1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 #include <linux/bsearch.h> 24 #include <linux/sort.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #include <linux/bpf_types.h> 33 #undef BPF_PROG_TYPE 34 #undef BPF_MAP_TYPE 35 }; 36 37 /* bpf_check() is a static code analyzer that walks eBPF program 38 * instruction by instruction and updates register/stack state. 39 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 40 * 41 * The first pass is depth-first-search to check that the program is a DAG. 42 * It rejects the following programs: 43 * - larger than BPF_MAXINSNS insns 44 * - if loop is present (detected via back-edge) 45 * - unreachable insns exist (shouldn't be a forest. program = one function) 46 * - out of bounds or malformed jumps 47 * The second pass is all possible path descent from the 1st insn. 48 * Since it's analyzing all pathes through the program, the length of the 49 * analysis is limited to 64k insn, which may be hit even if total number of 50 * insn is less then 4K, but there are too many branches that change stack/regs. 51 * Number of 'branches to be analyzed' is limited to 1k 52 * 53 * On entry to each instruction, each register has a type, and the instruction 54 * changes the types of the registers depending on instruction semantics. 55 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 56 * copied to R1. 57 * 58 * All registers are 64-bit. 59 * R0 - return register 60 * R1-R5 argument passing registers 61 * R6-R9 callee saved registers 62 * R10 - frame pointer read-only 63 * 64 * At the start of BPF program the register R1 contains a pointer to bpf_context 65 * and has type PTR_TO_CTX. 66 * 67 * Verifier tracks arithmetic operations on pointers in case: 68 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 69 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 70 * 1st insn copies R10 (which has FRAME_PTR) type into R1 71 * and 2nd arithmetic instruction is pattern matched to recognize 72 * that it wants to construct a pointer to some element within stack. 73 * So after 2nd insn, the register R1 has type PTR_TO_STACK 74 * (and -20 constant is saved for further stack bounds checking). 75 * Meaning that this reg is a pointer to stack plus known immediate constant. 76 * 77 * Most of the time the registers have SCALAR_VALUE type, which 78 * means the register has some value, but it's not a valid pointer. 79 * (like pointer plus pointer becomes SCALAR_VALUE type) 80 * 81 * When verifier sees load or store instructions the type of base register 82 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer 83 * types recognized by check_mem_access() function. 84 * 85 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 86 * and the range of [ptr, ptr + map's value_size) is accessible. 87 * 88 * registers used to pass values to function calls are checked against 89 * function argument constraints. 90 * 91 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 92 * It means that the register type passed to this function must be 93 * PTR_TO_STACK and it will be used inside the function as 94 * 'pointer to map element key' 95 * 96 * For example the argument constraints for bpf_map_lookup_elem(): 97 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 98 * .arg1_type = ARG_CONST_MAP_PTR, 99 * .arg2_type = ARG_PTR_TO_MAP_KEY, 100 * 101 * ret_type says that this function returns 'pointer to map elem value or null' 102 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 103 * 2nd argument should be a pointer to stack, which will be used inside 104 * the helper function as a pointer to map element key. 105 * 106 * On the kernel side the helper function looks like: 107 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 108 * { 109 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 110 * void *key = (void *) (unsigned long) r2; 111 * void *value; 112 * 113 * here kernel can access 'key' and 'map' pointers safely, knowing that 114 * [key, key + map->key_size) bytes are valid and were initialized on 115 * the stack of eBPF program. 116 * } 117 * 118 * Corresponding eBPF program may look like: 119 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 120 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 121 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 122 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 123 * here verifier looks at prototype of map_lookup_elem() and sees: 124 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 125 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 126 * 127 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 128 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 129 * and were initialized prior to this call. 130 * If it's ok, then verifier allows this BPF_CALL insn and looks at 131 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 132 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 133 * returns ether pointer to map value or NULL. 134 * 135 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 136 * insn, the register holding that pointer in the true branch changes state to 137 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 138 * branch. See check_cond_jmp_op(). 139 * 140 * After the call R0 is set to return type of the function and registers R1-R5 141 * are set to NOT_INIT to indicate that they are no longer readable. 142 */ 143 144 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 145 struct bpf_verifier_stack_elem { 146 /* verifer state is 'st' 147 * before processing instruction 'insn_idx' 148 * and after processing instruction 'prev_insn_idx' 149 */ 150 struct bpf_verifier_state st; 151 int insn_idx; 152 int prev_insn_idx; 153 struct bpf_verifier_stack_elem *next; 154 }; 155 156 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 157 #define BPF_COMPLEXITY_LIMIT_STACK 1024 158 159 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA) 160 161 struct bpf_call_arg_meta { 162 struct bpf_map *map_ptr; 163 bool raw_mode; 164 bool pkt_access; 165 int regno; 166 int access_size; 167 }; 168 169 static DEFINE_MUTEX(bpf_verifier_lock); 170 171 /* log_level controls verbosity level of eBPF verifier. 172 * bpf_verifier_log_write() is used to dump the verification trace to the log, 173 * so the user can figure out what's wrong with the program 174 */ 175 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 176 const char *fmt, ...) 177 { 178 struct bpf_verifer_log *log = &env->log; 179 unsigned int n; 180 va_list args; 181 182 if (!log->level || !log->ubuf || bpf_verifier_log_full(log)) 183 return; 184 185 va_start(args, fmt); 186 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 187 va_end(args); 188 189 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 190 "verifier log line truncated - local buffer too short\n"); 191 192 n = min(log->len_total - log->len_used - 1, n); 193 log->kbuf[n] = '\0'; 194 195 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 196 log->len_used += n; 197 else 198 log->ubuf = NULL; 199 } 200 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 201 /* Historically bpf_verifier_log_write was called verbose, but the name was too 202 * generic for symbol export. The function was renamed, but not the calls in 203 * the verifier to avoid complicating backports. Hence the alias below. 204 */ 205 static __printf(2, 3) void verbose(struct bpf_verifier_env *env, 206 const char *fmt, ...) 207 __attribute__((alias("bpf_verifier_log_write"))); 208 209 static bool type_is_pkt_pointer(enum bpf_reg_type type) 210 { 211 return type == PTR_TO_PACKET || 212 type == PTR_TO_PACKET_META; 213 } 214 215 /* string representation of 'enum bpf_reg_type' */ 216 static const char * const reg_type_str[] = { 217 [NOT_INIT] = "?", 218 [SCALAR_VALUE] = "inv", 219 [PTR_TO_CTX] = "ctx", 220 [CONST_PTR_TO_MAP] = "map_ptr", 221 [PTR_TO_MAP_VALUE] = "map_value", 222 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 223 [PTR_TO_STACK] = "fp", 224 [PTR_TO_PACKET] = "pkt", 225 [PTR_TO_PACKET_META] = "pkt_meta", 226 [PTR_TO_PACKET_END] = "pkt_end", 227 }; 228 229 static void print_liveness(struct bpf_verifier_env *env, 230 enum bpf_reg_liveness live) 231 { 232 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN)) 233 verbose(env, "_"); 234 if (live & REG_LIVE_READ) 235 verbose(env, "r"); 236 if (live & REG_LIVE_WRITTEN) 237 verbose(env, "w"); 238 } 239 240 static struct bpf_func_state *func(struct bpf_verifier_env *env, 241 const struct bpf_reg_state *reg) 242 { 243 struct bpf_verifier_state *cur = env->cur_state; 244 245 return cur->frame[reg->frameno]; 246 } 247 248 static void print_verifier_state(struct bpf_verifier_env *env, 249 const struct bpf_func_state *state) 250 { 251 const struct bpf_reg_state *reg; 252 enum bpf_reg_type t; 253 int i; 254 255 if (state->frameno) 256 verbose(env, " frame%d:", state->frameno); 257 for (i = 0; i < MAX_BPF_REG; i++) { 258 reg = &state->regs[i]; 259 t = reg->type; 260 if (t == NOT_INIT) 261 continue; 262 verbose(env, " R%d", i); 263 print_liveness(env, reg->live); 264 verbose(env, "=%s", reg_type_str[t]); 265 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 266 tnum_is_const(reg->var_off)) { 267 /* reg->off should be 0 for SCALAR_VALUE */ 268 verbose(env, "%lld", reg->var_off.value + reg->off); 269 if (t == PTR_TO_STACK) 270 verbose(env, ",call_%d", func(env, reg)->callsite); 271 } else { 272 verbose(env, "(id=%d", reg->id); 273 if (t != SCALAR_VALUE) 274 verbose(env, ",off=%d", reg->off); 275 if (type_is_pkt_pointer(t)) 276 verbose(env, ",r=%d", reg->range); 277 else if (t == CONST_PTR_TO_MAP || 278 t == PTR_TO_MAP_VALUE || 279 t == PTR_TO_MAP_VALUE_OR_NULL) 280 verbose(env, ",ks=%d,vs=%d", 281 reg->map_ptr->key_size, 282 reg->map_ptr->value_size); 283 if (tnum_is_const(reg->var_off)) { 284 /* Typically an immediate SCALAR_VALUE, but 285 * could be a pointer whose offset is too big 286 * for reg->off 287 */ 288 verbose(env, ",imm=%llx", reg->var_off.value); 289 } else { 290 if (reg->smin_value != reg->umin_value && 291 reg->smin_value != S64_MIN) 292 verbose(env, ",smin_value=%lld", 293 (long long)reg->smin_value); 294 if (reg->smax_value != reg->umax_value && 295 reg->smax_value != S64_MAX) 296 verbose(env, ",smax_value=%lld", 297 (long long)reg->smax_value); 298 if (reg->umin_value != 0) 299 verbose(env, ",umin_value=%llu", 300 (unsigned long long)reg->umin_value); 301 if (reg->umax_value != U64_MAX) 302 verbose(env, ",umax_value=%llu", 303 (unsigned long long)reg->umax_value); 304 if (!tnum_is_unknown(reg->var_off)) { 305 char tn_buf[48]; 306 307 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 308 verbose(env, ",var_off=%s", tn_buf); 309 } 310 } 311 verbose(env, ")"); 312 } 313 } 314 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 315 if (state->stack[i].slot_type[0] == STACK_SPILL) { 316 verbose(env, " fp%d", 317 (-i - 1) * BPF_REG_SIZE); 318 print_liveness(env, state->stack[i].spilled_ptr.live); 319 verbose(env, "=%s", 320 reg_type_str[state->stack[i].spilled_ptr.type]); 321 } 322 if (state->stack[i].slot_type[0] == STACK_ZERO) 323 verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE); 324 } 325 verbose(env, "\n"); 326 } 327 328 static int copy_stack_state(struct bpf_func_state *dst, 329 const struct bpf_func_state *src) 330 { 331 if (!src->stack) 332 return 0; 333 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) { 334 /* internal bug, make state invalid to reject the program */ 335 memset(dst, 0, sizeof(*dst)); 336 return -EFAULT; 337 } 338 memcpy(dst->stack, src->stack, 339 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE)); 340 return 0; 341 } 342 343 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 344 * make it consume minimal amount of memory. check_stack_write() access from 345 * the program calls into realloc_func_state() to grow the stack size. 346 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 347 * which this function copies over. It points to previous bpf_verifier_state 348 * which is never reallocated 349 */ 350 static int realloc_func_state(struct bpf_func_state *state, int size, 351 bool copy_old) 352 { 353 u32 old_size = state->allocated_stack; 354 struct bpf_stack_state *new_stack; 355 int slot = size / BPF_REG_SIZE; 356 357 if (size <= old_size || !size) { 358 if (copy_old) 359 return 0; 360 state->allocated_stack = slot * BPF_REG_SIZE; 361 if (!size && old_size) { 362 kfree(state->stack); 363 state->stack = NULL; 364 } 365 return 0; 366 } 367 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state), 368 GFP_KERNEL); 369 if (!new_stack) 370 return -ENOMEM; 371 if (copy_old) { 372 if (state->stack) 373 memcpy(new_stack, state->stack, 374 sizeof(*new_stack) * (old_size / BPF_REG_SIZE)); 375 memset(new_stack + old_size / BPF_REG_SIZE, 0, 376 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE); 377 } 378 state->allocated_stack = slot * BPF_REG_SIZE; 379 kfree(state->stack); 380 state->stack = new_stack; 381 return 0; 382 } 383 384 static void free_func_state(struct bpf_func_state *state) 385 { 386 if (!state) 387 return; 388 kfree(state->stack); 389 kfree(state); 390 } 391 392 static void free_verifier_state(struct bpf_verifier_state *state, 393 bool free_self) 394 { 395 int i; 396 397 for (i = 0; i <= state->curframe; i++) { 398 free_func_state(state->frame[i]); 399 state->frame[i] = NULL; 400 } 401 if (free_self) 402 kfree(state); 403 } 404 405 /* copy verifier state from src to dst growing dst stack space 406 * when necessary to accommodate larger src stack 407 */ 408 static int copy_func_state(struct bpf_func_state *dst, 409 const struct bpf_func_state *src) 410 { 411 int err; 412 413 err = realloc_func_state(dst, src->allocated_stack, false); 414 if (err) 415 return err; 416 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack)); 417 return copy_stack_state(dst, src); 418 } 419 420 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 421 const struct bpf_verifier_state *src) 422 { 423 struct bpf_func_state *dst; 424 int i, err; 425 426 /* if dst has more stack frames then src frame, free them */ 427 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 428 free_func_state(dst_state->frame[i]); 429 dst_state->frame[i] = NULL; 430 } 431 dst_state->curframe = src->curframe; 432 dst_state->parent = src->parent; 433 for (i = 0; i <= src->curframe; i++) { 434 dst = dst_state->frame[i]; 435 if (!dst) { 436 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 437 if (!dst) 438 return -ENOMEM; 439 dst_state->frame[i] = dst; 440 } 441 err = copy_func_state(dst, src->frame[i]); 442 if (err) 443 return err; 444 } 445 return 0; 446 } 447 448 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 449 int *insn_idx) 450 { 451 struct bpf_verifier_state *cur = env->cur_state; 452 struct bpf_verifier_stack_elem *elem, *head = env->head; 453 int err; 454 455 if (env->head == NULL) 456 return -ENOENT; 457 458 if (cur) { 459 err = copy_verifier_state(cur, &head->st); 460 if (err) 461 return err; 462 } 463 if (insn_idx) 464 *insn_idx = head->insn_idx; 465 if (prev_insn_idx) 466 *prev_insn_idx = head->prev_insn_idx; 467 elem = head->next; 468 free_verifier_state(&head->st, false); 469 kfree(head); 470 env->head = elem; 471 env->stack_size--; 472 return 0; 473 } 474 475 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 476 int insn_idx, int prev_insn_idx) 477 { 478 struct bpf_verifier_state *cur = env->cur_state; 479 struct bpf_verifier_stack_elem *elem; 480 int err; 481 482 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 483 if (!elem) 484 goto err; 485 486 elem->insn_idx = insn_idx; 487 elem->prev_insn_idx = prev_insn_idx; 488 elem->next = env->head; 489 env->head = elem; 490 env->stack_size++; 491 err = copy_verifier_state(&elem->st, cur); 492 if (err) 493 goto err; 494 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 495 verbose(env, "BPF program is too complex\n"); 496 goto err; 497 } 498 return &elem->st; 499 err: 500 free_verifier_state(env->cur_state, true); 501 env->cur_state = NULL; 502 /* pop all elements and return */ 503 while (!pop_stack(env, NULL, NULL)); 504 return NULL; 505 } 506 507 #define CALLER_SAVED_REGS 6 508 static const int caller_saved[CALLER_SAVED_REGS] = { 509 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 510 }; 511 #define CALLEE_SAVED_REGS 5 512 static const int callee_saved[CALLEE_SAVED_REGS] = { 513 BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9 514 }; 515 516 static void __mark_reg_not_init(struct bpf_reg_state *reg); 517 518 /* Mark the unknown part of a register (variable offset or scalar value) as 519 * known to have the value @imm. 520 */ 521 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 522 { 523 reg->id = 0; 524 reg->var_off = tnum_const(imm); 525 reg->smin_value = (s64)imm; 526 reg->smax_value = (s64)imm; 527 reg->umin_value = imm; 528 reg->umax_value = imm; 529 } 530 531 /* Mark the 'variable offset' part of a register as zero. This should be 532 * used only on registers holding a pointer type. 533 */ 534 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 535 { 536 __mark_reg_known(reg, 0); 537 } 538 539 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 540 { 541 __mark_reg_known(reg, 0); 542 reg->off = 0; 543 reg->type = SCALAR_VALUE; 544 } 545 546 static void mark_reg_known_zero(struct bpf_verifier_env *env, 547 struct bpf_reg_state *regs, u32 regno) 548 { 549 if (WARN_ON(regno >= MAX_BPF_REG)) { 550 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 551 /* Something bad happened, let's kill all regs */ 552 for (regno = 0; regno < MAX_BPF_REG; regno++) 553 __mark_reg_not_init(regs + regno); 554 return; 555 } 556 __mark_reg_known_zero(regs + regno); 557 } 558 559 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 560 { 561 return type_is_pkt_pointer(reg->type); 562 } 563 564 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 565 { 566 return reg_is_pkt_pointer(reg) || 567 reg->type == PTR_TO_PACKET_END; 568 } 569 570 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 571 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 572 enum bpf_reg_type which) 573 { 574 /* The register can already have a range from prior markings. 575 * This is fine as long as it hasn't been advanced from its 576 * origin. 577 */ 578 return reg->type == which && 579 reg->id == 0 && 580 reg->off == 0 && 581 tnum_equals_const(reg->var_off, 0); 582 } 583 584 /* Attempts to improve min/max values based on var_off information */ 585 static void __update_reg_bounds(struct bpf_reg_state *reg) 586 { 587 /* min signed is max(sign bit) | min(other bits) */ 588 reg->smin_value = max_t(s64, reg->smin_value, 589 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 590 /* max signed is min(sign bit) | max(other bits) */ 591 reg->smax_value = min_t(s64, reg->smax_value, 592 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 593 reg->umin_value = max(reg->umin_value, reg->var_off.value); 594 reg->umax_value = min(reg->umax_value, 595 reg->var_off.value | reg->var_off.mask); 596 } 597 598 /* Uses signed min/max values to inform unsigned, and vice-versa */ 599 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 600 { 601 /* Learn sign from signed bounds. 602 * If we cannot cross the sign boundary, then signed and unsigned bounds 603 * are the same, so combine. This works even in the negative case, e.g. 604 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 605 */ 606 if (reg->smin_value >= 0 || reg->smax_value < 0) { 607 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 608 reg->umin_value); 609 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 610 reg->umax_value); 611 return; 612 } 613 /* Learn sign from unsigned bounds. Signed bounds cross the sign 614 * boundary, so we must be careful. 