xref: /linux/kernel/bpf/verifier.c (revision 85a84e4f813912ab77d872ff6882dd7b435fbf4e)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 #include <linux/bsearch.h>
24 #include <linux/sort.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #include <linux/bpf_types.h>
33 #undef BPF_PROG_TYPE
34 #undef BPF_MAP_TYPE
35 };
36 
37 /* bpf_check() is a static code analyzer that walks eBPF program
38  * instruction by instruction and updates register/stack state.
39  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
40  *
41  * The first pass is depth-first-search to check that the program is a DAG.
42  * It rejects the following programs:
43  * - larger than BPF_MAXINSNS insns
44  * - if loop is present (detected via back-edge)
45  * - unreachable insns exist (shouldn't be a forest. program = one function)
46  * - out of bounds or malformed jumps
47  * The second pass is all possible path descent from the 1st insn.
48  * Since it's analyzing all pathes through the program, the length of the
49  * analysis is limited to 64k insn, which may be hit even if total number of
50  * insn is less then 4K, but there are too many branches that change stack/regs.
51  * Number of 'branches to be analyzed' is limited to 1k
52  *
53  * On entry to each instruction, each register has a type, and the instruction
54  * changes the types of the registers depending on instruction semantics.
55  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
56  * copied to R1.
57  *
58  * All registers are 64-bit.
59  * R0 - return register
60  * R1-R5 argument passing registers
61  * R6-R9 callee saved registers
62  * R10 - frame pointer read-only
63  *
64  * At the start of BPF program the register R1 contains a pointer to bpf_context
65  * and has type PTR_TO_CTX.
66  *
67  * Verifier tracks arithmetic operations on pointers in case:
68  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
69  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
70  * 1st insn copies R10 (which has FRAME_PTR) type into R1
71  * and 2nd arithmetic instruction is pattern matched to recognize
72  * that it wants to construct a pointer to some element within stack.
73  * So after 2nd insn, the register R1 has type PTR_TO_STACK
74  * (and -20 constant is saved for further stack bounds checking).
75  * Meaning that this reg is a pointer to stack plus known immediate constant.
76  *
77  * Most of the time the registers have SCALAR_VALUE type, which
78  * means the register has some value, but it's not a valid pointer.
79  * (like pointer plus pointer becomes SCALAR_VALUE type)
80  *
81  * When verifier sees load or store instructions the type of base register
82  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
83  * types recognized by check_mem_access() function.
84  *
85  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
86  * and the range of [ptr, ptr + map's value_size) is accessible.
87  *
88  * registers used to pass values to function calls are checked against
89  * function argument constraints.
90  *
91  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
92  * It means that the register type passed to this function must be
93  * PTR_TO_STACK and it will be used inside the function as
94  * 'pointer to map element key'
95  *
96  * For example the argument constraints for bpf_map_lookup_elem():
97  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
98  *   .arg1_type = ARG_CONST_MAP_PTR,
99  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
100  *
101  * ret_type says that this function returns 'pointer to map elem value or null'
102  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
103  * 2nd argument should be a pointer to stack, which will be used inside
104  * the helper function as a pointer to map element key.
105  *
106  * On the kernel side the helper function looks like:
107  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
108  * {
109  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
110  *    void *key = (void *) (unsigned long) r2;
111  *    void *value;
112  *
113  *    here kernel can access 'key' and 'map' pointers safely, knowing that
114  *    [key, key + map->key_size) bytes are valid and were initialized on
115  *    the stack of eBPF program.
116  * }
117  *
118  * Corresponding eBPF program may look like:
119  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
120  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
121  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
122  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
123  * here verifier looks at prototype of map_lookup_elem() and sees:
124  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
125  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
126  *
127  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
128  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
129  * and were initialized prior to this call.
130  * If it's ok, then verifier allows this BPF_CALL insn and looks at
131  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
132  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
133  * returns ether pointer to map value or NULL.
134  *
135  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
136  * insn, the register holding that pointer in the true branch changes state to
137  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
138  * branch. See check_cond_jmp_op().
139  *
140  * After the call R0 is set to return type of the function and registers R1-R5
141  * are set to NOT_INIT to indicate that they are no longer readable.
142  */
143 
144 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
145 struct bpf_verifier_stack_elem {
146 	/* verifer state is 'st'
147 	 * before processing instruction 'insn_idx'
148 	 * and after processing instruction 'prev_insn_idx'
149 	 */
150 	struct bpf_verifier_state st;
151 	int insn_idx;
152 	int prev_insn_idx;
153 	struct bpf_verifier_stack_elem *next;
154 };
155 
156 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
157 #define BPF_COMPLEXITY_LIMIT_STACK	1024
158 
159 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
160 
161 struct bpf_call_arg_meta {
162 	struct bpf_map *map_ptr;
163 	bool raw_mode;
164 	bool pkt_access;
165 	int regno;
166 	int access_size;
167 };
168 
169 static DEFINE_MUTEX(bpf_verifier_lock);
170 
171 /* log_level controls verbosity level of eBPF verifier.
172  * bpf_verifier_log_write() is used to dump the verification trace to the log,
173  * so the user can figure out what's wrong with the program
174  */
175 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
176 					   const char *fmt, ...)
177 {
178 	struct bpf_verifer_log *log = &env->log;
179 	unsigned int n;
180 	va_list args;
181 
182 	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
183 		return;
184 
185 	va_start(args, fmt);
186 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
187 	va_end(args);
188 
189 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
190 		  "verifier log line truncated - local buffer too short\n");
191 
192 	n = min(log->len_total - log->len_used - 1, n);
193 	log->kbuf[n] = '\0';
194 
195 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
196 		log->len_used += n;
197 	else
198 		log->ubuf = NULL;
199 }
200 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
201 /* Historically bpf_verifier_log_write was called verbose, but the name was too
202  * generic for symbol export. The function was renamed, but not the calls in
203  * the verifier to avoid complicating backports. Hence the alias below.
204  */
205 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
206 				   const char *fmt, ...)
207 	__attribute__((alias("bpf_verifier_log_write")));
208 
209 static bool type_is_pkt_pointer(enum bpf_reg_type type)
210 {
211 	return type == PTR_TO_PACKET ||
212 	       type == PTR_TO_PACKET_META;
213 }
214 
215 /* string representation of 'enum bpf_reg_type' */
216 static const char * const reg_type_str[] = {
217 	[NOT_INIT]		= "?",
218 	[SCALAR_VALUE]		= "inv",
219 	[PTR_TO_CTX]		= "ctx",
220 	[CONST_PTR_TO_MAP]	= "map_ptr",
221 	[PTR_TO_MAP_VALUE]	= "map_value",
222 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
223 	[PTR_TO_STACK]		= "fp",
224 	[PTR_TO_PACKET]		= "pkt",
225 	[PTR_TO_PACKET_META]	= "pkt_meta",
226 	[PTR_TO_PACKET_END]	= "pkt_end",
227 };
228 
229 static void print_liveness(struct bpf_verifier_env *env,
230 			   enum bpf_reg_liveness live)
231 {
232 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
233 	    verbose(env, "_");
234 	if (live & REG_LIVE_READ)
235 		verbose(env, "r");
236 	if (live & REG_LIVE_WRITTEN)
237 		verbose(env, "w");
238 }
239 
240 static struct bpf_func_state *func(struct bpf_verifier_env *env,
241 				   const struct bpf_reg_state *reg)
242 {
243 	struct bpf_verifier_state *cur = env->cur_state;
244 
245 	return cur->frame[reg->frameno];
246 }
247 
248 static void print_verifier_state(struct bpf_verifier_env *env,
249 				 const struct bpf_func_state *state)
250 {
251 	const struct bpf_reg_state *reg;
252 	enum bpf_reg_type t;
253 	int i;
254 
255 	if (state->frameno)
256 		verbose(env, " frame%d:", state->frameno);
257 	for (i = 0; i < MAX_BPF_REG; i++) {
258 		reg = &state->regs[i];
259 		t = reg->type;
260 		if (t == NOT_INIT)
261 			continue;
262 		verbose(env, " R%d", i);
263 		print_liveness(env, reg->live);
264 		verbose(env, "=%s", reg_type_str[t]);
265 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
266 		    tnum_is_const(reg->var_off)) {
267 			/* reg->off should be 0 for SCALAR_VALUE */
268 			verbose(env, "%lld", reg->var_off.value + reg->off);
269 			if (t == PTR_TO_STACK)
270 				verbose(env, ",call_%d", func(env, reg)->callsite);
271 		} else {
272 			verbose(env, "(id=%d", reg->id);
273 			if (t != SCALAR_VALUE)
274 				verbose(env, ",off=%d", reg->off);
275 			if (type_is_pkt_pointer(t))
276 				verbose(env, ",r=%d", reg->range);
277 			else if (t == CONST_PTR_TO_MAP ||
278 				 t == PTR_TO_MAP_VALUE ||
279 				 t == PTR_TO_MAP_VALUE_OR_NULL)
280 				verbose(env, ",ks=%d,vs=%d",
281 					reg->map_ptr->key_size,
282 					reg->map_ptr->value_size);
283 			if (tnum_is_const(reg->var_off)) {
284 				/* Typically an immediate SCALAR_VALUE, but
285 				 * could be a pointer whose offset is too big
286 				 * for reg->off
287 				 */
288 				verbose(env, ",imm=%llx", reg->var_off.value);
289 			} else {
290 				if (reg->smin_value != reg->umin_value &&
291 				    reg->smin_value != S64_MIN)
292 					verbose(env, ",smin_value=%lld",
293 						(long long)reg->smin_value);
294 				if (reg->smax_value != reg->umax_value &&
295 				    reg->smax_value != S64_MAX)
296 					verbose(env, ",smax_value=%lld",
297 						(long long)reg->smax_value);
298 				if (reg->umin_value != 0)
299 					verbose(env, ",umin_value=%llu",
300 						(unsigned long long)reg->umin_value);
301 				if (reg->umax_value != U64_MAX)
302 					verbose(env, ",umax_value=%llu",
303 						(unsigned long long)reg->umax_value);
304 				if (!tnum_is_unknown(reg->var_off)) {
305 					char tn_buf[48];
306 
307 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
308 					verbose(env, ",var_off=%s", tn_buf);
309 				}
310 			}
311 			verbose(env, ")");
312 		}
313 	}
314 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
315 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
316 			verbose(env, " fp%d",
317 				(-i - 1) * BPF_REG_SIZE);
318 			print_liveness(env, state->stack[i].spilled_ptr.live);
319 			verbose(env, "=%s",
320 				reg_type_str[state->stack[i].spilled_ptr.type]);
321 		}
322 		if (state->stack[i].slot_type[0] == STACK_ZERO)
323 			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
324 	}
325 	verbose(env, "\n");
326 }
327 
328 static int copy_stack_state(struct bpf_func_state *dst,
329 			    const struct bpf_func_state *src)
330 {
331 	if (!src->stack)
332 		return 0;
333 	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
334 		/* internal bug, make state invalid to reject the program */
335 		memset(dst, 0, sizeof(*dst));
336 		return -EFAULT;
337 	}
338 	memcpy(dst->stack, src->stack,
339 	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
340 	return 0;
341 }
342 
343 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
344  * make it consume minimal amount of memory. check_stack_write() access from
345  * the program calls into realloc_func_state() to grow the stack size.
346  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
347  * which this function copies over. It points to previous bpf_verifier_state
348  * which is never reallocated
349  */
350 static int realloc_func_state(struct bpf_func_state *state, int size,
351 			      bool copy_old)
352 {
353 	u32 old_size = state->allocated_stack;
354 	struct bpf_stack_state *new_stack;
355 	int slot = size / BPF_REG_SIZE;
356 
357 	if (size <= old_size || !size) {
358 		if (copy_old)
359 			return 0;
360 		state->allocated_stack = slot * BPF_REG_SIZE;
361 		if (!size && old_size) {
362 			kfree(state->stack);
363 			state->stack = NULL;
364 		}
365 		return 0;
366 	}
367 	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
368 				  GFP_KERNEL);
369 	if (!new_stack)
370 		return -ENOMEM;
371 	if (copy_old) {
372 		if (state->stack)
373 			memcpy(new_stack, state->stack,
374 			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
375 		memset(new_stack + old_size / BPF_REG_SIZE, 0,
376 		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
377 	}
378 	state->allocated_stack = slot * BPF_REG_SIZE;
379 	kfree(state->stack);
380 	state->stack = new_stack;
381 	return 0;
382 }
383 
384 static void free_func_state(struct bpf_func_state *state)
385 {
386 	if (!state)
387 		return;
388 	kfree(state->stack);
389 	kfree(state);
390 }
391 
392 static void free_verifier_state(struct bpf_verifier_state *state,
393 				bool free_self)
394 {
395 	int i;
396 
397 	for (i = 0; i <= state->curframe; i++) {
398 		free_func_state(state->frame[i]);
399 		state->frame[i] = NULL;
400 	}
401 	if (free_self)
402 		kfree(state);
403 }
404 
405 /* copy verifier state from src to dst growing dst stack space
406  * when necessary to accommodate larger src stack
407  */
408 static int copy_func_state(struct bpf_func_state *dst,
409 			   const struct bpf_func_state *src)
410 {
411 	int err;
412 
413 	err = realloc_func_state(dst, src->allocated_stack, false);
414 	if (err)
415 		return err;
416 	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
417 	return copy_stack_state(dst, src);
418 }
419 
420 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
421 			       const struct bpf_verifier_state *src)
422 {
423 	struct bpf_func_state *dst;
424 	int i, err;
425 
426 	/* if dst has more stack frames then src frame, free them */
427 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
428 		free_func_state(dst_state->frame[i]);
429 		dst_state->frame[i] = NULL;
430 	}
431 	dst_state->curframe = src->curframe;
432 	dst_state->parent = src->parent;
433 	for (i = 0; i <= src->curframe; i++) {
434 		dst = dst_state->frame[i];
435 		if (!dst) {
436 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
437 			if (!dst)
438 				return -ENOMEM;
439 			dst_state->frame[i] = dst;
440 		}
441 		err = copy_func_state(dst, src->frame[i]);
442 		if (err)
443 			return err;
444 	}
445 	return 0;
446 }
447 
448 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
449 		     int *insn_idx)
450 {
451 	struct bpf_verifier_state *cur = env->cur_state;
452 	struct bpf_verifier_stack_elem *elem, *head = env->head;
453 	int err;
454 
455 	if (env->head == NULL)
456 		return -ENOENT;
457 
458 	if (cur) {
459 		err = copy_verifier_state(cur, &head->st);
460 		if (err)
461 			return err;
462 	}
463 	if (insn_idx)
464 		*insn_idx = head->insn_idx;
465 	if (prev_insn_idx)
466 		*prev_insn_idx = head->prev_insn_idx;
467 	elem = head->next;
468 	free_verifier_state(&head->st, false);
469 	kfree(head);
470 	env->head = elem;
471 	env->stack_size--;
472 	return 0;
473 }
474 
475 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
476 					     int insn_idx, int prev_insn_idx)
477 {
478 	struct bpf_verifier_state *cur = env->cur_state;
479 	struct bpf_verifier_stack_elem *elem;
480 	int err;
481 
482 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
483 	if (!elem)
484 		goto err;
485 
486 	elem->insn_idx = insn_idx;
487 	elem->prev_insn_idx = prev_insn_idx;
488 	elem->next = env->head;
489 	env->head = elem;
490 	env->stack_size++;
491 	err = copy_verifier_state(&elem->st, cur);
492 	if (err)
493 		goto err;
494 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
495 		verbose(env, "BPF program is too complex\n");
496 		goto err;
497 	}
498 	return &elem->st;
499 err:
500 	free_verifier_state(env->cur_state, true);
501 	env->cur_state = NULL;
502 	/* pop all elements and return */
503 	while (!pop_stack(env, NULL, NULL));
504 	return NULL;
505 }
506 
507 #define CALLER_SAVED_REGS 6
508 static const int caller_saved[CALLER_SAVED_REGS] = {
509 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
510 };
511 #define CALLEE_SAVED_REGS 5
512 static const int callee_saved[CALLEE_SAVED_REGS] = {
513 	BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9
514 };
515 
516 static void __mark_reg_not_init(struct bpf_reg_state *reg);
517 
518 /* Mark the unknown part of a register (variable offset or scalar value) as
519  * known to have the value @imm.
520  */
521 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
522 {
523 	reg->id = 0;
524 	reg->var_off = tnum_const(imm);
525 	reg->smin_value = (s64)imm;
526 	reg->smax_value = (s64)imm;
527 	reg->umin_value = imm;
528 	reg->umax_value = imm;
529 }
530 
531 /* Mark the 'variable offset' part of a register as zero.  This should be
532  * used only on registers holding a pointer type.
533  */
534 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
535 {
536 	__mark_reg_known(reg, 0);
537 }
538 
539 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
540 {
541 	__mark_reg_known(reg, 0);
542 	reg->off = 0;
543 	reg->type = SCALAR_VALUE;
544 }
545 
546 static void mark_reg_known_zero(struct bpf_verifier_env *env,
547 				struct bpf_reg_state *regs, u32 regno)
548 {
549 	if (WARN_ON(regno >= MAX_BPF_REG)) {
550 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
551 		/* Something bad happened, let's kill all regs */
552 		for (regno = 0; regno < MAX_BPF_REG; regno++)
553 			__mark_reg_not_init(regs + regno);
554 		return;
555 	}
556 	__mark_reg_known_zero(regs + regno);
557 }
558 
559 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
560 {
561 	return type_is_pkt_pointer(reg->type);
562 }
563 
564 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
565 {
566 	return reg_is_pkt_pointer(reg) ||
567 	       reg->type == PTR_TO_PACKET_END;
568 }
569 
570 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
571 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
572 				    enum bpf_reg_type which)
573 {
574 	/* The register can already have a range from prior markings.
575 	 * This is fine as long as it hasn't been advanced from its
576 	 * origin.
577 	 */
578 	return reg->type == which &&
579 	       reg->id == 0 &&
580 	       reg->off == 0 &&
581 	       tnum_equals_const(reg->var_off, 0);
582 }
583 
584 /* Attempts to improve min/max values based on var_off information */
585 static void __update_reg_bounds(struct bpf_reg_state *reg)
586 {
587 	/* min signed is max(sign bit) | min(other bits) */
588 	reg->smin_value = max_t(s64, reg->smin_value,
589 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
590 	/* max signed is min(sign bit) | max(other bits) */
591 	reg->smax_value = min_t(s64, reg->smax_value,
592 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
593 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
594 	reg->umax_value = min(reg->umax_value,
595 			      reg->var_off.value | reg->var_off.mask);
596 }
597 
598 /* Uses signed min/max values to inform unsigned, and vice-versa */
599 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
600 {
601 	/* Learn sign from signed bounds.
602 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
603 	 * are the same, so combine.  This works even in the negative case, e.g.
604 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
605 	 */
606 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
607 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
608 							  reg->umin_value);
609 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
610 							  reg->umax_value);
611 		return;
612 	}
613 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
614 	 * boundary, so we must be careful.
615 	 */
616 	if ((s64)reg->umax_value >= 0) {
617 		/* Positive.  We can't learn anything from the smin, but smax
618 		 * is positive, hence safe.
619 		 */
620 		reg->smin_value = reg->umin_value;
621 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
622 							  reg->umax_value);
623 	} else if ((s64)reg->umin_value < 0) {
624 		/* Negative.  We can't learn anything from the smax, but smin
625 		 * is negative, hence safe.
626 		 */
627 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
628 							  reg->umin_value);
629 		reg->smax_value = reg->umax_value;
630 	}
631 }
632 
633 /* Attempts to improve var_off based on unsigned min/max information */
634 static void __reg_bound_offset(struct bpf_reg_state *reg)
635 {
636 	reg->var_off = tnum_intersect(reg->var_off,
637 				      tnum_range(reg->umin_value,
638 						 reg->umax_value));
639 }
640 
641 /* Reset the min/max bounds of a register */
642 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
643 {
644 	reg->smin_value = S64_MIN;
645 	reg->smax_value = S64_MAX;
646 	reg->umin_value = 0;
647 	reg->umax_value = U64_MAX;
648 }
649 
650 /* Mark a register as having a completely unknown (scalar) value. */
651 static void __mark_reg_unknown(struct bpf_reg_state *reg)
652 {
653 	reg->type = SCALAR_VALUE;
654 	reg->id = 0;
655 	reg->off = 0;
656 	reg->var_off = tnum_unknown;
657 	reg->frameno = 0;
658 	__mark_reg_unbounded(reg);
659 }
660 
661 static void mark_reg_unknown(struct bpf_verifier_env *env,
662 			     struct bpf_reg_state *regs, u32 regno)
663 {
664 	if (WARN_ON(regno >= MAX_BPF_REG)) {
665 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
666 		/* Something bad happened, let's kill all regs except FP */
667 		for (regno = 0; regno < BPF_REG_FP; regno++)
668 			__mark_reg_not_init(regs + regno);
669 		return;
670 	}
671 	__mark_reg_unknown(regs + regno);
672 }
673 
674 static void __mark_reg_not_init(struct bpf_reg_state *reg)
675 {
676 	__mark_reg_unknown(reg);
677 	reg->type = NOT_INIT;
678 }
679 
680 static void mark_reg_not_init(struct bpf_verifier_env *env,
681 			      struct bpf_reg_state *regs, u32 regno)
682 {
683 	if (WARN_ON(regno >= MAX_BPF_REG)) {
684 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
685 		/* Something bad happened, let's kill all regs except FP */
686 		for (regno = 0; regno < BPF_REG_FP; regno++)
687 			__mark_reg_not_init(regs + regno);
688 		return;
689 	}
690 	__mark_reg_not_init(regs + regno);
691 }
692 
693 static void init_reg_state(struct bpf_verifier_env *env,
694 			   struct bpf_func_state *state)
695 {
696 	struct bpf_reg_state *regs = state->regs;
697 	int i;
698 
699 	for (i = 0; i < MAX_BPF_REG; i++) {
700 		mark_reg_not_init(env, regs, i);
701 		regs[i].live = REG_LIVE_NONE;
702 	}
703 
704 	/* frame pointer */
705 	regs[BPF_REG_FP].type = PTR_TO_STACK;
706 	mark_reg_known_zero(env, regs, BPF_REG_FP);
707 	regs[BPF_REG_FP].frameno = state->frameno;
708 
709 	/* 1st arg to a function */
710 	regs[BPF_REG_1].type = PTR_TO_CTX;
711 	mark_reg_known_zero(env, regs, BPF_REG_1);
712 }
713 
714 #define BPF_MAIN_FUNC (-1)
715 static void init_func_state(struct bpf_verifier_env *env,
716 			    struct bpf_func_state *state,
717 			    int callsite, int frameno, int subprogno)
718 {
719 	state->callsite = callsite;
720 	state->frameno = frameno;
721 	state->subprogno = subprogno;
722 	init_reg_state(env, state);
723 }
724 
725 enum reg_arg_type {
726 	SRC_OP,		/* register is used as source operand */
727 	DST_OP,		/* register is used as destination operand */
728 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
729 };
730 
731 static int cmp_subprogs(const void *a, const void *b)
732 {
733 	return *(int *)a - *(int *)b;
734 }
735 
736 static int find_subprog(struct bpf_verifier_env *env, int off)
737 {
738 	u32 *p;
739 
740 	p = bsearch(&off, env->subprog_starts, env->subprog_cnt,
741 		    sizeof(env->subprog_starts[0]), cmp_subprogs);
742 	if (!p)
743 		return -ENOENT;
744 	return p - env->subprog_starts;
745 
746 }
747 
748 static int add_subprog(struct bpf_verifier_env *env, int off)
749 {
750 	int insn_cnt = env->prog->len;
751 	int ret;
752 
753 	if (off >= insn_cnt || off < 0) {
754 		verbose(env, "call to invalid destination\n");
755 		return -EINVAL;
756 	}
757 	ret = find_subprog(env, off);
758 	if (ret >= 0)
759 		return 0;
760 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
761 		verbose(env, "too many subprograms\n");
762 		return -E2BIG;
763 	}
764 	env->subprog_starts[env->subprog_cnt++] = off;
765 	sort(env->subprog_starts, env->subprog_cnt,
766 	     sizeof(env->subprog_starts[0]), cmp_subprogs, NULL);
767 	return 0;
768 }
769 
770 static int check_subprogs(struct bpf_verifier_env *env)
771 {
772 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
773 	struct bpf_insn *insn = env->prog->insnsi;
774 	int insn_cnt = env->prog->len;
775 
776 	/* determine subprog starts. The end is one before the next starts */
777 	for (i = 0; i < insn_cnt; i++) {
778 		if (insn[i].code != (BPF_JMP | BPF_CALL))
779 			continue;
780 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
781 			continue;
782 		if (!env->allow_ptr_leaks) {
783 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
784 			return -EPERM;
785 		}
786 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
787 			verbose(env, "function calls in offloaded programs are not supported yet\n");
788 			return -EINVAL;
789 		}
790 		ret = add_subprog(env, i + insn[i].imm + 1);
791 		if (ret < 0)
792 			return ret;
793 	}
794 
795 	if (env->log.level > 1)
796 		for (i = 0; i < env->subprog_cnt; i++)
797 			verbose(env, "func#%d @%d\n", i, env->subprog_starts[i]);
798 
799 	/* now check that all jumps are within the same subprog */
800 	subprog_start = 0;
801 	if (env->subprog_cnt == cur_subprog)
802 		subprog_end = insn_cnt;
803 	else
804 		subprog_end = env->subprog_starts[cur_subprog++];
805 	for (i = 0; i < insn_cnt; i++) {
806 		u8 code = insn[i].code;
807 
808 		if (BPF_CLASS(code) != BPF_JMP)
809 			goto next;
810 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
811 			goto next;
812 		off = i + insn[i].off + 1;
813 		if (off < subprog_start || off >= subprog_end) {
814 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
815 			return -EINVAL;
816 		}
817 next:
818 		if (i == subprog_end - 1) {
819 			/* to avoid fall-through from one subprog into another
820 			 * the last insn of the subprog should be either exit
821 			 * or unconditional jump back
822 			 */
823 			if (code != (BPF_JMP | BPF_EXIT) &&
824 			    code != (BPF_JMP | BPF_JA)) {
825 				verbose(env, "last insn is not an exit or jmp\n");
826 				return -EINVAL;
827 			}
828 			subprog_start = subprog_end;
829 			if (env->subprog_cnt == cur_subprog)
830 				subprog_end = insn_cnt;
831 			else
832 				subprog_end = env->subprog_starts[cur_subprog++];
833 		}
834 	}
835 	return 0;
836 }
837 
838 static
839 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
840 				       const struct bpf_verifier_state *state,
841 				       struct bpf_verifier_state *parent,
842 				       u32 regno)
843 {
844 	struct bpf_verifier_state *tmp = NULL;
845 
846 	/* 'parent' could be a state of caller and
847 	 * 'state' could be a state of callee. In such case
848 	 * parent->curframe < state->curframe
849 	 * and it's ok for r1 - r5 registers
850 	 *
851 	 * 'parent' could be a callee's state after it bpf_exit-ed.
