1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 24 #include "disasm.h" 25 26 /* bpf_check() is a static code analyzer that walks eBPF program 27 * instruction by instruction and updates register/stack state. 28 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 29 * 30 * The first pass is depth-first-search to check that the program is a DAG. 31 * It rejects the following programs: 32 * - larger than BPF_MAXINSNS insns 33 * - if loop is present (detected via back-edge) 34 * - unreachable insns exist (shouldn't be a forest. program = one function) 35 * - out of bounds or malformed jumps 36 * The second pass is all possible path descent from the 1st insn. 37 * Since it's analyzing all pathes through the program, the length of the 38 * analysis is limited to 64k insn, which may be hit even if total number of 39 * insn is less then 4K, but there are too many branches that change stack/regs. 40 * Number of 'branches to be analyzed' is limited to 1k 41 * 42 * On entry to each instruction, each register has a type, and the instruction 43 * changes the types of the registers depending on instruction semantics. 44 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 45 * copied to R1. 46 * 47 * All registers are 64-bit. 48 * R0 - return register 49 * R1-R5 argument passing registers 50 * R6-R9 callee saved registers 51 * R10 - frame pointer read-only 52 * 53 * At the start of BPF program the register R1 contains a pointer to bpf_context 54 * and has type PTR_TO_CTX. 55 * 56 * Verifier tracks arithmetic operations on pointers in case: 57 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 58 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 59 * 1st insn copies R10 (which has FRAME_PTR) type into R1 60 * and 2nd arithmetic instruction is pattern matched to recognize 61 * that it wants to construct a pointer to some element within stack. 62 * So after 2nd insn, the register R1 has type PTR_TO_STACK 63 * (and -20 constant is saved for further stack bounds checking). 64 * Meaning that this reg is a pointer to stack plus known immediate constant. 65 * 66 * Most of the time the registers have SCALAR_VALUE type, which 67 * means the register has some value, but it's not a valid pointer. 68 * (like pointer plus pointer becomes SCALAR_VALUE type) 69 * 70 * When verifier sees load or store instructions the type of base register 71 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer 72 * types recognized by check_mem_access() function. 73 * 74 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 75 * and the range of [ptr, ptr + map's value_size) is accessible. 76 * 77 * registers used to pass values to function calls are checked against 78 * function argument constraints. 79 * 80 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 81 * It means that the register type passed to this function must be 82 * PTR_TO_STACK and it will be used inside the function as 83 * 'pointer to map element key' 84 * 85 * For example the argument constraints for bpf_map_lookup_elem(): 86 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 87 * .arg1_type = ARG_CONST_MAP_PTR, 88 * .arg2_type = ARG_PTR_TO_MAP_KEY, 89 * 90 * ret_type says that this function returns 'pointer to map elem value or null' 91 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 92 * 2nd argument should be a pointer to stack, which will be used inside 93 * the helper function as a pointer to map element key. 94 * 95 * On the kernel side the helper function looks like: 96 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 97 * { 98 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 99 * void *key = (void *) (unsigned long) r2; 100 * void *value; 101 * 102 * here kernel can access 'key' and 'map' pointers safely, knowing that 103 * [key, key + map->key_size) bytes are valid and were initialized on 104 * the stack of eBPF program. 105 * } 106 * 107 * Corresponding eBPF program may look like: 108 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 109 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 110 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 111 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 112 * here verifier looks at prototype of map_lookup_elem() and sees: 113 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 114 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 115 * 116 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 117 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 118 * and were initialized prior to this call. 119 * If it's ok, then verifier allows this BPF_CALL insn and looks at 120 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 121 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 122 * returns ether pointer to map value or NULL. 123 * 124 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 125 * insn, the register holding that pointer in the true branch changes state to 126 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 127 * branch. See check_cond_jmp_op(). 128 * 129 * After the call R0 is set to return type of the function and registers R1-R5 130 * are set to NOT_INIT to indicate that they are no longer readable. 131 */ 132 133 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 134 struct bpf_verifier_stack_elem { 135 /* verifer state is 'st' 136 * before processing instruction 'insn_idx' 137 * and after processing instruction 'prev_insn_idx' 138 */ 139 struct bpf_verifier_state st; 140 int insn_idx; 141 int prev_insn_idx; 142 struct bpf_verifier_stack_elem *next; 143 }; 144 145 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 146 #define BPF_COMPLEXITY_LIMIT_STACK 1024 147 148 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA) 149 150 struct bpf_call_arg_meta { 151 struct bpf_map *map_ptr; 152 bool raw_mode; 153 bool pkt_access; 154 int regno; 155 int access_size; 156 }; 157 158 static DEFINE_MUTEX(bpf_verifier_lock); 159 160 /* log_level controls verbosity level of eBPF verifier. 161 * verbose() is used to dump the verification trace to the log, so the user 162 * can figure out what's wrong with the program 163 */ 164 static __printf(2, 3) void verbose(struct bpf_verifier_env *env, 165 const char *fmt, ...) 166 { 167 struct bpf_verifer_log *log = &env->log; 168 unsigned int n; 169 va_list args; 170 171 if (!log->level || !log->ubuf || bpf_verifier_log_full(log)) 172 return; 173 174 va_start(args, fmt); 175 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 176 va_end(args); 177 178 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 179 "verifier log line truncated - local buffer too short\n"); 180 181 n = min(log->len_total - log->len_used - 1, n); 182 log->kbuf[n] = '\0'; 183 184 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 185 log->len_used += n; 186 else 187 log->ubuf = NULL; 188 } 189 190 static bool type_is_pkt_pointer(enum bpf_reg_type type) 191 { 192 return type == PTR_TO_PACKET || 193 type == PTR_TO_PACKET_META; 194 } 195 196 /* string representation of 'enum bpf_reg_type' */ 197 static const char * const reg_type_str[] = { 198 [NOT_INIT] = "?", 199 [SCALAR_VALUE] = "inv", 200 [PTR_TO_CTX] = "ctx", 201 [CONST_PTR_TO_MAP] = "map_ptr", 202 [PTR_TO_MAP_VALUE] = "map_value", 203 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 204 [PTR_TO_STACK] = "fp", 205 [PTR_TO_PACKET] = "pkt", 206 [PTR_TO_PACKET_META] = "pkt_meta", 207 [PTR_TO_PACKET_END] = "pkt_end", 208 }; 209 210 static void print_verifier_state(struct bpf_verifier_env *env, 211 struct bpf_verifier_state *state) 212 { 213 struct bpf_reg_state *reg; 214 enum bpf_reg_type t; 215 int i; 216 217 for (i = 0; i < MAX_BPF_REG; i++) { 218 reg = &state->regs[i]; 219 t = reg->type; 220 if (t == NOT_INIT) 221 continue; 222 verbose(env, " R%d=%s", i, reg_type_str[t]); 223 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 224 tnum_is_const(reg->var_off)) { 225 /* reg->off should be 0 for SCALAR_VALUE */ 226 verbose(env, "%lld", reg->var_off.value + reg->off); 227 } else { 228 verbose(env, "(id=%d", reg->id); 229 if (t != SCALAR_VALUE) 230 verbose(env, ",off=%d", reg->off); 231 if (type_is_pkt_pointer(t)) 232 verbose(env, ",r=%d", reg->range); 233 else if (t == CONST_PTR_TO_MAP || 234 t == PTR_TO_MAP_VALUE || 235 t == PTR_TO_MAP_VALUE_OR_NULL) 236 verbose(env, ",ks=%d,vs=%d", 237 reg->map_ptr->key_size, 238 reg->map_ptr->value_size); 239 if (tnum_is_const(reg->var_off)) { 240 /* Typically an immediate SCALAR_VALUE, but 241 * could be a pointer whose offset is too big 242 * for reg->off 243 */ 244 verbose(env, ",imm=%llx", reg->var_off.value); 245 } else { 246 if (reg->smin_value != reg->umin_value && 247 reg->smin_value != S64_MIN) 248 verbose(env, ",smin_value=%lld", 249 (long long)reg->smin_value); 250 if (reg->smax_value != reg->umax_value && 251 reg->smax_value != S64_MAX) 252 verbose(env, ",smax_value=%lld", 253 (long long)reg->smax_value); 254 if (reg->umin_value != 0) 255 verbose(env, ",umin_value=%llu", 256 (unsigned long long)reg->umin_value); 257 if (reg->umax_value != U64_MAX) 258 verbose(env, ",umax_value=%llu", 259 (unsigned long long)reg->umax_value); 260 if (!tnum_is_unknown(reg->var_off)) { 261 char tn_buf[48]; 262 263 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 264 verbose(env, ",var_off=%s", tn_buf); 265 } 266 } 267 verbose(env, ")"); 268 } 269 } 270 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 271 if (state->stack_slot_type[i] == STACK_SPILL) 272 verbose(env, " fp%d=%s", -MAX_BPF_STACK + i, 273 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]); 274 } 275 verbose(env, "\n"); 276 } 277 278 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx) 279 { 280 struct bpf_verifier_stack_elem *elem; 281 int insn_idx; 282 283 if (env->head == NULL) 284 return -1; 285 286 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state)); 287 insn_idx = env->head->insn_idx; 288 if (prev_insn_idx) 289 *prev_insn_idx = env->head->prev_insn_idx; 290 elem = env->head->next; 291 kfree(env->head); 292 env->head = elem; 293 env->stack_size--; 294 return insn_idx; 295 } 296 297 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 298 int insn_idx, int prev_insn_idx) 299 { 300 struct bpf_verifier_stack_elem *elem; 301 302 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 303 if (!elem) 304 goto err; 305 306 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state)); 307 elem->insn_idx = insn_idx; 308 elem->prev_insn_idx = prev_insn_idx; 309 elem->next = env->head; 310 env->head = elem; 311 env->stack_size++; 312 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 313 verbose(env, "BPF program is too complex\n"); 314 goto err; 315 } 316 return &elem->st; 317 err: 318 /* pop all elements and return */ 319 while (pop_stack(env, NULL) >= 0); 320 return NULL; 321 } 322 323 #define CALLER_SAVED_REGS 6 324 static const int caller_saved[CALLER_SAVED_REGS] = { 325 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 326 }; 327 328 static void __mark_reg_not_init(struct bpf_reg_state *reg); 329 330 /* Mark the unknown part of a register (variable offset or scalar value) as 331 * known to have the value @imm. 332 */ 333 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 334 { 335 reg->id = 0; 336 reg->var_off = tnum_const(imm); 337 reg->smin_value = (s64)imm; 338 reg->smax_value = (s64)imm; 339 reg->umin_value = imm; 340 reg->umax_value = imm; 341 } 342 343 /* Mark the 'variable offset' part of a register as zero. This should be 344 * used only on registers holding a pointer type. 345 */ 346 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 347 { 348 __mark_reg_known(reg, 0); 349 } 350 351 static void mark_reg_known_zero(struct bpf_verifier_env *env, 352 struct bpf_reg_state *regs, u32 regno) 353 { 354 if (WARN_ON(regno >= MAX_BPF_REG)) { 355 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 356 /* Something bad happened, let's kill all regs */ 357 for (regno = 0; regno < MAX_BPF_REG; regno++) 358 __mark_reg_not_init(regs + regno); 359 return; 360 } 361 __mark_reg_known_zero(regs + regno); 362 } 363 364 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 365 { 366 return type_is_pkt_pointer(reg->type); 367 } 368 369 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 370 { 371 return reg_is_pkt_pointer(reg) || 372 reg->type == PTR_TO_PACKET_END; 373 } 374 375 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 376 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 377 enum bpf_reg_type which) 378 { 379 /* The register can already have a range from prior markings. 380 * This is fine as long as it hasn't been advanced from its 381 * origin. 382 */ 383 return reg->type == which && 384 reg->id == 0 && 385 reg->off == 0 && 386 tnum_equals_const(reg->var_off, 0); 387 } 388 389 /* Attempts to improve min/max values based on var_off information */ 390 static void __update_reg_bounds(struct bpf_reg_state *reg) 391 { 392 /* min signed is max(sign bit) | min(other bits) */ 393 reg->smin_value = max_t(s64, reg->smin_value, 394 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 395 /* max signed is min(sign bit) | max(other bits) */ 396 reg->smax_value = min_t(s64, reg->smax_value, 397 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 398 reg->umin_value = max(reg->umin_value, reg->var_off.value); 399 reg->umax_value = min(reg->umax_value, 400 reg->var_off.value | reg->var_off.mask); 401 } 402 403 /* Uses signed min/max values to inform unsigned, and vice-versa */ 404 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 405 { 406 /* Learn sign from signed bounds. 407 * If we cannot cross the sign boundary, then signed and unsigned bounds 408 * are the same, so combine. This works even in the negative case, e.g. 409 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 410 */ 411 if (reg->smin_value >= 0 || reg->smax_value < 0) { 412 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 413 reg->umin_value); 414 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 415 reg->umax_value); 416 return; 417 } 418 /* Learn sign from unsigned bounds. Signed bounds cross the sign 419 * boundary, so we must be careful. 420 */ 421 if ((s64)reg->umax_value >= 0) { 422 /* Positive. We can't learn anything from the smin, but smax 423 * is positive, hence safe. 424 */ 425 reg->smin_value = reg->umin_value; 426 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 427 reg->umax_value); 428 } else if ((s64)reg->umin_value < 0) { 429 /* Negative. We can't learn anything from the smax, but smin 430 * is negative, hence safe. 431 */ 432 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 433 reg->umin_value); 434 reg->smax_value = reg->umax_value; 435 } 436 } 437 438 /* Attempts to improve var_off based on unsigned min/max information */ 439 static void __reg_bound_offset(struct bpf_reg_state *reg) 440 { 441 reg->var_off = tnum_intersect(reg->var_off, 442 tnum_range(reg->umin_value, 443 reg->umax_value)); 444 } 445 446 /* Reset the min/max bounds of a register */ 447 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 448 { 449 reg->smin_value = S64_MIN; 450 reg->smax_value = S64_MAX; 451 reg->umin_value = 0; 452 reg->umax_value = U64_MAX; 453 } 454 455 /* Mark a register as having a completely unknown (scalar) value. */ 456 static void __mark_reg_unknown(struct bpf_reg_state *reg) 457 { 458 reg->type = SCALAR_VALUE; 459 reg->id = 0; 460 reg->off = 0; 461 reg->var_off = tnum_unknown; 462 __mark_reg_unbounded(reg); 463 } 464 465 static void mark_reg_unknown(struct bpf_verifier_env *env, 466 struct bpf_reg_state *regs, u32 regno) 467 { 468 if (WARN_ON(regno >= MAX_BPF_REG)) { 469 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 470 /* Something bad happened, let's kill all regs */ 471 for (regno = 0; regno < MAX_BPF_REG; regno++) 472 __mark_reg_not_init(regs + regno); 473 return; 474 } 475 __mark_reg_unknown(regs + regno); 476 } 477 478 static void __mark_reg_not_init(struct bpf_reg_state *reg) 479 { 480 __mark_reg_unknown(reg); 481 reg->type = NOT_INIT; 482 } 483 484 static void mark_reg_not_init(struct bpf_verifier_env *env, 485 struct bpf_reg_state *regs, u32 regno) 486 { 487 if (WARN_ON(regno >= MAX_BPF_REG)) { 488 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 489 /* Something bad happened, let's kill all regs */ 490 for (regno = 0; regno < MAX_BPF_REG; regno++) 491 __mark_reg_not_init(regs + regno); 492 return; 493 } 494 __mark_reg_not_init(regs + regno); 495 } 496 497 static void init_reg_state(struct bpf_verifier_env *env, 498 struct bpf_reg_state *regs) 499 { 500 int i; 501 502 for (i = 0; i < MAX_BPF_REG; i++) { 503 mark_reg_not_init(env, regs, i); 504 regs[i].live = REG_LIVE_NONE; 505 } 506 507 /* frame pointer */ 508 regs[BPF_REG_FP].type = PTR_TO_STACK; 509 mark_reg_known_zero(env, regs, BPF_REG_FP); 510 511 /* 1st arg to a function */ 512 regs[BPF_REG_1].type = PTR_TO_CTX; 513 mark_reg_known_zero(env, regs, BPF_REG_1); 514 } 515 516 enum reg_arg_type { 517 SRC_OP, /* register is used as source operand */ 518 DST_OP, /* register is used as destination operand */ 519 DST_OP_NO_MARK /* same as above, check only, don't mark */ 520 }; 521 522 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno) 523 { 524 struct bpf_verifier_state *parent = state->parent; 525 526 if (regno == BPF_REG_FP) 527 /* We don't need to worry about FP liveness because it's read-only */ 528 return; 529 530 while (parent) { 531 /* if read wasn't screened by an earlier write ... */ 532 if (state->regs[regno].live & REG_LIVE_WRITTEN) 533 break; 534 /* ... then we depend on parent's value */ 535 parent->regs[regno].live |= REG_LIVE_READ; 536 state = parent; 