xref: /linux/kernel/bpf/verifier.c (revision 83a37b3292f4aca799b355179ad6fbdd78a08e10)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 
24 #include "disasm.h"
25 
26 /* bpf_check() is a static code analyzer that walks eBPF program
27  * instruction by instruction and updates register/stack state.
28  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
29  *
30  * The first pass is depth-first-search to check that the program is a DAG.
31  * It rejects the following programs:
32  * - larger than BPF_MAXINSNS insns
33  * - if loop is present (detected via back-edge)
34  * - unreachable insns exist (shouldn't be a forest. program = one function)
35  * - out of bounds or malformed jumps
36  * The second pass is all possible path descent from the 1st insn.
37  * Since it's analyzing all pathes through the program, the length of the
38  * analysis is limited to 64k insn, which may be hit even if total number of
39  * insn is less then 4K, but there are too many branches that change stack/regs.
40  * Number of 'branches to be analyzed' is limited to 1k
41  *
42  * On entry to each instruction, each register has a type, and the instruction
43  * changes the types of the registers depending on instruction semantics.
44  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
45  * copied to R1.
46  *
47  * All registers are 64-bit.
48  * R0 - return register
49  * R1-R5 argument passing registers
50  * R6-R9 callee saved registers
51  * R10 - frame pointer read-only
52  *
53  * At the start of BPF program the register R1 contains a pointer to bpf_context
54  * and has type PTR_TO_CTX.
55  *
56  * Verifier tracks arithmetic operations on pointers in case:
57  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
58  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
59  * 1st insn copies R10 (which has FRAME_PTR) type into R1
60  * and 2nd arithmetic instruction is pattern matched to recognize
61  * that it wants to construct a pointer to some element within stack.
62  * So after 2nd insn, the register R1 has type PTR_TO_STACK
63  * (and -20 constant is saved for further stack bounds checking).
64  * Meaning that this reg is a pointer to stack plus known immediate constant.
65  *
66  * Most of the time the registers have SCALAR_VALUE type, which
67  * means the register has some value, but it's not a valid pointer.
68  * (like pointer plus pointer becomes SCALAR_VALUE type)
69  *
70  * When verifier sees load or store instructions the type of base register
71  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
72  * types recognized by check_mem_access() function.
73  *
74  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
75  * and the range of [ptr, ptr + map's value_size) is accessible.
76  *
77  * registers used to pass values to function calls are checked against
78  * function argument constraints.
79  *
80  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
81  * It means that the register type passed to this function must be
82  * PTR_TO_STACK and it will be used inside the function as
83  * 'pointer to map element key'
84  *
85  * For example the argument constraints for bpf_map_lookup_elem():
86  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
87  *   .arg1_type = ARG_CONST_MAP_PTR,
88  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
89  *
90  * ret_type says that this function returns 'pointer to map elem value or null'
91  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
92  * 2nd argument should be a pointer to stack, which will be used inside
93  * the helper function as a pointer to map element key.
94  *
95  * On the kernel side the helper function looks like:
96  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
97  * {
98  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
99  *    void *key = (void *) (unsigned long) r2;
100  *    void *value;
101  *
102  *    here kernel can access 'key' and 'map' pointers safely, knowing that
103  *    [key, key + map->key_size) bytes are valid and were initialized on
104  *    the stack of eBPF program.
105  * }
106  *
107  * Corresponding eBPF program may look like:
108  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
109  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
110  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
111  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
112  * here verifier looks at prototype of map_lookup_elem() and sees:
113  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
114  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
115  *
116  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
117  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
118  * and were initialized prior to this call.
119  * If it's ok, then verifier allows this BPF_CALL insn and looks at
120  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
121  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
122  * returns ether pointer to map value or NULL.
123  *
124  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
125  * insn, the register holding that pointer in the true branch changes state to
126  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
127  * branch. See check_cond_jmp_op().
128  *
129  * After the call R0 is set to return type of the function and registers R1-R5
130  * are set to NOT_INIT to indicate that they are no longer readable.
131  */
132 
133 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
134 struct bpf_verifier_stack_elem {
135 	/* verifer state is 'st'
136 	 * before processing instruction 'insn_idx'
137 	 * and after processing instruction 'prev_insn_idx'
138 	 */
139 	struct bpf_verifier_state st;
140 	int insn_idx;
141 	int prev_insn_idx;
142 	struct bpf_verifier_stack_elem *next;
143 };
144 
145 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
146 #define BPF_COMPLEXITY_LIMIT_STACK	1024
147 
148 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
149 
150 struct bpf_call_arg_meta {
151 	struct bpf_map *map_ptr;
152 	bool raw_mode;
153 	bool pkt_access;
154 	int regno;
155 	int access_size;
156 };
157 
158 static DEFINE_MUTEX(bpf_verifier_lock);
159 
160 /* log_level controls verbosity level of eBPF verifier.
161  * verbose() is used to dump the verification trace to the log, so the user
162  * can figure out what's wrong with the program
163  */
164 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
165 				   const char *fmt, ...)
166 {
167 	struct bpf_verifer_log *log = &env->log;
168 	unsigned int n;
169 	va_list args;
170 
171 	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
172 		return;
173 
174 	va_start(args, fmt);
175 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
176 	va_end(args);
177 
178 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
179 		  "verifier log line truncated - local buffer too short\n");
180 
181 	n = min(log->len_total - log->len_used - 1, n);
182 	log->kbuf[n] = '\0';
183 
184 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
185 		log->len_used += n;
186 	else
187 		log->ubuf = NULL;
188 }
189 
190 static bool type_is_pkt_pointer(enum bpf_reg_type type)
191 {
192 	return type == PTR_TO_PACKET ||
193 	       type == PTR_TO_PACKET_META;
194 }
195 
196 /* string representation of 'enum bpf_reg_type' */
197 static const char * const reg_type_str[] = {
198 	[NOT_INIT]		= "?",
199 	[SCALAR_VALUE]		= "inv",
200 	[PTR_TO_CTX]		= "ctx",
201 	[CONST_PTR_TO_MAP]	= "map_ptr",
202 	[PTR_TO_MAP_VALUE]	= "map_value",
203 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
204 	[PTR_TO_STACK]		= "fp",
205 	[PTR_TO_PACKET]		= "pkt",
206 	[PTR_TO_PACKET_META]	= "pkt_meta",
207 	[PTR_TO_PACKET_END]	= "pkt_end",
208 };
209 
210 static void print_verifier_state(struct bpf_verifier_env *env,
211 				 struct bpf_verifier_state *state)
212 {
213 	struct bpf_reg_state *reg;
214 	enum bpf_reg_type t;
215 	int i;
216 
217 	for (i = 0; i < MAX_BPF_REG; i++) {
218 		reg = &state->regs[i];
219 		t = reg->type;
220 		if (t == NOT_INIT)
221 			continue;
222 		verbose(env, " R%d=%s", i, reg_type_str[t]);
223 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
224 		    tnum_is_const(reg->var_off)) {
225 			/* reg->off should be 0 for SCALAR_VALUE */
226 			verbose(env, "%lld", reg->var_off.value + reg->off);
227 		} else {
228 			verbose(env, "(id=%d", reg->id);
229 			if (t != SCALAR_VALUE)
230 				verbose(env, ",off=%d", reg->off);
231 			if (type_is_pkt_pointer(t))
232 				verbose(env, ",r=%d", reg->range);
233 			else if (t == CONST_PTR_TO_MAP ||
234 				 t == PTR_TO_MAP_VALUE ||
235 				 t == PTR_TO_MAP_VALUE_OR_NULL)
236 				verbose(env, ",ks=%d,vs=%d",
237 					reg->map_ptr->key_size,
238 					reg->map_ptr->value_size);
239 			if (tnum_is_const(reg->var_off)) {
240 				/* Typically an immediate SCALAR_VALUE, but
241 				 * could be a pointer whose offset is too big
242 				 * for reg->off
243 				 */
244 				verbose(env, ",imm=%llx", reg->var_off.value);
245 			} else {
246 				if (reg->smin_value != reg->umin_value &&
247 				    reg->smin_value != S64_MIN)
248 					verbose(env, ",smin_value=%lld",
249 						(long long)reg->smin_value);
250 				if (reg->smax_value != reg->umax_value &&
251 				    reg->smax_value != S64_MAX)
252 					verbose(env, ",smax_value=%lld",
253 						(long long)reg->smax_value);
254 				if (reg->umin_value != 0)
255 					verbose(env, ",umin_value=%llu",
256 						(unsigned long long)reg->umin_value);
257 				if (reg->umax_value != U64_MAX)
258 					verbose(env, ",umax_value=%llu",
259 						(unsigned long long)reg->umax_value);
260 				if (!tnum_is_unknown(reg->var_off)) {
261 					char tn_buf[48];
262 
263 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
264 					verbose(env, ",var_off=%s", tn_buf);
265 				}
266 			}
267 			verbose(env, ")");
268 		}
269 	}
270 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
271 		if (state->stack_slot_type[i] == STACK_SPILL)
272 			verbose(env, " fp%d=%s", -MAX_BPF_STACK + i,
273 				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
274 	}
275 	verbose(env, "\n");
276 }
277 
278 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
279 {
280 	struct bpf_verifier_stack_elem *elem;
281 	int insn_idx;
282 
283 	if (env->head == NULL)
284 		return -1;
285 
286 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
287 	insn_idx = env->head->insn_idx;
288 	if (prev_insn_idx)
289 		*prev_insn_idx = env->head->prev_insn_idx;
290 	elem = env->head->next;
291 	kfree(env->head);
292 	env->head = elem;
293 	env->stack_size--;
294 	return insn_idx;
295 }
296 
297 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
298 					     int insn_idx, int prev_insn_idx)
299 {
300 	struct bpf_verifier_stack_elem *elem;
301 
302 	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
303 	if (!elem)
304 		goto err;
305 
306 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
307 	elem->insn_idx = insn_idx;
308 	elem->prev_insn_idx = prev_insn_idx;
309 	elem->next = env->head;
310 	env->head = elem;
311 	env->stack_size++;
312 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
313 		verbose(env, "BPF program is too complex\n");
314 		goto err;
315 	}
316 	return &elem->st;
317 err:
318 	/* pop all elements and return */
319 	while (pop_stack(env, NULL) >= 0);
320 	return NULL;
321 }
322 
323 #define CALLER_SAVED_REGS 6
324 static const int caller_saved[CALLER_SAVED_REGS] = {
325 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
326 };
327 
328 static void __mark_reg_not_init(struct bpf_reg_state *reg);
329 
330 /* Mark the unknown part of a register (variable offset or scalar value) as
331  * known to have the value @imm.
332  */
333 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
334 {
335 	reg->id = 0;
336 	reg->var_off = tnum_const(imm);
337 	reg->smin_value = (s64)imm;
338 	reg->smax_value = (s64)imm;
339 	reg->umin_value = imm;
340 	reg->umax_value = imm;
341 }
342 
343 /* Mark the 'variable offset' part of a register as zero.  This should be
344  * used only on registers holding a pointer type.
345  */
346 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
347 {
348 	__mark_reg_known(reg, 0);
349 }
350 
351 static void mark_reg_known_zero(struct bpf_verifier_env *env,
352 				struct bpf_reg_state *regs, u32 regno)
353 {
354 	if (WARN_ON(regno >= MAX_BPF_REG)) {
355 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
356 		/* Something bad happened, let's kill all regs */
357 		for (regno = 0; regno < MAX_BPF_REG; regno++)
358 			__mark_reg_not_init(regs + regno);
359 		return;
360 	}
361 	__mark_reg_known_zero(regs + regno);
362 }
363 
364 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
365 {
366 	return type_is_pkt_pointer(reg->type);
367 }
368 
369 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
370 {
371 	return reg_is_pkt_pointer(reg) ||
372 	       reg->type == PTR_TO_PACKET_END;
373 }
374 
375 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
376 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
377 				    enum bpf_reg_type which)
378 {
379 	/* The register can already have a range from prior markings.
380 	 * This is fine as long as it hasn't been advanced from its
381 	 * origin.
382 	 */
383 	return reg->type == which &&
384 	       reg->id == 0 &&
385 	       reg->off == 0 &&
386 	       tnum_equals_const(reg->var_off, 0);
387 }
388 
389 /* Attempts to improve min/max values based on var_off information */
390 static void __update_reg_bounds(struct bpf_reg_state *reg)
391 {
392 	/* min signed is max(sign bit) | min(other bits) */
393 	reg->smin_value = max_t(s64, reg->smin_value,
394 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
395 	/* max signed is min(sign bit) | max(other bits) */
396 	reg->smax_value = min_t(s64, reg->smax_value,
397 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
398 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
399 	reg->umax_value = min(reg->umax_value,
400 			      reg->var_off.value | reg->var_off.mask);
401 }
402 
403 /* Uses signed min/max values to inform unsigned, and vice-versa */
404 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
405 {
406 	/* Learn sign from signed bounds.
407 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
408 	 * are the same, so combine.  This works even in the negative case, e.g.
409 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
410 	 */
411 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
412 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
413 							  reg->umin_value);
414 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
415 							  reg->umax_value);
416 		return;
417 	}
418 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
419 	 * boundary, so we must be careful.
420 	 */
421 	if ((s64)reg->umax_value >= 0) {
422 		/* Positive.  We can't learn anything from the smin, but smax
423 		 * is positive, hence safe.
424 		 */
425 		reg->smin_value = reg->umin_value;
426 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
427 							  reg->umax_value);
428 	} else if ((s64)reg->umin_value < 0) {
429 		/* Negative.  We can't learn anything from the smax, but smin
430 		 * is negative, hence safe.
431 		 */
432 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
433 							  reg->umin_value);
434 		reg->smax_value = reg->umax_value;
435 	}
436 }
437 
438 /* Attempts to improve var_off based on unsigned min/max information */
439 static void __reg_bound_offset(struct bpf_reg_state *reg)
440 {
441 	reg->var_off = tnum_intersect(reg->var_off,
442 				      tnum_range(reg->umin_value,
443 						 reg->umax_value));
444 }
445 
446 /* Reset the min/max bounds of a register */
447 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
448 {
449 	reg->smin_value = S64_MIN;
450 	reg->smax_value = S64_MAX;
451 	reg->umin_value = 0;
452 	reg->umax_value = U64_MAX;
453 }
454 
455 /* Mark a register as having a completely unknown (scalar) value. */
456 static void __mark_reg_unknown(struct bpf_reg_state *reg)
457 {
458 	reg->type = SCALAR_VALUE;
459 	reg->id = 0;
460 	reg->off = 0;
461 	reg->var_off = tnum_unknown;
462 	__mark_reg_unbounded(reg);
463 }
464 
465 static void mark_reg_unknown(struct bpf_verifier_env *env,
466 			     struct bpf_reg_state *regs, u32 regno)
467 {
468 	if (WARN_ON(regno >= MAX_BPF_REG)) {
469 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
470 		/* Something bad happened, let's kill all regs */
471 		for (regno = 0; regno < MAX_BPF_REG; regno++)
472 			__mark_reg_not_init(regs + regno);
473 		return;
474 	}
475 	__mark_reg_unknown(regs + regno);
476 }
477 
478 static void __mark_reg_not_init(struct bpf_reg_state *reg)
479 {
480 	__mark_reg_unknown(reg);
481 	reg->type = NOT_INIT;
482 }
483 
484 static void mark_reg_not_init(struct bpf_verifier_env *env,
485 			      struct bpf_reg_state *regs, u32 regno)
486 {
487 	if (WARN_ON(regno >= MAX_BPF_REG)) {
488 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
489 		/* Something bad happened, let's kill all regs */
490 		for (regno = 0; regno < MAX_BPF_REG; regno++)
491 			__mark_reg_not_init(regs + regno);
492 		return;
493 	}
494 	__mark_reg_not_init(regs + regno);
495 }
496 
497 static void init_reg_state(struct bpf_verifier_env *env,
498 			   struct bpf_reg_state *regs)
499 {
500 	int i;
501 
502 	for (i = 0; i < MAX_BPF_REG; i++) {
503 		mark_reg_not_init(env, regs, i);
504 		regs[i].live = REG_LIVE_NONE;
505 	}
506 
507 	/* frame pointer */
508 	regs[BPF_REG_FP].type = PTR_TO_STACK;
509 	mark_reg_known_zero(env, regs, BPF_REG_FP);
510 
511 	/* 1st arg to a function */
512 	regs[BPF_REG_1].type = PTR_TO_CTX;
513 	mark_reg_known_zero(env, regs, BPF_REG_1);
514 }
515 
516 enum reg_arg_type {
517 	SRC_OP,		/* register is used as source operand */
518 	DST_OP,		/* register is used as destination operand */
519 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
520 };
521 
522 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
523 {
524 	struct bpf_verifier_state *parent = state->parent;
525 
526 	if (regno == BPF_REG_FP)
527 		/* We don't need to worry about FP liveness because it's read-only */
528 		return;
529 
530 	while (parent) {
531 		/* if read wasn't screened by an earlier write ... */
532 		if (state->regs[regno].live & REG_LIVE_WRITTEN)
533 			break;
534 		/* ... then we depend on parent's value */
535 		parent->regs[regno].live |= REG_LIVE_READ;
536 		state = parent;
537 		parent = state->parent;
538 	}
539 }
540 
541 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
542 			 enum reg_arg_type t)
543 {
544 	struct bpf_reg_state *regs = env->cur_state.regs;
545 
546 	if (regno >= MAX_BPF_REG) {
547 		verbose(env, "R%d is invalid\n", regno);
548 		return -EINVAL;
549 	}
550 
551 	if (t == SRC_OP) {
552 		/* check whether register used as source operand can be read */
553 		if (regs[regno].type == NOT_INIT) {
554 			verbose(env, "R%d !read_ok\n", regno);
555 			return -EACCES;
556 		}
557 		mark_reg_read(&env->cur_state, regno);
558 	} else {
559 		/* check whether register used as dest operand can be written to */
560 		if (regno == BPF_REG_FP) {
561 			verbose(env, "frame pointer is read only\n");
562 			return -EACCES;
563 		}
564 		regs[regno].live |= REG_LIVE_WRITTEN;
565 		if (t == DST_OP)
566 			mark_reg_unknown(env, regs, regno);
567 	}
568 	return 0;
569 }
570 
571 static bool is_spillable_regtype(enum bpf_reg_type type)
572 {
573 	switch (type) {
574 	case PTR_TO_MAP_VALUE:
575 	case PTR_TO_MAP_VALUE_OR_NULL:
576 	case PTR_TO_STACK:
577 	case PTR_TO_CTX:
578 	case PTR_TO_PACKET:
579 	case PTR_TO_PACKET_META:
580 	case PTR_TO_PACKET_END:
581 	case CONST_PTR_TO_MAP:
582 		return true;
583 	default:
584 		return false;
585 	}
586 }
587 
588 /* check_stack_read/write functions track spill/fill of registers,
589  * stack boundary and alignment are checked in check_mem_access()
590  */
591 static int check_stack_write(struct bpf_verifier_env *env,
592 			     struct bpf_verifier_state *state, int off,
593 			     int size, int value_regno)
594 {
595 	int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
596 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
597 	 * so it's aligned access and [off, off + size) are within stack limits
598 	 */
599 
600 	if (value_regno >= 0 &&
601 	    is_spillable_regtype(state->regs[value_regno].type)) {
602 
603 		/* register containing pointer is being spilled into stack */
604 		if (size != BPF_REG_SIZE) {
605 			verbose(env, "invalid size of register spill\n");
606 			return -EACCES;
607 		}
608 
609 		/* save register state */
610 		state->spilled_regs[spi] = state->regs[value_regno];
611 		state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
612 
613 		for (i = 0; i < BPF_REG_SIZE; i++)
614 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
615 	} else {
616 		/* regular write of data into stack */
617 		state->spilled_regs[spi] = (struct bpf_reg_state) {};
618 
619 		for (i = 0; i < size; i++)
620 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
621 	}
622 	return 0;
623 }
624 
625 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
626 {
627 	struct bpf_verifier_state *parent = state->parent;
628 
629 	while (parent) {
630 		/* if read wasn't screened by an earlier write ... */
631 		if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
632 			break;
633 		/* ... then we depend on parent's value */
634 		parent->spilled_regs[slot].live |= REG_LIVE_READ;
635 		state = parent;
636 		parent = state->parent;
637 	}
638 }
639 
640 static int check_stack_read(struct bpf_verifier_env *env,
641 			    struct bpf_verifier_state *state, int off, int size,
642 			    int value_regno)
643 {
644 	u8 *slot_type;
645 	int i, spi;
646 
647 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
648 
649 	if (slot_type[0] == STACK_SPILL) {
650 		if (size != BPF_REG_SIZE) {
651 			verbose(env, "invalid size of register spill\n");
652 			return -EACCES;
653 		}
654 		for (i = 1; i < BPF_REG_SIZE; i++) {
655 			if (slot_type[i] != STACK_SPILL) {
656 				verbose(env, "corrupted spill memory\n");
657 				return -EACCES;
658 			}
659 		}
660 
661 		spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
662 
663 		if (value_regno >= 0) {
664 			/* restore register state from stack */
665 			state->regs[value_regno] = state->spilled_regs[spi];
666 			mark_stack_slot_read(state, spi);
667 		}
668 		return 0;
669 	} else {
670 		for (i = 0; i < size; i++) {
671 			if (slot_type[i] != STACK_MISC) {
672 				verbose(env, "invalid read from stack off %d+%d size %d\n",
673 					off, i, size);
674 				return -EACCES;
675 			}
676 		}
677 		if (value_regno >= 0)
678 			/* have read misc data from the stack */
679 			mark_reg_unknown(env, state->regs, value_regno);
680 		return 0;
681 	}
682 }
683 
684 /* check read/write into map element returned by bpf_map_lookup_elem() */
685 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
686 			    int size)
687 {
688 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
689 
690 	if (off < 0 || size <= 0 || off + size > map->value_size) {
691 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
692 			map->value_size, off, size);
693 		return -EACCES;
694 	}
695 	return 0;
696 }
697 
698 /* check read/write into a map element with possible variable offset */
699 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
700 				int off, int size)
701 {
702 	struct bpf_verifier_state *state = &env->cur_state;
703 	struct bpf_reg_state *reg = &state->regs[regno];
704 	int err;
705 
706 	/* We may have adjusted the register to this map value, so we
707 	 * need to try adding each of min_value and max_value to off
708 	 * to make sure our theoretical access will be safe.
