xref: /linux/kernel/bpf/verifier.c (revision 864ab0616dccf14e51618a24acc7cf23ddd2b98a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 struct bpf_call_arg_meta {
232 	struct bpf_map *map_ptr;
233 	bool raw_mode;
234 	bool pkt_access;
235 	int regno;
236 	int access_size;
237 	int mem_size;
238 	u64 msize_max_value;
239 	int ref_obj_id;
240 	int func_id;
241 	u32 btf_id;
242 	u32 ret_btf_id;
243 };
244 
245 struct btf *btf_vmlinux;
246 
247 static DEFINE_MUTEX(bpf_verifier_lock);
248 
249 static const struct bpf_line_info *
250 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
251 {
252 	const struct bpf_line_info *linfo;
253 	const struct bpf_prog *prog;
254 	u32 i, nr_linfo;
255 
256 	prog = env->prog;
257 	nr_linfo = prog->aux->nr_linfo;
258 
259 	if (!nr_linfo || insn_off >= prog->len)
260 		return NULL;
261 
262 	linfo = prog->aux->linfo;
263 	for (i = 1; i < nr_linfo; i++)
264 		if (insn_off < linfo[i].insn_off)
265 			break;
266 
267 	return &linfo[i - 1];
268 }
269 
270 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
271 		       va_list args)
272 {
273 	unsigned int n;
274 
275 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
276 
277 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
278 		  "verifier log line truncated - local buffer too short\n");
279 
280 	n = min(log->len_total - log->len_used - 1, n);
281 	log->kbuf[n] = '\0';
282 
283 	if (log->level == BPF_LOG_KERNEL) {
284 		pr_err("BPF:%s\n", log->kbuf);
285 		return;
286 	}
287 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
288 		log->len_used += n;
289 	else
290 		log->ubuf = NULL;
291 }
292 
293 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
294 {
295 	char zero = 0;
296 
297 	if (!bpf_verifier_log_needed(log))
298 		return;
299 
300 	log->len_used = new_pos;
301 	if (put_user(zero, log->ubuf + new_pos))
302 		log->ubuf = NULL;
303 }
304 
305 /* log_level controls verbosity level of eBPF verifier.
306  * bpf_verifier_log_write() is used to dump the verification trace to the log,
307  * so the user can figure out what's wrong with the program
308  */
309 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
310 					   const char *fmt, ...)
311 {
312 	va_list args;
313 
314 	if (!bpf_verifier_log_needed(&env->log))
315 		return;
316 
317 	va_start(args, fmt);
318 	bpf_verifier_vlog(&env->log, fmt, args);
319 	va_end(args);
320 }
321 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
322 
323 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
324 {
325 	struct bpf_verifier_env *env = private_data;
326 	va_list args;
327 
328 	if (!bpf_verifier_log_needed(&env->log))
329 		return;
330 
331 	va_start(args, fmt);
332 	bpf_verifier_vlog(&env->log, fmt, args);
333 	va_end(args);
334 }
335 
336 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
337 			    const char *fmt, ...)
338 {
339 	va_list args;
340 
341 	if (!bpf_verifier_log_needed(log))
342 		return;
343 
344 	va_start(args, fmt);
345 	bpf_verifier_vlog(log, fmt, args);
346 	va_end(args);
347 }
348 
349 static const char *ltrim(const char *s)
350 {
351 	while (isspace(*s))
352 		s++;
353 
354 	return s;
355 }
356 
357 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
358 					 u32 insn_off,
359 					 const char *prefix_fmt, ...)
360 {
361 	const struct bpf_line_info *linfo;
362 
363 	if (!bpf_verifier_log_needed(&env->log))
364 		return;
365 
366 	linfo = find_linfo(env, insn_off);
367 	if (!linfo || linfo == env->prev_linfo)
368 		return;
369 
370 	if (prefix_fmt) {
371 		va_list args;
372 
373 		va_start(args, prefix_fmt);
374 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
375 		va_end(args);
376 	}
377 
378 	verbose(env, "%s\n",
379 		ltrim(btf_name_by_offset(env->prog->aux->btf,
380 					 linfo->line_off)));
381 
382 	env->prev_linfo = linfo;
383 }
384 
385 static bool type_is_pkt_pointer(enum bpf_reg_type type)
386 {
387 	return type == PTR_TO_PACKET ||
388 	       type == PTR_TO_PACKET_META;
389 }
390 
391 static bool type_is_sk_pointer(enum bpf_reg_type type)
392 {
393 	return type == PTR_TO_SOCKET ||
394 		type == PTR_TO_SOCK_COMMON ||
395 		type == PTR_TO_TCP_SOCK ||
396 		type == PTR_TO_XDP_SOCK;
397 }
398 
399 static bool reg_type_not_null(enum bpf_reg_type type)
400 {
401 	return type == PTR_TO_SOCKET ||
402 		type == PTR_TO_TCP_SOCK ||
403 		type == PTR_TO_MAP_VALUE ||
404 		type == PTR_TO_SOCK_COMMON;
405 }
406 
407 static bool reg_type_may_be_null(enum bpf_reg_type type)
408 {
409 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
410 	       type == PTR_TO_SOCKET_OR_NULL ||
411 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
412 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
413 	       type == PTR_TO_BTF_ID_OR_NULL ||
414 	       type == PTR_TO_MEM_OR_NULL ||
415 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
416 	       type == PTR_TO_RDWR_BUF_OR_NULL;
417 }
418 
419 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
420 {
421 	return reg->type == PTR_TO_MAP_VALUE &&
422 		map_value_has_spin_lock(reg->map_ptr);
423 }
424 
425 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
426 {
427 	return type == PTR_TO_SOCKET ||
428 		type == PTR_TO_SOCKET_OR_NULL ||
429 		type == PTR_TO_TCP_SOCK ||
430 		type == PTR_TO_TCP_SOCK_OR_NULL ||
431 		type == PTR_TO_MEM ||
432 		type == PTR_TO_MEM_OR_NULL;
433 }
434 
435 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
436 {
437 	return type == ARG_PTR_TO_SOCK_COMMON;
438 }
439 
440 static bool arg_type_may_be_null(enum bpf_arg_type type)
441 {
442 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
443 	       type == ARG_PTR_TO_MEM_OR_NULL ||
444 	       type == ARG_PTR_TO_CTX_OR_NULL ||
445 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
446 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
447 }
448 
449 /* Determine whether the function releases some resources allocated by another
450  * function call. The first reference type argument will be assumed to be
451  * released by release_reference().
452  */
453 static bool is_release_function(enum bpf_func_id func_id)
454 {
455 	return func_id == BPF_FUNC_sk_release ||
456 	       func_id == BPF_FUNC_ringbuf_submit ||
457 	       func_id == BPF_FUNC_ringbuf_discard;
458 }
459 
460 static bool may_be_acquire_function(enum bpf_func_id func_id)
461 {
462 	return func_id == BPF_FUNC_sk_lookup_tcp ||
463 		func_id == BPF_FUNC_sk_lookup_udp ||
464 		func_id == BPF_FUNC_skc_lookup_tcp ||
465 		func_id == BPF_FUNC_map_lookup_elem ||
466 	        func_id == BPF_FUNC_ringbuf_reserve;
467 }
468 
469 static bool is_acquire_function(enum bpf_func_id func_id,
470 				const struct bpf_map *map)
471 {
472 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
473 
474 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
475 	    func_id == BPF_FUNC_sk_lookup_udp ||
476 	    func_id == BPF_FUNC_skc_lookup_tcp ||
477 	    func_id == BPF_FUNC_ringbuf_reserve)
478 		return true;
479 
480 	if (func_id == BPF_FUNC_map_lookup_elem &&
481 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
482 	     map_type == BPF_MAP_TYPE_SOCKHASH))
483 		return true;
484 
485 	return false;
486 }
487 
488 static bool is_ptr_cast_function(enum bpf_func_id func_id)
489 {
490 	return func_id == BPF_FUNC_tcp_sock ||
491 		func_id == BPF_FUNC_sk_fullsock ||
492 		func_id == BPF_FUNC_skc_to_tcp_sock ||
493 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
494 		func_id == BPF_FUNC_skc_to_udp6_sock ||
495 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
496 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
497 }
498 
499 /* string representation of 'enum bpf_reg_type' */
500 static const char * const reg_type_str[] = {
501 	[NOT_INIT]		= "?",
502 	[SCALAR_VALUE]		= "inv",
503 	[PTR_TO_CTX]		= "ctx",
504 	[CONST_PTR_TO_MAP]	= "map_ptr",
505 	[PTR_TO_MAP_VALUE]	= "map_value",
506 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
507 	[PTR_TO_STACK]		= "fp",
508 	[PTR_TO_PACKET]		= "pkt",
509 	[PTR_TO_PACKET_META]	= "pkt_meta",
510 	[PTR_TO_PACKET_END]	= "pkt_end",
511 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
512 	[PTR_TO_SOCKET]		= "sock",
513 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
514 	[PTR_TO_SOCK_COMMON]	= "sock_common",
515 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
516 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
517 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
518 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
519 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
520 	[PTR_TO_BTF_ID]		= "ptr_",
521 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
522 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
523 	[PTR_TO_MEM]		= "mem",
524 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
525 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
526 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
527 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
528 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
529 };
530 
531 static char slot_type_char[] = {
532 	[STACK_INVALID]	= '?',
533 	[STACK_SPILL]	= 'r',
534 	[STACK_MISC]	= 'm',
535 	[STACK_ZERO]	= '0',
536 };
537 
538 static void print_liveness(struct bpf_verifier_env *env,
539 			   enum bpf_reg_liveness live)
540 {
541 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
542 	    verbose(env, "_");
543 	if (live & REG_LIVE_READ)
544 		verbose(env, "r");
545 	if (live & REG_LIVE_WRITTEN)
546 		verbose(env, "w");
547 	if (live & REG_LIVE_DONE)
548 		verbose(env, "D");
549 }
550 
551 static struct bpf_func_state *func(struct bpf_verifier_env *env,
552 				   const struct bpf_reg_state *reg)
553 {
554 	struct bpf_verifier_state *cur = env->cur_state;
555 
556 	return cur->frame[reg->frameno];
557 }
558 
559 const char *kernel_type_name(u32 id)
560 {
561 	return btf_name_by_offset(btf_vmlinux,
562 				  btf_type_by_id(btf_vmlinux, id)->name_off);
563 }
564 
565 static void print_verifier_state(struct bpf_verifier_env *env,
566 				 const struct bpf_func_state *state)
567 {
568 	const struct bpf_reg_state *reg;
569 	enum bpf_reg_type t;
570 	int i;
571 
572 	if (state->frameno)
573 		verbose(env, " frame%d:", state->frameno);
574 	for (i = 0; i < MAX_BPF_REG; i++) {
575 		reg = &state->regs[i];
576 		t = reg->type;
577 		if (t == NOT_INIT)
578 			continue;
579 		verbose(env, " R%d", i);
580 		print_liveness(env, reg->live);
581 		verbose(env, "=%s", reg_type_str[t]);
582 		if (t == SCALAR_VALUE && reg->precise)
583 			verbose(env, "P");
584 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
585 		    tnum_is_const(reg->var_off)) {
586 			/* reg->off should be 0 for SCALAR_VALUE */
587 			verbose(env, "%lld", reg->var_off.value + reg->off);
588 		} else {
589 			if (t == PTR_TO_BTF_ID ||
590 			    t == PTR_TO_BTF_ID_OR_NULL ||
591 			    t == PTR_TO_PERCPU_BTF_ID)
592 				verbose(env, "%s", kernel_type_name(reg->btf_id));
593 			verbose(env, "(id=%d", reg->id);
594 			if (reg_type_may_be_refcounted_or_null(t))
595 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
596 			if (t != SCALAR_VALUE)
597 				verbose(env, ",off=%d", reg->off);
598 			if (type_is_pkt_pointer(t))
599 				verbose(env, ",r=%d", reg->range);
600 			else if (t == CONST_PTR_TO_MAP ||
601 				 t == PTR_TO_MAP_VALUE ||
602 				 t == PTR_TO_MAP_VALUE_OR_NULL)
603 				verbose(env, ",ks=%d,vs=%d",
604 					reg->map_ptr->key_size,
605 					reg->map_ptr->value_size);
606 			if (tnum_is_const(reg->var_off)) {
607 				/* Typically an immediate SCALAR_VALUE, but
608 				 * could be a pointer whose offset is too big
609 				 * for reg->off
610 				 */
611 				verbose(env, ",imm=%llx", reg->var_off.value);
612 			} else {
613 				if (reg->smin_value != reg->umin_value &&
614 				    reg->smin_value != S64_MIN)
615 					verbose(env, ",smin_value=%lld",
616 						(long long)reg->smin_value);
617 				if (reg->smax_value != reg->umax_value &&
618 				    reg->smax_value != S64_MAX)
619 					verbose(env, ",smax_value=%lld",
620 						(long long)reg->smax_value);
621 				if (reg->umin_value != 0)
622 					verbose(env, ",umin_value=%llu",
623 						(unsigned long long)reg->umin_value);
624 				if (reg->umax_value != U64_MAX)
625 					verbose(env, ",umax_value=%llu",
626 						(unsigned long long)reg->umax_value);
627 				if (!tnum_is_unknown(reg->var_off)) {
628 					char tn_buf[48];
629 
630 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
631 					verbose(env, ",var_off=%s", tn_buf);
632 				}
633 				if (reg->s32_min_value != reg->smin_value &&
634 				    reg->s32_min_value != S32_MIN)
635 					verbose(env, ",s32_min_value=%d",
636 						(int)(reg->s32_min_value));
637 				if (reg->s32_max_value != reg->smax_value &&
638 				    reg->s32_max_value != S32_MAX)
639 					verbose(env, ",s32_max_value=%d",
640 						(int)(reg->s32_max_value));
641 				if (reg->u32_min_value != reg->umin_value &&
642 				    reg->u32_min_value != U32_MIN)
643 					verbose(env, ",u32_min_value=%d",
644 						(int)(reg->u32_min_value));
645 				if (reg->u32_max_value != reg->umax_value &&
646 				    reg->u32_max_value != U32_MAX)
647 					verbose(env, ",u32_max_value=%d",
648 						(int)(reg->u32_max_value));
649 			}
650 			verbose(env, ")");
651 		}
652 	}
653 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
654 		char types_buf[BPF_REG_SIZE + 1];
655 		bool valid = false;
656 		int j;
657 
658 		for (j = 0; j < BPF_REG_SIZE; j++) {
659 			if (state->stack[i].slot_type[j] != STACK_INVALID)
660 				valid = true;
661 			types_buf[j] = slot_type_char[
662 					state->stack[i].slot_type[j]];
663 		}
664 		types_buf[BPF_REG_SIZE] = 0;
665 		if (!valid)
666 			continue;
667 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
668 		print_liveness(env, state->stack[i].spilled_ptr.live);
669 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
670 			reg = &state->stack[i].spilled_ptr;
671 			t = reg->type;
672 			verbose(env, "=%s", reg_type_str[t]);
673 			if (t == SCALAR_VALUE && reg->precise)
674 				verbose(env, "P");
675 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
676 				verbose(env, "%lld", reg->var_off.value + reg->off);
677 		} else {
678 			verbose(env, "=%s", types_buf);
679 		}
680 	}
681 	if (state->acquired_refs && state->refs[0].id) {
682 		verbose(env, " refs=%d", state->refs[0].id);
683 		for (i = 1; i < state->acquired_refs; i++)
684 			if (state->refs[i].id)
685 				verbose(env, ",%d", state->refs[i].id);
686 	}
687 	verbose(env, "\n");
688 }
689 
690 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
691 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
692 			       const struct bpf_func_state *src)	\
693 {									\
694 	if (!src->FIELD)						\
695 		return 0;						\
696 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
697 		/* internal bug, make state invalid to reject the program */ \
698 		memset(dst, 0, sizeof(*dst));				\
699 		return -EFAULT;						\
700 	}								\
701 	memcpy(dst->FIELD, src->FIELD,					\
702 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
703 	return 0;							\
704 }
705 /* copy_reference_state() */
706 COPY_STATE_FN(reference, acquired_refs, refs, 1)
707 /* copy_stack_state() */
708 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
709 #undef COPY_STATE_FN
710 
711 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
712 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
713 				  bool copy_old)			\
714 {									\
715 	u32 old_size = state->COUNT;					\
716 	struct bpf_##NAME##_state *new_##FIELD;				\
717 	int slot = size / SIZE;						\
718 									\
719 	if (size <= old_size || !size) {				\
720 		if (copy_old)						\
721 			return 0;					\
722 		state->COUNT = slot * SIZE;				\
723 		if (!size && old_size) {				\
724 			kfree(state->FIELD);				\
725 			state->FIELD = NULL;				\
726 		}							\
727 		return 0;						\
728 	}								\
729 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
730 				    GFP_KERNEL);			\
731 	if (!new_##FIELD)						\
732 		return -ENOMEM;						\
733 	if (copy_old) {							\
734 		if (state->FIELD)					\
735 			memcpy(new_##FIELD, state->FIELD,		\
736 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
737 		memset(new_##FIELD + old_size / SIZE, 0,		\
738 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
739 	}								\
740 	state->COUNT = slot * SIZE;					\
741 	kfree(state->FIELD);						\
742 	state->FIELD = new_##FIELD;					\
743 	return 0;							\
744 }
745 /* realloc_reference_state() */
746 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
747 /* realloc_stack_state() */
748 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
749 #undef REALLOC_STATE_FN
750 
751 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
752  * make it consume minimal amount of memory. check_stack_write() access from
753  * the program calls into realloc_func_state() to grow the stack size.
754  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
755  * which realloc_stack_state() copies over. It points to previous
756  * bpf_verifier_state which is never reallocated.
757  */
758 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
759 			      int refs_size, bool copy_old)
760 {
761 	int err = realloc_reference_state(state, refs_size, copy_old);
762 	if (err)
763 		return err;
764 	return realloc_stack_state(state, stack_size, copy_old);
765 }
766 
767 /* Acquire a pointer id from the env and update the state->refs to include
768  * this new pointer reference.
769  * On success, returns a valid pointer id to associate with the register
770  * On failure, returns a negative errno.
771  */
772 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
773 {
774 	struct bpf_func_state *state = cur_func(env);
775 	int new_ofs = state->acquired_refs;
776 	int id, err;
777 
778 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
779 	if (err)
780 		return err;
781 	id = ++env->id_gen;
782 	state->refs[new_ofs].id = id;
783 	state->refs[new_ofs].insn_idx = insn_idx;
784 
785 	return id;
786 }
787 
788 /* release function corresponding to acquire_reference_state(). Idempotent. */
789 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
790 {
791 	int i, last_idx;
792 
793 	last_idx = state->acquired_refs - 1;
794 	for (i = 0; i < state->acquired_refs; i++) {
795 		if (state->refs[i].id == ptr_id) {
796 			if (last_idx && i != last_idx)
797 				memcpy(&state->refs[i], &state->refs[last_idx],
798 				       sizeof(*state->refs));
799 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
800 			state->acquired_refs--;
801 			return 0;
802 		}
803 	}
804 	return -EINVAL;
805 }
806 
807 static int transfer_reference_state(struct bpf_func_state *dst,
808 				    struct bpf_func_state *src)
809 {
810 	int err = realloc_reference_state(dst, src->acquired_refs, false);
811 	if (err)
812 		return err;
813 	err = copy_reference_state(dst, src);
814 	if (err)
815 		return err;
816 	return 0;
817 }
818 
819 static void free_func_state(struct bpf_func_state *state)
820 {
821 	if (!state)
822 		return;
823 	kfree(state->refs);
824 	kfree(state->stack);
825 	kfree(state);
826 }
827 
828 static void clear_jmp_history(struct bpf_verifier_state *state)
829 {
830 	kfree(state->jmp_history);
831 	state->jmp_history = NULL;
832 	state->jmp_history_cnt = 0;
833 }
834 
835 static void free_verifier_state(struct bpf_verifier_state *state,
836 				bool free_self)
837 {
838 	int i;
839 
840 	for (i = 0; i <= state->curframe; i++) {
841 		free_func_state(state->frame[i]);
842 		state->frame[i] = NULL;
843 	}
844 	clear_jmp_history(state);
845 	if (free_self)
846 		kfree(state);
847 }
848 
849 /* copy verifier state from src to dst growing dst stack space
850  * when necessary to accommodate larger src stack
851  */
852 static int copy_func_state(struct bpf_func_state *dst,
853 			   const struct bpf_func_state *src)
854 {
855 	int err;
856 
857 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
858 				 false);
859 	if (err)
860 		return err;
861 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
862 	err = copy_reference_state(dst, src);
863 	if (err)
864 		return err;
865 	return copy_stack_state(dst, src);
866 }
867 
868 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
869 			       const struct bpf_verifier_state *src)
870 {
871 	struct bpf_func_state *dst;
872 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
873 	int i, err;
874 
875 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
876 		kfree(dst_state->jmp_history);
877 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
878 		if (!dst_state->jmp_history)
879 			return -ENOMEM;
880 	}
881 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
882 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
883 
884 	/* if dst has more stack frames then src frame, free them */
885 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
886 		free_func_state(dst_state->frame[i]);
887 		dst_state->frame[i] = NULL;
888 	}
889 	dst_state->speculative = src->speculative;
890 	dst_state->curframe = src->curframe;
891 	dst_state->active_spin_lock = src->active_spin_lock;
892 	dst_state->branches = src->branches;
893 	dst_state->parent = src->parent;
894 	dst_state->first_insn_idx = src->first_insn_idx;
895 	dst_state->last_insn_idx = src->last_insn_idx;
896 	for (i = 0; i <= src->curframe; i++) {
897 		dst = dst_state->frame[i];
898 		if (!dst) {
899 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
900 			if (!dst)
901 				return -ENOMEM;
902 			dst_state->frame[i] = dst;
903 		}
904 		err = copy_func_state(dst, src->frame[i]);
905 		if (err)
906 			return err;
907 	}
908 	return 0;
909 }
910 
911 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
912 {
913 	while (st) {
914 		u32 br = --st->branches;
915 
916 		/* WARN_ON(br > 1) technically makes sense here,
917 		 * but see comment in push_stack(), hence:
918 		 */
919 		WARN_ONCE((int)br < 0,
920 			  "BUG update_branch_counts:branches_to_explore=%d\n",
921 			  br);
922 		if (br)
923 			break;
924 		st = st->parent;
925 	}
926 }
927 
928 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
929 		     int *insn_idx, bool pop_log)
930 {
931 	struct bpf_verifier_state *cur = env->cur_state;
932 	struct bpf_verifier_stack_elem *elem, *head = env->head;
933 	int err;
934 
935 	if (env->head == NULL)
936 		return -ENOENT;
937 
938 	if (cur) {
939 		err = copy_verifier_state(cur, &head->st);
940 		if (err)
941 			return err;
942 	}
943 	if (pop_log)
944 		bpf_vlog_reset(&env->log, head->log_pos);
945 	if (insn_idx)
946 		*insn_idx = head->insn_idx;
947 	if (prev_insn_idx)
948 		*prev_insn_idx = head->prev_insn_idx;
949 	elem = head->next;
950 	free_verifier_state(&head->st, false);
951 	kfree(head);
952 	env->head = elem;
953 	env->stack_size--;
954 	return 0;
955 }
956 
957 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
958 					     int insn_idx, int prev_insn_idx,
959 					     bool speculative)
960 {
961 	struct bpf_verifier_state *cur = env->cur_state;
962 	struct bpf_verifier_stack_elem *elem;
963 	int err;
964 
965 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
966 	if (!elem)
967 		goto err;
968 
969 	elem->insn_idx = insn_idx;
970 	elem->prev_insn_idx = prev_insn_idx;
971 	elem->next = env->head;
972 	elem->log_pos = env->log.len_used;
973 	env->head = elem;
974 	env->stack_size++;
975 	err = copy_verifier_state(&elem->st, cur);
976 	if (err)
977 		goto err;
978 	elem->st.speculative |= speculative;
979 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
980 		verbose(env, "The sequence of %d jumps is too complex.\n",
981 			env->stack_size);
982 		goto err;
983 	}
984 	if (elem->st.parent) {
985 		++elem->st.parent->branches;
986 		/* WARN_ON(branches > 2) technically makes sense here,
987 		 * but
988 		 * 1. speculative states will bump 'branches' for non-branch
989 		 * instructions
990 		 * 2. is_state_visited() heuristics may decide not to create
991 		 * a new state for a sequence of branches and all such current
992 		 * and cloned states will be pointing to a single parent state
993 		 * which might have large 'branches' count.
994 		 */
995 	}
996 	return &elem->st;
997 err:
998 	free_verifier_state(env->cur_state, true);
999 	env->cur_state = NULL;
1000 	/* pop all elements and return */
1001 	while (!pop_stack(env, NULL, NULL, false));
1002 	return NULL;
1003 }
1004 
1005 #define CALLER_SAVED_REGS 6
1006 static const int caller_saved[CALLER_SAVED_REGS] = {
1007 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1008 };
1009 
1010 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1011 				struct bpf_reg_state *reg);
1012 
1013 /* This helper doesn't clear reg->id */
1014 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1015 {
1016 	reg->var_off = tnum_const(imm);
1017 	reg->smin_value = (s64)imm;
1018 	reg->smax_value = (s64)imm;
1019 	reg->umin_value = imm;
1020 	reg->umax_value = imm;
1021 
1022 	reg->s32_min_value = (s32)imm;
1023 	reg->s32_max_value = (s32)imm;
1024 	reg->u32_min_value = (u32)imm;
1025 	reg->u32_max_value = (u32)imm;
1026 }
1027 
1028 /* Mark the unknown part of a register (variable offset or scalar value) as
1029  * known to have the value @imm.
1030  */
1031 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1032 {
1033 	/* Clear id, off, and union(map_ptr, range) */
1034 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1035 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1036 	___mark_reg_known(reg, imm);
1037 }
1038 
1039 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1040 {
1041 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1042 	reg->s32_min_value = (s32)imm;
1043 	reg->s32_max_value = (s32)imm;
1044 	reg->u32_min_value = (u32)imm;
1045 	reg->u32_max_value = (u32)imm;
1046 }
1047 
1048 /* Mark the 'variable offset' part of a register as zero.  This should be
1049  * used only on registers holding a pointer type.
1050  */
1051 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1052 {
1053 	__mark_reg_known(reg, 0);
1054 }
1055 
1056 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1057 {
1058 	__mark_reg_known(reg, 0);
1059 	reg->type = SCALAR_VALUE;
1060 }
1061 
1062 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1063 				struct bpf_reg_state *regs, u32 regno)
1064 {
1065 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1066 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1067 		/* Something bad happened, let's kill all regs */
1068 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1069 			__mark_reg_not_init(env, regs + regno);
1070 		return;
1071 	}
1072 	__mark_reg_known_zero(regs + regno);
1073 }
1074 
1075 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1076 {
1077 	return type_is_pkt_pointer(reg->type);
1078 }
1079 
1080 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1081 {
1082 	return reg_is_pkt_pointer(reg) ||
1083 	       reg->type == PTR_TO_PACKET_END;
1084 }
1085 
1086 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1087 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1088 				    enum bpf_reg_type which)
1089 {
1090 	/* The register can already have a range from prior markings.
1091 	 * This is fine as long as it hasn't been advanced from its
1092 	 * origin.
1093 	 */
1094 	return reg->type == which &&
1095 	       reg->id == 0 &&
1096 	       reg->off == 0 &&
1097 	       tnum_equals_const(reg->var_off, 0);
1098 }
1099 
1100 /* Reset the min/max bounds of a register */
1101 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1102 {
1103 	reg->smin_value = S64_MIN;
1104 	reg->smax_value = S64_MAX;
1105 	reg->umin_value = 0;
1106 	reg->umax_value = U64_MAX;
1107 
1108 	reg->s32_min_value = S32_MIN;
1109 	reg->s32_max_value = S32_MAX;
1110 	reg->u32_min_value = 0;
1111 	reg->u32_max_value = U32_MAX;
1112 }
1113 
1114 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1115 {
1116 	reg->smin_value = S64_MIN;
1117 	reg->smax_value = S64_MAX;
1118 	reg->umin_value = 0;
1119 	reg->umax_value = U64_MAX;
1120 }
1121 
1122 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1123 {
1124 	reg->s32_min_value = S32_MIN;
1125 	reg->s32_max_value = S32_MAX;
1126 	reg->u32_min_value = 0;
1127 	reg->u32_max_value = U32_MAX;
1128 }
1129 
1130 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1131 {
1132 	struct tnum var32_off = tnum_subreg(reg->var_off);
1133 
1134 	/* min signed is max(sign bit) | min(other bits) */
1135 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1136 			var32_off.value | (var32_off.mask & S32_MIN));
1137 	/* max signed is min(sign bit) | max(other bits) */
1138 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1139 			var32_off.value | (var32_off.mask & S32_MAX));
1140 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1141 	reg->u32_max_value = min(reg->u32_max_value,
1142 				 (u32)(var32_off.value | var32_off.mask));
1143 }
1144 
1145 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1146 {
1147 	/* min signed is max(sign bit) | min(other bits) */
1148 	reg->smin_value = max_t(s64, reg->smin_value,
1149 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1150 	/* max signed is min(sign bit) | max(other bits) */
1151 	reg->smax_value = min_t(s64, reg->smax_value,
1152 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1153 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1154 	reg->umax_value = min(reg->umax_value,
1155 			      reg->var_off.value | reg->var_off.mask);
1156 }
1157 
1158 static void __update_reg_bounds(struct bpf_reg_state *reg)
1159 {
1160 	__update_reg32_bounds(reg);
1161 	__update_reg64_bounds(reg);
1162 }
1163 
1164 /* Uses signed min/max values to inform unsigned, and vice-versa */
1165 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1166 {
1167 	/* Learn sign from signed bounds.
1168 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1169 	 * are the same, so combine.  This works even in the negative case, e.g.
1170 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1171 	 */
1172 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1173 		reg->s32_min_value = reg->u32_min_value =
1174 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1175 		reg->s32_max_value = reg->u32_max_value =
1176 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1177 		return;
1178 	}
1179 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1180 	 * boundary, so we must be careful.
1181 	 */
1182 	if ((s32)reg->u32_max_value >= 0) {
1183 		/* Positive.  We can't learn anything from the smin, but smax
1184 		 * is positive, hence safe.
1185 		 */
1186 		reg->s32_min_value = reg->u32_min_value;
1187 		reg->s32_max_value = reg->u32_max_value =
1188 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1189 	} else if ((s32)reg->u32_min_value < 0) {
1190 		/* Negative.  We can't learn anything from the smax, but smin
1191 		 * is negative, hence safe.
1192 		 */
1193 		reg->s32_min_value = reg->u32_min_value =
1194 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1195 		reg->s32_max_value = reg->u32_max_value;
1196 	}
1197 }
1198 
1199 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1200 {
1201 	/* Learn sign from signed bounds.
1202 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1203 	 * are the same, so combine.  This works even in the negative case, e.g.
1204 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1205 	 */
1206 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1207 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1208 							  reg->umin_value);
1209 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1210 							  reg->umax_value);
1211 		return;
1212 	}
1213 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1214 	 * boundary, so we must be careful.
1215 	 */
1216 	if ((s64)reg->umax_value >= 0) {
1217 		/* Positive.  We can't learn anything from the smin, but smax
1218 		 * is positive, hence safe.
1219 		 */
1220 		reg->smin_value = reg->umin_value;
1221 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1222 							  reg->umax_value);
1223 	} else if ((s64)reg->umin_value < 0) {
1224 		/* Negative.  We can't learn anything from the smax, but smin
1225 		 * is negative, hence safe.
1226 		 */
1227 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1228 							  reg->umin_value);
1229 		reg->smax_value = reg->umax_value;
1230 	}
1231 }
1232 
1233 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1234 {
1235 	__reg32_deduce_bounds(reg);
1236 	__reg64_deduce_bounds(reg);
1237 }
1238 
1239 /* Attempts to improve var_off based on unsigned min/max information */
1240 static void __reg_bound_offset(struct bpf_reg_state *reg)
1241 {
1242 	struct tnum var64_off = tnum_intersect(reg->var_off,
1243 					       tnum_range(reg->umin_value,
1244 							  reg->umax_value));
1245 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1246 						tnum_range(reg->u32_min_value,
1247 							   reg->u32_max_value));
1248 
1249 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1250 }
1251 
1252 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1253 {
1254 	reg->umin_value = reg->u32_min_value;
1255 	reg->umax_value = reg->u32_max_value;
1256 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1257 	 * but must be positive otherwise set to worse case bounds
1258 	 * and refine later from tnum.
1259 	 */
1260 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1261 		reg->smax_value = reg->s32_max_value;
1262 	else
1263 		reg->smax_value = U32_MAX;
1264 	if (reg->s32_min_value >= 0)
1265 		reg->smin_value = reg->s32_min_value;
1266 	else
1267 		reg->smin_value = 0;
1268 }
1269 
1270 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1271 {
1272 	/* special case when 64-bit register has upper 32-bit register
1273 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1274 	 * allowing us to use 32-bit bounds directly,
1275 	 */
1276 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1277 		__reg_assign_32_into_64(reg);
1278 	} else {
1279 		/* Otherwise the best we can do is push lower 32bit known and
1280 		 * unknown bits into register (var_off set from jmp logic)
1281 		 * then learn as much as possible from the 64-bit tnum
1282 		 * known and unknown bits. The previous smin/smax bounds are
1283 		 * invalid here because of jmp32 compare so mark them unknown
1284 		 * so they do not impact tnum bounds calculation.
1285 		 */
1286 		__mark_reg64_unbounded(reg);
1287 		__update_reg_bounds(reg);
1288 	}
1289 
1290 	/* Intersecting with the old var_off might have improved our bounds
1291 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1292 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1293 	 */
1294 	__reg_deduce_bounds(reg);
1295 	__reg_bound_offset(reg);
1296 	__update_reg_bounds(reg);
1297 }
1298 
1299 static bool __reg64_bound_s32(s64 a)
1300 {
1301 	if (a > S32_MIN && a < S32_MAX)
1302 		return true;
1303 	return false;
1304 }
1305 
1306 static bool __reg64_bound_u32(u64 a)
1307 {
1308 	if (a > U32_MIN && a < U32_MAX)
1309 		return true;
1310 	return false;
1311 }
1312 
1313 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1314 {
1315 	__mark_reg32_unbounded(reg);
1316 
1317 	if (__reg64_bound_s32(reg->smin_value))
1318 		reg->s32_min_value = (s32)reg->smin_value;
1319 	if (__reg64_bound_s32(reg->smax_value))
1320 		reg->s32_max_value = (s32)reg->smax_value;
1321 	if (__reg64_bound_u32(reg->umin_value))
1322 		reg->u32_min_value = (u32)reg->umin_value;
1323 	if (__reg64_bound_u32(reg->umax_value))
1324 		reg->u32_max_value = (u32)reg->umax_value;
1325 
1326 	/* Intersecting with the old var_off might have improved our bounds
1327 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1328 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1329 	 */
1330 	__reg_deduce_bounds(reg);
1331 	__reg_bound_offset(reg);
1332 	__update_reg_bounds(reg);
1333 }
1334 
1335 /* Mark a register as having a completely unknown (scalar) value. */
1336 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1337 			       struct bpf_reg_state *reg)
1338 {
1339 	/*
1340 	 * Clear type, id, off, and union(map_ptr, range) and
1341 	 * padding between 'type' and union
1342 	 */
1343 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1344 	reg->type = SCALAR_VALUE;
1345 	reg->var_off = tnum_unknown;
1346 	reg->frameno = 0;
1347 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1348 	__mark_reg_unbounded(reg);
1349 }
1350 
1351 static void mark_reg_unknown(struct bpf_verifier_env *env,
1352 			     struct bpf_reg_state *regs, u32 regno)
1353 {
1354 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1355 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1356 		/* Something bad happened, let's kill all regs except FP */
1357 		for (regno = 0; regno < BPF_REG_FP; regno++)
1358 			__mark_reg_not_init(env, regs + regno);
1359 		return;
1360 	}
1361 	__mark_reg_unknown(env, regs + regno);
1362 }
1363 
1364 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1365 				struct bpf_reg_state *reg)
1366 {
1367 	__mark_reg_unknown(env, reg);
1368 	reg->type = NOT_INIT;
1369 }
1370 
1371 static void mark_reg_not_init(struct bpf_verifier_env *env,
1372 			      struct bpf_reg_state *regs, u32 regno)
1373 {
1374 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1375 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1376 		/* Something bad happened, let's kill all regs except FP */
1377 		for (regno = 0; regno < BPF_REG_FP; regno++)
1378 			__mark_reg_not_init(env, regs + regno);
1379 		return;
1380 	}
1381 	__mark_reg_not_init(env, regs + regno);
1382 }
1383 
1384 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1385 			    struct bpf_reg_state *regs, u32 regno,
1386 			    enum bpf_reg_type reg_type, u32 btf_id)
1387 {
1388 	if (reg_type == SCALAR_VALUE) {
1389 		mark_reg_unknown(env, regs, regno);
1390 		return;
1391 	}
1392 	mark_reg_known_zero(env, regs, regno);
1393 	regs[regno].type = PTR_TO_BTF_ID;
1394 	regs[regno].btf_id = btf_id;
1395 }
1396 
1397 #define DEF_NOT_SUBREG	(0)
1398 static void init_reg_state(struct bpf_verifier_env *env,
1399 			   struct bpf_func_state *state)
1400 {
1401 	struct bpf_reg_state *regs = state->regs;
1402 	int i;
1403 
1404 	for (i = 0; i < MAX_BPF_REG; i++) {
1405 		mark_reg_not_init(env, regs, i);
1406 		regs[i].live = REG_LIVE_NONE;
1407 		regs[i].parent = NULL;
1408 		regs[i].subreg_def = DEF_NOT_SUBREG;
1409 	}
1410 
1411 	/* frame pointer */
1412 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1413 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1414 	regs[BPF_REG_FP].frameno = state->frameno;
1415 }
1416 
1417 #define BPF_MAIN_FUNC (-1)
1418 static void init_func_state(struct bpf_verifier_env *env,
1419 			    struct bpf_func_state *state,
1420 			    int callsite, int frameno, int subprogno)
1421 {
1422 	state->callsite = callsite;
1423 	state->frameno = frameno;
1424 	state->subprogno = subprogno;
1425 	init_reg_state(env, state);
1426 }
1427 
1428 enum reg_arg_type {
1429 	SRC_OP,		/* register is used as source operand */
1430 	DST_OP,		/* register is used as destination operand */
1431 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1432 };
1433 
1434 static int cmp_subprogs(const void *a, const void *b)
1435 {
1436 	return ((struct bpf_subprog_info *)a)->start -
1437 	       ((struct bpf_subprog_info *)b)->start;
1438 }
1439 
1440 static int find_subprog(struct bpf_verifier_env *env, int off)
1441 {
1442 	struct bpf_subprog_info *p;
1443 
1444 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1445 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1446 	if (!p)
1447 		return -ENOENT;
1448 	return p - env->subprog_info;
1449 
1450 }
1451 
1452 static int add_subprog(struct bpf_verifier_env *env, int off)
1453 {
1454 	int insn_cnt = env->prog->len;
1455 	int ret;
1456 
1457 	if (off >= insn_cnt || off < 0) {
1458 		verbose(env, "call to invalid destination\n");
1459 		return -EINVAL;
1460 	}
1461 	ret = find_subprog(env, off);
1462 	if (ret >= 0)
1463 		return 0;
1464 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1465 		verbose(env, "too many subprograms\n");
1466 		return -E2BIG;
1467 	}
1468 	env->subprog_info[env->subprog_cnt++].start = off;
1469 	sort(env->subprog_info, env->subprog_cnt,
1470 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1471 	return 0;
1472 }
1473 
1474 static int check_subprogs(struct bpf_verifier_env *env)
1475 {
1476 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1477 	struct bpf_subprog_info *subprog = env->subprog_info;
1478 	struct bpf_insn *insn = env->prog->insnsi;
1479 	int insn_cnt = env->prog->len;
1480 
1481 	/* Add entry function. */
1482 	ret = add_subprog(env, 0);
1483 	if (ret < 0)
1484 		return ret;
1485 
1486 	/* determine subprog starts. The end is one before the next starts */
1487 	for (i = 0; i < insn_cnt; i++) {
1488 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1489 			continue;
1490 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1491 			continue;
1492 		if (!env->bpf_capable) {
1493 			verbose(env,
1494 				"function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1495 			return -EPERM;
1496 		}
1497 		ret = add_subprog(env, i + insn[i].imm + 1);
1498 		if (ret < 0)
1499 			return ret;
1500 	}
1501 
1502 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1503 	 * logic. 'subprog_cnt' should not be increased.
1504 	 */
1505 	subprog[env->subprog_cnt].start = insn_cnt;
1506 
1507 	if (env->log.level & BPF_LOG_LEVEL2)
1508 		for (i = 0; i < env->subprog_cnt; i++)
1509 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1510 
1511 	/* now check that all jumps are within the same subprog */
1512 	subprog_start = subprog[cur_subprog].start;
1513 	subprog_end = subprog[cur_subprog + 1].start;
1514 	for (i = 0; i < insn_cnt; i++) {
1515 		u8 code = insn[i].code;
1516 
1517 		if (code == (BPF_JMP | BPF_CALL) &&
1518 		    insn[i].imm == BPF_FUNC_tail_call &&
1519 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1520 			subprog[cur_subprog].has_tail_call = true;
1521 		if (BPF_CLASS(code) == BPF_LD &&
1522 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1523 			subprog[cur_subprog].has_ld_abs = true;
1524 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1525 			goto next;
1526 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1527 			goto next;
1528 		off = i + insn[i].off + 1;
1529 		if (off < subprog_start || off >= subprog_end) {
1530 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1531 			return -EINVAL;
1532 		}
1533 next:
1534 		if (i == subprog_end - 1) {
1535 			/* to avoid fall-through from one subprog into another
1536 			 * the last insn of the subprog should be either exit
1537 			 * or unconditional jump back
1538 			 */
1539 			if (code != (BPF_JMP | BPF_EXIT) &&
1540 			    code != (BPF_JMP | BPF_JA)) {
1541 				verbose(env, "last insn is not an exit or jmp\n");
1542 				return -EINVAL;
1543 			}
1544 			subprog_start = subprog_end;
1545 			cur_subprog++;
1546 			if (cur_subprog < env->subprog_cnt)
1547 				subprog_end = subprog[cur_subprog + 1].start;
1548 		}
1549 	}
1550 	return 0;
1551 }
1552 
1553 /* Parentage chain of this register (or stack slot) should take care of all
1554  * issues like callee-saved registers, stack slot allocation time, etc.
1555  */
1556 static int mark_reg_read(struct bpf_verifier_env *env,
1557 			 const struct bpf_reg_state *state,
1558 			 struct bpf_reg_state *parent, u8 flag)
1559 {
1560 	bool writes = parent == state->parent; /* Observe write marks */
1561 	int cnt = 0;
1562 
1563 	while (parent) {
1564 		/* if read wasn't screened by an earlier write ... */
1565 		if (writes && state->live & REG_LIVE_WRITTEN)
1566 			break;
1567 		if (parent->live & REG_LIVE_DONE) {
1568 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1569 				reg_type_str[parent->type],
1570 				parent->var_off.value, parent->off);
1571 			return -EFAULT;
1572 		}
1573 		/* The first condition is more likely to be true than the
1574 		 * second, checked it first.
1575 		 */
1576 		if ((parent->live & REG_LIVE_READ) == flag ||
1577 		    parent->live & REG_LIVE_READ64)
1578 			/* The parentage chain never changes and
1579 			 * this parent was already marked as LIVE_READ.
1580 			 * There is no need to keep walking the chain again and
1581 			 * keep re-marking all parents as LIVE_READ.
1582 			 * This case happens when the same register is read
1583 			 * multiple times without writes into it in-between.
1584 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1585 			 * then no need to set the weak REG_LIVE_READ32.
1586 			 */
1587 			break;
1588 		/* ... then we depend on parent's value */
1589 		parent->live |= flag;
1590 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1591 		if (flag == REG_LIVE_READ64)
1592 			parent->live &= ~REG_LIVE_READ32;
1593 		state = parent;
1594 		parent = state->parent;
1595 		writes = true;
1596 		cnt++;
1597 	}
1598 
1599 	if (env->longest_mark_read_walk < cnt)
1600 		env->longest_mark_read_walk = cnt;
1601 	return 0;
1602 }
1603 
1604 /* This function is supposed to be used by the following 32-bit optimization
1605  * code only. It returns TRUE if the source or destination register operates
1606  * on 64-bit, otherwise return FALSE.
1607  */
1608 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1609 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1610 {
1611 	u8 code, class, op;
1612 
1613 	code = insn->code;
1614 	class = BPF_CLASS(code);
1615 	op = BPF_OP(code);
1616 	if (class == BPF_JMP) {
1617 		/* BPF_EXIT for "main" will reach here. Return TRUE
1618 		 * conservatively.
1619 		 */
1620 		if (op == BPF_EXIT)
1621 			return true;
1622 		if (op == BPF_CALL) {
1623 			/* BPF to BPF call will reach here because of marking
1624 			 * caller saved clobber with DST_OP_NO_MARK for which we
1625 			 * don't care the register def because they are anyway
1626 			 * marked as NOT_INIT already.
1627 			 */
1628 			if (insn->src_reg == BPF_PSEUDO_CALL)
1629 				return false;
1630 			/* Helper call will reach here because of arg type
1631 			 * check, conservatively return TRUE.
1632 			 */
1633 			if (t == SRC_OP)
1634 				return true;
1635 
1636 			return false;
1637 		}
1638 	}
1639 
1640 	if (class == BPF_ALU64 || class == BPF_JMP ||
1641 	    /* BPF_END always use BPF_ALU class. */
1642 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1643 		return true;
1644 
1645 	if (class == BPF_ALU || class == BPF_JMP32)
1646 		return false;
1647 
1648 	if (class == BPF_LDX) {
1649 		if (t != SRC_OP)
1650 			return BPF_SIZE(code) == BPF_DW;
1651 		/* LDX source must be ptr. */
1652 		return true;
1653 	}
1654 
1655 	if (class == BPF_STX) {
1656 		if (reg->type != SCALAR_VALUE)
1657 			return true;
1658 		return BPF_SIZE(code) == BPF_DW;
1659 	}
1660 
1661 	if (class == BPF_LD) {
1662 		u8 mode = BPF_MODE(code);
1663 
1664 		/* LD_IMM64 */
1665 		if (mode == BPF_IMM)
1666 			return true;
1667 
1668 		/* Both LD_IND and LD_ABS return 32-bit data. */
1669 		if (t != SRC_OP)
1670 			return  false;
1671 
1672 		/* Implicit ctx ptr. */
1673 		if (regno == BPF_REG_6)
1674 			return true;
1675 
1676 		/* Explicit source could be any width. */
1677 		return true;
1678 	}
1679 
1680 	if (class == BPF_ST)
1681 		/* The only source register for BPF_ST is a ptr. */
1682 		return true;
1683 
1684 	/* Conservatively return true at default. */
1685 	return true;
1686 }
1687 
1688 /* Return TRUE if INSN doesn't have explicit value define. */
1689 static bool insn_no_def(struct bpf_insn *insn)
1690 {
1691 	u8 class = BPF_CLASS(insn->code);
1692 
1693 	return (class == BPF_JMP || class == BPF_JMP32 ||
1694 		class == BPF_STX || class == BPF_ST);
1695 }
1696 
1697 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1698 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1699 {
1700 	if (insn_no_def(insn))
1701 		return false;
1702 
1703 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1704 }
1705 
1706 static void mark_insn_zext(struct bpf_verifier_env *env,
1707 			   struct bpf_reg_state *reg)
1708 {
1709 	s32 def_idx = reg->subreg_def;
1710 
1711 	if (def_idx == DEF_NOT_SUBREG)
1712 		return;
1713 
1714 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1715 	/* The dst will be zero extended, so won't be sub-register anymore. */
1716 	reg->subreg_def = DEF_NOT_SUBREG;
1717 }
1718 
1719 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1720 			 enum reg_arg_type t)
1721 {
1722 	struct bpf_verifier_state *vstate = env->cur_state;
1723 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1724 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1725 	struct bpf_reg_state *reg, *regs = state->regs;
1726 	bool rw64;
1727 
1728 	if (regno >= MAX_BPF_REG) {
1729 		verbose(env, "R%d is invalid\n", regno);
1730 		return -EINVAL;
1731 	}
1732 
1733 	reg = &regs[regno];
1734 	rw64 = is_reg64(env, insn, regno, reg, t);
1735 	if (t == SRC_OP) {
1736 		/* check whether register used as source operand can be read */
1737 		if (reg->type == NOT_INIT) {
1738 			verbose(env, "R%d !read_ok\n", regno);
1739 			return -EACCES;
1740 		}
1741 		/* We don't need to worry about FP liveness because it's read-only */
1742 		if (regno == BPF_REG_FP)
1743 			return 0;
1744 
1745 		if (rw64)
1746 			mark_insn_zext(env, reg);
1747 
1748 		return mark_reg_read(env, reg, reg->parent,
1749 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1750 	} else {
1751 		/* check whether register used as dest operand can be written to */
1752 		if (regno == BPF_REG_FP) {
1753 			verbose(env, "frame pointer is read only\n");
1754 			return -EACCES;
1755 		}
1756 		reg->live |= REG_LIVE_WRITTEN;
1757 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1758 		if (t == DST_OP)
1759 			mark_reg_unknown(env, regs, regno);
1760 	}
1761 	return 0;
1762 }
1763 
1764 /* for any branch, call, exit record the history of jmps in the given state */
1765 static int push_jmp_history(struct bpf_verifier_env *env,
1766 			    struct bpf_verifier_state *cur)
1767 {
1768 	u32 cnt = cur->jmp_history_cnt;
1769 	struct bpf_idx_pair *p;
1770 
1771 	cnt++;
1772 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1773 	if (!p)
1774 		return -ENOMEM;
1775 	p[cnt - 1].idx = env->insn_idx;
1776 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1777 	cur->jmp_history = p;
1778 	cur->jmp_history_cnt = cnt;
1779 	return 0;
1780 }
1781 
1782 /* Backtrack one insn at a time. If idx is not at the top of recorded
1783  * history then previous instruction came from straight line execution.