537 parent = state->parent; 538 } 539 } 540 541 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 542 enum reg_arg_type t) 543 { 544 struct bpf_reg_state *regs = env->cur_state.regs; 545 546 if (regno >= MAX_BPF_REG) { 547 verbose(env, "R%d is invalid\n", regno); 548 return -EINVAL; 549 } 550 551 if (t == SRC_OP) { 552 /* check whether register used as source operand can be read */ 553 if (regs[regno].type == NOT_INIT) { 554 verbose(env, "R%d !read_ok\n", regno); 555 return -EACCES; 556 } 557 mark_reg_read(&env->cur_state, regno); 558 } else { 559 /* check whether register used as dest operand can be written to */ 560 if (regno == BPF_REG_FP) { 561 verbose(env, "frame pointer is read only\n"); 562 return -EACCES; 563 } 564 regs[regno].live |= REG_LIVE_WRITTEN; 565 if (t == DST_OP) 566 mark_reg_unknown(env, regs, regno); 567 } 568 return 0; 569 } 570 571 static bool is_spillable_regtype(enum bpf_reg_type type) 572 { 573 switch (type) { 574 case PTR_TO_MAP_VALUE: 575 case PTR_TO_MAP_VALUE_OR_NULL: 576 case PTR_TO_STACK: 577 case PTR_TO_CTX: 578 case PTR_TO_PACKET: 579 case PTR_TO_PACKET_META: 580 case PTR_TO_PACKET_END: 581 case CONST_PTR_TO_MAP: 582 return true; 583 default: 584 return false; 585 } 586 } 587 588 /* check_stack_read/write functions track spill/fill of registers, 589 * stack boundary and alignment are checked in check_mem_access() 590 */ 591 static int check_stack_write(struct bpf_verifier_env *env, 592 struct bpf_verifier_state *state, int off, 593 int size, int value_regno) 594 { 595 int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE; 596 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 597 * so it's aligned access and [off, off + size) are within stack limits 598 */ 599 600 if (value_regno >= 0 && 601 is_spillable_regtype(state->regs[value_regno].type)) { 602 603 /* register containing pointer is being spilled into stack */ 604 if (size != BPF_REG_SIZE) { 605 verbose(env, "invalid size of register spill\n"); 606 return -EACCES; 607 } 608 609 /* save register state */ 610 state->spilled_regs[spi] = state->regs[value_regno]; 611 state->spilled_regs[spi].live |= REG_LIVE_WRITTEN; 612 613 for (i = 0; i < BPF_REG_SIZE; i++) 614 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL; 615 } else { 616 /* regular write of data into stack */ 617 state->spilled_regs[spi] = (struct bpf_reg_state) {}; 618 619 for (i = 0; i < size; i++) 620 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC; 621 } 622 return 0; 623 } 624 625 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot) 626 { 627 struct bpf_verifier_state *parent = state->parent; 628 629 while (parent) { 630 /* if read wasn't screened by an earlier write ... */ 631 if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN) 632 break; 633 /* ... then we depend on parent's value */ 634 parent->spilled_regs[slot].live |= REG_LIVE_READ; 635 state = parent; 636 parent = state->parent; 637 } 638 } 639 640 static int check_stack_read(struct bpf_verifier_env *env, 641 struct bpf_verifier_state *state, int off, int size, 642 int value_regno) 643 { 644 u8 *slot_type; 645 int i, spi; 646 647 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off]; 648 649 if (slot_type[0] == STACK_SPILL) { 650 if (size != BPF_REG_SIZE) { 651 verbose(env, "invalid size of register spill\n"); 652 return -EACCES; 653 } 654 for (i = 1; i < BPF_REG_SIZE; i++) { 655 if (slot_type[i] != STACK_SPILL) { 656 verbose(env, "corrupted spill memory\n"); 657 return -EACCES; 658 } 659 } 660 661 spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE; 662 663 if (value_regno >= 0) { 664 /* restore register state from stack */ 665 state->regs[value_regno] = state->spilled_regs[spi]; 666 mark_stack_slot_read(state, spi); 667 } 668 return 0; 669 } else { 670 for (i = 0; i < size; i++) { 671 if (slot_type[i] != STACK_MISC) { 672 verbose(env, "invalid read from stack off %d+%d size %d\n", 673 off, i, size); 674 return -EACCES; 675 } 676 } 677 if (value_regno >= 0) 678 /* have read misc data from the stack */ 679 mark_reg_unknown(env, state->regs, value_regno); 680 return 0; 681 } 682 } 683 684 /* check read/write into map element returned by bpf_map_lookup_elem() */ 685 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 686 int size) 687 { 688 struct bpf_map *map = env->cur_state.regs[regno].map_ptr; 689 690 if (off < 0 || size <= 0 || off + size > map->value_size) { 691 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 692 map->value_size, off, size); 693 return -EACCES; 694 } 695 return 0; 696 } 697 698 /* check read/write into a map element with possible variable offset */ 699 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 700 int off, int size) 701 { 702 struct bpf_verifier_state *state = &env->cur_state; 703 struct bpf_reg_state *reg = &state->regs[regno]; 704 int err; 705 706 /* We may have adjusted the register to this map value, so we 707 * need to try adding each of min_value and max_value to off 708 * to make sure our theoretical access will be safe. 709 */ 710 if (env->log.level) 711 print_verifier_state(env, state); 712 /* The minimum value is only important with signed 713 * comparisons where we can't assume the floor of a 714 * value is 0. If we are using signed variables for our 715 * index'es we need to make sure that whatever we use 716 * will have a set floor within our range. 717 */ 718 if (reg->smin_value < 0) { 719 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 720 regno); 721 return -EACCES; 722 } 723 err = __check_map_access(env, regno, reg->smin_value + off, size); 724 if (err) { 725 verbose(env, "R%d min value is outside of the array range\n", 726 regno); 727 return err; 728 } 729 730 /* If we haven't set a max value then we need to bail since we can't be 731 * sure we won't do bad things. 732 * If reg->umax_value + off could overflow, treat that as unbounded too. 733 */ 734 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 735 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 736 regno); 737 return -EACCES; 738 } 739 err = __check_map_access(env, regno, reg->umax_value + off, size); 740 if (err) 741 verbose(env, "R%d max value is outside of the array range\n", 742 regno); 743 return err; 744 } 745 746 #define MAX_PACKET_OFF 0xffff 747 748 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 749 const struct bpf_call_arg_meta *meta, 750 enum bpf_access_type t) 751 { 752 switch (env->prog->type) { 753 case BPF_PROG_TYPE_LWT_IN: 754 case BPF_PROG_TYPE_LWT_OUT: 755 /* dst_input() and dst_output() can't write for now */ 756 if (t == BPF_WRITE) 757 return false; 758 /* fallthrough */ 759 case BPF_PROG_TYPE_SCHED_CLS: 760 case BPF_PROG_TYPE_SCHED_ACT: 761 case BPF_PROG_TYPE_XDP: 762 case BPF_PROG_TYPE_LWT_XMIT: 763 case BPF_PROG_TYPE_SK_SKB: 764 if (meta) 765 return meta->pkt_access; 766 767 env->seen_direct_write = true; 768 return true; 769 default: 770 return false; 771 } 772 } 773 774 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 775 int off, int size) 776 { 777 struct bpf_reg_state *regs = env->cur_state.regs; 778 struct bpf_reg_state *reg = ®s[regno]; 779 780 if (off < 0 || size <= 0 || (u64)off + size > reg->range) { 781 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 782 off, size, regno, reg->id, reg->off, reg->range); 783 return -EACCES; 784 } 785 return 0; 786 } 787 788 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 789 int size) 790 { 791 struct bpf_reg_state *regs = env->cur_state.regs; 792 struct bpf_reg_state *reg = ®s[regno]; 793 int err; 794 795 /* We may have added a variable offset to the packet pointer; but any 796 * reg->range we have comes after that. We are only checking the fixed 797 * offset. 798 */ 799 800 /* We don't allow negative numbers, because we aren't tracking enough 801 * detail to prove they're safe. 802 */ 803 if (reg->smin_value < 0) { 804 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 805 regno); 806 return -EACCES; 807 } 808 err = __check_packet_access(env, regno, off, size); 809 if (err) { 810 verbose(env, "R%d offset is outside of the packet\n", regno); 811 return err; 812 } 813 return err; 814 } 815 816 static bool analyzer_is_valid_access(struct bpf_verifier_env *env, int off, 817 struct bpf_insn_access_aux *info) 818 { 819 switch (env->prog->type) { 820 case BPF_PROG_TYPE_XDP: 821 switch (off) { 822 case offsetof(struct xdp_buff, data): 823 info->reg_type = PTR_TO_PACKET; 824 return true; 825 case offsetof(struct xdp_buff, data_end): 826 info->reg_type = PTR_TO_PACKET_END; 827 return true; 828 } 829 return false; 830 case BPF_PROG_TYPE_SCHED_CLS: 831 switch (off) { 832 case offsetof(struct sk_buff, data): 833 info->reg_type = PTR_TO_PACKET; 834 return true; 835 case offsetof(struct sk_buff, cb) + 836 offsetof(struct bpf_skb_data_end, data_end): 837 info->reg_type = PTR_TO_PACKET_END; 838 return true; 839 } 840 return false; 841 default: 842 return false; 843 } 844 } 845 846 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 847 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 848 enum bpf_access_type t, enum bpf_reg_type *reg_type) 849 { 850 struct bpf_insn_access_aux info = { 851 .reg_type = *reg_type, 852 }; 853 854 if (env->analyzer_ops) { 855 if (analyzer_is_valid_access(env, off, &info)) { 856 *reg_type = info.reg_type; 857 return 0; 858 } 859 } else if (env->prog->aux->ops->is_valid_access && 860 env->prog->aux->ops->is_valid_access(off, size, t, &info)) { 861 /* A non zero info.ctx_field_size indicates that this field is a 862 * candidate for later verifier transformation to load the whole 863 * field and then apply a mask when accessed with a narrower 864 * access than actual ctx access size. A zero info.ctx_field_size 865 * will only allow for whole field access and rejects any other 866 * type of narrower access. 867 */ 868 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 869 *reg_type = info.reg_type; 870 871 /* remember the offset of last byte accessed in ctx */ 872 if (env->prog->aux->max_ctx_offset < off + size) 873 env->prog->aux->max_ctx_offset = off + size; 874 return 0; 875 } 876 877 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 878 return -EACCES; 879 } 880 881 static bool __is_pointer_value(bool allow_ptr_leaks, 882 const struct bpf_reg_state *reg) 883 { 884 if (allow_ptr_leaks) 885 return false; 886 887 return reg->type != SCALAR_VALUE; 888 } 889 890 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 891 { 892 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]); 893 } 894 895 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 896 const struct bpf_reg_state *reg, 897 int off, int size, bool strict) 898 { 899 struct tnum reg_off; 900 int ip_align; 901 902 /* Byte size accesses are always allowed. */ 903 if (!strict || size == 1) 904 return 0; 905 906 /* For platforms that do not have a Kconfig enabling 907 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 908 * NET_IP_ALIGN is universally set to '2'. And on platforms 909 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 910 * to this code only in strict mode where we want to emulate 911 * the NET_IP_ALIGN==2 checking. Therefore use an 912 * unconditional IP align value of '2'. 913 */ 914 ip_align = 2; 915 916 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 917 if (!tnum_is_aligned(reg_off, size)) { 918 char tn_buf[48]; 919 920 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 921 verbose(env, 922 "misaligned packet access off %d+%s+%d+%d size %d\n", 923 ip_align, tn_buf, reg->off, off, size); 924 return -EACCES; 925 } 926 927 return 0; 928 } 929 930 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 931 const struct bpf_reg_state *reg, 932 const char *pointer_desc, 933 int off, int size, bool strict) 934 { 935 struct tnum reg_off; 936 937 /* Byte size accesses are always allowed. */ 938 if (!strict || size == 1) 939 return 0; 940 941 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 942 if (!tnum_is_aligned(reg_off, size)) { 943 char tn_buf[48]; 944 945 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 946 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 947 pointer_desc, tn_buf, reg->off, off, size); 948 return -EACCES; 949 } 950 951 return 0; 952 } 953 954 static int check_ptr_alignment(struct bpf_verifier_env *env, 955 const struct bpf_reg_state *reg, 956 int off, int size) 957 { 958 bool strict = env->strict_alignment; 959 const char *pointer_desc = ""; 960 961 switch (reg->type) { 962 case PTR_TO_PACKET: 963 case PTR_TO_PACKET_META: 964 /* Special case, because of NET_IP_ALIGN. Given metadata sits 965 * right in front, treat it the very same way. 966 */ 967 return check_pkt_ptr_alignment(env, reg, off, size, strict); 968 case PTR_TO_MAP_VALUE: 969 pointer_desc = "value "; 970 break; 971 case PTR_TO_CTX: 972 pointer_desc = "context "; 973 break; 974 case PTR_TO_STACK: 975 pointer_desc = "stack "; 976 break; 977 default: 978 break; 979 } 980 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 981 strict); 982 } 983 984 /* check whether memory at (regno + off) is accessible for t = (read | write) 985 * if t==write, value_regno is a register which value is stored into memory 986 * if t==read, value_regno is a register which will receive the value from memory 987 * if t==write && value_regno==-1, some unknown value is stored into memory 988 * if t==read && value_regno==-1, don't care what we read from memory 989 */ 990 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off, 991 int bpf_size, enum bpf_access_type t, 992 int value_regno) 993 { 994 struct bpf_verifier_state *state = &env->cur_state; 995 struct bpf_reg_state *reg = &state->regs[regno]; 996 int size, err = 0; 997 998 size = bpf_size_to_bytes(bpf_size); 999 if (size < 0) 1000 return size; 1001 1002 /* alignment checks will add in reg->off themselves */ 1003 err = check_ptr_alignment(env, reg, off, size); 1004 if (err) 1005 return err; 1006 1007 /* for access checks, reg->off is just part of off */ 1008 off += reg->off; 1009 1010 if (reg->type == PTR_TO_MAP_VALUE) { 1011 if (t == BPF_WRITE && value_regno >= 0 && 1012 is_pointer_value(env, value_regno)) { 1013 verbose(env, "R%d leaks addr into map\n", value_regno); 1014 return -EACCES; 1015 } 1016 1017 err = check_map_access(env, regno, off, size); 1018 if (!err && t == BPF_READ && value_regno >= 0) 1019 mark_reg_unknown(env, state->regs, value_regno); 1020 1021 } else if (reg->type == PTR_TO_CTX) { 1022 enum bpf_reg_type reg_type = SCALAR_VALUE; 1023 1024 if (t == BPF_WRITE && value_regno >= 0 && 1025 is_pointer_value(env, value_regno)) { 1026 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1027 return -EACCES; 1028 } 1029 /* ctx accesses must be at a fixed offset, so that we can 1030 * determine what type of data were returned. 1031 */ 1032 if (!tnum_is_const(reg->var_off)) { 1033 char tn_buf[48]; 1034 1035 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1036 verbose(env, 1037 "variable ctx access var_off=%s off=%d size=%d", 1038 tn_buf, off, size); 1039 return -EACCES; 1040 } 1041 off += reg->var_off.value; 1042 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1043 if (!err && t == BPF_READ && value_regno >= 0) { 1044 /* ctx access returns either a scalar, or a 1045 * PTR_TO_PACKET[_META,_END]. In the latter 1046 * case, we know the offset is zero. 1047 */ 1048 if (reg_type == SCALAR_VALUE) 1049 mark_reg_unknown(env, state->regs, value_regno); 1050 else 1051 mark_reg_known_zero(env, state->regs, 1052 value_regno); 1053 state->regs[value_regno].id = 0; 1054 state->regs[value_regno].off = 0; 1055 state->regs[value_regno].range = 0; 1056 state->regs[value_regno].type = reg_type; 1057 } 1058 1059 } else if (reg->type == PTR_TO_STACK) { 1060 /* stack accesses must be at a fixed offset, so that we can 1061 * determine what type of data were returned. 1062 * See check_stack_read(). 1063 */ 1064 if (!tnum_is_const(reg->var_off)) { 1065 char tn_buf[48]; 1066 1067 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1068 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1069 tn_buf, off, size); 1070 return -EACCES; 1071 } 1072 off += reg->var_off.value; 1073 if (off >= 0 || off < -MAX_BPF_STACK) { 1074 verbose(env, "invalid stack off=%d size=%d\n", off, 1075 size); 1076 return -EACCES; 1077 } 1078 1079 if (env->prog->aux->stack_depth < -off) 1080 env->prog->aux->stack_depth = -off; 1081 1082 if (t == BPF_WRITE) { 1083 if (!env->allow_ptr_leaks && 1084 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL && 1085 size != BPF_REG_SIZE) { 1086 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1087 return -EACCES; 1088 } 1089 err = check_stack_write(env, state, off, size, 1090 value_regno); 1091 } else { 1092 err = check_stack_read(env, state, off, size, 1093 value_regno); 1094 } 1095 } else if (reg_is_pkt_pointer(reg)) { 1096 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1097 verbose(env, "cannot write into packet\n"); 1098 return -EACCES; 1099 } 1100 if (t == BPF_WRITE && value_regno >= 0 && 1101 is_pointer_value(env, value_regno)) { 1102 verbose(env, "R%d leaks addr into packet\n", 1103 value_regno); 1104 return -EACCES; 1105 } 1106 err = check_packet_access(env, regno, off, size); 1107 if (!err && t == BPF_READ && value_regno >= 0) 1108 mark_reg_unknown(env, state->regs, value_regno); 1109 } else { 1110 verbose(env, "R%d invalid mem access '%s'\n", regno, 1111 reg_type_str[reg->type]); 1112 return -EACCES; 1113 } 1114 1115 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1116 state->regs[value_regno].type == SCALAR_VALUE) { 1117 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1118 state->regs[value_regno].var_off = tnum_cast( 1119 state->regs[value_regno].var_off, size); 1120 __update_reg_bounds(&state->regs[value_regno]); 1121 } 1122 return err; 1123 } 1124 1125 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1126 { 1127 int err; 1128 1129 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1130 insn->imm != 0) { 1131 verbose(env, "BPF_XADD uses reserved fields\n"); 1132 return -EINVAL; 1133 } 1134 1135 /* check src1 operand */ 1136 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1137 if (err) 1138 return err; 1139 1140 /* check src2 operand */ 1141 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1142 if (err) 1143 return err; 1144 1145 if (is_pointer_value(env, insn->src_reg)) { 1146 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1147 return -EACCES; 1148 } 1149 1150 /* check whether atomic_add can read the memory */ 1151 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1152 BPF_SIZE(insn->code), BPF_READ, -1); 1153 if (err) 1154 return err; 1155 1156 /* check whether atomic_add can write into the same memory */ 1157 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1158 BPF_SIZE(insn->code), BPF_WRITE, -1); 1159 } 1160 1161 /* Does this register contain a constant zero? */ 1162 static bool register_is_null(struct bpf_reg_state reg) 1163 { 1164 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0); 1165 } 1166 1167 /* when register 'regno' is passed into function that will read 'access_size' 1168 * bytes from that pointer, make sure that it's within stack boundary 1169 * and all elements of stack are initialized. 