852 	 * In such case parent->curframe > state->curframe
853 	 * and it's ok for r0 only
854 	 */
855 	if (parent->curframe == state->curframe ||
856 	    (parent->curframe < state->curframe &&
857 	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
858 	    (parent->curframe > state->curframe &&
859 	       regno == BPF_REG_0))
860 		return parent;
861 
862 	if (parent->curframe > state->curframe &&
863 	    regno >= BPF_REG_6) {
864 		/* for callee saved regs we have to skip the whole chain
865 		 * of states that belong to callee and mark as LIVE_READ
866 		 * the registers before the call
867 		 */
868 		tmp = parent;
869 		while (tmp && tmp->curframe != state->curframe) {
870 			tmp = tmp->parent;
871 		}
872 		if (!tmp)
873 			goto bug;
874 		parent = tmp;
875 	} else {
876 		goto bug;
877 	}
878 	return parent;
879 bug:
880 	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
881 	verbose(env, "regno %d parent frame %d current frame %d\n",
882 		regno, parent->curframe, state->curframe);
883 	return NULL;
884 }
885 
886 static int mark_reg_read(struct bpf_verifier_env *env,
887 			 const struct bpf_verifier_state *state,
888 			 struct bpf_verifier_state *parent,
889 			 u32 regno)
890 {
891 	bool writes = parent == state->parent; /* Observe write marks */
892 
893 	if (regno == BPF_REG_FP)
894 		/* We don't need to worry about FP liveness because it's read-only */
895 		return 0;
896 
897 	while (parent) {
898 		/* if read wasn't screened by an earlier write ... */
899 		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
900 			break;
901 		parent = skip_callee(env, state, parent, regno);
902 		if (!parent)
903 			return -EFAULT;
904 		/* ... then we depend on parent's value */
905 		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
906 		state = parent;
907 		parent = state->parent;
908 		writes = true;
909 	}
910 	return 0;
911 }
912 
913 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
914 			 enum reg_arg_type t)
915 {
916 	struct bpf_verifier_state *vstate = env->cur_state;
917 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
918 	struct bpf_reg_state *regs = state->regs;
919 
920 	if (regno >= MAX_BPF_REG) {
921 		verbose(env, "R%d is invalid\n", regno);
922 		return -EINVAL;
923 	}
924 
925 	if (t == SRC_OP) {
926 		/* check whether register used as source operand can be read */
927 		if (regs[regno].type == NOT_INIT) {
928 			verbose(env, "R%d !read_ok\n", regno);
929 			return -EACCES;
930 		}
931 		return mark_reg_read(env, vstate, vstate->parent, regno);
932 	} else {
933 		/* check whether register used as dest operand can be written to */
934 		if (regno == BPF_REG_FP) {
935 			verbose(env, "frame pointer is read only\n");
936 			return -EACCES;
937 		}
938 		regs[regno].live |= REG_LIVE_WRITTEN;
939 		if (t == DST_OP)
940 			mark_reg_unknown(env, regs, regno);
941 	}
942 	return 0;
943 }
944 
945 static bool is_spillable_regtype(enum bpf_reg_type type)
946 {
947 	switch (type) {
948 	case PTR_TO_MAP_VALUE:
949 	case PTR_TO_MAP_VALUE_OR_NULL:
950 	case PTR_TO_STACK:
951 	case PTR_TO_CTX:
952 	case PTR_TO_PACKET:
953 	case PTR_TO_PACKET_META:
954 	case PTR_TO_PACKET_END:
955 	case CONST_PTR_TO_MAP:
956 		return true;
957 	default:
958 		return false;
959 	}
960 }
961 
962 /* Does this register contain a constant zero? */
963 static bool register_is_null(struct bpf_reg_state *reg)
964 {
965 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
966 }
967 
968 /* check_stack_read/write functions track spill/fill of registers,
969  * stack boundary and alignment are checked in check_mem_access()
970  */
971 static int check_stack_write(struct bpf_verifier_env *env,
972 			     struct bpf_func_state *state, /* func where register points to */
973 			     int off, int size, int value_regno)
974 {
975 	struct bpf_func_state *cur; /* state of the current function */
976 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
977 	enum bpf_reg_type type;
978 
979 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
980 				 true);
981 	if (err)
982 		return err;
983 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
984 	 * so it's aligned access and [off, off + size) are within stack limits
985 	 */
986 	if (!env->allow_ptr_leaks &&
987 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
988 	    size != BPF_REG_SIZE) {
989 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
990 		return -EACCES;
991 	}
992 
993 	cur = env->cur_state->frame[env->cur_state->curframe];
994 	if (value_regno >= 0 &&
995 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
996 
997 		/* register containing pointer is being spilled into stack */
998 		if (size != BPF_REG_SIZE) {
999 			verbose(env, "invalid size of register spill\n");
1000 			return -EACCES;
1001 		}
1002 
1003 		if (state != cur && type == PTR_TO_STACK) {
1004 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1005 			return -EINVAL;
1006 		}
1007 
1008 		/* save register state */
1009 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1010 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1011 
1012 		for (i = 0; i < BPF_REG_SIZE; i++)
1013 			state->stack[spi].slot_type[i] = STACK_SPILL;
1014 	} else {
1015 		u8 type = STACK_MISC;
1016 
1017 		/* regular write of data into stack */
1018 		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1019 
1020 		/* only mark the slot as written if all 8 bytes were written
1021 		 * otherwise read propagation may incorrectly stop too soon
1022 		 * when stack slots are partially written.
1023 		 * This heuristic means that read propagation will be
1024 		 * conservative, since it will add reg_live_read marks
1025 		 * to stack slots all the way to first state when programs
1026 		 * writes+reads less than 8 bytes
1027 		 */
1028 		if (size == BPF_REG_SIZE)
1029 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1030 
1031 		/* when we zero initialize stack slots mark them as such */
1032 		if (value_regno >= 0 &&
1033 		    register_is_null(&cur->regs[value_regno]))
1034 			type = STACK_ZERO;
1035 
1036 		for (i = 0; i < size; i++)
1037 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1038 				type;
1039 	}
1040 	return 0;
1041 }
1042 
1043 /* registers of every function are unique and mark_reg_read() propagates
1044  * the liveness in the following cases:
1045  * - from callee into caller for R1 - R5 that were used as arguments
1046  * - from caller into callee for R0 that used as result of the call
1047  * - from caller to the same caller skipping states of the callee for R6 - R9,
1048  *   since R6 - R9 are callee saved by implicit function prologue and
1049  *   caller's R6 != callee's R6, so when we propagate liveness up to
1050  *   parent states we need to skip callee states for R6 - R9.
1051  *
1052  * stack slot marking is different, since stacks of caller and callee are
1053  * accessible in both (since caller can pass a pointer to caller's stack to
1054  * callee which can pass it to another function), hence mark_stack_slot_read()
1055  * has to propagate the stack liveness to all parent states at given frame number.
1056  * Consider code:
1057  * f1() {
1058  *   ptr = fp - 8;
1059  *   *ptr = ctx;
1060  *   call f2 {
1061  *      .. = *ptr;
1062  *   }
1063  *   .. = *ptr;
1064  * }
1065  * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1066  * to mark liveness at the f1's frame and not f2's frame.
1067  * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1068  * to propagate liveness to f2 states at f1's frame level and further into
1069  * f1 states at f1's frame level until write into that stack slot
1070  */
1071 static void mark_stack_slot_read(struct bpf_verifier_env *env,
1072 				 const struct bpf_verifier_state *state,
1073 				 struct bpf_verifier_state *parent,
1074 				 int slot, int frameno)
1075 {
1076 	bool writes = parent == state->parent; /* Observe write marks */
1077 
1078 	while (parent) {
1079 		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
1080 			/* since LIVE_WRITTEN mark is only done for full 8-byte
1081 			 * write the read marks are conservative and parent
1082 			 * state may not even have the stack allocated. In such case
1083 			 * end the propagation, since the loop reached beginning
1084 			 * of the function
1085 			 */
1086 			break;
1087 		/* if read wasn't screened by an earlier write ... */
1088 		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1089 			break;
1090 		/* ... then we depend on parent's value */
1091 		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1092 		state = parent;
1093 		parent = state->parent;
1094 		writes = true;
1095 	}
1096 }
1097 
1098 static int check_stack_read(struct bpf_verifier_env *env,
1099 			    struct bpf_func_state *reg_state /* func where register points to */,
1100 			    int off, int size, int value_regno)
1101 {
1102 	struct bpf_verifier_state *vstate = env->cur_state;
1103 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1104 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1105 	u8 *stype;
1106 
1107 	if (reg_state->allocated_stack <= slot) {
1108 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1109 			off, size);
1110 		return -EACCES;
1111 	}
1112 	stype = reg_state->stack[spi].slot_type;
1113 
1114 	if (stype[0] == STACK_SPILL) {
1115 		if (size != BPF_REG_SIZE) {
1116 			verbose(env, "invalid size of register spill\n");
1117 			return -EACCES;
1118 		}
1119 		for (i = 1; i < BPF_REG_SIZE; i++) {
1120 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1121 				verbose(env, "corrupted spill memory\n");
1122 				return -EACCES;
1123 			}
1124 		}
1125 
1126 		if (value_regno >= 0) {
1127 			/* restore register state from stack */
1128 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1129 			/* mark reg as written since spilled pointer state likely
1130 			 * has its liveness marks cleared by is_state_visited()
1131 			 * which resets stack/reg liveness for state transitions
1132 			 */
1133 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1134 		}
1135 		mark_stack_slot_read(env, vstate, vstate->parent, spi,
1136 				     reg_state->frameno);
1137 		return 0;
1138 	} else {
1139 		int zeros = 0;
1140 
1141 		for (i = 0; i < size; i++) {
1142 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1143 				continue;
1144 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1145 				zeros++;
1146 				continue;
1147 			}
1148 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1149 				off, i, size);
1150 			return -EACCES;
1151 		}
1152 		mark_stack_slot_read(env, vstate, vstate->parent, spi,
1153 				     reg_state->frameno);
1154 		if (value_regno >= 0) {
1155 			if (zeros == size) {
1156 				/* any size read into register is zero extended,
1157 				 * so the whole register == const_zero
1158 				 */
1159 				__mark_reg_const_zero(&state->regs[value_regno]);
1160 			} else {
1161 				/* have read misc data from the stack */
1162 				mark_reg_unknown(env, state->regs, value_regno);
1163 			}
1164 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1165 		}
1166 		return 0;
1167 	}
1168 }
1169 
1170 /* check read/write into map element returned by bpf_map_lookup_elem() */
1171 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1172 			      int size, bool zero_size_allowed)
1173 {
1174 	struct bpf_reg_state *regs = cur_regs(env);
1175 	struct bpf_map *map = regs[regno].map_ptr;
1176 
1177 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1178 	    off + size > map->value_size) {
1179 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1180 			map->value_size, off, size);
1181 		return -EACCES;
1182 	}
1183 	return 0;
1184 }
1185 
1186 /* check read/write into a map element with possible variable offset */
1187 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1188 			    int off, int size, bool zero_size_allowed)
1189 {
1190 	struct bpf_verifier_state *vstate = env->cur_state;
1191 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1192 	struct bpf_reg_state *reg = &state->regs[regno];
1193 	int err;
1194 
1195 	/* We may have adjusted the register to this map value, so we
1196 	 * need to try adding each of min_value and max_value to off
1197 	 * to make sure our theoretical access will be safe.
1198 	 */
1199 	if (env->log.level)
1200 		print_verifier_state(env, state);
1201 	/* The minimum value is only important with signed
1202 	 * comparisons where we can't assume the floor of a
1203 	 * value is 0.  If we are using signed variables for our
1204 	 * index'es we need to make sure that whatever we use
1205 	 * will have a set floor within our range.
1206 	 */
1207 	if (reg->smin_value < 0) {
1208 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1209 			regno);
1210 		return -EACCES;
1211 	}
1212 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1213 				 zero_size_allowed);
1214 	if (err) {
1215 		verbose(env, "R%d min value is outside of the array range\n",
1216 			regno);
1217 		return err;
1218 	}
1219 
1220 	/* If we haven't set a max value then we need to bail since we can't be
1221 	 * sure we won't do bad things.
1222 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1223 	 */
1224 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1225 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1226 			regno);
1227 		return -EACCES;
1228 	}
1229 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1230 				 zero_size_allowed);
1231 	if (err)
1232 		verbose(env, "R%d max value is outside of the array range\n",
1233 			regno);
1234 	return err;
1235 }
1236 
1237 #define MAX_PACKET_OFF 0xffff
1238 
1239 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1240 				       const struct bpf_call_arg_meta *meta,
1241 				       enum bpf_access_type t)
1242 {
1243 	switch (env->prog->type) {
1244 	case BPF_PROG_TYPE_LWT_IN:
1245 	case BPF_PROG_TYPE_LWT_OUT:
1246 		/* dst_input() and dst_output() can't write for now */
1247 		if (t == BPF_WRITE)
1248 			return false;
1249 		/* fallthrough */
1250 	case BPF_PROG_TYPE_SCHED_CLS:
1251 	case BPF_PROG_TYPE_SCHED_ACT:
1252 	case BPF_PROG_TYPE_XDP:
1253 	case BPF_PROG_TYPE_LWT_XMIT:
1254 	case BPF_PROG_TYPE_SK_SKB:
1255 		if (meta)
1256 			return meta->pkt_access;
1257 
1258 		env->seen_direct_write = true;
1259 		return true;
1260 	default:
1261 		return false;
1262 	}
1263 }
1264 
1265 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1266 				 int off, int size, bool zero_size_allowed)
1267 {
1268 	struct bpf_reg_state *regs = cur_regs(env);
1269 	struct bpf_reg_state *reg = &regs[regno];
1270 
1271 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1272 	    (u64)off + size > reg->range) {
1273 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1274 			off, size, regno, reg->id, reg->off, reg->range);
1275 		return -EACCES;
1276 	}
1277 	return 0;
1278 }
1279 
1280 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1281 			       int size, bool zero_size_allowed)
1282 {
1283 	struct bpf_reg_state *regs = cur_regs(env);
1284 	struct bpf_reg_state *reg = &regs[regno];
1285 	int err;
1286 
1287 	/* We may have added a variable offset to the packet pointer; but any
1288 	 * reg->range we have comes after that.  We are only checking the fixed
1289 	 * offset.
1290 	 */
1291 
1292 	/* We don't allow negative numbers, because we aren't tracking enough
1293 	 * detail to prove they're safe.
1294 	 */
1295 	if (reg->smin_value < 0) {
1296 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1297 			regno);
1298 		return -EACCES;
1299 	}
1300 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1301 	if (err) {
1302 		verbose(env, "R%d offset is outside of the packet\n", regno);
1303 		return err;
1304 	}
1305 	return err;
1306 }
1307 
1308 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1309 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1310 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1311 {
1312 	struct bpf_insn_access_aux info = {
1313 		.reg_type = *reg_type,
1314 	};
1315 
1316 	if (env->ops->is_valid_access &&
1317 	    env->ops->is_valid_access(off, size, t, &info)) {
1318 		/* A non zero info.ctx_field_size indicates that this field is a
1319 		 * candidate for later verifier transformation to load the whole
1320 		 * field and then apply a mask when accessed with a narrower
1321 		 * access than actual ctx access size. A zero info.ctx_field_size
1322 		 * will only allow for whole field access and rejects any other
1323 		 * type of narrower access.
1324 		 */
1325 		*reg_type = info.reg_type;
1326 
1327 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1328 		/* remember the offset of last byte accessed in ctx */
1329 		if (env->prog->aux->max_ctx_offset < off + size)
1330 			env->prog->aux->max_ctx_offset = off + size;
1331 		return 0;
1332 	}
1333 
1334 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1335 	return -EACCES;
1336 }
1337 
1338 static bool __is_pointer_value(bool allow_ptr_leaks,
1339 			       const struct bpf_reg_state *reg)
1340 {
1341 	if (allow_ptr_leaks)
1342 		return false;
1343 
1344 	return reg->type != SCALAR_VALUE;
1345 }
1346 
1347 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1348 {
1349 	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1350 }
1351 
1352 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1353 {
1354 	const struct bpf_reg_state *reg = cur_regs(env) + regno;
1355 
1356 	return reg->type == PTR_TO_CTX;
1357 }
1358 
1359 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1360 {
1361 	const struct bpf_reg_state *reg = cur_regs(env) + regno;
1362 
1363 	return type_is_pkt_pointer(reg->type);
1364 }
1365 
1366 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1367 				   const struct bpf_reg_state *reg,
1368 				   int off, int size, bool strict)
1369 {
1370 	struct tnum reg_off;
1371 	int ip_align;
1372 
1373 	/* Byte size accesses are always allowed. */
1374 	if (!strict || size == 1)
1375 		return 0;
1376 
1377 	/* For platforms that do not have a Kconfig enabling
1378 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1379 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1380 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1381 	 * to this code only in strict mode where we want to emulate
1382 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1383 	 * unconditional IP align value of '2'.
1384 	 */
1385 	ip_align = 2;
1386 
1387 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1388 	if (!tnum_is_aligned(reg_off, size)) {
1389 		char tn_buf[48];
1390 
1391 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1392 		verbose(env,
1393 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1394 			ip_align, tn_buf, reg->off, off, size);
1395 		return -EACCES;
1396 	}
1397 
1398 	return 0;
1399 }
1400 
1401 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1402 				       const struct bpf_reg_state *reg,
1403 				       const char *pointer_desc,
1404 				       int off, int size, bool strict)
1405 {
1406 	struct tnum reg_off;
1407 
1408 	/* Byte size accesses are always allowed. */
1409 	if (!strict || size == 1)
1410 		return 0;
1411 
1412 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1413 	if (!tnum_is_aligned(reg_off, size)) {
1414 		char tn_buf[48];
1415 
1416 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1417 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1418 			pointer_desc, tn_buf, reg->off, off, size);
1419 		return -EACCES;
1420 	}
1421 
1422 	return 0;
1423 }
1424 
1425 static int check_ptr_alignment(struct bpf_verifier_env *env,
1426 			       const struct bpf_reg_state *reg, int off,
1427 			       int size, bool strict_alignment_once)
1428 {
1429 	bool strict = env->strict_alignment || strict_alignment_once;
1430 	const char *pointer_desc = "";
1431 
1432 	switch (reg->type) {
1433 	case PTR_TO_PACKET:
1434 	case PTR_TO_PACKET_META:
1435 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1436 		 * right in front, treat it the very same way.
1437 		 */
1438 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1439 	case PTR_TO_MAP_VALUE:
1440 		pointer_desc = "value ";
1441 		break;
1442 	case PTR_TO_CTX:
1443 		pointer_desc = "context ";
1444 		break;
1445 	case PTR_TO_STACK:
1446 		pointer_desc = "stack ";
1447 		/* The stack spill tracking logic in check_stack_write()
1448 		 * and check_stack_read() relies on stack accesses being
1449 		 * aligned.
1450 		 */
1451 		strict = true;
1452 		break;
1453 	default:
1454 		break;
1455 	}
1456 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1457 					   strict);
1458 }
1459 
1460 static int update_stack_depth(struct bpf_verifier_env *env,
1461 			      const struct bpf_func_state *func,
1462 			      int off)
1463 {
1464 	u16 stack = env->subprog_stack_depth[func->subprogno];
1465 
1466 	if (stack >= -off)
1467 		return 0;
1468 
1469 	/* update known max for given subprogram */
1470 	env->subprog_stack_depth[func->subprogno] = -off;
1471 	return 0;
1472 }
1473 
1474 /* starting from main bpf function walk all instructions of the function
1475  * and recursively walk all callees that given function can call.
1476  * Ignore jump and exit insns.