615 */ 616 if ((s64)reg->umax_value >= 0) { 617 /* Positive. We can't learn anything from the smin, but smax 618 * is positive, hence safe. 619 */ 620 reg->smin_value = reg->umin_value; 621 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 622 reg->umax_value); 623 } else if ((s64)reg->umin_value < 0) { 624 /* Negative. We can't learn anything from the smax, but smin 625 * is negative, hence safe. 626 */ 627 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 628 reg->umin_value); 629 reg->smax_value = reg->umax_value; 630 } 631 } 632 633 /* Attempts to improve var_off based on unsigned min/max information */ 634 static void __reg_bound_offset(struct bpf_reg_state *reg) 635 { 636 reg->var_off = tnum_intersect(reg->var_off, 637 tnum_range(reg->umin_value, 638 reg->umax_value)); 639 } 640 641 /* Reset the min/max bounds of a register */ 642 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 643 { 644 reg->smin_value = S64_MIN; 645 reg->smax_value = S64_MAX; 646 reg->umin_value = 0; 647 reg->umax_value = U64_MAX; 648 } 649 650 /* Mark a register as having a completely unknown (scalar) value. */ 651 static void __mark_reg_unknown(struct bpf_reg_state *reg) 652 { 653 reg->type = SCALAR_VALUE; 654 reg->id = 0; 655 reg->off = 0; 656 reg->var_off = tnum_unknown; 657 reg->frameno = 0; 658 __mark_reg_unbounded(reg); 659 } 660 661 static void mark_reg_unknown(struct bpf_verifier_env *env, 662 struct bpf_reg_state *regs, u32 regno) 663 { 664 if (WARN_ON(regno >= MAX_BPF_REG)) { 665 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 666 /* Something bad happened, let's kill all regs except FP */ 667 for (regno = 0; regno < BPF_REG_FP; regno++) 668 __mark_reg_not_init(regs + regno); 669 return; 670 } 671 __mark_reg_unknown(regs + regno); 672 } 673 674 static void __mark_reg_not_init(struct bpf_reg_state *reg) 675 { 676 __mark_reg_unknown(reg); 677 reg->type = NOT_INIT; 678 } 679 680 static void mark_reg_not_init(struct bpf_verifier_env *env, 681 struct bpf_reg_state *regs, u32 regno) 682 { 683 if (WARN_ON(regno >= MAX_BPF_REG)) { 684 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 685 /* Something bad happened, let's kill all regs except FP */ 686 for (regno = 0; regno < BPF_REG_FP; regno++) 687 __mark_reg_not_init(regs + regno); 688 return; 689 } 690 __mark_reg_not_init(regs + regno); 691 } 692 693 static void init_reg_state(struct bpf_verifier_env *env, 694 struct bpf_func_state *state) 695 { 696 struct bpf_reg_state *regs = state->regs; 697 int i; 698 699 for (i = 0; i < MAX_BPF_REG; i++) { 700 mark_reg_not_init(env, regs, i); 701 regs[i].live = REG_LIVE_NONE; 702 } 703 704 /* frame pointer */ 705 regs[BPF_REG_FP].type = PTR_TO_STACK; 706 mark_reg_known_zero(env, regs, BPF_REG_FP); 707 regs[BPF_REG_FP].frameno = state->frameno; 708 709 /* 1st arg to a function */ 710 regs[BPF_REG_1].type = PTR_TO_CTX; 711 mark_reg_known_zero(env, regs, BPF_REG_1); 712 } 713 714 #define BPF_MAIN_FUNC (-1) 715 static void init_func_state(struct bpf_verifier_env *env, 716 struct bpf_func_state *state, 717 int callsite, int frameno, int subprogno) 718 { 719 state->callsite = callsite; 720 state->frameno = frameno; 721 state->subprogno = subprogno; 722 init_reg_state(env, state); 723 } 724 725 enum reg_arg_type { 726 SRC_OP, /* register is used as source operand */ 727 DST_OP, /* register is used as destination operand */ 728 DST_OP_NO_MARK /* same as above, check only, don't mark */ 729 }; 730 731 static int cmp_subprogs(const void *a, const void *b) 732 { 733 return *(int *)a - *(int *)b; 734 } 735 736 static int find_subprog(struct bpf_verifier_env *env, int off) 737 { 738 u32 *p; 739 740 p = bsearch(&off, env->subprog_starts, env->subprog_cnt, 741 sizeof(env->subprog_starts[0]), cmp_subprogs); 742 if (!p) 743 return -ENOENT; 744 return p - env->subprog_starts; 745 746 } 747 748 static int add_subprog(struct bpf_verifier_env *env, int off) 749 { 750 int insn_cnt = env->prog->len; 751 int ret; 752 753 if (off >= insn_cnt || off < 0) { 754 verbose(env, "call to invalid destination\n"); 755 return -EINVAL; 756 } 757 ret = find_subprog(env, off); 758 if (ret >= 0) 759 return 0; 760 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 761 verbose(env, "too many subprograms\n"); 762 return -E2BIG; 763 } 764 env->subprog_starts[env->subprog_cnt++] = off; 765 sort(env->subprog_starts, env->subprog_cnt, 766 sizeof(env->subprog_starts[0]), cmp_subprogs, NULL); 767 return 0; 768 } 769 770 static int check_subprogs(struct bpf_verifier_env *env) 771 { 772 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 773 struct bpf_insn *insn = env->prog->insnsi; 774 int insn_cnt = env->prog->len; 775 776 /* determine subprog starts. The end is one before the next starts */ 777 for (i = 0; i < insn_cnt; i++) { 778 if (insn[i].code != (BPF_JMP | BPF_CALL)) 779 continue; 780 if (insn[i].src_reg != BPF_PSEUDO_CALL) 781 continue; 782 if (!env->allow_ptr_leaks) { 783 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 784 return -EPERM; 785 } 786 if (bpf_prog_is_dev_bound(env->prog->aux)) { 787 verbose(env, "function calls in offloaded programs are not supported yet\n"); 788 return -EINVAL; 789 } 790 ret = add_subprog(env, i + insn[i].imm + 1); 791 if (ret < 0) 792 return ret; 793 } 794 795 if (env->log.level > 1) 796 for (i = 0; i < env->subprog_cnt; i++) 797 verbose(env, "func#%d @%d\n", i, env->subprog_starts[i]); 798 799 /* now check that all jumps are within the same subprog */ 800 subprog_start = 0; 801 if (env->subprog_cnt == cur_subprog) 802 subprog_end = insn_cnt; 803 else 804 subprog_end = env->subprog_starts[cur_subprog++]; 805 for (i = 0; i < insn_cnt; i++) { 806 u8 code = insn[i].code; 807 808 if (BPF_CLASS(code) != BPF_JMP) 809 goto next; 810 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 811 goto next; 812 off = i + insn[i].off + 1; 813 if (off < subprog_start || off >= subprog_end) { 814 verbose(env, "jump out of range from insn %d to %d\n", i, off); 815 return -EINVAL; 816 } 817 next: 818 if (i == subprog_end - 1) { 819 /* to avoid fall-through from one subprog into another 820 * the last insn of the subprog should be either exit 821 * or unconditional jump back 822 */ 823 if (code != (BPF_JMP | BPF_EXIT) && 824 code != (BPF_JMP | BPF_JA)) { 825 verbose(env, "last insn is not an exit or jmp\n"); 826 return -EINVAL; 827 } 828 subprog_start = subprog_end; 829 if (env->subprog_cnt == cur_subprog) 830 subprog_end = insn_cnt; 831 else 832 subprog_end = env->subprog_starts[cur_subprog++]; 833 } 834 } 835 return 0; 836 } 837 838 static 839 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env, 840 const struct bpf_verifier_state *state, 841 struct bpf_verifier_state *parent, 842 u32 regno) 843 { 844 struct bpf_verifier_state *tmp = NULL; 845 846 /* 'parent' could be a state of caller and 847 * 'state' could be a state of callee. In such case 848 * parent->curframe < state->curframe 849 * and it's ok for r1 - r5 registers 850 * 851 * 'parent' could be a callee's state after it bpf_exit-ed. 852 * In such case parent->curframe > state->curframe 853 * and it's ok for r0 only 854 */ 855 if (parent->curframe == state->curframe || 856 (parent->curframe < state->curframe && 857 regno >= BPF_REG_1 && regno <= BPF_REG_5) || 858 (parent->curframe > state->curframe && 859 regno == BPF_REG_0)) 860 return parent; 861 862 if (parent->curframe > state->curframe && 863 regno >= BPF_REG_6) { 864 /* for callee saved regs we have to skip the whole chain 865 * of states that belong to callee and mark as LIVE_READ 866 * the registers before the call 867 */ 868 tmp = parent; 869 while (tmp && tmp->curframe != state->curframe) { 870 tmp = tmp->parent; 871 } 872 if (!tmp) 873 goto bug; 874 parent = tmp; 875 } else { 876 goto bug; 877 } 878 return parent; 879 bug: 880 verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp); 881 verbose(env, "regno %d parent frame %d current frame %d\n", 882 regno, parent->curframe, state->curframe); 883 return NULL; 884 } 885 886 static int mark_reg_read(struct bpf_verifier_env *env, 887 const struct bpf_verifier_state *state, 888 struct bpf_verifier_state *parent, 889 u32 regno) 890 { 891 bool writes = parent == state->parent; /* Observe write marks */ 892 893 if (regno == BPF_REG_FP) 894 /* We don't need to worry about FP liveness because it's read-only */ 895 return 0; 896 897 while (parent) { 898 /* if read wasn't screened by an earlier write ... */ 899 if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN) 900 break; 901 parent = skip_callee(env, state, parent, regno); 902 if (!parent) 903 return -EFAULT; 904 /* ... then we depend on parent's value */ 905 parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ; 906 state = parent; 907 parent = state->parent; 908 writes = true; 909 } 910 return 0; 911 } 912 913 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 914 enum reg_arg_type t) 915 { 916 struct bpf_verifier_state *vstate = env->cur_state; 917 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 918 struct bpf_reg_state *regs = state->regs; 919 920 if (regno >= MAX_BPF_REG) { 921 verbose(env, "R%d is invalid\n", regno); 922 return -EINVAL; 923 } 924 925 if (t == SRC_OP) { 926 /* check whether register used as source operand can be read */ 927 if (regs[regno].type == NOT_INIT) { 928 verbose(env, "R%d !read_ok\n", regno); 929 return -EACCES; 930 } 931 return mark_reg_read(env, vstate, vstate->parent, regno); 932 } else { 933 /* check whether register used as dest operand can be written to */ 934 if (regno == BPF_REG_FP) { 935 verbose(env, "frame pointer is read only\n"); 936 return -EACCES; 937 } 938 regs[regno].live |= REG_LIVE_WRITTEN; 939 if (t == DST_OP) 940 mark_reg_unknown(env, regs, regno); 941 } 942 return 0; 943 } 944 945 static bool is_spillable_regtype(enum bpf_reg_type type) 946 { 947 switch (type) { 948 case PTR_TO_MAP_VALUE: 949 case PTR_TO_MAP_VALUE_OR_NULL: 950 case PTR_TO_STACK: 951 case PTR_TO_CTX: 952 case PTR_TO_PACKET: 953 case PTR_TO_PACKET_META: 954 case PTR_TO_PACKET_END: 955 case CONST_PTR_TO_MAP: 956 return true; 957 default: 958 return false; 959 } 960 } 961 962 /* Does this register contain a constant zero? */ 963 static bool register_is_null(struct bpf_reg_state *reg) 964 { 965 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 966 } 967 968 /* check_stack_read/write functions track spill/fill of registers, 969 * stack boundary and alignment are checked in check_mem_access() 970 */ 971 static int check_stack_write(struct bpf_verifier_env *env, 972 struct bpf_func_state *state, /* func where register points to */ 973 int off, int size, int value_regno) 974 { 975 struct bpf_func_state *cur; /* state of the current function */ 976 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 977 enum bpf_reg_type type; 978 979 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 980 true); 981 if (err) 982 return err; 983 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 984 * so it's aligned access and [off, off + size) are within stack limits 985 */ 986 if (!env->allow_ptr_leaks && 987 state->stack[spi].slot_type[0] == STACK_SPILL && 988 size != BPF_REG_SIZE) { 989 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 990 return -EACCES; 991 } 992 993 cur = env->cur_state->frame[env->cur_state->curframe]; 994 if (value_regno >= 0 && 995 is_spillable_regtype((type = cur->regs[value_regno].type))) { 996 997 /* register containing pointer is being spilled into stack */ 998 if (size != BPF_REG_SIZE) { 999 verbose(env, "invalid size of register spill\n"); 1000 return -EACCES; 1001 } 1002 1003 if (state != cur && type == PTR_TO_STACK) { 1004 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1005 return -EINVAL; 1006 } 1007 1008 /* save register state */ 1009 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1010 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1011 1012 for (i = 0; i < BPF_REG_SIZE; i++) 1013 state->stack[spi].slot_type[i] = STACK_SPILL; 1014 } else { 1015 u8 type = STACK_MISC; 1016 1017 /* regular write of data into stack */ 1018 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {}; 1019 1020 /* only mark the slot as written if all 8 bytes were written 1021 * otherwise read propagation may incorrectly stop too soon 1022 * when stack slots are partially written. 1023 * This heuristic means that read propagation will be 1024 * conservative, since it will add reg_live_read marks 1025 * to stack slots all the way to first state when programs 1026 * writes+reads less than 8 bytes 1027 */ 1028 if (size == BPF_REG_SIZE) 1029 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1030 1031 /* when we zero initialize stack slots mark them as such */ 1032 if (value_regno >= 0 && 1033 register_is_null(&cur->regs[value_regno])) 1034 type = STACK_ZERO; 1035 1036 for (i = 0; i < size; i++) 1037 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1038 type; 1039 } 1040 return 0; 1041 } 1042 1043 /* registers of every function are unique and mark_reg_read() propagates 1044 * the liveness in the following cases: 1045 * - from callee into caller for R1 - R5 that were used as arguments 1046 * - from caller into callee for R0 that used as result of the call 1047 * - from caller to the same caller skipping states of the callee for R6 - R9, 1048 * since R6 - R9 are callee saved by implicit function prologue and 1049 * caller's R6 != callee's R6, so when we propagate liveness up to 1050 * parent states we need to skip callee states for R6 - R9. 1051 * 1052 * stack slot marking is different, since stacks of caller and callee are 1053 * accessible in both (since caller can pass a pointer to caller's stack to 1054 * callee which can pass it to another function), hence mark_stack_slot_read() 1055 * has to propagate the stack liveness to all parent states at given frame number. 1056 * Consider code: 1057 * f1() { 1058 * ptr = fp - 8; 1059 * *ptr = ctx; 1060 * call f2 { 1061 * .. = *ptr; 1062 * } 1063 * .. = *ptr; 1064 * } 1065 * First *ptr is reading from f1's stack and mark_stack_slot_read() has 1066 * to mark liveness at the f1's frame and not f2's frame. 1067 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has 1068 * to propagate liveness to f2 states at f1's frame level and further into 1069 * f1 states at f1's frame level until write into that stack slot 1070 */ 1071 static void mark_stack_slot_read(struct bpf_verifier_env *env, 1072 const struct bpf_verifier_state *state, 1073 struct bpf_verifier_state *parent, 1074 int slot, int frameno) 1075 { 1076 bool writes = parent == state->parent; /* Observe write marks */ 1077 1078 while (parent) { 1079 if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE) 1080 /* since LIVE_WRITTEN mark is only done for full 8-byte 1081 * write the read marks are conservative and parent 1082 * state may not even have the stack allocated. In such case 1083 * end the propagation, since the loop reached beginning 1084 * of the function 1085 */ 1086 break; 1087 /* if read wasn't screened by an earlier write ... */ 1088 if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN) 1089 break; 1090 /* ... then we depend on parent's value */ 1091 parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ; 1092 state = parent; 1093 parent = state->parent; 1094 writes = true; 1095 } 1096 } 1097 1098 static int check_stack_read(struct bpf_verifier_env *env, 1099 struct bpf_func_state *reg_state /* func where register points to */, 1100 int off, int size, int value_regno) 1101 { 1102 struct bpf_verifier_state *vstate = env->cur_state; 1103 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1104 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1105 u8 *stype; 1106 1107 if (reg_state->allocated_stack <= slot) { 1108 verbose(env, "invalid read from stack off %d+0 size %d\n", 1109 off, size); 1110 return -EACCES; 1111 } 1112 stype = reg_state->stack[spi].slot_type; 1113 1114 if (stype[0] == STACK_SPILL) { 1115 if (size != BPF_REG_SIZE) { 1116 verbose(env, "invalid size of register spill\n"); 1117 return -EACCES; 1118 } 1119 for (i = 1; i < BPF_REG_SIZE; i++) { 1120 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1121 verbose(env, "corrupted spill memory\n"); 1122 return -EACCES; 1123 } 1124 } 1125 1126 if (value_regno >= 0) { 1127 /* restore register state from stack */ 1128 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1129 /* mark reg as written since spilled pointer state likely 1130 * has its liveness marks cleared by is_state_visited() 1131 * which resets stack/reg liveness for state transitions 1132 */ 1133 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1134 } 1135 mark_stack_slot_read(env, vstate, vstate->parent, spi, 1136 reg_state->frameno); 1137 return 0; 1138 } else { 1139 int zeros = 0; 1140 1141 for (i = 0; i < size; i++) { 1142 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1143 continue; 1144 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1145 zeros++; 1146 continue; 1147 } 1148 verbose(env, "invalid read from stack off %d+%d size %d\n", 1149 off, i, size); 1150 return -EACCES; 1151 } 1152 mark_stack_slot_read(env, vstate, vstate->parent, spi, 1153 reg_state->frameno); 1154 if (value_regno >= 0) { 1155 if (zeros == size) { 1156 /* any size read into register is zero extended, 1157 * so the whole register == const_zero 1158 */ 1159 __mark_reg_const_zero(&state->regs[value_regno]); 1160 } else { 1161 /* have read misc data from the stack */ 1162 mark_reg_unknown(env, state->regs, value_regno); 1163 } 1164 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1165 } 1166 return 0; 1167 } 1168 } 1169 1170 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1171 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1172 int size, bool zero_size_allowed) 1173 { 1174 struct bpf_reg_state *regs = cur_regs(env); 1175 struct bpf_map *map = regs[regno].map_ptr; 1176 1177 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1178 off + size > map->value_size) { 1179 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1180 map->value_size, off, size); 1181 return -EACCES; 1182 } 1183 return 0; 1184 } 1185 1186 /* check read/write into a map element with possible variable offset */ 1187 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1188 int off, int size, bool zero_size_allowed) 1189 { 1190 struct bpf_verifier_state *vstate = env->cur_state; 1191 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1192 struct bpf_reg_state *reg = &state->regs[regno]; 1193 int err; 1194 1195 /* We may have adjusted the register to this map value, so we 1196 * need to try adding each of min_value and max_value to off 1197 * to make sure our theoretical access will be safe. 1198 */ 1199 if (env->log.level) 1200 print_verifier_state(env, state); 1201 /* The minimum value is only important with signed 1202 * comparisons where we can't assume the floor of a 1203 * value is 0. If we are using signed variables for our 1204 * index'es we need to make sure that whatever we use 1205 * will have a set floor within our range. 1206 */ 1207 if (reg->smin_value < 0) { 1208 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1209 regno); 1210 return -EACCES; 1211 } 1212 err = __check_map_access(env, regno, reg->smin_value + off, size, 1213 zero_size_allowed); 1214 if (err) { 1215 verbose(env, "R%d min value is outside of the array range\n", 1216 regno); 1217 return err; 1218 } 1219 1220 /* If we haven't set a max value then we need to bail since we can't be 1221 * sure we won't do bad things. 1222 * If reg->umax_value + off could overflow, treat that as unbounded too. 1223 */ 1224 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1225 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1226 regno); 1227 return -EACCES; 1228 } 1229 err = __check_map_access(env, regno, reg->umax_value + off, size, 1230 zero_size_allowed); 1231 if (err) 1232 verbose(env, "R%d max value is outside of the array range\n", 1233 regno); 1234 return err; 1235 } 1236 1237 #define MAX_PACKET_OFF 0xffff 1238 1239 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1240 const struct bpf_call_arg_meta *meta, 1241 enum bpf_access_type t) 1242 { 1243 switch (env->prog->type) { 1244 case BPF_PROG_TYPE_LWT_IN: 1245 case BPF_PROG_TYPE_LWT_OUT: 1246 /* dst_input() and dst_output() can't write for now */ 1247 if (t == BPF_WRITE) 1248 return false; 1249 /* fallthrough */ 1250 case BPF_PROG_TYPE_SCHED_CLS: 1251 case BPF_PROG_TYPE_SCHED_ACT: 1252 case BPF_PROG_TYPE_XDP: 1253 case BPF_PROG_TYPE_LWT_XMIT: 1254 case BPF_PROG_TYPE_SK_SKB: 1255 if (meta) 1256 return meta->pkt_access; 1257 1258 env->seen_direct_write = true; 1259 return true; 1260 default: 1261 return false; 1262 } 1263 } 1264 1265 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1266 int off, int size, bool zero_size_allowed) 1267 { 1268 struct bpf_reg_state *regs = cur_regs(env); 1269 struct bpf_reg_state *reg = ®s[regno]; 1270 1271 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1272 (u64)off + size > reg->range) { 1273 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1274 off, size, regno, reg->id, reg->off, reg->range); 1275 return -EACCES; 1276 } 1277 return 0; 1278 } 1279 1280 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1281 int size, bool zero_size_allowed) 1282 { 1283 struct bpf_reg_state *regs = cur_regs(env); 1284 struct bpf_reg_state *reg = ®s[regno]; 1285 int err; 1286 1287 /* We may have added a variable offset to the packet pointer; but any 1288 * reg->range we have comes after that. We are only checking the fixed 1289 * offset. 1290 */ 1291 1292 /* We don't allow negative numbers, because we aren't tracking enough 1293 * detail to prove they're safe. 1294 */ 1295 if (reg->smin_value < 0) { 1296 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1297 regno); 1298 return -EACCES; 1299 } 1300 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1301 if (err) { 1302 verbose(env, "R%d offset is outside of the packet\n", regno); 1303 return err; 1304 } 1305 return err; 1306 } 1307 1308 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1309 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1310 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1311 { 1312 struct bpf_insn_access_aux info = { 1313 .reg_type = *reg_type, 1314 }; 1315 1316 if (env->ops->is_valid_access && 1317 env->ops->is_valid_access(off, size, t, &info)) { 1318 /* A non zero info.ctx_field_size indicates that this field is a 1319 * candidate for later verifier transformation to load the whole 1320 * field and then apply a mask when accessed with a narrower 1321 * access than actual ctx access size. A zero info.ctx_field_size 1322 * will only allow for whole field access and rejects any other 1323 * type of narrower access. 1324 */ 1325 *reg_type = info.reg_type; 1326 1327 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1328 /* remember the offset of last byte accessed in ctx */ 1329 if (env->prog->aux->max_ctx_offset < off + size) 1330 env->prog->aux->max_ctx_offset = off + size; 1331 return 0; 1332 } 1333 1334 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1335 return -EACCES; 1336 } 1337 1338 static bool __is_pointer_value(bool allow_ptr_leaks, 1339 const struct bpf_reg_state *reg) 1340 { 1341 if (allow_ptr_leaks) 1342 return false; 1343 1344 return reg->type != SCALAR_VALUE; 1345 } 1346 1347 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1348 { 1349 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno); 1350 } 1351 1352 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1353 { 1354 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1355 1356 return reg->type == PTR_TO_CTX; 1357 } 1358 1359 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1360 { 1361 const struct bpf_reg_state *reg = cur_regs(env) + regno; 1362 1363 return type_is_pkt_pointer(reg->type); 1364 } 1365 1366 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1367 const struct bpf_reg_state *reg, 1368 int off, int size, bool strict) 1369 { 1370 struct tnum reg_off; 1371 int ip_align; 1372 1373 /* Byte size accesses are always allowed. */ 1374 if (!strict || size == 1) 1375 return 0; 1376 1377 /* For platforms that do not have a Kconfig enabling 1378 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1379 * NET_IP_ALIGN is universally set to '2'. And on platforms 1380 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1381 * to this code only in strict mode where we want to emulate 1382 * the NET_IP_ALIGN==2 checking. Therefore use an 1383 * unconditional IP align value of '2'. 1384 */ 1385 ip_align = 2; 1386 1387 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1388 if (!tnum_is_aligned(reg_off, size)) { 1389 char tn_buf[48]; 1390 1391 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1392 verbose(env, 1393 "misaligned packet access off %d+%s+%d+%d size %d\n", 1394 ip_align, tn_buf, reg->off, off, size); 1395 return -EACCES; 1396 } 1397 1398 return 0; 1399 } 1400 1401 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1402 const struct bpf_reg_state *reg, 1403 const char *pointer_desc, 1404 int off, int size, bool strict) 1405 { 1406 struct tnum reg_off; 1407 1408 /* Byte size accesses are always allowed. */ 1409 if (!strict || size == 1) 1410 return 0; 1411 1412 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1413 if (!tnum_is_aligned(reg_off, size)) { 1414 char tn_buf[48]; 1415 1416 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1417 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1418 pointer_desc, tn_buf, reg->off, off, size); 1419 return -EACCES; 1420 } 1421 1422 return 0; 1423 } 1424 1425 static int check_ptr_alignment(struct bpf_verifier_env *env, 1426 const struct bpf_reg_state *reg, int off, 1427 int size, bool strict_alignment_once) 1428 { 1429 bool strict = env->strict_alignment || strict_alignment_once; 1430 const char *pointer_desc = ""; 1431 1432 switch (reg->type) { 1433 case PTR_TO_PACKET: 1434 case PTR_TO_PACKET_META: 1435 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1436 * right in front, treat it the very same way. 1437 */ 1438 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1439 case PTR_TO_MAP_VALUE: 1440 pointer_desc = "value "; 1441 break; 1442 case PTR_TO_CTX: 1443 pointer_desc = "context "; 1444 break; 1445 case PTR_TO_STACK: 1446 pointer_desc = "stack "; 1447 /* The stack spill tracking logic in check_stack_write() 1448 * and check_stack_read() relies on stack accesses being 1449 * aligned. 