1170 * Unlike most pointer bounds-checking functions, this one doesn't take an 1171 * 'off' argument, so it has to add in reg->off itself. 1172 */ 1173 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1174 int access_size, bool zero_size_allowed, 1175 struct bpf_call_arg_meta *meta) 1176 { 1177 struct bpf_verifier_state *state = &env->cur_state; 1178 struct bpf_reg_state *regs = state->regs; 1179 int off, i; 1180 1181 if (regs[regno].type != PTR_TO_STACK) { 1182 /* Allow zero-byte read from NULL, regardless of pointer type */ 1183 if (zero_size_allowed && access_size == 0 && 1184 register_is_null(regs[regno])) 1185 return 0; 1186 1187 verbose(env, "R%d type=%s expected=%s\n", regno, 1188 reg_type_str[regs[regno].type], 1189 reg_type_str[PTR_TO_STACK]); 1190 return -EACCES; 1191 } 1192 1193 /* Only allow fixed-offset stack reads */ 1194 if (!tnum_is_const(regs[regno].var_off)) { 1195 char tn_buf[48]; 1196 1197 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off); 1198 verbose(env, "invalid variable stack read R%d var_off=%s\n", 1199 regno, tn_buf); 1200 } 1201 off = regs[regno].off + regs[regno].var_off.value; 1202 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1203 access_size <= 0) { 1204 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 1205 regno, off, access_size); 1206 return -EACCES; 1207 } 1208 1209 if (env->prog->aux->stack_depth < -off) 1210 env->prog->aux->stack_depth = -off; 1211 1212 if (meta && meta->raw_mode) { 1213 meta->access_size = access_size; 1214 meta->regno = regno; 1215 return 0; 1216 } 1217 1218 for (i = 0; i < access_size; i++) { 1219 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) { 1220 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 1221 off, i, access_size); 1222 return -EACCES; 1223 } 1224 } 1225 return 0; 1226 } 1227 1228 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1229 int access_size, bool zero_size_allowed, 1230 struct bpf_call_arg_meta *meta) 1231 { 1232 struct bpf_reg_state *regs = env->cur_state.regs, *reg = ®s[regno]; 1233 1234 switch (reg->type) { 1235 case PTR_TO_PACKET: 1236 case PTR_TO_PACKET_META: 1237 return check_packet_access(env, regno, reg->off, access_size); 1238 case PTR_TO_MAP_VALUE: 1239 return check_map_access(env, regno, reg->off, access_size); 1240 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1241 return check_stack_boundary(env, regno, access_size, 1242 zero_size_allowed, meta); 1243 } 1244 } 1245 1246 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1247 enum bpf_arg_type arg_type, 1248 struct bpf_call_arg_meta *meta) 1249 { 1250 struct bpf_reg_state *regs = env->cur_state.regs, *reg = ®s[regno]; 1251 enum bpf_reg_type expected_type, type = reg->type; 1252 int err = 0; 1253 1254 if (arg_type == ARG_DONTCARE) 1255 return 0; 1256 1257 err = check_reg_arg(env, regno, SRC_OP); 1258 if (err) 1259 return err; 1260 1261 if (arg_type == ARG_ANYTHING) { 1262 if (is_pointer_value(env, regno)) { 1263 verbose(env, "R%d leaks addr into helper function\n", 1264 regno); 1265 return -EACCES; 1266 } 1267 return 0; 1268 } 1269 1270 if (type_is_pkt_pointer(type) && 1271 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1272 verbose(env, "helper access to the packet is not allowed\n"); 1273 return -EACCES; 1274 } 1275 1276 if (arg_type == ARG_PTR_TO_MAP_KEY || 1277 arg_type == ARG_PTR_TO_MAP_VALUE) { 1278 expected_type = PTR_TO_STACK; 1279 if (!type_is_pkt_pointer(type) && 1280 type != expected_type) 1281 goto err_type; 1282 } else if (arg_type == ARG_CONST_SIZE || 1283 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1284 expected_type = SCALAR_VALUE; 1285 if (type != expected_type) 1286 goto err_type; 1287 } else if (arg_type == ARG_CONST_MAP_PTR) { 1288 expected_type = CONST_PTR_TO_MAP; 1289 if (type != expected_type) 1290 goto err_type; 1291 } else if (arg_type == ARG_PTR_TO_CTX) { 1292 expected_type = PTR_TO_CTX; 1293 if (type != expected_type) 1294 goto err_type; 1295 } else if (arg_type == ARG_PTR_TO_MEM || 1296 arg_type == ARG_PTR_TO_UNINIT_MEM) { 1297 expected_type = PTR_TO_STACK; 1298 /* One exception here. In case function allows for NULL to be 1299 * passed in as argument, it's a SCALAR_VALUE type. Final test 1300 * happens during stack boundary checking. 1301 */ 1302 if (register_is_null(*reg)) 1303 /* final test in check_stack_boundary() */; 1304 else if (!type_is_pkt_pointer(type) && 1305 type != PTR_TO_MAP_VALUE && 1306 type != expected_type) 1307 goto err_type; 1308 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 1309 } else { 1310 verbose(env, "unsupported arg_type %d\n", arg_type); 1311 return -EFAULT; 1312 } 1313 1314 if (arg_type == ARG_CONST_MAP_PTR) { 1315 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 1316 meta->map_ptr = reg->map_ptr; 1317 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 1318 /* bpf_map_xxx(..., map_ptr, ..., key) call: 1319 * check that [key, key + map->key_size) are within 1320 * stack limits and initialized 1321 */ 1322 if (!meta->map_ptr) { 1323 /* in function declaration map_ptr must come before 1324 * map_key, so that it's verified and known before 1325 * we have to check map_key here. Otherwise it means 1326 * that kernel subsystem misconfigured verifier 1327 */ 1328 verbose(env, "invalid map_ptr to access map->key\n"); 1329 return -EACCES; 1330 } 1331 if (type_is_pkt_pointer(type)) 1332 err = check_packet_access(env, regno, reg->off, 1333 meta->map_ptr->key_size); 1334 else 1335 err = check_stack_boundary(env, regno, 1336 meta->map_ptr->key_size, 1337 false, NULL); 1338 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 1339 /* bpf_map_xxx(..., map_ptr, ..., value) call: 1340 * check [value, value + map->value_size) validity 1341 */ 1342 if (!meta->map_ptr) { 1343 /* kernel subsystem misconfigured verifier */ 1344 verbose(env, "invalid map_ptr to access map->value\n"); 1345 return -EACCES; 1346 } 1347 if (type_is_pkt_pointer(type)) 1348 err = check_packet_access(env, regno, reg->off, 1349 meta->map_ptr->value_size); 1350 else 1351 err = check_stack_boundary(env, regno, 1352 meta->map_ptr->value_size, 1353 false, NULL); 1354 } else if (arg_type == ARG_CONST_SIZE || 1355 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1356 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 1357 1358 /* bpf_xxx(..., buf, len) call will access 'len' bytes 1359 * from stack pointer 'buf'. Check it 1360 * note: regno == len, regno - 1 == buf 1361 */ 1362 if (regno == 0) { 1363 /* kernel subsystem misconfigured verifier */ 1364 verbose(env, 1365 "ARG_CONST_SIZE cannot be first argument\n"); 1366 return -EACCES; 1367 } 1368 1369 /* The register is SCALAR_VALUE; the access check 1370 * happens using its boundaries. 1371 */ 1372 1373 if (!tnum_is_const(reg->var_off)) 1374 /* For unprivileged variable accesses, disable raw 1375 * mode so that the program is required to 1376 * initialize all the memory that the helper could 1377 * just partially fill up. 1378 */ 1379 meta = NULL; 1380 1381 if (reg->smin_value < 0) { 1382 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 1383 regno); 1384 return -EACCES; 1385 } 1386 1387 if (reg->umin_value == 0) { 1388 err = check_helper_mem_access(env, regno - 1, 0, 1389 zero_size_allowed, 1390 meta); 1391 if (err) 1392 return err; 1393 } 1394 1395 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 1396 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 1397 regno); 1398 return -EACCES; 1399 } 1400 err = check_helper_mem_access(env, regno - 1, 1401 reg->umax_value, 1402 zero_size_allowed, meta); 1403 } 1404 1405 return err; 1406 err_type: 1407 verbose(env, "R%d type=%s expected=%s\n", regno, 1408 reg_type_str[type], reg_type_str[expected_type]); 1409 return -EACCES; 1410 } 1411 1412 static int check_map_func_compatibility(struct bpf_verifier_env *env, 1413 struct bpf_map *map, int func_id) 1414 { 1415 if (!map) 1416 return 0; 1417 1418 /* We need a two way check, first is from map perspective ... */ 1419 switch (map->map_type) { 1420 case BPF_MAP_TYPE_PROG_ARRAY: 1421 if (func_id != BPF_FUNC_tail_call) 1422 goto error; 1423 break; 1424 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 1425 if (func_id != BPF_FUNC_perf_event_read && 1426 func_id != BPF_FUNC_perf_event_output && 1427 func_id != BPF_FUNC_perf_event_read_value) 1428 goto error; 1429 break; 1430 case BPF_MAP_TYPE_STACK_TRACE: 1431 if (func_id != BPF_FUNC_get_stackid) 1432 goto error; 1433 break; 1434 case BPF_MAP_TYPE_CGROUP_ARRAY: 1435 if (func_id != BPF_FUNC_skb_under_cgroup && 1436 func_id != BPF_FUNC_current_task_under_cgroup) 1437 goto error; 1438 break; 1439 /* devmap returns a pointer to a live net_device ifindex that we cannot 1440 * allow to be modified from bpf side. So do not allow lookup elements 1441 * for now. 1442 */ 1443 case BPF_MAP_TYPE_DEVMAP: 1444 if (func_id != BPF_FUNC_redirect_map) 1445 goto error; 1446 break; 1447 /* Restrict bpf side of cpumap, open when use-cases appear */ 1448 case BPF_MAP_TYPE_CPUMAP: 1449 if (func_id != BPF_FUNC_redirect_map) 1450 goto error; 1451 break; 1452 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 1453 case BPF_MAP_TYPE_HASH_OF_MAPS: 1454 if (func_id != BPF_FUNC_map_lookup_elem) 1455 goto error; 1456 break; 1457 case BPF_MAP_TYPE_SOCKMAP: 1458 if (func_id != BPF_FUNC_sk_redirect_map && 1459 func_id != BPF_FUNC_sock_map_update && 1460 func_id != BPF_FUNC_map_delete_elem) 1461 goto error; 1462 break; 1463 default: 1464 break; 1465 } 1466 1467 /* ... and second from the function itself. */ 1468 switch (func_id) { 1469 case BPF_FUNC_tail_call: 1470 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 1471 goto error; 1472 break; 1473 case BPF_FUNC_perf_event_read: 1474 case BPF_FUNC_perf_event_output: 1475 case BPF_FUNC_perf_event_read_value: 1476 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 1477 goto error; 1478 break; 1479 case BPF_FUNC_get_stackid: 1480 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 1481 goto error; 1482 break; 1483 case BPF_FUNC_current_task_under_cgroup: 1484 case BPF_FUNC_skb_under_cgroup: 1485 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 1486 goto error; 1487 break; 1488 case BPF_FUNC_redirect_map: 1489 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 1490 map->map_type != BPF_MAP_TYPE_CPUMAP) 1491 goto error; 1492 break; 1493 case BPF_FUNC_sk_redirect_map: 1494 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 1495 goto error; 1496 break; 1497 case BPF_FUNC_sock_map_update: 1498 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 1499 goto error; 1500 break; 1501 default: 1502 break; 1503 } 1504 1505 return 0; 1506 error: 1507 verbose(env, "cannot pass map_type %d into func %s#%d\n", 1508 map->map_type, func_id_name(func_id), func_id); 1509 return -EINVAL; 1510 } 1511 1512 static int check_raw_mode(const struct bpf_func_proto *fn) 1513 { 1514 int count = 0; 1515 1516 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 1517 count++; 1518 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 1519 count++; 1520 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 1521 count++; 1522 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 1523 count++; 1524 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 1525 count++; 1526 1527 return count > 1 ? -EINVAL : 0; 1528 } 1529 1530 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 1531 * are now invalid, so turn them into unknown SCALAR_VALUE. 1532 */ 1533 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 1534 { 1535 struct bpf_verifier_state *state = &env->cur_state; 1536 struct bpf_reg_state *regs = state->regs, *reg; 1537 int i; 1538 1539 for (i = 0; i < MAX_BPF_REG; i++) 1540 if (reg_is_pkt_pointer_any(®s[i])) 1541 mark_reg_unknown(env, regs, i); 1542 1543 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 1544 if (state->stack_slot_type[i] != STACK_SPILL) 1545 continue; 1546 reg = &state->spilled_regs[i / BPF_REG_SIZE]; 1547 if (reg_is_pkt_pointer_any(reg)) 1548 __mark_reg_unknown(reg); 1549 } 1550 } 1551 1552 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 1553 { 1554 struct bpf_verifier_state *state = &env->cur_state; 1555 const struct bpf_func_proto *fn = NULL; 1556 struct bpf_reg_state *regs = state->regs; 1557 struct bpf_call_arg_meta meta; 1558 bool changes_data; 1559 int i, err; 1560 1561 /* find function prototype */ 1562 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 1563 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 1564 func_id); 1565 return -EINVAL; 1566 } 1567 1568 if (env->prog->aux->ops->get_func_proto) 1569 fn = env->prog->aux->ops->get_func_proto(func_id); 1570 1571 if (!fn) { 1572 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 1573 func_id); 1574 return -EINVAL; 1575 } 1576 1577 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 1578 if (!env->prog->gpl_compatible && fn->gpl_only) { 1579 verbose(env, "cannot call GPL only function from proprietary program\n"); 1580 return -EINVAL; 1581 } 1582 1583 changes_data = bpf_helper_changes_pkt_data(fn->func); 1584 1585 memset(&meta, 0, sizeof(meta)); 1586 meta.pkt_access = fn->pkt_access; 1587 1588 /* We only support one arg being in raw mode at the moment, which 1589 * is sufficient for the helper functions we have right now. 1590 */ 1591 err = check_raw_mode(fn); 1592 if (err) { 1593 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 1594 func_id_name(func_id), func_id); 1595 return err; 1596 } 1597 1598 /* check args */ 1599 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 1600 if (err) 1601 return err; 1602 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 1603 if (err) 1604 return err; 1605 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 1606 if (err) 1607 return err; 1608 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 1609 if (err) 1610 return err; 1611 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 1612 if (err) 1613 return err; 1614 1615 /* Mark slots with STACK_MISC in case of raw mode, stack offset 1616 * is inferred from register state. 1617 */ 1618 for (i = 0; i < meta.access_size; i++) { 1619 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1); 1620 if (err) 1621 return err; 1622 } 1623 1624 /* reset caller saved regs */ 1625 for (i = 0; i < CALLER_SAVED_REGS; i++) { 1626 mark_reg_not_init(env, regs, caller_saved[i]); 1627 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 1628 } 1629 1630 /* update return register (already marked as written above) */ 1631 if (fn->ret_type == RET_INTEGER) { 1632 /* sets type to SCALAR_VALUE */ 1633 mark_reg_unknown(env, regs, BPF_REG_0); 1634 } else if (fn->ret_type == RET_VOID) { 1635 regs[BPF_REG_0].type = NOT_INIT; 1636 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { 1637 struct bpf_insn_aux_data *insn_aux; 1638 1639 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 1640 /* There is no offset yet applied, variable or fixed */ 1641 mark_reg_known_zero(env, regs, BPF_REG_0); 1642 regs[BPF_REG_0].off = 0; 1643 /* remember map_ptr, so that check_map_access() 1644 * can check 'value_size' boundary of memory access 1645 * to map element returned from bpf_map_lookup_elem() 1646 */ 1647 if (meta.map_ptr == NULL) { 1648 verbose(env, 1649 "kernel subsystem misconfigured verifier\n"); 1650 return -EINVAL; 1651 } 1652 regs[BPF_REG_0].map_ptr = meta.map_ptr; 1653 regs[BPF_REG_0].id = ++env->id_gen; 1654 insn_aux = &env->insn_aux_data[insn_idx]; 1655 if (!insn_aux->map_ptr) 1656 insn_aux->map_ptr = meta.map_ptr; 1657 else if (insn_aux->map_ptr != meta.map_ptr) 1658 insn_aux->map_ptr = BPF_MAP_PTR_POISON; 1659 } else { 1660 verbose(env, "unknown return type %d of func %s#%d\n", 1661 fn->ret_type, func_id_name(func_id), func_id); 1662 return -EINVAL; 1663 } 1664 1665 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 1666 if (err) 1667 return err; 1668 1669 if (changes_data) 1670 clear_all_pkt_pointers(env); 1671 return 0; 1672 } 1673 1674 static void coerce_reg_to_32(struct bpf_reg_state *reg) 1675 { 1676 /* clear high 32 bits */ 1677 reg->var_off = tnum_cast(reg->var_off, 4); 1678 /* Update bounds */ 1679 __update_reg_bounds(reg); 1680 } 1681 1682 static bool signed_add_overflows(s64 a, s64 b) 1683 { 1684 /* Do the add in u64, where overflow is well-defined */ 1685 s64 res = (s64)((u64)a + (u64)b); 1686 1687 if (b < 0) 1688 return res > a; 1689 return res < a; 1690 } 1691 1692 static bool signed_sub_overflows(s64 a, s64 b) 1693 { 1694 /* Do the sub in u64, where overflow is well-defined */ 1695 s64 res = (s64)((u64)a - (u64)b); 1696 1697 if (b < 0) 1698 return res < a; 1699 return res > a; 1700 } 1701 1702 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 1703 * Caller should also handle BPF_MOV case separately. 