1784  */
1785 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1786 			     u32 *history)
1787 {
1788 	u32 cnt = *history;
1789 
1790 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1791 		i = st->jmp_history[cnt - 1].prev_idx;
1792 		(*history)--;
1793 	} else {
1794 		i--;
1795 	}
1796 	return i;
1797 }
1798 
1799 /* For given verifier state backtrack_insn() is called from the last insn to
1800  * the first insn. Its purpose is to compute a bitmask of registers and
1801  * stack slots that needs precision in the parent verifier state.
1802  */
1803 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1804 			  u32 *reg_mask, u64 *stack_mask)
1805 {
1806 	const struct bpf_insn_cbs cbs = {
1807 		.cb_print	= verbose,
1808 		.private_data	= env,
1809 	};
1810 	struct bpf_insn *insn = env->prog->insnsi + idx;
1811 	u8 class = BPF_CLASS(insn->code);
1812 	u8 opcode = BPF_OP(insn->code);
1813 	u8 mode = BPF_MODE(insn->code);
1814 	u32 dreg = 1u << insn->dst_reg;
1815 	u32 sreg = 1u << insn->src_reg;
1816 	u32 spi;
1817 
1818 	if (insn->code == 0)
1819 		return 0;
1820 	if (env->log.level & BPF_LOG_LEVEL) {
1821 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1822 		verbose(env, "%d: ", idx);
1823 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1824 	}
1825 
1826 	if (class == BPF_ALU || class == BPF_ALU64) {
1827 		if (!(*reg_mask & dreg))
1828 			return 0;
1829 		if (opcode == BPF_MOV) {
1830 			if (BPF_SRC(insn->code) == BPF_X) {
1831 				/* dreg = sreg
1832 				 * dreg needs precision after this insn
1833 				 * sreg needs precision before this insn
1834 				 */
1835 				*reg_mask &= ~dreg;
1836 				*reg_mask |= sreg;
1837 			} else {
1838 				/* dreg = K
1839 				 * dreg needs precision after this insn.
1840 				 * Corresponding register is already marked
1841 				 * as precise=true in this verifier state.
1842 				 * No further markings in parent are necessary
1843 				 */
1844 				*reg_mask &= ~dreg;
1845 			}
1846 		} else {
1847 			if (BPF_SRC(insn->code) == BPF_X) {
1848 				/* dreg += sreg
1849 				 * both dreg and sreg need precision
1850 				 * before this insn
1851 				 */
1852 				*reg_mask |= sreg;
1853 			} /* else dreg += K
1854 			   * dreg still needs precision before this insn
1855 			   */
1856 		}
1857 	} else if (class == BPF_LDX) {
1858 		if (!(*reg_mask & dreg))
1859 			return 0;
1860 		*reg_mask &= ~dreg;
1861 
1862 		/* scalars can only be spilled into stack w/o losing precision.
1863 		 * Load from any other memory can be zero extended.
1864 		 * The desire to keep that precision is already indicated
1865 		 * by 'precise' mark in corresponding register of this state.
1866 		 * No further tracking necessary.
1867 		 */
1868 		if (insn->src_reg != BPF_REG_FP)
1869 			return 0;
1870 		if (BPF_SIZE(insn->code) != BPF_DW)
1871 			return 0;
1872 
1873 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1874 		 * that [fp - off] slot contains scalar that needs to be
1875 		 * tracked with precision
1876 		 */
1877 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1878 		if (spi >= 64) {
1879 			verbose(env, "BUG spi %d\n", spi);
1880 			WARN_ONCE(1, "verifier backtracking bug");
1881 			return -EFAULT;
1882 		}
1883 		*stack_mask |= 1ull << spi;
1884 	} else if (class == BPF_STX || class == BPF_ST) {
1885 		if (*reg_mask & dreg)
1886 			/* stx & st shouldn't be using _scalar_ dst_reg
1887 			 * to access memory. It means backtracking
1888 			 * encountered a case of pointer subtraction.
1889 			 */
1890 			return -ENOTSUPP;
1891 		/* scalars can only be spilled into stack */
1892 		if (insn->dst_reg != BPF_REG_FP)
1893 			return 0;
1894 		if (BPF_SIZE(insn->code) != BPF_DW)
1895 			return 0;
1896 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1897 		if (spi >= 64) {
1898 			verbose(env, "BUG spi %d\n", spi);
1899 			WARN_ONCE(1, "verifier backtracking bug");
1900 			return -EFAULT;
1901 		}
1902 		if (!(*stack_mask & (1ull << spi)))
1903 			return 0;
1904 		*stack_mask &= ~(1ull << spi);
1905 		if (class == BPF_STX)
1906 			*reg_mask |= sreg;
1907 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1908 		if (opcode == BPF_CALL) {
1909 			if (insn->src_reg == BPF_PSEUDO_CALL)
1910 				return -ENOTSUPP;
1911 			/* regular helper call sets R0 */
1912 			*reg_mask &= ~1;
1913 			if (*reg_mask & 0x3f) {
1914 				/* if backtracing was looking for registers R1-R5
1915 				 * they should have been found already.
1916 				 */
1917 				verbose(env, "BUG regs %x\n", *reg_mask);
1918 				WARN_ONCE(1, "verifier backtracking bug");
1919 				return -EFAULT;
1920 			}
1921 		} else if (opcode == BPF_EXIT) {
1922 			return -ENOTSUPP;
1923 		}
1924 	} else if (class == BPF_LD) {
1925 		if (!(*reg_mask & dreg))
1926 			return 0;
1927 		*reg_mask &= ~dreg;
1928 		/* It's ld_imm64 or ld_abs or ld_ind.
1929 		 * For ld_imm64 no further tracking of precision
1930 		 * into parent is necessary
1931 		 */
1932 		if (mode == BPF_IND || mode == BPF_ABS)
1933 			/* to be analyzed */
1934 			return -ENOTSUPP;
1935 	}
1936 	return 0;
1937 }
1938 
1939 /* the scalar precision tracking algorithm:
1940  * . at the start all registers have precise=false.
1941  * . scalar ranges are tracked as normal through alu and jmp insns.
1942  * . once precise value of the scalar register is used in:
1943  *   .  ptr + scalar alu
1944  *   . if (scalar cond K|scalar)
1945  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1946  *   backtrack through the verifier states and mark all registers and
1947  *   stack slots with spilled constants that these scalar regisers
1948  *   should be precise.
1949  * . during state pruning two registers (or spilled stack slots)
1950  *   are equivalent if both are not precise.
1951  *
1952  * Note the verifier cannot simply walk register parentage chain,
1953  * since many different registers and stack slots could have been
1954  * used to compute single precise scalar.
1955  *
1956  * The approach of starting with precise=true for all registers and then
1957  * backtrack to mark a register as not precise when the verifier detects
1958  * that program doesn't care about specific value (e.g., when helper
1959  * takes register as ARG_ANYTHING parameter) is not safe.
1960  *
1961  * It's ok to walk single parentage chain of the verifier states.
1962  * It's possible that this backtracking will go all the way till 1st insn.
1963  * All other branches will be explored for needing precision later.
1964  *
1965  * The backtracking needs to deal with cases like:
1966  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1967  * r9 -= r8
1968  * r5 = r9
1969  * if r5 > 0x79f goto pc+7
1970  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1971  * r5 += 1
1972  * ...
1973  * call bpf_perf_event_output#25
1974  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1975  *
1976  * and this case:
1977  * r6 = 1
1978  * call foo // uses callee's r6 inside to compute r0
1979  * r0 += r6
1980  * if r0 == 0 goto
1981  *
1982  * to track above reg_mask/stack_mask needs to be independent for each frame.
1983  *
1984  * Also if parent's curframe > frame where backtracking started,
1985  * the verifier need to mark registers in both frames, otherwise callees
1986  * may incorrectly prune callers. This is similar to
1987  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1988  *
1989  * For now backtracking falls back into conservative marking.
1990  */
1991 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1992 				     struct bpf_verifier_state *st)
1993 {
1994 	struct bpf_func_state *func;
1995 	struct bpf_reg_state *reg;
1996 	int i, j;
1997 
1998 	/* big hammer: mark all scalars precise in this path.
1999 	 * pop_stack may still get !precise scalars.
2000 	 */
2001 	for (; st; st = st->parent)
2002 		for (i = 0; i <= st->curframe; i++) {
2003 			func = st->frame[i];
2004 			for (j = 0; j < BPF_REG_FP; j++) {
2005 				reg = &func->regs[j];
2006 				if (reg->type != SCALAR_VALUE)
2007 					continue;
2008 				reg->precise = true;
2009 			}
2010 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2011 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2012 					continue;
2013 				reg = &func->stack[j].spilled_ptr;
2014 				if (reg->type != SCALAR_VALUE)
2015 					continue;
2016 				reg->precise = true;
2017 			}
2018 		}
2019 }
2020 
2021 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2022 				  int spi)
2023 {
2024 	struct bpf_verifier_state *st = env->cur_state;
2025 	int first_idx = st->first_insn_idx;
2026 	int last_idx = env->insn_idx;
2027 	struct bpf_func_state *func;
2028 	struct bpf_reg_state *reg;
2029 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2030 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2031 	bool skip_first = true;
2032 	bool new_marks = false;
2033 	int i, err;
2034 
2035 	if (!env->bpf_capable)
2036 		return 0;
2037 
2038 	func = st->frame[st->curframe];
2039 	if (regno >= 0) {
2040 		reg = &func->regs[regno];
2041 		if (reg->type != SCALAR_VALUE) {
2042 			WARN_ONCE(1, "backtracing misuse");
2043 			return -EFAULT;
2044 		}
2045 		if (!reg->precise)
2046 			new_marks = true;
2047 		else
2048 			reg_mask = 0;
2049 		reg->precise = true;
2050 	}
2051 
2052 	while (spi >= 0) {
2053 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2054 			stack_mask = 0;
2055 			break;
2056 		}
2057 		reg = &func->stack[spi].spilled_ptr;
2058 		if (reg->type != SCALAR_VALUE) {
2059 			stack_mask = 0;
2060 			break;
2061 		}
2062 		if (!reg->precise)
2063 			new_marks = true;
2064 		else
2065 			stack_mask = 0;
2066 		reg->precise = true;
2067 		break;
2068 	}
2069 
2070 	if (!new_marks)
2071 		return 0;
2072 	if (!reg_mask && !stack_mask)
2073 		return 0;
2074 	for (;;) {
2075 		DECLARE_BITMAP(mask, 64);
2076 		u32 history = st->jmp_history_cnt;
2077 
2078 		if (env->log.level & BPF_LOG_LEVEL)
2079 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2080 		for (i = last_idx;;) {
2081 			if (skip_first) {
2082 				err = 0;
2083 				skip_first = false;
2084 			} else {
2085 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2086 			}
2087 			if (err == -ENOTSUPP) {
2088 				mark_all_scalars_precise(env, st);
2089 				return 0;
2090 			} else if (err) {
2091 				return err;
2092 			}
2093 			if (!reg_mask && !stack_mask)
2094 				/* Found assignment(s) into tracked register in this state.
2095 				 * Since this state is already marked, just return.
2096 				 * Nothing to be tracked further in the parent state.
2097 				 */
2098 				return 0;
2099 			if (i == first_idx)
2100 				break;
2101 			i = get_prev_insn_idx(st, i, &history);
2102 			if (i >= env->prog->len) {
2103 				/* This can happen if backtracking reached insn 0
2104 				 * and there are still reg_mask or stack_mask
2105 				 * to backtrack.
2106 				 * It means the backtracking missed the spot where
2107 				 * particular register was initialized with a constant.
2108 				 */
2109 				verbose(env, "BUG backtracking idx %d\n", i);
2110 				WARN_ONCE(1, "verifier backtracking bug");
2111 				return -EFAULT;
2112 			}
2113 		}
2114 		st = st->parent;
2115 		if (!st)
2116 			break;
2117 
2118 		new_marks = false;
2119 		func = st->frame[st->curframe];
2120 		bitmap_from_u64(mask, reg_mask);
2121 		for_each_set_bit(i, mask, 32) {
2122 			reg = &func->regs[i];
2123 			if (reg->type != SCALAR_VALUE) {
2124 				reg_mask &= ~(1u << i);
2125 				continue;
2126 			}
2127 			if (!reg->precise)
2128 				new_marks = true;
2129 			reg->precise = true;
2130 		}
2131 
2132 		bitmap_from_u64(mask, stack_mask);
2133 		for_each_set_bit(i, mask, 64) {
2134 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2135 				/* the sequence of instructions:
2136 				 * 2: (bf) r3 = r10
2137 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2138 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2139 				 * doesn't contain jmps. It's backtracked
2140 				 * as a single block.
2141 				 * During backtracking insn 3 is not recognized as
2142 				 * stack access, so at the end of backtracking
2143 				 * stack slot fp-8 is still marked in stack_mask.
2144 				 * However the parent state may not have accessed
2145 				 * fp-8 and it's "unallocated" stack space.
2146 				 * In such case fallback to conservative.
2147 				 */
2148 				mark_all_scalars_precise(env, st);
2149 				return 0;
2150 			}
2151 
2152 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2153 				stack_mask &= ~(1ull << i);
2154 				continue;
2155 			}
2156 			reg = &func->stack[i].spilled_ptr;
2157 			if (reg->type != SCALAR_VALUE) {
2158 				stack_mask &= ~(1ull << i);
2159 				continue;
2160 			}
2161 			if (!reg->precise)
2162 				new_marks = true;
2163 			reg->precise = true;
2164 		}
2165 		if (env->log.level & BPF_LOG_LEVEL) {
2166 			print_verifier_state(env, func);
2167 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2168 				new_marks ? "didn't have" : "already had",
2169 				reg_mask, stack_mask);
2170 		}
2171 
2172 		if (!reg_mask && !stack_mask)
2173 			break;
2174 		if (!new_marks)
2175 			break;
2176 
2177 		last_idx = st->last_insn_idx;
2178 		first_idx = st->first_insn_idx;
2179 	}
2180 	return 0;
2181 }
2182 
2183 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2184 {
2185 	return __mark_chain_precision(env, regno, -1);
2186 }
2187 
2188 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2189 {
2190 	return __mark_chain_precision(env, -1, spi);
2191 }
2192 
2193 static bool is_spillable_regtype(enum bpf_reg_type type)
2194 {
2195 	switch (type) {
2196 	case PTR_TO_MAP_VALUE:
2197 	case PTR_TO_MAP_VALUE_OR_NULL:
2198 	case PTR_TO_STACK:
2199 	case PTR_TO_CTX:
2200 	case PTR_TO_PACKET:
2201 	case PTR_TO_PACKET_META:
2202 	case PTR_TO_PACKET_END:
2203 	case PTR_TO_FLOW_KEYS:
2204 	case CONST_PTR_TO_MAP:
2205 	case PTR_TO_SOCKET:
2206 	case PTR_TO_SOCKET_OR_NULL:
2207 	case PTR_TO_SOCK_COMMON:
2208 	case PTR_TO_SOCK_COMMON_OR_NULL:
2209 	case PTR_TO_TCP_SOCK:
2210 	case PTR_TO_TCP_SOCK_OR_NULL:
2211 	case PTR_TO_XDP_SOCK:
2212 	case PTR_TO_BTF_ID:
2213 	case PTR_TO_BTF_ID_OR_NULL:
2214 	case PTR_TO_RDONLY_BUF:
2215 	case PTR_TO_RDONLY_BUF_OR_NULL:
2216 	case PTR_TO_RDWR_BUF:
2217 	case PTR_TO_RDWR_BUF_OR_NULL:
2218 	case PTR_TO_PERCPU_BTF_ID:
2219 		return true;
2220 	default:
2221 		return false;
2222 	}
2223 }
2224 
2225 /* Does this register contain a constant zero? */
2226 static bool register_is_null(struct bpf_reg_state *reg)
2227 {
2228 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2229 }
2230 
2231 static bool register_is_const(struct bpf_reg_state *reg)
2232 {
2233 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2234 }
2235 
2236 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2237 {
2238 	return tnum_is_unknown(reg->var_off) &&
2239 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2240 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2241 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2242 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2243 }
2244 
2245 static bool register_is_bounded(struct bpf_reg_state *reg)
2246 {
2247 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2248 }
2249 
2250 static bool __is_pointer_value(bool allow_ptr_leaks,
2251 			       const struct bpf_reg_state *reg)
2252 {
2253 	if (allow_ptr_leaks)
2254 		return false;
2255 
2256 	return reg->type != SCALAR_VALUE;
2257 }
2258 
2259 static void save_register_state(struct bpf_func_state *state,
2260 				int spi, struct bpf_reg_state *reg)
2261 {
2262 	int i;
2263 
2264 	state->stack[spi].spilled_ptr = *reg;
2265 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2266 
2267 	for (i = 0; i < BPF_REG_SIZE; i++)
2268 		state->stack[spi].slot_type[i] = STACK_SPILL;
2269 }
2270 
2271 /* check_stack_read/write functions track spill/fill of registers,
2272  * stack boundary and alignment are checked in check_mem_access()
2273  */
2274 static int check_stack_write(struct bpf_verifier_env *env,
2275 			     struct bpf_func_state *state, /* func where register points to */
2276 			     int off, int size, int value_regno, int insn_idx)
2277 {
2278 	struct bpf_func_state *cur; /* state of the current function */
2279 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2280 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2281 	struct bpf_reg_state *reg = NULL;
2282 
2283 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2284 				 state->acquired_refs, true);
2285 	if (err)
2286 		return err;
2287 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2288 	 * so it's aligned access and [off, off + size) are within stack limits
2289 	 */
2290 	if (!env->allow_ptr_leaks &&
2291 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2292 	    size != BPF_REG_SIZE) {
2293 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2294 		return -EACCES;
2295 	}
2296 
2297 	cur = env->cur_state->frame[env->cur_state->curframe];
2298 	if (value_regno >= 0)
2299 		reg = &cur->regs[value_regno];
2300 
2301 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2302 	    !register_is_null(reg) && env->bpf_capable) {
2303 		if (dst_reg != BPF_REG_FP) {
2304 			/* The backtracking logic can only recognize explicit
2305 			 * stack slot address like [fp - 8]. Other spill of
2306 			 * scalar via different register has to be conervative.
2307 			 * Backtrack from here and mark all registers as precise
2308 			 * that contributed into 'reg' being a constant.
2309 			 */
2310 			err = mark_chain_precision(env, value_regno);
2311 			if (err)
2312 				return err;
2313 		}
2314 		save_register_state(state, spi, reg);
2315 	} else if (reg && is_spillable_regtype(reg->type)) {
2316 		/* register containing pointer is being spilled into stack */
2317 		if (size != BPF_REG_SIZE) {
2318 			verbose_linfo(env, insn_idx, "; ");
2319 			verbose(env, "invalid size of register spill\n");
2320 			return -EACCES;
2321 		}
2322 
2323 		if (state != cur && reg->type == PTR_TO_STACK) {
2324 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2325 			return -EINVAL;
2326 		}
2327 
2328 		if (!env->bypass_spec_v4) {
2329 			bool sanitize = false;
2330 
2331 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2332 			    register_is_const(&state->stack[spi].spilled_ptr))
2333 				sanitize = true;
2334 			for (i = 0; i < BPF_REG_SIZE; i++)
2335 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2336 					sanitize = true;
2337 					break;
2338 				}
2339 			if (sanitize) {
2340 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2341 				int soff = (-spi - 1) * BPF_REG_SIZE;
2342 
2343 				/* detected reuse of integer stack slot with a pointer
2344 				 * which means either llvm is reusing stack slot or
2345 				 * an attacker is trying to exploit CVE-2018-3639
2346 				 * (speculative store bypass)
2347 				 * Have to sanitize that slot with preemptive
2348 				 * store of zero.
2349 				 */
2350 				if (*poff && *poff != soff) {
2351 					/* disallow programs where single insn stores
2352 					 * into two different stack slots, since verifier
2353 					 * cannot sanitize them
2354 					 */
2355 					verbose(env,
2356 						"insn %d cannot access two stack slots fp%d and fp%d",
2357 						insn_idx, *poff, soff);
2358 					return -EINVAL;
2359 				}
2360 				*poff = soff;
2361 			}
2362 		}
2363 		save_register_state(state, spi, reg);
2364 	} else {
2365 		u8 type = STACK_MISC;
2366 
2367 		/* regular write of data into stack destroys any spilled ptr */
2368 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2369 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2370 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2371 			for (i = 0; i < BPF_REG_SIZE; i++)
2372 				state->stack[spi].slot_type[i] = STACK_MISC;
2373 
2374 		/* only mark the slot as written if all 8 bytes were written
2375 		 * otherwise read propagation may incorrectly stop too soon
2376 		 * when stack slots are partially written.
2377 		 * This heuristic means that read propagation will be
2378 		 * conservative, since it will add reg_live_read marks
2379 		 * to stack slots all the way to first state when programs
2380 		 * writes+reads less than 8 bytes
2381 		 */
2382 		if (size == BPF_REG_SIZE)
2383 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2384 
2385 		/* when we zero initialize stack slots mark them as such */
2386 		if (reg && register_is_null(reg)) {
2387 			/* backtracking doesn't work for STACK_ZERO yet. */
2388 			err = mark_chain_precision(env, value_regno);
2389 			if (err)
2390 				return err;
2391 			type = STACK_ZERO;
2392 		}
2393 
2394 		/* Mark slots affected by this stack write. */
2395 		for (i = 0; i < size; i++)
2396 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2397 				type;
2398 	}
2399 	return 0;
2400 }
2401 
2402 static int check_stack_read(struct bpf_verifier_env *env,
2403 			    struct bpf_func_state *reg_state /* func where register points to */,
2404 			    int off, int size, int value_regno)
2405 {
2406 	struct bpf_verifier_state *vstate = env->cur_state;
2407 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2408 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2409 	struct bpf_reg_state *reg;
2410 	u8 *stype;
2411 
2412 	if (reg_state->allocated_stack <= slot) {
2413 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2414 			off, size);
2415 		return -EACCES;
2416 	}
2417 	stype = reg_state->stack[spi].slot_type;
2418 	reg = &reg_state->stack[spi].spilled_ptr;
2419 
2420 	if (stype[0] == STACK_SPILL) {
2421 		if (size != BPF_REG_SIZE) {
2422 			if (reg->type != SCALAR_VALUE) {
2423 				verbose_linfo(env, env->insn_idx, "; ");
2424 				verbose(env, "invalid size of register fill\n");
2425 				return -EACCES;
2426 			}
2427 			if (value_regno >= 0) {
2428 				mark_reg_unknown(env, state->regs, value_regno);
2429 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2430 			}
2431 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2432 			return 0;
2433 		}
2434 		for (i = 1; i < BPF_REG_SIZE; i++) {
2435 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2436 				verbose(env, "corrupted spill memory\n");
2437 				return -EACCES;
2438 			}
2439 		}
2440 
2441 		if (value_regno >= 0) {
2442 			/* restore register state from stack */
2443 			state->regs[value_regno] = *reg;
2444 			/* mark reg as written since spilled pointer state likely
2445 			 * has its liveness marks cleared by is_state_visited()
2446 			 * which resets stack/reg liveness for state transitions
2447 			 */
2448 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2449 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2450 			/* If value_regno==-1, the caller is asking us whether
2451 			 * it is acceptable to use this value as a SCALAR_VALUE
2452 			 * (e.g. for XADD).
2453 			 * We must not allow unprivileged callers to do that
2454 			 * with spilled pointers.
2455 			 */
2456 			verbose(env, "leaking pointer from stack off %d\n",
2457 				off);
2458 			return -EACCES;
2459 		}
2460 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2461 	} else {
2462 		int zeros = 0;
2463 
2464 		for (i = 0; i < size; i++) {
2465 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2466 				continue;
2467 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2468 				zeros++;
2469 				continue;
2470 			}
2471 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2472 				off, i, size);
2473 			return -EACCES;
2474 		}
2475 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2476 		if (value_regno >= 0) {
2477 			if (zeros == size) {
2478 				/* any size read into register is zero extended,
2479 				 * so the whole register == const_zero
2480 				 */
2481 				__mark_reg_const_zero(&state->regs[value_regno]);
2482 				/* backtracking doesn't support STACK_ZERO yet,
2483 				 * so mark it precise here, so that later
2484 				 * backtracking can stop here.
2485 				 * Backtracking may not need this if this register
2486 				 * doesn't participate in pointer adjustment.
2487 				 * Forward propagation of precise flag is not
2488 				 * necessary either. This mark is only to stop
2489 				 * backtracking. Any register that contributed
2490 				 * to const 0 was marked precise before spill.
2491 				 */
2492 				state->regs[value_regno].precise = true;
2493 			} else {
2494 				/* have read misc data from the stack */
2495 				mark_reg_unknown(env, state->regs, value_regno);
2496 			}
2497 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2498 		}
2499 	}
2500 	return 0;
2501 }
2502 
2503 static int check_stack_access(struct bpf_verifier_env *env,
2504 			      const struct bpf_reg_state *reg,
2505 			      int off, int size)
2506 {
2507 	/* Stack accesses must be at a fixed offset, so that we
2508 	 * can determine what type of data were returned. See
2509 	 * check_stack_read().
2510 	 */
2511 	if (!tnum_is_const(reg->var_off)) {
2512 		char tn_buf[48];
2513 
2514 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2515 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2516 			tn_buf, off, size);
2517 		return -EACCES;
2518 	}
2519 
2520 	if (off >= 0 || off < -MAX_BPF_STACK) {
2521 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2522 		return -EACCES;
2523 	}
2524 
2525 	return 0;
2526 }
2527 
2528 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2529 				 int off, int size, enum bpf_access_type type)
2530 {
2531 	struct bpf_reg_state *regs = cur_regs(env);
2532 	struct bpf_map *map = regs[regno].map_ptr;
2533 	u32 cap = bpf_map_flags_to_cap(map);
2534 
2535 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2536 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2537 			map->value_size, off, size);
2538 		return -EACCES;
2539 	}
2540 
2541 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2542 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2543 			map->value_size, off, size);
2544 		return -EACCES;
2545 	}
2546 
2547 	return 0;
2548 }
2549 
2550 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2551 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2552 			      int off, int size, u32 mem_size,
2553 			      bool zero_size_allowed)
2554 {
2555 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2556 	struct bpf_reg_state *reg;
2557 
2558 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2559 		return 0;
2560 
2561 	reg = &cur_regs(env)[regno];
2562 	switch (reg->type) {
2563 	case PTR_TO_MAP_VALUE:
2564 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2565 			mem_size, off, size);
2566 		break;
2567 	case PTR_TO_PACKET:
2568 	case PTR_TO_PACKET_META:
2569 	case PTR_TO_PACKET_END:
2570 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2571 			off, size, regno, reg->id, off, mem_size);
2572 		break;
2573 	case PTR_TO_MEM:
2574 	default:
2575 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2576 			mem_size, off, size);
2577 	}
2578 
2579 	return -EACCES;
2580 }
2581 
2582 /* check read/write into a memory region with possible variable offset */
2583 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2584 				   int off, int size, u32 mem_size,
2585 				   bool zero_size_allowed)
2586 {
2587 	struct bpf_verifier_state *vstate = env->cur_state;
2588 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2589 	struct bpf_reg_state *reg = &state->regs[regno];
2590 	int err;
2591 
2592 	/* We may have adjusted the register pointing to memory region, so we
2593 	 * need to try adding each of min_value and max_value to off
2594 	 * to make sure our theoretical access will be safe.
2595 	 */
2596 	if (env->log.level & BPF_LOG_LEVEL)
2597 		print_verifier_state(env, state);
2598 
2599 	/* The minimum value is only important with signed
2600 	 * comparisons where we can't assume the floor of a
2601 	 * value is 0.  If we are using signed variables for our
2602 	 * index'es we need to make sure that whatever we use
2603 	 * will have a set floor within our range.
2604 	 */
2605 	if (reg->smin_value < 0 &&
2606 	    (reg->smin_value == S64_MIN ||
2607 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2608 	      reg->smin_value + off < 0)) {
2609 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2610 			regno);
2611 		return -EACCES;
2612 	}
2613 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
2614 				 mem_size, zero_size_allowed);
2615 	if (err) {
2616 		verbose(env, "R%d min value is outside of the allowed memory range\n",
2617 			regno);
2618 		return err;
2619 	}
2620 
2621 	/* If we haven't set a max value then we need to bail since we can't be
2622 	 * sure we won't do bad things.
2623 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2624 	 */
2625 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2626 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2627 			regno);
2628 		return -EACCES;
2629 	}
2630 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
2631 				 mem_size, zero_size_allowed);
2632 	if (err) {
2633 		verbose(env, "R%d max value is outside of the allowed memory range\n",
2634 			regno);
2635 		return err;
2636 	}
2637 
2638 	return 0;
2639 }
2640 
2641 /* check read/write into a map element with possible variable offset */
2642 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2643 			    int off, int size, bool zero_size_allowed)
2644 {
2645 	struct bpf_verifier_state *vstate = env->cur_state;
2646 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2647 	struct bpf_reg_state *reg = &state->regs[regno];
2648 	struct bpf_map *map = reg->map_ptr;
2649 	int err;
2650 
2651 	err = check_mem_region_access(env, regno, off, size, map->value_size,
2652 				      zero_size_allowed);
2653 	if (err)
2654 		return err;
2655 
2656 	if (map_value_has_spin_lock(map)) {
2657 		u32 lock = map->spin_lock_off;
2658 
2659 		/* if any part of struct bpf_spin_lock can be touched by
2660 		 * load/store reject this program.
2661 		 * To check that [x1, x2) overlaps with [y1, y2)
2662 		 * it is sufficient to check x1 < y2 && y1 < x2.
2663 		 */
2664 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2665 		     lock < reg->umax_value + off + size) {
2666 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2667 			return -EACCES;
2668 		}
2669 	}
2670 	return err;
2671 }
2672 
2673 #define MAX_PACKET_OFF 0xffff
2674 
2675 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2676 {
2677 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
2678 }
2679 
2680 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2681 				       const struct bpf_call_arg_meta *meta,
2682 				       enum bpf_access_type t)
2683 {
2684 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2685 
2686 	switch (prog_type) {
2687 	/* Program types only with direct read access go here! */
2688 	case BPF_PROG_TYPE_LWT_IN:
2689 	case BPF_PROG_TYPE_LWT_OUT:
2690 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2691 	case BPF_PROG_TYPE_SK_REUSEPORT:
2692 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2693 	case BPF_PROG_TYPE_CGROUP_SKB:
2694 		if (t == BPF_WRITE)
2695 			return false;
2696 		fallthrough;
2697 
2698 	/* Program types with direct read + write access go here! */
2699 	case BPF_PROG_TYPE_SCHED_CLS:
2700 	case BPF_PROG_TYPE_SCHED_ACT:
2701 	case BPF_PROG_TYPE_XDP:
2702 	case BPF_PROG_TYPE_LWT_XMIT:
2703 	case BPF_PROG_TYPE_SK_SKB:
2704 	case BPF_PROG_TYPE_SK_MSG:
2705 		if (meta)
2706 			return meta->pkt_access;
2707 
2708 		env->seen_direct_write = true;
2709 		return true;
2710 
2711 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2712 		if (t == BPF_WRITE)
2713 			env->seen_direct_write = true;
2714 
2715 		return true;
2716 
2717 	default:
2718 		return false;
2719 	}
2720 }
2721 
2722 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2723 			       int size, bool zero_size_allowed)
2724 {
2725 	struct bpf_reg_state *regs = cur_regs(env);
2726 	struct bpf_reg_state *reg = &regs[regno];
2727 	int err;
2728 
2729 	/* We may have added a variable offset to the packet pointer; but any
2730 	 * reg->range we have comes after that.  We are only checking the fixed
2731 	 * offset.
2732 	 */
2733 
2734 	/* We don't allow negative numbers, because we aren't tracking enough
2735 	 * detail to prove they're safe.
2736 	 */
2737 	if (reg->smin_value < 0) {
2738 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2739 			regno);
2740 		return -EACCES;
2741 	}
2742 	err = __check_mem_access(env, regno, off, size, reg->range,
2743 				 zero_size_allowed);
2744 	if (err) {
2745 		verbose(env, "R%d offset is outside of the packet\n", regno);
2746 		return err;
2747 	}
2748 
2749 	/* __check_mem_access has made sure "off + size - 1" is within u16.
2750 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2751 	 * otherwise find_good_pkt_pointers would have refused to set range info
2752 	 * that __check_mem_access would have rejected this pkt access.
2753 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2754 	 */
2755 	env->prog->aux->max_pkt_offset =
2756 		max_t(u32, env->prog->aux->max_pkt_offset,
2757 		      off + reg->umax_value + size - 1);
2758 
2759 	return err;
2760 }
2761 
2762 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2763 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2764 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
2765 			    u32 *btf_id)
2766 {
2767 	struct bpf_insn_access_aux info = {
2768 		.reg_type = *reg_type,
2769 		.log = &env->log,
2770 	};
2771 
2772 	if (env->ops->is_valid_access &&
2773 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2774 		/* A non zero info.ctx_field_size indicates that this field is a
2775 		 * candidate for later verifier transformation to load the whole
2776 		 * field and then apply a mask when accessed with a narrower
2777 		 * access than actual ctx access size. A zero info.ctx_field_size
2778 		 * will only allow for whole field access and rejects any other
2779 		 * type of narrower access.
2780 		 */
2781 		*reg_type = info.reg_type;
2782 
2783 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL)
2784 			*btf_id = info.btf_id;
2785 		else
2786 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2787 		/* remember the offset of last byte accessed in ctx */
2788 		if (env->prog->aux->max_ctx_offset < off + size)
2789 			env->prog->aux->max_ctx_offset = off + size;
2790 		return 0;
2791 	}
2792 
2793 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2794 	return -EACCES;
2795 }
2796 
2797 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2798 				  int size)
2799 {
2800 	if (size < 0 || off < 0 ||
2801 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2802 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2803 			off, size);
2804 		return -EACCES;
2805 	}
2806 	return 0;
2807 }
2808 
2809 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2810 			     u32 regno, int off, int size,
2811 			     enum bpf_access_type t)
2812 {
2813 	struct bpf_reg_state *regs = cur_regs(env);
2814 	struct bpf_reg_state *reg = &regs[regno];
2815 	struct bpf_insn_access_aux info = {};
2816 	bool valid;
2817 
2818 	if (reg->smin_value < 0) {
2819 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2820 			regno);
2821 		return -EACCES;
2822 	}
2823 
2824 	switch (reg->type) {
2825 	case PTR_TO_SOCK_COMMON:
2826 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2827 		break;
2828 	case PTR_TO_SOCKET:
2829 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2830 		break;
2831 	case PTR_TO_TCP_SOCK:
2832 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2833 		break;
2834 	case PTR_TO_XDP_SOCK:
2835 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2836 		break;
2837 	default:
2838 		valid = false;
2839 	}
2840 
2841 
2842 	if (valid) {
2843 		env->insn_aux_data[insn_idx].ctx_field_size =
2844 			info.ctx_field_size;
2845 		return 0;
2846 	}
2847 
2848 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2849 		regno, reg_type_str[reg->type], off, size);
2850 
2851 	return -EACCES;
2852 }
2853 
2854 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2855 {
2856 	return cur_regs(env) + regno;
2857 }
2858 
2859 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2860 {
2861 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2862 }
2863 
2864 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2865 {
2866 	const struct bpf_reg_state *reg = reg_state(env, regno);
2867 
2868 	return reg->type == PTR_TO_CTX;
2869 }
2870 
2871 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2872 {
2873 	const struct bpf_reg_state *reg = reg_state(env, regno);
2874 
2875 	return type_is_sk_pointer(reg->type);
2876 }
2877 
2878 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2879 {
2880 	const struct bpf_reg_state *reg = reg_state(env, regno);
2881 
2882 	return type_is_pkt_pointer(reg->type);
2883 }
2884 
2885 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2886 {
2887 	const struct bpf_reg_state *reg = reg_state(env, regno);
2888 
2889 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2890 	return reg->type == PTR_TO_FLOW_KEYS;
2891 }
2892 
2893 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2894 				   const struct bpf_reg_state *reg,
2895 				   int off, int size, bool strict)
2896 {
2897 	struct tnum reg_off;
2898 	int ip_align;
2899 
2900 	/* Byte size accesses are always allowed. */
2901 	if (!strict || size == 1)
2902 		return 0;
2903 
2904 	/* For platforms that do not have a Kconfig enabling
2905 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2906 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2907 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2908 	 * to this code only in strict mode where we want to emulate
2909 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2910 	 * unconditional IP align value of '2'.
2911 	 */
2912 	ip_align = 2;
2913 
2914 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2915 	if (!tnum_is_aligned(reg_off, size)) {
2916 		char tn_buf[48];
2917 
2918 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2919 		verbose(env,
2920 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2921 			ip_align, tn_buf, reg->off, off, size);
2922 		return -EACCES;
2923 	}
2924 
2925 	return 0;
2926 }
2927 
2928 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2929 				       const struct bpf_reg_state *reg,
2930 				       const char *pointer_desc,
2931 				       int off, int size, bool strict)
2932 {
2933 	struct tnum reg_off;
2934 
2935 	/* Byte size accesses are always allowed. */
2936 	if (!strict || size == 1)
2937 		return 0;
2938 
2939 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2940 	if (!tnum_is_aligned(reg_off, size)) {
2941 		char tn_buf[48];
2942 
2943 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2944 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2945 			pointer_desc, tn_buf, reg->off, off, size);
2946 		return -EACCES;
2947 	}
2948 
2949 	return 0;
2950 }
2951 
2952 static int check_ptr_alignment(struct bpf_verifier_env *env,
2953 			       const struct bpf_reg_state *reg, int off,
2954 			       int size, bool strict_alignment_once)
2955 {
2956 	bool strict = env->strict_alignment || strict_alignment_once;
2957 	const char *pointer_desc = "";
2958 
2959 	switch (reg->type) {
2960 	case PTR_TO_PACKET:
2961 	case PTR_TO_PACKET_META:
2962 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2963 		 * right in front, treat it the very same way.
2964 		 */
2965 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2966 	case PTR_TO_FLOW_KEYS:
2967 		pointer_desc = "flow keys ";
2968 		break;
2969 	case PTR_TO_MAP_VALUE:
2970 		pointer_desc = "value ";
2971 		break;
2972 	case PTR_TO_CTX:
2973 		pointer_desc = "context ";
2974 		break;
2975 	case PTR_TO_STACK:
2976 		pointer_desc = "stack ";
2977 		/* The stack spill tracking logic in check_stack_write()
2978 		 * and check_stack_read() relies on stack accesses being
2979 		 * aligned.
2980 		 */
2981 		strict = true;
2982 		break;
2983 	case PTR_TO_SOCKET:
2984 		pointer_desc = "sock ";
2985 		break;
2986 	case PTR_TO_SOCK_COMMON:
2987 		pointer_desc = "sock_common ";
2988 		break;
2989 	case PTR_TO_TCP_SOCK:
2990 		pointer_desc = "tcp_sock ";
2991 		break;
2992 	case PTR_TO_XDP_SOCK:
2993 		pointer_desc = "xdp_sock ";
2994 		break;
2995 	default:
2996 		break;
2997 	}
2998 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2999 					   strict);
3000 }
3001 
3002 static int update_stack_depth(struct bpf_verifier_env *env,
3003 			      const struct bpf_func_state *func,
3004 			      int off)
3005 {
3006 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3007 
3008 	if (stack >= -off)
3009 		return 0;
3010 
3011 	/* update known max for given subprogram */
3012 	env->subprog_info[func->subprogno].stack_depth = -off;
3013 	return 0;
3014 }
3015 
3016 /* starting from main bpf function walk all instructions of the function
3017  * and recursively walk all callees that given function can call.
3018  * Ignore jump and exit insns.
3019  * Since recursion is prevented by check_cfg() this algorithm
3020  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3021  */
3022 static int check_max_stack_depth(struct bpf_verifier_env *env)
3023 {
3024 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3025 	struct bpf_subprog_info *subprog = env->subprog_info;
3026 	struct bpf_insn *insn = env->prog->insnsi;
3027 	bool tail_call_reachable = false;
3028 	int ret_insn[MAX_CALL_FRAMES];
3029 	int ret_prog[MAX_CALL_FRAMES];
3030 	int j;
3031 
3032 process_func:
3033 	/* protect against potential stack overflow that might happen when
3034 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3035 	 * depth for such case down to 256 so that the worst case scenario
3036 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3037 	 * 8k).
3038 	 *
3039 	 * To get the idea what might happen, see an example:
3040 	 * func1 -> sub rsp, 128
3041 	 *  subfunc1 -> sub rsp, 256
3042 	 *  tailcall1 -> add rsp, 256
3043 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3044 	 *   subfunc2 -> sub rsp, 64
3045 	 *   subfunc22 -> sub rsp, 128
3046 	 *   tailcall2 -> add rsp, 128
3047 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3048 	 *
3049 	 * tailcall will unwind the current stack frame but it will not get rid
3050 	 * of caller's stack as shown on the example above.
3051 	 */
3052 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3053 		verbose(env,
3054 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3055 			depth);
3056 		return -EACCES;
3057 	}
3058 	/* round up to 32-bytes, since this is granularity
3059 	 * of interpreter stack size
3060 	 */
3061 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3062 	if (depth > MAX_BPF_STACK) {
3063 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3064 			frame + 1, depth);
3065 		return -EACCES;
3066 	}
3067 continue_func:
3068 	subprog_end = subprog[idx + 1].start;
3069 	for (; i < subprog_end; i++) {
3070 		if (insn[i].code != (BPF_JMP | BPF_CALL))
3071 			continue;
3072 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
3073 			continue;
3074 		/* remember insn and function to return to */
3075 		ret_insn[frame] = i + 1;
3076 		ret_prog[frame] = idx;
3077 
3078 		/* find the callee */
3079 		i = i + insn[i].imm + 1;
3080 		idx = find_subprog(env, i);
3081 		if (idx < 0) {
3082 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3083 				  i);
3084 			return -EFAULT;
3085 		}
3086 
3087 		if (subprog[idx].has_tail_call)
3088 			tail_call_reachable = true;
3089 
3090 		frame++;
3091 		if (frame >= MAX_CALL_FRAMES) {
3092 			verbose(env, "the call stack of %d frames is too deep !\n",
3093 				frame);
3094 			return -E2BIG;
3095 		}
3096 		goto process_func;
3097 	}
3098 	/* if tail call got detected across bpf2bpf calls then mark each of the
3099 	 * currently present subprog frames as tail call reachable subprogs;
3100 	 * this info will be utilized by JIT so that we will be preserving the
3101 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3102 	 */
3103 	if (tail_call_reachable)
3104 		for (j = 0; j < frame; j++)
3105 			subprog[ret_prog[j]].tail_call_reachable = true;
3106 
3107 	/* end of for() loop means the last insn of the 'subprog'
3108 	 * was reached. Doesn't matter whether it was JA or EXIT
3109 	 */
3110 	if (frame == 0)
3111 		return 0;
3112 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3113 	frame--;
3114 	i = ret_insn[frame];
3115 	idx = ret_prog[frame];
3116 	goto continue_func;
3117 }
3118 
3119 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3120 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3121 				  const struct bpf_insn *insn, int idx)
3122 {
3123 	int start = idx + insn->imm + 1, subprog;
3124 
3125 	subprog = find_subprog(env, start);
3126 	if (subprog < 0) {
3127 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3128 			  start);
3129 		return -EFAULT;
3130 	}
3131 	return env->subprog_info[subprog].stack_depth;
3132 }
3133 #endif
3134 
3135 int check_ctx_reg(struct bpf_verifier_env *env,
3136 		  const struct bpf_reg_state *reg, int regno)
3137 {
3138 	/* Access to ctx or passing it to a helper is only allowed in
3139 	 * its original, unmodified form.
3140 	 */
3141 
3142 	if (reg->off) {
3143 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3144 			regno, reg->off);
3145 		return -EACCES;
3146 	}
3147 
3148 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3149 		char tn_buf[48];
3150 
3151 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3152 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3153 		return -EACCES;
3154 	}
3155 
3156 	return 0;
3157 }
3158 
3159 static int __check_buffer_access(struct bpf_verifier_env *env,
3160 				 const char *buf_info,
3161 				 const struct bpf_reg_state *reg,
3162 				 int regno, int off, int size)
3163 {
3164 	if (off < 0) {
3165 		verbose(env,
3166 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3167 			regno, buf_info, off, size);
3168 		return -EACCES;
3169 	}
3170 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3171 		char tn_buf[48];
3172 
3173 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3174 		verbose(env,
3175 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3176 			regno, off, tn_buf);
3177 		return -EACCES;
3178 	}
3179 
3180 	return 0;
3181 }
3182 
3183 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3184 				  const struct bpf_reg_state *reg,
3185 				  int regno, int off, int size)
3186 {
3187 	int err;
3188 
3189 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3190 	if (err)
3191 		return err;
3192 
3193 	if (off + size > env->prog->aux->max_tp_access)
3194 		env->prog->aux->max_tp_access = off + size;
3195 
3196 	return 0;
3197 }
3198 
3199 static int check_buffer_access(struct bpf_verifier_env *env,
3200 			       const struct bpf_reg_state *reg,
3201 			       int regno, int off, int size,
3202 			       bool zero_size_allowed,
3203 			       const char *buf_info,
3204 			       u32 *max_access)
3205 {
3206 	int err;
3207 
3208 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3209 	if (err)
3210 		return err;
3211 
3212 	if (off + size > *max_access)
3213 		*max_access = off + size;
3214 
3215 	return 0;
3216 }
3217 
3218 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3219 static void zext_32_to_64(struct bpf_reg_state *reg)
3220 {
3221 	reg->var_off = tnum_subreg(reg->var_off);
3222 	__reg_assign_32_into_64(reg);
3223 }
3224 
3225 /* truncate register to smaller size (in bytes)
3226  * must be called with size < BPF_REG_SIZE
3227  */
3228 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3229 {
3230 	u64 mask;
3231 
3232 	/* clear high bits in bit representation */
3233 	reg->var_off = tnum_cast(reg->var_off, size);
3234 
3235 	/* fix arithmetic bounds */
3236 	mask = ((u64)1 << (size * 8)) - 1;
3237 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3238 		reg->umin_value &= mask;
3239 		reg->umax_value &= mask;
3240 	} else {
3241 		reg->umin_value = 0;
3242 		reg->umax_value = mask;
3243 	}
3244 	reg->smin_value = reg->umin_value;
3245 	reg->smax_value = reg->umax_value;
3246 
3247 	/* If size is smaller than 32bit register the 32bit register
3248 	 * values are also truncated so we push 64-bit bounds into
3249 	 * 32-bit bounds. Above were truncated < 32-bits already.