1477  * Since recursion is prevented by check_cfg() this algorithm
1478  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1479  */
1480 static int check_max_stack_depth(struct bpf_verifier_env *env)
1481 {
1482 	int depth = 0, frame = 0, subprog = 0, i = 0, subprog_end;
1483 	struct bpf_insn *insn = env->prog->insnsi;
1484 	int insn_cnt = env->prog->len;
1485 	int ret_insn[MAX_CALL_FRAMES];
1486 	int ret_prog[MAX_CALL_FRAMES];
1487 
1488 process_func:
1489 	/* round up to 32-bytes, since this is granularity
1490 	 * of interpreter stack size
1491 	 */
1492 	depth += round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
1493 	if (depth > MAX_BPF_STACK) {
1494 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1495 			frame + 1, depth);
1496 		return -EACCES;
1497 	}
1498 continue_func:
1499 	if (env->subprog_cnt == subprog)
1500 		subprog_end = insn_cnt;
1501 	else
1502 		subprog_end = env->subprog_starts[subprog];
1503 	for (; i < subprog_end; i++) {
1504 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1505 			continue;
1506 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1507 			continue;
1508 		/* remember insn and function to return to */
1509 		ret_insn[frame] = i + 1;
1510 		ret_prog[frame] = subprog;
1511 
1512 		/* find the callee */
1513 		i = i + insn[i].imm + 1;
1514 		subprog = find_subprog(env, i);
1515 		if (subprog < 0) {
1516 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1517 				  i);
1518 			return -EFAULT;
1519 		}
1520 		subprog++;
1521 		frame++;
1522 		if (frame >= MAX_CALL_FRAMES) {
1523 			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1524 			return -EFAULT;
1525 		}
1526 		goto process_func;
1527 	}
1528 	/* end of for() loop means the last insn of the 'subprog'
1529 	 * was reached. Doesn't matter whether it was JA or EXIT
1530 	 */
1531 	if (frame == 0)
1532 		return 0;
1533 	depth -= round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
1534 	frame--;
1535 	i = ret_insn[frame];
1536 	subprog = ret_prog[frame];
1537 	goto continue_func;
1538 }
1539 
1540 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1541 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1542 				  const struct bpf_insn *insn, int idx)
1543 {
1544 	int start = idx + insn->imm + 1, subprog;
1545 
1546 	subprog = find_subprog(env, start);
1547 	if (subprog < 0) {
1548 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1549 			  start);
1550 		return -EFAULT;
1551 	}
1552 	subprog++;
1553 	return env->subprog_stack_depth[subprog];
1554 }
1555 #endif
1556 
1557 /* truncate register to smaller size (in bytes)
1558  * must be called with size < BPF_REG_SIZE
1559  */
1560 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1561 {
1562 	u64 mask;
1563 
1564 	/* clear high bits in bit representation */
1565 	reg->var_off = tnum_cast(reg->var_off, size);
1566 
1567 	/* fix arithmetic bounds */
1568 	mask = ((u64)1 << (size * 8)) - 1;
1569 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1570 		reg->umin_value &= mask;
1571 		reg->umax_value &= mask;
1572 	} else {
1573 		reg->umin_value = 0;
1574 		reg->umax_value = mask;
1575 	}
1576 	reg->smin_value = reg->umin_value;
1577 	reg->smax_value = reg->umax_value;
1578 }
1579 
1580 /* check whether memory at (regno + off) is accessible for t = (read | write)
1581  * if t==write, value_regno is a register which value is stored into memory
1582  * if t==read, value_regno is a register which will receive the value from memory
1583  * if t==write && value_regno==-1, some unknown value is stored into memory
1584  * if t==read && value_regno==-1, don't care what we read from memory
1585  */
1586 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1587 			    int off, int bpf_size, enum bpf_access_type t,
1588 			    int value_regno, bool strict_alignment_once)
1589 {
1590 	struct bpf_reg_state *regs = cur_regs(env);
1591 	struct bpf_reg_state *reg = regs + regno;
1592 	struct bpf_func_state *state;
1593 	int size, err = 0;
1594 
1595 	size = bpf_size_to_bytes(bpf_size);
1596 	if (size < 0)
1597 		return size;
1598 
1599 	/* alignment checks will add in reg->off themselves */
1600 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1601 	if (err)
1602 		return err;
1603 
1604 	/* for access checks, reg->off is just part of off */
1605 	off += reg->off;
1606 
1607 	if (reg->type == PTR_TO_MAP_VALUE) {
1608 		if (t == BPF_WRITE && value_regno >= 0 &&
1609 		    is_pointer_value(env, value_regno)) {
1610 			verbose(env, "R%d leaks addr into map\n", value_regno);
1611 			return -EACCES;
1612 		}
1613 
1614 		err = check_map_access(env, regno, off, size, false);
1615 		if (!err && t == BPF_READ && value_regno >= 0)
1616 			mark_reg_unknown(env, regs, value_regno);
1617 
1618 	} else if (reg->type == PTR_TO_CTX) {
1619 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1620 
1621 		if (t == BPF_WRITE && value_regno >= 0 &&
1622 		    is_pointer_value(env, value_regno)) {
1623 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1624 			return -EACCES;
1625 		}
1626 		/* ctx accesses must be at a fixed offset, so that we can
1627 		 * determine what type of data were returned.
1628 		 */
1629 		if (reg->off) {
1630 			verbose(env,
1631 				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1632 				regno, reg->off, off - reg->off);
1633 			return -EACCES;
1634 		}
1635 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1636 			char tn_buf[48];
1637 
1638 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1639 			verbose(env,
1640 				"variable ctx access var_off=%s off=%d size=%d",
1641 				tn_buf, off, size);
1642 			return -EACCES;
1643 		}
1644 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1645 		if (!err && t == BPF_READ && value_regno >= 0) {
1646 			/* ctx access returns either a scalar, or a
1647 			 * PTR_TO_PACKET[_META,_END]. In the latter
1648 			 * case, we know the offset is zero.
1649 			 */
1650 			if (reg_type == SCALAR_VALUE)
1651 				mark_reg_unknown(env, regs, value_regno);
1652 			else
1653 				mark_reg_known_zero(env, regs,
1654 						    value_regno);
1655 			regs[value_regno].id = 0;
1656 			regs[value_regno].off = 0;
1657 			regs[value_regno].range = 0;
1658 			regs[value_regno].type = reg_type;
1659 		}
1660 
1661 	} else if (reg->type == PTR_TO_STACK) {
1662 		/* stack accesses must be at a fixed offset, so that we can
1663 		 * determine what type of data were returned.
1664 		 * See check_stack_read().
1665 		 */
1666 		if (!tnum_is_const(reg->var_off)) {
1667 			char tn_buf[48];
1668 
1669 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1670 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1671 				tn_buf, off, size);
1672 			return -EACCES;
1673 		}
1674 		off += reg->var_off.value;
1675 		if (off >= 0 || off < -MAX_BPF_STACK) {
1676 			verbose(env, "invalid stack off=%d size=%d\n", off,
1677 				size);
1678 			return -EACCES;
1679 		}
1680 
1681 		state = func(env, reg);
1682 		err = update_stack_depth(env, state, off);
1683 		if (err)
1684 			return err;
1685 
1686 		if (t == BPF_WRITE)
1687 			err = check_stack_write(env, state, off, size,
1688 						value_regno);
1689 		else
1690 			err = check_stack_read(env, state, off, size,
1691 					       value_regno);
1692 	} else if (reg_is_pkt_pointer(reg)) {
1693 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1694 			verbose(env, "cannot write into packet\n");
1695 			return -EACCES;
1696 		}
1697 		if (t == BPF_WRITE && value_regno >= 0 &&
1698 		    is_pointer_value(env, value_regno)) {
1699 			verbose(env, "R%d leaks addr into packet\n",
1700 				value_regno);
1701 			return -EACCES;
1702 		}
1703 		err = check_packet_access(env, regno, off, size, false);
1704 		if (!err && t == BPF_READ && value_regno >= 0)
1705 			mark_reg_unknown(env, regs, value_regno);
1706 	} else {
1707 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1708 			reg_type_str[reg->type]);
1709 		return -EACCES;
1710 	}
1711 
1712 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1713 	    regs[value_regno].type == SCALAR_VALUE) {
1714 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1715 		coerce_reg_to_size(&regs[value_regno], size);
1716 	}
1717 	return err;
1718 }
1719 
1720 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1721 {
1722 	int err;
1723 
1724 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1725 	    insn->imm != 0) {
1726 		verbose(env, "BPF_XADD uses reserved fields\n");
1727 		return -EINVAL;
1728 	}
1729 
1730 	/* check src1 operand */
1731 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1732 	if (err)
1733 		return err;
1734 
1735 	/* check src2 operand */
1736 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1737 	if (err)
1738 		return err;
1739 
1740 	if (is_pointer_value(env, insn->src_reg)) {
1741 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1742 		return -EACCES;
1743 	}
1744 
1745 	if (is_ctx_reg(env, insn->dst_reg) ||
1746 	    is_pkt_reg(env, insn->dst_reg)) {
1747 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1748 			insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1749 			"context" : "packet");
1750 		return -EACCES;
1751 	}
1752 
1753 	/* check whether atomic_add can read the memory */
1754 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1755 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1756 	if (err)
1757 		return err;
1758 
1759 	/* check whether atomic_add can write into the same memory */
1760 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1761 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1762 }
1763 
1764 /* when register 'regno' is passed into function that will read 'access_size'
1765  * bytes from that pointer, make sure that it's within stack boundary
1766  * and all elements of stack are initialized.
1767  * Unlike most pointer bounds-checking functions, this one doesn't take an
1768  * 'off' argument, so it has to add in reg->off itself.
1769  */
1770 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1771 				int access_size, bool zero_size_allowed,
1772 				struct bpf_call_arg_meta *meta)
1773 {
1774 	struct bpf_reg_state *reg = cur_regs(env) + regno;
1775 	struct bpf_func_state *state = func(env, reg);
1776 	int off, i, slot, spi;
1777 
1778 	if (reg->type != PTR_TO_STACK) {
1779 		/* Allow zero-byte read from NULL, regardless of pointer type */
1780 		if (zero_size_allowed && access_size == 0 &&
1781 		    register_is_null(reg))
1782 			return 0;
1783 
1784 		verbose(env, "R%d type=%s expected=%s\n", regno,
1785 			reg_type_str[reg->type],
1786 			reg_type_str[PTR_TO_STACK]);
1787 		return -EACCES;
1788 	}
1789 
1790 	/* Only allow fixed-offset stack reads */
1791 	if (!tnum_is_const(reg->var_off)) {
1792 		char tn_buf[48];
1793 
1794 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1795 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1796 			regno, tn_buf);
1797 		return -EACCES;
1798 	}
1799 	off = reg->off + reg->var_off.value;
1800 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1801 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1802 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1803 			regno, off, access_size);
1804 		return -EACCES;
1805 	}
1806 
1807 	if (meta && meta->raw_mode) {
1808 		meta->access_size = access_size;
1809 		meta->regno = regno;
1810 		return 0;
1811 	}
1812 
1813 	for (i = 0; i < access_size; i++) {
1814 		u8 *stype;
1815 
1816 		slot = -(off + i) - 1;
1817 		spi = slot / BPF_REG_SIZE;
1818 		if (state->allocated_stack <= slot)
1819 			goto err;
1820 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
1821 		if (*stype == STACK_MISC)
1822 			goto mark;
1823 		if (*stype == STACK_ZERO) {
1824 			/* helper can write anything into the stack */
1825 			*stype = STACK_MISC;
1826 			goto mark;
1827 		}
1828 err:
1829 		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1830 			off, i, access_size);
1831 		return -EACCES;
1832 mark:
1833 		/* reading any byte out of 8-byte 'spill_slot' will cause
1834 		 * the whole slot to be marked as 'read'
1835 		 */
1836 		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
1837 				     spi, state->frameno);
1838 	}
1839 	return update_stack_depth(env, state, off);
1840 }
1841 
1842 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1843 				   int access_size, bool zero_size_allowed,
1844 				   struct bpf_call_arg_meta *meta)
1845 {
1846 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1847 
1848 	switch (reg->type) {
1849 	case PTR_TO_PACKET:
1850 	case PTR_TO_PACKET_META:
1851 		return check_packet_access(env, regno, reg->off, access_size,
1852 					   zero_size_allowed);
1853 	case PTR_TO_MAP_VALUE:
1854 		return check_map_access(env, regno, reg->off, access_size,
1855 					zero_size_allowed);
1856 	default: /* scalar_value|ptr_to_stack or invalid ptr */
1857 		return check_stack_boundary(env, regno, access_size,
1858 					    zero_size_allowed, meta);
1859 	}
1860 }
1861 
1862 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
1863 {
1864 	return type == ARG_PTR_TO_MEM ||
1865 	       type == ARG_PTR_TO_MEM_OR_NULL ||
1866 	       type == ARG_PTR_TO_UNINIT_MEM;
1867 }
1868 
1869 static bool arg_type_is_mem_size(enum bpf_arg_type type)
1870 {
1871 	return type == ARG_CONST_SIZE ||
1872 	       type == ARG_CONST_SIZE_OR_ZERO;
1873 }
1874 
1875 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1876 			  enum bpf_arg_type arg_type,
1877 			  struct bpf_call_arg_meta *meta)
1878 {
1879 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1880 	enum bpf_reg_type expected_type, type = reg->type;
1881 	int err = 0;
1882 
1883 	if (arg_type == ARG_DONTCARE)
1884 		return 0;
1885 
1886 	err = check_reg_arg(env, regno, SRC_OP);
1887 	if (err)
1888 		return err;
1889 
1890 	if (arg_type == ARG_ANYTHING) {
1891 		if (is_pointer_value(env, regno)) {
1892 			verbose(env, "R%d leaks addr into helper function\n",
1893 				regno);
1894 			return -EACCES;
1895 		}
1896 		return 0;
1897 	}
1898 
1899 	if (type_is_pkt_pointer(type) &&
1900 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1901 		verbose(env, "helper access to the packet is not allowed\n");
1902 		return -EACCES;
1903 	}
1904 
1905 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1906 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1907 		expected_type = PTR_TO_STACK;
1908 		if (!type_is_pkt_pointer(type) &&
1909 		    type != expected_type)
1910 			goto err_type;
1911 	} else if (arg_type == ARG_CONST_SIZE ||
1912 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1913 		expected_type = SCALAR_VALUE;
1914 		if (type != expected_type)
1915 			goto err_type;
1916 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1917 		expected_type = CONST_PTR_TO_MAP;
1918 		if (type != expected_type)
1919 			goto err_type;
1920 	} else if (arg_type == ARG_PTR_TO_CTX) {
1921 		expected_type = PTR_TO_CTX;
1922 		if (type != expected_type)
1923 			goto err_type;
1924 	} else if (arg_type_is_mem_ptr(arg_type)) {
1925 		expected_type = PTR_TO_STACK;
1926 		/* One exception here. In case function allows for NULL to be
1927 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1928 		 * happens during stack boundary checking.
1929 		 */
1930 		if (register_is_null(reg) &&
1931 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1932 			/* final test in check_stack_boundary() */;
1933 		else if (!type_is_pkt_pointer(type) &&
1934 			 type != PTR_TO_MAP_VALUE &&
1935 			 type != expected_type)
1936 			goto err_type;
1937 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1938 	} else {
1939 		verbose(env, "unsupported arg_type %d\n", arg_type);
1940 		return -EFAULT;
1941 	}
1942 
1943 	if (arg_type == ARG_CONST_MAP_PTR) {
1944 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1945 		meta->map_ptr = reg->map_ptr;
1946 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1947 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1948 		 * check that [key, key + map->key_size) are within
1949 		 * stack limits and initialized
1950 		 */
1951 		if (!meta->map_ptr) {
1952 			/* in function declaration map_ptr must come before
1953 			 * map_key, so that it's verified and known before
1954 			 * we have to check map_key here. Otherwise it means
1955 			 * that kernel subsystem misconfigured verifier
1956 			 */
1957 			verbose(env, "invalid map_ptr to access map->key\n");
1958 			return -EACCES;
1959 		}
1960 		if (type_is_pkt_pointer(type))
1961 			err = check_packet_access(env, regno, reg->off,
1962 						  meta->map_ptr->key_size,
1963 						  false);
1964 		else
1965 			err = check_stack_boundary(env, regno,
1966 						   meta->map_ptr->key_size,
1967 						   false, NULL);
1968 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1969 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1970 		 * check [value, value + map->value_size) validity
1971 		 */
1972 		if (!meta->map_ptr) {
1973 			/* kernel subsystem misconfigured verifier */
1974 			verbose(env, "invalid map_ptr to access map->value\n");
1975 			return -EACCES;
1976 		}
1977 		if (type_is_pkt_pointer(type))
1978 			err = check_packet_access(env, regno, reg->off,
1979 						  meta->map_ptr->value_size,
1980 						  false);
1981 		else
1982 			err = check_stack_boundary(env, regno,
1983 						   meta->map_ptr->value_size,
1984 						   false, NULL);
1985 	} else if (arg_type_is_mem_size(arg_type)) {
1986 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1987 
1988 		/* The register is SCALAR_VALUE; the access check
1989 		 * happens using its boundaries.
1990 		 */
1991 		if (!tnum_is_const(reg->var_off))
1992 			/* For unprivileged variable accesses, disable raw
1993 			 * mode so that the program is required to
1994 			 * initialize all the memory that the helper could
1995 			 * just partially fill up.
1996 			 */
1997 			meta = NULL;
1998 
1999 		if (reg->smin_value < 0) {
2000 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2001 				regno);
2002 			return -EACCES;
2003 		}
2004 
2005 		if (reg->umin_value == 0) {
2006 			err = check_helper_mem_access(env, regno - 1, 0,
2007 						      zero_size_allowed,
2008 						      meta);
2009 			if (err)
2010 				return err;
2011 		}
2012 
2013 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2014 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2015 				regno);
2016 			return -EACCES;
2017 		}
2018 		err = check_helper_mem_access(env, regno - 1,
2019 					      reg->umax_value,
2020 					      zero_size_allowed, meta);
2021 	}
2022 
2023 	return err;
2024 err_type:
2025 	verbose(env, "R%d type=%s expected=%s\n", regno,
2026 		reg_type_str[type], reg_type_str[expected_type]);
2027 	return -EACCES;
2028 }
2029 
2030 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2031 					struct bpf_map *map, int func_id)
2032 {
2033 	if (!map)
2034 		return 0;
2035 
2036 	/* We need a two way check, first is from map perspective ... */
2037 	switch (map->map_type) {
2038 	case BPF_MAP_TYPE_PROG_ARRAY:
2039 		if (func_id != BPF_FUNC_tail_call)
2040 			goto error;
2041 		break;
2042 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2043 		if (func_id != BPF_FUNC_perf_event_read &&
2044 		    func_id != BPF_FUNC_perf_event_output &&
2045 		    func_id != BPF_FUNC_perf_event_read_value)
2046 			goto error;
2047 		break;
2048 	case BPF_MAP_TYPE_STACK_TRACE:
2049 		if (func_id != BPF_FUNC_get_stackid)
2050 			goto error;
2051 		break;
2052 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2053 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2054 		    func_id != BPF_FUNC_current_task_under_cgroup)
2055 			goto error;
2056 		break;
2057 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2058 	 * allow to be modified from bpf side. So do not allow lookup elements
2059 	 * for now.
2060 	 */
2061 	case BPF_MAP_TYPE_DEVMAP:
2062 		if (func_id != BPF_FUNC_redirect_map)
2063 			goto error;
2064 		break;
2065 	/* Restrict bpf side of cpumap, open when use-cases appear */
2066 	case BPF_MAP_TYPE_CPUMAP:
2067 		if (func_id != BPF_FUNC_redirect_map)
2068 			goto error;
2069 		break;
2070 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2071 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2072 		if (func_id != BPF_FUNC_map_lookup_elem)
2073 			goto error;
2074 		break;
2075 	case BPF_MAP_TYPE_SOCKMAP:
2076 		if (func_id != BPF_FUNC_sk_redirect_map &&
2077 		    func_id != BPF_FUNC_sock_map_update &&
2078 		    func_id != BPF_FUNC_map_delete_elem)
2079 			goto error;
2080 		break;
2081 	default:
2082 		break;
2083 	}
2084 
2085 	/* ... and second from the function itself. */
2086 	switch (func_id) {
2087 	case BPF_FUNC_tail_call:
2088 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2089 			goto error;
2090 		if (env->subprog_cnt) {
2091 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2092 			return -EINVAL;
2093 		}
2094 		break;
2095 	case BPF_FUNC_perf_event_read:
2096 	case BPF_FUNC_perf_event_output:
2097 	case BPF_FUNC_perf_event_read_value:
2098 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2099 			goto error;
2100 		break;
2101 	case BPF_FUNC_get_stackid:
2102 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2103 			goto error;
2104 		break;
2105 	case BPF_FUNC_current_task_under_cgroup:
2106 	case BPF_FUNC_skb_under_cgroup:
2107 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2108 			goto error;
2109 		break;
2110 	case BPF_FUNC_redirect_map:
2111 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2112 		    map->map_type != BPF_MAP_TYPE_CPUMAP)
2113 			goto error;
2114 		break;
2115 	case BPF_FUNC_sk_redirect_map:
2116 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2117 			goto error;
2118 		break;
2119 	case BPF_FUNC_sock_map_update:
2120 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2121 			goto error;
2122 		break;
2123 	default:
2124 		break;
2125 	}
2126 
2127 	return 0;
2128 error:
2129 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2130 		map->map_type, func_id_name(func_id), func_id);
2131 	return -EINVAL;
2132 }
2133 
2134 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2135 {
2136 	int count = 0;
2137 
2138 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2139 		count++;
2140 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2141 		count++;
2142 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2143 		count++;
2144 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2145 		count++;
2146 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2147 		count++;
2148 
2149 	/* We only support one arg being in raw mode at the moment,
2150 	 * which is sufficient for the helper functions we have
2151 	 * right now.
2152 	 */
2153 	return count <= 1;
2154 }
2155 
2156 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2157 				    enum bpf_arg_type arg_next)
2158 {
2159 	return (arg_type_is_mem_ptr(arg_curr) &&
2160 	        !arg_type_is_mem_size(arg_next)) ||
2161 	       (!arg_type_is_mem_ptr(arg_curr) &&
2162 		arg_type_is_mem_size(arg_next));
2163 }
2164 
2165 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2166 {
2167 	/* bpf_xxx(..., buf, len) call will access 'len'
2168 	 * bytes from memory 'buf'. Both arg types need
2169 	 * to be paired, so make sure there's no buggy
2170 	 * helper function specification.
2171 	 */
2172 	if (arg_type_is_mem_size(fn->arg1_type) ||
2173 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2174 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2175 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2176 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2177 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2178 		return false;
2179 
2180 	return true;
2181 }
2182 
2183 static int check_func_proto(const struct bpf_func_proto *fn)
2184 {
2185 	return check_raw_mode_ok(fn) &&
2186 	       check_arg_pair_ok(fn) ? 0 : -EINVAL;
2187 }
2188 
2189 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2190  * are now invalid, so turn them into unknown SCALAR_VALUE.