1704 * If we return -EACCES, caller may want to try again treating pointer as a 1705 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 1706 */ 1707 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 1708 struct bpf_insn *insn, 1709 const struct bpf_reg_state *ptr_reg, 1710 const struct bpf_reg_state *off_reg) 1711 { 1712 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg; 1713 bool known = tnum_is_const(off_reg->var_off); 1714 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 1715 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 1716 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 1717 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 1718 u8 opcode = BPF_OP(insn->code); 1719 u32 dst = insn->dst_reg; 1720 1721 dst_reg = ®s[dst]; 1722 1723 if (WARN_ON_ONCE(known && (smin_val != smax_val))) { 1724 print_verifier_state(env, &env->cur_state); 1725 verbose(env, 1726 "verifier internal error: known but bad sbounds\n"); 1727 return -EINVAL; 1728 } 1729 if (WARN_ON_ONCE(known && (umin_val != umax_val))) { 1730 print_verifier_state(env, &env->cur_state); 1731 verbose(env, 1732 "verifier internal error: known but bad ubounds\n"); 1733 return -EINVAL; 1734 } 1735 1736 if (BPF_CLASS(insn->code) != BPF_ALU64) { 1737 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 1738 if (!env->allow_ptr_leaks) 1739 verbose(env, 1740 "R%d 32-bit pointer arithmetic prohibited\n", 1741 dst); 1742 return -EACCES; 1743 } 1744 1745 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 1746 if (!env->allow_ptr_leaks) 1747 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", 1748 dst); 1749 return -EACCES; 1750 } 1751 if (ptr_reg->type == CONST_PTR_TO_MAP) { 1752 if (!env->allow_ptr_leaks) 1753 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", 1754 dst); 1755 return -EACCES; 1756 } 1757 if (ptr_reg->type == PTR_TO_PACKET_END) { 1758 if (!env->allow_ptr_leaks) 1759 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", 1760 dst); 1761 return -EACCES; 1762 } 1763 1764 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 1765 * The id may be overwritten later if we create a new variable offset. 1766 */ 1767 dst_reg->type = ptr_reg->type; 1768 dst_reg->id = ptr_reg->id; 1769 1770 switch (opcode) { 1771 case BPF_ADD: 1772 /* We can take a fixed offset as long as it doesn't overflow 1773 * the s32 'off' field 1774 */ 1775 if (known && (ptr_reg->off + smin_val == 1776 (s64)(s32)(ptr_reg->off + smin_val))) { 1777 /* pointer += K. Accumulate it into fixed offset */ 1778 dst_reg->smin_value = smin_ptr; 1779 dst_reg->smax_value = smax_ptr; 1780 dst_reg->umin_value = umin_ptr; 1781 dst_reg->umax_value = umax_ptr; 1782 dst_reg->var_off = ptr_reg->var_off; 1783 dst_reg->off = ptr_reg->off + smin_val; 1784 dst_reg->range = ptr_reg->range; 1785 break; 1786 } 1787 /* A new variable offset is created. Note that off_reg->off 1788 * == 0, since it's a scalar. 1789 * dst_reg gets the pointer type and since some positive 1790 * integer value was added to the pointer, give it a new 'id' 1791 * if it's a PTR_TO_PACKET. 1792 * this creates a new 'base' pointer, off_reg (variable) gets 1793 * added into the variable offset, and we copy the fixed offset 1794 * from ptr_reg. 1795 */ 1796 if (signed_add_overflows(smin_ptr, smin_val) || 1797 signed_add_overflows(smax_ptr, smax_val)) { 1798 dst_reg->smin_value = S64_MIN; 1799 dst_reg->smax_value = S64_MAX; 1800 } else { 1801 dst_reg->smin_value = smin_ptr + smin_val; 1802 dst_reg->smax_value = smax_ptr + smax_val; 1803 } 1804 if (umin_ptr + umin_val < umin_ptr || 1805 umax_ptr + umax_val < umax_ptr) { 1806 dst_reg->umin_value = 0; 1807 dst_reg->umax_value = U64_MAX; 1808 } else { 1809 dst_reg->umin_value = umin_ptr + umin_val; 1810 dst_reg->umax_value = umax_ptr + umax_val; 1811 } 1812 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 1813 dst_reg->off = ptr_reg->off; 1814 if (reg_is_pkt_pointer(ptr_reg)) { 1815 dst_reg->id = ++env->id_gen; 1816 /* something was added to pkt_ptr, set range to zero */ 1817 dst_reg->range = 0; 1818 } 1819 break; 1820 case BPF_SUB: 1821 if (dst_reg == off_reg) { 1822 /* scalar -= pointer. Creates an unknown scalar */ 1823 if (!env->allow_ptr_leaks) 1824 verbose(env, "R%d tried to subtract pointer from scalar\n", 1825 dst); 1826 return -EACCES; 1827 } 1828 /* We don't allow subtraction from FP, because (according to 1829 * test_verifier.c test "invalid fp arithmetic", JITs might not 1830 * be able to deal with it. 1831 */ 1832 if (ptr_reg->type == PTR_TO_STACK) { 1833 if (!env->allow_ptr_leaks) 1834 verbose(env, "R%d subtraction from stack pointer prohibited\n", 1835 dst); 1836 return -EACCES; 1837 } 1838 if (known && (ptr_reg->off - smin_val == 1839 (s64)(s32)(ptr_reg->off - smin_val))) { 1840 /* pointer -= K. Subtract it from fixed offset */ 1841 dst_reg->smin_value = smin_ptr; 1842 dst_reg->smax_value = smax_ptr; 1843 dst_reg->umin_value = umin_ptr; 1844 dst_reg->umax_value = umax_ptr; 1845 dst_reg->var_off = ptr_reg->var_off; 1846 dst_reg->id = ptr_reg->id; 1847 dst_reg->off = ptr_reg->off - smin_val; 1848 dst_reg->range = ptr_reg->range; 1849 break; 1850 } 1851 /* A new variable offset is created. If the subtrahend is known 1852 * nonnegative, then any reg->range we had before is still good. 1853 */ 1854 if (signed_sub_overflows(smin_ptr, smax_val) || 1855 signed_sub_overflows(smax_ptr, smin_val)) { 1856 /* Overflow possible, we know nothing */ 1857 dst_reg->smin_value = S64_MIN; 1858 dst_reg->smax_value = S64_MAX; 1859 } else { 1860 dst_reg->smin_value = smin_ptr - smax_val; 1861 dst_reg->smax_value = smax_ptr - smin_val; 1862 } 1863 if (umin_ptr < umax_val) { 1864 /* Overflow possible, we know nothing */ 1865 dst_reg->umin_value = 0; 1866 dst_reg->umax_value = U64_MAX; 1867 } else { 1868 /* Cannot overflow (as long as bounds are consistent) */ 1869 dst_reg->umin_value = umin_ptr - umax_val; 1870 dst_reg->umax_value = umax_ptr - umin_val; 1871 } 1872 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 1873 dst_reg->off = ptr_reg->off; 1874 if (reg_is_pkt_pointer(ptr_reg)) { 1875 dst_reg->id = ++env->id_gen; 1876 /* something was added to pkt_ptr, set range to zero */ 1877 if (smin_val < 0) 1878 dst_reg->range = 0; 1879 } 1880 break; 1881 case BPF_AND: 1882 case BPF_OR: 1883 case BPF_XOR: 1884 /* bitwise ops on pointers are troublesome, prohibit for now. 1885 * (However, in principle we could allow some cases, e.g. 1886 * ptr &= ~3 which would reduce min_value by 3.) 1887 */ 1888 if (!env->allow_ptr_leaks) 1889 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 1890 dst, bpf_alu_string[opcode >> 4]); 1891 return -EACCES; 1892 default: 1893 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 1894 if (!env->allow_ptr_leaks) 1895 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 1896 dst, bpf_alu_string[opcode >> 4]); 1897 return -EACCES; 1898 } 1899 1900 __update_reg_bounds(dst_reg); 1901 __reg_deduce_bounds(dst_reg); 1902 __reg_bound_offset(dst_reg); 1903 return 0; 1904 } 1905 1906 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 1907 struct bpf_insn *insn, 1908 struct bpf_reg_state *dst_reg, 1909 struct bpf_reg_state src_reg) 1910 { 1911 struct bpf_reg_state *regs = env->cur_state.regs; 1912 u8 opcode = BPF_OP(insn->code); 1913 bool src_known, dst_known; 1914 s64 smin_val, smax_val; 1915 u64 umin_val, umax_val; 1916 1917 if (BPF_CLASS(insn->code) != BPF_ALU64) { 1918 /* 32-bit ALU ops are (32,32)->64 */ 1919 coerce_reg_to_32(dst_reg); 1920 coerce_reg_to_32(&src_reg); 1921 } 1922 smin_val = src_reg.smin_value; 1923 smax_val = src_reg.smax_value; 1924 umin_val = src_reg.umin_value; 1925 umax_val = src_reg.umax_value; 1926 src_known = tnum_is_const(src_reg.var_off); 1927 dst_known = tnum_is_const(dst_reg->var_off); 1928 1929 switch (opcode) { 1930 case BPF_ADD: 1931 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 1932 signed_add_overflows(dst_reg->smax_value, smax_val)) { 1933 dst_reg->smin_value = S64_MIN; 1934 dst_reg->smax_value = S64_MAX; 1935 } else { 1936 dst_reg->smin_value += smin_val; 1937 dst_reg->smax_value += smax_val; 1938 } 1939 if (dst_reg->umin_value + umin_val < umin_val || 1940 dst_reg->umax_value + umax_val < umax_val) { 1941 dst_reg->umin_value = 0; 1942 dst_reg->umax_value = U64_MAX; 1943 } else { 1944 dst_reg->umin_value += umin_val; 1945 dst_reg->umax_value += umax_val; 1946 } 1947 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 1948 break; 1949 case BPF_SUB: 1950 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 1951 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 1952 /* Overflow possible, we know nothing */ 1953 dst_reg->smin_value = S64_MIN; 1954 dst_reg->smax_value = S64_MAX; 1955 } else { 1956 dst_reg->smin_value -= smax_val; 1957 dst_reg->smax_value -= smin_val; 1958 } 1959 if (dst_reg->umin_value < umax_val) { 1960 /* Overflow possible, we know nothing */ 1961 dst_reg->umin_value = 0; 1962 dst_reg->umax_value = U64_MAX; 1963 } else { 1964 /* Cannot overflow (as long as bounds are consistent) */ 1965 dst_reg->umin_value -= umax_val; 1966 dst_reg->umax_value -= umin_val; 1967 } 1968 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 1969 break; 1970 case BPF_MUL: 1971 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 1972 if (smin_val < 0 || dst_reg->smin_value < 0) { 1973 /* Ain't nobody got time to multiply that sign */ 1974 __mark_reg_unbounded(dst_reg); 1975 __update_reg_bounds(dst_reg); 1976 break; 1977 } 1978 /* Both values are positive, so we can work with unsigned and 1979 * copy the result to signed (unless it exceeds S64_MAX). 1980 */ 1981 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 1982 /* Potential overflow, we know nothing */ 1983 __mark_reg_unbounded(dst_reg); 1984 /* (except what we can learn from the var_off) */ 1985 __update_reg_bounds(dst_reg); 1986 break; 1987 } 1988 dst_reg->umin_value *= umin_val; 1989 dst_reg->umax_value *= umax_val; 1990 if (dst_reg->umax_value > S64_MAX) { 1991 /* Overflow possible, we know nothing */ 1992 dst_reg->smin_value = S64_MIN; 1993 dst_reg->smax_value = S64_MAX; 1994 } else { 1995 dst_reg->smin_value = dst_reg->umin_value; 1996 dst_reg->smax_value = dst_reg->umax_value; 1997 } 1998 break; 1999 case BPF_AND: 2000 if (src_known && dst_known) { 2001 __mark_reg_known(dst_reg, dst_reg->var_off.value & 2002 src_reg.var_off.value); 2003 break; 2004 } 2005 /* We get our minimum from the var_off, since that's inherently 2006 * bitwise. Our maximum is the minimum of the operands' maxima. 2007 */ 2008 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 2009 dst_reg->umin_value = dst_reg->var_off.value; 2010 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 2011 if (dst_reg->smin_value < 0 || smin_val < 0) { 2012 /* Lose signed bounds when ANDing negative numbers, 2013 * ain't nobody got time for that. 2014 */ 2015 dst_reg->smin_value = S64_MIN; 2016 dst_reg->smax_value = S64_MAX; 2017 } else { 2018 /* ANDing two positives gives a positive, so safe to 2019 * cast result into s64. 2020 */ 2021 dst_reg->smin_value = dst_reg->umin_value; 2022 dst_reg->smax_value = dst_reg->umax_value; 2023 } 2024 /* We may learn something more from the var_off */ 2025 __update_reg_bounds(dst_reg); 2026 break; 2027 case BPF_OR: 2028 if (src_known && dst_known) { 2029 __mark_reg_known(dst_reg, dst_reg->var_off.value | 2030 src_reg.var_off.value); 2031 break; 2032 } 2033 /* We get our maximum from the var_off, and our minimum is the 2034 * maximum of the operands' minima 2035 */ 2036 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 2037 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 2038 dst_reg->umax_value = dst_reg->var_off.value | 2039 dst_reg->var_off.mask; 2040 if (dst_reg->smin_value < 0 || smin_val < 0) { 2041 /* Lose signed bounds when ORing negative numbers, 2042 * ain't nobody got time for that. 2043 */ 2044 dst_reg->smin_value = S64_MIN; 2045 dst_reg->smax_value = S64_MAX; 2046 } else { 2047 /* ORing two positives gives a positive, so safe to 2048 * cast result into s64. 2049 */ 2050 dst_reg->smin_value = dst_reg->umin_value; 2051 dst_reg->smax_value = dst_reg->umax_value; 2052 } 2053 /* We may learn something more from the var_off */ 2054 __update_reg_bounds(dst_reg); 2055 break; 2056 case BPF_LSH: 2057 if (umax_val > 63) { 2058 /* Shifts greater than 63 are undefined. This includes 2059 * shifts by a negative number. 2060 */ 2061 mark_reg_unknown(env, regs, insn->dst_reg); 2062 break; 2063 } 2064 /* We lose all sign bit information (except what we can pick 2065 * up from var_off) 2066 */ 2067 dst_reg->smin_value = S64_MIN; 2068 dst_reg->smax_value = S64_MAX; 2069 /* If we might shift our top bit out, then we know nothing */ 2070 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 2071 dst_reg->umin_value = 0; 2072 dst_reg->umax_value = U64_MAX; 2073 } else { 2074 dst_reg->umin_value <<= umin_val; 2075 dst_reg->umax_value <<= umax_val; 2076 } 2077 if (src_known) 2078 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 2079 else 2080 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val); 2081 /* We may learn something more from the var_off */ 2082 __update_reg_bounds(dst_reg); 2083 break; 2084 case BPF_RSH: 2085 if (umax_val > 63) { 2086 /* Shifts greater than 63 are undefined. This includes 2087 * shifts by a negative number. 2088 */ 2089 mark_reg_unknown(env, regs, insn->dst_reg); 2090 break; 2091 } 2092 /* BPF_RSH is an unsigned shift, so make the appropriate casts */ 2093 if (dst_reg->smin_value < 0) { 2094 if (umin_val) { 2095 /* Sign bit will be cleared */ 2096 dst_reg->smin_value = 0; 2097 } else { 2098 /* Lost sign bit information */ 2099 dst_reg->smin_value = S64_MIN; 2100 dst_reg->smax_value = S64_MAX; 2101 } 2102 } else { 2103 dst_reg->smin_value = 2104 (u64)(dst_reg->smin_value) >> umax_val; 2105 } 2106 if (src_known) 2107 dst_reg->var_off = tnum_rshift(dst_reg->var_off, 2108 umin_val); 2109 else 2110 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val); 2111 dst_reg->umin_value >>= umax_val; 2112 dst_reg->umax_value >>= umin_val; 2113 /* We may learn something more from the var_off */ 2114 __update_reg_bounds(dst_reg); 2115 break; 2116 default: 2117 mark_reg_unknown(env, regs, insn->dst_reg); 2118 break; 2119 } 2120 2121 __reg_deduce_bounds(dst_reg); 2122 __reg_bound_offset(dst_reg); 2123 return 0; 2124 } 2125 2126 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 2127 * and var_off. 2128 */ 2129 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 2130 struct bpf_insn *insn) 2131 { 2132 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg; 2133 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 2134 u8 opcode = BPF_OP(insn->code); 2135 int rc; 2136 2137 dst_reg = ®s[insn->dst_reg]; 2138 src_reg = NULL; 2139 if (dst_reg->type != SCALAR_VALUE) 2140 ptr_reg = dst_reg; 2141 if (BPF_SRC(insn->code) == BPF_X) { 2142 src_reg = ®s[insn->src_reg]; 2143 if (src_reg->type != SCALAR_VALUE) { 2144 if (dst_reg->type != SCALAR_VALUE) { 2145 /* Combining two pointers by any ALU op yields 2146 * an arbitrary scalar. 2147 */ 2148 if (!env->allow_ptr_leaks) { 2149 verbose(env, "R%d pointer %s pointer prohibited\n", 2150 insn->dst_reg, 2151 bpf_alu_string[opcode >> 4]); 2152 return -EACCES; 2153 } 2154 mark_reg_unknown(env, regs, insn->dst_reg); 2155 return 0; 2156 } else { 2157 /* scalar += pointer 2158 * This is legal, but we have to reverse our 2159 * src/dest handling in computing the range 2160 */ 2161 rc = adjust_ptr_min_max_vals(env, insn, 2162 src_reg, dst_reg); 2163 if (rc == -EACCES && env->allow_ptr_leaks) { 2164 /* scalar += unknown scalar */ 2165 __mark_reg_unknown(&off_reg); 2166 return adjust_scalar_min_max_vals( 2167 env, insn, 2168 dst_reg, off_reg); 2169 } 2170 return rc; 2171 } 2172 } else if (ptr_reg) { 2173 /* pointer += scalar */ 2174 rc = adjust_ptr_min_max_vals(env, insn, 2175 dst_reg, src_reg); 2176 if (rc == -EACCES && env->allow_ptr_leaks) { 2177 /* unknown scalar += scalar */ 2178 __mark_reg_unknown(dst_reg); 2179 return adjust_scalar_min_max_vals( 2180 env, insn, dst_reg, *src_reg); 2181 } 2182 return rc; 2183 } 2184 } else { 2185 /* Pretend the src is a reg with a known value, since we only 2186 * need to be able to read from this state. 