs[BPF_REG_0].id = ++env->id_gen; 4584 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4585 mark_reg_known_zero(env, regs, BPF_REG_0); 4586 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4587 regs[BPF_REG_0].id = ++env->id_gen; 4588 } else { 4589 verbose(env, "unknown return type %d of func %s#%d\n", 4590 fn->ret_type, func_id_name(func_id), func_id); 4591 return -EINVAL; 4592 } 4593 4594 if (is_ptr_cast_function(func_id)) { 4595 /* For release_reference() */ 4596 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4597 } else if (is_acquire_function(func_id)) { 4598 int id = acquire_reference_state(env, insn_idx); 4599 4600 if (id < 0) 4601 return id; 4602 /* For mark_ptr_or_null_reg() */ 4603 regs[BPF_REG_0].id = id; 4604 /* For release_reference() */ 4605 regs[BPF_REG_0].ref_obj_id = id; 4606 } 4607 4608 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4609 4610 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4611 if (err) 4612 return err; 4613 4614 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4615 const char *err_str; 4616 4617 #ifdef CONFIG_PERF_EVENTS 4618 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4619 err_str = "cannot get callchain buffer for func %s#%d\n"; 4620 #else 4621 err = -ENOTSUPP; 4622 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4623 #endif 4624 if (err) { 4625 verbose(env, err_str, func_id_name(func_id), func_id); 4626 return err; 4627 } 4628 4629 env->prog->has_callchain_buf = true; 4630 } 4631 4632 if (changes_data) 4633 clear_all_pkt_pointers(env); 4634 return 0; 4635 } 4636 4637 static bool signed_add_overflows(s64 a, s64 b) 4638 { 4639 /* Do the add in u64, where overflow is well-defined */ 4640 s64 res = (s64)((u64)a + (u64)b); 4641 4642 if (b < 0) 4643 return res > a; 4644 return res < a; 4645 } 4646 4647 static bool signed_add32_overflows(s64 a, s64 b) 4648 { 4649 /* Do the add in u32, where overflow is well-defined */ 4650 s32 res = (s32)((u32)a + (u32)b); 4651 4652 if (b < 0) 4653 return res > a; 4654 return res < a; 4655 } 4656 4657 static bool signed_sub_overflows(s32 a, s32 b) 4658 { 4659 /* Do the sub in u64, where overflow is well-defined */ 4660 s64 res = (s64)((u64)a - (u64)b); 4661 4662 if (b < 0) 4663 return res < a; 4664 return res > a; 4665 } 4666 4667 static bool signed_sub32_overflows(s32 a, s32 b) 4668 { 4669 /* Do the sub in u64, where overflow is well-defined */ 4670 s32 res = (s32)((u32)a - (u32)b); 4671 4672 if (b < 0) 4673 return res < a; 4674 return res > a; 4675 } 4676 4677 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4678 const struct bpf_reg_state *reg, 4679 enum bpf_reg_type type) 4680 { 4681 bool known = tnum_is_const(reg->var_off); 4682 s64 val = reg->var_off.value; 4683 s64 smin = reg->smin_value; 4684 4685 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4686 verbose(env, "math between %s pointer and %lld is not allowed\n", 4687 reg_type_str[type], val); 4688 return false; 4689 } 4690 4691 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4692 verbose(env, "%s pointer offset %d is not allowed\n", 4693 reg_type_str[type], reg->off); 4694 return false; 4695 } 4696 4697 if (smin == S64_MIN) { 4698 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4699 reg_type_str[type]); 4700 return false; 4701 } 4702 4703 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4704 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4705 smin, reg_type_str[type]); 4706 return false; 4707 } 4708 4709 return true; 4710 } 4711 4712 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4713 { 4714 return &env->insn_aux_data[env->insn_idx]; 4715 } 4716 4717 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4718 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4719 { 4720 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4721 (opcode == BPF_SUB && !off_is_neg); 4722 u32 off; 4723 4724 switch (ptr_reg->type) { 4725 case PTR_TO_STACK: 4726 /* Indirect variable offset stack access is prohibited in 4727 * unprivileged mode so it's not handled here. 4728 */ 4729 off = ptr_reg->off + ptr_reg->var_off.value; 4730 if (mask_to_left) 4731 *ptr_limit = MAX_BPF_STACK + off; 4732 else 4733 *ptr_limit = -off; 4734 return 0; 4735 case PTR_TO_MAP_VALUE: 4736 if (mask_to_left) { 4737 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4738 } else { 4739 off = ptr_reg->smin_value + ptr_reg->off; 4740 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4741 } 4742 return 0; 4743 default: 4744 return -EINVAL; 4745 } 4746 } 4747 4748 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4749 const struct bpf_insn *insn) 4750 { 4751 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 4752 } 4753 4754 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4755 u32 alu_state, u32 alu_limit) 4756 { 4757 /* If we arrived here from different branches with different 4758 * state or limits to sanitize, then this won't work. 4759 */ 4760 if (aux->alu_state && 4761 (aux->alu_state != alu_state || 4762 aux->alu_limit != alu_limit)) 4763 return -EACCES; 4764 4765 /* Corresponding fixup done in fixup_bpf_calls(). */ 4766 aux->alu_state = alu_state; 4767 aux->alu_limit = alu_limit; 4768 return 0; 4769 } 4770 4771 static int sanitize_val_alu(struct bpf_verifier_env *env, 4772 struct bpf_insn *insn) 4773 { 4774 struct bpf_insn_aux_data *aux = cur_aux(env); 4775 4776 if (can_skip_alu_sanitation(env, insn)) 4777 return 0; 4778 4779 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4780 } 4781 4782 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4783 struct bpf_insn *insn, 4784 const struct bpf_reg_state *ptr_reg, 4785 struct bpf_reg_state *dst_reg, 4786 bool off_is_neg) 4787 { 4788 struct bpf_verifier_state *vstate = env->cur_state; 4789 struct bpf_insn_aux_data *aux = cur_aux(env); 4790 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4791 u8 opcode = BPF_OP(insn->code); 4792 u32 alu_state, alu_limit; 4793 struct bpf_reg_state tmp; 4794 bool ret; 4795 4796 if (can_skip_alu_sanitation(env, insn)) 4797 return 0; 4798 4799 /* We already marked aux for masking from non-speculative 4800 * paths, thus we got here in the first place. We only care 4801 * to explore bad access from here. 4802 */ 4803 if (vstate->speculative) 4804 goto do_sim; 4805 4806 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4807 alu_state |= ptr_is_dst_reg ? 4808 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4809 4810 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4811 return 0; 4812 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4813 return -EACCES; 4814 do_sim: 4815 /* Simulate and find potential out-of-bounds access under 4816 * speculative execution from truncation as a result of 4817 * masking when off was not within expected range. If off 4818 * sits in dst, then we temporarily need to move ptr there 4819 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4820 * for cases where we use K-based arithmetic in one direction 4821 * and truncated reg-based in the other in order to explore 4822 * bad access. 4823 */ 4824 if (!ptr_is_dst_reg) { 4825 tmp = *dst_reg; 4826 *dst_reg = *ptr_reg; 4827 } 4828 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4829 if (!ptr_is_dst_reg && ret) 4830 *dst_reg = tmp; 4831 return !ret ? -EFAULT : 0; 4832 } 4833 4834 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 4835 * Caller should also handle BPF_MOV case separately. 4836 * If we return -EACCES, caller may want to try again treating pointer as a 4837 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 4838 */ 4839 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 4840 struct bpf_insn *insn, 4841 const struct bpf_reg_state *ptr_reg, 4842 const struct bpf_reg_state *off_reg) 4843 { 4844 struct bpf_verifier_state *vstate = env->cur_state; 4845 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4846 struct bpf_reg_state *regs = state->regs, *dst_reg; 4847 bool known = tnum_is_const(off_reg->var_off); 4848 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 4849 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 4850 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 4851 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 4852 u32 dst = insn->dst_reg, src = insn->src_reg; 4853 u8 opcode = BPF_OP(insn->code); 4854 int ret; 4855 4856 dst_reg = ®s[dst]; 4857 4858 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 4859 smin_val > smax_val || umin_val > umax_val) { 4860 /* Taint dst register if offset had invalid bounds derived from 4861 * e.g. dead branches. 4862 */ 4863 __mark_reg_unknown(env, dst_reg); 4864 return 0; 4865 } 4866 4867 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4868 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 4869 verbose(env, 4870 "R%d 32-bit pointer arithmetic prohibited\n", 4871 dst); 4872 return -EACCES; 4873 } 4874 4875 switch (ptr_reg->type) { 4876 case PTR_TO_MAP_VALUE_OR_NULL: 4877 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 4878 dst, reg_type_str[ptr_reg->type]); 4879 return -EACCES; 4880 case CONST_PTR_TO_MAP: 4881 case PTR_TO_PACKET_END: 4882 case PTR_TO_SOCKET: 4883 case PTR_TO_SOCKET_OR_NULL: 4884 case PTR_TO_SOCK_COMMON: 4885 case PTR_TO_SOCK_COMMON_OR_NULL: 4886 case PTR_TO_TCP_SOCK: 4887 case PTR_TO_TCP_SOCK_OR_NULL: 4888 case PTR_TO_XDP_SOCK: 4889 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 4890 dst, reg_type_str[ptr_reg->type]); 4891 return -EACCES; 4892 case PTR_TO_MAP_VALUE: 4893 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 4894 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 4895 off_reg == dst_reg ? dst : src); 4896 return -EACCES; 4897 } 4898 /* fall-through */ 4899 default: 4900 break; 4901 } 4902 4903 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 4904 * The id may be overwritten later if we create a new variable offset. 4905 */ 4906 dst_reg->type = ptr_reg->type; 4907 dst_reg->id = ptr_reg->id; 4908 4909 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 4910 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 4911 return -EINVAL; 4912 4913 /* pointer types do not carry 32-bit bounds at the moment. */ 4914 __mark_reg32_unbounded(dst_reg); 4915 4916 switch (opcode) { 4917 case BPF_ADD: 4918 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4919 if (ret < 0) { 4920 verbose(env, "R%d tried to add from different maps or paths\n", dst); 4921 return ret; 4922 } 4923 /* We can take a fixed offset as long as it doesn't overflow 4924 * the s32 'off' field 4925 */ 4926 if (known && (ptr_reg->off + smin_val == 4927 (s64)(s32)(ptr_reg->off + smin_val))) { 4928 /* pointer += K. Accumulate it into fixed offset */ 4929 dst_reg->smin_value = smin_ptr; 4930 dst_reg->smax_value = smax_ptr; 4931 dst_reg->umin_value = umin_ptr; 4932 dst_reg->umax_value = umax_ptr; 4933 dst_reg->var_off = ptr_reg->var_off; 4934 dst_reg->off = ptr_reg->off + smin_val; 4935 dst_reg->raw = ptr_reg->raw; 4936 break; 4937 } 4938 /* A new variable offset is created. Note that off_reg->off 4939 * == 0, since it's a scalar. 4940 * dst_reg gets the pointer type and since some positive 4941 * integer value was added to the pointer, give it a new 'id' 4942 * if it's a PTR_TO_PACKET. 4943 * this creates a new 'base' pointer, off_reg (variable) gets 4944 * added into the variable offset, and we copy the fixed offset 4945 * from ptr_reg. 4946 */ 4947 if (signed_add_overflows(smin_ptr, smin_val) || 4948 signed_add_overflows(smax_ptr, smax_val)) { 4949 dst_reg->smin_value = S64_MIN; 4950 dst_reg->smax_value = S64_MAX; 4951 } else { 4952 dst_reg->smin_value = smin_ptr + smin_val; 4953 dst_reg->smax_value = smax_ptr + smax_val; 4954 } 4955 if (umin_ptr + umin_val < umin_ptr || 4956 umax_ptr + umax_val < umax_ptr) { 4957 dst_reg->umin_value = 0; 4958 dst_reg->umax_value = U64_MAX; 4959 } else { 4960 dst_reg->umin_value = umin_ptr + umin_val; 4961 dst_reg->umax_value = umax_ptr + umax_val; 4962 } 4963 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 4964 dst_reg->off = ptr_reg->off; 4965 dst_reg->raw = ptr_reg->raw; 4966 if (reg_is_pkt_pointer(ptr_reg)) { 4967 dst_reg->id = ++env->id_gen; 4968 /* something was added to pkt_ptr, set range to zero */ 4969 dst_reg->raw = 0; 4970 } 4971 break; 4972 case BPF_SUB: 4973 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4974 if (ret < 0) { 4975 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 4976 return ret; 4977 } 4978 if (dst_reg == off_reg) { 4979 /* scalar -= pointer. Creates an unknown scalar */ 4980 verbose(env, "R%d tried to subtract pointer from scalar\n", 4981 dst); 4982 return -EACCES; 4983 } 4984 /* We don't allow subtraction from FP, because (according to 4985 * test_verifier.c test "invalid fp arithmetic", JITs might not 4986 * be able to deal with it. 4987 */ 4988 if (ptr_reg->type == PTR_TO_STACK) { 4989 verbose(env, "R%d subtraction from stack pointer prohibited\n", 4990 dst); 4991 return -EACCES; 4992 } 4993 if (known && (ptr_reg->off - smin_val == 4994 (s64)(s32)(ptr_reg->off - smin_val))) { 4995 /* pointer -= K. Subtract it from fixed offset */ 4996 dst_reg->smin_value = smin_ptr; 4997 dst_reg->smax_value = smax_ptr; 4998 dst_reg->umin_value = umin_ptr; 4999 dst_reg->umax_value = umax_ptr; 5000 dst_reg->var_off = ptr_reg->var_off; 5001 dst_reg->id = ptr_reg->id; 5002 dst_reg->off = ptr_reg->off - smin_val; 5003 dst_reg->raw = ptr_reg->raw; 5004 break; 5005 } 5006 /* A new variable offset is created. If the subtrahend is known 5007 * nonnegative, then any reg->range we had before is still good. 5008 */ 5009 if (signed_sub_overflows(smin_ptr, smax_val) || 5010 signed_sub_overflows(smax_ptr, smin_val)) { 5011 /* Overflow possible, we know nothing */ 5012 dst_reg->smin_value = S64_MIN; 5013 dst_reg->smax_value = S64_MAX; 5014 } else { 5015 dst_reg->smin_value = smin_ptr - smax_val; 5016 dst_reg->smax_value = smax_ptr - smin_val; 5017 } 5018 if (umin_ptr < umax_val) { 5019 /* Overflow possible, we know nothing */ 5020 dst_reg->umin_value = 0; 5021 dst_reg->umax_value = U64_MAX; 5022 } else { 5023 /* Cannot overflow (as long as bounds are consistent) */ 5024 dst_reg->umin_value = umin_ptr - umax_val; 5025 dst_reg->umax_value = umax_ptr - umin_val; 5026 } 5027 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 5028 dst_reg->off = ptr_reg->off; 5029 dst_reg->raw = ptr_reg->raw; 5030 if (reg_is_pkt_pointer(ptr_reg)) { 5031 dst_reg->id = ++env->id_gen; 5032 /* something was added to pkt_ptr, set range to zero */ 5033 if (smin_val < 0) 5034 dst_reg->raw = 0; 5035 } 5036 break; 5037 case BPF_AND: 5038 case BPF_OR: 5039 case BPF_XOR: 5040 /* bitwise ops on pointers are troublesome, prohibit. */ 5041 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 5042 dst, bpf_alu_string[opcode >> 4]); 5043 return -EACCES; 5044 default: 5045 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 5046 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 5047 dst, bpf_alu_string[opcode >> 4]); 5048 return -EACCES; 5049 } 5050 5051 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 5052 return -EINVAL; 5053 5054 __update_reg_bounds(dst_reg); 5055 __reg_deduce_bounds(dst_reg); 5056 __reg_bound_offset(dst_reg); 5057 5058 /* For unprivileged we require that resulting offset must be in bounds 5059 * in order to be able to sanitize access later on. 5060 */ 5061 if (!env->allow_ptr_leaks) { 5062 if (dst_reg->type == PTR_TO_MAP_VALUE && 5063 check_map_access(env, dst, dst_reg->off, 1, false)) { 5064 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 5065 "prohibited for !root\n", dst); 5066 return -EACCES; 5067 } else if (dst_reg->type == PTR_TO_STACK && 5068 check_stack_access(env, dst_reg, dst_reg->off + 5069 dst_reg->var_off.value, 1)) { 5070 verbose(env, "R%d stack pointer arithmetic goes out of range, " 5071 "prohibited for !root\n", dst); 5072 return -EACCES; 5073 } 5074 } 5075 5076 return 0; 5077 } 5078 5079 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 5080 struct bpf_reg_state *src_reg) 5081 { 5082 s32 smin_val = src_reg->s32_min_value; 5083 s32 smax_val = src_reg->s32_max_value; 5084 u32 umin_val = src_reg->u32_min_value; 5085 u32 umax_val = src_reg->u32_max_value; 5086 5087 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 5088 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 5089 dst_reg->s32_min_value = S32_MIN; 5090 dst_reg->s32_max_value = S32_MAX; 5091 } else { 5092 dst_reg->s32_min_value += smin_val; 5093 dst_reg->s32_max_value += smax_val; 5094 } 5095 if (dst_reg->u32_min_value + umin_val < umin_val || 5096 dst_reg->u32_max_value + umax_val < umax_val) { 5097 dst_reg->u32_min_value = 0; 5098 dst_reg->u32_max_value = U32_MAX; 5099 } else { 5100 dst_reg->u32_min_value += umin_val; 5101 dst_reg->u32_max_value += umax_val; 5102 } 5103 } 5104 5105 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 5106 struct bpf_reg_state *src_reg) 5107 { 5108 s64 smin_val = src_reg->smin_value; 5109 s64 smax_val = src_reg->smax_value; 5110 u64 umin_val = src_reg->umin_value; 5111 u64 umax_val = src_reg->umax_value; 5112 5113 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 5114 signed_add_overflows(dst_reg->smax_value, smax_val)) { 5115 dst_reg->smin_value = S64_MIN; 5116 dst_reg->smax_value = S64_MAX; 5117 } else { 5118 dst_reg->smin_value += smin_val; 5119 dst_reg->smax_value += smax_val; 5120 } 5121 if (dst_reg->umin_value + umin_val < umin_val || 5122 dst_reg->umax_value + umax_val < umax_val) { 5123 dst_reg->umin_value = 0; 5124 dst_reg->umax_value = U64_MAX; 5125 } else { 5126 dst_reg->umin_value += umin_val; 5127 dst_reg->umax_value += umax_val; 5128 } 5129 } 5130 5131 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 5132 struct bpf_reg_state *src_reg) 5133 { 5134 s32 smin_val = src_reg->s32_min_value; 5135 s32 smax_val = src_reg->s32_max_value; 5136 u32 umin_val = src_reg->u32_min_value; 5137 u32 umax_val = src_reg->u32_max_value; 5138 5139 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 5140 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 5141 /* Overflow possible, we know nothing */ 5142 dst_reg->s32_min_value = S32_MIN; 5143 dst_reg->s32_max_value = S32_MAX; 5144 } else { 5145 dst_reg->s32_min_value -= smax_val; 5146 dst_reg->s32_max_value -= smin_val; 5147 } 5148 if (dst_reg->u32_min_value < umax_val) { 5149 /* Overflow possible, we know nothing */ 5150 dst_reg->u32_min_value = 0; 5151 dst_reg->u32_max_value = U32_MAX; 5152 } else { 5153 /* Cannot overflow (as long as bounds are consistent) */ 5154 dst_reg->u32_min_value -= umax_val; 5155 dst_reg->u32_max_value -= umin_val; 5156 } 5157 } 5158 5159 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 5160 struct bpf_reg_state *src_reg) 5161 { 5162 s64 smin_val = src_reg->smin_value; 5163 s64 smax_val = src_reg->smax_value; 5164 u64 umin_val = src_reg->umin_value; 5165 u64 umax_val = src_reg->umax_value; 5166 5167 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 5168 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 5169 /* Overflow possible, we know nothing */ 5170 dst_reg->smin_value = S64_MIN; 5171 dst_reg->smax_value = S64_MAX; 5172 } else { 5173 dst_reg->smin_value -= smax_val; 5174 dst_reg->smax_value -= smin_val; 5175 } 5176 if (dst_reg->umin_value < umax_val) { 5177 /* Overflow possible, we know nothing */ 5178 dst_reg->umin_value = 0; 5179 dst_reg->umax_value = U64_MAX; 5180 } else { 5181 /* Cannot overflow (as long as bounds are consistent) */ 5182 dst_reg->umin_value -= umax_val; 5183 dst_reg->umax_value -= umin_val; 5184 } 5185 } 5186 5187 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 5188 struct bpf_reg_state *src_reg) 5189 { 5190 s32 smin_val = src_reg->s32_min_value; 5191 u32 umin_val = src_reg->u32_min_value; 5192 u32 umax_val = src_reg->u32_max_value; 5193 5194 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 5195 /* Ain't nobody got time to multiply that sign */ 5196 __mark_reg32_unbounded(dst_reg); 5197 return; 5198 } 5199 /* Both values are positive, so we can work with unsigned and 5200 * copy the result to signed (unless it exceeds S32_MAX). 5201 */ 5202 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 5203 /* Potential overflow, we know nothing */ 5204 __mark_reg32_unbounded(dst_reg); 5205 return; 5206 } 5207 dst_reg->u32_min_value *= umin_val; 5208 dst_reg->u32_max_value *= umax_val; 5209 if (dst_reg->u32_max_value > S32_MAX) { 5210 /* Overflow possible, we know nothing */ 5211 dst_reg->s32_min_value = S32_MIN; 5212 dst_reg->s32_max_value = S32_MAX; 5213 } else { 5214 dst_reg->s32_min_value = dst_reg->u32_min_value; 5215 dst_reg->s32_max_value = dst_reg->u32_max_value; 5216 } 5217 } 5218 5219 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 5220 struct bpf_reg_state *src_reg) 5221 { 5222 s64 smin_val = src_reg->smin_value; 5223 u64 umin_val = src_reg->umin_value; 5224 u64 umax_val = src_reg->umax_value; 5225 5226 if (smin_val < 0 || dst_reg->smin_value < 0) { 5227 /* Ain't nobody got time to multiply that sign */ 5228 __mark_reg64_unbounded(dst_reg); 5229 return; 5230 } 5231 /* Both values are positive, so we can work with unsigned and 5232 * copy the result to signed (unless it exceeds S64_MAX). 5233 */ 5234 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 5235 /* Potential overflow, we know nothing */ 5236 __mark_reg64_unbounded(dst_reg); 5237 return; 5238 } 5239 dst_reg->umin_value *= umin_val; 5240 dst_reg->umax_value *= umax_val; 5241 if (dst_reg->umax_value > S64_MAX) { 5242 /* Overflow possible, we know nothing */ 5243 dst_reg->smin_value = S64_MIN; 5244 dst_reg->smax_value = S64_MAX; 5245 } else { 5246 dst_reg->smin_value = dst_reg->umin_value; 5247 dst_reg->smax_value = dst_reg->umax_value; 5248 } 5249 } 5250 5251 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 5252 struct bpf_reg_state *src_reg) 5253 { 5254 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5255 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5256 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5257 s32 smin_val = src_reg->s32_min_value; 5258 u32 umax_val = src_reg->u32_max_value; 5259 5260 /* Assuming scalar64_min_max_and will be called so its safe 5261 * to skip updating register for known 32-bit case. 5262 */ 5263 if (src_known && dst_known) 5264 return; 5265 5266 /* We get our minimum from the var_off, since that's inherently 5267 * bitwise. Our maximum is the minimum of the operands' maxima. 5268 */ 5269 dst_reg->u32_min_value = var32_off.value; 5270 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 5271 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5272 /* Lose signed bounds when ANDing negative numbers, 5273 * ain't nobody got time for that. 5274 */ 5275 dst_reg->s32_min_value = S32_MIN; 5276 dst_reg->s32_max_value = S32_MAX; 5277 } else { 5278 /* ANDing two positives gives a positive, so safe to 5279 * cast result into s64. 5280 */ 5281 dst_reg->s32_min_value = dst_reg->u32_min_value; 5282 dst_reg->s32_max_value = dst_reg->u32_max_value; 5283 } 5284 5285 } 5286 5287 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 5288 struct bpf_reg_state *src_reg) 5289 { 5290 bool src_known = tnum_is_const(src_reg->var_off); 5291 bool dst_known = tnum_is_const(dst_reg->var_off); 5292 s64 smin_val = src_reg->smin_value; 5293 u64 umax_val = src_reg->umax_value; 5294 5295 if (src_known && dst_known) { 5296 __mark_reg_known(dst_reg, dst_reg->var_off.value & 5297 src_reg->var_off.value); 5298 return; 5299 } 5300 5301 /* We get our minimum from the var_off, since that's inherently 5302 * bitwise. Our maximum is the minimum of the operands' maxima. 5303 */ 5304 dst_reg->umin_value = dst_reg->var_off.value; 5305 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 5306 if (dst_reg->smin_value < 0 || smin_val < 0) { 5307 /* Lose signed bounds when ANDing negative numbers, 5308 * ain't nobody got time for that. 5309 */ 5310 dst_reg->smin_value = S64_MIN; 5311 dst_reg->smax_value = S64_MAX; 5312 } else { 5313 /* ANDing two positives gives a positive, so safe to 5314 * cast result into s64. 5315 */ 5316 dst_reg->smin_value = dst_reg->umin_value; 5317 dst_reg->smax_value = dst_reg->umax_value; 5318 } 5319 /* We may learn something more from the var_off */ 5320 __update_reg_bounds(dst_reg); 5321 } 5322 5323 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 5324 struct bpf_reg_state *src_reg) 5325 { 5326 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5327 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5328 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5329 s32 smin_val = src_reg->smin_value; 5330 u32 umin_val = src_reg->umin_value; 5331 5332 /* Assuming scalar64_min_max_or will be called so it is safe 5333 * to skip updating register for known case. 5334 */ 5335 if (src_known && dst_known) 5336 return; 5337 5338 /* We get our maximum from the var_off, and our minimum is the 5339 * maximum of the operands' minima 5340 */ 5341 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 5342 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 5343 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5344 /* Lose signed bounds when ORing negative numbers, 5345 * ain't nobody got time for that. 5346 */ 5347 dst_reg->s32_min_value = S32_MIN; 5348 dst_reg->s32_max_value = S32_MAX; 5349 } else { 5350 /* ORing two positives gives a positive, so safe to 5351 * cast result into s64. 