1450 */ 1451 strict = true; 1452 break; 1453 default: 1454 break; 1455 } 1456 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1457 strict); 1458 } 1459 1460 static int update_stack_depth(struct bpf_verifier_env *env, 1461 const struct bpf_func_state *func, 1462 int off) 1463 { 1464 u16 stack = env->subprog_stack_depth[func->subprogno]; 1465 1466 if (stack >= -off) 1467 return 0; 1468 1469 /* update known max for given subprogram */ 1470 env->subprog_stack_depth[func->subprogno] = -off; 1471 return 0; 1472 } 1473 1474 /* starting from main bpf function walk all instructions of the function 1475 * and recursively walk all callees that given function can call. 1476 * Ignore jump and exit insns. 1477 * Since recursion is prevented by check_cfg() this algorithm 1478 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1479 */ 1480 static int check_max_stack_depth(struct bpf_verifier_env *env) 1481 { 1482 int depth = 0, frame = 0, subprog = 0, i = 0, subprog_end; 1483 struct bpf_insn *insn = env->prog->insnsi; 1484 int insn_cnt = env->prog->len; 1485 int ret_insn[MAX_CALL_FRAMES]; 1486 int ret_prog[MAX_CALL_FRAMES]; 1487 1488 process_func: 1489 /* round up to 32-bytes, since this is granularity 1490 * of interpreter stack size 1491 */ 1492 depth += round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32); 1493 if (depth > MAX_BPF_STACK) { 1494 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1495 frame + 1, depth); 1496 return -EACCES; 1497 } 1498 continue_func: 1499 if (env->subprog_cnt == subprog) 1500 subprog_end = insn_cnt; 1501 else 1502 subprog_end = env->subprog_starts[subprog]; 1503 for (; i < subprog_end; i++) { 1504 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1505 continue; 1506 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1507 continue; 1508 /* remember insn and function to return to */ 1509 ret_insn[frame] = i + 1; 1510 ret_prog[frame] = subprog; 1511 1512 /* find the callee */ 1513 i = i + insn[i].imm + 1; 1514 subprog = find_subprog(env, i); 1515 if (subprog < 0) { 1516 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1517 i); 1518 return -EFAULT; 1519 } 1520 subprog++; 1521 frame++; 1522 if (frame >= MAX_CALL_FRAMES) { 1523 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1524 return -EFAULT; 1525 } 1526 goto process_func; 1527 } 1528 /* end of for() loop means the last insn of the 'subprog' 1529 * was reached. Doesn't matter whether it was JA or EXIT 1530 */ 1531 if (frame == 0) 1532 return 0; 1533 depth -= round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32); 1534 frame--; 1535 i = ret_insn[frame]; 1536 subprog = ret_prog[frame]; 1537 goto continue_func; 1538 } 1539 1540 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1541 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1542 const struct bpf_insn *insn, int idx) 1543 { 1544 int start = idx + insn->imm + 1, subprog; 1545 1546 subprog = find_subprog(env, start); 1547 if (subprog < 0) { 1548 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1549 start); 1550 return -EFAULT; 1551 } 1552 subprog++; 1553 return env->subprog_stack_depth[subprog]; 1554 } 1555 #endif 1556 1557 /* truncate register to smaller size (in bytes) 1558 * must be called with size < BPF_REG_SIZE 1559 */ 1560 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1561 { 1562 u64 mask; 1563 1564 /* clear high bits in bit representation */ 1565 reg->var_off = tnum_cast(reg->var_off, size); 1566 1567 /* fix arithmetic bounds */ 1568 mask = ((u64)1 << (size * 8)) - 1; 1569 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1570 reg->umin_value &= mask; 1571 reg->umax_value &= mask; 1572 } else { 1573 reg->umin_value = 0; 1574 reg->umax_value = mask; 1575 } 1576 reg->smin_value = reg->umin_value; 1577 reg->smax_value = reg->umax_value; 1578 } 1579 1580 /* check whether memory at (regno + off) is accessible for t = (read | write) 1581 * if t==write, value_regno is a register which value is stored into memory 1582 * if t==read, value_regno is a register which will receive the value from memory 1583 * if t==write && value_regno==-1, some unknown value is stored into memory 1584 * if t==read && value_regno==-1, don't care what we read from memory 1585 */ 1586 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1587 int off, int bpf_size, enum bpf_access_type t, 1588 int value_regno, bool strict_alignment_once) 1589 { 1590 struct bpf_reg_state *regs = cur_regs(env); 1591 struct bpf_reg_state *reg = regs + regno; 1592 struct bpf_func_state *state; 1593 int size, err = 0; 1594 1595 size = bpf_size_to_bytes(bpf_size); 1596 if (size < 0) 1597 return size; 1598 1599 /* alignment checks will add in reg->off themselves */ 1600 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1601 if (err) 1602 return err; 1603 1604 /* for access checks, reg->off is just part of off */ 1605 off += reg->off; 1606 1607 if (reg->type == PTR_TO_MAP_VALUE) { 1608 if (t == BPF_WRITE && value_regno >= 0 && 1609 is_pointer_value(env, value_regno)) { 1610 verbose(env, "R%d leaks addr into map\n", value_regno); 1611 return -EACCES; 1612 } 1613 1614 err = check_map_access(env, regno, off, size, false); 1615 if (!err && t == BPF_READ && value_regno >= 0) 1616 mark_reg_unknown(env, regs, value_regno); 1617 1618 } else if (reg->type == PTR_TO_CTX) { 1619 enum bpf_reg_type reg_type = SCALAR_VALUE; 1620 1621 if (t == BPF_WRITE && value_regno >= 0 && 1622 is_pointer_value(env, value_regno)) { 1623 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1624 return -EACCES; 1625 } 1626 /* ctx accesses must be at a fixed offset, so that we can 1627 * determine what type of data were returned. 1628 */ 1629 if (reg->off) { 1630 verbose(env, 1631 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n", 1632 regno, reg->off, off - reg->off); 1633 return -EACCES; 1634 } 1635 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1636 char tn_buf[48]; 1637 1638 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1639 verbose(env, 1640 "variable ctx access var_off=%s off=%d size=%d", 1641 tn_buf, off, size); 1642 return -EACCES; 1643 } 1644 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1645 if (!err && t == BPF_READ && value_regno >= 0) { 1646 /* ctx access returns either a scalar, or a 1647 * PTR_TO_PACKET[_META,_END]. In the latter 1648 * case, we know the offset is zero. 1649 */ 1650 if (reg_type == SCALAR_VALUE) 1651 mark_reg_unknown(env, regs, value_regno); 1652 else 1653 mark_reg_known_zero(env, regs, 1654 value_regno); 1655 regs[value_regno].id = 0; 1656 regs[value_regno].off = 0; 1657 regs[value_regno].range = 0; 1658 regs[value_regno].type = reg_type; 1659 } 1660 1661 } else if (reg->type == PTR_TO_STACK) { 1662 /* stack accesses must be at a fixed offset, so that we can 1663 * determine what type of data were returned. 1664 * See check_stack_read(). 1665 */ 1666 if (!tnum_is_const(reg->var_off)) { 1667 char tn_buf[48]; 1668 1669 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1670 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1671 tn_buf, off, size); 1672 return -EACCES; 1673 } 1674 off += reg->var_off.value; 1675 if (off >= 0 || off < -MAX_BPF_STACK) { 1676 verbose(env, "invalid stack off=%d size=%d\n", off, 1677 size); 1678 return -EACCES; 1679 } 1680 1681 state = func(env, reg); 1682 err = update_stack_depth(env, state, off); 1683 if (err) 1684 return err; 1685 1686 if (t == BPF_WRITE) 1687 err = check_stack_write(env, state, off, size, 1688 value_regno); 1689 else 1690 err = check_stack_read(env, state, off, size, 1691 value_regno); 1692 } else if (reg_is_pkt_pointer(reg)) { 1693 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1694 verbose(env, "cannot write into packet\n"); 1695 return -EACCES; 1696 } 1697 if (t == BPF_WRITE && value_regno >= 0 && 1698 is_pointer_value(env, value_regno)) { 1699 verbose(env, "R%d leaks addr into packet\n", 1700 value_regno); 1701 return -EACCES; 1702 } 1703 err = check_packet_access(env, regno, off, size, false); 1704 if (!err && t == BPF_READ && value_regno >= 0) 1705 mark_reg_unknown(env, regs, value_regno); 1706 } else { 1707 verbose(env, "R%d invalid mem access '%s'\n", regno, 1708 reg_type_str[reg->type]); 1709 return -EACCES; 1710 } 1711 1712 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1713 regs[value_regno].type == SCALAR_VALUE) { 1714 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1715 coerce_reg_to_size(®s[value_regno], size); 1716 } 1717 return err; 1718 } 1719 1720 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1721 { 1722 int err; 1723 1724 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1725 insn->imm != 0) { 1726 verbose(env, "BPF_XADD uses reserved fields\n"); 1727 return -EINVAL; 1728 } 1729 1730 /* check src1 operand */ 1731 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1732 if (err) 1733 return err; 1734 1735 /* check src2 operand */ 1736 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1737 if (err) 1738 return err; 1739 1740 if (is_pointer_value(env, insn->src_reg)) { 1741 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1742 return -EACCES; 1743 } 1744 1745 if (is_ctx_reg(env, insn->dst_reg) || 1746 is_pkt_reg(env, insn->dst_reg)) { 1747 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 1748 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ? 1749 "context" : "packet"); 1750 return -EACCES; 1751 } 1752 1753 /* check whether atomic_add can read the memory */ 1754 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1755 BPF_SIZE(insn->code), BPF_READ, -1, true); 1756 if (err) 1757 return err; 1758 1759 /* check whether atomic_add can write into the same memory */ 1760 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1761 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 1762 } 1763 1764 /* when register 'regno' is passed into function that will read 'access_size' 1765 * bytes from that pointer, make sure that it's within stack boundary 1766 * and all elements of stack are initialized. 1767 * Unlike most pointer bounds-checking functions, this one doesn't take an 1768 * 'off' argument, so it has to add in reg->off itself. 1769 */ 1770 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1771 int access_size, bool zero_size_allowed, 1772 struct bpf_call_arg_meta *meta) 1773 { 1774 struct bpf_reg_state *reg = cur_regs(env) + regno; 1775 struct bpf_func_state *state = func(env, reg); 1776 int off, i, slot, spi; 1777 1778 if (reg->type != PTR_TO_STACK) { 1779 /* Allow zero-byte read from NULL, regardless of pointer type */ 1780 if (zero_size_allowed && access_size == 0 && 1781 register_is_null(reg)) 1782 return 0; 1783 1784 verbose(env, "R%d type=%s expected=%s\n", regno, 1785 reg_type_str[reg->type], 1786 reg_type_str[PTR_TO_STACK]); 1787 return -EACCES; 1788 } 1789 1790 /* Only allow fixed-offset stack reads */ 1791 if (!tnum_is_const(reg->var_off)) { 1792 char tn_buf[48]; 1793 1794 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1795 verbose(env, "invalid variable stack read R%d var_off=%s\n", 1796 regno, tn_buf); 1797 return -EACCES; 1798 } 1799 off = reg->off + reg->var_off.value; 1800 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1801 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 1802 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 1803 regno, off, access_size); 1804 return -EACCES; 1805 } 1806 1807 if (meta && meta->raw_mode) { 1808 meta->access_size = access_size; 1809 meta->regno = regno; 1810 return 0; 1811 } 1812 1813 for (i = 0; i < access_size; i++) { 1814 u8 *stype; 1815 1816 slot = -(off + i) - 1; 1817 spi = slot / BPF_REG_SIZE; 1818 if (state->allocated_stack <= slot) 1819 goto err; 1820 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 1821 if (*stype == STACK_MISC) 1822 goto mark; 1823 if (*stype == STACK_ZERO) { 1824 /* helper can write anything into the stack */ 1825 *stype = STACK_MISC; 1826 goto mark; 1827 } 1828 err: 1829 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 1830 off, i, access_size); 1831 return -EACCES; 1832 mark: 1833 /* reading any byte out of 8-byte 'spill_slot' will cause 1834 * the whole slot to be marked as 'read' 1835 */ 1836 mark_stack_slot_read(env, env->cur_state, env->cur_state->parent, 1837 spi, state->frameno); 1838 } 1839 return update_stack_depth(env, state, off); 1840 } 1841 1842 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1843 int access_size, bool zero_size_allowed, 1844 struct bpf_call_arg_meta *meta) 1845 { 1846 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1847 1848 switch (reg->type) { 1849 case PTR_TO_PACKET: 1850 case PTR_TO_PACKET_META: 1851 return check_packet_access(env, regno, reg->off, access_size, 1852 zero_size_allowed); 1853 case PTR_TO_MAP_VALUE: 1854 return check_map_access(env, regno, reg->off, access_size, 1855 zero_size_allowed); 1856 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1857 return check_stack_boundary(env, regno, access_size, 1858 zero_size_allowed, meta); 1859 } 1860 } 1861 1862 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 1863 { 1864 return type == ARG_PTR_TO_MEM || 1865 type == ARG_PTR_TO_MEM_OR_NULL || 1866 type == ARG_PTR_TO_UNINIT_MEM; 1867 } 1868 1869 static bool arg_type_is_mem_size(enum bpf_arg_type type) 1870 { 1871 return type == ARG_CONST_SIZE || 1872 type == ARG_CONST_SIZE_OR_ZERO; 1873 } 1874 1875 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1876 enum bpf_arg_type arg_type, 1877 struct bpf_call_arg_meta *meta) 1878 { 1879 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1880 enum bpf_reg_type expected_type, type = reg->type; 1881 int err = 0; 1882 1883 if (arg_type == ARG_DONTCARE) 1884 return 0; 1885 1886 err = check_reg_arg(env, regno, SRC_OP); 1887 if (err) 1888 return err; 1889 1890 if (arg_type == ARG_ANYTHING) { 1891 if (is_pointer_value(env, regno)) { 1892 verbose(env, "R%d leaks addr into helper function\n", 1893 regno); 1894 return -EACCES; 1895 } 1896 return 0; 1897 } 1898 1899 if (type_is_pkt_pointer(type) && 1900 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1901 verbose(env, "helper access to the packet is not allowed\n"); 1902 return -EACCES; 1903 } 1904 1905 if (arg_type == ARG_PTR_TO_MAP_KEY || 1906 arg_type == ARG_PTR_TO_MAP_VALUE) { 1907 expected_type = PTR_TO_STACK; 1908 if (!type_is_pkt_pointer(type) && 1909 type != expected_type) 1910 goto err_type; 1911 } else if (arg_type == ARG_CONST_SIZE || 1912 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1913 expected_type = SCALAR_VALUE; 1914 if (type != expected_type) 1915 goto err_type; 1916 } else if (arg_type == ARG_CONST_MAP_PTR) { 1917 expected_type = CONST_PTR_TO_MAP; 1918 if (type != expected_type) 1919 goto err_type; 1920 } else if (arg_type == ARG_PTR_TO_CTX) { 1921 expected_type = PTR_TO_CTX; 1922 if (type != expected_type) 1923 goto err_type; 1924 } else if (arg_type_is_mem_ptr(arg_type)) { 1925 expected_type = PTR_TO_STACK; 1926 /* One exception here. In case function allows for NULL to be 1927 * passed in as argument, it's a SCALAR_VALUE type. Final test 1928 * happens during stack boundary checking. 1929 */ 1930 if (register_is_null(reg) && 1931 arg_type == ARG_PTR_TO_MEM_OR_NULL) 1932 /* final test in check_stack_boundary() */; 1933 else if (!type_is_pkt_pointer(type) && 1934 type != PTR_TO_MAP_VALUE && 1935 type != expected_type) 1936 goto err_type; 1937 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 1938 } else { 1939 verbose(env, "unsupported arg_type %d\n", arg_type); 1940 return -EFAULT; 1941 } 1942 1943 if (arg_type == ARG_CONST_MAP_PTR) { 1944 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 1945 meta->map_ptr = reg->map_ptr; 1946 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 1947 /* bpf_map_xxx(..., map_ptr, ..., key) call: 1948 * check that [key, key + map->key_size) are within 1949 * stack limits and initialized 1950 */ 1951 if (!meta->map_ptr) { 1952 /* in function declaration map_ptr must come before 1953 * map_key, so that it's verified and known before 1954 * we have to check map_key here. Otherwise it means 1955 * that kernel subsystem misconfigured verifier 1956 */ 1957 verbose(env, "invalid map_ptr to access map->key\n"); 1958 return -EACCES; 1959 } 1960 if (type_is_pkt_pointer(type)) 1961 err = check_packet_access(env, regno, reg->off, 1962 meta->map_ptr->key_size, 1963 false); 1964 else 1965 err = check_stack_boundary(env, regno, 1966 meta->map_ptr->key_size, 1967 false, NULL); 1968 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 1969 /* bpf_map_xxx(..., map_ptr, ..., value) call: 1970 * check [value, value + map->value_size) validity 1971 */ 1972 if (!meta->map_ptr) { 1973 /* kernel subsystem misconfigured verifier */ 1974 verbose(env, "invalid map_ptr to access map->value\n"); 1975 return -EACCES; 1976 } 1977 if (type_is_pkt_pointer(type)) 1978 err = check_packet_access(env, regno, reg->off, 1979 meta->map_ptr->value_size, 1980 false); 1981 else 1982 err = check_stack_boundary(env, regno, 1983 meta->map_ptr->value_size, 1984 false, NULL); 1985 } else if (arg_type_is_mem_size(arg_type)) { 1986 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 1987 1988 /* The register is SCALAR_VALUE; the access check 1989 * happens using its boundaries. 1990 */ 1991 if (!tnum_is_const(reg->var_off)) 1992 /* For unprivileged variable accesses, disable raw 1993 * mode so that the program is required to 1994 * initialize all the memory that the helper could 1995 * just partially fill up. 1996 */ 1997 meta = NULL; 1998 1999 if (reg->smin_value < 0) { 2000 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2001 regno); 2002 return -EACCES; 2003 } 2004 2005 if (reg->umin_value == 0) { 2006 err = check_helper_mem_access(env, regno - 1, 0, 2007 zero_size_allowed, 2008 meta); 2009 if (err) 2010 return err; 2011 } 2012 2013 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2014 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2015 regno); 2016 return -EACCES; 2017 } 2018 err = check_helper_mem_access(env, regno - 1, 2019 reg->umax_value, 2020 zero_size_allowed, meta); 2021 } 2022 2023 return err; 2024 err_type: 2025 verbose(env, "R%d type=%s expected=%s\n", regno, 2026 reg_type_str[type], reg_type_str[expected_type]); 2027 return -EACCES; 2028 } 2029 2030 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2031 struct bpf_map *map, int func_id) 2032 { 2033 if (!map) 2034 return 0; 2035 2036 /* We need a two way check, first is from map perspective ... */ 2037 switch (map->map_type) { 2038 case BPF_MAP_TYPE_PROG_ARRAY: 2039 if (func_id != BPF_FUNC_tail_call) 2040 goto error; 2041 break; 2042 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2043 if (func_id != BPF_FUNC_perf_event_read && 2044 func_id != BPF_FUNC_perf_event_output && 2045 func_id != BPF_FUNC_perf_event_read_value) 2046 goto error; 2047 break; 2048 case BPF_MAP_TYPE_STACK_TRACE: 2049 if (func_id != BPF_FUNC_get_stackid) 2050 goto error; 2051 break; 2052 case BPF_MAP_TYPE_CGROUP_ARRAY: 2053 if (func_id != BPF_FUNC_skb_under_cgroup && 2054 func_id != BPF_FUNC_current_task_under_cgroup) 2055 goto error; 2056 break; 2057 /* devmap returns a pointer to a live net_device ifindex that we cannot 2058 * allow to be modified from bpf side. So do not allow lookup elements 2059 * for now. 2060 */ 2061 case BPF_MAP_TYPE_DEVMAP: 2062 if (func_id != BPF_FUNC_redirect_map) 2063 goto error; 2064 break; 2065 /* Restrict bpf side of cpumap, open when use-cases appear */ 2066 case BPF_MAP_TYPE_CPUMAP: 2067 if (func_id != BPF_FUNC_redirect_map) 2068 goto error; 2069 break; 2070 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2071 case BPF_MAP_TYPE_HASH_OF_MAPS: 2072 if (func_id != BPF_FUNC_map_lookup_elem) 2073 goto error; 2074 break; 2075 case BPF_MAP_TYPE_SOCKMAP: 2076 if (func_id != BPF_FUNC_sk_redirect_map && 2077 func_id != BPF_FUNC_sock_map_update && 2078 func_id != BPF_FUNC_map_delete_elem) 2079 goto error; 2080 break; 2081 default: 2082 break; 2083 } 2084 2085 /* ... and second from the function itself. */ 2086 switch (func_id) { 2087 case BPF_FUNC_tail_call: 2088 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2089 goto error; 2090 if (env->subprog_cnt) { 2091 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2092 return -EINVAL; 2093 } 2094 break; 2095 case BPF_FUNC_perf_event_read: 2096 case BPF_FUNC_perf_event_output: 2097 case BPF_FUNC_perf_event_read_value: 2098 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2099 goto error; 2100 break; 2101 case BPF_FUNC_get_stackid: 2102 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2103 goto error; 2104 break; 2105 case BPF_FUNC_current_task_under_cgroup: 2106 case BPF_FUNC_skb_under_cgroup: 2107 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2108 goto error; 2109 break; 2110 case BPF_FUNC_redirect_map: 2111 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2112 map->map_type != BPF_MAP_TYPE_CPUMAP) 2113 goto error; 2114 break; 2115 case BPF_FUNC_sk_redirect_map: 2116 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2117 goto error; 2118 break; 2119 case BPF_FUNC_sock_map_update: 2120 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2121 goto error; 2122 break; 2123 default: 2124 break; 2125 } 2126 2127 return 0; 2128 error: 2129 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2130 map->map_type, func_id_name(func_id), func_id); 2131 return -EINVAL; 2132 } 2133 2134 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2135 { 2136 int count = 0; 2137 2138 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2139 count++; 2140 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2141 count++; 2142 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2143 count++; 2144 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2145 count++; 2146 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2147 count++; 2148 2149 /* We only support one arg being in raw mode at the moment, 2150 * which is sufficient for the helper functions we have 2151 * right now. 2152 */ 2153 return count <= 1; 2154 } 2155 2156 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2157 enum bpf_arg_type arg_next) 2158 { 2159 return (arg_type_is_mem_ptr(arg_curr) && 2160 !arg_type_is_mem_size(arg_next)) || 2161 (!arg_type_is_mem_ptr(arg_curr) && 2162 arg_type_is_mem_size(arg_next)); 2163 } 2164 2165 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2166 { 2167 /* bpf_xxx(..., buf, len) call will access 'len' 2168 * bytes from memory 'buf'. Both arg types need 2169 * to be paired, so make sure there's no buggy 2170 * helper function specification. 