2191  */
2192 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2193 				     struct bpf_func_state *state)
2194 {
2195 	struct bpf_reg_state *regs = state->regs, *reg;
2196 	int i;
2197 
2198 	for (i = 0; i < MAX_BPF_REG; i++)
2199 		if (reg_is_pkt_pointer_any(&regs[i]))
2200 			mark_reg_unknown(env, regs, i);
2201 
2202 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2203 		if (state->stack[i].slot_type[0] != STACK_SPILL)
2204 			continue;
2205 		reg = &state->stack[i].spilled_ptr;
2206 		if (reg_is_pkt_pointer_any(reg))
2207 			__mark_reg_unknown(reg);
2208 	}
2209 }
2210 
2211 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2212 {
2213 	struct bpf_verifier_state *vstate = env->cur_state;
2214 	int i;
2215 
2216 	for (i = 0; i <= vstate->curframe; i++)
2217 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2218 }
2219 
2220 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2221 			   int *insn_idx)
2222 {
2223 	struct bpf_verifier_state *state = env->cur_state;
2224 	struct bpf_func_state *caller, *callee;
2225 	int i, subprog, target_insn;
2226 
2227 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2228 		verbose(env, "the call stack of %d frames is too deep\n",
2229 			state->curframe + 2);
2230 		return -E2BIG;
2231 	}
2232 
2233 	target_insn = *insn_idx + insn->imm;
2234 	subprog = find_subprog(env, target_insn + 1);
2235 	if (subprog < 0) {
2236 		verbose(env, "verifier bug. No program starts at insn %d\n",
2237 			target_insn + 1);
2238 		return -EFAULT;
2239 	}
2240 
2241 	caller = state->frame[state->curframe];
2242 	if (state->frame[state->curframe + 1]) {
2243 		verbose(env, "verifier bug. Frame %d already allocated\n",
2244 			state->curframe + 1);
2245 		return -EFAULT;
2246 	}
2247 
2248 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2249 	if (!callee)
2250 		return -ENOMEM;
2251 	state->frame[state->curframe + 1] = callee;
2252 
2253 	/* callee cannot access r0, r6 - r9 for reading and has to write
2254 	 * into its own stack before reading from it.
2255 	 * callee can read/write into caller's stack
2256 	 */
2257 	init_func_state(env, callee,
2258 			/* remember the callsite, it will be used by bpf_exit */
2259 			*insn_idx /* callsite */,
2260 			state->curframe + 1 /* frameno within this callchain */,
2261 			subprog + 1 /* subprog number within this prog */);
2262 
2263 	/* copy r1 - r5 args that callee can access */
2264 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2265 		callee->regs[i] = caller->regs[i];
2266 
2267 	/* after the call regsiters r0 - r5 were scratched */
2268 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2269 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
2270 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2271 	}
2272 
2273 	/* only increment it after check_reg_arg() finished */
2274 	state->curframe++;
2275 
2276 	/* and go analyze first insn of the callee */
2277 	*insn_idx = target_insn;
2278 
2279 	if (env->log.level) {
2280 		verbose(env, "caller:\n");
2281 		print_verifier_state(env, caller);
2282 		verbose(env, "callee:\n");
2283 		print_verifier_state(env, callee);
2284 	}
2285 	return 0;
2286 }
2287 
2288 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2289 {
2290 	struct bpf_verifier_state *state = env->cur_state;
2291 	struct bpf_func_state *caller, *callee;
2292 	struct bpf_reg_state *r0;
2293 
2294 	callee = state->frame[state->curframe];
2295 	r0 = &callee->regs[BPF_REG_0];
2296 	if (r0->type == PTR_TO_STACK) {
2297 		/* technically it's ok to return caller's stack pointer
2298 		 * (or caller's caller's pointer) back to the caller,
2299 		 * since these pointers are valid. Only current stack
2300 		 * pointer will be invalid as soon as function exits,
2301 		 * but let's be conservative
2302 		 */
2303 		verbose(env, "cannot return stack pointer to the caller\n");
2304 		return -EINVAL;
2305 	}
2306 
2307 	state->curframe--;
2308 	caller = state->frame[state->curframe];
2309 	/* return to the caller whatever r0 had in the callee */
2310 	caller->regs[BPF_REG_0] = *r0;
2311 
2312 	*insn_idx = callee->callsite + 1;
2313 	if (env->log.level) {
2314 		verbose(env, "returning from callee:\n");
2315 		print_verifier_state(env, callee);
2316 		verbose(env, "to caller at %d:\n", *insn_idx);
2317 		print_verifier_state(env, caller);
2318 	}
2319 	/* clear everything in the callee */
2320 	free_func_state(callee);
2321 	state->frame[state->curframe + 1] = NULL;
2322 	return 0;
2323 }
2324 
2325 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2326 {
2327 	const struct bpf_func_proto *fn = NULL;
2328 	struct bpf_reg_state *regs;
2329 	struct bpf_call_arg_meta meta;
2330 	bool changes_data;
2331 	int i, err;
2332 
2333 	/* find function prototype */
2334 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2335 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2336 			func_id);
2337 		return -EINVAL;
2338 	}
2339 
2340 	if (env->ops->get_func_proto)
2341 		fn = env->ops->get_func_proto(func_id);
2342 	if (!fn) {
2343 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2344 			func_id);
2345 		return -EINVAL;
2346 	}
2347 
2348 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2349 	if (!env->prog->gpl_compatible && fn->gpl_only) {
2350 		verbose(env, "cannot call GPL only function from proprietary program\n");
2351 		return -EINVAL;
2352 	}
2353 
2354 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2355 	changes_data = bpf_helper_changes_pkt_data(fn->func);
2356 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2357 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2358 			func_id_name(func_id), func_id);
2359 		return -EINVAL;
2360 	}
2361 
2362 	memset(&meta, 0, sizeof(meta));
2363 	meta.pkt_access = fn->pkt_access;
2364 
2365 	err = check_func_proto(fn);
2366 	if (err) {
2367 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2368 			func_id_name(func_id), func_id);
2369 		return err;
2370 	}
2371 
2372 	/* check args */
2373 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2374 	if (err)
2375 		return err;
2376 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2377 	if (err)
2378 		return err;
2379 	if (func_id == BPF_FUNC_tail_call) {
2380 		if (meta.map_ptr == NULL) {
2381 			verbose(env, "verifier bug\n");
2382 			return -EINVAL;
2383 		}
2384 		env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
2385 	}
2386 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2387 	if (err)
2388 		return err;
2389 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2390 	if (err)
2391 		return err;
2392 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2393 	if (err)
2394 		return err;
2395 
2396 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
2397 	 * is inferred from register state.
2398 	 */
2399 	for (i = 0; i < meta.access_size; i++) {
2400 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2401 				       BPF_WRITE, -1, false);
2402 		if (err)
2403 			return err;
2404 	}
2405 
2406 	regs = cur_regs(env);
2407 	/* reset caller saved regs */
2408 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2409 		mark_reg_not_init(env, regs, caller_saved[i]);
2410 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2411 	}
2412 
2413 	/* update return register (already marked as written above) */
2414 	if (fn->ret_type == RET_INTEGER) {
2415 		/* sets type to SCALAR_VALUE */
2416 		mark_reg_unknown(env, regs, BPF_REG_0);
2417 	} else if (fn->ret_type == RET_VOID) {
2418 		regs[BPF_REG_0].type = NOT_INIT;
2419 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2420 		struct bpf_insn_aux_data *insn_aux;
2421 
2422 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2423 		/* There is no offset yet applied, variable or fixed */
2424 		mark_reg_known_zero(env, regs, BPF_REG_0);
2425 		regs[BPF_REG_0].off = 0;
2426 		/* remember map_ptr, so that check_map_access()
2427 		 * can check 'value_size' boundary of memory access
2428 		 * to map element returned from bpf_map_lookup_elem()
2429 		 */
2430 		if (meta.map_ptr == NULL) {
2431 			verbose(env,
2432 				"kernel subsystem misconfigured verifier\n");
2433 			return -EINVAL;
2434 		}
2435 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2436 		regs[BPF_REG_0].id = ++env->id_gen;
2437 		insn_aux = &env->insn_aux_data[insn_idx];
2438 		if (!insn_aux->map_ptr)
2439 			insn_aux->map_ptr = meta.map_ptr;
2440 		else if (insn_aux->map_ptr != meta.map_ptr)
2441 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
2442 	} else {
2443 		verbose(env, "unknown return type %d of func %s#%d\n",
2444 			fn->ret_type, func_id_name(func_id), func_id);
2445 		return -EINVAL;
2446 	}
2447 
2448 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2449 	if (err)
2450 		return err;
2451 
2452 	if (changes_data)
2453 		clear_all_pkt_pointers(env);
2454 	return 0;
2455 }
2456 
2457 static bool signed_add_overflows(s64 a, s64 b)
2458 {
2459 	/* Do the add in u64, where overflow is well-defined */
2460 	s64 res = (s64)((u64)a + (u64)b);
2461 
2462 	if (b < 0)
2463 		return res > a;
2464 	return res < a;
2465 }
2466 
2467 static bool signed_sub_overflows(s64 a, s64 b)
2468 {
2469 	/* Do the sub in u64, where overflow is well-defined */
2470 	s64 res = (s64)((u64)a - (u64)b);
2471 
2472 	if (b < 0)
2473 		return res < a;
2474 	return res > a;
2475 }
2476 
2477 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2478 				  const struct bpf_reg_state *reg,
2479 				  enum bpf_reg_type type)
2480 {
2481 	bool known = tnum_is_const(reg->var_off);
2482 	s64 val = reg->var_off.value;
2483 	s64 smin = reg->smin_value;
2484 
2485 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2486 		verbose(env, "math between %s pointer and %lld is not allowed\n",
2487 			reg_type_str[type], val);
2488 		return false;
2489 	}
2490 
2491 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2492 		verbose(env, "%s pointer offset %d is not allowed\n",
2493 			reg_type_str[type], reg->off);
2494 		return false;
2495 	}
2496 
2497 	if (smin == S64_MIN) {
2498 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2499 			reg_type_str[type]);
2500 		return false;
2501 	}
2502 
2503 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2504 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
2505 			smin, reg_type_str[type]);
2506 		return false;
2507 	}
2508 
2509 	return true;
2510 }
2511 
2512 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2513  * Caller should also handle BPF_MOV case separately.
2514  * If we return -EACCES, caller may want to try again treating pointer as a
2515  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
2516  */
2517 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2518 				   struct bpf_insn *insn,
2519 				   const struct bpf_reg_state *ptr_reg,
2520 				   const struct bpf_reg_state *off_reg)
2521 {
2522 	struct bpf_verifier_state *vstate = env->cur_state;
2523 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2524 	struct bpf_reg_state *regs = state->regs, *dst_reg;
2525 	bool known = tnum_is_const(off_reg->var_off);
2526 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2527 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2528 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2529 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2530 	u8 opcode = BPF_OP(insn->code);
2531 	u32 dst = insn->dst_reg;
2532 
2533 	dst_reg = &regs[dst];
2534 
2535 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2536 	    smin_val > smax_val || umin_val > umax_val) {
2537 		/* Taint dst register if offset had invalid bounds derived from
2538 		 * e.g. dead branches.
2539 		 */
2540 		__mark_reg_unknown(dst_reg);
2541 		return 0;
2542 	}
2543 
2544 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
2545 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
2546 		verbose(env,
2547 			"R%d 32-bit pointer arithmetic prohibited\n",
2548 			dst);
2549 		return -EACCES;
2550 	}
2551 
2552 	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2553 		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2554 			dst);
2555 		return -EACCES;
2556 	}
2557 	if (ptr_reg->type == CONST_PTR_TO_MAP) {
2558 		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2559 			dst);
2560 		return -EACCES;
2561 	}
2562 	if (ptr_reg->type == PTR_TO_PACKET_END) {
2563 		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2564 			dst);
2565 		return -EACCES;
2566 	}
2567 
2568 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2569 	 * The id may be overwritten later if we create a new variable offset.
2570 	 */
2571 	dst_reg->type = ptr_reg->type;
2572 	dst_reg->id = ptr_reg->id;
2573 
2574 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2575 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2576 		return -EINVAL;
2577 
2578 	switch (opcode) {
2579 	case BPF_ADD:
2580 		/* We can take a fixed offset as long as it doesn't overflow
2581 		 * the s32 'off' field
2582 		 */
2583 		if (known && (ptr_reg->off + smin_val ==
2584 			      (s64)(s32)(ptr_reg->off + smin_val))) {
2585 			/* pointer += K.  Accumulate it into fixed offset */
2586 			dst_reg->smin_value = smin_ptr;
2587 			dst_reg->smax_value = smax_ptr;
2588 			dst_reg->umin_value = umin_ptr;
2589 			dst_reg->umax_value = umax_ptr;
2590 			dst_reg->var_off = ptr_reg->var_off;
2591 			dst_reg->off = ptr_reg->off + smin_val;
2592 			dst_reg->range = ptr_reg->range;
2593 			break;
2594 		}
2595 		/* A new variable offset is created.  Note that off_reg->off
2596 		 * == 0, since it's a scalar.
2597 		 * dst_reg gets the pointer type and since some positive
2598 		 * integer value was added to the pointer, give it a new 'id'
2599 		 * if it's a PTR_TO_PACKET.
2600 		 * this creates a new 'base' pointer, off_reg (variable) gets
2601 		 * added into the variable offset, and we copy the fixed offset
2602 		 * from ptr_reg.
2603 		 */
2604 		if (signed_add_overflows(smin_ptr, smin_val) ||
2605 		    signed_add_overflows(smax_ptr, smax_val)) {
2606 			dst_reg->smin_value = S64_MIN;
2607 			dst_reg->smax_value = S64_MAX;
2608 		} else {
2609 			dst_reg->smin_value = smin_ptr + smin_val;
2610 			dst_reg->smax_value = smax_ptr + smax_val;
2611 		}
2612 		if (umin_ptr + umin_val < umin_ptr ||
2613 		    umax_ptr + umax_val < umax_ptr) {
2614 			dst_reg->umin_value = 0;
2615 			dst_reg->umax_value = U64_MAX;
2616 		} else {
2617 			dst_reg->umin_value = umin_ptr + umin_val;
2618 			dst_reg->umax_value = umax_ptr + umax_val;
2619 		}
2620 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2621 		dst_reg->off = ptr_reg->off;
2622 		if (reg_is_pkt_pointer(ptr_reg)) {
2623 			dst_reg->id = ++env->id_gen;
2624 			/* something was added to pkt_ptr, set range to zero */
2625 			dst_reg->range = 0;
2626 		}
2627 		break;
2628 	case BPF_SUB:
2629 		if (dst_reg == off_reg) {
2630 			/* scalar -= pointer.  Creates an unknown scalar */
2631 			verbose(env, "R%d tried to subtract pointer from scalar\n",
2632 				dst);
2633 			return -EACCES;
2634 		}
2635 		/* We don't allow subtraction from FP, because (according to
2636 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
2637 		 * be able to deal with it.
2638 		 */
2639 		if (ptr_reg->type == PTR_TO_STACK) {
2640 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
2641 				dst);
2642 			return -EACCES;
2643 		}
2644 		if (known && (ptr_reg->off - smin_val ==
2645 			      (s64)(s32)(ptr_reg->off - smin_val))) {
2646 			/* pointer -= K.  Subtract it from fixed offset */
2647 			dst_reg->smin_value = smin_ptr;
2648 			dst_reg->smax_value = smax_ptr;
2649 			dst_reg->umin_value = umin_ptr;
2650 			dst_reg->umax_value = umax_ptr;
2651 			dst_reg->var_off = ptr_reg->var_off;
2652 			dst_reg->id = ptr_reg->id;
2653 			dst_reg->off = ptr_reg->off - smin_val;
2654 			dst_reg->range = ptr_reg->range;
2655 			break;
2656 		}
2657 		/* A new variable offset is created.  If the subtrahend is known
2658 		 * nonnegative, then any reg->range we had before is still good.
2659 		 */
2660 		if (signed_sub_overflows(smin_ptr, smax_val) ||
2661 		    signed_sub_overflows(smax_ptr, smin_val)) {
2662 			/* Overflow possible, we know nothing */
2663 			dst_reg->smin_value = S64_MIN;
2664 			dst_reg->smax_value = S64_MAX;
2665 		} else {
2666 			dst_reg->smin_value = smin_ptr - smax_val;
2667 			dst_reg->smax_value = smax_ptr - smin_val;
2668 		}
2669 		if (umin_ptr < umax_val) {
2670 			/* Overflow possible, we know nothing */
2671 			dst_reg->umin_value = 0;
2672 			dst_reg->umax_value = U64_MAX;
2673 		} else {
2674 			/* Cannot overflow (as long as bounds are consistent) */
2675 			dst_reg->umin_value = umin_ptr - umax_val;
2676 			dst_reg->umax_value = umax_ptr - umin_val;
2677 		}
2678 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2679 		dst_reg->off = ptr_reg->off;
2680 		if (reg_is_pkt_pointer(ptr_reg)) {
2681 			dst_reg->id = ++env->id_gen;
2682 			/* something was added to pkt_ptr, set range to zero */
2683 			if (smin_val < 0)
2684 				dst_reg->range = 0;
2685 		}
2686 		break;
2687 	case BPF_AND:
2688 	case BPF_OR:
2689 	case BPF_XOR:
2690 		/* bitwise ops on pointers are troublesome, prohibit. */
2691 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2692 			dst, bpf_alu_string[opcode >> 4]);
2693 		return -EACCES;
2694 	default:
2695 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2696 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2697 			dst, bpf_alu_string[opcode >> 4]);
2698 		return -EACCES;
2699 	}
2700 
2701 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2702 		return -EINVAL;
2703 
2704 	__update_reg_bounds(dst_reg);
2705 	__reg_deduce_bounds(dst_reg);
2706 	__reg_bound_offset(dst_reg);
2707 	return 0;
2708 }
2709 
2710 /* WARNING: This function does calculations on 64-bit values, but the actual
2711  * execution may occur on 32-bit values. Therefore, things like bitshifts
2712  * need extra checks in the 32-bit case.
2713  */
2714 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2715 				      struct bpf_insn *insn,
2716 				      struct bpf_reg_state *dst_reg,
2717 				      struct bpf_reg_state src_reg)
2718 {
2719 	struct bpf_reg_state *regs = cur_regs(env);
2720 	u8 opcode = BPF_OP(insn->code);
2721 	bool src_known, dst_known;
2722 	s64 smin_val, smax_val;
2723 	u64 umin_val, umax_val;
2724 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2725 
2726 	smin_val = src_reg.smin_value;
2727 	smax_val = src_reg.smax_value;
2728 	umin_val = src_reg.umin_value;
2729 	umax_val = src_reg.umax_value;
2730 	src_known = tnum_is_const(src_reg.var_off);
2731 	dst_known = tnum_is_const(dst_reg->var_off);
2732 
2733 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2734 	    smin_val > smax_val || umin_val > umax_val) {
2735 		/* Taint dst register if offset had invalid bounds derived from
2736 		 * e.g. dead branches.
2737 		 */
2738 		__mark_reg_unknown(dst_reg);
2739 		return 0;
2740 	}
2741 
2742 	if (!src_known &&
2743 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2744 		__mark_reg_unknown(dst_reg);
2745 		return 0;
2746 	}
2747 
2748 	switch (opcode) {
2749 	case BPF_ADD:
2750 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2751 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
2752 			dst_reg->smin_value = S64_MIN;
2753 			dst_reg->smax_value = S64_MAX;
2754 		} else {
2755 			dst_reg->smin_value += smin_val;
2756 			dst_reg->smax_value += smax_val;
2757 		}
2758 		if (dst_reg->umin_value + umin_val < umin_val ||
2759 		    dst_reg->umax_value + umax_val < umax_val) {
2760 			dst_reg->umin_value = 0;
2761 			dst_reg->umax_value = U64_MAX;
2762 		} else {
2763 			dst_reg->umin_value += umin_val;
2764 			dst_reg->umax_value += umax_val;
2765 		}
2766 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2767 		break;
2768 	case BPF_SUB:
2769 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2770 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2771 			/* Overflow possible, we know nothing */
2772 			dst_reg->smin_value = S64_MIN;
2773 			dst_reg->smax_value = S64_MAX;
2774 		} else {
2775 			dst_reg->smin_value -= smax_val;
2776 			dst_reg->smax_value -= smin_val;
2777 		}
2778 		if (dst_reg->umin_value < umax_val) {
2779 			/* Overflow possible, we know nothing */
2780 			dst_reg->umin_value = 0;
2781 			dst_reg->umax_value = U64_MAX;
2782 		} else {
2783 			/* Cannot overflow (as long as bounds are consistent) */
2784 			dst_reg->umin_value -= umax_val;
2785 			dst_reg->umax_value -= umin_val;
2786 		}
2787 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2788 		break;
2789 	case BPF_MUL:
2790 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2791 		if (smin_val < 0 || dst_reg->smin_value < 0) {
2792 			/* Ain't nobody got time to multiply that sign */
2793 			__mark_reg_unbounded(dst_reg);
2794 			__update_reg_bounds(dst_reg);
2795 			break;
2796 		}
2797 		/* Both values are positive, so we can work with unsigned and
2798 		 * copy the result to signed (unless it exceeds S64_MAX).
2799 		 */
2800 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2801 			/* Potential overflow, we know nothing */
2802 			__mark_reg_unbounded(dst_reg);
2803 			/* (except what we can learn from the var_off) */
2804 			__update_reg_bounds(dst_reg);
2805 			break;
2806 		}
2807 		dst_reg->umin_value *= umin_val;
2808 		dst_reg->umax_value *= umax_val;
2809 		if (dst_reg->umax_value > S64_MAX) {
2810 			/* Overflow possible, we know nothing */
2811 			dst_reg->smin_value = S64_MIN;
2812 			dst_reg->smax_value = S64_MAX;
2813 		} else {
2814 			dst_reg->smin_value = dst_reg->umin_value;
2815 			dst_reg->smax_value = dst_reg->umax_value;
2816 		}
2817 		break;
2818 	case BPF_AND:
2819 		if (src_known && dst_known) {
2820 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
2821 						  src_reg.var_off.value);
2822 			break;
2823 		}
2824 		/* We get our minimum from the var_off, since that's inherently
2825 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2826 		 */
2827 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2828 		dst_reg->umin_value = dst_reg->var_off.value;
2829 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2830 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2831 			/* Lose signed bounds when ANDing negative numbers,
2832 			 * ain't nobody got time for that.
2833 			 */
2834 			dst_reg->smin_value = S64_MIN;
2835 			dst_reg->smax_value = S64_MAX;
2836 		} else {
2837 			/* ANDing two positives gives a positive, so safe to
2838 			 * cast result into s64.
2839 			 */
2840 			dst_reg->smin_value = dst_reg->umin_value;
2841 			dst_reg->smax_value = dst_reg->umax_value;
2842 		}
2843 		/* We may learn something more from the var_off */
2844 		__update_reg_bounds(dst_reg);
2845 		break;
2846 	case BPF_OR:
2847 		if (src_known && dst_known) {
2848 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
2849 						  src_reg.var_off.value);
2850 			break;
2851 		}
2852 		/* We get our maximum from the var_off, and our minimum is the
2853 		 * maximum of the operands' minima
2854 		 */
2855 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2856 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2857 		dst_reg->umax_value = dst_reg->var_off.value |
2858 				      dst_reg->var_off.mask;
2859 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2860 			/* Lose signed bounds when ORing negative numbers,
2861 			 * ain't nobody got time for that.
2862 			 */
2863 			dst_reg->smin_value = S64_MIN;
2864 			dst_reg->smax_value = S64_MAX;
2865 		} else {
2866 			/* ORing two positives gives a positive, so safe to
2867 			 * cast result into s64.
2868 			 */
2869 			dst_reg->smin_value = dst_reg->umin_value;
2870 			dst_reg->smax_value = dst_reg->umax_value;
2871 		}
2872 		/* We may learn something more from the var_off */
2873 		__update_reg_bounds(dst_reg);
2874 		break;
2875 	case BPF_LSH:
2876 		if (umax_val >= insn_bitness) {
2877 			/* Shifts greater than 31 or 63 are undefined.
2878 			 * This includes shifts by a negative number.