3250 	 */
3251 	if (size >= 4)
3252 		return;
3253 	__reg_combine_64_into_32(reg);
3254 }
3255 
3256 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3257 {
3258 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3259 }
3260 
3261 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3262 {
3263 	void *ptr;
3264 	u64 addr;
3265 	int err;
3266 
3267 	err = map->ops->map_direct_value_addr(map, &addr, off);
3268 	if (err)
3269 		return err;
3270 	ptr = (void *)(long)addr + off;
3271 
3272 	switch (size) {
3273 	case sizeof(u8):
3274 		*val = (u64)*(u8 *)ptr;
3275 		break;
3276 	case sizeof(u16):
3277 		*val = (u64)*(u16 *)ptr;
3278 		break;
3279 	case sizeof(u32):
3280 		*val = (u64)*(u32 *)ptr;
3281 		break;
3282 	case sizeof(u64):
3283 		*val = *(u64 *)ptr;
3284 		break;
3285 	default:
3286 		return -EINVAL;
3287 	}
3288 	return 0;
3289 }
3290 
3291 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3292 				   struct bpf_reg_state *regs,
3293 				   int regno, int off, int size,
3294 				   enum bpf_access_type atype,
3295 				   int value_regno)
3296 {
3297 	struct bpf_reg_state *reg = regs + regno;
3298 	const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3299 	const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3300 	u32 btf_id;
3301 	int ret;
3302 
3303 	if (off < 0) {
3304 		verbose(env,
3305 			"R%d is ptr_%s invalid negative access: off=%d\n",
3306 			regno, tname, off);
3307 		return -EACCES;
3308 	}
3309 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3310 		char tn_buf[48];
3311 
3312 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3313 		verbose(env,
3314 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3315 			regno, tname, off, tn_buf);
3316 		return -EACCES;
3317 	}
3318 
3319 	if (env->ops->btf_struct_access) {
3320 		ret = env->ops->btf_struct_access(&env->log, t, off, size,
3321 						  atype, &btf_id);
3322 	} else {
3323 		if (atype != BPF_READ) {
3324 			verbose(env, "only read is supported\n");
3325 			return -EACCES;
3326 		}
3327 
3328 		ret = btf_struct_access(&env->log, t, off, size, atype,
3329 					&btf_id);
3330 	}
3331 
3332 	if (ret < 0)
3333 		return ret;
3334 
3335 	if (atype == BPF_READ && value_regno >= 0)
3336 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3337 
3338 	return 0;
3339 }
3340 
3341 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3342 				   struct bpf_reg_state *regs,
3343 				   int regno, int off, int size,
3344 				   enum bpf_access_type atype,
3345 				   int value_regno)
3346 {
3347 	struct bpf_reg_state *reg = regs + regno;
3348 	struct bpf_map *map = reg->map_ptr;
3349 	const struct btf_type *t;
3350 	const char *tname;
3351 	u32 btf_id;
3352 	int ret;
3353 
3354 	if (!btf_vmlinux) {
3355 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3356 		return -ENOTSUPP;
3357 	}
3358 
3359 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3360 		verbose(env, "map_ptr access not supported for map type %d\n",
3361 			map->map_type);
3362 		return -ENOTSUPP;
3363 	}
3364 
3365 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3366 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3367 
3368 	if (!env->allow_ptr_to_map_access) {
3369 		verbose(env,
3370 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3371 			tname);
3372 		return -EPERM;
3373 	}
3374 
3375 	if (off < 0) {
3376 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3377 			regno, tname, off);
3378 		return -EACCES;
3379 	}
3380 
3381 	if (atype != BPF_READ) {
3382 		verbose(env, "only read from %s is supported\n", tname);
3383 		return -EACCES;
3384 	}
3385 
3386 	ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3387 	if (ret < 0)
3388 		return ret;
3389 
3390 	if (value_regno >= 0)
3391 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3392 
3393 	return 0;
3394 }
3395 
3396 
3397 /* check whether memory at (regno + off) is accessible for t = (read | write)
3398  * if t==write, value_regno is a register which value is stored into memory
3399  * if t==read, value_regno is a register which will receive the value from memory
3400  * if t==write && value_regno==-1, some unknown value is stored into memory
3401  * if t==read && value_regno==-1, don't care what we read from memory
3402  */
3403 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3404 			    int off, int bpf_size, enum bpf_access_type t,
3405 			    int value_regno, bool strict_alignment_once)
3406 {
3407 	struct bpf_reg_state *regs = cur_regs(env);
3408 	struct bpf_reg_state *reg = regs + regno;
3409 	struct bpf_func_state *state;
3410 	int size, err = 0;
3411 
3412 	size = bpf_size_to_bytes(bpf_size);
3413 	if (size < 0)
3414 		return size;
3415 
3416 	/* alignment checks will add in reg->off themselves */
3417 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3418 	if (err)
3419 		return err;
3420 
3421 	/* for access checks, reg->off is just part of off */
3422 	off += reg->off;
3423 
3424 	if (reg->type == PTR_TO_MAP_VALUE) {
3425 		if (t == BPF_WRITE && value_regno >= 0 &&
3426 		    is_pointer_value(env, value_regno)) {
3427 			verbose(env, "R%d leaks addr into map\n", value_regno);
3428 			return -EACCES;
3429 		}
3430 		err = check_map_access_type(env, regno, off, size, t);
3431 		if (err)
3432 			return err;
3433 		err = check_map_access(env, regno, off, size, false);
3434 		if (!err && t == BPF_READ && value_regno >= 0) {
3435 			struct bpf_map *map = reg->map_ptr;
3436 
3437 			/* if map is read-only, track its contents as scalars */
3438 			if (tnum_is_const(reg->var_off) &&
3439 			    bpf_map_is_rdonly(map) &&
3440 			    map->ops->map_direct_value_addr) {
3441 				int map_off = off + reg->var_off.value;
3442 				u64 val = 0;
3443 
3444 				err = bpf_map_direct_read(map, map_off, size,
3445 							  &val);
3446 				if (err)
3447 					return err;
3448 
3449 				regs[value_regno].type = SCALAR_VALUE;
3450 				__mark_reg_known(&regs[value_regno], val);
3451 			} else {
3452 				mark_reg_unknown(env, regs, value_regno);
3453 			}
3454 		}
3455 	} else if (reg->type == PTR_TO_MEM) {
3456 		if (t == BPF_WRITE && value_regno >= 0 &&
3457 		    is_pointer_value(env, value_regno)) {
3458 			verbose(env, "R%d leaks addr into mem\n", value_regno);
3459 			return -EACCES;
3460 		}
3461 		err = check_mem_region_access(env, regno, off, size,
3462 					      reg->mem_size, false);
3463 		if (!err && t == BPF_READ && value_regno >= 0)
3464 			mark_reg_unknown(env, regs, value_regno);
3465 	} else if (reg->type == PTR_TO_CTX) {
3466 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3467 		u32 btf_id = 0;
3468 
3469 		if (t == BPF_WRITE && value_regno >= 0 &&
3470 		    is_pointer_value(env, value_regno)) {
3471 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3472 			return -EACCES;
3473 		}
3474 
3475 		err = check_ctx_reg(env, reg, regno);
3476 		if (err < 0)
3477 			return err;
3478 
3479 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3480 		if (err)
3481 			verbose_linfo(env, insn_idx, "; ");
3482 		if (!err && t == BPF_READ && value_regno >= 0) {
3483 			/* ctx access returns either a scalar, or a
3484 			 * PTR_TO_PACKET[_META,_END]. In the latter
3485 			 * case, we know the offset is zero.
3486 			 */
3487 			if (reg_type == SCALAR_VALUE) {
3488 				mark_reg_unknown(env, regs, value_regno);
3489 			} else {
3490 				mark_reg_known_zero(env, regs,
3491 						    value_regno);
3492 				if (reg_type_may_be_null(reg_type))
3493 					regs[value_regno].id = ++env->id_gen;
3494 				/* A load of ctx field could have different
3495 				 * actual load size with the one encoded in the
3496 				 * insn. When the dst is PTR, it is for sure not
3497 				 * a sub-register.
3498 				 */
3499 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3500 				if (reg_type == PTR_TO_BTF_ID ||
3501 				    reg_type == PTR_TO_BTF_ID_OR_NULL)
3502 					regs[value_regno].btf_id = btf_id;
3503 			}
3504 			regs[value_regno].type = reg_type;
3505 		}
3506 
3507 	} else if (reg->type == PTR_TO_STACK) {
3508 		off += reg->var_off.value;
3509 		err = check_stack_access(env, reg, off, size);
3510 		if (err)
3511 			return err;
3512 
3513 		state = func(env, reg);
3514 		err = update_stack_depth(env, state, off);
3515 		if (err)
3516 			return err;
3517 
3518 		if (t == BPF_WRITE)
3519 			err = check_stack_write(env, state, off, size,
3520 						value_regno, insn_idx);
3521 		else
3522 			err = check_stack_read(env, state, off, size,
3523 					       value_regno);
3524 	} else if (reg_is_pkt_pointer(reg)) {
3525 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3526 			verbose(env, "cannot write into packet\n");
3527 			return -EACCES;
3528 		}
3529 		if (t == BPF_WRITE && value_regno >= 0 &&
3530 		    is_pointer_value(env, value_regno)) {
3531 			verbose(env, "R%d leaks addr into packet\n",
3532 				value_regno);
3533 			return -EACCES;
3534 		}
3535 		err = check_packet_access(env, regno, off, size, false);
3536 		if (!err && t == BPF_READ && value_regno >= 0)
3537 			mark_reg_unknown(env, regs, value_regno);
3538 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3539 		if (t == BPF_WRITE && value_regno >= 0 &&
3540 		    is_pointer_value(env, value_regno)) {
3541 			verbose(env, "R%d leaks addr into flow keys\n",
3542 				value_regno);
3543 			return -EACCES;
3544 		}
3545 
3546 		err = check_flow_keys_access(env, off, size);
3547 		if (!err && t == BPF_READ && value_regno >= 0)
3548 			mark_reg_unknown(env, regs, value_regno);
3549 	} else if (type_is_sk_pointer(reg->type)) {
3550 		if (t == BPF_WRITE) {
3551 			verbose(env, "R%d cannot write into %s\n",
3552 				regno, reg_type_str[reg->type]);
3553 			return -EACCES;
3554 		}
3555 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3556 		if (!err && value_regno >= 0)
3557 			mark_reg_unknown(env, regs, value_regno);
3558 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3559 		err = check_tp_buffer_access(env, reg, regno, off, size);
3560 		if (!err && t == BPF_READ && value_regno >= 0)
3561 			mark_reg_unknown(env, regs, value_regno);
3562 	} else if (reg->type == PTR_TO_BTF_ID) {
3563 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3564 					      value_regno);
3565 	} else if (reg->type == CONST_PTR_TO_MAP) {
3566 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3567 					      value_regno);
3568 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
3569 		if (t == BPF_WRITE) {
3570 			verbose(env, "R%d cannot write into %s\n",
3571 				regno, reg_type_str[reg->type]);
3572 			return -EACCES;
3573 		}
3574 		err = check_buffer_access(env, reg, regno, off, size, false,
3575 					  "rdonly",
3576 					  &env->prog->aux->max_rdonly_access);
3577 		if (!err && value_regno >= 0)
3578 			mark_reg_unknown(env, regs, value_regno);
3579 	} else if (reg->type == PTR_TO_RDWR_BUF) {
3580 		err = check_buffer_access(env, reg, regno, off, size, false,
3581 					  "rdwr",
3582 					  &env->prog->aux->max_rdwr_access);
3583 		if (!err && t == BPF_READ && value_regno >= 0)
3584 			mark_reg_unknown(env, regs, value_regno);
3585 	} else {
3586 		verbose(env, "R%d invalid mem access '%s'\n", regno,
3587 			reg_type_str[reg->type]);
3588 		return -EACCES;
3589 	}
3590 
3591 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3592 	    regs[value_regno].type == SCALAR_VALUE) {
3593 		/* b/h/w load zero-extends, mark upper bits as known 0 */
3594 		coerce_reg_to_size(&regs[value_regno], size);
3595 	}
3596 	return err;
3597 }
3598 
3599 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3600 {
3601 	int err;
3602 
3603 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3604 	    insn->imm != 0) {
3605 		verbose(env, "BPF_XADD uses reserved fields\n");
3606 		return -EINVAL;
3607 	}
3608 
3609 	/* check src1 operand */
3610 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
3611 	if (err)
3612 		return err;
3613 
3614 	/* check src2 operand */
3615 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3616 	if (err)
3617 		return err;
3618 
3619 	if (is_pointer_value(env, insn->src_reg)) {
3620 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3621 		return -EACCES;
3622 	}
3623 
3624 	if (is_ctx_reg(env, insn->dst_reg) ||
3625 	    is_pkt_reg(env, insn->dst_reg) ||
3626 	    is_flow_key_reg(env, insn->dst_reg) ||
3627 	    is_sk_reg(env, insn->dst_reg)) {
3628 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3629 			insn->dst_reg,
3630 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
3631 		return -EACCES;
3632 	}
3633 
3634 	/* check whether atomic_add can read the memory */
3635 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3636 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
3637 	if (err)
3638 		return err;
3639 
3640 	/* check whether atomic_add can write into the same memory */
3641 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3642 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3643 }
3644 
3645 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3646 				  int off, int access_size,
3647 				  bool zero_size_allowed)
3648 {
3649 	struct bpf_reg_state *reg = reg_state(env, regno);
3650 
3651 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3652 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3653 		if (tnum_is_const(reg->var_off)) {
3654 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3655 				regno, off, access_size);
3656 		} else {
3657 			char tn_buf[48];
3658 
3659 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3660 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3661 				regno, tn_buf, access_size);
3662 		}
3663 		return -EACCES;
3664 	}
3665 	return 0;
3666 }
3667 
3668 /* when register 'regno' is passed into function that will read 'access_size'
3669  * bytes from that pointer, make sure that it's within stack boundary
3670  * and all elements of stack are initialized.
3671  * Unlike most pointer bounds-checking functions, this one doesn't take an
3672  * 'off' argument, so it has to add in reg->off itself.
3673  */
3674 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3675 				int access_size, bool zero_size_allowed,
3676 				struct bpf_call_arg_meta *meta)
3677 {
3678 	struct bpf_reg_state *reg = reg_state(env, regno);
3679 	struct bpf_func_state *state = func(env, reg);
3680 	int err, min_off, max_off, i, j, slot, spi;
3681 
3682 	if (tnum_is_const(reg->var_off)) {
3683 		min_off = max_off = reg->var_off.value + reg->off;
3684 		err = __check_stack_boundary(env, regno, min_off, access_size,
3685 					     zero_size_allowed);
3686 		if (err)
3687 			return err;
3688 	} else {
3689 		/* Variable offset is prohibited for unprivileged mode for
3690 		 * simplicity since it requires corresponding support in
3691 		 * Spectre masking for stack ALU.
3692 		 * See also retrieve_ptr_limit().
3693 		 */
3694 		if (!env->bypass_spec_v1) {
3695 			char tn_buf[48];
3696 
3697 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3698 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3699 				regno, tn_buf);
3700 			return -EACCES;
3701 		}
3702 		/* Only initialized buffer on stack is allowed to be accessed
3703 		 * with variable offset. With uninitialized buffer it's hard to
3704 		 * guarantee that whole memory is marked as initialized on
3705 		 * helper return since specific bounds are unknown what may
3706 		 * cause uninitialized stack leaking.
3707 		 */
3708 		if (meta && meta->raw_mode)
3709 			meta = NULL;
3710 
3711 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3712 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3713 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3714 				regno);
3715 			return -EACCES;
3716 		}
3717 		min_off = reg->smin_value + reg->off;
3718 		max_off = reg->smax_value + reg->off;
3719 		err = __check_stack_boundary(env, regno, min_off, access_size,
3720 					     zero_size_allowed);
3721 		if (err) {
3722 			verbose(env, "R%d min value is outside of stack bound\n",
3723 				regno);
3724 			return err;
3725 		}
3726 		err = __check_stack_boundary(env, regno, max_off, access_size,
3727 					     zero_size_allowed);
3728 		if (err) {
3729 			verbose(env, "R%d max value is outside of stack bound\n",
3730 				regno);
3731 			return err;
3732 		}
3733 	}
3734 
3735 	if (meta && meta->raw_mode) {
3736 		meta->access_size = access_size;
3737 		meta->regno = regno;
3738 		return 0;
3739 	}
3740 
3741 	for (i = min_off; i < max_off + access_size; i++) {
3742 		u8 *stype;
3743 
3744 		slot = -i - 1;
3745 		spi = slot / BPF_REG_SIZE;
3746 		if (state->allocated_stack <= slot)
3747 			goto err;
3748 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3749 		if (*stype == STACK_MISC)
3750 			goto mark;
3751 		if (*stype == STACK_ZERO) {
3752 			/* helper can write anything into the stack */
3753 			*stype = STACK_MISC;
3754 			goto mark;
3755 		}
3756 
3757 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3758 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3759 			goto mark;
3760 
3761 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3762 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3763 			__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3764 			for (j = 0; j < BPF_REG_SIZE; j++)
3765 				state->stack[spi].slot_type[j] = STACK_MISC;
3766 			goto mark;
3767 		}
3768 
3769 err:
3770 		if (tnum_is_const(reg->var_off)) {
3771 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3772 				min_off, i - min_off, access_size);
3773 		} else {
3774 			char tn_buf[48];
3775 
3776 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3777 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3778 				tn_buf, i - min_off, access_size);
3779 		}
3780 		return -EACCES;
3781 mark:
3782 		/* reading any byte out of 8-byte 'spill_slot' will cause
3783 		 * the whole slot to be marked as 'read'
3784 		 */
3785 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3786 			      state->stack[spi].spilled_ptr.parent,
3787 			      REG_LIVE_READ64);
3788 	}
3789 	return update_stack_depth(env, state, min_off);
3790 }
3791 
3792 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3793 				   int access_size, bool zero_size_allowed,
3794 				   struct bpf_call_arg_meta *meta)
3795 {
3796 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3797 
3798 	switch (reg->type) {
3799 	case PTR_TO_PACKET:
3800 	case PTR_TO_PACKET_META:
3801 		return check_packet_access(env, regno, reg->off, access_size,
3802 					   zero_size_allowed);
3803 	case PTR_TO_MAP_VALUE:
3804 		if (check_map_access_type(env, regno, reg->off, access_size,
3805 					  meta && meta->raw_mode ? BPF_WRITE :
3806 					  BPF_READ))
3807 			return -EACCES;
3808 		return check_map_access(env, regno, reg->off, access_size,
3809 					zero_size_allowed);
3810 	case PTR_TO_MEM:
3811 		return check_mem_region_access(env, regno, reg->off,
3812 					       access_size, reg->mem_size,
3813 					       zero_size_allowed);
3814 	case PTR_TO_RDONLY_BUF:
3815 		if (meta && meta->raw_mode)
3816 			return -EACCES;
3817 		return check_buffer_access(env, reg, regno, reg->off,
3818 					   access_size, zero_size_allowed,
3819 					   "rdonly",
3820 					   &env->prog->aux->max_rdonly_access);
3821 	case PTR_TO_RDWR_BUF:
3822 		return check_buffer_access(env, reg, regno, reg->off,
3823 					   access_size, zero_size_allowed,
3824 					   "rdwr",
3825 					   &env->prog->aux->max_rdwr_access);
3826 	case PTR_TO_STACK:
3827 		return check_stack_boundary(env, regno, access_size,
3828 					    zero_size_allowed, meta);
3829 	default: /* scalar_value or invalid ptr */
3830 		/* Allow zero-byte read from NULL, regardless of pointer type */
3831 		if (zero_size_allowed && access_size == 0 &&
3832 		    register_is_null(reg))
3833 			return 0;
3834 
3835 		verbose(env, "R%d type=%s expected=%s\n", regno,
3836 			reg_type_str[reg->type],
3837 			reg_type_str[PTR_TO_STACK]);
3838 		return -EACCES;
3839 	}
3840 }
3841 
3842 /* Implementation details:
3843  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3844  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3845  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3846  * value_or_null->value transition, since the verifier only cares about
3847  * the range of access to valid map value pointer and doesn't care about actual
3848  * address of the map element.
3849  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3850  * reg->id > 0 after value_or_null->value transition. By doing so
3851  * two bpf_map_lookups will be considered two different pointers that
3852  * point to different bpf_spin_locks.
3853  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3854  * dead-locks.
3855  * Since only one bpf_spin_lock is allowed the checks are simpler than
3856  * reg_is_refcounted() logic. The verifier needs to remember only
3857  * one spin_lock instead of array of acquired_refs.
3858  * cur_state->active_spin_lock remembers which map value element got locked
3859  * and clears it after bpf_spin_unlock.
3860  */
3861 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3862 			     bool is_lock)
3863 {
3864 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3865 	struct bpf_verifier_state *cur = env->cur_state;
3866 	bool is_const = tnum_is_const(reg->var_off);
3867 	struct bpf_map *map = reg->map_ptr;
3868 	u64 val = reg->var_off.value;
3869 
3870 	if (!is_const) {
3871 		verbose(env,
3872 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3873 			regno);
3874 		return -EINVAL;
3875 	}
3876 	if (!map->btf) {
3877 		verbose(env,
3878 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3879 			map->name);
3880 		return -EINVAL;
3881 	}
3882 	if (!map_value_has_spin_lock(map)) {
3883 		if (map->spin_lock_off == -E2BIG)
3884 			verbose(env,
3885 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3886 				map->name);
3887 		else if (map->spin_lock_off == -ENOENT)
3888 			verbose(env,
3889 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3890 				map->name);
3891 		else
3892 			verbose(env,
3893 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3894 				map->name);
3895 		return -EINVAL;
3896 	}
3897 	if (map->spin_lock_off != val + reg->off) {
3898 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3899 			val + reg->off);
3900 		return -EINVAL;
3901 	}
3902 	if (is_lock) {
3903 		if (cur->active_spin_lock) {
3904 			verbose(env,
3905 				"Locking two bpf_spin_locks are not allowed\n");
3906 			return -EINVAL;
3907 		}
3908 		cur->active_spin_lock = reg->id;
3909 	} else {
3910 		if (!cur->active_spin_lock) {
3911 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3912 			return -EINVAL;
3913 		}
3914 		if (cur->active_spin_lock != reg->id) {
3915 			verbose(env, "bpf_spin_unlock of different lock\n");
3916 			return -EINVAL;
3917 		}
3918 		cur->active_spin_lock = 0;
3919 	}
3920 	return 0;
3921 }
3922 
3923 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3924 {
3925 	return type == ARG_PTR_TO_MEM ||
3926 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3927 	       type == ARG_PTR_TO_UNINIT_MEM;
3928 }
3929 
3930 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3931 {
3932 	return type == ARG_CONST_SIZE ||
3933 	       type == ARG_CONST_SIZE_OR_ZERO;
3934 }
3935 
3936 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3937 {
3938 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3939 }
3940 
3941 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3942 {
3943 	return type == ARG_PTR_TO_INT ||
3944 	       type == ARG_PTR_TO_LONG;
3945 }
3946 
3947 static int int_ptr_type_to_size(enum bpf_arg_type type)
3948 {
3949 	if (type == ARG_PTR_TO_INT)
3950 		return sizeof(u32);
3951 	else if (type == ARG_PTR_TO_LONG)
3952 		return sizeof(u64);
3953 
3954 	return -EINVAL;
3955 }
3956 
3957 static int resolve_map_arg_type(struct bpf_verifier_env *env,
3958 				 const struct bpf_call_arg_meta *meta,
3959 				 enum bpf_arg_type *arg_type)
3960 {
3961 	if (!meta->map_ptr) {
3962 		/* kernel subsystem misconfigured verifier */
3963 		verbose(env, "invalid map_ptr to access map->type\n");
3964 		return -EACCES;
3965 	}
3966 
3967 	switch (meta->map_ptr->map_type) {
3968 	case BPF_MAP_TYPE_SOCKMAP:
3969 	case BPF_MAP_TYPE_SOCKHASH:
3970 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
3971 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
3972 		} else {
3973 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
3974 			return -EINVAL;
3975 		}
3976 		break;
3977 
3978 	default:
3979 		break;
3980 	}
3981 	return 0;
3982 }
3983 
3984 struct bpf_reg_types {
3985 	const enum bpf_reg_type types[10];
3986 	u32 *btf_id;
3987 };
3988 
3989 static const struct bpf_reg_types map_key_value_types = {
3990 	.types = {
3991 		PTR_TO_STACK,
3992 		PTR_TO_PACKET,
3993 		PTR_TO_PACKET_META,
3994 		PTR_TO_MAP_VALUE,
3995 	},
3996 };
3997 
3998 static const struct bpf_reg_types sock_types = {
3999 	.types = {
4000 		PTR_TO_SOCK_COMMON,
4001 		PTR_TO_SOCKET,
4002 		PTR_TO_TCP_SOCK,
4003 		PTR_TO_XDP_SOCK,
4004 	},
4005 };
4006 
4007 #ifdef CONFIG_NET
4008 static const struct bpf_reg_types btf_id_sock_common_types = {
4009 	.types = {
4010 		PTR_TO_SOCK_COMMON,
4011 		PTR_TO_SOCKET,
4012 		PTR_TO_TCP_SOCK,
4013 		PTR_TO_XDP_SOCK,
4014 		PTR_TO_BTF_ID,
4015 	},
4016 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4017 };
4018 #endif
4019 
4020 static const struct bpf_reg_types mem_types = {
4021 	.types = {
4022 		PTR_TO_STACK,
4023 		PTR_TO_PACKET,
4024 		PTR_TO_PACKET_META,
4025 		PTR_TO_MAP_VALUE,
4026 		PTR_TO_MEM,
4027 		PTR_TO_RDONLY_BUF,
4028 		PTR_TO_RDWR_BUF,
4029 	},
4030 };
4031 
4032 static const struct bpf_reg_types int_ptr_types = {
4033 	.types = {
4034 		PTR_TO_STACK,
4035 		PTR_TO_PACKET,
4036 		PTR_TO_PACKET_META,
4037 		PTR_TO_MAP_VALUE,
4038 	},
4039 };
4040 
4041 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4042 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4043 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4044 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4045 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4046 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4047 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4048 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4049 
4050 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4051 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4052 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4053 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4054 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4055 	[ARG_CONST_SIZE]		= &scalar_types,
4056 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4057 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4058 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4059 	[ARG_PTR_TO_CTX]		= &context_types,
4060 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4061 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4062 #ifdef CONFIG_NET
4063 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4064 #endif
4065 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4066 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4067 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4068 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4069 	[ARG_PTR_TO_MEM]		= &mem_types,
4070 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4071 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4072 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4073 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4074 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4075 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4076 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4077 };
4078 
4079 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4080 			  enum bpf_arg_type arg_type,
4081 			  const u32 *arg_btf_id)
4082 {
4083 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4084 	enum bpf_reg_type expected, type = reg->type;
4085 	const struct bpf_reg_types *compatible;
4086 	int i, j;
4087 
4088 	compatible = compatible_reg_types[arg_type];
4089 	if (!compatible) {
4090 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4091 		return -EFAULT;
4092 	}
4093 
4094 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4095 		expected = compatible->types[i];
4096 		if (expected == NOT_INIT)
4097 			break;
4098 
4099 		if (type == expected)
4100 			goto found;
4101 	}
4102 
4103 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4104 	for (j = 0; j + 1 < i; j++)
4105 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4106 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4107 	return -EACCES;
4108 
4109 found:
4110 	if (type == PTR_TO_BTF_ID) {
4111 		if (!arg_btf_id) {
4112 			if (!compatible->btf_id) {
4113 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4114 				return -EFAULT;
4115 			}
4116 			arg_btf_id = compatible->btf_id;
4117 		}
4118 
4119 		if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id,
4120 					  *arg_btf_id)) {
4121 			verbose(env, "R%d is of type %s but %s is expected\n",
4122 				regno, kernel_type_name(reg->btf_id),
4123 				kernel_type_name(*arg_btf_id));
4124 			return -EACCES;
4125 		}
4126 
4127 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4128 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4129 				regno);
4130 			return -EACCES;
4131 		}
4132 	}
4133 
4134 	return 0;
4135 }
4136 
4137 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4138 			  struct bpf_call_arg_meta *meta,
4139 			  const struct bpf_func_proto *fn)
4140 {
4141 	u32 regno = BPF_REG_1 + arg;
4142 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4143 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4144 	enum bpf_reg_type type = reg->type;
4145 	int err = 0;
4146 
4147 	if (arg_type == ARG_DONTCARE)
4148 		return 0;
4149 
4150 	err = check_reg_arg(env, regno, SRC_OP);
4151 	if (err)
4152 		return err;
4153 
4154 	if (arg_type == ARG_ANYTHING) {
4155 		if (is_pointer_value(env, regno)) {
4156 			verbose(env, "R%d leaks addr into helper function\n",
4157 				regno);
4158 			return -EACCES;
4159 		}
4160 		return 0;
4161 	}
4162 
4163 	if (type_is_pkt_pointer(type) &&
4164 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4165 		verbose(env, "helper access to the packet is not allowed\n");
4166 		return -EACCES;
4167 	}
4168 
4169 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4170 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4171 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4172 		err = resolve_map_arg_type(env, meta, &arg_type);
4173 		if (err)
4174 			return err;
4175 	}
4176 
4177 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4178 		/* A NULL register has a SCALAR_VALUE type, so skip
4179 		 * type checking.
4180 		 */
4181 		goto skip_type_check;
4182 
4183 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4184 	if (err)
4185 		return err;
4186 
4187 	if (type == PTR_TO_CTX) {
4188 		err = check_ctx_reg(env, reg, regno);
4189 		if (err < 0)
4190 			return err;
4191 	}
4192 
4193 skip_type_check:
4194 	if (reg->ref_obj_id) {
4195 		if (meta->ref_obj_id) {
4196 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4197 				regno, reg->ref_obj_id,
4198 				meta->ref_obj_id);
4199 			return -EFAULT;
4200 		}
4201 		meta->ref_obj_id = reg->ref_obj_id;
4202 	}
4203 
4204 	if (arg_type == ARG_CONST_MAP_PTR) {
4205 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4206 		meta->map_ptr = reg->map_ptr;
4207 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4208 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4209 		 * check that [key, key + map->key_size) are within
4210 		 * stack limits and initialized
4211 		 */
4212 		if (!meta->map_ptr) {
4213 			/* in function declaration map_ptr must come before
4214 			 * map_key, so that it's verified and known before
4215 			 * we have to check map_key here. Otherwise it means
4216 			 * that kernel subsystem misconfigured verifier
4217 			 */
4218 			verbose(env, "invalid map_ptr to access map->key\n");
4219 			return -EACCES;
4220 		}
4221 		err = check_helper_mem_access(env, regno,
4222 					      meta->map_ptr->key_size, false,
4223 					      NULL);
4224 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4225 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4226 		    !register_is_null(reg)) ||
4227 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4228 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4229 		 * check [value, value + map->value_size) validity
4230 		 */
4231 		if (!meta->map_ptr) {
4232 			/* kernel subsystem misconfigured verifier */
4233 			verbose(env, "invalid map_ptr to access map->value\n");
4234 			return -EACCES;
4235 		}
4236 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4237 		err = check_helper_mem_access(env, regno,
4238 					      meta->map_ptr->value_size, false,
4239 					      meta);
4240 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4241 		if (!reg->btf_id) {
4242 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4243 			return -EACCES;
4244 		}
4245 		meta->ret_btf_id = reg->btf_id;
4246 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4247 		if (meta->func_id == BPF_FUNC_spin_lock) {
4248 			if (process_spin_lock(env, regno, true))
4249 				return -EACCES;
4250 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4251 			if (process_spin_lock(env, regno, false))
4252 				return -EACCES;
4253 		} else {
4254 			verbose(env, "verifier internal error\n");
4255 			return -EFAULT;
4256 		}
4257 	} else if (arg_type_is_mem_ptr(arg_type)) {
4258 		/* The access to this pointer is only checked when we hit the
4259 		 * next is_mem_size argument below.
4260 		 */
4261 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4262 	} else if (arg_type_is_mem_size(arg_type)) {
4263 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4264 
4265 		/* This is used to refine r0 return value bounds for helpers
4266 		 * that enforce this value as an upper bound on return values.
4267 		 * See do_refine_retval_range() for helpers that can refine
4268 		 * the return value. C type of helper is u32 so we pull register
4269 		 * bound from umax_value however, if negative verifier errors
4270 		 * out. Only upper bounds can be learned because retval is an
4271 		 * int type and negative retvals are allowed.
4272 		 */
4273 		meta->msize_max_value = reg->umax_value;
4274 
4275 		/* The register is SCALAR_VALUE; the access check
4276 		 * happens using its boundaries.
4277 		 */
4278 		if (!tnum_is_const(reg->var_off))
4279 			/* For unprivileged variable accesses, disable raw
4280 			 * mode so that the program is required to
4281 			 * initialize all the memory that the helper could
4282 			 * just partially fill up.
4283 			 */
4284 			meta = NULL;
4285 
4286 		if (reg->smin_value < 0) {
4287 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4288 				regno);
4289 			return -EACCES;
4290 		}
4291 
4292 		if (reg->umin_value == 0) {
4293 			err = check_helper_mem_access(env, regno - 1, 0,
4294 						      zero_size_allowed,
4295 						      meta);
4296 			if (err)
4297 				return err;
4298 		}
4299 
4300 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4301 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4302 				regno);
4303 			return -EACCES;
4304 		}
4305 		err = check_helper_mem_access(env, regno - 1,
4306 					      reg->umax_value,
4307 					      zero_size_allowed, meta);
4308 		if (!err)
4309 			err = mark_chain_precision(env, regno);
4310 	} else if (arg_type_is_alloc_size(arg_type)) {
4311 		if (!tnum_is_const(reg->var_off)) {
4312 			verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4313 				regno);
4314 			return -EACCES;
4315 		}
4316 		meta->mem_size = reg->var_off.value;
4317 	} else if (arg_type_is_int_ptr(arg_type)) {
4318 		int size = int_ptr_type_to_size(arg_type);
4319 
4320 		err = check_helper_mem_access(env, regno, size, false, meta);
4321 		if (err)
4322 			return err;
4323 		err = check_ptr_alignment(env, reg, 0, size, true);
4324 	}
4325 
4326 	return err;
4327 }
4328 
4329 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4330 {
4331 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
4332 	enum bpf_prog_type type = resolve_prog_type(env->prog);
4333 
4334 	if (func_id != BPF_FUNC_map_update_elem)
4335 		return false;
4336 
4337 	/* It's not possible to get access to a locked struct sock in these
4338 	 * contexts, so updating is safe.
4339 	 */
4340 	switch (type) {
4341 	case BPF_PROG_TYPE_TRACING:
4342 		if (eatype == BPF_TRACE_ITER)
4343 			return true;
4344 		break;
4345 	case BPF_PROG_TYPE_SOCKET_FILTER:
4346 	case BPF_PROG_TYPE_SCHED_CLS:
4347 	case BPF_PROG_TYPE_SCHED_ACT:
4348 	case BPF_PROG_TYPE_XDP:
4349 	case BPF_PROG_TYPE_SK_REUSEPORT:
4350 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4351 	case BPF_PROG_TYPE_SK_LOOKUP:
4352 		return true;
4353 	default:
4354 		break;
4355 	}
4356 
4357 	verbose(env, "cannot update sockmap in this context\n");
4358 	return false;
4359 }
4360 
4361 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4362 {
4363 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4364 }
4365 
4366 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4367 					struct bpf_map *map, int func_id)
4368 {
4369 	if (!map)
4370 		return 0;
4371 
4372 	/* We need a two way check, first is from map perspective ... */
4373 	switch (map->map_type) {
4374 	case BPF_MAP_TYPE_PROG_ARRAY:
4375 		if (func_id != BPF_FUNC_tail_call)
4376 			goto error;
4377 		break;
4378 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4379 		if (func_id != BPF_FUNC_perf_event_read &&
4380 		    func_id != BPF_FUNC_perf_event_output &&
4381 		    func_id != BPF_FUNC_skb_output &&
4382 		    func_id != BPF_FUNC_perf_event_read_value &&
4383 		    func_id != BPF_FUNC_xdp_output)
4384 			goto error;
4385 		break;
4386 	case BPF_MAP_TYPE_RINGBUF:
4387 		if (func_id != BPF_FUNC_ringbuf_output &&
4388 		    func_id != BPF_FUNC_ringbuf_reserve &&
4389 		    func_id != BPF_FUNC_ringbuf_submit &&
4390 		    func_id != BPF_FUNC_ringbuf_discard &&
4391 		    func_id != BPF_FUNC_ringbuf_query)
4392 			goto error;
4393 		break;
4394 	case BPF_MAP_TYPE_STACK_TRACE:
4395 		if (func_id != BPF_FUNC_get_stackid)
4396 			goto error;
4397 		break;
4398 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4399 		if (func_id != BPF_FUNC_skb_under_cgroup &&
4400 		    func_id != BPF_FUNC_current_task_under_cgroup)
4401 			goto error;
4402 		break;
4403 	case BPF_MAP_TYPE_CGROUP_STORAGE:
4404 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4405 		if (func_id != BPF_FUNC_get_local_storage)
4406 			goto error;
4407 		break;
4408 	case BPF_MAP_TYPE_DEVMAP:
4409 	case BPF_MAP_TYPE_DEVMAP_HASH:
4410 		if (func_id != BPF_FUNC_redirect_map &&
4411 		    func_id != BPF_FUNC_map_lookup_elem)
4412 			goto error;
4413 		break;
4414 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
4415 	 * appear.
4416 	 */
4417 	case BPF_MAP_TYPE_CPUMAP:
4418 		if (func_id != BPF_FUNC_redirect_map)
4419 			goto error;
4420 		break;
4421 	case BPF_MAP_TYPE_XSKMAP:
4422 		if (func_id != BPF_FUNC_redirect_map &&
4423 		    func_id != BPF_FUNC_map_lookup_elem)
4424 			goto error;
4425 		break;
4426 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4427 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4428 		if (func_id != BPF_FUNC_map_lookup_elem)
4429 			goto error;
4430 		break;
4431 	case BPF_MAP_TYPE_SOCKMAP:
4432 		if (func_id != BPF_FUNC_sk_redirect_map &&
4433 		    func_id != BPF_FUNC_sock_map_update &&
4434 		    func_id != BPF_FUNC_map_delete_elem &&
4435 		    func_id != BPF_FUNC_msg_redirect_map &&
4436 		    func_id != BPF_FUNC_sk_select_reuseport &&
4437 		    func_id != BPF_FUNC_map_lookup_elem &&
4438 		    !may_update_sockmap(env, func_id))
4439 			goto error;
4440 		break;
4441 	case BPF_MAP_TYPE_SOCKHASH:
4442 		if (func_id != BPF_FUNC_sk_redirect_hash &&
4443 		    func_id != BPF_FUNC_sock_hash_update &&
4444 		    func_id != BPF_FUNC_map_delete_elem &&
4445 		    func_id != BPF_FUNC_msg_redirect_hash &&
4446 		    func_id != BPF_FUNC_sk_select_reuseport &&
4447 		    func_id != BPF_FUNC_map_lookup_elem &&
4448 		    !may_update_sockmap(env, func_id))
4449 			goto error;
4450 		break;
4451 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4452 		if (func_id != BPF_FUNC_sk_select_reuseport)
4453 			goto error;
4454 		break;
4455 	case BPF_MAP_TYPE_QUEUE:
4456 	case BPF_MAP_TYPE_STACK:
4457 		if (func_id != BPF_FUNC_map_peek_elem &&
4458 		    func_id != BPF_FUNC_map_pop_elem &&
4459 		    func_id != BPF_FUNC_map_push_elem)
4460 			goto error;
4461 		break;
4462 	case BPF_MAP_TYPE_SK_STORAGE:
4463 		if (func_id != BPF_FUNC_sk_storage_get &&
4464 		    func_id != BPF_FUNC_sk_storage_delete)
4465 			goto error;
4466 		break;
4467 	case BPF_MAP_TYPE_INODE_STORAGE:
4468 		if (func_id != BPF_FUNC_inode_storage_get &&
4469 		    func_id != BPF_FUNC_inode_storage_delete)
4470 			goto error;
4471 		break;
4472 	case BPF_MAP_TYPE_TASK_STORAGE:
4473 		if (func_id != BPF_FUNC_task_storage_get &&
4474 		    func_id != BPF_FUNC_task_storage_delete)
4475 			goto error;
4476 		break;
4477 	default:
4478 		break;
4479 	}
4480 
4481 	/* ... and second from the function itself. */
4482 	switch (func_id) {
4483 	case BPF_FUNC_tail_call:
4484 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4485 			goto error;
4486 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4487 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
4488 			return -EINVAL;
4489 		}
4490 		break;
4491 	case BPF_FUNC_perf_event_read:
4492 	case BPF_FUNC_perf_event_output:
4493 	case BPF_FUNC_perf_event_read_value:
4494 	case BPF_FUNC_skb_output:
4495 	case BPF_FUNC_xdp_output:
4496 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4497 			goto error;
4498 		break;
4499 	case BPF_FUNC_get_stackid:
4500 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4501 			goto error;
4502 		break;
4503 	case BPF_FUNC_current_task_under_cgroup:
4504 	case BPF_FUNC_skb_under_cgroup:
4505 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4506 			goto error;
4507 		break;
4508 	case BPF_FUNC_redirect_map:
4509 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4510 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4511 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
4512 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
4513 			goto error;
4514 		break;
4515 	case BPF_FUNC_sk_redirect_map:
4516 	case BPF_FUNC_msg_redirect_map:
4517 	case BPF_FUNC_sock_map_update:
4518 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4519 			goto error;
4520 		break;
4521 	case BPF_FUNC_sk_redirect_hash:
4522 	case BPF_FUNC_msg_redirect_hash:
4523 	case BPF_FUNC_sock_hash_update:
4524 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4525 			goto error;
4526 		break;
4527 	case BPF_FUNC_get_local_storage:
4528 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4529 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4530 			goto error;
4531 		break;
4532 	case BPF_FUNC_sk_select_reuseport:
4533 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4534 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4535 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
4536 			goto error;
4537 		break;
4538 	case BPF_FUNC_map_peek_elem:
4539 	case BPF_FUNC_map_pop_elem:
4540 	case BPF_FUNC_map_push_elem:
4541 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4542 		    map->map_type != BPF_MAP_TYPE_STACK)
4543 			goto error;
4544 		break;
4545 	case BPF_FUNC_sk_storage_get:
4546 	case BPF_FUNC_sk_storage_delete:
4547 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4548 			goto error;
4549 		break;
4550 	case BPF_FUNC_inode_storage_get:
4551 	case BPF_FUNC_inode_storage_delete:
4552 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4553 			goto error;
4554 		break;
4555 	case BPF_FUNC_task_storage_get:
4556 	case BPF_FUNC_task_storage_delete:
4557 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
4558 			goto error;
4559 		break;
4560 	default:
4561 		break;
4562 	}
4563 
4564 	return 0;
4565 error:
4566 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
4567 		map->map_type, func_id_name(func_id), func_id);
4568 	return -EINVAL;
4569 }
4570 
4571 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4572 {
4573 	int count = 0;
4574 
4575 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4576 		count++;
4577 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4578 		count++;
4579 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4580 		count++;
4581 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4582 		count++;
4583 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4584 		count++;
4585 
4586 	/* We only support one arg being in raw mode at the moment,
4587 	 * which is sufficient for the helper functions we have
4588 	 * right now.
4589 	 */
4590 	return count <= 1;
4591 }
4592 
4593 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4594 				    enum bpf_arg_type arg_next)
4595 {
4596 	return (arg_type_is_mem_ptr(arg_curr) &&
4597 	        !arg_type_is_mem_size(arg_next)) ||
4598 	       (!arg_type_is_mem_ptr(arg_curr) &&
4599 		arg_type_is_mem_size(arg_next));
4600 }
4601 
4602 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4603 {
4604 	/* bpf_xxx(..., buf, len) call will access 'len'
4605 	 * bytes from memory 'buf'. Both arg types need
4606 	 * to be paired, so make sure there's no buggy
4607 	 * helper function specification.
4608 	 */
4609 	if (arg_type_is_mem_size(fn->arg1_type) ||
4610 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
4611 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4612 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4613 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4614 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4615 		return false;
4616 
4617 	return true;
4618 }
4619 
4620 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4621 {
4622 	int count = 0;
4623 
4624 	if (arg_type_may_be_refcounted(fn->arg1_type))
4625 		count++;
4626 	if (arg_type_may_be_refcounted(fn->arg2_type))
4627 		count++;
4628 	if (arg_type_may_be_refcounted(fn->arg3_type))
4629 		count++;
4630 	if (arg_type_may_be_refcounted(fn->arg4_type))
4631 		count++;
4632 	if (arg_type_may_be_refcounted(fn->arg5_type))
4633 		count++;
4634 
4635 	/* A reference acquiring function cannot acquire
4636 	 * another refcounted ptr.
4637 	 */
4638 	if (may_be_acquire_function(func_id) && count)
4639 		return false;
4640 
4641 	/* We only support one arg being unreferenced at the moment,
4642 	 * which is sufficient for the helper functions we have right now.
4643 	 */
4644 	return count <= 1;
4645 }
4646 
4647 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
4648 {
4649 	int i;
4650 
4651 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
4652 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
4653 			return false;
4654 
4655 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
4656 			return false;
4657 	}
4658 
4659 	return true;
4660 }
4661 
4662 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
4663 {
4664 	return check_raw_mode_ok(fn) &&
4665 	       check_arg_pair_ok(fn) &&
4666 	       check_btf_id_ok(fn) &&
4667 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
4668 }
4669 
4670 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4671  * are now invalid, so turn them into unknown SCALAR_VALUE.
4672  */
4673 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4674 				     struct bpf_func_state *state)
4675 {
4676 	struct bpf_reg_state *regs = state->regs, *reg;
4677 	int i;
4678 
4679 	for (i = 0; i < MAX_BPF_REG; i++)
4680 		if (reg_is_pkt_pointer_any(&regs[i]))
4681 			mark_reg_unknown(env, regs, i);
4682 
4683 	bpf_for_each_spilled_reg(i, state, reg) {
4684 		if (!reg)
4685 			continue;
4686 		if (reg_is_pkt_pointer_any(reg))
4687 			__mark_reg_unknown(env, reg);
4688 	}
4689 }
4690 
4691 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4692 {
4693 	struct bpf_verifier_state *vstate = env->cur_state;
4694 	int i;
4695 
4696 	for (i = 0; i <= vstate->curframe; i++)
4697 		__clear_all_pkt_pointers(env, vstate->frame[i]);
4698 }
4699 
4700 static void release_reg_references(struct bpf_verifier_env *env,
4701 				   struct bpf_func_state *state,
4702 				   int ref_obj_id)
4703 {
4704 	struct bpf_reg_state *regs = state->regs, *reg;
4705 	int i;
4706 
4707 	for (i = 0; i < MAX_BPF_REG; i++)
4708 		if (regs[i].ref_obj_id == ref_obj_id)
4709 			mark_reg_unknown(env, regs, i);
4710 
4711 	bpf_for_each_spilled_reg(i, state, reg) {
4712 		if (!reg)
4713 			continue;
4714 		if (reg->ref_obj_id == ref_obj_id)
4715 			__mark_reg_unknown(env, reg);
4716 	}
4717 }
4718 
4719 /* The pointer with the specified id has released its reference to kernel
4720  * resources. Identify all copies of the same pointer and clear the reference.
4721  */
4722 static int release_reference(struct bpf_verifier_env *env,
4723 			     int ref_obj_id)
4724 {
4725 	struct bpf_verifier_state *vstate = env->cur_state;
4726 	int err;
4727 	int i;
4728 
4729 	err = release_reference_state(cur_func(env), ref_obj_id);
4730 	if (err)
4731 		return err;
4732 
4733 	for (i = 0; i <= vstate->curframe; i++)
4734 		release_reg_references(env, vstate->frame[i], ref_obj_id);
4735 
4736 	return 0;
4737 }
4738 
4739 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4740 				    struct bpf_reg_state *regs)
4741 {
4742 	int i;
4743 
4744 	/* after the call registers r0 - r5 were scratched */
4745 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4746 		mark_reg_not_init(env, regs, caller_saved[i]);
4747 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4748 	}
4749 }
4750 
4751 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4752 			   int *insn_idx)
4753 {
4754 	struct bpf_verifier_state *state = env->cur_state;
4755 	struct bpf_func_info_aux *func_info_aux;
4756 	struct bpf_func_state *caller, *callee;
4757 	int i, err, subprog, target_insn;
4758 	bool is_global = false;
4759 
4760 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
4761 		verbose(env, "the call stack of %d frames is too deep\n",
4762 			state->curframe + 2);
4763 		return -E2BIG;
4764 	}
4765 
4766 	target_insn = *insn_idx + insn->imm;
4767 	subprog = find_subprog(env, target_insn + 1);
4768 	if (subprog < 0) {
4769 		verbose(env, "verifier bug. No program starts at insn %d\n",
4770 			target_insn + 1);
4771 		return -EFAULT;
4772 	}
4773 
4774 	caller = state->frame[state->curframe];
4775 	if (state->frame[state->curframe + 1]) {
4776 		verbose(env, "verifier bug. Frame %d already allocated\n",
4777 			state->curframe + 1);
4778 		return -EFAULT;
4779 	}
4780 
4781 	func_info_aux = env->prog->aux->func_info_aux;
4782 	if (func_info_aux)
4783 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4784 	err = btf_check_func_arg_match(env, subprog, caller->regs);
4785 	if (err == -EFAULT)
4786 		return err;
4787 	if (is_global) {
4788 		if (err) {
4789 			verbose(env, "Caller passes invalid args into func#%d\n",
4790 				subprog);
4791 			return err;
4792 		} else {
4793 			if (env->log.level & BPF_LOG_LEVEL)
4794 				verbose(env,
4795 					"Func#%d is global and valid. Skipping.\n",
4796 					subprog);
4797 			clear_caller_saved_regs(env, caller->regs);
4798 
4799 			/* All global functions return SCALAR_VALUE */
4800 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
4801 
4802 			/* continue with next insn after call */
4803 			return 0;
4804 		}
4805 	}
4806 
4807 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4808 	if (!callee)
4809 		return -ENOMEM;
4810 	state->frame[state->curframe + 1] = callee;
4811 
4812 	/* callee cannot access r0, r6 - r9 for reading and has to write
4813 	 * into its own stack before reading from it.