2171 */ 2172 if (arg_type_is_mem_size(fn->arg1_type) || 2173 arg_type_is_mem_ptr(fn->arg5_type) || 2174 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2175 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2176 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2177 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2178 return false; 2179 2180 return true; 2181 } 2182 2183 static int check_func_proto(const struct bpf_func_proto *fn) 2184 { 2185 return check_raw_mode_ok(fn) && 2186 check_arg_pair_ok(fn) ? 0 : -EINVAL; 2187 } 2188 2189 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2190 * are now invalid, so turn them into unknown SCALAR_VALUE. 2191 */ 2192 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2193 struct bpf_func_state *state) 2194 { 2195 struct bpf_reg_state *regs = state->regs, *reg; 2196 int i; 2197 2198 for (i = 0; i < MAX_BPF_REG; i++) 2199 if (reg_is_pkt_pointer_any(®s[i])) 2200 mark_reg_unknown(env, regs, i); 2201 2202 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 2203 if (state->stack[i].slot_type[0] != STACK_SPILL) 2204 continue; 2205 reg = &state->stack[i].spilled_ptr; 2206 if (reg_is_pkt_pointer_any(reg)) 2207 __mark_reg_unknown(reg); 2208 } 2209 } 2210 2211 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2212 { 2213 struct bpf_verifier_state *vstate = env->cur_state; 2214 int i; 2215 2216 for (i = 0; i <= vstate->curframe; i++) 2217 __clear_all_pkt_pointers(env, vstate->frame[i]); 2218 } 2219 2220 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2221 int *insn_idx) 2222 { 2223 struct bpf_verifier_state *state = env->cur_state; 2224 struct bpf_func_state *caller, *callee; 2225 int i, subprog, target_insn; 2226 2227 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2228 verbose(env, "the call stack of %d frames is too deep\n", 2229 state->curframe + 2); 2230 return -E2BIG; 2231 } 2232 2233 target_insn = *insn_idx + insn->imm; 2234 subprog = find_subprog(env, target_insn + 1); 2235 if (subprog < 0) { 2236 verbose(env, "verifier bug. No program starts at insn %d\n", 2237 target_insn + 1); 2238 return -EFAULT; 2239 } 2240 2241 caller = state->frame[state->curframe]; 2242 if (state->frame[state->curframe + 1]) { 2243 verbose(env, "verifier bug. Frame %d already allocated\n", 2244 state->curframe + 1); 2245 return -EFAULT; 2246 } 2247 2248 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2249 if (!callee) 2250 return -ENOMEM; 2251 state->frame[state->curframe + 1] = callee; 2252 2253 /* callee cannot access r0, r6 - r9 for reading and has to write 2254 * into its own stack before reading from it. 2255 * callee can read/write into caller's stack 2256 */ 2257 init_func_state(env, callee, 2258 /* remember the callsite, it will be used by bpf_exit */ 2259 *insn_idx /* callsite */, 2260 state->curframe + 1 /* frameno within this callchain */, 2261 subprog + 1 /* subprog number within this prog */); 2262 2263 /* copy r1 - r5 args that callee can access */ 2264 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2265 callee->regs[i] = caller->regs[i]; 2266 2267 /* after the call regsiters r0 - r5 were scratched */ 2268 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2269 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2270 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2271 } 2272 2273 /* only increment it after check_reg_arg() finished */ 2274 state->curframe++; 2275 2276 /* and go analyze first insn of the callee */ 2277 *insn_idx = target_insn; 2278 2279 if (env->log.level) { 2280 verbose(env, "caller:\n"); 2281 print_verifier_state(env, caller); 2282 verbose(env, "callee:\n"); 2283 print_verifier_state(env, callee); 2284 } 2285 return 0; 2286 } 2287 2288 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2289 { 2290 struct bpf_verifier_state *state = env->cur_state; 2291 struct bpf_func_state *caller, *callee; 2292 struct bpf_reg_state *r0; 2293 2294 callee = state->frame[state->curframe]; 2295 r0 = &callee->regs[BPF_REG_0]; 2296 if (r0->type == PTR_TO_STACK) { 2297 /* technically it's ok to return caller's stack pointer 2298 * (or caller's caller's pointer) back to the caller, 2299 * since these pointers are valid. Only current stack 2300 * pointer will be invalid as soon as function exits, 2301 * but let's be conservative 2302 */ 2303 verbose(env, "cannot return stack pointer to the caller\n"); 2304 return -EINVAL; 2305 } 2306 2307 state->curframe--; 2308 caller = state->frame[state->curframe]; 2309 /* return to the caller whatever r0 had in the callee */ 2310 caller->regs[BPF_REG_0] = *r0; 2311 2312 *insn_idx = callee->callsite + 1; 2313 if (env->log.level) { 2314 verbose(env, "returning from callee:\n"); 2315 print_verifier_state(env, callee); 2316 verbose(env, "to caller at %d:\n", *insn_idx); 2317 print_verifier_state(env, caller); 2318 } 2319 /* clear everything in the callee */ 2320 free_func_state(callee); 2321 state->frame[state->curframe + 1] = NULL; 2322 return 0; 2323 } 2324 2325 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2326 { 2327 const struct bpf_func_proto *fn = NULL; 2328 struct bpf_reg_state *regs; 2329 struct bpf_call_arg_meta meta; 2330 bool changes_data; 2331 int i, err; 2332 2333 /* find function prototype */ 2334 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2335 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2336 func_id); 2337 return -EINVAL; 2338 } 2339 2340 if (env->ops->get_func_proto) 2341 fn = env->ops->get_func_proto(func_id); 2342 if (!fn) { 2343 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2344 func_id); 2345 return -EINVAL; 2346 } 2347 2348 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2349 if (!env->prog->gpl_compatible && fn->gpl_only) { 2350 verbose(env, "cannot call GPL only function from proprietary program\n"); 2351 return -EINVAL; 2352 } 2353 2354 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2355 changes_data = bpf_helper_changes_pkt_data(fn->func); 2356 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2357 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2358 func_id_name(func_id), func_id); 2359 return -EINVAL; 2360 } 2361 2362 memset(&meta, 0, sizeof(meta)); 2363 meta.pkt_access = fn->pkt_access; 2364 2365 err = check_func_proto(fn); 2366 if (err) { 2367 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2368 func_id_name(func_id), func_id); 2369 return err; 2370 } 2371 2372 /* check args */ 2373 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2374 if (err) 2375 return err; 2376 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2377 if (err) 2378 return err; 2379 if (func_id == BPF_FUNC_tail_call) { 2380 if (meta.map_ptr == NULL) { 2381 verbose(env, "verifier bug\n"); 2382 return -EINVAL; 2383 } 2384 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr; 2385 } 2386 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2387 if (err) 2388 return err; 2389 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2390 if (err) 2391 return err; 2392 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2393 if (err) 2394 return err; 2395 2396 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2397 * is inferred from register state. 2398 */ 2399 for (i = 0; i < meta.access_size; i++) { 2400 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2401 BPF_WRITE, -1, false); 2402 if (err) 2403 return err; 2404 } 2405 2406 regs = cur_regs(env); 2407 /* reset caller saved regs */ 2408 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2409 mark_reg_not_init(env, regs, caller_saved[i]); 2410 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2411 } 2412 2413 /* update return register (already marked as written above) */ 2414 if (fn->ret_type == RET_INTEGER) { 2415 /* sets type to SCALAR_VALUE */ 2416 mark_reg_unknown(env, regs, BPF_REG_0); 2417 } else if (fn->ret_type == RET_VOID) { 2418 regs[BPF_REG_0].type = NOT_INIT; 2419 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { 2420 struct bpf_insn_aux_data *insn_aux; 2421 2422 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2423 /* There is no offset yet applied, variable or fixed */ 2424 mark_reg_known_zero(env, regs, BPF_REG_0); 2425 regs[BPF_REG_0].off = 0; 2426 /* remember map_ptr, so that check_map_access() 2427 * can check 'value_size' boundary of memory access 2428 * to map element returned from bpf_map_lookup_elem() 2429 */ 2430 if (meta.map_ptr == NULL) { 2431 verbose(env, 2432 "kernel subsystem misconfigured verifier\n"); 2433 return -EINVAL; 2434 } 2435 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2436 regs[BPF_REG_0].id = ++env->id_gen; 2437 insn_aux = &env->insn_aux_data[insn_idx]; 2438 if (!insn_aux->map_ptr) 2439 insn_aux->map_ptr = meta.map_ptr; 2440 else if (insn_aux->map_ptr != meta.map_ptr) 2441 insn_aux->map_ptr = BPF_MAP_PTR_POISON; 2442 } else { 2443 verbose(env, "unknown return type %d of func %s#%d\n", 2444 fn->ret_type, func_id_name(func_id), func_id); 2445 return -EINVAL; 2446 } 2447 2448 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2449 if (err) 2450 return err; 2451 2452 if (changes_data) 2453 clear_all_pkt_pointers(env); 2454 return 0; 2455 } 2456 2457 static bool signed_add_overflows(s64 a, s64 b) 2458 { 2459 /* Do the add in u64, where overflow is well-defined */ 2460 s64 res = (s64)((u64)a + (u64)b); 2461 2462 if (b < 0) 2463 return res > a; 2464 return res < a; 2465 } 2466 2467 static bool signed_sub_overflows(s64 a, s64 b) 2468 { 2469 /* Do the sub in u64, where overflow is well-defined */ 2470 s64 res = (s64)((u64)a - (u64)b); 2471 2472 if (b < 0) 2473 return res < a; 2474 return res > a; 2475 } 2476 2477 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 2478 const struct bpf_reg_state *reg, 2479 enum bpf_reg_type type) 2480 { 2481 bool known = tnum_is_const(reg->var_off); 2482 s64 val = reg->var_off.value; 2483 s64 smin = reg->smin_value; 2484 2485 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 2486 verbose(env, "math between %s pointer and %lld is not allowed\n", 2487 reg_type_str[type], val); 2488 return false; 2489 } 2490 2491 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 2492 verbose(env, "%s pointer offset %d is not allowed\n", 2493 reg_type_str[type], reg->off); 2494 return false; 2495 } 2496 2497 if (smin == S64_MIN) { 2498 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 2499 reg_type_str[type]); 2500 return false; 2501 } 2502 2503 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 2504 verbose(env, "value %lld makes %s pointer be out of bounds\n", 2505 smin, reg_type_str[type]); 2506 return false; 2507 } 2508 2509 return true; 2510 } 2511 2512 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 2513 * Caller should also handle BPF_MOV case separately. 2514 * If we return -EACCES, caller may want to try again treating pointer as a 2515 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 2516 */ 2517 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 2518 struct bpf_insn *insn, 2519 const struct bpf_reg_state *ptr_reg, 2520 const struct bpf_reg_state *off_reg) 2521 { 2522 struct bpf_verifier_state *vstate = env->cur_state; 2523 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2524 struct bpf_reg_state *regs = state->regs, *dst_reg; 2525 bool known = tnum_is_const(off_reg->var_off); 2526 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 2527 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 2528 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 2529 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 2530 u8 opcode = BPF_OP(insn->code); 2531 u32 dst = insn->dst_reg; 2532 2533 dst_reg = ®s[dst]; 2534 2535 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 2536 smin_val > smax_val || umin_val > umax_val) { 2537 /* Taint dst register if offset had invalid bounds derived from 2538 * e.g. dead branches. 2539 */ 2540 __mark_reg_unknown(dst_reg); 2541 return 0; 2542 } 2543 2544 if (BPF_CLASS(insn->code) != BPF_ALU64) { 2545 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 2546 verbose(env, 2547 "R%d 32-bit pointer arithmetic prohibited\n", 2548 dst); 2549 return -EACCES; 2550 } 2551 2552 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2553 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", 2554 dst); 2555 return -EACCES; 2556 } 2557 if (ptr_reg->type == CONST_PTR_TO_MAP) { 2558 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", 2559 dst); 2560 return -EACCES; 2561 } 2562 if (ptr_reg->type == PTR_TO_PACKET_END) { 2563 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", 2564 dst); 2565 return -EACCES; 2566 } 2567 2568 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 2569 * The id may be overwritten later if we create a new variable offset. 2570 */ 2571 dst_reg->type = ptr_reg->type; 2572 dst_reg->id = ptr_reg->id; 2573 2574 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 2575 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 2576 return -EINVAL; 2577 2578 switch (opcode) { 2579 case BPF_ADD: 2580 /* We can take a fixed offset as long as it doesn't overflow 2581 * the s32 'off' field 2582 */ 2583 if (known && (ptr_reg->off + smin_val == 2584 (s64)(s32)(ptr_reg->off + smin_val))) { 2585 /* pointer += K. Accumulate it into fixed offset */ 2586 dst_reg->smin_value = smin_ptr; 2587 dst_reg->smax_value = smax_ptr; 2588 dst_reg->umin_value = umin_ptr; 2589 dst_reg->umax_value = umax_ptr; 2590 dst_reg->var_off = ptr_reg->var_off; 2591 dst_reg->off = ptr_reg->off + smin_val; 2592 dst_reg->range = ptr_reg->range; 2593 break; 2594 } 2595 /* A new variable offset is created. Note that off_reg->off 2596 * == 0, since it's a scalar. 2597 * dst_reg gets the pointer type and since some positive 2598 * integer value was added to the pointer, give it a new 'id' 2599 * if it's a PTR_TO_PACKET. 2600 * this creates a new 'base' pointer, off_reg (variable) gets 2601 * added into the variable offset, and we copy the fixed offset 2602 * from ptr_reg. 2603 */ 2604 if (signed_add_overflows(smin_ptr, smin_val) || 2605 signed_add_overflows(smax_ptr, smax_val)) { 2606 dst_reg->smin_value = S64_MIN; 2607 dst_reg->smax_value = S64_MAX; 2608 } else { 2609 dst_reg->smin_value = smin_ptr + smin_val; 2610 dst_reg->smax_value = smax_ptr + smax_val; 2611 } 2612 if (umin_ptr + umin_val < umin_ptr || 2613 umax_ptr + umax_val < umax_ptr) { 2614 dst_reg->umin_value = 0; 2615 dst_reg->umax_value = U64_MAX; 2616 } else { 2617 dst_reg->umin_value = umin_ptr + umin_val; 2618 dst_reg->umax_value = umax_ptr + umax_val; 2619 } 2620 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 2621 dst_reg->off = ptr_reg->off; 2622 if (reg_is_pkt_pointer(ptr_reg)) { 2623 dst_reg->id = ++env->id_gen; 2624 /* something was added to pkt_ptr, set range to zero */ 2625 dst_reg->range = 0; 2626 } 2627 break; 2628 case BPF_SUB: 2629 if (dst_reg == off_reg) { 2630 /* scalar -= pointer. Creates an unknown scalar */ 2631 verbose(env, "R%d tried to subtract pointer from scalar\n", 2632 dst); 2633 return -EACCES; 2634 } 2635 /* We don't allow subtraction from FP, because (according to 2636 * test_verifier.c test "invalid fp arithmetic", JITs might not 2637 * be able to deal with it. 2638 */ 2639 if (ptr_reg->type == PTR_TO_STACK) { 2640 verbose(env, "R%d subtraction from stack pointer prohibited\n", 2641 dst); 2642 return -EACCES; 2643 } 2644 if (known && (ptr_reg->off - smin_val == 2645 (s64)(s32)(ptr_reg->off - smin_val))) { 2646 /* pointer -= K. Subtract it from fixed offset */ 2647 dst_reg->smin_value = smin_ptr; 2648 dst_reg->smax_value = smax_ptr; 2649 dst_reg->umin_value = umin_ptr; 2650 dst_reg->umax_value = umax_ptr; 2651 dst_reg->var_off = ptr_reg->var_off; 2652 dst_reg->id = ptr_reg->id; 2653 dst_reg->off = ptr_reg->off - smin_val; 2654 dst_reg->range = ptr_reg->range; 2655 break; 2656 } 2657 /* A new variable offset is created. If the subtrahend is known 2658 * nonnegative, then any reg->range we had before is still good. 2659 */ 2660 if (signed_sub_overflows(smin_ptr, smax_val) || 2661 signed_sub_overflows(smax_ptr, smin_val)) { 2662 /* Overflow possible, we know nothing */ 2663 dst_reg->smin_value = S64_MIN; 2664 dst_reg->smax_value = S64_MAX; 2665 } else { 2666 dst_reg->smin_value = smin_ptr - smax_val; 2667 dst_reg->smax_value = smax_ptr - smin_val; 2668 } 2669 if (umin_ptr < umax_val) { 2670 /* Overflow possible, we know nothing */ 2671 dst_reg->umin_value = 0; 2672 dst_reg->umax_value = U64_MAX; 2673 } else { 2674 /* Cannot overflow (as long as bounds are consistent) */ 2675 dst_reg->umin_value = umin_ptr - umax_val; 2676 dst_reg->umax_value = umax_ptr - umin_val; 2677 } 2678 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 2679 dst_reg->off = ptr_reg->off; 2680 if (reg_is_pkt_pointer(ptr_reg)) { 2681 dst_reg->id = ++env->id_gen; 2682 /* something was added to pkt_ptr, set range to zero */ 2683 if (smin_val < 0) 2684 dst_reg->range = 0; 2685 } 2686 break; 2687 case BPF_AND: 2688 case BPF_OR: 2689 case BPF_XOR: 2690 /* bitwise ops on pointers are troublesome, prohibit. */ 2691 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 2692 dst, bpf_alu_string[opcode >> 4]); 2693 return -EACCES; 2694 default: 2695 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 2696 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 2697 dst, bpf_alu_string[opcode >> 4]); 2698 return -EACCES; 2699 } 2700 2701 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 2702 return -EINVAL; 2703 2704 __update_reg_bounds(dst_reg); 2705 __reg_deduce_bounds(dst_reg); 2706 __reg_bound_offset(dst_reg); 2707 return 0; 2708 } 2709 2710 /* WARNING: This function does calculations on 64-bit values, but the actual 2711 * execution may occur on 32-bit values. Therefore, things like bitshifts 2712 * need extra checks in the 32-bit case. 2713 */ 2714 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 2715 struct bpf_insn *insn, 2716 struct bpf_reg_state *dst_reg, 2717 struct bpf_reg_state src_reg) 2718 { 2719 struct bpf_reg_state *regs = cur_regs(env); 2720 u8 opcode = BPF_OP(insn->code); 2721 bool src_known, dst_known; 2722 s64 smin_val, smax_val; 2723 u64 umin_val, umax_val; 2724 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 2725 2726 smin_val = src_reg.smin_value; 2727 smax_val = src_reg.smax_value; 2728 umin_val = src_reg.umin_value; 2729 umax_val = src_reg.umax_value; 2730 src_known = tnum_is_const(src_reg.var_off); 2731 dst_known = tnum_is_const(dst_reg->var_off); 2732 2733 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 2734 smin_val > smax_val || umin_val > umax_val) { 2735 /* Taint dst register if offset had invalid bounds derived from 2736 * e.g. dead branches. 2737 */ 2738 __mark_reg_unknown(dst_reg); 2739 return 0; 2740 } 2741 2742 if (!src_known && 2743 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 2744 __mark_reg_unknown(dst_reg); 2745 return 0; 2746 } 2747 2748 switch (opcode) { 2749 case BPF_ADD: 2750 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 2751 signed_add_overflows(dst_reg->smax_value, smax_val)) { 2752 dst_reg->smin_value = S64_MIN; 2753 dst_reg->smax_value = S64_MAX; 2754 } else { 2755 dst_reg->smin_value += smin_val; 2756 dst_reg->smax_value += smax_val; 2757 } 2758 if (dst_reg->umin_value + umin_val < umin_val || 2759 dst_reg->umax_value + umax_val < umax_val) { 2760 dst_reg->umin_value = 0; 2761 dst_reg->umax_value = U64_MAX; 2762 } else { 2763 dst_reg->umin_value += umin_val; 2764 dst_reg->umax_value += umax_val; 2765 } 2766 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 2767 break; 2768 case BPF_SUB: 2769 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 2770 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 2771 /* Overflow possible, we know nothing */ 2772 dst_reg->smin_value = S64_MIN; 2773 dst_reg->smax_value = S64_MAX; 2774 } else { 2775 dst_reg->smin_value -= smax_val; 2776 dst_reg->smax_value -= smin_val; 2777 } 2778 if (dst_reg->umin_value < umax_val) { 2779 /* Overflow possible, we know nothing */ 2780 dst_reg->umin_value = 0; 2781 dst_reg->umax_value = U64_MAX; 2782 } else { 2783 /* Cannot overflow (as long as bounds are consistent) */ 2784 dst_reg->umin_value -= umax_val; 2785 dst_reg->umax_value -= umin_val; 2786 } 2787 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 2788 break; 2789 case BPF_MUL: 2790 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 2791 if (smin_val < 0 || dst_reg->smin_value < 0) { 2792 /* Ain't nobody got time to multiply that sign */ 2793 __mark_reg_unbounded(dst_reg); 2794 __update_reg_bounds(dst_reg); 2795 break; 2796 } 2797 /* Both values are positive, so we can work with unsigned and 2798 * copy the result to signed (unless it exceeds S64_MAX). 2799 */ 2800 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 2801 /* Potential overflow, we know nothing */ 2802 __mark_reg_unbounded(dst_reg); 2803 /* (except what we can learn from the var_off) */ 2804 __update_reg_bounds(dst_reg); 2805 break; 2806 } 2807 dst_reg->umin_value *= umin_val; 2808 dst_reg->umax_value *= umax_val; 2809 if (dst_reg->umax_value > S64_MAX) { 2810 /* Overflow possible, we know nothing */ 2811 dst_reg->smin_value = S64_MIN; 2812 dst_reg->smax_value = S64_MAX; 2813 } else { 2814 dst_reg->smin_value = dst_reg->umin_value; 2815 dst_reg->smax_value = dst_reg->umax_value; 2816 } 2817 break; 2818 case BPF_AND: 2819 if (src_known && dst_known) { 2820 __mark_reg_known(dst_reg, dst_reg->var_off.value & 2821 src_reg.var_off.value); 2822 break; 2823 } 2824 /* We get our minimum from the var_off, since that's inherently 2825 * bitwise. Our maximum is the minimum of the operands' maxima. 2826 */ 2827 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 2828 dst_reg->umin_value = dst_reg->var_off.value; 2829 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 2830 if (dst_reg->smin_value < 0 || smin_val < 0) { 2831 /* Lose signed bounds when ANDing negative numbers, 2832 * ain't nobody got time for that. 2833 */ 2834 dst_reg->smin_value = S64_MIN; 2835 dst_reg->smax_value = S64_MAX; 2836 } else { 2837 /* ANDing two positives gives a positive, so safe to 2838 * cast result into s64. 