5352 */ 5353 dst_reg->s32_min_value = dst_reg->umin_value; 5354 dst_reg->s32_max_value = dst_reg->umax_value; 5355 } 5356 } 5357 5358 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 5359 struct bpf_reg_state *src_reg) 5360 { 5361 bool src_known = tnum_is_const(src_reg->var_off); 5362 bool dst_known = tnum_is_const(dst_reg->var_off); 5363 s64 smin_val = src_reg->smin_value; 5364 u64 umin_val = src_reg->umin_value; 5365 5366 if (src_known && dst_known) { 5367 __mark_reg_known(dst_reg, dst_reg->var_off.value | 5368 src_reg->var_off.value); 5369 return; 5370 } 5371 5372 /* We get our maximum from the var_off, and our minimum is the 5373 * maximum of the operands' minima 5374 */ 5375 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 5376 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 5377 if (dst_reg->smin_value < 0 || smin_val < 0) { 5378 /* Lose signed bounds when ORing negative numbers, 5379 * ain't nobody got time for that. 5380 */ 5381 dst_reg->smin_value = S64_MIN; 5382 dst_reg->smax_value = S64_MAX; 5383 } else { 5384 /* ORing two positives gives a positive, so safe to 5385 * cast result into s64. 5386 */ 5387 dst_reg->smin_value = dst_reg->umin_value; 5388 dst_reg->smax_value = dst_reg->umax_value; 5389 } 5390 /* We may learn something more from the var_off */ 5391 __update_reg_bounds(dst_reg); 5392 } 5393 5394 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5395 u64 umin_val, u64 umax_val) 5396 { 5397 /* We lose all sign bit information (except what we can pick 5398 * up from var_off) 5399 */ 5400 dst_reg->s32_min_value = S32_MIN; 5401 dst_reg->s32_max_value = S32_MAX; 5402 /* If we might shift our top bit out, then we know nothing */ 5403 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 5404 dst_reg->u32_min_value = 0; 5405 dst_reg->u32_max_value = U32_MAX; 5406 } else { 5407 dst_reg->u32_min_value <<= umin_val; 5408 dst_reg->u32_max_value <<= umax_val; 5409 } 5410 } 5411 5412 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5413 struct bpf_reg_state *src_reg) 5414 { 5415 u32 umax_val = src_reg->u32_max_value; 5416 u32 umin_val = src_reg->u32_min_value; 5417 /* u32 alu operation will zext upper bits */ 5418 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5419 5420 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5421 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 5422 /* Not required but being careful mark reg64 bounds as unknown so 5423 * that we are forced to pick them up from tnum and zext later and 5424 * if some path skips this step we are still safe. 5425 */ 5426 __mark_reg64_unbounded(dst_reg); 5427 __update_reg32_bounds(dst_reg); 5428 } 5429 5430 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 5431 u64 umin_val, u64 umax_val) 5432 { 5433 /* Special case <<32 because it is a common compiler pattern to sign 5434 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 5435 * positive we know this shift will also be positive so we can track 5436 * bounds correctly. Otherwise we lose all sign bit information except 5437 * what we can pick up from var_off. Perhaps we can generalize this 5438 * later to shifts of any length. 5439 */ 5440 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 5441 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 5442 else 5443 dst_reg->smax_value = S64_MAX; 5444 5445 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 5446 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 5447 else 5448 dst_reg->smin_value = S64_MIN; 5449 5450 /* If we might shift our top bit out, then we know nothing */ 5451 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 5452 dst_reg->umin_value = 0; 5453 dst_reg->umax_value = U64_MAX; 5454 } else { 5455 dst_reg->umin_value <<= umin_val; 5456 dst_reg->umax_value <<= umax_val; 5457 } 5458 } 5459 5460 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 5461 struct bpf_reg_state *src_reg) 5462 { 5463 u64 umax_val = src_reg->umax_value; 5464 u64 umin_val = src_reg->umin_value; 5465 5466 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 5467 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 5468 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5469 5470 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 5471 /* We may learn something more from the var_off */ 5472 __update_reg_bounds(dst_reg); 5473 } 5474 5475 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 5476 struct bpf_reg_state *src_reg) 5477 { 5478 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5479 u32 umax_val = src_reg->u32_max_value; 5480 u32 umin_val = src_reg->u32_min_value; 5481 5482 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5483 * be negative, then either: 5484 * 1) src_reg might be zero, so the sign bit of the result is 5485 * unknown, so we lose our signed bounds 5486 * 2) it's known negative, thus the unsigned bounds capture the 5487 * signed bounds 5488 * 3) the signed bounds cross zero, so they tell us nothing 5489 * about the result 5490 * If the value in dst_reg is known nonnegative, then again the 5491 * unsigned bounts capture the signed bounds. 5492 * Thus, in all cases it suffices to blow away our signed bounds 5493 * and rely on inferring new ones from the unsigned bounds and 5494 * var_off of the result. 5495 */ 5496 dst_reg->s32_min_value = S32_MIN; 5497 dst_reg->s32_max_value = S32_MAX; 5498 5499 dst_reg->var_off = tnum_rshift(subreg, umin_val); 5500 dst_reg->u32_min_value >>= umax_val; 5501 dst_reg->u32_max_value >>= umin_val; 5502 5503 __mark_reg64_unbounded(dst_reg); 5504 __update_reg32_bounds(dst_reg); 5505 } 5506 5507 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 5508 struct bpf_reg_state *src_reg) 5509 { 5510 u64 umax_val = src_reg->umax_value; 5511 u64 umin_val = src_reg->umin_value; 5512 5513 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5514 * be negative, then either: 5515 * 1) src_reg might be zero, so the sign bit of the result is 5516 * unknown, so we lose our signed bounds 5517 * 2) it's known negative, thus the unsigned bounds capture the 5518 * signed bounds 5519 * 3) the signed bounds cross zero, so they tell us nothing 5520 * about the result 5521 * If the value in dst_reg is known nonnegative, then again the 5522 * unsigned bounts capture the signed bounds. 5523 * Thus, in all cases it suffices to blow away our signed bounds 5524 * and rely on inferring new ones from the unsigned bounds and 5525 * var_off of the result. 5526 */ 5527 dst_reg->smin_value = S64_MIN; 5528 dst_reg->smax_value = S64_MAX; 5529 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 5530 dst_reg->umin_value >>= umax_val; 5531 dst_reg->umax_value >>= umin_val; 5532 5533 /* Its not easy to operate on alu32 bounds here because it depends 5534 * on bits being shifted in. Take easy way out and mark unbounded 5535 * so we can recalculate later from tnum. 5536 */ 5537 __mark_reg32_unbounded(dst_reg); 5538 __update_reg_bounds(dst_reg); 5539 } 5540 5541 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 5542 struct bpf_reg_state *src_reg) 5543 { 5544 u64 umin_val = src_reg->u32_min_value; 5545 5546 /* Upon reaching here, src_known is true and 5547 * umax_val is equal to umin_val. 5548 */ 5549 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 5550 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 5551 5552 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 5553 5554 /* blow away the dst_reg umin_value/umax_value and rely on 5555 * dst_reg var_off to refine the result. 5556 */ 5557 dst_reg->u32_min_value = 0; 5558 dst_reg->u32_max_value = U32_MAX; 5559 5560 __mark_reg64_unbounded(dst_reg); 5561 __update_reg32_bounds(dst_reg); 5562 } 5563 5564 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 5565 struct bpf_reg_state *src_reg) 5566 { 5567 u64 umin_val = src_reg->umin_value; 5568 5569 /* Upon reaching here, src_known is true and umax_val is equal 5570 * to umin_val. 5571 */ 5572 dst_reg->smin_value >>= umin_val; 5573 dst_reg->smax_value >>= umin_val; 5574 5575 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 5576 5577 /* blow away the dst_reg umin_value/umax_value and rely on 5578 * dst_reg var_off to refine the result. 5579 */ 5580 dst_reg->umin_value = 0; 5581 dst_reg->umax_value = U64_MAX; 5582 5583 /* Its not easy to operate on alu32 bounds here because it depends 5584 * on bits being shifted in from upper 32-bits. Take easy way out 5585 * and mark unbounded so we can recalculate later from tnum. 5586 */ 5587 __mark_reg32_unbounded(dst_reg); 5588 __update_reg_bounds(dst_reg); 5589 } 5590 5591 /* WARNING: This function does calculations on 64-bit values, but the actual 5592 * execution may occur on 32-bit values. Therefore, things like bitshifts 5593 * need extra checks in the 32-bit case. 5594 */ 5595 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 5596 struct bpf_insn *insn, 5597 struct bpf_reg_state *dst_reg, 5598 struct bpf_reg_state src_reg) 5599 { 5600 struct bpf_reg_state *regs = cur_regs(env); 5601 u8 opcode = BPF_OP(insn->code); 5602 bool src_known, dst_known; 5603 s64 smin_val, smax_val; 5604 u64 umin_val, umax_val; 5605 s32 s32_min_val, s32_max_val; 5606 u32 u32_min_val, u32_max_val; 5607 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 5608 u32 dst = insn->dst_reg; 5609 int ret; 5610 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 5611 5612 smin_val = src_reg.smin_value; 5613 smax_val = src_reg.smax_value; 5614 umin_val = src_reg.umin_value; 5615 umax_val = src_reg.umax_value; 5616 5617 s32_min_val = src_reg.s32_min_value; 5618 s32_max_val = src_reg.s32_max_value; 5619 u32_min_val = src_reg.u32_min_value; 5620 u32_max_val = src_reg.u32_max_value; 5621 5622 if (alu32) { 5623 src_known = tnum_subreg_is_const(src_reg.var_off); 5624 dst_known = tnum_subreg_is_const(dst_reg->var_off); 5625 if ((src_known && 5626 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 5627 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 5628 /* Taint dst register if offset had invalid bounds 5629 * derived from e.g. dead branches. 5630 */ 5631 __mark_reg_unknown(env, dst_reg); 5632 return 0; 5633 } 5634 } else { 5635 src_known = tnum_is_const(src_reg.var_off); 5636 dst_known = tnum_is_const(dst_reg->var_off); 5637 if ((src_known && 5638 (smin_val != smax_val || umin_val != umax_val)) || 5639 smin_val > smax_val || umin_val > umax_val) { 5640 /* Taint dst register if offset had invalid bounds 5641 * derived from e.g. dead branches. 5642 */ 5643 __mark_reg_unknown(env, dst_reg); 5644 return 0; 5645 } 5646 } 5647 5648 if (!src_known && 5649 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 5650 __mark_reg_unknown(env, dst_reg); 5651 return 0; 5652 } 5653 5654 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 5655 * There are two classes of instructions: The first class we track both 5656 * alu32 and alu64 sign/unsigned bounds independently this provides the 5657 * greatest amount of precision when alu operations are mixed with jmp32 5658 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 5659 * and BPF_OR. This is possible because these ops have fairly easy to 5660 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 5661 * See alu32 verifier tests for examples. The second class of 5662 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 5663 * with regards to tracking sign/unsigned bounds because the bits may 5664 * cross subreg boundaries in the alu64 case. When this happens we mark 5665 * the reg unbounded in the subreg bound space and use the resulting 5666 * tnum to calculate an approximation of the sign/unsigned bounds. 5667 */ 5668 switch (opcode) { 5669 case BPF_ADD: 5670 ret = sanitize_val_alu(env, insn); 5671 if (ret < 0) { 5672 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 5673 return ret; 5674 } 5675 scalar32_min_max_add(dst_reg, &src_reg); 5676 scalar_min_max_add(dst_reg, &src_reg); 5677 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 5678 break; 5679 case BPF_SUB: 5680 ret = sanitize_val_alu(env, insn); 5681 if (ret < 0) { 5682 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 5683 return ret; 5684 } 5685 scalar32_min_max_sub(dst_reg, &src_reg); 5686 scalar_min_max_sub(dst_reg, &src_reg); 5687 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 5688 break; 5689 case BPF_MUL: 5690 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 5691 scalar32_min_max_mul(dst_reg, &src_reg); 5692 scalar_min_max_mul(dst_reg, &src_reg); 5693 break; 5694 case BPF_AND: 5695 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 5696 scalar32_min_max_and(dst_reg, &src_reg); 5697 scalar_min_max_and(dst_reg, &src_reg); 5698 break; 5699 case BPF_OR: 5700 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 5701 scalar32_min_max_or(dst_reg, &src_reg); 5702 scalar_min_max_or(dst_reg, &src_reg); 5703 break; 5704 case BPF_LSH: 5705 if (umax_val >= insn_bitness) { 5706 /* Shifts greater than 31 or 63 are undefined. 5707 * This includes shifts by a negative number. 5708 */ 5709 mark_reg_unknown(env, regs, insn->dst_reg); 5710 break; 5711 } 5712 if (alu32) 5713 scalar32_min_max_lsh(dst_reg, &src_reg); 5714 else 5715 scalar_min_max_lsh(dst_reg, &src_reg); 5716 break; 5717 case BPF_RSH: 5718 if (umax_val >= insn_bitness) { 5719 /* Shifts greater than 31 or 63 are undefined. 5720 * This includes shifts by a negative number. 5721 */ 5722 mark_reg_unknown(env, regs, insn->dst_reg); 5723 break; 5724 } 5725 if (alu32) 5726 scalar32_min_max_rsh(dst_reg, &src_reg); 5727 else 5728 scalar_min_max_rsh(dst_reg, &src_reg); 5729 break; 5730 case BPF_ARSH: 5731 if (umax_val >= insn_bitness) { 5732 /* Shifts greater than 31 or 63 are undefined. 5733 * This includes shifts by a negative number. 5734 */ 5735 mark_reg_unknown(env, regs, insn->dst_reg); 5736 break; 5737 } 5738 if (alu32) 5739 scalar32_min_max_arsh(dst_reg, &src_reg); 5740 else 5741 scalar_min_max_arsh(dst_reg, &src_reg); 5742 break; 5743 default: 5744 mark_reg_unknown(env, regs, insn->dst_reg); 5745 break; 5746 } 5747 5748 /* ALU32 ops are zero extended into 64bit register */ 5749 if (alu32) 5750 zext_32_to_64(dst_reg); 5751 5752 __update_reg_bounds(dst_reg); 5753 __reg_deduce_bounds(dst_reg); 5754 __reg_bound_offset(dst_reg); 5755 return 0; 5756 } 5757 5758 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 5759 * and var_off. 5760 */ 5761 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 5762 struct bpf_insn *insn) 5763 { 5764 struct bpf_verifier_state *vstate = env->cur_state; 5765 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5766 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 5767 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 5768 u8 opcode = BPF_OP(insn->code); 5769 int err; 5770 5771 dst_reg = ®s[insn->dst_reg]; 5772 src_reg = NULL; 5773 if (dst_reg->type != SCALAR_VALUE) 5774 ptr_reg = dst_reg; 5775 if (BPF_SRC(insn->code) == BPF_X) { 5776 src_reg = ®s[insn->src_reg]; 5777 if (src_reg->type != SCALAR_VALUE) { 5778 if (dst_reg->type != SCALAR_VALUE) { 5779 /* Combining two pointers by any ALU op yields 5780 * an arbitrary scalar. Disallow all math except 5781 * pointer subtraction 5782 */ 5783 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5784 mark_reg_unknown(env, regs, insn->dst_reg); 5785 return 0; 5786 } 5787 verbose(env, "R%d pointer %s pointer prohibited\n", 5788 insn->dst_reg, 5789 bpf_alu_string[opcode >> 4]); 5790 return -EACCES; 5791 } else { 5792 /* scalar += pointer 5793 * This is legal, but we have to reverse our 5794 * src/dest handling in computing the range 5795 */ 5796 err = mark_chain_precision(env, insn->dst_reg); 5797 if (err) 5798 return err; 5799 return adjust_ptr_min_max_vals(env, insn, 5800 src_reg, dst_reg); 5801 } 5802 } else if (ptr_reg) { 5803 /* pointer += scalar */ 5804 err = mark_chain_precision(env, insn->src_reg); 5805 if (err) 5806 return err; 5807 return adjust_ptr_min_max_vals(env, insn, 5808 dst_reg, src_reg); 5809 } 5810 } else { 5811 /* Pretend the src is a reg with a known value, since we only 5812 * need to be able to read from this state. 5813 */ 5814 off_reg.type = SCALAR_VALUE; 5815 __mark_reg_known(&off_reg, insn->imm); 5816 src_reg = &off_reg; 5817 if (ptr_reg) /* pointer += K */ 5818 return adjust_ptr_min_max_vals(env, insn, 5819 ptr_reg, src_reg); 5820 } 5821 5822 /* Got here implies adding two SCALAR_VALUEs */ 5823 if (WARN_ON_ONCE(ptr_reg)) { 5824 print_verifier_state(env, state); 5825 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 5826 return -EINVAL; 5827 } 5828 if (WARN_ON(!src_reg)) { 5829 print_verifier_state(env, state); 5830 verbose(env, "verifier internal error: no src_reg\n"); 5831 return -EINVAL; 5832 } 5833 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 5834 } 5835 5836 /* check validity of 32-bit and 64-bit arithmetic operations */ 5837 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 5838 { 5839 struct bpf_reg_state *regs = cur_regs(env); 5840 u8 opcode = BPF_OP(insn->code); 5841 int err; 5842 5843 if (opcode == BPF_END || opcode == BPF_NEG) { 5844 if (opcode == BPF_NEG) { 5845 if (BPF_SRC(insn->code) != 0 || 5846 insn->src_reg != BPF_REG_0 || 5847 insn->off != 0 || insn->imm != 0) { 5848 verbose(env, "BPF_NEG uses reserved fields\n"); 5849 return -EINVAL; 5850 } 5851 } else { 5852 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 5853 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 5854 BPF_CLASS(insn->code) == BPF_ALU64) { 5855 verbose(env, "BPF_END uses reserved fields\n"); 5856 return -EINVAL; 5857 } 5858 } 5859 5860 /* check src operand */ 5861 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5862 if (err) 5863 return err; 5864 5865 if (is_pointer_value(env, insn->dst_reg)) { 5866 verbose(env, "R%d pointer arithmetic prohibited\n", 5867 insn->dst_reg); 5868 return -EACCES; 5869 } 5870 5871 /* check dest operand */ 5872 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5873 if (err) 5874 return err; 5875 5876 } else if (opcode == BPF_MOV) { 5877 5878 if (BPF_SRC(insn->code) == BPF_X) { 5879 if (insn->imm != 0 || insn->off != 0) { 5880 verbose(env, "BPF_MOV uses reserved fields\n"); 5881 return -EINVAL; 5882 } 5883 5884 /* check src operand */ 5885 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5886 if (err) 5887 return err; 5888 } else { 5889 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5890 verbose(env, "BPF_MOV uses reserved fields\n"); 5891 return -EINVAL; 5892 } 5893 } 5894 5895 /* check dest operand, mark as required later */ 5896 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5897 if (err) 5898 return err; 5899 5900 if (BPF_SRC(insn->code) == BPF_X) { 5901 struct bpf_reg_state *src_reg = regs + insn->src_reg; 5902 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 5903 5904 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5905 /* case: R1 = R2 5906 * copy register state to dest reg 5907 */ 5908 *dst_reg = *src_reg; 5909 dst_reg->live |= REG_LIVE_WRITTEN; 5910 dst_reg->subreg_def = DEF_NOT_SUBREG; 5911 } else { 5912 /* R1 = (u32) R2 */ 5913 if (is_pointer_value(env, insn->src_reg)) { 5914 verbose(env, 5915 "R%d partial copy of pointer\n", 5916 insn->src_reg); 5917 return -EACCES; 5918 } else if (src_reg->type == SCALAR_VALUE) { 5919 *dst_reg = *src_reg; 5920 dst_reg->live |= REG_LIVE_WRITTEN; 5921 dst_reg->subreg_def = env->insn_idx + 1; 5922 } else { 5923 mark_reg_unknown(env, regs, 5924 insn->dst_reg); 5925 } 5926 zext_32_to_64(dst_reg); 5927 } 5928 } else { 5929 /* case: R = imm 5930 * remember the value we stored into this reg 5931 */ 5932 /* clear any state __mark_reg_known doesn't set */ 5933 mark_reg_unknown(env, regs, insn->dst_reg); 5934 regs[insn->dst_reg].type = SCALAR_VALUE; 5935 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5936 __mark_reg_known(regs + insn->dst_reg, 5937 insn->imm); 5938 } else { 5939 __mark_reg_known(regs + insn->dst_reg, 5940 (u32)insn->imm); 5941 } 5942 } 5943 5944 } else if (opcode > BPF_END) { 5945 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 5946 return -EINVAL; 5947 5948 } else { /* all other ALU ops: and, sub, xor, add, ... */ 5949 5950 if (BPF_SRC(insn->code) == BPF_X) { 5951 if (insn->imm != 0 || insn->off != 0) { 5952 verbose(env, "BPF_ALU uses reserved fields\n"); 5953 return -EINVAL; 5954 } 5955 /* check src1 operand */ 5956 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5957 if (err) 5958 return err; 5959 } else { 5960 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5961 verbose(env, "BPF_ALU uses reserved fields\n"); 5962 return -EINVAL; 5963 } 5964 } 5965 5966 /* check src2 operand */ 5967 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5968 if (err) 5969 return err; 5970 5971 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 5972 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 5973 verbose(env, "div by zero\n"); 5974 return -EINVAL; 5975 } 5976 5977 if ((opcode == BPF_LSH || opcode == BPF_RSH || 5978 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 5979 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 5980 5981 if (insn->imm < 0 || insn->imm >= size) { 5982 verbose(env, "invalid shift %d\n", insn->imm); 5983 return -EINVAL; 5984 } 5985 } 5986 5987 /* check dest operand */ 5988 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5989 if (err) 5990 return err; 5991 5992 return adjust_reg_min_max_vals(env, insn); 5993 } 5994 5995 return 0; 5996 } 5997 5998 static void __find_good_pkt_pointers(struct bpf_func_state *state, 5999 struct bpf_reg_state *dst_reg, 6000 enum bpf_reg_type type, u16 new_range) 6001 { 6002 struct bpf_reg_state *reg; 6003 int i; 6004 6005 for (i = 0; i < MAX_BPF_REG; i++) { 6006 reg = &state->regs[i]; 6007 if (reg->type == type && reg->id == dst_reg->id) 6008 /* keep the maximum range already checked */ 6009 reg->range = max(reg->range, new_range); 6010 } 6011 6012 bpf_for_each_spilled_reg(i, state, reg) { 6013 if (!reg) 6014 continue; 6015 if (reg->type == type && reg->id == dst_reg->id) 6016 reg->range = max(reg->range, new_range); 6017 } 6018 } 6019 6020 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 6021 struct bpf_reg_state *dst_reg, 6022 enum bpf_reg_type type, 6023 bool range_right_open) 6024 { 6025 u16 new_range; 6026 int i; 6027 6028 if (dst_reg->off < 0 || 6029 (dst_reg->off == 0 && range_right_open)) 6030 /* This doesn't give us any range */ 6031 return; 6032 6033 if (dst_reg->umax_value > MAX_PACKET_OFF || 6034 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 6035 /* Risk of overflow. For instance, ptr + (1<<63) may be less 6036 * than pkt_end, but that's because it's also less than pkt. 6037 */ 6038 return; 6039 6040 new_range = dst_reg->off; 6041 if (range_right_open) 6042 new_range--; 6043 6044 /* Examples for register markings: 6045 * 6046 * pkt_data in dst register: 6047 * 6048 * r2 = r3; 6049 * r2 += 8; 6050 * if (r2 > pkt_end) goto <handle exception> 6051 * <access okay> 6052 * 6053 * r2 = r3; 6054 * r2 += 8; 6055 * if (r2 < pkt_end) goto <access okay> 6056 * <handle exception> 6057 * 6058 * Where: 6059 * r2 == dst_reg, pkt_end == src_reg 6060 * r2=pkt(id=n,off=8,r=0) 6061 * r3=pkt(id=n,off=0,r=0) 6062 * 6063 * pkt_data in src register: 6064 * 6065 * r2 = r3; 6066 * r2 += 8; 6067 * if (pkt_end >= r2) goto <access okay> 6068 * <handle exception> 6069 * 6070 * r2 = r3; 6071 * r2 += 8; 6072 * if (pkt_end <= r2) goto <handle exception> 6073 * <access okay> 6074 * 6075 * Where: 6076 * pkt_end == dst_reg, r2 == src_reg 6077 * r2=pkt(id=n,off=8,r=0) 6078 * r3=pkt(id=n,off=0,r=0) 6079 * 6080 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 6081 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 6082 * and [r3, r3 + 8-1) respectively is safe to access depending on 6083 * the check. 6084 */ 6085 6086 /* If our ids match, then we must have the same max_value. And we 6087 * don't care about the other reg's fixed offset, since if it's too big 6088 * the range won't allow anything. 