709 	 */
710 	if (env->log.level)
711 		print_verifier_state(env, state);
712 	/* The minimum value is only important with signed
713 	 * comparisons where we can't assume the floor of a
714 	 * value is 0.  If we are using signed variables for our
715 	 * index'es we need to make sure that whatever we use
716 	 * will have a set floor within our range.
717 	 */
718 	if (reg->smin_value < 0) {
719 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
720 			regno);
721 		return -EACCES;
722 	}
723 	err = __check_map_access(env, regno, reg->smin_value + off, size);
724 	if (err) {
725 		verbose(env, "R%d min value is outside of the array range\n",
726 			regno);
727 		return err;
728 	}
729 
730 	/* If we haven't set a max value then we need to bail since we can't be
731 	 * sure we won't do bad things.
732 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
733 	 */
734 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
735 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
736 			regno);
737 		return -EACCES;
738 	}
739 	err = __check_map_access(env, regno, reg->umax_value + off, size);
740 	if (err)
741 		verbose(env, "R%d max value is outside of the array range\n",
742 			regno);
743 	return err;
744 }
745 
746 #define MAX_PACKET_OFF 0xffff
747 
748 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
749 				       const struct bpf_call_arg_meta *meta,
750 				       enum bpf_access_type t)
751 {
752 	switch (env->prog->type) {
753 	case BPF_PROG_TYPE_LWT_IN:
754 	case BPF_PROG_TYPE_LWT_OUT:
755 		/* dst_input() and dst_output() can't write for now */
756 		if (t == BPF_WRITE)
757 			return false;
758 		/* fallthrough */
759 	case BPF_PROG_TYPE_SCHED_CLS:
760 	case BPF_PROG_TYPE_SCHED_ACT:
761 	case BPF_PROG_TYPE_XDP:
762 	case BPF_PROG_TYPE_LWT_XMIT:
763 	case BPF_PROG_TYPE_SK_SKB:
764 		if (meta)
765 			return meta->pkt_access;
766 
767 		env->seen_direct_write = true;
768 		return true;
769 	default:
770 		return false;
771 	}
772 }
773 
774 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
775 				 int off, int size)
776 {
777 	struct bpf_reg_state *regs = env->cur_state.regs;
778 	struct bpf_reg_state *reg = &regs[regno];
779 
780 	if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
781 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
782 			off, size, regno, reg->id, reg->off, reg->range);
783 		return -EACCES;
784 	}
785 	return 0;
786 }
787 
788 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
789 			       int size)
790 {
791 	struct bpf_reg_state *regs = env->cur_state.regs;
792 	struct bpf_reg_state *reg = &regs[regno];
793 	int err;
794 
795 	/* We may have added a variable offset to the packet pointer; but any
796 	 * reg->range we have comes after that.  We are only checking the fixed
797 	 * offset.
798 	 */
799 
800 	/* We don't allow negative numbers, because we aren't tracking enough
801 	 * detail to prove they're safe.
802 	 */
803 	if (reg->smin_value < 0) {
804 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
805 			regno);
806 		return -EACCES;
807 	}
808 	err = __check_packet_access(env, regno, off, size);
809 	if (err) {
810 		verbose(env, "R%d offset is outside of the packet\n", regno);
811 		return err;
812 	}
813 	return err;
814 }
815 
816 static bool analyzer_is_valid_access(struct bpf_verifier_env *env, int off,
817 				     struct bpf_insn_access_aux *info)
818 {
819 	switch (env->prog->type) {
820 	case BPF_PROG_TYPE_XDP:
821 		switch (off) {
822 		case offsetof(struct xdp_buff, data):
823 			info->reg_type = PTR_TO_PACKET;
824 			return true;
825 		case offsetof(struct xdp_buff, data_end):
826 			info->reg_type = PTR_TO_PACKET_END;
827 			return true;
828 		}
829 		return false;
830 	case BPF_PROG_TYPE_SCHED_CLS:
831 		switch (off) {
832 		case offsetof(struct sk_buff, data):
833 			info->reg_type = PTR_TO_PACKET;
834 			return true;
835 		case offsetof(struct sk_buff, cb) +
836 		     offsetof(struct bpf_skb_data_end, data_end):
837 			info->reg_type = PTR_TO_PACKET_END;
838 			return true;
839 		}
840 		return false;
841 	default:
842 		return false;
843 	}
844 }
845 
846 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
847 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
848 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
849 {
850 	struct bpf_insn_access_aux info = {
851 		.reg_type = *reg_type,
852 	};
853 
854 	if (env->analyzer_ops) {
855 		if (analyzer_is_valid_access(env, off, &info)) {
856 			*reg_type = info.reg_type;
857 			return 0;
858 		}
859 	} else if (env->prog->aux->ops->is_valid_access &&
860 		   env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
861 		/* A non zero info.ctx_field_size indicates that this field is a
862 		 * candidate for later verifier transformation to load the whole
863 		 * field and then apply a mask when accessed with a narrower
864 		 * access than actual ctx access size. A zero info.ctx_field_size
865 		 * will only allow for whole field access and rejects any other
866 		 * type of narrower access.
867 		 */
868 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
869 		*reg_type = info.reg_type;
870 
871 		/* remember the offset of last byte accessed in ctx */
872 		if (env->prog->aux->max_ctx_offset < off + size)
873 			env->prog->aux->max_ctx_offset = off + size;
874 		return 0;
875 	}
876 
877 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
878 	return -EACCES;
879 }
880 
881 static bool __is_pointer_value(bool allow_ptr_leaks,
882 			       const struct bpf_reg_state *reg)
883 {
884 	if (allow_ptr_leaks)
885 		return false;
886 
887 	return reg->type != SCALAR_VALUE;
888 }
889 
890 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
891 {
892 	return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
893 }
894 
895 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
896 				   const struct bpf_reg_state *reg,
897 				   int off, int size, bool strict)
898 {
899 	struct tnum reg_off;
900 	int ip_align;
901 
902 	/* Byte size accesses are always allowed. */
903 	if (!strict || size == 1)
904 		return 0;
905 
906 	/* For platforms that do not have a Kconfig enabling
907 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
908 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
909 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
910 	 * to this code only in strict mode where we want to emulate
911 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
912 	 * unconditional IP align value of '2'.
913 	 */
914 	ip_align = 2;
915 
916 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
917 	if (!tnum_is_aligned(reg_off, size)) {
918 		char tn_buf[48];
919 
920 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
921 		verbose(env,
922 			"misaligned packet access off %d+%s+%d+%d size %d\n",
923 			ip_align, tn_buf, reg->off, off, size);
924 		return -EACCES;
925 	}
926 
927 	return 0;
928 }
929 
930 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
931 				       const struct bpf_reg_state *reg,
932 				       const char *pointer_desc,
933 				       int off, int size, bool strict)
934 {
935 	struct tnum reg_off;
936 
937 	/* Byte size accesses are always allowed. */
938 	if (!strict || size == 1)
939 		return 0;
940 
941 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
942 	if (!tnum_is_aligned(reg_off, size)) {
943 		char tn_buf[48];
944 
945 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
946 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
947 			pointer_desc, tn_buf, reg->off, off, size);
948 		return -EACCES;
949 	}
950 
951 	return 0;
952 }
953 
954 static int check_ptr_alignment(struct bpf_verifier_env *env,
955 			       const struct bpf_reg_state *reg,
956 			       int off, int size)
957 {
958 	bool strict = env->strict_alignment;
959 	const char *pointer_desc = "";
960 
961 	switch (reg->type) {
962 	case PTR_TO_PACKET:
963 	case PTR_TO_PACKET_META:
964 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
965 		 * right in front, treat it the very same way.
966 		 */
967 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
968 	case PTR_TO_MAP_VALUE:
969 		pointer_desc = "value ";
970 		break;
971 	case PTR_TO_CTX:
972 		pointer_desc = "context ";
973 		break;
974 	case PTR_TO_STACK:
975 		pointer_desc = "stack ";
976 		break;
977 	default:
978 		break;
979 	}
980 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
981 					   strict);
982 }
983 
984 /* check whether memory at (regno + off) is accessible for t = (read | write)
985  * if t==write, value_regno is a register which value is stored into memory
986  * if t==read, value_regno is a register which will receive the value from memory
987  * if t==write && value_regno==-1, some unknown value is stored into memory
988  * if t==read && value_regno==-1, don't care what we read from memory
989  */
990 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
991 			    int bpf_size, enum bpf_access_type t,
992 			    int value_regno)
993 {
994 	struct bpf_verifier_state *state = &env->cur_state;
995 	struct bpf_reg_state *reg = &state->regs[regno];
996 	int size, err = 0;
997 
998 	size = bpf_size_to_bytes(bpf_size);
999 	if (size < 0)
1000 		return size;
1001 
1002 	/* alignment checks will add in reg->off themselves */
1003 	err = check_ptr_alignment(env, reg, off, size);
1004 	if (err)
1005 		return err;
1006 
1007 	/* for access checks, reg->off is just part of off */
1008 	off += reg->off;
1009 
1010 	if (reg->type == PTR_TO_MAP_VALUE) {
1011 		if (t == BPF_WRITE && value_regno >= 0 &&
1012 		    is_pointer_value(env, value_regno)) {
1013 			verbose(env, "R%d leaks addr into map\n", value_regno);
1014 			return -EACCES;
1015 		}
1016 
1017 		err = check_map_access(env, regno, off, size);
1018 		if (!err && t == BPF_READ && value_regno >= 0)
1019 			mark_reg_unknown(env, state->regs, value_regno);
1020 
1021 	} else if (reg->type == PTR_TO_CTX) {
1022 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1023 
1024 		if (t == BPF_WRITE && value_regno >= 0 &&
1025 		    is_pointer_value(env, value_regno)) {
1026 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1027 			return -EACCES;
1028 		}
1029 		/* ctx accesses must be at a fixed offset, so that we can
1030 		 * determine what type of data were returned.
1031 		 */
1032 		if (!tnum_is_const(reg->var_off)) {
1033 			char tn_buf[48];
1034 
1035 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1036 			verbose(env,
1037 				"variable ctx access var_off=%s off=%d size=%d",
1038 				tn_buf, off, size);
1039 			return -EACCES;
1040 		}
1041 		off += reg->var_off.value;
1042 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1043 		if (!err && t == BPF_READ && value_regno >= 0) {
1044 			/* ctx access returns either a scalar, or a
1045 			 * PTR_TO_PACKET[_META,_END]. In the latter
1046 			 * case, we know the offset is zero.
1047 			 */
1048 			if (reg_type == SCALAR_VALUE)
1049 				mark_reg_unknown(env, state->regs, value_regno);
1050 			else
1051 				mark_reg_known_zero(env, state->regs,
1052 						    value_regno);
1053 			state->regs[value_regno].id = 0;
1054 			state->regs[value_regno].off = 0;
1055 			state->regs[value_regno].range = 0;
1056 			state->regs[value_regno].type = reg_type;
1057 		}
1058 
1059 	} else if (reg->type == PTR_TO_STACK) {
1060 		/* stack accesses must be at a fixed offset, so that we can
1061 		 * determine what type of data were returned.
1062 		 * See check_stack_read().
1063 		 */
1064 		if (!tnum_is_const(reg->var_off)) {
1065 			char tn_buf[48];
1066 
1067 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1068 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1069 				tn_buf, off, size);
1070 			return -EACCES;
1071 		}
1072 		off += reg->var_off.value;
1073 		if (off >= 0 || off < -MAX_BPF_STACK) {
1074 			verbose(env, "invalid stack off=%d size=%d\n", off,
1075 				size);
1076 			return -EACCES;
1077 		}
1078 
1079 		if (env->prog->aux->stack_depth < -off)
1080 			env->prog->aux->stack_depth = -off;
1081 
1082 		if (t == BPF_WRITE) {
1083 			if (!env->allow_ptr_leaks &&
1084 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
1085 			    size != BPF_REG_SIZE) {
1086 				verbose(env, "attempt to corrupt spilled pointer on stack\n");
1087 				return -EACCES;
1088 			}
1089 			err = check_stack_write(env, state, off, size,
1090 						value_regno);
1091 		} else {
1092 			err = check_stack_read(env, state, off, size,
1093 					       value_regno);
1094 		}
1095 	} else if (reg_is_pkt_pointer(reg)) {
1096 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1097 			verbose(env, "cannot write into packet\n");
1098 			return -EACCES;
1099 		}
1100 		if (t == BPF_WRITE && value_regno >= 0 &&
1101 		    is_pointer_value(env, value_regno)) {
1102 			verbose(env, "R%d leaks addr into packet\n",
1103 				value_regno);
1104 			return -EACCES;
1105 		}
1106 		err = check_packet_access(env, regno, off, size);
1107 		if (!err && t == BPF_READ && value_regno >= 0)
1108 			mark_reg_unknown(env, state->regs, value_regno);
1109 	} else {
1110 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1111 			reg_type_str[reg->type]);
1112 		return -EACCES;
1113 	}
1114 
1115 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1116 	    state->regs[value_regno].type == SCALAR_VALUE) {
1117 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1118 		state->regs[value_regno].var_off = tnum_cast(
1119 					state->regs[value_regno].var_off, size);
1120 		__update_reg_bounds(&state->regs[value_regno]);
1121 	}
1122 	return err;
1123 }
1124 
1125 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1126 {
1127 	int err;
1128 
1129 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1130 	    insn->imm != 0) {
1131 		verbose(env, "BPF_XADD uses reserved fields\n");
1132 		return -EINVAL;
1133 	}
1134 
1135 	/* check src1 operand */
1136 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1137 	if (err)
1138 		return err;
1139 
1140 	/* check src2 operand */
1141 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1142 	if (err)
1143 		return err;
1144 
1145 	if (is_pointer_value(env, insn->src_reg)) {
1146 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1147 		return -EACCES;
1148 	}
1149 
1150 	/* check whether atomic_add can read the memory */
1151 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1152 			       BPF_SIZE(insn->code), BPF_READ, -1);
1153 	if (err)
1154 		return err;
1155 
1156 	/* check whether atomic_add can write into the same memory */
1157 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1158 				BPF_SIZE(insn->code), BPF_WRITE, -1);
1159 }
1160 
1161 /* Does this register contain a constant zero? */
1162 static bool register_is_null(struct bpf_reg_state reg)
1163 {
1164 	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1165 }
1166 
1167 /* when register 'regno' is passed into function that will read 'access_size'
1168  * bytes from that pointer, make sure that it's within stack boundary
1169  * and all elements of stack are initialized.