2839 */ 2840 dst_reg->smin_value = dst_reg->umin_value; 2841 dst_reg->smax_value = dst_reg->umax_value; 2842 } 2843 /* We may learn something more from the var_off */ 2844 __update_reg_bounds(dst_reg); 2845 break; 2846 case BPF_OR: 2847 if (src_known && dst_known) { 2848 __mark_reg_known(dst_reg, dst_reg->var_off.value | 2849 src_reg.var_off.value); 2850 break; 2851 } 2852 /* We get our maximum from the var_off, and our minimum is the 2853 * maximum of the operands' minima 2854 */ 2855 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 2856 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 2857 dst_reg->umax_value = dst_reg->var_off.value | 2858 dst_reg->var_off.mask; 2859 if (dst_reg->smin_value < 0 || smin_val < 0) { 2860 /* Lose signed bounds when ORing negative numbers, 2861 * ain't nobody got time for that. 2862 */ 2863 dst_reg->smin_value = S64_MIN; 2864 dst_reg->smax_value = S64_MAX; 2865 } else { 2866 /* ORing two positives gives a positive, so safe to 2867 * cast result into s64. 2868 */ 2869 dst_reg->smin_value = dst_reg->umin_value; 2870 dst_reg->smax_value = dst_reg->umax_value; 2871 } 2872 /* We may learn something more from the var_off */ 2873 __update_reg_bounds(dst_reg); 2874 break; 2875 case BPF_LSH: 2876 if (umax_val >= insn_bitness) { 2877 /* Shifts greater than 31 or 63 are undefined. 2878 * This includes shifts by a negative number. 2879 */ 2880 mark_reg_unknown(env, regs, insn->dst_reg); 2881 break; 2882 } 2883 /* We lose all sign bit information (except what we can pick 2884 * up from var_off) 2885 */ 2886 dst_reg->smin_value = S64_MIN; 2887 dst_reg->smax_value = S64_MAX; 2888 /* If we might shift our top bit out, then we know nothing */ 2889 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 2890 dst_reg->umin_value = 0; 2891 dst_reg->umax_value = U64_MAX; 2892 } else { 2893 dst_reg->umin_value <<= umin_val; 2894 dst_reg->umax_value <<= umax_val; 2895 } 2896 if (src_known) 2897 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 2898 else 2899 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val); 2900 /* We may learn something more from the var_off */ 2901 __update_reg_bounds(dst_reg); 2902 break; 2903 case BPF_RSH: 2904 if (umax_val >= insn_bitness) { 2905 /* Shifts greater than 31 or 63 are undefined. 2906 * This includes shifts by a negative number. 2907 */ 2908 mark_reg_unknown(env, regs, insn->dst_reg); 2909 break; 2910 } 2911 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 2912 * be negative, then either: 2913 * 1) src_reg might be zero, so the sign bit of the result is 2914 * unknown, so we lose our signed bounds 2915 * 2) it's known negative, thus the unsigned bounds capture the 2916 * signed bounds 2917 * 3) the signed bounds cross zero, so they tell us nothing 2918 * about the result 2919 * If the value in dst_reg is known nonnegative, then again the 2920 * unsigned bounts capture the signed bounds. 2921 * Thus, in all cases it suffices to blow away our signed bounds 2922 * and rely on inferring new ones from the unsigned bounds and 2923 * var_off of the result. 2924 */ 2925 dst_reg->smin_value = S64_MIN; 2926 dst_reg->smax_value = S64_MAX; 2927 if (src_known) 2928 dst_reg->var_off = tnum_rshift(dst_reg->var_off, 2929 umin_val); 2930 else 2931 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val); 2932 dst_reg->umin_value >>= umax_val; 2933 dst_reg->umax_value >>= umin_val; 2934 /* We may learn something more from the var_off */ 2935 __update_reg_bounds(dst_reg); 2936 break; 2937 default: 2938 mark_reg_unknown(env, regs, insn->dst_reg); 2939 break; 2940 } 2941 2942 if (BPF_CLASS(insn->code) != BPF_ALU64) { 2943 /* 32-bit ALU ops are (32,32)->32 */ 2944 coerce_reg_to_size(dst_reg, 4); 2945 coerce_reg_to_size(&src_reg, 4); 2946 } 2947 2948 __reg_deduce_bounds(dst_reg); 2949 __reg_bound_offset(dst_reg); 2950 return 0; 2951 } 2952 2953 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 2954 * and var_off. 2955 */ 2956 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 2957 struct bpf_insn *insn) 2958 { 2959 struct bpf_verifier_state *vstate = env->cur_state; 2960 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2961 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 2962 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 2963 u8 opcode = BPF_OP(insn->code); 2964 2965 dst_reg = ®s[insn->dst_reg]; 2966 src_reg = NULL; 2967 if (dst_reg->type != SCALAR_VALUE) 2968 ptr_reg = dst_reg; 2969 if (BPF_SRC(insn->code) == BPF_X) { 2970 src_reg = ®s[insn->src_reg]; 2971 if (src_reg->type != SCALAR_VALUE) { 2972 if (dst_reg->type != SCALAR_VALUE) { 2973 /* Combining two pointers by any ALU op yields 2974 * an arbitrary scalar. Disallow all math except 2975 * pointer subtraction 2976 */ 2977 if (opcode == BPF_SUB){ 2978 mark_reg_unknown(env, regs, insn->dst_reg); 2979 return 0; 2980 } 2981 verbose(env, "R%d pointer %s pointer prohibited\n", 2982 insn->dst_reg, 2983 bpf_alu_string[opcode >> 4]); 2984 return -EACCES; 2985 } else { 2986 /* scalar += pointer 2987 * This is legal, but we have to reverse our 2988 * src/dest handling in computing the range 2989 */ 2990 return adjust_ptr_min_max_vals(env, insn, 2991 src_reg, dst_reg); 2992 } 2993 } else if (ptr_reg) { 2994 /* pointer += scalar */ 2995 return adjust_ptr_min_max_vals(env, insn, 2996 dst_reg, src_reg); 2997 } 2998 } else { 2999 /* Pretend the src is a reg with a known value, since we only 3000 * need to be able to read from this state. 3001 */ 3002 off_reg.type = SCALAR_VALUE; 3003 __mark_reg_known(&off_reg, insn->imm); 3004 src_reg = &off_reg; 3005 if (ptr_reg) /* pointer += K */ 3006 return adjust_ptr_min_max_vals(env, insn, 3007 ptr_reg, src_reg); 3008 } 3009 3010 /* Got here implies adding two SCALAR_VALUEs */ 3011 if (WARN_ON_ONCE(ptr_reg)) { 3012 print_verifier_state(env, state); 3013 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3014 return -EINVAL; 3015 } 3016 if (WARN_ON(!src_reg)) { 3017 print_verifier_state(env, state); 3018 verbose(env, "verifier internal error: no src_reg\n"); 3019 return -EINVAL; 3020 } 3021 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3022 } 3023 3024 /* check validity of 32-bit and 64-bit arithmetic operations */ 3025 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3026 { 3027 struct bpf_reg_state *regs = cur_regs(env); 3028 u8 opcode = BPF_OP(insn->code); 3029 int err; 3030 3031 if (opcode == BPF_END || opcode == BPF_NEG) { 3032 if (opcode == BPF_NEG) { 3033 if (BPF_SRC(insn->code) != 0 || 3034 insn->src_reg != BPF_REG_0 || 3035 insn->off != 0 || insn->imm != 0) { 3036 verbose(env, "BPF_NEG uses reserved fields\n"); 3037 return -EINVAL; 3038 } 3039 } else { 3040 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3041 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3042 BPF_CLASS(insn->code) == BPF_ALU64) { 3043 verbose(env, "BPF_END uses reserved fields\n"); 3044 return -EINVAL; 3045 } 3046 } 3047 3048 /* check src operand */ 3049 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3050 if (err) 3051 return err; 3052 3053 if (is_pointer_value(env, insn->dst_reg)) { 3054 verbose(env, "R%d pointer arithmetic prohibited\n", 3055 insn->dst_reg); 3056 return -EACCES; 3057 } 3058 3059 /* check dest operand */ 3060 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3061 if (err) 3062 return err; 3063 3064 } else if (opcode == BPF_MOV) { 3065 3066 if (BPF_SRC(insn->code) == BPF_X) { 3067 if (insn->imm != 0 || insn->off != 0) { 3068 verbose(env, "BPF_MOV uses reserved fields\n"); 3069 return -EINVAL; 3070 } 3071 3072 /* check src operand */ 3073 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3074 if (err) 3075 return err; 3076 } else { 3077 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3078 verbose(env, "BPF_MOV uses reserved fields\n"); 3079 return -EINVAL; 3080 } 3081 } 3082 3083 /* check dest operand */ 3084 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3085 if (err) 3086 return err; 3087 3088 if (BPF_SRC(insn->code) == BPF_X) { 3089 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3090 /* case: R1 = R2 3091 * copy register state to dest reg 3092 */ 3093 regs[insn->dst_reg] = regs[insn->src_reg]; 3094 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 3095 } else { 3096 /* R1 = (u32) R2 */ 3097 if (is_pointer_value(env, insn->src_reg)) { 3098 verbose(env, 3099 "R%d partial copy of pointer\n", 3100 insn->src_reg); 3101 return -EACCES; 3102 } 3103 mark_reg_unknown(env, regs, insn->dst_reg); 3104 coerce_reg_to_size(®s[insn->dst_reg], 4); 3105 } 3106 } else { 3107 /* case: R = imm 3108 * remember the value we stored into this reg 3109 */ 3110 regs[insn->dst_reg].type = SCALAR_VALUE; 3111 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3112 __mark_reg_known(regs + insn->dst_reg, 3113 insn->imm); 3114 } else { 3115 __mark_reg_known(regs + insn->dst_reg, 3116 (u32)insn->imm); 3117 } 3118 } 3119 3120 } else if (opcode > BPF_END) { 3121 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3122 return -EINVAL; 3123 3124 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3125 3126 if (BPF_SRC(insn->code) == BPF_X) { 3127 if (insn->imm != 0 || insn->off != 0) { 3128 verbose(env, "BPF_ALU uses reserved fields\n"); 3129 return -EINVAL; 3130 } 3131 /* check src1 operand */ 3132 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3133 if (err) 3134 return err; 3135 } else { 3136 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3137 verbose(env, "BPF_ALU uses reserved fields\n"); 3138 return -EINVAL; 3139 } 3140 } 3141 3142 /* check src2 operand */ 3143 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3144 if (err) 3145 return err; 3146 3147 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3148 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3149 verbose(env, "div by zero\n"); 3150 return -EINVAL; 3151 } 3152 3153 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) { 3154 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n"); 3155 return -EINVAL; 3156 } 3157 3158 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3159 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3160 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3161 3162 if (insn->imm < 0 || insn->imm >= size) { 3163 verbose(env, "invalid shift %d\n", insn->imm); 3164 return -EINVAL; 3165 } 3166 } 3167 3168 /* check dest operand */ 3169 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3170 if (err) 3171 return err; 3172 3173 return adjust_reg_min_max_vals(env, insn); 3174 } 3175 3176 return 0; 3177 } 3178 3179 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3180 struct bpf_reg_state *dst_reg, 3181 enum bpf_reg_type type, 3182 bool range_right_open) 3183 { 3184 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3185 struct bpf_reg_state *regs = state->regs, *reg; 3186 u16 new_range; 3187 int i, j; 3188 3189 if (dst_reg->off < 0 || 3190 (dst_reg->off == 0 && range_right_open)) 3191 /* This doesn't give us any range */ 3192 return; 3193 3194 if (dst_reg->umax_value > MAX_PACKET_OFF || 3195 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3196 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3197 * than pkt_end, but that's because it's also less than pkt. 3198 */ 3199 return; 3200 3201 new_range = dst_reg->off; 3202 if (range_right_open) 3203 new_range--; 3204 3205 /* Examples for register markings: 3206 * 3207 * pkt_data in dst register: 3208 * 3209 * r2 = r3; 3210 * r2 += 8; 3211 * if (r2 > pkt_end) goto <handle exception> 3212 * <access okay> 3213 * 3214 * r2 = r3; 3215 * r2 += 8; 3216 * if (r2 < pkt_end) goto <access okay> 3217 * <handle exception> 3218 * 3219 * Where: 3220 * r2 == dst_reg, pkt_end == src_reg 3221 * r2=pkt(id=n,off=8,r=0) 3222 * r3=pkt(id=n,off=0,r=0) 3223 * 3224 * pkt_data in src register: 3225 * 3226 * r2 = r3; 3227 * r2 += 8; 3228 * if (pkt_end >= r2) goto <access okay> 3229 * <handle exception> 3230 * 3231 * r2 = r3; 3232 * r2 += 8; 3233 * if (pkt_end <= r2) goto <handle exception> 3234 * <access okay> 3235 * 3236 * Where: 3237 * pkt_end == dst_reg, r2 == src_reg 3238 * r2=pkt(id=n,off=8,r=0) 3239 * r3=pkt(id=n,off=0,r=0) 3240 * 3241 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 3242 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 3243 * and [r3, r3 + 8-1) respectively is safe to access depending on 3244 * the check. 3245 */ 3246 3247 /* If our ids match, then we must have the same max_value. And we 3248 * don't care about the other reg's fixed offset, since if it's too big 3249 * the range won't allow anything. 3250 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 3251 */ 3252 for (i = 0; i < MAX_BPF_REG; i++) 3253 if (regs[i].type == type && regs[i].id == dst_reg->id) 3254 /* keep the maximum range already checked */ 3255 regs[i].range = max(regs[i].range, new_range); 3256 3257 for (j = 0; j <= vstate->curframe; j++) { 3258 state = vstate->frame[j]; 3259 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3260 if (state->stack[i].slot_type[0] != STACK_SPILL) 3261 continue; 3262 reg = &state->stack[i].spilled_ptr; 3263 if (reg->type == type && reg->id == dst_reg->id) 3264 reg->range = max(reg->range, new_range); 3265 } 3266 } 3267 } 3268 3269 /* Adjusts the register min/max values in the case that the dst_reg is the 3270 * variable register that we are working on, and src_reg is a constant or we're 3271 * simply doing a BPF_K check. 3272 * In JEQ/JNE cases we also adjust the var_off values. 3273 */ 3274 static void reg_set_min_max(struct bpf_reg_state *true_reg, 3275 struct bpf_reg_state *false_reg, u64 val, 3276 u8 opcode) 3277 { 3278 /* If the dst_reg is a pointer, we can't learn anything about its 3279 * variable offset from the compare (unless src_reg were a pointer into 3280 * the same object, but we don't bother with that. 3281 * Since false_reg and true_reg have the same type by construction, we 3282 * only need to check one of them for pointerness. 3283 */ 3284 if (__is_pointer_value(false, false_reg)) 3285 return; 3286 3287 switch (opcode) { 3288 case BPF_JEQ: 3289 /* If this is false then we know nothing Jon Snow, but if it is 3290 * true then we know for sure. 3291 */ 3292 __mark_reg_known(true_reg, val); 3293 break; 3294 case BPF_JNE: 3295 /* If this is true we know nothing Jon Snow, but if it is false 3296 * we know the value for sure; 3297 */ 3298 __mark_reg_known(false_reg, val); 3299 break; 3300 case BPF_JGT: 3301 false_reg->umax_value = min(false_reg->umax_value, val); 3302 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3303 break; 3304 case BPF_JSGT: 3305 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3306 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3307 break; 3308 case BPF_JLT: 3309 false_reg->umin_value = max(false_reg->umin_value, val); 3310 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3311 break; 3312 case BPF_JSLT: 3313 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3314 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3315 break; 3316 case BPF_JGE: 3317 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3318 true_reg->umin_value = max(true_reg->umin_value, val); 3319 break; 3320 case BPF_JSGE: 3321 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3322 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3323 break; 3324 case BPF_JLE: 3325 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3326 true_reg->umax_value = min(true_reg->umax_value, val); 3327 break; 3328 case BPF_JSLE: 3329 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3330 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3331 break; 3332 default: 3333 break; 3334 } 3335 3336 __reg_deduce_bounds(false_reg); 3337 __reg_deduce_bounds(true_reg); 3338 /* We might have learned some bits from the bounds. */ 3339 __reg_bound_offset(false_reg); 3340 __reg_bound_offset(true_reg); 3341 /* Intersecting with the old var_off might have improved our bounds 3342 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3343 * then new var_off is (0; 0x7f...fc) which improves our umax. 3344 */ 3345 __update_reg_bounds(false_reg); 3346 __update_reg_bounds(true_reg); 3347 } 3348 3349 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 3350 * the variable reg. 3351 */ 3352 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 3353 struct bpf_reg_state *false_reg, u64 val, 3354 u8 opcode) 3355 { 3356 if (__is_pointer_value(false, false_reg)) 3357 return; 3358 3359 switch (opcode) { 3360 case BPF_JEQ: 3361 /* If this is false then we know nothing Jon Snow, but if it is 3362 * true then we know for sure. 3363 */ 3364 __mark_reg_known(true_reg, val); 3365 break; 3366 case BPF_JNE: 3367 /* If this is true we know nothing Jon Snow, but if it is false 3368 * we know the value for sure; 3369 */ 3370 __mark_reg_known(false_reg, val); 3371 break; 3372 case BPF_JGT: 3373 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3374 false_reg->umin_value = max(false_reg->umin_value, val); 3375 break; 3376 case BPF_JSGT: 3377 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3378 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3379 break; 3380 case BPF_JLT: 3381 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3382 false_reg->umax_value = min(false_reg->umax_value, val); 3383 break; 3384 case BPF_JSLT: 3385 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3386 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3387 break; 3388 case BPF_JGE: 3389 true_reg->umax_value = min(true_reg->umax_value, val); 3390 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3391 break; 3392 case BPF_JSGE: 3393 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3394 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3395 break; 3396 case BPF_JLE: 3397 true_reg->umin_value = max(true_reg->umin_value, val); 3398 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3399 break; 3400 case BPF_JSLE: 3401 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3402 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3403 break; 3404 default: 3405 break; 3406 } 3407 3408 __reg_deduce_bounds(false_reg); 3409 __reg_deduce_bounds(true_reg); 3410 /* We might have learned some bits from the bounds. */ 3411 __reg_bound_offset(false_reg); 3412 __reg_bound_offset(true_reg); 3413 /* Intersecting with the old var_off might have improved our bounds 3414 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3415 * then new var_off is (0; 0x7f...fc) which improves our umax. 3416 */ 3417 __update_reg_bounds(false_reg); 3418 __update_reg_bounds(true_reg); 3419 } 3420 3421 /* Regs are known to be equal, so intersect their min/max/var_off */ 3422 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 3423 struct bpf_reg_state *dst_reg) 3424 { 3425 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 3426 dst_reg->umin_value); 3427 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 3428 dst_reg->umax_value); 3429 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 3430 dst_reg->smin_value); 3431 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 3432 dst_reg->smax_value); 3433 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 3434 dst_reg->var_off); 3435 /* We might have learned new bounds from the var_off. */ 3436 __update_reg_bounds(src_reg); 3437 __update_reg_bounds(dst_reg); 3438 /* We might have learned something about the sign bit. */ 3439 __reg_deduce_bounds(src_reg); 3440 __reg_deduce_bounds(dst_reg); 3441 /* We might have learned some bits from the bounds. */ 3442 __reg_bound_offset(src_reg); 3443 __reg_bound_offset(dst_reg); 3444 /* Intersecting with the old var_off might have improved our bounds 3445 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3446 * then new var_off is (0; 0x7f...fc) which improves our umax. 3447 */ 3448 __update_reg_bounds(src_reg); 3449 __update_reg_bounds(dst_reg); 3450 } 3451 3452 static void reg_combine_min_max(struct bpf_reg_state *true_src, 3453 struct bpf_reg_state *true_dst, 3454 struct bpf_reg_state *false_src, 3455 struct bpf_reg_state *false_dst, 3456 u8 opcode) 3457 { 3458 switch (opcode) { 3459 case BPF_JEQ: 3460 __reg_combine_min_max(true_src, true_dst); 3461 break; 3462 case BPF_JNE: 3463 __reg_combine_min_max(false_src, false_dst); 3464 break; 3465 } 3466 } 3467 3468 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 3469 bool is_null) 3470 { 3471 struct bpf_reg_state *reg = ®s[regno]; 3472 3473 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 3474 /* Old offset (both fixed and variable parts) should 3475 * have been known-zero, because we don't allow pointer 3476 * arithmetic on pointers that might be NULL. 3477 */ 3478 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 3479 !tnum_equals_const(reg->var_off, 0) || 3480 reg->off)) { 3481 __mark_reg_known_zero(reg); 3482 reg->off = 0; 3483 } 3484 if (is_null) { 3485 reg->type = SCALAR_VALUE; 3486 } else if (reg->map_ptr->inner_map_meta) { 3487 reg->type = CONST_PTR_TO_MAP; 3488 reg->map_ptr = reg->map_ptr->inner_map_meta; 3489 } else { 3490 reg->type = PTR_TO_MAP_VALUE; 3491 } 3492 /* We don't need id from this point onwards anymore, thus we 3493 * should better reset it, so that state pruning has chances 3494 * to take effect. 3495 */ 3496 reg->id = 0; 3497 } 3498 } 3499 3500 /* The logic is similar to find_good_pkt_pointers(), both could eventually 3501 * be folded together at some point. 