2879 			 */
2880 			mark_reg_unknown(env, regs, insn->dst_reg);
2881 			break;
2882 		}
2883 		/* We lose all sign bit information (except what we can pick
2884 		 * up from var_off)
2885 		 */
2886 		dst_reg->smin_value = S64_MIN;
2887 		dst_reg->smax_value = S64_MAX;
2888 		/* If we might shift our top bit out, then we know nothing */
2889 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2890 			dst_reg->umin_value = 0;
2891 			dst_reg->umax_value = U64_MAX;
2892 		} else {
2893 			dst_reg->umin_value <<= umin_val;
2894 			dst_reg->umax_value <<= umax_val;
2895 		}
2896 		if (src_known)
2897 			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2898 		else
2899 			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2900 		/* We may learn something more from the var_off */
2901 		__update_reg_bounds(dst_reg);
2902 		break;
2903 	case BPF_RSH:
2904 		if (umax_val >= insn_bitness) {
2905 			/* Shifts greater than 31 or 63 are undefined.
2906 			 * This includes shifts by a negative number.
2907 			 */
2908 			mark_reg_unknown(env, regs, insn->dst_reg);
2909 			break;
2910 		}
2911 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
2912 		 * be negative, then either:
2913 		 * 1) src_reg might be zero, so the sign bit of the result is
2914 		 *    unknown, so we lose our signed bounds
2915 		 * 2) it's known negative, thus the unsigned bounds capture the
2916 		 *    signed bounds
2917 		 * 3) the signed bounds cross zero, so they tell us nothing
2918 		 *    about the result
2919 		 * If the value in dst_reg is known nonnegative, then again the
2920 		 * unsigned bounts capture the signed bounds.
2921 		 * Thus, in all cases it suffices to blow away our signed bounds
2922 		 * and rely on inferring new ones from the unsigned bounds and
2923 		 * var_off of the result.
2924 		 */
2925 		dst_reg->smin_value = S64_MIN;
2926 		dst_reg->smax_value = S64_MAX;
2927 		if (src_known)
2928 			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2929 						       umin_val);
2930 		else
2931 			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2932 		dst_reg->umin_value >>= umax_val;
2933 		dst_reg->umax_value >>= umin_val;
2934 		/* We may learn something more from the var_off */
2935 		__update_reg_bounds(dst_reg);
2936 		break;
2937 	default:
2938 		mark_reg_unknown(env, regs, insn->dst_reg);
2939 		break;
2940 	}
2941 
2942 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
2943 		/* 32-bit ALU ops are (32,32)->32 */
2944 		coerce_reg_to_size(dst_reg, 4);
2945 		coerce_reg_to_size(&src_reg, 4);
2946 	}
2947 
2948 	__reg_deduce_bounds(dst_reg);
2949 	__reg_bound_offset(dst_reg);
2950 	return 0;
2951 }
2952 
2953 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2954  * and var_off.
2955  */
2956 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2957 				   struct bpf_insn *insn)
2958 {
2959 	struct bpf_verifier_state *vstate = env->cur_state;
2960 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2961 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
2962 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2963 	u8 opcode = BPF_OP(insn->code);
2964 
2965 	dst_reg = &regs[insn->dst_reg];
2966 	src_reg = NULL;
2967 	if (dst_reg->type != SCALAR_VALUE)
2968 		ptr_reg = dst_reg;
2969 	if (BPF_SRC(insn->code) == BPF_X) {
2970 		src_reg = &regs[insn->src_reg];
2971 		if (src_reg->type != SCALAR_VALUE) {
2972 			if (dst_reg->type != SCALAR_VALUE) {
2973 				/* Combining two pointers by any ALU op yields
2974 				 * an arbitrary scalar. Disallow all math except
2975 				 * pointer subtraction
2976 				 */
2977 				if (opcode == BPF_SUB){
2978 					mark_reg_unknown(env, regs, insn->dst_reg);
2979 					return 0;
2980 				}
2981 				verbose(env, "R%d pointer %s pointer prohibited\n",
2982 					insn->dst_reg,
2983 					bpf_alu_string[opcode >> 4]);
2984 				return -EACCES;
2985 			} else {
2986 				/* scalar += pointer
2987 				 * This is legal, but we have to reverse our
2988 				 * src/dest handling in computing the range
2989 				 */
2990 				return adjust_ptr_min_max_vals(env, insn,
2991 							       src_reg, dst_reg);
2992 			}
2993 		} else if (ptr_reg) {
2994 			/* pointer += scalar */
2995 			return adjust_ptr_min_max_vals(env, insn,
2996 						       dst_reg, src_reg);
2997 		}
2998 	} else {
2999 		/* Pretend the src is a reg with a known value, since we only
3000 		 * need to be able to read from this state.
3001 		 */
3002 		off_reg.type = SCALAR_VALUE;
3003 		__mark_reg_known(&off_reg, insn->imm);
3004 		src_reg = &off_reg;
3005 		if (ptr_reg) /* pointer += K */
3006 			return adjust_ptr_min_max_vals(env, insn,
3007 						       ptr_reg, src_reg);
3008 	}
3009 
3010 	/* Got here implies adding two SCALAR_VALUEs */
3011 	if (WARN_ON_ONCE(ptr_reg)) {
3012 		print_verifier_state(env, state);
3013 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3014 		return -EINVAL;
3015 	}
3016 	if (WARN_ON(!src_reg)) {
3017 		print_verifier_state(env, state);
3018 		verbose(env, "verifier internal error: no src_reg\n");
3019 		return -EINVAL;
3020 	}
3021 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3022 }
3023 
3024 /* check validity of 32-bit and 64-bit arithmetic operations */
3025 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3026 {
3027 	struct bpf_reg_state *regs = cur_regs(env);
3028 	u8 opcode = BPF_OP(insn->code);
3029 	int err;
3030 
3031 	if (opcode == BPF_END || opcode == BPF_NEG) {
3032 		if (opcode == BPF_NEG) {
3033 			if (BPF_SRC(insn->code) != 0 ||
3034 			    insn->src_reg != BPF_REG_0 ||
3035 			    insn->off != 0 || insn->imm != 0) {
3036 				verbose(env, "BPF_NEG uses reserved fields\n");
3037 				return -EINVAL;
3038 			}
3039 		} else {
3040 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3041 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3042 			    BPF_CLASS(insn->code) == BPF_ALU64) {
3043 				verbose(env, "BPF_END uses reserved fields\n");
3044 				return -EINVAL;
3045 			}
3046 		}
3047 
3048 		/* check src operand */
3049 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3050 		if (err)
3051 			return err;
3052 
3053 		if (is_pointer_value(env, insn->dst_reg)) {
3054 			verbose(env, "R%d pointer arithmetic prohibited\n",
3055 				insn->dst_reg);
3056 			return -EACCES;
3057 		}
3058 
3059 		/* check dest operand */
3060 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3061 		if (err)
3062 			return err;
3063 
3064 	} else if (opcode == BPF_MOV) {
3065 
3066 		if (BPF_SRC(insn->code) == BPF_X) {
3067 			if (insn->imm != 0 || insn->off != 0) {
3068 				verbose(env, "BPF_MOV uses reserved fields\n");
3069 				return -EINVAL;
3070 			}
3071 
3072 			/* check src operand */
3073 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3074 			if (err)
3075 				return err;
3076 		} else {
3077 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3078 				verbose(env, "BPF_MOV uses reserved fields\n");
3079 				return -EINVAL;
3080 			}
3081 		}
3082 
3083 		/* check dest operand */
3084 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3085 		if (err)
3086 			return err;
3087 
3088 		if (BPF_SRC(insn->code) == BPF_X) {
3089 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3090 				/* case: R1 = R2
3091 				 * copy register state to dest reg
3092 				 */
3093 				regs[insn->dst_reg] = regs[insn->src_reg];
3094 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3095 			} else {
3096 				/* R1 = (u32) R2 */
3097 				if (is_pointer_value(env, insn->src_reg)) {
3098 					verbose(env,
3099 						"R%d partial copy of pointer\n",
3100 						insn->src_reg);
3101 					return -EACCES;
3102 				}
3103 				mark_reg_unknown(env, regs, insn->dst_reg);
3104 				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3105 			}
3106 		} else {
3107 			/* case: R = imm
3108 			 * remember the value we stored into this reg
3109 			 */
3110 			regs[insn->dst_reg].type = SCALAR_VALUE;
3111 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3112 				__mark_reg_known(regs + insn->dst_reg,
3113 						 insn->imm);
3114 			} else {
3115 				__mark_reg_known(regs + insn->dst_reg,
3116 						 (u32)insn->imm);
3117 			}
3118 		}
3119 
3120 	} else if (opcode > BPF_END) {
3121 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3122 		return -EINVAL;
3123 
3124 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
3125 
3126 		if (BPF_SRC(insn->code) == BPF_X) {
3127 			if (insn->imm != 0 || insn->off != 0) {
3128 				verbose(env, "BPF_ALU uses reserved fields\n");
3129 				return -EINVAL;
3130 			}
3131 			/* check src1 operand */
3132 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3133 			if (err)
3134 				return err;
3135 		} else {
3136 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3137 				verbose(env, "BPF_ALU uses reserved fields\n");
3138 				return -EINVAL;
3139 			}
3140 		}
3141 
3142 		/* check src2 operand */
3143 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3144 		if (err)
3145 			return err;
3146 
3147 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3148 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3149 			verbose(env, "div by zero\n");
3150 			return -EINVAL;
3151 		}
3152 
3153 		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3154 			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3155 			return -EINVAL;
3156 		}
3157 
3158 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3159 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3160 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3161 
3162 			if (insn->imm < 0 || insn->imm >= size) {
3163 				verbose(env, "invalid shift %d\n", insn->imm);
3164 				return -EINVAL;
3165 			}
3166 		}
3167 
3168 		/* check dest operand */
3169 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3170 		if (err)
3171 			return err;
3172 
3173 		return adjust_reg_min_max_vals(env, insn);
3174 	}
3175 
3176 	return 0;
3177 }
3178 
3179 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3180 				   struct bpf_reg_state *dst_reg,
3181 				   enum bpf_reg_type type,
3182 				   bool range_right_open)
3183 {
3184 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3185 	struct bpf_reg_state *regs = state->regs, *reg;
3186 	u16 new_range;
3187 	int i, j;
3188 
3189 	if (dst_reg->off < 0 ||
3190 	    (dst_reg->off == 0 && range_right_open))
3191 		/* This doesn't give us any range */
3192 		return;
3193 
3194 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
3195 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3196 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
3197 		 * than pkt_end, but that's because it's also less than pkt.
3198 		 */
3199 		return;
3200 
3201 	new_range = dst_reg->off;
3202 	if (range_right_open)
3203 		new_range--;
3204 
3205 	/* Examples for register markings:
3206 	 *
3207 	 * pkt_data in dst register:
3208 	 *
3209 	 *   r2 = r3;
3210 	 *   r2 += 8;
3211 	 *   if (r2 > pkt_end) goto <handle exception>
3212 	 *   <access okay>
3213 	 *
3214 	 *   r2 = r3;
3215 	 *   r2 += 8;
3216 	 *   if (r2 < pkt_end) goto <access okay>
3217 	 *   <handle exception>
3218 	 *
3219 	 *   Where:
3220 	 *     r2 == dst_reg, pkt_end == src_reg
3221 	 *     r2=pkt(id=n,off=8,r=0)
3222 	 *     r3=pkt(id=n,off=0,r=0)
3223 	 *
3224 	 * pkt_data in src register:
3225 	 *
3226 	 *   r2 = r3;
3227 	 *   r2 += 8;
3228 	 *   if (pkt_end >= r2) goto <access okay>
3229 	 *   <handle exception>
3230 	 *
3231 	 *   r2 = r3;
3232 	 *   r2 += 8;
3233 	 *   if (pkt_end <= r2) goto <handle exception>
3234 	 *   <access okay>
3235 	 *
3236 	 *   Where:
3237 	 *     pkt_end == dst_reg, r2 == src_reg
3238 	 *     r2=pkt(id=n,off=8,r=0)
3239 	 *     r3=pkt(id=n,off=0,r=0)
3240 	 *
3241 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3242 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3243 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
3244 	 * the check.
3245 	 */
3246 
3247 	/* If our ids match, then we must have the same max_value.  And we
3248 	 * don't care about the other reg's fixed offset, since if it's too big
3249 	 * the range won't allow anything.
3250 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3251 	 */
3252 	for (i = 0; i < MAX_BPF_REG; i++)
3253 		if (regs[i].type == type && regs[i].id == dst_reg->id)
3254 			/* keep the maximum range already checked */
3255 			regs[i].range = max(regs[i].range, new_range);
3256 
3257 	for (j = 0; j <= vstate->curframe; j++) {
3258 		state = vstate->frame[j];
3259 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3260 			if (state->stack[i].slot_type[0] != STACK_SPILL)
3261 				continue;
3262 			reg = &state->stack[i].spilled_ptr;
3263 			if (reg->type == type && reg->id == dst_reg->id)
3264 				reg->range = max(reg->range, new_range);
3265 		}
3266 	}
3267 }
3268 
3269 /* Adjusts the register min/max values in the case that the dst_reg is the
3270  * variable register that we are working on, and src_reg is a constant or we're
3271  * simply doing a BPF_K check.
3272  * In JEQ/JNE cases we also adjust the var_off values.
3273  */
3274 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3275 			    struct bpf_reg_state *false_reg, u64 val,
3276 			    u8 opcode)
3277 {
3278 	/* If the dst_reg is a pointer, we can't learn anything about its
3279 	 * variable offset from the compare (unless src_reg were a pointer into
3280 	 * the same object, but we don't bother with that.
3281 	 * Since false_reg and true_reg have the same type by construction, we
3282 	 * only need to check one of them for pointerness.
3283 	 */
3284 	if (__is_pointer_value(false, false_reg))
3285 		return;
3286 
3287 	switch (opcode) {
3288 	case BPF_JEQ:
3289 		/* If this is false then we know nothing Jon Snow, but if it is
3290 		 * true then we know for sure.
3291 		 */
3292 		__mark_reg_known(true_reg, val);
3293 		break;
3294 	case BPF_JNE:
3295 		/* If this is true we know nothing Jon Snow, but if it is false
3296 		 * we know the value for sure;
3297 		 */
3298 		__mark_reg_known(false_reg, val);
3299 		break;
3300 	case BPF_JGT:
3301 		false_reg->umax_value = min(false_reg->umax_value, val);
3302 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3303 		break;
3304 	case BPF_JSGT:
3305 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3306 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3307 		break;
3308 	case BPF_JLT:
3309 		false_reg->umin_value = max(false_reg->umin_value, val);
3310 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3311 		break;
3312 	case BPF_JSLT:
3313 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3314 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3315 		break;
3316 	case BPF_JGE:
3317 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3318 		true_reg->umin_value = max(true_reg->umin_value, val);
3319 		break;
3320 	case BPF_JSGE:
3321 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3322 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3323 		break;
3324 	case BPF_JLE:
3325 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3326 		true_reg->umax_value = min(true_reg->umax_value, val);
3327 		break;
3328 	case BPF_JSLE:
3329 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3330 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3331 		break;
3332 	default:
3333 		break;
3334 	}
3335 
3336 	__reg_deduce_bounds(false_reg);
3337 	__reg_deduce_bounds(true_reg);
3338 	/* We might have learned some bits from the bounds. */
3339 	__reg_bound_offset(false_reg);
3340 	__reg_bound_offset(true_reg);
3341 	/* Intersecting with the old var_off might have improved our bounds
3342 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3343 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3344 	 */
3345 	__update_reg_bounds(false_reg);
3346 	__update_reg_bounds(true_reg);
3347 }
3348 
3349 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3350  * the variable reg.
3351  */
3352 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3353 				struct bpf_reg_state *false_reg, u64 val,
3354 				u8 opcode)
3355 {
3356 	if (__is_pointer_value(false, false_reg))
3357 		return;
3358 
3359 	switch (opcode) {
3360 	case BPF_JEQ:
3361 		/* If this is false then we know nothing Jon Snow, but if it is
3362 		 * true then we know for sure.
3363 		 */
3364 		__mark_reg_known(true_reg, val);
3365 		break;
3366 	case BPF_JNE:
3367 		/* If this is true we know nothing Jon Snow, but if it is false
3368 		 * we know the value for sure;
3369 		 */
3370 		__mark_reg_known(false_reg, val);
3371 		break;
3372 	case BPF_JGT:
3373 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3374 		false_reg->umin_value = max(false_reg->umin_value, val);
3375 		break;
3376 	case BPF_JSGT:
3377 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3378 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3379 		break;
3380 	case BPF_JLT:
3381 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3382 		false_reg->umax_value = min(false_reg->umax_value, val);
3383 		break;
3384 	case BPF_JSLT:
3385 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3386 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3387 		break;
3388 	case BPF_JGE:
3389 		true_reg->umax_value = min(true_reg->umax_value, val);
3390 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3391 		break;
3392 	case BPF_JSGE:
3393 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3394 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3395 		break;
3396 	case BPF_JLE:
3397 		true_reg->umin_value = max(true_reg->umin_value, val);
3398 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3399 		break;
3400 	case BPF_JSLE:
3401 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3402 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3403 		break;
3404 	default:
3405 		break;
3406 	}
3407 
3408 	__reg_deduce_bounds(false_reg);
3409 	__reg_deduce_bounds(true_reg);
3410 	/* We might have learned some bits from the bounds. */
3411 	__reg_bound_offset(false_reg);
3412 	__reg_bound_offset(true_reg);
3413 	/* Intersecting with the old var_off might have improved our bounds
3414 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3415 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3416 	 */
3417 	__update_reg_bounds(false_reg);
3418 	__update_reg_bounds(true_reg);
3419 }
3420 
3421 /* Regs are known to be equal, so intersect their min/max/var_off */
3422 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3423 				  struct bpf_reg_state *dst_reg)
3424 {
3425 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3426 							dst_reg->umin_value);
3427 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3428 							dst_reg->umax_value);
3429 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3430 							dst_reg->smin_value);
3431 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3432 							dst_reg->smax_value);
3433 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3434 							     dst_reg->var_off);
3435 	/* We might have learned new bounds from the var_off. */
3436 	__update_reg_bounds(src_reg);
3437 	__update_reg_bounds(dst_reg);
3438 	/* We might have learned something about the sign bit. */
3439 	__reg_deduce_bounds(src_reg);
3440 	__reg_deduce_bounds(dst_reg);
3441 	/* We might have learned some bits from the bounds. */
3442 	__reg_bound_offset(src_reg);
3443 	__reg_bound_offset(dst_reg);
3444 	/* Intersecting with the old var_off might have improved our bounds
3445 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3446 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3447 	 */
3448 	__update_reg_bounds(src_reg);
3449 	__update_reg_bounds(dst_reg);
3450 }
3451 
3452 static void reg_combine_min_max(struct bpf_reg_state *true_src,
3453 				struct bpf_reg_state *true_dst,
3454 				struct bpf_reg_state *false_src,
3455 				struct bpf_reg_state *false_dst,
3456 				u8 opcode)
3457 {
3458 	switch (opcode) {
3459 	case BPF_JEQ:
3460 		__reg_combine_min_max(true_src, true_dst);
3461 		break;
3462 	case BPF_JNE:
3463 		__reg_combine_min_max(false_src, false_dst);
3464 		break;
3465 	}
3466 }
3467 
3468 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3469 			 bool is_null)
3470 {
3471 	struct bpf_reg_state *reg = &regs[regno];
3472 
3473 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3474 		/* Old offset (both fixed and variable parts) should
3475 		 * have been known-zero, because we don't allow pointer
3476 		 * arithmetic on pointers that might be NULL.
3477 		 */
3478 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3479 				 !tnum_equals_const(reg->var_off, 0) ||
3480 				 reg->off)) {
3481 			__mark_reg_known_zero(reg);
3482 			reg->off = 0;
3483 		}
3484 		if (is_null) {
3485 			reg->type = SCALAR_VALUE;
3486 		} else if (reg->map_ptr->inner_map_meta) {
3487 			reg->type = CONST_PTR_TO_MAP;
3488 			reg->map_ptr = reg->map_ptr->inner_map_meta;
3489 		} else {
3490 			reg->type = PTR_TO_MAP_VALUE;
3491 		}
3492 		/* We don't need id from this point onwards anymore, thus we
3493 		 * should better reset it, so that state pruning has chances
3494 		 * to take effect.
3495 		 */
3496 		reg->id = 0;
3497 	}
3498 }
3499 
3500 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3501  * be folded together at some point.
3502  */
3503 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3504 			  bool is_null)
3505 {
3506 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3507 	struct bpf_reg_state *regs = state->regs;
3508 	u32 id = regs[regno].id;
3509 	int i, j;
3510 
3511 	for (i = 0; i < MAX_BPF_REG; i++)
3512 		mark_map_reg(regs, i, id, is_null);
3513 
3514 	for (j = 0; j <= vstate->curframe; j++) {
3515 		state = vstate->frame[j];
3516 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3517 			if (state->stack[i].slot_type[0] != STACK_SPILL)
3518 				continue;
3519 			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
3520 		}
3521 	}
3522 }
3523 
3524 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3525 				   struct bpf_reg_state *dst_reg,
3526 				   struct bpf_reg_state *src_reg,
3527 				   struct bpf_verifier_state *this_branch,
3528 				   struct bpf_verifier_state *other_branch)
3529 {
3530 	if (BPF_SRC(insn->code) != BPF_X)
3531 		return false;
3532 
3533 	switch (BPF_OP(insn->code)) {
3534 	case BPF_JGT:
3535 		if ((dst_reg->type == PTR_TO_PACKET &&
3536 		     src_reg->type == PTR_TO_PACKET_END) ||
3537 		    (dst_reg->type == PTR_TO_PACKET_META &&
3538 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3539 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3540 			find_good_pkt_pointers(this_branch, dst_reg,
3541 					       dst_reg->type, false);
3542 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3543 			    src_reg->type == PTR_TO_PACKET) ||
3544 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3545 			    src_reg->type == PTR_TO_PACKET_META)) {
3546 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
3547 			find_good_pkt_pointers(other_branch, src_reg,
3548 					       src_reg->type, true);
3549 		} else {
3550 			return false;
3551 		}
3552 		break;
3553 	case BPF_JLT:
3554 		if ((dst_reg->type == PTR_TO_PACKET &&
3555 		     src_reg->type == PTR_TO_PACKET_END) ||
3556 		    (dst_reg->type == PTR_TO_PACKET_META &&
3557 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3558 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3559 			find_good_pkt_pointers(other_branch, dst_reg,
3560 					       dst_reg->type, true);
3561 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3562 			    src_reg->type == PTR_TO_PACKET) ||
3563 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3564 			    src_reg->type == PTR_TO_PACKET_META)) {
3565 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
3566 			find_good_pkt_pointers(this_branch, src_reg,
3567 					       src_reg->type, false);
3568 		} else {
3569 			return false;
3570 		}
3571 		break;
3572 	case BPF_JGE:
3573 		if ((dst_reg->type == PTR_TO_PACKET &&
3574 		     src_reg->type == PTR_TO_PACKET_END) ||
3575 		    (dst_reg->type == PTR_TO_PACKET_META &&
3576 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3577 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3578 			find_good_pkt_pointers(this_branch, dst_reg,
3579 					       dst_reg->type, true);
3580 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3581 			    src_reg->type == PTR_TO_PACKET) ||
3582 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3583 			    src_reg->type == PTR_TO_PACKET_META)) {
3584 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3585 			find_good_pkt_pointers(other_branch, src_reg,
3586 					       src_reg->type, false);
3587 		} else {
3588 			return false;
3589 		}
3590 		break;
3591 	case BPF_JLE:
3592 		if ((dst_reg->type == PTR_TO_PACKET &&
3593 		     src_reg->type == PTR_TO_PACKET_END) ||
3594 		    (dst_reg->type == PTR_TO_PACKET_META &&
3595 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3596 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3597 			find_good_pkt_pointers(other_branch, dst_reg,
3598 					       dst_reg->type, false);
3599 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3600 			    src_reg->type == PTR_TO_PACKET) ||
3601 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3602 			    src_reg->type == PTR_TO_PACKET_META)) {
3603 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3604 			find_good_pkt_pointers(this_branch, src_reg,
3605 					       src_reg->type, true);
3606 		} else {
3607 			return false;
3608 		}
3609 		break;
3610 	default:
3611 		return false;
3612 	}
3613 
3614 	return true;
3615 }
3616 
3617 static int check_cond_jmp_op(struct bpf_verifier_env *env,
3618 			     struct bpf_insn *insn, int *insn_idx)
3619 {
3620 	struct bpf_verifier_state *this_branch = env->cur_state;
3621 	struct bpf_verifier_state *other_branch;
3622 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
3623 	struct bpf_reg_state *dst_reg, *other_branch_regs;
3624 	u8 opcode = BPF_OP(insn->code);
3625 	int err;
3626 
3627 	if (opcode > BPF_JSLE) {
3628 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3629 		return -EINVAL;
3630 	}
3631 
3632 	if (BPF_SRC(insn->code) == BPF_X) {
3633 		if (insn->imm != 0) {
3634 			verbose(env, "BPF_JMP uses reserved fields\n");
3635 			return -EINVAL;
3636 		}
3637 
3638 		/* check src1 operand */
3639 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3640 		if (err)
3641 			return err;
3642 
3643 		if (is_pointer_value(env, insn->src_reg)) {
3644 			verbose(env, "R%d pointer comparison prohibited\n",
3645 				insn->src_reg);
3646 			return -EACCES;
3647 		}
3648 	} else {
3649 		if (insn->src_reg != BPF_REG_0) {
3650 			verbose(env, "BPF_JMP uses reserved fields\n");
3651 			return -EINVAL;
3652 		}
3653 	}
3654 
3655 	/* check src2 operand */
3656 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3657 	if (err)
3658 		return err;
3659 
3660 	dst_reg = &regs[insn->dst_reg];
3661 
3662 	/* detect if R == 0 where R was initialized to zero earlier */
3663 	if (BPF_SRC(insn->code) == BPF_K &&
3664 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3665 	    dst_reg->type == SCALAR_VALUE &&
3666 	    tnum_is_const(dst_reg->var_off)) {
3667 		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
3668 		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3669 			/* if (imm == imm) goto pc+off;
3670 			 * only follow the goto, ignore fall-through
3671 			 */
3672 			*insn_idx += insn->off;
3673 			return 0;
3674 		} else {
3675 			/* if (imm != imm) goto pc+off;
3676 			 * only follow fall-through branch, since
3677 			 * that's where the program will go
3678 			 */
3679 			return 0;
3680 		}
3681 	}
3682 
3683 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3684 	if (!other_branch)
3685 		return -EFAULT;
3686 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3687 
3688 	/* detect if we are comparing against a constant value so we can adjust
3689 	 * our min/max values for our dst register.