1170  * Unlike most pointer bounds-checking functions, this one doesn't take an
1171  * 'off' argument, so it has to add in reg->off itself.
1172  */
1173 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1174 				int access_size, bool zero_size_allowed,
1175 				struct bpf_call_arg_meta *meta)
1176 {
1177 	struct bpf_verifier_state *state = &env->cur_state;
1178 	struct bpf_reg_state *regs = state->regs;
1179 	int off, i;
1180 
1181 	if (regs[regno].type != PTR_TO_STACK) {
1182 		/* Allow zero-byte read from NULL, regardless of pointer type */
1183 		if (zero_size_allowed && access_size == 0 &&
1184 		    register_is_null(regs[regno]))
1185 			return 0;
1186 
1187 		verbose(env, "R%d type=%s expected=%s\n", regno,
1188 			reg_type_str[regs[regno].type],
1189 			reg_type_str[PTR_TO_STACK]);
1190 		return -EACCES;
1191 	}
1192 
1193 	/* Only allow fixed-offset stack reads */
1194 	if (!tnum_is_const(regs[regno].var_off)) {
1195 		char tn_buf[48];
1196 
1197 		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1198 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1199 			regno, tn_buf);
1200 	}
1201 	off = regs[regno].off + regs[regno].var_off.value;
1202 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1203 	    access_size <= 0) {
1204 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1205 			regno, off, access_size);
1206 		return -EACCES;
1207 	}
1208 
1209 	if (env->prog->aux->stack_depth < -off)
1210 		env->prog->aux->stack_depth = -off;
1211 
1212 	if (meta && meta->raw_mode) {
1213 		meta->access_size = access_size;
1214 		meta->regno = regno;
1215 		return 0;
1216 	}
1217 
1218 	for (i = 0; i < access_size; i++) {
1219 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1220 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1221 				off, i, access_size);
1222 			return -EACCES;
1223 		}
1224 	}
1225 	return 0;
1226 }
1227 
1228 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1229 				   int access_size, bool zero_size_allowed,
1230 				   struct bpf_call_arg_meta *meta)
1231 {
1232 	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1233 
1234 	switch (reg->type) {
1235 	case PTR_TO_PACKET:
1236 	case PTR_TO_PACKET_META:
1237 		return check_packet_access(env, regno, reg->off, access_size);
1238 	case PTR_TO_MAP_VALUE:
1239 		return check_map_access(env, regno, reg->off, access_size);
1240 	default: /* scalar_value|ptr_to_stack or invalid ptr */
1241 		return check_stack_boundary(env, regno, access_size,
1242 					    zero_size_allowed, meta);
1243 	}
1244 }
1245 
1246 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1247 			  enum bpf_arg_type arg_type,
1248 			  struct bpf_call_arg_meta *meta)
1249 {
1250 	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1251 	enum bpf_reg_type expected_type, type = reg->type;
1252 	int err = 0;
1253 
1254 	if (arg_type == ARG_DONTCARE)
1255 		return 0;
1256 
1257 	err = check_reg_arg(env, regno, SRC_OP);
1258 	if (err)
1259 		return err;
1260 
1261 	if (arg_type == ARG_ANYTHING) {
1262 		if (is_pointer_value(env, regno)) {
1263 			verbose(env, "R%d leaks addr into helper function\n",
1264 				regno);
1265 			return -EACCES;
1266 		}
1267 		return 0;
1268 	}
1269 
1270 	if (type_is_pkt_pointer(type) &&
1271 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1272 		verbose(env, "helper access to the packet is not allowed\n");
1273 		return -EACCES;
1274 	}
1275 
1276 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1277 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1278 		expected_type = PTR_TO_STACK;
1279 		if (!type_is_pkt_pointer(type) &&
1280 		    type != expected_type)
1281 			goto err_type;
1282 	} else if (arg_type == ARG_CONST_SIZE ||
1283 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1284 		expected_type = SCALAR_VALUE;
1285 		if (type != expected_type)
1286 			goto err_type;
1287 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1288 		expected_type = CONST_PTR_TO_MAP;
1289 		if (type != expected_type)
1290 			goto err_type;
1291 	} else if (arg_type == ARG_PTR_TO_CTX) {
1292 		expected_type = PTR_TO_CTX;
1293 		if (type != expected_type)
1294 			goto err_type;
1295 	} else if (arg_type == ARG_PTR_TO_MEM ||
1296 		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1297 		expected_type = PTR_TO_STACK;
1298 		/* One exception here. In case function allows for NULL to be
1299 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1300 		 * happens during stack boundary checking.
1301 		 */
1302 		if (register_is_null(*reg))
1303 			/* final test in check_stack_boundary() */;
1304 		else if (!type_is_pkt_pointer(type) &&
1305 			 type != PTR_TO_MAP_VALUE &&
1306 			 type != expected_type)
1307 			goto err_type;
1308 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1309 	} else {
1310 		verbose(env, "unsupported arg_type %d\n", arg_type);
1311 		return -EFAULT;
1312 	}
1313 
1314 	if (arg_type == ARG_CONST_MAP_PTR) {
1315 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1316 		meta->map_ptr = reg->map_ptr;
1317 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1318 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1319 		 * check that [key, key + map->key_size) are within
1320 		 * stack limits and initialized
1321 		 */
1322 		if (!meta->map_ptr) {
1323 			/* in function declaration map_ptr must come before
1324 			 * map_key, so that it's verified and known before
1325 			 * we have to check map_key here. Otherwise it means
1326 			 * that kernel subsystem misconfigured verifier
1327 			 */
1328 			verbose(env, "invalid map_ptr to access map->key\n");
1329 			return -EACCES;
1330 		}
1331 		if (type_is_pkt_pointer(type))
1332 			err = check_packet_access(env, regno, reg->off,
1333 						  meta->map_ptr->key_size);
1334 		else
1335 			err = check_stack_boundary(env, regno,
1336 						   meta->map_ptr->key_size,
1337 						   false, NULL);
1338 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1339 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1340 		 * check [value, value + map->value_size) validity
1341 		 */
1342 		if (!meta->map_ptr) {
1343 			/* kernel subsystem misconfigured verifier */
1344 			verbose(env, "invalid map_ptr to access map->value\n");
1345 			return -EACCES;
1346 		}
1347 		if (type_is_pkt_pointer(type))
1348 			err = check_packet_access(env, regno, reg->off,
1349 						  meta->map_ptr->value_size);
1350 		else
1351 			err = check_stack_boundary(env, regno,
1352 						   meta->map_ptr->value_size,
1353 						   false, NULL);
1354 	} else if (arg_type == ARG_CONST_SIZE ||
1355 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1356 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1357 
1358 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1359 		 * from stack pointer 'buf'. Check it
1360 		 * note: regno == len, regno - 1 == buf
1361 		 */
1362 		if (regno == 0) {
1363 			/* kernel subsystem misconfigured verifier */
1364 			verbose(env,
1365 				"ARG_CONST_SIZE cannot be first argument\n");
1366 			return -EACCES;
1367 		}
1368 
1369 		/* The register is SCALAR_VALUE; the access check
1370 		 * happens using its boundaries.
1371 		 */
1372 
1373 		if (!tnum_is_const(reg->var_off))
1374 			/* For unprivileged variable accesses, disable raw
1375 			 * mode so that the program is required to
1376 			 * initialize all the memory that the helper could
1377 			 * just partially fill up.
1378 			 */
1379 			meta = NULL;
1380 
1381 		if (reg->smin_value < 0) {
1382 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1383 				regno);
1384 			return -EACCES;
1385 		}
1386 
1387 		if (reg->umin_value == 0) {
1388 			err = check_helper_mem_access(env, regno - 1, 0,
1389 						      zero_size_allowed,
1390 						      meta);
1391 			if (err)
1392 				return err;
1393 		}
1394 
1395 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1396 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1397 				regno);
1398 			return -EACCES;
1399 		}
1400 		err = check_helper_mem_access(env, regno - 1,
1401 					      reg->umax_value,
1402 					      zero_size_allowed, meta);
1403 	}
1404 
1405 	return err;
1406 err_type:
1407 	verbose(env, "R%d type=%s expected=%s\n", regno,
1408 		reg_type_str[type], reg_type_str[expected_type]);
1409 	return -EACCES;
1410 }
1411 
1412 static int check_map_func_compatibility(struct bpf_verifier_env *env,
1413 					struct bpf_map *map, int func_id)
1414 {
1415 	if (!map)
1416 		return 0;
1417 
1418 	/* We need a two way check, first is from map perspective ... */
1419 	switch (map->map_type) {
1420 	case BPF_MAP_TYPE_PROG_ARRAY:
1421 		if (func_id != BPF_FUNC_tail_call)
1422 			goto error;
1423 		break;
1424 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1425 		if (func_id != BPF_FUNC_perf_event_read &&
1426 		    func_id != BPF_FUNC_perf_event_output &&
1427 		    func_id != BPF_FUNC_perf_event_read_value)
1428 			goto error;
1429 		break;
1430 	case BPF_MAP_TYPE_STACK_TRACE:
1431 		if (func_id != BPF_FUNC_get_stackid)
1432 			goto error;
1433 		break;
1434 	case BPF_MAP_TYPE_CGROUP_ARRAY:
1435 		if (func_id != BPF_FUNC_skb_under_cgroup &&
1436 		    func_id != BPF_FUNC_current_task_under_cgroup)
1437 			goto error;
1438 		break;
1439 	/* devmap returns a pointer to a live net_device ifindex that we cannot
1440 	 * allow to be modified from bpf side. So do not allow lookup elements
1441 	 * for now.
1442 	 */
1443 	case BPF_MAP_TYPE_DEVMAP:
1444 		if (func_id != BPF_FUNC_redirect_map)
1445 			goto error;
1446 		break;
1447 	/* Restrict bpf side of cpumap, open when use-cases appear */
1448 	case BPF_MAP_TYPE_CPUMAP:
1449 		if (func_id != BPF_FUNC_redirect_map)
1450 			goto error;
1451 		break;
1452 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1453 	case BPF_MAP_TYPE_HASH_OF_MAPS:
1454 		if (func_id != BPF_FUNC_map_lookup_elem)
1455 			goto error;
1456 		break;
1457 	case BPF_MAP_TYPE_SOCKMAP:
1458 		if (func_id != BPF_FUNC_sk_redirect_map &&
1459 		    func_id != BPF_FUNC_sock_map_update &&
1460 		    func_id != BPF_FUNC_map_delete_elem)
1461 			goto error;
1462 		break;
1463 	default:
1464 		break;
1465 	}
1466 
1467 	/* ... and second from the function itself. */
1468 	switch (func_id) {
1469 	case BPF_FUNC_tail_call:
1470 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1471 			goto error;
1472 		break;
1473 	case BPF_FUNC_perf_event_read:
1474 	case BPF_FUNC_perf_event_output:
1475 	case BPF_FUNC_perf_event_read_value:
1476 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1477 			goto error;
1478 		break;
1479 	case BPF_FUNC_get_stackid:
1480 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1481 			goto error;
1482 		break;
1483 	case BPF_FUNC_current_task_under_cgroup:
1484 	case BPF_FUNC_skb_under_cgroup:
1485 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1486 			goto error;
1487 		break;
1488 	case BPF_FUNC_redirect_map:
1489 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1490 		    map->map_type != BPF_MAP_TYPE_CPUMAP)
1491 			goto error;
1492 		break;
1493 	case BPF_FUNC_sk_redirect_map:
1494 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1495 			goto error;
1496 		break;
1497 	case BPF_FUNC_sock_map_update:
1498 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1499 			goto error;
1500 		break;
1501 	default:
1502 		break;
1503 	}
1504 
1505 	return 0;
1506 error:
1507 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
1508 		map->map_type, func_id_name(func_id), func_id);
1509 	return -EINVAL;
1510 }
1511 
1512 static int check_raw_mode(const struct bpf_func_proto *fn)
1513 {
1514 	int count = 0;
1515 
1516 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1517 		count++;
1518 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1519 		count++;
1520 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1521 		count++;
1522 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1523 		count++;
1524 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1525 		count++;
1526 
1527 	return count > 1 ? -EINVAL : 0;
1528 }
1529 
1530 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1531  * are now invalid, so turn them into unknown SCALAR_VALUE.
1532  */
1533 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1534 {
1535 	struct bpf_verifier_state *state = &env->cur_state;
1536 	struct bpf_reg_state *regs = state->regs, *reg;
1537 	int i;
1538 
1539 	for (i = 0; i < MAX_BPF_REG; i++)
1540 		if (reg_is_pkt_pointer_any(&regs[i]))
1541 			mark_reg_unknown(env, regs, i);
1542 
1543 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1544 		if (state->stack_slot_type[i] != STACK_SPILL)
1545 			continue;
1546 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1547 		if (reg_is_pkt_pointer_any(reg))
1548 			__mark_reg_unknown(reg);
1549 	}
1550 }
1551 
1552 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1553 {
1554 	struct bpf_verifier_state *state = &env->cur_state;
1555 	const struct bpf_func_proto *fn = NULL;
1556 	struct bpf_reg_state *regs = state->regs;
1557 	struct bpf_call_arg_meta meta;
1558 	bool changes_data;
1559 	int i, err;
1560 
1561 	/* find function prototype */
1562 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1563 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1564 			func_id);
1565 		return -EINVAL;
1566 	}
1567 
1568 	if (env->prog->aux->ops->get_func_proto)
1569 		fn = env->prog->aux->ops->get_func_proto(func_id);
1570 
1571 	if (!fn) {
1572 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1573 			func_id);
1574 		return -EINVAL;
1575 	}
1576 
1577 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1578 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1579 		verbose(env, "cannot call GPL only function from proprietary program\n");
1580 		return -EINVAL;
1581 	}
1582 
1583 	changes_data = bpf_helper_changes_pkt_data(fn->func);
1584 
1585 	memset(&meta, 0, sizeof(meta));
1586 	meta.pkt_access = fn->pkt_access;
1587 
1588 	/* We only support one arg being in raw mode at the moment, which
1589 	 * is sufficient for the helper functions we have right now.
1590 	 */
1591 	err = check_raw_mode(fn);
1592 	if (err) {
1593 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1594 			func_id_name(func_id), func_id);
1595 		return err;
1596 	}
1597 
1598 	/* check args */
1599 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1600 	if (err)
1601 		return err;
1602 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1603 	if (err)
1604 		return err;
1605 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1606 	if (err)
1607 		return err;
1608 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1609 	if (err)
1610 		return err;
1611 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1612 	if (err)
1613 		return err;
1614 
1615 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1616 	 * is inferred from register state.
1617 	 */
1618 	for (i = 0; i < meta.access_size; i++) {
1619 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1620 		if (err)
1621 			return err;
1622 	}
1623 
1624 	/* reset caller saved regs */
1625 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1626 		mark_reg_not_init(env, regs, caller_saved[i]);
1627 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1628 	}
1629 
1630 	/* update return register (already marked as written above) */
1631 	if (fn->ret_type == RET_INTEGER) {
1632 		/* sets type to SCALAR_VALUE */
1633 		mark_reg_unknown(env, regs, BPF_REG_0);
1634 	} else if (fn->ret_type == RET_VOID) {
1635 		regs[BPF_REG_0].type = NOT_INIT;
1636 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1637 		struct bpf_insn_aux_data *insn_aux;
1638 
1639 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1640 		/* There is no offset yet applied, variable or fixed */
1641 		mark_reg_known_zero(env, regs, BPF_REG_0);
1642 		regs[BPF_REG_0].off = 0;
1643 		/* remember map_ptr, so that check_map_access()
1644 		 * can check 'value_size' boundary of memory access
1645 		 * to map element returned from bpf_map_lookup_elem()
1646 		 */
1647 		if (meta.map_ptr == NULL) {
1648 			verbose(env,
1649 				"kernel subsystem misconfigured verifier\n");
1650 			return -EINVAL;
1651 		}
1652 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1653 		regs[BPF_REG_0].id = ++env->id_gen;
1654 		insn_aux = &env->insn_aux_data[insn_idx];
1655 		if (!insn_aux->map_ptr)
1656 			insn_aux->map_ptr = meta.map_ptr;
1657 		else if (insn_aux->map_ptr != meta.map_ptr)
1658 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1659 	} else {
1660 		verbose(env, "unknown return type %d of func %s#%d\n",
1661 			fn->ret_type, func_id_name(func_id), func_id);
1662 		return -EINVAL;
1663 	}
1664 
1665 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1666 	if (err)
1667 		return err;
1668 
1669 	if (changes_data)
1670 		clear_all_pkt_pointers(env);
1671 	return 0;
1672 }
1673 
1674 static void coerce_reg_to_32(struct bpf_reg_state *reg)
1675 {
1676 	/* clear high 32 bits */
1677 	reg->var_off = tnum_cast(reg->var_off, 4);
1678 	/* Update bounds */
1679 	__update_reg_bounds(reg);
1680 }
1681 
1682 static bool signed_add_overflows(s64 a, s64 b)
1683 {
1684 	/* Do the add in u64, where overflow is well-defined */
1685 	s64 res = (s64)((u64)a + (u64)b);
1686 
1687 	if (b < 0)
1688 		return res > a;
1689 	return res < a;
1690 }
1691 
1692 static bool signed_sub_overflows(s64 a, s64 b)
1693 {
1694 	/* Do the sub in u64, where overflow is well-defined */
1695 	s64 res = (s64)((u64)a - (u64)b);
1696 
1697 	if (b < 0)
1698 		return res < a;
1699 	return res > a;
1700 }
1701 
1702 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1703  * Caller should also handle BPF_MOV case separately.