2187 */ 2188 off_reg.type = SCALAR_VALUE; 2189 __mark_reg_known(&off_reg, insn->imm); 2190 src_reg = &off_reg; 2191 if (ptr_reg) { /* pointer += K */ 2192 rc = adjust_ptr_min_max_vals(env, insn, 2193 ptr_reg, src_reg); 2194 if (rc == -EACCES && env->allow_ptr_leaks) { 2195 /* unknown scalar += K */ 2196 __mark_reg_unknown(dst_reg); 2197 return adjust_scalar_min_max_vals( 2198 env, insn, dst_reg, off_reg); 2199 } 2200 return rc; 2201 } 2202 } 2203 2204 /* Got here implies adding two SCALAR_VALUEs */ 2205 if (WARN_ON_ONCE(ptr_reg)) { 2206 print_verifier_state(env, &env->cur_state); 2207 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 2208 return -EINVAL; 2209 } 2210 if (WARN_ON(!src_reg)) { 2211 print_verifier_state(env, &env->cur_state); 2212 verbose(env, "verifier internal error: no src_reg\n"); 2213 return -EINVAL; 2214 } 2215 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 2216 } 2217 2218 /* check validity of 32-bit and 64-bit arithmetic operations */ 2219 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 2220 { 2221 struct bpf_reg_state *regs = env->cur_state.regs; 2222 u8 opcode = BPF_OP(insn->code); 2223 int err; 2224 2225 if (opcode == BPF_END || opcode == BPF_NEG) { 2226 if (opcode == BPF_NEG) { 2227 if (BPF_SRC(insn->code) != 0 || 2228 insn->src_reg != BPF_REG_0 || 2229 insn->off != 0 || insn->imm != 0) { 2230 verbose(env, "BPF_NEG uses reserved fields\n"); 2231 return -EINVAL; 2232 } 2233 } else { 2234 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 2235 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 2236 BPF_CLASS(insn->code) == BPF_ALU64) { 2237 verbose(env, "BPF_END uses reserved fields\n"); 2238 return -EINVAL; 2239 } 2240 } 2241 2242 /* check src operand */ 2243 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2244 if (err) 2245 return err; 2246 2247 if (is_pointer_value(env, insn->dst_reg)) { 2248 verbose(env, "R%d pointer arithmetic prohibited\n", 2249 insn->dst_reg); 2250 return -EACCES; 2251 } 2252 2253 /* check dest operand */ 2254 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2255 if (err) 2256 return err; 2257 2258 } else if (opcode == BPF_MOV) { 2259 2260 if (BPF_SRC(insn->code) == BPF_X) { 2261 if (insn->imm != 0 || insn->off != 0) { 2262 verbose(env, "BPF_MOV uses reserved fields\n"); 2263 return -EINVAL; 2264 } 2265 2266 /* check src operand */ 2267 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2268 if (err) 2269 return err; 2270 } else { 2271 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 2272 verbose(env, "BPF_MOV uses reserved fields\n"); 2273 return -EINVAL; 2274 } 2275 } 2276 2277 /* check dest operand */ 2278 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2279 if (err) 2280 return err; 2281 2282 if (BPF_SRC(insn->code) == BPF_X) { 2283 if (BPF_CLASS(insn->code) == BPF_ALU64) { 2284 /* case: R1 = R2 2285 * copy register state to dest reg 2286 */ 2287 regs[insn->dst_reg] = regs[insn->src_reg]; 2288 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 2289 } else { 2290 /* R1 = (u32) R2 */ 2291 if (is_pointer_value(env, insn->src_reg)) { 2292 verbose(env, 2293 "R%d partial copy of pointer\n", 2294 insn->src_reg); 2295 return -EACCES; 2296 } 2297 mark_reg_unknown(env, regs, insn->dst_reg); 2298 /* high 32 bits are known zero. */ 2299 regs[insn->dst_reg].var_off = tnum_cast( 2300 regs[insn->dst_reg].var_off, 4); 2301 __update_reg_bounds(®s[insn->dst_reg]); 2302 } 2303 } else { 2304 /* case: R = imm 2305 * remember the value we stored into this reg 2306 */ 2307 regs[insn->dst_reg].type = SCALAR_VALUE; 2308 __mark_reg_known(regs + insn->dst_reg, insn->imm); 2309 } 2310 2311 } else if (opcode > BPF_END) { 2312 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 2313 return -EINVAL; 2314 2315 } else { /* all other ALU ops: and, sub, xor, add, ... */ 2316 2317 if (BPF_SRC(insn->code) == BPF_X) { 2318 if (insn->imm != 0 || insn->off != 0) { 2319 verbose(env, "BPF_ALU uses reserved fields\n"); 2320 return -EINVAL; 2321 } 2322 /* check src1 operand */ 2323 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2324 if (err) 2325 return err; 2326 } else { 2327 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 2328 verbose(env, "BPF_ALU uses reserved fields\n"); 2329 return -EINVAL; 2330 } 2331 } 2332 2333 /* check src2 operand */ 2334 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2335 if (err) 2336 return err; 2337 2338 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 2339 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 2340 verbose(env, "div by zero\n"); 2341 return -EINVAL; 2342 } 2343 2344 if ((opcode == BPF_LSH || opcode == BPF_RSH || 2345 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 2346 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 2347 2348 if (insn->imm < 0 || insn->imm >= size) { 2349 verbose(env, "invalid shift %d\n", insn->imm); 2350 return -EINVAL; 2351 } 2352 } 2353 2354 /* check dest operand */ 2355 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 2356 if (err) 2357 return err; 2358 2359 return adjust_reg_min_max_vals(env, insn); 2360 } 2361 2362 return 0; 2363 } 2364 2365 static void find_good_pkt_pointers(struct bpf_verifier_state *state, 2366 struct bpf_reg_state *dst_reg, 2367 enum bpf_reg_type type) 2368 { 2369 struct bpf_reg_state *regs = state->regs, *reg; 2370 int i; 2371 2372 if (dst_reg->off < 0) 2373 /* This doesn't give us any range */ 2374 return; 2375 2376 if (dst_reg->umax_value > MAX_PACKET_OFF || 2377 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 2378 /* Risk of overflow. For instance, ptr + (1<<63) may be less 2379 * than pkt_end, but that's because it's also less than pkt. 2380 */ 2381 return; 2382 2383 /* LLVM can generate four kind of checks: 2384 * 2385 * Type 1/2: 2386 * 2387 * r2 = r3; 2388 * r2 += 8; 2389 * if (r2 > pkt_end) goto <handle exception> 2390 * <access okay> 2391 * 2392 * r2 = r3; 2393 * r2 += 8; 2394 * if (r2 < pkt_end) goto <access okay> 2395 * <handle exception> 2396 * 2397 * Where: 2398 * r2 == dst_reg, pkt_end == src_reg 2399 * r2=pkt(id=n,off=8,r=0) 2400 * r3=pkt(id=n,off=0,r=0) 2401 * 2402 * Type 3/4: 2403 * 2404 * r2 = r3; 2405 * r2 += 8; 2406 * if (pkt_end >= r2) goto <access okay> 2407 * <handle exception> 2408 * 2409 * r2 = r3; 2410 * r2 += 8; 2411 * if (pkt_end <= r2) goto <handle exception> 2412 * <access okay> 2413 * 2414 * Where: 2415 * pkt_end == dst_reg, r2 == src_reg 2416 * r2=pkt(id=n,off=8,r=0) 2417 * r3=pkt(id=n,off=0,r=0) 2418 * 2419 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 2420 * so that range of bytes [r3, r3 + 8) is safe to access. 2421 */ 2422 2423 /* If our ids match, then we must have the same max_value. And we 2424 * don't care about the other reg's fixed offset, since if it's too big 2425 * the range won't allow anything. 2426 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 2427 */ 2428 for (i = 0; i < MAX_BPF_REG; i++) 2429 if (regs[i].type == type && regs[i].id == dst_reg->id) 2430 /* keep the maximum range already checked */ 2431 regs[i].range = max_t(u16, regs[i].range, dst_reg->off); 2432 2433 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 2434 if (state->stack_slot_type[i] != STACK_SPILL) 2435 continue; 2436 reg = &state->spilled_regs[i / BPF_REG_SIZE]; 2437 if (reg->type == type && reg->id == dst_reg->id) 2438 reg->range = max_t(u16, reg->range, dst_reg->off); 2439 } 2440 } 2441 2442 /* Adjusts the register min/max values in the case that the dst_reg is the 2443 * variable register that we are working on, and src_reg is a constant or we're 2444 * simply doing a BPF_K check. 2445 * In JEQ/JNE cases we also adjust the var_off values. 2446 */ 2447 static void reg_set_min_max(struct bpf_reg_state *true_reg, 2448 struct bpf_reg_state *false_reg, u64 val, 2449 u8 opcode) 2450 { 2451 /* If the dst_reg is a pointer, we can't learn anything about its 2452 * variable offset from the compare (unless src_reg were a pointer into 2453 * the same object, but we don't bother with that. 2454 * Since false_reg and true_reg have the same type by construction, we 2455 * only need to check one of them for pointerness. 2456 */ 2457 if (__is_pointer_value(false, false_reg)) 2458 return; 2459 2460 switch (opcode) { 2461 case BPF_JEQ: 2462 /* If this is false then we know nothing Jon Snow, but if it is 2463 * true then we know for sure. 2464 */ 2465 __mark_reg_known(true_reg, val); 2466 break; 2467 case BPF_JNE: 2468 /* If this is true we know nothing Jon Snow, but if it is false 2469 * we know the value for sure; 2470 */ 2471 __mark_reg_known(false_reg, val); 2472 break; 2473 case BPF_JGT: 2474 false_reg->umax_value = min(false_reg->umax_value, val); 2475 true_reg->umin_value = max(true_reg->umin_value, val + 1); 2476 break; 2477 case BPF_JSGT: 2478 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 2479 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 2480 break; 2481 case BPF_JLT: 2482 false_reg->umin_value = max(false_reg->umin_value, val); 2483 true_reg->umax_value = min(true_reg->umax_value, val - 1); 2484 break; 2485 case BPF_JSLT: 2486 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 2487 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 2488 break; 2489 case BPF_JGE: 2490 false_reg->umax_value = min(false_reg->umax_value, val - 1); 2491 true_reg->umin_value = max(true_reg->umin_value, val); 2492 break; 2493 case BPF_JSGE: 2494 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 2495 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 2496 break; 2497 case BPF_JLE: 2498 false_reg->umin_value = max(false_reg->umin_value, val + 1); 2499 true_reg->umax_value = min(true_reg->umax_value, val); 2500 break; 2501 case BPF_JSLE: 2502 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 2503 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 2504 break; 2505 default: 2506 break; 2507 } 2508 2509 __reg_deduce_bounds(false_reg); 2510 __reg_deduce_bounds(true_reg); 2511 /* We might have learned some bits from the bounds. */ 2512 __reg_bound_offset(false_reg); 2513 __reg_bound_offset(true_reg); 2514 /* Intersecting with the old var_off might have improved our bounds 2515 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2516 * then new var_off is (0; 0x7f...fc) which improves our umax. 2517 */ 2518 __update_reg_bounds(false_reg); 2519 __update_reg_bounds(true_reg); 2520 } 2521 2522 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 2523 * the variable reg. 2524 */ 2525 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 2526 struct bpf_reg_state *false_reg, u64 val, 2527 u8 opcode) 2528 { 2529 if (__is_pointer_value(false, false_reg)) 2530 return; 2531 2532 switch (opcode) { 2533 case BPF_JEQ: 2534 /* If this is false then we know nothing Jon Snow, but if it is 2535 * true then we know for sure. 2536 */ 2537 __mark_reg_known(true_reg, val); 2538 break; 2539 case BPF_JNE: 2540 /* If this is true we know nothing Jon Snow, but if it is false 2541 * we know the value for sure; 2542 */ 2543 __mark_reg_known(false_reg, val); 2544 break; 2545 case BPF_JGT: 2546 true_reg->umax_value = min(true_reg->umax_value, val - 1); 2547 false_reg->umin_value = max(false_reg->umin_value, val); 2548 break; 2549 case BPF_JSGT: 2550 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 2551 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 2552 break; 2553 case BPF_JLT: 2554 true_reg->umin_value = max(true_reg->umin_value, val + 1); 2555 false_reg->umax_value = min(false_reg->umax_value, val); 2556 break; 2557 case BPF_JSLT: 2558 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 2559 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 2560 break; 2561 case BPF_JGE: 2562 true_reg->umax_value = min(true_reg->umax_value, val); 2563 false_reg->umin_value = max(false_reg->umin_value, val + 1); 2564 break; 2565 case BPF_JSGE: 2566 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 2567 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 2568 break; 2569 case BPF_JLE: 2570 true_reg->umin_value = max(true_reg->umin_value, val); 2571 false_reg->umax_value = min(false_reg->umax_value, val - 1); 2572 break; 2573 case BPF_JSLE: 2574 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 2575 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 2576 break; 2577 default: 2578 break; 2579 } 2580 2581 __reg_deduce_bounds(false_reg); 2582 __reg_deduce_bounds(true_reg); 2583 /* We might have learned some bits from the bounds. */ 2584 __reg_bound_offset(false_reg); 2585 __reg_bound_offset(true_reg); 2586 /* Intersecting with the old var_off might have improved our bounds 2587 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2588 * then new var_off is (0; 0x7f...fc) which improves our umax. 2589 */ 2590 __update_reg_bounds(false_reg); 2591 __update_reg_bounds(true_reg); 2592 } 2593 2594 /* Regs are known to be equal, so intersect their min/max/var_off */ 2595 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 2596 struct bpf_reg_state *dst_reg) 2597 { 2598 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 2599 dst_reg->umin_value); 2600 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 2601 dst_reg->umax_value); 2602 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 2603 dst_reg->smin_value); 2604 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 2605 dst_reg->smax_value); 2606 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 2607 dst_reg->var_off); 2608 /* We might have learned new bounds from the var_off. */ 2609 __update_reg_bounds(src_reg); 2610 __update_reg_bounds(dst_reg); 2611 /* We might have learned something about the sign bit. */ 2612 __reg_deduce_bounds(src_reg); 2613 __reg_deduce_bounds(dst_reg); 2614 /* We might have learned some bits from the bounds. */ 2615 __reg_bound_offset(src_reg); 2616 __reg_bound_offset(dst_reg); 2617 /* Intersecting with the old var_off might have improved our bounds 2618 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2619 * then new var_off is (0; 0x7f...fc) which improves our umax. 2620 */ 2621 __update_reg_bounds(src_reg); 2622 __update_reg_bounds(dst_reg); 2623 } 2624 2625 static void reg_combine_min_max(struct bpf_reg_state *true_src, 2626 struct bpf_reg_state *true_dst, 2627 struct bpf_reg_state *false_src, 2628 struct bpf_reg_state *false_dst, 2629 u8 opcode) 2630 { 2631 switch (opcode) { 2632 case BPF_JEQ: 2633 __reg_combine_min_max(true_src, true_dst); 2634 break; 2635 case BPF_JNE: 2636 __reg_combine_min_max(false_src, false_dst); 2637 break; 2638 } 2639 } 2640 2641 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 2642 bool is_null) 2643 { 2644 struct bpf_reg_state *reg = ®s[regno]; 2645 2646 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 2647 /* Old offset (both fixed and variable parts) should 2648 * have been known-zero, because we don't allow pointer 2649 * arithmetic on pointers that might be NULL. 2650 */ 2651 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 2652 !tnum_equals_const(reg->var_off, 0) || 2653 reg->off)) { 2654 __mark_reg_known_zero(reg); 2655 reg->off = 0; 2656 } 2657 if (is_null) { 2658 reg->type = SCALAR_VALUE; 2659 } else if (reg->map_ptr->inner_map_meta) { 2660 reg->type = CONST_PTR_TO_MAP; 2661 reg->map_ptr = reg->map_ptr->inner_map_meta; 2662 } else { 2663 reg->type = PTR_TO_MAP_VALUE; 2664 } 2665 /* We don't need id from this point onwards anymore, thus we 2666 * should better reset it, so that state pruning has chances 2667 * to take effect. 2668 */ 2669 reg->id = 0; 2670 } 2671 } 2672 2673 /* The logic is similar to find_good_pkt_pointers(), both could eventually 2674 * be folded together at some point. 2675 */ 2676 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno, 2677 bool is_null) 2678 { 2679 struct bpf_reg_state *regs = state->regs; 2680 u32 id = regs[regno].id; 2681 int i; 2682 2683 for (i = 0; i < MAX_BPF_REG; i++) 2684 mark_map_reg(regs, i, id, is_null); 2685 2686 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 2687 if (state->stack_slot_type[i] != STACK_SPILL) 2688 continue; 2689 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null); 2690 } 2691 } 2692 2693 static int check_cond_jmp_op(struct bpf_verifier_env *env, 2694 struct bpf_insn *insn, int *insn_idx) 2695 { 2696 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state; 2697 struct bpf_reg_state *regs = this_branch->regs, *dst_reg; 2698 u8 opcode = BPF_OP(insn->code); 2699 int err; 2700 2701 if (opcode > BPF_JSLE) { 2702 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 2703 return -EINVAL; 2704 } 2705 2706 if (BPF_SRC(insn->code) == BPF_X) { 2707 if (insn->imm != 0) { 2708 verbose(env, "BPF_JMP uses reserved fields\n"); 2709 return -EINVAL; 2710 } 2711 2712 /* check src1 operand */ 2713 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2714 if (err) 2715 return err; 2716 2717 if (is_pointer_value(env, insn->src_reg)) { 2718 verbose(env, "R%d pointer comparison prohibited\n", 2719 insn->src_reg); 2720 return -EACCES; 2721 } 2722 } else { 2723 if (insn->src_reg != BPF_REG_0) { 2724 verbose(env, "BPF_JMP uses reserved fields\n"); 2725 return -EINVAL; 2726 } 2727 } 2728 2729 /* check src2 operand */ 2730 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2731 if (err) 2732 return err; 2733 2734 dst_reg = ®s[insn->dst_reg]; 2735 2736 /* detect if R == 0 where R was initialized to zero earlier */ 2737 if (BPF_SRC(insn->code) == BPF_K && 2738 (opcode == BPF_JEQ || opcode == BPF_JNE) && 2739 dst_reg->type == SCALAR_VALUE && 2740 tnum_equals_const(dst_reg->var_off, insn->imm)) { 2741 if (opcode == BPF_JEQ) { 2742 /* if (imm == imm) goto pc+off; 2743 * only follow the goto, ignore fall-through 2744 */ 2745 *insn_idx += insn->off; 2746 return 0; 2747 } else { 2748 /* if (imm != imm) goto pc+off; 2749 * only follow fall-through branch, since 2750 * that's where the program will go 2751 */ 2752 return 0; 2753 } 2754 } 2755 2756 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 2757 if (!other_branch) 2758 return -EFAULT; 2759 2760 /* detect if we are comparing against a constant value so we can adjust 2761 * our min/max values for our dst register. 2762 * this is only legit if both are scalars (or pointers to the same 2763 * object, I suppose, but we don't support that right now), because 2764 * otherwise the different base pointers mean the offsets aren't 2765 * comparable. 