6089 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 6090 */ 6091 for (i = 0; i <= vstate->curframe; i++) 6092 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 6093 new_range); 6094 } 6095 6096 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 6097 { 6098 struct tnum subreg = tnum_subreg(reg->var_off); 6099 s32 sval = (s32)val; 6100 6101 switch (opcode) { 6102 case BPF_JEQ: 6103 if (tnum_is_const(subreg)) 6104 return !!tnum_equals_const(subreg, val); 6105 break; 6106 case BPF_JNE: 6107 if (tnum_is_const(subreg)) 6108 return !tnum_equals_const(subreg, val); 6109 break; 6110 case BPF_JSET: 6111 if ((~subreg.mask & subreg.value) & val) 6112 return 1; 6113 if (!((subreg.mask | subreg.value) & val)) 6114 return 0; 6115 break; 6116 case BPF_JGT: 6117 if (reg->u32_min_value > val) 6118 return 1; 6119 else if (reg->u32_max_value <= val) 6120 return 0; 6121 break; 6122 case BPF_JSGT: 6123 if (reg->s32_min_value > sval) 6124 return 1; 6125 else if (reg->s32_max_value < sval) 6126 return 0; 6127 break; 6128 case BPF_JLT: 6129 if (reg->u32_max_value < val) 6130 return 1; 6131 else if (reg->u32_min_value >= val) 6132 return 0; 6133 break; 6134 case BPF_JSLT: 6135 if (reg->s32_max_value < sval) 6136 return 1; 6137 else if (reg->s32_min_value >= sval) 6138 return 0; 6139 break; 6140 case BPF_JGE: 6141 if (reg->u32_min_value >= val) 6142 return 1; 6143 else if (reg->u32_max_value < val) 6144 return 0; 6145 break; 6146 case BPF_JSGE: 6147 if (reg->s32_min_value >= sval) 6148 return 1; 6149 else if (reg->s32_max_value < sval) 6150 return 0; 6151 break; 6152 case BPF_JLE: 6153 if (reg->u32_max_value <= val) 6154 return 1; 6155 else if (reg->u32_min_value > val) 6156 return 0; 6157 break; 6158 case BPF_JSLE: 6159 if (reg->s32_max_value <= sval) 6160 return 1; 6161 else if (reg->s32_min_value > sval) 6162 return 0; 6163 break; 6164 } 6165 6166 return -1; 6167 } 6168 6169 6170 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 6171 { 6172 s64 sval = (s64)val; 6173 6174 switch (opcode) { 6175 case BPF_JEQ: 6176 if (tnum_is_const(reg->var_off)) 6177 return !!tnum_equals_const(reg->var_off, val); 6178 break; 6179 case BPF_JNE: 6180 if (tnum_is_const(reg->var_off)) 6181 return !tnum_equals_const(reg->var_off, val); 6182 break; 6183 case BPF_JSET: 6184 if ((~reg->var_off.mask & reg->var_off.value) & val) 6185 return 1; 6186 if (!((reg->var_off.mask | reg->var_off.value) & val)) 6187 return 0; 6188 break; 6189 case BPF_JGT: 6190 if (reg->umin_value > val) 6191 return 1; 6192 else if (reg->umax_value <= val) 6193 return 0; 6194 break; 6195 case BPF_JSGT: 6196 if (reg->smin_value > sval) 6197 return 1; 6198 else if (reg->smax_value < sval) 6199 return 0; 6200 break; 6201 case BPF_JLT: 6202 if (reg->umax_value < val) 6203 return 1; 6204 else if (reg->umin_value >= val) 6205 return 0; 6206 break; 6207 case BPF_JSLT: 6208 if (reg->smax_value < sval) 6209 return 1; 6210 else if (reg->smin_value >= sval) 6211 return 0; 6212 break; 6213 case BPF_JGE: 6214 if (reg->umin_value >= val) 6215 return 1; 6216 else if (reg->umax_value < val) 6217 return 0; 6218 break; 6219 case BPF_JSGE: 6220 if (reg->smin_value >= sval) 6221 return 1; 6222 else if (reg->smax_value < sval) 6223 return 0; 6224 break; 6225 case BPF_JLE: 6226 if (reg->umax_value <= val) 6227 return 1; 6228 else if (reg->umin_value > val) 6229 return 0; 6230 break; 6231 case BPF_JSLE: 6232 if (reg->smax_value <= sval) 6233 return 1; 6234 else if (reg->smin_value > sval) 6235 return 0; 6236 break; 6237 } 6238 6239 return -1; 6240 } 6241 6242 /* compute branch direction of the expression "if (reg opcode val) goto target;" 6243 * and return: 6244 * 1 - branch will be taken and "goto target" will be executed 6245 * 0 - branch will not be taken and fall-through to next insn 6246 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 6247 * range [0,10] 6248 */ 6249 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 6250 bool is_jmp32) 6251 { 6252 if (__is_pointer_value(false, reg)) 6253 return -1; 6254 6255 if (is_jmp32) 6256 return is_branch32_taken(reg, val, opcode); 6257 return is_branch64_taken(reg, val, opcode); 6258 } 6259 6260 /* Adjusts the register min/max values in the case that the dst_reg is the 6261 * variable register that we are working on, and src_reg is a constant or we're 6262 * simply doing a BPF_K check. 6263 * In JEQ/JNE cases we also adjust the var_off values. 6264 */ 6265 static void reg_set_min_max(struct bpf_reg_state *true_reg, 6266 struct bpf_reg_state *false_reg, 6267 u64 val, u32 val32, 6268 u8 opcode, bool is_jmp32) 6269 { 6270 struct tnum false_32off = tnum_subreg(false_reg->var_off); 6271 struct tnum false_64off = false_reg->var_off; 6272 struct tnum true_32off = tnum_subreg(true_reg->var_off); 6273 struct tnum true_64off = true_reg->var_off; 6274 s64 sval = (s64)val; 6275 s32 sval32 = (s32)val32; 6276 6277 /* If the dst_reg is a pointer, we can't learn anything about its 6278 * variable offset from the compare (unless src_reg were a pointer into 6279 * the same object, but we don't bother with that. 6280 * Since false_reg and true_reg have the same type by construction, we 6281 * only need to check one of them for pointerness. 6282 */ 6283 if (__is_pointer_value(false, false_reg)) 6284 return; 6285 6286 switch (opcode) { 6287 case BPF_JEQ: 6288 case BPF_JNE: 6289 { 6290 struct bpf_reg_state *reg = 6291 opcode == BPF_JEQ ? true_reg : false_reg; 6292 6293 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 6294 * if it is true we know the value for sure. Likewise for 6295 * BPF_JNE. 6296 */ 6297 if (is_jmp32) 6298 __mark_reg32_known(reg, val32); 6299 else 6300 __mark_reg_known(reg, val); 6301 break; 6302 } 6303 case BPF_JSET: 6304 if (is_jmp32) { 6305 false_32off = tnum_and(false_32off, tnum_const(~val32)); 6306 if (is_power_of_2(val32)) 6307 true_32off = tnum_or(true_32off, 6308 tnum_const(val32)); 6309 } else { 6310 false_64off = tnum_and(false_64off, tnum_const(~val)); 6311 if (is_power_of_2(val)) 6312 true_64off = tnum_or(true_64off, 6313 tnum_const(val)); 6314 } 6315 break; 6316 case BPF_JGE: 6317 case BPF_JGT: 6318 { 6319 if (is_jmp32) { 6320 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 6321 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 6322 6323 false_reg->u32_max_value = min(false_reg->u32_max_value, 6324 false_umax); 6325 true_reg->u32_min_value = max(true_reg->u32_min_value, 6326 true_umin); 6327 } else { 6328 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 6329 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 6330 6331 false_reg->umax_value = min(false_reg->umax_value, false_umax); 6332 true_reg->umin_value = max(true_reg->umin_value, true_umin); 6333 } 6334 break; 6335 } 6336 case BPF_JSGE: 6337 case BPF_JSGT: 6338 { 6339 if (is_jmp32) { 6340 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 6341 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 6342 6343 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 6344 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 6345 } else { 6346 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 6347 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 6348 6349 false_reg->smax_value = min(false_reg->smax_value, false_smax); 6350 true_reg->smin_value = max(true_reg->smin_value, true_smin); 6351 } 6352 break; 6353 } 6354 case BPF_JLE: 6355 case BPF_JLT: 6356 { 6357 if (is_jmp32) { 6358 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 6359 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 6360 6361 false_reg->u32_min_value = max(false_reg->u32_min_value, 6362 false_umin); 6363 true_reg->u32_max_value = min(true_reg->u32_max_value, 6364 true_umax); 6365 } else { 6366 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 6367 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 6368 6369 false_reg->umin_value = max(false_reg->umin_value, false_umin); 6370 true_reg->umax_value = min(true_reg->umax_value, true_umax); 6371 } 6372 break; 6373 } 6374 case BPF_JSLE: 6375 case BPF_JSLT: 6376 { 6377 if (is_jmp32) { 6378 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 6379 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 6380 6381 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 6382 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 6383 } else { 6384 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 6385 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 6386 6387 false_reg->smin_value = max(false_reg->smin_value, false_smin); 6388 true_reg->smax_value = min(true_reg->smax_value, true_smax); 6389 } 6390 break; 6391 } 6392 default: 6393 return; 6394 } 6395 6396 if (is_jmp32) { 6397 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 6398 tnum_subreg(false_32off)); 6399 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 6400 tnum_subreg(true_32off)); 6401 __reg_combine_32_into_64(false_reg); 6402 __reg_combine_32_into_64(true_reg); 6403 } else { 6404 false_reg->var_off = false_64off; 6405 true_reg->var_off = true_64off; 6406 __reg_combine_64_into_32(false_reg); 6407 __reg_combine_64_into_32(true_reg); 6408 } 6409 } 6410 6411 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 6412 * the variable reg. 6413 */ 6414 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 6415 struct bpf_reg_state *false_reg, 6416 u64 val, u32 val32, 6417 u8 opcode, bool is_jmp32) 6418 { 6419 /* How can we transform "a <op> b" into "b <op> a"? */ 6420 static const u8 opcode_flip[16] = { 6421 /* these stay the same */ 6422 [BPF_JEQ >> 4] = BPF_JEQ, 6423 [BPF_JNE >> 4] = BPF_JNE, 6424 [BPF_JSET >> 4] = BPF_JSET, 6425 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 6426 [BPF_JGE >> 4] = BPF_JLE, 6427 [BPF_JGT >> 4] = BPF_JLT, 6428 [BPF_JLE >> 4] = BPF_JGE, 6429 [BPF_JLT >> 4] = BPF_JGT, 6430 [BPF_JSGE >> 4] = BPF_JSLE, 6431 [BPF_JSGT >> 4] = BPF_JSLT, 6432 [BPF_JSLE >> 4] = BPF_JSGE, 6433 [BPF_JSLT >> 4] = BPF_JSGT 6434 }; 6435 opcode = opcode_flip[opcode >> 4]; 6436 /* This uses zero as "not present in table"; luckily the zero opcode, 6437 * BPF_JA, can't get here. 6438 */ 6439 if (opcode) 6440 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 6441 } 6442 6443 /* Regs are known to be equal, so intersect their min/max/var_off */ 6444 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 6445 struct bpf_reg_state *dst_reg) 6446 { 6447 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 6448 dst_reg->umin_value); 6449 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 6450 dst_reg->umax_value); 6451 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 6452 dst_reg->smin_value); 6453 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 6454 dst_reg->smax_value); 6455 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 6456 dst_reg->var_off); 6457 /* We might have learned new bounds from the var_off. */ 6458 __update_reg_bounds(src_reg); 6459 __update_reg_bounds(dst_reg); 6460 /* We might have learned something about the sign bit. */ 6461 __reg_deduce_bounds(src_reg); 6462 __reg_deduce_bounds(dst_reg); 6463 /* We might have learned some bits from the bounds. */ 6464 __reg_bound_offset(src_reg); 6465 __reg_bound_offset(dst_reg); 6466 /* Intersecting with the old var_off might have improved our bounds 6467 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 6468 * then new var_off is (0; 0x7f...fc) which improves our umax. 6469 */ 6470 __update_reg_bounds(src_reg); 6471 __update_reg_bounds(dst_reg); 6472 } 6473 6474 static void reg_combine_min_max(struct bpf_reg_state *true_src, 6475 struct bpf_reg_state *true_dst, 6476 struct bpf_reg_state *false_src, 6477 struct bpf_reg_state *false_dst, 6478 u8 opcode) 6479 { 6480 switch (opcode) { 6481 case BPF_JEQ: 6482 __reg_combine_min_max(true_src, true_dst); 6483 break; 6484 case BPF_JNE: 6485 __reg_combine_min_max(false_src, false_dst); 6486 break; 6487 } 6488 } 6489 6490 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 6491 struct bpf_reg_state *reg, u32 id, 6492 bool is_null) 6493 { 6494 if (reg_type_may_be_null(reg->type) && reg->id == id) { 6495 /* Old offset (both fixed and variable parts) should 6496 * have been known-zero, because we don't allow pointer 6497 * arithmetic on pointers that might be NULL. 6498 */ 6499 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 6500 !tnum_equals_const(reg->var_off, 0) || 6501 reg->off)) { 6502 __mark_reg_known_zero(reg); 6503 reg->off = 0; 6504 } 6505 if (is_null) { 6506 reg->type = SCALAR_VALUE; 6507 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 6508 if (reg->map_ptr->inner_map_meta) { 6509 reg->type = CONST_PTR_TO_MAP; 6510 reg->map_ptr = reg->map_ptr->inner_map_meta; 6511 } else if (reg->map_ptr->map_type == 6512 BPF_MAP_TYPE_XSKMAP) { 6513 reg->type = PTR_TO_XDP_SOCK; 6514 } else { 6515 reg->type = PTR_TO_MAP_VALUE; 6516 } 6517 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 6518 reg->type = PTR_TO_SOCKET; 6519 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 6520 reg->type = PTR_TO_SOCK_COMMON; 6521 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 6522 reg->type = PTR_TO_TCP_SOCK; 6523 } 6524 if (is_null) { 6525 /* We don't need id and ref_obj_id from this point 6526 * onwards anymore, thus we should better reset it, 6527 * so that state pruning has chances to take effect. 6528 */ 6529 reg->id = 0; 6530 reg->ref_obj_id = 0; 6531 } else if (!reg_may_point_to_spin_lock(reg)) { 6532 /* For not-NULL ptr, reg->ref_obj_id will be reset 6533 * in release_reg_references(). 6534 * 6535 * reg->id is still used by spin_lock ptr. Other 6536 * than spin_lock ptr type, reg->id can be reset. 6537 */ 6538 reg->id = 0; 6539 } 6540 } 6541 } 6542 6543 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 6544 bool is_null) 6545 { 6546 struct bpf_reg_state *reg; 6547 int i; 6548 6549 for (i = 0; i < MAX_BPF_REG; i++) 6550 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 6551 6552 bpf_for_each_spilled_reg(i, state, reg) { 6553 if (!reg) 6554 continue; 6555 mark_ptr_or_null_reg(state, reg, id, is_null); 6556 } 6557 } 6558 6559 /* The logic is similar to find_good_pkt_pointers(), both could eventually 6560 * be folded together at some point. 6561 */ 6562 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 6563 bool is_null) 6564 { 6565 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6566 struct bpf_reg_state *regs = state->regs; 6567 u32 ref_obj_id = regs[regno].ref_obj_id; 6568 u32 id = regs[regno].id; 6569 int i; 6570 6571 if (ref_obj_id && ref_obj_id == id && is_null) 6572 /* regs[regno] is in the " == NULL" branch. 6573 * No one could have freed the reference state before 6574 * doing the NULL check. 6575 */ 6576 WARN_ON_ONCE(release_reference_state(state, id)); 6577 6578 for (i = 0; i <= vstate->curframe; i++) 6579 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 6580 } 6581 6582 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 6583 struct bpf_reg_state *dst_reg, 6584 struct bpf_reg_state *src_reg, 6585 struct bpf_verifier_state *this_branch, 6586 struct bpf_verifier_state *other_branch) 6587 { 6588 if (BPF_SRC(insn->code) != BPF_X) 6589 return false; 6590 6591 /* Pointers are always 64-bit. */ 6592 if (BPF_CLASS(insn->code) == BPF_JMP32) 6593 return false; 6594 6595 switch (BPF_OP(insn->code)) { 6596 case BPF_JGT: 6597 if ((dst_reg->type == PTR_TO_PACKET && 6598 src_reg->type == PTR_TO_PACKET_END) || 6599 (dst_reg->type == PTR_TO_PACKET_META && 6600 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6601 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 6602 find_good_pkt_pointers(this_branch, dst_reg, 6603 dst_reg->type, false); 6604 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6605 src_reg->type == PTR_TO_PACKET) || 6606 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6607 src_reg->type == PTR_TO_PACKET_META)) { 6608 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 6609 find_good_pkt_pointers(other_branch, src_reg, 6610 src_reg->type, true); 6611 } else { 6612 return false; 6613 } 6614 break; 6615 case BPF_JLT: 6616 if ((dst_reg->type == PTR_TO_PACKET && 6617 src_reg->type == PTR_TO_PACKET_END) || 6618 (dst_reg->type == PTR_TO_PACKET_META && 6619 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6620 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 6621 find_good_pkt_pointers(other_branch, dst_reg, 6622 dst_reg->type, true); 6623 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6624 src_reg->type == PTR_TO_PACKET) || 6625 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6626 src_reg->type == PTR_TO_PACKET_META)) { 6627 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 6628 find_good_pkt_pointers(this_branch, src_reg, 6629 src_reg->type, false); 6630 } else { 6631 return false; 6632 } 6633 break; 6634 case BPF_JGE: 6635 if ((dst_reg->type == PTR_TO_PACKET && 6636 src_reg->type == PTR_TO_PACKET_END) || 6637 (dst_reg->type == PTR_TO_PACKET_META && 6638 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6639 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 6640 find_good_pkt_pointers(this_branch, dst_reg, 6641 dst_reg->type, true); 6642 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6643 src_reg->type == PTR_TO_PACKET) || 6644 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6645 src_reg->type == PTR_TO_PACKET_META)) { 6646 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 6647 find_good_pkt_pointers(other_branch, src_reg, 6648 src_reg->type, false); 6649 } else { 6650 return false; 6651 } 6652 break; 6653 case BPF_JLE: 6654 if ((dst_reg->type == PTR_TO_PACKET && 6655 src_reg->type == PTR_TO_PACKET_END) || 6656 (dst_reg->type == PTR_TO_PACKET_META && 6657 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6658 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 6659 find_good_pkt_pointers(other_branch, dst_reg, 6660 dst_reg->type, false); 6661 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6662 src_reg->type == PTR_TO_PACKET) || 6663 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6664 src_reg->type == PTR_TO_PACKET_META)) { 6665 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 6666 find_good_pkt_pointers(this_branch, src_reg, 6667 src_reg->type, true); 6668 } else { 6669 return false; 6670 } 6671 break; 6672 default: 6673 return false; 6674 } 6675 6676 return true; 6677 } 6678 6679 static int check_cond_jmp_op(struct bpf_verifier_env *env, 6680 struct bpf_insn *insn, int *insn_idx) 6681 { 6682 struct bpf_verifier_state *this_branch = env->cur_state; 6683 struct bpf_verifier_state *other_branch; 6684 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 6685 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 6686 u8 opcode = BPF_OP(insn->code); 6687 bool is_jmp32; 6688 int pred = -1; 6689 int err; 6690 6691 /* Only conditional jumps are expected to reach here. */ 6692 if (opcode == BPF_JA || opcode > BPF_JSLE) { 6693 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 6694 return -EINVAL; 6695 } 6696 6697 if (BPF_SRC(insn->code) == BPF_X) { 6698 if (insn->imm != 0) { 6699 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6700 return -EINVAL; 6701 } 6702 6703 /* check src1 operand */ 6704 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6705 if (err) 6706 return err; 6707 6708 if (is_pointer_value(env, insn->src_reg)) { 6709 verbose(env, "R%d pointer comparison prohibited\n", 6710 insn->src_reg); 6711 return -EACCES; 6712 } 6713 src_reg = ®s[insn->src_reg]; 6714 } else { 6715 if (insn->src_reg != BPF_REG_0) { 6716 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6717 return -EINVAL; 6718 } 6719 } 6720 6721 /* check src2 operand */ 6722 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6723 if (err) 6724 return err; 6725 6726 dst_reg = ®s[insn->dst_reg]; 6727 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 6728 6729 if (BPF_SRC(insn->code) == BPF_K) { 6730 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 6731 } else if (src_reg->type == SCALAR_VALUE && 6732 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 6733 pred = is_branch_taken(dst_reg, 6734 tnum_subreg(src_reg->var_off).value, 6735 opcode, 6736 is_jmp32); 6737 } else if (src_reg->type == SCALAR_VALUE && 6738 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 6739 pred = is_branch_taken(dst_reg, 6740 src_reg->var_off.value, 6741 opcode, 6742 is_jmp32); 6743 } 6744 6745 if (pred >= 0) { 6746 err = mark_chain_precision(env, insn->dst_reg); 6747 if (BPF_SRC(insn->code) == BPF_X && !err) 6748 err = mark_chain_precision(env, insn->src_reg); 6749 if (err) 6750 return err; 6751 } 6752 if (pred == 1) { 6753 /* only follow the goto, ignore fall-through */ 6754 *insn_idx += insn->off; 6755 return 0; 6756 } else if (pred == 0) { 6757 /* only follow fall-through branch, since 6758 * that's where the program will go 6759 */ 6760 return 0; 6761 } 6762 6763 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 6764 false); 6765 if (!other_branch) 6766 return -EFAULT; 6767 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 6768 6769 /* detect if we are comparing against a constant value so we can adjust 6770 * our min/max values for our dst register. 6771 * this is only legit if both are scalars (or pointers to the same 6772 * object, I suppose, but we don't support that right now), because 6773 * otherwise the different base pointers mean the offsets aren't 6774 * comparable. 6775 */ 6776 if (BPF_SRC(insn->code) == BPF_X) { 6777 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 6778 6779 if (dst_reg->type == SCALAR_VALUE && 6780 src_reg->type == SCALAR_VALUE) { 6781 if (tnum_is_const(src_reg->var_off) || 6782 (is_jmp32 && 6783 tnum_is_const(tnum_subreg(src_reg->var_off)))) 6784 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6785 dst_reg, 6786 src_reg->var_off.value, 6787 tnum_subreg(src_reg->var_off).value, 6788 opcode, is_jmp32); 6789 else if (tnum_is_const(dst_reg->var_off) || 6790 (is_jmp32 && 6791 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 6792 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 6793 src_reg, 6794 dst_reg->var_off.value, 6795 tnum_subreg(dst_reg->var_off).value, 6796 opcode, is_jmp32); 6797 else if (!is_jmp32 && 6798 (opcode == BPF_JEQ || opcode == BPF_JNE)) 6799 /* Comparing for equality, we can combine knowledge */ 6800 reg_combine_min_max(&other_branch_regs[insn->src_reg], 6801 &other_branch_regs[insn->dst_reg], 6802 src_reg, dst_reg, opcode); 6803 } 6804 } else if (dst_reg->type == SCALAR_VALUE) { 6805 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6806 dst_reg, insn->imm, (u32)insn->imm, 6807 opcode, is_jmp32); 6808 } 6809 6810 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 6811 * NOTE: these optimizations below are related with pointer comparison 6812 * which will never be JMP32. 6813 */ 6814 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 6815 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 6816 reg_type_may_be_null(dst_reg->type)) { 6817 /* Mark all identical registers in each branch as either 6818 * safe or unknown depending R == 0 or R != 0 conditional. 