4814 	 * callee can read/write into caller's stack
4815 	 */
4816 	init_func_state(env, callee,
4817 			/* remember the callsite, it will be used by bpf_exit */
4818 			*insn_idx /* callsite */,
4819 			state->curframe + 1 /* frameno within this callchain */,
4820 			subprog /* subprog number within this prog */);
4821 
4822 	/* Transfer references to the callee */
4823 	err = transfer_reference_state(callee, caller);
4824 	if (err)
4825 		return err;
4826 
4827 	/* copy r1 - r5 args that callee can access.  The copy includes parent
4828 	 * pointers, which connects us up to the liveness chain
4829 	 */
4830 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4831 		callee->regs[i] = caller->regs[i];
4832 
4833 	clear_caller_saved_regs(env, caller->regs);
4834 
4835 	/* only increment it after check_reg_arg() finished */
4836 	state->curframe++;
4837 
4838 	/* and go analyze first insn of the callee */
4839 	*insn_idx = target_insn;
4840 
4841 	if (env->log.level & BPF_LOG_LEVEL) {
4842 		verbose(env, "caller:\n");
4843 		print_verifier_state(env, caller);
4844 		verbose(env, "callee:\n");
4845 		print_verifier_state(env, callee);
4846 	}
4847 	return 0;
4848 }
4849 
4850 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4851 {
4852 	struct bpf_verifier_state *state = env->cur_state;
4853 	struct bpf_func_state *caller, *callee;
4854 	struct bpf_reg_state *r0;
4855 	int err;
4856 
4857 	callee = state->frame[state->curframe];
4858 	r0 = &callee->regs[BPF_REG_0];
4859 	if (r0->type == PTR_TO_STACK) {
4860 		/* technically it's ok to return caller's stack pointer
4861 		 * (or caller's caller's pointer) back to the caller,
4862 		 * since these pointers are valid. Only current stack
4863 		 * pointer will be invalid as soon as function exits,
4864 		 * but let's be conservative
4865 		 */
4866 		verbose(env, "cannot return stack pointer to the caller\n");
4867 		return -EINVAL;
4868 	}
4869 
4870 	state->curframe--;
4871 	caller = state->frame[state->curframe];
4872 	/* return to the caller whatever r0 had in the callee */
4873 	caller->regs[BPF_REG_0] = *r0;
4874 
4875 	/* Transfer references to the caller */
4876 	err = transfer_reference_state(caller, callee);
4877 	if (err)
4878 		return err;
4879 
4880 	*insn_idx = callee->callsite + 1;
4881 	if (env->log.level & BPF_LOG_LEVEL) {
4882 		verbose(env, "returning from callee:\n");
4883 		print_verifier_state(env, callee);
4884 		verbose(env, "to caller at %d:\n", *insn_idx);
4885 		print_verifier_state(env, caller);
4886 	}
4887 	/* clear everything in the callee */
4888 	free_func_state(callee);
4889 	state->frame[state->curframe + 1] = NULL;
4890 	return 0;
4891 }
4892 
4893 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4894 				   int func_id,
4895 				   struct bpf_call_arg_meta *meta)
4896 {
4897 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4898 
4899 	if (ret_type != RET_INTEGER ||
4900 	    (func_id != BPF_FUNC_get_stack &&
4901 	     func_id != BPF_FUNC_probe_read_str &&
4902 	     func_id != BPF_FUNC_probe_read_kernel_str &&
4903 	     func_id != BPF_FUNC_probe_read_user_str))
4904 		return;
4905 
4906 	ret_reg->smax_value = meta->msize_max_value;
4907 	ret_reg->s32_max_value = meta->msize_max_value;
4908 	__reg_deduce_bounds(ret_reg);
4909 	__reg_bound_offset(ret_reg);
4910 	__update_reg_bounds(ret_reg);
4911 }
4912 
4913 static int
4914 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4915 		int func_id, int insn_idx)
4916 {
4917 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4918 	struct bpf_map *map = meta->map_ptr;
4919 
4920 	if (func_id != BPF_FUNC_tail_call &&
4921 	    func_id != BPF_FUNC_map_lookup_elem &&
4922 	    func_id != BPF_FUNC_map_update_elem &&
4923 	    func_id != BPF_FUNC_map_delete_elem &&
4924 	    func_id != BPF_FUNC_map_push_elem &&
4925 	    func_id != BPF_FUNC_map_pop_elem &&
4926 	    func_id != BPF_FUNC_map_peek_elem)
4927 		return 0;
4928 
4929 	if (map == NULL) {
4930 		verbose(env, "kernel subsystem misconfigured verifier\n");
4931 		return -EINVAL;
4932 	}
4933 
4934 	/* In case of read-only, some additional restrictions
4935 	 * need to be applied in order to prevent altering the
4936 	 * state of the map from program side.
4937 	 */
4938 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4939 	    (func_id == BPF_FUNC_map_delete_elem ||
4940 	     func_id == BPF_FUNC_map_update_elem ||
4941 	     func_id == BPF_FUNC_map_push_elem ||
4942 	     func_id == BPF_FUNC_map_pop_elem)) {
4943 		verbose(env, "write into map forbidden\n");
4944 		return -EACCES;
4945 	}
4946 
4947 	if (!BPF_MAP_PTR(aux->map_ptr_state))
4948 		bpf_map_ptr_store(aux, meta->map_ptr,
4949 				  !meta->map_ptr->bypass_spec_v1);
4950 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4951 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4952 				  !meta->map_ptr->bypass_spec_v1);
4953 	return 0;
4954 }
4955 
4956 static int
4957 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4958 		int func_id, int insn_idx)
4959 {
4960 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4961 	struct bpf_reg_state *regs = cur_regs(env), *reg;
4962 	struct bpf_map *map = meta->map_ptr;
4963 	struct tnum range;
4964 	u64 val;
4965 	int err;
4966 
4967 	if (func_id != BPF_FUNC_tail_call)
4968 		return 0;
4969 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4970 		verbose(env, "kernel subsystem misconfigured verifier\n");
4971 		return -EINVAL;
4972 	}
4973 
4974 	range = tnum_range(0, map->max_entries - 1);
4975 	reg = &regs[BPF_REG_3];
4976 
4977 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4978 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4979 		return 0;
4980 	}
4981 
4982 	err = mark_chain_precision(env, BPF_REG_3);
4983 	if (err)
4984 		return err;
4985 
4986 	val = reg->var_off.value;
4987 	if (bpf_map_key_unseen(aux))
4988 		bpf_map_key_store(aux, val);
4989 	else if (!bpf_map_key_poisoned(aux) &&
4990 		  bpf_map_key_immediate(aux) != val)
4991 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4992 	return 0;
4993 }
4994 
4995 static int check_reference_leak(struct bpf_verifier_env *env)
4996 {
4997 	struct bpf_func_state *state = cur_func(env);
4998 	int i;
4999 
5000 	for (i = 0; i < state->acquired_refs; i++) {
5001 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5002 			state->refs[i].id, state->refs[i].insn_idx);
5003 	}
5004 	return state->acquired_refs ? -EINVAL : 0;
5005 }
5006 
5007 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5008 {
5009 	const struct bpf_func_proto *fn = NULL;
5010 	struct bpf_reg_state *regs;
5011 	struct bpf_call_arg_meta meta;
5012 	bool changes_data;
5013 	int i, err;
5014 
5015 	/* find function prototype */
5016 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5017 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5018 			func_id);
5019 		return -EINVAL;
5020 	}
5021 
5022 	if (env->ops->get_func_proto)
5023 		fn = env->ops->get_func_proto(func_id, env->prog);
5024 	if (!fn) {
5025 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5026 			func_id);
5027 		return -EINVAL;
5028 	}
5029 
5030 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5031 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5032 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5033 		return -EINVAL;
5034 	}
5035 
5036 	if (fn->allowed && !fn->allowed(env->prog)) {
5037 		verbose(env, "helper call is not allowed in probe\n");
5038 		return -EINVAL;
5039 	}
5040 
5041 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5042 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5043 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5044 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5045 			func_id_name(func_id), func_id);
5046 		return -EINVAL;
5047 	}
5048 
5049 	memset(&meta, 0, sizeof(meta));
5050 	meta.pkt_access = fn->pkt_access;
5051 
5052 	err = check_func_proto(fn, func_id);
5053 	if (err) {
5054 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5055 			func_id_name(func_id), func_id);
5056 		return err;
5057 	}
5058 
5059 	meta.func_id = func_id;
5060 	/* check args */
5061 	for (i = 0; i < 5; i++) {
5062 		err = check_func_arg(env, i, &meta, fn);
5063 		if (err)
5064 			return err;
5065 	}
5066 
5067 	err = record_func_map(env, &meta, func_id, insn_idx);
5068 	if (err)
5069 		return err;
5070 
5071 	err = record_func_key(env, &meta, func_id, insn_idx);
5072 	if (err)
5073 		return err;
5074 
5075 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
5076 	 * is inferred from register state.
5077 	 */
5078 	for (i = 0; i < meta.access_size; i++) {
5079 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5080 				       BPF_WRITE, -1, false);
5081 		if (err)
5082 			return err;
5083 	}
5084 
5085 	if (func_id == BPF_FUNC_tail_call) {
5086 		err = check_reference_leak(env);
5087 		if (err) {
5088 			verbose(env, "tail_call would lead to reference leak\n");
5089 			return err;
5090 		}
5091 	} else if (is_release_function(func_id)) {
5092 		err = release_reference(env, meta.ref_obj_id);
5093 		if (err) {
5094 			verbose(env, "func %s#%d reference has not been acquired before\n",
5095 				func_id_name(func_id), func_id);
5096 			return err;
5097 		}
5098 	}
5099 
5100 	regs = cur_regs(env);
5101 
5102 	/* check that flags argument in get_local_storage(map, flags) is 0,
5103 	 * this is required because get_local_storage() can't return an error.
5104 	 */
5105 	if (func_id == BPF_FUNC_get_local_storage &&
5106 	    !register_is_null(&regs[BPF_REG_2])) {
5107 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5108 		return -EINVAL;
5109 	}
5110 
5111 	/* reset caller saved regs */
5112 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5113 		mark_reg_not_init(env, regs, caller_saved[i]);
5114 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5115 	}
5116 
5117 	/* helper call returns 64-bit value. */
5118 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5119 
5120 	/* update return register (already marked as written above) */
5121 	if (fn->ret_type == RET_INTEGER) {
5122 		/* sets type to SCALAR_VALUE */
5123 		mark_reg_unknown(env, regs, BPF_REG_0);
5124 	} else if (fn->ret_type == RET_VOID) {
5125 		regs[BPF_REG_0].type = NOT_INIT;
5126 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5127 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5128 		/* There is no offset yet applied, variable or fixed */
5129 		mark_reg_known_zero(env, regs, BPF_REG_0);
5130 		/* remember map_ptr, so that check_map_access()
5131 		 * can check 'value_size' boundary of memory access
5132 		 * to map element returned from bpf_map_lookup_elem()
5133 		 */
5134 		if (meta.map_ptr == NULL) {
5135 			verbose(env,
5136 				"kernel subsystem misconfigured verifier\n");
5137 			return -EINVAL;
5138 		}
5139 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
5140 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5141 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5142 			if (map_value_has_spin_lock(meta.map_ptr))
5143 				regs[BPF_REG_0].id = ++env->id_gen;
5144 		} else {
5145 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5146 		}
5147 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5148 		mark_reg_known_zero(env, regs, BPF_REG_0);
5149 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
5150 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5151 		mark_reg_known_zero(env, regs, BPF_REG_0);
5152 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5153 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5154 		mark_reg_known_zero(env, regs, BPF_REG_0);
5155 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5156 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5157 		mark_reg_known_zero(env, regs, BPF_REG_0);
5158 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5159 		regs[BPF_REG_0].mem_size = meta.mem_size;
5160 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5161 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
5162 		const struct btf_type *t;
5163 
5164 		mark_reg_known_zero(env, regs, BPF_REG_0);
5165 		t = btf_type_skip_modifiers(btf_vmlinux, meta.ret_btf_id, NULL);
5166 		if (!btf_type_is_struct(t)) {
5167 			u32 tsize;
5168 			const struct btf_type *ret;
5169 			const char *tname;
5170 
5171 			/* resolve the type size of ksym. */
5172 			ret = btf_resolve_size(btf_vmlinux, t, &tsize);
5173 			if (IS_ERR(ret)) {
5174 				tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5175 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
5176 					tname, PTR_ERR(ret));
5177 				return -EINVAL;
5178 			}
5179 			regs[BPF_REG_0].type =
5180 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5181 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
5182 			regs[BPF_REG_0].mem_size = tsize;
5183 		} else {
5184 			regs[BPF_REG_0].type =
5185 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5186 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
5187 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5188 		}
5189 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL) {
5190 		int ret_btf_id;
5191 
5192 		mark_reg_known_zero(env, regs, BPF_REG_0);
5193 		regs[BPF_REG_0].type = PTR_TO_BTF_ID_OR_NULL;
5194 		ret_btf_id = *fn->ret_btf_id;
5195 		if (ret_btf_id == 0) {
5196 			verbose(env, "invalid return type %d of func %s#%d\n",
5197 				fn->ret_type, func_id_name(func_id), func_id);
5198 			return -EINVAL;
5199 		}
5200 		regs[BPF_REG_0].btf_id = ret_btf_id;
5201 	} else {
5202 		verbose(env, "unknown return type %d of func %s#%d\n",
5203 			fn->ret_type, func_id_name(func_id), func_id);
5204 		return -EINVAL;
5205 	}
5206 
5207 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
5208 		regs[BPF_REG_0].id = ++env->id_gen;
5209 
5210 	if (is_ptr_cast_function(func_id)) {
5211 		/* For release_reference() */
5212 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5213 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
5214 		int id = acquire_reference_state(env, insn_idx);
5215 
5216 		if (id < 0)
5217 			return id;
5218 		/* For mark_ptr_or_null_reg() */
5219 		regs[BPF_REG_0].id = id;
5220 		/* For release_reference() */
5221 		regs[BPF_REG_0].ref_obj_id = id;
5222 	}
5223 
5224 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5225 
5226 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5227 	if (err)
5228 		return err;
5229 
5230 	if ((func_id == BPF_FUNC_get_stack ||
5231 	     func_id == BPF_FUNC_get_task_stack) &&
5232 	    !env->prog->has_callchain_buf) {
5233 		const char *err_str;
5234 
5235 #ifdef CONFIG_PERF_EVENTS
5236 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
5237 		err_str = "cannot get callchain buffer for func %s#%d\n";
5238 #else
5239 		err = -ENOTSUPP;
5240 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5241 #endif
5242 		if (err) {
5243 			verbose(env, err_str, func_id_name(func_id), func_id);
5244 			return err;
5245 		}
5246 
5247 		env->prog->has_callchain_buf = true;
5248 	}
5249 
5250 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5251 		env->prog->call_get_stack = true;
5252 
5253 	if (changes_data)
5254 		clear_all_pkt_pointers(env);
5255 	return 0;
5256 }
5257 
5258 static bool signed_add_overflows(s64 a, s64 b)
5259 {
5260 	/* Do the add in u64, where overflow is well-defined */
5261 	s64 res = (s64)((u64)a + (u64)b);
5262 
5263 	if (b < 0)
5264 		return res > a;
5265 	return res < a;
5266 }
5267 
5268 static bool signed_add32_overflows(s64 a, s64 b)
5269 {
5270 	/* Do the add in u32, where overflow is well-defined */
5271 	s32 res = (s32)((u32)a + (u32)b);
5272 
5273 	if (b < 0)
5274 		return res > a;
5275 	return res < a;
5276 }
5277 
5278 static bool signed_sub_overflows(s32 a, s32 b)
5279 {
5280 	/* Do the sub in u64, where overflow is well-defined */
5281 	s64 res = (s64)((u64)a - (u64)b);
5282 
5283 	if (b < 0)
5284 		return res < a;
5285 	return res > a;
5286 }
5287 
5288 static bool signed_sub32_overflows(s32 a, s32 b)
5289 {
5290 	/* Do the sub in u64, where overflow is well-defined */
5291 	s32 res = (s32)((u32)a - (u32)b);
5292 
5293 	if (b < 0)
5294 		return res < a;
5295 	return res > a;
5296 }
5297 
5298 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5299 				  const struct bpf_reg_state *reg,
5300 				  enum bpf_reg_type type)
5301 {
5302 	bool known = tnum_is_const(reg->var_off);
5303 	s64 val = reg->var_off.value;
5304 	s64 smin = reg->smin_value;
5305 
5306 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5307 		verbose(env, "math between %s pointer and %lld is not allowed\n",
5308 			reg_type_str[type], val);
5309 		return false;
5310 	}
5311 
5312 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5313 		verbose(env, "%s pointer offset %d is not allowed\n",
5314 			reg_type_str[type], reg->off);
5315 		return false;
5316 	}
5317 
5318 	if (smin == S64_MIN) {
5319 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5320 			reg_type_str[type]);
5321 		return false;
5322 	}
5323 
5324 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5325 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
5326 			smin, reg_type_str[type]);
5327 		return false;
5328 	}
5329 
5330 	return true;
5331 }
5332 
5333 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5334 {
5335 	return &env->insn_aux_data[env->insn_idx];
5336 }
5337 
5338 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5339 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
5340 {
5341 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
5342 			    (opcode == BPF_SUB && !off_is_neg);
5343 	u32 off;
5344 
5345 	switch (ptr_reg->type) {
5346 	case PTR_TO_STACK:
5347 		/* Indirect variable offset stack access is prohibited in
5348 		 * unprivileged mode so it's not handled here.
5349 		 */
5350 		off = ptr_reg->off + ptr_reg->var_off.value;
5351 		if (mask_to_left)
5352 			*ptr_limit = MAX_BPF_STACK + off;
5353 		else
5354 			*ptr_limit = -off;
5355 		return 0;
5356 	case PTR_TO_MAP_VALUE:
5357 		if (mask_to_left) {
5358 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5359 		} else {
5360 			off = ptr_reg->smin_value + ptr_reg->off;
5361 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
5362 		}
5363 		return 0;
5364 	default:
5365 		return -EINVAL;
5366 	}
5367 }
5368 
5369 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5370 				    const struct bpf_insn *insn)
5371 {
5372 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5373 }
5374 
5375 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5376 				       u32 alu_state, u32 alu_limit)
5377 {
5378 	/* If we arrived here from different branches with different
5379 	 * state or limits to sanitize, then this won't work.
5380 	 */
5381 	if (aux->alu_state &&
5382 	    (aux->alu_state != alu_state ||
5383 	     aux->alu_limit != alu_limit))
5384 		return -EACCES;
5385 
5386 	/* Corresponding fixup done in fixup_bpf_calls(). */
5387 	aux->alu_state = alu_state;
5388 	aux->alu_limit = alu_limit;
5389 	return 0;
5390 }
5391 
5392 static int sanitize_val_alu(struct bpf_verifier_env *env,
5393 			    struct bpf_insn *insn)
5394 {
5395 	struct bpf_insn_aux_data *aux = cur_aux(env);
5396 
5397 	if (can_skip_alu_sanitation(env, insn))
5398 		return 0;
5399 
5400 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5401 }
5402 
5403 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5404 			    struct bpf_insn *insn,
5405 			    const struct bpf_reg_state *ptr_reg,
5406 			    struct bpf_reg_state *dst_reg,
5407 			    bool off_is_neg)
5408 {
5409 	struct bpf_verifier_state *vstate = env->cur_state;
5410 	struct bpf_insn_aux_data *aux = cur_aux(env);
5411 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
5412 	u8 opcode = BPF_OP(insn->code);
5413 	u32 alu_state, alu_limit;
5414 	struct bpf_reg_state tmp;
5415 	bool ret;
5416 
5417 	if (can_skip_alu_sanitation(env, insn))
5418 		return 0;
5419 
5420 	/* We already marked aux for masking from non-speculative
5421 	 * paths, thus we got here in the first place. We only care
5422 	 * to explore bad access from here.
5423 	 */
5424 	if (vstate->speculative)
5425 		goto do_sim;
5426 
5427 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5428 	alu_state |= ptr_is_dst_reg ?
5429 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5430 
5431 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5432 		return 0;
5433 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
5434 		return -EACCES;
5435 do_sim:
5436 	/* Simulate and find potential out-of-bounds access under
5437 	 * speculative execution from truncation as a result of
5438 	 * masking when off was not within expected range. If off
5439 	 * sits in dst, then we temporarily need to move ptr there
5440 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5441 	 * for cases where we use K-based arithmetic in one direction
5442 	 * and truncated reg-based in the other in order to explore
5443 	 * bad access.
5444 	 */
5445 	if (!ptr_is_dst_reg) {
5446 		tmp = *dst_reg;
5447 		*dst_reg = *ptr_reg;
5448 	}
5449 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
5450 	if (!ptr_is_dst_reg && ret)
5451 		*dst_reg = tmp;
5452 	return !ret ? -EFAULT : 0;
5453 }
5454 
5455 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
5456  * Caller should also handle BPF_MOV case separately.
5457  * If we return -EACCES, caller may want to try again treating pointer as a
5458  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
5459  */
5460 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5461 				   struct bpf_insn *insn,
5462 				   const struct bpf_reg_state *ptr_reg,
5463 				   const struct bpf_reg_state *off_reg)
5464 {
5465 	struct bpf_verifier_state *vstate = env->cur_state;
5466 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5467 	struct bpf_reg_state *regs = state->regs, *dst_reg;
5468 	bool known = tnum_is_const(off_reg->var_off);
5469 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5470 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5471 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5472 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
5473 	u32 dst = insn->dst_reg, src = insn->src_reg;
5474 	u8 opcode = BPF_OP(insn->code);
5475 	int ret;
5476 
5477 	dst_reg = &regs[dst];
5478 
5479 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5480 	    smin_val > smax_val || umin_val > umax_val) {
5481 		/* Taint dst register if offset had invalid bounds derived from
5482 		 * e.g. dead branches.
5483 		 */
5484 		__mark_reg_unknown(env, dst_reg);
5485 		return 0;
5486 	}
5487 
5488 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
5489 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
5490 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5491 			__mark_reg_unknown(env, dst_reg);
5492 			return 0;
5493 		}
5494 
5495 		verbose(env,
5496 			"R%d 32-bit pointer arithmetic prohibited\n",
5497 			dst);
5498 		return -EACCES;
5499 	}
5500 
5501 	switch (ptr_reg->type) {
5502 	case PTR_TO_MAP_VALUE_OR_NULL:
5503 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5504 			dst, reg_type_str[ptr_reg->type]);
5505 		return -EACCES;
5506 	case CONST_PTR_TO_MAP:
5507 		/* smin_val represents the known value */
5508 		if (known && smin_val == 0 && opcode == BPF_ADD)
5509 			break;
5510 		fallthrough;
5511 	case PTR_TO_PACKET_END:
5512 	case PTR_TO_SOCKET:
5513 	case PTR_TO_SOCKET_OR_NULL:
5514 	case PTR_TO_SOCK_COMMON:
5515 	case PTR_TO_SOCK_COMMON_OR_NULL:
5516 	case PTR_TO_TCP_SOCK:
5517 	case PTR_TO_TCP_SOCK_OR_NULL:
5518 	case PTR_TO_XDP_SOCK:
5519 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5520 			dst, reg_type_str[ptr_reg->type]);
5521 		return -EACCES;
5522 	case PTR_TO_MAP_VALUE:
5523 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5524 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5525 				off_reg == dst_reg ? dst : src);
5526 			return -EACCES;
5527 		}
5528 		fallthrough;
5529 	default:
5530 		break;
5531 	}
5532 
5533 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5534 	 * The id may be overwritten later if we create a new variable offset.
5535 	 */
5536 	dst_reg->type = ptr_reg->type;
5537 	dst_reg->id = ptr_reg->id;
5538 
5539 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5540 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5541 		return -EINVAL;
5542 
5543 	/* pointer types do not carry 32-bit bounds at the moment. */
5544 	__mark_reg32_unbounded(dst_reg);
5545 
5546 	switch (opcode) {
5547 	case BPF_ADD:
5548 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5549 		if (ret < 0) {
5550 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
5551 			return ret;
5552 		}
5553 		/* We can take a fixed offset as long as it doesn't overflow
5554 		 * the s32 'off' field
5555 		 */
5556 		if (known && (ptr_reg->off + smin_val ==
5557 			      (s64)(s32)(ptr_reg->off + smin_val))) {
5558 			/* pointer += K.  Accumulate it into fixed offset */
5559 			dst_reg->smin_value = smin_ptr;
5560 			dst_reg->smax_value = smax_ptr;
5561 			dst_reg->umin_value = umin_ptr;
5562 			dst_reg->umax_value = umax_ptr;
5563 			dst_reg->var_off = ptr_reg->var_off;
5564 			dst_reg->off = ptr_reg->off + smin_val;
5565 			dst_reg->raw = ptr_reg->raw;
5566 			break;
5567 		}
5568 		/* A new variable offset is created.  Note that off_reg->off
5569 		 * == 0, since it's a scalar.
5570 		 * dst_reg gets the pointer type and since some positive
5571 		 * integer value was added to the pointer, give it a new 'id'
5572 		 * if it's a PTR_TO_PACKET.
5573 		 * this creates a new 'base' pointer, off_reg (variable) gets
5574 		 * added into the variable offset, and we copy the fixed offset
5575 		 * from ptr_reg.
5576 		 */
5577 		if (signed_add_overflows(smin_ptr, smin_val) ||
5578 		    signed_add_overflows(smax_ptr, smax_val)) {
5579 			dst_reg->smin_value = S64_MIN;
5580 			dst_reg->smax_value = S64_MAX;
5581 		} else {
5582 			dst_reg->smin_value = smin_ptr + smin_val;
5583 			dst_reg->smax_value = smax_ptr + smax_val;
5584 		}
5585 		if (umin_ptr + umin_val < umin_ptr ||
5586 		    umax_ptr + umax_val < umax_ptr) {
5587 			dst_reg->umin_value = 0;
5588 			dst_reg->umax_value = U64_MAX;
5589 		} else {
5590 			dst_reg->umin_value = umin_ptr + umin_val;
5591 			dst_reg->umax_value = umax_ptr + umax_val;
5592 		}
5593 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5594 		dst_reg->off = ptr_reg->off;
5595 		dst_reg->raw = ptr_reg->raw;
5596 		if (reg_is_pkt_pointer(ptr_reg)) {
5597 			dst_reg->id = ++env->id_gen;
5598 			/* something was added to pkt_ptr, set range to zero */
5599 			dst_reg->raw = 0;
5600 		}
5601 		break;
5602 	case BPF_SUB:
5603 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5604 		if (ret < 0) {
5605 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5606 			return ret;
5607 		}
5608 		if (dst_reg == off_reg) {
5609 			/* scalar -= pointer.  Creates an unknown scalar */
5610 			verbose(env, "R%d tried to subtract pointer from scalar\n",
5611 				dst);
5612 			return -EACCES;
5613 		}
5614 		/* We don't allow subtraction from FP, because (according to
5615 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
5616 		 * be able to deal with it.
5617 		 */
5618 		if (ptr_reg->type == PTR_TO_STACK) {
5619 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
5620 				dst);
5621 			return -EACCES;
5622 		}
5623 		if (known && (ptr_reg->off - smin_val ==
5624 			      (s64)(s32)(ptr_reg->off - smin_val))) {
5625 			/* pointer -= K.  Subtract it from fixed offset */
5626 			dst_reg->smin_value = smin_ptr;
5627 			dst_reg->smax_value = smax_ptr;
5628 			dst_reg->umin_value = umin_ptr;
5629 			dst_reg->umax_value = umax_ptr;
5630 			dst_reg->var_off = ptr_reg->var_off;
5631 			dst_reg->id = ptr_reg->id;
5632 			dst_reg->off = ptr_reg->off - smin_val;
5633 			dst_reg->raw = ptr_reg->raw;
5634 			break;
5635 		}
5636 		/* A new variable offset is created.  If the subtrahend is known
5637 		 * nonnegative, then any reg->range we had before is still good.
5638 		 */
5639 		if (signed_sub_overflows(smin_ptr, smax_val) ||
5640 		    signed_sub_overflows(smax_ptr, smin_val)) {
5641 			/* Overflow possible, we know nothing */
5642 			dst_reg->smin_value = S64_MIN;
5643 			dst_reg->smax_value = S64_MAX;
5644 		} else {
5645 			dst_reg->smin_value = smin_ptr - smax_val;
5646 			dst_reg->smax_value = smax_ptr - smin_val;
5647 		}
5648 		if (umin_ptr < umax_val) {
5649 			/* Overflow possible, we know nothing */
5650 			dst_reg->umin_value = 0;
5651 			dst_reg->umax_value = U64_MAX;
5652 		} else {
5653 			/* Cannot overflow (as long as bounds are consistent) */
5654 			dst_reg->umin_value = umin_ptr - umax_val;
5655 			dst_reg->umax_value = umax_ptr - umin_val;
5656 		}
5657 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5658 		dst_reg->off = ptr_reg->off;
5659 		dst_reg->raw = ptr_reg->raw;
5660 		if (reg_is_pkt_pointer(ptr_reg)) {
5661 			dst_reg->id = ++env->id_gen;
5662 			/* something was added to pkt_ptr, set range to zero */
5663 			if (smin_val < 0)
5664 				dst_reg->raw = 0;
5665 		}
5666 		break;
5667 	case BPF_AND:
5668 	case BPF_OR:
5669 	case BPF_XOR:
5670 		/* bitwise ops on pointers are troublesome, prohibit. */
5671 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5672 			dst, bpf_alu_string[opcode >> 4]);
5673 		return -EACCES;
5674 	default:
5675 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
5676 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5677 			dst, bpf_alu_string[opcode >> 4]);
5678 		return -EACCES;
5679 	}
5680 
5681 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5682 		return -EINVAL;
5683 
5684 	__update_reg_bounds(dst_reg);
5685 	__reg_deduce_bounds(dst_reg);
5686 	__reg_bound_offset(dst_reg);
5687 
5688 	/* For unprivileged we require that resulting offset must be in bounds
5689 	 * in order to be able to sanitize access later on.
5690 	 */
5691 	if (!env->bypass_spec_v1) {
5692 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
5693 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
5694 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5695 				"prohibited for !root\n", dst);
5696 			return -EACCES;
5697 		} else if (dst_reg->type == PTR_TO_STACK &&
5698 			   check_stack_access(env, dst_reg, dst_reg->off +
5699 					      dst_reg->var_off.value, 1)) {
5700 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
5701 				"prohibited for !root\n", dst);
5702 			return -EACCES;
5703 		}
5704 	}
5705 
5706 	return 0;
5707 }
5708 
5709 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5710 				 struct bpf_reg_state *src_reg)
5711 {
5712 	s32 smin_val = src_reg->s32_min_value;
5713 	s32 smax_val = src_reg->s32_max_value;
5714 	u32 umin_val = src_reg->u32_min_value;
5715 	u32 umax_val = src_reg->u32_max_value;
5716 
5717 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5718 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5719 		dst_reg->s32_min_value = S32_MIN;
5720 		dst_reg->s32_max_value = S32_MAX;
5721 	} else {
5722 		dst_reg->s32_min_value += smin_val;
5723 		dst_reg->s32_max_value += smax_val;
5724 	}
5725 	if (dst_reg->u32_min_value + umin_val < umin_val ||
5726 	    dst_reg->u32_max_value + umax_val < umax_val) {
5727 		dst_reg->u32_min_value = 0;
5728 		dst_reg->u32_max_value = U32_MAX;
5729 	} else {
5730 		dst_reg->u32_min_value += umin_val;
5731 		dst_reg->u32_max_value += umax_val;
5732 	}
5733 }
5734 
5735 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5736 			       struct bpf_reg_state *src_reg)
5737 {
5738 	s64 smin_val = src_reg->smin_value;
5739 	s64 smax_val = src_reg->smax_value;
5740 	u64 umin_val = src_reg->umin_value;
5741 	u64 umax_val = src_reg->umax_value;
5742 
5743 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5744 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
5745 		dst_reg->smin_value = S64_MIN;
5746 		dst_reg->smax_value = S64_MAX;
5747 	} else {
5748 		dst_reg->smin_value += smin_val;
5749 		dst_reg->smax_value += smax_val;
5750 	}
5751 	if (dst_reg->umin_value + umin_val < umin_val ||
5752 	    dst_reg->umax_value + umax_val < umax_val) {
5753 		dst_reg->umin_value = 0;
5754 		dst_reg->umax_value = U64_MAX;
5755 	} else {
5756 		dst_reg->umin_value += umin_val;
5757 		dst_reg->umax_value += umax_val;
5758 	}
5759 }
5760 
5761 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5762 				 struct bpf_reg_state *src_reg)
5763 {
5764 	s32 smin_val = src_reg->s32_min_value;
5765 	s32 smax_val = src_reg->s32_max_value;
5766 	u32 umin_val = src_reg->u32_min_value;
5767 	u32 umax_val = src_reg->u32_max_value;
5768 
5769 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5770 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5771 		/* Overflow possible, we know nothing */
5772 		dst_reg->s32_min_value = S32_MIN;
5773 		dst_reg->s32_max_value = S32_MAX;
5774 	} else {
5775 		dst_reg->s32_min_value -= smax_val;
5776 		dst_reg->s32_max_value -= smin_val;
5777 	}
5778 	if (dst_reg->u32_min_value < umax_val) {
5779 		/* Overflow possible, we know nothing */
5780 		dst_reg->u32_min_value = 0;
5781 		dst_reg->u32_max_value = U32_MAX;
5782 	} else {
5783 		/* Cannot overflow (as long as bounds are consistent) */
5784 		dst_reg->u32_min_value -= umax_val;
5785 		dst_reg->u32_max_value -= umin_val;
5786 	}
5787 }
5788 
5789 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5790 			       struct bpf_reg_state *src_reg)
5791 {
5792 	s64 smin_val = src_reg->smin_value;
5793 	s64 smax_val = src_reg->smax_value;
5794 	u64 umin_val = src_reg->umin_value;
5795 	u64 umax_val = src_reg->umax_value;
5796 
5797 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5798 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5799 		/* Overflow possible, we know nothing */
5800 		dst_reg->smin_value = S64_MIN;
5801 		dst_reg->smax_value = S64_MAX;
5802 	} else {
5803 		dst_reg->smin_value -= smax_val;
5804 		dst_reg->smax_value -= smin_val;
5805 	}
5806 	if (dst_reg->umin_value < umax_val) {
5807 		/* Overflow possible, we know nothing */
5808 		dst_reg->umin_value = 0;
5809 		dst_reg->umax_value = U64_MAX;
5810 	} else {
5811 		/* Cannot overflow (as long as bounds are consistent) */
5812 		dst_reg->umin_value -= umax_val;
5813 		dst_reg->umax_value -= umin_val;
5814 	}
5815 }
5816 
5817 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5818 				 struct bpf_reg_state *src_reg)
5819 {
5820 	s32 smin_val = src_reg->s32_min_value;
5821 	u32 umin_val = src_reg->u32_min_value;
5822 	u32 umax_val = src_reg->u32_max_value;
5823 
5824 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5825 		/* Ain't nobody got time to multiply that sign */
5826 		__mark_reg32_unbounded(dst_reg);
5827 		return;
5828 	}
5829 	/* Both values are positive, so we can work with unsigned and
5830 	 * copy the result to signed (unless it exceeds S32_MAX).
5831 	 */
5832 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5833 		/* Potential overflow, we know nothing */
5834 		__mark_reg32_unbounded(dst_reg);
5835 		return;
5836 	}
5837 	dst_reg->u32_min_value *= umin_val;
5838 	dst_reg->u32_max_value *= umax_val;
5839 	if (dst_reg->u32_max_value > S32_MAX) {
5840 		/* Overflow possible, we know nothing */
5841 		dst_reg->s32_min_value = S32_MIN;
5842 		dst_reg->s32_max_value = S32_MAX;
5843 	} else {
5844 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5845 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5846 	}
5847 }
5848 
5849 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5850 			       struct bpf_reg_state *src_reg)
5851 {
5852 	s64 smin_val = src_reg->smin_value;
5853 	u64 umin_val = src_reg->umin_value;
5854 	u64 umax_val = src_reg->umax_value;
5855 
5856 	if (smin_val < 0 || dst_reg->smin_value < 0) {
5857 		/* Ain't nobody got time to multiply that sign */
5858 		__mark_reg64_unbounded(dst_reg);
5859 		return;
5860 	}
5861 	/* Both values are positive, so we can work with unsigned and
5862 	 * copy the result to signed (unless it exceeds S64_MAX).
5863 	 */
5864 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5865 		/* Potential overflow, we know nothing */
5866 		__mark_reg64_unbounded(dst_reg);
5867 		return;
5868 	}
5869 	dst_reg->umin_value *= umin_val;
5870 	dst_reg->umax_value *= umax_val;
5871 	if (dst_reg->umax_value > S64_MAX) {
5872 		/* Overflow possible, we know nothing */
5873 		dst_reg->smin_value = S64_MIN;
5874 		dst_reg->smax_value = S64_MAX;
5875 	} else {
5876 		dst_reg->smin_value = dst_reg->umin_value;
5877 		dst_reg->smax_value = dst_reg->umax_value;
5878 	}
5879 }
5880 
5881 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5882 				 struct bpf_reg_state *src_reg)
5883 {
5884 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5885 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5886 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5887 	s32 smin_val = src_reg->s32_min_value;
5888 	u32 umax_val = src_reg->u32_max_value;
5889 
5890 	/* Assuming scalar64_min_max_and will be called so its safe
5891 	 * to skip updating register for known 32-bit case.
5892 	 */
5893 	if (src_known && dst_known)
5894 		return;
5895 
5896 	/* We get our minimum from the var_off, since that's inherently
5897 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5898 	 */
5899 	dst_reg->u32_min_value = var32_off.value;
5900 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5901 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5902 		/* Lose signed bounds when ANDing negative numbers,
5903 		 * ain't nobody got time for that.
5904 		 */
5905 		dst_reg->s32_min_value = S32_MIN;
5906 		dst_reg->s32_max_value = S32_MAX;
5907 	} else {
5908 		/* ANDing two positives gives a positive, so safe to
5909 		 * cast result into s64.
5910 		 */
5911 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5912 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5913 	}
5914 
5915 }
5916 
5917 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5918 			       struct bpf_reg_state *src_reg)
5919 {
5920 	bool src_known = tnum_is_const(src_reg->var_off);
5921 	bool dst_known = tnum_is_const(dst_reg->var_off);
5922 	s64 smin_val = src_reg->smin_value;
5923 	u64 umax_val = src_reg->umax_value;
5924 
5925 	if (src_known && dst_known) {
5926 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
5927 		return;
5928 	}
5929 
5930 	/* We get our minimum from the var_off, since that's inherently
5931 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5932 	 */
5933 	dst_reg->umin_value = dst_reg->var_off.value;
5934 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5935 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5936 		/* Lose signed bounds when ANDing negative numbers,
5937 		 * ain't nobody got time for that.
5938 		 */
5939 		dst_reg->smin_value = S64_MIN;
5940 		dst_reg->smax_value = S64_MAX;
5941 	} else {
5942 		/* ANDing two positives gives a positive, so safe to
5943 		 * cast result into s64.
5944 		 */
5945 		dst_reg->smin_value = dst_reg->umin_value;
5946 		dst_reg->smax_value = dst_reg->umax_value;
5947 	}
5948 	/* We may learn something more from the var_off */
5949 	__update_reg_bounds(dst_reg);
5950 }
5951 
5952 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5953 				struct bpf_reg_state *src_reg)
5954 {
5955 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5956 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5957 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5958 	s32 smin_val = src_reg->s32_min_value;
5959 	u32 umin_val = src_reg->u32_min_value;
5960 
5961 	/* Assuming scalar64_min_max_or will be called so it is safe
5962 	 * to skip updating register for known case.
5963 	 */
5964 	if (src_known && dst_known)
5965 		return;
5966 
5967 	/* We get our maximum from the var_off, and our minimum is the
5968 	 * maximum of the operands' minima
5969 	 */
5970 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5971 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5972 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5973 		/* Lose signed bounds when ORing negative numbers,
5974 		 * ain't nobody got time for that.
5975 		 */
5976 		dst_reg->s32_min_value = S32_MIN;
5977 		dst_reg->s32_max_value = S32_MAX;
5978 	} else {
5979 		/* ORing two positives gives a positive, so safe to
5980 		 * cast result into s64.
5981 		 */
5982 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5983 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5984 	}
5985 }
5986 
5987 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5988 			      struct bpf_reg_state *src_reg)
5989 {
5990 	bool src_known = tnum_is_const(src_reg->var_off);
5991 	bool dst_known = tnum_is_const(dst_reg->var_off);
5992 	s64 smin_val = src_reg->smin_value;
5993 	u64 umin_val = src_reg->umin_value;
5994 
5995 	if (src_known && dst_known) {
5996 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
5997 		return;
5998 	}
5999 
6000 	/* We get our maximum from the var_off, and our minimum is the
6001 	 * maximum of the operands' minima
6002 	 */
6003 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6004 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6005 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6006 		/* Lose signed bounds when ORing negative numbers,
6007 		 * ain't nobody got time for that.
6008 		 */
6009 		dst_reg->smin_value = S64_MIN;
6010 		dst_reg->smax_value = S64_MAX;
6011 	} else {
6012 		/* ORing two positives gives a positive, so safe to
6013 		 * cast result into s64.
6014 		 */
6015 		dst_reg->smin_value = dst_reg->umin_value;
6016 		dst_reg->smax_value = dst_reg->umax_value;
6017 	}
6018 	/* We may learn something more from the var_off */
6019 	__update_reg_bounds(dst_reg);
6020 }
6021 
6022 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6023 				 struct bpf_reg_state *src_reg)
6024 {
6025 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6026 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6027 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6028 	s32 smin_val = src_reg->s32_min_value;
6029 
6030 	/* Assuming scalar64_min_max_xor will be called so it is safe
6031 	 * to skip updating register for known case.
6032 	 */
6033 	if (src_known && dst_known)
6034 		return;
6035 
6036 	/* We get both minimum and maximum from the var32_off. */
6037 	dst_reg->u32_min_value = var32_off.value;
6038 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6039 
6040 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6041 		/* XORing two positive sign numbers gives a positive,
6042 		 * so safe to cast u32 result into s32.
6043 		 */
6044 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6045 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6046 	} else {
6047 		dst_reg->s32_min_value = S32_MIN;
6048 		dst_reg->s32_max_value = S32_MAX;
6049 	}
6050 }
6051 
6052 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6053 			       struct bpf_reg_state *src_reg)
6054 {
6055 	bool src_known = tnum_is_const(src_reg->var_off);
6056 	bool dst_known = tnum_is_const(dst_reg->var_off);
6057 	s64 smin_val = src_reg->smin_value;
6058 
6059 	if (src_known && dst_known) {
6060 		/* dst_reg->var_off.value has been updated earlier */
6061 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6062 		return;
6063 	}
6064 
6065 	/* We get both minimum and maximum from the var_off. */
6066 	dst_reg->umin_value = dst_reg->var_off.value;
6067 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6068 
6069 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6070 		/* XORing two positive sign numbers gives a positive,
6071 		 * so safe to cast u64 result into s64.
6072 		 */
6073 		dst_reg->smin_value = dst_reg->umin_value;
6074 		dst_reg->smax_value = dst_reg->umax_value;
6075 	} else {
6076 		dst_reg->smin_value = S64_MIN;
6077 		dst_reg->smax_value = S64_MAX;
6078 	}
6079 
6080 	__update_reg_bounds(dst_reg);
6081 }
6082 
6083 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6084 				   u64 umin_val, u64 umax_val)
6085 {
6086 	/* We lose all sign bit information (except what we can pick
6087 	 * up from var_off)
6088 	 */
6089 	dst_reg->s32_min_value = S32_MIN;
6090 	dst_reg->s32_max_value = S32_MAX;
6091 	/* If we might shift our top bit out, then we know nothing */
6092 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6093 		dst_reg->u32_min_value = 0;
6094 		dst_reg->u32_max_value = U32_MAX;
6095 	} else {
6096 		dst_reg->u32_min_value <<= umin_val;
6097 		dst_reg->u32_max_value <<= umax_val;
6098 	}
6099 }
6100 
6101 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6102 				 struct bpf_reg_state *src_reg)
6103 {
6104 	u32 umax_val = src_reg->u32_max_value;
6105 	u32 umin_val = src_reg->u32_min_value;
6106 	/* u32 alu operation will zext upper bits */
6107 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6108 
6109 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6110 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6111 	/* Not required but being careful mark reg64 bounds as unknown so
6112 	 * that we are forced to pick them up from tnum and zext later and
6113 	 * if some path skips this step we are still safe.
6114 	 */
6115 	__mark_reg64_unbounded(dst_reg);
6116 	__update_reg32_bounds(dst_reg);
6117 }
6118 
6119 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6120 				   u64 umin_val, u64 umax_val)
6121 {
6122 	/* Special case <<32 because it is a common compiler pattern to sign
6123 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6124 	 * positive we know this shift will also be positive so we can track
6125 	 * bounds correctly. Otherwise we lose all sign bit information except
6126 	 * what we can pick up from var_off. Perhaps we can generalize this
6127 	 * later to shifts of any length.
6128 	 */
6129 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6130 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6131 	else
6132 		dst_reg->smax_value = S64_MAX;
6133 
6134 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6135 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6136 	else
6137 		dst_reg->smin_value = S64_MIN;
6138 
6139 	/* If we might shift our top bit out, then we know nothing */
6140 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6141 		dst_reg->umin_value = 0;
6142 		dst_reg->umax_value = U64_MAX;
6143 	} else {
6144 		dst_reg->umin_value <<= umin_val;
6145 		dst_reg->umax_value <<= umax_val;
6146 	}
6147 }
6148 
6149 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6150 			       struct bpf_reg_state *src_reg)
6151 {
6152 	u64 umax_val = src_reg->umax_value;
6153 	u64 umin_val = src_reg->umin_value;
6154 
6155 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
6156 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6157 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6158 
6159 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6160 	/* We may learn something more from the var_off */
6161 	__update_reg_bounds(dst_reg);
6162 }
6163 
6164 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6165 				 struct bpf_reg_state *src_reg)
6166 {
6167 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6168 	u32 umax_val = src_reg->u32_max_value;
6169 	u32 umin_val = src_reg->u32_min_value;
6170 
6171 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6172 	 * be negative, then either:
6173 	 * 1) src_reg might be zero, so the sign bit of the result is
6174 	 *    unknown, so we lose our signed bounds
6175 	 * 2) it's known negative, thus the unsigned bounds capture the
6176 	 *    signed bounds
6177 	 * 3) the signed bounds cross zero, so they tell us nothing
6178 	 *    about the result
6179 	 * If the value in dst_reg is known nonnegative, then again the
6180 	 * unsigned bounts capture the signed bounds.
6181 	 * Thus, in all cases it suffices to blow away our signed bounds
6182 	 * and rely on inferring new ones from the unsigned bounds and
6183 	 * var_off of the result.
6184 	 */
6185 	dst_reg->s32_min_value = S32_MIN;
6186 	dst_reg->s32_max_value = S32_MAX;
6187 
6188 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
6189 	dst_reg->u32_min_value >>= umax_val;
6190 	dst_reg->u32_max_value >>= umin_val;
6191 
6192 	__mark_reg64_unbounded(dst_reg);
6193 	__update_reg32_bounds(dst_reg);
6194 }
6195 
6196 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6197 			       struct bpf_reg_state *src_reg)
6198 {
6199 	u64 umax_val = src_reg->umax_value;
6200 	u64 umin_val = src_reg->umin_value;
6201 
6202 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6203 	 * be negative, then either:
6204 	 * 1) src_reg might be zero, so the sign bit of the result is
6205 	 *    unknown, so we lose our signed bounds
6206 	 * 2) it's known negative, thus the unsigned bounds capture the
6207 	 *    signed bounds
6208 	 * 3) the signed bounds cross zero, so they tell us nothing
6209 	 *    about the result
6210 	 * If the value in dst_reg is known nonnegative, then again the
6211 	 * unsigned bounts capture the signed bounds.