2766 */ 2767 if (BPF_SRC(insn->code) == BPF_X) { 2768 if (dst_reg->type == SCALAR_VALUE && 2769 regs[insn->src_reg].type == SCALAR_VALUE) { 2770 if (tnum_is_const(regs[insn->src_reg].var_off)) 2771 reg_set_min_max(&other_branch->regs[insn->dst_reg], 2772 dst_reg, regs[insn->src_reg].var_off.value, 2773 opcode); 2774 else if (tnum_is_const(dst_reg->var_off)) 2775 reg_set_min_max_inv(&other_branch->regs[insn->src_reg], 2776 ®s[insn->src_reg], 2777 dst_reg->var_off.value, opcode); 2778 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 2779 /* Comparing for equality, we can combine knowledge */ 2780 reg_combine_min_max(&other_branch->regs[insn->src_reg], 2781 &other_branch->regs[insn->dst_reg], 2782 ®s[insn->src_reg], 2783 ®s[insn->dst_reg], opcode); 2784 } 2785 } else if (dst_reg->type == SCALAR_VALUE) { 2786 reg_set_min_max(&other_branch->regs[insn->dst_reg], 2787 dst_reg, insn->imm, opcode); 2788 } 2789 2790 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 2791 if (BPF_SRC(insn->code) == BPF_K && 2792 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 2793 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2794 /* Mark all identical map registers in each branch as either 2795 * safe or unknown depending R == 0 or R != 0 conditional. 2796 */ 2797 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 2798 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); 2799 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT && 2800 dst_reg->type == PTR_TO_PACKET && 2801 regs[insn->src_reg].type == PTR_TO_PACKET_END) { 2802 find_good_pkt_pointers(this_branch, dst_reg, PTR_TO_PACKET); 2803 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT && 2804 dst_reg->type == PTR_TO_PACKET && 2805 regs[insn->src_reg].type == PTR_TO_PACKET_END) { 2806 find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET); 2807 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE && 2808 dst_reg->type == PTR_TO_PACKET_END && 2809 regs[insn->src_reg].type == PTR_TO_PACKET) { 2810 find_good_pkt_pointers(other_branch, ®s[insn->src_reg], 2811 PTR_TO_PACKET); 2812 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE && 2813 dst_reg->type == PTR_TO_PACKET_END && 2814 regs[insn->src_reg].type == PTR_TO_PACKET) { 2815 find_good_pkt_pointers(this_branch, ®s[insn->src_reg], 2816 PTR_TO_PACKET); 2817 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT && 2818 dst_reg->type == PTR_TO_PACKET_META && 2819 reg_is_init_pkt_pointer(®s[insn->src_reg], PTR_TO_PACKET)) { 2820 find_good_pkt_pointers(this_branch, dst_reg, PTR_TO_PACKET_META); 2821 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT && 2822 dst_reg->type == PTR_TO_PACKET_META && 2823 reg_is_init_pkt_pointer(®s[insn->src_reg], PTR_TO_PACKET)) { 2824 find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET_META); 2825 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE && 2826 reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 2827 regs[insn->src_reg].type == PTR_TO_PACKET_META) { 2828 find_good_pkt_pointers(other_branch, ®s[insn->src_reg], 2829 PTR_TO_PACKET_META); 2830 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE && 2831 reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 2832 regs[insn->src_reg].type == PTR_TO_PACKET_META) { 2833 find_good_pkt_pointers(this_branch, ®s[insn->src_reg], 2834 PTR_TO_PACKET_META); 2835 } else if (is_pointer_value(env, insn->dst_reg)) { 2836 verbose(env, "R%d pointer comparison prohibited\n", 2837 insn->dst_reg); 2838 return -EACCES; 2839 } 2840 if (env->log.level) 2841 print_verifier_state(env, this_branch); 2842 return 0; 2843 } 2844 2845 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 2846 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 2847 { 2848 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 2849 2850 return (struct bpf_map *) (unsigned long) imm64; 2851 } 2852 2853 /* verify BPF_LD_IMM64 instruction */ 2854 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 2855 { 2856 struct bpf_reg_state *regs = env->cur_state.regs; 2857 int err; 2858 2859 if (BPF_SIZE(insn->code) != BPF_DW) { 2860 verbose(env, "invalid BPF_LD_IMM insn\n"); 2861 return -EINVAL; 2862 } 2863 if (insn->off != 0) { 2864 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 2865 return -EINVAL; 2866 } 2867 2868 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2869 if (err) 2870 return err; 2871 2872 if (insn->src_reg == 0) { 2873 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 2874 2875 regs[insn->dst_reg].type = SCALAR_VALUE; 2876 __mark_reg_known(®s[insn->dst_reg], imm); 2877 return 0; 2878 } 2879 2880 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 2881 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 2882 2883 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 2884 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 2885 return 0; 2886 } 2887 2888 static bool may_access_skb(enum bpf_prog_type type) 2889 { 2890 switch (type) { 2891 case BPF_PROG_TYPE_SOCKET_FILTER: 2892 case BPF_PROG_TYPE_SCHED_CLS: 2893 case BPF_PROG_TYPE_SCHED_ACT: 2894 return true; 2895 default: 2896 return false; 2897 } 2898 } 2899 2900 /* verify safety of LD_ABS|LD_IND instructions: 2901 * - they can only appear in the programs where ctx == skb 2902 * - since they are wrappers of function calls, they scratch R1-R5 registers, 2903 * preserve R6-R9, and store return value into R0 2904 * 2905 * Implicit input: 2906 * ctx == skb == R6 == CTX 2907 * 2908 * Explicit input: 2909 * SRC == any register 2910 * IMM == 32-bit immediate 2911 * 2912 * Output: 2913 * R0 - 8/16/32-bit skb data converted to cpu endianness 2914 */ 2915 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 2916 { 2917 struct bpf_reg_state *regs = env->cur_state.regs; 2918 u8 mode = BPF_MODE(insn->code); 2919 int i, err; 2920 2921 if (!may_access_skb(env->prog->type)) { 2922 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 2923 return -EINVAL; 2924 } 2925 2926 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 2927 BPF_SIZE(insn->code) == BPF_DW || 2928 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 2929 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 2930 return -EINVAL; 2931 } 2932 2933 /* check whether implicit source operand (register R6) is readable */ 2934 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 2935 if (err) 2936 return err; 2937 2938 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 2939 verbose(env, 2940 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 2941 return -EINVAL; 2942 } 2943 2944 if (mode == BPF_IND) { 2945 /* check explicit source operand */ 2946 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2947 if (err) 2948 return err; 2949 } 2950 2951 /* reset caller saved regs to unreadable */ 2952 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2953 mark_reg_not_init(env, regs, caller_saved[i]); 2954 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2955 } 2956 2957 /* mark destination R0 register as readable, since it contains 2958 * the value fetched from the packet. 2959 * Already marked as written above. 2960 */ 2961 mark_reg_unknown(env, regs, BPF_REG_0); 2962 return 0; 2963 } 2964 2965 static int check_return_code(struct bpf_verifier_env *env) 2966 { 2967 struct bpf_reg_state *reg; 2968 struct tnum range = tnum_range(0, 1); 2969 2970 switch (env->prog->type) { 2971 case BPF_PROG_TYPE_CGROUP_SKB: 2972 case BPF_PROG_TYPE_CGROUP_SOCK: 2973 case BPF_PROG_TYPE_SOCK_OPS: 2974 break; 2975 default: 2976 return 0; 2977 } 2978 2979 reg = &env->cur_state.regs[BPF_REG_0]; 2980 if (reg->type != SCALAR_VALUE) { 2981 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 2982 reg_type_str[reg->type]); 2983 return -EINVAL; 2984 } 2985 2986 if (!tnum_in(range, reg->var_off)) { 2987 verbose(env, "At program exit the register R0 "); 2988 if (!tnum_is_unknown(reg->var_off)) { 2989 char tn_buf[48]; 2990 2991 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2992 verbose(env, "has value %s", tn_buf); 2993 } else { 2994 verbose(env, "has unknown scalar value"); 2995 } 2996 verbose(env, " should have been 0 or 1\n"); 2997 return -EINVAL; 2998 } 2999 return 0; 3000 } 3001 3002 /* non-recursive DFS pseudo code 3003 * 1 procedure DFS-iterative(G,v): 3004 * 2 label v as discovered 3005 * 3 let S be a stack 3006 * 4 S.push(v) 3007 * 5 while S is not empty 3008 * 6 t <- S.pop() 3009 * 7 if t is what we're looking for: 3010 * 8 return t 3011 * 9 for all edges e in G.adjacentEdges(t) do 3012 * 10 if edge e is already labelled 3013 * 11 continue with the next edge 3014 * 12 w <- G.adjacentVertex(t,e) 3015 * 13 if vertex w is not discovered and not explored 3016 * 14 label e as tree-edge 3017 * 15 label w as discovered 3018 * 16 S.push(w) 3019 * 17 continue at 5 3020 * 18 else if vertex w is discovered 3021 * 19 label e as back-edge 3022 * 20 else 3023 * 21 // vertex w is explored 3024 * 22 label e as forward- or cross-edge 3025 * 23 label t as explored 3026 * 24 S.pop() 3027 * 3028 * convention: 3029 * 0x10 - discovered 3030 * 0x11 - discovered and fall-through edge labelled 3031 * 0x12 - discovered and fall-through and branch edges labelled 3032 * 0x20 - explored 3033 */ 3034 3035 enum { 3036 DISCOVERED = 0x10, 3037 EXPLORED = 0x20, 3038 FALLTHROUGH = 1, 3039 BRANCH = 2, 3040 }; 3041 3042 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 3043 3044 static int *insn_stack; /* stack of insns to process */ 3045 static int cur_stack; /* current stack index */ 3046 static int *insn_state; 3047 3048 /* t, w, e - match pseudo-code above: 3049 * t - index of current instruction 3050 * w - next instruction 3051 * e - edge 3052 */ 3053 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 3054 { 3055 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 3056 return 0; 3057 3058 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 3059 return 0; 3060 3061 if (w < 0 || w >= env->prog->len) { 3062 verbose(env, "jump out of range from insn %d to %d\n", t, w); 3063 return -EINVAL; 3064 } 3065 3066 if (e == BRANCH) 3067 /* mark branch target for state pruning */ 3068 env->explored_states[w] = STATE_LIST_MARK; 3069 3070 if (insn_state[w] == 0) { 3071 /* tree-edge */ 3072 insn_state[t] = DISCOVERED | e; 3073 insn_state[w] = DISCOVERED; 3074 if (cur_stack >= env->prog->len) 3075 return -E2BIG; 3076 insn_stack[cur_stack++] = w; 3077 return 1; 3078 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 3079 verbose(env, "back-edge from insn %d to %d\n", t, w); 3080 return -EINVAL; 3081 } else if (insn_state[w] == EXPLORED) { 3082 /* forward- or cross-edge */ 3083 insn_state[t] = DISCOVERED | e; 3084 } else { 3085 verbose(env, "insn state internal bug\n"); 3086 return -EFAULT; 3087 } 3088 return 0; 3089 } 3090 3091 /* non-recursive depth-first-search to detect loops in BPF program 3092 * loop == back-edge in directed graph 3093 */ 3094 static int check_cfg(struct bpf_verifier_env *env) 3095 { 3096 struct bpf_insn *insns = env->prog->insnsi; 3097 int insn_cnt = env->prog->len; 3098 int ret = 0; 3099 int i, t; 3100 3101 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 3102 if (!insn_state) 3103 return -ENOMEM; 3104 3105 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 3106 if (!insn_stack) { 3107 kfree(insn_state); 3108 return -ENOMEM; 3109 } 3110 3111 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 3112 insn_stack[0] = 0; /* 0 is the first instruction */ 3113 cur_stack = 1; 3114 3115 peek_stack: 3116 if (cur_stack == 0) 3117 goto check_state; 3118 t = insn_stack[cur_stack - 1]; 3119 3120 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 3121 u8 opcode = BPF_OP(insns[t].code); 3122 3123 if (opcode == BPF_EXIT) { 3124 goto mark_explored; 3125 } else if (opcode == BPF_CALL) { 3126 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3127 if (ret == 1) 3128 goto peek_stack; 3129 else if (ret < 0) 3130 goto err_free; 3131 if (t + 1 < insn_cnt) 3132 env->explored_states[t + 1] = STATE_LIST_MARK; 3133 } else if (opcode == BPF_JA) { 3134 if (BPF_SRC(insns[t].code) != BPF_K) { 3135 ret = -EINVAL; 3136 goto err_free; 3137 } 3138 /* unconditional jump with single edge */ 3139 ret = push_insn(t, t + insns[t].off + 1, 3140 FALLTHROUGH, env); 3141 if (ret == 1) 3142 goto peek_stack; 3143 else if (ret < 0) 3144 goto err_free; 3145 /* tell verifier to check for equivalent states 3146 * after every call and jump 3147 */ 3148 if (t + 1 < insn_cnt) 3149 env->explored_states[t + 1] = STATE_LIST_MARK; 3150 } else { 3151 /* conditional jump with two edges */ 3152 env->explored_states[t] = STATE_LIST_MARK; 3153 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3154 if (ret == 1) 3155 goto peek_stack; 3156 else if (ret < 0) 3157 goto err_free; 3158 3159 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 3160 if (ret == 1) 3161 goto peek_stack; 3162 else if (ret < 0) 3163 goto err_free; 3164 } 3165 } else { 3166 /* all other non-branch instructions with single 3167 * fall-through edge 3168 */ 3169 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3170 if (ret == 1) 3171 goto peek_stack; 3172 else if (ret < 0) 3173 goto err_free; 3174 } 3175 3176 mark_explored: 3177 insn_state[t] = EXPLORED; 3178 if (cur_stack-- <= 0) { 3179 verbose(env, "pop stack internal bug\n"); 3180 ret = -EFAULT; 3181 goto err_free; 3182 } 3183 goto peek_stack; 3184 3185 check_state: 3186 for (i = 0; i < insn_cnt; i++) { 3187 if (insn_state[i] != EXPLORED) { 3188 verbose(env, "unreachable insn %d\n", i); 3189 ret = -EINVAL; 3190 goto err_free; 3191 } 3192 } 3193 ret = 0; /* cfg looks good */ 3194 3195 err_free: 3196 kfree(insn_state); 3197 kfree(insn_stack); 3198 return ret; 3199 } 3200 3201 /* check %cur's range satisfies %old's */ 3202 static bool range_within(struct bpf_reg_state *old, 3203 struct bpf_reg_state *cur) 3204 { 3205 return old->umin_value <= cur->umin_value && 3206 old->umax_value >= cur->umax_value && 3207 old->smin_value <= cur->smin_value && 3208 old->smax_value >= cur->smax_value; 3209 } 3210 3211 /* Maximum number of register states that can exist at once */ 3212 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 3213 struct idpair { 3214 u32 old; 3215 u32 cur; 3216 }; 3217 3218 /* If in the old state two registers had the same id, then they need to have 3219 * the same id in the new state as well. But that id could be different from 3220 * the old state, so we need to track the mapping from old to new ids. 3221 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 3222 * regs with old id 5 must also have new id 9 for the new state to be safe. But 3223 * regs with a different old id could still have new id 9, we don't care about 3224 * that. 3225 * So we look through our idmap to see if this old id has been seen before. If 3226 * so, we require the new id to match; otherwise, we add the id pair to the map. 3227 */ 3228 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 3229 { 3230 unsigned int i; 3231 3232 for (i = 0; i < ID_MAP_SIZE; i++) { 3233 if (!idmap[i].old) { 3234 /* Reached an empty slot; haven't seen this id before */ 3235 idmap[i].old = old_id; 3236 idmap[i].cur = cur_id; 3237 return true; 3238 } 3239 if (idmap[i].old == old_id) 3240 return idmap[i].cur == cur_id; 3241 } 3242 /* We ran out of idmap slots, which should be impossible */ 3243 WARN_ON_ONCE(1); 3244 return false; 3245 } 3246 3247 /* Returns true if (rold safe implies rcur safe) */ 3248 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 3249 struct idpair *idmap) 3250 { 3251 if (!(rold->live & REG_LIVE_READ)) 3252 /* explored state didn't use this */ 3253 return true; 3254 3255 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0) 3256 return true; 3257 3258 if (rold->type == NOT_INIT) 3259 /* explored state can't have used this */ 3260 return true; 3261 if (rcur->type == NOT_INIT) 3262 return false; 3263 switch (rold->type) { 3264 case SCALAR_VALUE: 3265 if (rcur->type == SCALAR_VALUE) { 3266 /* new val must satisfy old val knowledge */ 3267 return range_within(rold, rcur) && 3268 tnum_in(rold->var_off, rcur->var_off); 3269 } else { 3270 /* if we knew anything about the old value, we're not 3271 * equal, because we can't know anything about the 3272 * scalar value of the pointer in the new value. 3273 */ 3274 return rold->umin_value == 0 && 3275 rold->umax_value == U64_MAX && 3276 rold->smin_value == S64_MIN && 3277 rold->smax_value == S64_MAX && 3278 tnum_is_unknown(rold->var_off); 3279 } 3280 case PTR_TO_MAP_VALUE: 3281 /* If the new min/max/var_off satisfy the old ones and 3282 * everything else matches, we are OK. 3283 * We don't care about the 'id' value, because nothing 3284 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 3285 */ 3286 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 3287 range_within(rold, rcur) && 3288 tnum_in(rold->var_off, rcur->var_off); 3289 case PTR_TO_MAP_VALUE_OR_NULL: 3290 /* a PTR_TO_MAP_VALUE could be safe to use as a 3291 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 3292 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 3293 * checked, doing so could have affected others with the same 3294 * id, and we can't check for that because we lost the id when 3295 * we converted to a PTR_TO_MAP_VALUE. 