1704  * If we return -EACCES, caller may want to try again treating pointer as a
1705  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
1706  */
1707 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1708 				   struct bpf_insn *insn,
1709 				   const struct bpf_reg_state *ptr_reg,
1710 				   const struct bpf_reg_state *off_reg)
1711 {
1712 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1713 	bool known = tnum_is_const(off_reg->var_off);
1714 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1715 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1716 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1717 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1718 	u8 opcode = BPF_OP(insn->code);
1719 	u32 dst = insn->dst_reg;
1720 
1721 	dst_reg = &regs[dst];
1722 
1723 	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1724 		print_verifier_state(env, &env->cur_state);
1725 		verbose(env,
1726 			"verifier internal error: known but bad sbounds\n");
1727 		return -EINVAL;
1728 	}
1729 	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1730 		print_verifier_state(env, &env->cur_state);
1731 		verbose(env,
1732 			"verifier internal error: known but bad ubounds\n");
1733 		return -EINVAL;
1734 	}
1735 
1736 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
1737 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
1738 		if (!env->allow_ptr_leaks)
1739 			verbose(env,
1740 				"R%d 32-bit pointer arithmetic prohibited\n",
1741 				dst);
1742 		return -EACCES;
1743 	}
1744 
1745 	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1746 		if (!env->allow_ptr_leaks)
1747 			verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1748 				dst);
1749 		return -EACCES;
1750 	}
1751 	if (ptr_reg->type == CONST_PTR_TO_MAP) {
1752 		if (!env->allow_ptr_leaks)
1753 			verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1754 				dst);
1755 		return -EACCES;
1756 	}
1757 	if (ptr_reg->type == PTR_TO_PACKET_END) {
1758 		if (!env->allow_ptr_leaks)
1759 			verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1760 				dst);
1761 		return -EACCES;
1762 	}
1763 
1764 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1765 	 * The id may be overwritten later if we create a new variable offset.
1766 	 */
1767 	dst_reg->type = ptr_reg->type;
1768 	dst_reg->id = ptr_reg->id;
1769 
1770 	switch (opcode) {
1771 	case BPF_ADD:
1772 		/* We can take a fixed offset as long as it doesn't overflow
1773 		 * the s32 'off' field
1774 		 */
1775 		if (known && (ptr_reg->off + smin_val ==
1776 			      (s64)(s32)(ptr_reg->off + smin_val))) {
1777 			/* pointer += K.  Accumulate it into fixed offset */
1778 			dst_reg->smin_value = smin_ptr;
1779 			dst_reg->smax_value = smax_ptr;
1780 			dst_reg->umin_value = umin_ptr;
1781 			dst_reg->umax_value = umax_ptr;
1782 			dst_reg->var_off = ptr_reg->var_off;
1783 			dst_reg->off = ptr_reg->off + smin_val;
1784 			dst_reg->range = ptr_reg->range;
1785 			break;
1786 		}
1787 		/* A new variable offset is created.  Note that off_reg->off
1788 		 * == 0, since it's a scalar.
1789 		 * dst_reg gets the pointer type and since some positive
1790 		 * integer value was added to the pointer, give it a new 'id'
1791 		 * if it's a PTR_TO_PACKET.
1792 		 * this creates a new 'base' pointer, off_reg (variable) gets
1793 		 * added into the variable offset, and we copy the fixed offset
1794 		 * from ptr_reg.
1795 		 */
1796 		if (signed_add_overflows(smin_ptr, smin_val) ||
1797 		    signed_add_overflows(smax_ptr, smax_val)) {
1798 			dst_reg->smin_value = S64_MIN;
1799 			dst_reg->smax_value = S64_MAX;
1800 		} else {
1801 			dst_reg->smin_value = smin_ptr + smin_val;
1802 			dst_reg->smax_value = smax_ptr + smax_val;
1803 		}
1804 		if (umin_ptr + umin_val < umin_ptr ||
1805 		    umax_ptr + umax_val < umax_ptr) {
1806 			dst_reg->umin_value = 0;
1807 			dst_reg->umax_value = U64_MAX;
1808 		} else {
1809 			dst_reg->umin_value = umin_ptr + umin_val;
1810 			dst_reg->umax_value = umax_ptr + umax_val;
1811 		}
1812 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1813 		dst_reg->off = ptr_reg->off;
1814 		if (reg_is_pkt_pointer(ptr_reg)) {
1815 			dst_reg->id = ++env->id_gen;
1816 			/* something was added to pkt_ptr, set range to zero */
1817 			dst_reg->range = 0;
1818 		}
1819 		break;
1820 	case BPF_SUB:
1821 		if (dst_reg == off_reg) {
1822 			/* scalar -= pointer.  Creates an unknown scalar */
1823 			if (!env->allow_ptr_leaks)
1824 				verbose(env, "R%d tried to subtract pointer from scalar\n",
1825 					dst);
1826 			return -EACCES;
1827 		}
1828 		/* We don't allow subtraction from FP, because (according to
1829 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
1830 		 * be able to deal with it.
1831 		 */
1832 		if (ptr_reg->type == PTR_TO_STACK) {
1833 			if (!env->allow_ptr_leaks)
1834 				verbose(env, "R%d subtraction from stack pointer prohibited\n",
1835 					dst);
1836 			return -EACCES;
1837 		}
1838 		if (known && (ptr_reg->off - smin_val ==
1839 			      (s64)(s32)(ptr_reg->off - smin_val))) {
1840 			/* pointer -= K.  Subtract it from fixed offset */
1841 			dst_reg->smin_value = smin_ptr;
1842 			dst_reg->smax_value = smax_ptr;
1843 			dst_reg->umin_value = umin_ptr;
1844 			dst_reg->umax_value = umax_ptr;
1845 			dst_reg->var_off = ptr_reg->var_off;
1846 			dst_reg->id = ptr_reg->id;
1847 			dst_reg->off = ptr_reg->off - smin_val;
1848 			dst_reg->range = ptr_reg->range;
1849 			break;
1850 		}
1851 		/* A new variable offset is created.  If the subtrahend is known
1852 		 * nonnegative, then any reg->range we had before is still good.
1853 		 */
1854 		if (signed_sub_overflows(smin_ptr, smax_val) ||
1855 		    signed_sub_overflows(smax_ptr, smin_val)) {
1856 			/* Overflow possible, we know nothing */
1857 			dst_reg->smin_value = S64_MIN;
1858 			dst_reg->smax_value = S64_MAX;
1859 		} else {
1860 			dst_reg->smin_value = smin_ptr - smax_val;
1861 			dst_reg->smax_value = smax_ptr - smin_val;
1862 		}
1863 		if (umin_ptr < umax_val) {
1864 			/* Overflow possible, we know nothing */
1865 			dst_reg->umin_value = 0;
1866 			dst_reg->umax_value = U64_MAX;
1867 		} else {
1868 			/* Cannot overflow (as long as bounds are consistent) */
1869 			dst_reg->umin_value = umin_ptr - umax_val;
1870 			dst_reg->umax_value = umax_ptr - umin_val;
1871 		}
1872 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1873 		dst_reg->off = ptr_reg->off;
1874 		if (reg_is_pkt_pointer(ptr_reg)) {
1875 			dst_reg->id = ++env->id_gen;
1876 			/* something was added to pkt_ptr, set range to zero */
1877 			if (smin_val < 0)
1878 				dst_reg->range = 0;
1879 		}
1880 		break;
1881 	case BPF_AND:
1882 	case BPF_OR:
1883 	case BPF_XOR:
1884 		/* bitwise ops on pointers are troublesome, prohibit for now.
1885 		 * (However, in principle we could allow some cases, e.g.
1886 		 * ptr &= ~3 which would reduce min_value by 3.)
1887 		 */
1888 		if (!env->allow_ptr_leaks)
1889 			verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
1890 				dst, bpf_alu_string[opcode >> 4]);
1891 		return -EACCES;
1892 	default:
1893 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
1894 		if (!env->allow_ptr_leaks)
1895 			verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
1896 				dst, bpf_alu_string[opcode >> 4]);
1897 		return -EACCES;
1898 	}
1899 
1900 	__update_reg_bounds(dst_reg);
1901 	__reg_deduce_bounds(dst_reg);
1902 	__reg_bound_offset(dst_reg);
1903 	return 0;
1904 }
1905 
1906 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
1907 				      struct bpf_insn *insn,
1908 				      struct bpf_reg_state *dst_reg,
1909 				      struct bpf_reg_state src_reg)
1910 {
1911 	struct bpf_reg_state *regs = env->cur_state.regs;
1912 	u8 opcode = BPF_OP(insn->code);
1913 	bool src_known, dst_known;
1914 	s64 smin_val, smax_val;
1915 	u64 umin_val, umax_val;
1916 
1917 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
1918 		/* 32-bit ALU ops are (32,32)->64 */
1919 		coerce_reg_to_32(dst_reg);
1920 		coerce_reg_to_32(&src_reg);
1921 	}
1922 	smin_val = src_reg.smin_value;
1923 	smax_val = src_reg.smax_value;
1924 	umin_val = src_reg.umin_value;
1925 	umax_val = src_reg.umax_value;
1926 	src_known = tnum_is_const(src_reg.var_off);
1927 	dst_known = tnum_is_const(dst_reg->var_off);
1928 
1929 	switch (opcode) {
1930 	case BPF_ADD:
1931 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
1932 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
1933 			dst_reg->smin_value = S64_MIN;
1934 			dst_reg->smax_value = S64_MAX;
1935 		} else {
1936 			dst_reg->smin_value += smin_val;
1937 			dst_reg->smax_value += smax_val;
1938 		}
1939 		if (dst_reg->umin_value + umin_val < umin_val ||
1940 		    dst_reg->umax_value + umax_val < umax_val) {
1941 			dst_reg->umin_value = 0;
1942 			dst_reg->umax_value = U64_MAX;
1943 		} else {
1944 			dst_reg->umin_value += umin_val;
1945 			dst_reg->umax_value += umax_val;
1946 		}
1947 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
1948 		break;
1949 	case BPF_SUB:
1950 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
1951 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
1952 			/* Overflow possible, we know nothing */
1953 			dst_reg->smin_value = S64_MIN;
1954 			dst_reg->smax_value = S64_MAX;
1955 		} else {
1956 			dst_reg->smin_value -= smax_val;
1957 			dst_reg->smax_value -= smin_val;
1958 		}
1959 		if (dst_reg->umin_value < umax_val) {
1960 			/* Overflow possible, we know nothing */
1961 			dst_reg->umin_value = 0;
1962 			dst_reg->umax_value = U64_MAX;
1963 		} else {
1964 			/* Cannot overflow (as long as bounds are consistent) */
1965 			dst_reg->umin_value -= umax_val;
1966 			dst_reg->umax_value -= umin_val;
1967 		}
1968 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
1969 		break;
1970 	case BPF_MUL:
1971 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
1972 		if (smin_val < 0 || dst_reg->smin_value < 0) {
1973 			/* Ain't nobody got time to multiply that sign */
1974 			__mark_reg_unbounded(dst_reg);
1975 			__update_reg_bounds(dst_reg);
1976 			break;
1977 		}
1978 		/* Both values are positive, so we can work with unsigned and
1979 		 * copy the result to signed (unless it exceeds S64_MAX).
1980 		 */
1981 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
1982 			/* Potential overflow, we know nothing */
1983 			__mark_reg_unbounded(dst_reg);
1984 			/* (except what we can learn from the var_off) */
1985 			__update_reg_bounds(dst_reg);
1986 			break;
1987 		}
1988 		dst_reg->umin_value *= umin_val;
1989 		dst_reg->umax_value *= umax_val;
1990 		if (dst_reg->umax_value > S64_MAX) {
1991 			/* Overflow possible, we know nothing */
1992 			dst_reg->smin_value = S64_MIN;
1993 			dst_reg->smax_value = S64_MAX;
1994 		} else {
1995 			dst_reg->smin_value = dst_reg->umin_value;
1996 			dst_reg->smax_value = dst_reg->umax_value;
1997 		}
1998 		break;
1999 	case BPF_AND:
2000 		if (src_known && dst_known) {
2001 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
2002 						  src_reg.var_off.value);
2003 			break;
2004 		}
2005 		/* We get our minimum from the var_off, since that's inherently
2006 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2007 		 */
2008 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2009 		dst_reg->umin_value = dst_reg->var_off.value;
2010 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2011 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2012 			/* Lose signed bounds when ANDing negative numbers,
2013 			 * ain't nobody got time for that.
2014 			 */
2015 			dst_reg->smin_value = S64_MIN;
2016 			dst_reg->smax_value = S64_MAX;
2017 		} else {
2018 			/* ANDing two positives gives a positive, so safe to
2019 			 * cast result into s64.
2020 			 */
2021 			dst_reg->smin_value = dst_reg->umin_value;
2022 			dst_reg->smax_value = dst_reg->umax_value;
2023 		}
2024 		/* We may learn something more from the var_off */
2025 		__update_reg_bounds(dst_reg);
2026 		break;
2027 	case BPF_OR:
2028 		if (src_known && dst_known) {
2029 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
2030 						  src_reg.var_off.value);
2031 			break;
2032 		}
2033 		/* We get our maximum from the var_off, and our minimum is the
2034 		 * maximum of the operands' minima
2035 		 */
2036 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2037 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2038 		dst_reg->umax_value = dst_reg->var_off.value |
2039 				      dst_reg->var_off.mask;
2040 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2041 			/* Lose signed bounds when ORing negative numbers,
2042 			 * ain't nobody got time for that.
2043 			 */
2044 			dst_reg->smin_value = S64_MIN;
2045 			dst_reg->smax_value = S64_MAX;
2046 		} else {
2047 			/* ORing two positives gives a positive, so safe to
2048 			 * cast result into s64.
2049 			 */
2050 			dst_reg->smin_value = dst_reg->umin_value;
2051 			dst_reg->smax_value = dst_reg->umax_value;
2052 		}
2053 		/* We may learn something more from the var_off */
2054 		__update_reg_bounds(dst_reg);
2055 		break;
2056 	case BPF_LSH:
2057 		if (umax_val > 63) {
2058 			/* Shifts greater than 63 are undefined.  This includes
2059 			 * shifts by a negative number.
2060 			 */
2061 			mark_reg_unknown(env, regs, insn->dst_reg);
2062 			break;
2063 		}
2064 		/* We lose all sign bit information (except what we can pick
2065 		 * up from var_off)
2066 		 */
2067 		dst_reg->smin_value = S64_MIN;
2068 		dst_reg->smax_value = S64_MAX;
2069 		/* If we might shift our top bit out, then we know nothing */
2070 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2071 			dst_reg->umin_value = 0;
2072 			dst_reg->umax_value = U64_MAX;
2073 		} else {
2074 			dst_reg->umin_value <<= umin_val;
2075 			dst_reg->umax_value <<= umax_val;
2076 		}
2077 		if (src_known)
2078 			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2079 		else
2080 			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2081 		/* We may learn something more from the var_off */
2082 		__update_reg_bounds(dst_reg);
2083 		break;
2084 	case BPF_RSH:
2085 		if (umax_val > 63) {
2086 			/* Shifts greater than 63 are undefined.  This includes
2087 			 * shifts by a negative number.
2088 			 */
2089 			mark_reg_unknown(env, regs, insn->dst_reg);
2090 			break;
2091 		}
2092 		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
2093 		if (dst_reg->smin_value < 0) {
2094 			if (umin_val) {
2095 				/* Sign bit will be cleared */
2096 				dst_reg->smin_value = 0;
2097 			} else {
2098 				/* Lost sign bit information */
2099 				dst_reg->smin_value = S64_MIN;
2100 				dst_reg->smax_value = S64_MAX;
2101 			}
2102 		} else {
2103 			dst_reg->smin_value =
2104 				(u64)(dst_reg->smin_value) >> umax_val;
2105 		}
2106 		if (src_known)
2107 			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2108 						       umin_val);
2109 		else
2110 			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2111 		dst_reg->umin_value >>= umax_val;
2112 		dst_reg->umax_value >>= umin_val;
2113 		/* We may learn something more from the var_off */
2114 		__update_reg_bounds(dst_reg);
2115 		break;
2116 	default:
2117 		mark_reg_unknown(env, regs, insn->dst_reg);
2118 		break;
2119 	}
2120 
2121 	__reg_deduce_bounds(dst_reg);
2122 	__reg_bound_offset(dst_reg);
2123 	return 0;
2124 }
2125 
2126 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2127  * and var_off.
2128  */
2129 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2130 				   struct bpf_insn *insn)
2131 {
2132 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
2133 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2134 	u8 opcode = BPF_OP(insn->code);
2135 	int rc;
2136 
2137 	dst_reg = &regs[insn->dst_reg];
2138 	src_reg = NULL;
2139 	if (dst_reg->type != SCALAR_VALUE)
2140 		ptr_reg = dst_reg;
2141 	if (BPF_SRC(insn->code) == BPF_X) {
2142 		src_reg = &regs[insn->src_reg];
2143 		if (src_reg->type != SCALAR_VALUE) {
2144 			if (dst_reg->type != SCALAR_VALUE) {
2145 				/* Combining two pointers by any ALU op yields
2146 				 * an arbitrary scalar.
2147 				 */
2148 				if (!env->allow_ptr_leaks) {
2149 					verbose(env, "R%d pointer %s pointer prohibited\n",
2150 						insn->dst_reg,
2151 						bpf_alu_string[opcode >> 4]);
2152 					return -EACCES;
2153 				}
2154 				mark_reg_unknown(env, regs, insn->dst_reg);
2155 				return 0;
2156 			} else {
2157 				/* scalar += pointer
2158 				 * This is legal, but we have to reverse our
2159 				 * src/dest handling in computing the range
2160 				 */
2161 				rc = adjust_ptr_min_max_vals(env, insn,
2162 							     src_reg, dst_reg);
2163 				if (rc == -EACCES && env->allow_ptr_leaks) {
2164 					/* scalar += unknown scalar */
2165 					__mark_reg_unknown(&off_reg);
2166 					return adjust_scalar_min_max_vals(
2167 							env, insn,
2168 							dst_reg, off_reg);
2169 				}
2170 				return rc;
2171 			}
2172 		} else if (ptr_reg) {
2173 			/* pointer += scalar */
2174 			rc = adjust_ptr_min_max_vals(env, insn,
2175 						     dst_reg, src_reg);
2176 			if (rc == -EACCES && env->allow_ptr_leaks) {
2177 				/* unknown scalar += scalar */
2178 				__mark_reg_unknown(dst_reg);
2179 				return adjust_scalar_min_max_vals(
2180 						env, insn, dst_reg, *src_reg);
2181 			}
2182 			return rc;
2183 		}
2184 	} else {
2185 		/* Pretend the src is a reg with a known value, since we only
2186 		 * need to be able to read from this state.