3502 */ 3503 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno, 3504 bool is_null) 3505 { 3506 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3507 struct bpf_reg_state *regs = state->regs; 3508 u32 id = regs[regno].id; 3509 int i, j; 3510 3511 for (i = 0; i < MAX_BPF_REG; i++) 3512 mark_map_reg(regs, i, id, is_null); 3513 3514 for (j = 0; j <= vstate->curframe; j++) { 3515 state = vstate->frame[j]; 3516 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 3517 if (state->stack[i].slot_type[0] != STACK_SPILL) 3518 continue; 3519 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null); 3520 } 3521 } 3522 } 3523 3524 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 3525 struct bpf_reg_state *dst_reg, 3526 struct bpf_reg_state *src_reg, 3527 struct bpf_verifier_state *this_branch, 3528 struct bpf_verifier_state *other_branch) 3529 { 3530 if (BPF_SRC(insn->code) != BPF_X) 3531 return false; 3532 3533 switch (BPF_OP(insn->code)) { 3534 case BPF_JGT: 3535 if ((dst_reg->type == PTR_TO_PACKET && 3536 src_reg->type == PTR_TO_PACKET_END) || 3537 (dst_reg->type == PTR_TO_PACKET_META && 3538 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3539 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 3540 find_good_pkt_pointers(this_branch, dst_reg, 3541 dst_reg->type, false); 3542 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3543 src_reg->type == PTR_TO_PACKET) || 3544 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3545 src_reg->type == PTR_TO_PACKET_META)) { 3546 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 3547 find_good_pkt_pointers(other_branch, src_reg, 3548 src_reg->type, true); 3549 } else { 3550 return false; 3551 } 3552 break; 3553 case BPF_JLT: 3554 if ((dst_reg->type == PTR_TO_PACKET && 3555 src_reg->type == PTR_TO_PACKET_END) || 3556 (dst_reg->type == PTR_TO_PACKET_META && 3557 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3558 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 3559 find_good_pkt_pointers(other_branch, dst_reg, 3560 dst_reg->type, true); 3561 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3562 src_reg->type == PTR_TO_PACKET) || 3563 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3564 src_reg->type == PTR_TO_PACKET_META)) { 3565 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 3566 find_good_pkt_pointers(this_branch, src_reg, 3567 src_reg->type, false); 3568 } else { 3569 return false; 3570 } 3571 break; 3572 case BPF_JGE: 3573 if ((dst_reg->type == PTR_TO_PACKET && 3574 src_reg->type == PTR_TO_PACKET_END) || 3575 (dst_reg->type == PTR_TO_PACKET_META && 3576 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3577 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 3578 find_good_pkt_pointers(this_branch, dst_reg, 3579 dst_reg->type, true); 3580 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3581 src_reg->type == PTR_TO_PACKET) || 3582 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3583 src_reg->type == PTR_TO_PACKET_META)) { 3584 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 3585 find_good_pkt_pointers(other_branch, src_reg, 3586 src_reg->type, false); 3587 } else { 3588 return false; 3589 } 3590 break; 3591 case BPF_JLE: 3592 if ((dst_reg->type == PTR_TO_PACKET && 3593 src_reg->type == PTR_TO_PACKET_END) || 3594 (dst_reg->type == PTR_TO_PACKET_META && 3595 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 3596 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 3597 find_good_pkt_pointers(other_branch, dst_reg, 3598 dst_reg->type, false); 3599 } else if ((dst_reg->type == PTR_TO_PACKET_END && 3600 src_reg->type == PTR_TO_PACKET) || 3601 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 3602 src_reg->type == PTR_TO_PACKET_META)) { 3603 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 3604 find_good_pkt_pointers(this_branch, src_reg, 3605 src_reg->type, true); 3606 } else { 3607 return false; 3608 } 3609 break; 3610 default: 3611 return false; 3612 } 3613 3614 return true; 3615 } 3616 3617 static int check_cond_jmp_op(struct bpf_verifier_env *env, 3618 struct bpf_insn *insn, int *insn_idx) 3619 { 3620 struct bpf_verifier_state *this_branch = env->cur_state; 3621 struct bpf_verifier_state *other_branch; 3622 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 3623 struct bpf_reg_state *dst_reg, *other_branch_regs; 3624 u8 opcode = BPF_OP(insn->code); 3625 int err; 3626 3627 if (opcode > BPF_JSLE) { 3628 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 3629 return -EINVAL; 3630 } 3631 3632 if (BPF_SRC(insn->code) == BPF_X) { 3633 if (insn->imm != 0) { 3634 verbose(env, "BPF_JMP uses reserved fields\n"); 3635 return -EINVAL; 3636 } 3637 3638 /* check src1 operand */ 3639 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3640 if (err) 3641 return err; 3642 3643 if (is_pointer_value(env, insn->src_reg)) { 3644 verbose(env, "R%d pointer comparison prohibited\n", 3645 insn->src_reg); 3646 return -EACCES; 3647 } 3648 } else { 3649 if (insn->src_reg != BPF_REG_0) { 3650 verbose(env, "BPF_JMP uses reserved fields\n"); 3651 return -EINVAL; 3652 } 3653 } 3654 3655 /* check src2 operand */ 3656 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3657 if (err) 3658 return err; 3659 3660 dst_reg = ®s[insn->dst_reg]; 3661 3662 /* detect if R == 0 where R was initialized to zero earlier */ 3663 if (BPF_SRC(insn->code) == BPF_K && 3664 (opcode == BPF_JEQ || opcode == BPF_JNE) && 3665 dst_reg->type == SCALAR_VALUE && 3666 tnum_is_const(dst_reg->var_off)) { 3667 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) || 3668 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) { 3669 /* if (imm == imm) goto pc+off; 3670 * only follow the goto, ignore fall-through 3671 */ 3672 *insn_idx += insn->off; 3673 return 0; 3674 } else { 3675 /* if (imm != imm) goto pc+off; 3676 * only follow fall-through branch, since 3677 * that's where the program will go 3678 */ 3679 return 0; 3680 } 3681 } 3682 3683 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 3684 if (!other_branch) 3685 return -EFAULT; 3686 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 3687 3688 /* detect if we are comparing against a constant value so we can adjust 3689 * our min/max values for our dst register. 3690 * this is only legit if both are scalars (or pointers to the same 3691 * object, I suppose, but we don't support that right now), because 3692 * otherwise the different base pointers mean the offsets aren't 3693 * comparable. 3694 */ 3695 if (BPF_SRC(insn->code) == BPF_X) { 3696 if (dst_reg->type == SCALAR_VALUE && 3697 regs[insn->src_reg].type == SCALAR_VALUE) { 3698 if (tnum_is_const(regs[insn->src_reg].var_off)) 3699 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3700 dst_reg, regs[insn->src_reg].var_off.value, 3701 opcode); 3702 else if (tnum_is_const(dst_reg->var_off)) 3703 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 3704 ®s[insn->src_reg], 3705 dst_reg->var_off.value, opcode); 3706 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 3707 /* Comparing for equality, we can combine knowledge */ 3708 reg_combine_min_max(&other_branch_regs[insn->src_reg], 3709 &other_branch_regs[insn->dst_reg], 3710 ®s[insn->src_reg], 3711 ®s[insn->dst_reg], opcode); 3712 } 3713 } else if (dst_reg->type == SCALAR_VALUE) { 3714 reg_set_min_max(&other_branch_regs[insn->dst_reg], 3715 dst_reg, insn->imm, opcode); 3716 } 3717 3718 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 3719 if (BPF_SRC(insn->code) == BPF_K && 3720 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 3721 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 3722 /* Mark all identical map registers in each branch as either 3723 * safe or unknown depending R == 0 or R != 0 conditional. 3724 */ 3725 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 3726 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); 3727 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 3728 this_branch, other_branch) && 3729 is_pointer_value(env, insn->dst_reg)) { 3730 verbose(env, "R%d pointer comparison prohibited\n", 3731 insn->dst_reg); 3732 return -EACCES; 3733 } 3734 if (env->log.level) 3735 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 3736 return 0; 3737 } 3738 3739 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 3740 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 3741 { 3742 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 3743 3744 return (struct bpf_map *) (unsigned long) imm64; 3745 } 3746 3747 /* verify BPF_LD_IMM64 instruction */ 3748 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 3749 { 3750 struct bpf_reg_state *regs = cur_regs(env); 3751 int err; 3752 3753 if (BPF_SIZE(insn->code) != BPF_DW) { 3754 verbose(env, "invalid BPF_LD_IMM insn\n"); 3755 return -EINVAL; 3756 } 3757 if (insn->off != 0) { 3758 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 3759 return -EINVAL; 3760 } 3761 3762 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3763 if (err) 3764 return err; 3765 3766 if (insn->src_reg == 0) { 3767 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 3768 3769 regs[insn->dst_reg].type = SCALAR_VALUE; 3770 __mark_reg_known(®s[insn->dst_reg], imm); 3771 return 0; 3772 } 3773 3774 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 3775 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 3776 3777 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 3778 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 3779 return 0; 3780 } 3781 3782 static bool may_access_skb(enum bpf_prog_type type) 3783 { 3784 switch (type) { 3785 case BPF_PROG_TYPE_SOCKET_FILTER: 3786 case BPF_PROG_TYPE_SCHED_CLS: 3787 case BPF_PROG_TYPE_SCHED_ACT: 3788 return true; 3789 default: 3790 return false; 3791 } 3792 } 3793 3794 /* verify safety of LD_ABS|LD_IND instructions: 3795 * - they can only appear in the programs where ctx == skb 3796 * - since they are wrappers of function calls, they scratch R1-R5 registers, 3797 * preserve R6-R9, and store return value into R0 3798 * 3799 * Implicit input: 3800 * ctx == skb == R6 == CTX 3801 * 3802 * Explicit input: 3803 * SRC == any register 3804 * IMM == 32-bit immediate 3805 * 3806 * Output: 3807 * R0 - 8/16/32-bit skb data converted to cpu endianness 3808 */ 3809 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 3810 { 3811 struct bpf_reg_state *regs = cur_regs(env); 3812 u8 mode = BPF_MODE(insn->code); 3813 int i, err; 3814 3815 if (!may_access_skb(env->prog->type)) { 3816 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 3817 return -EINVAL; 3818 } 3819 3820 if (env->subprog_cnt) { 3821 /* when program has LD_ABS insn JITs and interpreter assume 3822 * that r1 == ctx == skb which is not the case for callees 3823 * that can have arbitrary arguments. It's problematic 3824 * for main prog as well since JITs would need to analyze 3825 * all functions in order to make proper register save/restore 3826 * decisions in the main prog. Hence disallow LD_ABS with calls 3827 */ 3828 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 3829 return -EINVAL; 3830 } 3831 3832 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 3833 BPF_SIZE(insn->code) == BPF_DW || 3834 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 3835 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 3836 return -EINVAL; 3837 } 3838 3839 /* check whether implicit source operand (register R6) is readable */ 3840 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 3841 if (err) 3842 return err; 3843 3844 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 3845 verbose(env, 3846 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 3847 return -EINVAL; 3848 } 3849 3850 if (mode == BPF_IND) { 3851 /* check explicit source operand */ 3852 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3853 if (err) 3854 return err; 3855 } 3856 3857 /* reset caller saved regs to unreadable */ 3858 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3859 mark_reg_not_init(env, regs, caller_saved[i]); 3860 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3861 } 3862 3863 /* mark destination R0 register as readable, since it contains 3864 * the value fetched from the packet. 3865 * Already marked as written above. 3866 */ 3867 mark_reg_unknown(env, regs, BPF_REG_0); 3868 return 0; 3869 } 3870 3871 static int check_return_code(struct bpf_verifier_env *env) 3872 { 3873 struct bpf_reg_state *reg; 3874 struct tnum range = tnum_range(0, 1); 3875 3876 switch (env->prog->type) { 3877 case BPF_PROG_TYPE_CGROUP_SKB: 3878 case BPF_PROG_TYPE_CGROUP_SOCK: 3879 case BPF_PROG_TYPE_SOCK_OPS: 3880 case BPF_PROG_TYPE_CGROUP_DEVICE: 3881 break; 3882 default: 3883 return 0; 3884 } 3885 3886 reg = cur_regs(env) + BPF_REG_0; 3887 if (reg->type != SCALAR_VALUE) { 3888 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 3889 reg_type_str[reg->type]); 3890 return -EINVAL; 3891 } 3892 3893 if (!tnum_in(range, reg->var_off)) { 3894 verbose(env, "At program exit the register R0 "); 3895 if (!tnum_is_unknown(reg->var_off)) { 3896 char tn_buf[48]; 3897 3898 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3899 verbose(env, "has value %s", tn_buf); 3900 } else { 3901 verbose(env, "has unknown scalar value"); 3902 } 3903 verbose(env, " should have been 0 or 1\n"); 3904 return -EINVAL; 3905 } 3906 return 0; 3907 } 3908 3909 /* non-recursive DFS pseudo code 3910 * 1 procedure DFS-iterative(G,v): 3911 * 2 label v as discovered 3912 * 3 let S be a stack 3913 * 4 S.push(v) 3914 * 5 while S is not empty 3915 * 6 t <- S.pop() 3916 * 7 if t is what we're looking for: 3917 * 8 return t 3918 * 9 for all edges e in G.adjacentEdges(t) do 3919 * 10 if edge e is already labelled 3920 * 11 continue with the next edge 3921 * 12 w <- G.adjacentVertex(t,e) 3922 * 13 if vertex w is not discovered and not explored 3923 * 14 label e as tree-edge 3924 * 15 label w as discovered 3925 * 16 S.push(w) 3926 * 17 continue at 5 3927 * 18 else if vertex w is discovered 3928 * 19 label e as back-edge 3929 * 20 else 3930 * 21 // vertex w is explored 3931 * 22 label e as forward- or cross-edge 3932 * 23 label t as explored 3933 * 24 S.pop() 3934 * 3935 * convention: 3936 * 0x10 - discovered 3937 * 0x11 - discovered and fall-through edge labelled 3938 * 0x12 - discovered and fall-through and branch edges labelled 3939 * 0x20 - explored 3940 */ 3941 3942 enum { 3943 DISCOVERED = 0x10, 3944 EXPLORED = 0x20, 3945 FALLTHROUGH = 1, 3946 BRANCH = 2, 3947 }; 3948 3949 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 3950 3951 static int *insn_stack; /* stack of insns to process */ 3952 static int cur_stack; /* current stack index */ 3953 static int *insn_state; 3954 3955 /* t, w, e - match pseudo-code above: 3956 * t - index of current instruction 3957 * w - next instruction 3958 * e - edge 3959 */ 3960 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 3961 { 3962 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 3963 return 0; 3964 3965 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 3966 return 0; 3967 3968 if (w < 0 || w >= env->prog->len) { 3969 verbose(env, "jump out of range from insn %d to %d\n", t, w); 3970 return -EINVAL; 3971 } 3972 3973 if (e == BRANCH) 3974 /* mark branch target for state pruning */ 3975 env->explored_states[w] = STATE_LIST_MARK; 3976 3977 if (insn_state[w] == 0) { 3978 /* tree-edge */ 3979 insn_state[t] = DISCOVERED | e; 3980 insn_state[w] = DISCOVERED; 3981 if (cur_stack >= env->prog->len) 3982 return -E2BIG; 3983 insn_stack[cur_stack++] = w; 3984 return 1; 3985 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 3986 verbose(env, "back-edge from insn %d to %d\n", t, w); 3987 return -EINVAL; 3988 } else if (insn_state[w] == EXPLORED) { 3989 /* forward- or cross-edge */ 3990 insn_state[t] = DISCOVERED | e; 3991 } else { 3992 verbose(env, "insn state internal bug\n"); 3993 return -EFAULT; 3994 } 3995 return 0; 3996 } 3997 3998 /* non-recursive depth-first-search to detect loops in BPF program 3999 * loop == back-edge in directed graph 4000 */ 4001 static int check_cfg(struct bpf_verifier_env *env) 4002 { 4003 struct bpf_insn *insns = env->prog->insnsi; 4004 int insn_cnt = env->prog->len; 4005 int ret = 0; 4006 int i, t; 4007 4008 ret = check_subprogs(env); 4009 if (ret < 0) 4010 return ret; 4011 4012 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4013 if (!insn_state) 4014 return -ENOMEM; 4015 4016 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4017 if (!insn_stack) { 4018 kfree(insn_state); 4019 return -ENOMEM; 4020 } 4021 4022 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4023 insn_stack[0] = 0; /* 0 is the first instruction */ 4024 cur_stack = 1; 4025 4026 peek_stack: 4027 if (cur_stack == 0) 4028 goto check_state; 4029 t = insn_stack[cur_stack - 1]; 4030 4031 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4032 u8 opcode = BPF_OP(insns[t].code); 4033 4034 if (opcode == BPF_EXIT) { 4035 goto mark_explored; 4036 } else if (opcode == BPF_CALL) { 4037 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4038 if (ret == 1) 4039 goto peek_stack; 4040 else if (ret < 0) 4041 goto err_free; 4042 if (t + 1 < insn_cnt) 4043 env->explored_states[t + 1] = STATE_LIST_MARK; 4044 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4045 env->explored_states[t] = STATE_LIST_MARK; 4046 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4047 if (ret == 1) 4048 goto peek_stack; 4049 else if (ret < 0) 4050 goto err_free; 4051 } 4052 } else if (opcode == BPF_JA) { 4053 if (BPF_SRC(insns[t].code) != BPF_K) { 4054 ret = -EINVAL; 4055 goto err_free; 4056 } 4057 /* unconditional jump with single edge */ 4058 ret = push_insn(t, t + insns[t].off + 1, 4059 FALLTHROUGH, env); 4060 if (ret == 1) 4061 goto peek_stack; 4062 else if (ret < 0) 4063 goto err_free; 4064 /* tell verifier to check for equivalent states 4065 * after every call and jump 4066 */ 4067 if (t + 1 < insn_cnt) 4068 env->explored_states[t + 1] = STATE_LIST_MARK; 4069 } else { 4070 /* conditional jump with two edges */ 4071 env->explored_states[t] = STATE_LIST_MARK; 4072 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4073 if (ret == 1) 4074 goto peek_stack; 4075 else if (ret < 0) 4076 goto err_free; 4077 4078 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4079 if (ret == 1) 4080 goto peek_stack; 4081 else if (ret < 0) 4082 goto err_free; 4083 } 4084 } else { 4085 /* all other non-branch instructions with single 4086 * fall-through edge 4087 */ 4088 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4089 if (ret == 1) 4090 goto peek_stack; 4091 else if (ret < 0) 4092 goto err_free; 4093 } 4094 4095 mark_explored: 4096 insn_state[t] = EXPLORED; 4097 if (cur_stack-- <= 0) { 4098 verbose(env, "pop stack internal bug\n"); 4099 ret = -EFAULT; 4100 goto err_free; 4101 } 4102 goto peek_stack; 4103 4104 check_state: 4105 for (i = 0; i < insn_cnt; i++) { 4106 if (insn_state[i] != EXPLORED) { 4107 verbose(env, "unreachable insn %d\n", i); 4108 ret = -EINVAL; 4109 goto err_free; 4110 } 4111 } 4112 ret = 0; /* cfg looks good */ 4113 4114 err_free: 4115 kfree(insn_state); 4116 kfree(insn_stack); 4117 return ret; 4118 } 4119 4120 /* check %cur's range satisfies %old's */ 4121 static bool range_within(struct bpf_reg_state *old, 4122 struct bpf_reg_state *cur) 4123 { 4124 return old->umin_value <= cur->umin_value && 4125 old->umax_value >= cur->umax_value && 4126 old->smin_value <= cur->smin_value && 4127 old->smax_value >= cur->smax_value; 4128 } 4129 4130 /* Maximum number of register states that can exist at once */ 4131 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 4132 struct idpair { 4133 u32 old; 4134 u32 cur; 4135 }; 4136 4137 /* If in the old state two registers had the same id, then they need to have 4138 * the same id in the new state as well. But that id could be different from 4139 * the old state, so we need to track the mapping from old to new ids. 4140 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 4141 * regs with old id 5 must also have new id 9 for the new state to be safe. But 4142 * regs with a different old id could still have new id 9, we don't care about 4143 * that. 4144 * So we look through our idmap to see if this old id has been seen before. If 4145 * so, we require the new id to match; otherwise, we add the id pair to the map. 4146 */ 4147 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 4148 { 4149 unsigned int i; 4150 4151 for (i = 0; i < ID_MAP_SIZE; i++) { 4152 if (!idmap[i].old) { 4153 /* Reached an empty slot; haven't seen this id before */ 4154 idmap[i].old = old_id; 4155 idmap[i].cur = cur_id; 4156 return true; 4157 } 4158 if (idmap[i].old == old_id) 4159 return idmap[i].cur == cur_id; 4160 } 4161 /* We ran out of idmap slots, which should be impossible */ 4162 WARN_ON_ONCE(1); 4163 return false; 4164 } 4165 4166 /* Returns true if (rold safe implies rcur safe) */ 4167 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 4168 struct idpair *idmap) 4169 { 4170 bool equal; 4171 4172 if (!(rold->live & REG_LIVE_READ)) 4173 /* explored state didn't use this */ 4174 return true; 4175 4176 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0; 4177 4178 if (rold->type == PTR_TO_STACK) 4179 /* two stack pointers are equal only if they're pointing to 4180 * the same stack frame, since fp-8 in foo != fp-8 in bar 4181 */ 4182 return equal && rold->frameno == rcur->frameno; 4183 4184 if (equal) 4185 return true; 4186 4187 if (rold->type == NOT_INIT) 4188 /* explored state can't have used this */ 4189 return true; 4190 if (rcur->type == NOT_INIT) 4191 return false; 4192 switch (rold->type) { 4193 case SCALAR_VALUE: 4194 if (rcur->type == SCALAR_VALUE) { 4195 /* new val must satisfy old val knowledge */ 4196 return range_within(rold, rcur) && 4197 tnum_in(rold->var_off, rcur->var_off); 4198 } else { 4199 /* We're trying to use a pointer in place of a scalar. 4200 * Even if the scalar was unbounded, this could lead to 4201 * pointer leaks because scalars are allowed to leak 4202 * while pointers are not. We could make this safe in 4203 * special cases if root is calling us, but it's 4204 * probably not worth the hassle. 4205 */ 4206 return false; 4207 } 4208 case PTR_TO_MAP_VALUE: 4209 /* If the new min/max/var_off satisfy the old ones and 4210 * everything else matches, we are OK. 4211 * We don't care about the 'id' value, because nothing 4212 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 4213 */ 4214 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 4215 range_within(rold, rcur) && 4216 tnum_in(rold->var_off, rcur->var_off); 4217 case PTR_TO_MAP_VALUE_OR_NULL: 4218 /* a PTR_TO_MAP_VALUE could be safe to use as a 4219 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 4220 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 4221 * checked, doing so could have affected others with the same 4222 * id, and we can't check for that because we lost the id when 4223 * we converted to a PTR_TO_MAP_VALUE. 4224 */ 4225 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 4226 return false; 4227 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 4228 return false; 4229 /* Check our ids match any regs they're supposed to */ 4230 return check_ids(rold->id, rcur->id, idmap); 4231 case PTR_TO_PACKET_META: 4232 case PTR_TO_PACKET: 4233 if (rcur->type != rold->type) 4234 return false; 4235 /* We must have at least as much range as the old ptr 4236 * did, so that any accesses which were safe before are 4237 * still safe. This is true even if old range < old off, 4238 * since someone could have accessed through (ptr - k), or 4239 * even done ptr -= k in a register, to get a safe access. 4240 */ 4241 if (rold->range > rcur->range) 4242 return false; 4243 /* If the offsets don't match, we can't trust our alignment; 4244 * nor can we be sure that we won't fall out of range. 