6212 	 * Thus, in all cases it suffices to blow away our signed bounds
6213 	 * and rely on inferring new ones from the unsigned bounds and
6214 	 * var_off of the result.
6215 	 */
6216 	dst_reg->smin_value = S64_MIN;
6217 	dst_reg->smax_value = S64_MAX;
6218 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6219 	dst_reg->umin_value >>= umax_val;
6220 	dst_reg->umax_value >>= umin_val;
6221 
6222 	/* Its not easy to operate on alu32 bounds here because it depends
6223 	 * on bits being shifted in. Take easy way out and mark unbounded
6224 	 * so we can recalculate later from tnum.
6225 	 */
6226 	__mark_reg32_unbounded(dst_reg);
6227 	__update_reg_bounds(dst_reg);
6228 }
6229 
6230 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6231 				  struct bpf_reg_state *src_reg)
6232 {
6233 	u64 umin_val = src_reg->u32_min_value;
6234 
6235 	/* Upon reaching here, src_known is true and
6236 	 * umax_val is equal to umin_val.
6237 	 */
6238 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6239 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6240 
6241 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6242 
6243 	/* blow away the dst_reg umin_value/umax_value and rely on
6244 	 * dst_reg var_off to refine the result.
6245 	 */
6246 	dst_reg->u32_min_value = 0;
6247 	dst_reg->u32_max_value = U32_MAX;
6248 
6249 	__mark_reg64_unbounded(dst_reg);
6250 	__update_reg32_bounds(dst_reg);
6251 }
6252 
6253 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6254 				struct bpf_reg_state *src_reg)
6255 {
6256 	u64 umin_val = src_reg->umin_value;
6257 
6258 	/* Upon reaching here, src_known is true and umax_val is equal
6259 	 * to umin_val.
6260 	 */
6261 	dst_reg->smin_value >>= umin_val;
6262 	dst_reg->smax_value >>= umin_val;
6263 
6264 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6265 
6266 	/* blow away the dst_reg umin_value/umax_value and rely on
6267 	 * dst_reg var_off to refine the result.
6268 	 */
6269 	dst_reg->umin_value = 0;
6270 	dst_reg->umax_value = U64_MAX;
6271 
6272 	/* Its not easy to operate on alu32 bounds here because it depends
6273 	 * on bits being shifted in from upper 32-bits. Take easy way out
6274 	 * and mark unbounded so we can recalculate later from tnum.
6275 	 */
6276 	__mark_reg32_unbounded(dst_reg);
6277 	__update_reg_bounds(dst_reg);
6278 }
6279 
6280 /* WARNING: This function does calculations on 64-bit values, but the actual
6281  * execution may occur on 32-bit values. Therefore, things like bitshifts
6282  * need extra checks in the 32-bit case.
6283  */
6284 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6285 				      struct bpf_insn *insn,
6286 				      struct bpf_reg_state *dst_reg,
6287 				      struct bpf_reg_state src_reg)
6288 {
6289 	struct bpf_reg_state *regs = cur_regs(env);
6290 	u8 opcode = BPF_OP(insn->code);
6291 	bool src_known;
6292 	s64 smin_val, smax_val;
6293 	u64 umin_val, umax_val;
6294 	s32 s32_min_val, s32_max_val;
6295 	u32 u32_min_val, u32_max_val;
6296 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
6297 	u32 dst = insn->dst_reg;
6298 	int ret;
6299 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
6300 
6301 	smin_val = src_reg.smin_value;
6302 	smax_val = src_reg.smax_value;
6303 	umin_val = src_reg.umin_value;
6304 	umax_val = src_reg.umax_value;
6305 
6306 	s32_min_val = src_reg.s32_min_value;
6307 	s32_max_val = src_reg.s32_max_value;
6308 	u32_min_val = src_reg.u32_min_value;
6309 	u32_max_val = src_reg.u32_max_value;
6310 
6311 	if (alu32) {
6312 		src_known = tnum_subreg_is_const(src_reg.var_off);
6313 		if ((src_known &&
6314 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6315 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6316 			/* Taint dst register if offset had invalid bounds
6317 			 * derived from e.g. dead branches.
6318 			 */
6319 			__mark_reg_unknown(env, dst_reg);
6320 			return 0;
6321 		}
6322 	} else {
6323 		src_known = tnum_is_const(src_reg.var_off);
6324 		if ((src_known &&
6325 		     (smin_val != smax_val || umin_val != umax_val)) ||
6326 		    smin_val > smax_val || umin_val > umax_val) {
6327 			/* Taint dst register if offset had invalid bounds
6328 			 * derived from e.g. dead branches.
6329 			 */
6330 			__mark_reg_unknown(env, dst_reg);
6331 			return 0;
6332 		}
6333 	}
6334 
6335 	if (!src_known &&
6336 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
6337 		__mark_reg_unknown(env, dst_reg);
6338 		return 0;
6339 	}
6340 
6341 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6342 	 * There are two classes of instructions: The first class we track both
6343 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
6344 	 * greatest amount of precision when alu operations are mixed with jmp32
6345 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6346 	 * and BPF_OR. This is possible because these ops have fairly easy to
6347 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6348 	 * See alu32 verifier tests for examples. The second class of
6349 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6350 	 * with regards to tracking sign/unsigned bounds because the bits may
6351 	 * cross subreg boundaries in the alu64 case. When this happens we mark
6352 	 * the reg unbounded in the subreg bound space and use the resulting
6353 	 * tnum to calculate an approximation of the sign/unsigned bounds.
6354 	 */
6355 	switch (opcode) {
6356 	case BPF_ADD:
6357 		ret = sanitize_val_alu(env, insn);
6358 		if (ret < 0) {
6359 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6360 			return ret;
6361 		}
6362 		scalar32_min_max_add(dst_reg, &src_reg);
6363 		scalar_min_max_add(dst_reg, &src_reg);
6364 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6365 		break;
6366 	case BPF_SUB:
6367 		ret = sanitize_val_alu(env, insn);
6368 		if (ret < 0) {
6369 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6370 			return ret;
6371 		}
6372 		scalar32_min_max_sub(dst_reg, &src_reg);
6373 		scalar_min_max_sub(dst_reg, &src_reg);
6374 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6375 		break;
6376 	case BPF_MUL:
6377 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6378 		scalar32_min_max_mul(dst_reg, &src_reg);
6379 		scalar_min_max_mul(dst_reg, &src_reg);
6380 		break;
6381 	case BPF_AND:
6382 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6383 		scalar32_min_max_and(dst_reg, &src_reg);
6384 		scalar_min_max_and(dst_reg, &src_reg);
6385 		break;
6386 	case BPF_OR:
6387 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6388 		scalar32_min_max_or(dst_reg, &src_reg);
6389 		scalar_min_max_or(dst_reg, &src_reg);
6390 		break;
6391 	case BPF_XOR:
6392 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6393 		scalar32_min_max_xor(dst_reg, &src_reg);
6394 		scalar_min_max_xor(dst_reg, &src_reg);
6395 		break;
6396 	case BPF_LSH:
6397 		if (umax_val >= insn_bitness) {
6398 			/* Shifts greater than 31 or 63 are undefined.
6399 			 * This includes shifts by a negative number.
6400 			 */
6401 			mark_reg_unknown(env, regs, insn->dst_reg);
6402 			break;
6403 		}
6404 		if (alu32)
6405 			scalar32_min_max_lsh(dst_reg, &src_reg);
6406 		else
6407 			scalar_min_max_lsh(dst_reg, &src_reg);
6408 		break;
6409 	case BPF_RSH:
6410 		if (umax_val >= insn_bitness) {
6411 			/* Shifts greater than 31 or 63 are undefined.
6412 			 * This includes shifts by a negative number.
6413 			 */
6414 			mark_reg_unknown(env, regs, insn->dst_reg);
6415 			break;
6416 		}
6417 		if (alu32)
6418 			scalar32_min_max_rsh(dst_reg, &src_reg);
6419 		else
6420 			scalar_min_max_rsh(dst_reg, &src_reg);
6421 		break;
6422 	case BPF_ARSH:
6423 		if (umax_val >= insn_bitness) {
6424 			/* Shifts greater than 31 or 63 are undefined.
6425 			 * This includes shifts by a negative number.
6426 			 */
6427 			mark_reg_unknown(env, regs, insn->dst_reg);
6428 			break;
6429 		}
6430 		if (alu32)
6431 			scalar32_min_max_arsh(dst_reg, &src_reg);
6432 		else
6433 			scalar_min_max_arsh(dst_reg, &src_reg);
6434 		break;
6435 	default:
6436 		mark_reg_unknown(env, regs, insn->dst_reg);
6437 		break;
6438 	}
6439 
6440 	/* ALU32 ops are zero extended into 64bit register */
6441 	if (alu32)
6442 		zext_32_to_64(dst_reg);
6443 
6444 	__update_reg_bounds(dst_reg);
6445 	__reg_deduce_bounds(dst_reg);
6446 	__reg_bound_offset(dst_reg);
6447 	return 0;
6448 }
6449 
6450 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6451  * and var_off.
6452  */
6453 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6454 				   struct bpf_insn *insn)
6455 {
6456 	struct bpf_verifier_state *vstate = env->cur_state;
6457 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6458 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
6459 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6460 	u8 opcode = BPF_OP(insn->code);
6461 	int err;
6462 
6463 	dst_reg = &regs[insn->dst_reg];
6464 	src_reg = NULL;
6465 	if (dst_reg->type != SCALAR_VALUE)
6466 		ptr_reg = dst_reg;
6467 	else
6468 		/* Make sure ID is cleared otherwise dst_reg min/max could be
6469 		 * incorrectly propagated into other registers by find_equal_scalars()
6470 		 */
6471 		dst_reg->id = 0;
6472 	if (BPF_SRC(insn->code) == BPF_X) {
6473 		src_reg = &regs[insn->src_reg];
6474 		if (src_reg->type != SCALAR_VALUE) {
6475 			if (dst_reg->type != SCALAR_VALUE) {
6476 				/* Combining two pointers by any ALU op yields
6477 				 * an arbitrary scalar. Disallow all math except
6478 				 * pointer subtraction
6479 				 */
6480 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6481 					mark_reg_unknown(env, regs, insn->dst_reg);
6482 					return 0;
6483 				}
6484 				verbose(env, "R%d pointer %s pointer prohibited\n",
6485 					insn->dst_reg,
6486 					bpf_alu_string[opcode >> 4]);
6487 				return -EACCES;
6488 			} else {
6489 				/* scalar += pointer
6490 				 * This is legal, but we have to reverse our
6491 				 * src/dest handling in computing the range
6492 				 */
6493 				err = mark_chain_precision(env, insn->dst_reg);
6494 				if (err)
6495 					return err;
6496 				return adjust_ptr_min_max_vals(env, insn,
6497 							       src_reg, dst_reg);
6498 			}
6499 		} else if (ptr_reg) {
6500 			/* pointer += scalar */
6501 			err = mark_chain_precision(env, insn->src_reg);
6502 			if (err)
6503 				return err;
6504 			return adjust_ptr_min_max_vals(env, insn,
6505 						       dst_reg, src_reg);
6506 		}
6507 	} else {
6508 		/* Pretend the src is a reg with a known value, since we only
6509 		 * need to be able to read from this state.
6510 		 */
6511 		off_reg.type = SCALAR_VALUE;
6512 		__mark_reg_known(&off_reg, insn->imm);
6513 		src_reg = &off_reg;
6514 		if (ptr_reg) /* pointer += K */
6515 			return adjust_ptr_min_max_vals(env, insn,
6516 						       ptr_reg, src_reg);
6517 	}
6518 
6519 	/* Got here implies adding two SCALAR_VALUEs */
6520 	if (WARN_ON_ONCE(ptr_reg)) {
6521 		print_verifier_state(env, state);
6522 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
6523 		return -EINVAL;
6524 	}
6525 	if (WARN_ON(!src_reg)) {
6526 		print_verifier_state(env, state);
6527 		verbose(env, "verifier internal error: no src_reg\n");
6528 		return -EINVAL;
6529 	}
6530 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
6531 }
6532 
6533 /* check validity of 32-bit and 64-bit arithmetic operations */
6534 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
6535 {
6536 	struct bpf_reg_state *regs = cur_regs(env);
6537 	u8 opcode = BPF_OP(insn->code);
6538 	int err;
6539 
6540 	if (opcode == BPF_END || opcode == BPF_NEG) {
6541 		if (opcode == BPF_NEG) {
6542 			if (BPF_SRC(insn->code) != 0 ||
6543 			    insn->src_reg != BPF_REG_0 ||
6544 			    insn->off != 0 || insn->imm != 0) {
6545 				verbose(env, "BPF_NEG uses reserved fields\n");
6546 				return -EINVAL;
6547 			}
6548 		} else {
6549 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
6550 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6551 			    BPF_CLASS(insn->code) == BPF_ALU64) {
6552 				verbose(env, "BPF_END uses reserved fields\n");
6553 				return -EINVAL;
6554 			}
6555 		}
6556 
6557 		/* check src operand */
6558 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6559 		if (err)
6560 			return err;
6561 
6562 		if (is_pointer_value(env, insn->dst_reg)) {
6563 			verbose(env, "R%d pointer arithmetic prohibited\n",
6564 				insn->dst_reg);
6565 			return -EACCES;
6566 		}
6567 
6568 		/* check dest operand */
6569 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
6570 		if (err)
6571 			return err;
6572 
6573 	} else if (opcode == BPF_MOV) {
6574 
6575 		if (BPF_SRC(insn->code) == BPF_X) {
6576 			if (insn->imm != 0 || insn->off != 0) {
6577 				verbose(env, "BPF_MOV uses reserved fields\n");
6578 				return -EINVAL;
6579 			}
6580 
6581 			/* check src operand */
6582 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6583 			if (err)
6584 				return err;
6585 		} else {
6586 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6587 				verbose(env, "BPF_MOV uses reserved fields\n");
6588 				return -EINVAL;
6589 			}
6590 		}
6591 
6592 		/* check dest operand, mark as required later */
6593 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6594 		if (err)
6595 			return err;
6596 
6597 		if (BPF_SRC(insn->code) == BPF_X) {
6598 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
6599 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6600 
6601 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6602 				/* case: R1 = R2
6603 				 * copy register state to dest reg
6604 				 */
6605 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
6606 					/* Assign src and dst registers the same ID
6607 					 * that will be used by find_equal_scalars()
6608 					 * to propagate min/max range.
6609 					 */
6610 					src_reg->id = ++env->id_gen;
6611 				*dst_reg = *src_reg;
6612 				dst_reg->live |= REG_LIVE_WRITTEN;
6613 				dst_reg->subreg_def = DEF_NOT_SUBREG;
6614 			} else {
6615 				/* R1 = (u32) R2 */
6616 				if (is_pointer_value(env, insn->src_reg)) {
6617 					verbose(env,
6618 						"R%d partial copy of pointer\n",
6619 						insn->src_reg);
6620 					return -EACCES;
6621 				} else if (src_reg->type == SCALAR_VALUE) {
6622 					*dst_reg = *src_reg;
6623 					/* Make sure ID is cleared otherwise
6624 					 * dst_reg min/max could be incorrectly
6625 					 * propagated into src_reg by find_equal_scalars()
6626 					 */
6627 					dst_reg->id = 0;
6628 					dst_reg->live |= REG_LIVE_WRITTEN;
6629 					dst_reg->subreg_def = env->insn_idx + 1;
6630 				} else {
6631 					mark_reg_unknown(env, regs,
6632 							 insn->dst_reg);
6633 				}
6634 				zext_32_to_64(dst_reg);
6635 			}
6636 		} else {
6637 			/* case: R = imm
6638 			 * remember the value we stored into this reg
6639 			 */
6640 			/* clear any state __mark_reg_known doesn't set */
6641 			mark_reg_unknown(env, regs, insn->dst_reg);
6642 			regs[insn->dst_reg].type = SCALAR_VALUE;
6643 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6644 				__mark_reg_known(regs + insn->dst_reg,
6645 						 insn->imm);
6646 			} else {
6647 				__mark_reg_known(regs + insn->dst_reg,
6648 						 (u32)insn->imm);
6649 			}
6650 		}
6651 
6652 	} else if (opcode > BPF_END) {
6653 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
6654 		return -EINVAL;
6655 
6656 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
6657 
6658 		if (BPF_SRC(insn->code) == BPF_X) {
6659 			if (insn->imm != 0 || insn->off != 0) {
6660 				verbose(env, "BPF_ALU uses reserved fields\n");
6661 				return -EINVAL;
6662 			}
6663 			/* check src1 operand */
6664 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6665 			if (err)
6666 				return err;
6667 		} else {
6668 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6669 				verbose(env, "BPF_ALU uses reserved fields\n");
6670 				return -EINVAL;
6671 			}
6672 		}
6673 
6674 		/* check src2 operand */
6675 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6676 		if (err)
6677 			return err;
6678 
6679 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6680 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
6681 			verbose(env, "div by zero\n");
6682 			return -EINVAL;
6683 		}
6684 
6685 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6686 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6687 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6688 
6689 			if (insn->imm < 0 || insn->imm >= size) {
6690 				verbose(env, "invalid shift %d\n", insn->imm);
6691 				return -EINVAL;
6692 			}
6693 		}
6694 
6695 		/* check dest operand */
6696 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6697 		if (err)
6698 			return err;
6699 
6700 		return adjust_reg_min_max_vals(env, insn);
6701 	}
6702 
6703 	return 0;
6704 }
6705 
6706 static void __find_good_pkt_pointers(struct bpf_func_state *state,
6707 				     struct bpf_reg_state *dst_reg,
6708 				     enum bpf_reg_type type, u16 new_range)
6709 {
6710 	struct bpf_reg_state *reg;
6711 	int i;
6712 
6713 	for (i = 0; i < MAX_BPF_REG; i++) {
6714 		reg = &state->regs[i];
6715 		if (reg->type == type && reg->id == dst_reg->id)
6716 			/* keep the maximum range already checked */
6717 			reg->range = max(reg->range, new_range);
6718 	}
6719 
6720 	bpf_for_each_spilled_reg(i, state, reg) {
6721 		if (!reg)
6722 			continue;
6723 		if (reg->type == type && reg->id == dst_reg->id)
6724 			reg->range = max(reg->range, new_range);
6725 	}
6726 }
6727 
6728 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
6729 				   struct bpf_reg_state *dst_reg,
6730 				   enum bpf_reg_type type,
6731 				   bool range_right_open)
6732 {
6733 	u16 new_range;
6734 	int i;
6735 
6736 	if (dst_reg->off < 0 ||
6737 	    (dst_reg->off == 0 && range_right_open))
6738 		/* This doesn't give us any range */
6739 		return;
6740 
6741 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
6742 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
6743 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
6744 		 * than pkt_end, but that's because it's also less than pkt.
6745 		 */
6746 		return;
6747 
6748 	new_range = dst_reg->off;
6749 	if (range_right_open)
6750 		new_range--;
6751 
6752 	/* Examples for register markings:
6753 	 *
6754 	 * pkt_data in dst register:
6755 	 *
6756 	 *   r2 = r3;
6757 	 *   r2 += 8;
6758 	 *   if (r2 > pkt_end) goto <handle exception>
6759 	 *   <access okay>
6760 	 *
6761 	 *   r2 = r3;
6762 	 *   r2 += 8;
6763 	 *   if (r2 < pkt_end) goto <access okay>
6764 	 *   <handle exception>
6765 	 *
6766 	 *   Where:
6767 	 *     r2 == dst_reg, pkt_end == src_reg
6768 	 *     r2=pkt(id=n,off=8,r=0)
6769 	 *     r3=pkt(id=n,off=0,r=0)
6770 	 *
6771 	 * pkt_data in src register:
6772 	 *
6773 	 *   r2 = r3;
6774 	 *   r2 += 8;
6775 	 *   if (pkt_end >= r2) goto <access okay>
6776 	 *   <handle exception>
6777 	 *
6778 	 *   r2 = r3;
6779 	 *   r2 += 8;
6780 	 *   if (pkt_end <= r2) goto <handle exception>
6781 	 *   <access okay>
6782 	 *
6783 	 *   Where:
6784 	 *     pkt_end == dst_reg, r2 == src_reg
6785 	 *     r2=pkt(id=n,off=8,r=0)
6786 	 *     r3=pkt(id=n,off=0,r=0)
6787 	 *
6788 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
6789 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6790 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
6791 	 * the check.
6792 	 */
6793 
6794 	/* If our ids match, then we must have the same max_value.  And we
6795 	 * don't care about the other reg's fixed offset, since if it's too big
6796 	 * the range won't allow anything.
6797 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6798 	 */
6799 	for (i = 0; i <= vstate->curframe; i++)
6800 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6801 					 new_range);
6802 }
6803 
6804 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
6805 {
6806 	struct tnum subreg = tnum_subreg(reg->var_off);
6807 	s32 sval = (s32)val;
6808 
6809 	switch (opcode) {
6810 	case BPF_JEQ:
6811 		if (tnum_is_const(subreg))
6812 			return !!tnum_equals_const(subreg, val);
6813 		break;
6814 	case BPF_JNE:
6815 		if (tnum_is_const(subreg))
6816 			return !tnum_equals_const(subreg, val);
6817 		break;
6818 	case BPF_JSET:
6819 		if ((~subreg.mask & subreg.value) & val)
6820 			return 1;
6821 		if (!((subreg.mask | subreg.value) & val))
6822 			return 0;
6823 		break;
6824 	case BPF_JGT:
6825 		if (reg->u32_min_value > val)
6826 			return 1;
6827 		else if (reg->u32_max_value <= val)
6828 			return 0;
6829 		break;
6830 	case BPF_JSGT:
6831 		if (reg->s32_min_value > sval)
6832 			return 1;
6833 		else if (reg->s32_max_value < sval)
6834 			return 0;
6835 		break;
6836 	case BPF_JLT:
6837 		if (reg->u32_max_value < val)
6838 			return 1;
6839 		else if (reg->u32_min_value >= val)
6840 			return 0;
6841 		break;
6842 	case BPF_JSLT:
6843 		if (reg->s32_max_value < sval)
6844 			return 1;
6845 		else if (reg->s32_min_value >= sval)
6846 			return 0;
6847 		break;
6848 	case BPF_JGE:
6849 		if (reg->u32_min_value >= val)
6850 			return 1;
6851 		else if (reg->u32_max_value < val)
6852 			return 0;
6853 		break;
6854 	case BPF_JSGE:
6855 		if (reg->s32_min_value >= sval)
6856 			return 1;
6857 		else if (reg->s32_max_value < sval)
6858 			return 0;
6859 		break;
6860 	case BPF_JLE:
6861 		if (reg->u32_max_value <= val)
6862 			return 1;
6863 		else if (reg->u32_min_value > val)
6864 			return 0;
6865 		break;
6866 	case BPF_JSLE:
6867 		if (reg->s32_max_value <= sval)
6868 			return 1;
6869 		else if (reg->s32_min_value > sval)
6870 			return 0;
6871 		break;
6872 	}
6873 
6874 	return -1;
6875 }
6876 
6877 
6878 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6879 {
6880 	s64 sval = (s64)val;
6881 
6882 	switch (opcode) {
6883 	case BPF_JEQ:
6884 		if (tnum_is_const(reg->var_off))
6885 			return !!tnum_equals_const(reg->var_off, val);
6886 		break;
6887 	case BPF_JNE:
6888 		if (tnum_is_const(reg->var_off))
6889 			return !tnum_equals_const(reg->var_off, val);
6890 		break;
6891 	case BPF_JSET:
6892 		if ((~reg->var_off.mask & reg->var_off.value) & val)
6893 			return 1;
6894 		if (!((reg->var_off.mask | reg->var_off.value) & val))
6895 			return 0;
6896 		break;
6897 	case BPF_JGT:
6898 		if (reg->umin_value > val)
6899 			return 1;
6900 		else if (reg->umax_value <= val)
6901 			return 0;
6902 		break;
6903 	case BPF_JSGT:
6904 		if (reg->smin_value > sval)
6905 			return 1;
6906 		else if (reg->smax_value < sval)
6907 			return 0;
6908 		break;
6909 	case BPF_JLT:
6910 		if (reg->umax_value < val)
6911 			return 1;
6912 		else if (reg->umin_value >= val)
6913 			return 0;
6914 		break;
6915 	case BPF_JSLT:
6916 		if (reg->smax_value < sval)
6917 			return 1;
6918 		else if (reg->smin_value >= sval)
6919 			return 0;
6920 		break;
6921 	case BPF_JGE:
6922 		if (reg->umin_value >= val)
6923 			return 1;
6924 		else if (reg->umax_value < val)
6925 			return 0;
6926 		break;
6927 	case BPF_JSGE:
6928 		if (reg->smin_value >= sval)
6929 			return 1;
6930 		else if (reg->smax_value < sval)
6931 			return 0;
6932 		break;
6933 	case BPF_JLE:
6934 		if (reg->umax_value <= val)
6935 			return 1;
6936 		else if (reg->umin_value > val)
6937 			return 0;
6938 		break;
6939 	case BPF_JSLE:
6940 		if (reg->smax_value <= sval)
6941 			return 1;
6942 		else if (reg->smin_value > sval)
6943 			return 0;
6944 		break;
6945 	}
6946 
6947 	return -1;
6948 }
6949 
6950 /* compute branch direction of the expression "if (reg opcode val) goto target;"
6951  * and return:
6952  *  1 - branch will be taken and "goto target" will be executed
6953  *  0 - branch will not be taken and fall-through to next insn
6954  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6955  *      range [0,10]
6956  */
6957 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6958 			   bool is_jmp32)
6959 {
6960 	if (__is_pointer_value(false, reg)) {
6961 		if (!reg_type_not_null(reg->type))
6962 			return -1;
6963 
6964 		/* If pointer is valid tests against zero will fail so we can
6965 		 * use this to direct branch taken.
6966 		 */
6967 		if (val != 0)
6968 			return -1;
6969 
6970 		switch (opcode) {
6971 		case BPF_JEQ:
6972 			return 0;
6973 		case BPF_JNE:
6974 			return 1;
6975 		default:
6976 			return -1;
6977 		}
6978 	}
6979 
6980 	if (is_jmp32)
6981 		return is_branch32_taken(reg, val, opcode);
6982 	return is_branch64_taken(reg, val, opcode);
6983 }
6984 
6985 /* Adjusts the register min/max values in the case that the dst_reg is the
6986  * variable register that we are working on, and src_reg is a constant or we're
6987  * simply doing a BPF_K check.
6988  * In JEQ/JNE cases we also adjust the var_off values.
6989  */
6990 static void reg_set_min_max(struct bpf_reg_state *true_reg,
6991 			    struct bpf_reg_state *false_reg,
6992 			    u64 val, u32 val32,
6993 			    u8 opcode, bool is_jmp32)
6994 {
6995 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
6996 	struct tnum false_64off = false_reg->var_off;
6997 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
6998 	struct tnum true_64off = true_reg->var_off;
6999 	s64 sval = (s64)val;
7000 	s32 sval32 = (s32)val32;
7001 
7002 	/* If the dst_reg is a pointer, we can't learn anything about its
7003 	 * variable offset from the compare (unless src_reg were a pointer into
7004 	 * the same object, but we don't bother with that.
7005 	 * Since false_reg and true_reg have the same type by construction, we
7006 	 * only need to check one of them for pointerness.
7007 	 */
7008 	if (__is_pointer_value(false, false_reg))
7009 		return;
7010 
7011 	switch (opcode) {
7012 	case BPF_JEQ:
7013 	case BPF_JNE:
7014 	{
7015 		struct bpf_reg_state *reg =
7016 			opcode == BPF_JEQ ? true_reg : false_reg;
7017 
7018 		/* JEQ/JNE comparison doesn't change the register equivalence.
7019 		 * r1 = r2;
7020 		 * if (r1 == 42) goto label;
7021 		 * ...
7022 		 * label: // here both r1 and r2 are known to be 42.
7023 		 *
7024 		 * Hence when marking register as known preserve it's ID.
7025 		 */
7026 		if (is_jmp32)
7027 			__mark_reg32_known(reg, val32);
7028 		else
7029 			___mark_reg_known(reg, val);
7030 		break;
7031 	}
7032 	case BPF_JSET:
7033 		if (is_jmp32) {
7034 			false_32off = tnum_and(false_32off, tnum_const(~val32));
7035 			if (is_power_of_2(val32))
7036 				true_32off = tnum_or(true_32off,
7037 						     tnum_const(val32));
7038 		} else {
7039 			false_64off = tnum_and(false_64off, tnum_const(~val));
7040 			if (is_power_of_2(val))
7041 				true_64off = tnum_or(true_64off,
7042 						     tnum_const(val));
7043 		}
7044 		break;
7045 	case BPF_JGE:
7046 	case BPF_JGT:
7047 	{
7048 		if (is_jmp32) {
7049 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
7050 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7051 
7052 			false_reg->u32_max_value = min(false_reg->u32_max_value,
7053 						       false_umax);
7054 			true_reg->u32_min_value = max(true_reg->u32_min_value,
7055 						      true_umin);
7056 		} else {
7057 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
7058 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7059 
7060 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
7061 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
7062 		}
7063 		break;
7064 	}
7065 	case BPF_JSGE:
7066 	case BPF_JSGT:
7067 	{
7068 		if (is_jmp32) {
7069 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
7070 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7071 
7072 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7073 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7074 		} else {
7075 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
7076 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7077 
7078 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
7079 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
7080 		}
7081 		break;
7082 	}
7083 	case BPF_JLE:
7084 	case BPF_JLT:
7085 	{
7086 		if (is_jmp32) {
7087 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
7088 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7089 
7090 			false_reg->u32_min_value = max(false_reg->u32_min_value,
7091 						       false_umin);
7092 			true_reg->u32_max_value = min(true_reg->u32_max_value,
7093 						      true_umax);
7094 		} else {
7095 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
7096 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7097 
7098 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
7099 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
7100 		}
7101 		break;
7102 	}
7103 	case BPF_JSLE:
7104 	case BPF_JSLT:
7105 	{
7106 		if (is_jmp32) {
7107 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
7108 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7109 
7110 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7111 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7112 		} else {
7113 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
7114 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7115 
7116 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
7117 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
7118 		}
7119 		break;
7120 	}
7121 	default:
7122 		return;
7123 	}
7124 
7125 	if (is_jmp32) {
7126 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7127 					     tnum_subreg(false_32off));
7128 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7129 					    tnum_subreg(true_32off));
7130 		__reg_combine_32_into_64(false_reg);
7131 		__reg_combine_32_into_64(true_reg);
7132 	} else {
7133 		false_reg->var_off = false_64off;
7134 		true_reg->var_off = true_64off;
7135 		__reg_combine_64_into_32(false_reg);
7136 		__reg_combine_64_into_32(true_reg);
7137 	}
7138 }
7139 
7140 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7141  * the variable reg.
7142  */
7143 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7144 				struct bpf_reg_state *false_reg,
7145 				u64 val, u32 val32,
7146 				u8 opcode, bool is_jmp32)
7147 {
7148 	/* How can we transform "a <op> b" into "b <op> a"? */
7149 	static const u8 opcode_flip[16] = {
7150 		/* these stay the same */
7151 		[BPF_JEQ  >> 4] = BPF_JEQ,
7152 		[BPF_JNE  >> 4] = BPF_JNE,
7153 		[BPF_JSET >> 4] = BPF_JSET,
7154 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
7155 		[BPF_JGE  >> 4] = BPF_JLE,
7156 		[BPF_JGT  >> 4] = BPF_JLT,
7157 		[BPF_JLE  >> 4] = BPF_JGE,
7158 		[BPF_JLT  >> 4] = BPF_JGT,
7159 		[BPF_JSGE >> 4] = BPF_JSLE,
7160 		[BPF_JSGT >> 4] = BPF_JSLT,
7161 		[BPF_JSLE >> 4] = BPF_JSGE,
7162 		[BPF_JSLT >> 4] = BPF_JSGT
7163 	};
7164 	opcode = opcode_flip[opcode >> 4];
7165 	/* This uses zero as "not present in table"; luckily the zero opcode,
7166 	 * BPF_JA, can't get here.
7167 	 */
7168 	if (opcode)
7169 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7170 }
7171 
7172 /* Regs are known to be equal, so intersect their min/max/var_off */
7173 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7174 				  struct bpf_reg_state *dst_reg)
7175 {
7176 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7177 							dst_reg->umin_value);
7178 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7179 							dst_reg->umax_value);
7180 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7181 							dst_reg->smin_value);
7182 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7183 							dst_reg->smax_value);
7184 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7185 							     dst_reg->var_off);
7186 	/* We might have learned new bounds from the var_off. */
7187 	__update_reg_bounds(src_reg);
7188 	__update_reg_bounds(dst_reg);
7189 	/* We might have learned something about the sign bit. */
7190 	__reg_deduce_bounds(src_reg);
7191 	__reg_deduce_bounds(dst_reg);
7192 	/* We might have learned some bits from the bounds. */
7193 	__reg_bound_offset(src_reg);
7194 	__reg_bound_offset(dst_reg);
7195 	/* Intersecting with the old var_off might have improved our bounds
7196 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7197 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
7198 	 */
7199 	__update_reg_bounds(src_reg);
7200 	__update_reg_bounds(dst_reg);
7201 }
7202 
7203 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7204 				struct bpf_reg_state *true_dst,
7205 				struct bpf_reg_state *false_src,
7206 				struct bpf_reg_state *false_dst,
7207 				u8 opcode)
7208 {
7209 	switch (opcode) {
7210 	case BPF_JEQ:
7211 		__reg_combine_min_max(true_src, true_dst);
7212 		break;
7213 	case BPF_JNE:
7214 		__reg_combine_min_max(false_src, false_dst);
7215 		break;
7216 	}
7217 }
7218 
7219 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7220 				 struct bpf_reg_state *reg, u32 id,
7221 				 bool is_null)
7222 {
7223 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
7224 	    !WARN_ON_ONCE(!reg->id)) {
7225 		/* Old offset (both fixed and variable parts) should
7226 		 * have been known-zero, because we don't allow pointer
7227 		 * arithmetic on pointers that might be NULL.
7228 		 */
7229 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7230 				 !tnum_equals_const(reg->var_off, 0) ||
7231 				 reg->off)) {
7232 			__mark_reg_known_zero(reg);
7233 			reg->off = 0;
7234 		}
7235 		if (is_null) {
7236 			reg->type = SCALAR_VALUE;
7237 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
7238 			const struct bpf_map *map = reg->map_ptr;
7239 
7240 			if (map->inner_map_meta) {
7241 				reg->type = CONST_PTR_TO_MAP;
7242 				reg->map_ptr = map->inner_map_meta;
7243 			} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
7244 				reg->type = PTR_TO_XDP_SOCK;
7245 			} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7246 				   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7247 				reg->type = PTR_TO_SOCKET;
7248 			} else {
7249 				reg->type = PTR_TO_MAP_VALUE;
7250 			}
7251 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7252 			reg->type = PTR_TO_SOCKET;
7253 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7254 			reg->type = PTR_TO_SOCK_COMMON;
7255 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7256 			reg->type = PTR_TO_TCP_SOCK;
7257 		} else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7258 			reg->type = PTR_TO_BTF_ID;
7259 		} else if (reg->type == PTR_TO_MEM_OR_NULL) {
7260 			reg->type = PTR_TO_MEM;
7261 		} else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7262 			reg->type = PTR_TO_RDONLY_BUF;
7263 		} else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
7264 			reg->type = PTR_TO_RDWR_BUF;
7265 		}
7266 		if (is_null) {
7267 			/* We don't need id and ref_obj_id from this point
7268 			 * onwards anymore, thus we should better reset it,
7269 			 * so that state pruning has chances to take effect.
7270 			 */
7271 			reg->id = 0;
7272 			reg->ref_obj_id = 0;
7273 		} else if (!reg_may_point_to_spin_lock(reg)) {
7274 			/* For not-NULL ptr, reg->ref_obj_id will be reset
7275 			 * in release_reg_references().
7276 			 *
7277 			 * reg->id is still used by spin_lock ptr. Other
7278 			 * than spin_lock ptr type, reg->id can be reset.
7279 			 */
7280 			reg->id = 0;
7281 		}
7282 	}
7283 }
7284 
7285 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7286 				    bool is_null)
7287 {
7288 	struct bpf_reg_state *reg;
7289 	int i;
7290 
7291 	for (i = 0; i < MAX_BPF_REG; i++)
7292 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7293 
7294 	bpf_for_each_spilled_reg(i, state, reg) {
7295 		if (!reg)
7296 			continue;
7297 		mark_ptr_or_null_reg(state, reg, id, is_null);
7298 	}
7299 }
7300 
7301 /* The logic is similar to find_good_pkt_pointers(), both could eventually
7302  * be folded together at some point.
7303  */
7304 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7305 				  bool is_null)
7306 {
7307 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7308 	struct bpf_reg_state *regs = state->regs;
7309 	u32 ref_obj_id = regs[regno].ref_obj_id;
7310 	u32 id = regs[regno].id;
7311 	int i;
7312 
7313 	if (ref_obj_id && ref_obj_id == id && is_null)
7314 		/* regs[regno] is in the " == NULL" branch.
7315 		 * No one could have freed the reference state before
7316 		 * doing the NULL check.
7317 		 */
7318 		WARN_ON_ONCE(release_reference_state(state, id));
7319 
7320 	for (i = 0; i <= vstate->curframe; i++)
7321 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
7322 }
7323 
7324 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7325 				   struct bpf_reg_state *dst_reg,
7326 				   struct bpf_reg_state *src_reg,
7327 				   struct bpf_verifier_state *this_branch,
7328 				   struct bpf_verifier_state *other_branch)
7329 {
7330 	if (BPF_SRC(insn->code) != BPF_X)
7331 		return false;
7332 
7333 	/* Pointers are always 64-bit. */
7334 	if (BPF_CLASS(insn->code) == BPF_JMP32)
7335 		return false;
7336 
7337 	switch (BPF_OP(insn->code)) {
7338 	case BPF_JGT:
7339 		if ((dst_reg->type == PTR_TO_PACKET &&
7340 		     src_reg->type == PTR_TO_PACKET_END) ||
7341 		    (dst_reg->type == PTR_TO_PACKET_META &&
7342 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7343 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7344 			find_good_pkt_pointers(this_branch, dst_reg,
7345 					       dst_reg->type, false);
7346 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7347 			    src_reg->type == PTR_TO_PACKET) ||
7348 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7349 			    src_reg->type == PTR_TO_PACKET_META)) {
7350 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
7351 			find_good_pkt_pointers(other_branch, src_reg,
7352 					       src_reg->type, true);
7353 		} else {
7354 			return false;
7355 		}
7356 		break;
7357 	case BPF_JLT:
7358 		if ((dst_reg->type == PTR_TO_PACKET &&
7359 		     src_reg->type == PTR_TO_PACKET_END) ||
7360 		    (dst_reg->type == PTR_TO_PACKET_META &&
7361 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7362 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7363 			find_good_pkt_pointers(other_branch, dst_reg,
7364 					       dst_reg->type, true);
7365 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7366 			    src_reg->type == PTR_TO_PACKET) ||
7367 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7368 			    src_reg->type == PTR_TO_PACKET_META)) {
7369 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
7370 			find_good_pkt_pointers(this_branch, src_reg,
7371 					       src_reg->type, false);
7372 		} else {
7373 			return false;
7374 		}
7375 		break;
7376 	case BPF_JGE:
7377 		if ((dst_reg->type == PTR_TO_PACKET &&
7378 		     src_reg->type == PTR_TO_PACKET_END) ||
7379 		    (dst_reg->type == PTR_TO_PACKET_META &&
7380 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7381 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7382 			find_good_pkt_pointers(this_branch, dst_reg,
7383 					       dst_reg->type, true);
7384 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7385 			    src_reg->type == PTR_TO_PACKET) ||
7386 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7387 			    src_reg->type == PTR_TO_PACKET_META)) {
7388 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7389 			find_good_pkt_pointers(other_branch, src_reg,
7390 					       src_reg->type, false);
7391 		} else {
7392 			return false;
7393 		}
7394 		break;
7395 	case BPF_JLE:
7396 		if ((dst_reg->type == PTR_TO_PACKET &&
7397 		     src_reg->type == PTR_TO_PACKET_END) ||
7398 		    (dst_reg->type == PTR_TO_PACKET_META &&
7399 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7400 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7401 			find_good_pkt_pointers(other_branch, dst_reg,
7402 					       dst_reg->type, false);
7403 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7404 			    src_reg->type == PTR_TO_PACKET) ||
7405 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7406 			    src_reg->type == PTR_TO_PACKET_META)) {
7407 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7408 			find_good_pkt_pointers(this_branch, src_reg,
7409 					       src_reg->type, true);
7410 		} else {
7411 			return false;
7412 		}
7413 		break;
7414 	default:
7415 		return false;
7416 	}
7417 
7418 	return true;
7419 }
7420 
7421 static void find_equal_scalars(struct bpf_verifier_state *vstate,
7422 			       struct bpf_reg_state *known_reg)
7423 {
7424 	struct bpf_func_state *state;
7425 	struct bpf_reg_state *reg;
7426 	int i, j;
7427 
7428 	for (i = 0; i <= vstate->curframe; i++) {
7429 		state = vstate->frame[i];
7430 		for (j = 0; j < MAX_BPF_REG; j++) {
7431 			reg = &state->regs[j];
7432 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7433 				*reg = *known_reg;
7434 		}
7435 
7436 		bpf_for_each_spilled_reg(j, state, reg) {
7437 			if (!reg)
7438 				continue;
7439 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7440 				*reg = *known_reg;
7441 		}
7442 	}
7443 }
7444 
7445 static int check_cond_jmp_op(struct bpf_verifier_env *env,
7446 			     struct bpf_insn *insn, int *insn_idx)
7447 {
7448 	struct bpf_verifier_state *this_branch = env->cur_state;
7449 	struct bpf_verifier_state *other_branch;
7450 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
7451 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
7452 	u8 opcode = BPF_OP(insn->code);
7453 	bool is_jmp32;
7454 	int pred = -1;
7455 	int err;
7456 
7457 	/* Only conditional jumps are expected to reach here. */
7458 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
7459 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
7460 		return -EINVAL;
7461 	}
7462 
7463 	if (BPF_SRC(insn->code) == BPF_X) {
7464 		if (insn->imm != 0) {
7465 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7466 			return -EINVAL;
7467 		}
7468 
7469 		/* check src1 operand */
7470 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
7471 		if (err)
7472 			return err;
7473 
7474 		if (is_pointer_value(env, insn->src_reg)) {
7475 			verbose(env, "R%d pointer comparison prohibited\n",
7476 				insn->src_reg);
7477 			return -EACCES;
7478 		}
7479 		src_reg = &regs[insn->src_reg];
7480 	} else {
7481 		if (insn->src_reg != BPF_REG_0) {
7482 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7483 			return -EINVAL;
7484 		}
7485 	}
7486 
7487 	/* check src2 operand */
7488 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7489 	if (err)
7490 		return err;
7491 
7492 	dst_reg = &regs[insn->dst_reg];
7493 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
7494 
7495 	if (BPF_SRC(insn->code) == BPF_K) {
7496 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7497 	} else if (src_reg->type == SCALAR_VALUE &&
7498 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7499 		pred = is_branch_taken(dst_reg,
7500 				       tnum_subreg(src_reg->var_off).value,
7501 				       opcode,
7502 				       is_jmp32);
7503 	} else if (src_reg->type == SCALAR_VALUE &&
7504 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7505 		pred = is_branch_taken(dst_reg,
7506 				       src_reg->var_off.value,
7507 				       opcode,
7508 				       is_jmp32);
7509 	}
7510 
7511 	if (pred >= 0) {
7512 		/* If we get here with a dst_reg pointer type it is because
7513 		 * above is_branch_taken() special cased the 0 comparison.
7514 		 */
7515 		if (!__is_pointer_value(false, dst_reg))
7516 			err = mark_chain_precision(env, insn->dst_reg);
7517 		if (BPF_SRC(insn->code) == BPF_X && !err)
7518 			err = mark_chain_precision(env, insn->src_reg);
7519 		if (err)
7520 			return err;
7521 	}
7522 	if (pred == 1) {
7523 		/* only follow the goto, ignore fall-through */
7524 		*insn_idx += insn->off;
7525 		return 0;
7526 	} else if (pred == 0) {
7527 		/* only follow fall-through branch, since
7528 		 * that's where the program will go
7529 		 */
7530 		return 0;
7531 	}
7532 
7533 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7534 				  false);
7535 	if (!other_branch)
7536 		return -EFAULT;
7537 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
7538 
7539 	/* detect if we are comparing against a constant value so we can adjust
7540 	 * our min/max values for our dst register.
7541 	 * this is only legit if both are scalars (or pointers to the same
7542 	 * object, I suppose, but we don't support that right now), because
7543 	 * otherwise the different base pointers mean the offsets aren't
7544 	 * comparable.
7545 	 */
7546 	if (BPF_SRC(insn->code) == BPF_X) {
7547 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
7548 
7549 		if (dst_reg->type == SCALAR_VALUE &&
7550 		    src_reg->type == SCALAR_VALUE) {
7551 			if (tnum_is_const(src_reg->var_off) ||
7552 			    (is_jmp32 &&
7553 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
7554 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
7555 						dst_reg,
7556 						src_reg->var_off.value,
7557 						tnum_subreg(src_reg->var_off).value,
7558 						opcode, is_jmp32);
7559 			else if (tnum_is_const(dst_reg->var_off) ||
7560 				 (is_jmp32 &&
7561 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
7562 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
7563 						    src_reg,
7564 						    dst_reg->var_off.value,
7565 						    tnum_subreg(dst_reg->var_off).value,
7566 						    opcode, is_jmp32);
7567 			else if (!is_jmp32 &&
7568 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
7569 				/* Comparing for equality, we can combine knowledge */
7570 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
7571 						    &other_branch_regs[insn->dst_reg],
7572 						    src_reg, dst_reg, opcode);
7573 			if (src_reg->id &&
7574 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
7575 				find_equal_scalars(this_branch, src_reg);
7576 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
7577 			}
7578 
7579 		}
7580 	} else if (dst_reg->type == SCALAR_VALUE) {
7581 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
7582 					dst_reg, insn->imm, (u32)insn->imm,
7583 					opcode, is_jmp32);
7584 	}
7585 
7586 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
7587 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
7588 		find_equal_scalars(this_branch, dst_reg);
7589 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
7590 	}
7591 
7592 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7593 	 * NOTE: these optimizations below are related with pointer comparison
7594 	 *       which will never be JMP32.
7595 	 */
7596 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
7597 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
7598 	    reg_type_may_be_null(dst_reg->type)) {
7599 		/* Mark all identical registers in each branch as either
7600 		 * safe or unknown depending R == 0 or R != 0 conditional.