2187 		 */
2188 		off_reg.type = SCALAR_VALUE;
2189 		__mark_reg_known(&off_reg, insn->imm);
2190 		src_reg = &off_reg;
2191 		if (ptr_reg) { /* pointer += K */
2192 			rc = adjust_ptr_min_max_vals(env, insn,
2193 						     ptr_reg, src_reg);
2194 			if (rc == -EACCES && env->allow_ptr_leaks) {
2195 				/* unknown scalar += K */
2196 				__mark_reg_unknown(dst_reg);
2197 				return adjust_scalar_min_max_vals(
2198 						env, insn, dst_reg, off_reg);
2199 			}
2200 			return rc;
2201 		}
2202 	}
2203 
2204 	/* Got here implies adding two SCALAR_VALUEs */
2205 	if (WARN_ON_ONCE(ptr_reg)) {
2206 		print_verifier_state(env, &env->cur_state);
2207 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
2208 		return -EINVAL;
2209 	}
2210 	if (WARN_ON(!src_reg)) {
2211 		print_verifier_state(env, &env->cur_state);
2212 		verbose(env, "verifier internal error: no src_reg\n");
2213 		return -EINVAL;
2214 	}
2215 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2216 }
2217 
2218 /* check validity of 32-bit and 64-bit arithmetic operations */
2219 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2220 {
2221 	struct bpf_reg_state *regs = env->cur_state.regs;
2222 	u8 opcode = BPF_OP(insn->code);
2223 	int err;
2224 
2225 	if (opcode == BPF_END || opcode == BPF_NEG) {
2226 		if (opcode == BPF_NEG) {
2227 			if (BPF_SRC(insn->code) != 0 ||
2228 			    insn->src_reg != BPF_REG_0 ||
2229 			    insn->off != 0 || insn->imm != 0) {
2230 				verbose(env, "BPF_NEG uses reserved fields\n");
2231 				return -EINVAL;
2232 			}
2233 		} else {
2234 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2235 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2236 			    BPF_CLASS(insn->code) == BPF_ALU64) {
2237 				verbose(env, "BPF_END uses reserved fields\n");
2238 				return -EINVAL;
2239 			}
2240 		}
2241 
2242 		/* check src operand */
2243 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2244 		if (err)
2245 			return err;
2246 
2247 		if (is_pointer_value(env, insn->dst_reg)) {
2248 			verbose(env, "R%d pointer arithmetic prohibited\n",
2249 				insn->dst_reg);
2250 			return -EACCES;
2251 		}
2252 
2253 		/* check dest operand */
2254 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2255 		if (err)
2256 			return err;
2257 
2258 	} else if (opcode == BPF_MOV) {
2259 
2260 		if (BPF_SRC(insn->code) == BPF_X) {
2261 			if (insn->imm != 0 || insn->off != 0) {
2262 				verbose(env, "BPF_MOV uses reserved fields\n");
2263 				return -EINVAL;
2264 			}
2265 
2266 			/* check src operand */
2267 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2268 			if (err)
2269 				return err;
2270 		} else {
2271 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2272 				verbose(env, "BPF_MOV uses reserved fields\n");
2273 				return -EINVAL;
2274 			}
2275 		}
2276 
2277 		/* check dest operand */
2278 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2279 		if (err)
2280 			return err;
2281 
2282 		if (BPF_SRC(insn->code) == BPF_X) {
2283 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
2284 				/* case: R1 = R2
2285 				 * copy register state to dest reg
2286 				 */
2287 				regs[insn->dst_reg] = regs[insn->src_reg];
2288 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2289 			} else {
2290 				/* R1 = (u32) R2 */
2291 				if (is_pointer_value(env, insn->src_reg)) {
2292 					verbose(env,
2293 						"R%d partial copy of pointer\n",
2294 						insn->src_reg);
2295 					return -EACCES;
2296 				}
2297 				mark_reg_unknown(env, regs, insn->dst_reg);
2298 				/* high 32 bits are known zero. */
2299 				regs[insn->dst_reg].var_off = tnum_cast(
2300 						regs[insn->dst_reg].var_off, 4);
2301 				__update_reg_bounds(&regs[insn->dst_reg]);
2302 			}
2303 		} else {
2304 			/* case: R = imm
2305 			 * remember the value we stored into this reg
2306 			 */
2307 			regs[insn->dst_reg].type = SCALAR_VALUE;
2308 			__mark_reg_known(regs + insn->dst_reg, insn->imm);
2309 		}
2310 
2311 	} else if (opcode > BPF_END) {
2312 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2313 		return -EINVAL;
2314 
2315 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
2316 
2317 		if (BPF_SRC(insn->code) == BPF_X) {
2318 			if (insn->imm != 0 || insn->off != 0) {
2319 				verbose(env, "BPF_ALU uses reserved fields\n");
2320 				return -EINVAL;
2321 			}
2322 			/* check src1 operand */
2323 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2324 			if (err)
2325 				return err;
2326 		} else {
2327 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2328 				verbose(env, "BPF_ALU uses reserved fields\n");
2329 				return -EINVAL;
2330 			}
2331 		}
2332 
2333 		/* check src2 operand */
2334 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2335 		if (err)
2336 			return err;
2337 
2338 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2339 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2340 			verbose(env, "div by zero\n");
2341 			return -EINVAL;
2342 		}
2343 
2344 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2345 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2346 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2347 
2348 			if (insn->imm < 0 || insn->imm >= size) {
2349 				verbose(env, "invalid shift %d\n", insn->imm);
2350 				return -EINVAL;
2351 			}
2352 		}
2353 
2354 		/* check dest operand */
2355 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2356 		if (err)
2357 			return err;
2358 
2359 		return adjust_reg_min_max_vals(env, insn);
2360 	}
2361 
2362 	return 0;
2363 }
2364 
2365 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2366 				   struct bpf_reg_state *dst_reg,
2367 				   enum bpf_reg_type type)
2368 {
2369 	struct bpf_reg_state *regs = state->regs, *reg;
2370 	int i;
2371 
2372 	if (dst_reg->off < 0)
2373 		/* This doesn't give us any range */
2374 		return;
2375 
2376 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
2377 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2378 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
2379 		 * than pkt_end, but that's because it's also less than pkt.
2380 		 */
2381 		return;
2382 
2383 	/* LLVM can generate four kind of checks:
2384 	 *
2385 	 * Type 1/2:
2386 	 *
2387 	 *   r2 = r3;
2388 	 *   r2 += 8;
2389 	 *   if (r2 > pkt_end) goto <handle exception>
2390 	 *   <access okay>
2391 	 *
2392 	 *   r2 = r3;
2393 	 *   r2 += 8;
2394 	 *   if (r2 < pkt_end) goto <access okay>
2395 	 *   <handle exception>
2396 	 *
2397 	 *   Where:
2398 	 *     r2 == dst_reg, pkt_end == src_reg
2399 	 *     r2=pkt(id=n,off=8,r=0)
2400 	 *     r3=pkt(id=n,off=0,r=0)
2401 	 *
2402 	 * Type 3/4:
2403 	 *
2404 	 *   r2 = r3;
2405 	 *   r2 += 8;
2406 	 *   if (pkt_end >= r2) goto <access okay>
2407 	 *   <handle exception>
2408 	 *
2409 	 *   r2 = r3;
2410 	 *   r2 += 8;
2411 	 *   if (pkt_end <= r2) goto <handle exception>
2412 	 *   <access okay>
2413 	 *
2414 	 *   Where:
2415 	 *     pkt_end == dst_reg, r2 == src_reg
2416 	 *     r2=pkt(id=n,off=8,r=0)
2417 	 *     r3=pkt(id=n,off=0,r=0)
2418 	 *
2419 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2420 	 * so that range of bytes [r3, r3 + 8) is safe to access.
2421 	 */
2422 
2423 	/* If our ids match, then we must have the same max_value.  And we
2424 	 * don't care about the other reg's fixed offset, since if it's too big
2425 	 * the range won't allow anything.
2426 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2427 	 */
2428 	for (i = 0; i < MAX_BPF_REG; i++)
2429 		if (regs[i].type == type && regs[i].id == dst_reg->id)
2430 			/* keep the maximum range already checked */
2431 			regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
2432 
2433 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2434 		if (state->stack_slot_type[i] != STACK_SPILL)
2435 			continue;
2436 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
2437 		if (reg->type == type && reg->id == dst_reg->id)
2438 			reg->range = max_t(u16, reg->range, dst_reg->off);
2439 	}
2440 }
2441 
2442 /* Adjusts the register min/max values in the case that the dst_reg is the
2443  * variable register that we are working on, and src_reg is a constant or we're
2444  * simply doing a BPF_K check.
2445  * In JEQ/JNE cases we also adjust the var_off values.
2446  */
2447 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2448 			    struct bpf_reg_state *false_reg, u64 val,
2449 			    u8 opcode)
2450 {
2451 	/* If the dst_reg is a pointer, we can't learn anything about its
2452 	 * variable offset from the compare (unless src_reg were a pointer into
2453 	 * the same object, but we don't bother with that.
2454 	 * Since false_reg and true_reg have the same type by construction, we
2455 	 * only need to check one of them for pointerness.
2456 	 */
2457 	if (__is_pointer_value(false, false_reg))
2458 		return;
2459 
2460 	switch (opcode) {
2461 	case BPF_JEQ:
2462 		/* If this is false then we know nothing Jon Snow, but if it is
2463 		 * true then we know for sure.
2464 		 */
2465 		__mark_reg_known(true_reg, val);
2466 		break;
2467 	case BPF_JNE:
2468 		/* If this is true we know nothing Jon Snow, but if it is false
2469 		 * we know the value for sure;
2470 		 */
2471 		__mark_reg_known(false_reg, val);
2472 		break;
2473 	case BPF_JGT:
2474 		false_reg->umax_value = min(false_reg->umax_value, val);
2475 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2476 		break;
2477 	case BPF_JSGT:
2478 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2479 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2480 		break;
2481 	case BPF_JLT:
2482 		false_reg->umin_value = max(false_reg->umin_value, val);
2483 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2484 		break;
2485 	case BPF_JSLT:
2486 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2487 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2488 		break;
2489 	case BPF_JGE:
2490 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2491 		true_reg->umin_value = max(true_reg->umin_value, val);
2492 		break;
2493 	case BPF_JSGE:
2494 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2495 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2496 		break;
2497 	case BPF_JLE:
2498 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2499 		true_reg->umax_value = min(true_reg->umax_value, val);
2500 		break;
2501 	case BPF_JSLE:
2502 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2503 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2504 		break;
2505 	default:
2506 		break;
2507 	}
2508 
2509 	__reg_deduce_bounds(false_reg);
2510 	__reg_deduce_bounds(true_reg);
2511 	/* We might have learned some bits from the bounds. */
2512 	__reg_bound_offset(false_reg);
2513 	__reg_bound_offset(true_reg);
2514 	/* Intersecting with the old var_off might have improved our bounds
2515 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2516 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2517 	 */
2518 	__update_reg_bounds(false_reg);
2519 	__update_reg_bounds(true_reg);
2520 }
2521 
2522 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2523  * the variable reg.
2524  */
2525 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2526 				struct bpf_reg_state *false_reg, u64 val,
2527 				u8 opcode)
2528 {
2529 	if (__is_pointer_value(false, false_reg))
2530 		return;
2531 
2532 	switch (opcode) {
2533 	case BPF_JEQ:
2534 		/* If this is false then we know nothing Jon Snow, but if it is
2535 		 * true then we know for sure.
2536 		 */
2537 		__mark_reg_known(true_reg, val);
2538 		break;
2539 	case BPF_JNE:
2540 		/* If this is true we know nothing Jon Snow, but if it is false
2541 		 * we know the value for sure;
2542 		 */
2543 		__mark_reg_known(false_reg, val);
2544 		break;
2545 	case BPF_JGT:
2546 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2547 		false_reg->umin_value = max(false_reg->umin_value, val);
2548 		break;
2549 	case BPF_JSGT:
2550 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2551 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2552 		break;
2553 	case BPF_JLT:
2554 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2555 		false_reg->umax_value = min(false_reg->umax_value, val);
2556 		break;
2557 	case BPF_JSLT:
2558 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2559 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2560 		break;
2561 	case BPF_JGE:
2562 		true_reg->umax_value = min(true_reg->umax_value, val);
2563 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2564 		break;
2565 	case BPF_JSGE:
2566 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2567 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2568 		break;
2569 	case BPF_JLE:
2570 		true_reg->umin_value = max(true_reg->umin_value, val);
2571 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2572 		break;
2573 	case BPF_JSLE:
2574 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2575 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2576 		break;
2577 	default:
2578 		break;
2579 	}
2580 
2581 	__reg_deduce_bounds(false_reg);
2582 	__reg_deduce_bounds(true_reg);
2583 	/* We might have learned some bits from the bounds. */
2584 	__reg_bound_offset(false_reg);
2585 	__reg_bound_offset(true_reg);
2586 	/* Intersecting with the old var_off might have improved our bounds
2587 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2588 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2589 	 */
2590 	__update_reg_bounds(false_reg);
2591 	__update_reg_bounds(true_reg);
2592 }
2593 
2594 /* Regs are known to be equal, so intersect their min/max/var_off */
2595 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2596 				  struct bpf_reg_state *dst_reg)
2597 {
2598 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2599 							dst_reg->umin_value);
2600 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2601 							dst_reg->umax_value);
2602 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2603 							dst_reg->smin_value);
2604 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2605 							dst_reg->smax_value);
2606 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2607 							     dst_reg->var_off);
2608 	/* We might have learned new bounds from the var_off. */
2609 	__update_reg_bounds(src_reg);
2610 	__update_reg_bounds(dst_reg);
2611 	/* We might have learned something about the sign bit. */
2612 	__reg_deduce_bounds(src_reg);
2613 	__reg_deduce_bounds(dst_reg);
2614 	/* We might have learned some bits from the bounds. */
2615 	__reg_bound_offset(src_reg);
2616 	__reg_bound_offset(dst_reg);
2617 	/* Intersecting with the old var_off might have improved our bounds
2618 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2619 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2620 	 */
2621 	__update_reg_bounds(src_reg);
2622 	__update_reg_bounds(dst_reg);
2623 }
2624 
2625 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2626 				struct bpf_reg_state *true_dst,
2627 				struct bpf_reg_state *false_src,
2628 				struct bpf_reg_state *false_dst,
2629 				u8 opcode)
2630 {
2631 	switch (opcode) {
2632 	case BPF_JEQ:
2633 		__reg_combine_min_max(true_src, true_dst);
2634 		break;
2635 	case BPF_JNE:
2636 		__reg_combine_min_max(false_src, false_dst);
2637 		break;
2638 	}
2639 }
2640 
2641 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2642 			 bool is_null)
2643 {
2644 	struct bpf_reg_state *reg = &regs[regno];
2645 
2646 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2647 		/* Old offset (both fixed and variable parts) should
2648 		 * have been known-zero, because we don't allow pointer
2649 		 * arithmetic on pointers that might be NULL.
2650 		 */
2651 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2652 				 !tnum_equals_const(reg->var_off, 0) ||
2653 				 reg->off)) {
2654 			__mark_reg_known_zero(reg);
2655 			reg->off = 0;
2656 		}
2657 		if (is_null) {
2658 			reg->type = SCALAR_VALUE;
2659 		} else if (reg->map_ptr->inner_map_meta) {
2660 			reg->type = CONST_PTR_TO_MAP;
2661 			reg->map_ptr = reg->map_ptr->inner_map_meta;
2662 		} else {
2663 			reg->type = PTR_TO_MAP_VALUE;
2664 		}
2665 		/* We don't need id from this point onwards anymore, thus we
2666 		 * should better reset it, so that state pruning has chances
2667 		 * to take effect.
2668 		 */
2669 		reg->id = 0;
2670 	}
2671 }
2672 
2673 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2674  * be folded together at some point.
2675  */
2676 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2677 			  bool is_null)
2678 {
2679 	struct bpf_reg_state *regs = state->regs;
2680 	u32 id = regs[regno].id;
2681 	int i;
2682 
2683 	for (i = 0; i < MAX_BPF_REG; i++)
2684 		mark_map_reg(regs, i, id, is_null);
2685 
2686 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2687 		if (state->stack_slot_type[i] != STACK_SPILL)
2688 			continue;
2689 		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
2690 	}
2691 }
2692 
2693 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2694 			     struct bpf_insn *insn, int *insn_idx)
2695 {
2696 	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2697 	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2698 	u8 opcode = BPF_OP(insn->code);
2699 	int err;
2700 
2701 	if (opcode > BPF_JSLE) {
2702 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2703 		return -EINVAL;
2704 	}
2705 
2706 	if (BPF_SRC(insn->code) == BPF_X) {
2707 		if (insn->imm != 0) {
2708 			verbose(env, "BPF_JMP uses reserved fields\n");
2709 			return -EINVAL;
2710 		}
2711 
2712 		/* check src1 operand */
2713 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2714 		if (err)
2715 			return err;
2716 
2717 		if (is_pointer_value(env, insn->src_reg)) {
2718 			verbose(env, "R%d pointer comparison prohibited\n",
2719 				insn->src_reg);
2720 			return -EACCES;
2721 		}
2722 	} else {
2723 		if (insn->src_reg != BPF_REG_0) {
2724 			verbose(env, "BPF_JMP uses reserved fields\n");
2725 			return -EINVAL;
2726 		}
2727 	}
2728 
2729 	/* check src2 operand */
2730 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2731 	if (err)
2732 		return err;
2733 
2734 	dst_reg = &regs[insn->dst_reg];
2735 
2736 	/* detect if R == 0 where R was initialized to zero earlier */
2737 	if (BPF_SRC(insn->code) == BPF_K &&
2738 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2739 	    dst_reg->type == SCALAR_VALUE &&
2740 	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
2741 		if (opcode == BPF_JEQ) {
2742 			/* if (imm == imm) goto pc+off;
2743 			 * only follow the goto, ignore fall-through
2744 			 */
2745 			*insn_idx += insn->off;
2746 			return 0;
2747 		} else {
2748 			/* if (imm != imm) goto pc+off;
2749 			 * only follow fall-through branch, since
2750 			 * that's where the program will go
2751 			 */
2752 			return 0;
2753 		}
2754 	}
2755 
2756 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2757 	if (!other_branch)
2758 		return -EFAULT;
2759 
2760 	/* detect if we are comparing against a constant value so we can adjust
2761 	 * our min/max values for our dst register.
2762 	 * this is only legit if both are scalars (or pointers to the same
2763 	 * object, I suppose, but we don't support that right now), because
2764 	 * otherwise the different base pointers mean the offsets aren't
2765 	 * comparable.