6819 */ 6820 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 6821 opcode == BPF_JNE); 6822 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 6823 opcode == BPF_JEQ); 6824 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 6825 this_branch, other_branch) && 6826 is_pointer_value(env, insn->dst_reg)) { 6827 verbose(env, "R%d pointer comparison prohibited\n", 6828 insn->dst_reg); 6829 return -EACCES; 6830 } 6831 if (env->log.level & BPF_LOG_LEVEL) 6832 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 6833 return 0; 6834 } 6835 6836 /* verify BPF_LD_IMM64 instruction */ 6837 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 6838 { 6839 struct bpf_insn_aux_data *aux = cur_aux(env); 6840 struct bpf_reg_state *regs = cur_regs(env); 6841 struct bpf_map *map; 6842 int err; 6843 6844 if (BPF_SIZE(insn->code) != BPF_DW) { 6845 verbose(env, "invalid BPF_LD_IMM insn\n"); 6846 return -EINVAL; 6847 } 6848 if (insn->off != 0) { 6849 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 6850 return -EINVAL; 6851 } 6852 6853 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6854 if (err) 6855 return err; 6856 6857 if (insn->src_reg == 0) { 6858 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 6859 6860 regs[insn->dst_reg].type = SCALAR_VALUE; 6861 __mark_reg_known(®s[insn->dst_reg], imm); 6862 return 0; 6863 } 6864 6865 map = env->used_maps[aux->map_index]; 6866 mark_reg_known_zero(env, regs, insn->dst_reg); 6867 regs[insn->dst_reg].map_ptr = map; 6868 6869 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 6870 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 6871 regs[insn->dst_reg].off = aux->map_off; 6872 if (map_value_has_spin_lock(map)) 6873 regs[insn->dst_reg].id = ++env->id_gen; 6874 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 6875 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 6876 } else { 6877 verbose(env, "bpf verifier is misconfigured\n"); 6878 return -EINVAL; 6879 } 6880 6881 return 0; 6882 } 6883 6884 static bool may_access_skb(enum bpf_prog_type type) 6885 { 6886 switch (type) { 6887 case BPF_PROG_TYPE_SOCKET_FILTER: 6888 case BPF_PROG_TYPE_SCHED_CLS: 6889 case BPF_PROG_TYPE_SCHED_ACT: 6890 return true; 6891 default: 6892 return false; 6893 } 6894 } 6895 6896 /* verify safety of LD_ABS|LD_IND instructions: 6897 * - they can only appear in the programs where ctx == skb 6898 * - since they are wrappers of function calls, they scratch R1-R5 registers, 6899 * preserve R6-R9, and store return value into R0 6900 * 6901 * Implicit input: 6902 * ctx == skb == R6 == CTX 6903 * 6904 * Explicit input: 6905 * SRC == any register 6906 * IMM == 32-bit immediate 6907 * 6908 * Output: 6909 * R0 - 8/16/32-bit skb data converted to cpu endianness 6910 */ 6911 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 6912 { 6913 struct bpf_reg_state *regs = cur_regs(env); 6914 static const int ctx_reg = BPF_REG_6; 6915 u8 mode = BPF_MODE(insn->code); 6916 int i, err; 6917 6918 if (!may_access_skb(env->prog->type)) { 6919 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 6920 return -EINVAL; 6921 } 6922 6923 if (!env->ops->gen_ld_abs) { 6924 verbose(env, "bpf verifier is misconfigured\n"); 6925 return -EINVAL; 6926 } 6927 6928 if (env->subprog_cnt > 1) { 6929 /* when program has LD_ABS insn JITs and interpreter assume 6930 * that r1 == ctx == skb which is not the case for callees 6931 * that can have arbitrary arguments. It's problematic 6932 * for main prog as well since JITs would need to analyze 6933 * all functions in order to make proper register save/restore 6934 * decisions in the main prog. Hence disallow LD_ABS with calls 6935 */ 6936 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 6937 return -EINVAL; 6938 } 6939 6940 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 6941 BPF_SIZE(insn->code) == BPF_DW || 6942 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 6943 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 6944 return -EINVAL; 6945 } 6946 6947 /* check whether implicit source operand (register R6) is readable */ 6948 err = check_reg_arg(env, ctx_reg, SRC_OP); 6949 if (err) 6950 return err; 6951 6952 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 6953 * gen_ld_abs() may terminate the program at runtime, leading to 6954 * reference leak. 6955 */ 6956 err = check_reference_leak(env); 6957 if (err) { 6958 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 6959 return err; 6960 } 6961 6962 if (env->cur_state->active_spin_lock) { 6963 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 6964 return -EINVAL; 6965 } 6966 6967 if (regs[ctx_reg].type != PTR_TO_CTX) { 6968 verbose(env, 6969 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 6970 return -EINVAL; 6971 } 6972 6973 if (mode == BPF_IND) { 6974 /* check explicit source operand */ 6975 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6976 if (err) 6977 return err; 6978 } 6979 6980 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 6981 if (err < 0) 6982 return err; 6983 6984 /* reset caller saved regs to unreadable */ 6985 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6986 mark_reg_not_init(env, regs, caller_saved[i]); 6987 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6988 } 6989 6990 /* mark destination R0 register as readable, since it contains 6991 * the value fetched from the packet. 6992 * Already marked as written above. 6993 */ 6994 mark_reg_unknown(env, regs, BPF_REG_0); 6995 /* ld_abs load up to 32-bit skb data. */ 6996 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 6997 return 0; 6998 } 6999 7000 static int check_return_code(struct bpf_verifier_env *env) 7001 { 7002 struct tnum enforce_attach_type_range = tnum_unknown; 7003 const struct bpf_prog *prog = env->prog; 7004 struct bpf_reg_state *reg; 7005 struct tnum range = tnum_range(0, 1); 7006 int err; 7007 7008 /* LSM and struct_ops func-ptr's return type could be "void" */ 7009 if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS || 7010 env->prog->type == BPF_PROG_TYPE_LSM) && 7011 !prog->aux->attach_func_proto->type) 7012 return 0; 7013 7014 /* eBPF calling convetion is such that R0 is used 7015 * to return the value from eBPF program. 7016 * Make sure that it's readable at this time 7017 * of bpf_exit, which means that program wrote 7018 * something into it earlier 7019 */ 7020 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7021 if (err) 7022 return err; 7023 7024 if (is_pointer_value(env, BPF_REG_0)) { 7025 verbose(env, "R0 leaks addr as return value\n"); 7026 return -EACCES; 7027 } 7028 7029 switch (env->prog->type) { 7030 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 7031 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 7032 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG) 7033 range = tnum_range(1, 1); 7034 break; 7035 case BPF_PROG_TYPE_CGROUP_SKB: 7036 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 7037 range = tnum_range(0, 3); 7038 enforce_attach_type_range = tnum_range(2, 3); 7039 } 7040 break; 7041 case BPF_PROG_TYPE_CGROUP_SOCK: 7042 case BPF_PROG_TYPE_SOCK_OPS: 7043 case BPF_PROG_TYPE_CGROUP_DEVICE: 7044 case BPF_PROG_TYPE_CGROUP_SYSCTL: 7045 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 7046 break; 7047 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7048 if (!env->prog->aux->attach_btf_id) 7049 return 0; 7050 range = tnum_const(0); 7051 break; 7052 default: 7053 return 0; 7054 } 7055 7056 reg = cur_regs(env) + BPF_REG_0; 7057 if (reg->type != SCALAR_VALUE) { 7058 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 7059 reg_type_str[reg->type]); 7060 return -EINVAL; 7061 } 7062 7063 if (!tnum_in(range, reg->var_off)) { 7064 char tn_buf[48]; 7065 7066 verbose(env, "At program exit the register R0 "); 7067 if (!tnum_is_unknown(reg->var_off)) { 7068 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7069 verbose(env, "has value %s", tn_buf); 7070 } else { 7071 verbose(env, "has unknown scalar value"); 7072 } 7073 tnum_strn(tn_buf, sizeof(tn_buf), range); 7074 verbose(env, " should have been in %s\n", tn_buf); 7075 return -EINVAL; 7076 } 7077 7078 if (!tnum_is_unknown(enforce_attach_type_range) && 7079 tnum_in(enforce_attach_type_range, reg->var_off)) 7080 env->prog->enforce_expected_attach_type = 1; 7081 return 0; 7082 } 7083 7084 /* non-recursive DFS pseudo code 7085 * 1 procedure DFS-iterative(G,v): 7086 * 2 label v as discovered 7087 * 3 let S be a stack 7088 * 4 S.push(v) 7089 * 5 while S is not empty 7090 * 6 t <- S.pop() 7091 * 7 if t is what we're looking for: 7092 * 8 return t 7093 * 9 for all edges e in G.adjacentEdges(t) do 7094 * 10 if edge e is already labelled 7095 * 11 continue with the next edge 7096 * 12 w <- G.adjacentVertex(t,e) 7097 * 13 if vertex w is not discovered and not explored 7098 * 14 label e as tree-edge 7099 * 15 label w as discovered 7100 * 16 S.push(w) 7101 * 17 continue at 5 7102 * 18 else if vertex w is discovered 7103 * 19 label e as back-edge 7104 * 20 else 7105 * 21 // vertex w is explored 7106 * 22 label e as forward- or cross-edge 7107 * 23 label t as explored 7108 * 24 S.pop() 7109 * 7110 * convention: 7111 * 0x10 - discovered 7112 * 0x11 - discovered and fall-through edge labelled 7113 * 0x12 - discovered and fall-through and branch edges labelled 7114 * 0x20 - explored 7115 */ 7116 7117 enum { 7118 DISCOVERED = 0x10, 7119 EXPLORED = 0x20, 7120 FALLTHROUGH = 1, 7121 BRANCH = 2, 7122 }; 7123 7124 static u32 state_htab_size(struct bpf_verifier_env *env) 7125 { 7126 return env->prog->len; 7127 } 7128 7129 static struct bpf_verifier_state_list **explored_state( 7130 struct bpf_verifier_env *env, 7131 int idx) 7132 { 7133 struct bpf_verifier_state *cur = env->cur_state; 7134 struct bpf_func_state *state = cur->frame[cur->curframe]; 7135 7136 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 7137 } 7138 7139 static void init_explored_state(struct bpf_verifier_env *env, int idx) 7140 { 7141 env->insn_aux_data[idx].prune_point = true; 7142 } 7143 7144 /* t, w, e - match pseudo-code above: 7145 * t - index of current instruction 7146 * w - next instruction 7147 * e - edge 7148 */ 7149 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 7150 bool loop_ok) 7151 { 7152 int *insn_stack = env->cfg.insn_stack; 7153 int *insn_state = env->cfg.insn_state; 7154 7155 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 7156 return 0; 7157 7158 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 7159 return 0; 7160 7161 if (w < 0 || w >= env->prog->len) { 7162 verbose_linfo(env, t, "%d: ", t); 7163 verbose(env, "jump out of range from insn %d to %d\n", t, w); 7164 return -EINVAL; 7165 } 7166 7167 if (e == BRANCH) 7168 /* mark branch target for state pruning */ 7169 init_explored_state(env, w); 7170 7171 if (insn_state[w] == 0) { 7172 /* tree-edge */ 7173 insn_state[t] = DISCOVERED | e; 7174 insn_state[w] = DISCOVERED; 7175 if (env->cfg.cur_stack >= env->prog->len) 7176 return -E2BIG; 7177 insn_stack[env->cfg.cur_stack++] = w; 7178 return 1; 7179 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 7180 if (loop_ok && env->allow_ptr_leaks) 7181 return 0; 7182 verbose_linfo(env, t, "%d: ", t); 7183 verbose_linfo(env, w, "%d: ", w); 7184 verbose(env, "back-edge from insn %d to %d\n", t, w); 7185 return -EINVAL; 7186 } else if (insn_state[w] == EXPLORED) { 7187 /* forward- or cross-edge */ 7188 insn_state[t] = DISCOVERED | e; 7189 } else { 7190 verbose(env, "insn state internal bug\n"); 7191 return -EFAULT; 7192 } 7193 return 0; 7194 } 7195 7196 /* non-recursive depth-first-search to detect loops in BPF program 7197 * loop == back-edge in directed graph 7198 */ 7199 static int check_cfg(struct bpf_verifier_env *env) 7200 { 7201 struct bpf_insn *insns = env->prog->insnsi; 7202 int insn_cnt = env->prog->len; 7203 int *insn_stack, *insn_state; 7204 int ret = 0; 7205 int i, t; 7206 7207 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7208 if (!insn_state) 7209 return -ENOMEM; 7210 7211 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7212 if (!insn_stack) { 7213 kvfree(insn_state); 7214 return -ENOMEM; 7215 } 7216 7217 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 7218 insn_stack[0] = 0; /* 0 is the first instruction */ 7219 env->cfg.cur_stack = 1; 7220 7221 peek_stack: 7222 if (env->cfg.cur_stack == 0) 7223 goto check_state; 7224 t = insn_stack[env->cfg.cur_stack - 1]; 7225 7226 if (BPF_CLASS(insns[t].code) == BPF_JMP || 7227 BPF_CLASS(insns[t].code) == BPF_JMP32) { 7228 u8 opcode = BPF_OP(insns[t].code); 7229 7230 if (opcode == BPF_EXIT) { 7231 goto mark_explored; 7232 } else if (opcode == BPF_CALL) { 7233 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7234 if (ret == 1) 7235 goto peek_stack; 7236 else if (ret < 0) 7237 goto err_free; 7238 if (t + 1 < insn_cnt) 7239 init_explored_state(env, t + 1); 7240 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 7241 init_explored_state(env, t); 7242 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 7243 env, false); 7244 if (ret == 1) 7245 goto peek_stack; 7246 else if (ret < 0) 7247 goto err_free; 7248 } 7249 } else if (opcode == BPF_JA) { 7250 if (BPF_SRC(insns[t].code) != BPF_K) { 7251 ret = -EINVAL; 7252 goto err_free; 7253 } 7254 /* unconditional jump with single edge */ 7255 ret = push_insn(t, t + insns[t].off + 1, 7256 FALLTHROUGH, env, true); 7257 if (ret == 1) 7258 goto peek_stack; 7259 else if (ret < 0) 7260 goto err_free; 7261 /* unconditional jmp is not a good pruning point, 7262 * but it's marked, since backtracking needs 7263 * to record jmp history in is_state_visited(). 7264 */ 7265 init_explored_state(env, t + insns[t].off + 1); 7266 /* tell verifier to check for equivalent states 7267 * after every call and jump 7268 */ 7269 if (t + 1 < insn_cnt) 7270 init_explored_state(env, t + 1); 7271 } else { 7272 /* conditional jump with two edges */ 7273 init_explored_state(env, t); 7274 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 7275 if (ret == 1) 7276 goto peek_stack; 7277 else if (ret < 0) 7278 goto err_free; 7279 7280 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 7281 if (ret == 1) 7282 goto peek_stack; 7283 else if (ret < 0) 7284 goto err_free; 7285 } 7286 } else { 7287 /* all other non-branch instructions with single 7288 * fall-through edge 7289 */ 7290 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7291 if (ret == 1) 7292 goto peek_stack; 7293 else if (ret < 0) 7294 goto err_free; 7295 } 7296 7297 mark_explored: 7298 insn_state[t] = EXPLORED; 7299 if (env->cfg.cur_stack-- <= 0) { 7300 verbose(env, "pop stack internal bug\n"); 7301 ret = -EFAULT; 7302 goto err_free; 7303 } 7304 goto peek_stack; 7305 7306 check_state: 7307 for (i = 0; i < insn_cnt; i++) { 7308 if (insn_state[i] != EXPLORED) { 7309 verbose(env, "unreachable insn %d\n", i); 7310 ret = -EINVAL; 7311 goto err_free; 7312 } 7313 } 7314 ret = 0; /* cfg looks good */ 7315 7316 err_free: 7317 kvfree(insn_state); 7318 kvfree(insn_stack); 7319 env->cfg.insn_state = env->cfg.insn_stack = NULL; 7320 return ret; 7321 } 7322 7323 /* The minimum supported BTF func info size */ 7324 #define MIN_BPF_FUNCINFO_SIZE 8 7325 #define MAX_FUNCINFO_REC_SIZE 252 7326 7327 static int check_btf_func(struct bpf_verifier_env *env, 7328 const union bpf_attr *attr, 7329 union bpf_attr __user *uattr) 7330 { 7331 u32 i, nfuncs, urec_size, min_size; 7332 u32 krec_size = sizeof(struct bpf_func_info); 7333 struct bpf_func_info *krecord; 7334 struct bpf_func_info_aux *info_aux = NULL; 7335 const struct btf_type *type; 7336 struct bpf_prog *prog; 7337 const struct btf *btf; 7338 void __user *urecord; 7339 u32 prev_offset = 0; 7340 int ret = 0; 7341 7342 nfuncs = attr->func_info_cnt; 7343 if (!nfuncs) 7344 return 0; 7345 7346 if (nfuncs != env->subprog_cnt) { 7347 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 7348 return -EINVAL; 7349 } 7350 7351 urec_size = attr->func_info_rec_size; 7352 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 7353 urec_size > MAX_FUNCINFO_REC_SIZE || 7354 urec_size % sizeof(u32)) { 7355 verbose(env, "invalid func info rec size %u\n", urec_size); 7356 return -EINVAL; 7357 } 7358 7359 prog = env->prog; 7360 btf = prog->aux->btf; 7361 7362 urecord = u64_to_user_ptr(attr->func_info); 7363 min_size = min_t(u32, krec_size, urec_size); 7364 7365 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 7366 if (!krecord) 7367 return -ENOMEM; 7368 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 7369 if (!info_aux) 7370 goto err_free; 7371 7372 for (i = 0; i < nfuncs; i++) { 7373 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 7374 if (ret) { 7375 if (ret == -E2BIG) { 7376 verbose(env, "nonzero tailing record in func info"); 7377 /* set the size kernel expects so loader can zero 7378 * out the rest of the record. 7379 */ 7380 if (put_user(min_size, &uattr->func_info_rec_size)) 7381 ret = -EFAULT; 7382 } 7383 goto err_free; 7384 } 7385 7386 if (copy_from_user(&krecord[i], urecord, min_size)) { 7387 ret = -EFAULT; 7388 goto err_free; 7389 } 7390 7391 /* check insn_off */ 7392 if (i == 0) { 7393 if (krecord[i].insn_off) { 7394 verbose(env, 7395 "nonzero insn_off %u for the first func info record", 7396 krecord[i].insn_off); 7397 ret = -EINVAL; 7398 goto err_free; 7399 } 7400 } else if (krecord[i].insn_off <= prev_offset) { 7401 verbose(env, 7402 "same or smaller insn offset (%u) than previous func info record (%u)", 7403 krecord[i].insn_off, prev_offset); 7404 ret = -EINVAL; 7405 goto err_free; 7406 } 7407 7408 if (env->subprog_info[i].start != krecord[i].insn_off) { 7409 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 7410 ret = -EINVAL; 7411 goto err_free; 7412 } 7413 7414 /* check type_id */ 7415 type = btf_type_by_id(btf, krecord[i].type_id); 7416 if (!type || !btf_type_is_func(type)) { 7417 verbose(env, "invalid type id %d in func info", 7418 krecord[i].type_id); 7419 ret = -EINVAL; 7420 goto err_free; 7421 } 7422 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 7423 prev_offset = krecord[i].insn_off; 7424 urecord += urec_size; 7425 } 7426 7427 prog->aux->func_info = krecord; 7428 prog->aux->func_info_cnt = nfuncs; 7429 prog->aux->func_info_aux = info_aux; 7430 return 0; 7431 7432 err_free: 7433 kvfree(krecord); 7434 kfree(info_aux); 7435 return ret; 7436 } 7437 7438 static void adjust_btf_func(struct bpf_verifier_env *env) 7439 { 7440 struct bpf_prog_aux *aux = env->prog->aux; 7441 int i; 7442 7443 if (!aux->func_info) 7444 return; 7445 7446 for (i = 0; i < env->subprog_cnt; i++) 7447 aux->func_info[i].insn_off = env->subprog_info[i].start; 7448 } 7449 7450 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 7451 sizeof(((struct bpf_line_info *)(0))->line_col)) 7452 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 7453 7454 static int check_btf_line(struct bpf_verifier_env *env, 7455 const union bpf_attr *attr, 7456 union bpf_attr __user *uattr) 7457 { 7458 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 7459 struct bpf_subprog_info *sub; 7460 struct bpf_line_info *linfo; 7461 struct bpf_prog *prog; 7462 const struct btf *btf; 7463 void __user *ulinfo; 7464 int err; 7465 7466 nr_linfo = attr->line_info_cnt; 7467 if (!nr_linfo) 7468 return 0; 7469 7470 rec_size = attr->line_info_rec_size; 7471 if (rec_size < MIN_BPF_LINEINFO_SIZE || 7472 rec_size > MAX_LINEINFO_REC_SIZE || 7473 rec_size & (sizeof(u32) - 1)) 7474 return -EINVAL; 7475 7476 /* Need to zero it in case the userspace may 7477 * pass in a smaller bpf_line_info object. 7478 */ 7479 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 7480 GFP_KERNEL | __GFP_NOWARN); 7481 if (!linfo) 7482 return -ENOMEM; 7483 7484 prog = env->prog; 7485 btf = prog->aux->btf; 7486 7487 s = 0; 7488 sub = env->subprog_info; 7489 ulinfo = u64_to_user_ptr(attr->line_info); 7490 expected_size = sizeof(struct bpf_line_info); 7491 ncopy = min_t(u32, expected_size, rec_size); 7492 for (i = 0; i < nr_linfo; i++) { 7493 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 7494 if (err) { 7495 if (err == -E2BIG) { 7496 verbose(env, "nonzero tailing record in line_info"); 7497 if (put_user(expected_size, 7498 &uattr->line_info_rec_size)) 7499 err = -EFAULT; 7500 } 7501 goto err_free; 7502 } 7503 7504 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 7505 err = -EFAULT; 7506 goto err_free; 7507 } 7508 7509 /* 7510 * Check insn_off to ensure 7511 * 1) strictly increasing AND 7512 * 2) bounded by prog->len 7513 * 7514 * The linfo[0].insn_off == 0 check logically falls into 7515 * the later "missing bpf_line_info for func..." case 7516 * because the first linfo[0].insn_off must be the 7517 * first sub also and the first sub must have 7518 * subprog_info[0].start == 0. 7519 */ 7520 if ((i && linfo[i].insn_off <= prev_offset) || 7521 linfo[i].insn_off >= prog->len) { 7522 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 7523 i, linfo[i].insn_off, prev_offset, 7524 prog->len); 7525 err = -EINVAL; 7526 goto err_free; 7527 } 7528 7529 if (!prog->insnsi[linfo[i].insn_off].code) { 7530 verbose(env, 7531 "Invalid insn code at line_info[%u].insn_off\n", 7532 i); 7533 err = -EINVAL; 7534 goto err_free; 7535 } 7536 7537 if (!btf_name_by_offset(btf, linfo[i].line_off) || 7538 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 7539 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 7540 err = -EINVAL; 7541 goto err_free; 7542 } 7543 7544 if (s != env->subprog_cnt) { 7545 if (linfo[i].insn_off == sub[s].start) { 7546 sub[s].linfo_idx = i; 7547 s++; 7548 } else if (sub[s].start < linfo[i].insn_off) { 7549 verbose(env, "missing bpf_line_info for func#%u\n", s); 7550 err = -EINVAL; 7551 goto err_free; 7552 } 7553 } 7554 7555 prev_offset = linfo[i].insn_off; 7556 ulinfo += rec_size; 7557 } 7558 7559 if (s != env->subprog_cnt) { 7560 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 7561 env->subprog_cnt - s, s); 7562 err = -EINVAL; 7563 goto err_free; 7564 } 7565 7566 prog->aux->linfo = linfo; 7567 prog->aux->nr_linfo = nr_linfo; 7568 7569 return 0; 7570 7571 err_free: 7572 kvfree(linfo); 7573 return err; 7574 } 7575 7576 static int check_btf_info(struct bpf_verifier_env *env, 7577 const union bpf_attr *attr, 7578 union bpf_attr __user *uattr) 7579 { 7580 struct btf *btf; 7581 int err; 7582 7583 if (!attr->func_info_cnt && !attr->line_info_cnt) 7584 return 0; 7585 7586 btf = btf_get_by_fd(attr->prog_btf_fd); 7587 if (IS_ERR(btf)) 7588 return PTR_ERR(btf); 7589 env->prog->aux->btf = btf; 7590 7591 err = check_btf_func(env, attr, uattr); 7592 if (err) 7593 return err; 7594 7595 err = check_btf_line(env, attr, uattr); 7596 if (err) 7597 return err; 7598 7599 return 0; 7600 } 7601 7602 /* check %cur's range satisfies %old's */ 7603 static bool range_within(struct bpf_reg_state *old, 7604 struct bpf_reg_state *cur) 7605 { 7606 return old->umin_value <= cur->umin_value && 7607 old->umax_value >= cur->umax_value && 7608 old->smin_value <= cur->smin_value && 7609 old->smax_value >= cur->smax_value; 7610 } 7611 7612 /* Maximum number of register states that can exist at once */ 7613 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 7614 struct idpair { 7615 u32 old; 7616 u32 cur; 7617 }; 7618 7619 /* If in the old state two registers had the same id, then they need to have 7620 * the same id in the new state as well. But that id could be different from 7621 * the old state, so we need to track the mapping from old to new ids. 7622 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 7623 * regs with old id 5 must also have new id 9 for the new state to be safe. But 7624 * regs with a different old id could still have new id 9, we don't care about 7625 * that. 7626 * So we look through our idmap to see if this old id has been seen before. If 7627 * so, we require the new id to match; otherwise, we add the id pair to the map. 7628 */ 7629 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 7630 { 7631 unsigned int i; 7632 7633 for (i = 0; i < ID_MAP_SIZE; i++) { 7634 if (!idmap[i].old) { 7635 /* Reached an empty slot; haven't seen this id before */ 7636 idmap[i].old = old_id; 7637 idmap[i].cur = cur_id; 7638 return true; 7639 } 7640 if (idmap[i].old == old_id) 7641 return idmap[i].cur == cur_id; 7642 } 7643 /* We ran out of idmap slots, which should be impossible */ 7644 WARN_ON_ONCE(1); 7645 return false; 7646 } 7647 7648 static void clean_func_state(struct bpf_verifier_env *env, 7649 struct bpf_func_state *st) 7650 { 7651 enum bpf_reg_liveness live; 7652 int i, j; 7653 7654 for (i = 0; i < BPF_REG_FP; i++) { 7655 live = st->regs[i].live; 7656 /* liveness must not touch this register anymore */ 7657 st->regs[i].live |= REG_LIVE_DONE; 7658 if (!(live & REG_LIVE_READ)) 7659 /* since the register is unused, clear its state 7660 * to make further comparison simpler 7661 */ 7662 __mark_reg_not_init(env, &st->regs[i]); 7663 } 7664 7665 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 7666 live = st->stack[i].spilled_ptr.live; 7667 /* liveness must not touch this stack slot anymore */ 7668 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 7669 if (!(live & REG_LIVE_READ)) { 7670 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 7671 for (j = 0; j < BPF_REG_SIZE; j++) 7672 st->stack[i].slot_type[j] = STACK_INVALID; 7673 } 7674 } 7675 } 7676 7677 static void clean_verifier_state(struct bpf_verifier_env *env, 7678 struct bpf_verifier_state *st) 7679 { 7680 int i; 7681 7682 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 7683 /* all regs in this state in all frames were already marked */ 7684 return; 7685 7686 for (i = 0; i <= st->curframe; i++) 7687 clean_func_state(env, st->frame[i]); 7688 } 7689 7690 /* the parentage chains form a tree. 7691 * the verifier states are added to state lists at given insn and 7692 * pushed into state stack for future exploration. 7693 * when the verifier reaches bpf_exit insn some of the verifer states 7694 * stored in the state lists have their final liveness state already, 7695 * but a lot of states will get revised from liveness point of view when 7696 * the verifier explores other branches. 7697 * Example: 7698 * 1: r0 = 1 7699 * 2: if r1 == 100 goto pc+1 7700 * 3: r0 = 2 7701 * 4: exit 7702 * when the verifier reaches exit insn the register r0 in the state list of 7703 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 7704 * of insn 2 and goes exploring further. At the insn 4 it will walk the 7705 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 7706 * 7707 * Since the verifier pushes the branch states as it sees them while exploring 7708 * the program the condition of walking the branch instruction for the second 7709 * time means that all states below this branch were already explored and 7710 * their final liveness markes are already propagated. 