7601 		 */
7602 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7603 				      opcode == BPF_JNE);
7604 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7605 				      opcode == BPF_JEQ);
7606 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7607 					   this_branch, other_branch) &&
7608 		   is_pointer_value(env, insn->dst_reg)) {
7609 		verbose(env, "R%d pointer comparison prohibited\n",
7610 			insn->dst_reg);
7611 		return -EACCES;
7612 	}
7613 	if (env->log.level & BPF_LOG_LEVEL)
7614 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
7615 	return 0;
7616 }
7617 
7618 /* verify BPF_LD_IMM64 instruction */
7619 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
7620 {
7621 	struct bpf_insn_aux_data *aux = cur_aux(env);
7622 	struct bpf_reg_state *regs = cur_regs(env);
7623 	struct bpf_reg_state *dst_reg;
7624 	struct bpf_map *map;
7625 	int err;
7626 
7627 	if (BPF_SIZE(insn->code) != BPF_DW) {
7628 		verbose(env, "invalid BPF_LD_IMM insn\n");
7629 		return -EINVAL;
7630 	}
7631 	if (insn->off != 0) {
7632 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
7633 		return -EINVAL;
7634 	}
7635 
7636 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
7637 	if (err)
7638 		return err;
7639 
7640 	dst_reg = &regs[insn->dst_reg];
7641 	if (insn->src_reg == 0) {
7642 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7643 
7644 		dst_reg->type = SCALAR_VALUE;
7645 		__mark_reg_known(&regs[insn->dst_reg], imm);
7646 		return 0;
7647 	}
7648 
7649 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
7650 		mark_reg_known_zero(env, regs, insn->dst_reg);
7651 
7652 		dst_reg->type = aux->btf_var.reg_type;
7653 		switch (dst_reg->type) {
7654 		case PTR_TO_MEM:
7655 			dst_reg->mem_size = aux->btf_var.mem_size;
7656 			break;
7657 		case PTR_TO_BTF_ID:
7658 		case PTR_TO_PERCPU_BTF_ID:
7659 			dst_reg->btf_id = aux->btf_var.btf_id;
7660 			break;
7661 		default:
7662 			verbose(env, "bpf verifier is misconfigured\n");
7663 			return -EFAULT;
7664 		}
7665 		return 0;
7666 	}
7667 
7668 	map = env->used_maps[aux->map_index];
7669 	mark_reg_known_zero(env, regs, insn->dst_reg);
7670 	dst_reg->map_ptr = map;
7671 
7672 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
7673 		dst_reg->type = PTR_TO_MAP_VALUE;
7674 		dst_reg->off = aux->map_off;
7675 		if (map_value_has_spin_lock(map))
7676 			dst_reg->id = ++env->id_gen;
7677 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7678 		dst_reg->type = CONST_PTR_TO_MAP;
7679 	} else {
7680 		verbose(env, "bpf verifier is misconfigured\n");
7681 		return -EINVAL;
7682 	}
7683 
7684 	return 0;
7685 }
7686 
7687 static bool may_access_skb(enum bpf_prog_type type)
7688 {
7689 	switch (type) {
7690 	case BPF_PROG_TYPE_SOCKET_FILTER:
7691 	case BPF_PROG_TYPE_SCHED_CLS:
7692 	case BPF_PROG_TYPE_SCHED_ACT:
7693 		return true;
7694 	default:
7695 		return false;
7696 	}
7697 }
7698 
7699 /* verify safety of LD_ABS|LD_IND instructions:
7700  * - they can only appear in the programs where ctx == skb
7701  * - since they are wrappers of function calls, they scratch R1-R5 registers,
7702  *   preserve R6-R9, and store return value into R0
7703  *
7704  * Implicit input:
7705  *   ctx == skb == R6 == CTX
7706  *
7707  * Explicit input:
7708  *   SRC == any register
7709  *   IMM == 32-bit immediate
7710  *
7711  * Output:
7712  *   R0 - 8/16/32-bit skb data converted to cpu endianness
7713  */
7714 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
7715 {
7716 	struct bpf_reg_state *regs = cur_regs(env);
7717 	static const int ctx_reg = BPF_REG_6;
7718 	u8 mode = BPF_MODE(insn->code);
7719 	int i, err;
7720 
7721 	if (!may_access_skb(resolve_prog_type(env->prog))) {
7722 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
7723 		return -EINVAL;
7724 	}
7725 
7726 	if (!env->ops->gen_ld_abs) {
7727 		verbose(env, "bpf verifier is misconfigured\n");
7728 		return -EINVAL;
7729 	}
7730 
7731 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
7732 	    BPF_SIZE(insn->code) == BPF_DW ||
7733 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
7734 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
7735 		return -EINVAL;
7736 	}
7737 
7738 	/* check whether implicit source operand (register R6) is readable */
7739 	err = check_reg_arg(env, ctx_reg, SRC_OP);
7740 	if (err)
7741 		return err;
7742 
7743 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7744 	 * gen_ld_abs() may terminate the program at runtime, leading to
7745 	 * reference leak.
7746 	 */
7747 	err = check_reference_leak(env);
7748 	if (err) {
7749 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7750 		return err;
7751 	}
7752 
7753 	if (env->cur_state->active_spin_lock) {
7754 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7755 		return -EINVAL;
7756 	}
7757 
7758 	if (regs[ctx_reg].type != PTR_TO_CTX) {
7759 		verbose(env,
7760 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
7761 		return -EINVAL;
7762 	}
7763 
7764 	if (mode == BPF_IND) {
7765 		/* check explicit source operand */
7766 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
7767 		if (err)
7768 			return err;
7769 	}
7770 
7771 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7772 	if (err < 0)
7773 		return err;
7774 
7775 	/* reset caller saved regs to unreadable */
7776 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7777 		mark_reg_not_init(env, regs, caller_saved[i]);
7778 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7779 	}
7780 
7781 	/* mark destination R0 register as readable, since it contains
7782 	 * the value fetched from the packet.
7783 	 * Already marked as written above.
7784 	 */
7785 	mark_reg_unknown(env, regs, BPF_REG_0);
7786 	/* ld_abs load up to 32-bit skb data. */
7787 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
7788 	return 0;
7789 }
7790 
7791 static int check_return_code(struct bpf_verifier_env *env)
7792 {
7793 	struct tnum enforce_attach_type_range = tnum_unknown;
7794 	const struct bpf_prog *prog = env->prog;
7795 	struct bpf_reg_state *reg;
7796 	struct tnum range = tnum_range(0, 1);
7797 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7798 	int err;
7799 
7800 	/* LSM and struct_ops func-ptr's return type could be "void" */
7801 	if ((prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7802 	     prog_type == BPF_PROG_TYPE_LSM) &&
7803 	    !prog->aux->attach_func_proto->type)
7804 		return 0;
7805 
7806 	/* eBPF calling convetion is such that R0 is used
7807 	 * to return the value from eBPF program.
7808 	 * Make sure that it's readable at this time
7809 	 * of bpf_exit, which means that program wrote
7810 	 * something into it earlier
7811 	 */
7812 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7813 	if (err)
7814 		return err;
7815 
7816 	if (is_pointer_value(env, BPF_REG_0)) {
7817 		verbose(env, "R0 leaks addr as return value\n");
7818 		return -EACCES;
7819 	}
7820 
7821 	switch (prog_type) {
7822 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7823 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
7824 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7825 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7826 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7827 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7828 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
7829 			range = tnum_range(1, 1);
7830 		break;
7831 	case BPF_PROG_TYPE_CGROUP_SKB:
7832 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7833 			range = tnum_range(0, 3);
7834 			enforce_attach_type_range = tnum_range(2, 3);
7835 		}
7836 		break;
7837 	case BPF_PROG_TYPE_CGROUP_SOCK:
7838 	case BPF_PROG_TYPE_SOCK_OPS:
7839 	case BPF_PROG_TYPE_CGROUP_DEVICE:
7840 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
7841 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
7842 		break;
7843 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
7844 		if (!env->prog->aux->attach_btf_id)
7845 			return 0;
7846 		range = tnum_const(0);
7847 		break;
7848 	case BPF_PROG_TYPE_TRACING:
7849 		switch (env->prog->expected_attach_type) {
7850 		case BPF_TRACE_FENTRY:
7851 		case BPF_TRACE_FEXIT:
7852 			range = tnum_const(0);
7853 			break;
7854 		case BPF_TRACE_RAW_TP:
7855 		case BPF_MODIFY_RETURN:
7856 			return 0;
7857 		case BPF_TRACE_ITER:
7858 			break;
7859 		default:
7860 			return -ENOTSUPP;
7861 		}
7862 		break;
7863 	case BPF_PROG_TYPE_SK_LOOKUP:
7864 		range = tnum_range(SK_DROP, SK_PASS);
7865 		break;
7866 	case BPF_PROG_TYPE_EXT:
7867 		/* freplace program can return anything as its return value
7868 		 * depends on the to-be-replaced kernel func or bpf program.
7869 		 */
7870 	default:
7871 		return 0;
7872 	}
7873 
7874 	reg = cur_regs(env) + BPF_REG_0;
7875 	if (reg->type != SCALAR_VALUE) {
7876 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
7877 			reg_type_str[reg->type]);
7878 		return -EINVAL;
7879 	}
7880 
7881 	if (!tnum_in(range, reg->var_off)) {
7882 		char tn_buf[48];
7883 
7884 		verbose(env, "At program exit the register R0 ");
7885 		if (!tnum_is_unknown(reg->var_off)) {
7886 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7887 			verbose(env, "has value %s", tn_buf);
7888 		} else {
7889 			verbose(env, "has unknown scalar value");
7890 		}
7891 		tnum_strn(tn_buf, sizeof(tn_buf), range);
7892 		verbose(env, " should have been in %s\n", tn_buf);
7893 		return -EINVAL;
7894 	}
7895 
7896 	if (!tnum_is_unknown(enforce_attach_type_range) &&
7897 	    tnum_in(enforce_attach_type_range, reg->var_off))
7898 		env->prog->enforce_expected_attach_type = 1;
7899 	return 0;
7900 }
7901 
7902 /* non-recursive DFS pseudo code
7903  * 1  procedure DFS-iterative(G,v):
7904  * 2      label v as discovered
7905  * 3      let S be a stack
7906  * 4      S.push(v)
7907  * 5      while S is not empty
7908  * 6            t <- S.pop()
7909  * 7            if t is what we're looking for:
7910  * 8                return t
7911  * 9            for all edges e in G.adjacentEdges(t) do
7912  * 10               if edge e is already labelled
7913  * 11                   continue with the next edge
7914  * 12               w <- G.adjacentVertex(t,e)
7915  * 13               if vertex w is not discovered and not explored
7916  * 14                   label e as tree-edge
7917  * 15                   label w as discovered
7918  * 16                   S.push(w)
7919  * 17                   continue at 5
7920  * 18               else if vertex w is discovered
7921  * 19                   label e as back-edge
7922  * 20               else
7923  * 21                   // vertex w is explored
7924  * 22                   label e as forward- or cross-edge
7925  * 23           label t as explored
7926  * 24           S.pop()
7927  *
7928  * convention:
7929  * 0x10 - discovered
7930  * 0x11 - discovered and fall-through edge labelled
7931  * 0x12 - discovered and fall-through and branch edges labelled
7932  * 0x20 - explored
7933  */
7934 
7935 enum {
7936 	DISCOVERED = 0x10,
7937 	EXPLORED = 0x20,
7938 	FALLTHROUGH = 1,
7939 	BRANCH = 2,
7940 };
7941 
7942 static u32 state_htab_size(struct bpf_verifier_env *env)
7943 {
7944 	return env->prog->len;
7945 }
7946 
7947 static struct bpf_verifier_state_list **explored_state(
7948 					struct bpf_verifier_env *env,
7949 					int idx)
7950 {
7951 	struct bpf_verifier_state *cur = env->cur_state;
7952 	struct bpf_func_state *state = cur->frame[cur->curframe];
7953 
7954 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
7955 }
7956 
7957 static void init_explored_state(struct bpf_verifier_env *env, int idx)
7958 {
7959 	env->insn_aux_data[idx].prune_point = true;
7960 }
7961 
7962 /* t, w, e - match pseudo-code above:
7963  * t - index of current instruction
7964  * w - next instruction
7965  * e - edge
7966  */
7967 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7968 		     bool loop_ok)
7969 {
7970 	int *insn_stack = env->cfg.insn_stack;
7971 	int *insn_state = env->cfg.insn_state;
7972 
7973 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7974 		return 0;
7975 
7976 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7977 		return 0;
7978 
7979 	if (w < 0 || w >= env->prog->len) {
7980 		verbose_linfo(env, t, "%d: ", t);
7981 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
7982 		return -EINVAL;
7983 	}
7984 
7985 	if (e == BRANCH)
7986 		/* mark branch target for state pruning */
7987 		init_explored_state(env, w);
7988 
7989 	if (insn_state[w] == 0) {
7990 		/* tree-edge */
7991 		insn_state[t] = DISCOVERED | e;
7992 		insn_state[w] = DISCOVERED;
7993 		if (env->cfg.cur_stack >= env->prog->len)
7994 			return -E2BIG;
7995 		insn_stack[env->cfg.cur_stack++] = w;
7996 		return 1;
7997 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
7998 		if (loop_ok && env->bpf_capable)
7999 			return 0;
8000 		verbose_linfo(env, t, "%d: ", t);
8001 		verbose_linfo(env, w, "%d: ", w);
8002 		verbose(env, "back-edge from insn %d to %d\n", t, w);
8003 		return -EINVAL;
8004 	} else if (insn_state[w] == EXPLORED) {
8005 		/* forward- or cross-edge */
8006 		insn_state[t] = DISCOVERED | e;
8007 	} else {
8008 		verbose(env, "insn state internal bug\n");
8009 		return -EFAULT;
8010 	}
8011 	return 0;
8012 }
8013 
8014 /* non-recursive depth-first-search to detect loops in BPF program
8015  * loop == back-edge in directed graph
8016  */
8017 static int check_cfg(struct bpf_verifier_env *env)
8018 {
8019 	struct bpf_insn *insns = env->prog->insnsi;
8020 	int insn_cnt = env->prog->len;
8021 	int *insn_stack, *insn_state;
8022 	int ret = 0;
8023 	int i, t;
8024 
8025 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8026 	if (!insn_state)
8027 		return -ENOMEM;
8028 
8029 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8030 	if (!insn_stack) {
8031 		kvfree(insn_state);
8032 		return -ENOMEM;
8033 	}
8034 
8035 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8036 	insn_stack[0] = 0; /* 0 is the first instruction */
8037 	env->cfg.cur_stack = 1;
8038 
8039 peek_stack:
8040 	if (env->cfg.cur_stack == 0)
8041 		goto check_state;
8042 	t = insn_stack[env->cfg.cur_stack - 1];
8043 
8044 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
8045 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
8046 		u8 opcode = BPF_OP(insns[t].code);
8047 
8048 		if (opcode == BPF_EXIT) {
8049 			goto mark_explored;
8050 		} else if (opcode == BPF_CALL) {
8051 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8052 			if (ret == 1)
8053 				goto peek_stack;
8054 			else if (ret < 0)
8055 				goto err_free;
8056 			if (t + 1 < insn_cnt)
8057 				init_explored_state(env, t + 1);
8058 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8059 				init_explored_state(env, t);
8060 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8061 						env, false);
8062 				if (ret == 1)
8063 					goto peek_stack;
8064 				else if (ret < 0)
8065 					goto err_free;
8066 			}
8067 		} else if (opcode == BPF_JA) {
8068 			if (BPF_SRC(insns[t].code) != BPF_K) {
8069 				ret = -EINVAL;
8070 				goto err_free;
8071 			}
8072 			/* unconditional jump with single edge */
8073 			ret = push_insn(t, t + insns[t].off + 1,
8074 					FALLTHROUGH, env, true);
8075 			if (ret == 1)
8076 				goto peek_stack;
8077 			else if (ret < 0)
8078 				goto err_free;
8079 			/* unconditional jmp is not a good pruning point,
8080 			 * but it's marked, since backtracking needs
8081 			 * to record jmp history in is_state_visited().
8082 			 */
8083 			init_explored_state(env, t + insns[t].off + 1);
8084 			/* tell verifier to check for equivalent states
8085 			 * after every call and jump
8086 			 */
8087 			if (t + 1 < insn_cnt)
8088 				init_explored_state(env, t + 1);
8089 		} else {
8090 			/* conditional jump with two edges */
8091 			init_explored_state(env, t);
8092 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8093 			if (ret == 1)
8094 				goto peek_stack;
8095 			else if (ret < 0)
8096 				goto err_free;
8097 
8098 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8099 			if (ret == 1)
8100 				goto peek_stack;
8101 			else if (ret < 0)
8102 				goto err_free;
8103 		}
8104 	} else {
8105 		/* all other non-branch instructions with single
8106 		 * fall-through edge
8107 		 */
8108 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8109 		if (ret == 1)
8110 			goto peek_stack;
8111 		else if (ret < 0)
8112 			goto err_free;
8113 	}
8114 
8115 mark_explored:
8116 	insn_state[t] = EXPLORED;
8117 	if (env->cfg.cur_stack-- <= 0) {
8118 		verbose(env, "pop stack internal bug\n");
8119 		ret = -EFAULT;
8120 		goto err_free;
8121 	}
8122 	goto peek_stack;
8123 
8124 check_state:
8125 	for (i = 0; i < insn_cnt; i++) {
8126 		if (insn_state[i] != EXPLORED) {
8127 			verbose(env, "unreachable insn %d\n", i);
8128 			ret = -EINVAL;
8129 			goto err_free;
8130 		}
8131 	}
8132 	ret = 0; /* cfg looks good */
8133 
8134 err_free:
8135 	kvfree(insn_state);
8136 	kvfree(insn_stack);
8137 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
8138 	return ret;
8139 }
8140 
8141 static int check_abnormal_return(struct bpf_verifier_env *env)
8142 {
8143 	int i;
8144 
8145 	for (i = 1; i < env->subprog_cnt; i++) {
8146 		if (env->subprog_info[i].has_ld_abs) {
8147 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8148 			return -EINVAL;
8149 		}
8150 		if (env->subprog_info[i].has_tail_call) {
8151 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8152 			return -EINVAL;
8153 		}
8154 	}
8155 	return 0;
8156 }
8157 
8158 /* The minimum supported BTF func info size */
8159 #define MIN_BPF_FUNCINFO_SIZE	8
8160 #define MAX_FUNCINFO_REC_SIZE	252
8161 
8162 static int check_btf_func(struct bpf_verifier_env *env,
8163 			  const union bpf_attr *attr,
8164 			  union bpf_attr __user *uattr)
8165 {
8166 	const struct btf_type *type, *func_proto, *ret_type;
8167 	u32 i, nfuncs, urec_size, min_size;
8168 	u32 krec_size = sizeof(struct bpf_func_info);
8169 	struct bpf_func_info *krecord;
8170 	struct bpf_func_info_aux *info_aux = NULL;
8171 	struct bpf_prog *prog;
8172 	const struct btf *btf;
8173 	void __user *urecord;
8174 	u32 prev_offset = 0;
8175 	bool scalar_return;
8176 	int ret = -ENOMEM;
8177 
8178 	nfuncs = attr->func_info_cnt;
8179 	if (!nfuncs) {
8180 		if (check_abnormal_return(env))
8181 			return -EINVAL;
8182 		return 0;
8183 	}
8184 
8185 	if (nfuncs != env->subprog_cnt) {
8186 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8187 		return -EINVAL;
8188 	}
8189 
8190 	urec_size = attr->func_info_rec_size;
8191 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8192 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
8193 	    urec_size % sizeof(u32)) {
8194 		verbose(env, "invalid func info rec size %u\n", urec_size);
8195 		return -EINVAL;
8196 	}
8197 
8198 	prog = env->prog;
8199 	btf = prog->aux->btf;
8200 
8201 	urecord = u64_to_user_ptr(attr->func_info);
8202 	min_size = min_t(u32, krec_size, urec_size);
8203 
8204 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8205 	if (!krecord)
8206 		return -ENOMEM;
8207 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8208 	if (!info_aux)
8209 		goto err_free;
8210 
8211 	for (i = 0; i < nfuncs; i++) {
8212 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8213 		if (ret) {
8214 			if (ret == -E2BIG) {
8215 				verbose(env, "nonzero tailing record in func info");
8216 				/* set the size kernel expects so loader can zero
8217 				 * out the rest of the record.
8218 				 */
8219 				if (put_user(min_size, &uattr->func_info_rec_size))
8220 					ret = -EFAULT;
8221 			}
8222 			goto err_free;
8223 		}
8224 
8225 		if (copy_from_user(&krecord[i], urecord, min_size)) {
8226 			ret = -EFAULT;
8227 			goto err_free;
8228 		}
8229 
8230 		/* check insn_off */
8231 		ret = -EINVAL;
8232 		if (i == 0) {
8233 			if (krecord[i].insn_off) {
8234 				verbose(env,
8235 					"nonzero insn_off %u for the first func info record",
8236 					krecord[i].insn_off);
8237 				goto err_free;
8238 			}
8239 		} else if (krecord[i].insn_off <= prev_offset) {
8240 			verbose(env,
8241 				"same or smaller insn offset (%u) than previous func info record (%u)",
8242 				krecord[i].insn_off, prev_offset);
8243 			goto err_free;
8244 		}
8245 
8246 		if (env->subprog_info[i].start != krecord[i].insn_off) {
8247 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8248 			goto err_free;
8249 		}
8250 
8251 		/* check type_id */
8252 		type = btf_type_by_id(btf, krecord[i].type_id);
8253 		if (!type || !btf_type_is_func(type)) {
8254 			verbose(env, "invalid type id %d in func info",
8255 				krecord[i].type_id);
8256 			goto err_free;
8257 		}
8258 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8259 
8260 		func_proto = btf_type_by_id(btf, type->type);
8261 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8262 			/* btf_func_check() already verified it during BTF load */
8263 			goto err_free;
8264 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8265 		scalar_return =
8266 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8267 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8268 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8269 			goto err_free;
8270 		}
8271 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8272 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8273 			goto err_free;
8274 		}
8275 
8276 		prev_offset = krecord[i].insn_off;
8277 		urecord += urec_size;
8278 	}
8279 
8280 	prog->aux->func_info = krecord;
8281 	prog->aux->func_info_cnt = nfuncs;
8282 	prog->aux->func_info_aux = info_aux;
8283 	return 0;
8284 
8285 err_free:
8286 	kvfree(krecord);
8287 	kfree(info_aux);
8288 	return ret;
8289 }
8290 
8291 static void adjust_btf_func(struct bpf_verifier_env *env)
8292 {
8293 	struct bpf_prog_aux *aux = env->prog->aux;
8294 	int i;
8295 
8296 	if (!aux->func_info)
8297 		return;
8298 
8299 	for (i = 0; i < env->subprog_cnt; i++)
8300 		aux->func_info[i].insn_off = env->subprog_info[i].start;
8301 }
8302 
8303 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
8304 		sizeof(((struct bpf_line_info *)(0))->line_col))
8305 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
8306 
8307 static int check_btf_line(struct bpf_verifier_env *env,
8308 			  const union bpf_attr *attr,
8309 			  union bpf_attr __user *uattr)
8310 {
8311 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8312 	struct bpf_subprog_info *sub;
8313 	struct bpf_line_info *linfo;
8314 	struct bpf_prog *prog;
8315 	const struct btf *btf;
8316 	void __user *ulinfo;
8317 	int err;
8318 
8319 	nr_linfo = attr->line_info_cnt;
8320 	if (!nr_linfo)
8321 		return 0;
8322 
8323 	rec_size = attr->line_info_rec_size;
8324 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8325 	    rec_size > MAX_LINEINFO_REC_SIZE ||
8326 	    rec_size & (sizeof(u32) - 1))
8327 		return -EINVAL;
8328 
8329 	/* Need to zero it in case the userspace may
8330 	 * pass in a smaller bpf_line_info object.
8331 	 */
8332 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8333 			 GFP_KERNEL | __GFP_NOWARN);
8334 	if (!linfo)
8335 		return -ENOMEM;
8336 
8337 	prog = env->prog;
8338 	btf = prog->aux->btf;
8339 
8340 	s = 0;
8341 	sub = env->subprog_info;
8342 	ulinfo = u64_to_user_ptr(attr->line_info);
8343 	expected_size = sizeof(struct bpf_line_info);
8344 	ncopy = min_t(u32, expected_size, rec_size);
8345 	for (i = 0; i < nr_linfo; i++) {
8346 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8347 		if (err) {
8348 			if (err == -E2BIG) {
8349 				verbose(env, "nonzero tailing record in line_info");
8350 				if (put_user(expected_size,
8351 					     &uattr->line_info_rec_size))
8352 					err = -EFAULT;
8353 			}
8354 			goto err_free;
8355 		}
8356 
8357 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8358 			err = -EFAULT;
8359 			goto err_free;
8360 		}
8361 
8362 		/*
8363 		 * Check insn_off to ensure
8364 		 * 1) strictly increasing AND
8365 		 * 2) bounded by prog->len
8366 		 *
8367 		 * The linfo[0].insn_off == 0 check logically falls into
8368 		 * the later "missing bpf_line_info for func..." case
8369 		 * because the first linfo[0].insn_off must be the
8370 		 * first sub also and the first sub must have
8371 		 * subprog_info[0].start == 0.
8372 		 */
8373 		if ((i && linfo[i].insn_off <= prev_offset) ||
8374 		    linfo[i].insn_off >= prog->len) {
8375 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8376 				i, linfo[i].insn_off, prev_offset,
8377 				prog->len);
8378 			err = -EINVAL;
8379 			goto err_free;
8380 		}
8381 
8382 		if (!prog->insnsi[linfo[i].insn_off].code) {
8383 			verbose(env,
8384 				"Invalid insn code at line_info[%u].insn_off\n",
8385 				i);
8386 			err = -EINVAL;
8387 			goto err_free;
8388 		}
8389 
8390 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8391 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
8392 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8393 			err = -EINVAL;
8394 			goto err_free;
8395 		}
8396 
8397 		if (s != env->subprog_cnt) {
8398 			if (linfo[i].insn_off == sub[s].start) {
8399 				sub[s].linfo_idx = i;
8400 				s++;
8401 			} else if (sub[s].start < linfo[i].insn_off) {
8402 				verbose(env, "missing bpf_line_info for func#%u\n", s);
8403 				err = -EINVAL;
8404 				goto err_free;
8405 			}
8406 		}
8407 
8408 		prev_offset = linfo[i].insn_off;
8409 		ulinfo += rec_size;
8410 	}
8411 
8412 	if (s != env->subprog_cnt) {
8413 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8414 			env->subprog_cnt - s, s);
8415 		err = -EINVAL;
8416 		goto err_free;
8417 	}
8418 
8419 	prog->aux->linfo = linfo;
8420 	prog->aux->nr_linfo = nr_linfo;
8421 
8422 	return 0;
8423 
8424 err_free:
8425 	kvfree(linfo);
8426 	return err;
8427 }
8428 
8429 static int check_btf_info(struct bpf_verifier_env *env,
8430 			  const union bpf_attr *attr,
8431 			  union bpf_attr __user *uattr)
8432 {
8433 	struct btf *btf;
8434 	int err;
8435 
8436 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
8437 		if (check_abnormal_return(env))
8438 			return -EINVAL;
8439 		return 0;
8440 	}
8441 
8442 	btf = btf_get_by_fd(attr->prog_btf_fd);
8443 	if (IS_ERR(btf))
8444 		return PTR_ERR(btf);
8445 	env->prog->aux->btf = btf;
8446 
8447 	err = check_btf_func(env, attr, uattr);
8448 	if (err)
8449 		return err;
8450 
8451 	err = check_btf_line(env, attr, uattr);
8452 	if (err)
8453 		return err;
8454 
8455 	return 0;
8456 }
8457 
8458 /* check %cur's range satisfies %old's */
8459 static bool range_within(struct bpf_reg_state *old,
8460 			 struct bpf_reg_state *cur)
8461 {
8462 	return old->umin_value <= cur->umin_value &&
8463 	       old->umax_value >= cur->umax_value &&
8464 	       old->smin_value <= cur->smin_value &&
8465 	       old->smax_value >= cur->smax_value;
8466 }
8467 
8468 /* Maximum number of register states that can exist at once */
8469 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
8470 struct idpair {
8471 	u32 old;
8472 	u32 cur;
8473 };
8474 
8475 /* If in the old state two registers had the same id, then they need to have
8476  * the same id in the new state as well.  But that id could be different from
8477  * the old state, so we need to track the mapping from old to new ids.
8478  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
8479  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
8480  * regs with a different old id could still have new id 9, we don't care about
8481  * that.
8482  * So we look through our idmap to see if this old id has been seen before.  If
8483  * so, we require the new id to match; otherwise, we add the id pair to the map.
8484  */
8485 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
8486 {
8487 	unsigned int i;
8488 
8489 	for (i = 0; i < ID_MAP_SIZE; i++) {
8490 		if (!idmap[i].old) {
8491 			/* Reached an empty slot; haven't seen this id before */
8492 			idmap[i].old = old_id;
8493 			idmap[i].cur = cur_id;
8494 			return true;
8495 		}
8496 		if (idmap[i].old == old_id)
8497 			return idmap[i].cur == cur_id;
8498 	}
8499 	/* We ran out of idmap slots, which should be impossible */
8500 	WARN_ON_ONCE(1);
8501 	return false;
8502 }
8503 
8504 static void clean_func_state(struct bpf_verifier_env *env,
8505 			     struct bpf_func_state *st)
8506 {
8507 	enum bpf_reg_liveness live;
8508 	int i, j;
8509 
8510 	for (i = 0; i < BPF_REG_FP; i++) {
8511 		live = st->regs[i].live;
8512 		/* liveness must not touch this register anymore */
8513 		st->regs[i].live |= REG_LIVE_DONE;
8514 		if (!(live & REG_LIVE_READ))
8515 			/* since the register is unused, clear its state
8516 			 * to make further comparison simpler
8517 			 */
8518 			__mark_reg_not_init(env, &st->regs[i]);
8519 	}
8520 
8521 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
8522 		live = st->stack[i].spilled_ptr.live;
8523 		/* liveness must not touch this stack slot anymore */
8524 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
8525 		if (!(live & REG_LIVE_READ)) {
8526 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
8527 			for (j = 0; j < BPF_REG_SIZE; j++)
8528 				st->stack[i].slot_type[j] = STACK_INVALID;
8529 		}
8530 	}
8531 }
8532 
8533 static void clean_verifier_state(struct bpf_verifier_env *env,
8534 				 struct bpf_verifier_state *st)
8535 {
8536 	int i;
8537 
8538 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
8539 		/* all regs in this state in all frames were already marked */
8540 		return;
8541 
8542 	for (i = 0; i <= st->curframe; i++)
8543 		clean_func_state(env, st->frame[i]);
8544 }
8545 
8546 /* the parentage chains form a tree.
8547  * the verifier states are added to state lists at given insn and
8548  * pushed into state stack for future exploration.
8549  * when the verifier reaches bpf_exit insn some of the verifer states
8550  * stored in the state lists have their final liveness state already,
8551  * but a lot of states will get revised from liveness point of view when
8552  * the verifier explores other branches.
8553  * Example:
8554  * 1: r0 = 1
8555  * 2: if r1 == 100 goto pc+1
8556  * 3: r0 = 2
8557  * 4: exit
8558  * when the verifier reaches exit insn the register r0 in the state list of
8559  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8560  * of insn 2 and goes exploring further. At the insn 4 it will walk the
8561  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8562  *
8563  * Since the verifier pushes the branch states as it sees them while exploring
8564  * the program the condition of walking the branch instruction for the second
8565  * time means that all states below this branch were already explored and
8566  * their final liveness markes are already propagated.
8567  * Hence when the verifier completes the search of state list in is_state_visited()
8568  * we can call this clean_live_states() function to mark all liveness states
8569  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8570  * will not be used.
8571  * This function also clears the registers and stack for states that !READ
8572  * to simplify state merging.
8573  *
8574  * Important note here that walking the same branch instruction in the callee
8575  * doesn't meant that the states are DONE. The verifier has to compare
8576  * the callsites
8577  */
8578 static void clean_live_states(struct bpf_verifier_env *env, int insn,
8579 			      struct bpf_verifier_state *cur)
8580 {
8581 	struct bpf_verifier_state_list *sl;
8582 	int i;
8583 
8584 	sl = *explored_state(env, insn);
8585 	while (sl) {
8586 		if (sl->state.branches)
8587 			goto next;
8588 		if (sl->state.insn_idx != insn ||
8589 		    sl->state.curframe != cur->curframe)
8590 			goto next;
8591 		for (i = 0; i <= cur->curframe; i++)
8592 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8593 				goto next;
8594 		clean_verifier_state(env, &sl->state);
8595 next:
8596 		sl = sl->next;
8597 	}
8598 }
8599 
8600 /* Returns true if (rold safe implies rcur safe) */
8601 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8602 		    struct idpair *idmap)
8603 {
8604 	bool equal;
8605 
8606 	if (!(rold->live & REG_LIVE_READ))
8607 		/* explored state didn't use this */
8608 		return true;
8609 
8610 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
8611 
8612 	if (rold->type == PTR_TO_STACK)
8613 		/* two stack pointers are equal only if they're pointing to
8614 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
8615 		 */
8616 		return equal && rold->frameno == rcur->frameno;
8617 
8618 	if (equal)
8619 		return true;
8620 
8621 	if (rold->type == NOT_INIT)
8622 		/* explored state can't have used this */
8623 		return true;
8624 	if (rcur->type == NOT_INIT)
8625 		return false;
8626 	switch (rold->type) {
8627 	case SCALAR_VALUE:
8628 		if (rcur->type == SCALAR_VALUE) {
8629 			if (!rold->precise && !rcur->precise)
8630 				return true;
8631 			/* new val must satisfy old val knowledge */
8632 			return range_within(rold, rcur) &&
8633 			       tnum_in(rold->var_off, rcur->var_off);
8634 		} else {
8635 			/* We're trying to use a pointer in place of a scalar.
8636 			 * Even if the scalar was unbounded, this could lead to
8637 			 * pointer leaks because scalars are allowed to leak
8638 			 * while pointers are not. We could make this safe in
8639 			 * special cases if root is calling us, but it's
8640 			 * probably not worth the hassle.
8641 			 */
8642 			return false;
8643 		}
8644 	case PTR_TO_MAP_VALUE:
8645 		/* If the new min/max/var_off satisfy the old ones and
8646 		 * everything else matches, we are OK.
8647 		 * 'id' is not compared, since it's only used for maps with
8648 		 * bpf_spin_lock inside map element and in such cases if
8649 		 * the rest of the prog is valid for one map element then
8650 		 * it's valid for all map elements regardless of the key
8651 		 * used in bpf_map_lookup()
8652 		 */
8653 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8654 		       range_within(rold, rcur) &&
8655 		       tnum_in(rold->var_off, rcur->var_off);
8656 	case PTR_TO_MAP_VALUE_OR_NULL:
8657 		/* a PTR_TO_MAP_VALUE could be safe to use as a
8658 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8659 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8660 		 * checked, doing so could have affected others with the same
8661 		 * id, and we can't check for that because we lost the id when
8662 		 * we converted to a PTR_TO_MAP_VALUE.
8663 		 */
8664 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8665 			return false;
8666 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8667 			return false;
8668 		/* Check our ids match any regs they're supposed to */
8669 		return check_ids(rold->id, rcur->id, idmap);
8670 	case PTR_TO_PACKET_META:
8671 	case PTR_TO_PACKET:
8672 		if (rcur->type != rold->type)
8673 			return false;
8674 		/* We must have at least as much range as the old ptr
8675 		 * did, so that any accesses which were safe before are
8676 		 * still safe.  This is true even if old range < old off,
8677 		 * since someone could have accessed through (ptr - k), or
8678 		 * even done ptr -= k in a register, to get a safe access.
8679 		 */
8680 		if (rold->range > rcur->range)
8681 			return false;
8682 		/* If the offsets don't match, we can't trust our alignment;
8683 		 * nor can we be sure that we won't fall out of range.
8684 		 */
8685 		if (rold->off != rcur->off)
8686 			return false;
8687 		/* id relations must be preserved */
8688 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8689 			return false;
8690 		/* new val must satisfy old val knowledge */
8691 		return range_within(rold, rcur) &&
8692 		       tnum_in(rold->var_off, rcur->var_off);
8693 	case PTR_TO_CTX:
8694 	case CONST_PTR_TO_MAP:
8695 	case PTR_TO_PACKET_END:
8696 	case PTR_TO_FLOW_KEYS:
8697 	case PTR_TO_SOCKET:
8698 	case PTR_TO_SOCKET_OR_NULL:
8699 	case PTR_TO_SOCK_COMMON:
8700 	case PTR_TO_SOCK_COMMON_OR_NULL:
8701 	case PTR_TO_TCP_SOCK:
8702 	case PTR_TO_TCP_SOCK_OR_NULL:
8703 	case PTR_TO_XDP_SOCK:
8704 		/* Only valid matches are exact, which memcmp() above
8705 		 * would have accepted
8706 		 */
8707 	default:
8708 		/* Don't know what's going on, just say it's not safe */
8709 		return false;
8710 	}
8711 
8712 	/* Shouldn't get here; if we do, say it's not safe */
8713 	WARN_ON_ONCE(1);
8714 	return false;
8715 }
8716 
8717 static bool stacksafe(struct bpf_func_state *old,
8718 		      struct bpf_func_state *cur,
8719 		      struct idpair *idmap)
8720 {
8721 	int i, spi;
8722 
8723 	/* walk slots of the explored stack and ignore any additional
8724 	 * slots in the current stack, since explored(safe) state
8725 	 * didn't use them
8726 	 */
8727 	for (i = 0; i < old->allocated_stack; i++) {
8728 		spi = i / BPF_REG_SIZE;
8729 
8730 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8731 			i += BPF_REG_SIZE - 1;
8732 			/* explored state didn't use this */
8733 			continue;
8734 		}
8735 
8736 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8737 			continue;
8738 
8739 		/* explored stack has more populated slots than current stack
8740 		 * and these slots were used
8741 		 */
8742 		if (i >= cur->allocated_stack)
8743 			return false;
8744 
8745 		/* if old state was safe with misc data in the stack
8746 		 * it will be safe with zero-initialized stack.
8747 		 * The opposite is not true
8748 		 */
8749 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8750 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8751 			continue;
8752 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8753 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8754 			/* Ex: old explored (safe) state has STACK_SPILL in
8755 			 * this stack slot, but current has STACK_MISC ->
8756 			 * this verifier states are not equivalent,
8757 			 * return false to continue verification of this path
8758 			 */
8759 			return false;
8760 		if (i % BPF_REG_SIZE)
8761 			continue;
8762 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
8763 			continue;
8764 		if (!regsafe(&old->stack[spi].spilled_ptr,
8765 			     &cur->stack[spi].spilled_ptr,
8766 			     idmap))
8767 			/* when explored and current stack slot are both storing
8768 			 * spilled registers, check that stored pointers types
8769 			 * are the same as well.
8770 			 * Ex: explored safe path could have stored
8771 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8772 			 * but current path has stored:
8773 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8774 			 * such verifier states are not equivalent.
8775 			 * return false to continue verification of this path
8776 			 */
8777 			return false;
8778 	}
8779 	return true;
8780 }
8781 
8782 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8783 {
8784 	if (old->acquired_refs != cur->acquired_refs)
8785 		return false;
8786 	return !memcmp(old->refs, cur->refs,
8787 		       sizeof(*old->refs) * old->acquired_refs);
8788 }
8789 
8790 /* compare two verifier states
8791  *
8792  * all states stored in state_list are known to be valid, since
8793  * verifier reached 'bpf_exit' instruction through them
8794  *
8795  * this function is called when verifier exploring different branches of
8796  * execution popped from the state stack. If it sees an old state that has
8797  * more strict register state and more strict stack state then this execution
8798  * branch doesn't need to be explored further, since verifier already
8799  * concluded that more strict state leads to valid finish.
8800  *
8801  * Therefore two states are equivalent if register state is more conservative
8802  * and explored stack state is more conservative than the current one.
8803  * Example:
8804  *       explored                   current
8805  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8806  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8807  *
8808  * In other words if current stack state (one being explored) has more
8809  * valid slots than old one that already passed validation, it means
8810  * the verifier can stop exploring and conclude that current state is valid too
8811  *
8812  * Similarly with registers. If explored state has register type as invalid
8813  * whereas register type in current state is meaningful, it means that
8814  * the current state will reach 'bpf_exit' instruction safely
8815  */
8816 static bool func_states_equal(struct bpf_func_state *old,
8817 			      struct bpf_func_state *cur)
8818 {
8819 	struct idpair *idmap;
8820 	bool ret = false;
8821 	int i;
8822 
8823 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8824 	/* If we failed to allocate the idmap, just say it's not safe */
8825 	if (!idmap)
8826 		return false;
8827 
8828 	for (i = 0; i < MAX_BPF_REG; i++) {
8829 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
8830 			goto out_free;
8831 	}
8832 
8833 	if (!stacksafe(old, cur, idmap))
8834 		goto out_free;
8835 
8836 	if (!refsafe(old, cur))
8837 		goto out_free;
8838 	ret = true;
8839 out_free:
8840 	kfree(idmap);
8841 	return ret;
8842 }
8843 
8844 static bool states_equal(struct bpf_verifier_env *env,
8845 			 struct bpf_verifier_state *old,
8846 			 struct bpf_verifier_state *cur)
8847 {
8848 	int i;
8849 
8850 	if (old->curframe != cur->curframe)
8851 		return false;
8852 
8853 	/* Verification state from speculative execution simulation
8854 	 * must never prune a non-speculative execution one.
8855 	 */
8856 	if (old->speculative && !cur->speculative)
8857 		return false;
8858 
8859 	if (old->active_spin_lock != cur->active_spin_lock)
8860 		return false;
8861 
8862 	/* for states to be equal callsites have to be the same
8863 	 * and all frame states need to be equivalent
8864 	 */
8865 	for (i = 0; i <= old->curframe; i++) {
8866 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
8867 			return false;
8868 		if (!func_states_equal(old->frame[i], cur->frame[i]))
8869 			return false;
8870 	}
8871 	return true;
8872 }
8873 
8874 /* Return 0 if no propagation happened. Return negative error code if error
8875  * happened. Otherwise, return the propagated bit.
8876  */
8877 static int propagate_liveness_reg(struct bpf_verifier_env *env,
8878 				  struct bpf_reg_state *reg,
8879 				  struct bpf_reg_state *parent_reg)
8880 {
8881 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8882 	u8 flag = reg->live & REG_LIVE_READ;
8883 	int err;
8884 
8885 	/* When comes here, read flags of PARENT_REG or REG could be any of
8886 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8887 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8888 	 */
8889 	if (parent_flag == REG_LIVE_READ64 ||
8890 	    /* Or if there is no read flag from REG. */
8891 	    !flag ||
8892 	    /* Or if the read flag from REG is the same as PARENT_REG. */
8893 	    parent_flag == flag)
8894 		return 0;
8895 
8896 	err = mark_reg_read(env, reg, parent_reg, flag);
8897 	if (err)
8898 		return err;
8899 
8900 	return flag;
8901 }
8902 
8903 /* A write screens off any subsequent reads; but write marks come from the
8904  * straight-line code between a state and its parent.  When we arrive at an
8905  * equivalent state (jump target or such) we didn't arrive by the straight-line
8906  * code, so read marks in the state must propagate to the parent regardless
8907  * of the state's write marks. That's what 'parent == state->parent' comparison
8908  * in mark_reg_read() is for.
8909  */
8910 static int propagate_liveness(struct bpf_verifier_env *env,
8911 			      const struct bpf_verifier_state *vstate,
8912 			      struct bpf_verifier_state *vparent)
8913 {
8914 	struct bpf_reg_state *state_reg, *parent_reg;
8915 	struct bpf_func_state *state, *parent;
8916 	int i, frame, err = 0;
8917 
8918 	if (vparent->curframe != vstate->curframe) {
8919 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
8920 		     vparent->curframe, vstate->curframe);
8921 		return -EFAULT;
8922 	}
8923 	/* Propagate read liveness of registers... */
8924 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
8925 	for (frame = 0; frame <= vstate->curframe; frame++) {
8926 		parent = vparent->frame[frame];
8927 		state = vstate->frame[frame];
8928 		parent_reg = parent->regs;
8929 		state_reg = state->regs;
8930 		/* We don't need to worry about FP liveness, it's read-only */
8931 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
8932 			err = propagate_liveness_reg(env, &state_reg[i],
8933 						     &parent_reg[i]);
8934 			if (err < 0)
8935 				return err;
8936 			if (err == REG_LIVE_READ64)
8937 				mark_insn_zext(env, &parent_reg[i]);
8938 		}
8939 
8940 		/* Propagate stack slots. */
8941 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8942 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
8943 			parent_reg = &parent->stack[i].spilled_ptr;
8944 			state_reg = &state->stack[i].spilled_ptr;
8945 			err = propagate_liveness_reg(env, state_reg,
8946 						     parent_reg);
8947 			if (err < 0)
8948 				return err;
8949 		}
8950 	}
8951 	return 0;
8952 }
8953 
8954 /* find precise scalars in the previous equivalent state and
8955  * propagate them into the current state
8956  */
8957 static int propagate_precision(struct bpf_verifier_env *env,
8958 			       const struct bpf_verifier_state *old)
8959 {
8960 	struct bpf_reg_state *state_reg;
8961 	struct bpf_func_state *state;
8962 	int i, err = 0;
8963 
8964 	state = old->frame[old->curframe];
8965 	state_reg = state->regs;
8966 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8967 		if (state_reg->type != SCALAR_VALUE ||
8968 		    !state_reg->precise)
8969 			continue;
8970 		if (env->log.level & BPF_LOG_LEVEL2)
8971 			verbose(env, "propagating r%d\n", i);
8972 		err = mark_chain_precision(env, i);
8973 		if (err < 0)
8974 			return err;
8975 	}
8976 
8977 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8978 		if (state->stack[i].slot_type[0] != STACK_SPILL)
8979 			continue;
8980 		state_reg = &state->stack[i].spilled_ptr;
8981 		if (state_reg->type != SCALAR_VALUE ||
8982 		    !state_reg->precise)
8983 			continue;
8984 		if (env->log.level & BPF_LOG_LEVEL2)
8985 			verbose(env, "propagating fp%d\n",
8986 				(-i - 1) * BPF_REG_SIZE);
8987 		err = mark_chain_precision_stack(env, i);
8988 		if (err < 0)
8989 			return err;
8990 	}
8991 	return 0;
8992 }
8993 
8994 static bool states_maybe_looping(struct bpf_verifier_state *old,
8995 				 struct bpf_verifier_state *cur)
8996 {
8997 	struct bpf_func_state *fold, *fcur;
8998 	int i, fr = cur->curframe;
8999 
9000 	if (old->curframe != fr)
9001 		return false;
9002 
9003 	fold = old->frame[fr];
9004 	fcur = cur->frame[fr];
9005 	for (i = 0; i < MAX_BPF_REG; i++)
9006 		if (memcmp(&fold->regs[i], &fcur->regs[i],
9007 			   offsetof(struct bpf_reg_state, parent)))
9008 			return false;
9009 	return true;
9010 }
9011 
9012 
9013 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9014 {
9015 	struct bpf_verifier_state_list *new_sl;
9016 	struct bpf_verifier_state_list *sl, **pprev;
9017 	struct bpf_verifier_state *cur = env->cur_state, *new;
9018 	int i, j, err, states_cnt = 0;
9019 	bool add_new_state = env->test_state_freq ? true : false;
9020 
9021 	cur->last_insn_idx = env->prev_insn_idx;
9022 	if (!env->insn_aux_data[insn_idx].prune_point)
9023 		/* this 'insn_idx' instruction wasn't marked, so we will not
9024 		 * be doing state search here
9025 		 */
9026 		return 0;
9027 
9028 	/* bpf progs typically have pruning point every 4 instructions
9029 	 * http://vger.kernel.org/bpfconf2019.html#session-1
9030 	 * Do not add new state for future pruning if the verifier hasn't seen
9031 	 * at least 2 jumps and at least 8 instructions.
9032 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9033 	 * In tests that amounts to up to 50% reduction into total verifier
9034 	 * memory consumption and 20% verifier time speedup.
9035 	 */
9036 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9037 	    env->insn_processed - env->prev_insn_processed >= 8)
9038 		add_new_state = true;
9039 
9040 	pprev = explored_state(env, insn_idx);
9041 	sl = *pprev;
9042 
9043 	clean_live_states(env, insn_idx, cur);
9044 
9045 	while (sl) {
9046 		states_cnt++;
9047 		if (sl->state.insn_idx != insn_idx)
9048 			goto next;
9049 		if (sl->state.branches) {
9050 			if (states_maybe_looping(&sl->state, cur) &&
9051 			    states_equal(env, &sl->state, cur)) {
9052 				verbose_linfo(env, insn_idx, "; ");
9053 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9054 				return -EINVAL;
9055 			}
9056 			/* if the verifier is processing a loop, avoid adding new state
9057 			 * too often, since different loop iterations have distinct
9058 			 * states and may not help future pruning.
9059 			 * This threshold shouldn't be too low to make sure that
9060 			 * a loop with large bound will be rejected quickly.
9061 			 * The most abusive loop will be:
9062 			 * r1 += 1
9063 			 * if r1 < 1000000 goto pc-2
9064 			 * 1M insn_procssed limit / 100 == 10k peak states.
9065 			 * This threshold shouldn't be too high either, since states
9066 			 * at the end of the loop are likely to be useful in pruning.
9067 			 */
9068 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9069 			    env->insn_processed - env->prev_insn_processed < 100)
9070 				add_new_state = false;
9071 			goto miss;
9072 		}
9073 		if (states_equal(env, &sl->state, cur)) {
9074 			sl->hit_cnt++;
9075 			/* reached equivalent register/stack state,
9076 			 * prune the search.
9077 			 * Registers read by the continuation are read by us.
9078 			 * If we have any write marks in env->cur_state, they
9079 			 * will prevent corresponding reads in the continuation
9080 			 * from reaching our parent (an explored_state).  Our
9081 			 * own state will get the read marks recorded, but
9082 			 * they'll be immediately forgotten as we're pruning
9083 			 * this state and will pop a new one.