2766 	 */
2767 	if (BPF_SRC(insn->code) == BPF_X) {
2768 		if (dst_reg->type == SCALAR_VALUE &&
2769 		    regs[insn->src_reg].type == SCALAR_VALUE) {
2770 			if (tnum_is_const(regs[insn->src_reg].var_off))
2771 				reg_set_min_max(&other_branch->regs[insn->dst_reg],
2772 						dst_reg, regs[insn->src_reg].var_off.value,
2773 						opcode);
2774 			else if (tnum_is_const(dst_reg->var_off))
2775 				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2776 						    &regs[insn->src_reg],
2777 						    dst_reg->var_off.value, opcode);
2778 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2779 				/* Comparing for equality, we can combine knowledge */
2780 				reg_combine_min_max(&other_branch->regs[insn->src_reg],
2781 						    &other_branch->regs[insn->dst_reg],
2782 						    &regs[insn->src_reg],
2783 						    &regs[insn->dst_reg], opcode);
2784 		}
2785 	} else if (dst_reg->type == SCALAR_VALUE) {
2786 		reg_set_min_max(&other_branch->regs[insn->dst_reg],
2787 					dst_reg, insn->imm, opcode);
2788 	}
2789 
2790 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2791 	if (BPF_SRC(insn->code) == BPF_K &&
2792 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2793 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2794 		/* Mark all identical map registers in each branch as either
2795 		 * safe or unknown depending R == 0 or R != 0 conditional.
2796 		 */
2797 		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2798 		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
2799 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2800 		   dst_reg->type == PTR_TO_PACKET &&
2801 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2802 		find_good_pkt_pointers(this_branch, dst_reg, PTR_TO_PACKET);
2803 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2804 		   dst_reg->type == PTR_TO_PACKET &&
2805 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2806 		find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET);
2807 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2808 		   dst_reg->type == PTR_TO_PACKET_END &&
2809 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2810 		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2811 				       PTR_TO_PACKET);
2812 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2813 		   dst_reg->type == PTR_TO_PACKET_END &&
2814 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2815 		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2816 				       PTR_TO_PACKET);
2817 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2818 		   dst_reg->type == PTR_TO_PACKET_META &&
2819 		   reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2820 		find_good_pkt_pointers(this_branch, dst_reg, PTR_TO_PACKET_META);
2821 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2822 		   dst_reg->type == PTR_TO_PACKET_META &&
2823 		   reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2824 		find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET_META);
2825 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2826 		   reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2827 		   regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2828 		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2829 				       PTR_TO_PACKET_META);
2830 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2831 		   reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2832 		   regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2833 		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2834 				       PTR_TO_PACKET_META);
2835 	} else if (is_pointer_value(env, insn->dst_reg)) {
2836 		verbose(env, "R%d pointer comparison prohibited\n",
2837 			insn->dst_reg);
2838 		return -EACCES;
2839 	}
2840 	if (env->log.level)
2841 		print_verifier_state(env, this_branch);
2842 	return 0;
2843 }
2844 
2845 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2846 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2847 {
2848 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2849 
2850 	return (struct bpf_map *) (unsigned long) imm64;
2851 }
2852 
2853 /* verify BPF_LD_IMM64 instruction */
2854 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2855 {
2856 	struct bpf_reg_state *regs = env->cur_state.regs;
2857 	int err;
2858 
2859 	if (BPF_SIZE(insn->code) != BPF_DW) {
2860 		verbose(env, "invalid BPF_LD_IMM insn\n");
2861 		return -EINVAL;
2862 	}
2863 	if (insn->off != 0) {
2864 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
2865 		return -EINVAL;
2866 	}
2867 
2868 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
2869 	if (err)
2870 		return err;
2871 
2872 	if (insn->src_reg == 0) {
2873 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2874 
2875 		regs[insn->dst_reg].type = SCALAR_VALUE;
2876 		__mark_reg_known(&regs[insn->dst_reg], imm);
2877 		return 0;
2878 	}
2879 
2880 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2881 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2882 
2883 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2884 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2885 	return 0;
2886 }
2887 
2888 static bool may_access_skb(enum bpf_prog_type type)
2889 {
2890 	switch (type) {
2891 	case BPF_PROG_TYPE_SOCKET_FILTER:
2892 	case BPF_PROG_TYPE_SCHED_CLS:
2893 	case BPF_PROG_TYPE_SCHED_ACT:
2894 		return true;
2895 	default:
2896 		return false;
2897 	}
2898 }
2899 
2900 /* verify safety of LD_ABS|LD_IND instructions:
2901  * - they can only appear in the programs where ctx == skb
2902  * - since they are wrappers of function calls, they scratch R1-R5 registers,
2903  *   preserve R6-R9, and store return value into R0
2904  *
2905  * Implicit input:
2906  *   ctx == skb == R6 == CTX
2907  *
2908  * Explicit input:
2909  *   SRC == any register
2910  *   IMM == 32-bit immediate
2911  *
2912  * Output:
2913  *   R0 - 8/16/32-bit skb data converted to cpu endianness
2914  */
2915 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2916 {
2917 	struct bpf_reg_state *regs = env->cur_state.regs;
2918 	u8 mode = BPF_MODE(insn->code);
2919 	int i, err;
2920 
2921 	if (!may_access_skb(env->prog->type)) {
2922 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2923 		return -EINVAL;
2924 	}
2925 
2926 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2927 	    BPF_SIZE(insn->code) == BPF_DW ||
2928 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2929 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
2930 		return -EINVAL;
2931 	}
2932 
2933 	/* check whether implicit source operand (register R6) is readable */
2934 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
2935 	if (err)
2936 		return err;
2937 
2938 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2939 		verbose(env,
2940 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2941 		return -EINVAL;
2942 	}
2943 
2944 	if (mode == BPF_IND) {
2945 		/* check explicit source operand */
2946 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2947 		if (err)
2948 			return err;
2949 	}
2950 
2951 	/* reset caller saved regs to unreadable */
2952 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2953 		mark_reg_not_init(env, regs, caller_saved[i]);
2954 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2955 	}
2956 
2957 	/* mark destination R0 register as readable, since it contains
2958 	 * the value fetched from the packet.
2959 	 * Already marked as written above.
2960 	 */
2961 	mark_reg_unknown(env, regs, BPF_REG_0);
2962 	return 0;
2963 }
2964 
2965 static int check_return_code(struct bpf_verifier_env *env)
2966 {
2967 	struct bpf_reg_state *reg;
2968 	struct tnum range = tnum_range(0, 1);
2969 
2970 	switch (env->prog->type) {
2971 	case BPF_PROG_TYPE_CGROUP_SKB:
2972 	case BPF_PROG_TYPE_CGROUP_SOCK:
2973 	case BPF_PROG_TYPE_SOCK_OPS:
2974 		break;
2975 	default:
2976 		return 0;
2977 	}
2978 
2979 	reg = &env->cur_state.regs[BPF_REG_0];
2980 	if (reg->type != SCALAR_VALUE) {
2981 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
2982 			reg_type_str[reg->type]);
2983 		return -EINVAL;
2984 	}
2985 
2986 	if (!tnum_in(range, reg->var_off)) {
2987 		verbose(env, "At program exit the register R0 ");
2988 		if (!tnum_is_unknown(reg->var_off)) {
2989 			char tn_buf[48];
2990 
2991 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2992 			verbose(env, "has value %s", tn_buf);
2993 		} else {
2994 			verbose(env, "has unknown scalar value");
2995 		}
2996 		verbose(env, " should have been 0 or 1\n");
2997 		return -EINVAL;
2998 	}
2999 	return 0;
3000 }
3001 
3002 /* non-recursive DFS pseudo code
3003  * 1  procedure DFS-iterative(G,v):
3004  * 2      label v as discovered
3005  * 3      let S be a stack
3006  * 4      S.push(v)
3007  * 5      while S is not empty
3008  * 6            t <- S.pop()
3009  * 7            if t is what we're looking for:
3010  * 8                return t
3011  * 9            for all edges e in G.adjacentEdges(t) do
3012  * 10               if edge e is already labelled
3013  * 11                   continue with the next edge
3014  * 12               w <- G.adjacentVertex(t,e)
3015  * 13               if vertex w is not discovered and not explored
3016  * 14                   label e as tree-edge
3017  * 15                   label w as discovered
3018  * 16                   S.push(w)
3019  * 17                   continue at 5
3020  * 18               else if vertex w is discovered
3021  * 19                   label e as back-edge
3022  * 20               else
3023  * 21                   // vertex w is explored
3024  * 22                   label e as forward- or cross-edge
3025  * 23           label t as explored
3026  * 24           S.pop()
3027  *
3028  * convention:
3029  * 0x10 - discovered
3030  * 0x11 - discovered and fall-through edge labelled
3031  * 0x12 - discovered and fall-through and branch edges labelled
3032  * 0x20 - explored
3033  */
3034 
3035 enum {
3036 	DISCOVERED = 0x10,
3037 	EXPLORED = 0x20,
3038 	FALLTHROUGH = 1,
3039 	BRANCH = 2,
3040 };
3041 
3042 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3043 
3044 static int *insn_stack;	/* stack of insns to process */
3045 static int cur_stack;	/* current stack index */
3046 static int *insn_state;
3047 
3048 /* t, w, e - match pseudo-code above:
3049  * t - index of current instruction
3050  * w - next instruction
3051  * e - edge
3052  */
3053 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3054 {
3055 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3056 		return 0;
3057 
3058 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3059 		return 0;
3060 
3061 	if (w < 0 || w >= env->prog->len) {
3062 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3063 		return -EINVAL;
3064 	}
3065 
3066 	if (e == BRANCH)
3067 		/* mark branch target for state pruning */
3068 		env->explored_states[w] = STATE_LIST_MARK;
3069 
3070 	if (insn_state[w] == 0) {
3071 		/* tree-edge */
3072 		insn_state[t] = DISCOVERED | e;
3073 		insn_state[w] = DISCOVERED;
3074 		if (cur_stack >= env->prog->len)
3075 			return -E2BIG;
3076 		insn_stack[cur_stack++] = w;
3077 		return 1;
3078 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3079 		verbose(env, "back-edge from insn %d to %d\n", t, w);
3080 		return -EINVAL;
3081 	} else if (insn_state[w] == EXPLORED) {
3082 		/* forward- or cross-edge */
3083 		insn_state[t] = DISCOVERED | e;
3084 	} else {
3085 		verbose(env, "insn state internal bug\n");
3086 		return -EFAULT;
3087 	}
3088 	return 0;
3089 }
3090 
3091 /* non-recursive depth-first-search to detect loops in BPF program
3092  * loop == back-edge in directed graph
3093  */
3094 static int check_cfg(struct bpf_verifier_env *env)
3095 {
3096 	struct bpf_insn *insns = env->prog->insnsi;
3097 	int insn_cnt = env->prog->len;
3098 	int ret = 0;
3099 	int i, t;
3100 
3101 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3102 	if (!insn_state)
3103 		return -ENOMEM;
3104 
3105 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3106 	if (!insn_stack) {
3107 		kfree(insn_state);
3108 		return -ENOMEM;
3109 	}
3110 
3111 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3112 	insn_stack[0] = 0; /* 0 is the first instruction */
3113 	cur_stack = 1;
3114 
3115 peek_stack:
3116 	if (cur_stack == 0)
3117 		goto check_state;
3118 	t = insn_stack[cur_stack - 1];
3119 
3120 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3121 		u8 opcode = BPF_OP(insns[t].code);
3122 
3123 		if (opcode == BPF_EXIT) {
3124 			goto mark_explored;
3125 		} else if (opcode == BPF_CALL) {
3126 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3127 			if (ret == 1)
3128 				goto peek_stack;
3129 			else if (ret < 0)
3130 				goto err_free;
3131 			if (t + 1 < insn_cnt)
3132 				env->explored_states[t + 1] = STATE_LIST_MARK;
3133 		} else if (opcode == BPF_JA) {
3134 			if (BPF_SRC(insns[t].code) != BPF_K) {
3135 				ret = -EINVAL;
3136 				goto err_free;
3137 			}
3138 			/* unconditional jump with single edge */
3139 			ret = push_insn(t, t + insns[t].off + 1,
3140 					FALLTHROUGH, env);
3141 			if (ret == 1)
3142 				goto peek_stack;
3143 			else if (ret < 0)
3144 				goto err_free;
3145 			/* tell verifier to check for equivalent states
3146 			 * after every call and jump
3147 			 */
3148 			if (t + 1 < insn_cnt)
3149 				env->explored_states[t + 1] = STATE_LIST_MARK;
3150 		} else {
3151 			/* conditional jump with two edges */
3152 			env->explored_states[t] = STATE_LIST_MARK;
3153 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3154 			if (ret == 1)
3155 				goto peek_stack;
3156 			else if (ret < 0)
3157 				goto err_free;
3158 
3159 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3160 			if (ret == 1)
3161 				goto peek_stack;
3162 			else if (ret < 0)
3163 				goto err_free;
3164 		}
3165 	} else {
3166 		/* all other non-branch instructions with single
3167 		 * fall-through edge
3168 		 */
3169 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
3170 		if (ret == 1)
3171 			goto peek_stack;
3172 		else if (ret < 0)
3173 			goto err_free;
3174 	}
3175 
3176 mark_explored:
3177 	insn_state[t] = EXPLORED;
3178 	if (cur_stack-- <= 0) {
3179 		verbose(env, "pop stack internal bug\n");
3180 		ret = -EFAULT;
3181 		goto err_free;
3182 	}
3183 	goto peek_stack;
3184 
3185 check_state:
3186 	for (i = 0; i < insn_cnt; i++) {
3187 		if (insn_state[i] != EXPLORED) {
3188 			verbose(env, "unreachable insn %d\n", i);
3189 			ret = -EINVAL;
3190 			goto err_free;
3191 		}
3192 	}
3193 	ret = 0; /* cfg looks good */
3194 
3195 err_free:
3196 	kfree(insn_state);
3197 	kfree(insn_stack);
3198 	return ret;
3199 }
3200 
3201 /* check %cur's range satisfies %old's */
3202 static bool range_within(struct bpf_reg_state *old,
3203 			 struct bpf_reg_state *cur)
3204 {
3205 	return old->umin_value <= cur->umin_value &&
3206 	       old->umax_value >= cur->umax_value &&
3207 	       old->smin_value <= cur->smin_value &&
3208 	       old->smax_value >= cur->smax_value;
3209 }
3210 
3211 /* Maximum number of register states that can exist at once */
3212 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3213 struct idpair {
3214 	u32 old;
3215 	u32 cur;
3216 };
3217 
3218 /* If in the old state two registers had the same id, then they need to have
3219  * the same id in the new state as well.  But that id could be different from
3220  * the old state, so we need to track the mapping from old to new ids.
3221  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3222  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
3223  * regs with a different old id could still have new id 9, we don't care about
3224  * that.
3225  * So we look through our idmap to see if this old id has been seen before.  If
3226  * so, we require the new id to match; otherwise, we add the id pair to the map.
3227  */
3228 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3229 {
3230 	unsigned int i;
3231 
3232 	for (i = 0; i < ID_MAP_SIZE; i++) {
3233 		if (!idmap[i].old) {
3234 			/* Reached an empty slot; haven't seen this id before */
3235 			idmap[i].old = old_id;
3236 			idmap[i].cur = cur_id;
3237 			return true;
3238 		}
3239 		if (idmap[i].old == old_id)
3240 			return idmap[i].cur == cur_id;
3241 	}
3242 	/* We ran out of idmap slots, which should be impossible */
3243 	WARN_ON_ONCE(1);
3244 	return false;
3245 }
3246 
3247 /* Returns true if (rold safe implies rcur safe) */
3248 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3249 		    struct idpair *idmap)
3250 {
3251 	if (!(rold->live & REG_LIVE_READ))
3252 		/* explored state didn't use this */
3253 		return true;
3254 
3255 	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3256 		return true;
3257 
3258 	if (rold->type == NOT_INIT)
3259 		/* explored state can't have used this */
3260 		return true;
3261 	if (rcur->type == NOT_INIT)
3262 		return false;
3263 	switch (rold->type) {
3264 	case SCALAR_VALUE:
3265 		if (rcur->type == SCALAR_VALUE) {
3266 			/* new val must satisfy old val knowledge */
3267 			return range_within(rold, rcur) &&
3268 			       tnum_in(rold->var_off, rcur->var_off);
3269 		} else {
3270 			/* if we knew anything about the old value, we're not
3271 			 * equal, because we can't know anything about the
3272 			 * scalar value of the pointer in the new value.
3273 			 */
3274 			return rold->umin_value == 0 &&
3275 			       rold->umax_value == U64_MAX &&
3276 			       rold->smin_value == S64_MIN &&
3277 			       rold->smax_value == S64_MAX &&
3278 			       tnum_is_unknown(rold->var_off);
3279 		}
3280 	case PTR_TO_MAP_VALUE:
3281 		/* If the new min/max/var_off satisfy the old ones and
3282 		 * everything else matches, we are OK.
3283 		 * We don't care about the 'id' value, because nothing
3284 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3285 		 */
3286 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3287 		       range_within(rold, rcur) &&
3288 		       tnum_in(rold->var_off, rcur->var_off);
3289 	case PTR_TO_MAP_VALUE_OR_NULL:
3290 		/* a PTR_TO_MAP_VALUE could be safe to use as a
3291 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3292 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3293 		 * checked, doing so could have affected others with the same
3294 		 * id, and we can't check for that because we lost the id when
3295 		 * we converted to a PTR_TO_MAP_VALUE.
3296 		 */
3297 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3298 			return false;
3299 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3300 			return false;
3301 		/* Check our ids match any regs they're supposed to */
3302 		return check_ids(rold->id, rcur->id, idmap);
3303 	case PTR_TO_PACKET_META:
3304 	case PTR_TO_PACKET:
3305 		if (rcur->type != rold->type)
3306 			return false;
3307 		/* We must have at least as much range as the old ptr
3308 		 * did, so that any accesses which were safe before are
3309 		 * still safe.  This is true even if old range < old off,
3310 		 * since someone could have accessed through (ptr - k), or
3311 		 * even done ptr -= k in a register, to get a safe access.
3312 		 */
3313 		if (rold->range > rcur->range)
3314 			return false;
3315 		/* If the offsets don't match, we can't trust our alignment;
3316 		 * nor can we be sure that we won't fall out of range.