7711 * Hence when the verifier completes the search of state list in is_state_visited() 7712 * we can call this clean_live_states() function to mark all liveness states 7713 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 7714 * will not be used. 7715 * This function also clears the registers and stack for states that !READ 7716 * to simplify state merging. 7717 * 7718 * Important note here that walking the same branch instruction in the callee 7719 * doesn't meant that the states are DONE. The verifier has to compare 7720 * the callsites 7721 */ 7722 static void clean_live_states(struct bpf_verifier_env *env, int insn, 7723 struct bpf_verifier_state *cur) 7724 { 7725 struct bpf_verifier_state_list *sl; 7726 int i; 7727 7728 sl = *explored_state(env, insn); 7729 while (sl) { 7730 if (sl->state.branches) 7731 goto next; 7732 if (sl->state.insn_idx != insn || 7733 sl->state.curframe != cur->curframe) 7734 goto next; 7735 for (i = 0; i <= cur->curframe; i++) 7736 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 7737 goto next; 7738 clean_verifier_state(env, &sl->state); 7739 next: 7740 sl = sl->next; 7741 } 7742 } 7743 7744 /* Returns true if (rold safe implies rcur safe) */ 7745 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7746 struct idpair *idmap) 7747 { 7748 bool equal; 7749 7750 if (!(rold->live & REG_LIVE_READ)) 7751 /* explored state didn't use this */ 7752 return true; 7753 7754 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 7755 7756 if (rold->type == PTR_TO_STACK) 7757 /* two stack pointers are equal only if they're pointing to 7758 * the same stack frame, since fp-8 in foo != fp-8 in bar 7759 */ 7760 return equal && rold->frameno == rcur->frameno; 7761 7762 if (equal) 7763 return true; 7764 7765 if (rold->type == NOT_INIT) 7766 /* explored state can't have used this */ 7767 return true; 7768 if (rcur->type == NOT_INIT) 7769 return false; 7770 switch (rold->type) { 7771 case SCALAR_VALUE: 7772 if (rcur->type == SCALAR_VALUE) { 7773 if (!rold->precise && !rcur->precise) 7774 return true; 7775 /* new val must satisfy old val knowledge */ 7776 return range_within(rold, rcur) && 7777 tnum_in(rold->var_off, rcur->var_off); 7778 } else { 7779 /* We're trying to use a pointer in place of a scalar. 7780 * Even if the scalar was unbounded, this could lead to 7781 * pointer leaks because scalars are allowed to leak 7782 * while pointers are not. We could make this safe in 7783 * special cases if root is calling us, but it's 7784 * probably not worth the hassle. 7785 */ 7786 return false; 7787 } 7788 case PTR_TO_MAP_VALUE: 7789 /* If the new min/max/var_off satisfy the old ones and 7790 * everything else matches, we are OK. 7791 * 'id' is not compared, since it's only used for maps with 7792 * bpf_spin_lock inside map element and in such cases if 7793 * the rest of the prog is valid for one map element then 7794 * it's valid for all map elements regardless of the key 7795 * used in bpf_map_lookup() 7796 */ 7797 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 7798 range_within(rold, rcur) && 7799 tnum_in(rold->var_off, rcur->var_off); 7800 case PTR_TO_MAP_VALUE_OR_NULL: 7801 /* a PTR_TO_MAP_VALUE could be safe to use as a 7802 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 7803 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 7804 * checked, doing so could have affected others with the same 7805 * id, and we can't check for that because we lost the id when 7806 * we converted to a PTR_TO_MAP_VALUE. 7807 */ 7808 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 7809 return false; 7810 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 7811 return false; 7812 /* Check our ids match any regs they're supposed to */ 7813 return check_ids(rold->id, rcur->id, idmap); 7814 case PTR_TO_PACKET_META: 7815 case PTR_TO_PACKET: 7816 if (rcur->type != rold->type) 7817 return false; 7818 /* We must have at least as much range as the old ptr 7819 * did, so that any accesses which were safe before are 7820 * still safe. This is true even if old range < old off, 7821 * since someone could have accessed through (ptr - k), or 7822 * even done ptr -= k in a register, to get a safe access. 7823 */ 7824 if (rold->range > rcur->range) 7825 return false; 7826 /* If the offsets don't match, we can't trust our alignment; 7827 * nor can we be sure that we won't fall out of range. 7828 */ 7829 if (rold->off != rcur->off) 7830 return false; 7831 /* id relations must be preserved */ 7832 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 7833 return false; 7834 /* new val must satisfy old val knowledge */ 7835 return range_within(rold, rcur) && 7836 tnum_in(rold->var_off, rcur->var_off); 7837 case PTR_TO_CTX: 7838 case CONST_PTR_TO_MAP: 7839 case PTR_TO_PACKET_END: 7840 case PTR_TO_FLOW_KEYS: 7841 case PTR_TO_SOCKET: 7842 case PTR_TO_SOCKET_OR_NULL: 7843 case PTR_TO_SOCK_COMMON: 7844 case PTR_TO_SOCK_COMMON_OR_NULL: 7845 case PTR_TO_TCP_SOCK: 7846 case PTR_TO_TCP_SOCK_OR_NULL: 7847 case PTR_TO_XDP_SOCK: 7848 /* Only valid matches are exact, which memcmp() above 7849 * would have accepted 7850 */ 7851 default: 7852 /* Don't know what's going on, just say it's not safe */ 7853 return false; 7854 } 7855 7856 /* Shouldn't get here; if we do, say it's not safe */ 7857 WARN_ON_ONCE(1); 7858 return false; 7859 } 7860 7861 static bool stacksafe(struct bpf_func_state *old, 7862 struct bpf_func_state *cur, 7863 struct idpair *idmap) 7864 { 7865 int i, spi; 7866 7867 /* walk slots of the explored stack and ignore any additional 7868 * slots in the current stack, since explored(safe) state 7869 * didn't use them 7870 */ 7871 for (i = 0; i < old->allocated_stack; i++) { 7872 spi = i / BPF_REG_SIZE; 7873 7874 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 7875 i += BPF_REG_SIZE - 1; 7876 /* explored state didn't use this */ 7877 continue; 7878 } 7879 7880 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 7881 continue; 7882 7883 /* explored stack has more populated slots than current stack 7884 * and these slots were used 7885 */ 7886 if (i >= cur->allocated_stack) 7887 return false; 7888 7889 /* if old state was safe with misc data in the stack 7890 * it will be safe with zero-initialized stack. 7891 * The opposite is not true 7892 */ 7893 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 7894 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 7895 continue; 7896 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 7897 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 7898 /* Ex: old explored (safe) state has STACK_SPILL in 7899 * this stack slot, but current has has STACK_MISC -> 7900 * this verifier states are not equivalent, 7901 * return false to continue verification of this path 7902 */ 7903 return false; 7904 if (i % BPF_REG_SIZE) 7905 continue; 7906 if (old->stack[spi].slot_type[0] != STACK_SPILL) 7907 continue; 7908 if (!regsafe(&old->stack[spi].spilled_ptr, 7909 &cur->stack[spi].spilled_ptr, 7910 idmap)) 7911 /* when explored and current stack slot are both storing 7912 * spilled registers, check that stored pointers types 7913 * are the same as well. 7914 * Ex: explored safe path could have stored 7915 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 7916 * but current path has stored: 7917 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 7918 * such verifier states are not equivalent. 7919 * return false to continue verification of this path 7920 */ 7921 return false; 7922 } 7923 return true; 7924 } 7925 7926 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 7927 { 7928 if (old->acquired_refs != cur->acquired_refs) 7929 return false; 7930 return !memcmp(old->refs, cur->refs, 7931 sizeof(*old->refs) * old->acquired_refs); 7932 } 7933 7934 /* compare two verifier states 7935 * 7936 * all states stored in state_list are known to be valid, since 7937 * verifier reached 'bpf_exit' instruction through them 7938 * 7939 * this function is called when verifier exploring different branches of 7940 * execution popped from the state stack. If it sees an old state that has 7941 * more strict register state and more strict stack state then this execution 7942 * branch doesn't need to be explored further, since verifier already 7943 * concluded that more strict state leads to valid finish. 7944 * 7945 * Therefore two states are equivalent if register state is more conservative 7946 * and explored stack state is more conservative than the current one. 7947 * Example: 7948 * explored current 7949 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 7950 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 7951 * 7952 * In other words if current stack state (one being explored) has more 7953 * valid slots than old one that already passed validation, it means 7954 * the verifier can stop exploring and conclude that current state is valid too 7955 * 7956 * Similarly with registers. If explored state has register type as invalid 7957 * whereas register type in current state is meaningful, it means that 7958 * the current state will reach 'bpf_exit' instruction safely 7959 */ 7960 static bool func_states_equal(struct bpf_func_state *old, 7961 struct bpf_func_state *cur) 7962 { 7963 struct idpair *idmap; 7964 bool ret = false; 7965 int i; 7966 7967 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 7968 /* If we failed to allocate the idmap, just say it's not safe */ 7969 if (!idmap) 7970 return false; 7971 7972 for (i = 0; i < MAX_BPF_REG; i++) { 7973 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 7974 goto out_free; 7975 } 7976 7977 if (!stacksafe(old, cur, idmap)) 7978 goto out_free; 7979 7980 if (!refsafe(old, cur)) 7981 goto out_free; 7982 ret = true; 7983 out_free: 7984 kfree(idmap); 7985 return ret; 7986 } 7987 7988 static bool states_equal(struct bpf_verifier_env *env, 7989 struct bpf_verifier_state *old, 7990 struct bpf_verifier_state *cur) 7991 { 7992 int i; 7993 7994 if (old->curframe != cur->curframe) 7995 return false; 7996 7997 /* Verification state from speculative execution simulation 7998 * must never prune a non-speculative execution one. 7999 */ 8000 if (old->speculative && !cur->speculative) 8001 return false; 8002 8003 if (old->active_spin_lock != cur->active_spin_lock) 8004 return false; 8005 8006 /* for states to be equal callsites have to be the same 8007 * and all frame states need to be equivalent 8008 */ 8009 for (i = 0; i <= old->curframe; i++) { 8010 if (old->frame[i]->callsite != cur->frame[i]->callsite) 8011 return false; 8012 if (!func_states_equal(old->frame[i], cur->frame[i])) 8013 return false; 8014 } 8015 return true; 8016 } 8017 8018 /* Return 0 if no propagation happened. Return negative error code if error 8019 * happened. Otherwise, return the propagated bit. 8020 */ 8021 static int propagate_liveness_reg(struct bpf_verifier_env *env, 8022 struct bpf_reg_state *reg, 8023 struct bpf_reg_state *parent_reg) 8024 { 8025 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 8026 u8 flag = reg->live & REG_LIVE_READ; 8027 int err; 8028 8029 /* When comes here, read flags of PARENT_REG or REG could be any of 8030 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 8031 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 8032 */ 8033 if (parent_flag == REG_LIVE_READ64 || 8034 /* Or if there is no read flag from REG. */ 8035 !flag || 8036 /* Or if the read flag from REG is the same as PARENT_REG. */ 8037 parent_flag == flag) 8038 return 0; 8039 8040 err = mark_reg_read(env, reg, parent_reg, flag); 8041 if (err) 8042 return err; 8043 8044 return flag; 8045 } 8046 8047 /* A write screens off any subsequent reads; but write marks come from the 8048 * straight-line code between a state and its parent. When we arrive at an 8049 * equivalent state (jump target or such) we didn't arrive by the straight-line 8050 * code, so read marks in the state must propagate to the parent regardless 8051 * of the state's write marks. That's what 'parent == state->parent' comparison 8052 * in mark_reg_read() is for. 8053 */ 8054 static int propagate_liveness(struct bpf_verifier_env *env, 8055 const struct bpf_verifier_state *vstate, 8056 struct bpf_verifier_state *vparent) 8057 { 8058 struct bpf_reg_state *state_reg, *parent_reg; 8059 struct bpf_func_state *state, *parent; 8060 int i, frame, err = 0; 8061 8062 if (vparent->curframe != vstate->curframe) { 8063 WARN(1, "propagate_live: parent frame %d current frame %d\n", 8064 vparent->curframe, vstate->curframe); 8065 return -EFAULT; 8066 } 8067 /* Propagate read liveness of registers... */ 8068 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 8069 for (frame = 0; frame <= vstate->curframe; frame++) { 8070 parent = vparent->frame[frame]; 8071 state = vstate->frame[frame]; 8072 parent_reg = parent->regs; 8073 state_reg = state->regs; 8074 /* We don't need to worry about FP liveness, it's read-only */ 8075 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 8076 err = propagate_liveness_reg(env, &state_reg[i], 8077 &parent_reg[i]); 8078 if (err < 0) 8079 return err; 8080 if (err == REG_LIVE_READ64) 8081 mark_insn_zext(env, &parent_reg[i]); 8082 } 8083 8084 /* Propagate stack slots. */ 8085 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 8086 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 8087 parent_reg = &parent->stack[i].spilled_ptr; 8088 state_reg = &state->stack[i].spilled_ptr; 8089 err = propagate_liveness_reg(env, state_reg, 8090 parent_reg); 8091 if (err < 0) 8092 return err; 8093 } 8094 } 8095 return 0; 8096 } 8097 8098 /* find precise scalars in the previous equivalent state and 8099 * propagate them into the current state 8100 */ 8101 static int propagate_precision(struct bpf_verifier_env *env, 8102 const struct bpf_verifier_state *old) 8103 { 8104 struct bpf_reg_state *state_reg; 8105 struct bpf_func_state *state; 8106 int i, err = 0; 8107 8108 state = old->frame[old->curframe]; 8109 state_reg = state->regs; 8110 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 8111 if (state_reg->type != SCALAR_VALUE || 8112 !state_reg->precise) 8113 continue; 8114 if (env->log.level & BPF_LOG_LEVEL2) 8115 verbose(env, "propagating r%d\n", i); 8116 err = mark_chain_precision(env, i); 8117 if (err < 0) 8118 return err; 8119 } 8120 8121 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 8122 if (state->stack[i].slot_type[0] != STACK_SPILL) 8123 continue; 8124 state_reg = &state->stack[i].spilled_ptr; 8125 if (state_reg->type != SCALAR_VALUE || 8126 !state_reg->precise) 8127 continue; 8128 if (env->log.level & BPF_LOG_LEVEL2) 8129 verbose(env, "propagating fp%d\n", 8130 (-i - 1) * BPF_REG_SIZE); 8131 err = mark_chain_precision_stack(env, i); 8132 if (err < 0) 8133 return err; 8134 } 8135 return 0; 8136 } 8137 8138 static bool states_maybe_looping(struct bpf_verifier_state *old, 8139 struct bpf_verifier_state *cur) 8140 { 8141 struct bpf_func_state *fold, *fcur; 8142 int i, fr = cur->curframe; 8143 8144 if (old->curframe != fr) 8145 return false; 8146 8147 fold = old->frame[fr]; 8148 fcur = cur->frame[fr]; 8149 for (i = 0; i < MAX_BPF_REG; i++) 8150 if (memcmp(&fold->regs[i], &fcur->regs[i], 8151 offsetof(struct bpf_reg_state, parent))) 8152 return false; 8153 return true; 8154 } 8155 8156 8157 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 8158 { 8159 struct bpf_verifier_state_list *new_sl; 8160 struct bpf_verifier_state_list *sl, **pprev; 8161 struct bpf_verifier_state *cur = env->cur_state, *new; 8162 int i, j, err, states_cnt = 0; 8163 bool add_new_state = env->test_state_freq ? true : false; 8164 8165 cur->last_insn_idx = env->prev_insn_idx; 8166 if (!env->insn_aux_data[insn_idx].prune_point) 8167 /* this 'insn_idx' instruction wasn't marked, so we will not 8168 * be doing state search here 8169 */ 8170 return 0; 8171 8172 /* bpf progs typically have pruning point every 4 instructions 8173 * http://vger.kernel.org/bpfconf2019.html#session-1 8174 * Do not add new state for future pruning if the verifier hasn't seen 8175 * at least 2 jumps and at least 8 instructions. 8176 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 8177 * In tests that amounts to up to 50% reduction into total verifier 8178 * memory consumption and 20% verifier time speedup. 8179 */ 8180 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 8181 env->insn_processed - env->prev_insn_processed >= 8) 8182 add_new_state = true; 8183 8184 pprev = explored_state(env, insn_idx); 8185 sl = *pprev; 8186 8187 clean_live_states(env, insn_idx, cur); 8188 8189 while (sl) { 8190 states_cnt++; 8191 if (sl->state.insn_idx != insn_idx) 8192 goto next; 8193 if (sl->state.branches) { 8194 if (states_maybe_looping(&sl->state, cur) && 8195 states_equal(env, &sl->state, cur)) { 8196 verbose_linfo(env, insn_idx, "; "); 8197 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 8198 return -EINVAL; 8199 } 8200 /* if the verifier is processing a loop, avoid adding new state 8201 * too often, since different loop iterations have distinct 8202 * states and may not help future pruning. 8203 * This threshold shouldn't be too low to make sure that 8204 * a loop with large bound will be rejected quickly. 8205 * The most abusive loop will be: 8206 * r1 += 1 8207 * if r1 < 1000000 goto pc-2 8208 * 1M insn_procssed limit / 100 == 10k peak states. 8209 * This threshold shouldn't be too high either, since states 8210 * at the end of the loop are likely to be useful in pruning. 8211 */ 8212 if (env->jmps_processed - env->prev_jmps_processed < 20 && 8213 env->insn_processed - env->prev_insn_processed < 100) 8214 add_new_state = false; 8215 goto miss; 8216 } 8217 if (states_equal(env, &sl->state, cur)) { 8218 sl->hit_cnt++; 8219 /* reached equivalent register/stack state, 8220 * prune the search. 8221 * Registers read by the continuation are read by us. 8222 * If we have any write marks in env->cur_state, they 8223 * will prevent corresponding reads in the continuation 8224 * from reaching our parent (an explored_state). Our 8225 * own state will get the read marks recorded, but 8226 * they'll be immediately forgotten as we're pruning 8227 * this state and will pop a new one. 8228 */ 8229 err = propagate_liveness(env, &sl->state, cur); 8230 8231 /* if previous state reached the exit with precision and 8232 * current state is equivalent to it (except precsion marks) 8233 * the precision needs to be propagated back in 8234 * the current state. 8235 */ 8236 err = err ? : push_jmp_history(env, cur); 8237 err = err ? : propagate_precision(env, &sl->state); 8238 if (err) 8239 return err; 8240 return 1; 8241 } 8242 miss: 8243 /* when new state is not going to be added do not increase miss count. 8244 * Otherwise several loop iterations will remove the state 8245 * recorded earlier. The goal of these heuristics is to have 8246 * states from some iterations of the loop (some in the beginning 8247 * and some at the end) to help pruning. 8248 */ 8249 if (add_new_state) 8250 sl->miss_cnt++; 8251 /* heuristic to determine whether this state is beneficial 8252 * to keep checking from state equivalence point of view. 8253 * Higher numbers increase max_states_per_insn and verification time, 8254 * but do not meaningfully decrease insn_processed. 8255 */ 8256 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 8257 /* the state is unlikely to be useful. Remove it to 8258 * speed up verification 8259 */ 8260 *pprev = sl->next; 8261 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 8262 u32 br = sl->state.branches; 8263 8264 WARN_ONCE(br, 8265 "BUG live_done but branches_to_explore %d\n", 8266 br); 8267 free_verifier_state(&sl->state, false); 8268 kfree(sl); 8269 env->peak_states--; 8270 } else { 8271 /* cannot free this state, since parentage chain may 8272 * walk it later. Add it for free_list instead to 8273 * be freed at the end of verification 8274 */ 8275 sl->next = env->free_list; 8276 env->free_list = sl; 8277 } 8278 sl = *pprev; 8279 continue; 8280 } 8281 next: 8282 pprev = &sl->next; 8283 sl = *pprev; 8284 } 8285 8286 if (env->max_states_per_insn < states_cnt) 8287 env->max_states_per_insn = states_cnt; 8288 8289 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 8290 return push_jmp_history(env, cur); 8291 8292 if (!add_new_state) 8293 return push_jmp_history(env, cur); 8294 8295 /* There were no equivalent states, remember the current one. 8296 * Technically the current state is not proven to be safe yet, 8297 * but it will either reach outer most bpf_exit (which means it's safe) 8298 * or it will be rejected. When there are no loops the verifier won't be 8299 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 8300 * again on the way to bpf_exit. 8301 * When looping the sl->state.branches will be > 0 and this state 8302 * will not be considered for equivalence until branches == 0. 8303 */ 8304 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 8305 if (!new_sl) 8306 return -ENOMEM; 8307 env->total_states++; 8308 env->peak_states++; 8309 env->prev_jmps_processed = env->jmps_processed; 8310 env->prev_insn_processed = env->insn_processed; 8311 8312 /* add new state to the head of linked list */ 8313 new = &new_sl->state; 8314 err = copy_verifier_state(new, cur); 8315 if (err) { 8316 free_verifier_state(new, false); 8317 kfree(new_sl); 8318 return err; 8319 } 8320 new->insn_idx = insn_idx; 8321 WARN_ONCE(new->branches != 1, 8322 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 8323 8324 cur->parent = new; 8325 cur->first_insn_idx = insn_idx; 8326 clear_jmp_history(cur); 8327 new_sl->next = *explored_state(env, insn_idx); 8328 *explored_state(env, insn_idx) = new_sl; 8329 /* connect new state to parentage chain. Current frame needs all 8330 * registers connected. Only r6 - r9 of the callers are alive (pushed 8331 * to the stack implicitly by JITs) so in callers' frames connect just 8332 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 8333 * the state of the call instruction (with WRITTEN set), and r0 comes 8334 * from callee with its full parentage chain, anyway. 8335 */ 8336 /* clear write marks in current state: the writes we did are not writes 8337 * our child did, so they don't screen off its reads from us. 8338 * (There are no read marks in current state, because reads always mark 8339 * their parent and current state never has children yet. Only 8340 * explored_states can get read marks.) 8341 */ 8342 for (j = 0; j <= cur->curframe; j++) { 8343 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 8344 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 8345 for (i = 0; i < BPF_REG_FP; i++) 8346 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 8347 } 8348 8349 /* all stack frames are accessible from callee, clear them all */ 8350 for (j = 0; j <= cur->curframe; j++) { 8351 struct bpf_func_state *frame = cur->frame[j]; 8352 struct bpf_func_state *newframe = new->frame[j]; 8353 8354 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 8355 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 8356 frame->stack[i].spilled_ptr.parent = 8357 &newframe->stack[i].spilled_ptr; 8358 } 8359 } 8360 return 0; 8361 } 8362 8363 /* Return true if it's OK to have the same insn return a different type. */ 8364 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 8365 { 8366 switch (type) { 8367 case PTR_TO_CTX: 8368 case PTR_TO_SOCKET: 8369 case PTR_TO_SOCKET_OR_NULL: 8370 case PTR_TO_SOCK_COMMON: 8371 case PTR_TO_SOCK_COMMON_OR_NULL: 8372 case PTR_TO_TCP_SOCK: 8373 case PTR_TO_TCP_SOCK_OR_NULL: 8374 case PTR_TO_XDP_SOCK: 8375 case PTR_TO_BTF_ID: 8376 return false; 8377 default: 8378 return true; 8379 } 8380 } 8381 8382 /* If an instruction was previously used with particular pointer types, then we 8383 * need to be careful to avoid cases such as the below, where it may be ok 8384 * for one branch accessing the pointer, but not ok for the other branch: 8385 * 8386 * R1 = sock_ptr 8387 * goto X; 8388 * ... 8389 * R1 = some_other_valid_ptr; 8390 * goto X; 8391 * ... 8392 * R2 = *(u32 *)(R1 + 0); 8393 */ 8394 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 8395 { 8396 return src != prev && (!reg_type_mismatch_ok(src) || 8397 !reg_type_mismatch_ok(prev)); 8398 } 8399 8400 static int do_check(struct bpf_verifier_env *env) 8401 { 8402 struct bpf_verifier_state *state = env->cur_state; 8403 struct bpf_insn *insns = env->prog->insnsi; 8404 struct bpf_reg_state *regs; 8405 int insn_cnt = env->prog->len; 8406 bool do_print_state = false; 8407 int prev_insn_idx = -1; 8408 8409 for (;;) { 8410 struct bpf_insn *insn; 8411 u8 class; 8412 int err; 8413 8414 env->prev_insn_idx = prev_insn_idx; 8415 if (env->insn_idx >= insn_cnt) { 8416 verbose(env, "invalid insn idx %d insn_cnt %d\n", 8417 env->insn_idx, insn_cnt); 8418 return -EFAULT; 8419 } 8420 8421 insn = &insns[env->insn_idx]; 8422 class = BPF_CLASS(insn->code); 8423 8424 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 8425 verbose(env, 8426 "BPF program is too large. Processed %d insn\n", 8427 env->insn_processed); 8428 return -E2BIG; 8429 } 8430 8431 err = is_state_visited(env, env->insn_idx); 8432 if (err < 0) 8433 return err; 8434 if (err == 1) { 8435 /* found equivalent state, can prune the search */ 8436 if (env->log.level & BPF_LOG_LEVEL) { 8437 if (do_print_state) 8438 verbose(env, "\nfrom %d to %d%s: safe\n", 8439 env->prev_insn_idx, env->insn_idx, 8440 env->cur_state->speculative ? 