9084 			 */
9085 			err = propagate_liveness(env, &sl->state, cur);
9086 
9087 			/* if previous state reached the exit with precision and
9088 			 * current state is equivalent to it (except precsion marks)
9089 			 * the precision needs to be propagated back in
9090 			 * the current state.
9091 			 */
9092 			err = err ? : push_jmp_history(env, cur);
9093 			err = err ? : propagate_precision(env, &sl->state);
9094 			if (err)
9095 				return err;
9096 			return 1;
9097 		}
9098 miss:
9099 		/* when new state is not going to be added do not increase miss count.
9100 		 * Otherwise several loop iterations will remove the state
9101 		 * recorded earlier. The goal of these heuristics is to have
9102 		 * states from some iterations of the loop (some in the beginning
9103 		 * and some at the end) to help pruning.
9104 		 */
9105 		if (add_new_state)
9106 			sl->miss_cnt++;
9107 		/* heuristic to determine whether this state is beneficial
9108 		 * to keep checking from state equivalence point of view.
9109 		 * Higher numbers increase max_states_per_insn and verification time,
9110 		 * but do not meaningfully decrease insn_processed.
9111 		 */
9112 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9113 			/* the state is unlikely to be useful. Remove it to
9114 			 * speed up verification
9115 			 */
9116 			*pprev = sl->next;
9117 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9118 				u32 br = sl->state.branches;
9119 
9120 				WARN_ONCE(br,
9121 					  "BUG live_done but branches_to_explore %d\n",
9122 					  br);
9123 				free_verifier_state(&sl->state, false);
9124 				kfree(sl);
9125 				env->peak_states--;
9126 			} else {
9127 				/* cannot free this state, since parentage chain may
9128 				 * walk it later. Add it for free_list instead to
9129 				 * be freed at the end of verification
9130 				 */
9131 				sl->next = env->free_list;
9132 				env->free_list = sl;
9133 			}
9134 			sl = *pprev;
9135 			continue;
9136 		}
9137 next:
9138 		pprev = &sl->next;
9139 		sl = *pprev;
9140 	}
9141 
9142 	if (env->max_states_per_insn < states_cnt)
9143 		env->max_states_per_insn = states_cnt;
9144 
9145 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9146 		return push_jmp_history(env, cur);
9147 
9148 	if (!add_new_state)
9149 		return push_jmp_history(env, cur);
9150 
9151 	/* There were no equivalent states, remember the current one.
9152 	 * Technically the current state is not proven to be safe yet,
9153 	 * but it will either reach outer most bpf_exit (which means it's safe)
9154 	 * or it will be rejected. When there are no loops the verifier won't be
9155 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9156 	 * again on the way to bpf_exit.
9157 	 * When looping the sl->state.branches will be > 0 and this state
9158 	 * will not be considered for equivalence until branches == 0.
9159 	 */
9160 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9161 	if (!new_sl)
9162 		return -ENOMEM;
9163 	env->total_states++;
9164 	env->peak_states++;
9165 	env->prev_jmps_processed = env->jmps_processed;
9166 	env->prev_insn_processed = env->insn_processed;
9167 
9168 	/* add new state to the head of linked list */
9169 	new = &new_sl->state;
9170 	err = copy_verifier_state(new, cur);
9171 	if (err) {
9172 		free_verifier_state(new, false);
9173 		kfree(new_sl);
9174 		return err;
9175 	}
9176 	new->insn_idx = insn_idx;
9177 	WARN_ONCE(new->branches != 1,
9178 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9179 
9180 	cur->parent = new;
9181 	cur->first_insn_idx = insn_idx;
9182 	clear_jmp_history(cur);
9183 	new_sl->next = *explored_state(env, insn_idx);
9184 	*explored_state(env, insn_idx) = new_sl;
9185 	/* connect new state to parentage chain. Current frame needs all
9186 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
9187 	 * to the stack implicitly by JITs) so in callers' frames connect just
9188 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9189 	 * the state of the call instruction (with WRITTEN set), and r0 comes
9190 	 * from callee with its full parentage chain, anyway.
9191 	 */
9192 	/* clear write marks in current state: the writes we did are not writes
9193 	 * our child did, so they don't screen off its reads from us.
9194 	 * (There are no read marks in current state, because reads always mark
9195 	 * their parent and current state never has children yet.  Only
9196 	 * explored_states can get read marks.)
9197 	 */
9198 	for (j = 0; j <= cur->curframe; j++) {
9199 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9200 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9201 		for (i = 0; i < BPF_REG_FP; i++)
9202 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9203 	}
9204 
9205 	/* all stack frames are accessible from callee, clear them all */
9206 	for (j = 0; j <= cur->curframe; j++) {
9207 		struct bpf_func_state *frame = cur->frame[j];
9208 		struct bpf_func_state *newframe = new->frame[j];
9209 
9210 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9211 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9212 			frame->stack[i].spilled_ptr.parent =
9213 						&newframe->stack[i].spilled_ptr;
9214 		}
9215 	}
9216 	return 0;
9217 }
9218 
9219 /* Return true if it's OK to have the same insn return a different type. */
9220 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9221 {
9222 	switch (type) {
9223 	case PTR_TO_CTX:
9224 	case PTR_TO_SOCKET:
9225 	case PTR_TO_SOCKET_OR_NULL:
9226 	case PTR_TO_SOCK_COMMON:
9227 	case PTR_TO_SOCK_COMMON_OR_NULL:
9228 	case PTR_TO_TCP_SOCK:
9229 	case PTR_TO_TCP_SOCK_OR_NULL:
9230 	case PTR_TO_XDP_SOCK:
9231 	case PTR_TO_BTF_ID:
9232 	case PTR_TO_BTF_ID_OR_NULL:
9233 		return false;
9234 	default:
9235 		return true;
9236 	}
9237 }
9238 
9239 /* If an instruction was previously used with particular pointer types, then we
9240  * need to be careful to avoid cases such as the below, where it may be ok
9241  * for one branch accessing the pointer, but not ok for the other branch:
9242  *
9243  * R1 = sock_ptr
9244  * goto X;
9245  * ...
9246  * R1 = some_other_valid_ptr;
9247  * goto X;
9248  * ...
9249  * R2 = *(u32 *)(R1 + 0);
9250  */
9251 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9252 {
9253 	return src != prev && (!reg_type_mismatch_ok(src) ||
9254 			       !reg_type_mismatch_ok(prev));
9255 }
9256 
9257 static int do_check(struct bpf_verifier_env *env)
9258 {
9259 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9260 	struct bpf_verifier_state *state = env->cur_state;
9261 	struct bpf_insn *insns = env->prog->insnsi;
9262 	struct bpf_reg_state *regs;
9263 	int insn_cnt = env->prog->len;
9264 	bool do_print_state = false;
9265 	int prev_insn_idx = -1;
9266 
9267 	for (;;) {
9268 		struct bpf_insn *insn;
9269 		u8 class;
9270 		int err;
9271 
9272 		env->prev_insn_idx = prev_insn_idx;
9273 		if (env->insn_idx >= insn_cnt) {
9274 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
9275 				env->insn_idx, insn_cnt);
9276 			return -EFAULT;
9277 		}
9278 
9279 		insn = &insns[env->insn_idx];
9280 		class = BPF_CLASS(insn->code);
9281 
9282 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
9283 			verbose(env,
9284 				"BPF program is too large. Processed %d insn\n",
9285 				env->insn_processed);
9286 			return -E2BIG;
9287 		}
9288 
9289 		err = is_state_visited(env, env->insn_idx);
9290 		if (err < 0)
9291 			return err;
9292 		if (err == 1) {
9293 			/* found equivalent state, can prune the search */
9294 			if (env->log.level & BPF_LOG_LEVEL) {
9295 				if (do_print_state)
9296 					verbose(env, "\nfrom %d to %d%s: safe\n",
9297 						env->prev_insn_idx, env->insn_idx,
9298 						env->cur_state->speculative ?
9299 						" (speculative execution)" : "");
9300 				else
9301 					verbose(env, "%d: safe\n", env->insn_idx);
9302 			}
9303 			goto process_bpf_exit;
9304 		}
9305 
9306 		if (signal_pending(current))
9307 			return -EAGAIN;
9308 
9309 		if (need_resched())
9310 			cond_resched();
9311 
9312 		if (env->log.level & BPF_LOG_LEVEL2 ||
9313 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9314 			if (env->log.level & BPF_LOG_LEVEL2)
9315 				verbose(env, "%d:", env->insn_idx);
9316 			else
9317 				verbose(env, "\nfrom %d to %d%s:",
9318 					env->prev_insn_idx, env->insn_idx,
9319 					env->cur_state->speculative ?
9320 					" (speculative execution)" : "");
9321 			print_verifier_state(env, state->frame[state->curframe]);
9322 			do_print_state = false;
9323 		}
9324 
9325 		if (env->log.level & BPF_LOG_LEVEL) {
9326 			const struct bpf_insn_cbs cbs = {
9327 				.cb_print	= verbose,
9328 				.private_data	= env,
9329 			};
9330 
9331 			verbose_linfo(env, env->insn_idx, "; ");
9332 			verbose(env, "%d: ", env->insn_idx);
9333 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
9334 		}
9335 
9336 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
9337 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9338 							   env->prev_insn_idx);
9339 			if (err)
9340 				return err;
9341 		}
9342 
9343 		regs = cur_regs(env);
9344 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9345 		prev_insn_idx = env->insn_idx;
9346 
9347 		if (class == BPF_ALU || class == BPF_ALU64) {
9348 			err = check_alu_op(env, insn);
9349 			if (err)
9350 				return err;
9351 
9352 		} else if (class == BPF_LDX) {
9353 			enum bpf_reg_type *prev_src_type, src_reg_type;
9354 
9355 			/* check for reserved fields is already done */
9356 
9357 			/* check src operand */
9358 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9359 			if (err)
9360 				return err;
9361 
9362 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9363 			if (err)
9364 				return err;
9365 
9366 			src_reg_type = regs[insn->src_reg].type;
9367 
9368 			/* check that memory (src_reg + off) is readable,
9369 			 * the state of dst_reg will be updated by this func
9370 			 */
9371 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
9372 					       insn->off, BPF_SIZE(insn->code),
9373 					       BPF_READ, insn->dst_reg, false);
9374 			if (err)
9375 				return err;
9376 
9377 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9378 
9379 			if (*prev_src_type == NOT_INIT) {
9380 				/* saw a valid insn
9381 				 * dst_reg = *(u32 *)(src_reg + off)
9382 				 * save type to validate intersecting paths
9383 				 */
9384 				*prev_src_type = src_reg_type;
9385 
9386 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9387 				/* ABuser program is trying to use the same insn
9388 				 * dst_reg = *(u32*) (src_reg + off)
9389 				 * with different pointer types:
9390 				 * src_reg == ctx in one branch and
9391 				 * src_reg == stack|map in some other branch.
9392 				 * Reject it.
9393 				 */
9394 				verbose(env, "same insn cannot be used with different pointers\n");
9395 				return -EINVAL;
9396 			}
9397 
9398 		} else if (class == BPF_STX) {
9399 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
9400 
9401 			if (BPF_MODE(insn->code) == BPF_XADD) {
9402 				err = check_xadd(env, env->insn_idx, insn);
9403 				if (err)
9404 					return err;
9405 				env->insn_idx++;
9406 				continue;
9407 			}
9408 
9409 			/* check src1 operand */
9410 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9411 			if (err)
9412 				return err;
9413 			/* check src2 operand */
9414 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9415 			if (err)
9416 				return err;
9417 
9418 			dst_reg_type = regs[insn->dst_reg].type;
9419 
9420 			/* check that memory (dst_reg + off) is writeable */
9421 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9422 					       insn->off, BPF_SIZE(insn->code),
9423 					       BPF_WRITE, insn->src_reg, false);
9424 			if (err)
9425 				return err;
9426 
9427 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9428 
9429 			if (*prev_dst_type == NOT_INIT) {
9430 				*prev_dst_type = dst_reg_type;
9431 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
9432 				verbose(env, "same insn cannot be used with different pointers\n");
9433 				return -EINVAL;
9434 			}
9435 
9436 		} else if (class == BPF_ST) {
9437 			if (BPF_MODE(insn->code) != BPF_MEM ||
9438 			    insn->src_reg != BPF_REG_0) {
9439 				verbose(env, "BPF_ST uses reserved fields\n");
9440 				return -EINVAL;
9441 			}
9442 			/* check src operand */
9443 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9444 			if (err)
9445 				return err;
9446 
9447 			if (is_ctx_reg(env, insn->dst_reg)) {
9448 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
9449 					insn->dst_reg,
9450 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
9451 				return -EACCES;
9452 			}
9453 
9454 			/* check that memory (dst_reg + off) is writeable */
9455 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9456 					       insn->off, BPF_SIZE(insn->code),
9457 					       BPF_WRITE, -1, false);
9458 			if (err)
9459 				return err;
9460 
9461 		} else if (class == BPF_JMP || class == BPF_JMP32) {
9462 			u8 opcode = BPF_OP(insn->code);
9463 
9464 			env->jmps_processed++;
9465 			if (opcode == BPF_CALL) {
9466 				if (BPF_SRC(insn->code) != BPF_K ||
9467 				    insn->off != 0 ||
9468 				    (insn->src_reg != BPF_REG_0 &&
9469 				     insn->src_reg != BPF_PSEUDO_CALL) ||
9470 				    insn->dst_reg != BPF_REG_0 ||
9471 				    class == BPF_JMP32) {
9472 					verbose(env, "BPF_CALL uses reserved fields\n");
9473 					return -EINVAL;
9474 				}
9475 
9476 				if (env->cur_state->active_spin_lock &&
9477 				    (insn->src_reg == BPF_PSEUDO_CALL ||
9478 				     insn->imm != BPF_FUNC_spin_unlock)) {
9479 					verbose(env, "function calls are not allowed while holding a lock\n");
9480 					return -EINVAL;
9481 				}
9482 				if (insn->src_reg == BPF_PSEUDO_CALL)
9483 					err = check_func_call(env, insn, &env->insn_idx);
9484 				else
9485 					err = check_helper_call(env, insn->imm, env->insn_idx);
9486 				if (err)
9487 					return err;
9488 
9489 			} else if (opcode == BPF_JA) {
9490 				if (BPF_SRC(insn->code) != BPF_K ||
9491 				    insn->imm != 0 ||
9492 				    insn->src_reg != BPF_REG_0 ||
9493 				    insn->dst_reg != BPF_REG_0 ||
9494 				    class == BPF_JMP32) {
9495 					verbose(env, "BPF_JA uses reserved fields\n");
9496 					return -EINVAL;
9497 				}
9498 
9499 				env->insn_idx += insn->off + 1;
9500 				continue;
9501 
9502 			} else if (opcode == BPF_EXIT) {
9503 				if (BPF_SRC(insn->code) != BPF_K ||
9504 				    insn->imm != 0 ||
9505 				    insn->src_reg != BPF_REG_0 ||
9506 				    insn->dst_reg != BPF_REG_0 ||
9507 				    class == BPF_JMP32) {
9508 					verbose(env, "BPF_EXIT uses reserved fields\n");
9509 					return -EINVAL;
9510 				}
9511 
9512 				if (env->cur_state->active_spin_lock) {
9513 					verbose(env, "bpf_spin_unlock is missing\n");
9514 					return -EINVAL;
9515 				}
9516 
9517 				if (state->curframe) {
9518 					/* exit from nested function */
9519 					err = prepare_func_exit(env, &env->insn_idx);
9520 					if (err)
9521 						return err;
9522 					do_print_state = true;
9523 					continue;
9524 				}
9525 
9526 				err = check_reference_leak(env);
9527 				if (err)
9528 					return err;
9529 
9530 				err = check_return_code(env);
9531 				if (err)
9532 					return err;
9533 process_bpf_exit:
9534 				update_branch_counts(env, env->cur_state);
9535 				err = pop_stack(env, &prev_insn_idx,
9536 						&env->insn_idx, pop_log);
9537 				if (err < 0) {
9538 					if (err != -ENOENT)
9539 						return err;
9540 					break;
9541 				} else {
9542 					do_print_state = true;
9543 					continue;
9544 				}
9545 			} else {
9546 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
9547 				if (err)
9548 					return err;
9549 			}
9550 		} else if (class == BPF_LD) {
9551 			u8 mode = BPF_MODE(insn->code);
9552 
9553 			if (mode == BPF_ABS || mode == BPF_IND) {
9554 				err = check_ld_abs(env, insn);
9555 				if (err)
9556 					return err;
9557 
9558 			} else if (mode == BPF_IMM) {
9559 				err = check_ld_imm(env, insn);
9560 				if (err)
9561 					return err;
9562 
9563 				env->insn_idx++;
9564 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9565 			} else {
9566 				verbose(env, "invalid BPF_LD mode\n");
9567 				return -EINVAL;
9568 			}
9569 		} else {
9570 			verbose(env, "unknown insn class %d\n", class);
9571 			return -EINVAL;
9572 		}
9573 
9574 		env->insn_idx++;
9575 	}
9576 
9577 	return 0;
9578 }
9579 
9580 /* replace pseudo btf_id with kernel symbol address */
9581 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
9582 			       struct bpf_insn *insn,
9583 			       struct bpf_insn_aux_data *aux)
9584 {
9585 	u32 datasec_id, type, id = insn->imm;
9586 	const struct btf_var_secinfo *vsi;
9587 	const struct btf_type *datasec;
9588 	const struct btf_type *t;
9589 	const char *sym_name;
9590 	bool percpu = false;
9591 	u64 addr;
9592 	int i;
9593 
9594 	if (!btf_vmlinux) {
9595 		verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
9596 		return -EINVAL;
9597 	}
9598 
9599 	if (insn[1].imm != 0) {
9600 		verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n");
9601 		return -EINVAL;
9602 	}
9603 
9604 	t = btf_type_by_id(btf_vmlinux, id);
9605 	if (!t) {
9606 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
9607 		return -ENOENT;
9608 	}
9609 
9610 	if (!btf_type_is_var(t)) {
9611 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n",
9612 			id);
9613 		return -EINVAL;
9614 	}
9615 
9616 	sym_name = btf_name_by_offset(btf_vmlinux, t->name_off);
9617 	addr = kallsyms_lookup_name(sym_name);
9618 	if (!addr) {
9619 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
9620 			sym_name);
9621 		return -ENOENT;
9622 	}
9623 
9624 	datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu",
9625 					   BTF_KIND_DATASEC);
9626 	if (datasec_id > 0) {
9627 		datasec = btf_type_by_id(btf_vmlinux, datasec_id);
9628 		for_each_vsi(i, datasec, vsi) {
9629 			if (vsi->type == id) {
9630 				percpu = true;
9631 				break;
9632 			}
9633 		}
9634 	}
9635 
9636 	insn[0].imm = (u32)addr;
9637 	insn[1].imm = addr >> 32;
9638 
9639 	type = t->type;
9640 	t = btf_type_skip_modifiers(btf_vmlinux, type, NULL);
9641 	if (percpu) {
9642 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
9643 		aux->btf_var.btf_id = type;
9644 	} else if (!btf_type_is_struct(t)) {
9645 		const struct btf_type *ret;
9646 		const char *tname;
9647 		u32 tsize;
9648 
9649 		/* resolve the type size of ksym. */
9650 		ret = btf_resolve_size(btf_vmlinux, t, &tsize);
9651 		if (IS_ERR(ret)) {
9652 			tname = btf_name_by_offset(btf_vmlinux, t->name_off);
9653 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
9654 				tname, PTR_ERR(ret));
9655 			return -EINVAL;
9656 		}
9657 		aux->btf_var.reg_type = PTR_TO_MEM;
9658 		aux->btf_var.mem_size = tsize;
9659 	} else {
9660 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
9661 		aux->btf_var.btf_id = type;
9662 	}
9663 	return 0;
9664 }
9665 
9666 static int check_map_prealloc(struct bpf_map *map)
9667 {
9668 	return (map->map_type != BPF_MAP_TYPE_HASH &&
9669 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9670 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
9671 		!(map->map_flags & BPF_F_NO_PREALLOC);
9672 }
9673 
9674 static bool is_tracing_prog_type(enum bpf_prog_type type)
9675 {
9676 	switch (type) {
9677 	case BPF_PROG_TYPE_KPROBE:
9678 	case BPF_PROG_TYPE_TRACEPOINT:
9679 	case BPF_PROG_TYPE_PERF_EVENT:
9680 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9681 		return true;
9682 	default:
9683 		return false;
9684 	}
9685 }
9686 
9687 static bool is_preallocated_map(struct bpf_map *map)
9688 {
9689 	if (!check_map_prealloc(map))
9690 		return false;
9691 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9692 		return false;
9693 	return true;
9694 }
9695 
9696 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9697 					struct bpf_map *map,
9698 					struct bpf_prog *prog)
9699 
9700 {
9701 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
9702 	/*
9703 	 * Validate that trace type programs use preallocated hash maps.
9704 	 *
9705 	 * For programs attached to PERF events this is mandatory as the
9706 	 * perf NMI can hit any arbitrary code sequence.
9707 	 *
9708 	 * All other trace types using preallocated hash maps are unsafe as
9709 	 * well because tracepoint or kprobes can be inside locked regions
9710 	 * of the memory allocator or at a place where a recursion into the
9711 	 * memory allocator would see inconsistent state.
9712 	 *
9713 	 * On RT enabled kernels run-time allocation of all trace type
9714 	 * programs is strictly prohibited due to lock type constraints. On
9715 	 * !RT kernels it is allowed for backwards compatibility reasons for
9716 	 * now, but warnings are emitted so developers are made aware of
9717 	 * the unsafety and can fix their programs before this is enforced.
9718 	 */
9719 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
9720 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
9721 			verbose(env, "perf_event programs can only use preallocated hash map\n");
9722 			return -EINVAL;
9723 		}
9724 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9725 			verbose(env, "trace type programs can only use preallocated hash map\n");
9726 			return -EINVAL;
9727 		}
9728 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9729 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
9730 	}
9731 
9732 	if (map_value_has_spin_lock(map)) {
9733 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
9734 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
9735 			return -EINVAL;
9736 		}
9737 
9738 		if (is_tracing_prog_type(prog_type)) {
9739 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9740 			return -EINVAL;
9741 		}
9742 
9743 		if (prog->aux->sleepable) {
9744 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
9745 			return -EINVAL;
9746 		}
9747 	}
9748 
9749 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
9750 	    !bpf_offload_prog_map_match(prog, map)) {
9751 		verbose(env, "offload device mismatch between prog and map\n");
9752 		return -EINVAL;
9753 	}
9754 
9755 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9756 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9757 		return -EINVAL;
9758 	}
9759 
9760 	if (prog->aux->sleepable)
9761 		switch (map->map_type) {
9762 		case BPF_MAP_TYPE_HASH:
9763 		case BPF_MAP_TYPE_LRU_HASH:
9764 		case BPF_MAP_TYPE_ARRAY:
9765 			if (!is_preallocated_map(map)) {
9766 				verbose(env,
9767 					"Sleepable programs can only use preallocated hash maps\n");
9768 				return -EINVAL;
9769 			}
9770 			break;
9771 		default:
9772 			verbose(env,
9773 				"Sleepable programs can only use array and hash maps\n");
9774 			return -EINVAL;
9775 		}
9776 
9777 	return 0;
9778 }
9779 
9780 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9781 {
9782 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9783 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9784 }
9785 
9786 /* find and rewrite pseudo imm in ld_imm64 instructions:
9787  *
9788  * 1. if it accesses map FD, replace it with actual map pointer.
9789  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
9790  *
9791  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
9792  */
9793 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
9794 {
9795 	struct bpf_insn *insn = env->prog->insnsi;
9796 	int insn_cnt = env->prog->len;
9797 	int i, j, err;
9798 
9799 	err = bpf_prog_calc_tag(env->prog);
9800 	if (err)
9801 		return err;
9802 
9803 	for (i = 0; i < insn_cnt; i++, insn++) {
9804 		if (BPF_CLASS(insn->code) == BPF_LDX &&
9805 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9806 			verbose(env, "BPF_LDX uses reserved fields\n");
9807 			return -EINVAL;
9808 		}
9809 
9810 		if (BPF_CLASS(insn->code) == BPF_STX &&
9811 		    ((BPF_MODE(insn->code) != BPF_MEM &&
9812 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
9813 			verbose(env, "BPF_STX uses reserved fields\n");
9814 			return -EINVAL;
9815 		}
9816 
9817 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
9818 			struct bpf_insn_aux_data *aux;
9819 			struct bpf_map *map;
9820 			struct fd f;
9821 			u64 addr;
9822 
9823 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
9824 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9825 			    insn[1].off != 0) {
9826 				verbose(env, "invalid bpf_ld_imm64 insn\n");
9827 				return -EINVAL;
9828 			}
9829 
9830 			if (insn[0].src_reg == 0)
9831 				/* valid generic load 64-bit imm */
9832 				goto next_insn;
9833 
9834 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
9835 				aux = &env->insn_aux_data[i];
9836 				err = check_pseudo_btf_id(env, insn, aux);
9837 				if (err)
9838 					return err;
9839 				goto next_insn;
9840 			}
9841 
9842 			/* In final convert_pseudo_ld_imm64() step, this is
9843 			 * converted into regular 64-bit imm load insn.
9844 			 */
9845 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9846 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9847 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9848 			     insn[1].imm != 0)) {
9849 				verbose(env,
9850 					"unrecognized bpf_ld_imm64 insn\n");
9851 				return -EINVAL;
9852 			}
9853 
9854 			f = fdget(insn[0].imm);
9855 			map = __bpf_map_get(f);
9856 			if (IS_ERR(map)) {
9857 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
9858 					insn[0].imm);
9859 				return PTR_ERR(map);
9860 			}
9861 
9862 			err = check_map_prog_compatibility(env, map, env->prog);
9863 			if (err) {
9864 				fdput(f);
9865 				return err;
9866 			}
9867 
9868 			aux = &env->insn_aux_data[i];
9869 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
9870 				addr = (unsigned long)map;
9871 			} else {
9872 				u32 off = insn[1].imm;
9873 
9874 				if (off >= BPF_MAX_VAR_OFF) {
9875 					verbose(env, "direct value offset of %u is not allowed\n", off);
9876 					fdput(f);
9877 					return -EINVAL;
9878 				}
9879 
9880 				if (!map->ops->map_direct_value_addr) {
9881 					verbose(env, "no direct value access support for this map type\n");
9882 					fdput(f);
9883 					return -EINVAL;
9884 				}
9885 
9886 				err = map->ops->map_direct_value_addr(map, &addr, off);
9887 				if (err) {
9888 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
9889 						map->value_size, off);
9890 					fdput(f);
9891 					return err;
9892 				}
9893 
9894 				aux->map_off = off;
9895 				addr += off;
9896 			}
9897 
9898 			insn[0].imm = (u32)addr;
9899 			insn[1].imm = addr >> 32;
9900 
9901 			/* check whether we recorded this map already */
9902 			for (j = 0; j < env->used_map_cnt; j++) {
9903 				if (env->used_maps[j] == map) {
9904 					aux->map_index = j;
9905 					fdput(f);
9906 					goto next_insn;
9907 				}
9908 			}
9909 
9910 			if (env->used_map_cnt >= MAX_USED_MAPS) {
9911 				fdput(f);
9912 				return -E2BIG;
9913 			}
9914 
9915 			/* hold the map. If the program is rejected by verifier,
9916 			 * the map will be released by release_maps() or it
9917 			 * will be used by the valid program until it's unloaded
9918 			 * and all maps are released in free_used_maps()
9919 			 */
9920 			bpf_map_inc(map);
9921 
9922 			aux->map_index = env->used_map_cnt;
9923 			env->used_maps[env->used_map_cnt++] = map;
9924 
9925 			if (bpf_map_is_cgroup_storage(map) &&
9926 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
9927 				verbose(env, "only one cgroup storage of each type is allowed\n");
9928 				fdput(f);
9929 				return -EBUSY;
9930 			}
9931 
9932 			fdput(f);
9933 next_insn:
9934 			insn++;
9935 			i++;
9936 			continue;
9937 		}
9938 
9939 		/* Basic sanity check before we invest more work here. */
9940 		if (!bpf_opcode_in_insntable(insn->code)) {
9941 			verbose(env, "unknown opcode %02x\n", insn->code);
9942 			return -EINVAL;
9943 		}
9944 	}
9945 
9946 	/* now all pseudo BPF_LD_IMM64 instructions load valid
9947 	 * 'struct bpf_map *' into a register instead of user map_fd.
9948 	 * These pointers will be used later by verifier to validate map access.
9949 	 */
9950 	return 0;
9951 }
9952 
9953 /* drop refcnt of maps used by the rejected program */
9954 static void release_maps(struct bpf_verifier_env *env)
9955 {
9956 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
9957 			     env->used_map_cnt);
9958 }
9959 
9960 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
9961 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
9962 {
9963 	struct bpf_insn *insn = env->prog->insnsi;
9964 	int insn_cnt = env->prog->len;
9965 	int i;
9966 
9967 	for (i = 0; i < insn_cnt; i++, insn++)
9968 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
9969 			insn->src_reg = 0;
9970 }
9971 
9972 /* single env->prog->insni[off] instruction was replaced with the range
9973  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
9974  * [0, off) and [off, end) to new locations, so the patched range stays zero
9975  */
9976 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
9977 				struct bpf_prog *new_prog, u32 off, u32 cnt)
9978 {
9979 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
9980 	struct bpf_insn *insn = new_prog->insnsi;
9981 	u32 prog_len;
9982 	int i;
9983 
9984 	/* aux info at OFF always needs adjustment, no matter fast path
9985 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9986 	 * original insn at old prog.
9987 	 */
9988 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9989 
9990 	if (cnt == 1)
9991 		return 0;
9992 	prog_len = new_prog->len;
9993 	new_data = vzalloc(array_size(prog_len,
9994 				      sizeof(struct bpf_insn_aux_data)));
9995 	if (!new_data)
9996 		return -ENOMEM;
9997 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9998 	memcpy(new_data + off + cnt - 1, old_data + off,
9999 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10000 	for (i = off; i < off + cnt - 1; i++) {
10001 		new_data[i].seen = env->pass_cnt;
10002 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
10003 	}
10004 	env->insn_aux_data = new_data;
10005 	vfree(old_data);
10006 	return 0;
10007 }
10008 
10009 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10010 {
10011 	int i;
10012 
10013 	if (len == 1)
10014 		return;
10015 	/* NOTE: fake 'exit' subprog should be updated as well. */
10016 	for (i = 0; i <= env->subprog_cnt; i++) {
10017 		if (env->subprog_info[i].start <= off)
10018 			continue;
10019 		env->subprog_info[i].start += len - 1;
10020 	}
10021 }
10022 
10023 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10024 {
10025 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10026 	int i, sz = prog->aux->size_poke_tab;
10027 	struct bpf_jit_poke_descriptor *desc;
10028 
10029 	for (i = 0; i < sz; i++) {
10030 		desc = &tab[i];
10031 		desc->insn_idx += len - 1;
10032 	}
10033 }
10034 
10035 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10036 					    const struct bpf_insn *patch, u32 len)
10037 {
10038 	struct bpf_prog *new_prog;
10039 
10040 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10041 	if (IS_ERR(new_prog)) {
10042 		if (PTR_ERR(new_prog) == -ERANGE)
10043 			verbose(env,
10044 				"insn %d cannot be patched due to 16-bit range\n",
10045 				env->insn_aux_data[off].orig_idx);
10046 		return NULL;
10047 	}
10048 	if (adjust_insn_aux_data(env, new_prog, off, len))
10049 		return NULL;
10050 	adjust_subprog_starts(env, off, len);
10051 	adjust_poke_descs(new_prog, len);
10052 	return new_prog;
10053 }
10054 
10055 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10056 					      u32 off, u32 cnt)
10057 {
10058 	int i, j;
10059 
10060 	/* find first prog starting at or after off (first to remove) */
10061 	for (i = 0; i < env->subprog_cnt; i++)
10062 		if (env->subprog_info[i].start >= off)
10063 			break;
10064 	/* find first prog starting at or after off + cnt (first to stay) */
10065 	for (j = i; j < env->subprog_cnt; j++)
10066 		if (env->subprog_info[j].start >= off + cnt)
10067 			break;
10068 	/* if j doesn't start exactly at off + cnt, we are just removing
10069 	 * the front of previous prog
10070 	 */
10071 	if (env->subprog_info[j].start != off + cnt)
10072 		j--;
10073 
10074 	if (j > i) {
10075 		struct bpf_prog_aux *aux = env->prog->aux;
10076 		int move;
10077 
10078 		/* move fake 'exit' subprog as well */
10079 		move = env->subprog_cnt + 1 - j;
10080 
10081 		memmove(env->subprog_info + i,
10082 			env->subprog_info + j,
10083 			sizeof(*env->subprog_info) * move);
10084 		env->subprog_cnt -= j - i;
10085 
10086 		/* remove func_info */
10087 		if (aux->func_info) {
10088 			move = aux->func_info_cnt - j;
10089 
10090 			memmove(aux->func_info + i,
10091 				aux->func_info + j,
10092 				sizeof(*aux->func_info) * move);
10093 			aux->func_info_cnt -= j - i;
10094 			/* func_info->insn_off is set after all code rewrites,
10095 			 * in adjust_btf_func() - no need to adjust
10096 			 */
10097 		}
10098 	} else {
10099 		/* convert i from "first prog to remove" to "first to adjust" */
10100 		if (env->subprog_info[i].start == off)
10101 			i++;
10102 	}
10103 
10104 	/* update fake 'exit' subprog as well */
10105 	for (; i <= env->subprog_cnt; i++)
10106 		env->subprog_info[i].start -= cnt;
10107 
10108 	return 0;
10109 }
10110 
10111 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10112 				      u32 cnt)
10113 {
10114 	struct bpf_prog *prog = env->prog;
10115 	u32 i, l_off, l_cnt, nr_linfo;
10116 	struct bpf_line_info *linfo;
10117 
10118 	nr_linfo = prog->aux->nr_linfo;
10119 	if (!nr_linfo)
10120 		return 0;
10121 
10122 	linfo = prog->aux->linfo;
10123 
10124 	/* find first line info to remove, count lines to be removed */
10125 	for (i = 0; i < nr_linfo; i++)
10126 		if (linfo[i].insn_off >= off)
10127 			break;
10128 
10129 	l_off = i;
10130 	l_cnt = 0;
10131 	for (; i < nr_linfo; i++)
10132 		if (linfo[i].insn_off < off + cnt)
10133 			l_cnt++;
10134 		else
10135 			break;
10136 
10137 	/* First live insn doesn't match first live linfo, it needs to "inherit"
10138 	 * last removed linfo.  prog is already modified, so prog->len == off
10139 	 * means no live instructions after (tail of the program was removed).
10140 	 */
10141 	if (prog->len != off && l_cnt &&
10142 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10143 		l_cnt--;
10144 		linfo[--i].insn_off = off + cnt;
10145 	}
10146 
10147 	/* remove the line info which refer to the removed instructions */
10148 	if (l_cnt) {
10149 		memmove(linfo + l_off, linfo + i,
10150 			sizeof(*linfo) * (nr_linfo - i));
10151 
10152 		prog->aux->nr_linfo -= l_cnt;
10153 		nr_linfo = prog->aux->nr_linfo;
10154 	}
10155 
10156 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
10157 	for (i = l_off; i < nr_linfo; i++)
10158 		linfo[i].insn_off -= cnt;
10159 
10160 	/* fix up all subprogs (incl. 'exit') which start >= off */
10161 	for (i = 0; i <= env->subprog_cnt; i++)
10162 		if (env->subprog_info[i].linfo_idx > l_off) {
10163 			/* program may have started in the removed region but
10164 			 * may not be fully removed
10165 			 */
10166 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10167 				env->subprog_info[i].linfo_idx -= l_cnt;
10168 			else
10169 				env->subprog_info[i].linfo_idx = l_off;
10170 		}
10171 
10172 	return 0;
10173 }
10174 
10175 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10176 {
10177 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10178 	unsigned int orig_prog_len = env->prog->len;
10179 	int err;
10180 
10181 	if (bpf_prog_is_dev_bound(env->prog->aux))
10182 		bpf_prog_offload_remove_insns(env, off, cnt);
10183 
10184 	err = bpf_remove_insns(env->prog, off, cnt);
10185 	if (err)
10186 		return err;
10187 
10188 	err = adjust_subprog_starts_after_remove(env, off, cnt);
10189 	if (err)
10190 		return err;
10191 
10192 	err = bpf_adj_linfo_after_remove(env, off, cnt);
10193 	if (err)
10194 		return err;
10195 
10196 	memmove(aux_data + off,	aux_data + off + cnt,
10197 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
10198 
10199 	return 0;
10200 }
10201 
10202 /* The verifier does more data flow analysis than llvm and will not
10203  * explore branches that are dead at run time. Malicious programs can
10204  * have dead code too. Therefore replace all dead at-run-time code
10205  * with 'ja -1'.
10206  *
10207  * Just nops are not optimal, e.g. if they would sit at the end of the
10208  * program and through another bug we would manage to jump there, then
10209  * we'd execute beyond program memory otherwise. Returning exception
10210  * code also wouldn't work since we can have subprogs where the dead
10211  * code could be located.
10212  */
10213 static void sanitize_dead_code(struct bpf_verifier_env *env)
10214 {
10215 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10216 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
10217 	struct bpf_insn *insn = env->prog->insnsi;
10218 	const int insn_cnt = env->prog->len;
10219 	int i;
10220 
10221 	for (i = 0; i < insn_cnt; i++) {
10222 		if (aux_data[i].seen)
10223 			continue;
10224 		memcpy(insn + i, &trap, sizeof(trap));
10225 	}
10226 }
10227 
10228 static bool insn_is_cond_jump(u8 code)
10229 {
10230 	u8 op;
10231 
10232 	if (BPF_CLASS(code) == BPF_JMP32)
10233 		return true;
10234 
10235 	if (BPF_CLASS(code) != BPF_JMP)
10236 		return false;
10237 
10238 	op = BPF_OP(code);
10239 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10240 }
10241 
10242 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10243 {
10244 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10245 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10246 	struct bpf_insn *insn = env->prog->insnsi;
10247 	const int insn_cnt = env->prog->len;
10248 	int i;
10249 
10250 	for (i = 0; i < insn_cnt; i++, insn++) {
10251 		if (!insn_is_cond_jump(insn->code))
10252 			continue;
10253 
10254 		if (!aux_data[i + 1].seen)
10255 			ja.off = insn->off;
10256 		else if (!aux_data[i + 1 + insn->off].seen)
10257 			ja.off = 0;
10258 		else
10259 			continue;
10260 
10261 		if (bpf_prog_is_dev_bound(env->prog->aux))
10262 			bpf_prog_offload_replace_insn(env, i, &ja);
10263 
10264 		memcpy(insn, &ja, sizeof(ja));
10265 	}
10266 }
10267 
10268 static int opt_remove_dead_code(struct bpf_verifier_env *env)
10269 {
10270 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10271 	int insn_cnt = env->prog->len;
10272 	int i, err;
10273 
10274 	for (i = 0; i < insn_cnt; i++) {
10275 		int j;
10276 
10277 		j = 0;
10278 		while (i + j < insn_cnt && !aux_data[i + j].seen)
10279 			j++;
10280 		if (!j)
10281 			continue;
10282 
10283 		err = verifier_remove_insns(env, i, j);
10284 		if (err)
10285 			return err;
10286 		insn_cnt = env->prog->len;
10287 	}
10288 
10289 	return 0;
10290 }
10291 
10292 static int opt_remove_nops(struct bpf_verifier_env *env)
10293 {
10294 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10295 	struct bpf_insn *insn = env->prog->insnsi;
10296 	int insn_cnt = env->prog->len;
10297 	int i, err;
10298 
10299 	for (i = 0; i < insn_cnt; i++) {
10300 		if (memcmp(&insn[i], &ja, sizeof(ja)))
10301 			continue;
10302 
10303 		err = verifier_remove_insns(env, i, 1);
10304 		if (err)
10305 			return err;
10306 		insn_cnt--;
10307 		i--;
10308 	}
10309 
10310 	return 0;
10311 }
10312 
10313 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10314 					 const union bpf_attr *attr)
10315 {
10316 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
10317 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
10318 	int i, patch_len, delta = 0, len = env->prog->len;
10319 	struct bpf_insn *insns = env->prog->insnsi;
10320 	struct bpf_prog *new_prog;
10321 	bool rnd_hi32;
10322 
10323 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
10324 	zext_patch[1] = BPF_ZEXT_REG(0);
10325 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10326 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10327 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
10328 	for (i = 0; i < len; i++) {
10329 		int adj_idx = i + delta;
10330 		struct bpf_insn insn;
10331 
10332 		insn = insns[adj_idx];
10333 		if (!aux[adj_idx].zext_dst) {
10334 			u8 code, class;
10335 			u32 imm_rnd;
10336 
10337 			if (!rnd_hi32)
10338 				continue;
10339 
10340 			code = insn.code;
10341 			class = BPF_CLASS(code);
10342 			if (insn_no_def(&insn))
10343 				continue;
10344 
10345 			/* NOTE: arg "reg" (the fourth one) is only used for
10346 			 *       BPF_STX which has been ruled out in above
10347 			 *       check, it is safe to pass NULL here.
10348 			 */
10349 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10350 				if (class == BPF_LD &&
10351 				    BPF_MODE(code) == BPF_IMM)
10352 					i++;
10353 				continue;
10354 			}
10355 
10356 			/* ctx load could be transformed into wider load. */
10357 			if (class == BPF_LDX &&
10358 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
10359 				continue;
10360 
10361 			imm_rnd = get_random_int();
10362 			rnd_hi32_patch[0] = insn;
10363 			rnd_hi32_patch[1].imm = imm_rnd;
10364 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10365 			patch = rnd_hi32_patch;
10366 			patch_len = 4;
10367 			goto apply_patch_buffer;
10368 		}
10369 
10370 		if (!bpf_jit_needs_zext())
10371 			continue;
10372 
10373 		zext_patch[0] = insn;
10374 		zext_patch[1].dst_reg = insn.dst_reg;
10375 		zext_patch[1].src_reg = insn.dst_reg;
10376 		patch = zext_patch;
10377 		patch_len = 2;
10378 apply_patch_buffer:
10379 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
10380 		if (!new_prog)
10381 			return -ENOMEM;
10382 		env->prog = new_prog;
10383 		insns = new_prog->insnsi;
10384 		aux = env->insn_aux_data;
10385 		delta += patch_len - 1;
10386 	}
10387 
10388 	return 0;
10389 }
10390 
10391 /* convert load instructions that access fields of a context type into a
10392  * sequence of instructions that access fields of the underlying structure:
10393  *     struct __sk_buff    -> struct sk_buff
10394  *     struct bpf_sock_ops -> struct sock
10395  */
10396 static int convert_ctx_accesses(struct bpf_verifier_env *env)
10397 {
10398 	const struct bpf_verifier_ops *ops = env->ops;
10399 	int i, cnt, size, ctx_field_size, delta = 0;
10400 	const int insn_cnt = env->prog->len;
10401 	struct bpf_insn insn_buf[16], *insn;
10402 	u32 target_size, size_default, off;
10403 	struct bpf_prog *new_prog;
10404 	enum bpf_access_type type;
10405 	bool is_narrower_load;
10406 
10407 	if (ops->gen_prologue || env->seen_direct_write) {
10408 		if (!ops->gen_prologue) {
10409 			verbose(env, "bpf verifier is misconfigured\n");
10410 			return -EINVAL;
10411 		}
10412 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
10413 					env->prog);
10414 		if (cnt >= ARRAY_SIZE(insn_buf)) {
10415 			verbose(env, "bpf verifier is misconfigured\n");
10416 			return -EINVAL;
10417 		} else if (cnt) {
10418 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
10419 			if (!new_prog)
10420 				return -ENOMEM;
10421 
10422 			env->prog = new_prog;
10423 			delta += cnt - 1;
10424 		}
10425 	}
10426 
10427 	if (bpf_prog_is_dev_bound(env->prog->aux))
10428 		return 0;
10429 
10430 	insn = env->prog->insnsi + delta;
10431 
10432 	for (i = 0; i < insn_cnt; i++, insn++) {
10433 		bpf_convert_ctx_access_t convert_ctx_access;
10434 
10435 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
10436 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
10437 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
10438 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
10439 			type = BPF_READ;
10440 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
10441 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
10442 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
10443 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
10444 			type = BPF_WRITE;
10445 		else
10446 			continue;
10447 
10448 		if (type == BPF_WRITE &&
10449 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
10450 			struct bpf_insn patch[] = {
10451 				/* Sanitize suspicious stack slot with zero.
10452 				 * There are no memory dependencies for this store,
10453 				 * since it's only using frame pointer and immediate
10454 				 * constant of zero
10455 				 */
10456 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
10457 					   env->insn_aux_data[i + delta].sanitize_stack_off,
10458 					   0),
10459 				/* the original STX instruction will immediately
10460 				 * overwrite the same stack slot with appropriate value
10461 				 */
10462 				*insn,
10463 			};
10464 
10465 			cnt = ARRAY_SIZE(patch);
10466 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
10467 			if (!new_prog)
10468 				return -ENOMEM;
10469 
10470 			delta    += cnt - 1;
10471 			env->prog = new_prog;
10472 			insn      = new_prog->insnsi + i + delta;
10473 			continue;
10474 		}
10475 
10476 		switch (env->insn_aux_data[i + delta].ptr_type) {
10477 		case PTR_TO_CTX:
10478 			if (!ops->convert_ctx_access)
10479 				continue;
10480 			convert_ctx_access = ops->convert_ctx_access;
10481 			break;
10482 		case PTR_TO_SOCKET:
10483 		case PTR_TO_SOCK_COMMON:
10484 			convert_ctx_access = bpf_sock_convert_ctx_access;
10485 			break;
10486 		case PTR_TO_TCP_SOCK:
10487 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
10488 			break;
10489 		case PTR_TO_XDP_SOCK:
10490 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
10491 			break;
10492 		case PTR_TO_BTF_ID:
10493 			if (type == BPF_READ) {
10494 				insn->code = BPF_LDX | BPF_PROBE_MEM |
10495 					BPF_SIZE((insn)->code);
10496 				env->prog->aux->num_exentries++;
10497 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
10498 				verbose(env, "Writes through BTF pointers are not allowed\n");
10499 				return -EINVAL;
10500 			}
10501 			continue;
10502 		default:
10503 			continue;
10504 		}
10505 
10506 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
10507 		size = BPF_LDST_BYTES(insn);
10508 
10509 		/* If the read access is a narrower load of the field,
10510 		 * convert to a 4/8-byte load, to minimum program type specific
10511 		 * convert_ctx_access changes. If conversion is successful,
10512 		 * we will apply proper mask to the result.
10513 		 */
10514 		is_narrower_load = size < ctx_field_size;
10515 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
10516 		off = insn->off;
10517 		if (is_narrower_load) {
10518 			u8 size_code;
10519 
10520 			if (type == BPF_WRITE) {
10521 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
10522 				return -EINVAL;
10523 			}
10524 
10525 			size_code = BPF_H;
10526 			if (ctx_field_size == 4)
10527 				size_code = BPF_W;
10528 			else if (ctx_field_size == 8)
10529 				size_code = BPF_DW;
10530 
10531 			insn->off = off & ~(size_default - 1);
10532 			insn->code = BPF_LDX | BPF_MEM | size_code;
10533 		}
10534 
10535 		target_size = 0;
10536 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
10537 					 &target_size);
10538 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
10539 		    (ctx_field_size && !target_size)) {
10540 			verbose(env, "bpf verifier is misconfigured\n");
10541 			return -EINVAL;
10542 		}
10543 
10544 		if (is_narrower_load && size < target_size) {
10545 			u8 shift = bpf_ctx_narrow_access_offset(
10546 				off, size, size_default) * 8;
10547 			if (ctx_field_size <= 4) {
10548 				if (shift)
10549 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
10550 									insn->dst_reg,
10551 									shift);
10552 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
10553 								(1 << size * 8) - 1);
10554 			} else {
10555 				if (shift)
10556 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
10557 									insn->dst_reg,
10558 									shift);
10559 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
10560 								(1ULL << size * 8) - 1);
10561 			}
10562 		}
10563 
10564 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10565 		if (!new_prog)
10566 			return -ENOMEM;
10567 
10568 		delta += cnt - 1;
10569 
10570 		/* keep walking new program and skip insns we just inserted */
10571 		env->prog = new_prog;
10572 		insn      = new_prog->insnsi + i + delta;
10573 	}
10574 
10575 	return 0;
10576 }
10577 
10578 static int jit_subprogs(struct bpf_verifier_env *env)
10579 {
10580 	struct bpf_prog *prog = env->prog, **func, *tmp;
10581 	int i, j, subprog_start, subprog_end = 0, len, subprog;
10582 	struct bpf_map *map_ptr;
10583 	struct bpf_insn *insn;
10584 	void *old_bpf_func;
10585 	int err, num_exentries;
10586 
10587 	if (env->subprog_cnt <= 1)
10588 		return 0;
10589 
10590 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10591 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10592 		    insn->src_reg != BPF_PSEUDO_CALL)
10593 			continue;
10594 		/* Upon error here we cannot fall back to interpreter but
10595 		 * need a hard reject of the program. Thus -EFAULT is
10596 		 * propagated in any case.