3317 		 */
3318 		if (rold->off != rcur->off)
3319 			return false;
3320 		/* id relations must be preserved */
3321 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3322 			return false;
3323 		/* new val must satisfy old val knowledge */
3324 		return range_within(rold, rcur) &&
3325 		       tnum_in(rold->var_off, rcur->var_off);
3326 	case PTR_TO_CTX:
3327 	case CONST_PTR_TO_MAP:
3328 	case PTR_TO_STACK:
3329 	case PTR_TO_PACKET_END:
3330 		/* Only valid matches are exact, which memcmp() above
3331 		 * would have accepted
3332 		 */
3333 	default:
3334 		/* Don't know what's going on, just say it's not safe */
3335 		return false;
3336 	}
3337 
3338 	/* Shouldn't get here; if we do, say it's not safe */
3339 	WARN_ON_ONCE(1);
3340 	return false;
3341 }
3342 
3343 /* compare two verifier states
3344  *
3345  * all states stored in state_list are known to be valid, since
3346  * verifier reached 'bpf_exit' instruction through them
3347  *
3348  * this function is called when verifier exploring different branches of
3349  * execution popped from the state stack. If it sees an old state that has
3350  * more strict register state and more strict stack state then this execution
3351  * branch doesn't need to be explored further, since verifier already
3352  * concluded that more strict state leads to valid finish.
3353  *
3354  * Therefore two states are equivalent if register state is more conservative
3355  * and explored stack state is more conservative than the current one.
3356  * Example:
3357  *       explored                   current
3358  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3359  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3360  *
3361  * In other words if current stack state (one being explored) has more
3362  * valid slots than old one that already passed validation, it means
3363  * the verifier can stop exploring and conclude that current state is valid too
3364  *
3365  * Similarly with registers. If explored state has register type as invalid
3366  * whereas register type in current state is meaningful, it means that
3367  * the current state will reach 'bpf_exit' instruction safely
3368  */
3369 static bool states_equal(struct bpf_verifier_env *env,
3370 			 struct bpf_verifier_state *old,
3371 			 struct bpf_verifier_state *cur)
3372 {
3373 	struct idpair *idmap;
3374 	bool ret = false;
3375 	int i;
3376 
3377 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3378 	/* If we failed to allocate the idmap, just say it's not safe */
3379 	if (!idmap)
3380 		return false;
3381 
3382 	for (i = 0; i < MAX_BPF_REG; i++) {
3383 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3384 			goto out_free;
3385 	}
3386 
3387 	for (i = 0; i < MAX_BPF_STACK; i++) {
3388 		if (old->stack_slot_type[i] == STACK_INVALID)
3389 			continue;
3390 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
3391 			/* Ex: old explored (safe) state has STACK_SPILL in
3392 			 * this stack slot, but current has has STACK_MISC ->
3393 			 * this verifier states are not equivalent,
3394 			 * return false to continue verification of this path
3395 			 */
3396 			goto out_free;
3397 		if (i % BPF_REG_SIZE)
3398 			continue;
3399 		if (old->stack_slot_type[i] != STACK_SPILL)
3400 			continue;
3401 		if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
3402 			     &cur->spilled_regs[i / BPF_REG_SIZE],
3403 			     idmap))
3404 			/* when explored and current stack slot are both storing
3405 			 * spilled registers, check that stored pointers types
3406 			 * are the same as well.
3407 			 * Ex: explored safe path could have stored
3408 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3409 			 * but current path has stored:
3410 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3411 			 * such verifier states are not equivalent.
3412 			 * return false to continue verification of this path
3413 			 */
3414 			goto out_free;
3415 		else
3416 			continue;
3417 	}
3418 	ret = true;
3419 out_free:
3420 	kfree(idmap);
3421 	return ret;
3422 }
3423 
3424 /* A write screens off any subsequent reads; but write marks come from the
3425  * straight-line code between a state and its parent.  When we arrive at a
3426  * jump target (in the first iteration of the propagate_liveness() loop),
3427  * we didn't arrive by the straight-line code, so read marks in state must
3428  * propagate to parent regardless of state's write marks.
3429  */
3430 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3431 				  struct bpf_verifier_state *parent)
3432 {
3433 	bool writes = parent == state->parent; /* Observe write marks */
3434 	bool touched = false; /* any changes made? */
3435 	int i;
3436 
3437 	if (!parent)
3438 		return touched;
3439 	/* Propagate read liveness of registers... */
3440 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3441 	/* We don't need to worry about FP liveness because it's read-only */
3442 	for (i = 0; i < BPF_REG_FP; i++) {
3443 		if (parent->regs[i].live & REG_LIVE_READ)
3444 			continue;
3445 		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3446 			continue;
3447 		if (state->regs[i].live & REG_LIVE_READ) {
3448 			parent->regs[i].live |= REG_LIVE_READ;
3449 			touched = true;
3450 		}
3451 	}
3452 	/* ... and stack slots */
3453 	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
3454 		if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3455 			continue;
3456 		if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3457 			continue;
3458 		if (parent->spilled_regs[i].live & REG_LIVE_READ)
3459 			continue;
3460 		if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
3461 			continue;
3462 		if (state->spilled_regs[i].live & REG_LIVE_READ) {
3463 			parent->spilled_regs[i].live |= REG_LIVE_READ;
3464 			touched = true;
3465 		}
3466 	}
3467 	return touched;
3468 }
3469 
3470 /* "parent" is "a state from which we reach the current state", but initially
3471  * it is not the state->parent (i.e. "the state whose straight-line code leads
3472  * to the current state"), instead it is the state that happened to arrive at
3473  * a (prunable) equivalent of the current state.  See comment above
3474  * do_propagate_liveness() for consequences of this.
3475  * This function is just a more efficient way of calling mark_reg_read() or
3476  * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3477  * though it requires that parent != state->parent in the call arguments.
3478  */
3479 static void propagate_liveness(const struct bpf_verifier_state *state,
3480 			       struct bpf_verifier_state *parent)
3481 {
3482 	while (do_propagate_liveness(state, parent)) {
3483 		/* Something changed, so we need to feed those changes onward */
3484 		state = parent;
3485 		parent = state->parent;
3486 	}
3487 }
3488 
3489 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3490 {
3491 	struct bpf_verifier_state_list *new_sl;
3492 	struct bpf_verifier_state_list *sl;
3493 	int i;
3494 
3495 	sl = env->explored_states[insn_idx];
3496 	if (!sl)
3497 		/* this 'insn_idx' instruction wasn't marked, so we will not
3498 		 * be doing state search here
3499 		 */
3500 		return 0;
3501 
3502 	while (sl != STATE_LIST_MARK) {
3503 		if (states_equal(env, &sl->state, &env->cur_state)) {
3504 			/* reached equivalent register/stack state,
3505 			 * prune the search.
3506 			 * Registers read by the continuation are read by us.
3507 			 * If we have any write marks in env->cur_state, they
3508 			 * will prevent corresponding reads in the continuation
3509 			 * from reaching our parent (an explored_state).  Our
3510 			 * own state will get the read marks recorded, but
3511 			 * they'll be immediately forgotten as we're pruning
3512 			 * this state and will pop a new one.
3513 			 */
3514 			propagate_liveness(&sl->state, &env->cur_state);
3515 			return 1;
3516 		}
3517 		sl = sl->next;
3518 	}
3519 
3520 	/* there were no equivalent states, remember current one.
3521 	 * technically the current state is not proven to be safe yet,
3522 	 * but it will either reach bpf_exit (which means it's safe) or
3523 	 * it will be rejected. Since there are no loops, we won't be
3524 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3525 	 */
3526 	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
3527 	if (!new_sl)
3528 		return -ENOMEM;
3529 
3530 	/* add new state to the head of linked list */
3531 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3532 	new_sl->next = env->explored_states[insn_idx];
3533 	env->explored_states[insn_idx] = new_sl;
3534 	/* connect new state to parentage chain */
3535 	env->cur_state.parent = &new_sl->state;
3536 	/* clear write marks in current state: the writes we did are not writes
3537 	 * our child did, so they don't screen off its reads from us.
3538 	 * (There are no read marks in current state, because reads always mark
3539 	 * their parent and current state never has children yet.  Only
3540 	 * explored_states can get read marks.)
3541 	 */
3542 	for (i = 0; i < BPF_REG_FP; i++)
3543 		env->cur_state.regs[i].live = REG_LIVE_NONE;
3544 	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
3545 		if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
3546 			env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
3547 	return 0;
3548 }
3549 
3550 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3551 				  int insn_idx, int prev_insn_idx)
3552 {
3553 	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3554 		return 0;
3555 
3556 	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3557 }
3558 
3559 static int do_check(struct bpf_verifier_env *env)
3560 {
3561 	struct bpf_verifier_state *state = &env->cur_state;
3562 	struct bpf_insn *insns = env->prog->insnsi;
3563 	struct bpf_reg_state *regs = state->regs;
3564 	int insn_cnt = env->prog->len;
3565 	int insn_idx, prev_insn_idx = 0;
3566 	int insn_processed = 0;
3567 	bool do_print_state = false;
3568 
3569 	init_reg_state(env, regs);
3570 	state->parent = NULL;
3571 	insn_idx = 0;
3572 	for (;;) {
3573 		struct bpf_insn *insn;
3574 		u8 class;
3575 		int err;
3576 
3577 		if (insn_idx >= insn_cnt) {
3578 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
3579 				insn_idx, insn_cnt);
3580 			return -EFAULT;
3581 		}
3582 
3583 		insn = &insns[insn_idx];
3584 		class = BPF_CLASS(insn->code);
3585 
3586 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3587 			verbose(env,
3588 				"BPF program is too large. Processed %d insn\n",
3589 				insn_processed);
3590 			return -E2BIG;
3591 		}
3592 
3593 		err = is_state_visited(env, insn_idx);
3594 		if (err < 0)
3595 			return err;
3596 		if (err == 1) {
3597 			/* found equivalent state, can prune the search */
3598 			if (env->log.level) {
3599 				if (do_print_state)
3600 					verbose(env, "\nfrom %d to %d: safe\n",
3601 						prev_insn_idx, insn_idx);
3602 				else
3603 					verbose(env, "%d: safe\n", insn_idx);
3604 			}
3605 			goto process_bpf_exit;
3606 		}
3607 
3608 		if (need_resched())
3609 			cond_resched();
3610 
3611 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
3612 			if (env->log.level > 1)
3613 				verbose(env, "%d:", insn_idx);
3614 			else
3615 				verbose(env, "\nfrom %d to %d:",
3616 					prev_insn_idx, insn_idx);
3617 			print_verifier_state(env, &env->cur_state);
3618 			do_print_state = false;
3619 		}
3620 
3621 		if (env->log.level) {
3622 			verbose(env, "%d: ", insn_idx);
3623 			print_bpf_insn(verbose, env, insn,
3624 				       env->allow_ptr_leaks);
3625 		}
3626 
3627 		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3628 		if (err)
3629 			return err;
3630 
3631 		if (class == BPF_ALU || class == BPF_ALU64) {
3632 			err = check_alu_op(env, insn);
3633 			if (err)
3634 				return err;
3635 
3636 		} else if (class == BPF_LDX) {
3637 			enum bpf_reg_type *prev_src_type, src_reg_type;
3638 
3639 			/* check for reserved fields is already done */
3640 
3641 			/* check src operand */
3642 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3643 			if (err)
3644 				return err;
3645 
3646 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3647 			if (err)
3648 				return err;
3649 
3650 			src_reg_type = regs[insn->src_reg].type;
3651 
3652 			/* check that memory (src_reg + off) is readable,
3653 			 * the state of dst_reg will be updated by this func
3654 			 */
3655 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3656 					       BPF_SIZE(insn->code), BPF_READ,
3657 					       insn->dst_reg);
3658 			if (err)
3659 				return err;
3660 
3661 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3662 
3663 			if (*prev_src_type == NOT_INIT) {
3664 				/* saw a valid insn
3665 				 * dst_reg = *(u32 *)(src_reg + off)
3666 				 * save type to validate intersecting paths
3667 				 */
3668 				*prev_src_type = src_reg_type;
3669 
3670 			} else if (src_reg_type != *prev_src_type &&
3671 				   (src_reg_type == PTR_TO_CTX ||
3672 				    *prev_src_type == PTR_TO_CTX)) {
3673 				/* ABuser program is trying to use the same insn
3674 				 * dst_reg = *(u32*) (src_reg + off)
3675 				 * with different pointer types:
3676 				 * src_reg == ctx in one branch and
3677 				 * src_reg == stack|map in some other branch.
3678 				 * Reject it.
3679 				 */
3680 				verbose(env, "same insn cannot be used with different pointers\n");
3681 				return -EINVAL;
3682 			}
3683 
3684 		} else if (class == BPF_STX) {
3685 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3686 
3687 			if (BPF_MODE(insn->code) == BPF_XADD) {
3688 				err = check_xadd(env, insn_idx, insn);
3689 				if (err)
3690 					return err;
3691 				insn_idx++;
3692 				continue;
3693 			}
3694 
3695 			/* check src1 operand */
3696 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3697 			if (err)
3698 				return err;
3699 			/* check src2 operand */
3700 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3701 			if (err)
3702 				return err;
3703 
3704 			dst_reg_type = regs[insn->dst_reg].type;
3705 
3706 			/* check that memory (dst_reg + off) is writeable */
3707 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3708 					       BPF_SIZE(insn->code), BPF_WRITE,
3709 					       insn->src_reg);
3710 			if (err)
3711 				return err;
3712 
3713 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3714 
3715 			if (*prev_dst_type == NOT_INIT) {
3716 				*prev_dst_type = dst_reg_type;
3717 			} else if (dst_reg_type != *prev_dst_type &&
3718 				   (dst_reg_type == PTR_TO_CTX ||
3719 				    *prev_dst_type == PTR_TO_CTX)) {
3720 				verbose(env, "same insn cannot be used with different pointers\n");
3721 				return -EINVAL;
3722 			}
3723 
3724 		} else if (class == BPF_ST) {
3725 			if (BPF_MODE(insn->code) != BPF_MEM ||
3726 			    insn->src_reg != BPF_REG_0) {
3727 				verbose(env, "BPF_ST uses reserved fields\n");
3728 				return -EINVAL;
3729 			}
3730 			/* check src operand */
3731 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3732 			if (err)
3733 				return err;
3734 
3735 			/* check that memory (dst_reg + off) is writeable */
3736 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3737 					       BPF_SIZE(insn->code), BPF_WRITE,
3738 					       -1);
3739 			if (err)
3740 				return err;
3741 
3742 		} else if (class == BPF_JMP) {
3743 			u8 opcode = BPF_OP(insn->code);
3744 
3745 			if (opcode == BPF_CALL) {
3746 				if (BPF_SRC(insn->code) != BPF_K ||
3747 				    insn->off != 0 ||
3748 				    insn->src_reg != BPF_REG_0 ||
3749 				    insn->dst_reg != BPF_REG_0) {
3750 					verbose(env, "BPF_CALL uses reserved fields\n");
3751 					return -EINVAL;
3752 				}
3753 
3754 				err = check_call(env, insn->imm, insn_idx);
3755 				if (err)
3756 					return err;
3757 
3758 			} else if (opcode == BPF_JA) {
3759 				if (BPF_SRC(insn->code) != BPF_K ||
3760 				    insn->imm != 0 ||
3761 				    insn->src_reg != BPF_REG_0 ||
3762 				    insn->dst_reg != BPF_REG_0) {
3763 					verbose(env, "BPF_JA uses reserved fields\n");
3764 					return -EINVAL;
3765 				}
3766 
3767 				insn_idx += insn->off + 1;
3768 				continue;
3769 
3770 			} else if (opcode == BPF_EXIT) {
3771 				if (BPF_SRC(insn->code) != BPF_K ||
3772 				    insn->imm != 0 ||
3773 				    insn->src_reg != BPF_REG_0 ||
3774 				    insn->dst_reg != BPF_REG_0) {
3775 					verbose(env, "BPF_EXIT uses reserved fields\n");
3776 					return -EINVAL;
3777 				}
3778 
3779 				/* eBPF calling convetion is such that R0 is used
3780 				 * to return the value from eBPF program.
3781 				 * Make sure that it's readable at this time
3782 				 * of bpf_exit, which means that program wrote
3783 				 * something into it earlier
3784 				 */
3785 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3786 				if (err)
3787 					return err;
3788 
3789 				if (is_pointer_value(env, BPF_REG_0)) {
3790 					verbose(env, "R0 leaks addr as return value\n");
3791 					return -EACCES;
3792 				}
3793 
3794 				err = check_return_code(env);
3795 				if (err)
3796 					return err;
3797 process_bpf_exit:
3798 				insn_idx = pop_stack(env, &prev_insn_idx);
3799 				if (insn_idx < 0) {
3800 					break;
3801 				} else {
3802 					do_print_state = true;
3803 					continue;
3804 				}
3805 			} else {
3806 				err = check_cond_jmp_op(env, insn, &insn_idx);
3807 				if (err)
3808 					return err;
3809 			}
3810 		} else if (class == BPF_LD) {
3811 			u8 mode = BPF_MODE(insn->code);
3812 
3813 			if (mode == BPF_ABS || mode == BPF_IND) {
3814 				err = check_ld_abs(env, insn);
3815 				if (err)
3816 					return err;
3817 
3818 			} else if (mode == BPF_IMM) {
3819 				err = check_ld_imm(env, insn);
3820 				if (err)
3821 					return err;
3822 
3823 				insn_idx++;
3824 			} else {
3825 				verbose(env, "invalid BPF_LD mode\n");
3826 				return -EINVAL;
3827 			}
3828 		} else {
3829 			verbose(env, "unknown insn class %d\n", class);
3830 			return -EINVAL;
3831 		}
3832 
3833 		insn_idx++;
3834 	}
3835 
3836 	verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
3837 		env->prog->aux->stack_depth);
3838 	return 0;
3839 }
3840 
3841 static int check_map_prealloc(struct bpf_map *map)
3842 {
3843 	return (map->map_type != BPF_MAP_TYPE_HASH &&
3844 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3845 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3846 		!(map->map_flags & BPF_F_NO_PREALLOC);
3847 }
3848 
3849 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
3850 					struct bpf_map *map,
3851 					struct bpf_prog *prog)
3852 
3853 {
3854 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3855 	 * preallocated hash maps, since doing memory allocation
3856 	 * in overflow_handler can crash depending on where nmi got
3857 	 * triggered.