3296 */ 3297 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 3298 return false; 3299 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 3300 return false; 3301 /* Check our ids match any regs they're supposed to */ 3302 return check_ids(rold->id, rcur->id, idmap); 3303 case PTR_TO_PACKET_META: 3304 case PTR_TO_PACKET: 3305 if (rcur->type != rold->type) 3306 return false; 3307 /* We must have at least as much range as the old ptr 3308 * did, so that any accesses which were safe before are 3309 * still safe. This is true even if old range < old off, 3310 * since someone could have accessed through (ptr - k), or 3311 * even done ptr -= k in a register, to get a safe access. 3312 */ 3313 if (rold->range > rcur->range) 3314 return false; 3315 /* If the offsets don't match, we can't trust our alignment; 3316 * nor can we be sure that we won't fall out of range. 3317 */ 3318 if (rold->off != rcur->off) 3319 return false; 3320 /* id relations must be preserved */ 3321 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 3322 return false; 3323 /* new val must satisfy old val knowledge */ 3324 return range_within(rold, rcur) && 3325 tnum_in(rold->var_off, rcur->var_off); 3326 case PTR_TO_CTX: 3327 case CONST_PTR_TO_MAP: 3328 case PTR_TO_STACK: 3329 case PTR_TO_PACKET_END: 3330 /* Only valid matches are exact, which memcmp() above 3331 * would have accepted 3332 */ 3333 default: 3334 /* Don't know what's going on, just say it's not safe */ 3335 return false; 3336 } 3337 3338 /* Shouldn't get here; if we do, say it's not safe */ 3339 WARN_ON_ONCE(1); 3340 return false; 3341 } 3342 3343 /* compare two verifier states 3344 * 3345 * all states stored in state_list are known to be valid, since 3346 * verifier reached 'bpf_exit' instruction through them 3347 * 3348 * this function is called when verifier exploring different branches of 3349 * execution popped from the state stack. If it sees an old state that has 3350 * more strict register state and more strict stack state then this execution 3351 * branch doesn't need to be explored further, since verifier already 3352 * concluded that more strict state leads to valid finish. 3353 * 3354 * Therefore two states are equivalent if register state is more conservative 3355 * and explored stack state is more conservative than the current one. 3356 * Example: 3357 * explored current 3358 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 3359 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 3360 * 3361 * In other words if current stack state (one being explored) has more 3362 * valid slots than old one that already passed validation, it means 3363 * the verifier can stop exploring and conclude that current state is valid too 3364 * 3365 * Similarly with registers. If explored state has register type as invalid 3366 * whereas register type in current state is meaningful, it means that 3367 * the current state will reach 'bpf_exit' instruction safely 3368 */ 3369 static bool states_equal(struct bpf_verifier_env *env, 3370 struct bpf_verifier_state *old, 3371 struct bpf_verifier_state *cur) 3372 { 3373 struct idpair *idmap; 3374 bool ret = false; 3375 int i; 3376 3377 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 3378 /* If we failed to allocate the idmap, just say it's not safe */ 3379 if (!idmap) 3380 return false; 3381 3382 for (i = 0; i < MAX_BPF_REG; i++) { 3383 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 3384 goto out_free; 3385 } 3386 3387 for (i = 0; i < MAX_BPF_STACK; i++) { 3388 if (old->stack_slot_type[i] == STACK_INVALID) 3389 continue; 3390 if (old->stack_slot_type[i] != cur->stack_slot_type[i]) 3391 /* Ex: old explored (safe) state has STACK_SPILL in 3392 * this stack slot, but current has has STACK_MISC -> 3393 * this verifier states are not equivalent, 3394 * return false to continue verification of this path 3395 */ 3396 goto out_free; 3397 if (i % BPF_REG_SIZE) 3398 continue; 3399 if (old->stack_slot_type[i] != STACK_SPILL) 3400 continue; 3401 if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE], 3402 &cur->spilled_regs[i / BPF_REG_SIZE], 3403 idmap)) 3404 /* when explored and current stack slot are both storing 3405 * spilled registers, check that stored pointers types 3406 * are the same as well. 3407 * Ex: explored safe path could have stored 3408 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 3409 * but current path has stored: 3410 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 3411 * such verifier states are not equivalent. 3412 * return false to continue verification of this path 3413 */ 3414 goto out_free; 3415 else 3416 continue; 3417 } 3418 ret = true; 3419 out_free: 3420 kfree(idmap); 3421 return ret; 3422 } 3423 3424 /* A write screens off any subsequent reads; but write marks come from the 3425 * straight-line code between a state and its parent. When we arrive at a 3426 * jump target (in the first iteration of the propagate_liveness() loop), 3427 * we didn't arrive by the straight-line code, so read marks in state must 3428 * propagate to parent regardless of state's write marks. 3429 */ 3430 static bool do_propagate_liveness(const struct bpf_verifier_state *state, 3431 struct bpf_verifier_state *parent) 3432 { 3433 bool writes = parent == state->parent; /* Observe write marks */ 3434 bool touched = false; /* any changes made? */ 3435 int i; 3436 3437 if (!parent) 3438 return touched; 3439 /* Propagate read liveness of registers... */ 3440 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 3441 /* We don't need to worry about FP liveness because it's read-only */ 3442 for (i = 0; i < BPF_REG_FP; i++) { 3443 if (parent->regs[i].live & REG_LIVE_READ) 3444 continue; 3445 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN)) 3446 continue; 3447 if (state->regs[i].live & REG_LIVE_READ) { 3448 parent->regs[i].live |= REG_LIVE_READ; 3449 touched = true; 3450 } 3451 } 3452 /* ... and stack slots */ 3453 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) { 3454 if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL) 3455 continue; 3456 if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL) 3457 continue; 3458 if (parent->spilled_regs[i].live & REG_LIVE_READ) 3459 continue; 3460 if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN)) 3461 continue; 3462 if (state->spilled_regs[i].live & REG_LIVE_READ) { 3463 parent->spilled_regs[i].live |= REG_LIVE_READ; 3464 touched = true; 3465 } 3466 } 3467 return touched; 3468 } 3469 3470 /* "parent" is "a state from which we reach the current state", but initially 3471 * it is not the state->parent (i.e. "the state whose straight-line code leads 3472 * to the current state"), instead it is the state that happened to arrive at 3473 * a (prunable) equivalent of the current state. See comment above 3474 * do_propagate_liveness() for consequences of this. 3475 * This function is just a more efficient way of calling mark_reg_read() or 3476 * mark_stack_slot_read() on each reg in "parent" that is read in "state", 3477 * though it requires that parent != state->parent in the call arguments. 3478 */ 3479 static void propagate_liveness(const struct bpf_verifier_state *state, 3480 struct bpf_verifier_state *parent) 3481 { 3482 while (do_propagate_liveness(state, parent)) { 3483 /* Something changed, so we need to feed those changes onward */ 3484 state = parent; 3485 parent = state->parent; 3486 } 3487 } 3488 3489 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 3490 { 3491 struct bpf_verifier_state_list *new_sl; 3492 struct bpf_verifier_state_list *sl; 3493 int i; 3494 3495 sl = env->explored_states[insn_idx]; 3496 if (!sl) 3497 /* this 'insn_idx' instruction wasn't marked, so we will not 3498 * be doing state search here 3499 */ 3500 return 0; 3501 3502 while (sl != STATE_LIST_MARK) { 3503 if (states_equal(env, &sl->state, &env->cur_state)) { 3504 /* reached equivalent register/stack state, 3505 * prune the search. 3506 * Registers read by the continuation are read by us. 3507 * If we have any write marks in env->cur_state, they 3508 * will prevent corresponding reads in the continuation 3509 * from reaching our parent (an explored_state). Our 3510 * own state will get the read marks recorded, but 3511 * they'll be immediately forgotten as we're pruning 3512 * this state and will pop a new one. 3513 */ 3514 propagate_liveness(&sl->state, &env->cur_state); 3515 return 1; 3516 } 3517 sl = sl->next; 3518 } 3519 3520 /* there were no equivalent states, remember current one. 3521 * technically the current state is not proven to be safe yet, 3522 * but it will either reach bpf_exit (which means it's safe) or 3523 * it will be rejected. Since there are no loops, we won't be 3524 * seeing this 'insn_idx' instruction again on the way to bpf_exit 3525 */ 3526 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER); 3527 if (!new_sl) 3528 return -ENOMEM; 3529 3530 /* add new state to the head of linked list */ 3531 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state)); 3532 new_sl->next = env->explored_states[insn_idx]; 3533 env->explored_states[insn_idx] = new_sl; 3534 /* connect new state to parentage chain */ 3535 env->cur_state.parent = &new_sl->state; 3536 /* clear write marks in current state: the writes we did are not writes 3537 * our child did, so they don't screen off its reads from us. 3538 * (There are no read marks in current state, because reads always mark 3539 * their parent and current state never has children yet. Only 3540 * explored_states can get read marks.) 3541 */ 3542 for (i = 0; i < BPF_REG_FP; i++) 3543 env->cur_state.regs[i].live = REG_LIVE_NONE; 3544 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) 3545 if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL) 3546 env->cur_state.spilled_regs[i].live = REG_LIVE_NONE; 3547 return 0; 3548 } 3549 3550 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env, 3551 int insn_idx, int prev_insn_idx) 3552 { 3553 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook) 3554 return 0; 3555 3556 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx); 3557 } 3558 3559 static int do_check(struct bpf_verifier_env *env) 3560 { 3561 struct bpf_verifier_state *state = &env->cur_state; 3562 struct bpf_insn *insns = env->prog->insnsi; 3563 struct bpf_reg_state *regs = state->regs; 3564 int insn_cnt = env->prog->len; 3565 int insn_idx, prev_insn_idx = 0; 3566 int insn_processed = 0; 3567 bool do_print_state = false; 3568 3569 init_reg_state(env, regs); 3570 state->parent = NULL; 3571 insn_idx = 0; 3572 for (;;) { 3573 struct bpf_insn *insn; 3574 u8 class; 3575 int err; 3576 3577 if (insn_idx >= insn_cnt) { 3578 verbose(env, "invalid insn idx %d insn_cnt %d\n", 3579 insn_idx, insn_cnt); 3580 return -EFAULT; 3581 } 3582 3583 insn = &insns[insn_idx]; 3584 class = BPF_CLASS(insn->code); 3585 3586 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 3587 verbose(env, 3588 "BPF program is too large. Processed %d insn\n", 3589 insn_processed); 3590 return -E2BIG; 3591 } 3592 3593 err = is_state_visited(env, insn_idx); 3594 if (err < 0) 3595 return err; 3596 if (err == 1) { 3597 /* found equivalent state, can prune the search */ 3598 if (env->log.level) { 3599 if (do_print_state) 3600 verbose(env, "\nfrom %d to %d: safe\n", 3601 prev_insn_idx, insn_idx); 3602 else 3603 verbose(env, "%d: safe\n", insn_idx); 3604 } 3605 goto process_bpf_exit; 3606 } 3607 3608 if (need_resched()) 3609 cond_resched(); 3610 3611 if (env->log.level > 1 || (env->log.level && do_print_state)) { 3612 if (env->log.level > 1) 3613 verbose(env, "%d:", insn_idx); 3614 else 3615 verbose(env, "\nfrom %d to %d:", 3616 prev_insn_idx, insn_idx); 3617 print_verifier_state(env, &env->cur_state); 3618 do_print_state = false; 3619 } 3620 3621 if (env->log.level) { 3622 verbose(env, "%d: ", insn_idx); 3623 print_bpf_insn(verbose, env, insn, 3624 env->allow_ptr_leaks); 3625 } 3626 3627 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx); 3628 if (err) 3629 return err; 3630 3631 if (class == BPF_ALU || class == BPF_ALU64) { 3632 err = check_alu_op(env, insn); 3633 if (err) 3634 return err; 3635 3636 } else if (class == BPF_LDX) { 3637 enum bpf_reg_type *prev_src_type, src_reg_type; 3638 3639 /* check for reserved fields is already done */ 3640 3641 /* check src operand */ 3642 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3643 if (err) 3644 return err; 3645 3646 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3647 if (err) 3648 return err; 3649 3650 src_reg_type = regs[insn->src_reg].type; 3651 3652 /* check that memory (src_reg + off) is readable, 3653 * the state of dst_reg will be updated by this func 3654 */ 3655 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 3656 BPF_SIZE(insn->code), BPF_READ, 3657 insn->dst_reg); 3658 if (err) 3659 return err; 3660 3661 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 3662 3663 if (*prev_src_type == NOT_INIT) { 3664 /* saw a valid insn 3665 * dst_reg = *(u32 *)(src_reg + off) 3666 * save type to validate intersecting paths 3667 */ 3668 *prev_src_type = src_reg_type; 3669 3670 } else if (src_reg_type != *prev_src_type && 3671 (src_reg_type == PTR_TO_CTX || 3672 *prev_src_type == PTR_TO_CTX)) { 3673 /* ABuser program is trying to use the same insn 3674 * dst_reg = *(u32*) (src_reg + off) 3675 * with different pointer types: 3676 * src_reg == ctx in one branch and 3677 * src_reg == stack|map in some other branch. 3678 * Reject it. 3679 */ 3680 verbose(env, "same insn cannot be used with different pointers\n"); 3681 return -EINVAL; 3682 } 3683 3684 } else if (class == BPF_STX) { 3685 enum bpf_reg_type *prev_dst_type, dst_reg_type; 3686 3687 if (BPF_MODE(insn->code) == BPF_XADD) { 3688 err = check_xadd(env, insn_idx, insn); 3689 if (err) 3690 return err; 3691 insn_idx++; 3692 continue; 3693 } 3694 3695 /* check src1 operand */ 3696 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3697 if (err) 3698 return err; 3699 /* check src2 operand */ 3700 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3701 if (err) 3702 return err; 3703 3704 dst_reg_type = regs[insn->dst_reg].type; 3705 3706 /* check that memory (dst_reg + off) is writeable */ 3707 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3708 BPF_SIZE(insn->code), BPF_WRITE, 3709 insn->src_reg); 3710 if (err) 3711 return err; 3712 3713 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 3714 3715 if (*prev_dst_type == NOT_INIT) { 3716 *prev_dst_type = dst_reg_type; 3717 } else if (dst_reg_type != *prev_dst_type && 3718 (dst_reg_type == PTR_TO_CTX || 3719 *prev_dst_type == PTR_TO_CTX)) { 3720 verbose(env, "same insn cannot be used with different pointers\n"); 3721 return -EINVAL; 3722 } 3723 3724 } else if (class == BPF_ST) { 3725 if (BPF_MODE(insn->code) != BPF_MEM || 3726 insn->src_reg != BPF_REG_0) { 3727 verbose(env, "BPF_ST uses reserved fields\n"); 3728 return -EINVAL; 3729 } 3730 /* check src operand */ 3731 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3732 if (err) 3733 return err; 3734 3735 /* check that memory (dst_reg + off) is writeable */ 3736 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3737 BPF_SIZE(insn->code), BPF_WRITE, 3738 -1); 3739 if (err) 3740 return err; 3741 3742 } else if (class == BPF_JMP) { 3743 u8 opcode = BPF_OP(insn->code); 3744 3745 if (opcode == BPF_CALL) { 3746 if (BPF_SRC(insn->code) != BPF_K || 3747 insn->off != 0 || 3748 insn->src_reg != BPF_REG_0 || 3749 insn->dst_reg != BPF_REG_0) { 3750 verbose(env, "BPF_CALL uses reserved fields\n"); 3751 return -EINVAL; 3752 } 3753 3754 err = check_call(env, insn->imm, insn_idx); 3755 if (err) 3756 return err; 3757 3758 } else if (opcode == BPF_JA) { 3759 if (BPF_SRC(insn->code) != BPF_K || 3760 insn->imm != 0 || 3761 insn->src_reg != BPF_REG_0 || 3762 insn->dst_reg != BPF_REG_0) { 3763 verbose(env, "BPF_JA uses reserved fields\n"); 3764 return -EINVAL; 3765 } 3766 3767 insn_idx += insn->off + 1; 3768 continue; 3769 3770 } else if (opcode == BPF_EXIT) { 3771 if (BPF_SRC(insn->code) != BPF_K || 3772 insn->imm != 0 || 3773 insn->src_reg != BPF_REG_0 || 3774 insn->dst_reg != BPF_REG_0) { 3775 verbose(env, "BPF_EXIT uses reserved fields\n"); 3776 return -EINVAL; 3777 } 3778 3779 /* eBPF calling convetion is such that R0 is used 3780 * to return the value from eBPF program. 3781 * Make sure that it's readable at this time 3782 * of bpf_exit, which means that program wrote 3783 * something into it earlier 3784 */ 3785 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 3786 if (err) 3787 return err; 3788 3789 if (is_pointer_value(env, BPF_REG_0)) { 3790 verbose(env, "R0 leaks addr as return value\n"); 3791 return -EACCES; 3792 } 3793 3794 err = check_return_code(env); 3795 if (err) 3796 return err; 3797 process_bpf_exit: 3798 insn_idx = pop_stack(env, &prev_insn_idx); 3799 if (insn_idx < 0) { 3800 break; 3801 } else { 3802 do_print_state = true; 3803 continue; 3804 } 3805 } else { 3806 err = check_cond_jmp_op(env, insn, &insn_idx); 3807 if (err) 3808 return err; 3809 } 3810 } else if (class == BPF_LD) { 3811 u8 mode = BPF_MODE(insn->code); 3812 3813 if (mode == BPF_ABS || mode == BPF_IND) { 3814 err = check_ld_abs(env, insn); 3815 if (err) 3816 return err; 3817 3818 } else if (mode == BPF_IMM) { 3819 err = check_ld_imm(env, insn); 3820 if (err) 3821 return err; 3822 3823 insn_idx++; 3824 } else { 3825 verbose(env, "invalid BPF_LD mode\n"); 3826 return -EINVAL; 3827 } 3828 } else { 3829 verbose(env, "unknown insn class %d\n", class); 3830 return -EINVAL; 3831 } 3832 3833 insn_idx++; 3834 } 3835 3836 verbose(env, "processed %d insns, stack depth %d\n", insn_processed, 3837 env->prog->aux->stack_depth); 3838 return 0; 3839 } 3840 3841 static int check_map_prealloc(struct bpf_map *map) 3842 { 3843 return (map->map_type != BPF_MAP_TYPE_HASH && 3844 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 3845 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 3846 !