3690 	 * this is only legit if both are scalars (or pointers to the same
3691 	 * object, I suppose, but we don't support that right now), because
3692 	 * otherwise the different base pointers mean the offsets aren't
3693 	 * comparable.
3694 	 */
3695 	if (BPF_SRC(insn->code) == BPF_X) {
3696 		if (dst_reg->type == SCALAR_VALUE &&
3697 		    regs[insn->src_reg].type == SCALAR_VALUE) {
3698 			if (tnum_is_const(regs[insn->src_reg].var_off))
3699 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
3700 						dst_reg, regs[insn->src_reg].var_off.value,
3701 						opcode);
3702 			else if (tnum_is_const(dst_reg->var_off))
3703 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3704 						    &regs[insn->src_reg],
3705 						    dst_reg->var_off.value, opcode);
3706 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3707 				/* Comparing for equality, we can combine knowledge */
3708 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
3709 						    &other_branch_regs[insn->dst_reg],
3710 						    &regs[insn->src_reg],
3711 						    &regs[insn->dst_reg], opcode);
3712 		}
3713 	} else if (dst_reg->type == SCALAR_VALUE) {
3714 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
3715 					dst_reg, insn->imm, opcode);
3716 	}
3717 
3718 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3719 	if (BPF_SRC(insn->code) == BPF_K &&
3720 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3721 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3722 		/* Mark all identical map registers in each branch as either
3723 		 * safe or unknown depending R == 0 or R != 0 conditional.
3724 		 */
3725 		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3726 		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3727 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3728 					   this_branch, other_branch) &&
3729 		   is_pointer_value(env, insn->dst_reg)) {
3730 		verbose(env, "R%d pointer comparison prohibited\n",
3731 			insn->dst_reg);
3732 		return -EACCES;
3733 	}
3734 	if (env->log.level)
3735 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3736 	return 0;
3737 }
3738 
3739 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3740 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3741 {
3742 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3743 
3744 	return (struct bpf_map *) (unsigned long) imm64;
3745 }
3746 
3747 /* verify BPF_LD_IMM64 instruction */
3748 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3749 {
3750 	struct bpf_reg_state *regs = cur_regs(env);
3751 	int err;
3752 
3753 	if (BPF_SIZE(insn->code) != BPF_DW) {
3754 		verbose(env, "invalid BPF_LD_IMM insn\n");
3755 		return -EINVAL;
3756 	}
3757 	if (insn->off != 0) {
3758 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3759 		return -EINVAL;
3760 	}
3761 
3762 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3763 	if (err)
3764 		return err;
3765 
3766 	if (insn->src_reg == 0) {
3767 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3768 
3769 		regs[insn->dst_reg].type = SCALAR_VALUE;
3770 		__mark_reg_known(&regs[insn->dst_reg], imm);
3771 		return 0;
3772 	}
3773 
3774 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3775 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3776 
3777 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3778 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3779 	return 0;
3780 }
3781 
3782 static bool may_access_skb(enum bpf_prog_type type)
3783 {
3784 	switch (type) {
3785 	case BPF_PROG_TYPE_SOCKET_FILTER:
3786 	case BPF_PROG_TYPE_SCHED_CLS:
3787 	case BPF_PROG_TYPE_SCHED_ACT:
3788 		return true;
3789 	default:
3790 		return false;
3791 	}
3792 }
3793 
3794 /* verify safety of LD_ABS|LD_IND instructions:
3795  * - they can only appear in the programs where ctx == skb
3796  * - since they are wrappers of function calls, they scratch R1-R5 registers,
3797  *   preserve R6-R9, and store return value into R0
3798  *
3799  * Implicit input:
3800  *   ctx == skb == R6 == CTX
3801  *
3802  * Explicit input:
3803  *   SRC == any register
3804  *   IMM == 32-bit immediate
3805  *
3806  * Output:
3807  *   R0 - 8/16/32-bit skb data converted to cpu endianness
3808  */
3809 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3810 {
3811 	struct bpf_reg_state *regs = cur_regs(env);
3812 	u8 mode = BPF_MODE(insn->code);
3813 	int i, err;
3814 
3815 	if (!may_access_skb(env->prog->type)) {
3816 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3817 		return -EINVAL;
3818 	}
3819 
3820 	if (env->subprog_cnt) {
3821 		/* when program has LD_ABS insn JITs and interpreter assume
3822 		 * that r1 == ctx == skb which is not the case for callees
3823 		 * that can have arbitrary arguments. It's problematic
3824 		 * for main prog as well since JITs would need to analyze
3825 		 * all functions in order to make proper register save/restore
3826 		 * decisions in the main prog. Hence disallow LD_ABS with calls
3827 		 */
3828 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3829 		return -EINVAL;
3830 	}
3831 
3832 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3833 	    BPF_SIZE(insn->code) == BPF_DW ||
3834 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3835 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3836 		return -EINVAL;
3837 	}
3838 
3839 	/* check whether implicit source operand (register R6) is readable */
3840 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3841 	if (err)
3842 		return err;
3843 
3844 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3845 		verbose(env,
3846 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3847 		return -EINVAL;
3848 	}
3849 
3850 	if (mode == BPF_IND) {
3851 		/* check explicit source operand */
3852 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3853 		if (err)
3854 			return err;
3855 	}
3856 
3857 	/* reset caller saved regs to unreadable */
3858 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3859 		mark_reg_not_init(env, regs, caller_saved[i]);
3860 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3861 	}
3862 
3863 	/* mark destination R0 register as readable, since it contains
3864 	 * the value fetched from the packet.
3865 	 * Already marked as written above.
3866 	 */
3867 	mark_reg_unknown(env, regs, BPF_REG_0);
3868 	return 0;
3869 }
3870 
3871 static int check_return_code(struct bpf_verifier_env *env)
3872 {
3873 	struct bpf_reg_state *reg;
3874 	struct tnum range = tnum_range(0, 1);
3875 
3876 	switch (env->prog->type) {
3877 	case BPF_PROG_TYPE_CGROUP_SKB:
3878 	case BPF_PROG_TYPE_CGROUP_SOCK:
3879 	case BPF_PROG_TYPE_SOCK_OPS:
3880 	case BPF_PROG_TYPE_CGROUP_DEVICE:
3881 		break;
3882 	default:
3883 		return 0;
3884 	}
3885 
3886 	reg = cur_regs(env) + BPF_REG_0;
3887 	if (reg->type != SCALAR_VALUE) {
3888 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3889 			reg_type_str[reg->type]);
3890 		return -EINVAL;
3891 	}
3892 
3893 	if (!tnum_in(range, reg->var_off)) {
3894 		verbose(env, "At program exit the register R0 ");
3895 		if (!tnum_is_unknown(reg->var_off)) {
3896 			char tn_buf[48];
3897 
3898 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3899 			verbose(env, "has value %s", tn_buf);
3900 		} else {
3901 			verbose(env, "has unknown scalar value");
3902 		}
3903 		verbose(env, " should have been 0 or 1\n");
3904 		return -EINVAL;
3905 	}
3906 	return 0;
3907 }
3908 
3909 /* non-recursive DFS pseudo code
3910  * 1  procedure DFS-iterative(G,v):
3911  * 2      label v as discovered
3912  * 3      let S be a stack
3913  * 4      S.push(v)
3914  * 5      while S is not empty
3915  * 6            t <- S.pop()
3916  * 7            if t is what we're looking for:
3917  * 8                return t
3918  * 9            for all edges e in G.adjacentEdges(t) do
3919  * 10               if edge e is already labelled
3920  * 11                   continue with the next edge
3921  * 12               w <- G.adjacentVertex(t,e)
3922  * 13               if vertex w is not discovered and not explored
3923  * 14                   label e as tree-edge
3924  * 15                   label w as discovered
3925  * 16                   S.push(w)
3926  * 17                   continue at 5
3927  * 18               else if vertex w is discovered
3928  * 19                   label e as back-edge
3929  * 20               else
3930  * 21                   // vertex w is explored
3931  * 22                   label e as forward- or cross-edge
3932  * 23           label t as explored
3933  * 24           S.pop()
3934  *
3935  * convention:
3936  * 0x10 - discovered
3937  * 0x11 - discovered and fall-through edge labelled
3938  * 0x12 - discovered and fall-through and branch edges labelled
3939  * 0x20 - explored
3940  */
3941 
3942 enum {
3943 	DISCOVERED = 0x10,
3944 	EXPLORED = 0x20,
3945 	FALLTHROUGH = 1,
3946 	BRANCH = 2,
3947 };
3948 
3949 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3950 
3951 static int *insn_stack;	/* stack of insns to process */
3952 static int cur_stack;	/* current stack index */
3953 static int *insn_state;
3954 
3955 /* t, w, e - match pseudo-code above:
3956  * t - index of current instruction
3957  * w - next instruction
3958  * e - edge
3959  */
3960 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3961 {
3962 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3963 		return 0;
3964 
3965 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3966 		return 0;
3967 
3968 	if (w < 0 || w >= env->prog->len) {
3969 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3970 		return -EINVAL;
3971 	}
3972 
3973 	if (e == BRANCH)
3974 		/* mark branch target for state pruning */
3975 		env->explored_states[w] = STATE_LIST_MARK;
3976 
3977 	if (insn_state[w] == 0) {
3978 		/* tree-edge */
3979 		insn_state[t] = DISCOVERED | e;
3980 		insn_state[w] = DISCOVERED;
3981 		if (cur_stack >= env->prog->len)
3982 			return -E2BIG;
3983 		insn_stack[cur_stack++] = w;
3984 		return 1;
3985 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3986 		verbose(env, "back-edge from insn %d to %d\n", t, w);
3987 		return -EINVAL;
3988 	} else if (insn_state[w] == EXPLORED) {
3989 		/* forward- or cross-edge */
3990 		insn_state[t] = DISCOVERED | e;
3991 	} else {
3992 		verbose(env, "insn state internal bug\n");
3993 		return -EFAULT;
3994 	}
3995 	return 0;
3996 }
3997 
3998 /* non-recursive depth-first-search to detect loops in BPF program
3999  * loop == back-edge in directed graph
4000  */
4001 static int check_cfg(struct bpf_verifier_env *env)
4002 {
4003 	struct bpf_insn *insns = env->prog->insnsi;
4004 	int insn_cnt = env->prog->len;
4005 	int ret = 0;
4006 	int i, t;
4007 
4008 	ret = check_subprogs(env);
4009 	if (ret < 0)
4010 		return ret;
4011 
4012 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4013 	if (!insn_state)
4014 		return -ENOMEM;
4015 
4016 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4017 	if (!insn_stack) {
4018 		kfree(insn_state);
4019 		return -ENOMEM;
4020 	}
4021 
4022 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4023 	insn_stack[0] = 0; /* 0 is the first instruction */
4024 	cur_stack = 1;
4025 
4026 peek_stack:
4027 	if (cur_stack == 0)
4028 		goto check_state;
4029 	t = insn_stack[cur_stack - 1];
4030 
4031 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4032 		u8 opcode = BPF_OP(insns[t].code);
4033 
4034 		if (opcode == BPF_EXIT) {
4035 			goto mark_explored;
4036 		} else if (opcode == BPF_CALL) {
4037 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4038 			if (ret == 1)
4039 				goto peek_stack;
4040 			else if (ret < 0)
4041 				goto err_free;
4042 			if (t + 1 < insn_cnt)
4043 				env->explored_states[t + 1] = STATE_LIST_MARK;
4044 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4045 				env->explored_states[t] = STATE_LIST_MARK;
4046 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4047 				if (ret == 1)
4048 					goto peek_stack;
4049 				else if (ret < 0)
4050 					goto err_free;
4051 			}
4052 		} else if (opcode == BPF_JA) {
4053 			if (BPF_SRC(insns[t].code) != BPF_K) {
4054 				ret = -EINVAL;
4055 				goto err_free;
4056 			}
4057 			/* unconditional jump with single edge */
4058 			ret = push_insn(t, t + insns[t].off + 1,
4059 					FALLTHROUGH, env);
4060 			if (ret == 1)
4061 				goto peek_stack;
4062 			else if (ret < 0)
4063 				goto err_free;
4064 			/* tell verifier to check for equivalent states
4065 			 * after every call and jump
4066 			 */
4067 			if (t + 1 < insn_cnt)
4068 				env->explored_states[t + 1] = STATE_LIST_MARK;
4069 		} else {
4070 			/* conditional jump with two edges */
4071 			env->explored_states[t] = STATE_LIST_MARK;
4072 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4073 			if (ret == 1)
4074 				goto peek_stack;
4075 			else if (ret < 0)
4076 				goto err_free;
4077 
4078 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4079 			if (ret == 1)
4080 				goto peek_stack;
4081 			else if (ret < 0)
4082 				goto err_free;
4083 		}
4084 	} else {
4085 		/* all other non-branch instructions with single
4086 		 * fall-through edge
4087 		 */
4088 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
4089 		if (ret == 1)
4090 			goto peek_stack;
4091 		else if (ret < 0)
4092 			goto err_free;
4093 	}
4094 
4095 mark_explored:
4096 	insn_state[t] = EXPLORED;
4097 	if (cur_stack-- <= 0) {
4098 		verbose(env, "pop stack internal bug\n");
4099 		ret = -EFAULT;
4100 		goto err_free;
4101 	}
4102 	goto peek_stack;
4103 
4104 check_state:
4105 	for (i = 0; i < insn_cnt; i++) {
4106 		if (insn_state[i] != EXPLORED) {
4107 			verbose(env, "unreachable insn %d\n", i);
4108 			ret = -EINVAL;
4109 			goto err_free;
4110 		}
4111 	}
4112 	ret = 0; /* cfg looks good */
4113 
4114 err_free:
4115 	kfree(insn_state);
4116 	kfree(insn_stack);
4117 	return ret;
4118 }
4119 
4120 /* check %cur's range satisfies %old's */
4121 static bool range_within(struct bpf_reg_state *old,
4122 			 struct bpf_reg_state *cur)
4123 {
4124 	return old->umin_value <= cur->umin_value &&
4125 	       old->umax_value >= cur->umax_value &&
4126 	       old->smin_value <= cur->smin_value &&
4127 	       old->smax_value >= cur->smax_value;
4128 }
4129 
4130 /* Maximum number of register states that can exist at once */
4131 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4132 struct idpair {
4133 	u32 old;
4134 	u32 cur;
4135 };
4136 
4137 /* If in the old state two registers had the same id, then they need to have
4138  * the same id in the new state as well.  But that id could be different from
4139  * the old state, so we need to track the mapping from old to new ids.
4140  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4141  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
4142  * regs with a different old id could still have new id 9, we don't care about
4143  * that.
4144  * So we look through our idmap to see if this old id has been seen before.  If
4145  * so, we require the new id to match; otherwise, we add the id pair to the map.
4146  */
4147 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4148 {
4149 	unsigned int i;
4150 
4151 	for (i = 0; i < ID_MAP_SIZE; i++) {
4152 		if (!idmap[i].old) {
4153 			/* Reached an empty slot; haven't seen this id before */
4154 			idmap[i].old = old_id;
4155 			idmap[i].cur = cur_id;
4156 			return true;
4157 		}
4158 		if (idmap[i].old == old_id)
4159 			return idmap[i].cur == cur_id;
4160 	}
4161 	/* We ran out of idmap slots, which should be impossible */
4162 	WARN_ON_ONCE(1);
4163 	return false;
4164 }
4165 
4166 /* Returns true if (rold safe implies rcur safe) */
4167 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4168 		    struct idpair *idmap)
4169 {
4170 	bool equal;
4171 
4172 	if (!(rold->live & REG_LIVE_READ))
4173 		/* explored state didn't use this */
4174 		return true;
4175 
4176 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;
4177 
4178 	if (rold->type == PTR_TO_STACK)
4179 		/* two stack pointers are equal only if they're pointing to
4180 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
4181 		 */
4182 		return equal && rold->frameno == rcur->frameno;
4183 
4184 	if (equal)
4185 		return true;
4186 
4187 	if (rold->type == NOT_INIT)
4188 		/* explored state can't have used this */
4189 		return true;
4190 	if (rcur->type == NOT_INIT)
4191 		return false;
4192 	switch (rold->type) {
4193 	case SCALAR_VALUE:
4194 		if (rcur->type == SCALAR_VALUE) {
4195 			/* new val must satisfy old val knowledge */
4196 			return range_within(rold, rcur) &&
4197 			       tnum_in(rold->var_off, rcur->var_off);
4198 		} else {
4199 			/* We're trying to use a pointer in place of a scalar.
4200 			 * Even if the scalar was unbounded, this could lead to
4201 			 * pointer leaks because scalars are allowed to leak
4202 			 * while pointers are not. We could make this safe in
4203 			 * special cases if root is calling us, but it's
4204 			 * probably not worth the hassle.
4205 			 */
4206 			return false;
4207 		}
4208 	case PTR_TO_MAP_VALUE:
4209 		/* If the new min/max/var_off satisfy the old ones and
4210 		 * everything else matches, we are OK.
4211 		 * We don't care about the 'id' value, because nothing
4212 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4213 		 */
4214 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4215 		       range_within(rold, rcur) &&
4216 		       tnum_in(rold->var_off, rcur->var_off);
4217 	case PTR_TO_MAP_VALUE_OR_NULL:
4218 		/* a PTR_TO_MAP_VALUE could be safe to use as a
4219 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4220 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4221 		 * checked, doing so could have affected others with the same
4222 		 * id, and we can't check for that because we lost the id when
4223 		 * we converted to a PTR_TO_MAP_VALUE.
4224 		 */
4225 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4226 			return false;
4227 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4228 			return false;
4229 		/* Check our ids match any regs they're supposed to */
4230 		return check_ids(rold->id, rcur->id, idmap);
4231 	case PTR_TO_PACKET_META:
4232 	case PTR_TO_PACKET:
4233 		if (rcur->type != rold->type)
4234 			return false;
4235 		/* We must have at least as much range as the old ptr
4236 		 * did, so that any accesses which were safe before are
4237 		 * still safe.  This is true even if old range < old off,
4238 		 * since someone could have accessed through (ptr - k), or
4239 		 * even done ptr -= k in a register, to get a safe access.
4240 		 */
4241 		if (rold->range > rcur->range)
4242 			return false;
4243 		/* If the offsets don't match, we can't trust our alignment;
4244 		 * nor can we be sure that we won't fall out of range.
4245 		 */
4246 		if (rold->off != rcur->off)
4247 			return false;
4248 		/* id relations must be preserved */
4249 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4250 			return false;
4251 		/* new val must satisfy old val knowledge */
4252 		return range_within(rold, rcur) &&
4253 		       tnum_in(rold->var_off, rcur->var_off);
4254 	case PTR_TO_CTX:
4255 	case CONST_PTR_TO_MAP:
4256 	case PTR_TO_PACKET_END:
4257 		/* Only valid matches are exact, which memcmp() above
4258 		 * would have accepted
4259 		 */
4260 	default:
4261 		/* Don't know what's going on, just say it's not safe */
4262 		return false;
4263 	}
4264 
4265 	/* Shouldn't get here; if we do, say it's not safe */
4266 	WARN_ON_ONCE(1);
4267 	return false;
4268 }
4269 
4270 static bool stacksafe(struct bpf_func_state *old,
4271 		      struct bpf_func_state *cur,
4272 		      struct idpair *idmap)
4273 {
4274 	int i, spi;
4275 
4276 	/* if explored stack has more populated slots than current stack
4277 	 * such stacks are not equivalent
4278 	 */
4279 	if (old->allocated_stack > cur->allocated_stack)
4280 		return false;
4281 
4282 	/* walk slots of the explored stack and ignore any additional
4283 	 * slots in the current stack, since explored(safe) state
4284 	 * didn't use them
4285 	 */
4286 	for (i = 0; i < old->allocated_stack; i++) {
4287 		spi = i / BPF_REG_SIZE;
4288 
4289 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4290 			/* explored state didn't use this */
4291 			continue;
4292 
4293 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4294 			continue;
4295 		/* if old state was safe with misc data in the stack
4296 		 * it will be safe with zero-initialized stack.
4297 		 * The opposite is not true
4298 		 */
4299 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4300 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4301 			continue;
4302 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4303 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4304 			/* Ex: old explored (safe) state has STACK_SPILL in
4305 			 * this stack slot, but current has has STACK_MISC ->
4306 			 * this verifier states are not equivalent,
4307 			 * return false to continue verification of this path
4308 			 */
4309 			return false;
4310 		if (i % BPF_REG_SIZE)
4311 			continue;
4312 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
4313 			continue;
4314 		if (!regsafe(&old->stack[spi].spilled_ptr,
4315 			     &cur->stack[spi].spilled_ptr,
4316 			     idmap))
4317 			/* when explored and current stack slot are both storing
4318 			 * spilled registers, check that stored pointers types
4319 			 * are the same as well.