3858 	 */
3859 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3860 		if (!check_map_prealloc(map)) {
3861 			verbose(env, "perf_event programs can only use preallocated hash map\n");
3862 			return -EINVAL;
3863 		}
3864 		if (map->inner_map_meta &&
3865 		    !check_map_prealloc(map->inner_map_meta)) {
3866 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
3867 			return -EINVAL;
3868 		}
3869 	}
3870 	return 0;
3871 }
3872 
3873 /* look for pseudo eBPF instructions that access map FDs and
3874  * replace them with actual map pointers
3875  */
3876 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3877 {
3878 	struct bpf_insn *insn = env->prog->insnsi;
3879 	int insn_cnt = env->prog->len;
3880 	int i, j, err;
3881 
3882 	err = bpf_prog_calc_tag(env->prog);
3883 	if (err)
3884 		return err;
3885 
3886 	for (i = 0; i < insn_cnt; i++, insn++) {
3887 		if (BPF_CLASS(insn->code) == BPF_LDX &&
3888 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3889 			verbose(env, "BPF_LDX uses reserved fields\n");
3890 			return -EINVAL;
3891 		}
3892 
3893 		if (BPF_CLASS(insn->code) == BPF_STX &&
3894 		    ((BPF_MODE(insn->code) != BPF_MEM &&
3895 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3896 			verbose(env, "BPF_STX uses reserved fields\n");
3897 			return -EINVAL;
3898 		}
3899 
3900 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3901 			struct bpf_map *map;
3902 			struct fd f;
3903 
3904 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
3905 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3906 			    insn[1].off != 0) {
3907 				verbose(env, "invalid bpf_ld_imm64 insn\n");
3908 				return -EINVAL;
3909 			}
3910 
3911 			if (insn->src_reg == 0)
3912 				/* valid generic load 64-bit imm */
3913 				goto next_insn;
3914 
3915 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3916 				verbose(env,
3917 					"unrecognized bpf_ld_imm64 insn\n");
3918 				return -EINVAL;
3919 			}
3920 
3921 			f = fdget(insn->imm);
3922 			map = __bpf_map_get(f);
3923 			if (IS_ERR(map)) {
3924 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
3925 					insn->imm);
3926 				return PTR_ERR(map);
3927 			}
3928 
3929 			err = check_map_prog_compatibility(env, map, env->prog);
3930 			if (err) {
3931 				fdput(f);
3932 				return err;
3933 			}
3934 
3935 			/* store map pointer inside BPF_LD_IMM64 instruction */
3936 			insn[0].imm = (u32) (unsigned long) map;
3937 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
3938 
3939 			/* check whether we recorded this map already */
3940 			for (j = 0; j < env->used_map_cnt; j++)
3941 				if (env->used_maps[j] == map) {
3942 					fdput(f);
3943 					goto next_insn;
3944 				}
3945 
3946 			if (env->used_map_cnt >= MAX_USED_MAPS) {
3947 				fdput(f);
3948 				return -E2BIG;
3949 			}
3950 
3951 			/* hold the map. If the program is rejected by verifier,
3952 			 * the map will be released by release_maps() or it
3953 			 * will be used by the valid program until it's unloaded
3954 			 * and all maps are released in free_bpf_prog_info()
3955 			 */
3956 			map = bpf_map_inc(map, false);
3957 			if (IS_ERR(map)) {
3958 				fdput(f);
3959 				return PTR_ERR(map);
3960 			}
3961 			env->used_maps[env->used_map_cnt++] = map;
3962 
3963 			fdput(f);
3964 next_insn:
3965 			insn++;
3966 			i++;
3967 		}
3968 	}
3969 
3970 	/* now all pseudo BPF_LD_IMM64 instructions load valid
3971 	 * 'struct bpf_map *' into a register instead of user map_fd.
3972 	 * These pointers will be used later by verifier to validate map access.
3973 	 */
3974 	return 0;
3975 }
3976 
3977 /* drop refcnt of maps used by the rejected program */
3978 static void release_maps(struct bpf_verifier_env *env)
3979 {
3980 	int i;
3981 
3982 	for (i = 0; i < env->used_map_cnt; i++)
3983 		bpf_map_put(env->used_maps[i]);
3984 }
3985 
3986 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3987 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3988 {
3989 	struct bpf_insn *insn = env->prog->insnsi;
3990 	int insn_cnt = env->prog->len;
3991 	int i;
3992 
3993 	for (i = 0; i < insn_cnt; i++, insn++)
3994 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3995 			insn->src_reg = 0;
3996 }
3997 
3998 /* single env->prog->insni[off] instruction was replaced with the range
3999  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
4000  * [0, off) and [off, end) to new locations, so the patched range stays zero
4001  */
4002 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4003 				u32 off, u32 cnt)
4004 {
4005 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4006 
4007 	if (cnt == 1)
4008 		return 0;
4009 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4010 	if (!new_data)
4011 		return -ENOMEM;
4012 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4013 	memcpy(new_data + off + cnt - 1, old_data + off,
4014 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4015 	env->insn_aux_data = new_data;
4016 	vfree(old_data);
4017 	return 0;
4018 }
4019 
4020 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4021 					    const struct bpf_insn *patch, u32 len)
4022 {
4023 	struct bpf_prog *new_prog;
4024 
4025 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4026 	if (!new_prog)
4027 		return NULL;
4028 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
4029 		return NULL;
4030 	return new_prog;
4031 }
4032 
4033 /* convert load instructions that access fields of 'struct __sk_buff'
4034  * into sequence of instructions that access fields of 'struct sk_buff'
4035  */
4036 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4037 {
4038 	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
4039 	int i, cnt, size, ctx_field_size, delta = 0;
4040 	const int insn_cnt = env->prog->len;
4041 	struct bpf_insn insn_buf[16], *insn;
4042 	struct bpf_prog *new_prog;
4043 	enum bpf_access_type type;
4044 	bool is_narrower_load;
4045 	u32 target_size;
4046 
4047 	if (ops->gen_prologue) {
4048 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4049 					env->prog);
4050 		if (cnt >= ARRAY_SIZE(insn_buf)) {
4051 			verbose(env, "bpf verifier is misconfigured\n");
4052 			return -EINVAL;
4053 		} else if (cnt) {
4054 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4055 			if (!new_prog)
4056 				return -ENOMEM;
4057 
4058 			env->prog = new_prog;
4059 			delta += cnt - 1;
4060 		}
4061 	}
4062 
4063 	if (!ops->convert_ctx_access)
4064 		return 0;
4065 
4066 	insn = env->prog->insnsi + delta;
4067 
4068 	for (i = 0; i < insn_cnt; i++, insn++) {
4069 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4070 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4071 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4072 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4073 			type = BPF_READ;
4074 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4075 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4076 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4077 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4078 			type = BPF_WRITE;
4079 		else
4080 			continue;
4081 
4082 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4083 			continue;
4084 
4085 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4086 		size = BPF_LDST_BYTES(insn);
4087 
4088 		/* If the read access is a narrower load of the field,
4089 		 * convert to a 4/8-byte load, to minimum program type specific
4090 		 * convert_ctx_access changes. If conversion is successful,
4091 		 * we will apply proper mask to the result.
4092 		 */
4093 		is_narrower_load = size < ctx_field_size;
4094 		if (is_narrower_load) {
4095 			u32 off = insn->off;
4096 			u8 size_code;
4097 
4098 			if (type == BPF_WRITE) {
4099 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4100 				return -EINVAL;
4101 			}
4102 
4103 			size_code = BPF_H;
4104 			if (ctx_field_size == 4)
4105 				size_code = BPF_W;
4106 			else if (ctx_field_size == 8)
4107 				size_code = BPF_DW;
4108 
4109 			insn->off = off & ~(ctx_field_size - 1);
4110 			insn->code = BPF_LDX | BPF_MEM | size_code;
4111 		}
4112 
4113 		target_size = 0;
4114 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4115 					      &target_size);
4116 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4117 		    (ctx_field_size && !target_size)) {
4118 			verbose(env, "bpf verifier is misconfigured\n");
4119 			return -EINVAL;
4120 		}
4121 
4122 		if (is_narrower_load && size < target_size) {
4123 			if (ctx_field_size <= 4)
4124 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4125 								(1 << size * 8) - 1);
4126 			else
4127 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4128 								(1 << size * 8) - 1);
4129 		}
4130 
4131 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4132 		if (!new_prog)
4133 			return -ENOMEM;
4134 
4135 		delta += cnt - 1;
4136 
4137 		/* keep walking new program and skip insns we just inserted */
4138 		env->prog = new_prog;
4139 		insn      = new_prog->insnsi + i + delta;
4140 	}
4141 
4142 	return 0;
4143 }
4144 
4145 /* fixup insn->imm field of bpf_call instructions
4146  * and inline eligible helpers as explicit sequence of BPF instructions
4147  *
4148  * this function is called after eBPF program passed verification
4149  */
4150 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4151 {
4152 	struct bpf_prog *prog = env->prog;
4153 	struct bpf_insn *insn = prog->insnsi;
4154 	const struct bpf_func_proto *fn;
4155 	const int insn_cnt = prog->len;
4156 	struct bpf_insn insn_buf[16];
4157 	struct bpf_prog *new_prog;
4158 	struct bpf_map *map_ptr;
4159 	int i, cnt, delta = 0;
4160 
4161 	for (i = 0; i < insn_cnt; i++, insn++) {
4162 		if (insn->code != (BPF_JMP | BPF_CALL))
4163 			continue;
4164 
4165 		if (insn->imm == BPF_FUNC_get_route_realm)
4166 			prog->dst_needed = 1;
4167 		if (insn->imm == BPF_FUNC_get_prandom_u32)
4168 			bpf_user_rnd_init_once();
4169 		if (insn->imm == BPF_FUNC_tail_call) {
4170 			/* If we tail call into other programs, we
4171 			 * cannot make any assumptions since they can
4172 			 * be replaced dynamically during runtime in
4173 			 * the program array.
4174 			 */
4175 			prog->cb_access = 1;
4176 			env->prog->aux->stack_depth = MAX_BPF_STACK;
4177 
4178 			/* mark bpf_tail_call as different opcode to avoid
4179 			 * conditional branch in the interpeter for every normal
4180 			 * call and to prevent accidental JITing by JIT compiler
4181 			 * that doesn't support bpf_tail_call yet
4182 			 */
4183 			insn->imm = 0;
4184 			insn->code = BPF_JMP | BPF_TAIL_CALL;
4185 			continue;
4186 		}
4187 
4188 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4189 		 * handlers are currently limited to 64 bit only.
4190 		 */
4191 		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4192 		    insn->imm == BPF_FUNC_map_lookup_elem) {
4193 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4194 			if (map_ptr == BPF_MAP_PTR_POISON ||
4195 			    !map_ptr->ops->map_gen_lookup)
4196 				goto patch_call_imm;
4197 
4198 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4199 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4200 				verbose(env, "bpf verifier is misconfigured\n");
4201 				return -EINVAL;
4202 			}
4203 
4204 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4205 						       cnt);
4206 			if (!new_prog)
4207 				return -ENOMEM;
4208 
4209 			delta += cnt - 1;
4210 
4211 			/* keep walking new program and skip insns we just inserted */
4212 			env->prog = prog = new_prog;
4213 			insn      = new_prog->insnsi + i + delta;
4214 			continue;
4215 		}
4216 
4217 		if (insn->imm == BPF_FUNC_redirect_map) {
4218 			/* Note, we cannot use prog directly as imm as subsequent
4219 			 * rewrites would still change the prog pointer. The only
4220 			 * stable address we can use is aux, which also works with
4221 			 * prog clones during blinding.
4222 			 */
4223 			u64 addr = (unsigned long)prog->aux;
4224 			struct bpf_insn r4_ld[] = {
4225 				BPF_LD_IMM64(BPF_REG_4, addr),
4226 				*insn,
4227 			};
4228 			cnt = ARRAY_SIZE(r4_ld);
4229 
4230 			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4231 			if (!new_prog)
4232 				return -ENOMEM;
4233 
4234 			delta    += cnt - 1;
4235 			env->prog = prog = new_prog;
4236 			insn      = new_prog->insnsi + i + delta;
4237 		}
4238 patch_call_imm:
4239 		fn = prog->aux->ops->get_func_proto(insn->imm);
4240 		/* all functions that have prototype and verifier allowed
4241 		 * programs to call them, must be real in-kernel functions
4242 		 */
4243 		if (!fn->func) {
4244 			verbose(env,
4245 				"kernel subsystem misconfigured func %s#%d\n",
4246 				func_id_name(insn->imm), insn->imm);
4247 			return -EFAULT;
4248 		}
4249 		insn->imm = fn->func - __bpf_call_base;
4250 	}
4251 
4252 	return 0;
4253 }
4254 
4255 static void free_states(struct bpf_verifier_env *env)
4256 {
4257 	struct bpf_verifier_state_list *sl, *sln;
4258 	int i;
4259 
4260 	if (!env->explored_states)
4261 		return;
4262 
4263 	for (i = 0; i < env->prog->len; i++) {
4264 		sl = env->explored_states[i];
4265 
4266 		if (sl)
4267 			while (sl != STATE_LIST_MARK) {
4268 				sln = sl->next;
4269 				kfree(sl);
4270 				sl = sln;
4271 			}
4272 	}
4273 
4274 	kfree(env->explored_states);
4275 }
4276 
4277 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4278 {
4279 	struct bpf_verifier_env *env;
4280 	struct bpf_verifer_log *log;
4281 	int ret = -EINVAL;
4282 
4283 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4284 	 * allocate/free it every time bpf_check() is called
4285 	 */
4286 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4287 	if (!env)
4288 		return -ENOMEM;
4289 	log = &env->log;
4290 
4291 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4292 				     (*prog)->len);
4293 	ret = -ENOMEM;
4294 	if (!env->insn_aux_data)
4295 		goto err_free_env;
4296 	env->prog = *prog;
4297 
4298 	/* grab the mutex to protect few globals used by verifier */
4299 	mutex_lock(&bpf_verifier_lock);
4300 
4301 	if (attr->log_level || attr->log_buf || attr->log_size) {
4302 		/* user requested verbose verifier output
4303 		 * and supplied buffer to store the verification trace
4304 		 */
4305 		log->level = attr->log_level;
4306 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4307 		log->len_total = attr->log_size;
4308 
4309 		ret = -EINVAL;
4310 		/* log attributes have to be sane */
4311 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4312 		    !log->level || !log->ubuf)
4313 			goto err_unlock;
4314 	}
4315 
4316 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4317 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4318 		env->strict_alignment = true;
4319 
4320 	ret = replace_map_fd_with_map_ptr(env);
4321 	if (ret < 0)
4322 		goto skip_full_check;
4323 
4324 	env->explored_states = kcalloc(env->prog->len,
4325 				       sizeof(struct bpf_verifier_state_list *),
4326 				       GFP_USER);
4327 	ret = -ENOMEM;
4328 	if (!env->explored_states)
4329 		goto skip_full_check;
4330 
4331 	ret = check_cfg(env);
4332 	if (ret < 0)
4333 		goto skip_full_check;
4334 
4335 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4336 
4337 	ret = do_check(env);
4338 
4339 skip_full_check:
4340 	while (pop_stack(env, NULL) >= 0);
4341 	free_states(env);
4342 
4343 	if (ret == 0)
4344 		/* program is valid, convert *(u32*)(ctx + off) accesses */
4345 		ret = convert_ctx_accesses(env);
4346 
4347 	if (ret == 0)
4348 		ret = fixup_bpf_calls(env);
4349 
4350 	if (log->level && bpf_verifier_log_full(log))
4351 		ret = -ENOSPC;
4352 	if (log->level && !log->ubuf) {
4353 		ret = -EFAULT;
4354 		goto err_release_maps;
4355 	}
4356 
4357 	if (ret == 0 && env->used_map_cnt) {
4358 		/* if program passed verifier, update used_maps in bpf_prog_info */
4359 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4360 							  sizeof(env->used_maps[0]),
4361 							  GFP_KERNEL);
4362 
4363 		if (!env->prog->aux->used_maps) {
4364 			ret = -ENOMEM;
4365 			goto err_release_maps;
4366 		}
4367 
4368 		memcpy(env->prog->aux->used_maps, env->used_maps,
4369 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4370 		env->prog->aux->used_map_cnt = env->used_map_cnt;
4371 
4372 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
4373 		 * bpf_ld_imm64 instructions
4374 		 */
4375 		convert_pseudo_ld_imm64(env);
4376 	}
4377 
4378 err_release_maps:
4379 	if (!env->prog->aux->used_maps)
4380 		/* if we didn't copy map pointers into bpf_prog_info, release
4381 		 * them now. Otherwise free_bpf_prog_info() will release them.
4382 		 */
4383 		release_maps(env);
4384 	*prog = env->prog;
4385 err_unlock:
4386 	mutex_unlock(&bpf_verifier_lock);
4387 	vfree(env->insn_aux_data);
4388 err_free_env:
4389 	kfree(env);
4390 	return ret;
4391 }
4392 
4393 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4394 		 void *priv)
4395 {
4396 	struct bpf_verifier_env *env;
4397 	int ret;
4398 
4399 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4400 	if (!env)
4401 		return -ENOMEM;
4402 
4403 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4404 				     prog->len);
4405 	ret = -ENOMEM;
4406 	if (!env->insn_aux_data)
4407 		goto err_free_env;
4408 	env->prog = prog;
4409 	env->analyzer_ops = ops;
4410 	env->analyzer_priv = priv;
4411 
4412 	/* grab the mutex to protect few globals used by verifier */
4413 	mutex_lock(&bpf_verifier_lock);
4414 
4415 	env->strict_alignment = false;
4416 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4417 		env->strict_alignment = true;
4418 
4419 	env->explored_states = kcalloc(env->prog->len,
4420 				       sizeof(struct bpf_verifier_state_list *),
4421 				       GFP_KERNEL);
4422 	ret = -ENOMEM;
4423 	if (!env->explored_states)
4424 		goto skip_full_check;
4425 
4426 	ret = check_cfg(env);
4427 	if (ret < 0)
4428 		goto skip_full_check;
4429 
4430 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4431 
4432 	ret = do_check(env);
4433 
4434 skip_full_check:
4435 	while (pop_stack(env, NULL) >= 0);
4436 	free_states(env);
4437 
4438 	mutex_unlock(&bpf_verifier_lock);
4439 	vfree(env->insn_aux_data);
4440 err_free_env:
4441 	kfree(env);
4442 	return ret;
4443 }
4444 EXPORT_SYMBOL_GPL(bpf_analyzer);
4445