4245 */ 4246 if (rold->off != rcur->off) 4247 return false; 4248 /* id relations must be preserved */ 4249 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 4250 return false; 4251 /* new val must satisfy old val knowledge */ 4252 return range_within(rold, rcur) && 4253 tnum_in(rold->var_off, rcur->var_off); 4254 case PTR_TO_CTX: 4255 case CONST_PTR_TO_MAP: 4256 case PTR_TO_PACKET_END: 4257 /* Only valid matches are exact, which memcmp() above 4258 * would have accepted 4259 */ 4260 default: 4261 /* Don't know what's going on, just say it's not safe */ 4262 return false; 4263 } 4264 4265 /* Shouldn't get here; if we do, say it's not safe */ 4266 WARN_ON_ONCE(1); 4267 return false; 4268 } 4269 4270 static bool stacksafe(struct bpf_func_state *old, 4271 struct bpf_func_state *cur, 4272 struct idpair *idmap) 4273 { 4274 int i, spi; 4275 4276 /* if explored stack has more populated slots than current stack 4277 * such stacks are not equivalent 4278 */ 4279 if (old->allocated_stack > cur->allocated_stack) 4280 return false; 4281 4282 /* walk slots of the explored stack and ignore any additional 4283 * slots in the current stack, since explored(safe) state 4284 * didn't use them 4285 */ 4286 for (i = 0; i < old->allocated_stack; i++) { 4287 spi = i / BPF_REG_SIZE; 4288 4289 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) 4290 /* explored state didn't use this */ 4291 continue; 4292 4293 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 4294 continue; 4295 /* if old state was safe with misc data in the stack 4296 * it will be safe with zero-initialized stack. 4297 * The opposite is not true 4298 */ 4299 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 4300 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 4301 continue; 4302 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 4303 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 4304 /* Ex: old explored (safe) state has STACK_SPILL in 4305 * this stack slot, but current has has STACK_MISC -> 4306 * this verifier states are not equivalent, 4307 * return false to continue verification of this path 4308 */ 4309 return false; 4310 if (i % BPF_REG_SIZE) 4311 continue; 4312 if (old->stack[spi].slot_type[0] != STACK_SPILL) 4313 continue; 4314 if (!regsafe(&old->stack[spi].spilled_ptr, 4315 &cur->stack[spi].spilled_ptr, 4316 idmap)) 4317 /* when explored and current stack slot are both storing 4318 * spilled registers, check that stored pointers types 4319 * are the same as well. 4320 * Ex: explored safe path could have stored 4321 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 4322 * but current path has stored: 4323 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 4324 * such verifier states are not equivalent. 4325 * return false to continue verification of this path 4326 */ 4327 return false; 4328 } 4329 return true; 4330 } 4331 4332 /* compare two verifier states 4333 * 4334 * all states stored in state_list are known to be valid, since 4335 * verifier reached 'bpf_exit' instruction through them 4336 * 4337 * this function is called when verifier exploring different branches of 4338 * execution popped from the state stack. If it sees an old state that has 4339 * more strict register state and more strict stack state then this execution 4340 * branch doesn't need to be explored further, since verifier already 4341 * concluded that more strict state leads to valid finish. 4342 * 4343 * Therefore two states are equivalent if register state is more conservative 4344 * and explored stack state is more conservative than the current one. 4345 * Example: 4346 * explored current 4347 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 4348 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 4349 * 4350 * In other words if current stack state (one being explored) has more 4351 * valid slots than old one that already passed validation, it means 4352 * the verifier can stop exploring and conclude that current state is valid too 4353 * 4354 * Similarly with registers. If explored state has register type as invalid 4355 * whereas register type in current state is meaningful, it means that 4356 * the current state will reach 'bpf_exit' instruction safely 4357 */ 4358 static bool func_states_equal(struct bpf_func_state *old, 4359 struct bpf_func_state *cur) 4360 { 4361 struct idpair *idmap; 4362 bool ret = false; 4363 int i; 4364 4365 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 4366 /* If we failed to allocate the idmap, just say it's not safe */ 4367 if (!idmap) 4368 return false; 4369 4370 for (i = 0; i < MAX_BPF_REG; i++) { 4371 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 4372 goto out_free; 4373 } 4374 4375 if (!stacksafe(old, cur, idmap)) 4376 goto out_free; 4377 ret = true; 4378 out_free: 4379 kfree(idmap); 4380 return ret; 4381 } 4382 4383 static bool states_equal(struct bpf_verifier_env *env, 4384 struct bpf_verifier_state *old, 4385 struct bpf_verifier_state *cur) 4386 { 4387 int i; 4388 4389 if (old->curframe != cur->curframe) 4390 return false; 4391 4392 /* for states to be equal callsites have to be the same 4393 * and all frame states need to be equivalent 4394 */ 4395 for (i = 0; i <= old->curframe; i++) { 4396 if (old->frame[i]->callsite != cur->frame[i]->callsite) 4397 return false; 4398 if (!func_states_equal(old->frame[i], cur->frame[i])) 4399 return false; 4400 } 4401 return true; 4402 } 4403 4404 /* A write screens off any subsequent reads; but write marks come from the 4405 * straight-line code between a state and its parent. When we arrive at an 4406 * equivalent state (jump target or such) we didn't arrive by the straight-line 4407 * code, so read marks in the state must propagate to the parent regardless 4408 * of the state's write marks. That's what 'parent == state->parent' comparison 4409 * in mark_reg_read() and mark_stack_slot_read() is for. 4410 */ 4411 static int propagate_liveness(struct bpf_verifier_env *env, 4412 const struct bpf_verifier_state *vstate, 4413 struct bpf_verifier_state *vparent) 4414 { 4415 int i, frame, err = 0; 4416 struct bpf_func_state *state, *parent; 4417 4418 if (vparent->curframe != vstate->curframe) { 4419 WARN(1, "propagate_live: parent frame %d current frame %d\n", 4420 vparent->curframe, vstate->curframe); 4421 return -EFAULT; 4422 } 4423 /* Propagate read liveness of registers... */ 4424 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 4425 /* We don't need to worry about FP liveness because it's read-only */ 4426 for (i = 0; i < BPF_REG_FP; i++) { 4427 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 4428 continue; 4429 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 4430 err = mark_reg_read(env, vstate, vparent, i); 4431 if (err) 4432 return err; 4433 } 4434 } 4435 4436 /* ... and stack slots */ 4437 for (frame = 0; frame <= vstate->curframe; frame++) { 4438 state = vstate->frame[frame]; 4439 parent = vparent->frame[frame]; 4440 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 4441 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 4442 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 4443 continue; 4444 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 4445 mark_stack_slot_read(env, vstate, vparent, i, frame); 4446 } 4447 } 4448 return err; 4449 } 4450 4451 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 4452 { 4453 struct bpf_verifier_state_list *new_sl; 4454 struct bpf_verifier_state_list *sl; 4455 struct bpf_verifier_state *cur = env->cur_state; 4456 int i, j, err; 4457 4458 sl = env->explored_states[insn_idx]; 4459 if (!sl) 4460 /* this 'insn_idx' instruction wasn't marked, so we will not 4461 * be doing state search here 4462 */ 4463 return 0; 4464 4465 while (sl != STATE_LIST_MARK) { 4466 if (states_equal(env, &sl->state, cur)) { 4467 /* reached equivalent register/stack state, 4468 * prune the search. 4469 * Registers read by the continuation are read by us. 4470 * If we have any write marks in env->cur_state, they 4471 * will prevent corresponding reads in the continuation 4472 * from reaching our parent (an explored_state). Our 4473 * own state will get the read marks recorded, but 4474 * they'll be immediately forgotten as we're pruning 4475 * this state and will pop a new one. 4476 */ 4477 err = propagate_liveness(env, &sl->state, cur); 4478 if (err) 4479 return err; 4480 return 1; 4481 } 4482 sl = sl->next; 4483 } 4484 4485 /* there were no equivalent states, remember current one. 4486 * technically the current state is not proven to be safe yet, 4487 * but it will either reach outer most bpf_exit (which means it's safe) 4488 * or it will be rejected. Since there are no loops, we won't be 4489 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 4490 * again on the way to bpf_exit 4491 */ 4492 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 4493 if (!new_sl) 4494 return -ENOMEM; 4495 4496 /* add new state to the head of linked list */ 4497 err = copy_verifier_state(&new_sl->state, cur); 4498 if (err) { 4499 free_verifier_state(&new_sl->state, false); 4500 kfree(new_sl); 4501 return err; 4502 } 4503 new_sl->next = env->explored_states[insn_idx]; 4504 env->explored_states[insn_idx] = new_sl; 4505 /* connect new state to parentage chain */ 4506 cur->parent = &new_sl->state; 4507 /* clear write marks in current state: the writes we did are not writes 4508 * our child did, so they don't screen off its reads from us. 4509 * (There are no read marks in current state, because reads always mark 4510 * their parent and current state never has children yet. Only 4511 * explored_states can get read marks.) 4512 */ 4513 for (i = 0; i < BPF_REG_FP; i++) 4514 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 4515 4516 /* all stack frames are accessible from callee, clear them all */ 4517 for (j = 0; j <= cur->curframe; j++) { 4518 struct bpf_func_state *frame = cur->frame[j]; 4519 4520 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) 4521 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 4522 } 4523 return 0; 4524 } 4525 4526 static int do_check(struct bpf_verifier_env *env) 4527 { 4528 struct bpf_verifier_state *state; 4529 struct bpf_insn *insns = env->prog->insnsi; 4530 struct bpf_reg_state *regs; 4531 int insn_cnt = env->prog->len, i; 4532 int insn_idx, prev_insn_idx = 0; 4533 int insn_processed = 0; 4534 bool do_print_state = false; 4535 4536 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 4537 if (!state) 4538 return -ENOMEM; 4539 state->curframe = 0; 4540 state->parent = NULL; 4541 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 4542 if (!state->frame[0]) { 4543 kfree(state); 4544 return -ENOMEM; 4545 } 4546 env->cur_state = state; 4547 init_func_state(env, state->frame[0], 4548 BPF_MAIN_FUNC /* callsite */, 4549 0 /* frameno */, 4550 0 /* subprogno, zero == main subprog */); 4551 insn_idx = 0; 4552 for (;;) { 4553 struct bpf_insn *insn; 4554 u8 class; 4555 int err; 4556 4557 if (insn_idx >= insn_cnt) { 4558 verbose(env, "invalid insn idx %d insn_cnt %d\n", 4559 insn_idx, insn_cnt); 4560 return -EFAULT; 4561 } 4562 4563 insn = &insns[insn_idx]; 4564 class = BPF_CLASS(insn->code); 4565 4566 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 4567 verbose(env, 4568 "BPF program is too large. Processed %d insn\n", 4569 insn_processed); 4570 return -E2BIG; 4571 } 4572 4573 err = is_state_visited(env, insn_idx); 4574 if (err < 0) 4575 return err; 4576 if (err == 1) { 4577 /* found equivalent state, can prune the search */ 4578 if (env->log.level) { 4579 if (do_print_state) 4580 verbose(env, "\nfrom %d to %d: safe\n", 4581 prev_insn_idx, insn_idx); 4582 else 4583 verbose(env, "%d: safe\n", insn_idx); 4584 } 4585 goto process_bpf_exit; 4586 } 4587 4588 if (need_resched()) 4589 cond_resched(); 4590 4591 if (env->log.level > 1 || (env->log.level && do_print_state)) { 4592 if (env->log.level > 1) 4593 verbose(env, "%d:", insn_idx); 4594 else 4595 verbose(env, "\nfrom %d to %d:", 4596 prev_insn_idx, insn_idx); 4597 print_verifier_state(env, state->frame[state->curframe]); 4598 do_print_state = false; 4599 } 4600 4601 if (env->log.level) { 4602 const struct bpf_insn_cbs cbs = { 4603 .cb_print = verbose, 4604 }; 4605 4606 verbose(env, "%d: ", insn_idx); 4607 print_bpf_insn(&cbs, env, insn, env->allow_ptr_leaks); 4608 } 4609 4610 if (bpf_prog_is_dev_bound(env->prog->aux)) { 4611 err = bpf_prog_offload_verify_insn(env, insn_idx, 4612 prev_insn_idx); 4613 if (err) 4614 return err; 4615 } 4616 4617 regs = cur_regs(env); 4618 env->insn_aux_data[insn_idx].seen = true; 4619 if (class == BPF_ALU || class == BPF_ALU64) { 4620 err = check_alu_op(env, insn); 4621 if (err) 4622 return err; 4623 4624 } else if (class == BPF_LDX) { 4625 enum bpf_reg_type *prev_src_type, src_reg_type; 4626 4627 /* check for reserved fields is already done */ 4628 4629 /* check src operand */ 4630 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4631 if (err) 4632 return err; 4633 4634 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4635 if (err) 4636 return err; 4637 4638 src_reg_type = regs[insn->src_reg].type; 4639 4640 /* check that memory (src_reg + off) is readable, 4641 * the state of dst_reg will be updated by this func 4642 */ 4643 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 4644 BPF_SIZE(insn->code), BPF_READ, 4645 insn->dst_reg, false); 4646 if (err) 4647 return err; 4648 4649 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 4650 4651 if (*prev_src_type == NOT_INIT) { 4652 /* saw a valid insn 4653 * dst_reg = *(u32 *)(src_reg + off) 4654 * save type to validate intersecting paths 4655 */ 4656 *prev_src_type = src_reg_type; 4657 4658 } else if (src_reg_type != *prev_src_type && 4659 (src_reg_type == PTR_TO_CTX || 4660 *prev_src_type == PTR_TO_CTX)) { 4661 /* ABuser program is trying to use the same insn 4662 * dst_reg = *(u32*) (src_reg + off) 4663 * with different pointer types: 4664 * src_reg == ctx in one branch and 4665 * src_reg == stack|map in some other branch. 4666 * Reject it. 4667 */ 4668 verbose(env, "same insn cannot be used with different pointers\n"); 4669 return -EINVAL; 4670 } 4671 4672 } else if (class == BPF_STX) { 4673 enum bpf_reg_type *prev_dst_type, dst_reg_type; 4674 4675 if (BPF_MODE(insn->code) == BPF_XADD) { 4676 err = check_xadd(env, insn_idx, insn); 4677 if (err) 4678 return err; 4679 insn_idx++; 4680 continue; 4681 } 4682 4683 /* check src1 operand */ 4684 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4685 if (err) 4686 return err; 4687 /* check src2 operand */ 4688 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4689 if (err) 4690 return err; 4691 4692 dst_reg_type = regs[insn->dst_reg].type; 4693 4694 /* check that memory (dst_reg + off) is writeable */ 4695 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4696 BPF_SIZE(insn->code), BPF_WRITE, 4697 insn->src_reg, false); 4698 if (err) 4699 return err; 4700 4701 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 4702 4703 if (*prev_dst_type == NOT_INIT) { 4704 *prev_dst_type = dst_reg_type; 4705 } else if (dst_reg_type != *prev_dst_type && 4706 (dst_reg_type == PTR_TO_CTX || 4707 *prev_dst_type == PTR_TO_CTX)) { 4708 verbose(env, "same insn cannot be used with different pointers\n"); 4709 return -EINVAL; 4710 } 4711 4712 } else if (class == BPF_ST) { 4713 if (BPF_MODE(insn->code) != BPF_MEM || 4714 insn->src_reg != BPF_REG_0) { 4715 verbose(env, "BPF_ST uses reserved fields\n"); 4716 return -EINVAL; 4717 } 4718 /* check src operand */ 4719 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4720 if (err) 4721 return err; 4722 4723 if (is_ctx_reg(env, insn->dst_reg)) { 4724 verbose(env, "BPF_ST stores into R%d context is not allowed\n", 4725 insn->dst_reg); 4726 return -EACCES; 4727 } 4728 4729 /* check that memory (dst_reg + off) is writeable */ 4730 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4731 BPF_SIZE(insn->code), BPF_WRITE, 4732 -1, false); 4733 if (err) 4734 return err; 4735 4736 } else if (class == BPF_JMP) { 4737 u8 opcode = BPF_OP(insn->code); 4738 4739 if (opcode == BPF_CALL) { 4740 if (BPF_SRC(insn->code) != BPF_K || 4741 insn->off != 0 || 4742 (insn->src_reg != BPF_REG_0 && 4743 insn->src_reg != BPF_PSEUDO_CALL) || 4744 insn->dst_reg != BPF_REG_0) { 4745 verbose(env, "BPF_CALL uses reserved fields\n"); 4746 return -EINVAL; 4747 } 4748 4749 if (insn->src_reg == BPF_PSEUDO_CALL) 4750 err = check_func_call(env, insn, &insn_idx); 4751 else 4752 err = check_helper_call(env, insn->imm, insn_idx); 4753 if (err) 4754 return err; 4755 4756 } else if (opcode == BPF_JA) { 4757 if (BPF_SRC(insn->code) != BPF_K || 4758 insn->imm != 0 || 4759 insn->src_reg != BPF_REG_0 || 4760 insn->dst_reg != BPF_REG_0) { 4761 verbose(env, "BPF_JA uses reserved fields\n"); 4762 return -EINVAL; 4763 } 4764 4765 insn_idx += insn->off + 1; 4766 continue; 4767 4768 } else if (opcode == BPF_EXIT) { 4769 if (BPF_SRC(insn->code) != BPF_K || 4770 insn->imm != 0 || 4771 insn->src_reg != BPF_REG_0 || 4772 insn->dst_reg != BPF_REG_0) { 4773 verbose(env, "BPF_EXIT uses reserved fields\n"); 4774 return -EINVAL; 4775 } 4776 4777 if (state->curframe) { 4778 /* exit from nested function */ 4779 prev_insn_idx = insn_idx; 4780 err = prepare_func_exit(env, &insn_idx); 4781 if (err) 4782 return err; 4783 do_print_state = true; 4784 continue; 4785 } 4786 4787 /* eBPF calling convetion is such that R0 is used 4788 * to return the value from eBPF program. 4789 * Make sure that it's readable at this time 4790 * of bpf_exit, which means that program wrote 4791 * something into it earlier 4792 */ 4793 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4794 if (err) 4795 return err; 4796 4797 if (is_pointer_value(env, BPF_REG_0)) { 4798 verbose(env, "R0 leaks addr as return value\n"); 4799 return -EACCES; 4800 } 4801 4802 err = check_return_code(env); 4803 if (err) 4804 return err; 4805 process_bpf_exit: 4806 err = pop_stack(env, &prev_insn_idx, &insn_idx); 4807 if (err < 0) { 4808 if (err != -ENOENT) 4809 return err; 4810 break; 4811 } else { 4812 do_print_state = true; 4813 continue; 4814 } 4815 } else { 4816 err = check_cond_jmp_op(env, insn, &insn_idx); 4817 if (err) 4818 return err; 4819 } 4820 } else if (class == BPF_LD) { 4821 u8 mode = BPF_MODE(insn->code); 4822 4823 if (mode == BPF_ABS || mode == BPF_IND) { 4824 err = check_ld_abs(env, insn); 4825 if (err) 4826 return err; 4827 4828 } else if (mode == BPF_IMM) { 4829 err = check_ld_imm(env, insn); 4830 if (err) 4831 return err; 4832 4833 insn_idx++; 4834 env->insn_aux_data[insn_idx].seen = true; 4835 } else { 4836 verbose(env, "invalid BPF_LD mode\n"); 4837 return -EINVAL; 4838 } 4839 } else { 4840 verbose(env, "unknown insn class %d\n", class); 4841 return -EINVAL; 4842 } 4843 4844 insn_idx++; 4845 } 4846 4847 verbose(env, "processed %d insns (limit %d), stack depth ", 4848 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 4849 for (i = 0; i < env->subprog_cnt + 1; i++) { 4850 u32 depth = env->subprog_stack_depth[i]; 4851 4852 verbose(env, "%d", depth); 4853 if (i + 1 < env->subprog_cnt + 1) 4854 verbose(env, "+"); 4855 } 4856 verbose(env, "\n"); 4857 env->prog->aux->stack_depth = env->subprog_stack_depth[0]; 4858 return 0; 4859 } 4860 4861 static int check_map_prealloc(struct bpf_map *map) 4862 { 4863 return (map->map_type != BPF_MAP_TYPE_HASH && 4864 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 4865 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 4866 !(map->map_flags & BPF_F_NO_PREALLOC); 4867 } 4868 4869 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 4870 struct bpf_map *map, 4871 struct bpf_prog *prog) 4872 4873 { 4874 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 4875 * preallocated hash maps, since doing memory allocation 4876 * in overflow_handler can crash depending on where nmi got 4877 * triggered. 4878 */ 4879 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 4880 if (!check_map_prealloc(map)) { 4881 verbose(env, "perf_event programs can only use preallocated hash map\n"); 4882 return -EINVAL; 4883 } 4884 if (map->inner_map_meta && 4885 !check_map_prealloc(map->inner_map_meta)) { 4886 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 4887 return -EINVAL; 4888 } 4889 } 4890 4891 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 4892 !bpf_offload_dev_match(prog, map)) { 4893 verbose(env, "offload device mismatch between prog and map\n"); 4894 return -EINVAL; 4895 } 4896 4897 return 0; 4898 } 4899 4900 /* look for pseudo eBPF instructions that access map FDs and 4901 * replace them with actual map pointers 4902 */ 4903 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 4904 { 4905 struct bpf_insn *insn = env->prog->insnsi; 4906 int insn_cnt = env->prog->len; 4907 int i, j, err; 4908 4909 err = bpf_prog_calc_tag(env->prog); 4910 if (err) 4911 return err; 4912 4913 for (i = 0; i < insn_cnt; i++, insn++) { 4914 if (BPF_CLASS(insn->code) == BPF_LDX && 4915 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 4916 verbose(env, "BPF_LDX uses reserved fields\n"); 4917 return -EINVAL; 4918 } 4919 4920 if (BPF_CLASS(insn->code) == BPF_STX && 4921 ((BPF_MODE(insn->code) != BPF_MEM && 4922 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 4923 verbose(env, "BPF_STX uses reserved fields\n"); 4924 return -EINVAL; 4925 } 4926 4927 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 4928 struct bpf_map *map; 4929 struct fd f; 4930 4931 if (i == insn_cnt - 1 || insn[1].code != 0 || 4932 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 4933 insn[1].off != 0) { 4934 verbose(env, "invalid bpf_ld_imm64 insn\n"); 4935 return -EINVAL; 4936 } 4937 4938 if (insn->src_reg == 0) 4939 /* valid generic load 64-bit imm */ 4940 goto next_insn; 4941 4942 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 4943 verbose(env, 4944 "unrecognized bpf_ld_imm64 insn\n"); 4945 return -EINVAL; 4946 } 4947 4948 f = fdget(insn->imm); 4949 map = __bpf_map_get(f); 4950 if (IS_ERR(map)) { 4951 verbose(env, "fd %d is not pointing to valid bpf_map\n", 4952 insn->imm); 4953 return PTR_ERR(map); 4954 } 4955 4956 err = check_map_prog_compatibility(env, map, env->prog); 4957 if (err) { 4958 fdput(f); 4959 return err; 4960 } 4961 4962 /* store map pointer inside BPF_LD_IMM64 instruction */ 4963 insn[0].imm = (u32) (unsigned long) map; 4964 insn[1].imm = ((u64) (unsigned long) map) >> 32; 4965 4966 /* check whether we recorded this map already */ 4967 for (j = 0; j < env->used_map_cnt; j++) 4968 if (env->used_maps[j] == map) { 4969 fdput(f); 4970 goto next_insn; 4971 } 4972 4973 if (env->used_map_cnt >= MAX_USED_MAPS) { 4974 fdput(f); 4975 return -E2BIG; 4976 } 4977 4978 /* hold the map. If the program is rejected by verifier, 4979 * the map will be released by release_maps() or it 4980 * will be used by the valid program until it's unloaded 4981 * and all maps are released in free_bpf_prog_info() 4982 */ 4983 map = bpf_map_inc(map, false); 4984 if (IS_ERR(map)) { 4985 fdput(f); 4986 return PTR_ERR(map); 4987 } 4988 env->used_maps[env->used_map_cnt++] = map; 4989 4990 fdput(f); 4991 next_insn: 4992 insn++; 4993 i++; 4994 continue; 4995 } 4996 4997 /* Basic sanity check before we invest more work here. */ 4998 if (!bpf_opcode_in_insntable(insn->code)) { 4999 verbose(env, "unknown opcode %02x\n", insn->code); 5000 return -EINVAL; 5001 } 5002 } 5003 5004 /* now all pseudo BPF_LD_IMM64 instructions load valid 5005 * 'struct bpf_map *' into a register instead of user map_fd. 5006 * These pointers will be used later by verifier to validate map access. 