4320 			 * Ex: explored safe path could have stored
4321 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4322 			 * but current path has stored:
4323 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4324 			 * such verifier states are not equivalent.
4325 			 * return false to continue verification of this path
4326 			 */
4327 			return false;
4328 	}
4329 	return true;
4330 }
4331 
4332 /* compare two verifier states
4333  *
4334  * all states stored in state_list are known to be valid, since
4335  * verifier reached 'bpf_exit' instruction through them
4336  *
4337  * this function is called when verifier exploring different branches of
4338  * execution popped from the state stack. If it sees an old state that has
4339  * more strict register state and more strict stack state then this execution
4340  * branch doesn't need to be explored further, since verifier already
4341  * concluded that more strict state leads to valid finish.
4342  *
4343  * Therefore two states are equivalent if register state is more conservative
4344  * and explored stack state is more conservative than the current one.
4345  * Example:
4346  *       explored                   current
4347  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4348  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4349  *
4350  * In other words if current stack state (one being explored) has more
4351  * valid slots than old one that already passed validation, it means
4352  * the verifier can stop exploring and conclude that current state is valid too
4353  *
4354  * Similarly with registers. If explored state has register type as invalid
4355  * whereas register type in current state is meaningful, it means that
4356  * the current state will reach 'bpf_exit' instruction safely
4357  */
4358 static bool func_states_equal(struct bpf_func_state *old,
4359 			      struct bpf_func_state *cur)
4360 {
4361 	struct idpair *idmap;
4362 	bool ret = false;
4363 	int i;
4364 
4365 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4366 	/* If we failed to allocate the idmap, just say it's not safe */
4367 	if (!idmap)
4368 		return false;
4369 
4370 	for (i = 0; i < MAX_BPF_REG; i++) {
4371 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4372 			goto out_free;
4373 	}
4374 
4375 	if (!stacksafe(old, cur, idmap))
4376 		goto out_free;
4377 	ret = true;
4378 out_free:
4379 	kfree(idmap);
4380 	return ret;
4381 }
4382 
4383 static bool states_equal(struct bpf_verifier_env *env,
4384 			 struct bpf_verifier_state *old,
4385 			 struct bpf_verifier_state *cur)
4386 {
4387 	int i;
4388 
4389 	if (old->curframe != cur->curframe)
4390 		return false;
4391 
4392 	/* for states to be equal callsites have to be the same
4393 	 * and all frame states need to be equivalent
4394 	 */
4395 	for (i = 0; i <= old->curframe; i++) {
4396 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
4397 			return false;
4398 		if (!func_states_equal(old->frame[i], cur->frame[i]))
4399 			return false;
4400 	}
4401 	return true;
4402 }
4403 
4404 /* A write screens off any subsequent reads; but write marks come from the
4405  * straight-line code between a state and its parent.  When we arrive at an
4406  * equivalent state (jump target or such) we didn't arrive by the straight-line
4407  * code, so read marks in the state must propagate to the parent regardless
4408  * of the state's write marks. That's what 'parent == state->parent' comparison
4409  * in mark_reg_read() and mark_stack_slot_read() is for.
4410  */
4411 static int propagate_liveness(struct bpf_verifier_env *env,
4412 			      const struct bpf_verifier_state *vstate,
4413 			      struct bpf_verifier_state *vparent)
4414 {
4415 	int i, frame, err = 0;
4416 	struct bpf_func_state *state, *parent;
4417 
4418 	if (vparent->curframe != vstate->curframe) {
4419 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
4420 		     vparent->curframe, vstate->curframe);
4421 		return -EFAULT;
4422 	}
4423 	/* Propagate read liveness of registers... */
4424 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4425 	/* We don't need to worry about FP liveness because it's read-only */
4426 	for (i = 0; i < BPF_REG_FP; i++) {
4427 		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4428 			continue;
4429 		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4430 			err = mark_reg_read(env, vstate, vparent, i);
4431 			if (err)
4432 				return err;
4433 		}
4434 	}
4435 
4436 	/* ... and stack slots */
4437 	for (frame = 0; frame <= vstate->curframe; frame++) {
4438 		state = vstate->frame[frame];
4439 		parent = vparent->frame[frame];
4440 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4441 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
4442 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4443 				continue;
4444 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4445 				mark_stack_slot_read(env, vstate, vparent, i, frame);
4446 		}
4447 	}
4448 	return err;
4449 }
4450 
4451 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4452 {
4453 	struct bpf_verifier_state_list *new_sl;
4454 	struct bpf_verifier_state_list *sl;
4455 	struct bpf_verifier_state *cur = env->cur_state;
4456 	int i, j, err;
4457 
4458 	sl = env->explored_states[insn_idx];
4459 	if (!sl)
4460 		/* this 'insn_idx' instruction wasn't marked, so we will not
4461 		 * be doing state search here
4462 		 */
4463 		return 0;
4464 
4465 	while (sl != STATE_LIST_MARK) {
4466 		if (states_equal(env, &sl->state, cur)) {
4467 			/* reached equivalent register/stack state,
4468 			 * prune the search.
4469 			 * Registers read by the continuation are read by us.
4470 			 * If we have any write marks in env->cur_state, they
4471 			 * will prevent corresponding reads in the continuation
4472 			 * from reaching our parent (an explored_state).  Our
4473 			 * own state will get the read marks recorded, but
4474 			 * they'll be immediately forgotten as we're pruning
4475 			 * this state and will pop a new one.
4476 			 */
4477 			err = propagate_liveness(env, &sl->state, cur);
4478 			if (err)
4479 				return err;
4480 			return 1;
4481 		}
4482 		sl = sl->next;
4483 	}
4484 
4485 	/* there were no equivalent states, remember current one.
4486 	 * technically the current state is not proven to be safe yet,
4487 	 * but it will either reach outer most bpf_exit (which means it's safe)
4488 	 * or it will be rejected. Since there are no loops, we won't be
4489 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4490 	 * again on the way to bpf_exit
4491 	 */
4492 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4493 	if (!new_sl)
4494 		return -ENOMEM;
4495 
4496 	/* add new state to the head of linked list */
4497 	err = copy_verifier_state(&new_sl->state, cur);
4498 	if (err) {
4499 		free_verifier_state(&new_sl->state, false);
4500 		kfree(new_sl);
4501 		return err;
4502 	}
4503 	new_sl->next = env->explored_states[insn_idx];
4504 	env->explored_states[insn_idx] = new_sl;
4505 	/* connect new state to parentage chain */
4506 	cur->parent = &new_sl->state;
4507 	/* clear write marks in current state: the writes we did are not writes
4508 	 * our child did, so they don't screen off its reads from us.
4509 	 * (There are no read marks in current state, because reads always mark
4510 	 * their parent and current state never has children yet.  Only
4511 	 * explored_states can get read marks.)
4512 	 */
4513 	for (i = 0; i < BPF_REG_FP; i++)
4514 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
4515 
4516 	/* all stack frames are accessible from callee, clear them all */
4517 	for (j = 0; j <= cur->curframe; j++) {
4518 		struct bpf_func_state *frame = cur->frame[j];
4519 
4520 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4521 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4522 	}
4523 	return 0;
4524 }
4525 
4526 static int do_check(struct bpf_verifier_env *env)
4527 {
4528 	struct bpf_verifier_state *state;
4529 	struct bpf_insn *insns = env->prog->insnsi;
4530 	struct bpf_reg_state *regs;
4531 	int insn_cnt = env->prog->len, i;
4532 	int insn_idx, prev_insn_idx = 0;
4533 	int insn_processed = 0;
4534 	bool do_print_state = false;
4535 
4536 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
4537 	if (!state)
4538 		return -ENOMEM;
4539 	state->curframe = 0;
4540 	state->parent = NULL;
4541 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
4542 	if (!state->frame[0]) {
4543 		kfree(state);
4544 		return -ENOMEM;
4545 	}
4546 	env->cur_state = state;
4547 	init_func_state(env, state->frame[0],
4548 			BPF_MAIN_FUNC /* callsite */,
4549 			0 /* frameno */,
4550 			0 /* subprogno, zero == main subprog */);
4551 	insn_idx = 0;
4552 	for (;;) {
4553 		struct bpf_insn *insn;
4554 		u8 class;
4555 		int err;
4556 
4557 		if (insn_idx >= insn_cnt) {
4558 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
4559 				insn_idx, insn_cnt);
4560 			return -EFAULT;
4561 		}
4562 
4563 		insn = &insns[insn_idx];
4564 		class = BPF_CLASS(insn->code);
4565 
4566 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4567 			verbose(env,
4568 				"BPF program is too large. Processed %d insn\n",
4569 				insn_processed);
4570 			return -E2BIG;
4571 		}
4572 
4573 		err = is_state_visited(env, insn_idx);
4574 		if (err < 0)
4575 			return err;
4576 		if (err == 1) {
4577 			/* found equivalent state, can prune the search */
4578 			if (env->log.level) {
4579 				if (do_print_state)
4580 					verbose(env, "\nfrom %d to %d: safe\n",
4581 						prev_insn_idx, insn_idx);
4582 				else
4583 					verbose(env, "%d: safe\n", insn_idx);
4584 			}
4585 			goto process_bpf_exit;
4586 		}
4587 
4588 		if (need_resched())
4589 			cond_resched();
4590 
4591 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
4592 			if (env->log.level > 1)
4593 				verbose(env, "%d:", insn_idx);
4594 			else
4595 				verbose(env, "\nfrom %d to %d:",
4596 					prev_insn_idx, insn_idx);
4597 			print_verifier_state(env, state->frame[state->curframe]);
4598 			do_print_state = false;
4599 		}
4600 
4601 		if (env->log.level) {
4602 			const struct bpf_insn_cbs cbs = {
4603 				.cb_print	= verbose,
4604 			};
4605 
4606 			verbose(env, "%d: ", insn_idx);
4607 			print_bpf_insn(&cbs, env, insn, env->allow_ptr_leaks);
4608 		}
4609 
4610 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
4611 			err = bpf_prog_offload_verify_insn(env, insn_idx,
4612 							   prev_insn_idx);
4613 			if (err)
4614 				return err;
4615 		}
4616 
4617 		regs = cur_regs(env);
4618 		env->insn_aux_data[insn_idx].seen = true;
4619 		if (class == BPF_ALU || class == BPF_ALU64) {
4620 			err = check_alu_op(env, insn);
4621 			if (err)
4622 				return err;
4623 
4624 		} else if (class == BPF_LDX) {
4625 			enum bpf_reg_type *prev_src_type, src_reg_type;
4626 
4627 			/* check for reserved fields is already done */
4628 
4629 			/* check src operand */
4630 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4631 			if (err)
4632 				return err;
4633 
4634 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4635 			if (err)
4636 				return err;
4637 
4638 			src_reg_type = regs[insn->src_reg].type;
4639 
4640 			/* check that memory (src_reg + off) is readable,
4641 			 * the state of dst_reg will be updated by this func
4642 			 */
4643 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4644 					       BPF_SIZE(insn->code), BPF_READ,
4645 					       insn->dst_reg, false);
4646 			if (err)
4647 				return err;
4648 
4649 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
4650 
4651 			if (*prev_src_type == NOT_INIT) {
4652 				/* saw a valid insn
4653 				 * dst_reg = *(u32 *)(src_reg + off)
4654 				 * save type to validate intersecting paths
4655 				 */
4656 				*prev_src_type = src_reg_type;
4657 
4658 			} else if (src_reg_type != *prev_src_type &&
4659 				   (src_reg_type == PTR_TO_CTX ||
4660 				    *prev_src_type == PTR_TO_CTX)) {
4661 				/* ABuser program is trying to use the same insn
4662 				 * dst_reg = *(u32*) (src_reg + off)
4663 				 * with different pointer types:
4664 				 * src_reg == ctx in one branch and
4665 				 * src_reg == stack|map in some other branch.
4666 				 * Reject it.
4667 				 */
4668 				verbose(env, "same insn cannot be used with different pointers\n");
4669 				return -EINVAL;
4670 			}
4671 
4672 		} else if (class == BPF_STX) {
4673 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
4674 
4675 			if (BPF_MODE(insn->code) == BPF_XADD) {
4676 				err = check_xadd(env, insn_idx, insn);
4677 				if (err)
4678 					return err;
4679 				insn_idx++;
4680 				continue;
4681 			}
4682 
4683 			/* check src1 operand */
4684 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4685 			if (err)
4686 				return err;
4687 			/* check src2 operand */
4688 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4689 			if (err)
4690 				return err;
4691 
4692 			dst_reg_type = regs[insn->dst_reg].type;
4693 
4694 			/* check that memory (dst_reg + off) is writeable */
4695 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4696 					       BPF_SIZE(insn->code), BPF_WRITE,
4697 					       insn->src_reg, false);
4698 			if (err)
4699 				return err;
4700 
4701 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4702 
4703 			if (*prev_dst_type == NOT_INIT) {
4704 				*prev_dst_type = dst_reg_type;
4705 			} else if (dst_reg_type != *prev_dst_type &&
4706 				   (dst_reg_type == PTR_TO_CTX ||
4707 				    *prev_dst_type == PTR_TO_CTX)) {
4708 				verbose(env, "same insn cannot be used with different pointers\n");
4709 				return -EINVAL;
4710 			}
4711 
4712 		} else if (class == BPF_ST) {
4713 			if (BPF_MODE(insn->code) != BPF_MEM ||
4714 			    insn->src_reg != BPF_REG_0) {
4715 				verbose(env, "BPF_ST uses reserved fields\n");
4716 				return -EINVAL;
4717 			}
4718 			/* check src operand */
4719 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4720 			if (err)
4721 				return err;
4722 
4723 			if (is_ctx_reg(env, insn->dst_reg)) {
4724 				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4725 					insn->dst_reg);
4726 				return -EACCES;
4727 			}
4728 
4729 			/* check that memory (dst_reg + off) is writeable */
4730 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4731 					       BPF_SIZE(insn->code), BPF_WRITE,
4732 					       -1, false);
4733 			if (err)
4734 				return err;
4735 
4736 		} else if (class == BPF_JMP) {
4737 			u8 opcode = BPF_OP(insn->code);
4738 
4739 			if (opcode == BPF_CALL) {
4740 				if (BPF_SRC(insn->code) != BPF_K ||
4741 				    insn->off != 0 ||
4742 				    (insn->src_reg != BPF_REG_0 &&
4743 				     insn->src_reg != BPF_PSEUDO_CALL) ||
4744 				    insn->dst_reg != BPF_REG_0) {
4745 					verbose(env, "BPF_CALL uses reserved fields\n");
4746 					return -EINVAL;
4747 				}
4748 
4749 				if (insn->src_reg == BPF_PSEUDO_CALL)
4750 					err = check_func_call(env, insn, &insn_idx);
4751 				else
4752 					err = check_helper_call(env, insn->imm, insn_idx);
4753 				if (err)
4754 					return err;
4755 
4756 			} else if (opcode == BPF_JA) {
4757 				if (BPF_SRC(insn->code) != BPF_K ||
4758 				    insn->imm != 0 ||
4759 				    insn->src_reg != BPF_REG_0 ||
4760 				    insn->dst_reg != BPF_REG_0) {
4761 					verbose(env, "BPF_JA uses reserved fields\n");
4762 					return -EINVAL;
4763 				}
4764 
4765 				insn_idx += insn->off + 1;
4766 				continue;
4767 
4768 			} else if (opcode == BPF_EXIT) {
4769 				if (BPF_SRC(insn->code) != BPF_K ||
4770 				    insn->imm != 0 ||
4771 				    insn->src_reg != BPF_REG_0 ||
4772 				    insn->dst_reg != BPF_REG_0) {
4773 					verbose(env, "BPF_EXIT uses reserved fields\n");
4774 					return -EINVAL;
4775 				}
4776 
4777 				if (state->curframe) {
4778 					/* exit from nested function */
4779 					prev_insn_idx = insn_idx;
4780 					err = prepare_func_exit(env, &insn_idx);
4781 					if (err)
4782 						return err;
4783 					do_print_state = true;
4784 					continue;
4785 				}
4786 
4787 				/* eBPF calling convetion is such that R0 is used
4788 				 * to return the value from eBPF program.
4789 				 * Make sure that it's readable at this time
4790 				 * of bpf_exit, which means that program wrote
4791 				 * something into it earlier
4792 				 */
4793 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4794 				if (err)
4795 					return err;
4796 
4797 				if (is_pointer_value(env, BPF_REG_0)) {
4798 					verbose(env, "R0 leaks addr as return value\n");
4799 					return -EACCES;
4800 				}
4801 
4802 				err = check_return_code(env);
4803 				if (err)
4804 					return err;
4805 process_bpf_exit:
4806 				err = pop_stack(env, &prev_insn_idx, &insn_idx);
4807 				if (err < 0) {
4808 					if (err != -ENOENT)
4809 						return err;
4810 					break;
4811 				} else {
4812 					do_print_state = true;
4813 					continue;
4814 				}
4815 			} else {
4816 				err = check_cond_jmp_op(env, insn, &insn_idx);
4817 				if (err)
4818 					return err;
4819 			}
4820 		} else if (class == BPF_LD) {
4821 			u8 mode = BPF_MODE(insn->code);
4822 
4823 			if (mode == BPF_ABS || mode == BPF_IND) {
4824 				err = check_ld_abs(env, insn);
4825 				if (err)
4826 					return err;
4827 
4828 			} else if (mode == BPF_IMM) {
4829 				err = check_ld_imm(env, insn);
4830 				if (err)
4831 					return err;
4832 
4833 				insn_idx++;
4834 				env->insn_aux_data[insn_idx].seen = true;
4835 			} else {
4836 				verbose(env, "invalid BPF_LD mode\n");
4837 				return -EINVAL;
4838 			}
4839 		} else {
4840 			verbose(env, "unknown insn class %d\n", class);
4841 			return -EINVAL;
4842 		}
4843 
4844 		insn_idx++;
4845 	}
4846 
4847 	verbose(env, "processed %d insns (limit %d), stack depth ",
4848 		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
4849 	for (i = 0; i < env->subprog_cnt + 1; i++) {
4850 		u32 depth = env->subprog_stack_depth[i];
4851 
4852 		verbose(env, "%d", depth);
4853 		if (i + 1 < env->subprog_cnt + 1)
4854 			verbose(env, "+");
4855 	}
4856 	verbose(env, "\n");
4857 	env->prog->aux->stack_depth = env->subprog_stack_depth[0];
4858 	return 0;
4859 }
4860 
4861 static int check_map_prealloc(struct bpf_map *map)
4862 {
4863 	return (map->map_type != BPF_MAP_TYPE_HASH &&
4864 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4865 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4866 		!(map->map_flags & BPF_F_NO_PREALLOC);
4867 }
4868 
4869 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4870 					struct bpf_map *map,
4871 					struct bpf_prog *prog)
4872 
4873 {
4874 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4875 	 * preallocated hash maps, since doing memory allocation
4876 	 * in overflow_handler can crash depending on where nmi got
4877 	 * triggered.
4878 	 */
4879 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4880 		if (!check_map_prealloc(map)) {
4881 			verbose(env, "perf_event programs can only use preallocated hash map\n");
4882 			return -EINVAL;
4883 		}
4884 		if (map->inner_map_meta &&
4885 		    !check_map_prealloc(map->inner_map_meta)) {
4886 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4887 			return -EINVAL;
4888 		}
4889 	}
4890 
4891 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
4892 	    !bpf_offload_dev_match(prog, map)) {
4893 		verbose(env, "offload device mismatch between prog and map\n");
4894 		return -EINVAL;
4895 	}
4896 
4897 	return 0;
4898 }
4899 
4900 /* look for pseudo eBPF instructions that access map FDs and
4901  * replace them with actual map pointers
4902  */
4903 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4904 {
4905 	struct bpf_insn *insn = env->prog->insnsi;
4906 	int insn_cnt = env->prog->len;
4907 	int i, j, err;
4908 
4909 	err = bpf_prog_calc_tag(env->prog);
4910 	if (err)
4911 		return err;
4912 
4913 	for (i = 0; i < insn_cnt; i++, insn++) {
4914 		if (BPF_CLASS(insn->code) == BPF_LDX &&
4915 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4916 			verbose(env, "BPF_LDX uses reserved fields\n");
4917 			return -EINVAL;
4918 		}
4919 
4920 		if (BPF_CLASS(insn->code) == BPF_STX &&
4921 		    ((BPF_MODE(insn->code) != BPF_MEM &&
4922 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4923 			verbose(env, "BPF_STX uses reserved fields\n");
4924 			return -EINVAL;
4925 		}
4926 
4927 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4928 			struct bpf_map *map;
4929 			struct fd f;
4930 
4931 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
4932 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4933 			    insn[1].off != 0) {
4934 				verbose(env, "invalid bpf_ld_imm64 insn\n");
4935 				return -EINVAL;
4936 			}
4937 
4938 			if (insn->src_reg == 0)
4939 				/* valid generic load 64-bit imm */
4940 				goto next_insn;
4941 
4942 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4943 				verbose(env,
4944 					"unrecognized bpf_ld_imm64 insn\n");
4945 				return -EINVAL;
4946 			}
4947 
4948 			f = fdget(insn->imm);
4949 			map = __bpf_map_get(f);
4950 			if (IS_ERR(map)) {
4951 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
4952 					insn->imm);
4953 				return PTR_ERR(map);
4954 			}
4955 
4956 			err = check_map_prog_compatibility(env, map, env->prog);
4957 			if (err) {
4958 				fdput(f);
4959 				return err;
4960 			}
4961 
4962 			/* store map pointer inside BPF_LD_IMM64 instruction */
4963 			insn[0].imm = (u32) (unsigned long) map;
4964 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
4965 
4966 			/* check whether we recorded this map already */
4967 			for (j = 0; j < env->used_map_cnt; j++)
4968 				if (env->used_maps[j] == map) {
4969 					fdput(f);
4970 					goto next_insn;
4971 				}
4972 
4973 			if (env->used_map_cnt >= MAX_USED_MAPS) {
4974 				fdput(f);
4975 				return -E2BIG;
4976 			}
4977 
4978 			/* hold the map. If the program is rejected by verifier,
4979 			 * the map will be released by release_maps() or it
4980 			 * will be used by the valid program until it's unloaded
4981 			 * and all maps are released in free_bpf_prog_info()
4982 			 */
4983 			map = bpf_map_inc(map, false);
4984 			if (IS_ERR(map)) {
4985 				fdput(f);
4986 				return PTR_ERR(map);
4987 			}
4988 			env->used_maps[env->used_map_cnt++] = map;
4989 
4990 			fdput(f);
4991 next_insn:
4992 			insn++;
4993 			i++;
4994 			continue;
4995 		}
4996 
4997 		/* Basic sanity check before we invest more work here. */
4998 		if (!bpf_opcode_in_insntable(insn->code)) {
4999 			verbose(env, "unknown opcode %02x\n", insn->code);
5000 			return -EINVAL;
5001 		}
5002 	}
5003 
5004 	/* now all pseudo BPF_LD_IMM64 instructions load valid
5005 	 * 'struct bpf_map *' into a register instead of user map_fd.
5006 	 * These pointers will be used later by verifier to validate map access.