10597 		 */
10598 		subprog = find_subprog(env, i + insn->imm + 1);
10599 		if (subprog < 0) {
10600 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
10601 				  i + insn->imm + 1);
10602 			return -EFAULT;
10603 		}
10604 		/* temporarily remember subprog id inside insn instead of
10605 		 * aux_data, since next loop will split up all insns into funcs
10606 		 */
10607 		insn->off = subprog;
10608 		/* remember original imm in case JIT fails and fallback
10609 		 * to interpreter will be needed
10610 		 */
10611 		env->insn_aux_data[i].call_imm = insn->imm;
10612 		/* point imm to __bpf_call_base+1 from JITs point of view */
10613 		insn->imm = 1;
10614 	}
10615 
10616 	err = bpf_prog_alloc_jited_linfo(prog);
10617 	if (err)
10618 		goto out_undo_insn;
10619 
10620 	err = -ENOMEM;
10621 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
10622 	if (!func)
10623 		goto out_undo_insn;
10624 
10625 	for (i = 0; i < env->subprog_cnt; i++) {
10626 		subprog_start = subprog_end;
10627 		subprog_end = env->subprog_info[i + 1].start;
10628 
10629 		len = subprog_end - subprog_start;
10630 		/* BPF_PROG_RUN doesn't call subprogs directly,
10631 		 * hence main prog stats include the runtime of subprogs.
10632 		 * subprogs don't have IDs and not reachable via prog_get_next_id
10633 		 * func[i]->aux->stats will never be accessed and stays NULL
10634 		 */
10635 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
10636 		if (!func[i])
10637 			goto out_free;
10638 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
10639 		       len * sizeof(struct bpf_insn));
10640 		func[i]->type = prog->type;
10641 		func[i]->len = len;
10642 		if (bpf_prog_calc_tag(func[i]))
10643 			goto out_free;
10644 		func[i]->is_func = 1;
10645 		func[i]->aux->func_idx = i;
10646 		/* the btf and func_info will be freed only at prog->aux */
10647 		func[i]->aux->btf = prog->aux->btf;
10648 		func[i]->aux->func_info = prog->aux->func_info;
10649 
10650 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
10651 			u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
10652 			int ret;
10653 
10654 			if (!(insn_idx >= subprog_start &&
10655 			      insn_idx <= subprog_end))
10656 				continue;
10657 
10658 			ret = bpf_jit_add_poke_descriptor(func[i],
10659 							  &prog->aux->poke_tab[j]);
10660 			if (ret < 0) {
10661 				verbose(env, "adding tail call poke descriptor failed\n");
10662 				goto out_free;
10663 			}
10664 
10665 			func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
10666 
10667 			map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
10668 			ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
10669 			if (ret < 0) {
10670 				verbose(env, "tracking tail call prog failed\n");
10671 				goto out_free;
10672 			}
10673 		}
10674 
10675 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
10676 		 * Long term would need debug info to populate names
10677 		 */
10678 		func[i]->aux->name[0] = 'F';
10679 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
10680 		func[i]->jit_requested = 1;
10681 		func[i]->aux->linfo = prog->aux->linfo;
10682 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
10683 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
10684 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
10685 		num_exentries = 0;
10686 		insn = func[i]->insnsi;
10687 		for (j = 0; j < func[i]->len; j++, insn++) {
10688 			if (BPF_CLASS(insn->code) == BPF_LDX &&
10689 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
10690 				num_exentries++;
10691 		}
10692 		func[i]->aux->num_exentries = num_exentries;
10693 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
10694 		func[i] = bpf_int_jit_compile(func[i]);
10695 		if (!func[i]->jited) {
10696 			err = -ENOTSUPP;
10697 			goto out_free;
10698 		}
10699 		cond_resched();
10700 	}
10701 
10702 	/* Untrack main program's aux structs so that during map_poke_run()
10703 	 * we will not stumble upon the unfilled poke descriptors; each
10704 	 * of the main program's poke descs got distributed across subprogs
10705 	 * and got tracked onto map, so we are sure that none of them will
10706 	 * be missed after the operation below
10707 	 */
10708 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
10709 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
10710 
10711 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
10712 	}
10713 
10714 	/* at this point all bpf functions were successfully JITed
10715 	 * now populate all bpf_calls with correct addresses and
10716 	 * run last pass of JIT
10717 	 */
10718 	for (i = 0; i < env->subprog_cnt; i++) {
10719 		insn = func[i]->insnsi;
10720 		for (j = 0; j < func[i]->len; j++, insn++) {
10721 			if (insn->code != (BPF_JMP | BPF_CALL) ||
10722 			    insn->src_reg != BPF_PSEUDO_CALL)
10723 				continue;
10724 			subprog = insn->off;
10725 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10726 				    __bpf_call_base;
10727 		}
10728 
10729 		/* we use the aux data to keep a list of the start addresses
10730 		 * of the JITed images for each function in the program
10731 		 *
10732 		 * for some architectures, such as powerpc64, the imm field
10733 		 * might not be large enough to hold the offset of the start
10734 		 * address of the callee's JITed image from __bpf_call_base
10735 		 *
10736 		 * in such cases, we can lookup the start address of a callee
10737 		 * by using its subprog id, available from the off field of
10738 		 * the call instruction, as an index for this list
10739 		 */
10740 		func[i]->aux->func = func;
10741 		func[i]->aux->func_cnt = env->subprog_cnt;
10742 	}
10743 	for (i = 0; i < env->subprog_cnt; i++) {
10744 		old_bpf_func = func[i]->bpf_func;
10745 		tmp = bpf_int_jit_compile(func[i]);
10746 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
10747 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
10748 			err = -ENOTSUPP;
10749 			goto out_free;
10750 		}
10751 		cond_resched();
10752 	}
10753 
10754 	/* finally lock prog and jit images for all functions and
10755 	 * populate kallsysm
10756 	 */
10757 	for (i = 0; i < env->subprog_cnt; i++) {
10758 		bpf_prog_lock_ro(func[i]);
10759 		bpf_prog_kallsyms_add(func[i]);
10760 	}
10761 
10762 	/* Last step: make now unused interpreter insns from main
10763 	 * prog consistent for later dump requests, so they can
10764 	 * later look the same as if they were interpreted only.
10765 	 */
10766 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10767 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10768 		    insn->src_reg != BPF_PSEUDO_CALL)
10769 			continue;
10770 		insn->off = env->insn_aux_data[i].call_imm;
10771 		subprog = find_subprog(env, i + insn->off + 1);
10772 		insn->imm = subprog;
10773 	}
10774 
10775 	prog->jited = 1;
10776 	prog->bpf_func = func[0]->bpf_func;
10777 	prog->aux->func = func;
10778 	prog->aux->func_cnt = env->subprog_cnt;
10779 	bpf_prog_free_unused_jited_linfo(prog);
10780 	return 0;
10781 out_free:
10782 	for (i = 0; i < env->subprog_cnt; i++) {
10783 		if (!func[i])
10784 			continue;
10785 
10786 		for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
10787 			map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
10788 			map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
10789 		}
10790 		bpf_jit_free(func[i]);
10791 	}
10792 	kfree(func);
10793 out_undo_insn:
10794 	/* cleanup main prog to be interpreted */
10795 	prog->jit_requested = 0;
10796 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10797 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10798 		    insn->src_reg != BPF_PSEUDO_CALL)
10799 			continue;
10800 		insn->off = 0;
10801 		insn->imm = env->insn_aux_data[i].call_imm;
10802 	}
10803 	bpf_prog_free_jited_linfo(prog);
10804 	return err;
10805 }
10806 
10807 static int fixup_call_args(struct bpf_verifier_env *env)
10808 {
10809 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
10810 	struct bpf_prog *prog = env->prog;
10811 	struct bpf_insn *insn = prog->insnsi;
10812 	int i, depth;
10813 #endif
10814 	int err = 0;
10815 
10816 	if (env->prog->jit_requested &&
10817 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
10818 		err = jit_subprogs(env);
10819 		if (err == 0)
10820 			return 0;
10821 		if (err == -EFAULT)
10822 			return err;
10823 	}
10824 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
10825 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
10826 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
10827 		 * have to be rejected, since interpreter doesn't support them yet.
10828 		 */
10829 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
10830 		return -EINVAL;
10831 	}
10832 	for (i = 0; i < prog->len; i++, insn++) {
10833 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10834 		    insn->src_reg != BPF_PSEUDO_CALL)
10835 			continue;
10836 		depth = get_callee_stack_depth(env, insn, i);
10837 		if (depth < 0)
10838 			return depth;
10839 		bpf_patch_call_args(insn, depth);
10840 	}
10841 	err = 0;
10842 #endif
10843 	return err;
10844 }
10845 
10846 /* fixup insn->imm field of bpf_call instructions
10847  * and inline eligible helpers as explicit sequence of BPF instructions
10848  *
10849  * this function is called after eBPF program passed verification
10850  */
10851 static int fixup_bpf_calls(struct bpf_verifier_env *env)
10852 {
10853 	struct bpf_prog *prog = env->prog;
10854 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
10855 	struct bpf_insn *insn = prog->insnsi;
10856 	const struct bpf_func_proto *fn;
10857 	const int insn_cnt = prog->len;
10858 	const struct bpf_map_ops *ops;
10859 	struct bpf_insn_aux_data *aux;
10860 	struct bpf_insn insn_buf[16];
10861 	struct bpf_prog *new_prog;
10862 	struct bpf_map *map_ptr;
10863 	int i, ret, cnt, delta = 0;
10864 
10865 	for (i = 0; i < insn_cnt; i++, insn++) {
10866 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
10867 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10868 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
10869 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10870 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
10871 			struct bpf_insn mask_and_div[] = {
10872 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10873 				/* Rx div 0 -> 0 */
10874 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
10875 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
10876 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
10877 				*insn,
10878 			};
10879 			struct bpf_insn mask_and_mod[] = {
10880 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10881 				/* Rx mod 0 -> Rx */
10882 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
10883 				*insn,
10884 			};
10885 			struct bpf_insn *patchlet;
10886 
10887 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10888 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10889 				patchlet = mask_and_div + (is64 ? 1 : 0);
10890 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
10891 			} else {
10892 				patchlet = mask_and_mod + (is64 ? 1 : 0);
10893 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
10894 			}
10895 
10896 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
10897 			if (!new_prog)
10898 				return -ENOMEM;
10899 
10900 			delta    += cnt - 1;
10901 			env->prog = prog = new_prog;
10902 			insn      = new_prog->insnsi + i + delta;
10903 			continue;
10904 		}
10905 
10906 		if (BPF_CLASS(insn->code) == BPF_LD &&
10907 		    (BPF_MODE(insn->code) == BPF_ABS ||
10908 		     BPF_MODE(insn->code) == BPF_IND)) {
10909 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
10910 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10911 				verbose(env, "bpf verifier is misconfigured\n");
10912 				return -EINVAL;
10913 			}
10914 
10915 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10916 			if (!new_prog)
10917 				return -ENOMEM;
10918 
10919 			delta    += cnt - 1;
10920 			env->prog = prog = new_prog;
10921 			insn      = new_prog->insnsi + i + delta;
10922 			continue;
10923 		}
10924 
10925 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
10926 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
10927 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
10928 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
10929 			struct bpf_insn insn_buf[16];
10930 			struct bpf_insn *patch = &insn_buf[0];
10931 			bool issrc, isneg;
10932 			u32 off_reg;
10933 
10934 			aux = &env->insn_aux_data[i + delta];
10935 			if (!aux->alu_state ||
10936 			    aux->alu_state == BPF_ALU_NON_POINTER)
10937 				continue;
10938 
10939 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
10940 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
10941 				BPF_ALU_SANITIZE_SRC;
10942 
10943 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
10944 			if (isneg)
10945 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10946 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
10947 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
10948 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
10949 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
10950 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
10951 			if (issrc) {
10952 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
10953 							 off_reg);
10954 				insn->src_reg = BPF_REG_AX;
10955 			} else {
10956 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
10957 							 BPF_REG_AX);
10958 			}
10959 			if (isneg)
10960 				insn->code = insn->code == code_add ?
10961 					     code_sub : code_add;
10962 			*patch++ = *insn;
10963 			if (issrc && isneg)
10964 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10965 			cnt = patch - insn_buf;
10966 
10967 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10968 			if (!new_prog)
10969 				return -ENOMEM;
10970 
10971 			delta    += cnt - 1;
10972 			env->prog = prog = new_prog;
10973 			insn      = new_prog->insnsi + i + delta;
10974 			continue;
10975 		}
10976 
10977 		if (insn->code != (BPF_JMP | BPF_CALL))
10978 			continue;
10979 		if (insn->src_reg == BPF_PSEUDO_CALL)
10980 			continue;
10981 
10982 		if (insn->imm == BPF_FUNC_get_route_realm)
10983 			prog->dst_needed = 1;
10984 		if (insn->imm == BPF_FUNC_get_prandom_u32)
10985 			bpf_user_rnd_init_once();
10986 		if (insn->imm == BPF_FUNC_override_return)
10987 			prog->kprobe_override = 1;
10988 		if (insn->imm == BPF_FUNC_tail_call) {
10989 			/* If we tail call into other programs, we
10990 			 * cannot make any assumptions since they can
10991 			 * be replaced dynamically during runtime in
10992 			 * the program array.
10993 			 */
10994 			prog->cb_access = 1;
10995 			if (!allow_tail_call_in_subprogs(env))
10996 				prog->aux->stack_depth = MAX_BPF_STACK;
10997 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
10998 
10999 			/* mark bpf_tail_call as different opcode to avoid
11000 			 * conditional branch in the interpeter for every normal
11001 			 * call and to prevent accidental JITing by JIT compiler
11002 			 * that doesn't support bpf_tail_call yet
11003 			 */
11004 			insn->imm = 0;
11005 			insn->code = BPF_JMP | BPF_TAIL_CALL;
11006 
11007 			aux = &env->insn_aux_data[i + delta];
11008 			if (env->bpf_capable && !expect_blinding &&
11009 			    prog->jit_requested &&
11010 			    !bpf_map_key_poisoned(aux) &&
11011 			    !bpf_map_ptr_poisoned(aux) &&
11012 			    !bpf_map_ptr_unpriv(aux)) {
11013 				struct bpf_jit_poke_descriptor desc = {
11014 					.reason = BPF_POKE_REASON_TAIL_CALL,
11015 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11016 					.tail_call.key = bpf_map_key_immediate(aux),
11017 					.insn_idx = i + delta,
11018 				};
11019 
11020 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
11021 				if (ret < 0) {
11022 					verbose(env, "adding tail call poke descriptor failed\n");
11023 					return ret;
11024 				}
11025 
11026 				insn->imm = ret + 1;
11027 				continue;
11028 			}
11029 
11030 			if (!bpf_map_ptr_unpriv(aux))
11031 				continue;
11032 
11033 			/* instead of changing every JIT dealing with tail_call
11034 			 * emit two extra insns:
11035 			 * if (index >= max_entries) goto out;
11036 			 * index &= array->index_mask;
11037 			 * to avoid out-of-bounds cpu speculation
11038 			 */
11039 			if (bpf_map_ptr_poisoned(aux)) {
11040 				verbose(env, "tail_call abusing map_ptr\n");
11041 				return -EINVAL;
11042 			}
11043 
11044 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11045 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11046 						  map_ptr->max_entries, 2);
11047 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11048 						    container_of(map_ptr,
11049 								 struct bpf_array,
11050 								 map)->index_mask);
11051 			insn_buf[2] = *insn;
11052 			cnt = 3;
11053 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11054 			if (!new_prog)
11055 				return -ENOMEM;
11056 
11057 			delta    += cnt - 1;
11058 			env->prog = prog = new_prog;
11059 			insn      = new_prog->insnsi + i + delta;
11060 			continue;
11061 		}
11062 
11063 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11064 		 * and other inlining handlers are currently limited to 64 bit
11065 		 * only.
11066 		 */
11067 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11068 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
11069 		     insn->imm == BPF_FUNC_map_update_elem ||
11070 		     insn->imm == BPF_FUNC_map_delete_elem ||
11071 		     insn->imm == BPF_FUNC_map_push_elem   ||
11072 		     insn->imm == BPF_FUNC_map_pop_elem    ||
11073 		     insn->imm == BPF_FUNC_map_peek_elem)) {
11074 			aux = &env->insn_aux_data[i + delta];
11075 			if (bpf_map_ptr_poisoned(aux))
11076 				goto patch_call_imm;
11077 
11078 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11079 			ops = map_ptr->ops;
11080 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
11081 			    ops->map_gen_lookup) {
11082 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11083 				if (cnt == -EOPNOTSUPP)
11084 					goto patch_map_ops_generic;
11085 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11086 					verbose(env, "bpf verifier is misconfigured\n");
11087 					return -EINVAL;
11088 				}
11089 
11090 				new_prog = bpf_patch_insn_data(env, i + delta,
11091 							       insn_buf, cnt);
11092 				if (!new_prog)
11093 					return -ENOMEM;
11094 
11095 				delta    += cnt - 1;
11096 				env->prog = prog = new_prog;
11097 				insn      = new_prog->insnsi + i + delta;
11098 				continue;
11099 			}
11100 
11101 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11102 				     (void *(*)(struct bpf_map *map, void *key))NULL));
11103 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11104 				     (int (*)(struct bpf_map *map, void *key))NULL));
11105 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11106 				     (int (*)(struct bpf_map *map, void *key, void *value,
11107 					      u64 flags))NULL));
11108 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11109 				     (int (*)(struct bpf_map *map, void *value,
11110 					      u64 flags))NULL));
11111 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11112 				     (int (*)(struct bpf_map *map, void *value))NULL));
11113 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11114 				     (int (*)(struct bpf_map *map, void *value))NULL));
11115 patch_map_ops_generic:
11116 			switch (insn->imm) {
11117 			case BPF_FUNC_map_lookup_elem:
11118 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11119 					    __bpf_call_base;
11120 				continue;
11121 			case BPF_FUNC_map_update_elem:
11122 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11123 					    __bpf_call_base;
11124 				continue;
11125 			case BPF_FUNC_map_delete_elem:
11126 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11127 					    __bpf_call_base;
11128 				continue;
11129 			case BPF_FUNC_map_push_elem:
11130 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11131 					    __bpf_call_base;
11132 				continue;
11133 			case BPF_FUNC_map_pop_elem:
11134 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11135 					    __bpf_call_base;
11136 				continue;
11137 			case BPF_FUNC_map_peek_elem:
11138 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11139 					    __bpf_call_base;
11140 				continue;
11141 			}
11142 
11143 			goto patch_call_imm;
11144 		}
11145 
11146 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11147 		    insn->imm == BPF_FUNC_jiffies64) {
11148 			struct bpf_insn ld_jiffies_addr[2] = {
11149 				BPF_LD_IMM64(BPF_REG_0,
11150 					     (unsigned long)&jiffies),
11151 			};
11152 
11153 			insn_buf[0] = ld_jiffies_addr[0];
11154 			insn_buf[1] = ld_jiffies_addr[1];
11155 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11156 						  BPF_REG_0, 0);
11157 			cnt = 3;
11158 
11159 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11160 						       cnt);
11161 			if (!new_prog)
11162 				return -ENOMEM;
11163 
11164 			delta    += cnt - 1;
11165 			env->prog = prog = new_prog;
11166 			insn      = new_prog->insnsi + i + delta;
11167 			continue;
11168 		}
11169 
11170 patch_call_imm:
11171 		fn = env->ops->get_func_proto(insn->imm, env->prog);
11172 		/* all functions that have prototype and verifier allowed
11173 		 * programs to call them, must be real in-kernel functions
11174 		 */
11175 		if (!fn->func) {
11176 			verbose(env,
11177 				"kernel subsystem misconfigured func %s#%d\n",
11178 				func_id_name(insn->imm), insn->imm);
11179 			return -EFAULT;
11180 		}
11181 		insn->imm = fn->func - __bpf_call_base;
11182 	}
11183 
11184 	/* Since poke tab is now finalized, publish aux to tracker. */
11185 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
11186 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
11187 		if (!map_ptr->ops->map_poke_track ||
11188 		    !map_ptr->ops->map_poke_untrack ||
11189 		    !map_ptr->ops->map_poke_run) {
11190 			verbose(env, "bpf verifier is misconfigured\n");
11191 			return -EINVAL;
11192 		}
11193 
11194 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11195 		if (ret < 0) {
11196 			verbose(env, "tracking tail call prog failed\n");
11197 			return ret;
11198 		}
11199 	}
11200 
11201 	return 0;
11202 }
11203 
11204 static void free_states(struct bpf_verifier_env *env)
11205 {
11206 	struct bpf_verifier_state_list *sl, *sln;
11207 	int i;
11208 
11209 	sl = env->free_list;
11210 	while (sl) {
11211 		sln = sl->next;
11212 		free_verifier_state(&sl->state, false);
11213 		kfree(sl);
11214 		sl = sln;
11215 	}
11216 	env->free_list = NULL;
11217 
11218 	if (!env->explored_states)
11219 		return;
11220 
11221 	for (i = 0; i < state_htab_size(env); i++) {
11222 		sl = env->explored_states[i];
11223 
11224 		while (sl) {
11225 			sln = sl->next;
11226 			free_verifier_state(&sl->state, false);
11227 			kfree(sl);
11228 			sl = sln;
11229 		}
11230 		env->explored_states[i] = NULL;
11231 	}
11232 }
11233 
11234 /* The verifier is using insn_aux_data[] to store temporary data during
11235  * verification and to store information for passes that run after the
11236  * verification like dead code sanitization. do_check_common() for subprogram N
11237  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
11238  * temporary data after do_check_common() finds that subprogram N cannot be
11239  * verified independently. pass_cnt counts the number of times
11240  * do_check_common() was run and insn->aux->seen tells the pass number
11241  * insn_aux_data was touched. These variables are compared to clear temporary
11242  * data from failed pass. For testing and experiments do_check_common() can be
11243  * run multiple times even when prior attempt to verify is unsuccessful.
11244  */
11245 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
11246 {
11247 	struct bpf_insn *insn = env->prog->insnsi;
11248 	struct bpf_insn_aux_data *aux;
11249 	int i, class;
11250 
11251 	for (i = 0; i < env->prog->len; i++) {
11252 		class = BPF_CLASS(insn[i].code);
11253 		if (class != BPF_LDX && class != BPF_STX)
11254 			continue;
11255 		aux = &env->insn_aux_data[i];
11256 		if (aux->seen != env->pass_cnt)
11257 			continue;
11258 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
11259 	}
11260 }
11261 
11262 static int do_check_common(struct bpf_verifier_env *env, int subprog)
11263 {
11264 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11265 	struct bpf_verifier_state *state;
11266 	struct bpf_reg_state *regs;
11267 	int ret, i;
11268 
11269 	env->prev_linfo = NULL;
11270 	env->pass_cnt++;
11271 
11272 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11273 	if (!state)
11274 		return -ENOMEM;
11275 	state->curframe = 0;
11276 	state->speculative = false;
11277 	state->branches = 1;
11278 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11279 	if (!state->frame[0]) {
11280 		kfree(state);
11281 		return -ENOMEM;
11282 	}
11283 	env->cur_state = state;
11284 	init_func_state(env, state->frame[0],
11285 			BPF_MAIN_FUNC /* callsite */,
11286 			0 /* frameno */,
11287 			subprog);
11288 
11289 	regs = state->frame[state->curframe]->regs;
11290 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
11291 		ret = btf_prepare_func_args(env, subprog, regs);
11292 		if (ret)
11293 			goto out;
11294 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11295 			if (regs[i].type == PTR_TO_CTX)
11296 				mark_reg_known_zero(env, regs, i);
11297 			else if (regs[i].type == SCALAR_VALUE)
11298 				mark_reg_unknown(env, regs, i);
11299 		}
11300 	} else {
11301 		/* 1st arg to a function */
11302 		regs[BPF_REG_1].type = PTR_TO_CTX;
11303 		mark_reg_known_zero(env, regs, BPF_REG_1);
11304 		ret = btf_check_func_arg_match(env, subprog, regs);
11305 		if (ret == -EFAULT)
11306 			/* unlikely verifier bug. abort.
11307 			 * ret == 0 and ret < 0 are sadly acceptable for
11308 			 * main() function due to backward compatibility.
11309 			 * Like socket filter program may be written as:
11310 			 * int bpf_prog(struct pt_regs *ctx)
11311 			 * and never dereference that ctx in the program.
11312 			 * 'struct pt_regs' is a type mismatch for socket
11313 			 * filter that should be using 'struct __sk_buff'.
11314 			 */
11315 			goto out;
11316 	}
11317 
11318 	ret = do_check(env);
11319 out:
11320 	/* check for NULL is necessary, since cur_state can be freed inside
11321 	 * do_check() under memory pressure.
11322 	 */
11323 	if (env->cur_state) {
11324 		free_verifier_state(env->cur_state, true);
11325 		env->cur_state = NULL;
11326 	}
11327 	while (!pop_stack(env, NULL, NULL, false));
11328 	if (!ret && pop_log)
11329 		bpf_vlog_reset(&env->log, 0);
11330 	free_states(env);
11331 	if (ret)
11332 		/* clean aux data in case subprog was rejected */
11333 		sanitize_insn_aux_data(env);
11334 	return ret;
11335 }
11336 
11337 /* Verify all global functions in a BPF program one by one based on their BTF.
11338  * All global functions must pass verification. Otherwise the whole program is rejected.
11339  * Consider:
11340  * int bar(int);
11341  * int foo(int f)
11342  * {
11343  *    return bar(f);
11344  * }
11345  * int bar(int b)
11346  * {
11347  *    ...
11348  * }
11349  * foo() will be verified first for R1=any_scalar_value. During verification it
11350  * will be assumed that bar() already verified successfully and call to bar()
11351  * from foo() will be checked for type match only. Later bar() will be verified
11352  * independently to check that it's safe for R1=any_scalar_value.
11353  */
11354 static int do_check_subprogs(struct bpf_verifier_env *env)
11355 {
11356 	struct bpf_prog_aux *aux = env->prog->aux;
11357 	int i, ret;
11358 
11359 	if (!aux->func_info)
11360 		return 0;
11361 
11362 	for (i = 1; i < env->subprog_cnt; i++) {
11363 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11364 			continue;
11365 		env->insn_idx = env->subprog_info[i].start;
11366 		WARN_ON_ONCE(env->insn_idx == 0);
11367 		ret = do_check_common(env, i);
11368 		if (ret) {
11369 			return ret;
11370 		} else if (env->log.level & BPF_LOG_LEVEL) {
11371 			verbose(env,
11372 				"Func#%d is safe for any args that match its prototype\n",
11373 				i);
11374 		}
11375 	}
11376 	return 0;
11377 }
11378 
11379 static int do_check_main(struct bpf_verifier_env *env)
11380 {
11381 	int ret;
11382 
11383 	env->insn_idx = 0;
11384 	ret = do_check_common(env, 0);
11385 	if (!ret)
11386 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11387 	return ret;
11388 }
11389 
11390 
11391 static void print_verification_stats(struct bpf_verifier_env *env)
11392 {
11393 	int i;
11394 
11395 	if (env->log.level & BPF_LOG_STATS) {
11396 		verbose(env, "verification time %lld usec\n",
11397 			div_u64(env->verification_time, 1000));
11398 		verbose(env, "stack depth ");
11399 		for (i = 0; i < env->subprog_cnt; i++) {
11400 			u32 depth = env->subprog_info[i].stack_depth;
11401 
11402 			verbose(env, "%d", depth);
11403 			if (i + 1 < env->subprog_cnt)
11404 				verbose(env, "+");
11405 		}
11406 		verbose(env, "\n");
11407 	}
11408 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11409 		"total_states %d peak_states %d mark_read %d\n",
11410 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11411 		env->max_states_per_insn, env->total_states,
11412 		env->peak_states, env->longest_mark_read_walk);
11413 }
11414 
11415 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11416 {
11417 	const struct btf_type *t, *func_proto;
11418 	const struct bpf_struct_ops *st_ops;
11419 	const struct btf_member *member;
11420 	struct bpf_prog *prog = env->prog;
11421 	u32 btf_id, member_idx;
11422 	const char *mname;
11423 
11424 	btf_id = prog->aux->attach_btf_id;
11425 	st_ops = bpf_struct_ops_find(btf_id);
11426 	if (!st_ops) {
11427 		verbose(env, "attach_btf_id %u is not a supported struct\n",
11428 			btf_id);
11429 		return -ENOTSUPP;
11430 	}
11431 
11432 	t = st_ops->type;
11433 	member_idx = prog->expected_attach_type;
11434 	if (member_idx >= btf_type_vlen(t)) {
11435 		verbose(env, "attach to invalid member idx %u of struct %s\n",
11436 			member_idx, st_ops->name);
11437 		return -EINVAL;
11438 	}
11439 
11440 	member = &btf_type_member(t)[member_idx];
11441 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11442 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11443 					       NULL);
11444 	if (!func_proto) {
11445 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11446 			mname, member_idx, st_ops->name);
11447 		return -EINVAL;
11448 	}
11449 
11450 	if (st_ops->check_member) {
11451 		int err = st_ops->check_member(t, member);
11452 
11453 		if (err) {
11454 			verbose(env, "attach to unsupported member %s of struct %s\n",
11455 				mname, st_ops->name);
11456 			return err;
11457 		}
11458 	}
11459 
11460 	prog->aux->attach_func_proto = func_proto;
11461 	prog->aux->attach_func_name = mname;
11462 	env->ops = st_ops->verifier_ops;
11463 
11464 	return 0;
11465 }
11466 #define SECURITY_PREFIX "security_"
11467 
11468 static int check_attach_modify_return(unsigned long addr, const char *func_name)
11469 {
11470 	if (within_error_injection_list(addr) ||
11471 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
11472 		return 0;
11473 
11474 	return -EINVAL;
11475 }
11476 
11477 /* non exhaustive list of sleepable bpf_lsm_*() functions */
11478 BTF_SET_START(btf_sleepable_lsm_hooks)
11479 #ifdef CONFIG_BPF_LSM
11480 BTF_ID(func, bpf_lsm_bprm_committed_creds)
11481 #else
11482 BTF_ID_UNUSED
11483 #endif
11484 BTF_SET_END(btf_sleepable_lsm_hooks)
11485 
11486 static int check_sleepable_lsm_hook(u32 btf_id)
11487 {
11488 	return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id);
11489 }
11490 
11491 /* list of non-sleepable functions that are otherwise on
11492  * ALLOW_ERROR_INJECTION list
11493  */
11494 BTF_SET_START(btf_non_sleepable_error_inject)
11495 /* Three functions below can be called from sleepable and non-sleepable context.
11496  * Assume non-sleepable from bpf safety point of view.
11497  */
11498 BTF_ID(func, __add_to_page_cache_locked)
11499 BTF_ID(func, should_fail_alloc_page)
11500 BTF_ID(func, should_failslab)
11501 BTF_SET_END(btf_non_sleepable_error_inject)
11502 
11503 static int check_non_sleepable_error_inject(u32 btf_id)
11504 {
11505 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
11506 }
11507 
11508 int bpf_check_attach_target(struct bpf_verifier_log *log,
11509 			    const struct bpf_prog *prog,
11510 			    const struct bpf_prog *tgt_prog,
11511 			    u32 btf_id,
11512 			    struct bpf_attach_target_info *tgt_info)
11513 {
11514 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
11515 	const char prefix[] = "btf_trace_";
11516 	int ret = 0, subprog = -1, i;
11517 	const struct btf_type *t;
11518 	bool conservative = true;
11519 	const char *tname;
11520 	struct btf *btf;
11521 	long addr = 0;
11522 
11523 	if (!btf_id) {
11524 		bpf_log(log, "Tracing programs must provide btf_id\n");
11525 		return -EINVAL;
11526 	}
11527 	btf = tgt_prog ? tgt_prog->aux->btf : btf_vmlinux;
11528 	if (!btf) {
11529 		bpf_log(log,
11530 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
11531 		return -EINVAL;
11532 	}
11533 	t = btf_type_by_id(btf, btf_id);
11534 	if (!t) {
11535 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
11536 		return -EINVAL;
11537 	}
11538 	tname = btf_name_by_offset(btf, t->name_off);
11539 	if (!tname) {
11540 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
11541 		return -EINVAL;
11542 	}
11543 	if (tgt_prog) {
11544 		struct bpf_prog_aux *aux = tgt_prog->aux;
11545 
11546 		for (i = 0; i < aux->func_info_cnt; i++)
11547 			if (aux->func_info[i].type_id == btf_id) {
11548 				subprog = i;
11549 				break;
11550 			}
11551 		if (subprog == -1) {
11552 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
11553 			return -EINVAL;
11554 		}
11555 		conservative = aux->func_info_aux[subprog].unreliable;
11556 		if (prog_extension) {
11557 			if (conservative) {
11558 				bpf_log(log,
11559 					"Cannot replace static functions\n");
11560 				return -EINVAL;
11561 			}
11562 			if (!prog->jit_requested) {
11563 				bpf_log(log,
11564 					"Extension programs should be JITed\n");
11565 				return -EINVAL;
11566 			}
11567 		}
11568 		if (!tgt_prog->jited) {
11569 			bpf_log(log, "Can attach to only JITed progs\n");
11570 			return -EINVAL;
11571 		}
11572 		if (tgt_prog->type == prog->type) {
11573 			/* Cannot fentry/fexit another fentry/fexit program.
11574 			 * Cannot attach program extension to another extension.
11575 			 * It's ok to attach fentry/fexit to extension program.
11576 			 */
11577 			bpf_log(log, "Cannot recursively attach\n");
11578 			return -EINVAL;
11579 		}
11580 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
11581 		    prog_extension &&
11582 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
11583 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
11584 			/* Program extensions can extend all program types
11585 			 * except fentry/fexit. The reason is the following.
11586 			 * The fentry/fexit programs are used for performance
11587 			 * analysis, stats and can be attached to any program
11588 			 * type except themselves. When extension program is
11589 			 * replacing XDP function it is necessary to allow
11590 			 * performance analysis of all functions. Both original
11591 			 * XDP program and its program extension. Hence
11592 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
11593 			 * allowed. If extending of fentry/fexit was allowed it
11594 			 * would be possible to create long call chain
11595 			 * fentry->extension->fentry->extension beyond
11596 			 * reasonable stack size. Hence extending fentry is not
11597 			 * allowed.
11598 			 */
11599 			bpf_log(log, "Cannot extend fentry/fexit\n");
11600 			return -EINVAL;
11601 		}
11602 	} else {
11603 		if (prog_extension) {
11604 			bpf_log(log, "Cannot replace kernel functions\n");
11605 			return -EINVAL;
11606 		}
11607 	}
11608 
11609 	switch (prog->expected_attach_type) {
11610 	case BPF_TRACE_RAW_TP:
11611 		if (tgt_prog) {
11612 			bpf_log(log,
11613 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
11614 			return -EINVAL;
11615 		}
11616 		if (!btf_type_is_typedef(t)) {
11617 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
11618 				btf_id);
11619 			return -EINVAL;
11620 		}
11621 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
11622 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
11623 				btf_id, tname);
11624 			return -EINVAL;
11625 		}
11626 		tname += sizeof(prefix) - 1;
11627 		t = btf_type_by_id(btf, t->type);
11628 		if (!btf_type_is_ptr(t))
11629 			/* should never happen in valid vmlinux build */
11630 			return -EINVAL;
11631 		t = btf_type_by_id(btf, t->type);
11632 		if (!btf_type_is_func_proto(t))
11633 			/* should never happen in valid vmlinux build */
11634 			return -EINVAL;
11635 
11636 		break;
11637 	case BPF_TRACE_ITER:
11638 		if (!btf_type_is_func(t)) {
11639 			bpf_log(log, "attach_btf_id %u is not a function\n",
11640 				btf_id);
11641 			return -EINVAL;
11642 		}
11643 		t = btf_type_by_id(btf, t->type);
11644 		if (!btf_type_is_func_proto(t))
11645 			return -EINVAL;
11646 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11647 		if (ret)
11648 			return ret;
11649 		break;
11650 	default:
11651 		if (!prog_extension)
11652 			return -EINVAL;
11653 		fallthrough;
11654 	case BPF_MODIFY_RETURN:
11655 	case BPF_LSM_MAC:
11656 	case BPF_TRACE_FENTRY:
11657 	case BPF_TRACE_FEXIT:
11658 		if (!btf_type_is_func(t)) {
11659 			bpf_log(log, "attach_btf_id %u is not a function\n",
11660 				btf_id);
11661 			return -EINVAL;
11662 		}
11663 		if (prog_extension &&
11664 		    btf_check_type_match(log, prog, btf, t))
11665 			return -EINVAL;
11666 		t = btf_type_by_id(btf, t->type);
11667 		if (!btf_type_is_func_proto(t))
11668 			return -EINVAL;
11669 
11670 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
11671 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
11672 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
11673 			return -EINVAL;
11674 
11675 		if (tgt_prog && conservative)
11676 			t = NULL;
11677 
11678 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11679 		if (ret < 0)
11680 			return ret;
11681 
11682 		if (tgt_prog) {
11683 			if (subprog == 0)
11684 				addr = (long) tgt_prog->bpf_func;
11685 			else
11686 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
11687 		} else {
11688 			addr = kallsyms_lookup_name(tname);
11689 			if (!addr) {
11690 				bpf_log(log,
11691 					"The address of function %s cannot be found\n",
11692 					tname);
11693 				return -ENOENT;
11694 			}
11695 		}
11696 
11697 		if (prog->aux->sleepable) {
11698 			ret = -EINVAL;
11699 			switch (prog->type) {
11700 			case BPF_PROG_TYPE_TRACING:
11701 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
11702 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
11703 				 */
11704 				if (!check_non_sleepable_error_inject(btf_id) &&
11705 				    within_error_injection_list(addr))
11706 					ret = 0;
11707 				break;
11708 			case BPF_PROG_TYPE_LSM:
11709 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
11710 				 * Only some of them are sleepable.
11711 				 */
11712 				if (check_sleepable_lsm_hook(btf_id))
11713 					ret = 0;
11714 				break;
11715 			default:
11716 				break;
11717 			}
11718 			if (ret) {
11719 				bpf_log(log, "%s is not sleepable\n", tname);
11720 				return ret;
11721 			}
11722 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
11723 			if (tgt_prog) {
11724 				bpf_log(log, "can't modify return codes of BPF programs\n");
11725 				return -EINVAL;
11726 			}
11727 			ret = check_attach_modify_return(addr, tname);
11728 			if (ret) {
11729 				bpf_log(log, "%s() is not modifiable\n", tname);
11730 				return ret;
11731 			}
11732 		}
11733 
11734 		break;
11735 	}
11736 	tgt_info->tgt_addr = addr;
11737 	tgt_info->tgt_name = tname;
11738 	tgt_info->tgt_type = t;
11739 	return 0;
11740 }
11741 
11742 static int check_attach_btf_id(struct bpf_verifier_env *env)
11743 {
11744 	struct bpf_prog *prog = env->prog;
11745 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
11746 	struct bpf_attach_target_info tgt_info = {};
11747 	u32 btf_id = prog->aux->attach_btf_id;
11748 	struct bpf_trampoline *tr;
11749 	int ret;
11750 	u64 key;
11751 
11752 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
11753 	    prog->type != BPF_PROG_TYPE_LSM) {
11754 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
11755 		return -EINVAL;
11756 	}
11757 
11758 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
11759 		return check_struct_ops_btf_id(env);
11760 
11761 	if (prog->type != BPF_PROG_TYPE_TRACING &&
11762 	    prog->type != BPF_PROG_TYPE_LSM &&
11763 	    prog->type != BPF_PROG_TYPE_EXT)
11764 		return 0;
11765 
11766 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
11767 	if (ret)
11768 		return ret;
11769 
11770 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
11771 		/* to make freplace equivalent to their targets, they need to
11772 		 * inherit env->ops and expected_attach_type for the rest of the
11773 		 * verification
11774 		 */
11775 		env->ops = bpf_verifier_ops[tgt_prog->type];
11776 		prog->expected_attach_type = tgt_prog->expected_attach_type;
11777 	}
11778 
11779 	/* store info about the attachment target that will be used later */
11780 	prog->aux->attach_func_proto = tgt_info.tgt_type;
11781 	prog->aux->attach_func_name = tgt_info.tgt_name;
11782 
11783 	if (tgt_prog) {
11784 		prog->aux->saved_dst_prog_type = tgt_prog->type;
11785 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
11786 	}
11787 
11788 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
11789 		prog->aux->attach_btf_trace = true;
11790 		return 0;
11791 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
11792 		if (!bpf_iter_prog_supported(prog))
11793 			return -EINVAL;
11794 		return 0;
11795 	}
11796 
11797 	if (prog->type == BPF_PROG_TYPE_LSM) {
11798 		ret = bpf_lsm_verify_prog(&env->log, prog);
11799 		if (ret < 0)
11800 			return ret;
11801 	}
11802 
11803 	key = bpf_trampoline_compute_key(tgt_prog, btf_id);
11804 	tr = bpf_trampoline_get(key, &tgt_info);
11805 	if (!tr)
11806 		return -ENOMEM;
11807 
11808 	prog->aux->dst_trampoline = tr;
11809 	return 0;
11810 }
11811 
11812 struct btf *bpf_get_btf_vmlinux(void)
11813 {
11814 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
11815 		mutex_lock(&bpf_verifier_lock);
11816 		if (!btf_vmlinux)
11817 			btf_vmlinux = btf_parse_vmlinux();
11818 		mutex_unlock(&bpf_verifier_lock);
11819 	}
11820 	return btf_vmlinux;
11821 }
11822 
11823 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
11824 	      union bpf_attr __user *uattr)
11825 {
11826 	u64 start_time = ktime_get_ns();
11827 	struct bpf_verifier_env *env;
11828 	struct bpf_verifier_log *log;
11829 	int i, len, ret = -EINVAL;
11830 	bool is_priv;
11831 
11832 	/* no program is valid */
11833 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
11834 		return -EINVAL;
11835 
11836 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
11837 	 * allocate/free it every time bpf_check() is called
11838 	 */
11839 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
11840 	if (!env)
11841 		return -ENOMEM;
11842 	log = &env->log;
11843 
11844 	len = (*prog)->len;
11845 	env->insn_aux_data =
11846 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
11847 	ret = -ENOMEM;
11848 	if (!env->insn_aux_data)
11849 		goto err_free_env;
11850 	for (i = 0; i < len; i++)
11851 		env->insn_aux_data[i].orig_idx = i;
11852 	env->prog = *prog;
11853 	env->ops = bpf_verifier_ops[env->prog->type];
11854 	is_priv = bpf_capable();
11855 
11856 	bpf_get_btf_vmlinux();
11857 
11858 	/* grab the mutex to protect few globals used by verifier */
11859 	if (!is_priv)
11860 		mutex_lock(&bpf_verifier_lock);
11861 
11862 	if (attr->log_level || attr->log_buf || attr->log_size) {
11863 		/* user requested verbose verifier output
11864 		 * and supplied buffer to store the verification trace
11865 		 */
11866 		log->level = attr->log_level;
11867 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
11868 		log->len_total = attr->log_size;
11869 
11870 		ret = -EINVAL;
11871 		/* log attributes have to be sane */
11872 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
11873 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
11874 			goto err_unlock;
11875 	}
11876 
11877 	if (IS_ERR(btf_vmlinux)) {
11878 		/* Either gcc or pahole or kernel are broken. */
11879 		verbose(env, "in-kernel BTF is malformed\n");
11880 		ret = PTR_ERR(btf_vmlinux);
11881 		goto skip_full_check;
11882 	}
11883 
11884 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
11885 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
11886 		env->strict_alignment = true;
11887 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
11888 		env->strict_alignment = false;
11889 
11890 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
11891 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
11892 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
11893 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
11894 	env->bpf_capable = bpf_capable();
11895 
11896 	if (is_priv)
11897 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
11898 
11899 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
11900 		ret = bpf_prog_offload_verifier_prep(env->prog);
11901 		if (ret)
11902 			goto skip_full_check;
11903 	}
11904 
11905 	env->explored_states = kvcalloc(state_htab_size(env),
11906 				       sizeof(struct bpf_verifier_state_list *),
11907 				       GFP_USER);
11908 	ret = -ENOMEM;
11909 	if (!env->explored_states)
11910 		goto skip_full_check;
11911 
11912 	ret = check_subprogs(env);
11913 	if (ret < 0)
11914 		goto skip_full_check;
11915 
11916 	ret = check_btf_info(env, attr, uattr);
11917 	if (ret < 0)
11918 		goto skip_full_check;
11919 
11920 	ret = check_attach_btf_id(env);
11921 	if (ret)
11922 		goto skip_full_check;
11923 
11924 	ret = resolve_pseudo_ldimm64(env);
11925 	if (ret < 0)
11926 		goto skip_full_check;
11927 
11928 	ret = check_cfg(env);
11929 	if (ret < 0)
11930 		goto skip_full_check;
11931 
11932 	ret = do_check_subprogs(env);
11933 	ret = ret ?: do_check_main(env);
11934 
11935 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
11936 		ret = bpf_prog_offload_finalize(env);
11937 
11938 skip_full_check:
11939 	kvfree(env->explored_states);
11940 
11941 	if (ret == 0)
11942 		ret = check_max_stack_depth(env);
11943 
11944 	/* instruction rewrites happen after this point */
11945 	if (is_priv) {
11946 		if (ret == 0)
11947 			opt_hard_wire_dead_code_branches(env);
11948 		if (ret == 0)
11949 			ret = opt_remove_dead_code(env);
11950 		if (ret == 0)
11951 			ret = opt_remove_nops(env);
11952 	} else {
11953 		if (ret == 0)
11954 			sanitize_dead_code(env);
11955 	}
11956 
11957 	if (ret == 0)
11958 		/* program is valid, convert *(u32*)(ctx + off) accesses */
11959 		ret = convert_ctx_accesses(env);
11960 
11961 	if (ret == 0)
11962 		ret = fixup_bpf_calls(env);
11963 
11964 	/* do 32-bit optimization after insn patching has done so those patched
11965 	 * insns could be handled correctly.
11966 	 */
11967 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
11968 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
11969 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
11970 								     : false;
11971 	}
11972 
11973 	if (ret == 0)
11974 		ret = fixup_call_args(env);
11975 
11976 	env->verification_time = ktime_get_ns() - start_time;
11977 	print_verification_stats(env);
11978 
11979 	if (log->level && bpf_verifier_log_full(log))
11980 		ret = -ENOSPC;
11981 	if (log->level && !log->ubuf) {
11982 		ret = -EFAULT;
11983 		goto err_release_maps;
11984 	}
11985 
11986 	if (ret == 0 && env->used_map_cnt) {
11987 		/* if program passed verifier, update used_maps in bpf_prog_info */
11988 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
11989 							  sizeof(env->used_maps[0]),
11990 							  GFP_KERNEL);
11991 
11992 		if (!env->prog->aux->used_maps) {
11993 			ret = -ENOMEM;
11994 			goto err_release_maps;
11995 		}
11996 
11997 		memcpy(env->prog->aux->used_maps, env->used_maps,
11998 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
11999 		env->prog->aux->used_map_cnt = env->used_map_cnt;
12000 
12001 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
12002 		 * bpf_ld_imm64 instructions
12003 		 */
12004 		convert_pseudo_ld_imm64(env);
12005 	}
12006 
12007 	if (ret == 0)
12008 		adjust_btf_func(env);
12009 
12010 err_release_maps:
12011 	if (!env->prog->aux->used_maps)
12012 		/* if we didn't copy map pointers into bpf_prog_info, release
12013 		 * them now. Otherwise free_used_maps() will release them.
12014 		 */
12015 		release_maps(env);
12016 
12017 	/* extension progs temporarily inherit the attach_type of their targets
12018 	   for verification purposes, so set it back to zero before returning
12019 	 */
12020 	if (env->prog->type == BPF_PROG_TYPE_EXT)
12021 		env->prog->expected_attach_type = 0;
12022 
12023 	*prog = env->prog;
12024 err_unlock:
12025 	if (!is_priv)
12026 		mutex_unlock(&bpf_verifier_lock);
12027 	vfree(env->insn_aux_data);
12028 err_free_env:
12029 	kfree(env);
12030 	return ret;
12031 }
12032