(map->map_flags & BPF_F_NO_PREALLOC); 3847 } 3848 3849 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 3850 struct bpf_map *map, 3851 struct bpf_prog *prog) 3852 3853 { 3854 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 3855 * preallocated hash maps, since doing memory allocation 3856 * in overflow_handler can crash depending on where nmi got 3857 * triggered. 3858 */ 3859 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 3860 if (!check_map_prealloc(map)) { 3861 verbose(env, "perf_event programs can only use preallocated hash map\n"); 3862 return -EINVAL; 3863 } 3864 if (map->inner_map_meta && 3865 !check_map_prealloc(map->inner_map_meta)) { 3866 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 3867 return -EINVAL; 3868 } 3869 } 3870 return 0; 3871 } 3872 3873 /* look for pseudo eBPF instructions that access map FDs and 3874 * replace them with actual map pointers 3875 */ 3876 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 3877 { 3878 struct bpf_insn *insn = env->prog->insnsi; 3879 int insn_cnt = env->prog->len; 3880 int i, j, err; 3881 3882 err = bpf_prog_calc_tag(env->prog); 3883 if (err) 3884 return err; 3885 3886 for (i = 0; i < insn_cnt; i++, insn++) { 3887 if (BPF_CLASS(insn->code) == BPF_LDX && 3888 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 3889 verbose(env, "BPF_LDX uses reserved fields\n"); 3890 return -EINVAL; 3891 } 3892 3893 if (BPF_CLASS(insn->code) == BPF_STX && 3894 ((BPF_MODE(insn->code) != BPF_MEM && 3895 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 3896 verbose(env, "BPF_STX uses reserved fields\n"); 3897 return -EINVAL; 3898 } 3899 3900 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 3901 struct bpf_map *map; 3902 struct fd f; 3903 3904 if (i == insn_cnt - 1 || insn[1].code != 0 || 3905 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 3906 insn[1].off != 0) { 3907 verbose(env, "invalid bpf_ld_imm64 insn\n"); 3908 return -EINVAL; 3909 } 3910 3911 if (insn->src_reg == 0) 3912 /* valid generic load 64-bit imm */ 3913 goto next_insn; 3914 3915 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 3916 verbose(env, 3917 "unrecognized bpf_ld_imm64 insn\n"); 3918 return -EINVAL; 3919 } 3920 3921 f = fdget(insn->imm); 3922 map = __bpf_map_get(f); 3923 if (IS_ERR(map)) { 3924 verbose(env, "fd %d is not pointing to valid bpf_map\n", 3925 insn->imm); 3926 return PTR_ERR(map); 3927 } 3928 3929 err = check_map_prog_compatibility(env, map, env->prog); 3930 if (err) { 3931 fdput(f); 3932 return err; 3933 } 3934 3935 /* store map pointer inside BPF_LD_IMM64 instruction */ 3936 insn[0].imm = (u32) (unsigned long) map; 3937 insn[1].imm = ((u64) (unsigned long) map) >> 32; 3938 3939 /* check whether we recorded this map already */ 3940 for (j = 0; j < env->used_map_cnt; j++) 3941 if (env->used_maps[j] == map) { 3942 fdput(f); 3943 goto next_insn; 3944 } 3945 3946 if (env->used_map_cnt >= MAX_USED_MAPS) { 3947 fdput(f); 3948 return -E2BIG; 3949 } 3950 3951 /* hold the map. If the program is rejected by verifier, 3952 * the map will be released by release_maps() or it 3953 * will be used by the valid program until it's unloaded 3954 * and all maps are released in free_bpf_prog_info() 3955 */ 3956 map = bpf_map_inc(map, false); 3957 if (IS_ERR(map)) { 3958 fdput(f); 3959 return PTR_ERR(map); 3960 } 3961 env->used_maps[env->used_map_cnt++] = map; 3962 3963 fdput(f); 3964 next_insn: 3965 insn++; 3966 i++; 3967 } 3968 } 3969 3970 /* now all pseudo BPF_LD_IMM64 instructions load valid 3971 * 'struct bpf_map *' into a register instead of user map_fd. 3972 * These pointers will be used later by verifier to validate map access. 3973 */ 3974 return 0; 3975 } 3976 3977 /* drop refcnt of maps used by the rejected program */ 3978 static void release_maps(struct bpf_verifier_env *env) 3979 { 3980 int i; 3981 3982 for (i = 0; i < env->used_map_cnt; i++) 3983 bpf_map_put(env->used_maps[i]); 3984 } 3985 3986 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 3987 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 3988 { 3989 struct bpf_insn *insn = env->prog->insnsi; 3990 int insn_cnt = env->prog->len; 3991 int i; 3992 3993 for (i = 0; i < insn_cnt; i++, insn++) 3994 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 3995 insn->src_reg = 0; 3996 } 3997 3998 /* single env->prog->insni[off] instruction was replaced with the range 3999 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 4000 * [0, off) and [off, end) to new locations, so the patched range stays zero 4001 */ 4002 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 4003 u32 off, u32 cnt) 4004 { 4005 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 4006 4007 if (cnt == 1) 4008 return 0; 4009 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len); 4010 if (!new_data) 4011 return -ENOMEM; 4012 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 4013 memcpy(new_data + off + cnt - 1, old_data + off, 4014 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 4015 env->insn_aux_data = new_data; 4016 vfree(old_data); 4017 return 0; 4018 } 4019 4020 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 4021 const struct bpf_insn *patch, u32 len) 4022 { 4023 struct bpf_prog *new_prog; 4024 4025 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 4026 if (!new_prog) 4027 return NULL; 4028 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 4029 return NULL; 4030 return new_prog; 4031 } 4032 4033 /* convert load instructions that access fields of 'struct __sk_buff' 4034 * into sequence of instructions that access fields of 'struct sk_buff' 4035 */ 4036 static int convert_ctx_accesses(struct bpf_verifier_env *env) 4037 { 4038 const struct bpf_verifier_ops *ops = env->prog->aux->ops; 4039 int i, cnt, size, ctx_field_size, delta = 0; 4040 const int insn_cnt = env->prog->len; 4041 struct bpf_insn insn_buf[16], *insn; 4042 struct bpf_prog *new_prog; 4043 enum bpf_access_type type; 4044 bool is_narrower_load; 4045 u32 target_size; 4046 4047 if (ops->gen_prologue) { 4048 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 4049 env->prog); 4050 if (cnt >= ARRAY_SIZE(insn_buf)) { 4051 verbose(env, "bpf verifier is misconfigured\n"); 4052 return -EINVAL; 4053 } else if (cnt) { 4054 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 4055 if (!new_prog) 4056 return -ENOMEM; 4057 4058 env->prog = new_prog; 4059 delta += cnt - 1; 4060 } 4061 } 4062 4063 if (!ops->convert_ctx_access) 4064 return 0; 4065 4066 insn = env->prog->insnsi + delta; 4067 4068 for (i = 0; i < insn_cnt; i++, insn++) { 4069 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 4070 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 4071 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 4072 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 4073 type = BPF_READ; 4074 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 4075 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 4076 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 4077 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 4078 type = BPF_WRITE; 4079 else 4080 continue; 4081 4082 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 4083 continue; 4084 4085 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 4086 size = BPF_LDST_BYTES(insn); 4087 4088 /* If the read access is a narrower load of the field, 4089 * convert to a 4/8-byte load, to minimum program type specific 4090 * convert_ctx_access changes. If conversion is successful, 4091 * we will apply proper mask to the result. 4092 */ 4093 is_narrower_load = size < ctx_field_size; 4094 if (is_narrower_load) { 4095 u32 off = insn->off; 4096 u8 size_code; 4097 4098 if (type == BPF_WRITE) { 4099 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 4100 return -EINVAL; 4101 } 4102 4103 size_code = BPF_H; 4104 if (ctx_field_size == 4) 4105 size_code = BPF_W; 4106 else if (ctx_field_size == 8) 4107 size_code = BPF_DW; 4108 4109 insn->off = off & ~(ctx_field_size - 1); 4110 insn->code = BPF_LDX | BPF_MEM | size_code; 4111 } 4112 4113 target_size = 0; 4114 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 4115 &target_size); 4116 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 4117 (ctx_field_size && !target_size)) { 4118 verbose(env, "bpf verifier is misconfigured\n"); 4119 return -EINVAL; 4120 } 4121 4122 if (is_narrower_load && size < target_size) { 4123 if (ctx_field_size <= 4) 4124 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 4125 (1 << size * 8) - 1); 4126 else 4127 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 4128 (1 << size * 8) - 1); 4129 } 4130 4131 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 4132 if (!new_prog) 4133 return -ENOMEM; 4134 4135 delta += cnt - 1; 4136 4137 /* keep walking new program and skip insns we just inserted */ 4138 env->prog = new_prog; 4139 insn = new_prog->insnsi + i + delta; 4140 } 4141 4142 return 0; 4143 } 4144 4145 /* fixup insn->imm field of bpf_call instructions 4146 * and inline eligible helpers as explicit sequence of BPF instructions 4147 * 4148 * this function is called after eBPF program passed verification 4149 */ 4150 static int fixup_bpf_calls(struct bpf_verifier_env *env) 4151 { 4152 struct bpf_prog *prog = env->prog; 4153 struct bpf_insn *insn = prog->insnsi; 4154 const struct bpf_func_proto *fn; 4155 const int insn_cnt = prog->len; 4156 struct bpf_insn insn_buf[16]; 4157 struct bpf_prog *new_prog; 4158 struct bpf_map *map_ptr; 4159 int i, cnt, delta = 0; 4160 4161 for (i = 0; i < insn_cnt; i++, insn++) { 4162 if (insn->code != (BPF_JMP | BPF_CALL)) 4163 continue; 4164 4165 if (insn->imm == BPF_FUNC_get_route_realm) 4166 prog->dst_needed = 1; 4167 if (insn->imm == BPF_FUNC_get_prandom_u32) 4168 bpf_user_rnd_init_once(); 4169 if (insn->imm == BPF_FUNC_tail_call) { 4170 /* If we tail call into other programs, we 4171 * cannot make any assumptions since they can 4172 * be replaced dynamically during runtime in 4173 * the program array. 4174 */ 4175 prog->cb_access = 1; 4176 env->prog->aux->stack_depth = MAX_BPF_STACK; 4177 4178 /* mark bpf_tail_call as different opcode to avoid 4179 * conditional branch in the interpeter for every normal 4180 * call and to prevent accidental JITing by JIT compiler 4181 * that doesn't support bpf_tail_call yet 4182 */ 4183 insn->imm = 0; 4184 insn->code = BPF_JMP | BPF_TAIL_CALL; 4185 continue; 4186 } 4187 4188 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 4189 * handlers are currently limited to 64 bit only. 4190 */ 4191 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 && 4192 insn->imm == BPF_FUNC_map_lookup_elem) { 4193 map_ptr = env->insn_aux_data[i + delta].map_ptr; 4194 if (map_ptr == BPF_MAP_PTR_POISON || 4195 !map_ptr->ops->map_gen_lookup) 4196 goto patch_call_imm; 4197 4198 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf); 4199 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 4200 verbose(env, "bpf verifier is misconfigured\n"); 4201 return -EINVAL; 4202 } 4203 4204 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 4205 cnt); 4206 if (!new_prog) 4207 return -ENOMEM; 4208 4209 delta += cnt - 1; 4210 4211 /* keep walking new program and skip insns we just inserted */ 4212 env->prog = prog = new_prog; 4213 insn = new_prog->insnsi + i + delta; 4214 continue; 4215 } 4216 4217 if (insn->imm == BPF_FUNC_redirect_map) { 4218 /* Note, we cannot use prog directly as imm as subsequent 4219 * rewrites would still change the prog pointer. The only 4220 * stable address we can use is aux, which also works with 4221 * prog clones during blinding. 4222 */ 4223 u64 addr = (unsigned long)prog->aux; 4224 struct bpf_insn r4_ld[] = { 4225 BPF_LD_IMM64(BPF_REG_4, addr), 4226 *insn, 4227 }; 4228 cnt = ARRAY_SIZE(r4_ld); 4229 4230 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt); 4231 if (!new_prog) 4232 return -ENOMEM; 4233 4234 delta += cnt - 1; 4235 env->prog = prog = new_prog; 4236 insn = new_prog->insnsi + i + delta; 4237 } 4238 patch_call_imm: 4239 fn = prog->aux->ops->get_func_proto(insn->imm); 4240 /* all functions that have prototype and verifier allowed 4241 * programs to call them, must be real in-kernel functions 4242 */ 4243 if (!fn->func) { 4244 verbose(env, 4245 "kernel subsystem misconfigured func %s#%d\n", 4246 func_id_name(insn->imm), insn->imm); 4247 return -EFAULT; 4248 } 4249 insn->imm = fn->func - __bpf_call_base; 4250 } 4251 4252 return 0; 4253 } 4254 4255 static void free_states(struct bpf_verifier_env *env) 4256 { 4257 struct bpf_verifier_state_list *sl, *sln; 4258 int i; 4259 4260 if (!env->explored_states) 4261 return; 4262 4263 for (i = 0; i < env->prog->len; i++) { 4264 sl = env->explored_states[i]; 4265 4266 if (sl) 4267 while (sl != STATE_LIST_MARK) { 4268 sln = sl->next; 4269 kfree(sl); 4270 sl = sln; 4271 } 4272 } 4273 4274 kfree(env->explored_states); 4275 } 4276 4277 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 4278 { 4279 struct bpf_verifier_env *env; 4280 struct bpf_verifer_log *log; 4281 int ret = -EINVAL; 4282 4283 /* 'struct bpf_verifier_env' can be global, but since it's not small, 4284 * allocate/free it every time bpf_check() is called 4285 */ 4286 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 4287 if (!env) 4288 return -ENOMEM; 4289 log = &env->log; 4290 4291 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 4292 (*prog)->len); 4293 ret = -ENOMEM; 4294 if (!env->insn_aux_data) 4295 goto err_free_env; 4296 env->prog = *prog; 4297 4298 /* grab the mutex to protect few globals used by verifier */ 4299 mutex_lock(&bpf_verifier_lock); 4300 4301 if (attr->log_level || attr->log_buf || attr->log_size) { 4302 /* user requested verbose verifier output 4303 * and supplied buffer to store the verification trace 4304 */ 4305 log->level = attr->log_level; 4306 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 4307 log->len_total = attr->log_size; 4308 4309 ret = -EINVAL; 4310 /* log attributes have to be sane */ 4311 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 4312 !log->level || !log->ubuf) 4313 goto err_unlock; 4314 } 4315 4316 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 4317 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 4318 env->strict_alignment = true; 4319 4320 ret = replace_map_fd_with_map_ptr(env); 4321 if (ret < 0) 4322 goto skip_full_check; 4323 4324 env->explored_states = kcalloc(env->prog->len, 4325 sizeof(struct bpf_verifier_state_list *), 4326 GFP_USER); 4327 ret = -ENOMEM; 4328 if (!env->explored_states) 4329 goto skip_full_check; 4330 4331 ret = check_cfg(env); 4332 if (ret < 0) 4333 goto skip_full_check; 4334 4335 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 4336 4337 ret = do_check(env); 4338 4339 skip_full_check: 4340 while (pop_stack(env, NULL) >= 0); 4341 free_states(env); 4342 4343 if (ret == 0) 4344 /* program is valid, convert *(u32*)(ctx + off) accesses */ 4345 ret = convert_ctx_accesses(env); 4346 4347 if (ret == 0) 4348 ret = fixup_bpf_calls(env); 4349 4350 if (log->level && bpf_verifier_log_full(log)) 4351 ret = -ENOSPC; 4352 if (log->level && !log->ubuf) { 4353 ret = -EFAULT; 4354 goto err_release_maps; 4355 } 4356 4357 if (ret == 0 && env->used_map_cnt) { 4358 /* if program passed verifier, update used_maps in bpf_prog_info */ 4359 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 4360 sizeof(env->used_maps[0]), 4361 GFP_KERNEL); 4362 4363 if (!env->prog->aux->used_maps) { 4364 ret = -ENOMEM; 4365 goto err_release_maps; 4366 } 4367 4368 memcpy(env->prog->aux->used_maps, env->used_maps, 4369 sizeof(env->used_maps[0]) * env->used_map_cnt); 4370 env->prog->aux->used_map_cnt = env->used_map_cnt; 4371 4372 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 4373 * bpf_ld_imm64 instructions 4374 */ 4375 convert_pseudo_ld_imm64(env); 4376 } 4377 4378 err_release_maps: 4379 if (!env->prog->aux->used_maps) 4380 /* if we didn't copy map pointers into bpf_prog_info, release 4381 * them now. Otherwise free_bpf_prog_info() will release them. 4382 */ 4383 release_maps(env); 4384 *prog = env->prog; 4385 err_unlock: 4386 mutex_unlock(&bpf_verifier_lock); 4387 vfree(env->insn_aux_data); 4388 err_free_env: 4389 kfree(env); 4390 return ret; 4391 } 4392 4393 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops, 4394 void *priv) 4395 { 4396 struct bpf_verifier_env *env; 4397 int ret; 4398 4399 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 4400 if (!env) 4401 return -ENOMEM; 4402 4403 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 4404 prog->len); 4405 ret = -ENOMEM; 4406 if (!env->insn_aux_data) 4407 goto err_free_env; 4408 env->prog = prog; 4409 env->analyzer_ops = ops; 4410 env->analyzer_priv = priv; 4411 4412 /* grab the mutex to protect few globals used by verifier */ 4413 mutex_lock(&bpf_verifier_lock); 4414 4415 env->strict_alignment = false; 4416 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 4417 env->strict_alignment = true; 4418 4419 env->explored_states = kcalloc(env->prog->len, 4420 sizeof(struct bpf_verifier_state_list *), 4421 GFP_KERNEL); 4422 ret = -ENOMEM; 4423 if (!env->explored_states) 4424 goto skip_full_check; 4425 4426 ret = check_cfg(env); 4427 if (ret < 0) 4428 goto skip_full_check; 4429 4430 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 4431 4432 ret = do_check(env); 4433 4434 skip_full_check: 4435 while (pop_stack(env, NULL) >= 0); 4436 free_states(env); 4437 4438 mutex_unlock(&bpf_verifier_lock); 4439 vfree(env->insn_aux_data); 4440 err_free_env: 4441 kfree(env); 4442 return ret; 4443 } 4444 EXPORT_SYMBOL_GPL(bpf_analyzer); 4445