5007 	 */
5008 	return 0;
5009 }
5010 
5011 /* drop refcnt of maps used by the rejected program */
5012 static void release_maps(struct bpf_verifier_env *env)
5013 {
5014 	int i;
5015 
5016 	for (i = 0; i < env->used_map_cnt; i++)
5017 		bpf_map_put(env->used_maps[i]);
5018 }
5019 
5020 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5021 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5022 {
5023 	struct bpf_insn *insn = env->prog->insnsi;
5024 	int insn_cnt = env->prog->len;
5025 	int i;
5026 
5027 	for (i = 0; i < insn_cnt; i++, insn++)
5028 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5029 			insn->src_reg = 0;
5030 }
5031 
5032 /* single env->prog->insni[off] instruction was replaced with the range
5033  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
5034  * [0, off) and [off, end) to new locations, so the patched range stays zero
5035  */
5036 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5037 				u32 off, u32 cnt)
5038 {
5039 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5040 	int i;
5041 
5042 	if (cnt == 1)
5043 		return 0;
5044 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
5045 	if (!new_data)
5046 		return -ENOMEM;
5047 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5048 	memcpy(new_data + off + cnt - 1, old_data + off,
5049 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5050 	for (i = off; i < off + cnt - 1; i++)
5051 		new_data[i].seen = true;
5052 	env->insn_aux_data = new_data;
5053 	vfree(old_data);
5054 	return 0;
5055 }
5056 
5057 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5058 {
5059 	int i;
5060 
5061 	if (len == 1)
5062 		return;
5063 	for (i = 0; i < env->subprog_cnt; i++) {
5064 		if (env->subprog_starts[i] < off)
5065 			continue;
5066 		env->subprog_starts[i] += len - 1;
5067 	}
5068 }
5069 
5070 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5071 					    const struct bpf_insn *patch, u32 len)
5072 {
5073 	struct bpf_prog *new_prog;
5074 
5075 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5076 	if (!new_prog)
5077 		return NULL;
5078 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
5079 		return NULL;
5080 	adjust_subprog_starts(env, off, len);
5081 	return new_prog;
5082 }
5083 
5084 /* The verifier does more data flow analysis than llvm and will not
5085  * explore branches that are dead at run time. Malicious programs can
5086  * have dead code too. Therefore replace all dead at-run-time code
5087  * with 'ja -1'.
5088  *
5089  * Just nops are not optimal, e.g. if they would sit at the end of the
5090  * program and through another bug we would manage to jump there, then
5091  * we'd execute beyond program memory otherwise. Returning exception
5092  * code also wouldn't work since we can have subprogs where the dead
5093  * code could be located.
5094  */
5095 static void sanitize_dead_code(struct bpf_verifier_env *env)
5096 {
5097 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5098 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5099 	struct bpf_insn *insn = env->prog->insnsi;
5100 	const int insn_cnt = env->prog->len;
5101 	int i;
5102 
5103 	for (i = 0; i < insn_cnt; i++) {
5104 		if (aux_data[i].seen)
5105 			continue;
5106 		memcpy(insn + i, &trap, sizeof(trap));
5107 	}
5108 }
5109 
5110 /* convert load instructions that access fields of 'struct __sk_buff'
5111  * into sequence of instructions that access fields of 'struct sk_buff'
5112  */
5113 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5114 {
5115 	const struct bpf_verifier_ops *ops = env->ops;
5116 	int i, cnt, size, ctx_field_size, delta = 0;
5117 	const int insn_cnt = env->prog->len;
5118 	struct bpf_insn insn_buf[16], *insn;
5119 	struct bpf_prog *new_prog;
5120 	enum bpf_access_type type;
5121 	bool is_narrower_load;
5122 	u32 target_size;
5123 
5124 	if (ops->gen_prologue) {
5125 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5126 					env->prog);
5127 		if (cnt >= ARRAY_SIZE(insn_buf)) {
5128 			verbose(env, "bpf verifier is misconfigured\n");
5129 			return -EINVAL;
5130 		} else if (cnt) {
5131 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5132 			if (!new_prog)
5133 				return -ENOMEM;
5134 
5135 			env->prog = new_prog;
5136 			delta += cnt - 1;
5137 		}
5138 	}
5139 
5140 	if (!ops->convert_ctx_access)
5141 		return 0;
5142 
5143 	insn = env->prog->insnsi + delta;
5144 
5145 	for (i = 0; i < insn_cnt; i++, insn++) {
5146 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5147 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5148 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5149 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5150 			type = BPF_READ;
5151 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5152 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5153 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5154 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5155 			type = BPF_WRITE;
5156 		else
5157 			continue;
5158 
5159 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5160 			continue;
5161 
5162 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5163 		size = BPF_LDST_BYTES(insn);
5164 
5165 		/* If the read access is a narrower load of the field,
5166 		 * convert to a 4/8-byte load, to minimum program type specific
5167 		 * convert_ctx_access changes. If conversion is successful,
5168 		 * we will apply proper mask to the result.
5169 		 */
5170 		is_narrower_load = size < ctx_field_size;
5171 		if (is_narrower_load) {
5172 			u32 off = insn->off;
5173 			u8 size_code;
5174 
5175 			if (type == BPF_WRITE) {
5176 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5177 				return -EINVAL;
5178 			}
5179 
5180 			size_code = BPF_H;
5181 			if (ctx_field_size == 4)
5182 				size_code = BPF_W;
5183 			else if (ctx_field_size == 8)
5184 				size_code = BPF_DW;
5185 
5186 			insn->off = off & ~(ctx_field_size - 1);
5187 			insn->code = BPF_LDX | BPF_MEM | size_code;
5188 		}
5189 
5190 		target_size = 0;
5191 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
5192 					      &target_size);
5193 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5194 		    (ctx_field_size && !target_size)) {
5195 			verbose(env, "bpf verifier is misconfigured\n");
5196 			return -EINVAL;
5197 		}
5198 
5199 		if (is_narrower_load && size < target_size) {
5200 			if (ctx_field_size <= 4)
5201 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5202 								(1 << size * 8) - 1);
5203 			else
5204 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5205 								(1 << size * 8) - 1);
5206 		}
5207 
5208 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5209 		if (!new_prog)
5210 			return -ENOMEM;
5211 
5212 		delta += cnt - 1;
5213 
5214 		/* keep walking new program and skip insns we just inserted */
5215 		env->prog = new_prog;
5216 		insn      = new_prog->insnsi + i + delta;
5217 	}
5218 
5219 	return 0;
5220 }
5221 
5222 static int jit_subprogs(struct bpf_verifier_env *env)
5223 {
5224 	struct bpf_prog *prog = env->prog, **func, *tmp;
5225 	int i, j, subprog_start, subprog_end = 0, len, subprog;
5226 	struct bpf_insn *insn;
5227 	void *old_bpf_func;
5228 	int err = -ENOMEM;
5229 
5230 	if (env->subprog_cnt == 0)
5231 		return 0;
5232 
5233 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5234 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5235 		    insn->src_reg != BPF_PSEUDO_CALL)
5236 			continue;
5237 		subprog = find_subprog(env, i + insn->imm + 1);
5238 		if (subprog < 0) {
5239 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5240 				  i + insn->imm + 1);
5241 			return -EFAULT;
5242 		}
5243 		/* temporarily remember subprog id inside insn instead of
5244 		 * aux_data, since next loop will split up all insns into funcs
5245 		 */
5246 		insn->off = subprog + 1;
5247 		/* remember original imm in case JIT fails and fallback
5248 		 * to interpreter will be needed
5249 		 */
5250 		env->insn_aux_data[i].call_imm = insn->imm;
5251 		/* point imm to __bpf_call_base+1 from JITs point of view */
5252 		insn->imm = 1;
5253 	}
5254 
5255 	func = kzalloc(sizeof(prog) * (env->subprog_cnt + 1), GFP_KERNEL);
5256 	if (!func)
5257 		return -ENOMEM;
5258 
5259 	for (i = 0; i <= env->subprog_cnt; i++) {
5260 		subprog_start = subprog_end;
5261 		if (env->subprog_cnt == i)
5262 			subprog_end = prog->len;
5263 		else
5264 			subprog_end = env->subprog_starts[i];
5265 
5266 		len = subprog_end - subprog_start;
5267 		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5268 		if (!func[i])
5269 			goto out_free;
5270 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5271 		       len * sizeof(struct bpf_insn));
5272 		func[i]->type = prog->type;
5273 		func[i]->len = len;
5274 		if (bpf_prog_calc_tag(func[i]))
5275 			goto out_free;
5276 		func[i]->is_func = 1;
5277 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
5278 		 * Long term would need debug info to populate names
5279 		 */
5280 		func[i]->aux->name[0] = 'F';
5281 		func[i]->aux->stack_depth = env->subprog_stack_depth[i];
5282 		func[i]->jit_requested = 1;
5283 		func[i] = bpf_int_jit_compile(func[i]);
5284 		if (!func[i]->jited) {
5285 			err = -ENOTSUPP;
5286 			goto out_free;
5287 		}
5288 		cond_resched();
5289 	}
5290 	/* at this point all bpf functions were successfully JITed
5291 	 * now populate all bpf_calls with correct addresses and
5292 	 * run last pass of JIT
5293 	 */
5294 	for (i = 0; i <= env->subprog_cnt; i++) {
5295 		insn = func[i]->insnsi;
5296 		for (j = 0; j < func[i]->len; j++, insn++) {
5297 			if (insn->code != (BPF_JMP | BPF_CALL) ||
5298 			    insn->src_reg != BPF_PSEUDO_CALL)
5299 				continue;
5300 			subprog = insn->off;
5301 			insn->off = 0;
5302 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5303 				func[subprog]->bpf_func -
5304 				__bpf_call_base;
5305 		}
5306 	}
5307 	for (i = 0; i <= env->subprog_cnt; i++) {
5308 		old_bpf_func = func[i]->bpf_func;
5309 		tmp = bpf_int_jit_compile(func[i]);
5310 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5311 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5312 			err = -EFAULT;
5313 			goto out_free;
5314 		}
5315 		cond_resched();
5316 	}
5317 
5318 	/* finally lock prog and jit images for all functions and
5319 	 * populate kallsysm
5320 	 */
5321 	for (i = 0; i <= env->subprog_cnt; i++) {
5322 		bpf_prog_lock_ro(func[i]);
5323 		bpf_prog_kallsyms_add(func[i]);
5324 	}
5325 
5326 	/* Last step: make now unused interpreter insns from main
5327 	 * prog consistent for later dump requests, so they can
5328 	 * later look the same as if they were interpreted only.
5329 	 */
5330 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5331 		unsigned long addr;
5332 
5333 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5334 		    insn->src_reg != BPF_PSEUDO_CALL)
5335 			continue;
5336 		insn->off = env->insn_aux_data[i].call_imm;
5337 		subprog = find_subprog(env, i + insn->off + 1);
5338 		addr  = (unsigned long)func[subprog + 1]->bpf_func;
5339 		addr &= PAGE_MASK;
5340 		insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5341 			    addr - __bpf_call_base;
5342 	}
5343 
5344 	prog->jited = 1;
5345 	prog->bpf_func = func[0]->bpf_func;
5346 	prog->aux->func = func;
5347 	prog->aux->func_cnt = env->subprog_cnt + 1;
5348 	return 0;
5349 out_free:
5350 	for (i = 0; i <= env->subprog_cnt; i++)
5351 		if (func[i])
5352 			bpf_jit_free(func[i]);
5353 	kfree(func);
5354 	/* cleanup main prog to be interpreted */
5355 	prog->jit_requested = 0;
5356 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5357 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5358 		    insn->src_reg != BPF_PSEUDO_CALL)
5359 			continue;
5360 		insn->off = 0;
5361 		insn->imm = env->insn_aux_data[i].call_imm;
5362 	}
5363 	return err;
5364 }
5365 
5366 static int fixup_call_args(struct bpf_verifier_env *env)
5367 {
5368 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5369 	struct bpf_prog *prog = env->prog;
5370 	struct bpf_insn *insn = prog->insnsi;
5371 	int i, depth;
5372 #endif
5373 	int err;
5374 
5375 	err = 0;
5376 	if (env->prog->jit_requested) {
5377 		err = jit_subprogs(env);
5378 		if (err == 0)
5379 			return 0;
5380 	}
5381 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5382 	for (i = 0; i < prog->len; i++, insn++) {
5383 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5384 		    insn->src_reg != BPF_PSEUDO_CALL)
5385 			continue;
5386 		depth = get_callee_stack_depth(env, insn, i);
5387 		if (depth < 0)
5388 			return depth;
5389 		bpf_patch_call_args(insn, depth);
5390 	}
5391 	err = 0;
5392 #endif
5393 	return err;
5394 }
5395 
5396 /* fixup insn->imm field of bpf_call instructions
5397  * and inline eligible helpers as explicit sequence of BPF instructions
5398  *
5399  * this function is called after eBPF program passed verification
5400  */
5401 static int fixup_bpf_calls(struct bpf_verifier_env *env)
5402 {
5403 	struct bpf_prog *prog = env->prog;
5404 	struct bpf_insn *insn = prog->insnsi;
5405 	const struct bpf_func_proto *fn;
5406 	const int insn_cnt = prog->len;
5407 	struct bpf_insn insn_buf[16];
5408 	struct bpf_prog *new_prog;
5409 	struct bpf_map *map_ptr;
5410 	int i, cnt, delta = 0;
5411 
5412 	for (i = 0; i < insn_cnt; i++, insn++) {
5413 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
5414 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5415 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5416 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5417 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
5418 			struct bpf_insn mask_and_div[] = {
5419 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5420 				/* Rx div 0 -> 0 */
5421 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
5422 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
5423 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
5424 				*insn,
5425 			};
5426 			struct bpf_insn mask_and_mod[] = {
5427 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5428 				/* Rx mod 0 -> Rx */
5429 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
5430 				*insn,
5431 			};
5432 			struct bpf_insn *patchlet;
5433 
5434 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5435 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5436 				patchlet = mask_and_div + (is64 ? 1 : 0);
5437 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
5438 			} else {
5439 				patchlet = mask_and_mod + (is64 ? 1 : 0);
5440 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
5441 			}
5442 
5443 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5444 			if (!new_prog)
5445 				return -ENOMEM;
5446 
5447 			delta    += cnt - 1;
5448 			env->prog = prog = new_prog;
5449 			insn      = new_prog->insnsi + i + delta;
5450 			continue;
5451 		}
5452 
5453 		if (insn->code != (BPF_JMP | BPF_CALL))
5454 			continue;
5455 		if (insn->src_reg == BPF_PSEUDO_CALL)
5456 			continue;
5457 
5458 		if (insn->imm == BPF_FUNC_get_route_realm)
5459 			prog->dst_needed = 1;
5460 		if (insn->imm == BPF_FUNC_get_prandom_u32)
5461 			bpf_user_rnd_init_once();
5462 		if (insn->imm == BPF_FUNC_override_return)
5463 			prog->kprobe_override = 1;
5464 		if (insn->imm == BPF_FUNC_tail_call) {
5465 			/* If we tail call into other programs, we
5466 			 * cannot make any assumptions since they can
5467 			 * be replaced dynamically during runtime in
5468 			 * the program array.
5469 			 */
5470 			prog->cb_access = 1;
5471 			env->prog->aux->stack_depth = MAX_BPF_STACK;
5472 
5473 			/* mark bpf_tail_call as different opcode to avoid
5474 			 * conditional branch in the interpeter for every normal
5475 			 * call and to prevent accidental JITing by JIT compiler
5476 			 * that doesn't support bpf_tail_call yet
5477 			 */
5478 			insn->imm = 0;
5479 			insn->code = BPF_JMP | BPF_TAIL_CALL;
5480 
5481 			/* instead of changing every JIT dealing with tail_call
5482 			 * emit two extra insns:
5483 			 * if (index >= max_entries) goto out;
5484 			 * index &= array->index_mask;
5485 			 * to avoid out-of-bounds cpu speculation
5486 			 */
5487 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
5488 			if (map_ptr == BPF_MAP_PTR_POISON) {
5489 				verbose(env, "tail_call abusing map_ptr\n");
5490 				return -EINVAL;
5491 			}
5492 			if (!map_ptr->unpriv_array)
5493 				continue;
5494 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
5495 						  map_ptr->max_entries, 2);
5496 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
5497 						    container_of(map_ptr,
5498 								 struct bpf_array,
5499 								 map)->index_mask);
5500 			insn_buf[2] = *insn;
5501 			cnt = 3;
5502 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5503 			if (!new_prog)
5504 				return -ENOMEM;
5505 
5506 			delta    += cnt - 1;
5507 			env->prog = prog = new_prog;
5508 			insn      = new_prog->insnsi + i + delta;
5509 			continue;
5510 		}
5511 
5512 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5513 		 * handlers are currently limited to 64 bit only.
5514 		 */
5515 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
5516 		    insn->imm == BPF_FUNC_map_lookup_elem) {
5517 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
5518 			if (map_ptr == BPF_MAP_PTR_POISON ||
5519 			    !map_ptr->ops->map_gen_lookup)
5520 				goto patch_call_imm;
5521 
5522 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
5523 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5524 				verbose(env, "bpf verifier is misconfigured\n");
5525 				return -EINVAL;
5526 			}
5527 
5528 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
5529 						       cnt);
5530 			if (!new_prog)
5531 				return -ENOMEM;
5532 
5533 			delta += cnt - 1;
5534 
5535 			/* keep walking new program and skip insns we just inserted */
5536 			env->prog = prog = new_prog;
5537 			insn      = new_prog->insnsi + i + delta;
5538 			continue;
5539 		}
5540 
5541 		if (insn->imm == BPF_FUNC_redirect_map) {
5542 			/* Note, we cannot use prog directly as imm as subsequent
5543 			 * rewrites would still change the prog pointer. The only
5544 			 * stable address we can use is aux, which also works with
5545 			 * prog clones during blinding.
5546 			 */
5547 			u64 addr = (unsigned long)prog->aux;
5548 			struct bpf_insn r4_ld[] = {
5549 				BPF_LD_IMM64(BPF_REG_4, addr),
5550 				*insn,
5551 			};
5552 			cnt = ARRAY_SIZE(r4_ld);
5553 
5554 			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
5555 			if (!new_prog)
5556 				return -ENOMEM;
5557 
5558 			delta    += cnt - 1;
5559 			env->prog = prog = new_prog;
5560 			insn      = new_prog->insnsi + i + delta;
5561 		}
5562 patch_call_imm:
5563 		fn = env->ops->get_func_proto(insn->imm);
5564 		/* all functions that have prototype and verifier allowed
5565 		 * programs to call them, must be real in-kernel functions
5566 		 */
5567 		if (!fn->func) {
5568 			verbose(env,
5569 				"kernel subsystem misconfigured func %s#%d\n",
5570 				func_id_name(insn->imm), insn->imm);
5571 			return -EFAULT;
5572 		}
5573 		insn->imm = fn->func - __bpf_call_base;
5574 	}
5575 
5576 	return 0;
5577 }
5578 
5579 static void free_states(struct bpf_verifier_env *env)
5580 {
5581 	struct bpf_verifier_state_list *sl, *sln;
5582 	int i;
5583 
5584 	if (!env->explored_states)
5585 		return;
5586 
5587 	for (i = 0; i < env->prog->len; i++) {
5588 		sl = env->explored_states[i];
5589 
5590 		if (sl)
5591 			while (sl != STATE_LIST_MARK) {
5592 				sln = sl->next;
5593 				free_verifier_state(&sl->state, false);
5594 				kfree(sl);
5595 				sl = sln;
5596 			}
5597 	}
5598 
5599 	kfree(env->explored_states);
5600 }
5601 
5602 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
5603 {
5604 	struct bpf_verifier_env *env;
5605 	struct bpf_verifer_log *log;
5606 	int ret = -EINVAL;
5607 
5608 	/* no program is valid */
5609 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
5610 		return -EINVAL;
5611 
5612 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
5613 	 * allocate/free it every time bpf_check() is called
5614 	 */
5615 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5616 	if (!env)
5617 		return -ENOMEM;
5618 	log = &env->log;
5619 
5620 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
5621 				     (*prog)->len);
5622 	ret = -ENOMEM;
5623 	if (!env->insn_aux_data)
5624 		goto err_free_env;
5625 	env->prog = *prog;
5626 	env->ops = bpf_verifier_ops[env->prog->type];
5627 
5628 	/* grab the mutex to protect few globals used by verifier */
5629 	mutex_lock(&bpf_verifier_lock);
5630 
5631 	if (attr->log_level || attr->log_buf || attr->log_size) {
5632 		/* user requested verbose verifier output
5633 		 * and supplied buffer to store the verification trace
5634 		 */
5635 		log->level = attr->log_level;
5636 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
5637 		log->len_total = attr->log_size;
5638 
5639 		ret = -EINVAL;
5640 		/* log attributes have to be sane */
5641 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
5642 		    !log->level || !log->ubuf)
5643 			goto err_unlock;
5644 	}
5645 
5646 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
5647 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5648 		env->strict_alignment = true;
5649 
5650 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
5651 		ret = bpf_prog_offload_verifier_prep(env);
5652 		if (ret)
5653 			goto err_unlock;
5654 	}
5655 
5656 	ret = replace_map_fd_with_map_ptr(env);
5657 	if (ret < 0)
5658 		goto skip_full_check;
5659 
5660 	env->explored_states = kcalloc(env->prog->len,
5661 				       sizeof(struct bpf_verifier_state_list *),
5662 				       GFP_USER);
5663 	ret = -ENOMEM;
5664 	if (!env->explored_states)
5665 		goto skip_full_check;
5666 
5667 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
5668 
5669 	ret = check_cfg(env);
5670 	if (ret < 0)
5671 		goto skip_full_check;
5672 
5673 	ret = do_check(env);
5674 	if (env->cur_state) {
5675 		free_verifier_state(env->cur_state, true);
5676 		env->cur_state = NULL;
5677 	}
5678 
5679 skip_full_check:
5680 	while (!pop_stack(env, NULL, NULL));
5681 	free_states(env);
5682 
5683 	if (ret == 0)
5684 		sanitize_dead_code(env);
5685 
5686 	if (ret == 0)
5687 		ret = check_max_stack_depth(env);
5688 
5689 	if (ret == 0)
5690 		/* program is valid, convert *(u32*)(ctx + off) accesses */
5691 		ret = convert_ctx_accesses(env);
5692 
5693 	if (ret == 0)
5694 		ret = fixup_bpf_calls(env);
5695 
5696 	if (ret == 0)
5697 		ret = fixup_call_args(env);
5698 
5699 	if (log->level && bpf_verifier_log_full(log))
5700 		ret = -ENOSPC;
5701 	if (log->level && !log->ubuf) {
5702 		ret = -EFAULT;
5703 		goto err_release_maps;
5704 	}
5705 
5706 	if (ret == 0 && env->used_map_cnt) {
5707 		/* if program passed verifier, update used_maps in bpf_prog_info */
5708 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
5709 							  sizeof(env->used_maps[0]),
5710 							  GFP_KERNEL);
5711 
5712 		if (!env->prog->aux->used_maps) {
5713 			ret = -ENOMEM;
5714 			goto err_release_maps;
5715 		}
5716 
5717 		memcpy(env->prog->aux->used_maps, env->used_maps,
5718 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
5719 		env->prog->aux->used_map_cnt = env->used_map_cnt;
5720 
5721 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
5722 		 * bpf_ld_imm64 instructions
5723 		 */
5724 		convert_pseudo_ld_imm64(env);
5725 	}
5726 
5727 err_release_maps:
5728 	if (!env->prog->aux->used_maps)
5729 		/* if we didn't copy map pointers into bpf_prog_info, release
5730 		 * them now. Otherwise free_bpf_prog_info() will release them.
5731 		 */
5732 		release_maps(env);
5733 	*prog = env->prog;
5734 err_unlock:
5735 	mutex_unlock(&bpf_verifier_lock);
5736 	vfree(env->insn_aux_data);
5737 err_free_env:
5738 	kfree(env);
5739 	return ret;
5740 }
5741