8441 " (speculative execution)" : ""); 8442 else 8443 verbose(env, "%d: safe\n", env->insn_idx); 8444 } 8445 goto process_bpf_exit; 8446 } 8447 8448 if (signal_pending(current)) 8449 return -EAGAIN; 8450 8451 if (need_resched()) 8452 cond_resched(); 8453 8454 if (env->log.level & BPF_LOG_LEVEL2 || 8455 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 8456 if (env->log.level & BPF_LOG_LEVEL2) 8457 verbose(env, "%d:", env->insn_idx); 8458 else 8459 verbose(env, "\nfrom %d to %d%s:", 8460 env->prev_insn_idx, env->insn_idx, 8461 env->cur_state->speculative ? 8462 " (speculative execution)" : ""); 8463 print_verifier_state(env, state->frame[state->curframe]); 8464 do_print_state = false; 8465 } 8466 8467 if (env->log.level & BPF_LOG_LEVEL) { 8468 const struct bpf_insn_cbs cbs = { 8469 .cb_print = verbose, 8470 .private_data = env, 8471 }; 8472 8473 verbose_linfo(env, env->insn_idx, "; "); 8474 verbose(env, "%d: ", env->insn_idx); 8475 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 8476 } 8477 8478 if (bpf_prog_is_dev_bound(env->prog->aux)) { 8479 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 8480 env->prev_insn_idx); 8481 if (err) 8482 return err; 8483 } 8484 8485 regs = cur_regs(env); 8486 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8487 prev_insn_idx = env->insn_idx; 8488 8489 if (class == BPF_ALU || class == BPF_ALU64) { 8490 err = check_alu_op(env, insn); 8491 if (err) 8492 return err; 8493 8494 } else if (class == BPF_LDX) { 8495 enum bpf_reg_type *prev_src_type, src_reg_type; 8496 8497 /* check for reserved fields is already done */ 8498 8499 /* check src operand */ 8500 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8501 if (err) 8502 return err; 8503 8504 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8505 if (err) 8506 return err; 8507 8508 src_reg_type = regs[insn->src_reg].type; 8509 8510 /* check that memory (src_reg + off) is readable, 8511 * the state of dst_reg will be updated by this func 8512 */ 8513 err = check_mem_access(env, env->insn_idx, insn->src_reg, 8514 insn->off, BPF_SIZE(insn->code), 8515 BPF_READ, insn->dst_reg, false); 8516 if (err) 8517 return err; 8518 8519 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8520 8521 if (*prev_src_type == NOT_INIT) { 8522 /* saw a valid insn 8523 * dst_reg = *(u32 *)(src_reg + off) 8524 * save type to validate intersecting paths 8525 */ 8526 *prev_src_type = src_reg_type; 8527 8528 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 8529 /* ABuser program is trying to use the same insn 8530 * dst_reg = *(u32*) (src_reg + off) 8531 * with different pointer types: 8532 * src_reg == ctx in one branch and 8533 * src_reg == stack|map in some other branch. 8534 * Reject it. 8535 */ 8536 verbose(env, "same insn cannot be used with different pointers\n"); 8537 return -EINVAL; 8538 } 8539 8540 } else if (class == BPF_STX) { 8541 enum bpf_reg_type *prev_dst_type, dst_reg_type; 8542 8543 if (BPF_MODE(insn->code) == BPF_XADD) { 8544 err = check_xadd(env, env->insn_idx, insn); 8545 if (err) 8546 return err; 8547 env->insn_idx++; 8548 continue; 8549 } 8550 8551 /* check src1 operand */ 8552 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8553 if (err) 8554 return err; 8555 /* check src2 operand */ 8556 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8557 if (err) 8558 return err; 8559 8560 dst_reg_type = regs[insn->dst_reg].type; 8561 8562 /* check that memory (dst_reg + off) is writeable */ 8563 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8564 insn->off, BPF_SIZE(insn->code), 8565 BPF_WRITE, insn->src_reg, false); 8566 if (err) 8567 return err; 8568 8569 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8570 8571 if (*prev_dst_type == NOT_INIT) { 8572 *prev_dst_type = dst_reg_type; 8573 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 8574 verbose(env, "same insn cannot be used with different pointers\n"); 8575 return -EINVAL; 8576 } 8577 8578 } else if (class == BPF_ST) { 8579 if (BPF_MODE(insn->code) != BPF_MEM || 8580 insn->src_reg != BPF_REG_0) { 8581 verbose(env, "BPF_ST uses reserved fields\n"); 8582 return -EINVAL; 8583 } 8584 /* check src operand */ 8585 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8586 if (err) 8587 return err; 8588 8589 if (is_ctx_reg(env, insn->dst_reg)) { 8590 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 8591 insn->dst_reg, 8592 reg_type_str[reg_state(env, insn->dst_reg)->type]); 8593 return -EACCES; 8594 } 8595 8596 /* check that memory (dst_reg + off) is writeable */ 8597 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8598 insn->off, BPF_SIZE(insn->code), 8599 BPF_WRITE, -1, false); 8600 if (err) 8601 return err; 8602 8603 } else if (class == BPF_JMP || class == BPF_JMP32) { 8604 u8 opcode = BPF_OP(insn->code); 8605 8606 env->jmps_processed++; 8607 if (opcode == BPF_CALL) { 8608 if (BPF_SRC(insn->code) != BPF_K || 8609 insn->off != 0 || 8610 (insn->src_reg != BPF_REG_0 && 8611 insn->src_reg != BPF_PSEUDO_CALL) || 8612 insn->dst_reg != BPF_REG_0 || 8613 class == BPF_JMP32) { 8614 verbose(env, "BPF_CALL uses reserved fields\n"); 8615 return -EINVAL; 8616 } 8617 8618 if (env->cur_state->active_spin_lock && 8619 (insn->src_reg == BPF_PSEUDO_CALL || 8620 insn->imm != BPF_FUNC_spin_unlock)) { 8621 verbose(env, "function calls are not allowed while holding a lock\n"); 8622 return -EINVAL; 8623 } 8624 if (insn->src_reg == BPF_PSEUDO_CALL) 8625 err = check_func_call(env, insn, &env->insn_idx); 8626 else 8627 err = check_helper_call(env, insn->imm, env->insn_idx); 8628 if (err) 8629 return err; 8630 8631 } else if (opcode == BPF_JA) { 8632 if (BPF_SRC(insn->code) != BPF_K || 8633 insn->imm != 0 || 8634 insn->src_reg != BPF_REG_0 || 8635 insn->dst_reg != BPF_REG_0 || 8636 class == BPF_JMP32) { 8637 verbose(env, "BPF_JA uses reserved fields\n"); 8638 return -EINVAL; 8639 } 8640 8641 env->insn_idx += insn->off + 1; 8642 continue; 8643 8644 } else if (opcode == BPF_EXIT) { 8645 if (BPF_SRC(insn->code) != BPF_K || 8646 insn->imm != 0 || 8647 insn->src_reg != BPF_REG_0 || 8648 insn->dst_reg != BPF_REG_0 || 8649 class == BPF_JMP32) { 8650 verbose(env, "BPF_EXIT uses reserved fields\n"); 8651 return -EINVAL; 8652 } 8653 8654 if (env->cur_state->active_spin_lock) { 8655 verbose(env, "bpf_spin_unlock is missing\n"); 8656 return -EINVAL; 8657 } 8658 8659 if (state->curframe) { 8660 /* exit from nested function */ 8661 err = prepare_func_exit(env, &env->insn_idx); 8662 if (err) 8663 return err; 8664 do_print_state = true; 8665 continue; 8666 } 8667 8668 err = check_reference_leak(env); 8669 if (err) 8670 return err; 8671 8672 err = check_return_code(env); 8673 if (err) 8674 return err; 8675 process_bpf_exit: 8676 update_branch_counts(env, env->cur_state); 8677 err = pop_stack(env, &prev_insn_idx, 8678 &env->insn_idx); 8679 if (err < 0) { 8680 if (err != -ENOENT) 8681 return err; 8682 break; 8683 } else { 8684 do_print_state = true; 8685 continue; 8686 } 8687 } else { 8688 err = check_cond_jmp_op(env, insn, &env->insn_idx); 8689 if (err) 8690 return err; 8691 } 8692 } else if (class == BPF_LD) { 8693 u8 mode = BPF_MODE(insn->code); 8694 8695 if (mode == BPF_ABS || mode == BPF_IND) { 8696 err = check_ld_abs(env, insn); 8697 if (err) 8698 return err; 8699 8700 } else if (mode == BPF_IMM) { 8701 err = check_ld_imm(env, insn); 8702 if (err) 8703 return err; 8704 8705 env->insn_idx++; 8706 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8707 } else { 8708 verbose(env, "invalid BPF_LD mode\n"); 8709 return -EINVAL; 8710 } 8711 } else { 8712 verbose(env, "unknown insn class %d\n", class); 8713 return -EINVAL; 8714 } 8715 8716 env->insn_idx++; 8717 } 8718 8719 return 0; 8720 } 8721 8722 static int check_map_prealloc(struct bpf_map *map) 8723 { 8724 return (map->map_type != BPF_MAP_TYPE_HASH && 8725 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8726 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 8727 !(map->map_flags & BPF_F_NO_PREALLOC); 8728 } 8729 8730 static bool is_tracing_prog_type(enum bpf_prog_type type) 8731 { 8732 switch (type) { 8733 case BPF_PROG_TYPE_KPROBE: 8734 case BPF_PROG_TYPE_TRACEPOINT: 8735 case BPF_PROG_TYPE_PERF_EVENT: 8736 case BPF_PROG_TYPE_RAW_TRACEPOINT: 8737 return true; 8738 default: 8739 return false; 8740 } 8741 } 8742 8743 static bool is_preallocated_map(struct bpf_map *map) 8744 { 8745 if (!check_map_prealloc(map)) 8746 return false; 8747 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 8748 return false; 8749 return true; 8750 } 8751 8752 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 8753 struct bpf_map *map, 8754 struct bpf_prog *prog) 8755 8756 { 8757 /* 8758 * Validate that trace type programs use preallocated hash maps. 8759 * 8760 * For programs attached to PERF events this is mandatory as the 8761 * perf NMI can hit any arbitrary code sequence. 8762 * 8763 * All other trace types using preallocated hash maps are unsafe as 8764 * well because tracepoint or kprobes can be inside locked regions 8765 * of the memory allocator or at a place where a recursion into the 8766 * memory allocator would see inconsistent state. 8767 * 8768 * On RT enabled kernels run-time allocation of all trace type 8769 * programs is strictly prohibited due to lock type constraints. On 8770 * !RT kernels it is allowed for backwards compatibility reasons for 8771 * now, but warnings are emitted so developers are made aware of 8772 * the unsafety and can fix their programs before this is enforced. 8773 */ 8774 if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) { 8775 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 8776 verbose(env, "perf_event programs can only use preallocated hash map\n"); 8777 return -EINVAL; 8778 } 8779 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 8780 verbose(env, "trace type programs can only use preallocated hash map\n"); 8781 return -EINVAL; 8782 } 8783 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 8784 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 8785 } 8786 8787 if ((is_tracing_prog_type(prog->type) || 8788 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 8789 map_value_has_spin_lock(map)) { 8790 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 8791 return -EINVAL; 8792 } 8793 8794 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 8795 !bpf_offload_prog_map_match(prog, map)) { 8796 verbose(env, "offload device mismatch between prog and map\n"); 8797 return -EINVAL; 8798 } 8799 8800 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 8801 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 8802 return -EINVAL; 8803 } 8804 8805 return 0; 8806 } 8807 8808 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 8809 { 8810 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 8811 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 8812 } 8813 8814 /* look for pseudo eBPF instructions that access map FDs and 8815 * replace them with actual map pointers 8816 */ 8817 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 8818 { 8819 struct bpf_insn *insn = env->prog->insnsi; 8820 int insn_cnt = env->prog->len; 8821 int i, j, err; 8822 8823 err = bpf_prog_calc_tag(env->prog); 8824 if (err) 8825 return err; 8826 8827 for (i = 0; i < insn_cnt; i++, insn++) { 8828 if (BPF_CLASS(insn->code) == BPF_LDX && 8829 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 8830 verbose(env, "BPF_LDX uses reserved fields\n"); 8831 return -EINVAL; 8832 } 8833 8834 if (BPF_CLASS(insn->code) == BPF_STX && 8835 ((BPF_MODE(insn->code) != BPF_MEM && 8836 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 8837 verbose(env, "BPF_STX uses reserved fields\n"); 8838 return -EINVAL; 8839 } 8840 8841 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 8842 struct bpf_insn_aux_data *aux; 8843 struct bpf_map *map; 8844 struct fd f; 8845 u64 addr; 8846 8847 if (i == insn_cnt - 1 || insn[1].code != 0 || 8848 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 8849 insn[1].off != 0) { 8850 verbose(env, "invalid bpf_ld_imm64 insn\n"); 8851 return -EINVAL; 8852 } 8853 8854 if (insn[0].src_reg == 0) 8855 /* valid generic load 64-bit imm */ 8856 goto next_insn; 8857 8858 /* In final convert_pseudo_ld_imm64() step, this is 8859 * converted into regular 64-bit imm load insn. 8860 */ 8861 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 8862 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 8863 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 8864 insn[1].imm != 0)) { 8865 verbose(env, 8866 "unrecognized bpf_ld_imm64 insn\n"); 8867 return -EINVAL; 8868 } 8869 8870 f = fdget(insn[0].imm); 8871 map = __bpf_map_get(f); 8872 if (IS_ERR(map)) { 8873 verbose(env, "fd %d is not pointing to valid bpf_map\n", 8874 insn[0].imm); 8875 return PTR_ERR(map); 8876 } 8877 8878 err = check_map_prog_compatibility(env, map, env->prog); 8879 if (err) { 8880 fdput(f); 8881 return err; 8882 } 8883 8884 aux = &env->insn_aux_data[i]; 8885 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 8886 addr = (unsigned long)map; 8887 } else { 8888 u32 off = insn[1].imm; 8889 8890 if (off >= BPF_MAX_VAR_OFF) { 8891 verbose(env, "direct value offset of %u is not allowed\n", off); 8892 fdput(f); 8893 return -EINVAL; 8894 } 8895 8896 if (!map->ops->map_direct_value_addr) { 8897 verbose(env, "no direct value access support for this map type\n"); 8898 fdput(f); 8899 return -EINVAL; 8900 } 8901 8902 err = map->ops->map_direct_value_addr(map, &addr, off); 8903 if (err) { 8904 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 8905 map->value_size, off); 8906 fdput(f); 8907 return err; 8908 } 8909 8910 aux->map_off = off; 8911 addr += off; 8912 } 8913 8914 insn[0].imm = (u32)addr; 8915 insn[1].imm = addr >> 32; 8916 8917 /* check whether we recorded this map already */ 8918 for (j = 0; j < env->used_map_cnt; j++) { 8919 if (env->used_maps[j] == map) { 8920 aux->map_index = j; 8921 fdput(f); 8922 goto next_insn; 8923 } 8924 } 8925 8926 if (env->used_map_cnt >= MAX_USED_MAPS) { 8927 fdput(f); 8928 return -E2BIG; 8929 } 8930 8931 /* hold the map. If the program is rejected by verifier, 8932 * the map will be released by release_maps() or it 8933 * will be used by the valid program until it's unloaded 8934 * and all maps are released in free_used_maps() 8935 */ 8936 bpf_map_inc(map); 8937 8938 aux->map_index = env->used_map_cnt; 8939 env->used_maps[env->used_map_cnt++] = map; 8940 8941 if (bpf_map_is_cgroup_storage(map) && 8942 bpf_cgroup_storage_assign(env->prog->aux, map)) { 8943 verbose(env, "only one cgroup storage of each type is allowed\n"); 8944 fdput(f); 8945 return -EBUSY; 8946 } 8947 8948 fdput(f); 8949 next_insn: 8950 insn++; 8951 i++; 8952 continue; 8953 } 8954 8955 /* Basic sanity check before we invest more work here. */ 8956 if (!bpf_opcode_in_insntable(insn->code)) { 8957 verbose(env, "unknown opcode %02x\n", insn->code); 8958 return -EINVAL; 8959 } 8960 } 8961 8962 /* now all pseudo BPF_LD_IMM64 instructions load valid 8963 * 'struct bpf_map *' into a register instead of user map_fd. 8964 * These pointers will be used later by verifier to validate map access. 8965 */ 8966 return 0; 8967 } 8968 8969 /* drop refcnt of maps used by the rejected program */ 8970 static void release_maps(struct bpf_verifier_env *env) 8971 { 8972 __bpf_free_used_maps(env->prog->aux, env->used_maps, 8973 env->used_map_cnt); 8974 } 8975 8976 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 8977 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 8978 { 8979 struct bpf_insn *insn = env->prog->insnsi; 8980 int insn_cnt = env->prog->len; 8981 int i; 8982 8983 for (i = 0; i < insn_cnt; i++, insn++) 8984 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 8985 insn->src_reg = 0; 8986 } 8987 8988 /* single env->prog->insni[off] instruction was replaced with the range 8989 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 8990 * [0, off) and [off, end) to new locations, so the patched range stays zero 8991 */ 8992 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 8993 struct bpf_prog *new_prog, u32 off, u32 cnt) 8994 { 8995 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 8996 struct bpf_insn *insn = new_prog->insnsi; 8997 u32 prog_len; 8998 int i; 8999 9000 /* aux info at OFF always needs adjustment, no matter fast path 9001 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 9002 * original insn at old prog. 9003 */ 9004 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 9005 9006 if (cnt == 1) 9007 return 0; 9008 prog_len = new_prog->len; 9009 new_data = vzalloc(array_size(prog_len, 9010 sizeof(struct bpf_insn_aux_data))); 9011 if (!new_data) 9012 return -ENOMEM; 9013 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 9014 memcpy(new_data + off + cnt - 1, old_data + off, 9015 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 9016 for (i = off; i < off + cnt - 1; i++) { 9017 new_data[i].seen = env->pass_cnt; 9018 new_data[i].zext_dst = insn_has_def32(env, insn + i); 9019 } 9020 env->insn_aux_data = new_data; 9021 vfree(old_data); 9022 return 0; 9023 } 9024 9025 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 9026 { 9027 int i; 9028 9029 if (len == 1) 9030 return; 9031 /* NOTE: fake 'exit' subprog should be updated as well. */ 9032 for (i = 0; i <= env->subprog_cnt; i++) { 9033 if (env->subprog_info[i].start <= off) 9034 continue; 9035 env->subprog_info[i].start += len - 1; 9036 } 9037 } 9038 9039 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 9040 const struct bpf_insn *patch, u32 len) 9041 { 9042 struct bpf_prog *new_prog; 9043 9044 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 9045 if (IS_ERR(new_prog)) { 9046 if (PTR_ERR(new_prog) == -ERANGE) 9047 verbose(env, 9048 "insn %d cannot be patched due to 16-bit range\n", 9049 env->insn_aux_data[off].orig_idx); 9050 return NULL; 9051 } 9052 if (adjust_insn_aux_data(env, new_prog, off, len)) 9053 return NULL; 9054 adjust_subprog_starts(env, off, len); 9055 return new_prog; 9056 } 9057 9058 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 9059 u32 off, u32 cnt) 9060 { 9061 int i, j; 9062 9063 /* find first prog starting at or after off (first to remove) */ 9064 for (i = 0; i < env->subprog_cnt; i++) 9065 if (env->subprog_info[i].start >= off) 9066 break; 9067 /* find first prog starting at or after off + cnt (first to stay) */ 9068 for (j = i; j < env->subprog_cnt; j++) 9069 if (env->subprog_info[j].start >= off + cnt) 9070 break; 9071 /* if j doesn't start exactly at off + cnt, we are just removing 9072 * the front of previous prog 9073 */ 9074 if (env->subprog_info[j].start != off + cnt) 9075 j--; 9076 9077 if (j > i) { 9078 struct bpf_prog_aux *aux = env->prog->aux; 9079 int move; 9080 9081 /* move fake 'exit' subprog as well */ 9082 move = env->subprog_cnt + 1 - j; 9083 9084 memmove(env->subprog_info + i, 9085 env->subprog_info + j, 9086 sizeof(*env->subprog_info) * move); 9087 env->subprog_cnt -= j - i; 9088 9089 /* remove func_info */ 9090 if (aux->func_info) { 9091 move = aux->func_info_cnt - j; 9092 9093 memmove(aux->func_info + i, 9094 aux->func_info + j, 9095 sizeof(*aux->func_info) * move); 9096 aux->func_info_cnt -= j - i; 9097 /* func_info->insn_off is set after all code rewrites, 9098 * in adjust_btf_func() - no need to adjust 9099 */ 9100 } 9101 } else { 9102 /* convert i from "first prog to remove" to "first to adjust" */ 9103 if (env->subprog_info[i].start == off) 9104 i++; 9105 } 9106 9107 /* update fake 'exit' subprog as well */ 9108 for (; i <= env->subprog_cnt; i++) 9109 env->subprog_info[i].start -= cnt; 9110 9111 return 0; 9112 } 9113 9114 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 9115 u32 cnt) 9116 { 9117 struct bpf_prog *prog = env->prog; 9118 u32 i, l_off, l_cnt, nr_linfo; 9119 struct bpf_line_info *linfo; 9120 9121 nr_linfo = prog->aux->nr_linfo; 9122 if (!nr_linfo) 9123 return 0; 9124 9125 linfo = prog->aux->linfo; 9126 9127 /* find first line info to remove, count lines to be removed */ 9128 for (i = 0; i < nr_linfo; i++) 9129 if (linfo[i].insn_off >= off) 9130 break; 9131 9132 l_off = i; 9133 l_cnt = 0; 9134 for (; i < nr_linfo; i++) 9135 if (linfo[i].insn_off < off + cnt) 9136 l_cnt++; 9137 else 9138 break; 9139 9140 /* First live insn doesn't match first live linfo, it needs to "inherit" 9141 * last removed linfo. prog is already modified, so prog->len == off 9142 * means no live instructions after (tail of the program was removed). 9143 */ 9144 if (prog->len != off && l_cnt && 9145 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 9146 l_cnt--; 9147 linfo[--i].insn_off = off + cnt; 9148 } 9149 9150 /* remove the line info which refer to the removed instructions */ 9151 if (l_cnt) { 9152 memmove(linfo + l_off, linfo + i, 9153 sizeof(*linfo) * (nr_linfo - i)); 9154 9155 prog->aux->nr_linfo -= l_cnt; 9156 nr_linfo = prog->aux->nr_linfo; 9157 } 9158 9159 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 9160 for (i = l_off; i < nr_linfo; i++) 9161 linfo[i].insn_off -= cnt; 9162 9163 /* fix up all subprogs (incl. 'exit') which start >= off */ 9164 for (i = 0; i <= env->subprog_cnt; i++) 9165 if (env->subprog_info[i].linfo_idx > l_off) { 9166 /* program may have started in the removed region but 9167 * may not be fully removed 9168 */ 9169 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 9170 env->subprog_info[i].linfo_idx -= l_cnt; 9171 else 9172 env->subprog_info[i].linfo_idx = l_off; 9173 } 9174 9175 return 0; 9176 } 9177 9178 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 9179 { 9180 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9181 unsigned int orig_prog_len = env->prog->len; 9182 int err; 9183 9184 if (bpf_prog_is_dev_bound(env->prog->aux)) 9185 bpf_prog_offload_remove_insns(env, off, cnt); 9186 9187 err = bpf_remove_insns(env->prog, off, cnt); 9188 if (err) 9189 return err; 9190 9191 err = adjust_subprog_starts_after_remove(env, off, cnt); 9192 if (err) 9193 return err; 9194 9195 err = bpf_adj_linfo_after_remove(env, off, cnt); 9196 if (err) 9197 return err; 9198 9199 memmove(aux_data + off, aux_data + off + cnt, 9200 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 9201 9202 return 0; 9203 } 9204 9205 /* The verifier does more data flow analysis than llvm and will not 9206 * explore branches that are dead at run time. Malicious programs can 9207 * have dead code too. Therefore replace all dead at-run-time code 9208 * with 'ja -1'. 9209 * 9210 * Just nops are not optimal, e.g. if they would sit at the end of the 9211 * program and through another bug we would manage to jump there, then 9212 * we'd execute beyond program memory otherwise. Returning exception 9213 * code also wouldn't work since we can have subprogs where the dead 9214 * code could be located. 