5007 */ 5008 return 0; 5009 } 5010 5011 /* drop refcnt of maps used by the rejected program */ 5012 static void release_maps(struct bpf_verifier_env *env) 5013 { 5014 int i; 5015 5016 for (i = 0; i < env->used_map_cnt; i++) 5017 bpf_map_put(env->used_maps[i]); 5018 } 5019 5020 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 5021 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 5022 { 5023 struct bpf_insn *insn = env->prog->insnsi; 5024 int insn_cnt = env->prog->len; 5025 int i; 5026 5027 for (i = 0; i < insn_cnt; i++, insn++) 5028 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 5029 insn->src_reg = 0; 5030 } 5031 5032 /* single env->prog->insni[off] instruction was replaced with the range 5033 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 5034 * [0, off) and [off, end) to new locations, so the patched range stays zero 5035 */ 5036 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 5037 u32 off, u32 cnt) 5038 { 5039 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 5040 int i; 5041 5042 if (cnt == 1) 5043 return 0; 5044 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len); 5045 if (!new_data) 5046 return -ENOMEM; 5047 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 5048 memcpy(new_data + off + cnt - 1, old_data + off, 5049 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 5050 for (i = off; i < off + cnt - 1; i++) 5051 new_data[i].seen = true; 5052 env->insn_aux_data = new_data; 5053 vfree(old_data); 5054 return 0; 5055 } 5056 5057 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 5058 { 5059 int i; 5060 5061 if (len == 1) 5062 return; 5063 for (i = 0; i < env->subprog_cnt; i++) { 5064 if (env->subprog_starts[i] < off) 5065 continue; 5066 env->subprog_starts[i] += len - 1; 5067 } 5068 } 5069 5070 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 5071 const struct bpf_insn *patch, u32 len) 5072 { 5073 struct bpf_prog *new_prog; 5074 5075 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 5076 if (!new_prog) 5077 return NULL; 5078 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 5079 return NULL; 5080 adjust_subprog_starts(env, off, len); 5081 return new_prog; 5082 } 5083 5084 /* The verifier does more data flow analysis than llvm and will not 5085 * explore branches that are dead at run time. Malicious programs can 5086 * have dead code too. Therefore replace all dead at-run-time code 5087 * with 'ja -1'. 5088 * 5089 * Just nops are not optimal, e.g. if they would sit at the end of the 5090 * program and through another bug we would manage to jump there, then 5091 * we'd execute beyond program memory otherwise. Returning exception 5092 * code also wouldn't work since we can have subprogs where the dead 5093 * code could be located. 5094 */ 5095 static void sanitize_dead_code(struct bpf_verifier_env *env) 5096 { 5097 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 5098 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 5099 struct bpf_insn *insn = env->prog->insnsi; 5100 const int insn_cnt = env->prog->len; 5101 int i; 5102 5103 for (i = 0; i < insn_cnt; i++) { 5104 if (aux_data[i].seen) 5105 continue; 5106 memcpy(insn + i, &trap, sizeof(trap)); 5107 } 5108 } 5109 5110 /* convert load instructions that access fields of 'struct __sk_buff' 5111 * into sequence of instructions that access fields of 'struct sk_buff' 5112 */ 5113 static int convert_ctx_accesses(struct bpf_verifier_env *env) 5114 { 5115 const struct bpf_verifier_ops *ops = env->ops; 5116 int i, cnt, size, ctx_field_size, delta = 0; 5117 const int insn_cnt = env->prog->len; 5118 struct bpf_insn insn_buf[16], *insn; 5119 struct bpf_prog *new_prog; 5120 enum bpf_access_type type; 5121 bool is_narrower_load; 5122 u32 target_size; 5123 5124 if (ops->gen_prologue) { 5125 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 5126 env->prog); 5127 if (cnt >= ARRAY_SIZE(insn_buf)) { 5128 verbose(env, "bpf verifier is misconfigured\n"); 5129 return -EINVAL; 5130 } else if (cnt) { 5131 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 5132 if (!new_prog) 5133 return -ENOMEM; 5134 5135 env->prog = new_prog; 5136 delta += cnt - 1; 5137 } 5138 } 5139 5140 if (!ops->convert_ctx_access) 5141 return 0; 5142 5143 insn = env->prog->insnsi + delta; 5144 5145 for (i = 0; i < insn_cnt; i++, insn++) { 5146 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 5147 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 5148 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 5149 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 5150 type = BPF_READ; 5151 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 5152 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 5153 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 5154 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 5155 type = BPF_WRITE; 5156 else 5157 continue; 5158 5159 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 5160 continue; 5161 5162 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 5163 size = BPF_LDST_BYTES(insn); 5164 5165 /* If the read access is a narrower load of the field, 5166 * convert to a 4/8-byte load, to minimum program type specific 5167 * convert_ctx_access changes. If conversion is successful, 5168 * we will apply proper mask to the result. 5169 */ 5170 is_narrower_load = size < ctx_field_size; 5171 if (is_narrower_load) { 5172 u32 off = insn->off; 5173 u8 size_code; 5174 5175 if (type == BPF_WRITE) { 5176 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 5177 return -EINVAL; 5178 } 5179 5180 size_code = BPF_H; 5181 if (ctx_field_size == 4) 5182 size_code = BPF_W; 5183 else if (ctx_field_size == 8) 5184 size_code = BPF_DW; 5185 5186 insn->off = off & ~(ctx_field_size - 1); 5187 insn->code = BPF_LDX | BPF_MEM | size_code; 5188 } 5189 5190 target_size = 0; 5191 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 5192 &target_size); 5193 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 5194 (ctx_field_size && !target_size)) { 5195 verbose(env, "bpf verifier is misconfigured\n"); 5196 return -EINVAL; 5197 } 5198 5199 if (is_narrower_load && size < target_size) { 5200 if (ctx_field_size <= 4) 5201 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 5202 (1 << size * 8) - 1); 5203 else 5204 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 5205 (1 << size * 8) - 1); 5206 } 5207 5208 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5209 if (!new_prog) 5210 return -ENOMEM; 5211 5212 delta += cnt - 1; 5213 5214 /* keep walking new program and skip insns we just inserted */ 5215 env->prog = new_prog; 5216 insn = new_prog->insnsi + i + delta; 5217 } 5218 5219 return 0; 5220 } 5221 5222 static int jit_subprogs(struct bpf_verifier_env *env) 5223 { 5224 struct bpf_prog *prog = env->prog, **func, *tmp; 5225 int i, j, subprog_start, subprog_end = 0, len, subprog; 5226 struct bpf_insn *insn; 5227 void *old_bpf_func; 5228 int err = -ENOMEM; 5229 5230 if (env->subprog_cnt == 0) 5231 return 0; 5232 5233 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5234 if (insn->code != (BPF_JMP | BPF_CALL) || 5235 insn->src_reg != BPF_PSEUDO_CALL) 5236 continue; 5237 subprog = find_subprog(env, i + insn->imm + 1); 5238 if (subprog < 0) { 5239 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5240 i + insn->imm + 1); 5241 return -EFAULT; 5242 } 5243 /* temporarily remember subprog id inside insn instead of 5244 * aux_data, since next loop will split up all insns into funcs 5245 */ 5246 insn->off = subprog + 1; 5247 /* remember original imm in case JIT fails and fallback 5248 * to interpreter will be needed 5249 */ 5250 env->insn_aux_data[i].call_imm = insn->imm; 5251 /* point imm to __bpf_call_base+1 from JITs point of view */ 5252 insn->imm = 1; 5253 } 5254 5255 func = kzalloc(sizeof(prog) * (env->subprog_cnt + 1), GFP_KERNEL); 5256 if (!func) 5257 return -ENOMEM; 5258 5259 for (i = 0; i <= env->subprog_cnt; i++) { 5260 subprog_start = subprog_end; 5261 if (env->subprog_cnt == i) 5262 subprog_end = prog->len; 5263 else 5264 subprog_end = env->subprog_starts[i]; 5265 5266 len = subprog_end - subprog_start; 5267 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 5268 if (!func[i]) 5269 goto out_free; 5270 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 5271 len * sizeof(struct bpf_insn)); 5272 func[i]->type = prog->type; 5273 func[i]->len = len; 5274 if (bpf_prog_calc_tag(func[i])) 5275 goto out_free; 5276 func[i]->is_func = 1; 5277 /* Use bpf_prog_F_tag to indicate functions in stack traces. 5278 * Long term would need debug info to populate names 5279 */ 5280 func[i]->aux->name[0] = 'F'; 5281 func[i]->aux->stack_depth = env->subprog_stack_depth[i]; 5282 func[i]->jit_requested = 1; 5283 func[i] = bpf_int_jit_compile(func[i]); 5284 if (!func[i]->jited) { 5285 err = -ENOTSUPP; 5286 goto out_free; 5287 } 5288 cond_resched(); 5289 } 5290 /* at this point all bpf functions were successfully JITed 5291 * now populate all bpf_calls with correct addresses and 5292 * run last pass of JIT 5293 */ 5294 for (i = 0; i <= env->subprog_cnt; i++) { 5295 insn = func[i]->insnsi; 5296 for (j = 0; j < func[i]->len; j++, insn++) { 5297 if (insn->code != (BPF_JMP | BPF_CALL) || 5298 insn->src_reg != BPF_PSEUDO_CALL) 5299 continue; 5300 subprog = insn->off; 5301 insn->off = 0; 5302 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5303 func[subprog]->bpf_func - 5304 __bpf_call_base; 5305 } 5306 } 5307 for (i = 0; i <= env->subprog_cnt; i++) { 5308 old_bpf_func = func[i]->bpf_func; 5309 tmp = bpf_int_jit_compile(func[i]); 5310 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 5311 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 5312 err = -EFAULT; 5313 goto out_free; 5314 } 5315 cond_resched(); 5316 } 5317 5318 /* finally lock prog and jit images for all functions and 5319 * populate kallsysm 5320 */ 5321 for (i = 0; i <= env->subprog_cnt; i++) { 5322 bpf_prog_lock_ro(func[i]); 5323 bpf_prog_kallsyms_add(func[i]); 5324 } 5325 5326 /* Last step: make now unused interpreter insns from main 5327 * prog consistent for later dump requests, so they can 5328 * later look the same as if they were interpreted only. 5329 */ 5330 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5331 unsigned long addr; 5332 5333 if (insn->code != (BPF_JMP | BPF_CALL) || 5334 insn->src_reg != BPF_PSEUDO_CALL) 5335 continue; 5336 insn->off = env->insn_aux_data[i].call_imm; 5337 subprog = find_subprog(env, i + insn->off + 1); 5338 addr = (unsigned long)func[subprog + 1]->bpf_func; 5339 addr &= PAGE_MASK; 5340 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 5341 addr - __bpf_call_base; 5342 } 5343 5344 prog->jited = 1; 5345 prog->bpf_func = func[0]->bpf_func; 5346 prog->aux->func = func; 5347 prog->aux->func_cnt = env->subprog_cnt + 1; 5348 return 0; 5349 out_free: 5350 for (i = 0; i <= env->subprog_cnt; i++) 5351 if (func[i]) 5352 bpf_jit_free(func[i]); 5353 kfree(func); 5354 /* cleanup main prog to be interpreted */ 5355 prog->jit_requested = 0; 5356 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 5357 if (insn->code != (BPF_JMP | BPF_CALL) || 5358 insn->src_reg != BPF_PSEUDO_CALL) 5359 continue; 5360 insn->off = 0; 5361 insn->imm = env->insn_aux_data[i].call_imm; 5362 } 5363 return err; 5364 } 5365 5366 static int fixup_call_args(struct bpf_verifier_env *env) 5367 { 5368 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5369 struct bpf_prog *prog = env->prog; 5370 struct bpf_insn *insn = prog->insnsi; 5371 int i, depth; 5372 #endif 5373 int err; 5374 5375 err = 0; 5376 if (env->prog->jit_requested) { 5377 err = jit_subprogs(env); 5378 if (err == 0) 5379 return 0; 5380 } 5381 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5382 for (i = 0; i < prog->len; i++, insn++) { 5383 if (insn->code != (BPF_JMP | BPF_CALL) || 5384 insn->src_reg != BPF_PSEUDO_CALL) 5385 continue; 5386 depth = get_callee_stack_depth(env, insn, i); 5387 if (depth < 0) 5388 return depth; 5389 bpf_patch_call_args(insn, depth); 5390 } 5391 err = 0; 5392 #endif 5393 return err; 5394 } 5395 5396 /* fixup insn->imm field of bpf_call instructions 5397 * and inline eligible helpers as explicit sequence of BPF instructions 5398 * 5399 * this function is called after eBPF program passed verification 5400 */ 5401 static int fixup_bpf_calls(struct bpf_verifier_env *env) 5402 { 5403 struct bpf_prog *prog = env->prog; 5404 struct bpf_insn *insn = prog->insnsi; 5405 const struct bpf_func_proto *fn; 5406 const int insn_cnt = prog->len; 5407 struct bpf_insn insn_buf[16]; 5408 struct bpf_prog *new_prog; 5409 struct bpf_map *map_ptr; 5410 int i, cnt, delta = 0; 5411 5412 for (i = 0; i < insn_cnt; i++, insn++) { 5413 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 5414 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5415 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 5416 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5417 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 5418 struct bpf_insn mask_and_div[] = { 5419 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5420 /* Rx div 0 -> 0 */ 5421 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 5422 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 5423 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 5424 *insn, 5425 }; 5426 struct bpf_insn mask_and_mod[] = { 5427 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 5428 /* Rx mod 0 -> Rx */ 5429 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 5430 *insn, 5431 }; 5432 struct bpf_insn *patchlet; 5433 5434 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 5435 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 5436 patchlet = mask_and_div + (is64 ? 1 : 0); 5437 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 5438 } else { 5439 patchlet = mask_and_mod + (is64 ? 1 : 0); 5440 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 5441 } 5442 5443 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 5444 if (!new_prog) 5445 return -ENOMEM; 5446 5447 delta += cnt - 1; 5448 env->prog = prog = new_prog; 5449 insn = new_prog->insnsi + i + delta; 5450 continue; 5451 } 5452 5453 if (insn->code != (BPF_JMP | BPF_CALL)) 5454 continue; 5455 if (insn->src_reg == BPF_PSEUDO_CALL) 5456 continue; 5457 5458 if (insn->imm == BPF_FUNC_get_route_realm) 5459 prog->dst_needed = 1; 5460 if (insn->imm == BPF_FUNC_get_prandom_u32) 5461 bpf_user_rnd_init_once(); 5462 if (insn->imm == BPF_FUNC_override_return) 5463 prog->kprobe_override = 1; 5464 if (insn->imm == BPF_FUNC_tail_call) { 5465 /* If we tail call into other programs, we 5466 * cannot make any assumptions since they can 5467 * be replaced dynamically during runtime in 5468 * the program array. 5469 */ 5470 prog->cb_access = 1; 5471 env->prog->aux->stack_depth = MAX_BPF_STACK; 5472 5473 /* mark bpf_tail_call as different opcode to avoid 5474 * conditional branch in the interpeter for every normal 5475 * call and to prevent accidental JITing by JIT compiler 5476 * that doesn't support bpf_tail_call yet 5477 */ 5478 insn->imm = 0; 5479 insn->code = BPF_JMP | BPF_TAIL_CALL; 5480 5481 /* instead of changing every JIT dealing with tail_call 5482 * emit two extra insns: 5483 * if (index >= max_entries) goto out; 5484 * index &= array->index_mask; 5485 * to avoid out-of-bounds cpu speculation 5486 */ 5487 map_ptr = env->insn_aux_data[i + delta].map_ptr; 5488 if (map_ptr == BPF_MAP_PTR_POISON) { 5489 verbose(env, "tail_call abusing map_ptr\n"); 5490 return -EINVAL; 5491 } 5492 if (!map_ptr->unpriv_array) 5493 continue; 5494 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 5495 map_ptr->max_entries, 2); 5496 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 5497 container_of(map_ptr, 5498 struct bpf_array, 5499 map)->index_mask); 5500 insn_buf[2] = *insn; 5501 cnt = 3; 5502 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 5503 if (!new_prog) 5504 return -ENOMEM; 5505 5506 delta += cnt - 1; 5507 env->prog = prog = new_prog; 5508 insn = new_prog->insnsi + i + delta; 5509 continue; 5510 } 5511 5512 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 5513 * handlers are currently limited to 64 bit only. 5514 */ 5515 if (prog->jit_requested && BITS_PER_LONG == 64 && 5516 insn->imm == BPF_FUNC_map_lookup_elem) { 5517 map_ptr = env->insn_aux_data[i + delta].map_ptr; 5518 if (map_ptr == BPF_MAP_PTR_POISON || 5519 !map_ptr->ops->map_gen_lookup) 5520 goto patch_call_imm; 5521 5522 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf); 5523 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 5524 verbose(env, "bpf verifier is misconfigured\n"); 5525 return -EINVAL; 5526 } 5527 5528 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 5529 cnt); 5530 if (!new_prog) 5531 return -ENOMEM; 5532 5533 delta += cnt - 1; 5534 5535 /* keep walking new program and skip insns we just inserted */ 5536 env->prog = prog = new_prog; 5537 insn = new_prog->insnsi + i + delta; 5538 continue; 5539 } 5540 5541 if (insn->imm == BPF_FUNC_redirect_map) { 5542 /* Note, we cannot use prog directly as imm as subsequent 5543 * rewrites would still change the prog pointer. The only 5544 * stable address we can use is aux, which also works with 5545 * prog clones during blinding. 5546 */ 5547 u64 addr = (unsigned long)prog->aux; 5548 struct bpf_insn r4_ld[] = { 5549 BPF_LD_IMM64(BPF_REG_4, addr), 5550 *insn, 5551 }; 5552 cnt = ARRAY_SIZE(r4_ld); 5553 5554 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt); 5555 if (!new_prog) 5556 return -ENOMEM; 5557 5558 delta += cnt - 1; 5559 env->prog = prog = new_prog; 5560 insn = new_prog->insnsi + i + delta; 5561 } 5562 patch_call_imm: 5563 fn = env->ops->get_func_proto(insn->imm); 5564 /* all functions that have prototype and verifier allowed 5565 * programs to call them, must be real in-kernel functions 5566 */ 5567 if (!fn->func) { 5568 verbose(env, 5569 "kernel subsystem misconfigured func %s#%d\n", 5570 func_id_name(insn->imm), insn->imm); 5571 return -EFAULT; 5572 } 5573 insn->imm = fn->func - __bpf_call_base; 5574 } 5575 5576 return 0; 5577 } 5578 5579 static void free_states(struct bpf_verifier_env *env) 5580 { 5581 struct bpf_verifier_state_list *sl, *sln; 5582 int i; 5583 5584 if (!env->explored_states) 5585 return; 5586 5587 for (i = 0; i < env->prog->len; i++) { 5588 sl = env->explored_states[i]; 5589 5590 if (sl) 5591 while (sl != STATE_LIST_MARK) { 5592 sln = sl->next; 5593 free_verifier_state(&sl->state, false); 5594 kfree(sl); 5595 sl = sln; 5596 } 5597 } 5598 5599 kfree(env->explored_states); 5600 } 5601 5602 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 5603 { 5604 struct bpf_verifier_env *env; 5605 struct bpf_verifer_log *log; 5606 int ret = -EINVAL; 5607 5608 /* no program is valid */ 5609 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 5610 return -EINVAL; 5611 5612 /* 'struct bpf_verifier_env' can be global, but since it's not small, 5613 * allocate/free it every time bpf_check() is called 5614 */ 5615 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 5616 if (!env) 5617 return -ENOMEM; 5618 log = &env->log; 5619 5620 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 5621 (*prog)->len); 5622 ret = -ENOMEM; 5623 if (!env->insn_aux_data) 5624 goto err_free_env; 5625 env->prog = *prog; 5626 env->ops = bpf_verifier_ops[env->prog->type]; 5627 5628 /* grab the mutex to protect few globals used by verifier */ 5629 mutex_lock(&bpf_verifier_lock); 5630 5631 if (attr->log_level || attr->log_buf || attr->log_size) { 5632 /* user requested verbose verifier output 5633 * and supplied buffer to store the verification trace 5634 */ 5635 log->level = attr->log_level; 5636 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 5637 log->len_total = attr->log_size; 5638 5639 ret = -EINVAL; 5640 /* log attributes have to be sane */ 5641 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 5642 !log->level || !log->ubuf) 5643 goto err_unlock; 5644 } 5645 5646 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 5647 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 5648 env->strict_alignment = true; 5649 5650 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5651 ret = bpf_prog_offload_verifier_prep(env); 5652 if (ret) 5653 goto err_unlock; 5654 } 5655 5656 ret = replace_map_fd_with_map_ptr(env); 5657 if (ret < 0) 5658 goto skip_full_check; 5659 5660 env->explored_states = kcalloc(env->prog->len, 5661 sizeof(struct bpf_verifier_state_list *), 5662 GFP_USER); 5663 ret = -ENOMEM; 5664 if (!env->explored_states) 5665 goto skip_full_check; 5666 5667 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 5668 5669 ret = check_cfg(env); 5670 if (ret < 0) 5671 goto skip_full_check; 5672 5673 ret = do_check(env); 5674 if (env->cur_state) { 5675 free_verifier_state(env->cur_state, true); 5676 env->cur_state = NULL; 5677 } 5678 5679 skip_full_check: 5680 while (!pop_stack(env, NULL, NULL)); 5681 free_states(env); 5682 5683 if (ret == 0) 5684 sanitize_dead_code(env); 5685 5686 if (ret == 0) 5687 ret = check_max_stack_depth(env); 5688 5689 if (ret == 0) 5690 /* program is valid, convert *(u32*)(ctx + off) accesses */ 5691 ret = convert_ctx_accesses(env); 5692 5693 if (ret == 0) 5694 ret = fixup_bpf_calls(env); 5695 5696 if (ret == 0) 5697 ret = fixup_call_args(env); 5698 5699 if (log->level && bpf_verifier_log_full(log)) 5700 ret = -ENOSPC; 5701 if (log->level && !log->ubuf) { 5702 ret = -EFAULT; 5703 goto err_release_maps; 5704 } 5705 5706 if (ret == 0 && env->used_map_cnt) { 5707 /* if program passed verifier, update used_maps in bpf_prog_info */ 5708 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 5709 sizeof(env->used_maps[0]), 5710 GFP_KERNEL); 5711 5712 if (!env->prog->aux->used_maps) { 5713 ret = -ENOMEM; 5714 goto err_release_maps; 5715 } 5716 5717 memcpy(env->prog->aux->used_maps, env->used_maps, 5718 sizeof(env->used_maps[0]) * env->used_map_cnt); 5719 env->prog->aux->used_map_cnt = env->used_map_cnt; 5720 5721 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 5722 * bpf_ld_imm64 instructions 5723 */ 5724 convert_pseudo_ld_imm64(env); 5725 } 5726 5727 err_release_maps: 5728 if (!env->prog->aux->used_maps) 5729 /* if we didn't copy map pointers into bpf_prog_info, release 5730 * them now. Otherwise free_bpf_prog_info() will release them. 5731 */ 5732 release_maps(env); 5733 *prog = env->prog; 5734 err_unlock: 5735 mutex_unlock(&bpf_verifier_lock); 5736 vfree(env->insn_aux_data); 5737 err_free_env: 5738 kfree(env); 5739 return ret; 5740 } 5741