9215 */ 9216 static void sanitize_dead_code(struct bpf_verifier_env *env) 9217 { 9218 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9219 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 9220 struct bpf_insn *insn = env->prog->insnsi; 9221 const int insn_cnt = env->prog->len; 9222 int i; 9223 9224 for (i = 0; i < insn_cnt; i++) { 9225 if (aux_data[i].seen) 9226 continue; 9227 memcpy(insn + i, &trap, sizeof(trap)); 9228 } 9229 } 9230 9231 static bool insn_is_cond_jump(u8 code) 9232 { 9233 u8 op; 9234 9235 if (BPF_CLASS(code) == BPF_JMP32) 9236 return true; 9237 9238 if (BPF_CLASS(code) != BPF_JMP) 9239 return false; 9240 9241 op = BPF_OP(code); 9242 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 9243 } 9244 9245 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 9246 { 9247 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9248 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9249 struct bpf_insn *insn = env->prog->insnsi; 9250 const int insn_cnt = env->prog->len; 9251 int i; 9252 9253 for (i = 0; i < insn_cnt; i++, insn++) { 9254 if (!insn_is_cond_jump(insn->code)) 9255 continue; 9256 9257 if (!aux_data[i + 1].seen) 9258 ja.off = insn->off; 9259 else if (!aux_data[i + 1 + insn->off].seen) 9260 ja.off = 0; 9261 else 9262 continue; 9263 9264 if (bpf_prog_is_dev_bound(env->prog->aux)) 9265 bpf_prog_offload_replace_insn(env, i, &ja); 9266 9267 memcpy(insn, &ja, sizeof(ja)); 9268 } 9269 } 9270 9271 static int opt_remove_dead_code(struct bpf_verifier_env *env) 9272 { 9273 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9274 int insn_cnt = env->prog->len; 9275 int i, err; 9276 9277 for (i = 0; i < insn_cnt; i++) { 9278 int j; 9279 9280 j = 0; 9281 while (i + j < insn_cnt && !aux_data[i + j].seen) 9282 j++; 9283 if (!j) 9284 continue; 9285 9286 err = verifier_remove_insns(env, i, j); 9287 if (err) 9288 return err; 9289 insn_cnt = env->prog->len; 9290 } 9291 9292 return 0; 9293 } 9294 9295 static int opt_remove_nops(struct bpf_verifier_env *env) 9296 { 9297 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9298 struct bpf_insn *insn = env->prog->insnsi; 9299 int insn_cnt = env->prog->len; 9300 int i, err; 9301 9302 for (i = 0; i < insn_cnt; i++) { 9303 if (memcmp(&insn[i], &ja, sizeof(ja))) 9304 continue; 9305 9306 err = verifier_remove_insns(env, i, 1); 9307 if (err) 9308 return err; 9309 insn_cnt--; 9310 i--; 9311 } 9312 9313 return 0; 9314 } 9315 9316 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 9317 const union bpf_attr *attr) 9318 { 9319 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 9320 struct bpf_insn_aux_data *aux = env->insn_aux_data; 9321 int i, patch_len, delta = 0, len = env->prog->len; 9322 struct bpf_insn *insns = env->prog->insnsi; 9323 struct bpf_prog *new_prog; 9324 bool rnd_hi32; 9325 9326 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 9327 zext_patch[1] = BPF_ZEXT_REG(0); 9328 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 9329 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 9330 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 9331 for (i = 0; i < len; i++) { 9332 int adj_idx = i + delta; 9333 struct bpf_insn insn; 9334 9335 insn = insns[adj_idx]; 9336 if (!aux[adj_idx].zext_dst) { 9337 u8 code, class; 9338 u32 imm_rnd; 9339 9340 if (!rnd_hi32) 9341 continue; 9342 9343 code = insn.code; 9344 class = BPF_CLASS(code); 9345 if (insn_no_def(&insn)) 9346 continue; 9347 9348 /* NOTE: arg "reg" (the fourth one) is only used for 9349 * BPF_STX which has been ruled out in above 9350 * check, it is safe to pass NULL here. 9351 */ 9352 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 9353 if (class == BPF_LD && 9354 BPF_MODE(code) == BPF_IMM) 9355 i++; 9356 continue; 9357 } 9358 9359 /* ctx load could be transformed into wider load. */ 9360 if (class == BPF_LDX && 9361 aux[adj_idx].ptr_type == PTR_TO_CTX) 9362 continue; 9363 9364 imm_rnd = get_random_int(); 9365 rnd_hi32_patch[0] = insn; 9366 rnd_hi32_patch[1].imm = imm_rnd; 9367 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 9368 patch = rnd_hi32_patch; 9369 patch_len = 4; 9370 goto apply_patch_buffer; 9371 } 9372 9373 if (!bpf_jit_needs_zext()) 9374 continue; 9375 9376 zext_patch[0] = insn; 9377 zext_patch[1].dst_reg = insn.dst_reg; 9378 zext_patch[1].src_reg = insn.dst_reg; 9379 patch = zext_patch; 9380 patch_len = 2; 9381 apply_patch_buffer: 9382 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 9383 if (!new_prog) 9384 return -ENOMEM; 9385 env->prog = new_prog; 9386 insns = new_prog->insnsi; 9387 aux = env->insn_aux_data; 9388 delta += patch_len - 1; 9389 } 9390 9391 return 0; 9392 } 9393 9394 /* convert load instructions that access fields of a context type into a 9395 * sequence of instructions that access fields of the underlying structure: 9396 * struct __sk_buff -> struct sk_buff 9397 * struct bpf_sock_ops -> struct sock 9398 */ 9399 static int convert_ctx_accesses(struct bpf_verifier_env *env) 9400 { 9401 const struct bpf_verifier_ops *ops = env->ops; 9402 int i, cnt, size, ctx_field_size, delta = 0; 9403 const int insn_cnt = env->prog->len; 9404 struct bpf_insn insn_buf[16], *insn; 9405 u32 target_size, size_default, off; 9406 struct bpf_prog *new_prog; 9407 enum bpf_access_type type; 9408 bool is_narrower_load; 9409 9410 if (ops->gen_prologue || env->seen_direct_write) { 9411 if (!ops->gen_prologue) { 9412 verbose(env, "bpf verifier is misconfigured\n"); 9413 return -EINVAL; 9414 } 9415 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 9416 env->prog); 9417 if (cnt >= ARRAY_SIZE(insn_buf)) { 9418 verbose(env, "bpf verifier is misconfigured\n"); 9419 return -EINVAL; 9420 } else if (cnt) { 9421 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 9422 if (!new_prog) 9423 return -ENOMEM; 9424 9425 env->prog = new_prog; 9426 delta += cnt - 1; 9427 } 9428 } 9429 9430 if (bpf_prog_is_dev_bound(env->prog->aux)) 9431 return 0; 9432 9433 insn = env->prog->insnsi + delta; 9434 9435 for (i = 0; i < insn_cnt; i++, insn++) { 9436 bpf_convert_ctx_access_t convert_ctx_access; 9437 9438 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 9439 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 9440 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 9441 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 9442 type = BPF_READ; 9443 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 9444 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 9445 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 9446 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 9447 type = BPF_WRITE; 9448 else 9449 continue; 9450 9451 if (type == BPF_WRITE && 9452 env->insn_aux_data[i + delta].sanitize_stack_off) { 9453 struct bpf_insn patch[] = { 9454 /* Sanitize suspicious stack slot with zero. 9455 * There are no memory dependencies for this store, 9456 * since it's only using frame pointer and immediate 9457 * constant of zero 9458 */ 9459 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 9460 env->insn_aux_data[i + delta].sanitize_stack_off, 9461 0), 9462 /* the original STX instruction will immediately 9463 * overwrite the same stack slot with appropriate value 9464 */ 9465 *insn, 9466 }; 9467 9468 cnt = ARRAY_SIZE(patch); 9469 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 9470 if (!new_prog) 9471 return -ENOMEM; 9472 9473 delta += cnt - 1; 9474 env->prog = new_prog; 9475 insn = new_prog->insnsi + i + delta; 9476 continue; 9477 } 9478 9479 switch (env->insn_aux_data[i + delta].ptr_type) { 9480 case PTR_TO_CTX: 9481 if (!ops->convert_ctx_access) 9482 continue; 9483 convert_ctx_access = ops->convert_ctx_access; 9484 break; 9485 case PTR_TO_SOCKET: 9486 case PTR_TO_SOCK_COMMON: 9487 convert_ctx_access = bpf_sock_convert_ctx_access; 9488 break; 9489 case PTR_TO_TCP_SOCK: 9490 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 9491 break; 9492 case PTR_TO_XDP_SOCK: 9493 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 9494 break; 9495 case PTR_TO_BTF_ID: 9496 if (type == BPF_READ) { 9497 insn->code = BPF_LDX | BPF_PROBE_MEM | 9498 BPF_SIZE((insn)->code); 9499 env->prog->aux->num_exentries++; 9500 } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9501 verbose(env, "Writes through BTF pointers are not allowed\n"); 9502 return -EINVAL; 9503 } 9504 continue; 9505 default: 9506 continue; 9507 } 9508 9509 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 9510 size = BPF_LDST_BYTES(insn); 9511 9512 /* If the read access is a narrower load of the field, 9513 * convert to a 4/8-byte load, to minimum program type specific 9514 * convert_ctx_access changes. If conversion is successful, 9515 * we will apply proper mask to the result. 9516 */ 9517 is_narrower_load = size < ctx_field_size; 9518 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 9519 off = insn->off; 9520 if (is_narrower_load) { 9521 u8 size_code; 9522 9523 if (type == BPF_WRITE) { 9524 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 9525 return -EINVAL; 9526 } 9527 9528 size_code = BPF_H; 9529 if (ctx_field_size == 4) 9530 size_code = BPF_W; 9531 else if (ctx_field_size == 8) 9532 size_code = BPF_DW; 9533 9534 insn->off = off & ~(size_default - 1); 9535 insn->code = BPF_LDX | BPF_MEM | size_code; 9536 } 9537 9538 target_size = 0; 9539 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 9540 &target_size); 9541 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 9542 (ctx_field_size && !target_size)) { 9543 verbose(env, "bpf verifier is misconfigured\n"); 9544 return -EINVAL; 9545 } 9546 9547 if (is_narrower_load && size < target_size) { 9548 u8 shift = bpf_ctx_narrow_access_offset( 9549 off, size, size_default) * 8; 9550 if (ctx_field_size <= 4) { 9551 if (shift) 9552 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 9553 insn->dst_reg, 9554 shift); 9555 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 9556 (1 << size * 8) - 1); 9557 } else { 9558 if (shift) 9559 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 9560 insn->dst_reg, 9561 shift); 9562 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 9563 (1ULL << size * 8) - 1); 9564 } 9565 } 9566 9567 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9568 if (!new_prog) 9569 return -ENOMEM; 9570 9571 delta += cnt - 1; 9572 9573 /* keep walking new program and skip insns we just inserted */ 9574 env->prog = new_prog; 9575 insn = new_prog->insnsi + i + delta; 9576 } 9577 9578 return 0; 9579 } 9580 9581 static int jit_subprogs(struct bpf_verifier_env *env) 9582 { 9583 struct bpf_prog *prog = env->prog, **func, *tmp; 9584 int i, j, subprog_start, subprog_end = 0, len, subprog; 9585 struct bpf_insn *insn; 9586 void *old_bpf_func; 9587 int err; 9588 9589 if (env->subprog_cnt <= 1) 9590 return 0; 9591 9592 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9593 if (insn->code != (BPF_JMP | BPF_CALL) || 9594 insn->src_reg != BPF_PSEUDO_CALL) 9595 continue; 9596 /* Upon error here we cannot fall back to interpreter but 9597 * need a hard reject of the program. Thus -EFAULT is 9598 * propagated in any case. 9599 */ 9600 subprog = find_subprog(env, i + insn->imm + 1); 9601 if (subprog < 0) { 9602 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 9603 i + insn->imm + 1); 9604 return -EFAULT; 9605 } 9606 /* temporarily remember subprog id inside insn instead of 9607 * aux_data, since next loop will split up all insns into funcs 9608 */ 9609 insn->off = subprog; 9610 /* remember original imm in case JIT fails and fallback 9611 * to interpreter will be needed 9612 */ 9613 env->insn_aux_data[i].call_imm = insn->imm; 9614 /* point imm to __bpf_call_base+1 from JITs point of view */ 9615 insn->imm = 1; 9616 } 9617 9618 err = bpf_prog_alloc_jited_linfo(prog); 9619 if (err) 9620 goto out_undo_insn; 9621 9622 err = -ENOMEM; 9623 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 9624 if (!func) 9625 goto out_undo_insn; 9626 9627 for (i = 0; i < env->subprog_cnt; i++) { 9628 subprog_start = subprog_end; 9629 subprog_end = env->subprog_info[i + 1].start; 9630 9631 len = subprog_end - subprog_start; 9632 /* BPF_PROG_RUN doesn't call subprogs directly, 9633 * hence main prog stats include the runtime of subprogs. 9634 * subprogs don't have IDs and not reachable via prog_get_next_id 9635 * func[i]->aux->stats will never be accessed and stays NULL 9636 */ 9637 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 9638 if (!func[i]) 9639 goto out_free; 9640 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 9641 len * sizeof(struct bpf_insn)); 9642 func[i]->type = prog->type; 9643 func[i]->len = len; 9644 if (bpf_prog_calc_tag(func[i])) 9645 goto out_free; 9646 func[i]->is_func = 1; 9647 func[i]->aux->func_idx = i; 9648 /* the btf and func_info will be freed only at prog->aux */ 9649 func[i]->aux->btf = prog->aux->btf; 9650 func[i]->aux->func_info = prog->aux->func_info; 9651 9652 /* Use bpf_prog_F_tag to indicate functions in stack traces. 9653 * Long term would need debug info to populate names 9654 */ 9655 func[i]->aux->name[0] = 'F'; 9656 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 9657 func[i]->jit_requested = 1; 9658 func[i]->aux->linfo = prog->aux->linfo; 9659 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 9660 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 9661 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 9662 func[i] = bpf_int_jit_compile(func[i]); 9663 if (!func[i]->jited) { 9664 err = -ENOTSUPP; 9665 goto out_free; 9666 } 9667 cond_resched(); 9668 } 9669 /* at this point all bpf functions were successfully JITed 9670 * now populate all bpf_calls with correct addresses and 9671 * run last pass of JIT 9672 */ 9673 for (i = 0; i < env->subprog_cnt; i++) { 9674 insn = func[i]->insnsi; 9675 for (j = 0; j < func[i]->len; j++, insn++) { 9676 if (insn->code != (BPF_JMP | BPF_CALL) || 9677 insn->src_reg != BPF_PSEUDO_CALL) 9678 continue; 9679 subprog = insn->off; 9680 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 9681 __bpf_call_base; 9682 } 9683 9684 /* we use the aux data to keep a list of the start addresses 9685 * of the JITed images for each function in the program 9686 * 9687 * for some architectures, such as powerpc64, the imm field 9688 * might not be large enough to hold the offset of the start 9689 * address of the callee's JITed image from __bpf_call_base 9690 * 9691 * in such cases, we can lookup the start address of a callee 9692 * by using its subprog id, available from the off field of 9693 * the call instruction, as an index for this list 9694 */ 9695 func[i]->aux->func = func; 9696 func[i]->aux->func_cnt = env->subprog_cnt; 9697 } 9698 for (i = 0; i < env->subprog_cnt; i++) { 9699 old_bpf_func = func[i]->bpf_func; 9700 tmp = bpf_int_jit_compile(func[i]); 9701 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 9702 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 9703 err = -ENOTSUPP; 9704 goto out_free; 9705 } 9706 cond_resched(); 9707 } 9708 9709 /* finally lock prog and jit images for all functions and 9710 * populate kallsysm 9711 */ 9712 for (i = 0; i < env->subprog_cnt; i++) { 9713 bpf_prog_lock_ro(func[i]); 9714 bpf_prog_kallsyms_add(func[i]); 9715 } 9716 9717 /* Last step: make now unused interpreter insns from main 9718 * prog consistent for later dump requests, so they can 9719 * later look the same as if they were interpreted only. 9720 */ 9721 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9722 if (insn->code != (BPF_JMP | BPF_CALL) || 9723 insn->src_reg != BPF_PSEUDO_CALL) 9724 continue; 9725 insn->off = env->insn_aux_data[i].call_imm; 9726 subprog = find_subprog(env, i + insn->off + 1); 9727 insn->imm = subprog; 9728 } 9729 9730 prog->jited = 1; 9731 prog->bpf_func = func[0]->bpf_func; 9732 prog->aux->func = func; 9733 prog->aux->func_cnt = env->subprog_cnt; 9734 bpf_prog_free_unused_jited_linfo(prog); 9735 return 0; 9736 out_free: 9737 for (i = 0; i < env->subprog_cnt; i++) 9738 if (func[i]) 9739 bpf_jit_free(func[i]); 9740 kfree(func); 9741 out_undo_insn: 9742 /* cleanup main prog to be interpreted */ 9743 prog->jit_requested = 0; 9744 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9745 if (insn->code != (BPF_JMP | BPF_CALL) || 9746 insn->src_reg != BPF_PSEUDO_CALL) 9747 continue; 9748 insn->off = 0; 9749 insn->imm = env->insn_aux_data[i].call_imm; 9750 } 9751 bpf_prog_free_jited_linfo(prog); 9752 return err; 9753 } 9754 9755 static int fixup_call_args(struct bpf_verifier_env *env) 9756 { 9757 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9758 struct bpf_prog *prog = env->prog; 9759 struct bpf_insn *insn = prog->insnsi; 9760 int i, depth; 9761 #endif 9762 int err = 0; 9763 9764 if (env->prog->jit_requested && 9765 !bpf_prog_is_dev_bound(env->prog->aux)) { 9766 err = jit_subprogs(env); 9767 if (err == 0) 9768 return 0; 9769 if (err == -EFAULT) 9770 return err; 9771 } 9772 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9773 for (i = 0; i < prog->len; i++, insn++) { 9774 if (insn->code != (BPF_JMP | BPF_CALL) || 9775 insn->src_reg != BPF_PSEUDO_CALL) 9776 continue; 9777 depth = get_callee_stack_depth(env, insn, i); 9778 if (depth < 0) 9779 return depth; 9780 bpf_patch_call_args(insn, depth); 9781 } 9782 err = 0; 9783 #endif 9784 return err; 9785 } 9786 9787 /* fixup insn->imm field of bpf_call instructions 9788 * and inline eligible helpers as explicit sequence of BPF instructions 9789 * 9790 * this function is called after eBPF program passed verification 9791 */ 9792 static int fixup_bpf_calls(struct bpf_verifier_env *env) 9793 { 9794 struct bpf_prog *prog = env->prog; 9795 bool expect_blinding = bpf_jit_blinding_enabled(prog); 9796 struct bpf_insn *insn = prog->insnsi; 9797 const struct bpf_func_proto *fn; 9798 const int insn_cnt = prog->len; 9799 const struct bpf_map_ops *ops; 9800 struct bpf_insn_aux_data *aux; 9801 struct bpf_insn insn_buf[16]; 9802 struct bpf_prog *new_prog; 9803 struct bpf_map *map_ptr; 9804 int i, ret, cnt, delta = 0; 9805 9806 for (i = 0; i < insn_cnt; i++, insn++) { 9807 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 9808 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9809 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 9810 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9811 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 9812 struct bpf_insn mask_and_div[] = { 9813 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9814 /* Rx div 0 -> 0 */ 9815 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 9816 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 9817 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 9818 *insn, 9819 }; 9820 struct bpf_insn mask_and_mod[] = { 9821 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9822 /* Rx mod 0 -> Rx */ 9823 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 9824 *insn, 9825 }; 9826 struct bpf_insn *patchlet; 9827 9828 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9829 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9830 patchlet = mask_and_div + (is64 ? 1 : 0); 9831 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 9832 } else { 9833 patchlet = mask_and_mod + (is64 ? 1 : 0); 9834 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 9835 } 9836 9837 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 9838 if (!new_prog) 9839 return -ENOMEM; 9840 9841 delta += cnt - 1; 9842 env->prog = prog = new_prog; 9843 insn = new_prog->insnsi + i + delta; 9844 continue; 9845 } 9846 9847 if (BPF_CLASS(insn->code) == BPF_LD && 9848 (BPF_MODE(insn->code) == BPF_ABS || 9849 BPF_MODE(insn->code) == BPF_IND)) { 9850 cnt = env->ops->gen_ld_abs(insn, insn_buf); 9851 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9852 verbose(env, "bpf verifier is misconfigured\n"); 9853 return -EINVAL; 9854 } 9855 9856 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9857 if (!new_prog) 9858 return -ENOMEM; 9859 9860 delta += cnt - 1; 9861 env->prog = prog = new_prog; 9862 insn = new_prog->insnsi + i + delta; 9863 continue; 9864 } 9865 9866 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 9867 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 9868 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 9869 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 9870 struct bpf_insn insn_buf[16]; 9871 struct bpf_insn *patch = &insn_buf[0]; 9872 bool issrc, isneg; 9873 u32 off_reg; 9874 9875 aux = &env->insn_aux_data[i + delta]; 9876 if (!aux->alu_state || 9877 aux->alu_state == BPF_ALU_NON_POINTER) 9878 continue; 9879 9880 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 9881 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 9882 BPF_ALU_SANITIZE_SRC; 9883 9884 off_reg = issrc ? insn->src_reg : insn->dst_reg; 9885 if (isneg) 9886 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9887 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 9888 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 9889 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 9890 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 9891 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 9892 if (issrc) { 9893 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 9894 off_reg); 9895 insn->src_reg = BPF_REG_AX; 9896 } else { 9897 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 9898 BPF_REG_AX); 9899 } 9900 if (isneg) 9901 insn->code = insn->code == code_add ? 9902 code_sub : code_add; 9903 *patch++ = *insn; 9904 if (issrc && isneg) 9905 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9906 cnt = patch - insn_buf; 9907 9908 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9909 if (!new_prog) 9910 return -ENOMEM; 9911 9912 delta += cnt - 1; 9913 env->prog = prog = new_prog; 9914 insn = new_prog->insnsi + i + delta; 9915 continue; 9916 } 9917 9918 if (insn->code != (BPF_JMP | BPF_CALL)) 9919 continue; 9920 if (insn->src_reg == BPF_PSEUDO_CALL) 9921 continue; 9922 9923 if (insn->imm == BPF_FUNC_get_route_realm) 9924 prog->dst_needed = 1; 9925 if (insn->imm == BPF_FUNC_get_prandom_u32) 9926 bpf_user_rnd_init_once(); 9927 if (insn->imm == BPF_FUNC_override_return) 9928 prog->kprobe_override = 1; 9929 if (insn->imm == BPF_FUNC_tail_call) { 9930 /* If we tail call into other programs, we 9931 * cannot make any assumptions since they can 9932 * be replaced dynamically during runtime in 9933 * the program array. 9934 */ 9935 prog->cb_access = 1; 9936 env->prog->aux->stack_depth = MAX_BPF_STACK; 9937 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 9938 9939 /* mark bpf_tail_call as different opcode to avoid 9940 * conditional branch in the interpeter for every normal 9941 * call and to prevent accidental JITing by JIT compiler 9942 * that doesn't support bpf_tail_call yet 9943 */ 9944 insn->imm = 0; 9945 insn->code = BPF_JMP | BPF_TAIL_CALL; 9946 9947 aux = &env->insn_aux_data[i + delta]; 9948 if (env->allow_ptr_leaks && !expect_blinding && 9949 prog->jit_requested && 9950 !bpf_map_key_poisoned(aux) && 9951 !bpf_map_ptr_poisoned(aux) && 9952 !bpf_map_ptr_unpriv(aux)) { 9953 struct bpf_jit_poke_descriptor desc = { 9954 .reason = BPF_POKE_REASON_TAIL_CALL, 9955 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 9956 .tail_call.key = bpf_map_key_immediate(aux), 9957 }; 9958 9959 ret = bpf_jit_add_poke_descriptor(prog, &desc); 9960 if (ret < 0) { 9961 verbose(env, "adding tail call poke descriptor failed\n"); 9962 return ret; 9963 } 9964 9965 insn->imm = ret + 1; 9966 continue; 9967 } 9968 9969 if (!bpf_map_ptr_unpriv(aux)) 9970 continue; 9971 9972 /* instead of changing every JIT dealing with tail_call 9973 * emit two extra insns: 9974 * if (index >= max_entries) goto out; 9975 * index &= array->index_mask; 9976 * to avoid out-of-bounds cpu speculation 9977 */ 9978 if (bpf_map_ptr_poisoned(aux)) { 9979 verbose(env, "tail_call abusing map_ptr\n"); 9980 return -EINVAL; 9981 } 9982 9983 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 9984 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 9985 map_ptr->max_entries, 2); 9986 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 9987 container_of(map_ptr, 9988 struct bpf_array, 9989 map)->index_mask); 9990 insn_buf[2] = *insn; 9991 cnt = 3; 9992 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9993 if (!new_prog) 9994 return -ENOMEM; 9995 9996 delta += cnt - 1; 9997 env->prog = prog = new_prog; 9998 insn = new_prog->insnsi + i + delta; 9999 continue; 10000 } 10001 10002 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 10003 * and other inlining handlers are currently limited to 64 bit 10004 * only. 10005 */ 10006 if (prog->jit_requested && BITS_PER_LONG == 64 && 10007 (insn->imm == BPF_FUNC_map_lookup_elem || 10008 insn->imm == BPF_FUNC_map_update_elem || 10009 insn->imm == BPF_FUNC_map_delete_elem || 10010 insn->imm == BPF_FUNC_map_push_elem || 10011 insn->imm == BPF_FUNC_map_pop_elem || 10012 insn->imm == BPF_FUNC_map_peek_elem)) { 10013 aux = &env->insn_aux_data[i + delta]; 10014 if (bpf_map_ptr_poisoned(aux)) 10015 goto patch_call_imm; 10016 10017 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10018 ops = map_ptr->ops; 10019 if (insn->imm == BPF_FUNC_map_lookup_elem && 10020 ops->map_gen_lookup) { 10021 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 10022 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10023 verbose(env, "bpf verifier is misconfigured\n"); 10024 return -EINVAL; 10025 } 10026 10027 new_prog = bpf_patch_insn_data(env, i + delta, 10028 insn_buf, cnt); 10029 if (!new_prog) 10030 return -ENOMEM; 10031 10032 delta += cnt - 1; 10033 env->prog = prog = new_prog; 10034 insn = new_prog->insnsi + i + delta; 10035 continue; 10036 } 10037 10038 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 10039 (void *(*)(struct bpf_map *map, void *key))NULL)); 10040 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 10041 (int (*)(struct bpf_map *map, void *key))NULL)); 10042 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 10043 (int (*)(struct bpf_map *map, void *key, void *value, 10044 u64 flags))NULL)); 10045 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 10046 (int (*)(struct bpf_map *map, void *value, 10047 u64 flags))NULL)); 10048 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 10049 (int (*)(struct bpf_map *map, void *value))NULL)); 10050 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 10051 (int (*)(struct bpf_map *map, void *value))NULL)); 10052 10053 switch (insn->imm) { 10054 case BPF_FUNC_map_lookup_elem: 10055 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 10056 __bpf_call_base; 10057 continue; 10058 case BPF_FUNC_map_update_elem: 10059 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 10060 __bpf_call_base; 10061 continue; 10062 case BPF_FUNC_map_delete_elem: 10063 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 10064 __bpf_call_base; 10065 continue; 10066 case BPF_FUNC_map_push_elem: 10067 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 10068 __bpf_call_base; 10069 continue; 10070 case BPF_FUNC_map_pop_elem: 10071 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 10072 __bpf_call_base; 10073 continue; 10074 case BPF_FUNC_map_peek_elem: 10075 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 10076 __bpf_call_base; 10077 continue; 10078 } 10079 10080 goto patch_call_imm; 10081 } 10082 10083 if (prog->jit_requested && BITS_PER_LONG == 64 && 10084 insn->imm == BPF_FUNC_jiffies64) { 10085 struct bpf_insn ld_jiffies_addr[2] = { 10086 BPF_LD_IMM64(BPF_REG_0, 10087 (unsigned long)&jiffies), 10088 }; 10089 10090 insn_buf[0] = ld_jiffies_addr[0]; 10091 insn_buf[1] = ld_jiffies_addr[1]; 10092 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 10093 BPF_REG_0, 0); 10094 cnt = 3; 10095 10096 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 10097 cnt); 10098 if (!new_prog) 10099 return -ENOMEM; 10100 10101 delta += cnt - 1; 10102 env->prog = prog = new_prog; 10103 insn = new_prog->insnsi + i + delta; 10104 continue; 10105 } 10106 10107 patch_call_imm: 10108 fn = env->ops->get_func_proto(insn->imm, env->prog); 10109 /* all functions that have prototype and verifier allowed 10110 * programs to call them, must be real in-kernel functions 10111 */ 10112 if (!fn->func) { 10113 verbose(env, 10114 "kernel subsystem misconfigured func %s#%d\n", 10115 func_id_name(insn->imm), insn->imm); 10116 return -EFAULT; 10117 } 10118 insn->imm = fn->func - __bpf_call_base; 10119 } 10120 10121 /* Since poke tab is now finalized, publish aux to tracker. */ 10122 for (i = 0; i < prog->aux->size_poke_tab; i++) { 10123 map_ptr = prog->aux->poke_tab[i].tail_call.map; 10124 if (!map_ptr->ops->map_poke_track || 10125 !map_ptr->ops->map_poke_untrack || 10126 !map_ptr->ops->map_poke_run) { 10127 verbose(env, "bpf verifier is misconfigured\n"); 10128 return -EINVAL; 10129 } 10130 10131 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 10132 if (ret < 0) { 10133 verbose(env, "tracking tail call prog failed\n"); 10134 return ret; 10135 } 10136 } 10137 10138 return 0; 10139 } 10140 10141 static void free_states(struct bpf_verifier_env *env) 10142 { 10143 struct bpf_verifier_state_list *sl, *sln; 10144 int i; 10145 10146 sl = env->free_list; 10147 while (sl) { 10148 sln = sl->next; 10149 free_verifier_state(&sl->state, false); 10150 kfree(sl); 10151 sl = sln; 10152 } 10153 env->free_list = NULL; 10154 10155 if (!env->explored_states) 10156 return; 10157 10158 for (i = 0; i < state_htab_size(env); i++) { 10159 sl = env->explored_states[i]; 10160 10161 while (sl) { 10162 sln = sl->next; 10163 free_verifier_state(&sl->state, false); 10164 kfree(sl); 10165 sl = sln; 10166 } 10167 env->explored_states[i] = NULL; 10168 } 10169 } 10170 10171 /* The verifier is using insn_aux_data[] to store temporary data during 10172 * verification and to store information for passes that run after the 10173 * verification like dead code sanitization. do_check_common() for subprogram N 10174 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 10175 * temporary data after do_check_common() finds that subprogram N cannot be 10176 * verified independently. pass_cnt counts the number of times 10177 * do_check_common() was run and insn->aux->seen tells the pass number 10178 * insn_aux_data was touched. These variables are compared to clear temporary 10179 * data from failed pass. For testing and experiments do_check_common() can be 10180 * run multiple times even when prior attempt to verify is unsuccessful. 10181 */ 10182 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 10183 { 10184 struct bpf_insn *insn = env->prog->insnsi; 10185 struct bpf_insn_aux_data *aux; 10186 int i, class; 10187 10188 for (i = 0; i < env->prog->len; i++) { 10189 class = BPF_CLASS(insn[i].code); 10190 if (class != BPF_LDX && class != BPF_STX) 10191 continue; 10192 aux = &env->insn_aux_data[i]; 10193 if (aux->seen != env->pass_cnt) 10194 continue; 10195 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 10196 } 10197 } 10198 10199 static int do_check_common(struct bpf_verifier_env *env, int subprog) 10200 { 10201 struct bpf_verifier_state *state; 10202 struct bpf_reg_state *regs; 10203 int ret, i; 10204 10205 env->prev_linfo = NULL; 10206 env->pass_cnt++; 10207 10208 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 10209 if (!state) 10210 return -ENOMEM; 10211 state->curframe = 0; 10212 state->speculative = false; 10213 state->branches = 1; 10214 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 10215 if (!state->frame[0]) { 10216 kfree(state); 10217 return -ENOMEM; 10218 } 10219 env->cur_state = state; 10220 init_func_state(env, state->frame[0], 10221 BPF_MAIN_FUNC /* callsite */, 10222 0 /* frameno */, 10223 subprog); 10224 10225 regs = state->frame[state->curframe]->regs; 10226 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 10227 ret = btf_prepare_func_args(env, subprog, regs); 10228 if (ret) 10229 goto out; 10230 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 10231 if (regs[i].type == PTR_TO_CTX) 10232 mark_reg_known_zero(env, regs, i); 10233 else if (regs[i].type == SCALAR_VALUE) 10234 mark_reg_unknown(env, regs, i); 10235 } 10236 } else { 10237 /* 1st arg to a function */ 10238 regs[BPF_REG_1].type = PTR_TO_CTX; 10239 mark_reg_known_zero(env, regs, BPF_REG_1); 10240 ret = btf_check_func_arg_match(env, subprog, regs); 10241 if (ret == -EFAULT) 10242 /* unlikely verifier bug. abort. 10243 * ret == 0 and ret < 0 are sadly acceptable for 10244 * main() function due to backward compatibility. 10245 * Like socket filter program may be written as: 10246 * int bpf_prog(struct pt_regs *ctx) 10247 * and never dereference that ctx in the program. 10248 * 'struct pt_regs' is a type mismatch for socket 10249 * filter that should be using 'struct __sk_buff'. 10250 */ 10251 goto out; 10252 } 10253 10254 ret = do_check(env); 10255 out: 10256 /* check for NULL is necessary, since cur_state can be freed inside 10257 * do_check() under memory pressure. 10258 */ 10259 if (env->cur_state) { 10260 free_verifier_state(env->cur_state, true); 10261 env->cur_state = NULL; 10262 } 10263 while (!pop_stack(env, NULL, NULL)); 10264 free_states(env); 10265 if (ret) 10266 /* clean aux data in case subprog was rejected */ 10267 sanitize_insn_aux_data(env); 10268 return ret; 10269 } 10270 10271 /* Verify all global functions in a BPF program one by one based on their BTF. 10272 * All global functions must pass verification. Otherwise the whole program is rejected. 10273 * Consider: 10274 * int bar(int); 10275 * int foo(int f) 10276 * { 10277 * return bar(f); 10278 * } 10279 * int bar(int b) 10280 * { 10281 * ... 10282 * } 10283 * foo() will be verified first for R1=any_scalar_value. During verification it 10284 * will be assumed that bar() already verified successfully and call to bar() 10285 * from foo() will be checked for type match only. Later bar() will be verified 10286 * independently to check that it's safe for R1=any_scalar_value. 10287 */ 10288 static int do_check_subprogs(struct bpf_verifier_env *env) 10289 { 10290 struct bpf_prog_aux *aux = env->prog->aux; 10291 int i, ret; 10292 10293 if (!aux->func_info) 10294 return 0; 10295 10296 for (i = 1; i < env->subprog_cnt; i++) { 10297 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 10298 continue; 10299 env->insn_idx = env->subprog_info[i].start; 10300 WARN_ON_ONCE(env->insn_idx == 0); 10301 ret = do_check_common(env, i); 10302 if (ret) { 10303 return ret; 10304 } else if (env->log.level & BPF_LOG_LEVEL) { 10305 verbose(env, 10306 "Func#%d is safe for any args that match its prototype\n", 10307 i); 10308 } 10309 } 10310 return 0; 10311 } 10312 10313 static int do_check_main(struct bpf_verifier_env *env) 10314 { 10315 int ret; 10316 10317 env->insn_idx = 0; 10318 ret = do_check_common(env, 0); 10319 if (!ret) 10320 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 10321 return ret; 10322 } 10323 10324 10325 static void print_verification_stats(struct bpf_verifier_env *env) 10326 { 10327 int i; 10328 10329 if (env->log.level & BPF_LOG_STATS) { 10330 verbose(env, "verification time %lld usec\n", 10331 div_u64(env->verification_time, 1000)); 10332 verbose(env, "stack depth "); 10333 for (i = 0; i < env->subprog_cnt; i++) { 10334 u32 depth = env->subprog_info[i].stack_depth; 10335 10336 verbose(env, "%d", depth); 10337 if (i + 1 < env->subprog_cnt) 10338 verbose(env, "+"); 10339 } 10340 verbose(env, "\n"); 10341 } 10342 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 10343 "total_states %d peak_states %d mark_read %d\n", 10344 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 10345 env->max_states_per_insn, env->total_states, 10346 env->peak_states, env->longest_mark_read_walk); 10347 } 10348 10349 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 10350 { 10351 const struct btf_type *t, *func_proto; 10352 const struct bpf_struct_ops *st_ops; 10353 const struct btf_member *member; 10354 struct bpf_prog *prog = env->prog; 10355 u32 btf_id, member_idx; 10356 const char *mname; 10357 10358 btf_id = prog->aux->attach_btf_id; 10359 st_ops = bpf_struct_ops_find(btf_id); 10360 if (!st_ops) { 10361 verbose(env, "attach_btf_id %u is not a supported struct\n", 10362 btf_id); 10363 return -ENOTSUPP; 10364 } 10365 10366 t = st_ops->type; 10367 member_idx = prog->expected_attach_type; 10368 if (member_idx >= btf_type_vlen(t)) { 10369 verbose(env, "attach to invalid member idx %u of struct %s\n", 10370 member_idx, st_ops->name); 10371 return -EINVAL; 10372 } 10373 10374 member = &btf_type_member(t)[member_idx]; 10375 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 10376 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 10377 NULL); 10378 if (!func_proto) { 10379 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 10380 mname, member_idx, st_ops->name); 10381 return -EINVAL; 10382 } 10383 10384 if (st_ops->check_member) { 10385 int err = st_ops->check_member(t, member); 10386 10387 if (err) { 10388 verbose(env, "attach to unsupported member %s of struct %s\n", 10389 mname, st_ops->name); 10390 return err; 10391 } 10392 } 10393 10394 prog->aux->attach_func_proto = func_proto; 10395 prog->aux->attach_func_name = mname; 10396 env->ops = st_ops->verifier_ops; 10397 10398 return 0; 10399 } 10400 #define SECURITY_PREFIX "security_" 10401 10402 static int check_attach_modify_return(struct bpf_verifier_env *env) 10403 { 10404 struct bpf_prog *prog = env->prog; 10405 unsigned long addr = (unsigned long) prog->aux->trampoline->func.addr; 10406 10407 /* This is expected to be cleaned up in the future with the KRSI effort 10408 * introducing the LSM_HOOK macro for cleaning up lsm_hooks.h. 10409 */ 10410 if (within_error_injection_list(addr) || 10411 !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name, 10412 sizeof(SECURITY_PREFIX) - 1)) 10413 return 0; 10414 10415 verbose(env, "fmod_ret attach_btf_id %u (%s) is not modifiable\n", 10416 prog->aux->attach_btf_id, prog->aux->attach_func_name); 10417 10418 return -EINVAL; 10419 } 10420 10421 static int check_attach_btf_id(struct bpf_verifier_env *env) 10422 { 10423 struct bpf_prog *prog = env->prog; 10424 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 10425 struct bpf_prog *tgt_prog = prog->aux->linked_prog; 10426 u32 btf_id = prog->aux->attach_btf_id; 10427 const char prefix[] = "btf_trace_"; 10428 int ret = 0, subprog = -1, i; 10429 struct bpf_trampoline *tr; 10430 const struct btf_type *t; 10431 bool conservative = true; 10432 const char *tname; 10433 struct btf *btf; 10434 long addr; 10435 u64 key; 10436 10437 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 10438 return check_struct_ops_btf_id(env); 10439 10440 if (prog->type != BPF_PROG_TYPE_TRACING && 10441 prog->type != BPF_PROG_TYPE_LSM && 10442 !prog_extension) 10443 return 0; 10444 10445 if (!btf_id) { 10446 verbose(env, "Tracing programs must provide btf_id\n"); 10447 return -EINVAL; 10448 } 10449 btf = bpf_prog_get_target_btf(prog); 10450 if (!btf) { 10451 verbose(env, 10452 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 10453 return -EINVAL; 10454 } 10455 t = btf_type_by_id(btf, btf_id); 10456 if (!t) { 10457 verbose(env, "attach_btf_id %u is invalid\n", btf_id); 10458 return -EINVAL; 10459 } 10460 tname = btf_name_by_offset(btf, t->name_off); 10461 if (!tname) { 10462 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id); 10463 return -EINVAL; 10464 } 10465 if (tgt_prog) { 10466 struct bpf_prog_aux *aux = tgt_prog->aux; 10467 10468 for (i = 0; i < aux->func_info_cnt; i++) 10469 if (aux->func_info[i].type_id == btf_id) { 10470 subprog = i; 10471 break; 10472 } 10473 if (subprog == -1) { 10474 verbose(env, "Subprog %s doesn't exist\n", tname); 10475 return -EINVAL; 10476 } 10477 conservative = aux->func_info_aux[subprog].unreliable; 10478 if (prog_extension) { 10479 if (conservative) { 10480 verbose(env, 10481 "Cannot replace static functions\n"); 10482 return -EINVAL; 10483 } 10484 if (!prog->jit_requested) { 10485 verbose(env, 10486 "Extension programs should be JITed\n"); 10487 return -EINVAL; 10488 } 10489 env->ops = bpf_verifier_ops[tgt_prog->type]; 10490 } 10491 if (!tgt_prog->jited) { 10492 verbose(env, "Can attach to only JITed progs\n"); 10493 return -EINVAL; 10494 } 10495 if (tgt_prog->type == prog->type) { 10496 /* Cannot fentry/fexit another fentry/fexit program. 10497 * Cannot attach program extension to another extension. 10498 * It's ok to attach fentry/fexit to extension program. 10499 */ 10500 verbose(env, "Cannot recursively attach\n"); 10501 return -EINVAL; 10502 } 10503 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 10504 prog_extension && 10505 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 10506 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 10507 /* Program extensions can extend all program types 10508 * except fentry/fexit. The reason is the following. 10509 * The fentry/fexit programs are used for performance 10510 * analysis, stats and can be attached to any program 10511 * type except themselves. When extension program is 10512 * replacing XDP function it is necessary to allow 10513 * performance analysis of all functions. Both original 10514 * XDP program and its program extension. Hence 10515 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 10516 * allowed. If extending of fentry/fexit was allowed it 10517 * would be possible to create long call chain 10518 * fentry->extension->fentry->extension beyond 10519 * reasonable stack size. Hence extending fentry is not 10520 * allowed. 10521 */ 10522 verbose(env, "Cannot extend fentry/fexit\n"); 10523 return -EINVAL; 10524 } 10525 key = ((u64)aux->id) << 32 | btf_id; 10526 } else { 10527 if (prog_extension) { 10528 verbose(env, "Cannot replace kernel functions\n"); 10529 return -EINVAL; 10530 } 10531 key = btf_id; 10532 } 10533 10534 switch (prog->expected_attach_type) { 10535 case BPF_TRACE_RAW_TP: 10536 if (tgt_prog) { 10537 verbose(env, 10538 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 10539 return -EINVAL; 10540 } 10541 if (!btf_type_is_typedef(t)) { 10542 verbose(env, "attach_btf_id %u is not a typedef\n", 10543 btf_id); 10544 return -EINVAL; 10545 } 10546 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 10547 verbose(env, "attach_btf_id %u points to wrong type name %s\n", 10548 btf_id, tname); 10549 return -EINVAL; 10550 } 10551 tname += sizeof(prefix) - 1; 10552 t = btf_type_by_id(btf, t->type); 10553 if (!btf_type_is_ptr(t)) 10554 /* should never happen in valid vmlinux build */ 10555 return -EINVAL; 10556 t = btf_type_by_id(btf, t->type); 10557 if (!btf_type_is_func_proto(t)) 10558 /* should never happen in valid vmlinux build */ 10559 return -EINVAL; 10560 10561 /* remember two read only pointers that are valid for 10562 * the life time of the kernel 10563 */ 10564 prog->aux->attach_func_name = tname; 10565 prog->aux->attach_func_proto = t; 10566 prog->aux->attach_btf_trace = true; 10567 return 0; 10568 default: 10569 if (!prog_extension) 10570 return -EINVAL; 10571 /* fallthrough */ 10572 case BPF_MODIFY_RETURN: 10573 case BPF_LSM_MAC: 10574 case BPF_TRACE_FENTRY: 10575 case BPF_TRACE_FEXIT: 10576 prog->aux->attach_func_name = tname; 10577 if (prog->type == BPF_PROG_TYPE_LSM) { 10578 ret = bpf_lsm_verify_prog(&env->log, prog); 10579 if (ret < 0) 10580 return ret; 10581 } 10582 10583 if (!btf_type_is_func(t)) { 10584 verbose(env, "attach_btf_id %u is not a function\n", 10585 btf_id); 10586 return -EINVAL; 10587 } 10588 if (prog_extension && 10589 btf_check_type_match(env, prog, btf, t)) 10590 return -EINVAL; 10591 t = btf_type_by_id(btf, t->type); 10592 if (!btf_type_is_func_proto(t)) 10593 return -EINVAL; 10594 tr = bpf_trampoline_lookup(key); 10595 if (!tr) 10596 return -ENOMEM; 10597 /* t is either vmlinux type or another program's type */ 10598 prog->aux->attach_func_proto = t; 10599 mutex_lock(&tr->mutex); 10600 if (tr->func.addr) { 10601 prog->aux->trampoline = tr; 10602 goto out; 10603 } 10604 if (tgt_prog && conservative) { 10605 prog->aux->attach_func_proto = NULL; 10606 t = NULL; 10607 } 10608 ret = btf_distill_func_proto(&env->log, btf, t, 10609 tname, &tr->func.model); 10610 if (ret < 0) 10611 goto out; 10612 if (tgt_prog) { 10613 if (subprog == 0) 10614 addr = (long) tgt_prog->bpf_func; 10615 else 10616 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 10617 } else { 10618 addr = kallsyms_lookup_name(tname); 10619 if (!addr) { 10620 verbose(env, 10621 "The address of function %s cannot be found\n", 10622 tname); 10623 ret = -ENOENT; 10624 goto out; 10625 } 10626 } 10627 tr->func.addr = (void *)addr; 10628 prog->aux->trampoline = tr; 10629 10630 if (prog->expected_attach_type == BPF_MODIFY_RETURN) 10631 ret = check_attach_modify_return(env); 10632 out: 10633 mutex_unlock(&tr->mutex); 10634 if (ret) 10635 bpf_trampoline_put(tr); 10636 return ret; 10637 } 10638 } 10639 10640 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 10641 union bpf_attr __user *uattr) 10642 { 10643 u64 start_time = ktime_get_ns(); 10644 struct bpf_verifier_env *env; 10645 struct bpf_verifier_log *log; 10646 int i, len, ret = -EINVAL; 10647 bool is_priv; 10648 10649 /* no program is valid */ 10650 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 10651 return -EINVAL; 10652 10653 /* 'struct bpf_verifier_env' can be global, but since it's not small, 10654 * allocate/free it every time bpf_check() is called 10655 */ 10656 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 10657 if (!env) 10658 return -ENOMEM; 10659 log = &env->log; 10660 10661 len = (*prog)->len; 10662 env->insn_aux_data = 10663 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 10664 ret = -ENOMEM; 10665 if (!env->insn_aux_data) 10666 goto err_free_env; 10667 for (i = 0; i < len; i++) 10668 env->insn_aux_data[i].orig_idx = i; 10669 env->prog = *prog; 10670 env->ops = bpf_verifier_ops[env->prog->type]; 10671 is_priv = capable(CAP_SYS_ADMIN); 10672 10673 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 10674 mutex_lock(&bpf_verifier_lock); 10675 if (!btf_vmlinux) 10676 btf_vmlinux = btf_parse_vmlinux(); 10677 mutex_unlock(&bpf_verifier_lock); 10678 } 10679 10680 /* grab the mutex to protect few globals used by verifier */ 10681 if (!is_priv) 10682 mutex_lock(&bpf_verifier_lock); 10683 10684 if (attr->log_level || attr->log_buf || attr->log_size) { 10685 /* user requested verbose verifier output 10686 * and supplied buffer to store the verification trace 10687 */ 10688 log->level = attr->log_level; 10689 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 10690 log->len_total = attr->log_size; 10691 10692 ret = -EINVAL; 10693 /* log attributes have to be sane */ 10694 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 10695 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 10696 goto err_unlock; 10697 } 10698 10699 if (IS_ERR(btf_vmlinux)) { 10700 /* Either gcc or pahole or kernel are broken. */ 10701 verbose(env, "in-kernel BTF is malformed\n"); 10702 ret = PTR_ERR(btf_vmlinux); 10703 goto skip_full_check; 10704 } 10705 10706 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 10707 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 10708 env->strict_alignment = true; 10709 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 10710 env->strict_alignment = false; 10711 10712 env->allow_ptr_leaks = is_priv; 10713 10714 if (is_priv) 10715 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 10716 10717 ret = replace_map_fd_with_map_ptr(env); 10718 if (ret < 0) 10719 goto skip_full_check; 10720 10721 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10722 ret = bpf_prog_offload_verifier_prep(env->prog); 10723 if (ret) 10724 goto skip_full_check; 10725 } 10726 10727 env->explored_states = kvcalloc(state_htab_size(env), 10728 sizeof(struct bpf_verifier_state_list *), 10729 GFP_USER); 10730 ret = -ENOMEM; 10731 if (!env->explored_states) 10732 goto skip_full_check; 10733 10734 ret = check_subprogs(env); 10735 if (ret < 0) 10736 goto skip_full_check; 10737 10738 ret = check_btf_info(env, attr, uattr); 10739 if (ret < 0) 10740 goto skip_full_check; 10741 10742 ret = check_attach_btf_id(env); 10743 if (ret) 10744 goto skip_full_check; 10745 10746 ret = check_cfg(env); 10747 if (ret < 0) 10748 goto skip_full_check; 10749 10750 ret = do_check_subprogs(env); 10751 ret = ret ?: do_check_main(env); 10752 10753 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 10754 ret = bpf_prog_offload_finalize(env); 10755 10756 skip_full_check: 10757 kvfree(env->explored_states); 10758 10759 if (ret == 0) 10760 ret = check_max_stack_depth(env); 10761 10762 /* instruction rewrites happen after this point */ 10763 if (is_priv) { 10764 if (ret == 0) 10765 opt_hard_wire_dead_code_branches(env); 10766 if (ret == 0) 10767 ret = opt_remove_dead_code(env); 10768 if (ret == 0) 10769 ret = opt_remove_nops(env); 10770 } else { 10771 if (ret == 0) 10772 sanitize_dead_code(env); 10773 } 10774 10775 if (ret == 0) 10776 /* program is valid, convert *(u32*)(ctx + off) accesses */ 10777 ret = convert_ctx_accesses(env); 10778 10779 if (ret == 0) 10780 ret = fixup_bpf_calls(env); 10781 10782 /* do 32-bit optimization after insn patching has done so those patched 10783 * insns could be handled correctly. 10784 */ 10785 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 10786 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 10787 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 10788 : false; 10789 } 10790 10791 if (ret == 0) 10792 ret = fixup_call_args(env); 10793 10794 env->verification_time = ktime_get_ns() - start_time; 10795 print_verification_stats(env); 10796 10797 if (log->level && bpf_verifier_log_full(log)) 10798 ret = -ENOSPC; 10799 if (log->level && !log->ubuf) { 10800 ret = -EFAULT; 10801 goto err_release_maps; 10802 } 10803 10804 if (ret == 0 && env->used_map_cnt) { 10805 /* if program passed verifier, update used_maps in bpf_prog_info */ 10806 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 10807 sizeof(env->used_maps[0]), 10808 GFP_KERNEL); 10809 10810 if (!env->prog->aux->used_maps) { 10811 ret = -ENOMEM; 10812 goto err_release_maps; 10813 } 10814 10815 memcpy(env->prog->aux->used_maps, env->used_maps, 10816 sizeof(env->used_maps[0]) * env->used_map_cnt); 10817 env->prog->aux->used_map_cnt = env->used_map_cnt; 10818 10819 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 10820 * bpf_ld_imm64 instructions 10821 */ 10822 convert_pseudo_ld_imm64(env); 10823 } 10824 10825 if (ret == 0) 10826 adjust_btf_func(env); 10827 10828 err_release_maps: 10829 if (!env->prog->aux->used_maps) 10830 /* if we didn't copy map pointers into bpf_prog_info, release 10831 * them now. Otherwise free_used_maps() will release them. 10832 */ 10833 release_maps(env); 10834 *prog = env->prog; 10835 err_unlock: 10836 if (!is_priv) 10837 mutex_unlock(&bpf_verifier_lock); 10838 vfree(env->insn_aux_data); 10839 err_free_env: 10840 kfree(env); 10841 return ret; 10842 } 10843